


BiteSize Python for 
Intermediate Learners

This book is an introduction to Python for intermediate learners. It allows readers to take 
a slow and steady approach to building upon their understanding of Python code. While 
there are many books, websites, and online courses about the topic, Python programming is 
broken down here into easily digestible lessons of less than 5 minutes each, following a tried 
and tested BiteSize approach.

Each lesson begins with a clear and concise introduction to the topic, giving the reader a 
strong base to start from and gets them ready for deeper learning. This is followed by cod-
ing demonstrations that further explore the ideas discussed. The book offers practice tasks 
in different difficulty levels, so readers can test their knowledge and grow their confidence. 
The reader will also play with case studies to solve real-world problems. Tips on how to 
incorporate Generative AI into a learning toolkit are provided, for purposes like feedback, 
practice exercises, code reviews, and exploring advanced topics. Recommended AI prompts 
can help readers identify areas for improvement, review key concepts, and track progress.

This book is designed for intermediate learners with a basic understanding of Python. It is 
ideal for individuals with busy schedules or limited time for studying. 



Chapman & Hall/CRC 

The Python Series

About the Series

Python has been ranked as the most popular programming language, and it is widely used in education and 

industry. This book series will offer a wide range of books on Python for students and professionals. Titles in the 

series will help users learn the language at an introductory and advanced level, and explore its many applica-

tions in data science, AI, and machine learning. Series titles can also be supplemented with Jupyter notebooks. 

Introduction to Python for Humanists 

William J.B. Mattingly

Python for Scientific Computation and Artificial Intelligence

Stephen Lynch

Learning Professional Python Volume 1: The Basics

Usharani Bhimavarapu and Jude D. Hemanth

Learning Professional Python Volume 2: Advanced

Usharani Bhimavarapu and Jude D. Hemanth

Learning Advanced Python from Open Source Projects 

Rongpeng Li

Foundations of Data Science with Python

John Mark Shea

Data Mining with Python: Theory, Applications, and Case Studies

Di Wu

A Simple Introduction to Python 

Stephen Lynch

Introduction to Python: with Applications in Optimization, Image and Video Processing, and Machine 

Learning

David Baez-Lopez and David Alfredo Báez Villegas

Tidy Finance with Python 

Christoph Frey, Christoph Scheuch, Stefan Voigt and Patrick Weiss

Introduction to Quantitative Social Science with Python 

Weiqi Zhang and Dmitry Zinoviev

Python Programming for Mathematics

Julien Guillod

Geocomputation with Python

Michael Dorman, Anita Graser, Jakub Nowosad and Robin Lovelace

BiteSize Python for Absolute Beginners: With Practice Labs, Real-World Examples, 

and Generative AI Assistance

Di Wu

Data Clustering with Python: From Theory to Implementation

Guojun Gan

Linear Algebra for Data Science with Python

John M. Shea

BiteSize Python for Intermediate Learners: With Practice Labs, Real-World 

Examples, and ChatGPT

Di Wu

For more information about this series please visit: https://www.routledge.com/Chapman--HallCRC-The-

Python-Series/book-series/PYTH

https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH
https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH


BiteSize Python for 
Intermediate Learners

With Practice Labs, Real-World Examples, and 
Generative AI Assistance

Di Wu

https://www.crcpress.com


Designed Cover Image: ShutterStock ID 1387214564

First edition published 2026

by CRC Press

2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Di Wu

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-

sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have 

attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders 

if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please 

write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or 

utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-

tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission 

from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the 

Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are 

not available on CCC please contact mpkbookspermissions@tandf.co.uk

For Product Safety Concerns and Information please contact our EU representative GPSR@taylorandfrancis.com. 

Taylor & Francis Verlag GmbH, Kaufingerstraße 24, 80331 München, Germany.

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-

tification and explanation without intent to infringe.

ISBN: 978-1-041-03684-5 (hbk)

ISBN: 978-1-041-03682-1 (pbk)

ISBN: 978-1-003-62486-8 (ebk)

DOI: 10.1201/9781003624868

Typeset in Latin Modern font 

by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:GPSR@taylorandfrancis.com
https://doi.org/10.1201/9781003624868


To my parents.



http://taylorandfrancis.com


Contents

List of Figures xvii

List of Tables xxiii

Foreword xxv

Preface xxvii

Author Biographies xxxi

Section I Object-Oriented Programming

Chapter 1 � Introduction to OOP 5

1.1 THE IDEA 5

1.1.1 Explanation 5

1.1.2 Real-life Examples 6

1.1.3 Practice 6

1.2 CREATE A CLASS 7

1.2.1 Demonstration 7

1.2.2 Practice 9

1.3 FOUR ASPECTS 12

1.4 INTERACT WITH GENAI 13

Chapter 2 � Inheritance 14

2.1 WHAT IS INHERITANCE? 14

2.1.1 Demonstration 14

2.2 ANIMAL CLASS REVISIT 16

2.3 CASE STUDIES 17

2.4 INTERACT WITH GENAI 21

vii



viii � Contents

Chapter 3 � Polymorphism 22

3.1 WHAT IS POLYMORPHISM 22

3.1.1 Demonstration 22

3.2 FAMILY TREE REVISITED 23

3.3 ANIMALS REVISIT 24

3.4 VEHICLES REVISIT 25

3.5 CASE STUDIES 26

3.6 INTERACT WITH GENAI 30

Chapter 4 � Encapsulation 31

4.1 INTRODUCTION TO ENCAPSULATION 31

4.1.1 Demonstration 31

4.2 BANK ACCOUNT 34

4.3 STUDENT GRADES 35

4.4 CAR ENGINE 36

4.5 CASE STUDIES 37

4.6 INTERACT WITH GENAI 40

Chapter 5 � Abstraction 41

5.1 INTRODUCTION TO ABSTRACTION 41

5.1.1 Demonstration 41

5.2 VEHICLES 42

5.3 PAYMENT 44

5.4 CASE STUDIES 45

5.5 INTERACT WITH GENAI 47

Chapter 6 � Documentation 48

6.1 INTRODUCTION 48

6.1.1 Demonstration 48

6.2 BOOK 50

6.3 INTERACT WITH GENAI 52

Chapter 7 � Case Studies 53

7.1 IPHONE 53

7.1.1 Background 53

7.1.2 Implementation 53

7.1.3 Usage 55

7.2 EMPLOYEE 56



Contents � ix

7.2.1 Background 56

7.2.2 Implementation 56

7.2.3 Usage 58

7.3 UNIVERSITY SYSTEM 58

7.3.1 Overview 58

7.3.2 Implementation 59

7.3.3 Usage 60

7.4 VEHICLE RENTAL SYSTEM 61

7.4.1 Overview 61

7.4.2 Implementation 61

7.4.3 Usage 63

7.5 ONLINE MARKETPLACE 63

7.5.1 Overview 63

7.5.2 Implementation 64

7.5.3 Usage 67

Section II Data Manipulation

Chapter 8 � N-dimensional Arrays 73

8.1 WHAT IS A N-DIMENSIONAL ARRAY 73

8.1.1 Explanation 73

8.2 LESSON: COMPARE NDARRAY WITH LIST 74

8.2.1 Test Your Understanding 74

8.3 PERFORMANCE COMPARISON 74

8.3.1 Demonstration 74

8.3.2 Explanation 76

8.3.3 Practice 77

8.4 LESSON: NDARRAY CREATION 77

8.4.1 Demonstration 77

8.4.2 Retrieve ndarray Metadata 79

8.4.3 Practice 80

8.5 LESSON: ACCESS 1D NDARRAY 82

8.5.1 Demonstration 82

8.5.2 Practice 83

8.6 LESSON: ACCESS 2D NDARRAY 84

8.6.1 Demonstration 84

8.6.2 Practice 86



x � Contents

8.7 LESSON: NDARRAY MANIPULATION 87

8.7.1 Demonstration 87

8.7.2 Practice 89

8.8 LESSON: OPERATIONS IN NDARRAY 91

8.8.1 Demonstration 91

8.8.2 Practice 93

8.9 INTERACT WITH GENAI 94

8.10 EXPLORE MORE OF NDARRAY 95

Chapter 9 � NumPy 96

9.1 UNIVERSAL FUNCTIONS 96

9.1.1 Demonstration 96

9.1.2 Practice 99

9.2 STATISTICAL METHODS 99

9.2.1 Demonstration 99

9.2.2 Practice 101

9.3 LINEAR ALGEBRA 102

9.3.1 Demonstration 102

9.3.2 Practice 104

9.4 RANDOM GENERATION 105

9.4.1 Demonstration 105

9.4.2 Practice 106

9.5 MASKING 108

9.5.1 Demonstration 108

9.5.2 Practice 109

9.6 INTERACT WITH GENAI 111

9.7 EXPLORE MORE NUMPY 112

Chapter 10 � Series 113

10.1 WHAT IS A SERIES 113

10.1.1 Explanation 113

10.2 CREATE A SERIES 114

10.2.1 Demonstration 114

10.2.2 Practice 116

10.3 ACCESSING A SERIES 117

10.3.1 Demonstration 117

10.3.2 Practice 119



Contents � xi

10.4 MATH OPERATIONS 122

10.4.1 Demonstration 122

10.4.2 Practice 125

10.5 INTERACT WITH GENAI 127

10.6 EXPLORE MORE OF SERIES 128

Chapter 11 � DataFrame 129

11.1 WHAT IS A DATAFRAME 129

11.1.1 Explanation 129

11.1.2 Test Your Understanding 130

11.2 CREATE A DATAFRAME 130

11.2.1 Demonstration 130

11.2.2 Practice 132

11.3 ACCESS ELEMENTS IN A DATAFRAME USING LABELS 134

11.3.1 Demonstration 134

11.3.2 Practice 136

11.4 ACCESS ELEMENTS IN A DATAFRAME USING INDICES 137

11.4.1 Demonstration 137

11.4.2 Practice 138

11.4.3 Test Your Understanding 139

11.5 MANIPULATE ROWS IN A DATAFRAME 140

11.5.1 Demonstration 140

11.5.2 Practice 141

11.6 MANIPULATE COLUMNS IN A DATAFRAME 143

11.6.1 Demonstration 143

11.6.2 Practice 144

11.7 MERGING DATAFRAMES 145

11.7.1 Demonstration 145

11.7.2 Practice 147

11.8 CONCATENATING DATAFRAMES 148

11.8.1 Demonstration 148

11.8.2 Practice 150

11.8.3 Practice More 151

11.8.4 Test Your Understanding 152

11.9 INTERACT WITH GENAI 153

11.10 EXPLORE MORE OF DATAFRAME 153



xii � Contents

Chapter 12 � Pandas 154

12.1 WHAT IS PANDAS 154

12.1.1 Import of Pandas 154

12.1.2 Key Features of Pandas 154

12.1.3 Exploration 155

12.2 USEFUL FUNCTIONALITIES 155

12.2.1 Demonstration 155

12.2.2 Practice 157

12.3 DESCRIPTIVE STATISTICS FOR NUMERICAL COLUMNS 158

12.3.1 Demonstration 158

12.3.2 Practice 161

12.4 DESCRIPTIVE STATISTICS FOR CATEGORICAL COLUMNS 162

12.4.1 Demonstration 162

12.4.2 Practice 163

12.5 LESSON: GROUPBY() AND AGGREGATION 164

12.5.1 Demonstration 164

12.5.2 Practice 166

12.6 HANDLING MISSING DATA 167

12.6.1 Demonstration 167

12.6.2 Practice 169

12.7 HANDLING DUPLICATE VALUES 170

12.7.1 Demonstration 170

12.7.2 Practice 173

12.8 INTERACT WITH GENAI 174

12.9 EXPLORE MORE OF PANDAS 175

Section III Data Visualization

Chapter 13 � Matplotlib (Basic) 181

13.1 INTRODUCTION 181

13.1.1 Explanation 181

13.2 A SIMPLE PLOT 182

13.2.1 Demonstration 182

13.2.2 Practice 182

13.3 TITLES AND LABELS 183

13.3.1 Demonstration 183

13.3.2 Practice 184



Contents � xiii

13.4 LEGEND 186

13.4.1 Demonstration 186

13.4.2 Practice 187

13.5 CUSTOMIZATION 188

13.5.1 Demonstration 188

13.5.2 Practice 189

13.6 ANNOTATION 190

13.6.1 Demonstration 190

13.7 SUBPLOTS 192

13.7.1 Demonstration 192

13.8 INTERACT WITH GENAI 193

Chapter 14 � Matplotlib (Advanced) 195

14.1 INTRODUCTION 195

14.2 LINE PLOT 195

14.2.1 Demonstration 195

14.2.2 Practice 196

14.3 BAR PLOT 197

14.3.1 Demonstration 197

14.3.2 Practice 197

14.4 HISTOGRAM 199

14.4.1 Demonstration 199

14.4.2 Practice 199

14.5 SCATTER PLOT 200

14.5.1 Demonstration 200

14.5.2 Practice 201

14.6 PIE CHART 201

14.6.1 Demonstration 201

14.6.2 Practice 202

14.7 BOX PLOT 203

14.7.1 Demonstration 203

14.7.2 Practice 204

14.8 HEATMAP 204

14.8.1 Demonstration 204

14.8.2 Practice 205

14.9 SUBPLOTS AGAIN 207

14.9.1 Demonstration 207



xiv � Contents

14.9.2 Practice 208

14.10 INTERACT WITH GENAI 211

14.11 EXPLORE MORE OF MATPLOTLIB 211

Chapter 15 � Seaborn 212

15.1 INTRODUCTION 212

15.1.1 Explanation 212

15.1.2 Major categories 213

15.1.3 Get started 213

15.2 RELATIONAL PLOTS 213

15.2.1 Demonstration 213

15.2.2 Practice 215

15.3 DISTRIBUTION PLOTS 217

15.3.1 Demonstration 217

15.3.2 Practice 220

15.4 CATEGORICAL PLOTS 225

15.4.1 Demonstration 225

15.4.2 Practice 228

15.5 ADDING COLORS 233

15.5.1 Demonstration 233

15.5.2 Practice 242

15.6 MORE STYLES 246

15.6.1 Demonstration 246

15.6.2 Practice 248

15.7 FACET GRIDS 250

15.7.1 Demonstration 250

15.7.2 Practice 252

15.8 LESSON: LMPLOT 255

15.8.1 Demonstration 255

15.8.2 Practice 258

15.9 MULTIPLE PLOTS 261

15.9.1 Demonstration 261

15.10 INTERACT WITH GENAI 265

15.11 EXPLORE MORE SEABORN 266

Chapter 16 � Plotly 269

16.1 OVERVIEW 269



Contents � xv

16.2 SETUP 270

16.2.1 Plotly Express 270

16.3 SCATTER PLOTS 271

16.3.1 Demonstration 271

16.3.2 Practice 273

16.4 LINE PLOTS 277

16.4.1 Demonstration 277

16.4.2 Practice 280

16.5 AREA PLOTS 282

16.5.1 Demonstration 282

16.5.2 Practice 287

16.6 BAR PLOTS 289

16.6.1 Demonstration 289

16.6.2 Practice 292

16.7 TIMELINE PLOTS 294

16.7.1 Demonstration 294

16.7.2 Practice 298

16.8 FUNNEL PLOTS 301

16.8.1 Demonstration 301

16.8.2 Practice 303

16.9 PIE PLOTS 304

16.9.1 Demonstration 304

16.9.2 Practice 308

16.10 HISTOGRAM PLOTS 311

16.10.1 Demonstration 311

16.10.2 Practice 312

16.11 3D SCATTER PLOTS 317

16.11.1 Demonstration 317

16.12 3D LINE PLOTS 319

16.12.1 Demonstration 319

16.13 INTERACT WITH GENAI 320

16.14 EXPLORE MORE ABOUT PLOTLY 321

What is Next? 323

Index 325



http://taylorandfrancis.com


List of Figures

13.1 A basic line plot showing a single line representing data. 182

13.2 A line plot comparing two variables d1 and d2. 183

13.3 A line plot comparing two variables d1 and d3. 184

13.4 A line plot with a title describing the data and labels on the x and y
axes. 185

13.5 A line plot comparing d1 and d2, with a title and labels for clarity. 185

13.6 A line plot comparing d1 and d3, with a title and axis labels. 186

13.7 A line plot with a legend to distinguish between data series. 187

13.8 A line plot of d1 and d2, including a legend to identify each line. 188

13.9 A plot displaying two customized lines with different styles. 189

13.10 A plot showing two customized lines for variables d1, d2, and d3. 191

13.11 A line plot with an annotation highlighting a specific point on
the line. 191

13.12 A plot with four subplots, each with its own title. 193

13.13 A plot with four subplots, each with its own legend. 194

14.1 A line plot illustrating temperature changes over several days. 196

14.2 A simple line plot displaying data trends. 197

14.3 A bar plot representing categorical values with bars of varying
heights. 198

14.4 A basic bar plot showing comparisons between categories. 198

14.5 A histogram plot displaying the distribution of data. 199

14.6 A histogram showing the distribution of random integers. 200

14.7 A basic scatter plot showing data points. 201

14.8 A scatter plot displaying the relationship between variables x and y. 202

14.9 A pie plot illustrating fruit proportions with slices representing each
fruit. 203

14.10 A pie plot showing the market share of different smartphone
companies. 203

xvii



xviii � List of Figures

14.11 A basic box plot displaying the distribution of data. 204

14.12 A basic box plot for random integers. 205

14.13 A heatmap visualizing random data with color intensity. 206

14.14 A heatmap displaying random data using a color gradient. 206

14.15 A plot with nine subplots arranged in a grid. 207

14.16 A plot displaying multiple lines, each representing a different
relationship. 209

14.17 A plot divided into four subplots for comparing data. 209

15.1 A scatter plot showing the correlation between total bill and tip
amounts. 214

15.2 A line plot displaying the relationship between total bill and
party size. 215

15.3 A scatter plot showing the relationship between total bill amount and
time of day. 216

15.4 A line plot showing how total bill amount varies with the time of day. 216

15.5 A scatter plot showing the relationship between total bill and day of
the week. 217

15.6 A line plot showing total bill amounts across different days of the
week. 218

15.7 A basic histogram plot showing the distribution of total bill amounts. 218

15.8 A histogram plot of total bill amounts with more bins for finer detail. 219

15.9 A KDE plot showing the probability density of total bill amounts. 220

15.10 An empirical cumulative distribution function (ECDF) plot for total
bill amounts. 221

15.11 A histogram plot showing the distribution of tip amounts. 221

15.12 A kernel density estimation (KDE) plot for tip amounts. 222

15.13 An empirical cumulative distribution function (ECDF) plot for tip
amounts. 223

15.14 A histogram plot showing the distribution of party size. 223

15.15 A kernel density estimation (KDE) plot for tip amounts. 224

15.16 An empirical cumulative distribution function (ECDF) plot for tip
amounts. 224

15.17 A strip plot showing the distribution of total bill amounts across
different days. 225

15.18 A swarm plot showing the distribution of total bill amounts across
different days, avoiding overlap. 226

15.19 A box plot showing the distribution of total bill amounts for
each day. 227



List of Figures � xix

15.20 A violin plot combining box plot and KDE to show the distribution
of total bill amounts per day. 227

15.21 A bar plot comparing total bill amounts across different days. 228

15.22 A point plot illustrating the average total bill amount for each day. 229

15.23 A strip plot showing the distribution of tip amounts over time. 230

15.24 A strip plot showing the distribution of total bill amounts by gender. 230

15.25 A box plot comparing tip percentages across different days. 231

15.26 A violin plot showing the distribution of total bill amounts for smokers
and non-smokers. 232

15.27 A bar plot comparing tip amounts between genders. 232

15.28 A point plot showing the average tip amount for each day. 233

15.29 A scatter plot of total bill and tip, with color indicating sex. 234

15.30 A line plot of total bill and size, with color indicating sex. 235

15.31 A histogram plot of tip amounts, with color differentiating categories. 235

15.32 A stacked histogram plot of tip amounts, grouped by a categorical
variable. 236

15.33 A kernel density estimation (KDE) plot of tip amounts, with color for
categories. 237

15.34 A stacked KDE plot of tip amounts, grouped by a categorical
variable. 237

15.35 An empirical cumulative distribution function (ECDF) plot for total
bill with color for categories. 238

15.36 A strip plot of total bill over day, with color differentiating categories. 239

15.37 A strip plot of tip over day, with color differentiating categories. 239

15.38 A box plot of total bill over time, with color differentiating categories. 240

15.39 A violin plot of tip over time, with color differentiating categories. 241

15.40 A compact violin plot of tip over time, with color differentiating
categories. 241

15.41 A bar plot of total bill over day, with color differentiating categories. 242

15.42 A point plot of tip over day, with color differentiating categories. 243

15.43 A scatter plot of tip and total bill, with color differentiating
categories. 243

15.44 A KDE plot of total bill, with color differentiating categories. 244

15.45 An ECDF plot of tip, with color differentiating categories. 245

15.46 A violin plot of total bill over day, with color differentiating
categories. 245

15.47 A bar plot of tip over day, with color differentiating categories. 246



xx � List of Figures

15.48 A point plot of total bill over size, with color differentiating
categories. 247

15.49 A scatter plot of total bill and tip, with both style and size variations. 248

15.50 A line plot of total bill and size, with different line styles. 248

15.51 A scatter plot of total bill and tip, with both style and size variations. 249

15.52 A line plot of total bill and size, with different line styles. 250

15.53 A scatter plot of size and tip, with style and size variations. 251

15.54 A scatter plot with data points grouped by smoker status and time. 252

15.55 A histogram with data distribution separated by day. 253

15.56 A box plot showing data distribution grouped by time. 253

15.57 A scatter plot with data points arranged in facets based on day and
time. 254

15.58 A kernel density estimation (KDE) plot with data separated by
gender. 254

15.59 A bar plot with data categorized by time and smoker status. 255

15.60 A violin plot with data distribution grouped by smoker status and
gender. 256

15.61 A histogram with data distribution grouped by time and day. 257

15.62 A basic linear model plot. 258

15.63 A linear model plot with color differentiating categories by gender. 259

15.64 A linear model plot with data separated by smoker status. 259

15.65 A linear model plot with data faceted by smoker status and time. 260

15.66 A simple linear model plot. 261

15.67 A linear model plot with color differentiating categories by gender. 262

15.68 A linear model plot with data faceted by time. 262

15.69 A linear model plot with multiple facets for different categories. 263

15.70 A linear model plot with a polynomial curve of order 2. 263

15.71 A pair plot showing relationships between multiple variables, with
color for gender. 264

15.72 A joint plot showing the relationship between total bill and tip. 265

15.73 A pair plot with regression lines and color differentiating categories
by gender. 266

15.74 A joint plot illustrating the relationship between total bill and tip. 267

16.1 A simple scatter plot displaying data points. 272

16.2 A scatter plot with data point size and a trend line. 273

16.3 A scatter plot using color to encode data values. 274



List of Figures � xxi

16.4 A scatter plot showing the relationship between feature 1 and
feature 2. 275

16.5 A scatter plot of feature 3 and feature 4, with color encoding. 276

16.6 A scatter plot of feature 1 and feature 3, with data point size
variation. 276

16.7 A scatter plot of feature 1 and feature 2, using both color and size. 277

16.8 A basic line plot showing data trends. 278

16.9 A multi-line plot comparing sales1 and sales2 over time. 279

16.10 A multi-line plot comparing sales of product A and product B over
time. 280

16.11 A line plot for revenue growth over time with markers indicating data
points. 281

16.12 A line plot showing monthly temperature trends with different line
styles. 282

16.13 A line plot displaying feature 1 over an index. 283

16.14 A line plot of feature 2 over an index, with markers. 284

16.15 A line plot comparing feature 1 and feature 3 over an index. 284

16.16 A line plot of feature 4 over an index, grouped by category. 285

16.17 A basic area plot showing the magnitude of data over a range. 285

16.18 A stacked area plot showing cumulative sales of product A and B over
time. 286

16.19 An area plot of monthly revenue growth with markers and line style
variations. 287

16.20 An area plot displaying feature 1 over an index. 288

16.21 A stacked area plot of feature 2, 3, and 4 over an index. 288

16.22 An area plot displaying feature 3 over an index, grouped by category. 289

16.23 A basic bar plot displaying sales by product. 290

16.24 A grouped bar plot comparing sales by product and year. 291

16.25 A stacked bar plot showing sales by product and year. 292

16.26 A horizontal bar plot showing sales by product. 293

16.27 A simple bar plot displaying sales by product. 294

16.28 A bar plot showing profit by region. 295

16.29 A horizontal bar plot displaying sales by product. 296

16.30 A stacked bar plot showing sales by region. 296

16.31 A basic timeline plot for projects. 297

16.32 A timeline plot for projects, categorized by type. 297

16.33 A timeline plot for projects, grouped by teams. 298

16.34 A basic timeline plot for events. 300



xxii � List of Figures

16.35 A basic timeline plot for events, categorized by department. 300

16.36 A timeline plot for events, with department information. 301

16.37 A basic funnel plot for sales data. 302

16.38 A funnel plot showing sales by region. 303

16.39 A funnel plot displaying sales by region. 304

16.40 A basic funnel plot for sales. 305

16.41 A funnel plot showing sales by agent. 305

16.42 A basic pie plot showing sales proportions. 306

16.43 A pie plot for sales, with custom colors for each slice. 307

16.44 A pie plot for sales, displaying percentages for each slice. 307

16.45 A pie plot showing market share distribution. 308

16.46 A pie plot for market share, with custom colors. 309

16.47 A pie plot for market share, displaying percentages. 310

16.48 A pie plot for market share, with a hollow center. 310

16.49 A basic histogram displaying data distribution. 311

16.50 A basic histogram with 30 bins for finer data representation. 312

16.51 A histogram colored by category to show distribution differences. 313

16.52 A histogram displaying the distribution of test scores. 314

16.53 A histogram for test scores, with 20 bins. 315

16.54 A histogram for test scores, grouped by gender. 315

16.55 A cumulative distribution of test scores. 316

16.56 An overlaid histogram comparing test scores by gender. 316

16.57 A basic 3D scatter plot showing data points in three dimensions. 317

16.58 A 3D scatter plot with data points colored according to a mapping. 318

16.59 A 3D scatter plot with data points sized and colored based on
mappings. 319

16.60 A basic 3D line plot showing a line in three dimensions. 320

16.61 A 3D line plot with multiple lines, each representing a different group
or category. 321



List of Tables

1.1 Examples of Classes, Attributes, and Instances 11

1.2 Important Functions in Class Definition 12

8.1 Comparison of Python Lists versus NumPy ndarrays 75

8.2 Why NumPy ndarrays Outperform Python Lists 77

13.1 Matplotlib Plot Customization 190

14.1 Matplotlib Plot Types 210

15.1 Summary of Seaborn Specific Plot Types 268

16.1 Comparison of Matplotlib, Seaborn, and Plotly 270

16.2 Summary of Plotly Plot Types 322

xxiii



http://taylorandfrancis.com


Foreword

WHY WE NEED THIS BOOK

Start your journey into the exciting world of Python programming with this book!
Built upon the first book: BiteSize Python for Absolute Beginners, as the second
book in the BiteSize Python series, this book is designed for intermediate learners
with basic understanding of Python and still introduces advanced Python topics in
a refreshingly accessible way.

Forget overwhelming textbooks and long lectures, BiteSize Python breaks down the
learning process into short, manageable lessons, each around 5 to 10 minutes. Whether
you’re busy or have trouble focusing for long periods, this approach makes it easy to
fit learning Python into your daily routine.

You will learn essential Python concepts effortlessly through engaging lessons, prac-
tice labs, and real-world examples. From grasping basic syntax to writing your own
programs, this book gives you the skills and confidence to become a capable Python
programmer.

What makes BiteSize Python unique is its adaptability to your learning style.
Whether you enjoy hands-on practice, self-reflection exercises, reviewing solutions,
or interacting with generative AI, this book has something for everyone.

Discover the joy of learning Python at your own pace and unlock endless possibilities
in the programming world. With this book, start your journey toward empowerment,
efficiency, and practical skills that will quickly transform you from a beginner to a
confident Python programmer.
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Preface

WHY THIS BOOK IS DIFFERENT

While there are many books, websites, and online courses about the topic, we differ-
entiate our book in multiple ways:

• BiteSize Approach: Breaks down Python programming into easily digestible
lessons of less than 5 minutes each.

• Beginner-Friendly: Designed for absolute beginners with no prior programming
experience.

• Practical Learning: Offers hands-on practice labs and real-world examples to
reinforce learning.

• Time-Efficient: Ideal for individuals with busy schedules or limited time for
studying.

• Comprehensive Coverage: Covers essential Python concepts and skills necessary
for writing basic programs.

• Interactive Learning: Includes self-reflection exercises and solutions review to
enhance understanding and retention.

SPECIFIC AIMS

As an introduction to Python, this book allows readers to take a slow and steady ap-
proach to understanding Python code, explaining concepts, connecting programming
with real-life examples, writing Python programs, and completing case studies. The
aims of this book are as follows:

• Give a simple and easy-to-understand introduction to Python programming for
people who are complete beginners.

• Break down the learning process into bite-sized lessons to accommodate readers’
limited time and attention spans.

• Help readers understand Python code and develop the skills to write their own
programs.

• Provide a range of learning formats, including concept overviews, practice labs,
and self-reflection exercises, to fit different learning styles.

xxvii
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• Showcase many interesting case studies and provide readers with a solid under-
standing of how to apply the knowledge to our real world.

HOW TO USE THIS BOOK

This book is made to give you a rich and engaging learning experience. Our method
focuses on BiteSize learning, making hard topics easy by breaking them down into
simple, understandable parts:

• Each lesson begins with a clear and short introduction to the topic. This gives
you a strong base to start from and gets you ready for deeper learning.

• After the introduction, you will see coding demonstrations that show the ideas
discussed. These examples are simple and useful, helping you really understand
the concepts.

• After the introduction and demo, it is time to practice! The practice tasks
come in different difficulty levels, so you can test your knowledge and grow
your confidence. Make sure you try hard before checking the solutions!

• To help you learn better, we suggest using Generative AI tools like ChatGPT for
feedback, practice exercises, code reviews, and finding advanced topics. These
prompts can help you see where to improve, review main ideas, and think about
your progress. We actually adopted some of the prompts that are created by AI
in this book! Generative AI as a tool is great, but only we should use it wisely.

• Apply Python to make a difference! Case studies combine all the small ideas
to show how you can use them to solve real-world problems.

• Most coding demos, practice tasks, and case studies come with Jupyter Note-

books. This format allows you to look at, change, and run the code, giving you
a hands-on experience that makes learning more fun.

We believe this book will guide you step by step to learn Python and use it confidently
in real life. No matter whether you are new to coding or just want to improve your
Python skills, this book will help you reach your learning goals through these little
fun Bites!

INTERACT WITH AI

To get the most out of your interaction with a generative AI tool like ChatGPT,
always begin your conversation with the following prompt:

You are an expert in Python programming. Act as a tutor helping a

student who is learning Python programming.

This prompt sets the tone for the conversation and ensures the AI will provide helpful
and detailed guidance tailored to your learning. Here are some general suggestions
and prompts for effective interaction:
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• Can you explain how [concept] works?
• What’s the difference between [concept 1] and [concept 2]?
• Can you provide an example of a function that does [specific task]?
• Show me how to use a [specific structure or method] to achieve [goal].
• I don’t understand why [specific method] isn’t working. Can you help me trou-

bleshoot it?
• My code: [Your Python Code] is not running. What is wrong? Can you correct

it?
• Review my code: [Your Python Code]. Can you improve my code to make it

more professional?
• Can you explain why [specific aspect] works this way?

In each Interact with GenAI section, we prepared specific suggestions and prompts
for the specific topic as well. We hope you can utilize generative AI as a great tool
to enhance and assist your learning.

ACKNOWLEDGMENT

The author has utilized various Generative AI models, including ChatGPT (4o-mini),
Gemini (2.0), Claude (3.5 Haiku), Gemma (1.1:7b, 2:9b), Llama (3.1:8b, 3.2:3b), Ap-
ple Intelligence (Beta), and DeepSeek (R1:671b), to improve the language, proofread
code comments, and come up with some ideas for the “Interact with GenAI” section.
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S
ection I: Object-Oriented Programming introduces a powerful program-
ming approach that organizes code into classes and objects, to help manage and

scale complex systems more effectively. In this section, you’ll learn about the core
concepts of OOP, including classes and objects, which serve as the blueprint and
instances of your code, respectively. The section also explores the four fundamental
principles of OOP: inheritance, polymorphism, abstraction, and encapsulation,
which help create flexible and reusable code. Additionally, you’ll learn how to write
clear class documentation, making your code easier to read and work with. Even if
you don’t plan to create your own packages, understanding how OOP plays a key
role in how they’re built will help you use popular libraries like NumPy, Pandas, and
Matplotlib more effectively. This knowledge prepares you to work confidently with
the tools covered in this book.

By the end of this section, you will be able to:

• Understand the foundational concepts of object-oriented programming, includ-
ing classes and objects.

• Apply inheritance to create hierarchical relationships between classes.

• Utilize polymorphism to design flexible and interchangeable code components.

• Implement abstraction and encapsulation to hide complexity and protect data
within your programs.

• Professionally document class definitions to improve code clarity and user effi-
ciency.
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C H A P T E R 1

Introduction to OOP

O
bject-Oriented Programming (OOP) is a programming concept centered
around the concept of objects. These objects are instances of classes, which

can be thought of as blueprints for creating individual instances. OOP emphasizes
the organization of code into reusable, modular units, making it easier to manage,
maintain, and understand complex software systems. You might have noticed that
all strings have the same basic functions, and different instances of the same data
structure, like a list, can behave in similar ways. In this chapter, we are going to learn
the concept of OOP in detail, including the four aspects: inheritance, polymorphism,
encapsulation, and abstraction. We’ll also learn how to prepare clear and professional
documentation, so other people can use our defined classes effectively.

Are you ready? Let’s get started!

1.1 THE IDEA

1.1.1 Explanation

The key idea of OOP is about classes, objects, and their relationships. Let’s summa-
rize them here:

• A class is a blueprint for creating objects. It defines a set of attributes and
methods that the created object (instances) will have. Think of a class as a
template.

• An object is an instance of a class. It is a self-contained entity that contains
both data (attributes, properties, fields) and functions (methods) that operate
on the data.

• The class defines the structure and behavior (in the form of attributes and
methods), while objects are the concrete instances of the class. Multiple objects
can be created from a single class, each with its own unique set of values for
the attributes.

DOI: 10.1201/9781003624868-1 5
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1.1.2 Real-life Examples

For example, a class Car may have attributes, which are the data points that define
a car, such as make, model, year, and color. The class Car may have functions,
which are the actions a car can perform, such as start(), stop(), and drive(). The
objects of Car are individual cars. Each car (object) will have specific values for the
attributes defined in the Car class. For example, one object might represent a red
2020 Toyota Corolla, while another object might represent a blue 2019 Honda Civic.

Let’s look at another example. A class Employee may have attributes that define an
employee, such as name, id, department, and salary. The class may also have actions
an employee can perform, such as promote(), transfer(), and give_raise(). The
objects of Employee are individual employees in the company, and each employee
(object) will have specific values for the attributes defined in the Employee class.
For example, one object might represent an employee named John Doe in the IT
department, while another object might represent an employee named Jane Smith in
the HR department.

We may have a class Smartphone that represents all smartphones. The class
Smartphone may have attributes, such as brand, model, storage, color, and
price. It may have methods that a smartphone can perform, such as make_call(),
send_message(), and apply_discount(). The objects of Smartphone represent each
smartphone, which has specific values for the attributes defined in the Smartphone

class. For example, one object might represent an iPhone 16 with 256GB storage,
while another object might represent a Samsung Galaxy S23 with 512GB storage.

1.1.3 Practice

Task: Think about a class Student and its objects. Can you describe this class with
its possible attributes and methods, and make up some objects of this class?

Possible answer: The class Student should have attributes that define a student, such
as name, student_id, major, gpa, and year. It should have methods that a student
may perform, such as enroll_course(), update_gpa(), and graduate(). The ob-
jects of the class Student will have specific values for the attributes defined in the
Student class. For example, one object might represent a student Alice in Computer
Science, while another object might represent a student Bob in Mathematics.

Task: Think about a class Animal and its objects. Can you describe this class with
its possible attributes and methods, and make up some objects of this class?

Possible answer: The class Animal should have attributes that define an animal, such
as species, name, age, habitat, and diet. It should have methods that an animal
can perform, such as make_sound(), eat(), and move(). The objects of the class
Animal will have specific values for the attributes defined in the Animal class. For
example, one object might represent a lion named Leo, while another object might
represent an elephant named Ella.
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1.2 CREATE A CLASS

1.2.1 Demonstration

In Python, defining a class starts with the class keyword followed by the class name
and a colon :. The class name should follow the convention of being a meaningful
noun, written in PascalCase (each word starts with an uppercase letter).

Inside the class, you can define attributes and methods to describe its behavior.
Attributes are variables to store data. They can be instance attributes (specific to
each object) or class attributes (shared across all objects of the class). For example,
self.name in a class stores information specific to an instance. Methods are functions
to define behaviors or actions that objects of the class can perform. Methods often
use self to access instance attributes or other methods.

The self is a reference to the instance of the class currently being used. Think of
self as the way a method knows which object its working with. Together, attributes
represent what an object is and methods represent what an object can do. This
structure allows you to create reusable and organized blueprints for objects.

For example, we can define a Car class and add attributes and methods. The
__init__() method initializes the car’s attributes: make, model, year, and color.
The self refers to the object that this method is creating.

We also define three methods: start(), stop(), and drive(), which represent actions
the car can perform. The self refers to the object that calls the methods. We also
define a special method: __repr__(). It returns a str that represents the object.

# Defining the class Car

class Car:

# Initialize the Car object with make, model, year, and color

def __init__(self, make, model, year, color):

self.make = make # Assign the make of the car

self.model = model # Assign the model of the car

self.year = year # Assign the year of the car

self.color = color # Assign the color of the car

# Method to start the car

def start(self):

print(f'The {self.color} {self.make} {self.model} is starting.')

# Method to stop the car

def stop(self):

print(f'The {self.color} {self.make} {self.model} is stopping.')

# Method to drive the car

def drive(self):

print(f'The {self.color} {self.make} {self.model} is driving.')

# Method to return a string representation of the Car object

def __repr__(self):

return f'I am a {self.color} {self.make} {self.model} car!'
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We create three objects, car1, car2, and car3, each with specific attributes.

# Creating objects (instances of the Car class)

car1 = Car('Toyota', 'Corolla', 2020, 'red')

car1

I am a red Toyota Corolla car!

# Creating objects (instances of the Car class)

car2 = Car('Honda', 'Civic', 2019, 'blue')

car2

I am a blue Honda Civic car!

# Creating objects (instances of the Car class)

car3 = Car('Tesla', 'Model S', 2024, 'silver')

car3

I am a silver Tesla Model S car!

We call the start() method on car1, the drive() method on car2, and stop()

method on car3, demonstrating how each object can perform actions defined by the
class.

# Using the methods on the objects

car1.start()

car2.drive()

car3.stop()

The red Toyota Corolla is starting.

The blue Honda Civic is driving.

The silver Tesla Model S is stopping.

Recall that we discussed the Employee class example previously. Here, we demon-
strate the class definition and object creation for it.

# Define a class to represent an Employee

class Employee:

# Initialize an Employee object

def __init__(self, name, employee_id, department, salary):

self.name = name

self.employee_id = employee_id

self.department = department

self.salary = salary

# Method to promote an employee

def promote(self):

print(f'{self.name} has been promoted.')

# Method to transfer an employee to a new department

def transfer(self, new_department):

self.department = new_department

print(f'{self.name} has been transferred to {self.department}.')
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# Method to give an employee a raise

def give_raise(self, amount):

self.salary += amount

print(f'New salary of {self.name} is ${self.salary}.')

# Create two Employee objects

employee1 = Employee('John Doe', 'E123', 'IT', 60000)

employee2 = Employee('Jane Smith', 'E124', 'HR', 55000)

# Use the methods on the Employee objects

employee1.promote()

employee2.transfer('Marketing')

employee1.give_raise(5000)

John Doe has been promoted.

Jane Smith has been transferred to Marketing.

New salary of John Doe is $65000.

Recall we have discussed the Smartphone class previously. Here is the demonstration
of defining the class and creating objects.

# Define a class to represent a Smartphone

class Smartphone:

# Initialize a Smartphone object

def __init__(self, brand, model, storage, color, price):

self.brand = brand

self.model = model

self.storage = storage

self.color = color

self.price = price

# Method to simulate making a call on the smartphone

def make_call(self, phone_number):

print(f'{self.brand} {self.model} is calling {phone_number}.')

# Create two Smartphone objects

phone1 = Smartphone('Apple', 'iPhone 16', 256, 'black', 999)

phone2 = Smartphone('Samsung', 'Galaxy S23', 512, 'white', 849)

# Use the make_call method on the Smartphone objects

phone1.make_call('123-456-7890')

phone2.make_call('987-654-3210')

Apple iPhone 16 is calling 123-456-7890.

Samsung Galaxy S23 is calling 987-654-3210.

1.2.2 Practice

Task: Define the class Student and create some objects. Recall that we discussed the
class Student as:

• Attributes: These are the data points that define a student, such as name,
student_id, major, gpa, and year.
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• Methods: These are the actions a student can perform, such as
enroll_course(), update_gpa(), and graduate().

# Define a class to represent a Student

class Student:

# Initialize a Student object with name, student_id, major, gpa, and year

def __init__(self, name, student_id, major, gpa, year):

self.name = name

self.student_id = student_id

self.major = major

self.gpa = gpa

self.year = year

# Method to enroll a student in a course

def enroll_course(self, course):

print(f'{self.name} has enrolled in {course}.')

# Method to update a student's GPA

def update_gpa(self, new_gpa):

self.gpa = new_gpa

print(f'{self.name}\'s new GPA is {self.gpa}.')

# Method to check if a student has met the graduation requirements

def graduate(self):

if self.year == 'Senior' and self.gpa >= 2.0:

print(f'{self.name} has graduated!')

else:

print(f'{self.name} has not met the graduation requirements.')

# Create two Student objects

student1 = Student('Alice', 'S1001', 'Computer Science', 3.8, 'Junior')

student2 = Student('Bob', 'S1002', 'Mathematics', 3.4, 'Senior')

# Use the methods on the Student objects

student1.enroll_course('Data Structures')

student2.update_gpa(3.6)

student2.graduate()

Alice has enrolled in Data Structures.

Bob's new GPA is 3.6.

Bob has graduated!

Task: Define the class Animal and create some objects. Recall that we have discussed
the class Animal as:

• Attributes: These are the data points that define an animal, such as species,
name, age, habitat, and diet.

• Methods: These are the actions an animal can perform, such as make_sound(),
eat(), and move().

# Define a class to represent an Animal

class Animal:

# Initialize an Animal object with species, name, age, habitat, and diet

def __init__(self, species, name, age, habitat, diet):
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self.species = species

self.name = name

self.age = age

self.habitat = habitat

self.diet = diet

# Method to simulate an animal making a sound

def make_sound(self):

print(f'{self.name} the {self.species} makes a sound.')

# Method to simulate an animal eating

def eat(self, food):

print(f'{self.name} the {self.species} is eating {food}.')

# Method to simulate an animal moving

def move(self):

print(f'{self.name} the {self.species} is moving.')

# Create two Animal objects

animal1 = Animal('Lion', 'Leo', 5, 'Savannah', 'Carnivore')

animal2 = Animal('Elephant', 'Ella', 10, 'Grasslands', 'Herbivore')

# Use the methods on the Animal objects

animal1.make_sound()

animal2.eat('grass')

animal1.move()

Leo the Lion makes a sound.

Ella the Elephant is eating grass.

Leo the Lion is moving.

Here we summarize the examples in the demonstration and practice in Table 1.1.

TABLE 1.1 Examples of Classes, Attributes, and Instances
Class Attributes Instances

Car make, model, year,
color

Toyota Corolla (2020, red), Honda Civic
(2019, blue), Tesla Model S (2024, silver)

Employee name, employee_id,
department, salary

John Doe (IT, E123, $60,000), Jane Smith
(HR, E124, $55,000)

Smartphone brand, model, storage,
color, price

iPhone 16 (256GB, black), Galaxy S23
(512GB, white)

Student name, student_id, ma-
jor, gpa, year

Alice (Computer Science, Junior, 3.8), Bob
(Mathematics, Senior, 3.4)

Animal species, name, age,
habitat, diet

Leo (Lion, 5 years, Savannah, Carnivore),
Ella (Elephant, 10 years, Grasslands, Her-
bivore)

Here we summarize the special functions, for their purpose and examples, in Table
1.2 for readers’ convenience.
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TABLE 1.2 Important Functions in Class Definition
Function Explanation Examples

__init__ Initializes the object with given attributes. __init__(self, make,

model, year, color)

__repr__ Returns a string representation of the ob-
ject, often for developers.

__repr__(self)

__str__ Returns a user-friendly string representa-
tion of the object.

__str__(self)

__eq__ Compares two objects for equality. __eq__(self, obj)

__lt__ Compares if one object is less than another. __lt__(self, obj)

__gt__ Compares if one object is greater than an-
other.

__gt__(self, obj)

Other
methods

Define actions the object can perform (e.g.,
start, drive, promote).

start(self),
give_raise(self,

amount),
make_call(self,

phone_number)

1.3 FOUR ASPECTS

OOP is a powerful concept in software development that helps in organizing and
structuring code. There are four main OOP concepts: inheritance, polymorphism,
encapsulation, and abstraction:

• Inheritance allows a new class (child or subclass) to inherit the attributes and
methods of an existing class (parent or superclass). This promotes code reuse
and establishes a natural hierarchy between classes. We introduce inheritance
in detail in Chapter 2.

• Polymorphism allows objects of different classes to be treated as objects of a
common superclass. The most common use of polymorphism in OOP is when
a parent class reference is used to refer to a child class object and the method
call is resolved at runtime. We introduce polymorphism in detail in Chapter 3.

• Encapsulation is the practice of bundling the data and the methods that operate
on the data into a single unit or class, and restricting access to some of the
object’s components. This means that the internal state of an object is hidden
from the outside world, and access is controlled via public methods (getters
and setters). We introduce encapsulation in detail in Chapter 4.

• Abstraction is the concept of hiding the complex implementation details and
showing only the essential features of the object. It allows focusing on the
object’s functionality without worrying about the intricate inner workings. We
introduce abstraction in detail in Chapter 5.

In summary, encapsulation protects data, inheritance promotes code reuse and estab-
lishes relationships between classes, polymorphism allows for flexibility and dynamic
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method resolution, and abstraction simplifies interactions with complex systems by
hiding unnecessary details. Together, these concepts form the foundation of OOP,
enabling developers to write code that is modular, scalable, and easier to understand
and maintain.

1.4 INTERACT WITH GENAI

To get the most out of your interaction with a generative AI tool like ChatGPT,
always begin your conversation with the following prompt:

You are an expert in Python programming. Act as a tutor helping a student who is
learning Python programming.

This prompt sets the tone for the conversation and ensures the AI will provide helpful
and detailed guidance tailored to your learning. Here are some general suggestions
and prompts for effective interaction:

• Can you explain how [concept] works?
• What’s the difference between [concept 1] and [concept 2]?
• Can you provide an example of a function that does [specific task]?
• Show me how to use a [specific structure or method] to achieve [goal].
• I don’t understand why [specific method] isn’t working. Can you help me trou-

bleshoot it?
• My code: [Your Python Code] is not running. What is wrong?
• Review my code: [Your Python Code]. Can you improve my code to make it

more professional?
• Can you explain why [specific aspect] works this way?

We also prepared specific suggestions and prompts for the general concept, OOP, as
well.

• Define OOP and its distinction from procedural programming.
• Explain classes and objects in Python, highlighting their relationship.
• Discuss OOP’s benefits in organizing and managing complex code.
• Differentiate a class from an object in OOP.
• Explore how a class can have multiple independent objects.
• Explain the four aspects of OOP: inheritance, encapsulation, polymorphism,

and abstraction.
• Model real-world entities using OOP.
• Demonstrate OOP’s role in project scalability.
• Explain OOP’s contribution to modular software design.
• Address common challenges when learning OOP.
• Analyze how poor OOP design leads to unnecessary complexity.
• Guide on choosing between classes and functions in Python.
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Inheritance

I
nheritance is a fundamental concept in object-oriented programming that
enables a subclass (child class) to inherit attributes and methods from a superclass

(parent class). Inheritance improves code reuse by allowing subclasses to have existing
functionalities without duplication, while also creating a structured hierarchy that
organizes classes logically. Central to inheritance is the is-a relationship, where a
subclass represents a specialized version of its parent (e.g., a Dog class is a specific
type of the more general Animal class). This relationship ensures clarity in design,
promotes modularity, and aligns real-world categorization with code structure. Are
you ready? Let’s get started!

2.1 WHAT IS INHERITANCE?

Let’s read the definition of four classes, A, B, C, and D, and observe how subclasses
inherit the attributes and methods from their superclasses.

2.1.1 Demonstration

# Defining a class A, and two subclasses B and C of A

class A:

# Initialize an object of class A with attributes att1 and att2

def __init__(self, att1, att2):

self.att1, self.att2 = att1, att2

# Method act defined in class A

def act(self):

print('The act defined in Class A')

# Defining subclass B of A

class B(A):

# Initialize an object of class B with att1, att2, and att3

def __init__(self, att1, att2, att3):

super().__init__(att1, att2) # Call the constructor of class A

self.att3 = att3

14 DOI: 10.1201/9781003624868-2
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# Defining subclass C of A

class C(A):

# Initialize an object of class C with att1, att2, and att4

def __init__(self, att1, att2, att4):

super().__init__(att1, att2) # Call the constructor of class A

self.att4 = att4

# Defining subclass D of C

class D(C):

# Initialize an object of class D with att1, att2, att4, and att5

def __init__(self, att1, att2, att4, att5):

super().__init__(att1, att2, att4) # Call the constructor of class C

self.att5 = att5

The super() before __init__() is most used in the constructors. It is a convenient
way to call methods defined in super classes without repeating the definition of con-
structor. Now, let’s create some objects to test the defined classes.

a = A('Class A', 'SuperClass')

print(a.att1, a.att2)

a.act()

Class A SuperClass

The act defined in Class A

b = B('Class B', 'subclass', 'Bat')

print(b.att1, b.att2, b.att3)

b.act()

Class B subclass Bat

The act defined in Class A

c = C('Class C', 'subclass', 'Cat')

print(c.att1, c.att2, c.att4)

c.act()

Class C subclass Cat

The act defined in Class A

Note that although both class B and class A inherit the att1 and att2 from their
superclass A, the att3 belongs to class B only, and the att4 belongs to class C only.
Calling att4 from B class objects or calling att3 from C class objects may lead to
errors.

b.att4

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)

<ipython-input-11-6c8f52bf73ce> in <cell line: 1>()

----> 1 b.att4

AttributeError: 'B' object has no attribute 'att4'

c.att3

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)
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<ipython-input-12-de6a77231cb6> in <cell line: 1>()

----> 1 c.att3

AttributeError: 'C' object has no attribute 'att3'

d = D('Class D', 'subsubclass', 'Camel', 'Desert')

print(d.att1, d.att2, d.att4, d.att5)

d.act()

Class D subsubclass Camel Desert

The act defined in Class A

Note that d as an object of the class D, it inherits the attributes att1, att2, and att4.
It won't have the attribute att3 either. Also, the superclass won't have the attributes
defined in their subclasses. The inheritance happens from superclass to subclasses.

2.2 ANIMAL CLASS REVISIT

Let’s revisit the Animal class we discussed earlier and define some subclasses of it.

# Define a base class Animal

class Animal:

# Initialize an Animal object with name and species

def __init__(self, name, species):

self.name = name

self.species = species

# Method to simulate making a sound

def make_sound(self):

print(f'This {self.species} {self.name} makes a sound.')

# Define a subclass Dog of Animal

class Dog(Animal):

# Initialize a Dog object with name and breed

def __init__(self, name, breed):

super().__init__(name, 'Dog') # Call the constructor of Animal

self.breed = breed

# Define a subclass Cat of Animal

class Cat(Animal):

# Initialize a Cat object with name and breed

def __init__(self, name, breed):

super().__init__(name, 'Cat') # Call the constructor of Animal

self.breed = breed

# Define a subclass Shorthair of Cat

class Shorthair(Cat):

# Initialize a Shorthair object with name and age

def __init__(self, name, age):

super().__init__(name, 'Shorthair') # Call the constructor of Cat

self.age = age

Now, we can initiate some instances of these classes to observe the inheritances.
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# Create objects of the classes

animal1 = Animal('Abby', 'Animal')

animal1.make_sound() # Output: This Animal Abby makes a sound.

dog1 = Dog('Buddy', 'Golden Retriever')

dog1.make_sound() # Output: This Dog Buddy makes a sound.

print(dog1.breed) # Output: Golden Retriever

cat1 = Cat('Cathy', 'Shorthair')

cat1.make_sound() # Output: This Cat Cathy makes a sound.

print(cat1.breed) # Output: Shorthair

cat2 = Shorthair('Conner', '10')

cat2.make_sound() # Output: This Cat Conner makes a sound.

print(cat2.breed) # Output: Shorthair

print(cat2.age) # Output: 10

This Animal Abby makes a sound.

This Dog Buddy makes a sound.

Golden Retriever

This Cat Cathy makes a sound.

Shorthair

This Cat Conner makes a sound.

Shorthair

10

Note that all instances created from Dog class are having the species as Dog. This
default value has been assigned by the constructor def __init__(self, name,

breed) in Dog class. Also, all instances created from Cat class are having the species

as Cat. This default value has been given by the constructor def __init__(self,

name, breed) in Cat class. Furthermore, all instances created from all subclasses of
Cat class are having the species as default Cat too.

2.3 CASE STUDIES

Task: You are given a Person class with attributes for name and age as below:

# Define the Person class

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

Your task is to:

1. Define a Student class that inherits from Person. The Student class should
have an additional attribute student_id.

2. Create a Person object person.
3. Create a Student object student.
4. Print the name and age of the person.
5. Print the name, age, and student_id of the student.



18 � BiteSize Python for Intermediate Learners

# Define the Person class

class Person:

# Initialize a Person object with name and age

def __init__(self, name, age):

self.name = name

self.age = age

# Define the Student class inheriting from Person

class Student(Person):

# Initialize a Student object with name, age, and student_id

def __init__(self, name, age, student_id):

super().__init__(name, age) # Call the constructor of Person

self.student_id = student_id

# Create a Person object

person = Person('John Doe', 40)

print(f'Person Name: {person.name}, Age: {person.age}')

# Create a Student object

student = Student('Alice Smith', 20, 'S12345')

print(f'''Student Name: {student.name},

Age: {student.age},

Student ID: {student.student_id}''')

Person Name: John Doe, Age: 40

Student Name: Alice Smith,

Age: 20,

Student ID: S12345

In this solution, the Person class is a given simple class with two attributes, name and
age. The Student class inherits from Person and adds a new attribute, student_id.
The super().__init__(name, age) call in the Student class ensures that the name

and age attributes are initialized using the constructor of the Person class.

Task: Create an inheritance hierarchy for animals. Start with a base class Animal

that has attributes for species and diet as below:

# Define the Animal class

class Animal:

def __init__(self, species, diet):

self.species = species

self.diet = diet

Your task is to:

1. Create two subclasses, Mammal and Bird, each with an additional attribute:
fur_color for Mammal and wing_span for Bird.

2. Create an Animal object animal.
3. Create a Mammal object mammal.
4. Create a Bird object bird.
5. Print the details of each object.
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# Define the Animal class

class Animal:

# Initialize an Animal object with species and diet

def __init__(self, species, diet):

self.species = species

self.diet = diet

# Define the Mammal class inheriting from Animal

class Mammal(Animal):

# Initialize a Mammal object with species, diet, and fur_color

def __init__(self, species, diet, fur_color):

super().__init__(species, diet) # Call the constructor of Animal

self.fur_color = fur_color

# Define the Bird class inheriting from Animal

class Bird(Animal):

# Initialize a Bird object with species, diet, and wing_span

def __init__(self, species, diet, wing_span):

super().__init__(species, diet) # Call the constructor of Animal

self.wing_span = wing_span

# Create an Animal object

animal = Animal('Generic Animal', 'Omnivore')

print(f'Species: {animal.species}, Diet: {animal.diet}')

# Create a Mammal object

mammal = Mammal('Tiger', 'Carnivore', 'Orange')

print(f'''Species: {mammal.species},

Diet: {mammal.diet},

Fur Color: {mammal.fur_color}''')

# Create a Bird object

bird = Bird('Eagle', 'Carnivore', '7 feet')

print(f'''Species: {bird.species},

Diet: {bird.diet},

Wing Span: {bird.wing_span}''')

Species: Generic Animal, Diet: Omnivore

Species: Tiger,

Diet: Carnivore,

Fur Color: Orange

Species: Eagle,

Diet: Carnivore,

Wing Span: 7 feet

In this solution, the Animal is the base class with species and diet attributes. The
Mammal and Bird are classes inherit from Animal and add their own unique attributes,
fur_color for Mammal and wing_span for Bird.

Task: Design an inheritance structure for vehicles. Start with a base class Vehicle

that has attributes for make and model as:
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# Define the Vehicle class

class Vehicle:

def __init__(self, make, model):

self.make = make

self.model = model

Your task is to:

1. Create two subclasses, Car and Truck, each with an additional attribute:
number_of_doors for Car and cargo_capacity for Truck.

2. Create a Vehicle object vehicle.
3. Create a Car object car.
4. Create a Truck object truck.
5. Print the details of each object.

# Define the Vehicle class

class Vehicle:

# Initialize a Vehicle object with make and model

def __init__(self, make, model):

self.make = make

self.model = model

# Define the Car class inheriting from Vehicle

class Car(Vehicle):

# Initialize a Car object with make, model, and number_of_doors

def __init__(self, make, model, number_of_doors):

super().__init__(make, model) # Call the constructor of Vehicle

self.number_of_doors = number_of_doors

# Define the Truck class inheriting from Vehicle

class Truck(Vehicle):

# Initialize a Truck object with make, model, and cargo_capacity

def __init__(self, make, model, cargo_capacity):

super().__init__(make, model) # Call the constructor of Vehicle

self.cargo_capacity = cargo_capacity

# Create a Vehicle object

vehicle = Vehicle('Generic Make', 'Generic Model')

print(f'Make: {vehicle.make}, Model: {vehicle.model}')

# Create a Car object

car = Car('Honda', 'Civic', 4)

print(f'''Make: {car.make}, Model: {car.model},

Number of Doors: {car.number_of_doors}''')

# Create a Truck object

truck = Truck('Ford', 'F-150', '1000 lbs')

print(f'''Make: {truck.make}, Model: {truck.model},

Cargo Capacity: {truck.cargo_capacity}''')

Make: Generic Make, Model: Generic Model

Make: Honda, Model: Civic,

Number of Doors: 4

Make: Ford, Model: F-150,

Cargo Capacity: 1000 lbs
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Again, in this solution, Vehicle is the base class with make and model attributes. The
Car and Truck are classes inherit from Vehicle and add their own unique attributes,
number_of_doors for Car and cargo_capacity for Truck.

2.4 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Define inheritance in OOP and its implementation in Python.
• Explain inheritance’s role in creating reusable, maintainable code.
• Describe the relationship between parent and child classes.
• Analyze benefits and potential drawbacks of inheritance.
• Create a parent class and demonstrate inheritance.
• Show method overriding in a child class.
• Use super() to call a parent class method.
• Simplify code using inheritance (e.g., vehicle modeling).
• Share attributes and methods across multiple classes.
• Explain what happens when a child class doesn’t override a parent method.
• Describe the super() function in class hierarchy.
• Explore a child class’s ability to add unique methods and attributes.
• Differentiate between extending and overriding a class.
• Explain multiple inheritance in Python and its potential issues.
• Discuss Python’s handling of method conflicts in multiple inheritance.
• Design a class hierarchy for an e-commerce platform.
• Manage different data types using inheritance.
• Apply inheritance to manage similar business processes.
• Identify common inheritance mistakes.
• Explain the ‘is-a’ relationship in inheritance.
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Polymorphism

P
olymorphism is a core concept in object-oriented programming (OOP) that
allows objects of different classes to be treated as objects of a common superclass.

It enables a single interface to represent different types, which can be particularly
powerful when working with inheritance.

In simpler terms, polymorphism allows you to define methods in a base class and
have those methods be overridden by subclasses to provide specific behavior. This
allows for flexibility and extensibility in code, where the same method can behave
differently depending on the object calling it.

Are you ready? Let’s get started!

3.1 WHAT IS POLYMORPHISM

3.1.1 Demonstration

Let’s define some classes to demonstrate how the general action speak() of all
Animal objects behaves differently in the specific objects of the subclasses: Cat, Lion,
LionBaby.

# Base class Animal

class Animal:

# Method speak for the Animal class

def speak(self):

# Default behavior for speak method in Animal class

print('Make some noise and I don’t know what it sounds like...')

# Derived class Cat inheriting from Animal

class Cat(Animal):

# Method speak overridden in Cat class

def speak(self):

# Specific behavior for speak method in Cat class

print('Meo')

# Derived class Lion inheriting from Cat

22 DOI: 10.1201/9781003624868-3
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class Lion(Cat):

# Method speak overridden in Lion class

def speak(self):

# Specific behavior for speak method in Lion class

print('AHHHHHH!')

# Derived class LionBaby inheriting from Lion

class LionBaby(Lion):

# Method speak overridden in LionBaby class

def speak(self):

# Specific behavior for speak method in LionBaby class

print('I\'m the king of the world!')

# Create objects of each class

a = Animal()

c = Cat()

l = Lion()

lb = LionBaby()

# Call the speak method on each object

a.speak()

c.speak()

l.speak()

lb.speak()

Make some noise and I don’t know what it sounds like...

Meo

AHHHHHH!

I'm the king of the world!

In this example, defined in the Animal class, the speak() method provides a generic
implementation that does not know the specific sound an animal makes. Then, the
class Cat inherits from Animal and overrides the speak() method to provide the
sound that a cat makes (Meo). Furthermore, the class Lion inherits from Cat and
further overrides the speak() method to represent the roar of a lion (AHHHHHH!). At
last, the class LionBaby inherits from Lion and overrides the speak() method to
express a unique phrase (I'm the king of the world!). Each subclass provides a
more specific implementation of the speak() method, demonstrating polymorphism.

3.2 FAMILY TREE REVISITED

Let’s revisit our family tree example to understand polymorphism.

# Define the Grandparent class

class Grandparent:

# Method speak for the Grandparent class

def speak(self):

print('Grandparent says, "Back in my day..."')

# Define the Parent class inheriting from Grandparent

class Parent(Grandparent):

# Method speak overridden in Parent class
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def speak(self):

print('Parent says, "When I was your age..."')

# Define the Child class inheriting from Parent

class Child(Parent):

# Method speak overridden in Child class

def speak(self):

print('Child says, "Can I have some money?"')

# Define the Grandchild class inheriting from Child

class Grandchild(Child):

# Method speak overridden in Grandchild class

def speak(self):

print('Grandchild says, "I love my Lego set!"')

# Create instances of each class

grandparent = Grandparent()

parent = Parent()

child = Child()

grandchild = Grandchild()

# Demonstrating polymorphism

for person in (grandparent, parent, child, grandchild):

person.speak()

Grandparent says, "Back in my day..."

Parent says, "When I was your age..."

Child says, "Can I have some money?"

Grandchild says, "I love my Lego set!"

In this example, the class Grandparent has a method speak(). Then, the class
Parent inherits from Grandparent and overrides speak(). Next, the class Child

inherits from Parent and overrides speak(). At last, the class Grandchild inher-
its from Child and overrides speak(). Each of these classes has its version of the
speak() method, demonstrating polymorphism. Even though the method has the
same name across different classes, it behaves differently depending on the class of
the object that invokes it. In particular, each class overrides the speak() method to
provide a message specific to that generation. So, when the speak() method is called
on different objects (grandparent, parent, child, and grandchild), each object
responds according to its own implementation of the method.

3.3 ANIMALS REVISIT

Let’s use the animals example to demonstrate polymorphism once again.

# Define the Animal class

class Animal:

# Method sound for the Animal class

def sound(self):

print('Some generic animal sound')

# Define the Mammal class inheriting from Animal
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class Mammal(Animal):

# Method sound overridden in Mammal class

def sound(self):

print('Mammal makes a sound')

# Define the Bird class inheriting from Animal

class Bird(Animal):

# Method sound overridden in Bird class

def sound(self):

print('Bird chirps')

# Create instances of each class

animal = Animal()

mammal = Mammal()

bird = Bird()

# Demonstrating polymorphism

for creature in (animal, mammal, bird):

# Call the sound method on each object

creature.sound()

Some generic animal sound

Mammal makes a sound

Bird chirps

In this example, the class Animal has a method sound(). Then, the class Mammal

inherits from Animal and overrides sound() and the class Bird inherits from Animal

and overrides sound() too.

3.4 VEHICLES REVISIT

Let’s use the vehicles example to demonstrate polymorphism.

# Define the Vehicle class

class Vehicle:

# Method start_engine for the Vehicle class

def start_engine(self):

print('The vehicle engine starts')

# Define the Car class inheriting from Vehicle

class Car(Vehicle):

# Method start_engine overridden in Car class

def start_engine(self):

print('The car engine starts with a roar')

# Define the Truck class inheriting from Vehicle

class Truck(Vehicle):

# Method start_engine overridden in Truck class

def start_engine(self):

print('The truck engine starts with a rumble')

# Create instances of each class

vehicle = Vehicle()

car = Car()
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truck = Truck()

# Demonstrating polymorphism

for auto in (vehicle, car, truck):

# Call the start_engine method on each object

auto.start_engine()

The vehicle engine starts

The car engine starts with a roar

The truck engine starts with a rumble

In this example, the class Vehicle defines the general method start_engine(). The
class Car inherits from Vehicle and overrides start_engine(), and the class Truck

inherits from Vehicle and overrides start_engine() too.

3.5 CASE STUDIES

Polymorphism is a powerful concept in OOP that enhances the flexibility and reusabil-
ity of code. By allowing objects of different types to be treated as objects of a common
superclass, polymorphism enables methods to be written in a more general way. The
practice problems provided here should help solidify your understanding of how poly-
morphism works and how it can be implemented in Python.

Task: Given a base class Employee with a method get_pay() as below:

# Define the Employee class

class Employee:

def get_pay(self):

return 'Generic employee pay'

Your task is to:

1. Create subclasses FullTimeEmployee and PartTimeEmployee that override the
get_pay() method.

2. Create an Employee object.
3. Create a FullTimeEmployee object.
4. Create a PartTimeEmployee object.
5. Call the get_pay() method on each object and print the results.

# Define the Employee class

class Employee:

# Method get_pay for the Employee class

def get_pay(self):

return 'Generic employee pay'

# Define the FullTimeEmployee class inheriting from Employee

class FullTimeEmployee(Employee):

# Method get_pay overridden in FullTimeEmployee class

def get_pay(self):

return 'Full-time employee pay'

# Define the PartTimeEmployee class inheriting from Employee
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class PartTimeEmployee(Employee):

# Method get_pay overridden in PartTimeEmployee class

def get_pay(self):

return 'Part-time employee pay'

# Create instances of each class

employee = Employee()

full_time = FullTimeEmployee()

part_time = PartTimeEmployee()

# Demonstrating polymorphism

for worker in (employee, full_time, part_time):

# Call the get_pay method on each object

print(worker.get_pay())

Generic employee pay

Full-time employee pay

Part-time employee pay

In this solution, FullTimeEmployee and PartTimeEmployee override the get_pay()

method to provide specific pay information. Thus, when the get_pay() method is
called on different objects, each object returns its own implementation of the method.

Task: Given a base class Shape with a method area() as below:

import math

# Define the Shape class

class Shape:

def area(self):

return 'Undefined area'

Your task is to:

1. Create subclasses Circle, Rectangle, and Triangle that override the area()

method to calculate the area of the respective shapes.
2. Create a Shape object.
3. Create a Circle object with a radius of 3.
4. Create a Rectangle object with width 4 and height 5.
5. Create a Triangle object with base 6 and height 7.
6. Call the area() method on each object and print the results.

import math

# Define the Shape class

class Shape:

# Method area for the Shape class

def area(self):

return 'Undefined area'

# Define the Circle class inheriting from Shape

class Circle(Shape):

# Constructor for Circle class

def __init__(self, radius):
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self.radius = radius

# Method area overridden in Circle class

def area(self):

return math.pi * self.radius ** 2

# Define the Rectangle class inheriting from Shape

class Rectangle(Shape):

# Constructor for Rectangle class

def __init__(self, width, height):

self.width = width

self.height = height

# Method area overridden in Rectangle class

def area(self):

return self.width * self.height

# Define the Triangle class inheriting from Shape

class Triangle(Shape):

# Constructor for Triangle class

def __init__(self, base, height):

self.base = base

self.height = height

# Method area overridden in Triangle class

def area(self):

return 0.5 * self.base * self.height

# Create instances of each class

shape = Shape()

circle = Circle(3)

rectangle = Rectangle(4, 5)

triangle = Triangle(6, 7)

# Demonstrating polymorphism

for shape_obj in (shape, circle, rectangle, triangle):

# Call the area method on each object

print(f'Area: {shape_obj.area()}')

Area: Undefined area

Area: 28.274333882308138

Area: 20

Area: 21.0

This is a classic example to practice polymorphism. In this solution, the Circle,
Rectangle, and Triangle override the area() method to calculate the area based on
their specific formulas. Thus, when the area() method is called on different objects,
each object returns the correct area based on its specific shape.

Task: Given a base class Appliance with a method turn_on() as below:

# Define the Appliance class

class Appliance:

def turn_on(self):

return 'Appliance is now on'
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Your task is to:

1. Create subclasses WashingMachine, Refrigerator, and Microwave that over-
ride the turn_on() method.

2. Create an Appliance object.
3. Create a WashingMachine object.
4. Create a Refrigerator object.
5. Create a Microwave object.
6. Call the turn_on() method on each object and print the results.

# Define the Appliance class

class Appliance:

# Method turn_on for the Appliance class

def turn_on(self):

return 'Appliance is now on'

# Define the WashingMachine class inheriting from Appliance

class WashingMachine(Appliance):

# Method turn_on overridden in WashingMachine class

def turn_on(self):

return 'Washing machine starts spinning'

# Define the Refrigerator class inheriting from Appliance

class Refrigerator(Appliance):

# Method turn_on overridden in Refrigerator class

def turn_on(self):

return 'Refrigerator starts cooling'

# Define the Microwave class inheriting from Appliance

class Microwave(Appliance):

# Method turn_on overridden in Microwave class

def turn_on(self):

return 'Microwave starts heating'

# Create instances of each class

appliance = Appliance()

washing_machine = WashingMachine()

refrigerator = Refrigerator()

microwave = Microwave()

# Demonstrating polymorphism

for appliance_obj in (appliance, washing_machine, refrigerator, microwave):

# Call the turn_on method on each object

print(appliance_obj.turn_on())

Appliance is now on

Washing machine starts spinning

Refrigerator starts cooling

Microwave starts heating

Do you like this case study? In the solution, the superclass Appliance defines a
generic method turn_on(). The subclasses, WashingMachine, Refrigerator, and
Microwave, inherit the Appliance method and override turn_on() to provide
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specific behavior for each appliance. When the turn_on() method is called on differ-
ent objects, each object executes its own version of the method.

3.6 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Define polymorphism in OOP and its key significance.
• Identify polymorphism types supported in Python.
• Explain why polymorphism is crucial for code flexibility.
• Demonstrate method overriding in parent and child classes.
• Show polymorphism with a common method across different object types.
• Create a simplified shape management example using polymorphism.
• Illustrate polymorphism in Python’s built-in functions like len().
• Demonstrate operator overloading with + for strings and numbers.
• Compare polymorphism and inheritance.
• Define a polymorphic method.
• Explore if polymorphism can exist without inheritance.
• Discuss polymorphism and interfaces in Python.
• Design a polymorphic payment processing system.
• Identify and address polymorphism implementation challenges.
• Ensure type safety in Python polymorphism.
• Explain potential unexpected behaviors in method overrides.
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Encapsulation

E
ncapsulation is one of the fundamental principles of object-oriented pro-
gramming (OOP). Encapsulation involves restricting direct access to some of an

object’s components, which is a way of preventing accidental interference and misuse
of the data. In simpler terms, encapsulation helps to hide the internal state of an
object from the outside world and only expose a controlled interface. This can be
achieved through the use of access modifiers like protected (_) and private (__).

Are you ready? Let’s get started!

4.1 INTRODUCTION TO ENCAPSULATION

4.1.1 Demonstration

Let’s define a class E to demonstrate how to use the protected (_) and private (__)
modifiers.

# Class E definition

class E:

def __init__(self):

# Public attribute

self.att1 = 1

# Protected attribute (indicated by a single underscore)

self._att2 = 2

# Private attribute (indicated by double underscores)

self.__att3 = 3

# Create an instance of class E

e = E()

# Accessing public attribute

print(e.att1) # Output: 1

# Accessing protected attribute
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print(e._att2) # Output: 2

# Attempting to access private attribute directly

print(e.__att3) # Raises: AttributeError

1

2

---------------------------------------------------------------------------

AttributeError Traceback (most recent call last)

<ipython-input-3-619045af17e5> in <cell line: 18>()

16

17 # Attempting to access private attribute directly (will raise an

AttributeError)

---> 18 print(e.__att3)

AttributeError: 'E' object has no attribute '__att3'

In this demonstration, att1 is a public attribute that can be accessed and modified
directly without any restrictions. _att2 is a protected attribute indicated by a single
underscore. It can be accessed directly but is intended to be accessed only within the
class or its subclasses. __att3 is a private attribute indicated by double underscores.
It cannot be accessed directly outside the class.

In order to provide access to protected and private attributes, we can add getters
and setters. Getters and setters are methods used to control access to an object’s
attributes. They hide the internal representation of an attribute from direct external
access, allow you to add validations before setting or getting attribute values, and
can return calculated or transformed values. The modern approach in Python is
using property decorators, like @property and @<attribute>.setter. Let’s modify
the class E by adding getter and setter methods.

# Class E definition

class E:

def __init__(self):

# Public attribute

self.att1 = 1

# Protected attribute (indicated by a single underscore)

self._att2 = 2

# Private attribute (indicated by double underscores)

self.__att3 = 3

# Getter method for the protected attribute _att2

@property

def att2(self):

return self._att2

# Setter method for the protected attribute _att2

@att2.setter

def att2(self, v):

print(f'''You are out of your mind!

The original value {self._att2} will be changed to {v}''')
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self._att2 = v

# Getter method for the private attribute __att3

@property

def att3(self):

print('I am a private attribute!')

return self.__att3

# Method to set the private attribute __att3 (provides controlled access)

def set_att3(self, v):

print(f'''You are out of your mind!

The original value {self.__att3} will be changed to {v}''')

self.__att3 = v

# Setter method for the private attribute __att3

@att3.setter

def att3(self, v):

print(f'''You are out of your mind!

The original value {self.__att3} will be changed to {v}''')

self.__att3 = v

# Create an instance of class E

e = E()

# Print original values

print('Original values')

print(e.att1)

print(e.att2)

print(e.att3)

# Change values

print('We are changing the values')

e.att1 = 4

e.att2 = 5

e.att3 = 6

# Print changed values

print(e.att1)

print(e.att2)

print(e.att3)

Original values

1

2

I am a private attribute!

3

We are changing the values

You are out of your mind!

The original value 2 will be changed to 5

You are out of your mind!

The original value 3 will be changed to 6

4

5

I am a private attribute!

6
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In this modified demonstration, the @property and @att2.setter decorators provide
controlled access and modification. The @property, @att3.setter, and set_att3()

methods provide controlled access and modification, with warning messages printed
whenever the value is changed.

4.2 BANK ACCOUNT

Let’s consider a real-life example of a bank account to understand encapsulation. In a
bank account, your balance is not something that anyone can just change. There are
strict rules (methods) in place to manage how money is deposited or withdrawn, and
the balance is kept hidden from direct access. The __balance attribute is private
and cannot be accessed directly from outside the class. This is enforced by prefix-
ing the attribute name with double underscores (__). The deposit(), withdraw(),
and get_balance() methods are public and provide controlled access to modify or
view the balance. Thus, the internal state (__balance) of the BankAccount object
is protected from unauthorized changes, ensuring that only the defined methods can
modify it.

# Define the BankAccount class

class BankAccount:

def __init__(self, owner, balance=0):

# Public attribute: owner

self.owner = owner

# Private attribute: balance (indicated by double underscores)

self.__balance = balance

# Method to deposit money

def deposit(self, amount):

if amount > 0:

self.__balance += amount

print(f'{amount} deposited. New balance: {self.__balance}')

else:

print('Deposit amount must be positive')

# Method to withdraw money

def withdraw(self, amount):

if 0 < amount <= self.__balance:

self.__balance -= amount

print(f'{amount} withdrawn. New balance: {self.__balance}')

else:

print('Insufficient balance or invalid withdrawal amount')

# Method to get the current balance

def get_balance(self):

return self.__balance

# Create a BankAccount object

account = BankAccount('Alice', 1000)

# Accessing public attribute
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print(account.owner) # Output: Alice

# Attempting to access private attribute directly (raises AttributeError)

# print(account.__balance)

# Using public methods to interact with private attribute

account.deposit(500) # Output: 500 deposited. New balance: 1500

account.withdraw(200) # Output: 200 withdrawn. New balance: 1300

# Getting the balance using a public method

print(f'Current balance: {account.get_balance()}') # Output: 1300

Alice

500 deposited. New balance: 1500

200 withdrawn. New balance: 1300

Current balance: 1300

4.3 STUDENT GRADES

In this example, we’ll encapsulate a student’s grades to prevent them from being
modified directly.

# Define the Student class

class Student:

def __init__(self, name, grades=[]):

# Public attribute: name

self.name = name

# Private attribute: grades (indicated by double underscores)

self.__grades = grades

# Method to add a grade

def add_grade(self, grade):

if 0 <= grade <= 100:

self.__grades.append(grade)

print(f'Grade {grade} added.')

else:

print('Invalid grade')

# Method to get the grades

def get_grades(self):

return self.__grades

# Method to calculate the average grade

def get_average_grade(self):

return sum(self.__grades) / len(self.__grades) if self.__grades else 0

# Create a Student object

student = Student('John')

# Adding grades using public method

student.add_grade(85)

student.add_grade(92)
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# Attempting to access private attribute directly (raises AttributeError)

# print(student.__grades)

# Using public methods to interact with private attribute

print(f'Grades: {student.get_grades()}') # Output: [85, 92]

print(f'Average Grade: {student.get_average_grade()}') # Output: 88.5

Grade 85 added.

Grade 92 added.

Grades: [85, 92]

Average Grade: 88.5

4.4 CAR ENGINE

In this example, we’ll encapsulate the state of a car’s engine to ensure its only started
or stopped through controlled methods.

# Define the Car class

class Car:

def __init__(self, make, model):

# Public attributes: make and model

self.make = make

self.model = model

# Private attribute: engine_running (indicated by double underscores)

self.__engine_running = False

# Method to start the engine

def start_engine(self):

if not self.__engine_running:

self.__engine_running = True

print(f'{self.make} {self.model} engine started.')

else:

print(f'{self.make} {self.model} engine is already running.')

# Method to stop the engine

def stop_engine(self):

if self.__engine_running:

self.__engine_running = False

print(f'{self.make} {self.model} engine stopped.')

else:

print(f'{self.make} {self.model} engine is not running.')

# Method to check if the engine is running

def is_engine_running(self):

return self.__engine_running

# Create a Car object

car = Car('Toyota', 'Camry')

# Starting the engine using public method

car.start_engine() # Output: Toyota Camry engine started.

# Checking engine state
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print(f'Is engine running? {car.is_engine_running()}') # Output: True

# Stopping the engine using public method

car.stop_engine() # Output: Toyota Camry engine stopped.

# Attempting to access private attribute directly (raises AttributeError)

# print(car.__engine_running)

Toyota Camry engine started.

Is engine running? True

Toyota Camry engine stopped.

4.5 CASE STUDIES

Encapsulation is a key principle in object-oriented programming that helps protect
an object’s internal state and ensures that it is only modified in controlled ways. By
restricting access to an object’s attributes and providing public methods to interact
with them, encapsulation enhances security, reduces bugs, and makes the code more
maintainable.

Task: Create a class Employee that encapsulates the employee’s salary. The salary
should not be accessible directly but can be updated or retrieved through methods.

Your task is to:

1. Create an Employee object with a given name and salary.
2. Provide methods to give a raise and retrieve the current salary.
3. Prevent direct access to the salary attribute.

# Define the Employee class

class Employee:

def __init__(self, name, salary):

# Public attribute: name

self.name = name

# Private attribute: salary (indicated by double underscores)

self.__salary = salary

# Method to give a raise

def give_raise(self, amount):

if amount > 0:

self.__salary += amount

print(f'{self.name} got a raise of {amount}. New salary: {self.__salary}')

else:

print('Raise amount must be positive')

# Method to get the salary

def get_salary(self):

return self.__salary

# Create an Employee object

employee = Employee('Jane', 50000)
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# Giving a raise using public method

employee.give_raise(5000) # Output: Jane got a raise of 5000. New salary: 55000

# Attempting to access private attribute directly (raises AttributeError)

# print(employee.__salary)

# Getting the salary using a public method

print(f'Current salary: {employee.get_salary()}') # Output: 55000

Jane got a raise of 5000. New salary: 55000

Current salary: 55000

In the solution, the __salary attribute is private and cannot be accessed directly.
Methods like give_raise() and get_salary() provide controlled access to this at-
tribute.

Task: Create a class Book that encapsulates the number of pages. The number of
pages should not be modified directly but can be read using a method. Additionally,
provide a method to add more pages.

Your task is to:

1. Create a Book object with a title and a number of pages.
2. Provide methods to add more pages and retrieve the current number of pages.
3. Prevent direct modification of the pages attribute.

# Define the Book class

class Book:

def __init__(self, title, pages):

# Public attribute: title

self.title = title

# Private attribute: pages (indicated by double underscores)

self.__pages = pages

# Method to add pages

def add_pages(self, extra_pages):

if extra_pages > 0:

self.__pages += extra_pages

print(f'{extra_pages} pages added. Total pages: {self.__pages}')

else:

print('Page count must be positive')

# Method to get the number of pages

def get_pages(self):

return self.__pages

# Create a Book object

book = Book('Python Programming', 300)

# Adding pages using public method

book.add_pages(50) # Output: 50 pages added. Total pages: 350

# Attempting to access private attribute directly (raises AttributeError)
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# print(book.__pages)

# Getting the number of pages using a public method

print(f'Number of pages: {book.get_pages()}') # Output: 350

50 pages added. Total pages: 350

Number of pages: 350

In this solution, the __pages attribute is private and cannot be modified directly.
Methods like add_pages() and get_pages() provide controlled access to this at-
tribute.

Task: Create a class Movie that encapsulates the rating of the movie. The rating
should only be updated through a method, ensuring that the rating remains within
a valid range (0 to 10).

Your task is to:

1. Create a Movie object with a title and an initial rating.
2. Provide methods to update the rating and retrieve the current rating.
3. Ensure the rating remains within a valid range.

# Define the Movie class

class Movie:

def __init__(self, title, rating):

# Public attribute: title

self.title = title

# Private attribute: rating (indicated by double underscores)

# Ensure rating is within the range [0, 10]

self.__rating = max(0, min(rating, 10))

# Method to set a new rating

def set_rating(self, new_rating):

if 0 <= new_rating <= 10:

self.__rating = new_rating

print(f'New rating for {self.title}: {self.__rating}')

else:

print('Rating must be between 0 and 10')

# Method to get the current rating

def get_rating(self):

return self.__rating

# Create a Movie object

movie = Movie('Inception', 9)

# Updating the rating using public method

movie.set_rating(10) # Output: New rating for Inception: 10

# Attempting to access private attribute directly (raises AttributeError)

# print(movie.__rating)
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# Getting the rating using a public method

print(f'Current rating: {movie.get_rating()}') # Output: 10

Clearly, the __rating attribute is private and can only be modified through the
set_rating() method, which ensures the rating stays within the 0 to 10 range.

4.6 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Define encapsulation in OOP and its core importance.
• Explain how encapsulation protects data integrity in a class.
• Distinguish between public, protected, and private attributes in Python.
• Describe how getter and setter methods support encapsulation.
• Demonstrate creating a class with encapsulated attributes.
• Show getter and setter methods for controlling private data access.
• Create an example protecting sensitive information using encapsulation.
• Justify why class attributes should be private or protected.
• Compare getter/setter methods with direct attribute access.
• Explore encapsulation without private attributes.
• Identify risks of bypassing encapsulation in Python.
• Explain how encapsulation facilitates class refactoring and extension.
• Analyze the trade-off between encapsulation and flexibility in Python.
• Demonstrate preventing accidental data modification through encapsulation.
• Identify common encapsulation implementation mistakes.
• Discuss Python’s encapsulation limitations compared to other languages.
• Explore encapsulation challenges in Python’s dynamic typing.



C H A P T E R 5

Abstraction

A
bstraction is another fundamental concept in object-oriented programming
(OOP). It refers to the process of hiding the internal implementation details of

an object and only exposing the necessary functionality. It allows you to break down
complex logic into manageable, understandable parts, define a blueprint that derived
classes must follow, and hide unnecessary details from the user of the class. In simpler
terms, abstraction helps to reduce complexity by allowing programmers to focus on
what an object does rather than how it does it.

Are you excited? Let’s get started!

5.1 INTRODUCTION TO ABSTRACTION

5.1.1 Demonstration

Let’s create a series of classes, Idea, G1, G2, and G3, to demonstrate the idea of
abstraction.

# Import the abstract base class module

import abc

from abc import ABC

# Define an abstract base class 'Idea' using inheritance from 'ABC' class

class Idea(ABC):

# Abstract method 'done', which must be implemented by any subclass

@abc.abstractmethod

def done(self):

pass

# Class 'G1' inherits from 'Idea', but does not implement the 'done' method

class G1(Idea):

def work(self):

print("I'm working on it!")

# Class 'G2' inherits from 'G1', overriding the 'work' method

class G2(G1):
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def work(self):

print("I'm still working on it!")

# Class 'G3' inherits from 'G2' and implements the abstract 'done' method

class G3(G2):

# 'done' method implementation

def done(self):

print("I got it done!")

# Instances of G1 and G2 cannot be created because they are abstract

# Attempting to create an instance of G1 or G2 would raise an error

# Cannot create g1

# g1 = G1() # Uncommenting this would raise an error

# Cannot create g2

# g2 = G2() # Uncommenting this would raise an error

# Instance of G3 can be created since it implements the 'done' method

g3 = G3()

g3.work() # Calls the 'work' method from G2

g3.done() # Calls the 'done' method from G3

I'm still working on it!

I got it done!

In this demonstration, the ABC (Abstract Base Class) is a base class that helps you
create abstract classes, and the abstractmethod is a decorator used to declare ab-
stract methods. The Idea class is an abstract class that declares the done method as
an abstract method. Any subclass of Idea must implement the done method to be
instantiated. G1 inherits from Idea but doesn’t implement the done method, making
it abstract and non-instantiable. G2 inherits from G1 and overrides the work method.
G3 inherits from G2 and implements the done method, making it a concrete class that
can be instantiated.

Because G1 and G2 don’t implement the abstract done method, they remain as ab-
stract classes. Instances of G1 and G2 cannot be created. Only G3 can be instantiated
because it provides a concrete implementation of done.

This example demonstrates the use of abstract base classes, method overriding, and
inheritance in Python OOP.

5.2 VEHICLES

Let’s demonstrate abstraction using a classic example involving vehicles. When you
drive a car, you don’t need to know how the engine works, how fuel is converted into
energy, or how the braking system functions internally. All you need to do is use the
interface provided: the steering wheel, accelerator, brake pedals, and gear shift. The
complex operations are hidden, and you’re only exposed to the essential functionality
required to drive the car.
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# Import ABC and abstractmethod from the abc module

from abc import ABC, abstractmethod

# Define an abstract base class Vehicle

class Vehicle(ABC):

# Abstract method start_engine, which must be implemented by any subclass

@abstractmethod

def start_engine(self):

pass

# Abstract method stop_engine, which must be implemented by any subclass

@abstractmethod

def stop_engine(self):

pass

# Concrete method honk with a default implementation

def honk(self):

print('Honking!')

# Define a concrete class Car inheriting from Vehicle

class Car(Vehicle):

# Implementation of the start_engine abstract method

def start_engine(self):

print('Car engine started.')

# Implementation of the stop_engine abstract method

def stop_engine(self):

print('Car engine stopped.')

# Define a concrete class Motorcycle inheriting from Vehicle

class Motorcycle(Vehicle):

# Implementation of the start_engine abstract method

def start_engine(self):

print('Motorcycle engine started.')

# Implementation of the stop_engine abstract method

def stop_engine(self):

print('Motorcycle engine stopped.')

# Instantiate objects and use abstract methods

my_car = Car()

my_car.start_engine() # Output: Car engine started.

my_car.honk() # Output: Honking!

my_car.stop_engine() # Output: Car engine stopped.

my_motorcycle = Motorcycle()

my_motorcycle.start_engine() # Output: Motorcycle engine started.

my_motorcycle.honk() # Output: Honking!

my_motorcycle.stop_engine() # Output: Motorcycle engine stopped.

Car engine started.

Honking!

Car engine stopped.

Motorcycle engine started.

Honking!
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Motorcycle engine stopped.

In this example, the Vehicle class is an abstract class. It contains abstract methods
(start_engine() and stop_engine()), which are methods without any implementa-
tion. Subclasses are required to provide concrete implementations for these methods.
These methods are defined using the @abstractmethod decorator. They serve as a
template for subclasses, ensuring that certain methods are implemented. The honk()

method in the Vehicle class is a concrete method with implementation. It can be
used directly by subclasses or overridden if needed. Car and Motorcycle inherit from
Vehicle. They provide specific implementations for the abstract methods, so they
are concrete classes.

5.3 PAYMENT

Let’s consider another classic example, which is a payment system where different
types of payments (like credit card and PayPal) need to be processed. We’ll use
abstraction to define a common interface for all payment types.

# Import ABC and abstractmethod from the abc module

from abc import ABC, abstractmethod

# Define an abstract base class Payment

class Payment(ABC):

# Abstract method must be implemented by any subclass

@abstractmethod

def process_payment(self, amount):

pass

# Define a concrete class CreditCardPayment inheriting from Payment

class CreditCardPayment(Payment):

# Implementation of the process_payment abstract method

def process_payment(self, amount):

print(f'Processing credit card payment of {amount} dollars.')

# Define a concrete class PayPalPayment inheriting from Payment

class PayPalPayment(Payment):

# Implementation of the process_payment abstract method

def process_payment(self, amount):

print(f'Processing PayPal payment of {amount} dollars.')

# Using the abstract interface

# Create an instance of CreditCardPayment and call process_payment

payment_method = CreditCardPayment()

payment_method.process_payment(100)

# Create an instance of PayPalPayment and call process_payment

payment_method = PayPalPayment()

payment_method.process_payment(150)

Processing credit card payment of 100 dollars.

Processing PayPal payment of 150 dollars.
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5.4 CASE STUDIES

Task: Remember our class Animal? Let’s create an abstract class Animal that defines
a common interface for all animals with an abstract method make_sound(). Create
concrete subclasses Dog and Bird that implement the make_sound() method.

Your task is to:

1. Define an abstract class Animal.
2. Implement the make_sound() method in Dog and Bird subclasses.
3. Create instances of Dog and Bird and call the make_sound() method on them.

# Import ABC and abstractmethod from the abc module

from abc import ABC, abstractmethod

# Define an abstract base class Animal

class Animal(ABC):

# Abstract method make_sound, which must be implemented by any subclass

@abstractmethod

def make_sound(self):

pass

# Define a concrete class Dog inheriting from Animal

class Dog(Animal):

# Implementation of the make_sound abstract method

def make_sound(self):

print('Woof! Woof!')

# Define a concrete class Bird inheriting from Animal

class Bird(Animal):

# Implementation of the make_sound abstract method

def make_sound(self):

print('Chirp! Chirp!')

# Using the abstract interface

# Create an instance of Dog and call make_sound

dog = Dog()

dog.make_sound() # Output: Woof! Woof!

# Create an instance of Bird and call make_sound

bird = Bird()

bird.make_sound() # Output: Chirp! Chirp!

Woof! Woof!

Chirp! Chirp!

In this example, the Animal class defines the abstract method make_sound() that
must be implemented by any subclass. The Dog and Bird classes provide their specific
implementations of the make_sound() method.

Task: Let’s revisit the Shape class. You should create an abstract class Shape that
defines a common interface for all shapes with an abstract method area(). Create
concrete subclasses Circle and Rectangle that implement the area() method.
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Your task is to:

1. Define an abstract class Shape.
2. Implement the area() method in Circle and Rectangle subclasses.
3. Create instances of Circle and Rectangle and call the area() method on

them.

# Import ABC, abstractmethod from abc module, and math module

from abc import ABC, abstractmethod

import math

# Define an abstract base class Shape

class Shape(ABC):

# Abstract method area, which must be implemented by any subclass

@abstractmethod

def area(self):

pass

# Define a concrete class Circle inheriting from Shape

class Circle(Shape):

# Constructor to initialize the radius

def __init__(self, radius):

self.radius = radius

# Implementation of the area abstract method

def area(self):

return math.pi * (self.radius ** 2)

# Define a concrete class Rectangle inheriting from Shape

class Rectangle(Shape):

# Constructor to initialize the width and height

def __init__(self, width, height):

self.width = width

self.height = height

# Implementation of the area abstract method

def area(self):

return self.width * self.height

# Using the abstract interface

# Create an instance of Circle and call area

circle = Circle(5)

print(f'Area of the circle: {circle.area()}')

# Create an instance of Rectangle and call area

rectangle = Rectangle(4, 6)

print(f'Area of the rectangle: {rectangle.area()}')

Area of the circle: 78.53981633974483

Area of the rectangle: 24

In this solution, the Shape class defines the abstract method area() that must be im-
plemented by any subclass. The Circle and Rectangle classes provide their specific
implementations of the area() method.
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5.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Define abstraction in OOP and its significance.
• Explain how abstraction simplifies complex systems.
• Describe the relationship between abstraction and implementation hiding.
• Show a concrete class implementing abstract methods.
• Demonstrate abstraction simplifying a class interface.
• Differentiate abstraction from encapsulation.
• Explore abstraction’s possibility without inheritance.
• Explain abstraction’s role in modular design.
• Discuss separating high-level design from implementation.
• Analyze trade-offs between abstraction and direct implementation.
• Design a user authentication system using abstraction.
• Create a plugin architecture with abstraction.
• Address common challenges with abstraction in Python.
• Explain how abstract classes improve team collaboration.
• Discuss consequences of incomplete abstract method implementation.
• Integrate abstraction with other OOP principles.
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Documentation

D
ocumenting your code, especially when defining classes, is crucial for en-
suring that other developers (and your future self) can understand how your

code works. Proper documentation should describe the purpose of the class, its meth-
ods, and its attributes. In Python, this is typically done using docstrings, which
are string literals that appear right after the class or function definition. We use
'''documentation''' in the class definition to automatically generate DocStrings,
which are similar to javadoc. The docstrings we used will be reflected in help()

function.

Are you ready? Let’s get started!

6.1 INTRODUCTION

6.1.1 Demonstration

Let’s compare the definition of two classes, NoDoc and Doc, and compare the result
of help() function applied to them.

class NoDoc():

def __init__(self, att1):

self.att1 = att1

def method1(p1, p2, p3):

return f'{p1} {p2} {p3} are something'

help(NoDoc)

Help on class NoDoc in module __main__:

class NoDoc(builtins.object)

| NoDoc(att1)

|

| Methods defined here:

|

| __init__(self, att1)
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| Initialize self. See help(type(self)) for accurate signature.

|

| method1(p1, p2, p3)

|

| ----------------------------------------------------------------------

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

class Doc():

'''This is a class with documentation'''

def __init__(self, att1):

''' The constructor takes value for att1

keyargument:

att1(str) -- the name of the doc

'''

self.att1 = att1

def method(p1, p2, p3):

'''The method that combines three substrings together

keyarguments:

p1(str) -- a substring

p2(str) -- a substring

p3(str) -- a substring

return(str) -- the concatenated string

'''

return f'{p1} {p2} {p3} are something'

help(Doc)

Help on class Doc in module __main__:

class Doc(builtins.object)

| Doc(att1)

|

| This is a class with documentation

|

| Methods defined here:

|

| __init__(self, att1)

| The constructor takes value for att1

|

| keyargument:

| att1(str) -- the name of the doc

|

| method(p1, p2, p3)
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| The method that combines three substrings together

|

| keyarguments:

| p1(str) -- a substring

| p2(str) -- a substring

| p3(str) -- a substring

|

| return(str) -- the concatenated string

|

| ----------------------------------------------------------------------

| Data descriptors defined here:

|

| __dict__

| dictionary for instance variables (if defined)

|

| __weakref__

| list of weak references to the object (if defined)

In this demonstration, the class Doc provides a comprehensive explanation of its
purpose, outlining the functions’ objectives, anticipated inputs, and outputs. This
helps readers and users in comprehending the class’s functionality, enabling them to
utilize it effectively.

6.2 BOOK

Let’s define and document a simple Book class.

# Define a class Book to represent a book

class Book:

'''

A class to represent a book.

Attributes

----------

title : str

The title of the book.

author : str

The author of the book.

pages : int

The number of pages in the book.

'''

# Constructor to initialize the Book class with title, author, and pages

def __init__(self, title, author, pages):

'''

Initialize the Book class with title, author, and pages.

Parameters

----------

title : str

The title of the book.

author : str
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The author of the book.

pages : int

The number of pages in the book.

'''

self.title = title

self.author = author

self.pages = pages

# Method to provide a brief description of the book

def description(self):

'''

Provides a brief description of the book.

Returns

-------

str

A formatted string describing the book.

'''

return f'\'{self.title}\' by {self.author}, {self.pages} pages.'

# Method to simulate reading a number of pages

def read_pages(self, num_pages):

'''

Simulate reading a number of pages.

Parameters

----------

num_pages : int

The number of pages to read.

Returns

-------

str

A message indicating how many pages have been read.

'''

if num_pages > self.pages:

return f'You can\'t read more than ({self.pages}) pages.'

return f'You have read {num_pages} pages of \'{self.title}\'.'

In this demonstration, the first part of the class docstring provides a brief description
of what the class represents.

The Attributes section lists and describes the class's attributes, including their types
and roles. The docstring for the __init__ method explains how to initialize the class,
describing the parameters needed to create an instance of the class. Each parameter
is listed with its type and a brief explanation of its role.

In addition, each method in the class has its own docstring. These docstrings provide
a brief description of what the method does. If the method takes any parameters,
they are listed with their types and descriptions in the Parameters section. The
Returns section describes what the method returns, including the type and a brief
explanation.
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6.3 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain the importance of documentation in class definitions.
• Describe how documentation improves code maintainability.
• Highlight the significance of consistent documentation style.
• Create a well-documented Python class using docstrings.
• Write a method docstring with parameter and return type details.
• Demonstrate attribute documentation in class docstrings.
• Compare docstrings with inline comments.
• Explain the value of usage examples in docstrings.
• Compare docstring styles and selection criteria.
• Explain documentation’s role in understanding class hierarchies.
• Describe how documentation improves open-source project accessibility.
• Explain documentation’s role in debugging class methods.
• Demonstrate documentation for inheritable classes.
• Identify and prevent common class documentation mistakes.
• Ensure documentation remains current with class evolution.
• Outline best practices for documenting complex methods.



C H A P T E R 7

Case Studies

W
e have learned the core aspects of object-oriented programming concepts—
encapsulation, inheritance, polymorphism, and abstraction. We also learned

how to properly document the class definition. Let’s play with some case studies
to have a comprehensive understanding of how these principles are applied in real-
life scenarios. To save space, readers should call the help() function to observe the
documentation of the defined classes.

Are you excited? Let’s get started!

7.1 IPHONE

7.1.1 Background

Since the first iPhone was introduced to us, we have changed how we live everyday.
Let’s make a case study about iPhones and show a little appreciation of this great
invention. (Don’t be serious, I made this up) Let’s put iPhone family into three
categories:

• Original one: with 1 camera, 1 sensor,
• Old one: with 2 or more cameras (user-input), and 2 sensor and
• Recent one: with 2 or more cameras (user-input), and 2 or more sensors (user-

input).

7.1.2 Implementation

import abc

from abc import ABC

# Abstract base class for all iPhones

class iphone(ABC):

'''The wrapper class of all iphones'''

def __init__(self, series, camera, sensor):
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'''The initiator of all iphones

Keyword arguments:

series (str) -- the series name of the iphone

camera (int) -- the number of cameras

sensor (int) -- the number of sensors

'''

self.family = 'iPhone'

self.series = series

self.camera = camera

self.sensor = sensor

# Abstract method to be implemented by subclasses

@abc.abstractmethod

def __repr__(self):

'''

Abstract method

'''

pass

# Concrete subclass for Original iPhones

class OriginaliPhone(iphone):

'''The class for Original iphones'''

def __init__(self, series):

'''The initiator of original iphones

Keyword arguments:

series (str) -- the series name of the iphone

# of camera is 1

# of sensors is 1

'''

super().__init__(series, 1, 1)

def __repr__(self):

'''The string of the iphone'''

return f'''{self.family} family member,

Series {self.series},

with {self.camera} camera'''

# Concrete subclass for Old iPhones

class OldiPhone(iphone):

def __init__(self, series, camera):

'''The initiator of original iphones

Keyword arguments:

series (str) -- the series name of the iphone

camera (int) -- the number of cameras

# of sensors is 2

'''

super().__init__(series, camera, 2)

def __repr__(self):

'''The string of the iphone'''

return f'''{self.family} family member,
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Series {self.series},

with {self.camera} cameras and {self.sensor} sensors'''

# Concrete subclass for Recent iPhones

class RecentiPhone(iphone):

def __init__(self, series, camera, sensor):

'''The initiator of all iphones

Keyword arguments:

series (str) -- the series name of the iphone

camera (int) -- the number of cameras

sensor (int) -- the number of sensors

'''

super().__init__(series, camera, sensor)

def __repr__(self):

'''The string of the iphone'''

return f'''{self.family} family member,

Series {self.series},

with {self.camera} cameras and {self.sensor} sensors'''

# Additional method for Recent iPhones

def new_feature(self):

'''The new feature of the iphone'''

print('I can report a car-crash!')

7.1.3 Usage

# Raise TypeError

#i = iphone()

ori_iphone = OriginaliPhone('4s')

print(ori_iphone)

old_iphone = OldiPhone('10ProMax', 3)

print(old_iphone)

recent_iphone = RecentiPhone('14ProMax', 5, 5)

print(recent_iphone)

recent_iphone.new_feature()

iPhone family member,

Series 4s,

with 1 camera

iPhone family member,

Series 10ProMax,

with 3 cameras and 2 sensors

iPhone family member,

Series 14ProMax,

with 5 cameras and 5 sensors

I can report a car-crash!
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7.2 EMPLOYEE

7.2.1 Background

A college hires hundreds students for various works, so students can get financial
support and learning experience. To manage the system, you are asked to write a
Python program to manage the record.

You are going to create five classes:

1. Student, Student_Not_Working, Student_Working, Student_Working_FT,
Student_Working_PT.

2. Student and Student_Working are abstract classes.

7.2.2 Implementation

# Importing libraries

import abc

from abc import ABC

# Defining student class

class Student(ABC):

'''The abstract base class for all students'''

def __init__(self, first_name, last_name, stu_ID):

'''Create a student based on the first name, last name, and student ID

Keyword arguments:

first_name (str) -- the first name of the student

last_name (str) -- the last name of the student

stu_ID (str) -- the string ID of the student

'''

self.first_name = first_name

self.last_name = last_name

self.stu_ID = stu_ID

def intro(self):

'''Introduction of Student using argument in format function'''

return f'My name is {self.first_name} {self.last_name} ({self.stu_ID}).'

@abc.abstractmethod

def pay(self):

'''Abstract method to be implemented by subclasses'''

pass

# Defining Student Not working class

class Student_Not_Working(Student):

'''The class for students not working'''

def pay(self):

return f'Payment will be {0}'

# Defining Student working class
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class Student_Working(Student):

def __init__(self, first_name, last_name, stu_ID,

department, supervisor_full_name):

'''The abstract class for students working'''

super().__init__(first_name, last_name, stu_ID)

if isinstance(department, str) and isinstance(supervisor_full_name, str):

self.department = department

self.supervisor_full_name = supervisor_full_name

else:

raise TypeError("Enter string as value")

@abc.abstractmethod

def pay(self):

'''Abstract method to be implemented by subclasses'''

pass

# Defining Student Working fulltime class

class Student_Working_FT(Student_Working):

def __init__(self, first_name, last_name, stu_ID,

department, supervisor_full_name, annual_rate):

'''Create a student working fulltime'''

super().__init__(first_name, last_name, stu_ID,

department, supervisor_full_name)

if isinstance(annual_rate, int):

self.annual_rate = annual_rate

else:

raise TypeError("Enter integer as value")

def pay(self):

'''Calculate biweekly payment'''

return f'Payment will be {(self.annual_rate/365)*14:.2f}'

# Defining student working part time class

class Student_Working_PT(Student_Working):

'''The class for students working part time'''

def __init__(self, first_name, last_name, stu_ID,

department, supervisor_full_name, hourly_rate):

'''Create a student working part time'''

super().__init__(first_name, last_name, stu_ID,

department, supervisor_full_name)

if isinstance(hourly_rate, int):

self.hourly_rate = hourly_rate

else:

raise TypeError("Enter integer as value")

def pay(self):

'''Calculate payment based on hours worked'''

hours = int(input("Please Enter the hours worked: "))
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if isinstance(hours, int):

return f'Payment will be {float(self.hourly_rate * hours):.2f}'

else:

raise TypeError("Enter integer as value")

7.2.3 Usage

# Establishing an instance of Student class should raise an error

#stu0 = Student('Abby', 'Bolt', '0000')

# Establishing an instance of Student_Not_Working class

stu1 = Student_Not_Working('Abby', 'Bolt', '0001')

print(stu1.intro())

print(stu1.pay())

# Establishing an instance of Student_Working class should raise an error

#stu2 = Student_Working('Abby', 'Bolt', '0002', 'CS', 'Alan')

# Establishing an instance of Student_Working_FT class

stu3 = Student_Working_FT('Abby', 'Bolt', '0003', 'CS', 'Alan Turing', 50000)

print(stu3.intro())

print(stu3.pay())

# Establishing an instance of Student_Working_PT class

stu4 = Student_Working_PT('Abby', 'Bolt', '0004', 'CS', 'Alan Turing', 20)

print(stu4.intro())

print(stu4.pay())

My name is Abby Bolt (0001).

Payment will be 0

My name is Abby Bolt (0003).

Payment will be 1917.81

My name is Abby Bolt (0004).

Please Enter the hours worked: 28

Payment will be 560.00

7.3 UNIVERSITY SYSTEM

7.3.1 Overview

We’ll design a university system that manages different types of people associated
with the university: students, professors, and staff. This system will demonstrate how
these roles share common attributes and behaviors while also having unique charac-
teristics. The system should protect the personal information of each individual (e.g.,
social security number), share common attributes like name and age across different
roles (students, professors, staff), allow different roles to implement aget_role()

method differently, and provide a general Person class that defines the common in-
terface for all roles.
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7.3.2 Implementation

# Import ABC and abstractmethod from the abc module

from abc import ABC, abstractmethod

# Define an abstract class Person

class Person(ABC):

"""

Abstract class representing a person at the university.

Attributes

----------

name : str

The person's name.

age : int

The person's age.

"""

# Constructor to initialize the Person class

def __init__(self, name, age):

self._name = name

self._age = age

self.__ssn = None # Encapsulated attribute

# Abstract method to return the role of the person

@abstractmethod

def get_role(self):

"""

Abstract method to return the role of the person.

"""

pass

# Method to set the Social Security Number

def set_ssn(self, ssn):

"""

Sets the Social Security Number.

Parameters

----------

ssn : str

The social security number.

"""

self.__ssn = ssn

# Method to get the Social Security Number

def get_ssn(self):

"""

Gets the Social Security Number.

Returns

-------

str

The social security number.

"""

return f'SSN: {self.__ssn}'
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# Define a concrete class Student inheriting from Person

class Student(Person):

"""

Represents a student at the university.

"""

# Constructor to initialize the Student class

def __init__(self, name, age, major):

super().__init__(name, age)

self.major = major

# Implementation of the get_role abstract method

def get_role(self):

return f'Student majoring in {self.major}'

# Define a concrete class Professor inheriting from Person

class Professor(Person):

"""

Represents a professor at the university.

"""

# Constructor to initialize the Professor class

def __init__(self, name, age, department):

super().__init__(name, age)

self.department = department

# Implementation of the get_role abstract method

def get_role(self):

return f'Professor in the {self.department} department'

# Define a concrete class Staff inheriting from Person

class Staff(Person):

"""

Represents a staff member at the university.

"""

# Constructor to initialize the Staff class

def __init__(self, name, age, position):

super().__init__(name, age)

self.position = position

# Implementation of the get_role abstract method

def get_role(self):

return f'Staff member working as {self.position}'

7.3.3 Usage

# Usage

john = Student('John Doe', 20, 'Computer Science')

john.set_ssn('123-45-6789')

print(john.get_role()) # Polymorphism

print(john.get_ssn()) # Encapsulation
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dr_smith = Professor('Dr. Smith', 45, 'Mathematics')

print(dr_smith.get_role()) # Polymorphism

jane = Staff('Jane Doe', 35, 'Administrator')

print(jane.get_role()) # Polymorphism

Student majoring in Computer Science

SSN: 123-45-6789

Professor in the Mathematics department

Staff member working as Administrator

In this implementation, the __ssn attribute in the Person class is private and can
only be accessed or modified through getter and setter methods. Student, Professor,
and Staff inherit from the Person class, sharing common attributes like name and
age. Each subclass (Student, Professor, and Staff) implements the get_role()

method differently. The Person class is an abstract class that defines the common
interface (get_role()) for all subclasses.

7.4 VEHICLE RENTAL SYSTEM

7.4.1 Overview

We can design a vehicle rental system where different types of vehicles (cars, trucks,
motorcycles) can be rented. This system will demonstrate how different vehicles share
common functionalities while also implementing their own specific behaviors. The sys-
tem protects sensitive vehicle data, such as engine number, shares common attributes
like make, model, and year across different vehicle types, allows different vehicle types
to implement a rent() method differently, and provides a general Vehicle class that
defines the common interface for all vehicles.

7.4.2 Implementation

# Import ABC and abstractmethod from the abc module

from abc import ABC, abstractmethod

# Define an abstract class Vehicle

class Vehicle(ABC):

"""

Abstract class representing a vehicle.

Attributes

----------

make : str

The vehicle's make.

model : str

The vehicle's model.

year : int

The vehicle's manufacturing year.

"""

# Constructor to initialize the Vehicle class
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def __init__(self, make, model, year):

self.make = make

self.model = model

self.year = year

self.__engine_number = None # Encapsulated attribute

# Abstract method to rent the vehicle

@abstractmethod

def rent(self):

"""

Abstract method to rent the vehicle.

"""

pass

# Method to set the engine number

def set_engine_number(self, engine_number):

"""

Sets the engine number.

Parameters

----------

engine_number : str

The engine number.

"""

self.__engine_number = engine_number

# Method to get the engine number

def get_engine_number(self):

"""

Gets the engine number.

Returns

-------

str

The engine number.

"""

return f'Engine Number: {self.__engine_number}'

# Define a concrete class Car inheriting from Vehicle

class Car(Vehicle):

"""

Represents a car.

"""

# Implementation of the rent abstract method

def rent(self):

return f'Renting a car: {self.make} {self.model}, {self.year}'

# Define a concrete class Truck inheriting from Vehicle

class Truck(Vehicle):

"""

Represents a truck.

"""

# Implementation of the rent abstract method
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def rent(self):

return f'Renting a truck: {self.make} {self.model}, {self.year}'

# Define a concrete class Motorcycle inheriting from Vehicle

class Motorcycle(Vehicle):

"""

Represents a motorcycle.

"""

# Implementation of the rent abstract method

def rent(self):

return f'Renting a motorcycle: {self.make} {self.model}, {self.year}'

7.4.3 Usage

# Usage

toyota_car = Car('Toyota', 'Corolla', 2020)

toyota_car.set_engine_number('ENG12345')

print(toyota_car.rent()) # Polymorphism

print(toyota_car.get_engine_number()) # Encapsulation

ford_truck = Truck('Ford', 'F-150', 2019)

print(ford_truck.rent()) # Polymorphism

harley_motorcycle = Motorcycle('Harley-Davidson', 'Street 750

Renting a car: Toyota Corolla, 2020

Engine Number: ENG12345

Renting a truck: Ford F-150, 2019

Renting a motorcycle: Harley-Davidson Street 750, 2018

In this implementation, the __engine_number attribute in the Vehicle class is pri-
vate and can only be accessed or modified through getter and setter methods. Car,
Truck, and Motorcycle inherit from the Vehicle class, sharing common attributes
like make, model, and year. Each subclass (Car, Truck, and Motorcycle) implements
the rent() method differently. The Vehicle class is an abstract class that defines
the common interface (rent()) for all subclasses.

7.5 ONLINE MARKETPLACE

7.5.1 Overview

The online marketplace allows sellers to list products, and buyers to purchase them.
Different types of products (like electronics, clothing, and groceries) have their own
specific attributes and discount policies. The system manages product listings, cus-
tomer shopping carts, and checkouts. The marketplace system protects sensitive data
like product IDs and user IDs, shares common features between different product
types and user roles, allows actions like calculating discounts to behave differently
depending on the product type, and provides a generalized Product and User class
that defines common behaviors and attributes.
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7.5.2 Implementation

from abc import ABC, abstractmethod

# Abstract base class representing a product in the marketplace

class Product(ABC):

"""

Abstract class representing a product in the marketplace.

Attributes

----------

name : str

The name of the product.

price : float

The price of the product.

"""

def __init__(self, name, price):

self.name = name

self.price = price

self.__product_id = None # Encapsulated attribute

# Method to set the product ID

def set_product_id(self, product_id):

self.__product_id = product_id

# Method to get the product ID

def get_product_id(self):

return f'Product ID: {self.__product_id}'

# Abstract method to calculate the discount

@abstractmethod

def calculate_discount(self):

"""

Abstract method to calculate the discount.

"""

pass

# Class representing an electronic product

class Electronics(Product):

"""

Represents an electronic product.

"""

def __init__(self, name, price, warranty_years):

super().__init__(name, price)

self.warranty_years = warranty_years

# Implementation of the calculate_discount abstract method

def calculate_discount(self):

return self.price * 0.90 # 10% discount

# Class representing a clothing product

class Clothing(Product):

"""
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Represents a clothing product.

"""

def __init__(self, name, price, size):

super().__init__(name, price)

self.size = size

# Implementation of the calculate_discount abstract method

def calculate_discount(self):

return self.price * 0.80 # 20% discount

# Class representing a grocery item

class Grocery(Product):

"""

Represents a grocery item.

"""

def __init__(self, name, price, expiration_date):

super().__init__(name, price)

self.expiration_date = expiration_date

# Implementation of the calculate_discount abstract method

def calculate_discount(self):

return self.price * 0.95 # 5% discount

# Abstract base class representing a user in the marketplace

class User(ABC):

"""

Abstract class representing a user in the marketplace.

Attributes

----------

name : str

The name of the user.

"""

def __init__(self, name):

self.name = name

self._user_id = None # Encapsulated attribute

# Method to set the user ID

def set_user_id(self, user_id):

self._user_id = user_id

# Method to get the user ID

def get_user_id(self):

return f'User ID: {self._user_id}'

# Abstract method to purchase a product

@abstractmethod

def purchase(self, product):

"""

Abstract method to purchase a product.

"""

pass
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# Class representing a seller in the marketplace

class Seller(User):

"""

Represents a seller in the marketplace.

"""

def __init__(self, name):

super().__init__(name)

self.products = [] # List to store seller's products

# Method to add a product to the seller's inventory

def add_product(self, product):

self.products.append(product)

return f'Product {product.name} added to the seller\'s inventory.'

# Method to remove a product from the seller's inventory

def remove_product(self, product):

if product in self.products:

self.products.remove(product)

return f'Product {product.name} removed from the seller\'s inventory.'

return f'Product {product.name} not found in inventory.'

# Implementation of the purchase abstract method

def purchase(self, product):

return f'Sellers cannot purchase products.'

# Class representing a buyer in the marketplace

class Buyer(User):

"""

Represents a buyer in the marketplace.

"""

def __init__(self, name):

super().__init__(name)

self.shopping_cart = [] # List to store buyer's shopping cart

# Implementation of the purchase abstract method

def purchase(self, product):

self.shopping_cart.append(product)

return f'Product {product.name} added to shopping cart.'

# Method to complete checkout

def checkout(self):

total = sum([item.calculate_discount() for item in self.shopping_cart])

self.shopping_cart.clear()

return f'Checkout complete. Total amount: ${total:.2f}'
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7.5.3 Usage

# Seller adds products

seller = Seller('Alice')

laptop = Electronics('Laptop', 1200, 2)

jeans = Clothing('Jeans', 50, 'L')

apple = Grocery('Apple', 1, '2024-09-01')

seller.add_product(laptop)

seller.add_product(jeans)

seller.add_product(apple)

# Buyer purchases products

buyer = Buyer('Bob')

buyer.set_user_id('B001')

print(buyer.purchase(laptop)) # Buyer adds laptop to the shopping cart

print(buyer.purchase(jeans)) # Buyer adds jeans to the shopping cart

# Buyer checks out

print(buyer.checkout()) # Buyer completes checkout with discounts applied

Product Laptop added to shopping cart.

Product Jeans added to shopping cart.

Checkout complete. Total amount: $1120.00

In this implementation, __product_id and _user_id are private and can only be
accessed via their getter methods. This ensures that sensitive data remains secure.
Electronics, Clothing, and Grocery classes inherit from the abstract Product class,
sharing the common attributes and methods. Seller and Buyer classes inherit from
the abstract User class, allowing common behavior among users while still enabling
specific differences. The calculate_discount() method is overridden in each sub-
class of Product. This method calculates a discount based on the type of product. For
instance, electronics get a 10% discount, clothing items get a 20% discount, and gro-
ceries get a 5% discount. Both Product and User classes are abstract, which means
they cannot be instantiated directly. They define the interfaces that their subclasses
must implement. This structure allows you to enforce consistent behaviors across all
types of products and users.
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S
ection II: Data Manipulation introduces advanced data structures that are
essential for efficient data manipulation in Python. The section focuses on the

ndarray provided by the NumPy package, and the Series and DataFrame structures
from the Pandas package. You will learn how to leverage these powerful tools to
retrieve, manipulate, and analyze data. Through hands-on practice, you’ll gain a
deeper understanding of how these packages can be used to transform raw data into
actionable insights, making them indispensable in data science and analytics.

By the end of this section, you will be able to:

• Understand and use the ndarray structure in NumPy for advanced numerical
operations.

• Work with Pandas Series to handle one-dimensional labeled data efficiently.

• Utilize Pandas DataFrame to manage and analyze two-dimensional tabular
data.

• Retrieve and manipulate data using NumPy and Pandas for effective data anal-
ysis.

• Develop a solid understanding of how these packages contribute to data science
workflows.
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C H A P T E R 8

N-dimensional Arrays

I
n Python, basic data structures like list and tuple can store collections of items,
making them similar to arrays. These structures are flexible because they can hold

mixed data types, but they aren’t optimized for numerical or scientific operations.
The ndarray, provided by the Numpy package, is a more efficient alternative for
handling large datasets and numerical computations. Unlike lists or tuples, ndarrays
are specialized for numerical data and support multidimensional arrays, like matrices.
While lists and tuples are more general-purpose, ndarrays trade that generality for
efficiency, especially when performing mathematical calculations on large amounts of
data.

Are you ready? Let’s get started!

8.1 WHAT IS A N-DIMENSIONAL ARRAY

8.1.1 Explanation

In Python’s NumPy package, an N-dimensional array, often called ndarray, is a
powerful and flexible structure for handling large datasets and performing complex
mathematical operations efficiently.

NumPy N-dimensional Array (ndarray) has following major features:

• Performance: Generally faster for numerical operations compared to Python
lists, especially for large datasets.

• Homogeneity: All elements in an ndarray are of the same data type, which
allows for efficient computation and memory usage.

• Indexing/Slicing: Allows for advanced indexing and slicing, making it easy
to access and manipulate subarrays.

• Structure: An ndarray can have multiple dimensions (axes). For example, a
2D array is like a matrix with rows and columns, while a 3D array could be
thought of as a stack of matrices.

• Operations: Supports a wide range of mathematical operations (e.g., addition,
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multiplication) that are optimized for performance and can be applied element-
wise.

8.2 LESSON: COMPARE NDARRAY WITH LIST

Comparing to ndarray, Python list differs in following ways:

• Performance: Generally slower for numerical tasks compared to NumPy ar-
rays due to the overhead of Python's dynamic typing and the lack of optimized
numerical operations.

• Homogeneity: Lists can contain elements of different data types, which may
lead to inefficiencies in computations and require additional handling for math-
ematical operations.

• Indexing/Slicing: Supports basic indexing and slicing, but lacks the advanced
capabilities of NumPy arrays.

• Structure: A Python list is a one-dimensional collection of items. While lists
can contain nested lists (e.g., lists of lists) to simulate multidimensional arrays,
this approach is less intuitive and less efficient for numerical computations.

• Operations: Basic operations are available, but they are not optimized for
mathematical computations. Lists lack built-in support for element-wise oper-
ations.

8.2.1 Test Your Understanding

We discussed ndarray and list separately above. Now Let’s compare them side by
side regarding the structure, operations, homogeneity, indexing/slicing, and perfor-
mance.

A possible solution is shown in Table 8.1.

8.3 PERFORMANCE COMPARISON

8.3.1 Demonstration

To compare the efficiency between ndarray and list, we use the %timeit function.
The %timeit function in Python is a magic command provided by IPython (com-
monly used in Jupyter notebooks) to measure the execution time of code snippets. It
is used for benchmarking and optimizing code performance. %timeit runs the code
snippet multiple times (in a loop) to provide a statistically reliable measurement of
execution time. It reports the best average time taken, minimizing the impact of ran-
dom fluctuations and system load. It returns the average time taken per execution
and can help identify performance bottlenecks in your code.

[x**2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
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TABLE 8.1 Comparison of Python Lists versus NumPy ndarrays

Feature Python List NumPy ndarray

Performance Slow for numerical operations
due to Python’s dynamic typ-
ing and lack of optimization

Optimized for speed, espe-
cially with large datasets and
numerical computations

Homogeneity Supports mixed data types
(e.g., integers, strings, ob-
jects)

Requires uniform data types
for efficient memory usage
and computation

Indexing/Slicing Basic single-element access
and simple slicing

Advanced multidimensional
slicing and Boolean indexing

Structure 1D collection (nested lists
mimic multidimensionality)

Native support for N-
dimensions (e.g., 2D matri-
ces, 3D tensors)

Operations Limited to basic operations
(append, remove, etc.)

Element-wise math opera-
tions (+, -, *, /) and linear
algebra functions

Memory Usage Higher memory overhead for
storing type information

Compact storage due to
fixed data types (e.g., int32,
float64)

Broadcasting Not supported (requires man-
ual iteration)

Automatic alignment of ar-
rays with different shapes

Functionality Minimal built-in math func-
tions

Rich library of mathemati-
cal/statistical functions

Data Handling Better for general-purpose,
heterogeneous data

Optimized for numeri-
cal/scientific homogeneous
data

import numpy as np

np.arange(10) ** 2

array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81])

SIZE = 10

%timeit -n 1000 [x**2 for x in range(SIZE)]

%timeit -n 1000 np.arange(SIZE) ** 2

4.38 µs ± 1.66 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

1.56 µs ± 490 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
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SIZE = 100

%timeit -n 1000 [x**2 for x in range(SIZE)]

%timeit -n 1000 np.arange(SIZE) ** 2

28.8 µs ± 1.32 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

1.55 µs ± 324 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)

SIZE = 1000

%timeit -n 1000 [x**2 for x in range(SIZE)]

%timeit -n 1000 np.arange(SIZE) ** 2

308 µs ± 8.04 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

2.72 µs ± 343 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)

8.3.2 Explanation

NumPy's ndarray can achieve efficiency compared to Python lists due to several key
factors:

1. Data Types: ndarray requires that all elements be of the same data type. This
allows NumPy to optimize memory storage and processing speed since it knows
exactly how much space each element occupies and how to handle it efficiently.
On the other hand, list can contain elements of varying types. This flexibility
comes at the cost of performance, as each element requires additional overhead
to manage and can lead to inefficiencies in computation.

2. Memory Allocation: ndarray stores data in a contiguous block of memory. This
improves cache performance and allows for efficient vectorized operations, where
multiple elements are processed simultaneously. On the other hand, list stores
data in separate objects and may be scattered in memory, leading to slower
access times and less efficient processing.

3. Vectorization: ndarray supports vectorized operations, where operations are
applied to entire arrays (or subarrays) at once, leveraging low-level optimiza-
tions and efficient computation in C or Fortran. On the other hand, Python
lists have operations usually performed in Python loops, which are slower due
to the interpreted nature of Python and lack of hardware acceleration.

4. Broadcasting: NumPy uses broadcasting to perform operations on arrays of
different shapes in a memory-efficient manner, without creating intermediate
copies of arrays. However, Python lists lack built-in support for broadcasting,
making similar operations cumbersome and less efficient to implement manually.

5. Pre-compiled Functions: Many of NumPy’s functions are implemented in C or
Fortran, which are much faster than equivalent Python code due to lower-level
optimizations. But, operations in Python lists are performed using pure Python
code, which is generally slower than compiled code.

In summary, NumPy arrays are designed to maximize computational efficiency and
memory usage for numerical tasks, whereas Python lists are more general purpose
and flexible but less optimized for numerical computations.
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TABLE 8.2 Why NumPy ndarrays Outperform Python Lists

Feature Python List NumPy ndarray

Data Types Mixed types (e.g., numbers,
text, objects). Like a messy
toolbox.

Same type (e.g., all integers).
Like a neatly sorted toolbox.

Memory Storage Data scattered in mem-
ory. Like books in different
rooms, which is slow to col-
lect.

Data stored in one connected
block. Like books on a single
shelf, which is easy to grab.

Math Operations Requires slow Python loops.
Like counting apples one by
one.

Does math on entire arrays at
once. Like weighing all apples
in a basket together.

Handling Shapes No built-in rules for mis-
matched sizes. You adjust
manually.

Automatically adjusts sizes
(broadcasting). Like resizing
gloves to fit all hands.

Behind the Code Runs in Python (like a
translator converting in-
structions slowly).

Runs in pre-compiled
C/Fortran (like a native
speaker giving direct com-
mands).

Here is a summary for the reasons why NumPy’s ndarray outperform Python’s list

in Table 8.2.

8.3.3 Practice

Task: Change the variable SIZE in previous demonstration, and test the performance
when SIZE is 10000 and 100000.

# Your code is here

8.4 LESSON: NDARRAY CREATION

8.4.1 Demonstration

The np.array() constructor in NumPy is used to create a new ndarray from existing
data. np.array() takes a sequence-like input (such as a list or tuple) and converts it
into a NumPy array. For instance, the following code creates a one-dimensional array
arr with the elements [1, 2, 3, 4]:

arr = np.array([1, 2, 3, 4])

arr

array([1, 2, 3, 4])
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You can create multidimensional arrays by passing nested sequences. For instance,
the following code creates a two-dimensional array matrix with shape (2, 3):

matrix = np.array([[1, 2, 3], [4, 5, 6]])

matrix

array([[1, 2, 3],

[4, 5, 6]])

You can specify the data type of the array elements using the dtype parameter. For
instance, the following code creates an array of type float with elements [1.0, 2.0,

3.0]:

arr_float = np.array([1, 2, 3], dtype=float)

arr_float

array([1., 2., 3.])

The np.arange() function in NumPy is used to create arrays with regularly spaced
values over a specified range. It is often used for creating sequences of numbers for
iteration or mathematical operations.

The basic syntax is np.arange([start, ]stop, [step, ]dtype=None), where:

• start (optional): The starting value of the sequence (inclusive). Defaults to 0

if not specified.
• stop: The end value of the sequence (exclusive).
• step (optional): The spacing between values. Defaults to 1 if not specified.
• dtype (optional): The desired data type of the array. If not specified, it is

inferred from the input values.

np.arange() is a convenient function for generating arrays with a specified range
and step size, useful for creating sequences and ranges in numerical computations.

Basic usage with default start and step:

arr = np.arange(5) # Output: array([0, 1, 2, 3, 4])

arr

array([0, 1, 2, 3, 4])

Specifying start, stop, and step:

arr = np.arange(2, 10, 2) # Output: array([2, 4, 6, 8])

arr

array([2, 4, 6, 8])

Creating an array with floating-point numbers:

arr = np.arange(0.5, 3.0, 0.5) # Output: array([0.5, 1. , 1.5, 2. , 2.5])

arr

array([0.5, 1. , 1.5, 2. , 2.5])
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reshape() is a convenient way to organize the ndarray to any shape:

arr=np.arange(12).reshape(3, 4)

arr

array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11]])

arr = arr.reshape(2, 6)

arr

array([[ 0, 1, 2, 3, 4, 5],

[ 6, 7, 8, 9, 10, 11]])

arr = arr.reshape(3, 2, 2)

arr

array([[[ 0, 1],

[ 2, 3]],

[[ 4, 5],

[ 6, 7]],

[[ 8, 9],

[10, 11]]])

8.4.2 Retrieve ndarray Metadata

NumPy provides several useful attributes and functions to retrieve information about
an ndarray. Here’s a brief overview of the most commonly used ones:

• type(): Returns the type of the NumPy array object itself.
• size: Returns the total number of elements in the array.
• ndim: Returns the number of dimensions (axes) of the array.
• shape: Returns a tuple representing the dimensions of the array. Each element

in the tuple represents the size of the array along a particular axis.
• dtype: Returns the data type of the array elements.

These attributes and functions provide essential details about the structure, type, and
properties of a NumPy array, helping to understand and manipulate data effectively.

# Define a function for checking

def ndarr_info(arr):

print(arr)

print(f'''Object type: {type(arr)},

Array size: {np.size(arr)},

Array dimensions: {arr.ndim},

Array shape: {arr.shape},

Array data type: {arr.dtype}''')

arr = np.array([1,2,3,4,5])

ndarr_info(arr)

[1 2 3 4 5]
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Object type: <class 'numpy.ndarray'>,

Array size: 5,

Array dimensions: 1,

Array shape: (5,),

Array data type: int64

arr = np.arange(0.1, 0.5, 0.1)

ndarr_info(arr)

[0.1 0.2 0.3 0.4]

Object type: <class 'numpy.ndarray'>,

Array size: 4,

Array dimensions: 1,

Array shape: (4,),

Array data type: float64

arr = np.array([[[1],[2]],[[3],[4]],[[5],[6]]])

ndarr_info(arr)

[[[1]

[2]]

[[3]

[4]]

[[5]

[6]]]

Object type: <class 'numpy.ndarray'>,

Array size: 6,

Array dimensions: 3,

Array shape: (3, 2, 1),

Array data type: int64

8.4.3 Practice

The following tasks require you to create several ndarray objects. You can use the
function ndarr_info() to check the ndarray object.

Task: Create a one-dimensional NumPy array containing the integers from 1 to 5.

arr = np.array([1, 2, 3, 4, 5])

ndarr_info(arr)

[1 2 3 4 5]

Object type: <class 'numpy.ndarray'>,

Array size: 5,

Array dimensions: 1,

Array shape: (5,),

Array data type: int64

Task: Create a two-dimensional NumPy array with the following data:

[[1, 2, 3],

[4, 5, 6]]
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arr = np.array([[1, 2, 3], [4, 5, 6]])

ndarr_info(arr)

[[1 2 3]

[4 5 6]]

Object type: <class 'numpy.ndarray'>,

Array size: 6,

Array dimensions: 2,

Array shape: (2, 3),

Array data type: int64

Task: Create a 1D array of integers from 10 to 14, but with a data type of float.

arr = np.array([10, 11, 12, 13, 14], dtype=float)

ndarr_info(arr)

[10. 11. 12. 13. 14.]

Object type: <class 'numpy.ndarray'>,

Array size: 5,

Array dimensions: 1,

Array shape: (5,),

Array data type: float64

Task: Create a three-dimensional NumPy array with shape (2, 2, 2) filled with
values ranging from 1 to 8.

arr = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])

ndarr_info(arr)

[[[1 2]

[3 4]]

[[5 6]

[7 8]]]

Object type: <class 'numpy.ndarray'>,

Array size: 8,

Array dimensions: 3,

Array shape: (2, 2, 2),

Array data type: int64

Task: Use np.arange() to create a 1D array of values from 5 to 15 (exclusive) with
a step of 2.

arr = np.arange(5, 15, 2)

ndarr_info(arr)

[ 5 7 9 11 13]

Object type: <class 'numpy.ndarray'>,

Array size: 5,

Array dimensions: 1,

Array shape: (5,),

Array data type: int64

Task: Use np.arange() to create an array of floating-point numbers from 0.5 to 2.0
with a step of 0.5.
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arr = np.arange(0.5, 2.0, 0.5)

ndarr_info(arr)

[0.5 1. 1.5]

Object type: <class 'numpy.ndarray'>,

Array size: 3,

Array dimensions: 1,

Array shape: (3,),

Array data type: float64

Task: Convert the following nested list into a NumPy array:

[[10, 20],

[30, 40],

[50, 60]]

arr = np.array([[10, 20], [30, 40], [50, 60]])

ndarr_info(arr)

[[10 20]

[30 40]

[50 60]]

Object type: <class 'numpy.ndarray'>,

Array size: 6,

Array dimensions: 2,

Array shape: (3, 2),

Array data type: int64

Task: Use np.array() to create a 1D array with elements [3.5, 2.5, 1.5] and
explicitly set the data type to int.

arr = np.array([3.5, 2.5, 1.5], dtype=int)

ndarr_info(arr)

[3 2 1]

Object type: <class 'numpy.ndarray'>,

Array size: 3,

Array dimensions: 1,

Array shape: (3,),

Array data type: int64

Task: Create a 1D array with 10 even numbers from 2, 4, to 20 using np.arange(),
and then reshape it into a 2x5 array.

arr = np.arange(2, 21, 2).reshape(2, 5)

print(arr)

[[ 2 4 6 8 10]

[12 14 16 18 20]]

8.5 LESSON: ACCESS 1D NDARRAY

8.5.1 Demonstration

Accessing elements in a one-dimensional NumPy array is straightforward and similar
to accessing elements in a Python list. In sum:
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• Single Index: arr[index] returns the element at the specified position.
• Negative Index: arr[-index] accesses elements from the end of the array.
• Slicing: arr[start:stop:step] retrieves a subarray with optional start, stop,

and step parameters.

Accessing Single Elements: Retrieve a single element from the array using its index
by using the index in square brackets [].

arr = np.array([10, 20, 30, 40, 50])

print(arr[2]) # Output: 30

30

Negative Indexing: Access elements from the end of the array using negative indices
by using negative indices to count from the end of the array.

arr = np.array([10, 20, 30, 40, 50])

print(arr[-1]) # Output: 50 (last element)

50

Slicing: Retrieve a subarray or slice of the original array by using the colon : to
specify the start, stop, and step.

arr = np.array([10, 20, 30, 40, 50])

print('arr:', arr)

print('arr[:3]:', arr[:3]) # Output: [10 20 30]

print('arr[3:]:', arr[3:]) # Output: [40 50]

print('arr[1:3]:', arr[1:3]) # Output: [20 30]

print('arr[1:-1]:', arr[1:-1]) # Output: [20 30 40]

arr: [10 20 30 40 50]

arr[:3]: [10 20 30]

arr[3:]: [40 50]

arr[1:3]: [20 30]

arr[1:-1]: [20 30 40]

Accessing with Step: Retrieve elements with a specific step size by using the step
parameter in slicing to skip elements.

arr = np.array([10, 20, 30, 40, 50])

print(arr[::2]) # Output: [10 30 50]

print(arr[::-1]) # Output: [50 40 30 20 10]

print(arr[1::2]) # Output: [20 40]

print(arr[:-1:2]) # Output: [10 30]

[10 30 50]

[50 40 30 20 10]

[20 40]

[10 30]

8.5.2 Practice

Task: Let arr be a NumPy array with values in the list [1, 2, 3, 4, 5].
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arr = np.array([1, 2, 3, 4, 5])

arr

array([1, 2, 3, 4, 5])

Task: Show the first element of arr.

arr[0]

1

Task: Show the last element of arr.

arr[-1]

5

Task: Show the first three elements of arr.

arr[:3]

array([1, 2, 3])

Task: Show the last three elements of arr.

arr[2:]

array([3, 4, 5])

Task: Show the elements of arr whose index is odd (1, 3, 5, ...).

arr[1::2]

array([2, 4])

Task: Show the elements of arr except the last one.

arr[:-1]

array([1, 2, 3, 4])

Task: Show the elements of arr in the reversed order.

arr[::-1]

array([5, 4, 3, 2, 1])

8.6 LESSON: ACCESS 2D NDARRAY

8.6.1 Demonstration

Here we have a 2D ndarray with shape (3, 3) and values from 1 to 9:

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])
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We can retrieve a row by using the index of the row directly.

row2 = mda[1]

row2, type(row2), row2.ndim

(array([4, 5, 6]), numpy.ndarray, 1)

Retrieving a cell within a row could require two steps: we first retrieve that row, then
retrieve the cell from that row.

row3 = mda[2]

row3cell2 = row3[1]

row3cell2

8

We can save the effort by combining the two steps together: we first specify the index
of the row, then add the index of the cell, separating the two indices by a comma,
within the brackets.

row3cell2 = mda[2,1]

row3cell2

8

We can retrieve all rows by slicing. Similar to 1D ndarray, we need to specify the
start:end:step within the brackets.

all_rows = mda[0:len(mda)]

all_rows

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

all_rows = mda[:]

all_rows

array([[1, 2, 3],

[4, 5, 6],

[7, 8, 9]])

Retrieving a column is different than retrieving a row. We should first slicing all rows,
then specify the index of the cell of all rows, which is the column we want.

col2 = mda[:,1]

col2

array([2, 5, 8])

Column slicing is also different but similar to row slicing.

cols2and3 = mda[:,1:]

cols2and3

array([[2, 3],

[5, 6],

[8, 9]])
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cols2and3 = mda[:,-2:]

cols2and3

array([[2, 3],

[5, 6],

[8, 9]])

8.6.2 Practice

Task: Let X be a ndarray with shape as (3, 4), and filled from 0 to 11.

X = np.arange(12).reshape(3, 4)

X

array([[ 0, 1, 2, 3],

[ 4, 5, 6, 7],

[ 8, 9, 10, 11]])

Task: Show the first row of X.

X[0]

array([0, 1, 2, 3])

Task: Show the first column of X.

X[:,0]

array([0, 4, 8])

Task: Show the first element of the first row of X.

X[0,0]

0

Task: Show the last row of X.

X[-1]

array([ 8, 9, 10, 11])

Task: Show the last column of X.

X[:,-1]

array([ 3, 7, 11])

Task: Show the last element of the last row of X.

X[-1,-1]

11

Task: Show all the rows except the last row of X.

X[:-1]
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array([[0, 1, 2, 3],

[4, 5, 6, 7]])

Task: Show all the columns except the last column of X.

X[:,:-1]

array([[ 0, 1, 2],

[ 4, 5, 6],

[ 8, 9, 10]])

Task: Show the first two elements of the first two rows of X.

X[:2,:2]

array([[0, 1],

[4, 5]])

8.7 LESSON: NDARRAY MANIPULATION

8.7.1 Demonstration

We can modify the value of a cell in a ndarray by assignments.

arr = np.array([1, 2, 3, 4])

print(arr)

arr[0] = 9

print(arr)

[1 2 3 4]

[9 2 3 4]

arr = np.array([1, 2, 3, 4]).reshape(2, 2)

print(arr)

arr[0, 0] = 9

print(arr)

[[1 2]

[3 4]]

[[9 2]

[3 4]]

We can modify the value of some cells in a ndarray by assignments too.

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

print(mda)

print('-' * 20)

# Make all elements of the first row as 2

mda[0, :] = 2

print(mda)
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[[1 2 3]

[4 5 6]

[7 8 9]]

--------------------

[[2 2 2]

[4 5 6]

[7 8 9]]

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

print(mda)

print('-' * 20)

# Add 2 to all elements of the first row

mda[0, :] += 2

print(mda)

[[1 2 3]

[4 5 6]

[7 8 9]]

--------------------

[[3 4 5]

[4 5 6]

[7 8 9]]

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

print(mda)

print('-' * 20)

# Add 2 to first 2 elements of the first 2 row

mda[:2, :2] += 2

print(mda)

[[1 2 3]

[4 5 6]

[7 8 9]]

--------------------

[[3 4 3]

[6 7 6]

[7 8 9]]

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

v = [10, 20, 30]

# Add a row vector to one row
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mda[0] += v

print(mda)

[[11 22 33]

[ 4 5 6]

[ 7 8 9]]

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

v = [10, 20, 30]

# Add a row vector to one column

mda[:,0] += v

print(mda)

[[11 2 3]

[24 5 6]

[37 8 9]]

mda = np.array([

[1, 2, 3],

[4, 5, 6],

[7, 8, 9]

])

v = [10, 20, 30]

# Add a row vector to all rows

mda[:] += v

print(mda)

[[11 22 33]

[14 25 36]

[17 28 39]]

Summary, here are the approaches we can use to manipulate a ndarray:

• Single Elements: arr[index] = new_value

• Multiple Elements: arr[start:stop] = new_values

• Rows/Columns in 2D Arrays: arr[row_index] = new_values or arr[:,

column_index] = new_values

• Adding a Vector to a Matrix: matrix + vector (uses broadcasting)

These techniques provide a flexible approach to modify and update ndarray data
efficiently.

8.7.2 Practice

Task: Create a ndarray arr with value [0, 2, 4, 6, 8].

arr = np.array([0, 2, 4, 6, 8])

arr
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array([0, 2, 4, 6, 8])

Task: Change the third element of the arr to 100.

print(arr) # Output: [0 2 4 6 8]

arr[2] = 100

print(arr) # Output: [ 0 2 100 6 8]

[0 2 4 6 8]

[ 0 2 100 6 8]

Task: Set elements from index 2 to 4 of arr to [10, 20, 30].

print(arr) # Output: [0 2 100 6 8]

arr[2:] = [10, 20, 30]

print(arr) # Output: [ 0 2 10 20 30]

[ 0 2 100 6 8]

[ 0 2 10 20 30]

Task: Create a 2D ndarray arr with values from 1 to 9 and shape (3, 3).

arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

print(arr)

[[1 2 3]

[4 5 6]

[7 8 9]]

Task: Change the second row of arr to [100, 200, 300].

print(arr)

arr[1] = [100, 200, 300]

print(arr)

[[1 2 3]

[4 5 6]

[7 8 9]]

[[ 1 2 3]

[100 200 300]

[ 7 8 9]]

Task: Set the last column of arr to [50, 60, 70].

print(arr)

arr[:, 2] = [50, 60, 70]

print(arr)

[[ 1 2 3]

[100 200 300]

[ 7 8 9]]

[[ 1 2 50]

[100 200 60]

[ 7 8 70]]

Task: Add the following vector [10, 20, 30] to each row arr.
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print(arr)

vector = np.array([10, 20, 30])

arr +=vector

print(arr)

[[ 1 2 50]

[100 200 60]

[ 7 8 70]]

[[ 11 22 80]

[110 220 90]

[ 17 28 100]]

Task: Subtract 5 from every element in arr.

print(arr)

arr -= 5

print(arr)

[[ 11 22 80]

[110 220 90]

[ 17 28 100]]

[[ 6 17 75]

[105 215 85]

[ 12 23 95]]

Task: Multiply every element in arr by 3.

print(arr)

arr *= 3

print(arr)

[[ 6 17 75]

[105 215 85]

[ 12 23 95]]

[[ 18 51 225]

[315 645 255]

[ 36 69 285]]

8.8 LESSON: OPERATIONS IN NDARRAY

8.8.1 Demonstration

NumPy ndarray supports vectorized operations for efficient computation on arrays.
This feature enables element-wise operations, meaning operations are performed inde-
pendently on each element of the array. Element-wise operations in NumPy are per-
formed using optimized C and Fortran libraries, which are much faster than Python
loops or list comprehensions. Vectorized operations simplify code by removing the
need for explicit loops and making mathematical operations more readable. NumPy
operations are designed to handle large datasets efficiently, leveraging low-level opti-
mizations that improve performance for numerical computations.

Addition (+): Adds corresponding elements of two arrays or adds a scalar to every
element of an array.
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arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

result = arr1 + arr2 # Output: array([5, 7, 9])

result

array([5, 7, 9])

Subtraction (-): Subtracts corresponding elements of one array from another or sub-
tracts a scalar from every element of an array.

arr1 = np.array([10, 20, 30])

arr2 = np.array([1, 2, 3])

result = arr1 - arr2 # Output: array([ 9, 18, 27])

result

array([ 9, 18, 27])

Multiplication (*): Multiplies corresponding elements of two arrays or multiplies each
element of an array by a scalar.

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

result = arr1 * arr2 # Output: array([ 4, 10, 18])

result

array([ 4, 10, 18])

Division (/): Divides corresponding elements of one array by another or divides each
element of an array by a scalar.

arr1 = np.array([10, 20, 30])

arr2 = np.array([1, 2, 3])

result = arr1 / arr2 # Output: array([10., 10., 10.])

result

array([10., 10., 10.])

In summary, operations on lists are not inherently element-wise. For example, adding
two lists concatenates them rather than performing element-wise addition. To perform
element-wise operations, you need to use loops or list comprehensions:

list1 = [1, 2, 3]

list2 = [4, 5, 6]

result = list1 + list2

result

[1, 2, 3, 4, 5, 6]

list1 = [1, 2, 3]

list2 = [4, 5, 6]

result = [x + y for x, y in zip(list1, list2)] # Output: [5, 7, 9]

result

[5, 7, 9]

On the other hand, NumPy ndarray supports direct element-wise operations. This
means operations like addition, subtraction, multiplication, and division are applied
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to each element of the array automatically and efficiently. This vectorized approach
is much faster than using loops due to internal optimizations and compiled code.

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

result = arr1 + arr2 # Output: array([5, 7, 9])

result

array([5, 7, 9])

8.8.2 Practice

Task: Create ndarray arr1 from a list [1, 2, 3] and arr2 from a list [6, 5, 4].

arr1 = np.array([1, 2, 3])

arr2 = np.array([6, 5, 4])

arr1, arr2

(array([1, 2, 3]), array([6, 5, 4]))

Task: Add arr1 and arr2 and save the result to arr3.

arr3 = arr1 + arr2

arr1, arr2, arr3

(array([1, 2, 3]), array([6, 5, 4]), array([7, 7, 7]))

Task: Subtract arr2 from arr1 and save it to arr3.

arr3 = arr1 - arr2

arr1, arr2, arr3

(array([1, 2, 3]), array([6, 5, 4]), array([-5, -3, -1]))

Task: Subtract arr2 from arr1 and save it to arr3.

arr3 = arr2 - arr1

arr1, arr2, arr3

(array([1, 2, 3]), array([6, 5, 4]), array([5, 3, 1]))

Task: Multiply arr1 with arr2 and save it to arr3.

arr3 = arr1 * arr2

arr1, arr2, arr3

(array([1, 2, 3]), array([6, 5, 4]), array([ 6, 10, 12]))

Task: Divide arr1 from arr2 and save it to arr3.

arr3 = arr2 / arr1

arr1, arr2, arr3

(array([1, 2, 3]),

array([6, 5, 4]),

array([6. , 2.5 , 1.33333333]))
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Task: Divide arr2 from arr1 and save it to arr3.

arr3 = arr1 / arr2

arr1, arr2, arr3

(array([1, 2, 3]),

array([6, 5, 4]),

array([0.16666667, 0.4 , 0.75 ]))

Task: Raise each element of the arr1 to the power of 3 and save it to arr3.

arr3 = arr1 **3

arr1, arr3

(array([1, 2, 3]), array([ 1, 8, 27]))

Task: Raise each element of the arr2 to the power of 2 and save it to arr3.

arr3 = arr2 **2

arr2, arr3

(array([6, 5, 4]), array([36, 25, 16]))

Task: Compute the modulus of each element in arr1 with 3 and save it to arr3.

arr3 = arr1 % 3

arr1, arr3

(array([1, 2, 3]), array([1, 2, 0]))

Task: Compare each element in arr2 with 5 and save the result of >5 to arr3.

arr3 = arr2 > 5

arr2, arr3

(array([6, 5, 4]), array([ True, False, False]))

Task: Check each element in arr1 for even numbers and save the result to arr3.

arr3 = arr1 % 2 == 0

arr1, arr3

(array([1, 2, 3]), array([False, True, False]))

8.9 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Define ndarray and its differences from Python lists.
• Explain ndarray’s central role in NumPy.
• Describe ndarray’s efficient data storage.
• Highlight key ndarray features: shape, dtype, and strides.
• Explain NumPy’s performance advantages over Python loops.
• Create an ndarray from a Python list.
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• Reshape ndarray into 2D or 3D arrays.
• Demonstrate ndarray slicing and indexing.
• Generate ndarrays with zeros, ones, or random values.
• Perform element-wise operations on ndarrays.
• Analyze ndarray shape’s impact on data structure.
• Explore ndarray’s element type constraints.
• Compare ndarray and nested list multidimensional handling.
• Explain NumPy’s vectorization optimization.
• Distinguish shallow and deep ndarray copies.
• Demonstrate creating ndarrays with np.view().
• Perform matrix operations with ndarrays.
• Conduct statistical analysis using ndarrays.
• Simplify machine learning data preparation.
• Identify and prevent ndarray reshaping errors.
• Handle ndarray dimension mismatches.
• Understand dtype’s impact on calculations.

8.10 EXPLORE MORE OF NDARRAY

At the end, here is the official documentation of ndarray:
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html
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NumPy

W
e just learned the ndarray data structure, which is the core data struc-
ture of the NumPy package. While ndarray allows efficient handling of large

datasets and complex calculations, NumPy goes even further by offering a wide range
of features that make it essential for data manipulation. NumPy is crucial in fields
like data science, machine learning, and engineering because it simplifies and speeds
up calculations, allowing users to focus on problem-solving rather than coding per-
formance.

In this chapter, we are going to explore the universal functions for fast element-wise
operations, statistical methods for data understanding and analysis, tools for linear
algebra to solve equations or manipulate matrices, and random number generation for
simulations and modeling. We will also learn a practical features, masking, which lets
you filter or modify data based on conditions, perfect for tasks like cleaning datasets or
handling missing values. We will learn together how NumPy turns complex numerical
tasks into simple, efficient operations.

Are you excited? Let’s get started!

9.1 UNIVERSAL FUNCTIONS

9.1.1 Demonstration

Universal functions, commonly known as ufuncs, are a core feature of NumPy that
allow for efficient, element-wise operations on arrays. These functions are designed
to operate on each element of the array independently and are implemented in C
for high performance. Universal functions support broadcasting, which enables op-
erations between arrays of different shapes. Universal functions apply the function
to each element of the array, making them highly efficient for array computations.
Universal functions support broadcasting, allowing operations on arrays of differ-
ent shapes without explicit loops. Implemented in C, universal functions are opti-
mized for speed, making array operations faster compared to Python loops. At last,

96 DOI: 10.1201/9781003624868-9

https://doi.org/10.1201/9781003624868-9
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universal functions can handle arrays of different shapes and dimensions, provided
they adhere to broadcasting rules.

Addition (np.add()): Adds corresponding elements of two arrays or adds a scalar to
every element of an array.

import numpy as np

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

result = np.add(arr1, arr2)

print(result) # Output: [5 7 9]

[5 7 9]

Subtraction (np.subtract()): Subtracts corresponding elements of one array from
another or subtracts a scalar from every element.

arr1 = np.array([10, 20, 30])

arr2 = np.array([1, 2, 3])

result = np.subtract(arr1, arr2)

print(result) # Output: [ 9 18 27]

[ 9 18 27]

Multiplication (np.multiply()): Multiplies corresponding elements of two arrays or
multiplies each element by a scalar.

arr1 = np.array([2, 4, 6])

arr2 = np.array([1, 3, 5])

result = np.multiply(arr1, arr2)

print(result) # Output: [ 2 12 30]

[ 2 12 30]

Division (np.divide()): Divides corresponding elements of one array by another or
divides each element by a scalar.

arr1 = np.array([100, 200, 300])

arr2 = np.array([10, 20, 30])

result = np.divide(arr1, arr2)

print(result) # Output: [10. 10. 10.]

[10. 10. 10.]

Sine (np.sin()): Computes the sine of each element in the array.

arr = np.array([0, np.pi/2, np.pi])

result = np.sin(arr)

print(result) # Output: [0. 1. 0.]

[0.0000000e+00 1.0000000e+00 1.2246468e-16]

Cosine (np.cos()): Computes the cosine of each element in the array.
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arr = np.array([0, np.pi/2, np.pi])

result = np.cos(arr)

print(result) # Output: [1. 0. -1.]

[ 1.000000e+00 6.123234e-17 -1.000000e+00]

Tangent (np.tan()): Computes the tangent of each element in the array.

arr = np.array([0, np.pi/4, np.pi/2])

result = np.tan(arr)

print(result) # Output: [0. 1. 1.63312394e+16]

[0.00000000e+00 1.00000000e+00 1.63312394e+16]

Natural Logarithm (np.log()): Computes the natural logarithm (base e) of each
element.

arr = np.array([1, np.e, np.e**2])

result = np.log(arr)

print(result) # Output: [0. 1. 2.]

[0. 1. 2.]

Exponential (np.exp()): Computes the exponential (eˆx) of each element.

arr = np.array([0, 1, 2])

result = np.exp(arr)

print(result) # Output: [1. 2.71828183 7.3890561 ]

[1. 2.71828183 7.3890561 ]

Square Root (np.sqrt()): Computes the square root of each element.

arr = np.array([1, 4, 9])

result = np.sqrt(arr)

print(result) # Output: [1. 2. 3.]

[1. 2. 3.]

Power (np.power()): Raises each element to the specified power.

arr = np.array([2, 3, 4])

result = np.power(arr, 3)

print(result) # Output: [ 8 27 64]

[ 8 27 64]

Broadcasting allows ufuncs to operate on arrays of different shapes. It automatically
expands the smaller array to match the shape of the larger one.

arr = np.array([[1, 2, 3], [4, 5, 6]])

scalar = 10

result = arr + scalar

print(result)

# Output:

# [[11 12 13]

# [14 15 16]]
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[[11 12 13]

[14 15 16]]

9.1.2 Practice

Task: Create two NumPy arrays, a with elements [1, 2, 3, 4, 5] and b with elements
[10, 20, 30, 40, 50]. Compute the element-wise product of these arrays.

a = np.array([1, 2, 3, 4, 5])

b = np.array([10, 20, 30, 40, 50])

product = np.multiply(a, b)

print(product)

[ 10 40 90 160 250]

Task: Create a 2x3 NumPy array A with elements [[1, 2, 3], [4, 5, 6]]. Add a one-
dimensional array b with elements [10, 20, 30] to each row of A using broadcasting.

A = np.array([[1, 2, 3], [4, 5, 6]])

b = np.array([10, 20, 30])

result = A + b

print(result)

[[11 22 33]

[14 25 36]]

Task: Create a NumPy array x with elements [-1, 0, 1, 2, 3]. Apply the np.exp

(exponential) function to each element of the array.

x = np.array([-1, 0, 1, 2, 3])

exp_result = np.exp(x)

print(exp_result)

[ 0.36787944 1. 2.71828183 7.3890561 20.08553692]

Task: Create a NumPy array angles with elements [0, π/2, π, 3π/2, 2π]. Compute
the sine of each element in the array using the np.sin function. Hint: You can use
np.pi for π.

angles = np.array([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])

sine_values = np.sin(angles)

print(sine_values)

[ 0.0000000e+00 1.0000000e+00 1.2246468e-16 -1.0000000e+00

-2.4492936e-16]

9.2 STATISTICAL METHODS

9.2.1 Demonstration

NumPy provides a comprehensive suite of statistical functions to analyze and in-
terpret data. These functions allow you to compute essential statistical measures
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efficiently and handle large datasets with ease. Below is a detailed introduction to
some of the most commonly used statistical methods in NumPy.

# Create a dummy ndarray

arr = np.array([1, 2, 2, 3, 3, 3]).reshape(3, 2)

arr

array([[1, 2],

[2, 3],

[3, 3]])

Mean (np.mean()): Computes the average of all elements in the array or along a
specified axis.

mean = np.mean(arr)

mean

2.3333333333333335

mean = np.mean(arr[0])

mean

1.5

Median (np.median()): Computes the median value of the array elements or along
a specified axis. The median is the middle value when the data is sorted.

median = np.median(arr)

median

2.5

median = np.median(arr[0])

median

1.5

median = np.median(arr[:,0])

median

2.0

median = np.median(arr, axis = 1)

median

array([1.5, 2.5, 3. ])

median = np.median(arr, axis = 0)

median

array([2., 3.])

Standard Deviation (np.std()): Computes the standard deviation of the array ele-
ments, which measures the amount of variation or dispersion from the mean.

std_dev = np.std(arr)

print(std_dev)

0.7453559924999298
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Variance (np.var()): Computes the variance of the array elements, which measures
the spread of the numbers in the dataset.

variance = np.var(arr)

print(variance)

0.5555555555555555

Percentiles (np.percentile()): Computes the nth percentile of the array elements.
The percentile is a value below which a given percentage of observations fall.

percentile_25 = np.percentile(arr, 25)

percentile_75 = np.percentile(arr, 75)

print(f'25th percentile: {percentile_25}') # Output: 25th percentile: 2.0

print(f'75th percentile: {percentile_75}') # Output: 75th percentile: 3.0

25th percentile: 2.0

75th percentile: 3.0

9.2.2 Practice

Task: Create a NumPy array with the elements [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and
compute the mean of the array.

arr = np.arange(11)

mean = np.mean(arr)

print(mean)

5.0

Task: Generate an array of 20 random integers between 1 and 100. Calculate the
median of the array.

arr = np.random.randint(1, 101, 20)

median = np.median(arr)

print(median)

56.5

Task: Construct a NumPy array with the elements [4, 8, 15, 16, 23, 42]. Compute the
standard deviation of the array.

arr = np.array([4, 8, 15, 16, 23, 42])

std_dev = np.std(arr)

print(std_dev)

12.315302134607444

Task: Create an array of 15 random floats between 0 and 1. Compute the variance of
the array.

arr = np.random.rand(15)

variance = np.var(arr)

print(variance)

0.07049010237451717
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Task: Generate an array of 30 random integers between 50 and 150. Calculate the
25th percentile of the array.

arr = np.random.randint(50, 151, 30)

percentile_25 = np.percentile(arr, 25)

print(percentile_25)

80.5

Task: Create a NumPy array with elements [12, 15, 14, 10, 8, 9, 10, 11, 9, 12]. Find
the range of the array (max value - min value).

arr = np.array([12, 15, 14, 10, 8, 9, 10, 11, 9, 12])

range_value = np.max(arr) - np.min(arr)

print(range_value)

7

9.3 LINEAR ALGEBRA

9.3.1 Demonstration

Linear algebra is a fundamental aspect of NumPy, and it provides powerful tools
for numerical computations involving vectors, matrices, and their operations. Let’s
dive into the key components and functions of linear algebra in NumPy with detailed
explanations and examples.

In NumPy, matrices are represented using the ndarray object, which can have 1 or
more dimensions.

A = np.array([[1, 2], [3, 4]])

print('Matrix A:')

print(A)

# Creating a vector (1D array)

v = np.array([1, 2, 3])

print('Vector v:')

print(v)

Matrix A:

[[1 2]

[3 4]]

Vector v:

[1 2 3]

Matrix Addition and Subtraction:

# Create a Matrix B

B = np.array([[5, 6], [7, 8]])

print('Matrix B:')

print(B)

# Matrix addition

C = A + B
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print('Matrix C (A + B):')

print(C)

Matrix B:

[[5 6]

[7 8]]

Matrix C (A + B):

[[ 6 8]

[10 12]]

Multiplication (Element-wise and Dot Product):

# Element-wise multiplication

D = A * B

print('Matrix D (Element-wise A * B):')

print(D)

# Dot product (matrix multiplication)

E = np.dot(A, B)

print('Matrix E (Dot product A.dot(B)):')

print(E)

Matrix D (Element-wise A * B):

[[ 5 12]

[21 32]]

Matrix E (Dot product A.dot(B)):

[[19 22]

[43 50]]

Matrix Inverse and Transpose:

# Computing the inverse of a matrix

A_inv = np.linalg.inv(A)

print('Inverse of Matrix A:')

print(A_inv)

# Computing the transpose of a matrix

A_transpose = A.T

print('Transpose of Matrix A:')

print(A_transpose)

Inverse of Matrix A:

[[-2. 1. ]

[ 1.5 -0.5]]

Transpose of Matrix A:

[[1 3]

[2 4]]

Eigenvalues and eigenvectors are fundamental in many numerical computations, such
as principal component analysis (PCA) and solving differential equations.

# Computing eigenvalues and eigenvectors

eigenvalues, eigenvectors = np.linalg.eig(A)

print('Eigenvalues of Matrix A:')

print(eigenvalues)
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print('Eigenvectors of Matrix A:')

print(eigenvectors)

Eigenvalues of Matrix A:

[-0.37228132 5.37228132]

Eigenvectors of Matrix A:

[[-0.82456484 -0.41597356]

[ 0.56576746 -0.90937671]]

These examples cover the foundational aspects of linear algebra in NumPy and demon-
strate its utility in solving practical problems. Each operation and function plays a
crucial role in various computational tasks, making NumPy a powerful tool for nu-
merical computing and data analysis.

9.3.2 Practice

Given three matrices below, complete following tasks:

# Run this cell for the practice

A = np.arange(6).reshape(2, 3)

B = np.arange(6, 12).reshape(2, 3)

C = np.arange(6, 12).reshape(3, 2)

A, B, C

(array([[0, 1, 2],

[3, 4, 5]]),

array([[ 6, 7, 8],

[ 9, 10, 11]]),

array([[ 6, 7],

[ 8, 9],

[10, 11]]))

Task: Compute the sum of A and B.

result = A + B

result

array([[ 6, 8, 10],

[12, 14, 16]])

Task: Subtract B from A.

result = A - B

result

array([[-6, -6, -6],

[-6, -6, -6]])

Task: Subtract A from B.

result = B - A

result

array([[6, 6, 6],

[6, 6, 6]])
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Task: Element-wise multiplication of A and B.

result = A * B

result

array([[ 0, 7, 16],

[27, 40, 55]])

Task: Compute the Dot product (matrix multiplication) of A and C.

result = A.dot(C)

result

array([[ 28, 31],

[100, 112]])

Task: Compute the dot product of A’ s transpose and B.

result = A.transpose().dot(B)

result

array([[27, 30, 33],

[42, 47, 52],

[57, 64, 71]])

Task: Compute the dot product of A and B’s transpose.

result = A.dot(B.transpose())

result

array([[ 23, 32],

[ 86, 122]])

9.4 RANDOM GENERATION

9.4.1 Demonstration

Random number generation is a crucial aspect of data analysis, simulations, and
machine learning. NumPy provides a powerful set of tools for generating random
numbers and performing random sampling. The numpy.random module includes vari-
ous functions to generate random numbers from different distributions, shuffle arrays,
and set random seeds for reproducibility.

numpy.random.seed() initializes the random number generator to a known state,
ensuring that random numbers generated are the same across runs. This is common
in classrooms and demonstrations. In practice, we do not set the seed because we
want to pursue the randomness.

np.random.seed(42) # Set the random seed

random_numbers1 = np.random.rand(3)

np.random.seed(42) # Reset the random seed

random_numbers2 = np.random.rand(3)

print(random_numbers1) # Output: [0.37454012 0.95071431 0.73199394]

print(random_numbers2) # Output: [0.37454012 0.95071431 0.73199394]
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[0.37454012 0.95071431 0.73199394]

[0.37454012 0.95071431 0.73199394]

Generates random numbers between a specified range, typically between 0 and 1.

random_array = np.random.rand(2, 3)

print(random_array)

# Output might be:

# [[0.37454012 0.95071431 0.73199394]

# [0.59865848 0.15601864 0.15599452]

[[0.37454012 0.95071431 0.73199394]

[0.59865848 0.15601864 0.15599452]]

random_array = np.random.uniform(2, 3, size = (2, 3))

print(random_array)

# Output might be:

# [[2.15601864 2.15599452 2.05808361]

# [2.86617615 2.60111501 2.70807258]]

[[2.15601864 2.15599452 2.05808361]

[2.86617615 2.60111501 2.70807258]]

Generates random numbers following a normal (Gaussian) distribution with a speci-
fied mean and standard deviation.

normal_array = np.random.randn(2, 3)

print(normal_array)

# Output might be:

# [[ 0.49671415 -0.1382643 0.64768854]

# [ 1.52302986 -0.23415337 -0.23413696]]

[[ 0.49671415 -0.1382643 0.64768854]

[ 1.52302986 -0.23415337 -0.23413696]]

Generates random integers between specified low and high values.

random_integers = np.random.randint(1, 10, size=(2, 3))

print(random_integers)

# Output might be:

# [[7 4 8]

# [5 7 3]]

[[7 4 8]

[5 7 3]]

9.4.2 Practice

Task: Generate an array of five random floats between 0 and 1 using NumPy’s uniform
distribution function.

# Generate 5 random floats between 0 and 1

random_floats = np.random.uniform(0, 1, 5)

print(random_floats)

# Output: Array of 5 random floats between 0 and 1



NumPy � 107

[0.61838601 0.38246199 0.98323089 0.46676289 0.85994041]

Task: Generate an array of seven random integers between 10 and 50 (inclusive) using
NumPy's uniform distribution function.

# Generate 7 random integers between 10 and 50 (inclusive)

random_integers = np.random.randint(10, 51, 7)

print(random_integers)

# Output: Array of 7 random integers between 10 and 50

[16 30 18 48 27 13 34]

Task: Generate an array of four random floats from a normal distribution with a mean
of 0 and standard deviation of 1.

# Generate 4 random floats from a normal distribution

random_floats = np.random.randn(4)

print(random_floats)

[-0.11564828 -0.3011037 -1.47852199 -0.71984421]

Task: Generate an array of six random integers from a normal distribution with a
mean of 50 and standard deviation of 10. Round the values to the nearest integer.

# Generate 6 random floats from a normal distribution

random_floats = np.random.normal(50, 10, 6)

# Round to nearest integer

random_integers = np.round(random_floats).astype(int)

print(random_integers)

[45 61 53 32 53 46]

Task: Generate an array of four random floats between 5 and 15 using NumPy’s
uniform distribution function.

# Generate 4 random floats between 5 and 15

random_floats = np.random.uniform(5, 15, 4)

print(random_floats)

# Output: Array of 4 random floats between 5 and 15

[ 9.31945019 7.9122914 11.11852895 6.39493861]

Task: Generate an array of four random floats from a normal distribution with a mean
of 10 and standard deviation of 2.

# Generate 4 random floats from a normal distribution

random_floats = np.random.normal(10, 2, 4)

print(random_floats)

[ 8.18395185 7.1753926 12.93129754 9.5484474 ]

Task: Generate a 3-by-3 matrix of random integers between 100 and 200 (inclusive)
using NumPy’s uniform distribution function.
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random_matrix = np.random.randint(100, 201, size=(3, 3))

print(random_matrix)

[[150 154 163]

[102 200 150]

[106 120 172]]

Task: Generate a 2-by-4 matrix of random floats from a normal distribution with a
mean of 5 and standard deviation of 3.

# Generate a 2 by 4 matrix of random floats from a normal distribution

random_matrix = np.random.normal(5, 3, size=(2, 4))

print(random_matrix)

[[ 3.19808393 4.12491875 3.19488016 10.55683455]

[ 4.95950833 1.82686721 7.46763474 1.33746905]]

9.5 MASKING

9.5.1 Demonstration

Masking in NumPy is a powerful feature that allows you to perform operations on
specific subsets of an array based on conditions. It enables you to filter and manipulate
data efficiently without the need for explicit loops. This is particularly useful for
handling and analyzing large datasets where you need to apply conditions to select
or modify elements.

Conditional masking involves applying conditions to create a mask directly from the
array elements. This allows you to filter or modify elements based on specific criteria.

mask = (array condition)

# Create an array

arr = np.array([1, 2, 3, 4, 5, 6])

# Create a mask for even numbers

even_mask = arr % 2 == 0

print(even_mask)

# Output: [False True False True False True]

# Use the mask to select even numbers

even_numbers = arr[even_mask]

print(even_numbers)

# Output: [2 4 6]

[False True False True False True]

[2 4 6]

Advanced masking involves combining multiple masks or using masks with other
NumPy functions for complex data operations.
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# Create an array

arr = np.array([10, 20, 30, 40, 50])

# Create masks for different conditions

mask1 = arr > 20

mask2 = arr < 50

# Combine masks using logical operations

combined_mask = mask1 & mask2

print(combined_mask)

# Output: [False False True True False]

# Use the combined mask to filter values

filtered_values = arr[combined_mask]

print(filtered_values)

# Output: [30 40]

[False False True True False]

[30 40]

Handle NaN (Not a Number) values in arrays by creating masks to identify or replace
NaNs.

numpy.isnan(array)

# Create an array with NaN values

arr = np.array([1, 2, np.nan, 4, np.nan])

# Create a mask for NaN values

nan_mask = np.isnan(arr)

print(nan_mask)

# Output: [False False True False True]

[False False True False True]

9.5.2 Practice

Task: Create a NumPy array with values ranging from −5 to 5. Create a mask to
select only the positive values from this array.

# Create the array

arr = np.arange(-5, 6)

# Create the mask for positive values

mask = arr > 0

# Select positive values

positive_values = arr[mask]

print(positive_values) # Output: [1 2 3 4 5]

[1 2 3 4 5]
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Task: Create a NumPy array with random integers from −10 to 10. Replace all
negative values with zero using masking.

# Create the array with random integers

arr = np.random.randint(-10, 11, size=10)

# Create the mask for negative values

mask = arr < 0

# Replace negative values with zero

arr[mask] = 0

print(arr)

[ 0 10 0 1 1 6 0 5 4 4]

Task: Create a NumPy array with values from 1 to 20. Create a mask to select values
between 7 and 15 (inclusive).

# Create the array

arr = np.arange(1, 21)

# Create the mask for values between 7 and 15

mask = (arr >= 7) & (arr <= 15)

# Select values within the range

values_in_range = arr[mask]

print(values_in_range) # Output: [ 7 8 9 10 11 12 13 14 15]

[ 7 8 9 10 11 12 13 14 15]

Task: Create a 3-by-3 NumPy array with values from 1 to 9. Create a mask to select
values greater than 5.

# Create a 3 by 3 array

arr = np.arange(1, 10).reshape(3, 3)

# Create the mask for values greater than 5

mask = arr > 5

# Select values greater than 5

values_gt_5 = arr[mask]

print(values_gt_5) # Output: [6 7 8 9]

[6 7 8 9]

Task: Create a NumPy array with the following values: [1, 2, 3, 4, 5]. Replace
all occurrences of the number 3 with 0.

# Create the array

arr = np.array([1, 2, 3, 4, 5])

# Create the mask for the value 3

mask = arr == 3

# Replace 3 with 0
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arr[mask] = 0

print(arr) # Output: [1 2 0 4 5]

[1 2 0 4 5]

Task: Create a 4-by-4 NumPy array with values from 1 to 16. Create a mask to select
elements where the value is even.

# Create a 4 by 4 array

arr = np.arange(1, 17).reshape(4, 4)

# Create the mask for even values

mask = arr % 2 == 0

# Select even values

even_values = arr[mask]

print(even_values) # Output: [ 2 4 6 8 10 12 14 16]

[ 2 4 6 8 10 12 14 16]

Task: Create a NumPy array with values from 1 to 20. Create a mask to select values
that are greater than 10 and also even.

# Create the array

arr = np.arange(1, 21)

# Create the mask for values greater than 10 and even

mask = (arr > 10) & (arr % 2 == 0)

# Select values that meet both conditions

filtered_values = arr[mask]

print(filtered_values) # Output: [12 14 16 18 20]

[12 14 16 18 20]

Task: Create a 1D NumPy array with values from 1 to 10. Use a mask to increment
all values greater than 5 by 10.

# Create the array

arr = np.arange(1, 11)

# Create the mask for values greater than 5

mask = arr > 5

# Increment values greater than 5 by 10

arr[mask] += 10

print(arr) # Output: [ 1 2 3 4 5 15 16 17 18 19]

[ 1 2 3 4 5 16 17 18 19 20]

9.6 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.
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• Describe NumPy’s performance enhancement in numerical computations.
• Highlight key NumPy features: ndarrays, broadcasting, universal functions.
• Explain NumPy’s foundational role in data science and machine learning.
• Generate sequences using arange() and linspace().
• Demonstrate element-wise array operations.
• Calculate statistical measures with NumPy functions.
• Explain the role of dtype in NumPy arrays.
• Explore multidimensional array handling.
• Discuss broadcasting’s utility.
• Describe NumPy’s random number generation.
• Define universal functions (ufuncs) and their computational optimization.
• Explain NumPy’s broadcasting mechanism.
• Discuss vectorization for large-scale computations.
• Analyze masked arrays for handling missing data.
• Solve linear algebra problems.
• Perform numerical integration and differentiation.
• Simplify data cleaning and transformation.
• Address shape mismatch errors.
• Debug NumPy performance issues.
• Investigate unexpected NumPy operation results.

9.7 EXPLORE MORE NUMPY

The absolute basics: https://numpy.org/doc/stable/user/absolute_beginners.html

Official documentation: https://numpy.org/doc/stable/user/index.html

https://numpy.org/doc/stable/user/absolute_beginners.html
https://numpy.org/doc/stable/user/index.html
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Series

I
n Python, set and dict are mapping structures that store data in unique, effi-
cient ways. set is an unordered collection of unique items, while dict maps keys

to values. These structures make it easy to search, update, or retrieve data using their
key or value. Building on these concepts, the data structure Series in the pandas
package offers a similar structure but with more functionality. Like a dictionary, a
Series maps labels to values, but it also includes the ability to access data by posi-
tion (like a list or array). This indexing system, both label index and position index,
makes the Series both flexible and powerful. Series is designed for handling structured
data. It supports numerical operations, works seamlessly with missing values, and in-
tegrates well with pandas DataFrames for advanced data manipulation. For example,
a Series can represent a single column in a dataset or a time series with labeled
entries. Series is popular because it bridges simplicity and efficiency, making it an
essential tool for data analysis. In this chapter, we’ll explore how the label-index and
position-index work, and how to use Series for filtering, calculations, and organizing
data efficiently.

Are you ready? Let’s get started!

10.1 WHAT IS A SERIES

10.1.1 Explanation

A Series in pandas is a one-dimensional array-like object that can hold various data
types such as integers, floats, strings, and Python objects. It is similar to a column
in a spreadsheet or a database table.

import numpy as np

import pandas as pd

DOI: 10.1201/9781003624868-10 113

https://doi.org/10.1201/9781003624868-10
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10.2 CREATE A SERIES

10.2.1 Demonstration

You can create a Series using pd.Series() function in pandas.

# Create a series from a ndarray

data = pd.Series(np.arange(5))

print(data)

0 0

1 1

2 2

3 3

4 4

dtype: int64

# Create a series from a list

data = pd.Series([0, 2, 4, 5, 6])

print(data)

0 0

1 2

2 4

3 5

4 6

dtype: int64

# Create a series from a tuple

data = pd.Series((0, 2, 4, 5, 6))

print(data)

0 0

1 2

2 4

3 5

4 6

dtype: int64

# Create a series from a range

data = pd.Series(range(5))

print(data)

0 0

1 1

2 2

3 3

4 4

dtype: int64

Indexing is a critical aspect of Series in pandas. It helps in identifying and accessing
elements efficiently. Each element in a Series has an identifier called an index. When
you create a Series without specifying an index, pandas automatically assigns an
integer index starting from 0.
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You can explicitly define an index when creating a Series. This index can be anything
like strings, dates, or even a mix of different types.

# Creating a Series with custom index

data = pd.Series([1, 2, 3, 4, 5],

index=['a', 'b', 'c', 'd', 'e'])

print(data)

a 1

b 2

c 3

d 4

e 5

dtype: int64

# Creating a Series with custom index

num = [2, 3, 5, 7, 13]

data = pd.Series(num, index=num)

data

2 2

3 3

5 5

7 7

13 13

dtype: int64

You can modify the index of an existing Series using the rename() method or by
directly setting the index attribute.

data = data.rename({2: 'a', 3: 'b'})

data

a 2

b 3

5 5

7 7

13 13

dtype: int64

data.index = ['x', 'y', 'z', 'w', 'v']

print(data)

x 2

y 3

z 5

w 7

v 13

dtype: int64

Series now allows duplicate indices.

data = pd.Series([1, 2, 3, 4, 5],

index = ['a', 'a', 'b', 'b', 'b'])

data

a 1
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a 2

b 3

b 4

b 5

dtype: int64

10.2.2 Practice

Task: Create a Series from the list [1.0, 2, 3, 4, 5].

data = pd.Series([1.0, 2, 3, 4, 5])

print(data)

0 1.0

1 2.0

2 3.0

3 4.0

4 5.0

dtype: float64

Task: Create a Series from the a ndarray with values from 0 to 10.

data = pd.Series(np.arange(10))

print(data)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

dtype: int64

Task: Create a Series from a tuple ('a', 'c', 'd', 'b', 'g').

data = pd.Series(('a', 'c', 'd', 'b', 'g'))

print(data)

0 a

1 c

2 d

3 b

4 g

dtype: object

Task: Create a Series from a list [10, 20, 30, 40, 50] with indices ['a', 'b',

'c', 'd', 'e'].

data = [10, 20, 30, 40, 50]

index = ['a', 'b', 'c', 'd', 'e']
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s = pd.Series(data, index=index)

print(s)

a 10

b 20

c 30

d 40

e 50

dtype: int64

Task: Modify the index of the Series created above to ['w', 'x', 'y', 'z', 'u'].

s.index = ['w', 'x', 'y', 'z', 'u']

print(s)

w 10

x 20

y 30

z 40

u 50

dtype: int64

10.3 ACCESSING A SERIES

10.3.1 Demonstration

Accessing elements in a Series is straightforward and can be done using several
methods. Here, we’ll explore various techniques to access elements by position, index
label, slicing, and Boolean indexing.

You can use integer positions (similar to accessing elements in a list or NumPy
array) to access elements in a Series. This is done using the iloc attribute.

data = [10, 20, 30, 40, 50]

s = pd.Series(data)

# Accessing the first element (position 0)

print(s.iloc[0]) # Output: 10

# Accessing the last element (position -1)

print(s.iloc[-1]) # Output: 50

# Accessing a range of elements

print(s.iloc[1:4]) # Output:

# 1 20

# 2 30

# 3 40

# dtype: int64

10

50

1 20

2 30

3 40

dtype: int64
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You can use index labels to access elements. This is done using the loc attribute or
directly using the square bracket notation if the Series has an explicit index.

# Creating a Series with a custom index

data = [10, 20, 30, 40, 50]

index = ['a', 'b', 'c', 'd', 'e']

s = pd.Series(data, index=index)

# Accessing elements using index labels

print(s['a']) # Output: 10

print(s.loc['c']) # Output: 30

# Accessing a range of elements using index labels

print(s['b':'d']) # Output:

# b 20

# c 30

# d 40

# dtype: int64

10

30

b 20

c 30

d 40

dtype: int64

You can access multiple elements by passing a list of positions or index labels.

# Accessing multiple elements by position

print(s.iloc[[0, 2, 4]]) # Output:

# a 10

# c 30

# e 50

# dtype: int64

# Accessing multiple elements by index labels

print(s.loc[['a', 'c', 'e']]) # Output:

# a 10

# c 30

# e 50

# dtype: int64

a 10

c 30

e 50

dtype: int64

a 10

c 30

e 50

dtype: int64

Boolean indexing allows you to filter elements based on a condition.

# Boolean indexing to filter elements greater than 25

filtered = s[s > 25]

print(filtered) # Output:
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# c 30

# d 40

# e 50

# dtype: int64

c 30

d 40

e 50

dtype: int64

If a Series has duplicate indices, accessing elements by index label returns all match-
ing elements.

# Creating a Series with duplicate indices

data = [10, 20, 30, 40, 50]

index = ['a', 'a', 'b', 'b', 'c']

s = pd.Series(data, index=index)

# Accessing elements with duplicate indices

print(s['a']) # Output:

# a 10

# a 20

# dtype: int64

# Accessing a subset with duplicate indices

print(s.loc['b']) # Output:

# b 30

# b 40

# dtype: int64

a 10

a 20

dtype: int64

b 30

b 40

dtype: int64

The .at and .iat methods provide faster access for individual elements by label and
position, respectively.

# Accessing elements using .at (label-based)

print(s.at['c']) # Output: 50

# Accessing elements using .iat (position-based)

print(s.iat[2]) # Output: 30

50

30

10.3.2 Practice

# Given the Series below for the following tasks

data = ['Atlanta', 'Boston', 'Chicago', 'Dallas', 'El Paso']

index = ['a', 'b', 'c', 'd', 'e']

s = pd.Series(data, index=index)
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Task: Access the first element of the Series s.

# Accessing the first element

print(s.iloc[0]) # Output: Atlanta

Atlanta

Task: Access the last element of the Series s.

# Accessing the last element

print(s.iloc[-1]) # Output: El Paso

El Paso

Task: Access the element with index 'b' from the Series s.

# Accessing element with index 'b'

print(s['b']) # Output: Boston

Boston

Task: Get a slice of the Series s from position 1 to 3.

# Slicing the Series by position

print(s.iloc[1:4]) # Output:

# b Boston

# c Chicago

# d Dallas

# dtype: object

b Boston

c Chicago

d Dallas

dtype: object

Task: Get a slice of the Series s from index 'b' to 'd'.

# Slicing the Series by index label

print(s['b':'d']) # Output:

# b Boston

# c Chicago

# d Dallas

# dtype: object

b Boston

c Chicago

d Dallas

dtype: object

Task: Access the elements at positions 0, 2, and 4 from the Series s.

# Accessing multiple elements by position

print(s.iloc[[0, 2, 4]]) # Output:

# a Atlanta

# c Chicago

# e El Paso

# dtype: object



Series � 121

a Atlanta

c Chicago

e El Paso

dtype: object

Task: Access the elements with indices 'a', 'c', and 'e' from the Series s.

# Accessing multiple elements by index label

print(s.loc[['a', 'c', 'e']]) # Output:

# a Atlanta

# c Chicago

# e El Paso

# dtype: object

a Atlanta

c Chicago

e El Paso

dtype: object

Task: Filter the elements with alphabetical order >='C' from the Series s.

# Boolean indexing to filter elements

filtered = s[s > 'C']

print(filtered) # Output:

# c Chicago

# d Dallas

# e El Paso

# dtype: object

c Chicago

d Dallas

e El Paso

dtype: object

Task: Access the element with index 'c' and the element at position 2 from the
Series s.

# Accessing element using .at

print(s.at['c']) # Output: Chicago

# Accessing element using .iat

print(s.iat[2]) # Output: Chicago

Chicago

Chicago

Task: Access all elements with index 'a' from the Series created with data [5, 10,

15, 20, 25] and index ['a', 'a', 'b', 'b', 'c'].

# Series creation

data = ['Atlanta', 'Austin', 'Boston', 'Boulder', 'Chicago']

index = ['a', 'a', 'b', 'b', 'c']

s = pd.Series(data, index=index)

# Accessing elements with duplicate indices

print(s['a']) # Output:
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# a Atlanta

# a Austin

# dtype: object

a Atlanta

a Austin

dtype: object

10.4 MATH OPERATIONS

10.4.1 Demonstration

Pandas Series supports a wide range of mathematical operations, making it a power-
ful tool for data manipulation and analysis. These operations can be applied element-
wise, and pandas aligns Series by their index labels, allowing for easy data handling.

You can perform basic arithmetic operations such as addition, subtraction, multipli-
cation, and division on Series.

s1 = pd.Series([1, 2, 3, 4, 5])

s2 = pd.Series([10, 20, 30, 40, 50])

# Addition

print(s1 + s2) # Output:

# 0 11

# 1 22

# 2 33

# 3 44

# 4 55

# dtype: int64

# Subtraction

print(s1 - s2) # Output:

# 0 -9

# 1 -18

# 2 -27

# 3 -36

# 4 -45

# dtype: int64

# Multiplication

print(s1 * s2) # Output:

# 0 10

# 1 40

# 2 90

# 3 160

# 4 250

# dtype: int64

# Division

print(s1 / s2) # Output:

# 0 0.1

# 1 0.1

# 2 0.1
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# 3 0.1

# 4 0.1

# dtype: float64

0 11

1 22

2 33

3 44

4 55

dtype: int64

0 -9

1 -18

2 -27

3 -36

4 -45

dtype: int64

0 10

1 40

2 90

3 160

4 250

dtype: int64

0 0.1

1 0.1

2 0.1

3 0.1

4 0.1

dtype: float64

Pandas Series works seamlessly with NumPy functions, allowing for complex math-
ematical operations.

# Applying NumPy functions

print(np.sqrt(s1)) # Output:

# 0 1.000000

# 1 1.414214

# 2 1.732051

# 3 2.000000

# 4 2.236068

# dtype: float64

print(np.exp(s1)) # Output:

# 0 2.718282

# 1 7.389056

# 2 20.085537

# 3 54.598150

# 4 148.413159

# dtype: float64

0 1.000000

1 1.414214

2 1.732051

3 2.000000

4 2.236068

dtype: float64

0 2.718282
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1 7.389056

2 20.085537

3 54.598150

4 148.413159

dtype: float64

Pandas provides various aggregation functions to compute summary statistics.

# Sum

print(s1.sum()) # Output: 15

# Mean

print(s1.mean()) # Output: 3.0

# Standard Deviation

print(s1.std()) # Output: 1.5811388300841898

# Minimum

print(s1.min()) # Output: 1

# Maximum

print(s1.max()) # Output: 5

15

3.0

1.5811388300841898

1

5

Pandas aligns Series by their index labels during operations, and you can handle
missing data using methods like fillna().

s3 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

s4 = pd.Series([4, 5, 6], index=['b', 'c', 'd'])

# Addition with alignment

print(s3 + s4) # Output:

# a NaN

# b 6.0

# c 8.0

# d NaN

# dtype: float64

# Filling missing values

print((s3 + s4).fillna(0)) # Output:

# a 0.0

# b 6.0

# c 8.0

# d 0.0

# dtype: float64

a NaN

b 6.0

c 8.0

d NaN

dtype: float64
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a 0.0

b 6.0

c 8.0

d 0.0

dtype: float64

You can apply custom functions to Series using the apply() method.

# Custom function to square each element

def square(x):

return x * x

print(s1.apply(square)) # Output:

# 0 1

# 1 4

# 2 9

# 3 16

# 4 25

# dtype: int64

0 1

1 4

2 9

3 16

4 25

dtype: int64

10.4.2 Practice

# Given two Series below, complete following tasks

s1 = pd.Series([1, 2, 3, 4, 5], index = ['a', 'b', 'c', 'd', 'e'])

s2 = pd.Series([10, 20, 30, 40, 50], index = ['e', 'd', 'c', 'b', 'a'])

Task: Add s1 and s2 and save it to result.

result = s1 + s2

result

a 51

b 42

c 33

d 24

e 15

dtype: int64

Task: Subtract s2 from s1 and save it to result.

result = s1 - s2

result

a -49

b -38

c -27

d -16

e -5

dtype: int64
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Task: Multiply s1 and s2 and save it to result.

result = s1 * s2

result

a 50

b 80

c 90

d 80

e 50

dtype: int64

Task: Divide s1 by s2 and save it to result.

result = s1 / s2

result

a 0.02

b 0.05

c 0.10

d 0.20

e 0.50

dtype: float64

Task: Apply the NumPy sqrt function to s1.

result = np.sqrt(s1)

result

a 1.000000

b 1.414214

c 1.732051

d 2.000000

e 2.236068

dtype: float64

Task: Calculate the sum of s1.

# Calculating the sum of the Series

result = s1.sum()

result

15

Task: Calculating the mean of s1.

# Calculating the mean of the Series

result = s1.mean()

result

3.0

Task: Calculate the standard deviation of s1.

# Calculating the std of the Series

result = s1.std()

result

1.5811388300841898
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Task: Create a Series s3 with values [1, 2, None, 4, 5] and fill missing values
with 0.

# Creating a Series with missing data

s3 = pd.Series([1, 2, None, 4, 5])

# Filling missing values with 0

result = s3.fillna(0)

result

0 1.0

1 2.0

2 0.0

3 4.0

4 5.0

dtype: float64

Task: Create two Series, s4 with values [1, 2, 3] and index ['a', 'b', 'c'],
and s5 with values [4, 5, 6] and index ['b', 'c', 'd'], and add them together.

# Creating Series with different indices

s4 = pd.Series([1, 2, 3], index=['a', 'b', 'c'])

s5 = pd.Series([4, 5, 6], index=['b', 'c', 'd'])

# Adding Series with different indices

result = s4 + s5

result

a NaN

b 6.0

c 8.0

d NaN

dtype: float64

Task: Adding above s4 and s5 and fill missing value as 0.

# Adding Series with different indices

result = (s4 + s5).fillna(0)

result

a 0.0

b 6.0

c 8.0

d 0.0

dtype: float64

10.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is a Pandas Series, and how is it different from a Python list or NumPy
array?

• What are the main components of a Series, such as index and values?
• How does a Series handle missing data?
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• Why is the index in a Series more powerful than a regular list?
• Create a Series from a Python list and a NumPy array.
• Access elements in a Series using position and label-based indexing.
• Perform element-wise arithmetic on a Series.
• Create a Series with custom indices and access elements by index.
• What is the role of the index in a Pandas Series?
• How is a Series different from a Python dictionary?
• Can a Series have non-unique indices? What are the effects?
• How do you align two Series with different indices in operations?
• What is the dtype of a Series, and how does it affect operations?
• Why is a Series more efficient than a Python list for large datasets?
• How can you convert a Series to other structures like lists or dictionaries?
• How can you use a Series for time series data?
• How can you calculate the frequency distribution using a Series?
• How can you use a Series to store labeled data, like product prices or student

grades?
• How can you handle missing data in a Series with fillna() or dropna()?
• What happens when you access a Series with a non-existent label?
• How do you reset or change the index of a Series?
• What are common performance issues when using a Series, and how can you

avoid them?

10.6 EXPLORE MORE OF SERIES

At the end, here is the official documentation of pandas Series:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.html
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DataFrame

D
ataFrame is a powerful data structure in the pandas library for Python.
DataFrame is a two-dimensional labeled data structure that is widely used for

data manipulation and analysis tasks. It is similar to a spreadsheet or a SQL table,
where data is organized into rows and columns. In this chapter, we will explore the
fundamentals of DataFrame, including its creation, accessing individual elements and
subsets of data, manipulation techniques, and statistical analysis.

Are you ready? Let’s get started!

11.1 WHAT IS A DATAFRAME

11.1.1 Explanation

A DataFrame in pandas is a two-dimensional labeled data structure, resembling a
table or spreadsheet, where data is organized into rows and columns. Each column
represents a different variable or feature, while each row corresponds to a specific
observation or data point. The columns and rows are labeled, allowing for easy iden-
tification and manipulation of data elements. One of the primary advantages of using
DataFrames is their flexibility in handling heterogeneous data types within a single
structure. This versatility enables users to store and analyze various types of data,
including numerical, categorical, and textual data, all within the same DataFrame

object.

Additionally, DataFrames offer powerful functionalities for data manipulation and
analysis. Users can perform a wide range of operations, such as filtering, sorting,
grouping, merging, and aggregating data, with ease. This makes DataFrames ideal for
tasks such as data cleaning, preprocessing, exploration, and transformation, which are
essential steps in the data analysis workflow. Furthermore, pandas provides extensive
support for data input and output operations, allowing users to seamlessly import
data from different sources, such as CSV files, Excel spreadsheets, SQL databases, and
more, and export processed data for further analysis or visualization.

DOI: 10.1201/9781003624868-11 129
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The versatility and usability of DataFrame make it a popular tool in various applica-
tions across different domains. Data scientists, analysts, researchers, and professionals
in fields such as finance, marketing, healthcare, and academia leverage DataFrame for
tasks such as data wrangling, exploratory data analysis, statistical modeling, machine
learning, and reporting. Whether its analyzing sales trends, forecasting stock prices,
predicting customer behavior, or conducting scientific research, DataFrame provides
a flexible and efficient framework for managing and analyzing data, making it a must-
have of modern data analysis workflows.

11.1.2 Test Your Understanding

1. What is a DataFrame in pandas?
a) A one-dimensional labeled data structure
b) A two-dimensional labeled data structure
c) A multidimensional labeled data structure
d) A non-labeled data structure

Correct answer: b) A two-dimensional labeled data structure. Be-
cause a DataFrame in pandas is a two-dimensional labeled data struc-
ture where data is organized into rows and columns, resembling a
table or spreadsheet.

2. Which of the following operations can be performed on a DataFrame?
a) Data cleaning and preprocessing
b) Exploratory data analysis
c) Statistical modeling and machine learning
d) All of the above

Correct answer: All of the above. DataFrame in pandas offers ex-
tensive functionalities for various data analysis tasks, including data
cleaning, preprocessing, exploratory data analysis, statistical model-
ing, machine learning, and more. DataFrame is a versatile tool that
supports a wide range of operations across different domains and
applications.

11.2 CREATE A DATAFRAME

11.2.1 Demonstration

In pandas, there are several ways to create a DataFrame, allowing users to efficiently
organize and analyze data from different sources. One common method is to cre-
ate a DataFrame from a dictionary, where each key value pair represents a column
name and the corresponding data. This approach provides flexibility in constructing
DataFrames from structured data stored in dictionaries, making it suitable for vari-
ous data manipulation tasks. Note: since the DataFrame is built-in in pandas package,
don’t forget to import pandas package before playing with dataframe.
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import pandas as pd

# Create a DataFrame from a dictionary

data = {'Name': ['Alice', 'Bob', 'Charlie'],

'Age': [25, 30, 35],

'City': ['New York', 'Los Angeles', 'Chicago']}

df_dict = pd.DataFrame(data)

print("DataFrame created from dictionary:")

print(df_dict)

DataFrame created from dictionary:

Name Age City

0 Alice 25 New York

1 Bob 30 Los Angeles

2 Charlie 35 Chicago

In this DataFrame:

1. The Name column represents the names of individuals.
2. The Age column represents the ages of the individuals.
3. The City column represents the cities where the individuals reside.

For example, Alice is 25 years old and lives in New York, Bob is 30 years old and
lives in Los Angeles, and Charlie is 35 years old and lives in Chicago.

Another method for creating a DataFrame is by using NumPy arrays. NumPy is a
powerful library for numerical computing in Python, and pandas seamlessly integrates
with NumPy to create DataFrames from arrays. This approach is particularly useful
for working with numerical data, as NumPy arrays provide efficient storage and
operations for numerical computations.

import numpy as np

# Create a DataFrame from a NumPy array

temperature_data = np.array([[25, 30, 20], [28, 32, 22], [23, 29, 19]])

df_temperature = pd.DataFrame(temperature_data,

columns=['Monday', 'Tuesday', 'Wednesday'],

index=['New York', 'Los Angeles', 'Chicago'])

print("DataFrame created from NumPy array:")

print(df_temperature)

DataFrame created from NumPy array:

Monday Tuesday Wednesday

New York 25 30 20

Los Angeles 28 32 22

Chicago 23 29 19

In this DataFrame:

1. Each row represents the temperature recorded on a specific day (Monday,
Tuesday, Wednesday).

2. Each column represents the temperature recorded in a different city (New York,
Los Angeles, Chicago).
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For example, the temperature in New York on Monday is 25 degrees Celsius, the
temperature in Los Angeles on Tuesday is 32 degrees Celsius, and so on.

Additionally, DataFrames can be constructed from pandas Series objects, which
are one-dimensional labeled arrays. By combining multiple Series objects, users can
create a DataFrame with labeled rows and columns, providing a convenient way to
organize and analyze data in pandas.

# Create a DataFrame from pandas Series objects

sales_q1 = pd.Series([1000, 1500, 1200], name='Q1',

index=['Product A', 'Product B', 'Product C'])

sales_q2 = pd.Series([1100, 1600, 1300], name='Q2',

index=['Product A', 'Product B', 'Product C'])

sales_q3 = pd.Series([1200, 1700, 1400], name='Q3',

index=['Product A', 'Product B', 'Product C'])

df_sales = pd.concat([sales_q1, sales_q2, sales_q3], axis=1)

print("DataFrame created from pandas Series:")

print(df_sales)

DataFrame created from pandas Series:

Q1 Q2 Q3

Product A 1000 1100 1200

Product B 1500 1600 1700

Product C 1200 1300 1400

In this DataFrame:

1. Each row represents the sales revenue for a specific quarter (Q1, Q2, Q3).
2. Each column represents the sales revenue generated by a different product

(Product A, Product B, Product C).

For example, the sales revenue for Product A in Q1 is 1000, in Q2 is 1100, and in Q3

is 1200.

11.2.2 Practice

Task: Create a DataFrame from a dictionary where keys represent countries and values
represent their respective populations. Countries and their populations are as follows:

• India 1,428,627,663
• China 1,425,671,352
• United States 339,996,563
• Indonesia 277,534,122
• Pakistan 240,485,658
• Nigeria 223,804,632
• Brazil 216,422,446
• Bangladesh 172,954,319
• Russia 144,444,359
• Mexico 128,455,567
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# Your code is here

import pandas as pd

# Create a dictionary with countries and their populations

population_data = {

'Country': ['India', 'China', 'United States', 'Indonesia', 'Pakistan',

'Nigeria', 'Brazil', 'Bangladesh', 'Russia', 'Mexico'],

'Population': [1428627663, 1425671352, 339996563, 277534122, 240485658,

223804632, 216422446, 172954319, 144444359, 128455567]

}

# Create a DataFrame from the dictionary

df_population = pd.DataFrame(population_data)

# Display the DataFrame

print(df_population)

Country Population

0 India 1428627663

1 China 1425671352

2 United States 339996563

3 Indonesia 277534122

4 Pakistan 240485658

5 Nigeria 223804632

6 Brazil 216422446

7 Bangladesh 172954319

8 Russia 144444359

9 Mexico 128455567

Task: Generate a DataFrame from a NumPy array containing random values, with
column names 'X', 'Y', and 'Z'.

# Your code is here

import pandas as pd

import numpy as np

# Generate a NumPy array with random values

random_data = np.random.randn(5, 3)

# Create a DataFrame with column names 'X', 'Y', and 'Z'

df_random = pd.DataFrame(random_data, columns=['X', 'Y', 'Z'])

# Display the DataFrame

print(df_random)

X Y Z

0 1.359543 -0.769306 -0.395408

1 -0.054183 2.314917 0.564761

2 -0.935918 0.473582 1.504356

3 -1.179814 -1.795447 0.513292

4 -0.844447 -1.384335 0.809767

Task: Construct a DataFrame from pandas Series objects representing the average
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temperatures in different cities for three week days. The cities, weekdays, and tem-
peratures are as follows:

• New York City: Monday(18), Tuesday(22), Wednesday(12)
• Denver: Monday(8), Tuesday(2), Wednesday(-1)
• Seattle: Monday(12), Tuesday(13), Wednesday(10)

# Your code is here

# Create pandas Series objects for each city and weekday

ny_temperatures = pd.Series([18, 22, 12],

index=['Monday', 'Tuesday', 'Wednesday'],

name='New York City')

denver_temperatures = pd.Series([8, 2, -1],

index=['Monday', 'Tuesday', 'Wednesday'],

name='Denver')

seattle_temperatures = pd.Series([12, 13, 10],

index=['Monday', 'Tuesday', 'Wednesday'],

name='Seattle')

# Concatenate the Series objects to create a DataFrame

df_temperatures = pd.concat([ny_temperatures,

denver_temperatures,

seattle_temperatures], axis=1)

# Display the DataFrame

print(df_temperatures)

New York City Denver Seattle

Monday 18 8 12

Tuesday 22 2 13

Wednesday 12 -1 10

11.3 ACCESS ELEMENTS IN A DATAFRAME USING LABELS

11.3.1 Demonstration

To access elements in a DataFrame, we have various methods available, including
accessing one row, multiple rows, one column, multiple columns, a sub-dataframe
(selected rows and columns), and individual cells. We can use both labels and indices
to perform these operations.

To access elements using labels, we use the .loc[] indexer. We can specify row and
column labels or indices to retrieve specific elements or subsets of data from the
DataFrame.

# Create a sample DataFrame

data = {'A': [1, 2, 3],

'B': [4, 5, 6],

'C': [7, 8, 9]}

df = pd.DataFrame(data, index=['X', 'Y', 'Z'])
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# Display the DataFrame

print(df)

A B C

X 1 4 7

Y 2 5 8

Z 3 6 9

# Accessing one row using labels

print('Accessing one row using labels:')

print(df.loc['Y'])

Accessing one row using labels:

A 2

B 5

C 8

Name: Y, dtype: int64

# Accessing multiple rows using labels

print('Accessing multiple rows using labels:')

print(df.loc[['X', 'Z']])

Accessing multiple rows using labels:

A B C

X 1 4 7

Z 3 6 9

# Accessing one column using labels

print('Accessing one column using labels:')

print(df['B'])

Accessing one column using labels:

X 4

Y 5

Z 6

Name: B, dtype: int64

# Accessing multiple columns using labels

print('Accessing multiple columns using labels:')

print(df[['A', 'C']])

Accessing multiple columns using labels:

A C

X 1 7

Y 2 8

Z 3 9

# Accessing a sub-dataframe (some rows and columns) using labels

print('Accessing a sub-dataframe using labels:')

print(df.loc[['Y', 'Z'], ['B', 'C']])

Accessing a sub-dataframe using labels:

B C

Y 5 8

Z 6 9



136 � BiteSize Python for Intermediate Learners

# Accessing one cell using labels

print('Accessing one cell using labels:')

print(df.loc['Y', 'B'])

Accessing one cell using labels:

5

# Accessing one cell using labels

print('Accessing one cell using labels:')

print(df.at['Y', 'B'])

Accessing one cell using labels:

5

11.3.2 Practice

# Let's use the dataframe we created previously

# Create pandas Series objects for each city and weekday

df = pd.DataFrame({'New York City':[18, 22, 12],

'Denver':[8, 2, -1],

'Seattle': [12, 13, 10]},

index = ['Monday', 'Tuesday', 'Wednesday'])

# Display the DataFrame

print(df)

New York City Denver Seattle

Monday 18 8 12

Tuesday 22 2 13

Wednesday 12 -1 10

Task: Access the temperature for New York City on Tuesday.

print(df.at['Tuesday', 'New York City'])

22

Task: Access the temperatures for Denver on Monday and Wednesday.

print(df.loc[['Monday', 'Wednesday'], 'Denver'])

Monday 8

Wednesday -1

Name: Denver, dtype: int64

Task: Access the temperature for Seattle on Wednesday.

print(df.loc['Wednesday', 'Seattle'])

10

Task: Access the temperatures for all cities on Monday.

print(df.loc['Monday'])

New York City 18

Denver 8

Seattle 12
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Name: Monday, dtype: int64

Task: Access the temperatures for New York City.

print(df['New York City'])

Monday 18

Tuesday 22

Wednesday 12

Name: New York City, dtype: int64

Task: Access the temperatures except for New York City.

print(df[['Denver', 'Seattle']])

Denver Seattle

Monday 8 12

Tuesday 2 13

Wednesday -1 10

11.4 ACCESS ELEMENTS IN A DATAFRAME USING INDICES

11.4.1 Demonstration

To access elements using indices, we use the .iloc[] indexer. With these indexers, we
can specify row and column labels or indices to retrieve specific elements or subsets
of data from the DataFrame.

# Create a sample DataFrame

data = {'A': [1, 2, 3],

'B': [4, 5, 6],

'C': [7, 8, 9]}

df = pd.DataFrame(data, index=['X', 'Y', 'Z'])

# Accessing one row using indices

print('Accessing one row using indices:')

print(df.iloc[1])

Accessing one row using indices:

A 2

B 5

C 8

Name: Y, dtype: int64

# Accessing multiple rows using indices

print('Accessing multiple rows using indices:')

print(df.iloc[[0, 2]])

Accessing multiple rows using indices:

A B C

X 1 4 7

Z 3 6 9
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# Accessing one column using indices

print('Accessing one column using indices:')

print(df.iloc[:, 1])

Accessing one column using indices:

X 4

Y 5

Z 6

Name: B, dtype: int64

# Accessing multiple columns using indices

print('Accessing multiple columns using indices:')

print(df.iloc[:, [0, 2]])

Accessing multiple columns using indices:

A C

X 1 7

Y 2 8

Z 3 9

# Accessing a sub-dataframe (some rows and columns) using indices

print('Accessing a sub-dataframe using indices:')

print(df.iloc[[0, 2], [1, 2]])

Accessing a sub-dataframe using indices:

B C

X 4 7

Z 6 9

# Accessing one cell using indices

print('Accessing one cell using indices:')

print(df.iloc[1, 1])

Accessing one cell using indices:

5

# Accessing one cell using indices

print('Accessing one cell using indices:')

print(df.iat[1, 1])

Accessing one cell using indices:

5

11.4.2 Practice

# Let's use the dataframe we created previously

# Create pandas Series objects for each city and weekday

df = pd.DataFrame({'New York City':[18, 22, 12],

'Denver':[8, 2, -1],

'Seattle': [12, 13, 10]},

index = ['Monday', 'Tuesday', 'Wednesday'])

# Display the DataFrame

print(df)

New York City Denver Seattle

Monday 18 8 12
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Tuesday 22 2 13

Wednesday 12 -1 10

Task: Access the temperature for Denver on Monday using index.

print(df.iloc[0, 1])

8

Task: Access the temperatures for New York City and Seattle on Tuesday using index.

print(df.iloc[1, [0, 2]])

New York City 22

Seattle 13

Name: Tuesday, dtype: int64

Task: Access the temperature for Seattle on Wednesday using index.

print(df.iloc[2, 2])

10

Task: Access the temperatures for all cities on Monday and Wednesday using index.

print(df.iloc[[0, 2]])

New York City Denver Seattle

Monday 18 8 12

Wednesday 12 -1 10

11.4.3 Test Your Understanding

Task: Compare accessing elements in a DataFrame by labels and by indices. What
are the pros and cons of them?

Answer: Accessing elements in a DataFrame can be done either by labels (using
.loc[] indexer) or by indices (using .iloc[] indexer).

Accessing by Labels: Using labels allows for more intuitive access to specific rows
and columns based on their names. Labels can be non-numeric and can represent
meaningful identifiers, making the code more readable. However, accessing elements
by labels may be slower compared to using indices, especially with large DataFrames.
Also, typos or incorrect labels may lead to KeyError, making it slightly more error-
prone.

Accessing by Indices: Accessing elements by indices tends to be faster than using
labels, especially with large DataFrames, as it involves integer-based indexing. Using
indices provides a clear indication of the position of elements within the DataFrame.
However, indices are numeric and may not provide meaningful context, making the
code less intuitive. Indices are sequential and fixed, so changes in the DataFrame

structure (e.g., reordering rows/columns) can affect the code's reliability.
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In summary, accessing elements by labels offers intuitiveness and flexibility, while
accessing by indices provides better performance and explicitness. The choice between
the two methods depends on factors such as the size of the DataFrame, the readability
of the code, and the specific requirements of the task at hand.

11.5 MANIPULATE ROWS IN A DATAFRAME

11.5.1 Demonstration

Adding, removing, changing labels, and modifying values of rows in a DataFrame are
common operations in data manipulation.

To add a new row, you can use the .loc[] indexer and specify the new index label
along with the data for the row. This allows for flexibility in adding rows with custom
index labels and corresponding values.

For removing rows, you can utilize the .drop() method and specify the index labels
of the rows to be removed. This method provides a straightforward way to eliminate
unwanted rows from the DataFrame.

To change the label of a row, the .rename() method can be employed, allowing for
the renaming of index labels while keeping the data intact. This method is useful for
updating row labels to better reflect the data or to maintain consistency.

Finally, to modify values of specific cells within rows, you can directly access the
DataFrame using index labels and column names, and then assign new values to the
desired cells.

# Create a sample DataFrame

data = {'A': [1, 2, 3],

'B': [4, 5, 6]}

df = pd.DataFrame(data, index=['X', 'Y', 'Z'])

print('Original dataframe:')

print(df)

Original dataframe:

A B

X 1 4

Y 2 5

Z 3 6

# Adding a new row

df.loc['W'] = [7, 8]

print('After adding a new row:')

print(df)

After adding a new row:

A B

X 1 4

Y 2 5

Z 3 6

W 7 8
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# Removing a row

df = df.drop('Y')

print('After removing a row:')

print(df)

After removing a row:

A B

X 1 4

Z 3 6

W 7 8

# Removing a row in place

df.drop('X', inplace = True)

print('After removing a row:')

print(df)

After removing a row:

A B

Z 3 6

W 7 8

# Changing label of a row

df = df.rename(index={'Z': 'Z_new'})

print('After changing the label of a row:')

print(df)

After changing the label of a row:

A B

Z_new 3 6

W 7 8

# Changing value of a cell

df.at['X', 'A'] = 10

print('After changing the value of a cell:')

print(df)

After changing the value of a cell:

A B

Z_new 3.0 6.0

W 7.0 8.0

X 10.0 NaN

11.5.2 Practice

# Let's use the dataframe we created previously

# Create pandas Series objects for each city and weekday

df = pd.DataFrame({'New York City':[18, 22, 12],

'Denver':[8, 2, -1],

'Seattle': [12, 13, 10]},

index = ['Monday', 'Tuesday', 'Wednesday'])

# Display the DataFrame

print(df)

New York City Denver Seattle

Monday 18 8 12

Tuesday 22 2 13
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Wednesday 12 -1 10

Task: Add a new row for Thursday with temperatures [20, 15, 18] for New York City,
Denver, and Seattle, respectively.

df.loc['Thursday'] = [20, 15, 18]

print(df)

New York City Denver Seattle

Monday 18 8 12

Tuesday 22 2 13

Wednesday 12 -1 10

Thursday 20 15 18

Task: Remove the row for Tuesday from the DataFrame.

df = df.drop('Tuesday')

print(df)

New York City Denver Seattle

Monday 18 8 12

Wednesday 12 -1 10

Thursday 20 15 18

Task: Change the index label of the row for Wednesday to Wed for all cities.

df = df.rename(index={'Wednesday': 'Wed'})

print(df)

New York City Denver Seattle

Monday 18 8 12

Wed 12 -1 10

Thursday 20 15 18

Task: Modify the temperature for New York City on Monday to 25.

df.at['Monday', 'New York City'] = 25

print(df)

New York City Denver Seattle

Monday 25 8 12

Wed 12 -1 10

Thursday 20 15 18

Task: Modify the temperature for Seattle on Wed to 15.

df.at['Wed', 'Seattle'] = 15

print(df)

New York City Denver Seattle

Monday 25 8 12

Wed 12 -1 15

Thursday 20 15 18
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11.6 MANIPULATE COLUMNS IN A DATAFRAME

11.6.1 Demonstration

Adding, removing, changing labels, and modifying values of rows in a DataFrame are
common operations in data manipulation.

Adding, removing, changing labels, and modifying values of columns in a DataFrame

are essential operations in data manipulation.

To add a new column, you can directly assign a Series or list to a new column
label, or use the .insert() method to insert a column at a specific position.

For removing columns, you can utilize the .drop() method and specify the column
labels to be removed along with the axis parameter set to 1.

To change the label of a column, you can directly assign a new label to the column
using the .rename() method, specifying the current column label and the new label.

Finally, to modify values of specific cells within columns, you can directly access
the DataFrame using column names and index labels, then assign new values to the
desired cells.

# Create a sample DataFrame

data = {'A': [1, 2, 3],

'B': [4, 5, 6],

'C': [7, 8, 9]}

df = pd.DataFrame(data, index=['X', 'Y', 'Z'])

print('Original dataframe:')

print(df)

Original dataframe:

A B C

X 1 4 7

Y 2 5 8

Z 3 6 9

# Adding a new column

df['D'] = [0, 0, 0]

print('After adding a new column:')

print(df)

After adding a new column:

A B C D

X 1 4 7 0

Y 2 5 8 0

Z 3 6 9 0

# Removing a column

df = df.drop(columns=['B'])

print('After removing column B:')

print(df)

After removing column B:

A C D
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X 1 7 0

Y 2 8 0

Z 3 9 0

# Removing a column

df = df.drop('D', axis = 1)

print('After removing column D:')

print(df)

After removing column D:

A C

X 1 7

Y 2 8

Z 3 9

# Changing label of a column

df = df.rename(columns={'A': 'New_A'})

print('After renaming column A to New_A:')

print(df)

After renaming column A to New_A:

New_A C

X 1 7

Y 2 8

Z 3 9

# Changing value of a cell

df.at['Z', 'New_A'] = 10

print('After changing value of a cell')

print(df)

After changing value of a cell

New_A C

X 1 7

Y 2 8

Z 10 9

11.6.2 Practice

# Let's use the dataframe we created previously

# Create pandas Series objects for each city and weekday

df = pd.DataFrame({'New York City':[18, 22, 12],

'Denver':[8, 2, -1],

'Seattle': [12, 13, 10]},

index = ['Monday', 'Tuesday', 'Wednesday'])

# Display the DataFrame

print(df)

New York City Denver Seattle

Monday 18 8 12

Tuesday 22 2 13

Wednesday 12 -1 10

Task: Add a new column Chicago with temperatures [20, 18, 15].
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df['Chicago'] = [20, 18, 15]

print(df)

New York City Denver Seattle Chicago

Monday 18 8 12 20

Tuesday 22 2 13 18

Wednesday 12 -1 10 15

Task: Remove the column for Denver.

df = df.drop(columns=['Denver'])

print(df)

New York City Seattle Chicago

Monday 18 12 20

Tuesday 22 13 18

Wednesday 12 10 15

Task: Change the label of the column for New York City to NYC.

df = df.rename(columns={'New York City': 'NYC'})

print(df)

NYC Seattle Chicago

Monday 18 12 20

Tuesday 22 13 18

Wednesday 12 10 15

Task: Modify the temperature for Tuesday in Seattle to 14.

df.at['Tuesday', 'Seattle'] = 14

print(df)

NYC Seattle Chicago

Monday 18 12 20

Tuesday 22 14 18

Wednesday 12 10 15

Task: Modify the temperature for Monday in Chicago to 22.

df.at['Monday', 'Chicago'] = 22

print(df)

NYC Seattle Chicago

Monday 18 12 22

Tuesday 22 14 18

Wednesday 12 10 15

11.7 MERGING DATAFRAMES

11.7.1 Demonstration

Merging DataFrames by columns involves combining them based on common keys
present in their columns. This operation is similar to joining tables in a database
based on a common column.
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Different Joining Methods:

1. Inner Join: This method returns only the rows where the keys are present in
both DataFrames.

2. Outer Join: This method returns all rows from both DataFrames and fills in
missing values with NaN where keys are not present in both DataFrames.

3. Left Join: This method returns all rows from the left DataFrame and fills in
missing values with NaN where keys are not present in the right DataFrame.

4. Right Join: This method returns all rows from the right DataFrame and fills in
missing values with NaN where keys are not present in the left DataFrame.

# Sample DataFrames

df1 = pd.DataFrame({'Key': ['A', 'B', 'C'], 'Value1': [1, 2, 3]})

print('df1')

print(df1)

df2 = pd.DataFrame({'Key': ['B', 'C', 'D'], 'Value2': [4, 5, 6]})

print('\ndf2')

print(df2)

df1

Key Value1

0 A 1

1 B 2

2 C 3

df2

Key Value2

0 B 4

1 C 5

2 D 6

# Inner Join

inner_merged = pd.merge(df1, df2, on='Key', how='inner')

print('Inner Join:')

print(inner_merged)

Inner Join:

Key Value1 Value2

0 B 2 4

1 C 3 5

# Outer Join

outer_merged = pd.merge(df1, df2, on='Key', how='outer')

print('Outer Join:')

print(outer_merged)

Outer Join:

Key Value1 Value2

0 A 1.0 NaN

1 B 2.0 4.0

2 C 3.0 5.0

3 D NaN 6.0
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# Left Join

left_merged = pd.merge(df1, df2, on='Key', how='left')

print('Left Join Based on df1:')

print(left_merged)

Left Join Based on df1:

Key Value1 Value2

0 A 1 NaN

1 B 2 4.0

2 C 3 5.0

# Right Join

right_merged = pd.merge(df1, df2, on='Key', how='right')

print('Right Join Based on df2:')

print(right_merged)

Right Join Based on df2:

Key Value1 Value2

0 B 2.0 4

1 C 3.0 5

2 D NaN 6

11.7.2 Practice

# Create pandas Series objects for some cities and weekdays

df1 = pd.DataFrame({'Weekday': ['Monday', 'Tuesday', 'Wednesday'],

'New York City':[18, 22, 12],

'Denver':[8, 2, -1],

'Seattle': [12, 13, 10]})

# Display the DataFrame

print(df1)

# Create pandas Series objects for some cities and weekdays

df2 = pd.DataFrame({'Weekday': ['Tuesday', 'Wednesday', 'Thursday'],

'Jersey City':[12, 5, 5],

'Boston': [13, 10, 5],

'Chicago': [18, 15,5]})

# Display the DataFrame

print(df2)

Weekday New York City Denver Seattle

0 Monday 18 8 12

1 Tuesday 22 2 13

2 Wednesday 12 -1 10

Weekday Jersey City Boston Chicago

0 Tuesday 12 13 18

1 Wednesday 5 10 15

2 Thursday 5 5 5

Task: Perform an inner joining on Weekday to merge df1 and df2.

# Inner Join

inner_merged = pd.merge(df1, df2, on = 'Weekday', how='inner')

print('\nInner Join:')

print(inner_merged)
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Inner Join:

Weekday New York City Denver Seattle Jersey City Boston Chicago

0 Tuesday 22 2 13 12 13 18

1 Wednesday 12 -1 10 5 10 15

Task: Perform an outer joining on Weekday to merge df1 and df2.

# Outer Join

outer_merged = pd.merge(df1, df2, on = 'Weekday', how='outer')

print('\nOuter Join:')

print(outer_merged)

Outer Join:

Weekday New York City Denver Seattle Jersey City Boston Chicago

0 Monday 18.0 8.0 12.0 NaN NaN NaN

1 Tuesday 22.0 2.0 13.0 12.0 13.0 18.0

2 Wednesday 12.0 -1.0 10.0 5.0 10.0 15.0

3 Thursday NaN NaN NaN 5.0 5.0 5.0

Task: Perform a left joining on Weekday to merge df1 and df2.

# Left Join

left_merged = pd.merge(df1, df2, on = 'Weekday', how='left')

print('\nLeft Join Based on df1:')

print(left_merged)

Left Join Based on df1:

Weekday New York City Denver Seattle Jersey City Boston Chicago

0 Monday 18 8 12 NaN NaN NaN

1 Tuesday 22 2 13 12.0 13.0 18.0

2 Wednesday 12 -1 10 5.0 10.0 15.0

Task: Perform a right joining on Weekday to merge df1 and df2.

# Right Join

right_merged = pd.merge(df1, df2, on = 'Weekday', how='right')

print('\nRight Join Based on df2:')

print(right_merged)

Right Join Based on df2:

Weekday New York City Denver Seattle Jersey City Boston Chicago

0 Tuesday 22.0 2.0 13.0 12 13 18

1 Wednesday 12.0 -1.0 10.0 5 10 15

2 Thursday NaN NaN NaN 5 5 5

11.8 CONCATENATING DATAFRAMES

11.8.1 Demonstration

Concatenation in pandas is a method of combining DataFrames along a particular
axis, either rows or columns. It allows you to stack DataFrames together to create a
new DataFrame.
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Different Ways of Stacking:

1. Vertical Stacking (Along Rows): This involves stacking DataFrames on top of
each other along the row axis. It is achieved using the concat() function with
axis=0.

2. Horizontal Stacking (Along Columns): This involves stacking DataFrames next
to each other along the column axis. It is achieved using the concat() function
with axis=1.

# Sample DataFrames

df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

df2 = pd.DataFrame({'A': [7, 8, 9], 'B': [1, 2, 4]})

print(df1)

print(df2)

A B

0 1 4

1 2 5

2 3 6

A B

0 7 1

1 8 2

2 9 4

# Vertical Stacking (Along Rows)

vertical_stacked = pd.concat([df1, df2], axis=0)

print('Vertical Stacking:')

print(vertical_stacked)

Vertical Stacking:

A B

0 1 4

1 2 5

2 3 6

0 7 1

1 8 2

2 9 4

# Horizontal Stacking (Along Columns)

horizontal_stacked = pd.concat([df1, df2], axis=1)

print('Horizontal Stacking:')

print(horizontal_stacked)

Horizontal Stacking:

A B A B

0 1 4 7 1

1 2 5 8 2

2 3 6 9 4
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11.8.2 Practice

# Create pandas Series objects for some cities and weekdays

df1 = pd.DataFrame({'Weekday': ['Monday', 'Tuesday', 'Wednesday'],

'New York City':[18, 22, 12],

'Denver':[8, 2, -1]})

# Display the DataFrame

print(df1)

# Create pandas Series objects for some cities and weekdays

df2 = pd.DataFrame({'Weekday': ['Tuesday', 'Wednesday', 'Thursday'],

'Jersey City':[12, 5, 5],

'Boston': [13, 10, 5]})

# Display the DataFrame

print(df2)

Weekday New York City Denver

0 Monday 18 8

1 Tuesday 22 2

2 Wednesday 12 -1

Weekday Jersey City Boston

0 Tuesday 12 13

1 Wednesday 5 10

2 Thursday 5 5

Task: Stacking df1 and df2 vertically.

# Vertical Stacking (Along Rows)

vertical_stacked = pd.concat([df1, df2], axis=0)

print('Vertical Stacking:')

print(vertical_stacked)

Vertical Stacking:

Weekday New York City Denver Jersey City Boston

0 Monday 18.0 8.0 NaN NaN

1 Tuesday 22.0 2.0 NaN NaN

2 Wednesday 12.0 -1.0 NaN NaN

0 Tuesday NaN NaN 12.0 13.0

1 Wednesday NaN NaN 5.0 10.0

2 Thursday NaN NaN 5.0 5.0

Task: Stacking df1 and df2 horizontally.

# Horizontal Stacking (Along Columns)

horizontal_stacked = pd.concat([df1, df2], axis=1)

print('\nHorizontal Stacking:')

print(horizontal_stacked)

Horizontal Stacking:

Weekday New York City Denver Weekday Jersey City Boston

0 Monday 18 8 Tuesday 12 13

1 Tuesday 22 2 Wednesday 5 10

2 Wednesday 12 -1 Thursday 5 5
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11.8.3 Practice More

Task: Do these concatenation make sense? Can you modify the df1 and df2, so they
can be stacked vertically for a meaningful result?

# Create pandas Series objects for some cities and weekdays

df1 = pd.DataFrame({'Weekday': ['Monday', 'Tuesday', 'Wednesday'],

'New York City':[18, 22, 12],

'Denver':[8, 2, -1]})

# Display the DataFrame

print(df1)

# Create pandas Series objects for some cities and weekdays

df2 = pd.DataFrame({'Weekday': ['Thursday', 'Friday', 'Saturday'],

'New York City':[8, 2, 12],

'Denver':[3, 2, 10]})

# Display the DataFrame

print(df2)

# Vertical Stacking (Along Rows)

vertical_stacked = pd.concat([df1, df2], axis=0)

print('\nMeaningful Vertical Stacking:')

print(vertical_stacked)

Weekday New York City Denver

0 Monday 18 8

1 Tuesday 22 2

2 Wednesday 12 -1

Weekday New York City Denver

0 Thursday 8 3

1 Friday 2 2

2 Saturday 12 10

Meaningful Vertical Stacking:

Weekday New York City Denver

0 Monday 18 8

1 Tuesday 22 2

2 Wednesday 12 -1

0 Thursday 8 3

1 Friday 2 2

2 Saturday 12 10

Task: Can you modify the df1 and df2, so they can be stacked horizontally for a
meaningful result?

# Create pandas Series objects for some cities and weekdays

df1 = pd.DataFrame({'Weekday': ['Monday', 'Tuesday', 'Wednesday'],

'New York City':[18, 22, 12],

'Denver':[8, 2, -1]})

# Display the DataFrame

print(df1)

# Create pandas Series objects for some cities and weekdays

df2 = pd.DataFrame({'Boston':[8, 2, 12],

'Jersey City':[3, 2, 10]})
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# Display the DataFrame

print(df2)

# Horizontal Stacking (Along Columns)

horizontal_stacked = pd.concat([df1, df2], axis=1)

print('\nMeaningful Horizontal Stacking:')

print(horizontal_stacked)

Weekday New York City Denver

0 Monday 18 8

1 Tuesday 22 2

2 Wednesday 12 -1

Boston Jersey City

0 8 3

1 2 2

2 12 10

Meaningful Horizontal Stacking:

Weekday New York City Denver Boston Jersey City

0 Monday 18 8 8 3

1 Tuesday 22 2 2 2

2 Wednesday 12 -1 12 10

11.8.4 Test Your Understanding

What are the differences between merging and concatenation methods to combine
multiple DataFrames in pandas?

Answer: Merging and concatenation are both techniques used to combine multiple
DataFrames in pandas, but they have different purposes and behaviors.

Merging is used to combine DataFrames based on one or more keys present in their
columns. It is similar to the SQL join operation and is typically used when you
want to combine datasets with related information. Concatenation is used to combine
DataFrames along a particular axis (usually rows or columns). It is useful for stacking
DataFrames together, either vertically or horizontally.

When merging DataFrames, pandas aligns the rows based on common keys in their
columns. It can perform different types of joins such as inner, outer, left, or right join,
depending on how you specify the how parameter. Concatenating DataFrames simply
stacks them together along the specified axis. It does not perform any alignment based
on keys, and it does not check for duplicates or perform any kind of data alignment.

The result of merging DataFrames is a new DataFrame with rows that match the
specified conditions based on the keys used for merging. The result of concatenating
DataFrames is a new DataFrame with the combined rows or columns from the original
DataFrames, depending on the axis of concatenation.

In summary, merging is used to combine DataFrames based on common keys, while
concatenation is used to stack DataFrames together along a particular axis without
considering keys or performing any kind of alignment based on values.
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11.9 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is a DataFrame in Pandas, and how is it different from a Series?
• Why is the DataFrame widely used for data analysis?
• How does a DataFrame handle different data types across columns?
• Create a DataFrame from a dictionary of lists or a NumPy array.
• Access rows and columns in a DataFrame using labels or positions.
• Add a new column to a DataFrame using existing data.
• Filter rows in a DataFrame based on a condition in a column.
• Use the groupby() method to aggregate data in a DataFrame.
• What is the difference between a DataFrame and a Series in Pandas?
• Can a DataFrame have duplicate row indices or column labels? What are the

implications?
• How does slicing work for columns and rows in a DataFrame?
• How do you merge or join DataFrames using merge() or concat()?
• What is the difference between loc[] and iloc[] for accessing DataFrame

elements?
• Calculate statistics for each group in a dataset, like mean sales per region.
• Reshape a DataFrame using pivot tables or melt().
• What happens if you access a column or row that doesn’t exist in a DataFrame?
• How do you effectively handle missing or NaN values in a DataFrame?
• How can you debug alignment issues when working with multiple DataFrame?
• What are common mistakes when manipulating DataFrame indices or using

group operations?

11.10 EXPLORE MORE OF DATAFRAME

At the end, here are the official documentations of DataFrame:

• User guide: https://pandas.pydata.org/docs/reference/frame.html
• More on pandas: https://pandas.pydata.org/docs/reference/index.html

https://pandas.pydata.org/docs/reference/frame.html
https://pandas.pydata.org/docs/reference/index.html


C H A P T E R 12

Pandas

P
andas is a Python package designed for fast, flexible, and expressive data
structures, making it easy and intuitive to work with relational or labeled data.

It aims to be a fundamental tool for practical data analysis in Python, with the
broader goal of being the most powerful and flexible open-source data analysis tool
available in any language. Pandas is already making significant strides toward this
goal. Are you ready? Let’s go!

12.1 WHAT IS PANDAS

12.1.1 Import of Pandas

# import packages

import numpy as np

import pandas as pd

12.1.2 Key Features of Pandas

Pandas is ideal for various types of data:

• Tabular Data: Similar to SQL tables or Excel spreadsheets with heterogeneously
typed columns.

• Time Series Data: Both ordered and unordered time series data.
• Matrix Data: Homogeneous or heterogeneous matrix data with row and column

labels.
• Observational/Statistical Data: Any form of data, whether labeled or unlabeled.

The primary data structures in pandas are:

• Series: One-dimensional data.
• DataFrame: Two-dimensional data, similar to R’s data.frame but more power-

ful.

154 DOI: 10.1201/9781003624868-12

https://doi.org/10.1201/9781003624868-12
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Pandas is built on NumPy and integrates well within the scientific computing envi-
ronment, alongside many other third-party libraries.

12.1.3 Exploration

Task: Search and find how pandas is named.

Solution by Wikipedia: The name is derived from the term “panel data,” an econo-
metrics term for data sets that include observations over multiple time periods for
the same individuals, as well as a play on the phrase “Python data analysis.”

12.2 USEFUL FUNCTIONALITIES

12.2.1 Demonstration

There are many useful DataFrame functions can greatly aid in data exploration and
analysis. Among these, info() provides a concise summary of the DataFrame, includ-
ing the data types of each column and the number of non-null values. This function is
particularly useful for understanding the structure of the DataFrame and identifying
any missing values.

Additionally, head() and tail() are handy for quickly inspecting the first and last
few rows of the DataFrame, respectively. This allows users to get a glimpse of the data
and understand its format without needing to display the entire DataFrame, which
can be especially helpful for large datasets.

# Creating a dummy dataset

data = {

'A': [1, 2, 3, 4, 5, 7, 9],

'B': ['a', 'b', 'c', 'd', 'e', 'f', 'g'],

'C': [10.5, 20.5, 30.5, 40.5, 50.5, 51, 51.5]

}

df = pd.DataFrame(data)

print('The DataFrame')

print(df)

The DataFrame

A B C

0 1 a 10.5

1 2 b 20.5

2 3 c 30.5

3 4 d 40.5

4 5 e 50.5

5 7 f 51.0

6 9 g 51.5

# Displaying summary information about the DataFrame

print('The structure of the DataFrame')

print(df.info())

The structure of the DataFrame

<class 'pandas.core.frame.DataFrame'>



156 � BiteSize Python for Intermediate Learners

RangeIndex: 7 entries, 0 to 6

Data columns (total 3 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 A 7 non-null int64

1 B 7 non-null object

2 C 7 non-null float64

dtypes: float64(1), int64(1), object(1)

memory usage: 296.0+ bytes

None

# Displaying the first five rows of the DataFrame

print('The first 5 of the DataFrame')

print(df.head())

The first 5 of the DataFrame

A B C

0 1 a 10.5

1 2 b 20.5

2 3 c 30.5

3 4 d 40.5

4 5 e 50.5

# Displaying the first three rows of the DataFrame

print('The first 3 of the DataFrame')

print(df.head(3))

The first 3 of the DataFrame

A B C

0 1 a 10.5

1 2 b 20.5

2 3 c 30.5

# Displaying the last five rows of the DataFrame

print('The last 5 of the DataFrame')

print(df.tail())

The last 5 of the DataFrame

A B C

2 3 c 30.5

3 4 d 40.5

4 5 e 50.5

5 7 f 51.0

6 9 g 51.5

# Displaying the last three rows of the DataFrame

print('The last 3 of the DataFrame')

print(df.tail(3))

The last 3 of the DataFrame

A B C

4 5 e 50.5

5 7 f 51.0

6 9 g 51.5
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12.2.2 Practice

# Create a dummy dataset

data = {

'Name': ['Alice', 'Bob', 'Charlie',

'David', 'Emma', 'Harry', 'Ron'],

'Age': [25, 30, 35, 40, 45, 42, 23],

'City': ['New York', 'Los Angeles', 'Chicago',

'Houston', 'Phoenix', 'London', 'Boston']

}

df = pd.DataFrame(data)

print(df)

Name Age City

0 Alice 25 New York

1 Bob 30 Los Angeles

2 Charlie 35 Chicago

3 David 40 Houston

4 Emma 45 Phoenix

5 Harry 42 London

6 Ron 23 Boston

Task: Display the information about the df.

print(df.info())

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 7 entries, 0 to 6

Data columns (total 3 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 Name 7 non-null object

1 Age 7 non-null int64

2 City 7 non-null object

dtypes: int64(1), object(2)

memory usage: 296.0+ bytes

None

Task: Display the first five rows of the df.

print(df.head())

Name Age City

0 Alice 25 New York

1 Bob 30 Los Angeles

2 Charlie 35 Chicago

3 David 40 Houston

4 Emma 45 Phoenix

Task: Display the first two rows of the df.

print(df.head(2))

Name Age City

0 Alice 25 New York

1 Bob 30 Los Angeles



158 � BiteSize Python for Intermediate Learners

Task: Display the last five rows of the df.

print(df.tail())

Name Age City

2 Charlie 35 Chicago

3 David 40 Houston

4 Emma 45 Phoenix

5 Harry 42 London

6 Ron 23 Boston

Task: Display the last four rows of the df.

print(df.tail(4))

Name Age City

3 David 40 Houston

4 Emma 45 Phoenix

5 Harry 42 London

6 Ron 23 Boston

12.3 DESCRIPTIVE STATISTICS FOR NUMERICAL COLUMNS

12.3.1 Demonstration

Let’s discuss descriptive statistics for numerical columns, focusing on central tendency,
variance, position, and the describe() method.

Central Tendency:

1. Mean: Represents the average value of the data, calculated by summing all
values and dividing by the number of observations.

2. Median: The middle value of the data when sorted in ascending order, indicating
the central value that separates the higher and lower halves of the dataset.

# Sample DataFrame representing monthly sales for different products

sales_data = {

'Product A': [55000, 62000, 48000, 51000, 59000],

'Product B': [4800, 5100, 5900, 5500, 6200],

'Product C': [12000, 55000, 151000, 5000, 480]

}

# Create DataFrame

sales_df = pd.DataFrame(sales_data,

index=['Jan', 'Feb', 'Mar', 'Apr', 'May'])

# Central Tendency

mean_sales = sales_df.mean()

median_sales = sales_df.median()

# Output

print('Central Tendency:')

print('Mean Sales:')
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print(mean_sales)

print('\nMedian Sales:')

print(median_sales)

Central Tendency:

Mean Sales:

Product A 55000.0

Product B 5500.0

Product C 44696.0

dtype: float64

Median Sales:

Product A 55000.0

Product B 5500.0

Product C 12000.0

dtype: float64

Variance:

1. Minimum and Maximum: The smallest and largest values in the data, respec-
tively, providing insights into the range of values present.

2. Range: The difference between the maximum and minimum values, indicating
the spread or dispersion of the data.

3. Standard Deviation: Measures the dispersion of the data points around the
mean, providing insights into the variability of the dataset.

4. Variance: The average of the squared differences from the mean, offering another
measure of data dispersion.

# Variance

min_sales = sales_df.min()

max_sales = sales_df.max()

range_sales = max_sales - min_sales

std_dev_sales = sales_df.std()

variance_sales = sales_df.var()

# Output

print('Variance:')

print('Minimum Sales:')

print(min_sales)

print('\nMaximum Sales:')

print(max_sales)

print('\nRange of Sales:')

print(range_sales)

print('\nStandard Deviation of Sales:')

print(std_dev_sales)

print('\nVariance of Sales:')

print(variance_sales)

Variance:

Minimum Sales:

Product A 48000

Product B 4800

Product C 480
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dtype: int64

Maximum Sales:

Product A 62000

Product B 6200

Product C 151000

dtype: int64

Range of Sales:

Product A 14000

Product B 1400

Product C 150520

dtype: int64

Standard Deviation of Sales:

Product A 5700.877125

Product B 570.087713

Product C 63258.533654

dtype: float64

Variance of Sales:

Product A 3.250000e+07

Product B 3.250000e+05

Product C 4.001642e+09

dtype: float64

Position:

1. Percentiles: Values below which a certain percentage of data points fall, provid-
ing insights into the distribution of the dataset.

2. Quartiles: Values that divide the dataset into four equal parts, each containing
25% of the data, indicating the spread of the dataset.

The describe() Method:

1. describe(): A method that generates descriptive statistics summarizing the
central tendency, dispersion, and shape of the dataset, including count, mean,
standard deviation, minimum, maximum, and percentiles.

# Position

percentiles_sales = sales_df.quantile([0.01, 0.1, 0.4, 0.99])

quartiles_sales = sales_df.quantile([0.25, 0.5, 0.75])

# Output

print('Position:')

print('Percentiles of Sales: 1%, 10%, 40%, 99%')

print(percentiles_sales)

print('Quartiles of Sales: Q1, Q2, Q3')

print(quartiles_sales)

# Describe Method

description_sales = sales_df.describe()
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print('\nDescribe Method for Sales DataFrame:')

print(description_sales)

Position:

Percentiles of Sales: 1%, 10%, 40%, 99%

Product A Product B Product C

0.01 48120.0 4812.0 660.8

0.10 49200.0 4920.0 2288.0

0.40 53400.0 5340.0 9200.0

0.99 61880.0 6188.0 147160.0

Quartiles of Sales: Q1, Q2, Q3

Product A Product B Product C

0.25 51000.0 5100.0 5000.0

0.50 55000.0 5500.0 12000.0

0.75 59000.0 5900.0 55000.0

Describe Method for Sales DataFrame:

Product A Product B Product C

count 5.000000 5.000000 5.000000

mean 55000.000000 5500.000000 44696.000000

std 5700.877125 570.087713 63258.533654

min 48000.000000 4800.000000 480.000000

25% 51000.000000 5100.000000 5000.000000

50% 55000.000000 5500.000000 12000.000000

75% 59000.000000 5900.000000 55000.000000

max 62000.000000 6200.000000 151000.000000

12.3.2 Practice

# Creating a dummy dataset

data = {

'ID': [1, 2, 3, 4, 5],

'Age': [25, 30, 35, 40, 45],

'Height (cm)': [170, 175, 180, 185, 190],

'Weight (kg)': [65, 70, 75, 80, 85]

}

df = pd.DataFrame(data)

print(df)

ID Age Height (cm) Weight (kg)

0 1 25 170 65

1 2 30 175 70

2 3 35 180 75

3 4 40 185 80

4 5 45 190 85

Task: Calculate the mean age.

mean_age = df['Age'].mean()

print('Mean Age:', mean_age)

Mean Age: 35.0

Task: Calculate the median height.
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median_height = df['Height (cm)'].median()

print('Median Height:', median_height)

Median Height: 180.0

Task: Calculate the standard deviation of weight.

std_weight = df['Weight (kg)'].std()

print('Standard Deviation of Weight:', std_weight)

Standard Deviation of Weight: 7.905694150420948

Task: Find the maximum age.

max_age = df['Age'].max()

print('Maximum Age:', max_age)

Maximum Age: 45

Task: Calculate the range of heights.

height_range = df['Height (cm)'].max() - df['Height (cm)'].min()

print('Height Range:', height_range)

Height Range: 20

Task: Get a summary of stats using describe().

df.describe()

12.4 DESCRIPTIVE STATISTICS FOR CATEGORICAL COLUMNS

12.4.1 Demonstration

Descriptive statistics for DataFrame categorical columns provide insights into the
distribution of categorical values within the dataset. Three commonly used methods
for analyzing categorical data are value_counts(), unique(), and nunique(). Here’s
a brief explanation of each method:

value_counts(): This method returns a Series containing counts of unique values
in the categorical column. It helps identify the frequency of each unique value in the
column, providing insights into the distribution of categorical data.

unique(): The unique() method returns an array of unique values present in the
categorical column. It is useful for quickly identifying the distinct categories within
the column.

nunique(): This method returns the number of unique values in the categorical
column. It provides a count of the distinct categories present, allowing for easy de-
termination of the cardinality of the categorical variable.

# Sample DataFrame representing student grades by subject

grades_data = {

'StudentID': [1, 2, 3, 4, 5, 6],
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'Subject': ['Math', 'Science', 'Math',

'English', 'Science', 'English'],

'Grade': ['A', 'B', 'B', 'C', 'A', 'B']

}

# Create DataFrame

grades_df = pd.DataFrame(grades_data)

# Count each unique value

print('Value Counts:')

print(grades_df['Subject'].value_counts())

print(grades_df['Grade'].value_counts())

Value Counts:

Math 2

Science 2

English 2

Name: Subject, dtype: int64

B 3

A 2

C 1

Name: Grade, dtype: int64

# Display unique values

print('Unique Values:')

print('Subject:', grades_df['Subject'].unique())

print('Grade:', grades_df['Grade'].unique())

Unique Values:

Subject: ['Math' 'Science' 'English']

Grade: ['A' 'B' 'C']

# Count the number of unique values

print('Number of Unique Values:')

print('Subject:', grades_df['Subject'].nunique())

print('Grade:', grades_df['Grade'].nunique())

Number of Unique Values:

Subject: 3

Grade: 3

12.4.2 Practice

# Creating a dummy dataset

data = {

'ID': [1, 2, 3, 4, 5],

'Gender': ['Male', 'Female', 'Male', 'Female', 'Male'],

'Education': ['College', 'College', 'College',

'Graduate', 'Graduate'],

'Marital Status': ['Single', 'Married', 'Married',

'Single', 'Divorced']

}

df = pd.DataFrame(data)

print(df)

ID Gender Education Marital Status
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0 1 Male College Single

1 2 Female College Married

2 3 Male College Married

3 4 Female Graduate Single

4 5 Male Graduate Divorced

Task: Count the number of each gender.

gender_counts = df['Gender'].value_counts()

print('Gender Counts:')

print(gender_counts)

Gender Counts:

Male 3

Female 2

Name: Gender, dtype: int64

Task: Get the unique education levels.

unique_education = df['Education'].unique()

print('Unique Education Levels:')

print(unique_education)

Unique Education Levels:

['College' 'Graduate']

Task: Count the frequency of each marital status.

marital_counts = df['Marital Status'].value_counts()

print('Marital Status Counts:')

print(marital_counts)

Marital Status Counts:

Single 2

Married 2

Divorced 1

Name: Marital Status, dtype: int64

12.5 LESSON: GROUPBY() AND AGGREGATION

12.5.1 Demonstration

Aggregation methods, such as groupby() in pandas, are essential for summarizing
and analyzing data based on specific criteria. Here's an introduction to some common
aggregation methods:

GroupBy: The groupby() method splits the DataFrame into groups based on spec-
ified criteria. It allows you to perform operations on these groups independently or
aggregate data within each group.

Aggregation Functions: Pandas provides various aggregation functions, such as sum,
mean, median, count, min, and max. These functions compute summary statistics for
each group in the DataFrame.
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Custom Aggregation: You can define custom aggregation functions to perform spe-
cialized calculations within each group. This allows for flexibility in summarizing data
based on unique requirements.

# Let's reate a dummy DataFrame

data = {

'Group': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C', 'C'],

'Value1': [10, 20, 30, 40, 50, 60, 70, 80, 90],

'Value2': [1, 2, 3, 4, 5, 6, 7, 8, 9]

}

df = pd.DataFrame(data)

print('Dummy DataFrame:')

print(df)

Dummy DataFrame:

Group Value1 Value2

0 A 10 1

1 A 20 2

2 B 30 3

3 B 40 4

4 B 50 5

5 C 60 6

6 C 70 7

7 C 80 8

8 C 90 9

# Group by 'Group' column

grouped = df.groupby('Group')

# Calculate the mean of each group

print('Mean:')

print(grouped.mean())

Mean:

Value1 Value2

Group

A 15.0 1.5

B 40.0 4.0

C 75.0 7.5

# Calculate the sum of each group

print('Sum:')

print(grouped.sum())

Sum:

Value1 Value2

Group

A 30 3

B 120 12

C 300 30

# Calculate the minimum value of each group

print('Minimum:')

print(grouped.min())
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Minimum:

Value1 Value2

Group

A 10 1

B 30 3

C 60 6

# Calculate the maximum value of each group

print('Maximum:')

print(grouped.max())

Maximum:

Value1 Value2

Group

A 20 2

B 50 5

C 90 9

# Count the number of rows in each group

print('Count:')

print(grouped.size())

Count:

Group

A 2

B 3

C 4

dtype: int64

# Calculate the median of each group

print('Median:')

print(grouped.median())

Median:

Value1 Value2

Group

A 15.0 1.5

B 40.0 4.0

C 75.0 7.5

12.5.2 Practice

# Create a dummy dataset

data = {

'City': ['New York', 'Los Angeles', 'Chicago',

'New York', 'Los Angeles', 'Chicago'],

'Temperature': [70, 75, 68, 72, 77, 70],

'Humidity': [50, 55, 60, 52, 57, 62],

'Wind_Speed': [5, 7, 3, 6, 8, 4]

}

df = pd.DataFrame(data)

print(df)

City Temperature Humidity Wind_Speed

0 New York 70 50 5
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1 Los Angeles 75 55 7

2 Chicago 68 60 3

3 New York 72 52 6

4 Los Angeles 77 57 8

5 Chicago 70 62 4

Task: Group by City and find the average temperature.

avg_temp = df.groupby('City')['Temperature'].mean()

print('Average Temperature by City:\n', avg_temp)

Average Temperature by City:

City

Chicago 69.0

Los Angeles 76.0

New York 71.0

Name: Temperature, dtype: float64

Task: Group by City and find the maximum humidity.

max_humidity = df.groupby('City')['Humidity'].max()

print('Maximum Humidity by City:\n', max_humidity)

Maximum Humidity by City:

City

Chicago 62

Los Angeles 57

New York 52

Name: Humidity, dtype: int64

Task: Group by City and find the minimum wind speed.

min_wind_speed = df.groupby('City')['Wind_Speed'].min()

print('Minimum Wind Speed by City:\n', min_wind_speed)

Minimum Wind Speed by City:

City

Chicago 3

Los Angeles 7

New York 5

Name: Wind_Speed, dtype: int64

12.6 HANDLING MISSING DATA

12.6.1 Demonstration

You can detect missing values using isna() or isnull(), which are equivalent.

import pandas as pd

import numpy as np

data = {

'A': [1, 2, np.nan, 4],

'B': [np.nan, 2, 3, 4],

'C': [1, np.nan, np.nan, 4]
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}

df = pd.DataFrame(data)

# Detecting missing values

print(df.isna()) # or df.isnull()

# Counting missing values in each column

print(df.isna().sum())

A B C

0 False True False

1 False False True

2 True False True

3 False False False

A 1

B 1

C 2

dtype: int64

You can fill missing values using the fillna() method.

# Filling missing values with a specific value

df_filled = df.fillna(0)

print(df_filled)

# Filling missing values with the mean of the column

df_filled_mean = df.fillna(df.mean())

print(df_filled_mean)

A B C

0 1.0 0.0 1.0

1 2.0 2.0 0.0

2 0.0 3.0 0.0

3 4.0 4.0 4.0

A B C

0 1.000000 3.0 1.0

1 2.000000 2.0 2.5

2 2.333333 3.0 2.5

3 4.000000 4.0 4.0

You can drop rows or columns with missing values using the dropna() method.

# Dropping rows with any missing values

df_dropped_rows = df.dropna()

print(df_dropped_rows)

# Dropping columns with any missing values

df_dropped_columns = df.dropna(axis=1)

print(df_dropped_columns)

# Dropping rows only if all values are missing

df_dropped_all = df.dropna(how='all')

print(df_dropped_all)

A B C

3 4.0 4.0 4.0

Empty DataFrame
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Columns: []

Index: [0, 1, 2, 3]

A B C

0 1.0 NaN 1.0

1 2.0 2.0 NaN

2 NaN 3.0 NaN

3 4.0 4.0 4.0

12.6.2 Practice

Given a DataFrame with missing values as below, complete the following tasks.

# Run this cell for this practice

data = {

'Atlanta': [47, 48, np.nan, 52],

'Boston': [np.nan, 32, 31, 37],

'Chicago': [43, np.nan, np.nan, 45],

'Dallas': [56, 53, 58, 65]

}

df = pd.DataFrame(data)

print(df)

Atlanta Boston Chicago Dallas

0 47.0 NaN 43.0 56

1 48.0 32.0 NaN 53

2 NaN 31.0 NaN 58

3 52.0 37.0 45.0 65

Task: Given the DataFrame df with some missing values, fill all the missing values
with zero.

# Fill missing values with zero

df_filled_zero = df.fillna(0)

print(df_filled_zero)

Atlanta Boston Chicago Dallas

0 47.0 0.0 43.0 56

1 48.0 32.0 0.0 53

2 0.0 31.0 0.0 58

3 52.0 37.0 45.0 65

Task: Given the DataFrame df with some missing values, fill all the missing values
with the mean of their respective columns.

# Fill missing values with mean of each column

df_filled_mean = df.fillna(df.mean())

print(df_filled_mean)

Atlanta Boston Chicago Dallas

0 47.0 33.333333 43.0 56

1 48.0 32.000000 44.0 53

2 49.0 31.000000 44.0 58

3 52.0 37.000000 45.0 65
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Task: Given the DataFrame df with some missing values, fill all the missing values
with the median of their respective columns.

# Fill missing values with median of each column

df_filled_median = df.fillna(df.median())

print(df_filled_median)

Atlanta Boston Chicago Dallas

0 47.0 32.0 43.0 56

1 48.0 32.0 44.0 53

2 48.0 31.0 44.0 58

3 52.0 37.0 45.0 65

Task: Given the DataFrame df with some missing values, drop all rows that contain
any missing values.

# Drop rows with any missing values

df_dropped_rows = df.dropna()

print(df_dropped_rows)

Atlanta Boston Chicago Dallas

3 52.0 37.0 45.0 65

Task: Given the DataFrame df with some missing values, drop all columns that contain
any missing values.

# Drop columns with any missing values

df_dropped_columns = df.dropna(axis=1)

print(df_dropped_columns)

Dallas

0 56

1 53

2 58

3 65

12.7 HANDLING DUPLICATE VALUES

In data preprocessing, managing duplicate values is a crucial step to ensure data
quality. pandas provides several methods to detect, filter, and drop duplicate values.

12.7.1 Demonstration

You can detect duplicate rows in a DataFrame using the duplicated() method. This
method returns a Boolean series, indicating whether each row is a duplicate or not.

data = {

'A': [1, 2, 2, 2, 4],

'B': [1, 2, 2, 2, 4],

'C': [1, 2, 2, 3, 4]

}

df = pd.DataFrame(data)

print(df)
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# Detecting duplicates

duplicates = df.duplicated()

print(duplicates)

A B C

0 1 1 1

1 2 2 2

2 2 2 2

3 2 2 3

4 4 4 4

0 False

1 False

2 True

3 False

4 False

dtype: bool

By default, duplicated() considers all columns. You can specify a subset of columns
to check for duplicates using the subset parameter.

# Detecting duplicates based on column 'A'

duplicates_A = df.duplicated(subset='A')

print(duplicates_A)

0 False

1 False

2 True

3 True

4 False

dtype: bool

# Detecting duplicates based on column 'C'

duplicates_C = df.duplicated(subset='C')

print(duplicates_C)

0 False

1 False

2 True

3 False

4 False

dtype: bool

To filter out duplicate rows, you can use the duplicated() method in combination
with Boolean indexing. The ~ sign is the not operator that flips the Boolean value.

# Filtering out duplicate rows

unique_rows = df[~df.duplicated()]

print(unique_rows)

A B C

0 1 1 1

1 2 2 2

3 2 2 3

4 4 4 4



172 � BiteSize Python for Intermediate Learners

# Filtering out duplicate rows based on Column 'A'

unique_rows_A = df[~df.duplicated(subset='A')]

print(unique_rows_A)

A B C

0 1 1 1

1 2 2 2

4 4 4 4

The drop_duplicates() method removes duplicate rows from a DataFrame. By
default, it keeps the first occurrence of each duplicate row and drops the rest.

# Dropping duplicate rows

df_unique = df.drop_duplicates()

print(df_unique)

A B C

0 1 1 1

1 2 2 2

3 2 2 3

4 4 4 4

You can also specify which columns to consider when identifying duplicates using the
subset parameter.

# Dropping duplicates based on column 'A'

df_unique_A = df.drop_duplicates(subset='A')

print(df_unique_A)

A B C

0 1 1 1

1 2 2 2

4 4 4 4

To keep the last occurrence of each duplicate row instead of the first, use the keep

parameter with the value 'last'.

# Dropping duplicates and keeping the last occurrence

df_unique_last = df.drop_duplicates(keep='last')

print(df_unique_last)

A B C

0 1 1 1

2 2 2 2

3 2 2 3

4 4 4 4

Additionally, you can drop duplicates in place without creating a new DataFrame by
setting the inplace parameter to True.

# Dropping duplicates in place

df.drop_duplicates(inplace=True)

print(df)

A B C

0 1 1 1

1 2 2 2
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3 2 2 3

4 4 4 4

12.7.2 Practice

Given a DataFrame with duplicate values as below, complete the following tasks.

# Run this cell for this practice

data = {

'Mon': [47, 48, 48, 52, 52],

'Tue': [32, 32, 31, 37, 37],

'Wed': [43, 42, 42, 45, 45],

'Thu': [56, 53, 58, 65, 65],

'Fri': [56, 53, 58, 65, 65]

}

index = ['Atlanta', 'Boston', 'Chicago', 'Dallas', 'dallas']

df = pd.DataFrame(data, index=index)

print(df)

Mon Tue Wed Thu Fri

Atlanta 47 32 43 56 56

Boston 48 32 42 53 53

Chicago 48 31 42 58 58

Dallas 52 37 45 65 65

dallas 52 37 45 65 65

Task: Given the DataFrame df, detect which rows are duplicates.

# Detecting duplicate rows

duplicates = df.duplicated()

print(duplicates)

Atlanta False

Boston False

Chicago False

Dallas False

dallas True

dtype: bool

Task: Given the DataFrame df, drop all duplicate rows and keep only the first occur-
rence.

# Dropping duplicate rows

df_unique = df.drop_duplicates()

print(df_unique)

Mon Tue Wed Thu Fri

Atlanta 47 32 43 56 56

Boston 48 32 42 53 53

Chicago 48 31 42 58 58

Dallas 52 37 45 65 65

Task: Given the DataFrame df, drop all duplicate rows and keep only the last occur-
rence.
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# Dropping duplicate rows

df_unique = df.drop_duplicates(keep='last')

print(df_unique)

Mon Tue Wed Thu Fri

Atlanta 47 32 43 56 56

Boston 48 32 42 53 53

Chicago 48 31 42 58 58

dallas 52 37 45 65 65

Task: Given the DataFrame df, drop duplicate rows based on column Mon.

# Dropping duplicate rows based on column 'Mon'

df_unique_Mon = df.drop_duplicates(subset='Mon')

print(df_unique_Mon)

Mon Tue Wed Thu Fri

Atlanta 47 32 43 56 56

Boston 48 32 42 53 53

Dallas 52 37 45 65 65

Task: Given the DataFrame df, drop duplicate rows based on column Fri.

# Dropping duplicate rows based on column 'Fri'

df_unique_Fri = df.drop_duplicates(subset='Fri')

print(df_unique_Fri)

Mon Tue Wed Thu Fri

Atlanta 47 32 43 56 56

Boston 48 32 42 53 53

Chicago 48 31 42 58 58

Dallas 52 37 45 65 65

12.8 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is Pandas, and why is it a popular library for data analysis in Python?
• How does Pandas simplify working with structured data?
• What are the main use cases for Pandas in data manipulation and analysis?
• Why is Pandas considered essential for data science workflows?
• Filter rows in a DataFrame based on a condition.
• Create a small DataFrame and sort it by a specific column.
• What is the significance of the index in Pandas?
• Can Pandas handle time series data effectively? If so, how?
• What are some scenarios where using Pandas might not be the best choice?
• How does Pandas integrate with other libraries like NumPy and Matplotlib?
• How do you optimize performance when working with DataFrames in Pandas?
• Discuss how Pandas handles categorical data and its benefits.
• Use Pandas for exploratory data analysis on a real-world dataset.
• Merge or join multiple DataFrames using Pandas methods.
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• Clean a messy dataset using Pandas, such as removing duplicates and handling
missing values.

• Use Pandas for financial data analysis, like calculating moving averages.
• Prepare data for machine learning models with Pandas.
• How do you debug issues with incorrectly parsed data types in a Pandas

DataFrame?
• Why might a Pandas operation give unexpected results?

12.9 EXPLORE MORE OF PANDAS

At the end, here are the official documentations of pandas:

• 10 minutes to pandas: https://pandas.pydata.org/pandas-docs/stable/user_
guide/10min.html

• Cookbook: https://pandas.pydata.org/pandas-docs/stable/user_guide/
cookbook.html#cookbook

• User guide: https://pandas.pydata.org/pandas-docs/stable/user_guide/
index.html

https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html#cookbook
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/cookbook.html#cookbook
https://pandas.pydata.org/pandas-docs/stable/user_guide/index.html
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S
ection III: Data Visualization focuses on the powerful tools available in
Python for creating insightful data visualizations. You’ll explore three essential

packages: Matplotlib, Seaborn, and Plotly, each offering unique capabilities for
visualizing data. The section covers a variety of plot types, including scatter, line,
area, bar, histogram, and pie charts, with an emphasis on how to effectively use color,
size, and shape to distinguish different data points. Additionally, you’ll learn how to
create interactive visualizations using Plotly, enabling more dynamic exploration of
data. By mastering these tools, you’ll be able to present data in a way that is both
informative and visually appealing.

By the end of this section, you will be able to:

• Create a wide range of static plots using Matplotlib to visualize data effectively.

• Utilize Seaborn for more advanced and professional visualizations.

• Understand and apply the use of color, size, and shape to enhance data differ-
entiation in plots.

• Develop interactive data visualizations using Plotly to allow for more engaging
data exploration.

• Choose the appropriate visualization techniques and tools to best represent
different types of data.
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C H A P T E R 13

Matplotlib (Basic)

D
ata visualization is essential for effectively delivering information, making
complex data easier to understand. Matplotlib, a widely used Python library,

offers a simple and intuitive way to create visualizations. You will learn the basics of
Matplotlib, from creating a simple plot to customize it to meet your specific needs.
You’ll learn how to plot data points, adjust labels and titles, and modify visual
elements to enhance clarity. By the end, you’ll have a solid foundation for using
Matplotlib to present data more effectively. Are you ready? Let’s get started!

13.1 INTRODUCTION

13.1.1 Explanation

Matplotlib is a powerful and widely used plotting library in Python, designed for
creating static, animated, and interactive visualizations. It serves as a fundamental
tool for data scientists and analysts, enabling them to convert complex datasets into
comprehensible graphs and charts. The importance of Matplotlib lies in its versatility
and ease of use; it can produce a wide range of plots, including line charts, bar charts,
histograms, scatter plots, and more, with just a few lines of code. This makes it essen-
tial for exploratory data analysis and presenting findings effectively. Among its pros,
Matplotlib offers extensive customization options, fine control over plot aesthetics,
and integration with other libraries like NumPy and pandas. However, it has some
cons, such as a steeper learning curve for beginners due to its vast array of functions
and sometimes cumbersome syntax for complex visualizations. Despite these draw-
backs, Matplotlib remains a cornerstone in the Python data visualization ecosystem,
appreciated for its robustness and comprehensive capabilities.

To utilize the Matplotlib package in Python, users need to import the pyplot module.
The conventional way to do this is by using the alias plt for simplicity and conve-
nience. This is done by including the following line at the beginning of your script:
import matplotlib.pyplot as plt. This practice is widely adopted in the data

DOI: 10.1201/9781003624868-13 181

https://doi.org/10.1201/9781003624868-13


182 � BiteSize Python for Intermediate Learners

Figure 13.1 A basic line plot showing a single line representing data.

science community, ensuring that your code is consistent with common conventions
and easily understood by others.

import matplotlib.pyplot as plt

13.2 A SIMPLE PLOT

13.2.1 Demonstration

Let’s start with creating a simple line plot (Figure 13.1) to get familiar with Mat-
plotlib.

Syntax: plt.plot(x, y)

• x: The data for the x-axis.
• y: The data for the y-axis.

# Sample data

x = [1, 2, 3, 4]

y = [1, 4, 9, 16]

# Plotting the data

plt.plot(x, y)

# Display the plot

plt.show()

13.2.2 Practice

We use the following dummy datasets for the practices:
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Figure 13.2 A line plot comparing two variables d1 and d2.

# Run this cell for all the practices

import numpy as np

d1 = np.linspace(0, 1, 10)

d2 = d1 ** 2

d3 = d1 ** 0.5

Task: Make a simple plot for d1 vs d2 (Figure 13.2).

plt.plot(d1, d2)

Task: Make a plot for d1 vs d3 (Figure 13.3).

plt.plot(d1, d3)

13.3 TITLES AND LABELS

The plots we created previously are good, but too simple. They are missing key
information, such as what are the labels of the x-axes and y-axes, and what is the
title, etc. Let’s add some flavors.

13.3.1 Demonstration

Adding titles and labels helps in understanding what the plot represents and the axes
values. It makes the plot more informative and easier to read (Figure 13.4).

Syntax:

• plt.title('Title'): Adds a title to the plot.
• plt.xlabel('Label'): Adds a label to the x-axis.
• plt.ylabel('Label'): Adds a label to the y-axis.
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Figure 13.3 A line plot comparing two variables d1 and d3.

# Sample data

x = [1, 2, 3, 4]

y = [1, 4, 9, 16]

# Plotting the data

plt.plot(x, y)

# Adding title and labels

plt.title('Simple Line Plot')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

# Display the plot

plt.show()

13.3.2 Practice

Task: Plot d1 vs d2, make title as 'Square', x-label as 'x', y-label as 'x square'

(Figure 13.5).

# Plotting d1 vs d2

plt.plot(d1, d2)

# Adding title to the plot

plt.title('Square')

# Adding label to the x-axis

plt.xlabel('x')

# Adding label to the y-axis

plt.ylabel('x square')
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Figure 13.4 A line plot with a title describing the data and labels on the x and y axes.

Figure 13.5 A line plot comparing d1 and d2, with a title and labels for clarity.

# Displaying the plot

plt.show()

Task: Plot d1 vs d3, make title as 'Square Root', x-label as 'x', y-label as 'x sqrt'

(Figure 13.6).

# Plotting d1 vs d3

plt.plot(d1, d3)
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Figure 13.6 A line plot comparing d1 and d3, with a title and axis labels.

# Adding title to the plot

plt.title('Square Root')

# Adding label to the x-axis

plt.xlabel('x')

# Adding label to the y-axis

plt.ylabel('x sqrt')

# Displaying the plot

plt.show()

13.4 LEGEND

13.4.1 Demonstration

Legends help in identifying different data series in a plot, especially when multiple
lines or datasets are plotted together (Figure 13.7).

Syntax:

• plt.plot(x, y, label='Label'): Adds a label to the plot.
• plt.legend(): Displays the legend on the plot.

# Sample data

x = [1, 2, 3, 4]

y1 = [1, 4, 9, 16]

y2 = [1, 2, 3, 4]

# Plotting the data

plt.plot(x, y1, label='Square')
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Figure 13.7 A line plot with a legend to distinguish between data series.

plt.plot(x, y2, label='Linear')

# Adding title, labels, and legend

plt.title('Line Plot with Legend')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.legend()

# Display the plot

plt.show()

13.4.2 Practice

Task: Plot d1 vs d2, plot label as 'Square'. Plot d1 vs d3, plot label as 'Square

Root'. Make x-label as 'x'. Make the title as 'Square vs SQRT'. Create the legend
(Figure 13.8).

plt.plot(d1, d2, label = 'Square')

plt.plot(d1, d3, label = 'Square Root')

plt.xlabel('x')

plt.title('Square VS SQRT')

plt.legend()

plt.show()
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Figure 13.8 A line plot of d1 and d2, including a legend to identify each line.

13.5 CUSTOMIZATION

13.5.1 Demonstration

Customizing plots involves changing colors, line styles, and markers to make plots
visually appealing and easier to distinguish (Figure 13.9).

Syntax:

• plt.plot(x, y, color='color', linestyle='style', marker='marker',

label='Label'): Customizes the line plot.

# Sample data

x = [1, 2, 3, 4]

y1 = [1, 4, 9, 16]

y2 = [1, 2, 3, 4]

# Plotting the data with customizations

plt.plot(x, y1, color='g', linestyle='--', marker='o', label='Square')

plt.plot(x, y2, color='b', linestyle='-', marker='x', label='Linear')

# Adding title, labels, legend, and grid

plt.title('Customized Line Plot')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.legend()

plt.grid(True)

# Display the plot

plt.show()
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Figure 13.9 A plot displaying two customized lines with different styles.

There are plenty of ways to customize your plot with Matplotlib. We summarized
some common settings for color, linestyle, marker, and marker size in Table 13.1.

13.5.2 Practice

Task: Create a data visualization (Figure 13.10) that:

• Plot d1 vs d2, with color as 'r', linestyle as ':', marker as 'd', plot label as
'Square'.

• Plot d1 vs d3, with color as 'b', linestyle as '-', marker as 'h', plot label as
'Square Root'.

• Make x-label as 'x'.
• Make title as 'Square VS SQRT'.
• Create the grid.
• Create the legend.

plt.plot(d1, d2, color='r', linestyle=':', marker='d', label = 'Square')

plt.plot(d1, d3, color='b', linestyle='-', marker='h', label = 'SQRT')

plt.xlabel('x')

plt.title('Square VS SQRT')

plt.grid()

plt.legend()

plt.show()
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TABLE 13.1 Matplotlib Plot Customization
Category Code Explanation

Color color='r' Red

Color color='g' Green

Color color='b' Blue

Color color='k' Black

Color color='y' Yellow

Color color='m' Magenta

Color color='c' Cyan

Color color='#1f77b4' Hex code for custom colors

Linestyle linestyle='-' Solid line

Linestyle linestyle='--' Dashed line

Linestyle linestyle='-.' Dash-dot line

Linestyle linestyle=':' Dotted line

Marker marker='o' Circle marker

Marker marker='s' Square marker

Marker marker='x' X marker

Marker marker='*' Star marker

Marker marker='d' Diamond marker

Marker marker='v' Triangle down marker

Marker marker='p' Pentagon marker

Marker marker='h' Hexagon marker

Marker Size markersize=5 Small markers

Marker Size markersize=10 Medium markers

Marker Size markersize=15 Large markers

13.6 ANNOTATION

13.6.1 Demonstration

Annotations are useful for highlighting specific data points or adding extra informa-
tion to the plot (Figure 13.11).

Syntax:

• plt.annotate('Text', xy=(x, y), xytext=(x_text, y_text),

arrowprops=dict()): Adds an annotation with an arrow pointing to
the specified data point.

# Sample data

x = [1, 2, 3, 4, 5, 6]

y = [1, 4, 9, 16, 15, 12]

# Plotting the data

plt.plot(x, y)
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Figure 13.10 A plot showing two customized lines for variables d1, d2, and d3.

Figure 13.11 A line plot with an annotation highlighting a specific point on the line.

# Adding title, labels, and annotation

plt.title('Annotated Plot')

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.annotate('Highest point', xy=(4, 16), xytext=(2, 15.5),

arrowprops=dict(facecolor='black', shrink=0.05))

# Display the plot

plt.show()
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13.7 SUBPLOTS

13.7.1 Demonstration

Creating subplots allows you to display multiple plots in a single figure, which is
useful for comparing different datasets or visualizations (Figure 13.12).

Syntax: fig, axs = plt.subplots(nrows, ncols)

• nrows: Number of rows of subplots.
• ncols: Number of columns of subplots.

# Sample data

x = np.linspace(0, 1, 10)

y1 = x*2

y2 = x**2

y3 = x**3

y4 = np.sqrt(x)

# Creating subplots

fig, axs = plt.subplots(2, 2)

# Plotting the data

axs[0,0].plot(x, y1, color='g', linestyle='--', marker='o')

axs[0,0].set_title('Square')

axs[0,1].plot(x, y2, color='b', linestyle='-', marker='x')

axs[0,1].set_title('Linear')

axs[1,0].plot(x, y3, color='r', linestyle='-', marker='D')

axs[1,0].set_title('Cube')

axs[1,1].plot(x, y4, color='y', linestyle='-', marker='d')

axs[1,1].set_title('Sqrt')

# Display the plots

plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

plt.show()

There is an alternative way of creating subplots using plt.subplot(nrows, ncols,

index) (Figure 13.13).

Syntax: plt.subplot(nrows, ncols, index)

• nrows: Number of rows of subplots.
• ncols: Number of columns of subplots.
• index: The position of the subplot you are currently working on.

Using plt.subplot(nrows, ncols, index) provides a flexible way to manage mul-
tiple plots in a single figure. You specify the total number of rows and columns of
subplots, and the index indicates the position of the current subplot. This method is
useful for creating more complex grid layouts of plots.
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Figure 13.12 A plot with four subplots, each with its own title.

plt.subplot(2, 2, 1)

plt.plot(x, y1, color='g', linestyle=':', marker='o', label = 'Linear')

plt.legend()

plt.subplot(2, 2, 2)

plt.plot(x, y2, color='b', linestyle=':', marker='x', label = 'Square')

plt.legend()

plt.subplot(2, 2, 3)

plt.plot(x, y3, color='r', linestyle=':', marker='D', label = 'Cube')

plt.legend()

plt.subplot(2, 2, 4)

plt.plot(x, y4, color='y', linestyle=':', marker='d', label = 'Sqrt')

plt.legend()

plt.show()

13.8 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Why is Matplotlib widely used for data visualization in Python?
• What is the purpose of labels, titles, legends, and grids?
• How do subplots help organize multiple visualizations in a single figure?
• What is the purpose of a legend in a plot, and how do you add one in Matplotlib?
• What are some ways to control the placement and styling of legends?
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Figure 13.13 A plot with four subplots, each with its own legend.

• How to use line styles and markers together to make a plot more informative?
• What is a common mistake when adding annotations, and how can it be

avoided?
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Matplotlib (Advanced)

B
uilding on the basic understanding of Matplotlib, we will learn a variety
of advanced plots to better visualize different types of data. We’ll explore bar

charts, histograms, scatter plots, pie charts, box plots, heatmaps, etc., learning how
to customize each one to highlight key insights. Additionally, we’ll discuss how to
choose the right plot for different datasets, helping you present information clearly
and effectively. By the end of this chapter, you’ll be equipped with the skills to create
diverse visualizations and make data-driven decisions with confidence. Are you ready?
Let’s get started!

14.1 INTRODUCTION

Matplotlib is a comprehensive library for creating static, animated, and interactive
visualizations in Python. It is particularly adept at producing plots that look like
those from MATLAB. This tutorial introduces different types of plots available in
Matplotlib, using various dummy datasets, and explains their purposes.

import matplotlib.pyplot as plt

import numpy as np

14.2 LINE PLOT

14.2.1 Demonstration

A line plot is useful for displaying data trends over intervals. It shows information as
a series of data points connected by straight line segments.

Syntax: plt.plot(x, y, options)

The following line plot (Figure 14.1) shows the temperature variation over five days.
Adding a title and labels helps understand what the axes represent.
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Figure 14.1 A line plot illustrating temperature changes over several days.

# Dummy data

days = [1, 2, 3, 4, 5]

temperatures = [22, 23, 21, 25, 24]

# Creating the line plot

plt.plot(days, temperatures, marker='o', linestyle='-', color='b')

# Adding title and labels

plt.title('Temperature Over Days')

plt.xlabel('Day')

plt.ylabel('Temperature (°C)')

# Show plot

plt.show()

14.2.2 Practice

Task: Create a simple line plot (Figure 14.2) with x values [1, 2, 3, 4, 5] and y
values [1, 9, 4, 6, 15].

x = [1, 2, 3, 4, 5]

y = [1, 9, 4, 6, 15]

plt.plot(x, y)

plt.title('Simple Line Plot')

plt.xlabel('X values')

plt.ylabel('Y values')

plt.show()
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Figure 14.2 A simple line plot displaying data trends.

14.3 BAR PLOT

14.3.1 Demonstration

Bar plots are useful for comparing quantities across different categories.

Syntax: plt.bar(x, height, options)

The following bar plot (Figure 14.3) compares values across four categories. Different
colors enhance visual distinction between bars.

# Dummy data

categories = ['A', 'B', 'C', 'D']

values = [5, 7, 3, 8]

# Creating the bar plot

plt.bar(categories, values, color=['r', 'g', 'b', 'c'])

# Adding title and labels

plt.title('Category Values')

plt.xlabel('Category')

plt.ylabel('Values')

# Show plot

plt.show()

14.3.2 Practice

Task: Create a bar plot (Figure 14.4) with categories [‘A’, ‘B’, ‘C’, ‘D’] and
values [4, 7, 1, 8].
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Figure 14.3 A bar plot representing categorical values with bars of varying heights.

Figure 14.4 A basic bar plot showing comparisons between categories.

categories = ['A', 'B', 'C', 'D']

values = [4, 7, 1, 8]

plt.bar(categories, values, color='blue')

plt.title('Bar Plot')

plt.xlabel('Categories')

plt.ylabel('Values')

plt.show()
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Figure 14.5 A histogram plot displaying the distribution of data.

14.4 HISTOGRAM

14.4.1 Demonstration

Histograms are used to represent the distribution of a dataset by dividing it into bins
and counting the number of observations in each bin.

Syntax: plt.hist(x, bins, options)

The following histogram (Figure 14.5) shows the distribution of data values. Bins
help to understand the frequency of each range of values.

# Dummy data

data = [1, 3, 2, 4, 3, 2, 4, 4, 2, 4, 2, 2, 5, 2, 5]

# Creating the histogram

plt.hist(data, bins=5, edgecolor='black')

# Adding title and labels

plt.title('Data Distribution')

plt.xlabel('Value')

plt.ylabel('Frequency')

# Show plot

plt.show()

14.4.2 Practice

Task: Create a histogram (Figure 14.6) with the 100 random integers within [0,

100] and 5 bins.
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Figure 14.6 A histogram showing the distribution of random integers.

data = np.random.randint(0, 100, 100)

plt.hist(data, bins=5)

plt.title('Histogram')

plt.xlabel('Data values')

plt.ylabel('Frequency')

plt.show()

14.5 SCATTER PLOT

14.5.1 Demonstration

Scatter plots are useful for showing the relationship between two variables.

Syntax: plt.scatter(x, y, options)

The following scatter plot (Figure 14.7) shows the relationship between the x and y
variables. Each point represents a pair of values.

# Dummy data

x = [5, 7, 8, 7, 2, 17, 2, 9, 4, 11]

y = [99, 86, 87, 88, 100, 86, 103, 87, 94, 78]

# Creating the scatter plot

plt.scatter(x, y, color='g')

# Adding title and labels

plt.title('Scatter Plot of X vs Y')

plt.xlabel('X')

plt.ylabel('Y')
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Figure 14.7 A basic scatter plot showing data points.

# Show plot

plt.show()

14.5.2 Practice

Task: Create a scatter plot (Figure 14.8) with x values [1, 2, 3, 4, 5] and y values
[2, 3, 5, 7, 11].

x = [1, 2, 3, 4, 5]

y = [2, 3, 5, 7, 11]

plt.scatter(x, y, color='red')

plt.title('Scatter Plot')

plt.xlabel('X values')

plt.ylabel('Y values')

plt.show()

14.6 PIE CHART

14.6.1 Demonstration

Pie charts are useful for showing the proportion of different categories.

Syntax: plt.pie(data, options)

The following pie chart (Figure 14.9) shows the proportion of different fruits in a
dataset. The autopct parameter displays the percentage of each category.
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Figure 14.8 A scatter plot displaying the relationship between variables x and y.

# Dummy data

labels = ['Apple', 'Banana', 'Cherry', 'Date']

sizes = [15, 30, 45, 10]

# Creating the pie chart

plt.pie(sizes, labels=labels, colors=['r', 'y', 'c', 'm'])

# Adding title

plt.title('Fruit Proportions')

# Show plot

plt.show()

14.6.2 Practice

Task: Create a pie chart (Figure 14.10) with labels ['Apple', 'Samsung',

'Google', 'Others'] for the smart-phone industry and their market shares [30,

28, 22, 20].

labels = ['Apple', 'Samsung', 'Google', 'Others']

sizes = [30, 28, 22, 20]

plt.pie(sizes, labels=labels)

plt.title('Pie Chart')

plt.show()
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Figure 14.9 A pie plot illustrating fruit proportions with slices representing each fruit.

Figure 14.10 A pie plot showing the market share of different smartphone companies.

14.7 BOX PLOT

14.7.1 Demonstration

Box plots are useful for visualizing the distribution of a dataset through its quartiles.

Syntax: plt.boxplot(data, options)

The following box plot (Figure 14.11) visualizes the spread and skewness of the
dataset. It highlights the median, quartiles, and potential outliers.
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Figure 14.11 A basic box plot displaying the distribution of data.

# Dummy data

data = [1, 2, 2, 3, 4, 6, 6, 7, 8, 9, 10]

# Creating the box plot

plt.boxplot(data)

# Adding title and labels

plt.title('Box Plot of Data')

plt.xlabel('Data')

plt.ylabel('Value')

# Show plot

plt.show()

14.7.2 Practice

Task: Create a box plot (Figure 14.12) for the 100 random floats within [0, 1]

data = np.random.rand(100)

plt.boxplot(data)

plt.title('Box Plot')

plt.ylabel('Values')

plt.show()

14.8 HEATMAP

14.8.1 Demonstration

Heatmaps are useful for visualizing matrix-like data.
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Figure 14.12 A basic box plot for random integers.

Syntax: plt.imshow(data, options)

The following heatmap (Figure 14.13) represents random data values in a matrix
format. Different colors represent different data ranges.

import numpy as np

# Dummy data

matrix = np.random.rand(10,10)

# Creating the heatmap

plt.imshow(matrix, cmap='viridis')

# Adding title

plt.title('Heatmap of Random Data')

# Show plot

plt.show()

14.8.2 Practice

Task: Create a heatmap (Figure 14.14) for a 4x4 matrix with random values.

data = np.random.rand(4, 4)

plt.imshow(data)

plt.title('Heatmap')

plt.colorbar()

plt.show()
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Figure 14.13 A heatmap visualizing random data with color intensity.

Figure 14.14 A heatmap displaying random data using a color gradient.
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Figure 14.15 A plot with nine subplots arranged in a grid.

14.9 SUBPLOTS AGAIN

14.9.1 Demonstration

We have learned subplots that enable us to put multiple plots together. Let’s revisit
it and organize various type of plots together to make it a dashboard (Figure 14.15).

# Make two dummy datasets

x = sorted(np.random.rand(100))

y = x + np.random.rand(100)

z = x + np.random.randn(100)

# Creating subplots

fig, axs = plt.subplots(3, 3)

axs[0,0].hist(x, bins=10)

axs[0,0].set_title('x')

axs[0,1].scatter(x, y)

axs[0,1].set_title('x vs y')

axs[0,2].scatter(x, z)

axs[0,2].set_title('x vs z')
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axs[1,0].scatter(y, x)

axs[1,0].set_title('y vz x')

axs[1,1].hist(y, bins=10)

axs[1,1].set_title('y')

axs[1,2].scatter(y, z)

axs[1,2].set_title('y vs z')

axs[2,0].scatter(z, x)

axs[2,0].set_title('z vs x')

axs[2,1].scatter(z, y)

axs[2,1].set_title('z vs y')

axs[2,2].hist(z, bins=10)

axs[2,2].set_title('z')

# Display the plots

plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

plt.show()

14.9.2 Practice

Task: Create multiple line plots (Figure 14.16) in a single figure with x values [1, 2,

3, 4, 5] and two sets of y values [2, 3, 5, 4, -1] and [4, 2, 8, 9, 5].

x = [1, 2, 3, 4, 5]

y1 = [2, 3, 5, 4, -1]

y2 = [4, 2, 8, 9, 5]

plt.plot(x, y1, label='y1')

plt.plot(x, y2, label='y2')

plt.title('Multiple Line Plots')

plt.xlabel('X values')

plt.ylabel('Y values')

plt.legend()categories = ['A', 'B', 'C', 'D']

plt.show()

Task: Create multiple line plots (Figure 14.17) in a single figure with x values [1,

2, 3, 4, 5] and two sets of y values [2, 3, 5, 4, -1], label as year2020, and
[4, 2, 8, 9, 5], label as year2024, with the category as ['Agent1', 'Agent2',

'Agent3', 'Agent4', 'Agent5']. Create a 2 by 2 multiplots that has:

1. A line plot of x values as x, y1 and y2 values as y in the same plot.
2. A scatter plot of y1 and y2.
3. A bar plot of y1 and category.
4. A bar plot of y2 and category.

x = [1, 2, 3, 4, 5]

y1 = [2, 3, 5, 4, -1]

y2 = [4, 2, 8, 9, 5]

category = ['Agent1', 'Agent2', 'Agent3', 'Agent4', 'Agent5']
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Figure 14.16 A plot displaying multiple lines, each representing a different relationship.

Figure 14.17 A plot divided into four subplots for comparing data.

fig, axs = plt.subplots(2, 2)

axs[0, 0].plot(x, y1, label='year2020')
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TABLE 14.1 Matplotlib Plot Types
Plot Type Basic Syntax Scenario

Line Plot plt.plot(x, y) Shows trends or changes over time. Ideal
for continuous data. Example: Tracking
daily temperature changes over a month.

Bar Plot plt.bar(x, y) Compares categories or groups. Suitable
for categorical data. Example: Comparing
sales across different product categories.

Horizontal Bar plt.barh(x, y) Compares categories horizontally, useful
for long labels. Example: Visualizing the
population of countries with long names.

Histogram plt.hist(data) Displays the distribution of a dataset. Ideal
for frequency analysis. Example: Analyzing
the distribution of students’ test scores.

Scatter Plot plt.scatter(x, y) Shows relationships between two variables.
Example: Examining the relationship be-
tween hours studied and exam scores.

Pie Chart plt.pie(data) Represents proportions of a whole. Best for
percentage distribution. Example: Showing
the market share of smartphone brands.

Box Plot plt.boxplot(data) Displays data distribution, highlighting
median and outliers. Example: Comparing
monthly salaries across departments.

Heatmap plt.imshow(data) Visualizes matrix-like data, often for cor-
relation or intensity maps. Example: Rep-
resenting the correlation between multiple
economic indicators.

axs[0, 0].plot(x, y2, label='year2024')

axs[0, 0].set_title('Yearly Comparison')

axs[0, 0].legend()

axs[0, 1].scatter(y1, y2)

axs[0, 1].set_title('Agent Comparison')

axs[1, 0].bar(category, y1, color='blue')

axs[1, 0].set_title('Year 2020 Agents')

axs[1, 1].bar(category, y2, color='Green')

axs[1, 1].set_title('Year 2024 Agents')

plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0)

plt.show()

We summarize the different types of plots in Table 14.1.
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14.10 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What are the different types of plots available in Matplotlib, and when should
each be used?

• Provide an example of a histogram to show the distribution of test scores.
• What is the difference between a bar plot and a histogram?
• How do you customize the size and color of points in a scatter plot?
• Can you add labels to each slice of a pie chart? If so, how?
• What does a box plot reveal about a dataset’s median and variability?
• How do you determine the number of bins to use in a histogram?
• How can you create grouped bar plots to compare data across multiple cate-

gories?
• Discuss how to use subplots to display multiple types of plots (e.g., scatter and

line) in a single figure.
• How can you use a stacked bar plot to visualize cumulative data?
• How to customize the angles, colors, and explode properties of a pie chart?
• Why might a box plot not display outliers, and how can you enable them?

14.11 EXPLORE MORE OF MATPLOTLIB

At the end, here are the official documentations of Matplotlib:

• Quick guide: https://matplotlib.org/stable/users/explain/quick_start.html
• Plot types: https://matplotlib.org/stable/plot_types/index
• User guide: https://matplotlib.org/stable/users/index

https://matplotlib.org/stable/users/explain/quick_start.html
https://matplotlib.org/stable/plot_types/index
https://matplotlib.org/stable/users/index
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Seaborn

W
e will continue our journey in data visualization by exploring Seaborn, a pow-
erful library built on top of Matplotlib that simplifies the process of creating

beautiful and informative plots. We’ll learn how to generate different types of visual-
izations, including relational, distribution, and categorical plots, making it easier to
uncover patterns in data. Additionally, we’ll learn how to create advanced plots with
colors, styles, facet grids, and LMplot, and discover how to create multiple plots for
richer data insights. Are you ready? Let’s get started!

15.1 INTRODUCTION

15.1.1 Explanation

Seaborn is a Python data visualization library based on Matplotlib. It provides a
high-level interface for drawing attractive and informative statistical graphics. It is
particularly well-suited for visualizing data from pandas DataFrames and arrays of
data, making it a valuable tool for data analysis and exploration.

There are many reasons of the popularity of Seaborn. Its high-level interface makes
it easy to create complex visualizations with just a few lines of code. It comes with
a variety of built-in themes and color palettes to make your plots look more aesthet-
ically pleasing. Seaborn works seamlessly with pandas DataFrames, making it easy
to visualize data stored in these structures. Many functions of Seaborn automatically
estimate and plot linear regression models, KDE plots, etc.

While Seaborn is powerful and easy to use, it is built on top of Matplotlib, which offers
more flexibility and control over plot customization. Although Seaborn simplifies
many aspects of data visualization, understanding all its features and parameters
can take some time. For very large datasets, Seaborn may be slower than Matplotlib
due to its higher-level interface and additional functionality.

In summary, seaborn is an excellent tool for creating attractive and informative sta-
tistical visualizations with minimal effort. Its integration with Pandas and Matplotlib
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makes it a powerful addition to any data scientist's toolkit. As we proceed with this
tutorial, we’ll explore more features and capabilities of Seaborn, including various
plot types, customization options, and advanced functionalities.

15.1.2 Major categories

Seaborn categorizes plots into three main general types:

1. Relational Plots: Used to understand the relationship between two or more
variables.

2. Distribution Plots: Used to visualize the distribution of a dataset.
3. Categorical Plots: Used to visualize the relationship between categorical data

and other variables.

15.1.3 Get started

Similar to Matplotlib, we need to import Seaborn package to use it. In convention, we
use import seaborn as sns to give an alias sns for Seaborn. In this demonstration,
we will use the built-in dataset, tips in Seaborn.

# Load packages

import seaborn as sns

import matplotlib.pyplot as plt

import pandas as pd

# Load the tips dataset for this tutorial

tips = sns.load_dataset('tips')

tips.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 244 entries, 0 to 243

Data columns (total 7 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 total_bill 244 non-null float64

1 tip 244 non-null float64

2 sex 244 non-null category

3 smoker 244 non-null category

4 day 244 non-null category

5 time 244 non-null category

6 size 244 non-null int64

dtypes: category(4), float64(2), int64(1)

memory usage: 7.4 KB

15.2 RELATIONAL PLOTS

15.2.1 Demonstration

Statistical analysis involves exploring how variables in a dataset interact and how
these interactions are influenced by other variables. Visualization plays a crucial role
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Figure 15.1 A scatter plot showing the correlation between total bill and tip amounts.

in this process because it allows the human eye to detect trends and patterns that
signify relationships.

The function relplot() operates at the figure level and is used to visualize statistical
relationships through two main types of plots: scatter plots and line plots.

Scatter Plot (kind='scatter'): A scatter plot is the default plot type for relplot().
It shows the relationship between two numerical variables (Figure 15.1).

# Create a scatter plot

sns.relplot(data=tips, x='total_bill', y='tip', kind='scatter')

# Show the plot

plt.show()

Line Plot (kind='line'): A line plot is used to show the relationship between two
numerical variables, with data points connected by lines. It is useful for visualizing
trends over time or ordered categories.

If there are multiple measurements for the same value of the x variable, the default
behavior in seaborn is to aggregate the multiple measurements at each x value by
plotting the mean and the 95% confidence interval around the mean (Figure 15.2).

# Create a line plot

sns.relplot(data=tips, x='size', y='total_bill', kind='line')
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Figure 15.2 A line plot displaying the relationship between total bill and party size.

# Show the plot

plt.show()

15.2.2 Practice

Task: Create a scatter relational plot (Figure 15.3) for 'time' and 'total_bill'.

# Create a scatter plot

sns.relplot(data=tips, x='time', y='total_bill')

# Show the plot

plt.show()

Task: Create a line relational plot (Figure 15.4) for 'time' and 'total_bill'.

# Create a line plot

sns.relplot(data=tips, x='time', y='total_bill', kind='line')

# Show the plot

plt.show()

Task: Create a scatter relational plot (Figure 15.5) for 'day' and 'total_bill'.

# Create a scatter plot

sns.relplot(data=tips, x='day', y='total_bill')
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Figure 15.3 A scatter plot showing the relationship between total bill amount and time

of day.

Figure 15.4 A line plot showing how total bill amount varies with the time of day.
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Figure 15.5 A scatter plot showing the relationship between total bill and day of the

week.

# Show the plot

plt.show()

Task: Create a line relational plot (Figure 15.6) for 'day' and 'total_bill'.

# Create a line plot

sns.relplot(data=tips, x='day', y='total_bill', kind='line')

# Show the plot

plt.show()

15.3 DISTRIBUTION PLOTS

15.3.1 Demonstration

The displot() function in Seaborn is for visualizing the distribution of a dataset.

Histogram (kind='hist'): A histogram displays the distribution of a dataset by
dividing the data into bins and counting the number of observations in each bin. The
following histogram (Figure 15.7) shows the distribution of the total bill amounts in
the 'tips' dataset.

# Create a histogram

sns.displot(tips, x='total_bill', kind='hist')
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Figure 15.6 A line plot showing total bill amounts across different days of the week.

Figure 15.7 A basic histogram plot showing the distribution of total bill amounts.

# Show the plot

plt.show()
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Figure 15.8 A histogram plot of total bill amounts with more bins for finer detail.

We can change the number of bins by using the keywords bins to modify the granu-
larity of the distribution (Figure 15.8).

# Create a histogram with 100 bins

sns.displot(tips, x='total_bill', kind='hist', bins = 100)

# Show the plot

plt.show()

Kernel Density Estimate Plot (kind='kde'): A kernel density estimate (KDE) plot is
a smoothed version of the histogram, which estimates the probability density function
of the data. The following KDE plot (Figure 15.9) shows the smoothed distribution
of the total bill amounts in the 'tips' dataset.

# Create a KDE plot

sns.displot(tips, x='total_bill', kind='kde')

# Show the plot

plt.show()

Empirical Cumulative Distribution Function Plot (kind='ecdf'): An ECDF plot
shows the proportion of observations less than or equal to a particular value, providing
a cumulative view of the data distribution. The following ECDF plot (Figure 15.10)
displays the cumulative distribution of the total bill amounts in the 'tips' dataset.
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Figure 15.9 A KDE plot showing the probability density of total bill amounts.

# Create an ECDF plot

sns.displot(tips, x='total_bill', kind='ecdf')

# Show the plot

plt.show()

15.3.2 Practice

Here are some coding problems to help you practice using the displot() function in
Seaborn with the 'tips' dataset. These problems will use different attributes of the
dataset to create various types of distribution plots.

Task: Create a histogram (Figure 15.11) to visualize the distribution of tip amounts
in the 'tips' dataset.

# Create a histogram of tip amounts

sns.displot(tips, x='tip', kind='hist')

# Show the plot

plt.show()

Task: Create a KDE plot (Figure 15.12) to visualize the distribution of tip amounts.

# Create a KDE plot of tips

sns.displot(tips, x='tip', kind='kde')

# Show the plot

plt.show()
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Figure 15.10 An empirical cumulative distribution function (ECDF) plot for total bill

amounts.

Figure 15.11 A histogram plot showing the distribution of tip amounts.

Task: Create an ECDF plot (Figure 15.13) to visualize tip amounts.
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Figure 15.12 A kernel density estimation (KDE) plot for tip amounts.

# Create an ECDF plot of tip percentages

sns.displot(tips, x='tip', kind='ecdf')

# Show the plot

plt.show()

Task: Create a histogram (Figure 15.14) to visualize the distribution of the size of
dining parties.

# Create a histogram of the size of dining parties

sns.displot(tips, x='size', kind='hist')

# Show the plot

plt.show()

Task: Create a KDE plot (Figure 15.15) to visualize the distribution of size.

# Create a KDE plot of size

sns.displot(tips, x='size', kind='kde')

# Show the plot

plt.show()

Task: Create a ECDF plot (Figure 15.16) to visualize the distribution of size.

# Create a ECDF plot of size

sns.displot(tips, x='size', kind='ecdf')
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Figure 15.13 An empirical cumulative distribution function (ECDF) plot for tip

amounts.

Figure 15.14 A histogram plot showing the distribution of party size.

# Show the plot

plt.show()
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Figure 15.15 A kernel density estimation (KDE) plot for tip amounts.

Figure 15.16 An empirical cumulative distribution function (ECDF) plot for tip

amounts.
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Figure 15.17 A strip plot showing the distribution of total bill amounts across different

days.

15.4 CATEGORICAL PLOTS

15.4.1 Demonstration

The catplot() function in Seaborn visualizes the relationship between categorical
data and other variables. By using the kind parameter, you can create strip plots,
swarm plots, box plots, violin plots, bar plots, and point plots to explore the relation-
ship between categorical variables and other data in your dataset. The 'tips' dataset
provides an excellent starting point for practicing these techniques.

Strip Plot (kind='strip'): A strip plot shows individual data points along an axis,
which can be useful for visualizing the distribution of data points within categories.
The following strip plot (Figure 15.17) displays the distribution of total bill amounts
for each day of the week.

# Create a strip plot

sns.catplot(data=tips, x='day', y='total_bill', kind='strip')

# Show the plot

plt.show()

Swarm Plot (kind='swarm'): A swarm plot is similar to a strip plot but adjusts the
positions of the data points to prevent them from overlapping, providing a clearer view
of the distribution. The following swarm plot (Figure 15.18) shows the distribution
of total bill amounts for each day of the week without overlapping points.
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Figure 15.18 A swarm plot showing the distribution of total bill amounts across differ-

ent days, avoiding overlap.

# Create a swarm plot

sns.catplot(data=tips, x='day', y='total_bill', kind='swarm')

# Show the plot

plt.show()

Box Plot (kind='box'): A box plot shows the distribution of data based on a five-
number summary: minimum, first quartile (Q1), median, third quartile (Q3), and
maximum. It also highlights outliers. The following box plot (Figure 15.19) visualizes
the distribution of total bill amounts for each day of the week.

# Create a box plot

sns.catplot(data=tips, x='day', y='total_bill', kind='box')

# Show the plot

plt.show()

Violin Plot (kind='violin'): A violin plot combines aspects of a box plot and a KDE
plot, showing the distribution of the data across different categories. The following
violin plot (Figure 15.20) displays the distribution of total bill amounts for each day
of the week, including the density of the data.

# Create a violin plot

sns.catplot(data=tips, x='day', y='total_bill', kind='violin')

# Show the plot

plt.show()
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Figure 15.19 A box plot showing the distribution of total bill amounts for each day.

Figure 15.20 A violin plot combining box plot and KDE to show the distribution of

total bill amounts per day.

Bar Plot (kind='bar'): A bar plot shows the central tendency of the data for each
category along with error bars to indicate variability. The following bar plot (Figure
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Figure 15.21 A bar plot comparing total bill amounts across different days.

15.21) displays the average total bill amounts for each day of the week, with error
bars indicating the standard error.

# Create a bar plot

sns.catplot(data=tips, x='day', y='total_bill', kind='bar')

# Show the plot

plt.show()

Point Plot (kind='point'): A point plot is similar to a bar plot but uses points and
lines to show the central tendency and variability of the data for each category. The
following point plot (Figure 15.22) visualizes the average total bill amounts for each
day of the week, with lines indicating the standard error.

# Create a point plot

sns.catplot(data=tips, x='day', y='total_bill', kind='point')

# Show the plot

plt.show()

15.4.2 Practice

Here are some coding problems to help you practice using the catplot() function
in Seaborn with the 'tips' dataset. These problems focus on different attributes and
use the kind parameter to create various types of categorical plots.

Task: Create a strip plot (Figure 15.23) showing the distribution of the 'tip' column
for different times of day ('time').
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Figure 15.22 A point plot illustrating the average total bill amount for each day.

# Create a strip plot of tips by time of day

sns.catplot(data=tips, x='time', y='tip', kind='strip')

# Show the plot

plt.show()

Task: Create a swarm plot (Figure 15.24) showing the distribution of the 'total_bill'
column for different sexes ('sex').

# Create a swarm plot of total bill by sex

sns.catplot(data=tips, x='sex', y='total_bill', kind='swarm')

# Show the plot

plt.show()

Task: Calculate the tip percentage for each entry in the dataset and create a box plot
(Figure 15.25) to visualize the distribution of tip percentages for different days of the
week ('day').

# Calculate tip percentage

tips['tip_percentage'] = tips['tip'] / tips['total_bill'] * 100

# Create a box plot of tip percentages by day

sns.catplot(data=tips, x='day', y='tip_percentage', kind='box')

# Show the plot

plt.show()
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Figure 15.23 A strip plot showing the distribution of tip amounts over time.

Figure 15.24 A strip plot showing the distribution of total bill amounts by gender.

Task: Create a violin plot (Figure 15.26) to visualize the distribution of the 'total_bill'
column for smokers and non-smokers ('smoker').
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Figure 15.25 A box plot comparing tip percentages across different days.

# Create a violin plot of total bill by smoker status

sns.catplot(data=tips, x='smoker', y='total_bill', kind='violin')

# Show the plot

plt.show()

Task: Create a bar plot (Figure 15.27) to visualize the average 'tip' amounts for
different sexes ('sex'), with error bars indicating the standard error.

# Create a bar plot of average tips by sex

sns.catplot(data=tips, x='sex', y='tip', kind='bar')

# Show the plot

plt.show()

Task: Create a point plot (Figure 15.28) to visualize the average 'tip' amounts for
different days of the week ('day'), with lines indicating the standard error.

# Create a point plot of average tip by day

sns.catplot(data=tips, x='day', y='tip', kind='point')

# Show the plot

plt.show()
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Figure 15.26 A violin plot showing the distribution of total bill amounts for smokers

and non-smokers.

Figure 15.27 A bar plot comparing tip amounts between genders.
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Figure 15.28 A point plot showing the average tip amount for each day.

15.5 ADDING COLORS

15.5.1 Demonstration

The hue parameter in Seaborn enhances visualizations by adding a categorical dimen-
sion through color differentiation. With hue, you can create more informative and
visually appealing visualizations that help uncover deeper insights from your data.
This lesson will demonstrate how to use the hue parameter with various types of
plots in relplot(), displot(), and catplot() functions using the 'tips' dataset.
The examples provided demonstrate how to use hue with various kinds of plots to
enhance your data analysis.

Using hue with relplot(): The relplot() function can create scatter plots and line
plots. In the following scatter plot (Figure 15.29), data points are colored based on
the customer's gender, allowing comparison of the relationship between total bill and
tip amounts for males and females.

# Create a scatter plot with hue

sns.relplot(data=tips, x='total_bill', y='tip', hue='sex', kind='scatter')

# Show the plot

plt.show()

In the following line plot (Figure 15.30), the lines are colored based on the customer's
gender, showing the trend of total bill amounts with party size for males and females.
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Figure 15.29 A scatter plot of total bill and tip, with color indicating sex.

# Create a line plot with hue

sns.relplot(data=tips, x='size', y='total_bill', hue='sex', kind='line')

# Show the plot

plt.show()

Using hue with displot(): The displot() function can create histograms, KDE
plots, and ECDF plots. In the following histogram (Figure 15.31), bars are colored
based on the customer's gender, providing a comparison of tip amount distributions
between males and females.

# Create a histogram with hue

sns.displot(data=tips, x='tip', hue='sex', kind='hist')

# Show the plot

plt.show()

To avoid the overlapping of bars, you can use the multiple parameter to make a
stacked histogram (Figure 15.32).

# Create a histogram with hue and stacking

sns.displot(data=tips, x='tip', hue='sex', kind='hist', multiple='stack')

# Show the plot

plt.show()
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Figure 15.30 A line plot of total bill and size, with color indicating sex.

Figure 15.31 A histogram plot of tip amounts, with color differentiating categories.

In the following KDE plot (Figure 15.33), the distributions of tip amounts are colored
based on whether the customer is a smoker, allowing for comparison of tip distribu-
tions between smokers and non-smokers.
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Figure 15.32 A stacked histogram plot of tip amounts, grouped by a categorical vari-

able.

# Create a KDE plot with hue

sns.displot(data=tips, x='tip', hue='smoker', kind='kde')

# Show the plot

plt.show()

To avoid the overlapping of bars, you can use the multiple parameter to make a
stacked KDE plot (Figure 15.34).

# Create a KDE plot with hue and stacking

sns.displot(data=tips, x='tip', hue='smoker', kind='kde', multiple='stack')

# Show the plot

plt.show()

In the following ECDF plot (Figure 15.35), lines are colored based on the day of the
week, providing a cumulative view of total bill distributions across different days.

# Create an ECDF plot with hue

sns.displot(data=tips, x='total_bill', hue='day', kind='ecdf')

# Show the plot

plt.show()

The catplot() function can create strip plots, swarm plots, box plots, violin plots,
bar plots, and point plots. In the following strip plot (Figure 15.36), data points are
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Figure 15.33 A kernel density estimation (KDE) plot of tip amounts, with color for

categories.

Figure 15.34 A stacked KDE plot of tip amounts, grouped by a categorical variable.
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Figure 15.35 An empirical cumulative distribution function (ECDF) plot for total bill

with color for categories.

colored based on whether the customer is a smoker, showing the distribution of total
bill amounts across different days.

# Create a strip plot with hue

sns.catplot(data=tips, x='day', y='total_bill', hue='smoker', kind='strip')

# Show the plot

plt.show()

In the following swarm plot (Figure 15.37), data points are colored based on the
customer's gender, visualizing the distribution of tips across different days.

# Create a swarm plot with hue

sns.catplot(data=tips, x='day', y='tip', hue='sex', kind='swarm')

# Show the plot

plt.show()

In the following box plot (Figure 15.38), boxes are colored based on the customer's
gender, comparing the distribution of total bill amounts for lunch and dinner between
males and females.

# Create a box plot with hue

sns.catplot(data=tips, x='time', y='total_bill', hue='sex', kind='box')
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Figure 15.36 A strip plot of total bill over day, with color differentiating categories.

Figure 15.37 A strip plot of tip over day, with color differentiating categories.

# Show the plot

plt.show()
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Figure 15.38 A box plot of total bill over time, with color differentiating categories.

In the following violin plot (Figure 15.39), distributions are colored based on the
customer's gender, showing the density of tips for lunch and dinner between males
and females.

# Create a violin plot with hue

sns.catplot(data=tips, x='time', y='tip', hue='sex', kind='violin')

# Show the plot

plt.show()

A standard violin plot is symmetric. If you’d like keep half of the violin to save space,
you can utilize the split parameter to create a compact violin plot (Figure 15.40).

# Create a violin plot with hue and make the split as True

sns.catplot(data=tips, x='time', y='tip',

hue='sex', kind='violin', split=True)

# Show the plot

plt.show()

In the following bar plot (Figure 15.41), bars are colored based on the customer's
gender, comparing the average total bill amounts across different days between males
and females.

# Create a bar plot with hue

sns.catplot(data=tips, x='day', y='total_bill', hue='sex', kind='bar')
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Figure 15.39 A violin plot of tip over time, with color differentiating categories.

Figure 15.40 A compact violin plot of tip over time, with color differentiating cate-

gories.

# Show the plot

plt.show()
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Figure 15.41 A bar plot of total bill over day, with color differentiating categories.

In the following point plot (Figure 15.42), points and lines are colored based on
whether the customer is a smoker, visualizing the average tip amounts across different
days for smokers and non-smokers.

# Create a point plot with hue

sns.catplot(data=tips, x='day', y='tip', hue='smoker', kind='point')

# Show the plot

plt.show()

15.5.2 Practice

Here are some practice problems to help you understand and apply the hue parameter
in Seaborn. we’ll use different attributes from the 'tips' dataset that were not used
in the previous demonstrations.

Task: Create a scatter plot (Figure 15.43) to visualize the relationship between 'to-
tal_bill' and 'tip', with points colored based on the 'day' attribute.

# Create a scatter plot with hue based on day

sns.relplot(data=tips, x='total_bill', y='tip', hue='day', kind='scatter')

# Show the plot

plt.show()

Task: Create a KDE plot (Figure 15.44) to visualize the distribution of 'total_bill',
with lines colored based on the 'time' attribute.
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Figure 15.42 A point plot of tip over day, with color differentiating categories.

Figure 15.43 A scatter plot of tip and total bill, with color differentiating categories.



244 � BiteSize Python for Intermediate Learners

Figure 15.44 A KDE plot of total bill, with color differentiating categories.

# Create a KDE plot with hue based on time

sns.displot(data=tips, x='total_bill', hue='time', kind='kde')

# Show the plot

plt.show()

Task: Create an ECDF plot (Figure 15.45) to visualize the cumulative distribution of
'tip', with lines colored based on the 'sex' attribute.

# Create an ECDF plot with hue based on sex

sns.displot(data=tips, x='tip', hue='sex', kind='ecdf')

# Show the plot

plt.show()

Task: Create a violin plot (Figure 15.46) to visualize the distribution of 'total_bill',
with sections colored based on the 'smoker' attribute.

# Create a violin plot with hue based on smoker status

sns.catplot(data=tips, x='day', y='total_bill',

hue='smoker', kind='violin')

# Show the plot

plt.show()

Task: Create a bar plot (Figure 15.47) to visualize the average 'tip' amounts for each
day, with bars colored based on the 'time' attribute.
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Figure 15.45 An ECDF plot of tip, with color differentiating categories.

Figure 15.46 A violin plot of total bill over day, with color differentiating categories.

# Create a bar plot with hue based on time

sns.catplot(data=tips, x='day', y='tip', hue='time', kind='bar')
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Figure 15.47 A bar plot of tip over day, with color differentiating categories.

# Show the plot

plt.show()

Task: Create a point plot (Figure 15.48) to visualize the average 'total_bill' amounts
for each party size, with points colored based on the 'smoker' attribute.

# Create a point plot with hue based on smoker status

sns.catplot(data=tips, x='size', y='total_bill',

hue='smoker', kind='point')

# Show the plot

plt.show()

15.6 MORE STYLES

15.6.1 Demonstration

In Seaborn, the style and size parameters add more dimensions to your visualiza-
tions by differentiating data points with varying marker styles and sizes. This can
help make your plots more informative and easier to interpret.

In the following scatter plot (Figure 15.49):

• hue='smoker': Colors the data points based on whether the customer is a
smoker.

• style='sex': Differentiates the data points with different marker styles based
on the customer's gender.
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Figure 15.48 A point plot of total bill over size, with color differentiating categories.

• size='size': Varies the size of the data points based on the party size.

# Create a scatter plot with style and size

sns.relplot(data=tips, x='total_bill', y='tip',

hue='smoker', style='sex', size='size', kind='scatter')

# Show the plot

plt.show()

In the following line plot (Figure 15.50):

• hue='sex': Colors the lines based on the customer's gender.
• style='smoker': Differentiates the lines with different styles based on whether

the customer is a smoker.
• markers=True: Adds markers to the lines.
• dashes=False: Uses solid lines for all categories.

# Create a line plot with style

sns.relplot(data=tips, x='size', y='total_bill',

hue='sex', style='smoker', kind='line')

# Show the plot

plt.show()



248 � BiteSize Python for Intermediate Learners

Figure 15.49 A scatter plot of total bill and tip, with both style and size variations.

Figure 15.50 A line plot of total bill and size, with different line styles.

15.6.2 Practice

Here are some practice problems to help you understand and apply the style and
size parameters in Seaborn using the 'tips' dataset.
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Figure 15.51 A scatter plot of total bill and tip, with both style and size variations.

Task: Create a scatter plot (Figure 15.51) to visualize the relationship between
total_bill and tip, using different marker styles based on the time of day and
varying the marker sizes based on the day of the week.

# Create a scatter plot with style and size

sns.relplot(data=tips, x='total_bill', y='tip',

hue='time', style='time',

size='day', kind='scatter')

# Show the plot

plt.show()

Task: Create a line plot (Figure 15.52) to visualize the relationship between size of
the party and total_bill, using different line styles based on the smoker status.

# Create a line plot with style

sns.relplot(data=tips, x='size', y='total_bill',

hue='smoker', style='smoker',

kind='line', markers=True, dashes=True)

# Show the plot

plt.show()

Task: Create a scatter plot (Figure 15.53) to visualize the relationship between tip

and size of the party, using different marker styles based on sex and varying the
marker sizes based on total_bill.
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Figure 15.52 A line plot of total bill and size, with different line styles.

# Create a scatter plot with style and size

sns.relplot(data=tips, x='tip', y='size',

hue='sex', style='sex',

size='total_bill', kind='scatter')

# Show the plot

plt.show()

15.7 FACET GRIDS

15.7.1 Demonstration

Facet grids are a powerful feature in Seaborn that allow you to create multiple sub-
plots based on the values of one or more categorical variables. This helps in visualizing
complex datasets by breaking down the data into smaller, more manageable plots,
making it easier to identify patterns and relationships within subsets of the data.

In Seaborn, facet grids can be created using the FacetGrid class or higher-level
functions like relplot(), catplot(), and displot().

The relplot() function can create scatter and line plots with facet grids. we’ll demon-
strate a scatter plot with facets based on smoker and time.

In the following scatter plot (Figure 15.54):

• col='smoker': Creates separate columns for smokers and non-smokers.
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Figure 15.53 A scatter plot of size and tip, with style and size variations.

• row='time': Creates separate rows for lunch and dinner.
• hue='sex': Colors the data points based on the customer's gender.

# Create a scatter plot with facets based on smoker and time

sns.relplot(data=tips, x='total_bill', y='tip',

col='smoker', row='time',

hue='sex', kind='scatter')

# Show the plot

plt.show()

The displot() function can create histograms, KDE plots, and ECDF plots with
facet grids. we’ll demonstrate a histogram with facets based on smoker.

In the following histogram (Figure 15.55):

• col='smoker': Creates separate columns for smokers and non-smokers.
• kde=True: Adds a KDE plot on top of the histograms.

# Create a histogram with facets based on day

sns.displot(data=tips, x='total_bill', col='smoker', kde=True)

# Show the plot

plt.show()

The catplot() function can create various types of categorical plots with facet grids.
we’ll demonstrate a box plot with facets based on time. In the following box plot
(Figure 15.56):
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Figure 15.54 A scatter plot with data points grouped by smoker status and time.

• col='time': Creates separate columns for lunch and dinner.
• x='day': Shows the distribution of total_bill for each day of the week.
• kind='box': Specifies the type of plot as a box plot.

# Create a box plot with facets based on time

sns.catplot(data=tips, x='day', y='total_bill', col='time', kind='box')

# Show the plot

plt.show()

15.7.2 Practice

Here are some practice problems to help you understand and apply facet grids in
Seaborn using the 'tips' dataset. These problems use different attributes that were
not used in the demonstrations.
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Figure 15.55 A histogram with data distribution separated by day.

Figure 15.56 A box plot showing data distribution grouped by time.

Task: Create a scatter plot (Figure 15.57) to visualize the relationship between
total_bill and tip, using separate facets for each day of the week and differen-
tiating the data points by time.

# Create a scatter plot with facets based on day and time

sns.relplot(data=tips, x='total_bill', y='tip',

col='day', hue='time', kind='scatter')

# Show the plot

plt.show()
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Figure 15.57 A scatter plot with data points arranged in facets based on day and time.

Figure 15.58 A kernel density estimation (KDE) plot with data separated by gender.

Task: Create a KDE plot (Figure 15.58) to visualize the distribution of total_bill,
using separate facets for each sex and adding the KDE plot for each subset.

# Create a KDE plot with facets based on sex

sns.displot(data=tips, x='total_bill', col='sex', kind='kde', fill=True)

# Show the plot

plt.show()

Task: Create a bar plot (Figure 15.59) to visualize the average total_bill for each
day, using separate facets for time and differentiating the bars by smoker status.

# Create a bar plot with facets based on time and smoker status

sns.catplot(data=tips, x='day', y='total_bill',

col='time', hue='smoker', kind='bar')

# Show the plot

plt.show()

Task: Create a violin plot (Figure 15.60) to visualize the distribution of tip for each
day, using separate facets for smoker status and sex.
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Figure 15.59 A bar plot with data categorized by time and smoker status.

# Create a violin plot with facets based on smoker status and sex

sns.catplot(data=tips, x='day', y='tip',

col='smoker', row='sex', kind='violin')

# Show the plot

plt.show()

Task: Create a histogram (Figure 15.61) to visualize the distribution of tip, using
separate facets for time and differentiating the bars by day.

# Create a histogram with facets based on time and day

sns.displot(data=tips, x='tip', col='time', hue='day', multiple='stack')

# Show the plot

plt.show()

15.8 LESSON: LMPLOT

15.8.1 Demonstration

lmplot is a powerful function in Seaborn designed for visualizing linear relationships
between variables. It combines the capabilities of a scatter plot and a regression line
plot, providing a simple and intuitive way to explore and understand relationships in
your data. The lmplot function is particularly useful for performing linear regression
analysis and visualizing the results.

Key Features of lmplot:

• Scatter Plot with Regression Line: Displays data points and fits a linear
regression model, plotting the regression line.

• Faceted Plots: Easily create multiple plots based on subsets of the data.
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Figure 15.60 A violin plot with data distribution grouped by smoker status and gender.

• Statistical Information: Provides insights into the linear relationships and
helps in understanding correlations.

The basic syntax of lmplot is:

sns.lmplot(data=dataset, x='x_variable', y='y_variable',

hue='hue_variable', col='col_variable', row='row_variable')

• data: The dataset containing the variables to plot.
• x: Name of the variable for the x-axis.
• y: Name of the variable for the y-axis.
• hue: (Optional) Categorical variable that determines the color of the points and

lines.
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Figure 15.61 A histogram with data distribution grouped by time and day.

• col: (Optional) Categorical variable that creates separate plots for each cate-
gory.

• row: (Optional) Categorical variable that creates separate plots for each cate-
gory in rows.

Let’s create a basic lmplot (Figure 15.62) to visualize the relationship between
total_bill and tip.

# Create a basic lmplot

sns.lmplot(data=tips, x='total_bill', y='tip')

# Show the plot

plt.show()

We can use the hue parameter to differentiate data points by a categorical variable,
such as sex (Figure 15.63).

# Create an lmplot with hue based on sex

sns.lmplot(data=tips, x='total_bill', y='tip', hue='sex')

# Show the plot

plt.show()

We can also use the col to create separate plots for each category of the smoker

(Figure 15.64).

# Create an lmplot with facets based on smoker status

sns.lmplot(data=tips, x='total_bill', y='tip', col='smoker')

# Show the plot

plt.show()
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Figure 15.62 A basic linear model plot.

We can use both col and row to create a grid of plots for smoker and time (Figure
15.65).

# Create an lmplot with multiple facets based on smoker status and time

sns.lmplot(data=tips, x='total_bill', y='tip',

col='smoker', row='time')

# Show the plot

plt.show()

15.8.2 Practice

The lmplot function in Seaborn is used to create linear regression plots. It allows
you to visualize the linear relationship between two variables, along with confidence
intervals and various customizations. Here are some practice problems to help you
understand and apply lmplot using the 'tips' dataset with different attributes.

Task: Create a linear regression plot (Figure 15.66) to visualize the relationship be-
tween size and tip.

# Create a simple linear regression plot

sns.lmplot(data=tips, x='size', y='tip')
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Figure 15.63 A linear model plot with color differentiating categories by gender.

Figure 15.64 A linear model plot with data separated by smoker status.

# Show the plot

plt.show()

Task: Create a linear regression plot (Figure 15.67) to visualize the relationship be-
tween size and tip, differentiating the data points by sex.
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Figure 15.65 A linear model plot with data faceted by smoker status and time.

# Create a linear regression plot with hue based on sex

sns.lmplot(data=tips, x='size', y='tip', hue='sex')

# Show the plot

plt.show()

Task: Create a linear regression plot (Figure 15.68) to visualize the relationship be-
tween size and tip, using separate facets for each time of day.

# Create a linear regression plot with facets based on time

sns.lmplot(data=tips, x='size', y='tip', col='time')

# Show the plot

plt.show()

Task: Create a linear regression plot (Figure 15.69) to visualize the relationship be-
tween size and tip, using separate facets for each day of the week and differentiating
the data points by smoker status.
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Figure 15.66 A simple linear model plot.

# Create a linear regression plot with multiple facets

sns.lmplot(data=tips, x='size', y='tip', col='day', hue='smoker')

# Show the plot

plt.show()

Task: Create a linear regression plot (Figure 15.70) to visualize the relationship be-
tween size and tip, fitting a second-order polynomial regression.

# Create a linear regression plot with polynomial order 2

sns.lmplot(data=tips, x='size', y='tip', order=2)

# Show the plot

plt.show()

15.9 MULTIPLE PLOTS

15.9.1 Demonstration

Multiplots in Seaborn are powerful tools for visualizing relationships between multiple
variables in a dataset. They help in identifying patterns, correlations, and distribu-
tions in a comprehensive manner. In this section, we will introduce two key multiplot
functions: pairplot and jointplot.
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Figure 15.67 A linear model plot with color differentiating categories by gender.

Figure 15.68 A linear model plot with data faceted by time.

The pairplot function creates a grid of plots, where each variable in the dataset is
plotted against each other. It helps in visualizing the pairwise relationships and the
distribution of each variable (Figure 15.71).

# Create a pairplot with hue based on the 'sex' attribute

sns.pairplot(tips, hue='sex')
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Figure 15.69 A linear model plot with multiple facets for different categories.

Figure 15.70 A linear model plot with a polynomial curve of order 2.

# Show the plot

plt.show()

The jointplot function creates a bivariate plot with marginal histograms or density
plots. It helps in visualizing the relationship between two variables, along with their
individual distributions (Figure 15.72).

# Create a jointplot for the relationship between 'total_bill' and 'tip'

sns.jointplot(x='total_bill', y='tip', data=tips, kind='scatter')

# Show the plot

plt.show()
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We can do color differentiation using the hue in pairplot (Figure 15.73):

# Create a pairplot with regression lines and hue based on 'sex'

sns.pairplot(tips, hue='sex', kind='reg')

# Show the plot

plt.show()

We can create a KDE jointplot using kind='kde' (Figure 15.74):

# Show the relationship between 'total_bill' and 'tip' with KDE

sns.jointplot(x='total_bill', y='tip', data=tips, kind='kde')

# Show the plot

plt.show()

Figure 15.71 A pair plot showing relationships between multiple variables, with color

for gender.
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Figure 15.72 A joint plot showing the relationship between total bill and tip.

While we can create various plots using the kind parameter in the general plots, we
can also create specific plots directly with different control over them. We summarize
these specific plots in Table 15.1.

15.10 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Why is Seaborn considered a high-level data visualization library?
• What types of plots are commonly used in Seaborn, and what are their pur-

poses?
• How to customize Seaborn plots with themes like darkgrid or whitegrid?
• What is the main difference between a Matplotlib plot and a Seaborn plot?
• How do you use the hue parameter in Seaborn to add a dimension to your plot?
• Can Seaborn plots be customized further using Matplotlib? If so, how?
• How can you adjust the color palettes in Seaborn for better visual appeal?
• How can you use Seaborn to add confidence intervals to your visualizations?
• Show how to use Seaborn to identify outliers in numerical data.
• What should you do if a Seaborn plot appears difficult to interpret?
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Figure 15.73 A pair plot with regression lines and color differentiating categories by

gender.

15.11 EXPLORE MORE SEABORN

Here are the useful documentations you may refer to:

• Overview: https://seaborn.pydata.org/tutorial/function_overview.html
• Statistical relationships: https://seaborn.pydata.org/tutorial/relational.html
• Distributions of data: https://seaborn.pydata.org/tutorial/distributions.html
• Categorical data: https://seaborn.pydata.org/tutorial/categorical.html
• Estimating regression fits: https://seaborn.pydata.org/tutorial/regression.html
• Full API: https://seaborn.pydata.org/api.html

https://seaborn.pydata.org/tutorial/function_overview.html
https://seaborn.pydata.org/tutorial/relational.html
https://seaborn.pydata.org/tutorial/distributions.html
https://seaborn.pydata.org/tutorial/categorical.html
https://seaborn.pydata.org/tutorial/regression.html
https://seaborn.pydata.org/api.html
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Figure 15.74 A joint plot illustrating the relationship between total bill and tip.
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TABLE 15.1 Summary of Seaborn Specific Plot Types
Type Basic Syntax Scenario

Scatter sns.scatterplot() Shows the relationship between two variables.
Example: Analyzing the relationship between
advertising budget and sales.

Line sns.lineplot() Visualizes trends or changes over time. Exam-
ple: Tracking monthly revenue over a year.

Bar sns.barplot() Compares categorical data with aggregated
values. Example: Comparing average cus-
tomer ratings across product categories.

Count sns.countplot() Counts occurrences of categorical data. Exam-
ple: Counting the number of employees in each
department.

Histogram sns.histplot() Shows the distribution of a dataset. Example:
Visualizing the distribution of exam scores in
a class.

KDE sns.kdeplot() Estimates the probability density of a continu-
ous variable. Example: Understanding income
distribution in a population.

Box sns.boxplot() Displays distribution and highlights outliers.
Example: Comparing salaries across different
job roles.

Violin sns.violinplot() Combines box plot and KDE to show distri-
bution and probability. Example: Analyzing
height distribution across different age groups.

Heatmap sns.heatmap() Visualizes correlation or matrix-like data. Ex-
ample: Examining the correlation between dif-
ferent financial metrics.

LM sns.lmplot() Fits and visualizes linear regression models.
Example: Modeling the relationship between
study hours and exam scores.



C H A P T E R 16

Plotly

I
n this chapter, we’ll take our data visualization skills to the next level with
Plotly, a dynamic library that enables the creation of interactive visualizations.

Building on our knowledge of Matplotlib and Seaborn, we’ll explore how Plotly makes
it easy to create engaging plots that allow users to zoom, pan, hover, and click for
deeper insights. We’ll cover a variety of plot types, from line and bar plots to more
advanced visualizations like 3D plots. Are you ready? Let’s get started!

16.1 OVERVIEW

Plotly is a powerful Python library used for creating interactive visualizations. Unlike
static visualizations generated by Matplotlib and Seaborn, Plotly produces interactive
plots that can be embedded in web applications or displayed in Jupyter notebooks.
This interactivity makes it an excellent choice for data exploration and presentation,
allowing users to zoom, hover, and click to reveal more details about the data.

Plotly is renowned for its interactive visualizations, which are ideal for dashboards,
reports, and exploratory data analysis. Plotly provides a high-level interface for cre-
ating complex plots, similar to Seaborn, but with additional interactive capabilities.
Plotly supports a broad range of chart types, from basic line and bar charts to more
advanced visualizations like 3D surface plots. Plotly plots are based on JavaScript,
making them easily embeddable in web applications. They can also be exported to
static images if needed. Plotly allows for extensive customization of plots, enabling
the creation of highly tailored visualizations.

If you are building dashboards or reports that require user interaction, Plotly is the
go-to library. Plotly’s interactive features make it ideal for EDA, allowing users to drill
down into data points and uncover hidden patterns. When you need to embed plots
into a web application, Plotly’s JavaScript-based plots are also perfect for seamless
integration.

We make a brief comparison for the three packages we learned in Table 16.1.
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TABLE 16.1 Comparison of Matplotlib, Seaborn, and Plotly
Feature Matplotlib Seaborn Plotly

Interactivity Static Static Interactive

Ease of Use Low-level API,
more code required

High-level API, eas-
ier to create com-
plex plots

High-level API with
interactive features

Customization Extensive Extensive, built on
top of Matplotlib

Extensive, with ad-
ditional web integra-
tion

Range of Plots Wide Wide, focused on
statistical plots

Very wide, includ-
ing 3D and map
plots

Performance Good for small to
medium datasets

Good for small to
medium datasets

Can handle large
datasets interac-
tively

Best For Detailed customiza-
tion, publication-
quality plots

Quick and aestheti-
cally pleasing statis-
tical visualizations

Interactive dash-
boards, data explo-
ration

16.2 SETUP

Plotly’s core plotting module is plotly.graph_objects, which provides a low-level
API for building complex plots. However, for this chapter, we’ll use plotly.express,
a high-level module that makes it easy to create simple but powerful visualizations
with minimal code.

16.2.1 Plotly Express

Plotly Express, commonly imported as px, is a module within the Plotly library that
simplifies the creation of complete figures with just a single function call. It is a
recommended starting point for generating most standard plots due to its ease of use
and efficiency.

Plotly Express includes over 30 functions for various types of plots, with a consistent
and easy-to-learn API. This consistency allows users to quickly switch between differ-
ent types of visualizations, such as scatter plots, bar charts, histograms, and sunburst
charts, during data exploration.

The key features of the Plotly Express API include:

• Unified Interface: By importing plotly.express as px, users can access all
plotting functions and built-in demo datasets and color scales. Each function
generates a Figure object that can be customized further.

• Smart Defaults with Flexibility: The functions infer sensible defaults but
allow for full customization.
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• Versatile Input Formats: The functions accept various data formats, in-
cluding lists, dictionaries, DataFrames, numpy arrays, xarrays, and GeoPandas
GeoDataFrames.

• Automated Configuration: Plotly Express automatically configures traces,
layouts, axis labels, legends, and hover labels based on the input data.

• Styling and Color Control: The API supports styling through default tem-
plates and offers detailed control over categorical variables.

• Advanced Features: These include faceting, marginal plots, trendlines, ani-
mations, and automatic WebGL rendering for large scatter plots.

import pandas as pd

import numpy as np

import plotly.express as px

16.3 SCATTER PLOTS

16.3.1 Demonstration

A scatter plot is used to visualize the relationship between two continuous variables
by displaying data points on a two-dimensional graph. Plotly creates interactive plots
that allow you to hover over data points, zoom in, and explore the data in dynamic
ways. Since the interactive features cannot be captured in a printed format, we have
included static screenshots of the plots in this book. To fully appreciate the capa-
bilities of Plotly, we encourage you to run the code provided and experience the
interactive features firsthand, as this will give you a deeper understanding of the
data and the potential of the package.

Let’s start with a simple scatter plot (Figure 16.1) showing the relationship between
two variables. we’ll use a small sample dataset to demonstrate. This example creates a
scatter plot that shows how weight changes with height. The x-axis represents height,
and the y-axis represents weight. The title parameter sets the plot’s title.

# Sample data

data = {

'Height': [150, 160, 170, 180, 190],

'Weight': [50, 60, 70, 80, 90]

}

# Creating a basic scatter plot

fig = px.scatter(data, x='Height', y='Weight', title='Height vs. Weight')

# Display the plot

fig.show()

Now, we will add more customization, such as setting the size of the markers and
adding a trendline to visualize the relationship more clearly. Here, the size parameter
adjusts the marker sizes based on a list of values, and the trendline parameter adds
a linear trendline to the scatter plot (Figure 16.2). This helps in understanding the
overall trend between height and weight.
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Figure 16.1 A simple scatter plot displaying data points.

# Sample data

data = {

'Height': [150, 160, 170, 180, 190],

'Weight': [50, 60, 70, 80, 90]

}

# Creating a scatter plot with customizations

fig = px.scatter(data, x='Height', y='Weight',

title='Height vs. Weight with Trendline',

size=[10, 20, 30, 40, 50], # Adjusting marker size

trendline='ols') # Adding a trendline

# Display the plot

fig.show()

Let’s use color to encode a third variable, making it easier to visualize patterns or
groupings in the data. In this example, the color parameter is used to differentiate
data points based on gender (Figure 16.3). This allows us to see how weight and
height distributions vary between males and females.

# Sample data

data = {

'Height': [150, 160, 170, 180, 190],

'Weight': [50, 60, 70, 80, 90],

'Gender': ['Male', 'Female', 'Male', 'Female', 'Male']
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Figure 16.2 A scatter plot with data point size and a trend line.

}

# Creating a scatter plot with color encoding

fig = px.scatter(data, x='Height', y='Weight',

color='Gender', # Adding color based on gender

title='Height vs. Weight by Gender')

# Display the plot

fig.show()

16.3.2 Practice

We will create a dummy DataFrame df_dummy with random data. This dataset
has four numerical features (feature_1 to feature_4) and one categorical feature
category.

# Set seed for reproducibility

np.random.seed(42)

# Create a dummy dataset

v = np.random.rand(150)

df_dummy = pd.DataFrame({

'feature_1': v,

'feature_2': v + np.random.rand(150),

'feature_3': v**2 + np.random.rand(150),
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Figure 16.3 A scatter plot using color to encode data values.

'feature_4': v * 7,

'category': np.random.choice(['A', 'B', 'C'], 150)

})

df_dummy.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 150 entries, 0 to 149

Data columns (total 5 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 feature_1 150 non-null float64

1 feature_2 150 non-null float64

2 feature_3 150 non-null float64

3 feature_4 150 non-null float64

4 category 150 non-null object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

Task: Create a scatter plot (Figure 16.4) to visualize the relationship between
feature_1 and feature_2.

# Create scatter plot

fig = px.scatter(df_dummy, x='feature_1', y='feature_2',

title='Feature 1 vs. Feature 2')

fig.show()
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Figure 16.4 A scatter plot showing the relationship between feature 1 and feature 2.

Task: Create a scatter plot (Figure 16.5) to visualize the relationship between
feature_3 and feature_4, using category as the hue to differentiate the points.

# Create scatter plot with category as hue

fig = px.scatter(df_dummy, x='feature_3', y='feature_4',

color='category',

title='Feature 3 vs. Feature 4 by Category')

fig.show()

Task: Create a scatter plot (Figure 16.6) to visualize the relationship between
feature_1 and feature_3. Use the size of the points to represent feature_4. Larger
points represent higher values of feature_4.

# Create scatter plot with size proportional to feature 4

fig = px.scatter(df_dummy, x='feature_1', y='feature_3',

size='feature_4',

title='Feature 1 vs. Feature 3 with Feature 4 as Size')

fig.show()

Task: For previous task, using 'category' as the hue to differentiate the points by
categories (Figure 16.7).
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Figure 16.5 A scatter plot of feature 3 and feature 4, with color encoding.

Figure 16.6 A scatter plot of feature 1 and feature 3, with data point size variation.
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Figure 16.7 A scatter plot of feature 1 and feature 2, using both color and size.

# Create scatter plot with size proportional to petal width

fig = px.scatter(df_dummy, x='feature_1', y='feature_2',

size='feature_4', color = 'category',

title='Feature1 vs. Feature2 with Feature4 as Size')

fig.show()

16.4 LINE PLOTS

16.4.1 Demonstration

Line plots are a great way to visualize trends or changes over time. Let’s start with
a simple line plot (Figure 16.8) that shows how sales have increased over a period of
five years. The x-axis represents the years, and the y-axis represents the sales. The
title parameter is used to set the title of the plot.

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020],

'Sales': [100, 120, 230, 250, 200]

}

# Creating a basic line plot

fig = px.line(data, x='Year', y='Sales', title='Sales Over Time')
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Figure 16.8 A basic line plot showing data trends.

# Display the plot

fig.show()

You can add multiple lines to the same plot to compare multiple trends (Figure 16.9).

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020],

'Sales1': [100, 120, 230, 250, 200],

'Sales2': [90, 140, 190, 140, 290],

}

# Creating a multi-line plot

fig = px.line(data, x='Year', y=['Sales1', 'Sales2'],

title='Sales1 and Sales 2 Over Time')

# Display the plot

fig.show()

Alternatively, if you have categorical attributes, you can create a multi-line plot (Fig-
ure 16.10) to compare the sales of two different products over time. In this example,
we use the color parameter to differentiate between two products, Product A and
Product B. This creates a multi-line plot where each product's sales are represented
by a different line, allowing for easy comparison.
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Figure 16.9 A multi-line plot comparing sales1 and sales2 over time.

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020, 2016, 2017, 2018, 2019, 2020],

'Sales': [100, 120, 230, 250, 200, 190, 240, 90, 190, 190],

'Product': ['A','A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B']

}

# Creating a multi-line plot

fig = px.line(data, x='Year', y='Sales', color='Product',

title='Sales of Product A and Product B Over Time')

# Display the plot

fig.show()

You can also add markers to each data point to make the plot more informative.
This example (Figure 16.11) adds markers to the line plot, making it easier to see
individual data points. The markers=True parameter is used to add these markers.
This is particularly useful when you want to highlight the exact values at each point.

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020],

'Revenue': [90, 140, 190, 140, 290]

}

# Creating a line plot with markers

fig = px.line(data, x='Year', y='Revenue',

title='Revenue Growth Over Time',



280 � BiteSize Python for Intermediate Learners

Figure 16.10 A multi-line plot comparing sales of product A and product B over time.

markers=True) # Adding markers to each data point

# Display the plot

fig.show()

We can also customize the line style by adjusting the dash pattern. In this example
(Figure 16.12), the line_dash_sequence parameter is used to customize the line style.
The line is displayed with a dashed pattern, which can be useful for differentiating
between different types of trends in a multi-line plot.

# Sample data

data = {

'Month': ['January', 'February', 'March', 'April', 'May'],

'Temperature': [30, 22, 35, 27, 40]

}

# Creating a line plot with a customized line style

fig = px.line(data, x='Month', y='Temperature',

title='Monthly Temperature Trend',

line_dash_sequence=['dash']) # Customizing line style

# Display the plot

fig.show()

16.4.2 Practice

We will continue using the df_dummy dataset for these tasks.



Plotly � 281

Figure 16.11 A line plot for revenue growth over time with markers indicating data

points.

Task: Create a line plot (Figure 16.13) to visualize how feature_1 changes over the
index (row numbers).

# Create a line plot of feature_1 over index

fig = px.line(df_dummy, y='feature_1', title='Feature 1 over Index')

fig.show()

Task: Create a line plot (Figure 16.14) to visualize how feature_2 changes over the
index. Add markers to the line.

# Create a line plot of feature_2 over index with markers

fig = px.line(df_dummy, y='feature_2',

title='Feature 2 over Index with Markers', markers=True)

fig.show()

Task: Create a line plot (Figure 16.15) to compare feature_1 and feature_3 on the
same plot.

# Create a line plot comparing feature_1 and feature_3

fig = px.line(df_dummy, y=['feature_1', 'feature_3'],

title='Comparison of Feature 1 and Feature 3 over Index')
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Figure 16.12 A line plot showing monthly temperature trends with different line styles.

fig.show()

Task: Create a line plot (Figure 16.16) to visualize how feature_4 changes over the
index for each category. Use the category column to differentiate the lines by color.

# Create a line plot of feature_4 for each category

fig = px.line(df_dummy, y='feature_4', color='category',

title='Feature 4 over Index by Category')

fig.show()

16.5 AREA PLOTS

16.5.1 Demonstration

Area plots are useful for visualizing cumulative data or showing the part-to-whole
relationships over time. They are similar to line plots but with the area under the
line filled in.

Let’s start with a simple area plot (Figure 16.17) that shows how sales accumulate
over a period of five years. The x-axis represents the years, and the y-axis represents
the cumulative sales. The area under the line is filled, making it easy to see the total
sales over time.
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Figure 16.13 A line plot displaying feature 1 over an index.

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020],

'Sales': [100, 120, 230, 250, 200]

}

# Creating a basic area plot

fig = px.area(data, x='Year', y='Sales',

title='Cumulative Sales Over Time')

# Display the plot

fig.show()

Next, Let’s create a stacked area plot (Figure 16.18) to visualize the cumulative sales
of two different products over time. In this stacked area plot, the sales of Product A

and Product B are visualized together. The color parameter is used to differentiate
between the two products, with the area for each product stacked on top of the other.
This allows for a clear comparison of the contribution of each product to the total
sales.

# Sample data

data = {

'Year': [2016, 2017, 2018, 2019, 2020] * 2,

'Sales': [100, 120, 230, 250, 200, 90, 140, 190, 240, 290],

'Product': ['Product A'] * 5 + ['Product B'] * 5
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Figure 16.14 A line plot of feature 2 over an index, with markers.

Figure 16.15 A line plot comparing feature 1 and feature 3 over an index.
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Figure 16.16 A line plot of feature 4 over an index, grouped by category.

Figure 16.17 A basic area plot showing the magnitude of data over a range.
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Figure 16.18 A stacked area plot showing cumulative sales of product A and B over

time.

}

# Creating a stacked area plot

fig = px.area(data, x='Year', y='Sales', color='Product',

title='Cumulative Sales of Product A and B Over Time')

# Display the plot

fig.show()

For this example, we’ll add markers to make the plot more informative. In this area
plot (Figure 16.19), markers are added to each data point using the markers=True

parameter. This makes it easier to see both the individual data points and the trend
in revenue growth over time.

# Sample data

data = {

'Month': ['January', 'February', 'March', 'April', 'May'],

'Revenue': [100, 120, 230, 250, 200]

}

# Creating an area plot with markers and customized line style

fig = px.area(data, x='Month', y='Revenue',

title='Monthly Revenue Growth',

markers=True) # Adding markers to each data point)

# Display the plot

fig.show()
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Figure 16.19 An area plot of monthly revenue growth with markers and line style

variations.

16.5.2 Practice

We will continue using the df_dummy dataset for these tasks.

Task: Create an area plot (Figure 16.20) to visualize how feature_1 changes over
the index.

# Create an area plot of feature_1 over index

fig = px.area(df_dummy, y='feature_1',

title='Area Plot of Feature 1 over Index')

fig.show()

Task: Create an area plot (Figure 16.21) that shows feature_2, feature_3 and
feature_4 on the same plot.

# Create an area plot of feature_2 with feature_3 overlay

fig = px.area(df_dummy, y=['feature_2', 'feature_3', 'feature_4'],

title='Area Plot of Feature 2, 3, 4 over Index')

fig.show()

Task: Create an area plot (Figure 16.22) to visualize feature_3 over the index, using
category as a color to differentiate the areas.
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Figure 16.20 An area plot displaying feature 1 over an index.

Figure 16.21 A stacked area plot of feature 2, 3, and 4 over an index.
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Figure 16.22 An area plot displaying feature 3 over an index, grouped by category.

# Create an area plot of feature_3 by category

fig = px.area(df_dummy, x = df_dummy.index, y='feature_1',

color='category',

title='Area Plot of Feature 3 over Index by Category')

fig.show()

16.6 BAR PLOTS

16.6.1 Demonstration

Bar plots are ideal for comparing quantities across different categories.

Let’s start with a simple bar plot (Figure 16.23) to compare the sales figures for four
different products. The x-axis represents the product names, and the y-axis represents
the sales figures. The height of each bar corresponds to the sales of each product.

# Sample data

data = {

'Product': ['Product A', 'Product B', 'Product C', 'Product D'],

'Sales': [100, 230, 190, 250]

}

# Creating a basic bar plot

fig = px.bar(data, x='Product', y='Sales', title='Sales by Product')
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Figure 16.23 A basic bar plot displaying sales by product.

# Display the plot

fig.show()

Next, Let’s create a grouped bar plot (Figure 16.24). In this grouped bar plot, sales for
each product are shown for two different years (2019 and 2020). The color parameter
is used to differentiate the years, and the barmode='group' option places the bars for
each year side by side within each product category. This allows for easy comparison
of sales between years for each product.

# Sample data

data = {

'Product': ['Product A', 'Product A', 'Product B', 'Product B',

'Product C', 'Product C', 'Product D', 'Product D'],

'Year': ['2019', '2020', '2019', '2020',

'2019', '2020', '2019', '2020'],

'Sales': [100, 120, 150, 140, 190, 200, 250, 230]

}

# Creating a grouped bar plot

fig = px.bar(data, x='Product', y='Sales', color='Year',

barmode='group', title='Sales by Product and Year')

# Display the plot

fig.show()
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Figure 16.24 A grouped bar plot comparing sales by product and year.

Now, Let’s create a stacked bar plot (Figure 16.25) to visualize the cumulative sales
contributions of each year within each product category. In this stacked bar plot,
the sales figures for each year are stacked on top of each other within each product
category. The barmode='stack' option is used to create this effect. This visualization
helps to see the cumulative sales for each product, along with the contribution of each
year to the total sales.

# Sample data

data = {

'Product': ['Product A', 'Product A', 'Product B', 'Product B',

'Product C', 'Product C', 'Product D', 'Product D'],

'Year': ['2019', '2020', '2019', '2020',

'2019', '2020', '2019', '2020'],

'Sales': [100, 120, 150, 140, 190, 200, 250, 230]

}

# Creating a stacked bar plot

fig = px.bar(data, x='Product', y='Sales', color='Year',

barmode='stack', title='Stacked Sales by Product and Year')

# Display the plot

fig.show()

Bar plots can also be displayed horizontally, which is useful when dealing with long
category names or when you prefer a different orientation. This example (Figure
16.26) shows a horizontal bar plot, where the x-axis represents the sales figures and
the y-axis represents the products. Horizontal bar plots can be helpful for improving
readability, especially when category labels are lengthy.
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Figure 16.25 A stacked bar plot showing sales by product and year.

# Sample data

data = {

'Product': ['Product A', 'Product B', 'Product C', 'Product D'],

'Sales': [100, 120, 150, 140]

}

# Creating a horizontal bar plot

fig = px.bar(data, x='Sales', y='Product',

title='Sales by Product (Horizontal)')

# Display the plot

fig.show()

16.6.2 Practice

Let’s create another dummy dataset for this practice.

# Define the data

data = {

'product': ['Product A', 'Product B', 'Product C', 'Product A',

'Product D', 'Product B', 'Product B', 'Product C',

'Product B', 'Product A'],

'sales': [1500, 2300, 1200, 3400, 2900, 4100, 3200, 1800, 2700, 2200],

'profit': [400, 800, 300, 1200, 900, 1400, 1100, 500, 700, 600],

'region': ['North', 'South', 'East', 'West', 'North',

'South', 'East', 'West', 'North', 'South']

}
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Figure 16.26 A horizontal bar plot showing sales by product.

# Create the DataFrame

df_simple = pd.DataFrame(data)

df_simple.head()

Task: Create a bar plot (Figure 16.27) to visualize the sales for each product.

# Create a simple bar plot of sales by product

fig = px.bar(df_simple, x='product', y='sales', title='Sales by Product')

fig.show()

Task: Create a bar plot (Figure 16.28) to visualize the profit for each region.

# Create a bar plot of profit by region

fig = px.bar(df_simple, x='region', y='profit', title='Profit by Region')

fig.show()

Task: Create a horizontal bar plot (Figure 16.29) to visualize the sales for each prod-
uct.

# Create a horizontal bar plot of sales by product

fig = px.bar(df_simple, x='sales', y='product',

orientation='h', title='Sales by Product (Horizontal)')

fig.show()
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Figure 16.27 A simple bar plot displaying sales by product.

Task: Create a stacked bar plot (Figure 16.30) to visualize the sales for each region,
make a color differentiation by product.

# Create a stacked bar plot of sales by region

fig = px.bar(df_simple, x='region', y='sales',

color='product', title='Sales by Region')

fig.show()

16.7 TIMELINE PLOTS

16.7.1 Demonstration

Timeline plots are a great way to visualize events or activities over time.

Let’s start with a simple timeline plot (Figure 16.31) that shows the duration of
different projects. This basic timeline plot visualizes the duration of three different
projects. The x-axis represents the timeline, and the y-axis represents the projects.
Each bar shows the duration of a project from its start date to its finish date.

# Sample data

data = {

'Project': ['Project A', 'Project B', 'Project C'],

'Start': ['2023-01-01', '2023-02-01', '2023-03-01'],
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Figure 16.28 A bar plot showing profit by region.

'Finish': ['2023-02-01', '2023-03-15', '2023-04-30']

}

# Creating a basic timeline plot

fig = px.timeline(data, x_start='Start', x_end='Finish',

y='Project', title='Project Timeline')

# Display the plot

fig.show()

Now, Let’s add colors to the timeline plot to differentiate between project categories.
In this timeline plot (Figure 16.32), the projects are categorized into different groups
(e.g., Development, Research, Marketing). The color parameter is used to assign
different colors to each category, making it easier to identify which project belongs
to which category.

# Sample data

data = {

'Project': ['Project A', 'Project B', 'Project C', 'Project D'],

'Category': ['Research', 'Research', 'Development', 'Marketing'],

'Start': ['2023-01-01', '2023-02-01', '2023-03-01', '2023-04-01'],

'Finish': ['2023-02-01', '2023-03-15', '2023-04-30', '2023-05-30']

}

# Creating a timeline plot with colors

fig = px.timeline(data, x_start='Start', x_end='Finish', y='Project',
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Figure 16.29 A horizontal bar plot displaying sales by product.

Figure 16.30 A stacked bar plot showing sales by region.
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Figure 16.31 A basic timeline plot for projects.

Figure 16.32 A timeline plot for projects, categorized by type.

color='Category', title='Project Timeline by Category')

# Display the plot

fig.show()
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Figure 16.33 A timeline plot for projects, grouped by teams.

In this example (Figure 16.33), we’ll create a timeline plot that groups tasks by
different teams. In this timeline plot, tasks are grouped by different teams (e.g.,
Team A, Team B, Team C). The color parameter differentiates the teams by color,
making it easy to see which tasks belong to which teams.

# Sample data

data = {

'Task': ['Task 1', 'Task 2', 'Task 3', 'Task 4', 'Task 5', 'Task 6'],

'Team': ['Team A', 'Team A', 'Team B', 'Team B', 'Team C', 'Team C'],

'Start': ['2023-01-01', '2023-01-10', '2023-01-20',

'2023-02-01', '2023-02-10', '2023-02-20'],

'Finish': ['2023-01-15', '2023-01-25', '2023-02-15',

'2023-02-10', '2023-02-15', '2023-02-15']

}

# Creating a timeline plot grouped by teams

fig = px.timeline(data, x_start='Start', x_end='Finish', y='Task',

color='Team', title='Task Timeline Grouped by Teams')

# Display the plot

fig.show()

16.7.2 Practice

To practice timeline plots, we can create a simple dummy dataset that represents
events or tasks over time. This DataFrame df_timeline with 10 rows representing
different projects, their start and end dates, their duration, and the responsible de-
partment.
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# Define the data

data = {

'event': ['Project A', 'Project B', 'Project C', 'Project D',

'Project E', 'Project F', 'Project G', 'Project H',

'Project I', 'Project J'],

'start_date': ['2024-01-01', '2024-02-01', '2024-03-15',

'2024-04-01', '2024-05-10', '2024-06-20',

'2024-07-15', '2024-08-01', '2024-09-10',

'2024-10-01'],

'end_date': ['2024-01-15', '2024-03-01', '2024-04-10',

'2024-04-20', '2024-06-01', '2024-07-05',

'2024-08-01', '2024-09-01', '2024-10-01',

'2024-11-01'],

'department': ['HR', 'Finance', 'Marketing', 'IT', 'HR',

'Finance', 'Marketing', 'IT', 'HR', 'Finance']

}

# Create the DataFrame

df_timeline = pd.DataFrame(data)

df_timeline.head()

Task: Create a basic timeline plot (Figure 16.34) showing the start and end dates of
each event.

# Create a basic timeline plot

fig = px.timeline(df_timeline, x_start='start_date', x_end='end_date',

y='event', title='Timeline of Events')

fig.show()

Task: Create a timeline plot (Figure 16.35) where events are color-coded by the de-
partment.

# Create a timeline plot with color by department

fig = px.timeline(df_timeline, x_start='start_date', x_end='end_date',

y='event', color='department',

title='Timeline of Events by Department')

fig.show()

Task: Create a timeline plot (Figure 16.36) that includes the department in the hover
information.

# Create a timeline plot with department in hover information

fig = px.timeline(df_timeline, x_start='start_date', x_end='end_date',

y='event', hover_data=['department'],

title='Timeline of Events with Department Info')

fig.show()



300 � BiteSize Python for Intermediate Learners

Figure 16.34 A basic timeline plot for events.

Figure 16.35 A basic timeline plot for events, categorized by department.
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Figure 16.36 A timeline plot for events, with department information.

16.8 FUNNEL PLOTS

16.8.1 Demonstration

Funnel charts are useful for visualizing the progressive reduction of data as it passes
through different stages in a process.

Let’s start with a simple funnel chart representing the stages of a sales funnel (Figure
16.37). This funnel chart visualizes the number of entities (e.g., potential customers)
at each stage of the sales funnel. The x-axis represents the count of entities, while
the y-axis represents the stages.

# Sample data

data = {

'Stage': ['Prospects', 'Leads', 'Opportunities',

'Proposals', 'Closed Deals'],

'Count': [1000, 500, 400, 200, 50]

}

# Creating a basic funnel chart

fig = px.funnel(data, x='Count', y='Stage', title='Sales Funnel')

# Display the plot

fig.show()

Let’s add another dimension to the funnel chart by grouping the data by category.
In this funnel chart, the data is grouped by region (in this case, "North America")
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Figure 16.37 A basic funnel plot for sales data.

(Figure 16.38). The color parameter is used to differentiate categories, which could
be useful for comparing the performance of different regions, products, or segments.

# Sample data

data = {

'Stage': ['Prospects', 'Leads', 'Opportunities',

'Proposals', 'Closed Deals'],

'Count': [1000, 750, 500, 300, 100],

'Region': ['North America'] * 5

}

# Creating a funnel chart with categories

fig = px.funnel(data, x='Count', y='Stage',

color='Region', title='Sales Funnel by Region')

# Display the plot

fig.show()

In this example, we’ll create a funnel chart with data from multiple regions to compare
their performance (Figure 16.39). This funnel chart displays sales funnel data for
"North America", "Europe" and "Latin America". The chart allows you to compare
how the funnel progresses in different regions, showing the differences in the number
of entities at each stage.

# Sample data

data = {

'Stage': ['Prospects', 'Leads', 'Opportunities',

'Proposals', 'Closed Deals']*3,
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Figure 16.38 A funnel plot showing sales by region.

'Count': [1000, 750, 500, 300, 100,

1200, 900, 600, 350, 150,

900, 800, 400, 200, 10],

'Region': ['North America']*5 + ['Europe']*5 + ['Latin America']*5

}

# Creating a funnel chart with multiple regions

fig = px.funnel(data, x='Count', y='Stage',

color='Region', title='Sales Funnel by Region')

# Display the plot

fig.show()

16.8.2 Practice

To practice funnel plots using Plotly, we can create a dummy dataset that represents
a sales or conversion funnel. This DataFrame df_funnel with four rows representing
different stages in the funnel and the number of leads at each stage.

# Define the data

data = {

'stage': ['Awareness', 'Interest', 'Consideration', 'Purchase']*2,

'leads': [1000, 600, 300, 150, 2000, 1800, 800, 200],

'agent': ['Tom'] * 4 + ['Ron'] * 4

}

# Create the DataFrame

df_funnel = pd.DataFrame(data)

df_funnel.head()
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Figure 16.39 A funnel plot displaying sales by region.

Task: Create a funnel plot (Figure 16.40) to visualize the number of leads at each
stage of the funnel.

# Create a basic funnel plot

fig = px.funnel(df_funnel, x='leads', y='stage',

title='Basic Sales Funnel')

fig.show()

Task: Create a funnel plot (Figure 16.41) to visualize the number of leads at each
stage of the funnel, differentiate color by 'agent'.

# Create a colored funnel plot

fig = px.funnel(df_funnel, x='leads', y='stage',

color='agent', title='Basic Sales Funnel')

fig.show()

16.9 PIE PLOTS

16.9.1 Demonstration

A pie chart is a circular statistical chart, which is divided into sectors to illustrate
percentages.

Let’s start by creating a basic pie plot to visualize the proportion sales (Figure 16.42).
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Figure 16.40 A basic funnel plot for sales.

Figure 16.41 A funnel plot showing sales by agent.

# Data for the pie chart

data = {

'stage': ['Awareness', 'Interest', 'Consideration', 'Purchase'],

'leads': [1000, 600, 300, 150]

}
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Figure 16.42 A basic pie plot showing sales proportions.

df_pie = pd.DataFrame(data)

# Create a basic pie chart

fig = px.pie(df_pie, names='stage', values='leads',

title='Basic Sales Pie Chart')

fig.show()

Let’s now add custom colors for the pie plot (Figure 16.43).

# Custom colors for the pie chart

custom_colors = ['lightblue', 'lightgreen', 'lightcoral', 'lightpink']

# Create a pie chart with custom colors

fig = px.pie(df_pie, names='stage', values='leads',

title='Sales Pie with Custom Colors',

color_discrete_sequence=custom_colors)

fig.show()

Let’s now show the percentage of sales and add a hole in the center (Figure 16.44).

# Create a pie chart showing percentages

fig = px.pie(df_pie, names='stage', values='leads',

title='Sales Pie with Percentage Display',

labels={'leads': 'Percentage'},

hole=0.4)

# Update the trace to show percentages
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Figure 16.43 A pie plot for sales, with custom colors for each slice.

Figure 16.44 A pie plot for sales, displaying percentages for each slice.

fig.update_traces(textinfo='percent+label')

fig.show()
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Figure 16.45 A pie plot showing market share distribution.

16.9.2 Practice

Let’s create a dummy dataset for practicing pie plots.

# Dummy dataset

data = {

'company': ['Company A', 'Company B', 'Company C', 'Company D'],

'market_share': [40, 30, 25, 5]

}

df_market = pd.DataFrame(data)

df_market

Task: Create a basic pie plot (Figure 16.45) using the following dummy dataset that
represents the market share of different companies.

# Create the basic pie plot

fig = px.pie(df_market, names='company', values='market_share',

title='Market Share of Companies')

fig.show()

Task: Create a pie plot (Figure 16.46) using the dataset above, assigning custom col-
ors to each company. custom_colors = ['gold', 'lightblue', 'lightgreen',

'lightcoral']

# Custom colors for the pie chart

custom_colors = ['gold', 'lightblue', 'lightgreen', 'lightcoral']
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Figure 16.46 A pie plot for market share, with custom colors.

# Create the pie plot with custom colors

fig = px.pie(df_market, names='company', values='market_share',

title='Market Share with Custom Colors',

color_discrete_sequence=custom_colors)

fig.show()

Task: Create a pie plot (Figure 16.47) using the dataset above, displaying the per-
centage of the total market share for each company.

# Create the pie plot showing percentages

fig = px.pie(df_market, names='company', values='market_share',

title='Market Share by Percentage')

# Update the trace to show percentages

fig.update_traces(textinfo='percent+label')

fig.show()

Task: Create a donut chart (Figure 16.48) using the dataset above, with a hole in the
center.

# Create the donut chart

fig = px.pie(df_market, names='company',

values='market_share',

title='Market Share Donut Chart', hole=0.4)

fig.show()
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Figure 16.47 A pie plot for market share, displaying percentages.

Figure 16.48 A pie plot for market share, with a hollow center.
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Figure 16.49 A basic histogram displaying data distribution.

16.10 HISTOGRAM PLOTS

16.10.1 Demonstration

Histograms are useful for visualizing the distribution of a dataset. Let’s start by cre-
ating a histogram to visualize the distribution of a numeric variable (Figure 16.49).
This example creates a histogram of a normally distributed dataset. The x parame-
ter specifies the variable to be plotted on the x-axis, and the histogram shows the
frequency of data points in each bin.

# Creating a dummy dataset

np.random.seed(42)

data = {'values': np.random.normal(0, 1, 1000)}

df_hist = pd.DataFrame(data)

# Create a basic histogram

fig = px.histogram(df_hist, x='values', title='Basic Histogram of Values')

fig.show()

Let’s make a custom number of bins to better control the granularity of the distribu-
tion (Figure 16.50). In this example, we specify nbins=30 to adjust the granularity
of the distribution visualization.
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Figure 16.50 A basic histogram with 30 bins for finer data representation.

# Create a histogram with 30 bins

fig = px.histogram(df_hist, x='values', nbins=30,

title='Histogram with 30 Bins')

fig.show()

Let’s create a histogram where the bars are colored based on a categorical variable
(Figure 16.51). In this example, we add a categorical variable category to the dataset.
The histogram is colored by this category, allowing us to see how the distribution
varies between the two categories.

# Adding a categorical variable

df_hist['category'] = np.random.choice(['Category A', 'Category B'],size=1000)

# Create a histogram colored by category

fig = px.histogram(df_hist, x='values', color='category',

title='Histogram Colored by Category')

fig.show()

16.10.2 Practice

Let’s create another dummy dataset for this practice.

# Creating a dummy dataset

np.random.seed(0)

data = {
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Figure 16.51 A histogram colored by category to show distribution differences.

'test_scores': np.random.normal(75, 10, 500)

}

df_scores = pd.DataFrame(data)

Task: Create a histogram (Figure 16.52) to visualize the distribution of a dataset
representing the test scores of 500 students. The scores are normally distributed.

# Create the histogram

fig = px.histogram(df_scores, x='test_scores',

title='Distribution of Test Scores')

fig.show()

Task: Create a histogram (Figure 16.53) from the same test scores dataset, but this
time, use 20 bins to better observe the distribution.

# Create the histogram with 20 bins

fig = px.histogram(df_scores, x='test_scores', nbins=20,

title='Test Scores Histogram with 20 Bins')

fig.show()

Task: Add a 'gender' column to the test scores dataset, where each student is randomly
assigned as 'Male' or 'Female'. Then, create a histogram (Figure 16.54) that shows
the distribution of test scores, with bars colored by gender.

# Add a 'gender' column

df_scores['gender'] = np.random.choice(['Male', 'Female'], size=500)
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Figure 16.52 A histogram displaying the distribution of test scores.

# Create the histogram colored by gender

fig = px.histogram(df_scores, x='test_scores', color='gender',

title='Test Scores Histogram by Gender')

fig.show()

Task: Create a histogram (Figure 16.55) that shows the cumulative distribution of
test scores.

# Create the cumulative histogram

fig = px.histogram(df_scores, x='test_scores',

cumulative=True,

title='Cumulative Distribution of Test Scores')

fig.show()

Task: Using the same dataset, create two separate histograms: one for 'Male' and one
for 'Female' students. Overlay them on the same plot (Figure 16.56) to compare the
distributions.

# Create overlaid histograms for male and female students

fig = px.histogram(df_scores, x='test_scores', color='gender',

barmode='overlay',

title='Overlaid Histograms of Test Scores by Gender')

fig.show()
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Figure 16.53 A histogram for test scores, with 20 bins.

Figure 16.54 A histogram for test scores, grouped by gender.
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Figure 16.55 A cumulative distribution of test scores.

Figure 16.56 An overlaid histogram comparing test scores by gender.
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Figure 16.57 A basic 3D scatter plot showing data points in three dimensions.

16.11 3D SCATTER PLOTS

16.11.1 Demonstration

3D scatter plots are useful for visualizing the relationship between three variables in
a dataset.

Let’s create a basic 3D scatter plot using a dummy dataset with three numeric vari-
ables (Figure 16.57). This basic 3D scatter plot shows the relationship between
three variables (x_values, y_values, and z_values) in a dummy dataset. The
px.scatter_3d function is used to create the plot.

# Creating a dummy dataset

np.random.seed(0)

data = {

'x_values': np.random.normal(0, 1, 100),

'y_values': np.random.normal(1, 1, 100),

'z_values': np.random.normal(2, 1, 100)

}

df_3d = pd.DataFrame(data)

# Create a basic 3D scatter plot

fig = px.scatter_3d(df_3d, x='x_values', y='y_values', z='z_values',

title='Basic 3D Scatter Plot')

fig.show()

Let’s create another 3D scatter plot with points colored based on a fourth variable
(Figure 16.58). In this example, a categorical variable color_variable is added to
the dataset. The points in the 3D scatter plot are colored based on this variable,
allowing you to see how the data is grouped.
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Figure 16.58 A 3D scatter plot with data points colored according to a mapping.

# Adding a fourth variable for color mapping

df_3d['color_variable'] = np.random.choice(['Group 1', 'Group 2'],

size=100)

# Create a 3D scatter plot with color mapping

fig = px.scatter_3d(df_3d, x='x_values', y='y_values', z='z_values',

color='color_variable',

title='3D Scatter Plot with Color Mapping')

fig.show()

Let’s create a 3D scatter plot where the size of the points represents a numeric
variable (Figure 16.59). This example introduces a numeric variable size_variable

that controls the size of the points in the 3D scatter plot. Larger values result in
bigger points, making it easier to identify trends related to this variable.

# Adding a variable for size mapping

df_3d['size_variable'] = np.random.uniform(5, 50, size=100)

# Create a 3D scatter plot with size mapping

fig = px.scatter_3d(df_3d, x='x_values', y='y_values', z='z_values',

size='size_variable', color='color_variable',

title='3D Scatter Plot with Size Mapping')

fig.show()
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Figure 16.59 A 3D scatter plot with data points sized and colored based on mappings.

16.12 3D LINE PLOTS

16.12.1 Demonstration

3D line plots in Plotly are a powerful way to visualize the relationship between
three variables over a sequence or time. They are particularly useful for showing
trends in three-dimensional space. You can represent three-dimensional data with
additional variables like color or group to make your plots more informative and
visually appealing.

Let’s create a basic 3D line plot using a dummy dataset with three numeric variables
(Figure 16.60). This basic 3D line plot shows the relationship between three variables
(x_values, y_values, and z_values) in a dummy dataset. The data represents a
helical trajectory, with z_values increasing linearly while x_values and y_values

oscillate sinusoidally.

# Creating a dummy dataset

np.random.seed(42)

t = np.linspace(0, 10, 100)

data = {

'x_values': np.sin(t),

'y_values': np.cos(t),

'z_values': t

}

df_line_3d = pd.DataFrame(data)
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Figure 16.60 A basic 3D line plot showing a line in three dimensions.

# Create a basic 3D line plot

fig = px.line_3d(df_line_3d, x='x_values', y='y_values', z='z_values',

title='Basic 3D Line Plot')

fig.show()

Let’s create another 3D line plot with multiple lines, each representing a different
group or category (Figure 16.61). This example introduces a categorical variable
group, with each line representing a different group. The 3D line plot now shows two
trajectories, one for each group, which helps to compare the patterns across different
categories.

# Creating a dataset with multiple lines

df_line_3d['group'] = np.random.choice(['Group 1', 'Group 2'], size=100)

# Create a 3D line plot with multiple lines

fig = px.line_3d(df_line_3d, x='x_values', y='y_values', z='z_values',

color='group',

title='3D Line Plot with Multiple Lines')

fig.show()

We summarize the plots using Plotly in Table 16.2.

16.13 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Why is Plotly preferred for creating interactive visualizations?
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Figure 16.61 A 3D line plot with multiple lines, each representing a different group or

category.

• What are the advantages of using Plotly for web-based or presentation-ready
visualizations?

• Illustrate how to add a dropdown menu to switch between different views in a
Plotly chart.

• How can you create subplots in Plotly and control their layout and size?
• Explain how to use Plotly’s animation feature to create dynamic visualizations.
• How can you link multiple Plotly charts to interact together, such as zooming

or filtering?
• Discuss how to use custom data in Plotly hover tooltips.
• Create a Plotly dashboard combining multiple charts to visualize sales data.
• Demonstrate how to use Plotly’s tree map for hierarchical data visualization.
• Why might a Plotly chart not render properly in a Jupyter Notebook, and how

can you fix it?

16.14 EXPLORE MORE ABOUT PLOTLY

Here is the Python documentation for Plotly: https://plotly.com/python/

https://plotly.com/python
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TABLE 16.2 Summary of Plotly Plot Types
Type Basic Syntax Scenario

Scatter px.scatter() Shows the relationship between two vari-
ables. Example: Analyzing sales vs. marketing
spend.

Line px.line() Visualizes trends or changes over time. Exam-
ple: Tracking daily temperature changes.

Area px.area() Highlights the area under a line plot to
show volume. Example: Visualizing cumula-
tive sales over time.

Bar px.bar() Compares categorical data. Example: Com-
paring monthly revenue across different prod-
uct categories.

Timeline px.timeline() Visualizes events over a timeline. Example:
Project management to track task durations.

Funnel px.funnel() Shows stages in a process and drop-offs at each
stage. Example: Visualizing a sales pipeline
from leads to conversions.

Pie px.pie() Displays proportions within a whole. Exam-
ple: Visualizing market share by product type.

Histogram px.histogram() Shows the distribution of a single variable. Ex-
ample: Analyzing the distribution of customer
ages.

3D-Scatter px.scatter_3d() Visualizes relationships among three variables.
Example: Mapping geographical data with lat-
itude, longitude, and elevation.

3D-Line px.line_3d() Tracks movement or trends in three dimen-
sions. Example: Visualizing flight paths with
altitude changes over time.



What is Next?

Congratulations! You’ve become a Python master! You now have a solid understand-
ing of Object-oriented programming, advanced data structures in NumPy and Pan-
das, and data visualization tools like Matplotlib, Seaborn, and Plotly. That’s a huge
achievement! You’re now able to conduct basic data analysis using Python.

After the celebration, you might want to learn more about the data science pipeline
and the tools used in each step. For instance, how do you do data wrangling? This in-
cludes data collection, manipulation, understanding, preprocessing, and warehousing.
Also, how do you do data analysis? This includes classification, regression, clustering,
principal component analysis, association rule mining, outlier detection, and more.
We have a book, Data Mining with Python: Theory, Applications, and Case Studies,
to guide you through each topic with thorough explanations of the theory, applica-
tions, and real-life case studies. We hope you’ll keep growing and becoming even more
proficient in the field of data science!

I’m excited to meet you there and continue our journey together.
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