O'REILLY"

Test-Driven
Development
with Python

Obey the Testing Goat
Using Django,
Selenium, and
JavaScript

Harry J.W. Percival

“Testing is essential for developer sanity. Harry does a fantastic job
of holding our attention whilst exploring real-world testing practices.”

Michael Foord, Python core developer and maintainer of unittest

“This book is far more than an introduction to test-driven development—
it's a complete best-practices crash course, from start to finish, on
modern web application development with Python.”

Kenneth Reitz, fellow at Python Software Foundation

Test-Driven Development with Python

The third edition of this trusted guide shows you how to apply test-driven development (TDD)
to building real-world web applications with Python. By writing tests before building each part
of your app—and then creating just enough code to pass them—you'll learn how TDD leads to clean,

reliable, and maintainable software.

Author Harry J.W. Percival takes you through a practical, end-to-end example of web development
using Python 3.14 and Django 5. Along the way, you'll explore tools like Selenium, JavaScript, Git,
and mocking, and discover how TDD supports better design decisions, encourages continuous
improvement, and instills confidence in your codebase. Whether you're a professional developer
or just transitioning into web development, this book offers hands-on experience with modern

testing workflows and architecture.
e Follow the full TDD workflow, from writing
tests first to refactoring with confidence

* Write unit tests for core logic and functional tests
for browser-based interactions

» Use mock objects to isolate external systems
and simplify integration
* Package your application using Docker

e Automate deployments and test your code
in a staging environment

* Validate third-party plug-ins and dependencies
within your test suite

e Set up continuous integration to run your tests
automatically

e Enrich your frontend with test-driven JavaScript

PROGRAMMING / PYTHON

US $79.99 CAN $99.99
ISBN: 978-1-098-14871-3

7810981148713

i

Harry J.W. Percival is a passionate
advocate for TDD, sharing his
expertise worldwide through talks
and workshops. He works for
Kraken Technologies, writing
software to support the worldwide
green energy transition.

O'REILLY"

Praise for Test-Driven Development with Python

In this book, Harry takes us on an adventure of discovery with Python and

testing. It’s an excellent book, fun to read, and full of vital information. It has

my highest recommendations for anyone interested in testing with Python, learning
Django, or wanting to use Selenium. Testing is essential for developer sanity and

it’s a notoriously difficult field, full of trade-offs. Harry does a fantastic job of
holding our attention whilst exploring real-world testing practices.

—Michael Foord,
Python Core Developer and Maintainer of unittest

This book is far more than an introduction to test-driven development—it’s
a complete best-practices crash course, from start to finish, into modern web
application development with Python. Every web developer needs this book.

—Kenneth Reitz,
Fellow at Python Software Foundation

Harry’s book is what we wish existed when we were learning Django. At

a pace that’s achievable and yet delightfully challenging, it provides excellent
instruction for Django and various test practices. The material on Selenium alone
makes the book worth purchasing, but there’s so much more!

—Daniel and Audrey Roy Greenfeld,
authors of Two Scoops of Django (Two Scoops Press)

THIRD EDITION

Test-Driven Development
with Python

Obey the Testing Goat: Using Django,
Selenium, and JavaScript

Harry J.W. Percival

O'REILLY"

Test-Driven Development with Python
by Harry J.W. Percival

Copyright © 2026 Harry Percival. All rights reserved.
Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin Indexer: Ellen Troutman-Zaig
Development Editor: Rita Fernando Cover Designer: Susan Brown
Production Editor: Christopher Faucher Cover lllustrator: Karen Montgomery
Copyeditor: Piper Content Partners Interior Designer: David Futato
Proofreader: Kim Cofer Interior lllustrator: Kate Dullea

June 2014: First Edition

August 2017: Second Edition

October 2025: Third Edition

Revision History for the Third Edition
2025-10-30: First Release

See https://www.oreilly.com/catalog/errata.csp?isbn=0636920873884 for release details.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. Test-Driven Development with Python,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-14871-3
[LSI]

https://oreilly.com
mailto:corporate@oreilly.com
https://www.oreilly.com/catalog/errata.csp?isbn=0636920873884

Table of Contents

Preface. ..ot e Xvii
Preface to the Third Edition: TDDinthe Age of Alcevviiriiiiiiiiiieninenns. XXV
Prerequisites and AsSUMPLIONS.ovvrreiieiiriiieiiieiieeeieeneennes XXiX
Acknowledgments.ovvuerinneiiie e i rieeiie e e, XXXiX

Partl. The Basics of TDD and Django

1. Getting Django Set Up Using a Functional Test..............covveviiinniennnnen. 3
Obey the Testing Goat! Do Nothing Until You Have a Test 3
Getting Django Up and Running 7
Starting a Git Repository 10

2. Extending Our Functional Test Using the unittest Module....................... 15
Using a Functional Test to Scope Out a Minimum Viable App 16
The Python Standard Library’s unittest Module 19
Commit 22

3. Testing a Simple Home Page with UnitTests.............c.oovvviiiiiiinee. 25
Our First Django App and Our First Unit Test 26
Unit Tests, and How They Differ from Functional Tests 26
Unit Testing in Django 28
Django’s MVC, URLs, and View Functions 29

Unit Testing a View 30

At Last! We Actually Write Some Application Code! 32
The Unit-Test/Code Cycle 33
Our Functional Tests Tell Us We're Not Quite Done Yet 36
Reading Tracebacks 38
urls.py 40
4, What Are We Doing with All These Tests? (And, Refactoring)..................... 45
Programming Is Like Pulling a Bucket of Water Up from a Well 46
Using Selenium to Test User Interactions 48
The “Don’t Test Constants” Rule, and Templates to the Rescue 51
Refactoring to Use a Template 52
Revisiting Our Unit Tests 55
Test Behaviour, Not Implementation 56
On Refactoring 58
A Little More of Our Front Page 60
Recap: The TDD Process 62
Double-Loop TDD 63
5. Saving User Input: Testing the Database...............ccovvviiiiiiiiiiiinne, 65
Wiring Up Our Form to Send a POST Request 66
Testing the Contract Between Frontend and Backend 66
Debugging Functional Tests 68
Debugging with time.sleep 69
Processing a POST Request on the Server 71
Passing Python Variables to Be Rendered in the Template 74
An Unexpected Failure 75
Improving Error Messages in Tests 76
Three Strikes and Refactor 79
The Django ORM and Our First Model 81
Our First Database Migration 83
The Test Gets Surprisingly Far 84
A New Field Means a New Migration 85
Saving the POST to the Database 86
Redirect After a POST 90
Better Unit Testing Practice: Each Test Should Test One Thing 93
Rendering Items in the Template 94
Creating Our Production Database with migrate 98
Recap 101

vi | Tableof Contents

6. Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps. 103

Ensuring Test Isolation in Functional Tests 104
Running Just the Unit Tests 107
On Implicit and Explicit Waits, and Magic time.sleeps 108
7. Working Incrementally.............cooiiiiiiiiiiiiiii i 115
Small Design When Necessary 115
Not Big Design Up Front 115
YAGNI! 116
REST-ish 117
Implementing the New Design Incrementally Using TDD 118
Ensuring We Have a Regression Test 119
Iterating Towards the New Design 121
Taking a First, Self-Contained Step: One New URL 123
Separating Out Our Home Page and List View Functionality 123
The FTs Detect a Regression 126
Getting Back to a Working State as Quickly as Possible 128
Green? Refactor 130
Another Small Step: A Separate Template for Viewing Lists 131
A Third Small Step: A New URL for Adding List Items 135
A Test Class for New List Creation 136
A URL and View for New List Creation 137
Removing Now-Redundant Code and Tests 138
A Regression! Pointing Our Forms at the New URL 139
Debugging in DevTools 140
Biting the Bullet: Adjusting Our Models 143
A Foreign Key Relationship 145
Adjusting the Rest of the World to Our New Models 146
Each List Should Have Its Own URL 149
Capturing Parameters from URLs 150
Adjusting new_list to the New World 151
The Functional Tests Detect Another Regression 152
One More URL to Handle Adding Items to an Existing List 153
The Last New urls.py Entry 155
The Last New View 155
Testing Template Context Directly 157
A Final Refactor Using URL includes 160
Can You Believe It? 161

Table of Contents | vii

8. Prettification: Layout and Styling, and What to Test About It................... 163

Testing Layout and Style 163
Prettification: Using a CSS Framework 167
Django Template Inheritance 169
Integrating Bootstrap 170
Rows and Columns 171
Static Files in Django 175
Switching to StaticLiveServerTestCase 176
Using Bootstrap Components to Improve the Look of the Site 177
Jumbotron! 177
Large Inputs 178
Table Styling 178
Optional: Dark Mode 179
A Semi-Decent Page 180
Parsing HTML for Less Brittle Tests of Key HTML Content 181
What We Glossed Over: collectstatic and Other Static Directories 185
A Few Things That Didn’t Make It 187

Partll. Going to Production

9. Containerizationaka Docker.................oooiiiiiiiiiii 193
Docker, Containers, and Virtualization 193
Why Not Just Use a Virtualenv? 196
Docker and Your CV 196
As Always, Start with a Test 196
Making a src Folder 199
Installing Docker 199
Building a Docker Image and Running a Docker Container 202
A First Cut of a Dockerfile 202
Docker Build 204
Docker Run 205
Installing Django in a Virtualenv in Our Container Image 206
Successful Run 207
Using the FT to Check That Our Container Works 208
Debugging Container Networking Problems 209
Debugging Web Server Connectivity with curl 210
Running Code “Inside” the Container with docker exec 210
Docker Port Mapping 212
Essential Googling the Error Message 213

vii | Table of Contents

10.

1.

12.

Database Migrations
Should We Run migrate Inside the Dockerfile? No.
Mounting Files Inside the Container

Making Our App Production-Ready.cccovviiiiiiiiiiiiiiinnnen,
What We Need to Do
Switching to Gunicorn
The FTs Catch a Problem with Static Files
Serving Static Files with WhiteNoise
Using requirements.txt
Using Environment Variables to Adjust Settings for Production
Setting DEBUG=True and SECRET_KEY
Setting Environment Variables Inside the Dockerfile
Setting Environment Variables at the Docker Command Line
ALLOWED_HOSTS Is Required When Debug Mode Is Turned Off
Collectstatic Is Required when Debug Is Turned Off
Switching to a Nonroot User
Making the Database Filepath Configurable
Using UIDs to Set Permissions Across Host/Container Mounts
Configuring Logging
Provoking a Deliberate Error
Exercise for the Reader: Using the Django check Command
Wrap-Up

Getting a Server Ready for Deployment..............cooviiiiiiiiiiinen,
Manually Provisioning a Server to Host Our Site

Choosing Where to Host Our Site

Spinning Up Our Own Server
Getting a Domain Name
Configuring DNS for Staging and Live Domains
Ansible

Ansible Versus SSH: How We'll Talk to Our Server
Start by Making Sure We Can SSH In

Debugging Issues with SSH

Installing Ansible

Checking Ansible Can Talk to Our Server

Infrastructure as Code: Automated Deployments with Ansible..................
A First Cut of an Ansible Playbook for Deployment

SSHing Into the Server and Viewing Container Logs

Allowing Rootless Docker Access

217
219
220

223
223
224
225
226
227
230
231
232
232
233
235
237
237
238
240
240
242
243

245
245
246
246
247
248
249
249
250
251
253
254

257
258
261
263

Table of Contents

Getting Our Image Onto the Server 265
Taking a Look Around Manually 269
Setting Environment Variables and Secrets 270
Manually Checking Environment Variables for Running Containers 273
Running FTs to Check on Our Deploy 275
Manual Debugging with curl Against the Staging Server 275
Mounting the Database on the Server and Running Migrations 277
It Workssss 279
Deploying to Prod 279
git tag the Release 280
Tell Everyone! 280
Further Reading 281
Partlll. Formsand Validation
13. Splitting Our Tests into Multiple Files, and a Generic Wait Helper............. 285
Start on a Validation FT: Preventing Blank Items 285
Skipping a Test 286
Splitting Functional Tests Out into Many Files 288
Running a Single Test File 291
A New FT Tool: A Generic Explicit Wait Helper 291
Finishing Off the FT 296
Refactoring Unit Tests into Several Files 297
14. Validation at the Database Layer.................coiiiiiiiiiiiiiinnin, 301
Model-Layer Validation 302
The self.assertRaises Context Manager 303
Django Model Constraints and Their Interaction with Databases 303
Inspecting Our Constraints at the Database Level 304
Testing Django Model Validation 305
A Django Quirk: Model Save Doesn’t Run Validation 305
Surfacing Model Validation Errors in the View 307
Checking That Invalid Input Isn’t Saved to the Database 310
Adding an Early Return to Our FT to Let Us Refactor Against Green 312
Django Pattern: Processing POST Requests in the Same View That Renders
the Form 313
Refactor: Transferring the new_item Functionality into view_list 313
Enforcing Model Validation in view_list 318
Refactor: Removing Hardcoded URLs 320

X

Table of Contents

15.

16.

The {% url %} Template Tag
Using get_absolute_url for Redirects

ASImple Form. ... i i e
Moving Validation Logic Into a Form
Exploring the Forms API with a Unit Test
Switching to a Django ModelForm
Testing and Customising Form Validation
Attempting to Use the Form in Our Views
Using the Form in a View with a GET Request
The Trade-offs of Django ModelForms: The Frontend Is Coupled to
the Database
A Big Find-and-Replace
Backing Out Our Changes and Getting to a Working State
Renaming the name Attribute
Renaming the id Attribute
A Second Attempt at Using the Form in Our Views
Using the Form in a View That Takes POST Requests
Using the Form to Display Errors in the Template
Get Back to a Working State
A Helper Method for Several Short Tests
Using the Form in the Existing Lists View
Using the Form to Pass Errors to the Template
Refactoring the View to Use the Form Fully
An Unexpected Benefit: Free Client-Side Validation from HTML5
A Pat on the Back
But Have We Wasted a Lot of Time?
Using the ModelForm’s Own Save Method

More Advanced Forms.oooiiiiiiiiiiiiiiiii
Another FT for Duplicate Items
Preventing Duplicates at the Model Layer
Rewriting the Old Model Test
Integrity Errors That Show Up on Save
Experimenting with Duplicate Item Validation at the Views Layer
A More Complex Form to Handle Uniqueness Validation
Using the Existing List Item Form in the List View
Customising the Save Method on Our New Form
The FTs Pick Up an Issue with Bootstrap Classes
Conditionally Customising CSS Classes for Invalid Forms
A Little Digression on Queryset Ordering and String Representations

320
321

325
325
326
328
330
332
332

334
335
336
337
340
342
345
346
347
348
351
351
353
356
358
358
359

363
364
365
367
368
371
373
375
376
378
379
381

Table of Contents

| xi

On the Trade-offs of Django ModelForms, and Frameworks in General 384

Moving Presentation Logic Back into the Template 386
Tidying Up the Forms 392
Switching Back to Simple Forms 393
Wrapping Up: What We've Learned About Testing Django 395

PartIV. More Advanced Topics in Testing

17. AGentle Excursioninto JavaScript.covviieiiiiiiiiiiiieiieenieeennnns 399
Starting with an FT 400
A Quick Spike 402

A Simple Inline Script 403

Using the Browser DevTools 405
Choosing a Basic JavaScript Test Runner 407
An Overview of Jasmine 408
Setting Up Our JavaScript Test Environment 409
Our First Smoke Test: Describe, It, Expect 410

Running the Tests via the Browser 410
Testing with Some DOM Content 412
Building a JavaScript Unit Test for Our Desired Functionality 415
Fixtures, Execution Order, and Global State:

Key Challenges of JavaScript Testing 417

console.log for Debug Printing 418
Using an Initialize Function for More Control Over Execution Time 420
Deliberately Breaking Our Code to Force Ourselves to Write More Tests 421
Red/Green/Refactor: Removing Hardcoded Selectors 422
Does it Work? 426
Testing Integration with CSS and Bootstrap 427
Columbo Says: Wait for Onload 430
JavaScript Testing in the TDD Cycle 431

18. Deploying QurNew Code.vvvniiiriiiiiiiiiiiiiiiiiiiieniesnnnens 433
The Deployment Checklist 433
A Full Test Run Locally 434
Quick Test Run Against Docker 434
Staging Deploy and Test Run 436
Production Deploy 437
What to Do If You See a Database Error 437

How to Delete the Database on the Staging Server 437

xii | Tableof Contents

19.

20.

21.

Wrap-Up: git tag the New Release

User Authentication, Spiking, and De-Spiking..................ccoovenntnns.

Passwordless Auth with “Magic Links”
A Somewhat Larger Spike
Starting a Branch for the Spike
Frontend Login UI
Sending Emails from Django
Email Server Config for Django
Another Secret, Another Environment Variable
Storing Tokens in the Database
Custom Authentication Models
Finishing the Custom Django Auth
De-Spiking
Making a Plan
Wring an FT Against the Spiked Code
Reverting Our Spiked Code
A Minimal Custom User Model
Tests as Documentation
A Token Model to Link Emails with a Unique ID

Using Mocks to Test External Dependencies..........covvvuviinniinnnennnss

Before We Start: Getting the Basic Plumbing In
Mocking Manually—aka Monkeypatching
The Python Mock Library
Using unittest.patch
Getting the FT a Little Further Along
Testing the Django Messages Framework
Adding Messages to Our HTML
Starting on the Login URL
Checking That We Send the User a Link with a Token
De-Spiking Our Custom Authentication Backend
One if = One More Test
The get_user Method

Using Mocks for Test Isolation.c.ccovveiiiiiiiiiiiniininnnnnnnn..

Using Our Auth Backend in the Login View
Straightforward Non-Mocky Test for Our View
Combinatorial Explosion
The Car Factory Example
Using Mocks to Test Parts of Our System in Isolation

438

439
439
440
441
441
442
444
444
445
447
448
453
453
453
455
459
463
465

469
470
471
475
476
478
479
482
483
484
487
488
491

495
496
498
500
500
503

Table of Contents

| xiii

22,

23.

24,

Mocks Can Also Let You Test the Implementation, When It Matters
Starting Again: Test-Driving Our Implementation with Mocks

Using mock.return_value

Using .return_value During Test Setup

UnDONTifying
Deciding Which Tests to Keep
The Moment of Truth: Will the FT Pass?
It Works in Theory! Does It Work in Practice?

Using Our New Environment Variable, and Saving It to .env
Finishing Off Our FT: Testing Logout

Test Fixtures and a Decorator for Explicit Waits..............ccooveiiiiinn.t

Skipping the Login Process by Pre-creating a Session
Checking That It Works
Our Final Explicit Wait Helper: A Wait Decorator

Debugging and Testing ServerlIssues.c.ooevveeiiereneeenneennnnns

The Proof Is in the Pudding: Using Docker to Catch Final Bugs
Inspecting the Docker Container Logs
Another Environment Variable in Docker

mail.outbox Won’t Work Outside Django’s Test Environment
Deciding How to Test “Real” Email Sending

An Alternative Method for Setting Secret Environment Variables on the

Server

Debugging with SQL

Managing Fixtures in Real Databases
A Django Management Command to Create Sessions
Getting the FT to Run the Management Command on the Server
Running Commands Using Docker Exec and (Optionally) SSH
Recap: Creating Sessions Locally Versus Staging

Testing the Management Command

Test Database Cleanup

Wrap-Up

Finishing “My Lists”: Outside-InTDD.coovviiiiiiiiiiiiiinnnnnn,

The Alternative: Inside-Out

Why Prefer “Outside-In"?

The FT for “My Lists”

The Outside Layer: Presentation and Templates

Moving Down One Layer to View Functions (the Controller)
Another Pass, Outside-In

504
505
509
512
514
515
517
518
518
521

525
526
528
530

537
537
538
540
541
541

544
545
546
547
549
549
551
552
554
555

557
557
558
558
562
563
565

Xiv

Table of Contents

25.

26.

A Quick Restructure of Our Template Composition 565

An Early Return So We're Refactoring Against Green 567
Factoring Out Two Template includes 568
Designing Our API Using the Template 572

Moving Down to the Next Layer: What the View Passes to the Template =~ 575
The Next “Requirement” from the Views Layer:

New Lists Should Record Owner 576
A Decision Point: Whether to Proceed to the Next Layer with a Failing Test 577
Moving Down to the Model Layer 577
Final Step: Feeding Through the .name API from the Template 580
Cl: Continuous Integration.covviuiiiniiriiirinieennienerenneenns 583
CI in Modern Development Workflows 584
Choosing a CI Service 584
Getting Our Code into GitLab 585
Signing Up 585
Starting a Project 585
Pushing Our Code Up Using Git Push 586
Setting Up a First Cut of a CI Pipeline 587
First Build! (and First Failure) 588
Trying to Reproduce a CI Error Locally 592
Enabling Debug Logs for Selenium/Firefox/Webdriver 594
Enabling Headless Mode for Firefox 596
A Common Bugbear: Flaky Tests 597
Taking Screenshots 597
Saving Build Outputs (or Debug Files) as Artifacts 599
If in Doubt, Try Bumping the Timeout! 601
A Successful Python Test Run 602
Running Our JavaScript Tests in CI 602
Installing Node.js 603
Installing and Configuring the Jasmine Browser Runner 603
Adding a Build Step for JavaScript 607
Tests Now Pass 609
Some Things We Didn’t Cover 610
Defining a Docker Image for CI 610
Caching 610
Automated Deployment, aka Continuous Delivery (CD) 610
The Token Social Bit, the Page Pattern, and an Exercise for the Reader............ 613
An FT with Multiple Users, and addCleanup 614
The Page Pattern 615

Table of Contents | xv

Extend the FT to a Second User, and the “My Lists” Page 618

An Exercise for the Reader 620
Step-by-Step Guide 620
27. FastTests, Slow Tests,and HotLava.ovvvininiiiininiiiininiinenennns 625
Why Do We Test? Our Desiderata for Effective Tests 626
Confidence and Correctness (Preventing Regression) 627
A Productive Workflow 627
Driving Better Design 627

Were Our Unit Tests Integration Tests All Along? What Is That Warm Glow
Coming from the Database? 627
We've Been in the “Sweet Spot” 628
What Is a “True” Unit Test? Does it Matter? 628
Integration and Functional Tests Get Slower Over Time 628
We're Not Getting the Full Potential Benefits of Testing 629
The Ideal of the Test Pyramid 630
Avoiding Mock Hell 631
The Actual Solutions Are Architectural 632
Ports and Adapters/Hexagonal/Onion/Clean Architecture 633
Functional Core, Imperative Shell 634
The Central Conceit: These Architectures Are “Better” 634
The Hardest Part: Knowing When to Make the Switch 635
Wrap-Up 636
Further Reading 637
Obey the Testing Goatl.........covviuiiiiiiiiii ittt iie e ineennes 639
Bibliography.cvvuiiiit i e i s 641
A. CheatSheet..........ooiiiiiiii 643
B. WhattoDoNext........oovnniiiieii i 647
C. Source Code EXamples. ...covnieiiiiie ittt iie it ie e eeenaaaaas 651
INAEX. ..t 655

xvi | Table of Contents

Preface

This book has been my attempt to share with the world the journey I took from
“hacking” to “software engineering”. It's mainly about testing, but there’s a lot more to
it, as you'll soon see.

I want to thank you for reading it.

If you bought a copy, then I'm very grateful. If you're reading the free online version,
then I'm still grateful that you've decided it’s worth spending your time on. Who
knows; perhaps once you get to the end, you'll decide it's good enough to buy a
physical copy for yourself or a friend.

If you have any comments, questions, or suggestions, I'd love to hear from you. You
can reach me directly via obeythetestinggoat@gmail.com, or on Mastodon @hjwp. You
can also check out the website and my blog.

I hope you’'ll enjoy reading this book as much as I enjoyed writing it.

Why | Wrote a Book About Test-Driven Development

“Who are you, why have you written this book, and why should I read it?” 1 hear you
ask.

I was lucky enough early on in my career to fall in with a bunch of test-driven
development (TDD) fanatics, and it made such a big impact on my programming
that I was burning to share it with everyone. You might say I had the enthusiasm of a
recent convert, and the learning experience was still a recent memory for me, so that’s
what led to the first edition, back in 2014.

When I first learned Python (from Mark Pilgrim’s excellent Dive Into Python), I came
across the concept of TDD, and thought, “Yes. I can definitely see the sense in that”
Perhaps you had a similar reaction when you first heard about TDD? It seemed like
a really sensible approach, a really good habit to get into—like regularly flossing your
teeth.

Xvii

mailto:obeythetestinggoat@gmail.com
https://fosstodon.org/@hjwp
http://www.obeythetestinggoat.com
https://diveintopython3.net

Then came my first big project, and you can guess what happened—there was a
client, there were deadlines, there was lots to do, and any good intentions about TDD
went straight out of the window.

And, actually, it was fine. I was fine.
At first.

At first I thought I didn’t really need TDD because the website was small, and I could
easily test whether things worked by just manually checking it out. Click this link
here, choose that drop-down item there, and this should happen. Easy. This whole
“writing tests” thing sounded like it would have taken ages. And besides, I fancied
myself, from the full height of my three weeks of adult coding experience, as being a
pretty good programmer. I could handle it. Easy.

Then came the fearful goddess Complexity. She soon showed me the limits of my
experience.

The project grew. Parts of the system started to depend on other parts. I did my
best to follow good principles like DRY (don’t repeat yourself), but that just led to
some pretty dangerous territory. Soon, I was playing with multiple inheritance. Class
hierarchies eight levels deep. eval statements.

I became scared of making changes to my code. I was no longer sure what depended
on what, and what might happen if I changed this code over here...oh gosh, I think
that bit over there inherits from it...no, it doesn't; it’s overridden. Oh, but it depends
on that class variable. Right, well, as long as I override the override it should be fine.
I'll just check—but checking was getting much harder. There were lots of sections for
the site now, and clicking through them all manually was starting to get impractical.
Better to leave well enough alone. Forget refactoring. Just make do.

Soon I had a hideous, ugly mess of code. New development became painful.

Not too long after this, I was lucky enough to get a job with a company called
Resolver Systems (now PythonAnywhere), where extreme programming (XP) was
the norm. The people there introduced me to rigorous TDD.

Although my previous experience had certainly opened my mind to the possible
benefits of automated testing, I still dragged my feet at every stage. “I mean, testing
in general might be a good idea, but really? All these tests? Some of them seem like
a total waste of time...what? Functional tests as well as unit tests? Come on, that’s
overdoing it! And this TDD test/minimal-code-change/test cycle? This is just silly!
We don’t need all these baby steps! Come on—we can see what the right answer is;
why don’t we just skip to the end?”

Believe me, I second-guessed every rule, I suggested every shortcut, I demanded jus-
tifications for every seemingly pointless aspect of TDD—and I still came out seeing

xviii | Preface

https://www.pythonanywhere.com
https://martinfowler.com/bliki/ExtremeProgramming.html

the wisdom of it all. I've lost count of the number of times I've thought, “Thanks,
tests’,' as a functional test uncovers a regression we would never have predicted, or
a unit test saves me from making a really silly logic error. Psychologically, it's made
development a much less stressful process. It produces code that’s a pleasure to work
with.

So, let me tell you all about it!

Aims of This Book

My main aim is to impart a methodology—a way of doing web development, which I
think makes for better web apps and happier developers. There’s not much point in a
book that just covers material you could find by googling, so this book isn't a guide to
Python syntax, nor a tutorial on web development per se. Instead, I hope to teach you
how to use TDD to get more reliably to our shared, holy goal: clean code that works.

With that said: I will constantly refer to a real practical example, by building a web
app from scratch using tools like Django, Selenium, jQuery, and mocks. I'm not
assuming any prior knowledge of any of these, so you should come out the other
end of this book with a decent introduction to those tools, as well as the discipline of
TDD.

In extreme programming we always pair-program, so I've imagined writing this book
as if I was pairing with my previous self, having to explain how the tools work and
answer questions about why we code in this particular way. So, if I ever take a bit of a
patronising tone, it’s because I'm not all that smart, and I have to be very patient with
myself. And if I ever sound defensive, it’s because I'm the kind of annoying person
that systematically disagrees with whatever anyone else says, so sometimes it takes a
lot of justifying to convince myself of anything.

1 Thests.

Preface | xix

https://oreil.ly/LGP3g

Outline

I've split this book into four parts.

Part I (Chapters 1 to 8): The Basics of TDD and Django
We dive straight into building a simple web app using TDD. We start by writing
a functional test (with Selenium), and then we go through the basics of Django
—models, views, templates—with rigorous unit testing at every stage. I also
introduce the Testing Goat.

Part IT (Chapters 9 to 12): Going to Production
These chapters are all about deploying your web app to an actual server. We
discuss how our tests, and the TDD practice of working incrementally, can take a
lot of the pain and risk out of what is normally quite a fraught process.

Part III (Chapters 13 to 16): Forms and Validation
Here, we get into some of the details of the Django Forms framework, imple-
menting validation, and data integrity using database constraints. We discuss
using tests to explore unfamiliar APIs, and the limits of frameworks.

Part IV (Chapters 17 to 27): Advanced Topics in Testing
Covers some of the more advanced topics in TDD, including spiking (where we
relax the rules of TDD temporarily), mocking, working outside-in, and continu-
ous integration (CI).

Now, onto a little housekeeping...

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions

Constant width
Used for program listings and within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords

Constant width bold
Shows commands or other text that should be typed literally by the user

xx | Preface

Occasionally I will use the symbol:

[...]
to signify that some of the content has been skipped, to shorten long bits of output, or
to skip down to a relevant section. You will also encounter the following callouts:

This element signifies a tip or suggestion.

This element signifies a general note or aside.

This element indicates a warning or caution.

\

Submitting Errata

Spotted a mistake or a typo? The sources for this book are available on GitHub, and
I'm always very happy to receive issues and pull requests: https://github.com/hjwp/
Book-TDD-Web-Dev-Python.

Using Code Examples

Code examples are available at https://github.com/hjwp/book-example; you’ll find
branches for each chapter there (e.g., https://github.com/hjwp/book-example/tree/chap
ter_03_unit_test_first_view). You can find a full list and some suggestions on ways of
working with this repository in Appendix C.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant

Preface | xxi

https://github.com/hjwp/Book-TDD-Web-Dev-Python
https://github.com/hjwp/Book-TDD-Web-Dev-Python
https://github.com/hjwp/book-example
https://github.com/hjwp/book-example/tree/chapter_03_unit_test_first_view
https://github.com/hjwp/book-example/tree/chapter_03_unit_test_first_view

amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes
the title, author, publisher, and ISBN. For example: “Test-Driven Development with
Python, 3rd edition, by Harry J.W. Percival (O’Reilly). Copyright 2026 Harry Percival,
978-1-098-14871-3

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ TDD-with-python-3e.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.

xxii | Preface

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/TDD-with-python-3e
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Companion Video

I've recorded a 10-part video series to accompany this book.? It covers the content of
Part I. If you find that you learn well from video-based material, then I encourage you
to check it out. Over and above what’s in the book, it should give you a feel for what
the “flow” of TDD is like, flicking between tests and code and explaining the thought
process as we go.

Plus, I'm wearing a delightful yellow t-shirt.

Unittest (Free)

2 The video has not been updated for the third edition, but the content is all mostly the same.

Preface | xxiii

https://learning.oreilly.com/videos/test-driven-development/9781491919163

License for the Free Edition

If youre reading the free edition of this book hosted at http://www.obeythetes
tinggoat.com, then the license is Creative Commons Attribution-NonCommercial-
NoDerivatives.® I want to thank O’Reilly for its fantastic attitude towards licensing;
most publishers aren’t so forward-thinking.

I see this as a “try before you buy” scheme really. If youre reading this book its
for professional reasons, so I hope that if you like it, you’ll buy a copy—if not for
yourself, then for a friend! O’Reilly has been great, it deserves your support. You’ll
find links to buy back on the home page.

3 The no-derivs clause is there because O’Reilly wants to maintain some control over derivative works, but it
often does grant permissions for things, so don't hesitate to get in touch if you want to build something based
on this book.

xxiv | Preface

http://www.obeythetestinggoat.com
http://www.obeythetestinggoat.com
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
http://www.obeythetestinggoat.com

Preface to the Third Edition:
TDD in the Age of Al

Is there any point in learning TDD now that Al can write code for you? A single
prompt could probably generate the entire example application in this book, includ-
ing all its tests, and the infrastructure config for automated deployment too.

The truth is that it’s too early to tell. Al is still in its infancy, and who knows what it’ll
be able to do in a few years or even months’ time.

Al Is Both Insanely Impressive and Incredibly Unreliable

What we do know is that right now, AI is both insanely impressive and incredibly
unreliable.

Beyond being able to understand and respond to prompts in normal human lan-
guage—it’s easy to forget how absolutely extraordinary that is; literally science-fiction
a few years ago—AI tools can generate working code, they can generate tests, they
can help us to break down requirements, brainstorm solutions, quickly prototype
new technologies. It’s genuinely astonishing.

As we're all finding out though, this all comes with a massive “but” Al outputs are
frequently plagued by hallucinations, and in the world of code, that means things that
just won't work, even if they look plausible. Worse than that, they can produce code
that appears to work, but is full of subtle bugs, security issues, or performance night-
mares. From a code quality point of view, we know that Al tools will often produce
code that’s filled with copy-paste and duplication, weird hacks, and undecipherable
spaghetti code that spells a maintenance nightmare.

XXV

Mitigations for Al's Shortcomings Sure Look a Lot Like TDD

If you read the advice, even from AI companies themselves, about the best way to
work with AI you’'ll find that it performs best when working in small, well-defined
contexts, with frequent checks for correctness. When taking on larger tasks, the
advice is to break them down into smaller, well-defined pieces, with clearly defined
success criteria.

When we're thinking about the problem of hallucinations, it sure seems like having a
comprehensive test suite and running it frequently, is going to be a must-have.

When we're thinking about code quality, the idea of having a human in the loop, with
frequent pauses for review and refactoring, again seems like a key mitigation.

In short, all of the techniques of test-driven development that are outlined in this
book:

o Defining a test that describes each small change of functionality, before we write
the code for it

o Breaking our problem down into small pieces and working incrementally, with
frequent test runs to catch bugs, regressions, and hallucinations

» The “refactor” step in TDD’ red/green/refactor cycle, which gives us a regular
reminder for the human in the loop to review and improve the code.

TDD is all about finding a structured, safer way of developing software, reducing the
risk of bugs and regressions and improving code quality, and these are very much the
exact same things that we need to achieve when working with Al

Leaky Abstractions and the Importance of Experience

“Leaky abstractions” are a diagnosis of a common problem in software development,
whereby higher-level abstractions fail in subtle ways, and the complexities of the
underlying system leak through.

In the presence of leaky abstractions, you need to understand the lower-level system
to be able to work effectively. It’s for this reason that, when the switch to third-
generation languages (3GLs) happened, programmers who understood the underly-
ing machine code were often the most effective at using the new languages like C and
Fortran.

In a similar way, Al offers us a new, higher-level abstraction around writing code, but
we can already see the “leaks” in the form of hallucinations and poor code quality.
And by analogy to the 3GLs, the programmers who are going to be most effective
with Al are going to be the ones who “know what good looks like”, both in terms of

xxvi | Preface to the Third Edition: TDD in the Age of Al

https://oreil.ly/PgWjL

code quality, test structure, and so on, but also in terms of what a safe and reliable
workflow for software development looks like.

My Own Experiences with Al

In my own experiences of working with Al, I've been very impressed at its ability to
write tests, for example... as long as there was already a good first example test to
copy from. Its ability to write that first test, the one where, as we'll see, a lot of the
design (and thinking) happens in TDD, was much more mixed.

Similarly when working in a less “autocomplete” and more “agentic” mode, I saw Al
tools do very well on simple problems with clear instructions, but when trying to deal
with more complex logic and requirements with ambiguity, I've seen it get dreadfully
stuck in loops and dead ends.

When that happened, I found that trying to guide the AI agent back towards taking
small steps, working on a single piece at a time, and clarifying requirements in tests,
was the best way to get things back on track.

I've also been able to experiment with using the “refactor” step to try and improve
the often-terrible code that the Al produced. Here again I had mixed results, where
the AT would need a lot of nudging before settling on a solution that felt sufficiently
readable and maintainable, to me.

So I'd echo what many others are saying, which is that AI works best when you, the
user, are a discerning partner rather than passive recipient.

Ultimately, as software developers, we need to be able to stand by
the code we produce, and be accountable for it, no matter what
tools were used to write it.

The Al-Enabled Workflow of the Future

The Al-enabled workflow of the future will look very different to what we have now,
but all the indications are that the most effective approach is going to be incremental,
have checks and balances to avoid hallucinations, and systematically involve humans
in the loop to ensure quality.

And the closest workflow we have to that today, is TDD. I'm excited to share it with
you!

Preface to the Third Edition: TDD in the Age of Al | xxvii

Prerequisites and Assumptions

Here’s an outline of what 'm assuming about you and what you already know, as well
as what software you’ll need ready and installed on your computer.

Python 3 and Programming

I've tried to write this book with beginners in mind, but if youre new to program-
ming, 'm assuming that you've already learned the basics of Python. So if you haven't
already, do run through a Python beginner’s tutorial or get an introductory book like
The Quick Python Book or Think Python, or (just for fun) Invent Your Own Computer
Games with Python—all of which are excellent introductions.

If youre an experienced programmer but new to Python, you should get along just
fine. Python is joyously simple to understand.

You should be able to follow this book on Mac, Windows, or Linux. Detailed installa-
tion instructions for each OS follow.

This book was tested against Python 3.14. If youre on an earlier
version, you will find minor differences in the way things look in
my command output listings (tracebacks won't have the A~~~
carets marking error locations, for example), so youre best off
upgrading, ideally, if you can.

In any case, I expect you to have access to Python, to know how to launch it from a
command line, and to know how to edit a Python file and run it. Again, have a look
at the three books I recommended previously if youre in any doubt.

XXiX

https://www.manning.com/books/the-quick-python-book-third-edition
https://oreil.ly/think-python-3e
https://inventwithpython.com/invent4thed
https://inventwithpython.com/invent4thed

How HTML Works

I'm also assuming you have a basic grasp of how the web works—what HTML is,
what a POST request is, and so on. If you're not sure about those, you'll need to find a
basic HTML tutorial; there are a few at https://developer.mozilla.org/Learn_web_devel
opment. If you can figure out how to create an HTML page on your PC and look at it
in your browser, and understand what a form is and how it might work, then youre
probably OK.

Django

The book uses the Django framework, which is (probably) the most well-established
web framework in the Python world. I've written this book assuming that the reader
has no prior knowledge of Django, but if youre new to Python and new to web
development and new to testing, you may occasionally find that theres just one
too many topics and sets of concepts to try and take on board. If that’s the case, I
recommend taking a break from the book, and taking a look at a Django tutorial.
DjangoGirls is the best, most beginner-friendly tutorial I know of. Django’s official
tutorial is also excellent for more experienced programmers.

JavaScript

There’s a little bit of JavaScript in the second half of the book. If you don’t know
JavaScript, don’t worry about it until then. And if you find yourself a little confused,
I'll recommend a couple of guides at that point.

Read on for installation instructions.

Required Software Installations
Aside from Python, you’ll need:

The Firefox web browser
Selenium can actually drive any of the major browsers, but I chose Firefox
because it’s the least in hock to corporate interests.

The Git version control system
This is available for any platform, at http://git-scm.com. On Windows, it comes
with the bash command line, which is needed for the book. See “Windows Notes”
on page Xxxii.

xxx | Prerequisites and Assumptions

https://developer.mozilla.org/Learn_web_development
https://developer.mozilla.org/Learn_web_development
https://tutorial.djangogirls.org
https://docs.djangoproject.com/en/5.2/intro/tutorial01
https://docs.djangoproject.com/en/5.2/intro/tutorial01
http://git-scm.com

A virtualenv with Python 3.14, Django 5.2, and Selenium 4 in it
Python’s virtualenv and pip tools now come bundled with Python (they didn’t
always used to, so this is a big hooray). Detailed instructions for preparing your
virtualenv follow.

Mac0S Notes

MacOS installations for Python and Git are relatively straightforward:

o Python 3.14 should install without a fuss from its downloadable installer. It will
automatically install pip, too.

o Git’s installer should also “just work”

+ You might also want to check out Homebrew. It’s a fairly reliable way of installing
common Unix tools on a Mac.! Although the normal Python installer is now
fine, you may find Homebrew useful in future. It does require you to download
all 1.1 GB of Xcode, but that also gives you a C compiler, which is a useful side
effect.

« If you want to run multiple different versions of Python on your Mac, tools like
uv or pyenv can help. The downside is that each is one more fiddly tool to have
to learn. But the key is to make sure, when creating your virtualenv, that you use
the right version of Python. From then on, you shouldn’t need to worry about it,
at least not when following this book.

Similarly to Windows, the test for all this is that you should be able to open a
terminal and just run git, python3, or pip from anywhere. If you run into any
trouble, the search terms “system path” and “command not found” should provide
good troubleshooting resources.

1 I wouldn’t recommend installing Firefox via Homebrew though: brew puts the Firefox binary in a strange
location, and it confuses Selenium. You can work around it, but it's simpler to just install Firefox in the
normal way.

Prerequisites and Assumptions | xxxi

http://www.python.org
http://brew.sh
https://docs.astral.sh/uv/guides/install-python
https://github.com/pyenv/pyenv

Linux Notes

If youre on Linux, I'm assuming youre already a glutton for punishment, so you
don’t need detailed installation instructions. But in brief, if Python 3.14 isn’t available
directly from your package manager, you can try the following:

« On Ubuntu, you can install the deadsnakes PPA. Make sure you apt install
python3.14-venv as well as just python3.14 to un-break the default Debian
version of Python.

o Alternatively, uv and pyenv both let you manage multiple Python versions on the
same machine, but it is yet another thing to have to learn and remember.

o Alternatively, compiling Python from source is actually surprisingly easy!

However you install it, make sure you can run Python 3.14 from a terminal.

Windows Notes

Windows users can sometimes feel a little neglected in the open source world. As
macOS and Linux are so prevalent, its easy to forget theres a world outside the
Unix paradigm. Backslashes as directory separators? Drive letters? What? Still, it is
absolutely possible to follow along with this book on Windows. Here are a few tips:

« When you install Git for Windows, it will include “Git Bash”. Use this as your
main command prompt throughout the book, and you'll get all the useful
GNU command-line tools like 1s, touch, and grep, plus forward-slash directory
separators.

« During the Git installation, you’ll get the option to choose the default editor used
by Git. Unless you're already a Vim user (or are desperate to learn), I'd suggest
using a more familiar editor—even just Notepad! See Figure P-1.

o Also in the Git installer, choose “Use Windows default console”; otherwise,
Python won't work properly in the Git Bash window.

« When you install Python, tick the option that says “Add python.exe to PATH” as
in Figure P-2, so that you can easily run Python from the command line.

The test for all this is that you should be able to go to a Git Bash command prompt
and just run python or pip from any folder.

xxxii | Prerequisites and Assumptions

https://oreil.ly/fHrpG
https://docs.astral.sh/uv/guides/install-python
https://github.com/pyenv/pyenv

#% Git 2.40.1 Setup - X

&

Choosing the default editor used by Git ®
Which editor would you like Git to use?

Use Vim (the ubiquitous text editor) as Git's default editor v

The Vim editor, while powerful, can be hard to use. Its user interface is
unintuitive and its key bindings are awkward.

Note: Vim is the default editor of Git for Windows only for historical reasons, and
it is highly recommended to switch to a modern GUI editor instead.

Note: This will leave the 'core.editor' option unset, which will make Git fall back

to the 'EDITOR' environment variable. The default editor is Vim - but you
may set it to some other editor of your choice.

https://gitforwindows.org/

Back Next Cancel

Figure P-1. Choose a nice default editor for Git

5 Python 3.11.3 (64-bit) Setup = X

Install Python 3.11.3 (64-bit)

Select Install Now to install Python with default settings, or choose
Customize to enable or disable features.

% Install Now
Ch\Users\hjwp2\AppDatatLocal\Programs\Python'\Python311

Includes IDLE, pip and documentation
Creates shortcuts and file associations

— Customize installation
Choose location and features

python -
p hen installing py.exe
or : !

@ Add python.exe to PATH;

Cancel

| windows

Figure P-2. Add Python to the system path from the installer

Prerequisites and Assumptions | xxxiii

Installing Firefox

Firefox is available as a download for Windows and macOS from firefox.com. On
Linux, you probably already have it installed, but otherwise your package manager
will have it.

Make sure you have the latest version, so that the “geckodriver” browser automation
module is available.

Setting Up Your Virtualenv

A Python virtualenv (short for virtual environment) is how you set up your environ-
ment for different Python projects. It enables you to use different packages (e.g.,
different versions of Django, and even different versions of Python) in each project.
And because youre not installing things system-wide, it means you don't need root
permissions.

Let’s create a virtualenv. ’'m assuming you're working in a folder called goat-book, but
you can name your work folder whatever you like. Stick to the name “venv” for the
virtualenv, though:

$ cd goat-book

$ py -3.14 -m venv .venv
On Windows, the py executable is a shortcut for different Python versions. On Mac
or Linux, we use python3.14:

$ cd goat-book
$ python3.14 -m venv .venv

Activating and Deactivating the Virtualenv

Whenever you're working through the book, you’ll want to make sure your virtualenv
has been “activated” You can always tell when your virtualenv is active because, in
your prompt, you'll see (.venv) in parentheses. But you can also check by running
which python to check whether Python is currently the system-installed one or the
virtualenv one.

The command to activate the virtualenv is source .venv/Scripts/activate on
Windows and source .venv/bin/activate on Mac/Linux. The command to deacti-
vate is just deactivate.

xxxiv | Prerequisites and Assumptions

https://www.firefox.com/

Try it out like this, on Windows:

$ source .venv/Scripts/activate

(.venv)$

(.venv)$ which python
/C/Users/harry/goat-book/.venv/Scripts/python

(.venv)$ deactivate

$

$ which python
/c/Users/harry/AppData/Local/Programs/Python/Python312-32/python

Or like this, on Mac/Linux:

$ source .venv/bin/activate

(.venv)$

(.venv)$ which python
/home/harry/goat-book/.venv/bin/python
(.venv)$ deactivate

$
$ which python
Jusr/bin/python

Always make sure your virtualenv is active when working on the
book. Look out for the (.venv) in your prompt, or run which
python to check.

Virtualenvs and IDEs

If youre using an IDE like PyCharm or Visual Studio Code, you should be able to
configure them to use the virtualenv as the default Python interpreter for the project.

You should then be able to launch a terminal inside the IDE with the virtualenv

already activated.

Installing Django and Selenium

We'll install Django 5.2 and the latest Selenium.? Remember to make sure your
virtualenv is active first!

2 You might be wondering why I'm not mentioning a specific version of Selenium. It’s because Selenium is
constantly being updated to keep up with changes in web browsers, and as we can’t really pin our browser to a
specific version, were best off using the latest Selenium. It was version 4.24 at the time of writing.

Prerequisites and Assumptions | xxxv

(.venv) $ pip install "django<6" "selenium"
Collecting django<6
Downloading Django-5.2.3-py3-none-any.whl (8.0 MB)
-- 8.1/8.1 MB 7.6 MB/s eta 0:00:00
Collecting selenium
Downloading selenium-4.24.0-py3-none-any.whl (6.5 MB)
-- 6.5/6.5 MB 6.3 MB/s eta 0:00:00
Collecting asgiref>=3.8.1 (from django<6)
Downloading asgiref-3.8.1-py3-none-any.whl.metadata (9.3 kB)
Collecting sqlparse>=0.3.1 (from django<6)Collecting sqlparse>=0.3.1 (from
django<6)
[...]
Installing collected packages: sortedcontainers, websocket-client, urllib3,
typing_extensions, sqlparse, sniffio, pysocks, idna, hi11, certifi, attrs,
asgiref, wsproto, outcome, django, trio, trio-websocket, selenium
Successfully installed asgiref-3.8.1 attrs-25.3.0 certifi-2025.4.26
django-5.2.3 [...]
selenium-4.32.0 [...]

Check that it works:
(.venv) $ python -c "from selenium import webdriver; webdriver.Firefox()"

This should pop open a Firefox web browser, which you’ll then need to close.

If you see an error, you'll need to debug it before you go further.
On Linux/Ubuntu, I ran into a bug, which needs to be fixed by
setting an environment variable called TMPDIR.

Some Error Messages You're Likely to See When You Inevitably Fail to
Activate Your Virtualenv

If you're new to virtualenvs—or even if youre not, to be honest—at some point you’re
guaranteed to forget to activate it, and then you’ll be staring at an error message.
Happens to me all the time. Here are some of the things to look out for:

ModuleNotFoundError: No module named 'selenium'

Or:

ModuleNotFoundError: No module named 'django'

[...]

ImportError: Couldn't import Django. Are you sure it's installed and available
on your PYTHONPATH environment variable? Did you forget to activate a virtual
environment?

As always, look out for that (.venv) in your command prompt, and a quick
source .venv/Scripts/activate or source .venv/bin/activate is probably what
you need to get it working again.

xxxvi | Prerequisites and Assumptions

https://github.com/mozilla/geckodriver/issues/2010

Here’s another, for good measure:
bash: .venv/Scripts/activate: No such file or directory

This means you’re not currently in the right directory for working on the project. Try
a cd goat-book, or similar.

Alternatively, if youre sure youre in the right place, you may have run into a bug
from an older version of Python, where it wouldn’t install an activate script that was
compatible with Git Bash. Reinstall Python 3, and make sure you have version 3.6.3
or later, and then delete and re-create your virtualenv.

If you see something like this, it’s probably the same issue and you need to upgrade
Python:

bash: @echo: command not found

bash: .venv/Scripts/activate.bat: line 4:

syntax error near unexpected token " (
bash: .venv/Scripts/activate.bat: line 4: 'if not defined PROMPT ('

Final one! Consider this:

'source' 1s not recognized as an internal or external command,
operable program or batch file.

If you see this, it’s because you've launched the default Windows command prompt,
cmd, instead of Git Bash. Close it and open the latter.

On Anaconda

Anaconda is another tool for managing different Python environments. It’s particu-
larly popular on Windows and for scientific computing, where it can be hard to get
some of the compiled libraries to install.

In the world of web programming, it's much less necessary, so I recommend you do
not use Anaconda for this book.

Happy coding!

Did these instructions not work for you? Or have you got better
ones? Get in touch: obeythetestinggoat@gmail.com!

Prerequisites and Assumptions | xxxvii

mailto:obeythetestinggoat@gmail.com

Acknowledgments

Lots of people to thank, without whom this book would never have happened, and/or
would have been even worse than it is.

Thanks first to “Greg” at SOTHER_PUBLISHER, who was the first person to encourage
me to believe it really could be done. Even though your employers turned out to have
overly regressive views on copyright, I'm forever grateful that you believed in me.

Thanks to Michael Foord, another ex-employee of Resolver Systems, for providing
the original inspiration by writing a book himself, and thanks for his ongoing support
for the project. Thanks also to my boss Giles Thomas, for foolishly allowing another
one of his employees to write a book (although I believe he’s now changed the
standard employment contract to say “no books”). Thanks also for your ongoing
wisdom and for setting me off on the testing path.

Thanks to my other colleagues, Glenn Jones and Hansel Dunlop, for being invaluable
sounding boards, and for your patience with my one-track-record conversation over
the last year.

Thanks to my wife, Clementine, and to both my families—without whose support
and patience I would never have made it. I apologise for all the time spent with my
nose in the computer on what should have been memorable family occasions. I had
no idea when I set out what the book would do to my life (“Write it in my spare time,
you say? That sounds reasonable...”). I couldn’t have done it without you.

Thanks to my tech reviewers, Jonathan Hartley, Nicholas Tollervey, and Emily Bache,
for your encouragements and invaluable feedback. Especially Emily, who actually
conscientiously read every single chapter. Partial credit to Nick and Jon, but that
should still be read as eternal gratitude. Having y’all around made the whole thing less
of a lonely endeavour. Without all of you, the book would have been little more than
the nonsensical ramblings of an idiot.

Thanks to everyone else who's given up their time to give some feedback on the book,
out of nothing more than the goodness of their heart: Gary Bernhardt, Mark Lavin,

XXXiX

Matt O’Donnell, Michael Foord, Hynek Schlawack, Russell Keith-Magee, Andrew
Godwin, Kenneth Reitz, and Nathan Stocks. Thanks for being much smarter than I
am, and for preventing me from saying several stupid things. Naturally, there are still
plenty of stupid things left in the book, for which yall can absolutely not be held
responsible.

Thanks to my editor, Meghan Blanchette, for being a very friendly and likeable
slave driver, and for keeping the book on track, both in terms of timescales and
by restraining my sillier ideas. Thanks to all the others at O’Reilly for your help,
including Sarah Schneider, Kara Ebrahim, and Dan Fauxsmith for letting me keep
British English. Thanks to Charles Roumeliotis for your help with style and grammar.
We may never see eye-to-eye on the merits of Chicago School quotation/punctuation
rules, but I sure am glad you were around. And thanks to the design department for
giving us a goat for the cover!

And thanks most especially to all my early release readers, for all your help picking
out typos, for your feedback and suggestions, for all the ways in which you helped
to smooth out the learning curve in the book, and most of all for your kind words
of encouragement and support that kept me going. Thank you Jason Wirth, Dave
Pawson, Jeff Orr, Kevin De Baere, crainbf, dsisson, Galeran, Michael Allan, James
O’Donnell, Marek Turnovec, SoonerBourne, julz, Cody Farmer, William Vincent,
Trey Hunner, David Souther, Tom Perkin, Sorcha Bowler, Jon Poler, Charles Quast,
Siddhartha Naithani, Steve Young, Roger Camargo, Wesley Hansen, Johansen Chris-
tian Vermeer, Ian Laurain, Sean Robertson, Hari Jayaram, Bayard Randel, Konrad
Korzel, Matthew Waller, Julian Harley, Barry McClendon, Simon Jakobi, Angelo Cor-
don, Jyrki Kajala, Manish Jain, Mahadevan Sreenivasan, Konrad Korzel, Deric Crago,
Cosmo Smith, Markus Kemmerling, Andrea Costantini, Daniel Patrick, Ryan Allen,
Jason Selby, Greg Vaughan, Jonathan Sundqvist, Richard Bailey, Diane Soini, Dale
Stewart, Mark Keaton, Johan Wiarlander, Simon Scarfe, Eric Grannan, Marc-Anthony
Taylor, Maria McKinley, John McKenna, Rafal Szymanski, Roel van der Goot, Ignacio
Reguero, TJ Tolton, Jonathan Means, Theodor Nolte, Jungsoo Moon, Craig Cook,
Gabriel Ewilazarus, Vincenzo Pandolfo, David “farbish2”, Nico Coetzee, Daniel Gon-
zalez, Jared Contrascere, Zhao # 3T, and many, many more. If I've missed your name,
you have an absolute right to be aggrieved; I am incredibly grateful to you too, so
write to me and I will try and make it up to you in any way I can.

And finally thanks to you, the latest reader, for deciding to check out the book! I hope
you enjoy it.

xI | Acknowledgments

Additional Thanks for the Second Edition

Thanks to my wonderful editor for the second edition, Nan Barber, and to Susan
Conant, Kristen Brown, and the whole team at O’Reilly. Thanks once again to Emily
and Jonathan for tech reviewing, as well as to Edward Wong for his very thorough
notes. Any remaining errors and inadequacies are all my own.

Thanks also to the readers of the free edition who contributed comments, sugges-
tions, and even some pull requests. I have definitely missed some of you on this list,
so apologies if your name isn’t here, but thanks to Emre Gonulates, Jésus Gémez, Jor-
don Birk, James Evans, Iain Houston, Jason DeWitt, Ronnie Raney, Spencer Ogden,
Suresh Nimbalkar, Darius, Caco, LeBodro, Jeff, Duncan Betts, wasabigeek, joegnis,
Lars, Mustafa, Jared, Craig, Sorcha, TJ, Ignacio, Roel, Justyna, Nathan, Andrea, Alex-
andr, bilyanhadzhi, mosegontar, sfarzy, henziger, hunterji, das-g, juanriaza, GeoWill,
Windsooon, gonulate, Margie Roswell, Ben Elliott, Ramsay Mayka, peterj, 1hx, Wi,
Duncan Betts, Matthew Senko, Neric “Kasu” Kaz, Dominic Scotto, Andrey Makarov,
and many, many more.

Additional Thanks for the Third Edition

Thanks to my editor, Rita Fernando, thanks to my tech reviewers Béres Csanad,
David Seddon, Sebastian Buczynski, and Jan Giacomelli, and thanks to all the early
release readers for your feedback, big and small, including Jonathan H., James Evans,
Patrick Cantwell, Devin Schumacher, Nick Nielsen, Teemu Viikeri, Andrew Zipperer,
artGonza, Joy Denebeim, mshob23, Romilly Cocking, Zachary Kerbo, Stephanie
Goulet, David Carter, Jim Win Man, Alex Kennett, Ivan Schneider, Lars Berberich,
Rodrigo Jacznik, Tom Nguyen, rokbot, Nikita Durne, and to anyone I've missed off
this list, my sincere apologies, ping me and I'll add you, and thank you thank you
once again.

Extra Thanks for Csanad

Every single one of the tech reviewers for this edition was invaluable, and they all
contributed in different and complementary ways.

But I want to give extra thanks to Csanad, who went beyond the normal remit of a
tech reviewer, so far as to do substantial actual rewrites of several chapters in Part III.

You can't blame him for anything in there though, because I've been over them since,
so any errors or problems you might spot are definitely things I've added since.

Anyways, thanks so much Csanad, you helped me feel like I wasn't entirely alone.

Acknowledgments | i

PART |
The Basics of TDD and Django

In this first part, ’'m going to introduce the basics of test-driven development (TDD).
We'll build a real web application from scratch, writing tests first at every stage.

We'll cover functional testing with Selenium, as well as unit testing, and see the
difference between the two. I'll introduce the TDD workflow, red/green/refactor.

I'll also be using a version control system (Git). We'll discuss how and when to do
commits and integrate them with the TDD and web development workflow.

We'll be using Django, the Python world’s most popular web framework (probably).
I've tried to introduce the Django concepts slowly and one at a time, and provide
lots of links to further reading. If youre a total beginner to Django, I thoroughly
recommend taking the time to read them. If you find yourself feeling a bit lost, take a

couple of hours to go through the official Django tutorial and then come back to the
book.

In Part I, you'll also get to meet the Testing Goat...

Be careful with copy and paste. If youre working from a digital
version of the book, it’s natural to want to copy and paste code
listings from the book as youre working through it. It's much better
\ if you don't: typing things in by hand gets them into your muscle
memory, and just feels much more real. You also inevitably make
the occasional typo, and debugging is an important thing to learn.

Quite apart from that, you'll find that the quirks of the PDF format
mean that weird stuff often happens when you try to copy/paste
from it...

https://docs.djangoproject.com/en/5.2/intro

CHAPTER1

Getting Django Set Up Using a
Functional Test

Test-driven development isn't something that comes naturally. It's a discipline, like
a martial art, and just like in a Kung Fu movie, you need a bad-tempered and
unreasonable master to force you to learn the discipline. Ours is the Testing Goat.

Obey the Testing Goat! Do Nothing Until You Have a Test

The Testing Goat is the unofficial mascot' of TDD in the Python testing community.
It probably means different things to different people, but, to me, the Testing Goat is
a voice inside my head that keeps me on the True Path of Testing—like one of those
little angels or demons that pops up by your shoulder in the cartoons, but with a very
niche set of concerns. I hope, with this book, to install the Testing Goat inside your
head too.

So we've decided to build a web app, even if we're not quite sure what it’s going to
do yet. Normally, the first step in web development is getting your web framework
installed and configured. Download this, install that, configure the other, run the
script...but TDD requires a different mindset. When youre doing TDD, you always
have the Testing Goat inside your head—single-minded as goats are—bleating “Test
first, test first!”

In TDD the first step is always the same: write a test.

1 OK more of a minor running joke from PyCon in the mid 2010s, which I am single-handedly trying to make
into a thing.

First we write the test; then we run it and check that it fails as expected. Only then do
we go ahead and build some of our app. Repeat that to yourself in a goat-like voice. I
know I do.

Another thing about goats is that they take one step at a time. That’s why they seldom
fall off things, see, no matter how steep they are—as you can see in Figure 1-1.

Figure 1-1. Goats are more agile than you think (source: Caitlin Stewart, on Flickr)

We'll proceed with nice small steps; were going to use Django, which is a popular
Python web framework, to build our app.

The first thing we want to do is check that we've got Django installed and that it’s
ready for us to work with. The way we'll check is by confirming that we can spin up
Django’s development server and actually see it serving up a web page, in our web
browser, on our local computer. We'll use the Selenium browser automation tool for
this.

4 | Chapter 1: Getting Django Set Up Using a Functional Test

Create a new Python file called functional_tests.py wherever you want to keep the
code for your project, and enter the following code. If you feel like making a few little
goat noises as you do it, it may help:

functional_tests.py
from import webdriver

browser = webdriver.Firefox()
browser.get("http://localhost:8000")

assert "Congratulations!" in browser.title
print("OK")

That's our first functional test (FT); I'll talk more about what I mean by functional
tests, and how they contrast with unit tests, in a bit. For now, it's enough to assure
ourselves that we understand what it’s doing:

o Starting a Selenium WebDriver to pop up a real Firefox browser window.

« Using it to open up a web page, which were expecting to be served from the local
computer.

o Checking (making a test assertion) that the page has the word “Congratulations!”
in its title.

« If all goes well, we print OK.

Let’s try running it:

$ python functional_tests.py
Traceback (most recent call last):

File "...goat-book/functional_tests.py", line 4, in <module>
browser.get("http://localhost:8000")

File ".../selenium/webdriver/remote/webdriver.py", line 483, in get
self.execute(Command.GET, {"url": url})

File ".../selenium/webdriver/remote/webdriver.py", line 458, in execute
self.error_handler.check_response(response)

File ".../selenium/webdriver/remote/errorhandler.py", line 232, in

check_response

raise exception_class(message, screen, stacktrace)
selenium.common.exceptions.WebDriverException: Message: Reached error page: abo
ut:neterror?e=connectionFailure&u=http%3A//localhost%3A8000/[...]
Stacktrace:
RemoteError@chrome://remote/content/shared/RemoteError.sys.mjs:8:8
WebDriverError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:182:5
UnknownError@chrome://remote/content/shared/webdriver/Errors.sys.mjs:530:5

[...]

Obey the Testing Goat! Do Nothing Until You HaveaTest | 5

You should see a browser window pop up trying to open localhost:8000, showing the
“Unable to connect” error page. If you switch back to your console, you'll see the big,
ugly error message telling us that Selenium ran into an error page. And then, you
will probably be irritated at the fact that it left the Firefox window lying around your
desktop for you to tidy up. We'll fix that later!

If, instead, you see an error trying to import Selenium, or an error
trying to find something called “geckodriver”, you might need to go
back and have another look at the “Prerequisites and Assumptions”
section.

What to Do If You Get a Firefox Upgrade Pop-up

Now and again, when running Selenium tests, you might encounter a strange pop-up
window, such as the one shown in Figure 1-2.

Firefox

Firefox is trying to install a new
helper tool.

Enter your password to allow this.

Harry Percival

Password

Cancel Install Helper

Figure 1-2. Firefox wants to install a new what now?

This happens when Firefox has automatically downloaded a new version, in the
background. When Selenium tries to load a fresh Firefox session, it wants to install
the latest version of its “geckodriver” plugin.

To resolve the issue, you have to close the Selenium browser window, go back to your
main browser window and tell it to install the upgrade and restart itself, and then try
again.

6 | Chapter 1: Getting Django Set Up Using a Functional Test

If something strange is going on with your FTs, it's worth
checking if theres a Firefox upgrade pending.

For now though, we have a failing test, so that means were allowed to start building
our app.

Getting Django Up and Running

As you've definitely read “Prerequisites and Assumptions” by now, you've already
got Django installed (right?). The first step in getting Django up and running is to
create a project, which will be the main container for our site. Django provides a little
command-line tool for this:

$ django-admin startproject superlists .

«»

Don’t forget that “” at the end; it's important!

That will create a file called manage.py in your current folder, and a subfolder called
“superlists”, with more stuff inside it:

— functional_tests.py
}— manage.py
L— superlists

— __init__.py

F— asgi.py

}— settings.py

— urls.py

L— wsgi.py

Make sure your project folder looks exactly like this! If you see two
nested folders called “superlists’, it's because you forgot the 7 in
the command. Delete them and try again, or there will be lots of

confusion with paths and working directories.

The superlists folder is intended for stuff that applies to the whole project—like
settings.py, which is used to store global configuration information for the site.

Getting Django Up and Running | 7

But the main thing to notice is manage.py. That’s Django’s Swiss Army knife, and one
of the things it can do is run a development server. Let’s try that now:

$ python manage.py runserver
Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until
you apply the migrations for app(s): admin, auth, contenttypes, sessions.
Run 'python manage.py migrate' to apply them.

March 17, 2023 - 18:07:30

Django version 5.2.4, using settings 'superlists.settings'

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

That’s Django’s development server now up and running on our machine.

Its safe to ignore that message about “unapplied migrations” for
now. We'll look at migrations in Chapter 5.

Leave it there and open another command shell. Navigate to your project folder,
activate your virtualenv, and then try running our test again:

$ python functional_tests.py

0K
Not much action on the command line, but you should notice two things: firstly,
there was no ugly AssertionError and, secondly, the Firefox window that Selenium
popped up had a different-looking page on it.

If you see an error saying “ModuleNotFoundError: No module
named selenium’, you've forgotten to activate your virtualenv.
Check the “Prerequisites and Assumptions” section again, if you
need to.

Well, it may not look like much, but that was our first ever passing test! Hooray!

If it all feels a bit too much like magic, like it wasn't quite real, why not go and take
a look at the dev server manually, by opening a web browser yourself and visiting
http://localhost:8000? You should see something like Figure 1-3.

You can quit the development server now if you like, back in the original shell, using
Ctrl+C.

8 | Chapter 1: Getting Django Set Up Using a Functional Test

http://127.0.0.1:8000/

* The install worked successfully >

django View release notes for Django 4.2

)

The install worked successfully!
Congratulations!

You are seeing this page because DEBUG=True is in
your settings file and you have not configured any
URLs.

O ' Django Documentation ¢y Tutorial: A Polling App g2 Django Community
~ Topics, references, & how-to’s Get started with Django Connect, get help, or contribute

Figure 1-3. It worked!

Adieu to Roman Numerals!

So many introductions to TDD use Roman numerals in their examples that it has
become a running joke—I even started writing one myself. If you’re curious, you can
find it on my GitHub page.

Roman numerals, as an example, are both good and bad. It’s a nice “toy” problem,
reasonably limited in scope, and you can explain the core of TDD quite well with it.

The problem is that it can be hard to relate to the real world. That’s why I've decided
to use the building of a real web app, starting from nothing, as my example. Although
it’s a simple web app, my hope is that it will be easier for you to carry across to your
next real project.

In addition, it means we can start out using functional tests as well as unit tests, and
demonstrate a TDD workflow that’s more like real life, and less like that of a toy
project.

Getting Django Up and Running | 9

https://github.com/hjwp/tdd-roman-numeral-calculator

Starting a Git Repository

There’s one last thing to do before we finish the chapter: start to commit our work to
a version control system (VCS). If youre an experienced programmer, you don’t need
to hear me preaching about version control. But if youre new to it, please believe me
when I say that VCS is a must-have. As soon as your project gets to be more than a
few weeks old and a few lines of code, having a tool available to look back over old
versions of code, revert changes, explore new ideas safely, even just as a backup...It’s
hard to overstate how useful that is. TDD goes hand in hand with version control, so
I want to make sure I impart how it fits into the workflow.

Our Working Directory Is Always the Folder That Contains manage.py

We'll be using this same folder throughout the book as our working directory—if in
doubt, it’s the one that contains manage.py.

(For simplicity, in my command listings, I'll always show it as: ...goat-book/. Although
it will probably actually be something like: /home/kind-reader-username/my-python-
projects/goat-book/.)

Whenever I show a command to type in, I will assume we’re in this directory.
Similarly, if I mention a path to a file, it will be relative to this directory. So, for
example, superlists/settings.py means the settings.py inside the superlists folder.

So, our first commit! If anything, it’s a bit late; shame on us. Were using Git as our
VCS, cos it’s the best.

Let’s start by doing the git init to start the repository:

$ s
db.sqlite3 functional_tests.py manage.py superlists

$ git init .
Initialized empty Git repository in ...goat-book/.git/

10 | Chapter 1: Getting Django Set Up Using a Functional Test

Setting the Default Branch Name in Git
If you see this message:

hint: Using 'master' as the name for the initial branch. This default branch
hint: name is subject to change. To configure the initial branch name to use
hint: in all of your new repositories, which will suppress this warning, call:
hint:

hint: git config --global init.defaultBranch <name>

hint:

hint: Names commonly chosen instead of 'master' are 'main', 'trunk' and

hint: 'development'. The just-created branch can be renamed via this command:
hint:

hint: git branch -m <name>

Initialized empty Git repository in ...goat-book/.git/

Consider following the advice and choosing an explicit default branch name. I chose
main. It’s a popular choice, and you might see it here and there in the book. So if you
want to match that, do:

$ git config --global init.defaultBranch main

then let's re-create our git repo by deleting and starting again:
S rm -rf .git

$ git init .

Initialized empty Git repository in ...goat-book/.git/

Now let’s take a look and see what files we want to commit:

$1s

db.sqlite3 functional_tests.py manage.py superlists
There are a few things in here that we don’t want under version control: db.sqlite3 is
the database file, and our virtualenv shouldn’t be in Git either. We'll add all of them to
a special file called .gitignore which, um, tells Git what to ignore:

$ echo "db.sqlite3" >> .gitignore
$ echo ".venv" >> .gitignore

Starting a Git Repository | 11

Next we can add the rest of the contents of the current ” folder:
$ git add .
$ git status
On branch main

No commits yet

Changes to be committed:

(use "git rm --cached <file>..." to unstage)
new file: .gitignore
new file: functional_tests.py
new file: manage.py
new file: superlists/__init__.py

new file: superlists/__pycache__/__init__.cpython-314.pyc
new file: superlists/__pycache__/settings.cpython-314.pyc
new file: superlists/__pycache__/urls.cpython-314.pyc
new file: superlists/__pycache__/wsgi.cpython-314.pyc

new file: superlists/asgi.py
new file: superlists/settings.py
new file: superlists/urls.py
new file: superlists/wsgi.py

Oops! We've got a bunch of .pyc files in there; it's pointless to commit those. Let’s
remove them from Git and add them to .gitignore too:

$ git rm -r --cached superlists/__pycache__

rm 'superlists/__pycache__/__1init__.cpython-314.pyc'
rm 'superlists/__pycache__/settings.cpython-314.pyc'
rm 'superlists/__pycache__/urls.cpython-314.pyc'

rm 'superlists/__pycache__/wsgi.cpython-314.pyc'

$ echo "__pycache__" >> .gitignore

$ echo "*.pyc" >> .gitignore

12 | Chapter 1: Getting Django Set Up Using a Functional Test

Now let’s see where we are...

$ git status
On branch main

Initial commit

Changes to be committed:

(use "git rm --cached <file>...

new file:
new file:
new file:
new file:
new file:
new file:
new file:
new file:

to unstage)

.gitignore
functional_tests.py
manage.py
superlists/__init__.py
superlists/asgi.py
superlists/settings.py
superlists/urls.py
superlists/wsgi.py

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

modified:

.gitignore

You'll see 'm using git status alot—so much so that I often alias
itto git st...'m not telling you how to do that though; I leave you

to discover the secrets of Git aliases on your own!

Looking good—we’re ready to do our first commit!

$ git add .gitignore

$ git commit

Starting a Git Repository

13

When you type git commit, it will pop up an editor window for you to write your
commit message in. Mine looked like Figure 1-4.2

~

File Edit View Terminal Tabs Help

First commit: First FT and basic Django confiff

Please enter the commit message for your changes. Lines starting
with '#' will be ignored, and an empty message aborts the commit.
#

On branch master

#

Initial commit

#

Changes to be committed:

new file: .gitignore

new file: function
new file:
new file:
new file:
new file:
new file:
new file:

O K OH W KKK

.git/COMMIT_EDITMSG [+]
1 change; after #2 ©1:15:28

Figure 1-4. First Git commit

If you want to really go to town on Git, this is the time to also learn
about how to push your work to a cloud-based VCS hosting service
like GitHub or GitLab. They’ll be useful if you think you want to
follow along with this book on different computers. I leave it to
you to find out how they work; they have excellent documentation.
Alternatively, you can wait until Chapter 25, where we'll use one.

That’s it for the VCS lecture. Congratulations! You've written a functional test using
Selenium, and you've gotten Django installed and running, in a certifiable, test-first,
goat-approved TDD way. Give yourself a well-deserved pat on the back before mov-
ing on to Chapter 2.

2 Did a strange terminal-based editor (the dreaded Vim) pop up and you had no idea what to do? Or did you
see a message about account identity and git config --global user.username? Check out the Git manual
and its basic configuration section. PS: To quit Vim, it’s Esc, then :q!

14 | Chapter 1: Getting Django Set Up Using a Functional Test

http://git-scm.com/book/en/Customizing-Git-Git-Configuration

CHAPTER 2

Extending Our Functional Test Using
the unittest Module

Let’s adapt our test, which currently checks for the default Django “it worked” page,
and check instead for some of the things we want to see on the real front page of our
site.

Time to reveal what kind of web app were building: a to-do lists site! I know, I know,
every other web dev tutorial online is also a to-do lists app, or maybe a blog or a polls
app. 'm very much following fashion.

The reason is that a to-do list is a really nice example. At its most basic, it is very
simple indeed—just a list of text strings—so it’s easy to get a “minimum viable” list
app up and running. But it can be extended in all sorts of ways—different persistence
models, adding deadlines, reminders, sharing with other users, and improving the
client-side UI. There’s no reason to be limited to just “to-do” lists either; they could
be any kind of lists. But the point is that it should enable me to demonstrate all of the
main aspects of web programming, and how you apply TDD to them.

15

Using a Functional Test to Scope Qut a
Minimum Viable App

Tests that use Selenium let us drive a real web browser, so they really let us see
how the application functions from the user’s point of view. That's why they’re called
functional tests.

This means that an FT can be a sort of specification for your application. It tends to
track what you might call a user story, and follows how the user might work with a
particular feature and how the app should respond to them.!

Terminology:
Functional Test == End-to-End Test == Acceptance Test

What I call functional tests, some people prefer to call end-to-end tests, or, slightly less
commonly, system tests.

The main point is that these kinds of tests look at how the whole application func-
tions, from the outside. Another name is black box test, or closed box test, because the
test doesn’t know anything about the internals of the system under test.

Others also like the name acceptance tests (see “On Acceptance Tests” on page 631).
This distinction is less about the level of granularity of the test or the system, but
more about whether the test is checking on the “acceptance criteria” for a feature (i.e.,
behaviour), as visible to the user.

Feature tests should have a human-readable story that we can follow. We make it
explicit using comments that accompany the test code. When creating a new FT,
we can write the comments first, to capture the key points of the user story. Being
human-readable, you could even share them with nonprogrammers, as a way of
discussing the requirements and features of your app.

Test-driven development and Agile or Lean software development methodologies
often go together, and one of the things we tend to talk about is the minimum viable
app: what is the simplest thing we can build that is still useful? Let’s start by building
that, so that we can test the water as quickly as possible.

A minimum viable to-do list really only needs to let the user enter some to-do items,
and remember them for their next visit.

1 If you want to read more about user stories, check out Gojko Adzic’s Fifty Quick Ideas to Improve Your User
Stories or Mike Cohn’s User Stories Applied: For Agile Software Development.

16 | Chapter2: Extending Our Functional Test Using the unittest Module

Open up functional_tests.py and write a story a bit like this one:

functional_tests.py (ch021001)
from selenium import webdriver

browser = webdriver.Firefox()
Edith has heard about a cool new online to-do app.
She goes to check out its homepage

browser.get("http://localhost:8000")

She notices the page title and header mention to-do lists
assert "To-Do" in browser.title

She is invited to enter a to-do item straight away

She types "Buy peacock feathers" into a text box
(Edith's hobby is tying fly-fishing lures)

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list

There is still a text box inviting her to add another item.
She enters "Use peacock feathers to make a fly" (Edith is very methodical)

The page updates again, and now shows both items on her list
Satisfied, she goes back to sleep

browser.quit()

We Have a Word for Comments...

When I first started at PythonAnywhere, I used to virtuously pepper my code with
nice descriptive comments. My colleagues said to me: “Harry, we have a word for
comments. We call them lies” I was shocked! I learned in school that comments are
good practice?

They were exaggerating for effect. There is definitely a place for comments that add
context and intention. But my colleagues were pointing out that comments aren’t
always as useful as you hope. For starters, it's pointless to write a comment that just
repeats what you're doing with the code:

increment wibble by 1
wibble += 1

Not only is it pointless, but there’s a danger that you'll forget to update the comments
when you update the code, and they end up being misleading—lies! The ideal is to
strive to make your code so readable, to use such good variable names and function

Using a Functional Test to Scope Out a Minimum Viable App | 17

names, and to structure it so well that you no longer need any comments to explain
what the code is doing. Just a few here and there to explain why.

There are other places where comments are very useful. We'll see that Django uses
them a lot in the files it generates for us to use as a way of suggesting helpful bits of its
APL

And, of course, we use comments to explain the user story in our functional tests—by
forcing us to make a coherent story out of the test, it makes sure we're always testing
from the point of view of the user.

There is more fun to be had in this area, things like Behaviour-Driven Development
(see Online Appendix: BDD) and building domain-specific languages (DSLs) for
testing, but they’re topics for other books.?

For more on comments, I recommend John Ousterhout’s A Philosophy of Software
Design, which you can get a taste of by reading his lecture notes from the chapter on
comments.

You'll notice that, apart from writing the test out as comments, I've updated the
assert to look for “To-Do” instead of Djangos “Congratulations”. That means we
expect the test to fail now. Let’s try running it.

First, start up the server:
$ python manage.py runserver
And then, in another terminal, run the tests:

$ python functional_tests.py
Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 10, in <module>
assert "To-Do" in browser.title
AssertionError

That's what we call an expected fail, which is actually good news—not quite as good
as a test that passes, but at least it’s failing for the right reason; we can have some
confidence we've written the test correctly.

2 Check out this video by the great Dave Farley if you want a taste: https://oreil.ly/bbawE.

18 | Chapter2: Extending Our Functional Test Using the unittest Module

https://oreil.ly/bbawE
https://www.obeythetestinggoat.com/book/appendix_bdd.html
https://oreil.ly/1cdgY
https://oreil.ly/1cdgY

The Python Standard Library’s unittest Module

There are a couple of little annoyances we should probably deal with. Firstly, the
message “AssertionError” isn't very helpful—it would be nice if the test told us what it
actually found as the browser title. Also, it’s left a Firefox window hanging around the
desktop, so it would be nice if that got cleared up for us automatically.

One option would be to use the second parameter of the assert keyword, something
like:

assert "To-Do" in browser.title, f"Browser title was {browser.title}"
And we could also use try/finally to clean up the old Firefox window.

But these sorts of problems are quite common in testing, and there are some ready-
made solutions for us in the standard library’s unittest module. Let’s use that! In
functional_tests.py:

functional_tests.py (ch021003)

import unittest
from selenium import webdriver

class NewVisitorTest(unittest.TestCase): @
def setUp(self): ©
self.browser = webdriver.Firefox() @

def tearDown(self): ©
self.browser.quit()

def test_can_start_a_todo_list(self): @
Edith has heard about a cool new online to-do app.
She goes to check out its homepage
self.browser.get("http://localhost:8000") @

She notices the page title and header mention to-do lists
self.assertIn("To-Do", self.browser.title) @

She is invited to enter a to-do item straight away
self.fail("Finish the test!") ©@

[...]

Satisfied, she goes back to sleep

if __name__ == "_main__": @
unittest.main() @

The Python Standard Library’s unittest Module | 19

You'll probably notice a few things here:

o
2]

Tests are organised into classes, which inherit from unittest.TestCase.

The main body of the test is in a method called test_can_start_a_todo_list.
Any method whose name starts with test_ is a test method, and will be run
by the test runner. You can have more than one test_ method per class. Nice
descriptive names for our test methods are a good idea too.

setUp and tearDown are special methods that are run before and after each test.
I’'m using them to start and stop our browser. They’re a bit like try/finally, in
that tearDown will run even if there’s an error during the test itself.> No more
Firefox windows left lying around!

browser, which was previously a global variable, becomes self.browser, an
attribute of the test class. This lets us pass it between setUp, tearDown, and the
test method itself.

We use self.assertIn instead of just assert to make our test assertions.
unittest provides lots of helper functions like this to make test assertions, like
assertEqual, assertTrue, assertFalse, and so on. You can find more in the
unittest documentation.

self.fall just fails no matter what, producing the error message given. I'm
using it as a reminder to finish the test.

Finally, we have the if __name__ == "__main__" clause. (If you've not seen it
before, that's how a Python script checks if it’s been executed from the command
line, rather than just imported by another script.) We call unittest.main(),
which launches the unittest test runner, which will automatically find test
classes and methods in the file and run them.

3 The only exception is that if you have an exception inside setUp, then tearDown doesn’t run.

20

Chapter 2: Extending Our Functional Test Using the unittest Module

http://docs.python.org/3/library/unittest.html

If you've read the Django testing documentation, you might have
seen something called LiveServerTestCase, and are wondering
whether we should use it now. Full points to you for reading the
friendly manual! LiveServerTestCase is a bit too complicated for
now, but I promise I'll use it in a later chapter.

Let’s try out our new and improved FT!*

$ python functional_tests.py
F

FAIL: test_can_start_a_todo_list
(__main__.NewVisitorTest.test_can_start_a_todo_list)
Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 18, in

test_can_start_a_todo_list

self.assertIn("To-Do", self.browser.title)

~~~~~~~~~~~~~ ANANANNANNNNNANNNNANNNANNNNNNNNNNNN
AssertionError: 'To-Do' not found in 'The install worked successfully!
Congratulations!'

Ran 1 test in 1.747s

FAILED (failures=1)

That’s a bit nicer, isn’t it? It tidied up our Firefox window, it gives us a nicely

formatted report of how many tests were run and how many failed, and the assertIn

has given us a helpful error message with useful debugging info. Bonzer!

4 Are you unable to move on because youre wondering what those ch02I00x things are, next to some of the

code listings? They refer to specific commits in the booK’s example repo. It’s all to do with my booK’s own tests.

You know, the tests for the tests in the book about testing. They have tests of their own, naturally.

The Python Standard Library’s unittest Module |

21


https://github.com/hjwp/book-example/commits/chapter_02_unittest
https://github.com/hjwp/Book-TDD-Web-Dev-Python/tree/main/tests

If you see some error messages saying ResourceWarning about
“unclosed files”, it’s safe to ignore those. They seem to come and go,
every few Selenium releases. They don't affect the important things
to look for in our tracebacks and test results.

pytest Versus unittest

The Python world is increasingly turning from the standard-library provided
unittest module towards a third-party tool called pytest. I'm a big fan too!

The Django project has a bunch of helpful tools designed to work with unittest.
Although it is possible to get them to work with pytest, it felt like one thing too
many to include in this book.

Read Brian Okken’s Python Testing with pytest for an excellent, comprehensive guide
to Pytest instead.

Commit

This is a good point to do a commit; it's a nicely self-contained change. We've
expanded our functional test to include comments that describe the task we're setting
ourselves, our minimum viable to-do list. We've also rewritten it to use the Python
unittest module and its various testing helper functions.

Do a git status—that should assure you that the only file that has changed is
functional_tests.py. Then do a git diff -w, which shows you the difference between
the last commit and what’s currently on disk, with the -w saying “ignore whitespace
changes”.

22 | Chapter2: Extending Our Functional Test Using the unittest Module


https://pythontest.com/pytest-book

That should tell you that functional_tests.py has changed quite substantially:

$ git diff -w
diff --git a/functional_tests.py b/functional_tests.py
index d333591..b0f22dc 100644
--- a/functional_tests.py
+++ b/functional_tests.py
@@ -1,15 +1,24 @@
+import unittest
from selenium import webdriver

-browser = webdriver.Firefox()
+class NewVisitorTest(unittest.TestCase):
def setUp(self):

self.browser = webdriver.Firefox()

def tearDown(self):
self.browser.quit()

+ o+ 4+ o+ o+ o+

def test_can_start_a_todo_list(self):
# Edith has heard about a cool new online to-do app.
# She goes to check out its homepage
-browser.get("http://localhost:8000")
+ self.browser.get("http://localhost:8000")

# She notices the page title and header mention to-do lists
-assert "To-Do" in browser.title
+ self.assertIn("To-Do", self.browser.title)

# She is invited to enter a to-do item straight away
+ self.fail("Finish the test!")

[...]

Now let’s do a:
$ git commit -a

The -a means “automatically add any changes to tracked files” (i.e., any files that
we've committed before). It won't add any brand new files (you have to explicitly git
add them yourself), but often, as in this case, there aren’t any new files, so it’s a useful
shortcut.

When the editor pops up, add a descriptive commit message, like “First FT specced
out in comments, and now uses unittest”.

Now that our FT uses a real test framework, and that we've got placeholder comments
for what we want it to do, we're in an excellent position to start writing some real
code for our lists app. Read on!

Commit | 23



Useful TDD Concepts

User story
A description of how the application will work from the point of view of the user;
used to structure a functional test

Expected failure
When a test fails in the way that we expected it to

24 | Chapter2: Extending Our Functional Test Using the unittest Module



CHAPTER 3

Testing a Simple Home Page
with Unit Tests

We finished the last chapter with a functional test (FT) failing, telling us that it
wanted the home page for our site to have “To-Do” in its title. Time to start working
on our application. In this chapter, we’ll build our first HTML page, find out about
URL handling, and create responses to HTTP requests with Django’s view functions.

Warning: Things Are About to Get Real

The first two chapters were intentionally nice and light. From now on, we get into
some more meaty coding. Here’s a prediction: at some point, things are going to go
wrong. You're going to see different results from what I say you should see. This is a
Good Thing, because it will be a genuine character-building Learning Experience™.

One possibility is that I've given some ambiguous explanations, and you've done
something different from what I intended. Step back and have a think about what
were trying to achieve at this point in the book. Which file are we editing, what do
we want the user to be able to do, what are we testing and why? It may be that you've
edited the wrong file or function, or are running the wrong tests. I reckon you’ll learn
more about TDD from these “stop and think” moments than you do from all the
times when following instructions and copy-pasting goes smoothly.

Or it may be a real bug. Be tenacious, read the error message carefully (see “Reading
Tracebacks” on page 38), and you’ll get to the bottom of it. It's probably just a
missing comma, or trailing slash, or a missing s in one of the Selenium find methods.
But, as Zed Shaw memorably insisted in Learn Python The Hard Way, debugging is
also an absolutely vital part of learning, so do stick it out! You can always drop me an
email if you get really stuck. Happy debugging!

25


https://learnpythonthehardway.org
mailto:obeythetestinggoat@gmail.com

Our First Django App and Our First Unit Test

Django encourages you to structure your code into apps. The theory is that one
project can have many apps; you can use third-party apps developed by other people,
and you might even reuse one of your own apps in a different project...although I
have to say, I've never actually managed the latter, myself! Still, apps are a good way to
keep your code organised.

Let’s start an app for our to-do lists:

$ python manage.py startapp lists

That will create a folder called lists, next to manage.py and the existing superlists
folder, and within it a number of placeholder files for things like models, views, and,
of immediate interest to us, tests:

j— db.sqlite3

}— functional_tests.py
— lists

— __init__.py

}— admin.py

F— apps.py

}— migrations

|  “— __init__.py
}— models.py

— tests.py
L— views.py

manage.py
superlists

— __init__.py
F— asgi.py

}— settings.py
— urls.py

L— wsgi.py

T

Unit Tests, and How They Differ from Functional Tests

As with so many of the labels we put on things, the line between unit tests and FTs
can become a little blurry at times. The basic distinction, though, is that FTs test the
application from the outside, from the user’s point of view. Unit tests on the other
hand test the application from the inside, from the programmer’s point of view.

26 | Chapter3:Testinga Simple Home Page with Unit Tests



The

TDD approach I'm demonstrating uses both types of test to drive the develop-

ment of our application, and ensure its correctness. Our workflow will look a bit like

this:

You

. We start by writing a functional test, describing a typical example of our new

functionality from the user’s point of view.

. Once we have an FT that fails, we start to think about how to write code that can

get it to pass (or at least to get past its current failure). We now use one or more
unit tests to define how we want our code to behave—the idea is that each line of
production code we write should be tested by (at least) one of our unit tests.

. Once we have a failing unit test, we write the smallest amount of application code

we can—just enough to get the unit test to pass. We may iterate between steps 2
and 3 a few times, until we think the FT will get a little further.

Now we can rerun our FTs and see if they pass, or get a little further. That may
prompt us to write some new unit tests, and some new code, and so on.

. Once were comfortable that the core functionality works end-to-end, we can

extend out to cover more permutations and edge cases, using just unit tests now.

can see that, all the way through, the FTs are driving what development we do

from a high level, while the unit tests drive what we do at a low level.

The

FTs don't aim to cover every single tiny detail of our app’s behaviour; they are

there to reassure us that everything is wired up correctly. The unit tests are there to
exhaustively check all the lower-level details and corner cases. See Table 3-1.

Table 3-1. Functional tests versus unit tests

One test per feature/user story Many tests per feature
Tests from the user’s point of view Tests the code (i.e., the programmer’s point of view)
(an test that the Ul “really” works Tests the internals—individual functions or classes

Provides confidence that everything is wired together correctly  Can exhaustively check permutations, details, and edge
and works end-to-end cases

Can warn about problems without telling you exactly what's (an point at exactly where the problem is
wrong

Slow

Fast

Unit Tests, and How They Differ from Functional Tests | 27



Functional tests should help you build an application that actually
works, and guarantee you never accidentally break it. Unit tests
should help you to write code that’s clean and bug free.

Enough theory for now—let’s see how it looks in practice.

Unit Testing in Django

Let’s see how to write a unit test for our home page view. Open up the new file at
lists/tests.py, and you’ll see something like this:

lists/tests.py
from import TestCase

# Create your tests here.

Django has helpfully suggested we use a special version of TestCase, which it pro-
vides. It's an augmented version of the standard unittest.TestCase, with some
additional Django-specific features, which we’ll discover over the next few chapters.

You've already seen that the TDD cycle involves starting with a test that fails, then
writing code to get it to pass. Well, before we can even get that far, we want to know
that the unit test we're writing will definitely be run by our automated test runner,
whatever it is. In the case of functional_tests.py were running it directly, but this
file made by Django is a bit more like magic. So, just to make sure, let’s make a
deliberately silly failing test:

lists/tests.py (ch031002)
from import TestCase

class SmokeTest(TestCase):
def test_bad_maths(self):
self.assertEqual(l + 1, 3)

28 | Chapter3:Testing a Simple Home Page with Unit Tests



Now, lets invoke this mysterious Django test runner. As usual, its a manage.py
command:

$ python manage.py test

Creating test database for alias 'default'...
Found 1 test(s).

System check identified no issues (0 silenced).
F

FAIL: test_bad_maths (lists.tests.SmokeTest.test_bad_maths)

Traceback (most recent call last):
File "...goat-book/lists/tests.py", line 6, in test_bad_maths
self.assertEqual(l + 1, 3)

AANANANNNNANAN

AssertionError: 2 != 3

Ran 1 test in 0.001s

FAILED (failures=1)
Destroying test database for alias 'default'...

Excellent. The machinery seems to be working. This is a good point for a commit:

$ git status # should show you lists/ is untracked

$ git add lists

$ git diff --staged # will show you the diff that you're about to commit
$ git commit -m "Add app for lists, with deliberately failing unit test"

As you've no doubt guessed, the -m flag lets you pass in a commit message at the
command line, so you don’t need to use an editor. It's up to you to pick the way you
like to use the Git command line; I'll just show you the main ones I've seen used. For
me, the key rule of VCS hygiene is: make sure you always review what you’re about to
commit before you do it.

Django’s MV(, URLs, and View Functions

Django is structured along a classic model-view-controller (MVC) pattern—well,
broadly. 1t definitely does have models, but what Django calls “views” are really
controllers, and the view part is actually provided by the templates, but you can see
the general idea is there!

If youre interested, you can look up the finer points of the discussion in the Django
FAQs.

Django’s MVC, URLs, and View Functions | 29


https://oreil.ly/fz-ne
https://oreil.ly/fz-ne

Irrespective of any of that, as with any web server, Django’s main job is to decide
what to do when a user asks for a particular URL on our site. Django’s workflow goes
something like this:

1. An HTTP request comes in for a particular URL.

2. Django uses some rules to decide which view function should deal with the
request (this is referred to as resolving the URL).

3. The view function processes the request and returns an HTTP response.
So, we want to test two things:

1. Can we make this view function return the HTML we need?

2. Can we tell Django to use this view function when we make a request for the root
of the site (“/7)?

Let’s start with the first.

Unit Testing a View

Open up lists/tests.py, and change our silly test to something like this:

lists/tests.py (ch031003)

from import TestCase
from import HttpRequest @
from import home_page

class HomePageTest(TestCase):

def test_home_page_returns_correct_html(self):
request = HttpRequest() @
response = home_page(request) @
html = response.content.decode("utf8") @
self.assertIn("<title>To-Do lists</title>", html) @
self.assertTrue(html.startswith("<html>")) @
self.assertTrue(html.endswith("</html>")) @

30 | Chapter3:Testinga Simple Home Page with Unit Tests



Whats going on in this new test? Well, remember, a view function takes an HTTP
request as input, and produces an HTTP response. So, to test that:

(5]

We import the HttpRequest class so that we can then create a request object
within our test. This is the kind of object that Django will create when a user’s
browser asks for a page.

We pass the HttpRequest object to our home_page view, which gives us a
response. You won't be surprised to hear that the response is an instance of a
class called HttpResponse.

Then, we extract the .content of the response. These are the raw bytes, the
ones and zeros that would be sent down the wire to the user’s browser. We
call .decode() to convert them into the string of HTML that’s being sent to the
user.

Now we can make some assertions: we know we want an HTML <title> tag
somewhere in there, with the words “To-Do lists” in it—because that’s what we
specified in our FT.

And we can do a vague sense-check that it’s valid HTML by checking that it starts
with an <html> tag, which gets closed at the end.

So, what do you think will happen when we run the tests?

$ python manage.py test

Found 1 test(s).

System check identified no issues (0 silenced).
E

ERROR: lists.tests (unittest.loader._FailedTest.lists.tests)
ImportError: Failed to import test module: lists.tests
Traceback (most recent call last):
[...]
File "...goat-book/lists/tests.py", line 3, in <module>
from lists.views import home_page
ImportError: cannot import name 'home_page' from 'lists.views'

Its a very predictable and uninteresting error: we tried to import something we
haven’'t even written yet. But its still good news—for the purposes of TDD, an
exception that was predicted counts as an expected failure. Because we have both a
failing FT and a failing unit test, we have the Testing Goat’s full blessing to code away.

Unit TestingaView | 31



At Last! We Actually Write Some Application Code!

It is exciting, isn't it? Be warned, TDD means that long periods of anticipation are
only defused very gradually, and by tiny increments. Especially as were learning and
only just starting out, we only allow ourselves to change (or add) one line of code
at a time—and each time, we make just the minimal change required to address the
current test failure.

I'm being deliberately extreme here, but what's our current test failure? We can’t
import home_page from lists.views? OK, let’s fix that—and only that. In lists/
views.py:

lists/views.py (ch031004)
from import render

# Create your views here.
home_page = None

“You must be joking!” I can hear you say.

I can hear you because it’s what I used to say (with feeling) when my colleagues first
demonstrated TDD to me. Well, bear with me, and we'll talk about whether or not
this is all taking it too far in a little while. But for now, let yourself follow along, even
if it’s with some exasperation, and see if our tests can help us write the correct code,
one tiny step at a time.

Let’s run the tests again:

[...]
File "...goat-book/lists/tests.py", line 9, in
test_home_page_returns_correct_html
response = home_page(request)

TypeError: 'NoneType' object is not callable
We still get an error, but it's moved on a bit. Instead of an import error, our tests are
telling us that our home_page “function” is not callable. That gives us a justification
for changing it from being None to being an actual function. At the very smallest level
of detail, every single code change can be driven by the tests!

Back in lists/views.py:

lists/views.py (ch031005)
from import render

def home_page():
pass

32 | Chapter3:Testinga Simple Home Page with Unit Tests



Again, were making the smallest, simplest change we can possibly make, that
addresses precisely the current test failure. Our tests wanted something callable, so we
gave them the simplest possible callable thing: a function that takes no arguments and
returns nothing.

Let’s run the tests again and see what they think:

response = home_page(request)
TypeError: home_page() takes 0 positional arguments but 1 was given

Once more, our error message has changed slightly, and is guiding us towards fixing
the next thing that’s wrong.

The Unit-Test/Code Cycle

We can start to settle into the TDD unit-test/code cycle now:

1. In the terminal, run the unit tests and see how they fail.

2. In the editor, make a minimal code change to address the current test failure.

And repeat!

The more nervous we are about getting our code right, the smaller and more minimal
we make each code change—the idea is to be absolutely sure that each bit of code is
justified by a test.

This may seem laborious—and at first, it will be. But once you get into the swing of
things, you'll find yourself coding quickly even if you take microscopic steps—this is
how we write all of our production code at work.

Let’s see how fast we can get this cycle going:

Minimal code change:

lists/views.py (ch031006)
def home_page(request):
pass

Tests:

html = response.content.decode("utf8")
AANNNNANANNNANNNNANNAN

AttributeError: 'NoneType' object has no attribute 'content'

Unit Testinga View | 33



Code—we use django.http.HttpResponse, as predicted:

lists/views.py (ch031007)
from django.http import HttpResponse

def home_page(request):
return HttpResponse()

Tests again:
AssertionError: '<title>To-Do lists</title>' not found in ''

Code again:

lists/views.py (ch031008)
def home_page(request):
return HttpResponse("<title>To-Do lists</title>")

Tests yet again:

self.assertTrue(html.startswith("<html>"))
AssertionError: False is not true

Code yet again:

lists/views.py (ch031009)
def home_page(request):
return HttpResponse("<html><title>To-Do lists</title>")

Tests—almost there?

self.assertTrue(html.endswith("</html>"))
AssertionError: False is not true

Come on, one last effort:

lists/views.py (ch031010)
def home_page(request):
return HttpResponse("<html><title>To-Do lists</title></html>")

34 | Chapter3:Testinga Simple Home Page with Unit Tests



Surely?

$ python manage.py test

Creating test database for alias 'default'...
Found 1 test(s).

System check identified no issues (0 silenced).

Ran 1 test in 0.001s

OK
Destroying test database for alias 'default'...

Hooray! Our first ever unit test pass! That’s so momentous that I think it's worthy of a
commit:

$ git diff # should show changes to tests.py, and views.py
$ git commit -am "First unit test and view function"

That was the last variation on git commit I'll show, the a and m flags together, which
adds all changes to tracked files and uses the commit message from the command
line.!

git commit -amis the quickest formulation, but also gives you the

least feedback about what’s being committed, so make sure you've

done a git status and a git diff beforehand, and are clear on
\ what changes are about to go in.

1 I'm quite casual about my commit messages in this book, but in professional organisations or open source
projects, people often want to be a bit more formal. Check out https://cbea.ms/git-commit and https://www.con
ventionalcommits.org.

Unit Testinga View | 35


https://cbea.ms/git-commit
https://www.conventionalcommits.org
https://www.conventionalcommits.org

Our Functional Tests Tell Us We're Not Quite Done Yet

We've got our unit test passing, so let’s go back to running our FTs to see if we've
made progress. Don’t forget to spin up the dev server again, if it’s not still running.

$ python functional_tests.py
F

FAIL: test_can_start_a_todo_list
(__main__.NewVisitorTest.test_can_start_a_todo_list)

Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 18, in
test_can_start_a_todo_list

self.assertIn("To-Do", self.browser.title)
~~~~~~~~~~~~~ ANNANNNNNNNANNNNANNNANNNANNNNNNNNN

AssertionError: 'To-Do' not found in 'The install worked successfully!
Congratulations!'

Ran 1 test in 1.609s

FAILED (failures=1)
Looks like something isn’t quite right. This is the reason we have functional tests!

Do you remember at the beginning of the chapter, we said we needed to do two
things: firstly, create a view function to produce responses for requests, and secondly,
tell the server which functions should respond to which URLs? Thanks to our FT, we
have been reminded that we still need to do the second thing.

How can we write a test for URL resolution? At the moment, we just test the view
function directly by importing it and calling it. But we want to test more layers of the
Django stack. Django, like most web frameworks, supplies a tool for doing just that,
called the Django test client.

36 | Chapter3:Testing a Simple Home Page with Unit Tests

https://docs.djangoproject.com/en/5.2/topics/testing/tools/#the-test-client

Let’s see how to use it by adding a second, alternative test to our unit tests:

lists/tests.py (ch031011)
class HomePageTest(TestCase):
def test_home_page_returns_correct_html(self): @
request = HttpRequest()
response = home_page(request)
html = response.content.decode("utf8")
self.assertIn("<title>To-Do lists</title>", html)
self.assertTrue(html.startswith("<html>"))
self.assertTrue(html.endswith("</html>"))

def test_home_page_returns_correct_html_2(self):
response = self.client.get("/") @
self.assertContains(response, "<title>To-Do lists</title>") @

@ This is our existing test.

© 1n our new test, we access the test client via self.client, which is available
on any test that uses django.test.TestCase. It provides methods like .get(),
which simulates a browser making HTTP requests, and takes a URL as its first
parameter. We use this instead of manually creating a request object and calling
the view function directly.

© Django also provides some assertion helpers like assertContatins, which save us
from having to manually extract and decode response content, and have some
other nice properties besides, as we'll see.

Our Functional Tests Tell Us We're Not Quite Done Yet | 37

Let’s see how that works:

$ python manage.py test

Found 2 test(s).

Creating test database for alias 'default'...
System check identified no issues (0 silenced).
.F

FAIL: test_home_page_returns_correct_html_2
(lists.tests.HomePageTest.test_home_page_returns_correct_html_2)

Traceback (most recent call last):
File "...goat-book/lists/tests.py", line 17, in
test_home_page_returns_correct_html_2
self.assertContains(response, "<title>To-Do lists</title>")

[...]
AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)

Ran 2 tests in 0.004s

FAILED (failures=1)
Destroying test database for alias 'default'...

Hmm, something about 404s? Let’s dig into it.

Reading Tracebacks

Let’s spend a moment talking about how to read tracebacks, as it's something we have
to do a lot in TDD. You soon learn to scan through them and pick up relevant clues:

FAIL: test_home_page_returns_correct_html_2 @
(lists.tests.HomePageTest.test_home_page_returns_correct_html_2) @
Traceback (most recent call last):

File "...goat-book/lists/tests.py", line 17, in
test_home_page_returns_correct_html_2

self.assertContains(response, "<title>To-Do lists</title>") @
ANNNNNNNNNNANNNANNNNANNNNNNNNNNANNNNNNNANNNNN o

AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404 @
(expected 200)

38 | Chapter3:Testing a Simple Home Page with Unit Tests

4]

The first place you look is usually the error itself. Sometimes that’s all you need to
see, and it will let you identify the problem immediately. But sometimes, like in
this case, it’s not quite self-evident.

The next thing to double-check is: which test is failing? Is it definitely the one we
expected—that is, the one we just wrote? In this case, the answer is yes.

Then we look for the place in our test code that kicked off the failure. We work
our way down from the top of the traceback, looking for the filename of the tests
file to check which test function, and what line of code, the failure is coming
from. In this case, it’s the line where we call the assertContains method.

In Python 3.11 and later, you can also look out for the string of carets, which
try to tell you exactly where the exception came from. This is more useful for
unexpected exceptions than for assertion failures like we have now.

There is ordinarily a fifth step, where we look further down for any of our own
application code that was involved with the problem. In this case, it’s all Django code,
but we'll see plenty of examples of this fifth step later in the book.

Pulling it all together, we interpret the traceback as telling us that:

o When we tried to do our assertion on the content of the response.

+ Django’s test helpers failed, saying that they could not do that.

« Because the response is an HTML 404 Not Found error, instead of a normal 200

OK response.

In other words, Django isn't yet configured to respond to requests for the root URL
(“/”) of our site. Let’s make that happen now.

Reading Tracebacks | 39

urls.py

Django uses a file called urls.py to map URLs to view functions. This mapping is also
called routing. There’s a main urls.py for the whole site in the superlists folder. Let’s go
take a look:

superlists/urls.py

mwnn

URL configuration for superlists project.

The ‘urlpatterns’ list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/5.2/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name='home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('blog/', include('blog.urls'))

nwnn

from django.contrib import admin
from django.urls import path

urlpatterns = [
path("admin/", admin.site.urls),

]

As usual, lots of helpful comments and default suggestions from Django. In fact, that
very first example is pretty much exactly what we want! Let’s use that, with some
minor changes:

superlists/urls.py (ch031012)

from django.urls import path @
from lists.views import home_page @

urlpatterns = [
path("", home_page, name="home"), @
1

© No need to import admin from django.contrib. Djangos admin site is amazing,
but it’s a topic for another book.

40 | Chapter3:Testing a Simple Home Page with Unit Tests

® But we will import our home page view function.

© And we wire it up here, as a path() entry in the urlpatterns global. Django
strips the leading slash from all URLs, so "/url/path/to" becomes "url/
path/to" and the base URL is just the empty string, "". So this config says,
the “base URL should point to our home page view”.

Now we can run our unit tests again, with python manage.py test:

Ran 2 tests in 0.003s

OK
Hooray!

Time for a little tidy-up. We don’t need two separate tests, so let's move everything
out of our low-level test that calls the view function directly, into the test that uses the
Django test client:

lists/tests.py (ch031013)

class HomePageTest(TestCase):
def test_home_page returns_correct_html(self):
response = self.client.get("/")
self.assertContains(response, "<title>To-Do lists</title>")
self.assertContains(response, "<html>")
self.assertContains(response, "</html>")

Why Didn’t We Just Use the Django Test Client All Along?

You may be asking yourself, “Why didn’t we just use the Django test client from the
very beginning?” In real life, that's what I would do. But I wanted to show you the
“manual” way of doing it first, for a couple of reasons. Firstly, because it enabled me
to introduce concepts one by one, and keep the learning curve as shallow as possible.
Secondly, because you may not always be using Django to build your apps, and testing
tools may not always be available—but calling functions directly and examining their
responses is always possible!

The Django test client does also have disadvantages; later in the book (in Chapter 27)
we'll discuss the difference between fully isolated unit tests and the types of test that
the test client pushes us towards (people often say these are technically “integration
tests”). But for now, it’s very much the pragmatic choice.

urls.py | 41

But now the moment of truth: will our functional tests pass?

$ python functional_tests.py
[...]

FAIL: test_can_start_a_todo_list
(__main__.NewVisitorTest.test_can_start_a_todo_list)

Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 21, in
test_can_start_a_todo_list
self.fail("Finish the test!")
AssertionError: Finish the test!

Failed? What? Oh, it’s just our little reminder? Yes? Yes! We have a web page!

Ahem. Well, I thought it was a thrilling end to the chapter. You may still be a little
baffled, perhaps keen to hear a justification for all these tests (and don’t worry; all that
will come), but I hope you felt just a tinge of excitement near the end there.

Just a little commit to calm down, and reflect on what we've covered:

$ git diff # should show our modified test in tests.py, and the new config in urls.py
$ git commit -am "url config, map / to home_page view"

That was quite a chapter! Why not try typing git log, possibly using the - -oneline
flag, for a reminder of what we got up to:

$ git log --oneline

a6e6cc9 url config, map / to home_page view

450c0f3 First unit test and view function

ea2b037 Add app for lists, with deliberately failing unit test

[...]
Not bad—we covered the following:

« Starting a Django app

+ The Django unit test runner

o The difference between FTs and unit tests

« Django view functions, and request and response objects
o Django URL resolving and urls.py

» The Django test client

o+ Returning basic HTML from a view

42 | Chapter3:Testing a Simple Home Page with Unit Tests

Useful Commands and Concepts

Running the Django dev server
python manage.py runserver

Running the functional tests
python functional_tests.py

Running the unit tests
python manage.py test

The unit-test/code cycle
1. Run the unit tests in the terminal.

2. Make a minimal code change in the editor.

3. Repeat!

urls.py

83

CHAPTER 4

What Are We Doing with All These Tests?
(And, Refactoring)

Now that we've seen the basics of TDD in action, it’s time to pause and talk about why
we're doing it.

I'm imagining several of you, dear readers, have been holding back some seething
frustration—perhaps some of you have done a bit of unit testing before, and perhaps
some of you are just in a hurry. You've been biting back questions like:

Aren't all these tests a bit excessive?

Surely some of them are redundant? There’s duplication between the functional
tests and the unit tests.

Those unit tests seemed way too trivial—testing a one-line function that returns
a constant! Isn’t that just a waste of time? Shouldn’t we save our tests for more
complex things?

What about all those tiny changes during the unit-test/code cycle? Couldn’t we
just skip to the end? I mean, home_page = None!? Really?

You're not telling me you actually code like this in real life?

Ah, young grasshopper. I too was once full of questions like these. But only because
they’re perfectly good questions. In fact, I still ask myself questions like these—all the
time. Does all this stuff really have value? Is this a bit of a cargo cult?

45

Programming Is Like Pulling a Bucket of Water
Up from a Well

Ultimately, programming is hard. Often, we are smart, so we succeed. TDD is there
to help us out when were not so smart. Kent Beck (who basically invented TDD) uses
the metaphor of lifting a bucket of water out of a well with a rope: when the well isn’t
too deep, and the bucket isn't very full, it’s easy. And even lifting a full bucket is pretty
easy at first. But after a while, you're going to get tired. TDD is like having a ratchet
that lets you save your progress, so you can take a break, and make sure you never
slip backwards.

That way, you don’t have to be smart all the time (see Figure 4-1).

Tas) ALk THE

ings
Figure 4-1. Test ALL the things (adapted from Allie Brosh, Hyperbole and a Half)

OK, perhaps in general, youre prepared to concede that TDD is a good idea, but
maybe you still think I'm overdoing it? Testing the tiniest thing, and taking ridicu-
lously many small steps?

TDD is a discipline, and that means it's not something that comes naturally. Because
many of the payoffs aren’t immediate but only come in the longer term, you have to
force yourself to do it in the moment. That’s what the image of the Testing Goat is
supposed to represent—you need to be a bit bloody-minded about it.

46 | Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

https://oreil.ly/n_8R_

On the Merits of Trivial Tests for Trivial Functions

In the short term, it may feel a bit silly to write tests for simple functions and
constants.

It’s perfectly possible to imagine still doing “mostly” TDD, but following more relaxed
rules where you don’t unit test absolutely everything. But in this book my aim is to
demonstrate full, rigorous TDD. Like a kata in a martial art, the idea is to learn the
motions in a controlled context, when there is no adversity, so that the techniques
are part of your muscle memory. It seems trivial now, because we've started with a
very simple example. The problem comes when your application gets complex—that’s
when you really need your tests. And the danger is that complexity tends to sneak up
on you, gradually. You may not notice it happening, but soon you're a boiled frog.

There are two other things to say in favour of tiny, simple tests for simple functions.

Firstly, if they’re really trivial tests, then they won't take you that long to write. So stop
moaning and just write them already.

Secondly, it's always good to have a placeholder. Having a test there for a simple
function means it's that much less of a psychological barrier to overcome when the
simple function gets a tiny bit more complex—perhaps it grows an if. Then a few
weeks later, it grows a for loop. Before you know it, it's a recursive metaclass-based
polymorphic tree parser factory. But because it’s had tests from the very beginning,
adding a new test each time has felt quite natural, and it's well tested. The alternative
involves trying to decide when a function becomes “complicated enough”, which is
highly subjective. And worse, because there’s no placeholder, it feels like that much
more effort to start, so youre tempted each time to put it off...and pretty soon—frog
soup!

Instead of trying to figure out some hand-wavy subjective rules for when you should
write tests, and when you can get away with not bothering, I suggest following the
discipline for now—and as with any discipline, you have to take the time to learn the
rules before you can break them.

Now, let us return to our muttons.

Programming Is Like Pulling a Bucket of Water Up froma Well | 47

Using Selenium to Test User Interactions

Where were we at the end of the last chapter? Let’s rerun the test and find out:

$ python functional_tests.py
F

FAIL: test_can_start_a_todo_list
(__main__.NewVisitorTest.test_can_start_a_todo_list)
Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 21, in
test_can_start_a_todo_list
self.fail("Finish the test!")

AANANANNNANNANNANNNNANANNNANN

AssertionError: Finish the test!

Ran 1 test in 1.609s

FAILED (failures=1)

Did you try it, and get an error saying “Problem loading page” or “Unable to con-
nect’? So did I. It’s because we forgot to spin up the dev server first using manage. py
runserver. Do that, and you’ll get the failure message we're after.

One of the great things about TDD is that you never have to worry
about forgetting what to do next—just rerun your tests and they
will tell you what you need to work on.

48

| Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

“Finish the test’, it says, so let’s do just that! Open up functional_tests.py and we'll
extend our FT:

functional_tests.py (ch041001)

from selenium import webdriver

from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
import time

import unittest

class NewVisitorTest(unittest.TestCase):

def

def

def

setUp(self):
self.browser = webdriver.Firefox()

tearDown(self):
self.browser.quit()

test_can_start_a_todo_list(self):

Edith has heard about a cool new online to-do app.
She goes to check out its homepage
self.browser.get("http://localhost:8000")

She notices the page title and header mention to-do lists
self.assertIn("To-Do", self.browser.title)

header_text = self.browser.find_element(By.TAG_NAME, "h1").text @
self.assertIn("To-Do", header_text)

She is invited to enter a to-do item straight away
inputbox = self.browser.find_element(By.ID, "id_new_item") @
self.assertEqual(inputbox.get_attribute("placeholder"), "Enter a to-do item")

She types "Buy peacock feathers" into a text box
(Edith's hobby is tying fly-fishing lures)
inputbox.send_keys("Buy peacock feathers") @

When she hits enter, the page updates, and now the page lists
"1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER) ©

time.sleep(1) @

table = self.browser.find_element(By.ID, "id_list_table")
rows = table.find_elements(By.TAG_NAME, "tr") @
self.assertTrue(any(row.text == "1: Buy peacock feathers" for row in rows))

There is still a text box inviting her to add another item.
She enters "Use peacock feathers to make a fly"

(Edith is very methodical)

self.fall("Finish the test!")

The page updates again, and now shows both items on her list

[...]

Using Selenium to Test User Interactions

49

]

Were using the two methods that Selenium provides to examine web pages:
find_element and find_elements (notice the extra s, which means it will return
several elements rather than just one). Each one is parameterised with a By.SOME
THING, which lets us search using different HTML properties and attributes.

We also use send_keys, which is Selenium’s way of typing into input elements.
The Keys class (don’t forget to import it) lets us send special keys like Enter.!

When we hit Enter, the page will refresh. The time.sleep is there to make sure
the browser has finished loading before we make any assertions about the new
page. This is called an “explicit wait” (a very simple one; we'll improve it in
Chapter 6).

Watch out for the difference between the Selenium find_ele
ment() and find_elements() functions. One returns an element
and raises an exception if it can’t find it, whereas the other returns a
list, which may be empty.

Also, just look at that any() function. Its a little-known Python built-in. I don’t even
need to explain it, do I? Python is such a joy.?

If you're one of my readers who doesn’t know Python, what’s hap-
pening inside the any() may need some explaining. The basic syn-
tax is that of a list comprehension, and if you haven't learned about
them, you should do so immediately! Trey Hunner’s explanation
is excellent. In point of fact, because were omitting the square
brackets, were actually using a generator expression rather than a
list comprehension. It’s probably less important to understand the
difference between those two, but if youre curious, Guido van
Rossum, the inventor of Python, has written a blog post explaining
the difference.

1 You could also just use the string "\n", but Keys also lets you send special keys like Ctrl, so I thought I'd show

it.

2 Python is most definitely a joy, but if you think I'm being a bit smug here, I don’t blame you! Actually, I wish
I'd picked up on this feeling of self-satisfaction and seen it as a warning sign that I was being a little too clever.
In the next chapter, you'll see I get my comeuppance.

50

Chapter 4: What Are We Doing with All These Tests? (And, Refactoring)

https://oreil.ly/6bX0h
https://oreil.ly/6bX0h
https://oreil.ly/Om6vK
https://oreil.ly/Om6vK

Let’s see how it gets on:

$ python functional_tests.py

[...]
File "...goat-book/functional_tests.py", line 22, in

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: h1l; For documentation on this error, please visit: [...]

Decoding that, the test is saying it can’t find an <h1> element on the page. Lets see
what we can do to add that to the HTML of our home page.

Big changes to a functional test are usually a good thing to commit on their own. I
failed to do so when I was first working out the code for this chapter, and I regretted
it later when I changed my mind and had the change mixed up with a bunch of
others. The more atomic your commits, the better:

$ git diff # should show changes to functional_tests.py
$ git commit -am "Functional test now checks we can input a to-do item"

The “Don’t Test Constants” Rule, and Templates
to the Rescue

Let’s take a look at our unit tests, lists/tests.py. Currently were looking for specific
HTML strings, but that’s not a particularly efficient way of testing HTML. In general,
one of the rules of unit testing is “don’t test constants”, and testing HTML as text is a
lot like testing a constant.

In other words, if you have some code that says:
wibble = 3
There’s not much point in a test that says:

from import wibble
assert wibble == 3

Unit tests are really about testing logic, flow control, and configuration. Making

assertions about exactly what sequence of characters we have in our HTML strings
isn’t doing that.

It’s not quite that simple, because HTML is code after all, and we do want something
to check that we've written code that works—but that’s our FT’s job, not the unit test’s.

So maybe “don’t test constants” isn’t the online guideline at play here, but in any case,
mangling raw strings in Python really isn’t a great way of dealing with HTML. There’s
a much better solution, which is to use templates. Quite apart from anything else, if
we can keep HTML to one side in a file whose name ends in .html, we'll get better
syntax highlighting!

The “Don’t Test Constants” Rule, and Templates to the Rescue | 51

There are lots of Python templating frameworks out there, and Django has its own
which works very well. Let’s use that.

Refactoring to Use a Template

What we want to do now is make our view function return exactly the same HTML,
but just using a different process. That’s a refactor—when we try to improve the code
without changing its functionality.

That last bit is really important. If you try to add new functionality at the same
time as refactoring, youre much more likely to run into trouble. Refactoring is
actually a whole discipline in itself, and it even has a reference book: Martin Fowler’s
Refactoring.

The first rule is that you can’t refactor without tests. Thankfully, we're doing TDD, so
we're way ahead of the game. Let’s check that our tests pass; they will be what makes
sure that our refactoring is behaviour-preserving:

$ python manage.py test

[...]

0K
Great! We'll start by taking our HTML string and putting it into its own file. Create
a directory called lists/templates to keep templates in, and then open a file at lists/
templates/home.html, to which we'll transfer our HTML:?

lists/templates/home.html (ch041002)

<html>
<title>To-Do lists</title>
</html>

Mmm, syntax-highlighted...much nicer! Now to change our view function:

lists/views.py (ch041003)
from import render

def home_page(request):
return render(request, "home.html")

Instead of building our own HttpResponse, we now use the Django render() func-
tion. It takes the request as its first parameter (for reasons we'll go into later) and

3 Some people like to use another subfolder named after the app (i.e., lists/templates/lists) and then refer to the
template as lists/home.html. This is called “template namespacing”. I figured it was overcomplicated for this
small project, but it may be worth it on larger projects. There’s more in the Django tutorial.

52 | (Chapter4: What Are We Doing with All These Tests? (And, Refactoring)

https://docs.djangoproject.com/en/5.2/intro/tutorial03/#write-views-that-actually-do-something
http://refactoring.com

the name of the template to render. Django will automatically search folders called
templates inside any of your apps’ directories. Then it builds an HttpResponse for
you, based on the content of the template.

Templates are a very powerful feature of Django’s, and their main
strength consists of substituting Python variables into HTML text.
We're not using this feature yet, but we will in future chapters.
That’s why we use render () rather than, say, manually reading the
file from disk with the built-in open().

Let’s see if it works:

$ python manage.py test
[...]

ERROR: test_home_page_returns_correct_html
(lists.tests.HomePageTest.test_home_page_returns_correct_html) @

Traceback (most recent call last):
File "...goat-book/lists/tests.py", line 7, in test_home_page_returns_correct_html
response = self.client.get("/") ©

AAAAAAANANAAAAANNANAN

[...]
File "...goat-book/lists/views.py", line 4, in home_page
return render(request, "home.html") @
AANANNANNANNANNNNNNNNNNANNNNNNNAN

File ".../django/shortcuts.py", line 24, in render

content = loader.render_to_string(template_name, context, request, using=using)
ANNNANANANNNNNNANNNANNNANNNNNNNNNNNNNANNNNNNNNNANNNNNNNNNNNNNNANNANNNNNNNNNNNNNAN

File ".../django/template/loader.py", line 61, in render_to_string

template = get_template(template_name, using=using)
ANNAANNNANNNNNNANNNNNNNNNNNNNNNNNNNNNNANNNNNNAN

File ".../django/template/loader.py", line 19, in get_template
raise TemplateDoesNotExist(template_name, chain=chain)
django.template.exceptions.TemplateDoesNotExist: home.html @

Ran 1 test in 0.074s

Another chance to analyse a traceback:
@ We start with the error: it can’t find the template.

@ Then we double-check what test is failing: sure enough, it’s our test of the view
HTML.

© Then we find the line in our tests that caused the failure: it's when we request the
root URL (“/”).

O Finally, we look for the part of our own application code that caused the failure:
it’s when we try to call render.

The “Don’t Test Constants” Rule, and Templates to the Rescue | 53

So why can’t Django find the template? It’s right where it's supposed to be, in the
lists/templates folder.

The thing is that we haven’t yet officially registered our lists app with Django.
Unfortunately, just running the startapp command and having what is obviously
an app in your project folder isn’t quite enough. You have to tell Django that you
really mean it, and add it to settings.py as well—belt and braces. Open it up and look
for a variable called INSTALLED_APPS, to which we’ll add lists:

superlists/settings.py (ch041004)
Application definition

INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes”,
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"lists",

You can see there’s lots of apps already in there by default. We just need to add ours
to the bottom of the list. Don’t forget the trailing comma—it may not be required,
but one day you’ll be really annoyed when you forget it and Python concatenates two
strings on different lines...

Now we can try running the tests again:

$ python manage.py test

[...]
0K

And we can double-check with the FTs:

$ python functional_tests.py

[...]
File "...goat-book/functional_tests.py", line 22, in
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: h1; For documentation on this error, please visit: [...]

Good, they still get to the same place they did before. Our refactor of the code is now
complete, and the tests mean we’re happy that behaviour is preserved. Now we can
change the tests so that theyre no longer testing constants; instead, they should just
check that we're rendering the right template.

54 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)

Revisiting Qur Unit Tests

Our unit tests are currently essentially checking HTML by hand—certainly that’s very
close to “testing constants”.

lists/tests.py

def test_home_page_returns_correct_html(self):
response = self.client.get("/")
self.assertContains(response, "<title>To-Do lists</title>") @
self.assertContains(response, "<html>")
self.assertContains(response, "</html>")

We don’t want to be duplicating the full content of our HTML template in our tests,
or even last sections of it. What could we do instead?

Rather than testing the full template, we could just check that were using the right
template. The Django test client has a method, assertTemplateUsed, which will let us
do just that.

lists/tests.py (ch041005)

def test_home_page_returns_correct_html(self):
response = self.client.get("/")
self.assertContains(response, "<title>To-Do lists</title>") @
self.assertContains(response, "<html>")
self.assertContains(response, "</html>")
self.assertTemplateUsed(response, "home.html") @

@ We'll leave the old tests there for now, just to make sure everything is working the
way we think it is.

@ .assertTemplateUsed lets us check what template was used to render a response.
(NB: It will only work for responses that were retrieved by the test client.)

And that test will still pass:
Ran 1 tests in 0.016s

0K

Just because I'm always suspicious of a test I haven’t seen fail, let’s deliberately break it:

lists/tests.py (ch041006)
self.assertTemplateUsed(response, "wrong.html")

Revisiting Our Unit Tests | 55

That way, we'll also learn what its error messages look like:

AssertionError: False is not true : Template 'wrong.html' was not a template
used to render the response. Actual template(s) used: home.html

That’s very helpful!
Let’s change the assert back to the right thing.

lists/tests.py (ch041007)
from import TestCase

class HomePageTest(TestCase):
def test_uses_home_template(self):
response = self.client.get("/")
self.assertTemplateUsed(response, "home.html")

Now, instead of testing constants we're testing at a higher level of abstraction. Great!

Test Behaviour, Not Implementation
As so often in the world of programming though, things are not black and white.

Yes, on the plus side, our tests no longer care about the specific content of our
HTML so they are no longer brittle with respect to minor changes of the copy in our
template.

But on the other hand, they depend on some Django implementation details, so
they are brittle with respect to changing the template rendering library, or even just
renaming templates.

In a way, testing for the template name (and implicitly, even checking that we used a
template at all) is a lot like testing implementation. So what is the behaviour that we
want?

Yes, in a sense, the “behaviour” we want from the view is “render the template”. But
from the point of view of the user, it’s “show me the home page”.

We're also vulnerable to accidentally breaking the template. Let’s try it now, by just
deleting all the contents of the template file:

$ mv lists/templates/home.html lists/templates/home.html.bak
$ touch lists/templates/home.html

$ python manage.py test

[...]

OK

56 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)

Yes, our FTs will pick up on this, so ultimately we're OK:

$ python functional_tests.py
[...]

self.assertIn("To-Do", self.browser.title)
~~~~~~~~~~~~~ ANNANANNANNNNNANNNNANNNANNNNNNNNNNNN

AssertionError: 'To-Do' not found in
But it would be nice to have our unit tests pick up on this too:
$ mv lists/templates/home.html.bak lists/templates/home.html

Deciding exactly what to test with FTs and what to test with unit tests is a fine line,
and the objective is not to double-test everything. But in general, the more we can
test with unit tests the better. They run faster, and they give more specific feedback.

So, let’s bring back a minimal “smoke test™ to check that what we’re rendering is
actually the home page:

lists/tests.py (ch041008)
class HomePageTest(TestCase):
def test_uses_home_template(self):
response = self.client.get("/")
self.assertTemplateUsed(response, "home.html") @

def test_renders_homepage_content(self):
response = self.client.get("/")
self.assertContains(response, "To-Do") @

@ Wel keep this first test, which asserts on whether were rendering the right
“constant”.

® And this gives us a minimal smoke test that we have got the right content in the
template.

4 A smoke test is a minimal test that can quickly tell you if something is wrong, without exhaustively testing
every aspect that you might care about. Wikipedia has some fun speculation on the etymology.

Revisiting Our Unit Tests | 57


https://oreil.ly/1_isl

As our home page template gains more functionality over the next couple of chapters,
we'll come back to talking about what to test here in the unit tests and what to leave
to the FTs.

Unit tests give you faster and more specific feedback than FTs. Bear
this in mind when deciding what to test where.

We'll visit the trade-offs between different types of tests at several points in the book,
and particularly in Chapter 27.

On Refactoring

That was an absolutely trivial example of refactoring. But, as Kent Beck puts it in
Test-Driven Development: By Example, “Am I recommending that you actually work
this way? No. ’'m recommending that you be able to work this way”.

In fact, as I was writing this my first instinct was to dive in and change the test first—
make it use the assertTemplateUsed() function straight away; against the expected
render; and then go ahead and make the code change. But notice how that actually
would have left space for me to break things: I could have defined the template
as containing any arbitrary string, instead of the string with the right <html> and
<title> tags.

When refactoring, work on either the code or the tests, but not
both at once.

There’s always a tendency to skip ahead a couple of steps, to make a few tweaks to the
behaviour while you're refactoring. But pretty soon you've got changes to half a dozen
different files, you've totally lost track of where you are, and nothing works anymore.
If you don’'t want to end up like Refactoring Cat (Figure 4-2), stick to small steps;
keep refactoring and functionality changes entirely separate.

58 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)


https://oreil.ly/F_Hqf

Codejrefactoring| Codejrefactoring

: =

Codejrefactoring Code refactoring

Figure 4-2. Refactoring Cat—be sure to look up the full animated GIF (source:
4GIFs.com)

WEe'll come across Refactoring Cat again during this book, as an
example of what happens when we get carried away and change too
many things at once. Think of it as the little cartoon demon coun-
terpart to the Testing Goat, popping up over your other shoulder
and giving you bad advice.

It’s a good idea to do a commit after any refactoring:

$ git status # see tests.py, views.py, settings.py, + new templates folder
$ git add . # will also add the untracked templates folder

$ git diff --staged # review the changes we're about to commit

$ git commit -m "Refactor homepage view to use a template"

On Refactoring

59




A Little More of Our Front Page

In the meantime, our FT is still failing. Let’s now make an actual code change to get it
passing. Because our HTML is now in a template, we can feel free to make changes to
it, without needing to write any extra unit tests.

This is another distinction between FTs and unit tests; because the
FTs use a real web browser, we use them as the primary tool for
testing our UL, and the HTML that implements it.

So, we wanted an <h1>:

lists/templates/home.html (ch041009)
<html>
<head>
<title>To-Do lists</title>
</head>
<body>
<hi>Your To-Do list</hi1>
</body>
</html>

Let’s see if our FT likes it a little better:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_new_item"]; For documentation on this error, [...]

OK, let’s add an input with that ID:

lists/templates/home.html (ch041010)
[...]
<body>
<h1>Your To-Do list</h1>
<input id="id_new_item" />
</body>
</html>

And now what does the FT say?
AssertionError: '' != 'Enter a to-do item'

We add our placeholder text...

lists/templates/home.html (ch041011)
<input 1d="id_new_item" placeholder="Enter a to-do item" />

60 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)



Which gives:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_list_table"]; [...]

So we can go ahead and put the table onto the page. At this stage it'll just be empty:

lists/templates/home.html (ch041012)
<input 1d="id_new_item" placeholder="Enter a to-do item" />
<table 1d="id_list_table">
</table>
</body>

What does the FT think?

[...]
File "...goat-book/functional_tests.py", line 40, in
test_can_start_a_todo_list

self.assertTrue(any(row.text == "1: Buy peacock feathers" for row in rows))
ANANNNNANNNNNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAN

AssertionError: False is not true

Slightly cryptic! We can use the line number to track it down, and it turns out it’s
that any() function I was so smug about earlier—or, more precisely, the assertTrue,
which doesn’t have a very explicit failure message. We can pass a custom error
message as an argument to most assertX methods in unittest:

functional_tests.py (ch041013)

self.assertTrue(
any(row.text == "1: Buy peacock feathers" for row in rows),
"New to-do item did not appear in table",

If you run the FT again, you should see our helpful message:
AssertionError: False is not true : New to-do item did not appear in table

But now, to get this to pass, we will need to actually process the user’s form submis-
sion. And that’s a topic for the next chapter.

For now let’s do a commit:

$ git diff
$ git commit -am "Front page HTML now generated from a template”

Thanks to a bit of refactoring, we've got our view set up to render a template, we've
stopped testing constants, and we're now well placed to start processing user input.

Alittle More of Our Front Page | 61



Recap: The TDD Process

We've now seen all the main aspects of the TDD process, in practice:

 Functional tests
e Unit tests
+ The unit-test/code cycle

« Refactoring

It’s time for a little recap, and perhaps even some flowcharts. (Forgive me, my years
misspent as a management consultant have ruined me. On the plus side, said flow-
charts will feature recursion!)

What does the overall TDD process look like?

o We write a test.

o We run the test and see it fail.

o We write some minimal code to get it a little further.

o We rerun the test and repeat until it passes (the unit-test/code cycle)

o Then, we look for opportunities to refactor our code, using our tests to make sure
we don't break anything.

o Then, we look for opportunities to refactor our tests too, while attempting to
stick to rules like “test behaviour, not implementation” and “don’t test constants”

o And start again from the top!

See Figure 4-3.

Unit-test/code
cycle

Runthe
test. Does
it pass?

Yes (green)

Write a test.

Write/fix
minimal code

Figure 4-3. TDD process as a flowchart, including the unit-test/code cycle

62 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)



It’s very common to talk about this process using the three words: red/green/refactor.
See Figure 4-4.

Figure 4-4. Red/green/refactor

o We write a test, and see it fail (“red”).
o We cycle between code and tests until the test passes (“green”).
o Then, we look for opportunities to refactor.

+ Repeat as required!

Double-Loop TDD

But how does this apply when we have functional tests and unit tests? Well, you can
think of the FT as driving a higher-level version of the same cycle, with an inner
red/green/refactor loop being required to get an FT from red to green; see Figure 4-5.

Red
(failing FT)

Write anew
PT for the Functional test loop Unit test loop

next feature.
Refactor H Green

Green |

(passing FT,
complete feature)

Figure 4-5. Double-loop TDD: Inner and outer loops

When a new feature or business requirement comes along, we write a new (failing)
FT to capture a high-level view of the requirement. It may not cover every last edge
case, but it should be enough to reassure ourselves that things are working.

Recap: The TDD Process | 63



To get that FT to green, we then enter into the lower-level unit test cycle, where we
put together all the moving parts required, and add tests for all the edge cases. Any
time we get to green and refactored at the unit test level, we can pop back up to the
FT level to guide us towards the next thing we need to work on. Once both levels are
green, we can do any extra refactoring or work on edge cases.

We'll explore all of the different parts of this workflow in more detail over the coming
chapters.

How to “Check” Your Code, or Skip Ahead (If You Must)

All of the code examples I've used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch, which is named after its short name. The one for
this chapter is a snapshot of the code as it should be at the end of the chapter.

You can find a full list of them in Appendix C, as well as instructions on how to
download them or use Git to compare your code to mine.

Obviously I can’t possibly condone it, but you can also use my repo to “skip ahead”
and check out the code to let you work on a later chapter without having worked
through all the earlier chapters yourself. You're only cheating yourself you know!

64 | Chapter4: What Are We Doing with All These Tests? (And, Refactoring)


https://github.com/hjwp/book-example
https://github.com/hjwp/book-example/tree/chapter_04_philosophy_and_refactoring
https://github.com/hjwp/book-example/tree/chapter_04_philosophy_and_refactoring

CHAPTER 5
Saving User Input: Testing the Database

So far, we've managed to return a static HTML page with an input box in it. Next, we
want to take the text that the user types into that input box and send it to the server,
so that we can save it somehow and display it back to them later.

The first time I started writing code for this chapter, I immediately wanted to skip to
what I thought was the right design: multiple database tables for lists and list items,
a bunch of different URLs for adding new lists and items, three new view functions,
and about half a dozen new unit tests for all of the above. But I stopped myself.
Although I was pretty sure I was smart enough to handle coding all those problems at
once, the point of TDD is to enable you to do one thing at a time, when you need to.
So I decided to be deliberately short-sighted, and at any given moment only do what
was necessary to get the functional tests (FTs) a little further.

This will be a demonstration of how TDD can support an incremental, iterative style
of development—it may not be the quickest route, but you do get there in the end.!
There’s a neat side benefit, which is that it enables me to introduce new concepts like
models, dealing with POST requests, Django template tags, and so on, one at a time
rather than having to dump them on you all at once.

None of this says that you shouldn’t try to think ahead and be clever. In the next
chapter, we'll use a bit more design and up-front thinking, and show how that fits in
with TDD. But for now, let’s plough on mindlessly and just do what the tests tell us to.

1 “Geepaw” Hill, another one of the TDD OGs, has a series of blog posts advocating for taking “Many More
Much Smaller Steps (MMMSS)”. In this chapter I'm being unrealistically short-sighted for effect, so don’t do
that! But Geepaw argues that in the real world, when you slice your work into tiny increments, not only do
you get there in the end, but you end up delivering business value faster.

65


https://oreil.ly/qTCLk

Wiring Up Our Form to Send a POST Request

At the end of the last chapter, the tests were telling us we weren't able to save the
user’s input:
File "...goat-book/functional_tests.py", line 40, in

test_can_start_a_todo_list

[...]

AssertionError: False is not true : New to-do item did not appear in table
To get it to the server, for now we'll use a standard HTML POST request. A little
boring, but also nice and easy to deliver—we can use all sorts of sexy HTML5 and
JavaScript later in the book.

To get our browser to send a POST request, we need to do two things:

1. Give the <input> element a name= attribute.

2. Wrap it in a <form> tag? with method="POST".

Testing the Contract Between Frontend and Backend

If you remember in the last chapter, we said we wanted to come back and revisit the
smoke test of our home page template content. Let’s have a quick look at our unit
tests:

lists/tests.py
class HomePageTest(TestCase):
def test_uses_home_template(self):
response = self.client.get("/")
self.assertTemplateUsed(response, "home.html")

def test_renders_homepage_content(self):
response = self.client.get("/")
self.assertContains(response, "To-Do")

What’s important about our home page content? How can we obey both the “don’t
test constants” rule and the “test behaviour, not implementation” rule?

The specific spelling of the word “To-Do” is not important. As we've just seen, the
most important behaviour that our home page is enabling, is the ability to submit
a to-do item. The way we're going to deliver that is by adding a <form> tag with
method="POST", and inside that, making sure our <input> has a name="1tem_text".

2 Did you know that you don’t need a button to make a form submit? I can’t remember when I learned that, but
readers have mentioned that it’s unusual so I thought I'd draw your attention to it.

66 | Chapter5:Saving User Input: Testing the Database



Our FTs are telling us that it'’s not working at a high level, so what unit tests can we
write at the lower level? Let’s start with the form:

lists/tests.py (ch051001)

class HomePageTest(TestCase):
def test_uses_home_template(self):
[...]

def test_renders_input_form(self): @
response = self.client.get("/")
self.assertContains(response, '<form method="POST">') @

@ We change the name of the test.

© And we assert on the <form> tag specifically.
That gives us:

$ python manage.py test

[...]

AssertionError: False is not true : Couldn't find '<form method="POST">' in the
following response

b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
<h1>Your To-Do list</h1>\n <input id="1d_new_item" placeholder="Enter a
to-do item" />\n <table id="1id_list_table">\n </table>\n
</body>\n</html>\n'

Let’s adjust our template at lists/templates/home.html.:

lists/templates/home.html (ch051002)
<h1>Your To-Do list</hi1>
<form method="POST">
<input id="1id_new_item" placeholder="Enter a to-do item" />
</form>

That gives us passing unit tests:

0K

And next, let’s add a test for the name= attribute on the <input> tag:

lists/tests.py (ch051003)
def test_renders_input_form(self):
response = self.client.get("/")
self.assertContains(response, '<form method="POST">")
self.assertContains(response, '<input name="item_text"")

Testing the Contract Between Frontend and Backend | 67



That gives us this expected failure:

[...]

AssertionError: False is not true : Couldn't find '<input name="item_text"' in
the following response
b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
<h1>Your To-Do list</hi1>\n <form method="POST">\n <input
id="1d_new_item" placeholder="Enter a to-do item" />\n </form>\n <table
id="1d_list_table">\n </table>\n </body>\n</html>\n'

And we fix it like this:

lists/templates/home.html (ch051004)

<h1>Your To-Do list</h1>
<form method="POST">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />
</form>
<table id="id_list_table">

That gives us passing unit tests:

0K

The lesson here is that we've tried to identify the “contract” between the frontend and
the backend of our site. For our HTML form to work, it needs the form with the right
method, and the input with the right name. Everything else is cosmetic. So that’s what
we test for in our unit tests.

Debugging Functional Tests

Time to go back to our FT. It gives us a slightly cryptic, unexpected error:

$ python functional_tests.py

[...]
Traceback (most recent call last):
File "...goat-book/functional_tests.py", line 38, in

test_can_start_a_todo_list
table = self.browser.find_element(By.ID, "id_list_table")

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_list_table"]; [...]
Oh dear, we're now failing two lines earlier, after we submit the form, but before we
are able to do the assert. Selenium seems to be unable to find our list table. Why on
earth would that happen? Let’s take another look at our code:

68 | Chapter5: Saving User Input: Testing the Database



functional_tests.py

# When she hits enter, the page updates, and now the page lists
# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)

time.sleep(1)

table = self.browser.find_element(By.ID, "id_list_table") @
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertTrue(
any(row.text == "1: Buy peacock feathers" for row in rows),
"New to-do item did not appear in table",

@ Our test unexpectedly fails on this line. How do we figure out what’s going on?

When a functional test fails with an unexpected failure, there are several things we
can do to debug it:

o Add print statements to show, for example, what the current page text is.

« Improve the error message to show more info about the current state.

+ Manually visit the site yourself.

o Use time.sleep to pause the test during execution so you can inspect what was

happening.’

We'll look at all of these over the course of this book, but the time.sleep option is the
one that leaps to mind with this kind of error in an FT. Let’s try it now.

Debugging with time.sleep

Conveniently, we've already got a sleep just before the error occurs; let’s just extend it
a little:

functional_tests.py (ch051005)
# When she hits enter, the page updates, and now the page lists
# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)
time.sleep(10)

table = self.browser.find_element(By.ID, "id_list_table")

3 Another common technique for debugging tests is to use breakpoint() to drop into a debugger like pdb.
This is more useful for unit tests rather than FTs though, because in an FT you usually can’t step into actual
application code. Personally, I only find debuggers useful for really fiddly algorithms, which we won't see in
this book.

Debugging Functional Tests | 69



Depending on how fast Selenium runs on your PC, you may have caught a glimpse of
this already, but when we run the FTs again, we've got time to see what’s going on: you
should see a page that looks like Figure 5-1, with lots of Django debug information.

403 Forbidden - Mozilla Firefox X
File Edit View History Bookmarks Tools Help
{3403 Forbidden [+
& | @ localhost:8000 v @ | |B> Google Ql o

Forbidden (203

CSRF verification failed. Request aborted.

Help

Reason given for failure:
CSRF cookie not set

In general, this can occur when there is a genuine Cross Site Request Forgery, or when Django's CSRF mechanism has not been used
correctly. For POST forms, yeu need to ensure!

* Your browser is accepting cookies.

® The view function uses Requestcontext for the template. instead of context.

* In the template, there is a {% csrf_token %} template tag inside each POST form that targets an internal URL.

® If you are not using csrfviewtiddleware, then you must use csrf_protect on any views that use the csrf_token template
tag, as well as those that accept the POST data. A

You're seeing the help section of this page because you have pesus = True in your Django settings file. Change that to False, and only the

initial error message will be displayed.

You can customize this page using the CSRF_FAILURE_VIEW setting.

2 WebDriver

Figure 5-1. Django debug page showing CSRF error

Security: Surprisingly Fun!

If you've never heard of a cross-site request forgery (CSRF) exploit, why not look it up
now? Like all security exploits, it’s entertaining to read about, being an ingenious use
of a system in unexpected ways.

When I went to university to get my computer science degree, I signed up for the
“security” module out of a sense of duty: Oh well, it’ll probably be very dry and boring,
but I suppose Id better take it. Eat your vegetables, and so forth. It turned out to be
one of the most fascinating modules of the whole course! Absolutely full of the joy of
hacking, of the particular mindset it takes to think about how systems can be used in
unintended ways.

I want to recommend the textbook from that course, Ross Anderson’s Security Engi-
neering. It’s quite light on pure crypto, but it’s absolutely full of interesting discussions
of unexpected topics like lock picking, forging bank notes, inkjet printer cartridge
economics, and spoofing South African Air Force jets with replay attacks. It’s a huge
tome, about three inches thick, and I promise you it’s an absolute page-turner.

70 | Chapter5: Saving User Input: Testing the Database


https://oreil.ly/TKmYQ
https://oreil.ly/TKmYQ

Django’s CSRF protection involves placing a little autogenerated unique token into
each generated form, to be able to verify that POST requests have definitely come
from the form generated by the server. So far, our template has been pure HTML,
and in this step we make the first use of Django’s template magic. To add the CSRF
token, we use a template tag, which has the curly-bracket/percent syntax, {%

%}—famous for being the world’s most annoying two-key touch-typing combination:

lists/templates/home.html (ch051006)

<form method="POST">
<input name="item_text" 1d="id_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}

</form>

Django will substitute the template tag during rendering with an <input type="hid
den"> containing the CSRF token. Rerunning the functional test will now bring us
back to our previous (expected) failure:

File "...goat-book/functional_tests.py", line 40, in

test_can_start_a_todo_list

[...]

AssertionError: False is not true : New to-do item did not appear in table
Because our long time.sleep is still there, the test will pause on the final screen,
showing us that the new item text disappears after the form is submitted, and the
page refreshes to show an empty form again. That’s because we haven’t wired up our
server to deal with the POST request yet—it just ignores it and displays the normal
home page.

We can put our normal short time.sleep back now though:

functional_tests.py (ch051007)

# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)
time.sleep(1)

table = self.browser.find_element(By.ID, "id_list_table")

Processing a POST Request on the Server

Because we haven't specified an action= attribute in the form, it is submitting back
to the same URL it was rendered from by default (i.e., /), which is dealt with by our
home_page function. That’s fine for now; let’s adapt the view to be able to deal with a
POST request.

That means a new unit test for the home_page view. Open up lists/tests.py, and add a
new method to HomePageTest:

Processing a POST Request on the Server | 71



lists/tests.py (ch051008)

class HomePageTest(TestCase):
def test_uses_home_template(self):
[...]
def test_renders_input_form(self):
response = self.client.get("/")
self.assertContains(response, '<form method="POST">")
self.assertContains(response, '<input name="item_ text"') @

def test_can_save_a_POST_request(self):
response = self.client.post("/", data={"item_text": "A new list item"}) @@
self.assertContains(response, "A new list item") @

© To do a POST, we call self.client.post and, as you can see, it takes a data
argument that contains the form data we want to send.

© Notice the echo of the item_text name from earlier.*

© Then we check that the text from our POST request ends up in the rendered
HTML.

That gives us our expected fail:

$ python manage.py test

[...]

AssertionError: False is not true : Couldn't find 'A new list item' in the
following response

b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
<h1>Your To-Do list</h1>\n <form method="POST">\n <input
name="1tem_text" id="1d_new_1item" placeholder="Enter a to-do item" />\n
<input type="hidden" name="csrfmiddlewaretoken"

value="[...]

</form>\n <table id="1id_list_table">\n </table>\n </body>\n</html>\n'

In (slightly exaggerated) TDD style, we can single-mindedly do “the simplest thing

that could possibly work” to address this test failure, which is to add an if and a new
code path for POST requests, with a deliberately silly return value:

lists/views.py (ch051009)
from import HttpResponse
from import render

def home_page(request):
if request.method == "POST": @
return HttpResponse("You submitted: " + request.POST["item_text"]) @
return render(request, "home.html")

4 You could even define a constant for this, to make the link more explicit.

72 | Chapter5: Saving User Input: Testing the Database



@ request.method lets us check whether we got a POST or a GET request.

@ request.POST is a dictionary-like object containing the form data (in this case,
the 1tem_text value we expect from the form input tag).

Fine, that gets our unit tests passing:
oK
...but it’s not really what we want.’

And even if we were genuinely hoping this was the right solution, our FTs are here to
remind us that this isn’t how things are supposed to work:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_list_table"]; [...]

The list table disappears after the form submission. If you didn’t see it in the FT run,
try it manually with runserver; you'll see something like Figure 5-2.

53 | localhost:8000/

C QO [ http://localhost:8000

You submitted: Buy asparagus

Figure 5-2. I see my item text but no table...

What we really want to do is add the POST submission to the to-do items table in
the home page template. We need some sort of way to pass data from our view, to be
shown in the template.

5 But we did learn about request.method and request.POST, right? I know it might seem that I'm overdoing it,
but doing things in tiny little steps really does have a lot of advantages, and one of them is that you can really
think about (or in this case, learn) one thing at a time.

Processing a POST Request on the Server | 73




Passing Python Variables to Be Rendered in the Template

We've already had a hint of it, and now it’s time to start to get to know the real power
of the Django template syntax, which is to pass variables from our Python view code
into HTML templates.

Let’s start by seeing how the template syntax lets us include a Python object in our
template. The notation is {{ ... }}, which displays the object as a string:

lists/templates/home.html (ch051010)
<body>
<h1>Your To-Do list</h1>
<form method="POST">
<input name="item_text" id="1d_new_1item" placeholder="Enter a to-do item" />
{% csrf_token %}
</form>
<table 1d="id_list_table">
<tr><td>{{ new_item_text }}</td></tr> @
</table>
</body>

© Heres our template variable. new_item_text will be the variable name for the
user input we display in the template.

Let’s adjust our unit test so that it checks whether we are still using the template:

lists/tests.py (ch051011)

def test_can_save_a_POST_request(self):
response = self.client.post("/", data={"item_text": "A new list item"})
self.assertContains(response, "A new list item")
self.assertTemplateUsed(response, "home.html")

And that will fail as expected:
AssertionError: No templates used to render the response

Good; our deliberately silly return value is now no longer fooling our tests, so we are
allowed to rewrite our view, and tell it to pass the POST parameter to the template.
The render function takes, as its third argument, a dictionary, which maps template
variable names to their values.

In theory, we can use it for the POST case as well as the default GET case, so lets
remove the if request.method == "POST" and simplify our view right down to:

74 | Chapter5: Saving User Input: Testing the Database



lists/views.py (ch051012)
def home_page(request):
return render(

request,
"home.html",
{"new_1item_text": request.POST["item_text"]},
)
What do the tests think?

ERROR: test_uses_home_template
(lists.tests.HomePageTest.test_uses_home_template)

[...]
{"new_1item_text": request.POST["item_text"]},

AANANANANNNNNNAAN

[...]

django.utils.datastructures.MultiValueDictKeyError: 'item_text'

An Unexpected Failure
Oops, an unexpected failure.

If you remember the rules for reading tracebacks, you'll spot that it’s actually a failure
in a different test. We got the actual test we were working on to pass, but the unit tests
have picked up an unexpected consequence, a regression: we broke the code path
where there is no POST request.

This is the whole point of having tests. Yes, perhaps we could have predicted this
would happen, but imagine if wed been having a bad day or weren't paying attention:
our tests have just saved us from accidentally breaking our application and, because
were using TDD, we found out immediately. We didn’t have to wait for a QA team, or
switch to a web browser and click through our site manually, so we can get on with
fixing it straight away. Here’s how:

lists/views.py (ch051013)
def home_page(request):
return render(
request,
"home.html",
{"new_item_text": request.POST.get("item_text", "")},

We use dict.get to supply a default value, for the case where we are doing a normal
GET request, when the POST dictionary is empty.

Passing Python Variables to Be Rendered in the Template | 75


http://docs.python.org/3/library/stdtypes.html#dict.get

The unit tests should now pass. Let’s see what the FTs say:

AssertionError: False is not true : New to-do item did not appear in table

If your functional tests show you a different error at this point,
or at any point in this chapter, complaining about a StaleElement
ReferenceException, you may need to increase the time.sleep
explicit wait—try two or three seconds instead of one; then read on
to the next chapter for a more robust solution.

Improving Error Messages in Tests

Hmm, not a wonderfully helpful error. Lets use another of our FT debugging
techniques: improving the error message. This is probably the most constructive
technique, because those improved error messages stay around to help debug any
future errors:

functional_tests.py (ch051014)

self.assertTrue(
any(row.text == "1: Buy peacock feathers" for row in rows),
f"New to-do item did not appear in table. Contents were:\n{table.text}",

That gives us a more helpful message:

AssertionError: False is not true : New to-do item did not appear in table.

Contents were:

Buy peacock feathers
Actually, you know what would be even better? Making that assertion a bit less clever!
As you may remember from Chapter 4, I was very pleased with myself for using the
any() function, but one of my early release readers (thanks, Jason!) suggested a much
simpler implementation. We can replace all four lines of the assertTrue with a single
assertln:

functional_tests.py (ch051015)
self.assertIn("1: Buy peacock feathers", [row.text for row in rows])

Much better. You should always be very worried whenever you think youre being
clever, because what youre probably being is overcomplicated.

Now we get the error message for free:

self.assertIn("1: Buy peacock feathers", [row.text for row in rows])
AssertionError: '1l: Buy peacock feathers' not found in ['Buy peacock feathers']

Consider me suitably chastened.

76 | Chapter5: Saving User Input: Testing the Database



If, instead, your FT seems to be saying the table is empty (“not
found in ["]”), check your <input> tag—does it have the correct
name="1item_text" attribute? And does it have method="POST"?
Without them, the user’s input won't be in the right place in
request.POST.

The point is that the FT wants us to enumerate list items with a “1:” at the beginning

of the first list item.

The fastest way to get that to pass is with another quick “cheating” change to the

template:

lists/templates/home.html (ch051016)

<tr><td>1: {{ new_item_text }}</td></tr>

When Should You Stop Cheating? DRY Versus Triangulation

People often ask about when it's OK to “stop cheating”, and change from an imple-
mentation we know to be wrong, to one we're happy with.

One justification is eliminate duplication—aka DRY (don’t repeat yourself)—which
(with some caveats) is a good guideline for any kind of code.

If your test uses a magic constant (like the “I:” in front of our list item), and your
application code also uses it, some people say that counts as duplication, so it justifies
refactoring. Removing the magic constant from the application code usually means
you have to stop cheating.

It’s a judgement call, but I feel that this is stretching the definition of “repetition” a
little, so I often like to use a second technique, which is called triangulation: if your
tests let you get away with writing “cheating” code that youre not happy with (like
returning a magic constant), then write another test that forces you to write some
better code. That’s what we're doing when we extend the FT to check that we get a “2:”
when inputting a second list item.

See also “Three Strikes and Refactor” on page 79 for a further note of caution on
applying DRY too quickly.

Passing Python Variables to Be Rendered in the Template |

77



Now we get to the self.fail('Finish the test!'). If we get rid of that and finish
writing our FT, to add the check for adding a second item to the table (copy and
paste is our friend), we begin to see that our first cut solution really isn’t going to, um,
cut it:

functional_tests.py (ch051017)
# There is still a text box inviting her to add another itenm.
# She enters "Use peacock feathers to make a fly"
# (Edith is very methodical)
inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Use peacock feathers to make a fly")
inputbox.send_keys(Keys.ENTER)
time.sleep(1)

# The page updates again, and now shows both items on her list
table = self.browser.find_element(By.ID, "id_list_table")
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertIn(
"2: Use peacock feathers to make a fly",
[row.text for row in rows],
)
self.assertIn(
"1: Buy peacock feathers",
[row.text for row in rows],

)

# Satisfied, she goes back to sleep

Sure enough, the FTs return an error:

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Use
peacock feathers to make a fly']

78 | Chapter5: Saving User Input: Testing the Database



Three Strikes and Refactor

But before we go further—we've got a bad code smell® in this FT. We have three almost
identical code blocks checking for new items in the list table. When we want to apply
the DRY principle, I like to follow the motto three strikes and refactor. You can copy
and paste code once, and it may be premature to try to remove the duplication it
causes, but once you get three occurrences, it’s time to tidy up.

Let’s start by committing what we have so far. Even though we know our site has a
major flaw—it can only handle one list item—it’s still further ahead than it was. We
may have to rewrite it all, and we may not, but the rule is that before you do any
refactoring, always do a commit:

$ git diff

# should show changes to functional_tests.py, home.html,

# tests.py and views.py
$ git commit -a

Always do a commit before embarking on a refactor.

Onto our functional test refactor. Let’s use a helper method—remember, only meth-
ods that begin with test_ will be run as tests, so you can use other methods for your
own purposes:

functional_tests.py (ch051018)

def tearDown(self):
self.browser.quit()

def check_for_row_in_list_table(self, row_text):
table = self.browser.find_element(By.ID, "id_list_table")
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertIn(row_text, [row.text for row in rows])

def test_can_start_a_todo_list(self):

[...]

6 If you've not come across the concept, a “code smell” is something about a piece of code that makes you want
to rewrite it. Jeff Atwood has a compilation on his blog, Coding Horror. The more experience you gain as a
programmer, the more fine-tuned your nose becomes to code smells...

Three Strikes and Refactor | 79


https://oreil.ly/GFrNp

I like to put helper methods near the top of the class, between the tearDown and the
first test. Let’s use it in the FT:

functional_tests.py (ch051019)

# When she hits enter, the page updates, and now the page lists
# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)

time.sleep(1)

self.check_for_row_in_list_table("1: Buy peacock feathers")

# There is still a text box inviting her to add another itenm.
# She enters "Use peacock feathers to make a fly"

# (Edith is very methodical)

inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Use peacock feathers to make a fly")
inputbox.send_keys(Keys.ENTER)

time.sleep(1)

# The page updates again, and now shows both items on her list
self.check_for_row_in_list_table("2: Use peacock feathers to make a fly")
self.check_for_row_in_list_table("1: Buy peacock feathers")

# Satisfied, she goes back to sleep

We run the FT again to check that it still behaves in the same way:

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Use
peacock feathers to make a fly']

Good. Now we can commit the FT refactor as its own small, atomic change:

$ git diff # check the changes to functional_tests.py

$ git commit -a
There are a couple more bits of duplication in the FTs, like the repetition of finding
the inputbox, but they’re not as egregious yet, so we'll deal with them later.

Instead, back to work. If were ever going to handle more than one list item, were
going to need some kind of persistence, and databases are a stalwart solution in this
area.

80 | Chapter5:Saving User Input: Testing the Database



The Django ORM and Our First Model

An object-relational mapper (ORM) is a layer of abstraction for data stored in a
database with tables, rows, and columns. It lets us work with databases using familiar
object-oriented metaphors that work well with code. Classes map to database tables,
attributes map to columns, and an individual instance of the class represents a row of
data in the database.

Django comes with an excellent ORM, and writing a unit test that uses it is actually
an excellent way of learning it, because it exercises code by specifying how we want it
to work.

Let’s create a new class in lists/tests.py:

lists/tests.py (ch051020)

from import TestCase
from import Item

class HomePageTest(TestCase):

[...]

class ItemModelTest(TestCase):
def test_saving_and_retrieving_items(self):
first_item = Item()
first_item.text = "The first (ever) list item"
first_item.save()

second_item = Item()
second_item.text = "Item the second"
second_item.save()

saved_1items = Item.objects.all()
self.assertEqual(saved_items.count(), 2)

first_saved_item = saved_items[0]

second_saved_1item = saved_1items[1]
self.assertEqual(first_saved_item.text, "The first (ever) list item")
self.assertEqual(second_saved_item.text, "Item the second")

You can see that creating a new record in the database is a relatively simple matter of
creating an object, assigning some attributes, and calling a .save() function. Django
also gives us an API for querying the database via a class attribute, .objects, and
we use the simplest possible query, .all(), which retrieves all the records for that
table. The results are returned as a list-like object called a QuerySet, from which we
can extract individual objects, and also call further functions, like .count(). We then

The Django ORM and Our First Model | 81



check the objects as saved to the database, to check whether the right information was
saved.

Django’s ORM has many other helpful and intuitive features; this might be a good
time to skim through the Django tutorial, which has an excellent intro to them.

I've written this unit test in a very verbose style, as a way of
introducing the Django ORM. I wouldn’t recommend writing your
model tests like this “in real life”, because it’s testing the framework,
rather than testing our own code. We'll actually rewrite this test to
be much more concise in Chapter 16 (specifically, at “Rewriting the
Old Model Test” on page 367).

Unit Tests Versus Integration Tests, and the Database

Some people will tell you that a “real” unit test should never touch the database, and
that the test I've just written should be more properly called an “integration” test,
because it doesn’t only test our code, but also relies on an external system—that is, a
database.

It's OK to ignore this distinction for now—we have two types of test: the high-level
FTs, which test the application from the user’s point of view, and these lower-level
tests, which test it from the programmer’s point of view.

We'll come back to this topic and talk about the differences between unit tests,
integration tests, and more in Chapter 27, at the end of the book.

Let’s try running the unit test. Here comes another unit-test/code cycle:
ImportError: cannot import name 'Item' from 'lists.models'

Very well, let’s give it something to import from lists/models.py. We're feeling confi-
dent so we'll skip the Item = None step, and go straight to creating a class:

lists/models.py (ch051021)
from import models

# Create your models here.
class Itenm:
pass

82 | Chapter5: Saving User Input: Testing the Database


https://docs.djangoproject.com/en/5.2/intro/tutorial01

That gets our test as far as:

[...]
File "...goat-book/lists/tests.py", line 25, in
test_saving_and_retrieving_items

first_item.save()
AANANNAANNANAANNNAANAN

AttributeError: 'Item' object has no attribute 'save'

To give our Item class a save method, and to make it into a real Django model, we
make it inherit from the Model class:

lists/models.py (ch051022)
from import models

class Item(models.Model):
pass

Our First Database Migration

The next thing that happens is a huuuuge traceback, the long and short of which is
that there’s a problem with the database:

django.db.utils.OperationalError: no such table: lists_item

In Django, the ORM’s job is to model and read and write from database tables, but
there’s a second system that’s in charge of actually creating the tables in the database
called “migrations” Its job is to let you add, remove, and modify tables and columns,
based on changes you make to your models.py files.

One way to think of it is as a version control system (VCS) for your database. As
we'll see later, it proves particularly useful when we need to upgrade a database that’s
deployed on a live server.

For now all we need to know is how to build our first database migration, which we
do using the makemigrations command:”

$ python manage.py makemigrations
Migrations for 'lists':
lists/migrations/0001_initial.py
+ Create model Item
$ 1s lists/migrations
0001_1initial.py __init__.py __pycache__

7 If you've done a bit of Django before, you may be wondering about when we're going to run “migrate” as well
as “makemigrations”? Read on; that’s coming up later in the chapter.

The Django ORM and Our First Model | 83



If you're curious, you can go and take a look in the migrations file, and you’ll see it’s a
representation of our additions to models.py.

In the meantime, we should find that our tests get a little further.

The Test Gets Surprisingly Far
The test actually gets surprisingly far:

$ python manage.py test
[...]

self.assertEqual(first_saved_item.text, "The first (ever) list item")
ANANNANNANNANANNANANNNNANNNN

AttributeError: 'Item' object has no attribute 'text'

Thats a full eight lines later than the last failure—we’ve been all the way through
saving the two Items, and weve checked that theyre saved in the database, but
Django just doesn’t seem to have “remembered” the . text attribute.

If youre new to Python, you might have been surprised that we were allowed to
assign the .text attribute at all. In a language like Java, you would probably get a
compilation error. Python is more relaxed.

Classes that inherit from models.Model will map to tables in the database. By default,
they get an autogenerated id attribute, which will be a primary key column® in the
database, but you have to define any other columns and attributes you want explicitly.
Here’s how we set up a text column:

lists/models.py (ch051024)

class Item(models.Model):
text = models.TextField()

Django has many other field types, like IntegerField, CharField, DateField, and so
on. I've chosen TextField rather than CharField because the latter requires a length
restriction, which seems arbitrary at this point. You can read more on field types in
the Django tutorial and in the documentation.

8 Database tables usually have a special column called a “primary key”, which is the unique identifier for each
row in the table. It's worth brushing up on a tiny bit of relational database theory, if youre not familiar with
the concept or why it’s useful. The top three articles I found when searching for “introduction to databases” all
seemed pretty good, at the time of writing.

84 | (Chapter5: Saving User Input: Testing the Database


https://docs.djangoproject.com/en/5.2/intro/tutorial02/#creating-models
https://docs.djangoproject.com/en/5.2/ref/models/fields

A New Field Means a New Migration
Running the tests gives us another database error:

django.db.utils.OperationalError: table lists_item has no column named text

It’s because we've added another new field to our database, which means we need to
create another migration. Nice of our tests to let us know!

Let’s try it:

$ python manage.py makemigrations

It is impossible to add a non-nullable field 'text' to item without specifying
a default. This is because the database needs something to populate existing
rows.

Please select a fix:

1) Provide a one-off default now (will be set on all existing rows with a null
value for this column)

2) Quit and manually define a default value in models.py.

Select an option:2

Ah. It won't let us add the column without a default value. Let’s pick option 2 and set
a default in models.py. I think you'll find the syntax reasonably self-explanatory:

lists/models.py (ch051025)

class Item(models.Model):
text = models.TextField(default="")

And now the migration should complete:

$ python manage.py makemigrations
Migrations for 'lists':
lists/migrations/0002_item_text.py
+ Add field text to item

So, two new lines in models.py, two database migrations, and as a result, the .text
attribute on our model objects is now recognised as a special attribute, so it does get
saved to the database, and the tests pass:

$ python manage.py test
[...]

Ran 4 tests in 0.010s
0K

So let’s do a commit for our first ever model!

$ git status # see tests.py, models.py, and 2 untracked migrations
$ git diff # review changes to tests.py and models.py

$ git add lists

$ git commit -m "Model for list Items and associated migration"

The Django ORM and Our First Model | 85



Saving the POST to the Database

So, we have a model; now we need to use it!

Lets adjust the test for our home page POST request, and say we want the view
to save a new item to the database instead of just passing it through to its
response. We can do that by adding three new lines to the existing test called
test_can_save_a_POST_request:

lists/tests.py (ch051027)
def test_can_save_a_POST_request(self):
response = self.client.post("/", data={"item_text": "A new list item"})

self.assertEqual(Item.objects.count(), 1) @
new_item = Item.objects.first() @
self.assertEqual(new_item.text, "A new list item") @

self.assertContains(response, "A new list item")
self.assertTemplateUsed(response, "home.html")

@ We check that one new Item has been saved to the database. objects.count() is
a shorthand for objects.all().count().

® objects.first() is the same as doing objects.all()[0], except it will return
None if there are no objects.’

©® We check that the items text is correct.

9 You can also use objects.get(), which will immediately raise an exception if there are no objects in the
database, or if there are more than one. On the plus side you get a more immediate failure, and you get
warned if there are too many objects. The downside is that I find it slightly less readable. As so often, its a
trade-off.

86 | Chapter5: Saving User Input: Testing the Database



This test is getting a little long-winded. It seems to be testing lots of different things.
That’s another code smell—a long unit test either needs to be broken into two, or it
may be an indication that the thing you're testing is too complicated. Let’s add that to
a little to-do list of our own, perhaps on a piece of scrap paper:

. Codle sme/): POST +est /s +oo fons?

An Alternative Testing Strategy: Staying at the HTTP Level

It's a very common pattern in Django to test POST views by asserting on the side
effects, as seen in the database. Sandi Metz, a TDD legend from the Ruby world, puts

it like this: “test commands via public side effects” !

But is the database really a public API? That’s arguable. Certainly it’s at a different
level of abstraction, or a different conceptual “layer” in the application, to the HTTP
requests were working with in our current unit tests.

If you wanted to write our tests in a way that stays at the HTTP level—that treats the
application as more of an “opaque box”—you can prove to yourself that to-do items
are persisted, by sending more than one:

lists/tests/tests.py

def test_can_save_multiple_items(self):
self.client.post("/", data={"item_text": "first item"})
response = self.client.post("/", data={"item_text": "second item"})
self.assertContains(response, "first item")
self.assertContains(response, "second item")

If you feel like going off road, why not give it a try?

10 This advice is in her talk “The Magic Tricks of Testing”, which I highly recommend watching.

Saving the POST to the Database | 87


https://oreil.ly/Gqxgg

Writing things down on a scratchpad like this reassures us that we won't forget them,
so we are comfortable getting back to what we were working on. We rerun the tests
and see an expected failure:

self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Let’s adjust our view:

lists/views.py (ch051028)

from import render
from import Item

def home_page(request):
item = Item()
item.text = request.POST.get("item_text", "")
item.save()

return render(
request,
"home.html",
{"new_item_text": request.POST.get("item_text", "")},

I've coded a very naive solution and you can probably spot a very obvious problem,
which is that were going to be saving empty items with every request to the home
page. Let’s add that to our list of things to fix later. You know, along with the painfully
obvious fact that we currently have no way at all of having different lists for different
people. That we’ll keep ignoring for now.

Remember, 'm not saying you should always ignore glaring problems like this in
“real life”. Whenever we spot problems in advance, there’s a judgement call to make
over whether to stop what youre doing and start again, or leave them until later.
Sometimes finishing off what you’re doing is still worth it, and sometimes the prob-
lem may be so major as to warrant a stop and rethink.

Let’s see how the unit tests get on...

Ran 4 tests in 0.010s

0K

88 | Chapter5: Saving User Input: Testing the Database



They pass! Good. Let’s have a little look at our scratchpad. I've added a couple of the
other things that are on our mind:

. Don'¥ save blank items for every regues/.
. Codle sme/): POST +est /s +oo fons?

. Disp/ay muftjp/le items in the +able.

. Syppord more +han one st/

Let’s start with the first scratchpad item: “Don’t save blank items for every request”.
We could tack on an assertion to an existing test, but it's best to keep unit tests to
testing one thing at a time, so let’s add a new one:

lists/tests.py (ch051029)

class HomePageTest(TestCase):
def test_uses_home_template(self):

[...]

def test_can_save_a_POST_request(self):

[...]

def test_only_saves_items_when_necessary(self):
self.client.get("/")
self.assertEqual(Item.objects.count(), 0)

That gives us a 1 != 0 failure. Let’s fix it by bringing the if request.method check
back and putting the Item creation in there:

lists/views.py (ch051030)
def home_page(request):
if request.method == "POST": @
item = Item()
item.text = request.POST["item_text"] @
item.save()

return render(
request,
"home.html",
{"new_item_text": request.POST.get("item_text", "")},

Saving the POST to the Database | 89



@ We bring back the request.method check.

® And we can switch from using request.POST.get() to request.POST[] with
square brackets, because we know for sure that the item_text key should be in
there, and it’s better to fail hard if it isn’t.

And that gets the test passing:

Ran 5 tests in 0.010s

0K

Redirect After a POST

But, yuck—those duplicated request.POST accesses are making me pretty unhappy.
Thankfully we are about to have the opportunity to fix it. A view function has two
jobs: processing user input and returning an appropriate response. We've taken care
of the first part, which is saving the user’s input to the database, so now let’s work on
the second part.

Always redirect after a POST, they say, so let’s do that. Once again we change our unit
test for saving a POST request: instead of expecting a response with the item in it, we
want it to expect a redirect back to the home page.

lists/tests.py (ch051031)
def test_can_save_a_POST_request(self):
response = self.client.post("/", data={"item_text": "A new list item"})

self.assertEqual(Item.objects.count(), 1)
new_item = Item.objects.first()
self.assertEqual(new_item.text, "A new list item")

self.assertRedirects(response, "/") @

def test_only_saves_items_when_necessary(self):

[...]

@ We no longer expect a response with HTML content rendered by a template, so
we lose the assertContains calls that looked at that. Instead, we use Django’s
assertRedirects helper, which checks that we return an HTTP 302 redirect,
back to the home URL.

90 | Chapter5:Saving User Input: Testing the Database


https://oreil.ly/yGSl0

That gives us this expected failure:

AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)

We can now tidy up our view substantially:

lists/views.py (ch051032)

from django.shortcuts import redirect, render
from lists.models import Item

def home_page(request):
if request.method == "POST":
item = Item()
item.text = request.POST["item_text"]
item.save()
return redirect("/")

return render(
request,
"home.html",
{"new_item_text": request.POST.get("item_text", "")},

And the tests should now pass:

Ran 5 tests in 0.010s

0K

We're at green; time for a little refactor!

Let’s have a look at views.py and see what opportunities for improvement there might
be:

lists/views.py
def home_page(request):
if request.method == "POST":
item = Item() @
item.text = request.POST["item_text"] @
item.save() @
return redirect("/")

return render(
request,
"home.html",
{"new_1item_text": request.POST.get("item_ text", "")}, @

Redirect AfteraPOST | 91



© Theresa quicker way to do these three lines with .objects.create().

@ This line doesn’t seem quite right now; in fact, it won’t work at all. Let’s make a
note on our scratchpad to sort out passing list items to the template. It’s actually
closely related to “Display multiple items”, so we'll put it just before that one:

‘

. Codle sme/): POST +est /s +oo fons?

. FPass existing list ifems fo the template
sometow.

. Display muftiple items in +he tab/e.

o Svppord more 4han one /ist”

And here’s the refactored version of views.py using the .objects.create() helper
method that Django provides, for one-line creation of objects:

lists/views.py (ch051033)
def home_page(request):
if request.method == "POST":
Item.objects.create(text=request.POST["item_text"])
return redirect("/")

return render(
request,
"home.html",
{"new_item_text": request.POST.get("item_text", "")},

92 | Chapter5: Saving User Input: Testing the Database



Better Unit Testing Practice: Each Test Should Test
One Thing
Let’s address the “POST test is too long” code smell.

Good unit testing practice says that each test should only test one thing. The reason
is that it makes it easier to track down bugs. Having multiple assertions in a test
means that, if the test fails on an early assertion, you don’t know what the statuses
of the later assertions are. As we'll see in the next chapter, if we ever break this view
accidentally, we want to know whether it’s the saving of objects that’s broken, or the
type of response.

You may not always write perfect unit tests with single assertions on your first go, but
now feels like a good time to separate out our concerns:

lists/tests.py (ch051034)

def test_can_save_a_POST_request(self):
self.client.post("/", data={"item_text": "A new list item"})
self.assertEqual(Item.objects.count(), 1)
new_item = Item.objects.first()
self.assertEqual(new_item.text, "A new list item")

def test_redirects_after_POST(self):

response = self.client.post("/", data={"item_text": "A new list item"})
self.assertRedirects(response, "/")

And we should now see six tests pass instead of five:

Ran 6 tests in 0.010s

0K

Better Unit Testing Practice: Each Test Should Test One Thing | 93



Rendering Items in the Template

Much better! Back to our to-do list:

| e ﬁm%wﬂ%ﬁv%ﬂmmew‘
. Covte-smetf-rPAOSTest~s~toorsors?

| e Pass existing list /tems fto the template
somesion.

| o Disp/ay muftjple items in +he table.
. Svppord more +4an one /ist’

A N\ . P SN AN
J p e = ~ - N \

Crossing things off the list is almost as satisfying as seeing tests pass!

The third and fourth items are the last of the “easy” ones. Our view now does the
right thing for POST requests; it saves new list items to the database. Now we want
GET requests to load all currently existing list items, and pass them to the template
for rendering. Let’s have a new unit test for that:

lists/tests.py (ch051035)
class HomePageTest(TestCase):
def test_uses_home_template(self):

[...]
def test_renders_input_form(self):
[...]

def test_displays_all_list_items(self):
Item.objects.create(text="1itemey 1")
Item.objects.create(text="1itemey 2")

response = self.client.get("/")

self.assertContains(response, "itemey 1")
self.assertContains(response, "itemey 2")

def test_can_save_a POST_request(self):

[...]

94 | Chapter5: Saving User Input: Testing the Database



Arrange-Act-Assert or Given-When-Then

Did you notice the use of whitespace in this test? I'm visually separating out the code
into three blocks:

lists/tests.py
def test_displays_all_list_items(self):
Item.objects.create(text="1itemey 1") (1)
Item.objects.create(text="1itemey 2") (1)

response = self.client.get("/") (2]

self.assertContains(response, "itemey 1") 0
self.assertContains(response, "itemey 2") 0

@ Arrange: where we set up the data we need for the test.
O Act: where we call the code under test

© Assert: where we check on the results

This isn't obligatory, but it's a common convention, and it does help see the structure
of the test.

Another popular way to talk about this structure is given-when-then:

o Given the database contains our list with two items,
o When I make a GET request for our list,

o Then I see the both items in our list.

This latter phrasing comes from the world of behaviour-driven development (BDD),
and I actually prefer it somewhat. You can see that it encourages phrasing things in a
more natural way, and were gently nudged to think of things in terms of behaviour
and the perspective of the user.

That fails as expected:

AssertionError: False is not true : Couldn't find 'itemey 1' in the following
response

b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
[...]

Rendering Items in the Template | 95




The Django template syntax has a tag for iterating through lists, {% for .. in
%}; we can use it like this:

lists/templates/home.html (ch051036)
<table 1d="id_list_table">
{% for item in items %}
<tr><td>1: {{ item.text }}</td></tr>
{% endfor %}
</table>

This is one of the major strengths of the templating system. Now the template will
render with multiple <tr> rows, one for each item in the variable items. Pretty neat!
I'll introduce a few more bits of Django template magic as we go, but at some point
you’ll want to go and read up on the rest of them in the Django docs.

Just changing the template doesn’t get our tests to green; we need to actually pass the
items to it from our home page view:

lists/views.py (ch051037)
def home_page(request):
if request.method == "POST":
Item.objects.create(text=request.POST["item_text"])
return redirect("/")

items = Item.objects.all()
return render(request, "home.html", {"items": items})

That does get the unit tests to pass. Moment of truth...will the functional test pass?

$ python functional_tests.py
[...]

AssertionError: 'To-Do' not found in 'OperationalError at /'

96 | Chapter5: Saving User Input: Testing the Database


https://docs.djangoproject.com/en/5.2/topics/templates

Oops, apparently not. Let’s use another FT debugging technique, and its one of
the most straightforward: manually visiting the site! Open up http://localhost:8000

in your web browser, and you’ll see a Django debug page saying

lists_item”, as in Figure 5-3.

“no such table:

) | OperationalEror at /

QO O http/flocalhost:t

OperationalError at /
no such table: lists_item
Request Method: GET
Request URL: http:/localhost:8000/
Django Version:

Exception Type: OperationalError
Exception Value: no such table: lists_iten

o
Y

-TDD-Web-Dev-Python/

Py, line

Exception Location: /L
360, in exectite
Raised during: lists.views.home_page
Python L i
Python Version: 3.13.0

-TDD-Web-Dev-Python/

*/Users/harry.percival/.pyenv/versions/3.13.0/1ib/python313. zip"

*/Users/harry.percival/.pyenv/versions/3.13.0/1ib/python3.13',

*/Users/harry.percival/. pyenv/versions/3.13.0/Lib/python3. 13/ Lib-dynload" ,

/Users/harry.percival/workspace/Book-TOD-Web-Dev-Python/ . venv/ib/python3. 13/site-packages 1
Server time: Fri, 11 Apr 2025 16:25:35 +0000

Error during template rendering

Python Path: ['/Users/harry.percival/workspace/Book-TOD-Web-Dev-Python/source/chapter_85_post_and_database/superlists',

In template /Users/harry.percival, pter_85_post_and_c perlists/lists/
12

no such table: lists_item
2 <head>
3 <titlesTo-Do lists</titles
4 </head>
5 <body>
6 <hl>Your To-Do list</hl>
7
8
9

<form method="POST">
<input name="item_text" id="id_new_iten" placeholder="Enter a to-do item" />
{5 csrf_token %}

10 </form>

1 <table id="id_list_table">
12 {% for item in items %}

13 <trs<td>1: {{ item.text }h</td></tr>
14 {5 endfor %}

15 </table>

16 </body>

17 </htnl>

18

Traceback suies o copyansasto view

. htm, error at line

(! harry.percival/worl Y wvenv/ +13/site-packages/djang 1s.py, line 105, in _execute
9. warnings.warn(self.APPS_NOT_READY_WARNING_MSG, category=RuntineWarning)
99. self.db.validate no broken transaction()

Figure 5-3. Another helpful debug message

Rendering Items in the Template

97



Creating Our Production Database with migrate

So, we've got another helpful error message from Django, which is basically com-
plaining that we haven’t set up the database properly. How come everything worked
fine in the unit tests, I hear you ask? Because Django creates a special test database for
unit tests; it’s one of the magical things that Django’s TestCase does.

To set up our “real” database, we need to explicitly create it. SQLite databases are just
a file on disk, and you’ll see in settings.py that Django, by default, will just put it in a
file called db.sqlite3 in the base project directory:

superlists/settings.py

[...]
# Database
# https://docs.djangoproject.com/en/5.2/ref/settings/#databases

DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": BASE_DIR / "db.sqlite3",

We've told Django everything it needs to create the database, first via models.py and
then when we created the migrations file. To actually apply it to creating a real
database, we use another Django Swiss Army knife manage.py command, migrate:

98 | Chapter5: Saving User Input: Testing the Database



$ python manage.py migrate
Operations to perform:
Apply all migrations: admin, auth, contenttypes, lists, sessions
Running migrations:
contenttypes.0001_initial... OK

Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying
Applying

auth.

0001_initial... OK

admin.0001_1initial... OK
admin.0002_logentry_remove_auto_add... OK
admin.0003_logentry_add_action_flag_choices... OK
contenttypes.0002_remove_content_type_name... OK

auth.
auth.

auth

auth

0002_alter_permission_name_max_length... OK
0003_alter_user_email_max_length... 0K

.0004_alter_user_username_opts... OK
auth.
auth.
auth.
auth.
auth.
.0010_alter_group_name_max_length... OK
auth.
auth.

0005_alter_user_last_login_null... OK
0006_require_contenttypes_0002... 0K
0007_alter_validators_add_error_messages... 0K
0008_alter_user_username_max_length... 0K
0009_alter_user_last_name_max_length... OK

0011_update_proxy_permissions... OK
0012_alter_user_first_name_max_length... OK

1ists.0001_1initial... OK
lists.0002_1item_text... OK
sessions.0001_1initial... OK

It seems to be doing quite a lot of work! That’s because it’s the first ever migration,
and Django is creating tables for all its built-in “batteries included” apps, like the
admin site and the built-in auth modules. We don't need to pay attention to them for
now. But you can see our 1ists.0001_initial and lists.0002_item_text in there!

At this point, you can refresh the page on localhost and see that the error is gone. Let’s
try running the functional tests again:"

AssertionError:
peacock feathers', '1l: Use peacock feathers to make a fly']

'2: Use peacock feathers to make a fly' not found in ['1: Buy

So close! We just need to get our list numbering right. Another awesome Django
template tag, forloop.counter, will help here:

lists/templates/home.html (ch051038)

{% for item in items %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}

11 If you get a different error at this point, try restarting your dev server—it may have gotten confused by the

changes to the database happening under its feet.

Creating Our Production Database with migrate

99



If you try it again, you should now see the FT gets to the end:

$ python functional_tests.py

Ran 1 test in 5.036s

0K

Hooray! But, as it’s running, you may notice something is amiss, like in Figure 5-4.

To-Do lists - Mozilla Firefox B

&= | @ localhostB000 v @| [Av Google a & @ B = - g~

Firefox~ |iZiTo-Do lists 'H

Your To-Do list

[Enter a to-do item

1: Buy peacock feathers

2: Use peacock feathers to make a fly

3: Buy peacock feathers [
4: Use peacock feathers to make a fly

@ x S ®

Figure 5-4. There are list items left over from the last run of the test

Oh dear. It looks like previous runs of the test are leaving stuff lying around in our
database. In fact, if you run the tests again, you'll see it gets worse:

Buy peacock feathers
Use peacock feathers to make a fly
Buy peacock feathers
Use peacock feathers to make a fly
Buy peacock feathers
Use peacock feathers to make a fly

AU WN R

Grrr. We're so close! We're going to need some kind of automated way of tidying up
after ourselves. For now, if you feel like it, you can do it manually by deleting the
database and re-creating it fresh with migrate (you’ll need to shut down your Django
server first):

$ rm db.sqlite3
$ python manage.py migrate --noinput

And then (after restarting your server!) reassure yourself that the FT still passes.

Apart from that little bug in our functional testing, we've got some code that’s more or
less working. Let’s do a commit.

100 | Chapter5: Saving User Input: Testing the Database



Start by doing a git status and a git diff, and you should see changes to
home.html, tests.py, and views.py. Let’s add them:

$ git add lists
$ git commit -m "Redirect after POST, and show all items in template"

You might find it useful to add markers for the end of each chapter,
like git tag end-of-chapter-05.

Recap

Where are we? How is progress on our app, and what have we learned?

We've got a form set up to add new items to the list using POST.
We've set up a simple model in the database to save list items.

We've learned about creating database migrations, both for the test database
(where they’re applied automatically) and for the real database (where we have to
apply them manually).

We've used our first couple of Django template tags: {% csrf_token %} and the
{% for ... endfor %} loop.

And we've used two different FT debugging techniques: time.sleeps, and
improving the error messages.

But we've got a couple of items on our own to-do list, namely getting the FT to clean
up after itself, and perhaps more critically, adding support for more than one list:

. Clean yp after F7 runs.
D Svpport more +han one /st

Reap | 101



I mean, we could ship the site as it is, but people might find it strange that the entire
human population has to share a single to-do list. I suppose it might get people to
stop and think about how connected we all are to one another, how we all share a
common destiny here on Spaceship Earth, and how we must all work together to
solve the global problems that we face.

But in practical terms, the site wouldn't be very useful.

Ah well.
Useful TDD Concepts
Regression
When a change unexpectedly breaks some aspect of the application that used to
work.
Unexpected failure

When a test fails in a way we weren't expecting. This either means that we've
made a mistake in our tests, or that the tests have helped us find a regression, and
we need to fix something in our code.

Triangulation
Adding a test case with a new specific example for some existing code, to justify
generalising the implementation (which may be a “cheat” until that point).

Three strikes and refactor
A rule of thumb for when to remove duplication from code. When two pieces of
code look very similar, it often pays to wait until you see a third use case, so that
youre more sure about what part of the code really is the common, reusable part
to refactor out.

The scratchpad to-do list
A place to write down things that occur to us as we're coding, so that we can fin-
ish up what we’re doing and come back to them later. Love a good old-fashioned
piece of paper now and again!

102 | Chapter5: Saving User Input: Testing the Database



CHAPTER 6

Improving Functional Tests: Ensuring
Isolation and Removing Magic Sleeps

Before we dive in and fix our single-global-list problem, let’s take care of a couple of
housekeeping items. At the end of the last chapter, we made a note that different test
runs were interfering with each other, so we’ll fix that. 'm also not happy with all
these time.sleeps peppered through the code; they seem a bit unscientific, so we'll
replace them with something more reliable:

. Clean yp after F7 runs.

. Remove #ime.s/eeps.

Both of these changes will be moving us towards testing “best practices”, making our
tests more deterministic and more reliable.

103



Ensuring Test Isolation in Functional Tests

We ended the last chapter with a classic testing problem: how to ensure isolation
between tests. Each run of our functional tests (FTs) left list items lying around in the
database, and that interfered with the test results when next running the tests.

When we run unit tests, the Django test runner automatically creates a brand new test
database (separate from the real one), which it can safely reset before each individual
test is run, and then thrown away at the end. But our FTs currently run against the
“real” database, db.sqlite3.

One way to tackle this would be to “roll our own” solution, and add some code
to functional_tests.py, which would do the cleaning up. The setUp and tearDown
methods are perfect for this sort of thing.

But as this is a common problem, Django supplies a test class called LiveServerTest
Case that addresses this issue. It will automatically create a test database (just like in a
unit test run) and start up a development server for the FTs to run against. Although
as a tool it has some limitations, which we’ll need to work around later, it’s dead
useful at this stage, so let’s check it out.

LiveServerTestCase expects to be run by the Django test runner using manage.py,
which will run tests from any files whose name begins with test_. To keep things neat
and tidy, let’s make a folder for our FTs, so that it looks a bit like an app. All Django
needs is for it to be a valid Python package directory (i.e., one with a ___init___.py
in it):

$ mkdir functional_tests

$ touch functional_tests/__init__.py
Now we want to move our functional tests, from being a standalone file called
functional_tests.py, to being the fests.py of the functional_tests app. We use git mv
so that Git keeps track of the fact that this is the same file and should have a single
history.

$ git mv functional_tests.py functional_tests/tests.py
$ git status # shows the rename to functional_tests/tests.py and __init__.py

104 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps



At this point, your directory tree should look like this:

}— db.sqlite3

}— functional_tests
— __init__.py

L— tests.py

— lists

— _init__.py

}— admin.py

F— apps.py

}— migrations

| | ee01_initial.py
| | 0002_item_text.py
|  L— _init__.py
}— models.py

}— templates

| — home.html
— tests.py

L— views.py
manage.py
superlists

— _init__.py

F— asgi.py

}— settings.py

— urls.py

L— wsgi.py

r~

functional_tests.py is gone, and has turned into functional_tests/tests.py. Now, when-
ever we want to run our FTs, instead of running python functional_tests.py, we
will use python manage.py test functional_tests.

You could mix your functional tests into the tests for the lists
app. I tend to prefer keeping them separate, because FTs usually
have cross-cutting concerns that run across different apps. FTs are
meant to see things from the point of view of your users, and
your users don’t care about how you've split work between different

apps!

Ensuring Test Isolation in Functional Tests | 105



Now, let’s edit functional_tests/tests.py and change our NewVisitorTest class to make
it use LiveServerTestCase:

functional_tests/tests.py (ch061001)
from import LiveServerTestCase
from import webdriver

class NewVisitorTest(LiveServerTestCase):
def setUp(self):
[...]

Next, instead of hardcoding the visit to localhost port 8000, LiveServerTestCase
gives us an attribute called live_server_url:

functional_tests/tests.py (ch061002)
def test_can_start_a_todo_list(self):
# Edith has heard about a cool new online to-do app.
# She goes to check out its homepage
self.browser.get(self.live_server_url)

We can also remove the if __name__ == '__main__' from the end if we want, as
we'll be using the Django test runner to launch the FT.

Now we are able to run our functional tests using the Django test runner, by telling it
to run just the tests for our new functional_tests app:

$ python manage.py test functional_tests
Creating test database for alias 'default'...
Found 1 test(s).

System check identified no issues (0 silenced).

Ran 1 test in 10.519s

OK
Destroying test database for alias 'default'...

When I ran this test today, I ran into the Firefox upgrade pop-up.
Just a little reminder, in case you happen to see it too, we talked
about it in Chapter 1 in a little sidebar.

106 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps



The FT still passes, reassuring us that our refactor didn’t break anything. You’ll also
notice that if you run the tests a second time, there aren’t any old list items lying
around from the previous test—it has cleaned up after itself. Success! We should
commit it as an atomic change:

$ git status # functional_tests.py renamed + modified, new __init__.py

$ git add functional_tests

$ git diff --staged

$ git commit # msg eg "make functional_tests an app, use LiveServerTestCase"

Running Just the Unit Tests

Now if we run manage.py test, Django will run both the functional and the unit
tests:

$ python manage.py test

Creating test database for alias 'default'...
Found 8 test(s).

System check identified no issues (0 silenced).

Ran 8 tests in 10.859s

OK
Destroying test database for alias 'default'...

To run just the unit tests, we can specify that we want to only run the tests for the
lists app:

$ python manage.py test lists

Creating test database for alias 'default'...
Found 7 test(s).

System check identified no issues (0 silenced).

Ran 7 tests in 0.009s

OK
Destroying test database for alias 'default'...

Ensuring Test Isolation in Functional Tests | 107



Useful Commands Updated

To run the functional tests
python manage.py test functional_tests

To run the unit tests
python manage.py test lists

What to do if I say “run the tests”, and youre not sure which ones I mean? Have
another look at the flowchart at the end of Chapter 4, and try to figure out where we
are. As a rule of thumb, we usually only run the FTs once all the unit tests are passing,
so if in doubt, try both!

On Implicit and Explicit Waits, and Magic time.sleeps

Let’s talk about the time.sleep in our FT:

functional_tests/tests.py
# When she hits enter, the page updates, and now the page lists
# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)
time.sleep(1)

self.check_for_row_in_list_table("1: Buy peacock feathers")

This is whats called an “explicit wait” That’s in contrast with “implicit waits™: in
certain cases, Selenium tries to wait “automatically” for you when it thinks the page is
loading. It even provides a method called implicitly_watit that lets you control how
long it will wait if you ask it for an element that doesn’t seem to be on the page yet.

In fact, in the first edition of this book, I was able to rely entirely on implicit waits.
The problem is that implicit waits are always a little flakey, and with the release of
Selenium 4, implicit waits were disabled by default. At the same time, the general
opinion from the Selenium team is that implicit waits are just a bad idea, and should
be avoided.

So this edition has explicit waits from the very beginning. But the problem is that
those time.sleeps have their own issues.

Currently we're waiting for one second, but who’s to say that’s the right amount of
time? For most tests we run against our own machine, one second is way too long,
and it’s going to really slow down our FT runs. 0.1s would be fine. But the problem
is that if you set it that low, every so often youre going to get a spurious failure
because, for whatever reason, the laptop was being a bit slow just then. And even

108 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps


https://www.selenium.dev/documentation/webdriver/waits
https://www.selenium.dev/documentation/webdriver/waits

at one second, theres still a chance of random failures that don’t indicate a real
problem—and false positives in tests are a real annoyance.

Unexpected NoSuchElementException and StaleElementExcep
tion errors are often a sign that you need an explicit wait.

So let’s replace our sleeps with a tool that will wait for just as long as is needed, up to a
nice long timeout to catch any glitches. We'll rename check_for_row_in_list_table
towatit_for_row_in_list_table, and add some polling/retry logic to it:

Sfunctional_tests/tests.py (ch061004)
[...]

from selenium.common.exceptions import WebDriverException
import time

MAX_WAIT = 5 @

class NewVisitorTest(LiveServerTestCase):
def setUp(self):
[...]
def tearDown(self):
[...]

def wait_for_row_in_list_table(self, row_text):
start_time = time.time()
while True: ©
try:
table = self.browser.find_element(By.ID, "id_list_table") @
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertIn(row_text, [row.text for row in rows])
return @
except (AssertionError, WebDriverException): @
if time.time() - start_time > MAX_WAIT: @
raise @
time.sleep(0.5) @

1 There’s lots more on this in an article by Martin Fowler.

On Implicit and Explicit Waits, and Magic time.sleeps | 109


https://oreil.ly/YdRx-

WEe'll use a constant called MAX_WAIT to set the maximum amount of time were
prepared to wait. Five seconds should be enough to catch any glitches or random
slowness.

Here’s the loop, which will keep going forever, unless we get to one of two
possible exit routes.

Here are our three lines of assertions from the old version of the method.

If we get through them, and our assertion passes, we return from the function
and escape the loop.

But if we catch an exception, we wait a short amount of time and loop around to
retry. There are two types of exceptions we want to catch: WebDriverException
for when the page hasn’t loaded and Selenium can'’t find the table element on the
page; and AssertionError for when the table is there, but it’s perhaps a table
from before the page reloads, so it doesn’t have our row in yet.

Here’s our second escape route. If we get to this point, that means our code kept
raising exceptions every time we tried it until we exceeded our timeout. So this
time, we reraise the exception and let it bubble up to our test, and most likely end
up in our traceback, telling us why the test failed.

Are you thinking this code is a little ugly, and makes it a bit harder to see exactly what
we're doing? I agree. Later on (Example 13-12), we'll refactor out a general wait_for
helper, to separate the timing and reraising logic from the test assertions. But we'll
wait until we need it in multiple places.

If you've used Selenium before, you may know that it has a few
helper functions to conduct waits. I'm not a big fan of them,
though not for any objective reason really. Over the course of the
book, we'll build a couple of wait helper tools, which I think will
make for nice and readable code. But of course you should check
out the homegrown Selenium waits in your own time, and see if
you prefer them.

110

| Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps


https://www.selenium.dev/documentation/webdriver/waits/#explicit-waits

Now we can rename our method calls, and remove the magic time.sleeps:

functional_tests/tests.py (ch061005)
[...]
# When she hits enter, the page updates, and now the page lists
# "1: Buy peacock feathers" as an item in a to-do list table
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy peacock feathers")

# There is still a text box inviting her to add another 1itenm.
# She enters "Use peacock feathers to make a fly"

# (Edith is very methodical)

inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Use peacock feathers to make a fly")
inputbox.send_keys(Keys.ENTER)

# The page updates again, and now shows both items on her list
self.wait_for_row_in_list_table("2: Use peacock feathers to make a fly")
self.wait_for_row_in_list_table("1: Buy peacock feathers")

[...]

And rerun the tests:

$ python manage.py test

Creating test database for alias 'default'...
Found 8 test(s).

System check identified no issues (0 silenced).

Ran 8 tests in 4.552s

0K

Destroying test database for alias 'default'...
Hooray were back to passing, and notice we've shaved a few of seconds off the
execution time too. That might not seem like a lot right now, but it all adds up.

Just to check we've done the right thing, let’s deliberately break the test in a couple of
ways and see some errors. First, let’s try searching for some text that we know isn’t
there, and check that we get the expected error:

functional_tests/tests.py (ch061006)
def wait_for_row_in_list_table(self, row_text):
[...]
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertIn("foo", [row.text for row in rows])
return

On Implicit and Explicit Waits, and Magic time.sleeps | 111



We see we still get a nice self-explanatory test failure message:

self.assertIn("foo", [row.text for row in rows])
AssertionError: 'foo' not found in ['1l: Buy peacock feathers']

Did you get a bit bored waiting five seconds for the test to fail?
That’s one of the downsides of explicit waits. There’s a tricky trade-
off between waiting long enough that little glitches don't throw
you, versus waiting so long that expected failures are painfully slow
to watch. Making MAX_WAIT configurable so that it’s fast in local dev,
but more conservative on continuous integration (CI) servers can
be a good idea. See Chapter 25 for an introduction to CI.

Let’s put that back the way it was and break something else:

functional_tests/tests.py (ch061007)
try:
table = self.browser.find_element(By.ID, "id_nothing")
rows = table.find_elements(By.TAG_NAME, "tr")
self.assertIn(row_text, [row.text for row in rows])
return

[...]

Sure enough, we get the errors for when the page doesn’t contain the element were
looking for too:

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_nothing"]; For documentation on this error, [...]

Everything seems to be in order. Let’s put our code back to the way it should be, and
do one final test run:

$ python manage.py test

[...]
0K

Great. With that little interlude over, lets crack on with getting our application
actually working for multiple lists. Don’t forget to commit first!

112 | Chapter 6: Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps



Testing “Best Practices” Applied in this Chapter

Ensuring test isolation and managing global state
Different tests shouldn't affect one another. This means we need to reset any
permanent state at the end of each test. Django’s test runner helps us do this by
creating a test database, which it wipes clean in between each test.

Avoid “magic” sleeps
Whenever we need to wait for something to load, it’s always tempting to throw
in a quick-and-dirty time.sleep. But the problem is that the length of time we
wait is always a bit of a shot in the dark, either too short and too vulnerable to
spurious failures, or too long and it'll slow down our test runs. Prefer a retry loop
that polls our app and moves on as soon as possible.

Don't rely on Selenium’s implicit waits
Selenium does theoretically do some “implicit” waits, but the implementation
varjes between browsers, and is not always reliable. “Explicit is better than
implicit’, as the Zen of Python says,* so prefer explicit waits.

2 python -c "import this"

On Implicit and Explicit Waits, and Magic time.sleeps | 113






CHAPTER 7
Working Incrementally

Now let’s address our real problem, which is that our design only allows for one
global list. In this chapter I'll demonstrate a critical TDD technique: how to adapt
existing code using an incremental, step-by-step process that takes you from working
state to working state. Testing Goat, not Refactoring Cat!

Small Design When Necessary

Let’s have a think about how we want support for multiple lists to work.

At the moment, the only URL for our site is the home page, and that’s why there’s
only one global list. The most obvious way to support multiple lists is to say that each
list gets its own URL, so that people can start multiple lists, or so that different people
can have different lists. How might that work?

Not Big Design Up Front

TDD is closely associated with the Agile movement in software development, which
includes a reaction against “big design up front”—the traditional software engineer-
ing practice whereby, after a lengthy requirements-gathering exercise, there is an
equally lengthy design stage where the software is planned out on paper. The Agile
philosophy is that you learn more from solving problems in practice than in theory,
especially when you confront your application with real users as soon as possible.
Instead of a long up-front design phase, we try to put a minimum viable product out
there early, and let the design evolve gradually based on feedback from real-world
usage.

115



But that doesn’t mean that thinking about design is outright banned! In Chapter 5,
we saw how just blundering ahead without thinking can eventually get us to the right
answer, but often a little thinking about design can help us get there faster. So, lets
think about our minimum viable lists app, and what kind of design we’ll need to
deliver it:

« We want each user to be able to store their own list—at least one, for now.

o A list is made up of several items, whose primary attribute is a bit of descriptive
text.

o We need to save lists from one visit to the next. For now, we can give each user
a unique URL for their list. Later on, we may want some way of automatically
recognising users and showing them their lists.

To deliver the “for now” items, were going to have to store lists and their items
in a database. Each list will have a unique URL, and each list item will be a bit of
descriptive text, associated with a particular list—something like Figure 7-1.

)
. List1
URLT
21>
)
)
n URL2 List 2
User 2 g

[tem

"%
" :

Figure 7-1. Multiple users with multiple lists at multiple URLs

YAGNI!

Once you start thinking about design, it can be hard to stop. All sorts of other
thoughts are occurring to us—we might want to give each list a name or title, we
might want to recognise users using usernames and passwords, we might want to
add a longer notes field as well as short descriptions to our list, we might want to
store some kind of ordering, and so on. But we should obey another tenet of the
Agile gospel: YAGNI (pronounced yag-knee), which stands for “You ain’t gonna need
it!” As software developers, we have fun creating, and sometimes it's hard to resist
the urge to build things just because an idea occurred to us and we might need it.
The trouble is that more often than not, no matter how cool the idea was, you won’t

116 | Chapter7: Working Incrementally



end up using it. Instead you just end up with a load of unused code, adding to the
complexity of your application.

YAGNI is the motto we use to resist our overenthusiastic creative urges. We avoid
writing any code that’s not strictly required.

Don’t write any code unless you absolutely have to.!

REST-ish

We have an idea of the data structure we want—the “model” part of model-view-
controller (we talked about MVC in “Djangos MVC, URLs, and View Functions” on
page 29). What about the “view” and “controller” parts? How should the user interact
with Lists and their Items using a web browser?

Representational state transfer (REST) is an approach to web design that’s usually
used to guide the design of web-based APIs. When designing a user-facing site, it’s
not possible to stick strictly to the REST rules, but they still provide some useful
inspiration (take a look at Online Appendix: Building a REST API if you want to see
a real REST API). REST suggests that we have a URL structure that matches our data
structure—in this case, lists and list items. Each list can have its own URL:
/lists/<list identifier>/
To view a list, we use a GET request (a normal browser visit to the page).
To create a brand new list, we'll have a special URL that accepts POST requests:
/lists/new
To add a new item to an existing list, we'll have a separate URL, to which we can send
POST requests:
/lists/<list identifier>/add_item

(Again, we're not trying to perfectly follow the rules of REST, which would use a PUT
request here—we're just using REST for inspiration. Apart from anything else, you
can’'t use PUT in a standard HTML form.)

1 This is a much more widely applicable rule for programming in business, actually. If you can solve a problem
without any coding at all, that’s a big win.

Small Design When Necessary | 117


https://www.obeythetestinggoat.com/book/appendix_rest_api.html

In summary, our scratchpad for this chapter looks something like this:

. Adyyst mode/ so +hat /fems are assoo-
ated with different /ists.

. Add vrigve URLs For each /ist.

. Adod a URL For aeatins a new /st via
AOST.

. Adodl URLs For adding a new item +o an
existing /st via POST.

Implementing the New Design Incrementally Using TDD

How do we use TDD to implement the new design? Lets take another look at the
flowchart for the TDD process, duplicated in Figure 7-2 for your convenience.

At the top level, were going to use a combination of adding new functionality (by
adding a new FT and writing new application code) and refactoring our application—
that is, rewriting some of the existing implementation so that it delivers the same
functionality to the user but using aspects of our new design. We'll be able to use the
existing FT to verify that we don’t break what already works, and the new FT to drive
the new features.

At the unit test level, we'll be adding new tests or modifying existing ones to test for
the changes we want, and we'll be able to similarly use the unit tests we don’t touch to
help make sure we don't break anything in the process.

118 | Chapter7: Working Incrementally



Red

(failing FT)

Write anew

PT for the Functional test loop Unit test loop
next feature.
Refactor H Green
Green I

(passing FT,

complete feature)

Figure 7-2. The TDD process with both functional and unit tests

Ensuring We Have a Regression Test

Our existing FT, test_can_start_a_todo_list(), is going to act as our regression
test.

Let’s translate our scratchpad into a new FT method, which introduces a second user
and checks that their to-do list is separate from Edith’s.

We'll start out very similarly to the first. Edith adds a first item to create a to-do list,
but we introduce our first new assertion—Edith’s list should live at its own, unique
URL:

functional_tests/tests.py (ch071005)
def test_can_start_a_todo_list(self):
# Edith has heard about a cool new online to-do app.

[...]
# Satisfied, she goes back to sleep

def test_multiple_users_can_start_lists_at_different_urls(self):
# Edith starts a new to-do list
self.browser.get(self.live_server_url)
inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Buy peacock feathers")
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy peacock feathers")

# She notices that her list has a unique URL
edith_list_url = self.browser.current_url
self.assertRegex(edith_list_url, "/lists/.+") @

Ensuring We Have a Regression Test | 119



@ assertRegex is a helper function from unittest that checks whether a string
matches a regular expression. We use it to check that our new REST-ish design
has been implemented. Find out more in the unittest documentation.

Next, we imagine a new user coming along. We want to check that they don't see any
of Edith’s items when they visit the home page, and that they get their own unique
URL for their list:

Sfunctional_tests/tests.py (ch071006)

[...]
self.assertRegex(edith_list_url, "/lists/.+")

# Now a new user, Francis, comes along to the site.

## We delete all the browser's cookies
## as a way of simulating a brand new user session @
self.browser.delete_all_cookies()

# Francis visits the home page. There is no sign of Edith's

# list

self.browser.get(self.live_server_url)

page_text = self.browser.find_element(By.TAG_NAME, "body").text
self.assertNotIn("Buy peacock feathers", page_text)

# Francis starts a new list by entering a new item. He

# is less interesting than Edith...

inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Buy milk")
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy milk")

# Francis gets his own unique URL

francis_list_url = self.browser.current_url
self.assertRegex(francis_list_url, "/lists/.+")
self.assertNotEqual(francis_list_url, edith_list_url)

# Again, there is no trace of Edith's list

page_text = self.browser.find_element(By.TAG_NAME, "body").text
self.assertNotIn("Buy peacock feathers", page_text)
self.assertIn("Buy milk", page_text)

# Satisfied, they both go back to sleep
O I'm using the convention of double-hashes (##) to indicate “meta-comments”—

comments about how the test is working and why—so that we can distinguish
them from regular comments in FTs, which explain the user story. Theyre a

120 | Chapter7: Working Incrementally


https://docs.python.org/3/library/unittest.html

message to our future selves, which might otherwise be wondering why we're
fafting about deleting cookies. ..

Other than that, the new test is fairly self-explanatory. Let’s see how we do when we
run our FTs:

$ python manage.py test functional_tests

[...]
.F

FAIL: test_multiple_users_can_start_lists_at_different_urls (functional_tests.t
ests.NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls)

Traceback (most recent call last):
File "...goat-book/functional_tests/tests.py", line 77, in
test_multiple_users_can_start_lists_at_different_urls
self.assertRegex(edith_list_url, "/lists/.+")
AssertionError: Regex didn't match: '/lists/.+' not found in
'http://localhost:8081/"'

Ran 2 tests in 5.786s

FAILED (failures=1)

Good, our first test still passes, and the second one fails where we might expect. Let’s
do a commit, and then go and build some new models and views:

$ git commit -a

Iterating Towards the New Design

Being all excited about our new design, I had an overwhelming urge to dive in at this
point and start changing models.py, which would have broken half the unit tests, and
then pile in and change almost every single line of code, all in one go. That’s a natural
urge, and TDD, as a discipline, is a constant fight against it. Obey the Testing Goat,
not Refactoring Cat! We don’t need to implement our new, shiny design in a single
big bang. Let’s make small changes that take us from a working state to a working
state, with our design guiding us gently at each stage.

There are four items on our to-do list. The FT, with its Regex didn't match error, is
suggesting to us that the second item—giving lists their own URL and identifier—is
the one we should work on next. Let’s have a go at fixing that, and only that.

Iterating Towards the New Design | 121



The URL comes from the redirect after POST. In lists/tests.py, let’s find test_redi
rects_after_POST and change the expected redirect location:

lists/tests.py (ch071007)

def test_redirects_after_POST(self):
response = self.client.post("/", data={"item_text": "A new list item"})
self.assertRedirects(response, "/lists/the-only-list-in-the-world/")

Does that seem slightly strange? Clearly, /lists/the-only-list-in-the-world isn't a URL
that’s going to feature in the final design of our application. But we're committed to
changing one thing at a time. While our application only supports one list, this is the
only URL that makes sense. We're still moving forwards, in that we'll have a different
URL for our list and our home page, which is a step along the way to a more REST-ful
design. Later, when we have multiple lists, it will be easy to change.

Another way of thinking about it is as a problem-solving
technique: our new URL design is currently not implemented, so it
works for zero items. Ultimately, we want to solve for n items, but
solving for one item is a good step along the way.

Running the unit tests gives us an expected fail:

$ python manage.py test lists

[...]

AssertionError: '/' != '/lists/the-only-list-in-the-world/'

-/

+ [/lists/the-only-list-in-the-world/

: Response redirected to '/', expected '/lists/the-only-list-in-the-world/':
Expected '/' to equal '/lists/the-only-list-in-the-world/'.

We can go adjust our home_page view in lists/views.py:

lists/views.py (ch071008)
def home_page(request):
if request.method == "POST":
Item.objects.create(text=request.POST["item_text"])
return redirect("/lists/the-only-1list-in-the-world/")

items = Item.objects.all()
return render(request, "home.html", {"items": items})

Django’s unit test runner picks up on the fact that this is not a real URL yet:

$ python manage.py test lists

[...]

AssertionError: 404 != 200 : Couldn't retrieve redirection page
'/lists/the-only-list-in-the-world/': response code was 404 (expected 200)

122 | Chapter7: Working Incrementally



Taking a First, Self-Contained Step: One New URL

Our singleton list URL doesn’t exist yet. We fix that in superlists/urls.py:

superlists/urls.py (ch071009)

from import path
from import views

urlpatterns = [
path("", views.home_page, name="home"),
path("lists/the-only-list-in-the-world/", views.home_page, name="view_list"), @

@ Welljust point our new URL at the existing home page view. This is the minimal
change.

Watch out for trailing slashes in URLs, both here in urls.py and
in the tests. They’re a common source of confusion: Django will
return a 301 redirect rather than a 404 if you try to access a URL
that’s missing its trailing slash.?

That gets our unit tests passing:

$ python manage.py test lists

[...]
0K
What do the FTs think?

$ python manage.py test functional_tests
[...]

AssertionError: 'Buy peacock feathers' unexpectedly found in 'Your To-Do
list\nl: Buy peacock feathers'

Good, they get a little further along. We now confirm that we have a new URL, but
the actual page content is still the same; it shows the old list.

Separating Out Our Home Page and List View Functionality

We now have two URLs, but theyre actually doing the exact same thing. Under the
hood, they’re just pointing at the same function. Continuing to work incrementally,
we can start to break apart the responsibilities for these two different URLs:

o The home page only needs to display a static form, and support creating a brand
new list based on its first item.

2 The setting that controls this is called APPEND_SLASH.

Taking a First, Self-Contained Step: One New URL | 123


https://docs.djangoproject.com/en/5.2/ref/settings/#append-slash

o The list view page needs to be able to display existing list items and add new

items to the list.

Let’s split out some tests for our new URL.

Open up lists/tests.py, and add a new test class called ListViewTest. Then:

1. Copy across the test_renders_input_form() test from HomePageTest into our
new class.

2. Move the method called test_displays_all_list_items().

3. In both, change just the URL that is invoked by self.client.get().

4. We won't copy across the test_uses_home_template() yet, as were not quite
sure what template we want to use. We'll stick to the tests that check behaviour,
rather than implementation.

lists/tests.py (ch071010)
class HomePageTest(TestCase):

def test_uses_home_template(self):
[...]

def test_renders_input_form(self):
[...]

def test_can_save_a_POST_request(self):
[...]

def test_redirects_after_POST(self):
[...]

class ListViewTest(TestCase):

def test_renders_input_form(self):
response = self.client.get("/lists/the-only-1list-in-the-world/")
self.assertContains(response, '<form method="POST">")
self.assertContains(response, '<input name="item_text"")

def test_displays_all_list_items(self):
Item.objects.create(text="itemey 1")
Item.objects.create(text="1itemey 2")
response = self.client.get("/lists/the-only-1list-in-the-world/")
self.assertContains(response, "itemey 1")
self.assertContains(response, "itemey 2")

124 | Chapter7: Working Incrementally



Let’s try running these tests now:

$ python manage.py test lists
OK

It passes, because the URL is still pointing at the home_page view.

Let’s make it point at a new view:

superlists/urls.py (ch071011)
from import path
from import views

urlpatterns = [
path("", views.home_page, name="home"),
path("lists/the-only-1list-in-the-world/", views.view_list, name="view_ list"),

That predictably fails because there is no such view function yet:

$ python manage.py test lists
[...]
path("lists/the-only-1list-in-the-world/", views.view_list,
name="view_list"),
AANANANAANNNANANANNANN

AttributeError: module 'lists.views' has no attribute 'view_list'

A new view function

Fair enough. Let’s create a placeholder view function in lists/views.py:

lists/views.py (ch071012-0)
def view_list(request):
pass

Not quite good enough:

ValueError: The view lists.views.view_list didn't return an HttpResponse
object. It returned None instead.

[...]
FAILED (errors=3)

Looking for the minimal code change, let’s just make the view return our existing
home.html template, but with nothing in it:

lists/views.py (ch071012-1)
def view_list(request):
return render(request, "home.html")

Taking a First, Self-Contained Step: One New URL | 125



Now the tests guide us to making sure that our list view shows existing list items:

FAIL: test_displays_all_list_items
(lists.tests.ListViewTest.test_displays_all_list_items)
[...]

AssertionError: False is not true : Couldn't find 'itemey 1' in the following
response

So let’s copy the last two lines from home_page more directly:
lists/views.py (ch071012)
def view_list(request):
items = Item.objects.all()
return render(request, "home.html", {"items": items})
That gets us to passing unit tests!

Ran 8 tests in 0.035s

0K

The FTs Detect a Regression
As always when we get to passing unit tests, we run the FTs to check how things are
doing “in real life”:

$ python manage.py test functional_tests

[...]
FF

FAIL: test_can_start_a_todo_list
(functional_tests.tests.NewVisitorTest.test_can_start_a_todo_list)
Traceback (most recent call last):

File "...goat-book/functional_tests/tests.py", line 62, in
test_can_start_a_todo_list
[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Buy
peacock feathers']

FAIL: test_multiple_users_can_start_lists_at_different_urls (functional_tests.t
ests.NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls)
Traceback (most recent call last):

File "...goat-book/functional_tests/tests.py", line 89, in
test_multiple_users_can_start_lists_at_different_urls

self.assertNotIn("Buy peacock feathers", page_text)

AssertionError: 'Buy peacock feathers' unexpectedly found in 'Your To-Do
list\nl: Buy peacock feathers'

126 | Chapter7: Working Incrementally



Another Race Condition Example

You may have noticed that the assertions around line 63 are in a slightly unexpected
order:

functional_tests/tests.py

# The page updates again, and now shows both items on her list
self.wait_for_row_in_list_table("2: Use peacock feathers to make a fly")
self.wait_for_row_in_list_table("1: Buy peacock feathers")

Try putting them the other way around, 1 then 2, and run the FTs a few times. There’s
a good chance you’ll notice an inconsistency in the results. Sometimes you see:

AssertionError: '1l: Buy peacock feathers' not found in ['1l: Use peacock
feathers to make a fly']

And sometimes you'll see:

AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

That’s because of a race condition between the Selenium assertions in the FT, and
the server returning our new page. Just before we tap Enter, the page is still showing
1: Buy peacock feathers. Our next assertion is then checking for 1: Buy peacock
feathers, which is already on the page. But, at the same time, the server is busy
returning a new page that also says 1: Use peacock feathers to make a fly.

So, depending on who gets there first, the first assert may pass or fail, meaning that
you may get an error on the first assert or on the second.

That’s why I put the assertions “backwards”, so we check for 2: Use peacock feath
ers first, because it should never be present on the old page. This means that as soon
as we detect it, we must be on the new page.

Subtle, right? Selenium tests are fiddly like that.

Not only is our new FT failing, but the old one is too. That tells us we've introduced a
regression. But what?

Both tests are failing when we try to add the second item. We have to put our
debugging hats on here. We know the home page is working, because the test has got
all the way down to line 62 in the first FT, so we've at least added a first item. And
our unit tests are all passing, so we're pretty sure the URLs and views that we do have
are doing what they should. Let’s have a quick look at those unit tests to see what they
tell us:

Taking a First, Self-Contained Step: One New URL | 127



$ grep -E "class|def" lists/tests.py
class HomePageTest(TestCase):

def test_uses_home_template(self):

def test_renders_input_form(self):

def test_can_save_a_POST_request(self):

def test_redirects_after_POST(self):

def test_only_saves_items_when_necessary(self):
class ListViewTest(TestCase):

def test_renders_input_form(self):

def test_displays_all_list_items(self):
class ItemModelTest(TestCase):

def test_saving_and_retrieving_1items(self):

The home page displays the right form and template, and can handle POST requests,
and the /only-list-in-the-world/ view knows how to display all items...but it doesn’t
know how to handle POST requests. Ah, that gives us a clue.

A second clue is the rule of thumb that, when all the unit tests are passing but the FTs
aren’, it’s often pointing at a problem in code that’s not covered by the unit tests—and
in a Django app, that’s often a template problem.

Have you figured out what the problem is? Why not spend a
moment trying to figure it out? Maybe open up the site in your
browser, and see where the bug manifests. Perhaps open up the
“view source” or browser DevTools and look at the underlying
HTML?

The answer is that our home.html input form currently doesn’t specify an explicit
URL to POST to:

lists/templates/home.html
<form method="POST">

By default, the browser sends the POST data back to the same URL its currently
on. When we’re on the home page that works fine, but when we're on our /only-list-
in-the-world/ page, it doesn't.

Getting Back to a Working State as Quickly as Possible

Now, we could dive in and add POST request handling to our new view, but that
would involve writing a bunch more tests and code, and at this point wed like to get
back to a working state as quickly as possible. Actually the quickest thing we can do to
get things fixed is to just use the existing home page view, which already works, for all
POST requests.

In other words, we've identified a new important part of the behaviour we want from
our two views and their templates, which is the URL that the form points to. Let’s add

128 | Chapter7: Working Incrementally



a check for that URL explicitly, in our two tests for each view (I'll use a diff to show
the changes, hopefully that makes it nice and clear):

lists/tests.py (ch071013-1)
@@ -10,7 +10,7 @@ class HomePageTest(TestCase):

def test_renders_input_form(self):
response = self.client.get("/")
- self.assertContains(response, '<form method="POST">')
+ self.assertContains(response, '<form method="POST" action="/">")
self.assertContains(response, '<input name="item_text"')

def test_can_save_a_POST_request(self):
@@ -31,7 +31,7 @@ class HomePageTest(TestCase):
class ListViewTest(TestCase):
def test_renders_input_form(self):
response = self.client.get("/lists/the-only-1list-in-the-world/")
- self.assertContains(response, '<form method="POST">'")
+ self.assertContains(response, '<form method="POST" action="/">"')
self.assertContains(response, '<input name="item_text"')

def test_displays_all_list_items(self):

That gives us two expected failures:

FAIL: test_renders_input_form
(lists.tests.HomePageTest.test_renders_input_form)
Traceback (most recent call last):

File "...goat-book/lists/tests.py", line 13, in test_renders_input_form

self.assertContains(response, '<form method="POST" action="/">"')
ANNANNANNANNANNANNNNNNNNNNNNNANNNNNANNNANNANNNANNNNNNNANNANN

AssertionError: False is not true : Couldn't find '<form method="POST"

action="/">' in the following response
b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
<h1>Your To-Do list</h1>\n <form method="POST">\n <input

name="{item_text" id="1d_new_1item" placeholder="Enter a to-do item" />\n
<input type="hidden" name="csrfmiddlewaretoken"

value=[...]

</form>\n <table id="id_list_table">\n \n </table>\n
</body>\n</html>\n'

FAIL: test_renders_input_form
(lists.tests.ListViewTest.test_renders_input_form)

[...]
AssertionError: False is not true : Couldn't find '<form method="POST"
action="/">' in the following response

b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
[...]

Taking a First, Self-Contained Step: One New URL | 129



And so we can fix it like this—the input form, for now, will always point at the home
URL:

lists/templates/home.html (ch071013-2)
<form method="POST" action="/">

Unit test pass:
oK
And we should see our FTs get back to a happier place:

FAIL: test_multiple_users_can_start_lists_at_different_urls (functional_tests.t
ests.NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls)

[...]
AssertionError: 'Buy peacock feathers' unexpectedly found in 'Your To-Do
1ist\n1: Buy peacock feathers'

Ran 2 tests in 8.541s
FAILED (failures=1)

Our old FT (the one were using as a regression test) passes once again, so we know
were back to a working state. The new functionality may not be working yet, but at
least the old stuff works as well as it used to.

Green? Refactor
Time for a little tidying up.

In the red/green/refactor dance, our unit tests pass and all our old FTs pass, so we've
arrived at green. That means it’s time to see if anything needs a refactor.

We now have two views: one for the home page, and one for an individual list. Both
are currently using the same template, and passing it all the list items currently in the
database. Post requests are only handled by the home page though.

It feels like the responsibilities of our two views are a little tangled up. Lets try and
disentangle them.

130 | Chapter7: Working Incrementally



Another Small Step: A Separate Template
for Viewing Lists

As the home page and the list view are now quite distinct pages, they should be using
different HTML templates; home.html can have the single input box, whereas a new
template, list.html, can take care of showing the table of existing items.

We held off on copying across test_uses_home_template() until now, because we
weren’t quite sure what we wanted. Now let’s add an explicit test to say that this view
uses a different template:

lists/tests.py (ch071014)

class ListViewTest(TestCase):
def test_uses_list_template(self):
response = self.client.get("/lists/the-only-list-in-the-world/")
self.assertTemplateUsed(response, "list.html")

def test_renders_input_form(self):

[...]

def test_displays_all_list_items(self):
[...]

Let’s see what it says:

AssertionError: False is not true : Template 'list.html' was not a template
used to render the response. Actual template(s) used: home.html

Looks about right, let’s change the view:

lists/views.py (ch071015)

def view_list(request):
items = Item.objects.all()
return render(request, "list.html", {"items": items})

But, obviously, that template doesn’t exist yet. If we run the unit tests, we get:

django.template.exceptions.TemplateDoesNotExist: list.html
[...]
FAILED (errors=4)

Let’s create a new file at lists/templates/list. html:
$ touch lists/templates/list.html

A blank template, which gives us two errors—good to know the tests are there to
make sure we fill it in:

Another Small Step: A Separate Template for Viewing Lists | 131



$ python manage.py test lists
[...]

FAIL: test_displays_all_list_items
(lists.tests.ListViewTest.test_displays_all_list_items)

[...]

AssertionError: False is not true : Couldn't find 'itemey 1' in the following
response

bl 1

FAIL: test_renders_input_form
(lists.tests.ListViewTest.test_renders_input_form)

[...]
AssertionError: False is not true : Couldn't find '<form method="POST"
action="/">' in the following response

[...]

The template for an individual list will reuse quite a lot of the stuff we currently have
in home.html, so we can start by just copying that:

$ cp lists/templates/home.html lists/templates/list.html
That gets the tests back to passing (green).

$ python manage.py test lists

[...]
oK

Now let’s do a little more tidying up (refactoring). We said the home page doesn’t
need to list items; it only needs the new list input field. So we can remove some lines
from lists/templates/home.html, and maybe slightly tweak the h1 to say “Start a new
To-Do list”

I'll present the code change as a diff again, as I think that shows nice and clearly what
we need to modify:

lists/templates/home.html (ch071018)
<body>
<h1>Your To-Do list</h1>
+ <h1>Start a new To-Do list</h1>
<form method="POST" action="/">
<input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}
</form>
<table id="id_list_table">
{% for item in items %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}
</table>
</body>

132 | Chapter7: Working Incrementally



We rerun the unit tests to check that hasn’t broken anything...
0K
Good.

Now there’s actually no need to pass all the items to the home.html template in our
home_page view, so we can simplify that and delete a few lines:

lists/views.py (ch071019)

if request.method == "POST":
Item.objects.create(text=request.POST["item_text"])
return redirect("/lists/the-only-1list-in-the-world/")

- items = Item.objects.all()
- return render(request, "home.html", {"items": items})
+ return render(request, "home.html")

Rerun the unit tests once more; they still pass:
oK

Time to run the FTs:

File "...goat-book/functional_tests/tests.py", line 96, in
test_multiple_users_can_start_lists_at_different_urls
self.wait_for_row_in_list_table("1: Buy milk")

ANNNNNNNNNNANNNAN

[...]

AssertionError: '1: Buy milk' not found in ['1l: Buy peacock feathers', '2: Buy
milk']

Ran 2 tests in 10.606s

FAILED (failures=1)

Great! Only one failure, so we know our regression test (the first FT) is passing. Let’s
see where were getting to with the new FT.

Another Small Step: A Separate Template for Viewing Lists | 133



Let’s take a look at it again:

functional_tests/tests.py

def test_multiple_users_can_start_lists_at_different_urls(self):

# Edith starts a new to-do list
self.browser.get(self.live_server_url)

inputbox = self.browser.find_element(By.ID, "id_new_1item")
inputbox.send_keys("Buy peacock feathers")
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy peacock feathers") @
[...]

# Now a new user, Francis, comes along to the site.

[...]

# Francis visits the home page. There is no sign of Edith's

# list

self.browser.get(self.live_server_url)

page_text = self.browser.find_element(By.TAG_NAME, "body").text
self.assertNotIn("Buy peacock feathers", page_text) @

# Francis starts a new list by entering a new item. He

# 1s less interesting than Edith...

inputbox = self.browser.find_element(By.ID, "id_new_item")
inputbox.send_keys("Buy milk")
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy milk") @

[...]

@ Edithss list says “Buy peacock feathers”.

©® When Francis loads the home page, there’s no sign of Edith’s list.

© (This is the line where our test fails.) When Francis adds a new item, he sees

Edith’s item as number 1, and his appears as number 2.

Still, that’s progress! The new FT is getting a little further along.

It may feel like we haven’t made much headway because, functionally, the site still
behaves almost exactly like it did when we started the chapter. But this really is
progress. We've started on the road to our new design, and we've implemented a
number of stepping stones without making anything worse than it was before.

134

Chapter 7: Working Incrementally



Let’s commit our work so far:

$ git status # should show 4 changed files and 1 new file, list.html
$ git add lists/templates/list.html
$ git diff # should show we've simplified home.html,
# moved one test to a new class in lists/tests.py,
# changed the redirect in homepageTest & the home_page() view
# added a new view view_list() in views.py,
# and and added a line to urls.py.
$ git commit -a # add a message summarising the above, maybe something like
# "new URL, view and template to display lists"

If this is all feeling a little abstract, now might be a good time
to load up the site with manage.py runserver and try adding a
couple of different lists yourself, and get a feel for how the site is
currently behaving.

A Third Small Step: A New URL for Adding List Items

Where are we with our own to-do list?

. Adjyst mode/ so +hat /fems are assoo-
ated with different /ists.

. Add vrigve URLs For each /ist.

o Adod a URL For aeatdins a new /st via
AOST.

. Adodl URLs For adding a new item +o an
existing /is¢ via POST.

We've sort of made progress on the second item, even if there’s still only one list in the
world. The first item is a bit scary. Can we do something about items 3 or 4?

Let’s have a new URL for adding new list items at /lists/new: If nothing else, it’ll
simplify the home page view.

AThird Small Step: A New URL for Adding List Items | 135



A Test Class for New List Creation

Open up lists/tests.py, and move the test_can_save_a_POST_request() and
test_redirects_after_POST() methods into a new class called NewListTest. Then,
change the URL they POST to:

lists/tests.py (ch071020)
class HomePageTest(TestCase):
def test_uses_home_template(self):
[...]
def test_renders_1input_form(self):

4]
def test_only_saves_1items_when_necessary(self):

[...]

class NewListTest(TestCase):
def test_can_save_a_POST_request(self):
self.client.post("/lists/new", data={"item_text": "A new list item"})
self.assertEqual(Item.objects.count(), 1)
new_item = Item.objects.get()
self.assertEqual(new_item.text, "A new list item")

def test_redirects_after_POST(self):
response = self.client.post("/lists/new", data={"item_text": "A new list item"})
self.assertRedirects(response, "/lists/the-only-list-in-the-world/")

class ListViewTest(TestCase):
def test_uses_list_template(self):
[...]

This is another place to pay attention to trailing slashes, inciden-
tally. It's /lists/new, with no trailing slash. The convention I'm
using is that URLs without a trailing slash are “action” URLs, which
modify the database.’

Try running that:

self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 !=1
[...]

self.assertRedirects(response, "/lists/the-only-list-in-the-world/")
[...]
AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

3 I don’t think this is a very common convention anymore these days, but I quite like it. By all means, cast
around for a URL naming scheme that makes sense to you in your own projects!

136 | Chapter7: Working Incrementally



The first failure tells us were not saving a new item to the database, and the second
says that, instead of returning a 302 redirect, our view is returning a 404. That’s
because we haven’t built a URL for /lists/new, so the client.post is just getting a “not
found” response.

Do you remember how we split this out into two tests earlier? If
we only had one test that checked both the saving and the redirect,
it would have failed on the 0 != 1 failure, which would have been
much harder to debug. Ask me how I know this.

A URL and View for New List Creation

Let’s build our new URL now:

superlists/urls.py (ch071021)
urlpatterns = [
path("", views.home_page, name="home"),
path("lists/new", views.new_list, name="new_list"),
path("lists/the-only-1list-in-the-world/", views.view_list, name="view_list"),

Next we get ano attribute 'new_list', so let’s fix that, in lists/views.py:

lists/views.py (ch071022)
def new_list(request):
pass

Then we get “The view lists.views.new_list didn’t return an HttpResponse object”.
(This is getting rather familiar!) We could return a raw HttpResponse, but because we
know we'll need a redirect, let’s borrow a line from home_page:

lists/views.py (ch071023)
def new_list(request):
return redirect("/lists/the-only-list-in-the-world/")

That gives:

self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 !=1

AThird Small Step: A New URL for Adding List Items | 137



Seems reasonably straightforward. We borrow another line from home_page:

lists/views.py (ch071024)
def new_list(request):
Item.objects.create(text=request.POST["item_text"])
return redirect("/lists/the-only-1list-in-the-world/")

And everything now passes:

Ran 9 tests in 0.030s

0K

And we can run the FTs to check that we're still in the same place:

[...]

AssertionError: '1: Buy milk' not found in ['1l: Buy peacock feathers', '2: Buy
milk']

Ran 2 tests in 8.972s

FAILED (failures=1)

Our regression test passes, and the new FT gets to the same point.

Removing Now-Redundant Code and Tests

Were looking good. As our new views are now doing most of the work that
home_page used to do, we should be able to massively simplify it. Can we remove
the whole if request.method == 'POST' section, for example?

lists/views.py (ch071025)
def home_page(request):

return render(request, "home.html")
Yep! The unit tests pass:
OK

And while were at it, we can remove the now-redundant test_only_saves_
items_when_necessary test too!

Doesn’t that feel good? The view functions are looking much simpler. We rerun the
tests to make sure...

Ran 8 tests in 0.016s
0K

And the FTs?

138 | Chapter7: Working Incrementally



A Regression! Pointing Our Forms at the New URL
Oops. When we run the FTs:

ERROR: test_can_start_a_todo_list
(functional_tests.tests.NewVisitorTest.test_can_start_a_todo_list)

[...]

File "...goat-book/functional_tests/tests.py", line 52, in
test_can_start_a_todo_list
[...]

self.wait_for_row_in_list_table("1: Buy peacock feathers")

ANNANNNNNNNNNNNANNNNNNNNNNNNAN

[...]
table = self.browser.find_element(By.ID, "id_list_table")

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_list_table"]; For documentation [...]

ERROR: test_multiple_users_can_start_lists_at_different_urls (functional_tests.
tests.NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls)

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_list_table"]; For documentation [...]

[...]

Ran 2 tests in 11.592s
FAILED (errors=2)

Once again, the FTs pick up a tricky little bug, something that our unit tests alone
would find it hard to catch.

AThird Small Step: A New URL for Adding List Items | 139



Debugging in DevTools

This is another good time to spin up the dev server, and have a look around with a
browser.

Let’s also open up DevTools,* and click around to see what’s going on:

o First I tried submitting a new list item, and saw we get sent back to the home
page.

o Then I did the same with the browser DevTools open, and in the “network” tab I
saw a POST request to “/”. See Figure 7-3.

o Finally, I had a look at the HTML source of the home page, and saw that the main
form is still pointing at “/”.

« C O D 127.0.0.1

Start a new To-Do list

|Entera to-do item |

W | O Inspector Console (O Debugger T Network {3} Style Editor (J) H

W Filter URLs
Al HTML CSS JS XHR Fonts Images Media WS Other

Status Method Domain File
200 POST 127.0.0.1:8000 /

GET 127.0.0.1:8000 favicon.ico

Figure 7-3. DevTools shows a POST request to /

4 If you've not seen it before, DevTools is short for “developer tools”. They’re tools that Firefox (and other
browsers) give you to be able to look “under the hood” and see what’s going on with web pages, including the
source code, what network requests are being made, and what JavaScript is doing. You can open up DevTools
with Ctrl+Shift+I or Cmd-Opt-I.

140 | Chapter7: Working Incrementally



https://firefox-source-docs.mozilla.org/devtools-user

Actually, both our forms are still pointing to the old URL. We have tests for this! Let’s
amend them:

lists/tests.py (ch071026)
@@ -10,7 +10,7 @@ class HomePageTest(TestCase):

def test_renders_1input_form(self):
response = self.client.get("/")
- self.assertContains(response, '<form method="POST" action="/">")
+ self.assertContains(response, '<form method="POST" action="/lists/new">")
self.assertContains(response, '<input name="1item_text"')

@@ -33,7 +33,7 @@ class ListViewTest(TestCase):

def test_renders_1input_form(self):
response = self.client.get("/lists/the-only-1list-in-the-world/")
- self.assertContains(response, '<form method="POST" action="/">")
+ self.assertContains(response, '<form method="POST" action="/lists/new">"')
self.assertContains(response, '<input name="item_text"')

That gets us two failures:

AssertionError: False is not true : Couldn't find '<form method="POST"
action="/lists/new">"' in the following response

[...]

AssertionError: False is not true : Couldn't find '<form method="POST"
action="/lists/new">"' in the following response

[...]
In both home.html and list.html, let’s change them:

lists/templates/home.html (ch071027)
<form method="POST" action="/lists/new">

And:

lists/templates/list.html (ch071028)
<form method="POST" action="/lists/new">

And that should get us back to working again:

Ran 8 tests in 0.006s

0K

AThird Small Step: A New URL for Adding List Items | 141



And our FTs are still in the familiar “Francis sees Edith’s items” place:

AssertionError: '1: Buy milk' not found in ['1l: Buy peacock feathers', '2: Buy
milk']

[...]

FAILED (failures=1)

Perhaps this all seems quite pernickety, but that’s another nicely self-contained com-
mit, in that we've made a bunch of changes to our URLs, our views.py is looking
much neater and tidier with three very short view functions, and we’re sure the
application is still working as well as it was before. We're getting good at this working-
state-to-working-state malarkey!

$ git status # 5 changed files
$ git diff # URLs for forms x2, new test + view with code moves, and new URL
$ git commit -a

And we can cross out an item on the to-do list:

. Adjust mode/ so +hat ifems are assoc-
ated with different /ists.

. Ad o vnigve URLs For each /ist.

. Ackot—a—tRL—For—creatins—a—rer—Hst—a
APEOSF

. Adod URLs #or addings a new item #o an
exiséing fist via POST.

142 | Chapter7: Working Incrementally



Biting the Bullet: Adjusting Our Models

Enough housekeeping with our URLs. It’s time to bite the bullet and change our
models. Let’s adjust the model unit test.

lists/tests.py (ch071029)
@@ '1:5 +1;5 @@
from django.test import TestCase
-from lists.models import Item
+from lists.models import Item, List

class HomePageTest(TestCase):
@@ -35,20 +35,30 @@ class ListViewTest(TestCase):
self.assertContains(response, "itemey 2")

-class ItemModelTest(TestCase):
+class ListAndItemModelsTest(TestCase):
def test_saving_and_retrieving_1items(self):

+ mylist = List()
+ mylist.save()
]
first_item = Item()
first_item.text = "The first (ever) list item"
+ first_item.list = mylist

first_item.save()

second_item = Item()

second_item.text = "Item the second"
+ second_item.list = mylist

second_1item.save()

+ saved_list = List.objects.get()
+ self.assertEqual(saved_list, mylist)
¥

saved_1items = Item.objects.all()
self.assertEqual(saved_items.count(), 2)

first_saved_item = saved_items[0]
second_saved_1item = saved_items[1]
self.assertEqual(first_saved_item.text, "The first (ever) list item")

+ self.assertEqual(first_saved_item.list, mylist)
self.assertEqual(second_saved_1item.text, "Item the second")
+ self.assertEqual(second_saved_item.list, mylist)

Biting the Bullet: Adjusting Our Models | 143



Once again, this is a very verbose test, because I'm using it more as a demonstration
of how the ORM works. We'll shorten it later,” but for now, let's work through and see
how things work.

We create a new List object and then we assign each item to it by setting it as
its . list property. We check that the list is properly saved, and we check that the
two items have also saved their relationship to the list. You’ll also notice that we can
compare list objects with each other directly (saved_list and mylist)—behind the
scenes, these will compare themselves by checking that their primary key (the .1id
attribute) is the same.

Time for another unit-test/code cycle.

For the first few iterations, rather than explicitly showing you what code to enter in
between every test run, I'm only going to show you the expected error messages from
running the tests. I'll let you figure out what each minimal code change should be, on
your own.

Need a hint? Go back and take a look at the steps we took to
introduce the Item model in “The Django ORM and Our First
Model” on page 81.

Your first error should be:

ImportError: cannot import name 'List' from 'lists.models'
Fix that, and then you should see:

AttributeError: 'List' object has no attribute 'save'
Next you should see:

django.db.utils.OperationalError: no such table: lists_list
So, we run a makemigrations:

$ python manage.py makemigrations
Migrations for 'lists':
lists/migrations/0003_list.py
+ Create model List

And then you should see:

self.assertEqual(first_saved_item.list, mylist)
AttributeError: 'Item' object has no attribute 'list'

5 In “Rewriting the Old Model Test” on page 367, if you're curious.

144 | Chapter 7: Working Incrementally



A Foreign Key Relationship

How do we give our Itenm a list attribute? Let’s just try naively making it like the text
attribute (and here’s your chance to see whether your solution so far looks like mine,
by the way):

lists/models.py (ch071033)
from import models

class List(models.Model):
pass

class Item(models.Model):
text = models.TextField(default="")
list = models.TextField(default="")

As usual, the tests tell us we need a migration:

$ python manage.py test lists
[...]

django.db.utils.OperationalError: no such column: lists_item.list

$ python manage.py makemigrations
Migrations for 'lists':
lists/migrations/0004_item_list.py
+ Add field list to item

Let’s see what that gives us:
AssertionError: 'List object (1)' != <List: List object (1)>

We're not quite there. Look closely at each side of the !=. Do you see the quotes
(')? Django has only saved the string representation of the List object. To save the
relationship to the object itself, we tell Django about the relationship between the two
classes using a ForeignKey:

lists/models.py (ch071035)
class Item(models.Model):
text = models.TextField(default="")
list = models.ForeignKey(List, default=None, on_delete=models.CASCADE)

Biting the Bullet: Adjusting Our Models | 145



That'll need a migration too. As the last one was a red herring, let’s delete it and
replace it with a new one:

$ rm lists/migrations/0004_item_list.py
$ python manage.py makemigrations
Migrations for 'lists':
lists/migrations/0004_item_list.py
+ Add field list to item

Deleting migrations is dangerous. Now and again it’s nice to do it
to keep things tidy, because we don’t always get our models’ code
right on the first go! But if you delete a migration that’s already

, been applied to a database somewhere, Django will be confused
about what state its in, and won't be able to apply future migra-
tions. You should only do it when youre sure the migration hasn’t
been used. A good rule of thumb is that you should never delete or
modify a migration that’s already been committed to Git.

Adjusting the Rest of the World to Our New Models

Back in our tests, now what happens?

$ python manage.py test lists

[...]

ERROR: test_displays_all_list_items

django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]

ERROR: test_redirects_after_POST

django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id
[...]

ERROR: test_can_save_a_POST_request

django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Ran 8 tests in 0.021s
FAILED (errors=3)
Oh dear!

There is some good news. Although its hard to see, our model tests are passing. But
three of our view tests are failing nastily.

The cause is the new relationship we've introduced between Items and Lists, which
requires each item to have a parent list, and which our old tests and code aren't
prepared for.

146 | Chapter 7: Working Incrementally



Still, this is exactly why we have tests! Let’s get them working again. The easiest is the
ListViewTest; we just create a parent list for our two test items:

lists/tests.py (ch071038)
class ListViewTest(TestCase):
[...]
def test_displays_all_list_items(self):
mylist = List.objects.create()
Item.objects.create(text="itemey 1", list=mylist)
Item.objects.create(text="1itemey 2", list=mylist)

That gets us down to two failing tests, both on tests that try to POST to our new_list
view. Decode the tracebacks using our usual technique, working back from error
to line of test code to—buried in there somewhere—the line of our own code that
caused the failure:

File "...goat-book/lists/tests.py", line 25, in test_redirects_after_POST
response = self.client.post("/lists/new", data={"item_text": "A new list
item"})
[...]
File "...goat-book/lists/views.py", line 11, in new_list
Item.objects.create(text=request.POST["item_text"])

AANANNANANNNNNANNNNANNNNNNNANANNANNNNNAN

[...]
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

It's when we try to create an item without a parent list. So we make a similar change
in the view:

lists/views.py (ch071039)
from import Item, List

[...]

def new_list(request):
nulist = List.objects.create()
Item.objects.create(text=request.POST["item_text"], list=nulist)
return redirect("/lists/the-only-list-in-the-world/")
And that gets our tests passing again:®

Ran 8 tests in 0.030s

0K

6 Are you wondering about the strange spelling of the “nulist” variable? Other options are “list”, which would
shadow the built-in 1ist() function, and new_1list, which would shadow the name of the function that
contains it. Or list_ with the trailing underscore, which I find a bit ugly, or 1ist1 or listey or mylist, but
none are particularly satisfactory.

Biting the Bullet: Adjusting Our Models | 147



Are you cringing internally at this point? Arg! This feels so wrong; we create a new
list for every single new item submission, and wee still just displaying all items as if
they belong to the same list! I know; I feel the same. The step-by-step approach, in
which you go from working code to working code, is counterintuitive. I always feel
like just diving in and trying to fix everything all in one go, instead of going from one
weird half-finished state to another. But remember the Testing Goat! When you're up
a mountain, you want to think very carefully about where you put each foot, and take

one step at a time, checking at each stage that the place you've put it hasn’t caused you
to fall off a cliff.

So, just to reassure ourselves that things have worked, we rerun the FT:

AssertionError: '1: Buy milk' not found in ['1l: Buy peacock feathers', '2: Buy

milk']

[...]
Sure enough, it gets all the way through to where we were before. We haven't broken
anything, and we've made a big change to the database. That’s something to be
pleased with! Let’s commit:

$ git status # 3 changed files, plus 2 migrations
$ git add lists

$ git diff --staged

$ git commit

And we can cross out another item on the to-do list:

. botyirsrt , Y, .
s bt RE.  hsids:
. Ad oA vrigve URLs for each /ist.
. otk oL 2 ol
AOST.
o Adodl URLs For adding a new item +o an
existing /st via POST.

148 | Chapter7: Working Incrementally



Each List Should Have Its Own URL

We can get rid of the silly the-only-1list-in-the-world URL, but what shall we use
as the unique identifier for our lists? Probably the simplest thing, for now, is just to
use the autogenerated id field from the database. Let’s change ListViewTest so that
the two tests point at new URLs.

We'll also change the old test_displays_all_list_items test and call it test_dis
plays_only_items_for_that_list instead, making it check that only the items for a
specific list are displayed:

lists/tests.py (ch071040)

class ListViewTest(TestCase):

def

def

def

test_uses_list_template(self):

mylist = List.objects.create()

response = self.client.get(f"/lists/{mylist.id}/") @
self.assertTemplateUsed(response, "list.html")

test_renders_1input_form(self):

mylist = List.objects.create()

response = self.client.get(f"/lists/{mylist.id}/") @
self.assertContains(response, '<form method="POST" action="/lists/new">")
self.assertContains(response, '<input name="item_text"")

test_displays_only_1items_for_that_list(self):

correct_list = List.objects.create() @
Item.objects.create(text="itemey 1", list=correct_list)
Item.objects.create(text="1itemey 2", list=correct_list)
other_list = List.objects.create() @
Item.objects.create(text="other list item", list=other_list)

response = self.client.get(f"/lists/{correct_list.id}/") ©
self.assertContains(response, "itemey 1")

self.assertContains(response, "itemey 2")
self.assertNotContains(response, "other list item") @

Here’s where we incorporate the ID of our new list into the GET URL.

In the “Given” phase of the test, we now set up two lists: the one were interested

in and an extraneous one.

We change this URL too, to point at the correct list.

And now, our “Then” section can check that the irrelevant list’s items are defi-

nitely not present.

Each List Should Have ItsOwn URL | 149



Running the unit tests gives the expected 404s and another related error:

FAIL: test_displays_only_items_for_that_list

AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)

[...]

FAIL: test_renders_input_form

AssertionError: 404 != 200 : Couldn't retrieve content: Response code was 404
(expected 200)

[...]

FAIL: test_uses_list_template

AssertionError: No templates used to render the response

Capturing Parameters from URLs

It’s time to learn how we can pass parameters from URLs to views:

superlists/urls.py (ch071041-0)

urlpatterns = [
path("", views.home_page, name="home"),
path("lists/new", views.new_list, name="new_list"),
path("lists/<int:1list_id>/", views.view_list, name="view_list"),

We adjust the path string for our URL to include a capture group, <int:list_id>,
which will match any numerical characters, up to the following /. The captured id

will be passed to the view as an argument.

In other words, if we go to the URL /lists/1/, view_list will get a second argument

after the normal request argument, namely the integer 1.
But our view doesn't expect an argument yet! Sure enough, this causes problems:

ERROR: test_displays_only_items_for_that_list

E;ﬁéérror: view_list() got an unexpected keyword argument 'list_1id'

Eéééi: test_renders_1input_form

E;ﬁéérror: view_list() got an unexpected keyword argument 'list_1id'

Eéééi: test_uses_list_template

E;ﬁéérror: view_list() got an unexpected keyword argument 'list_id'

EA&L? test_redirects_after_POST

géééationError: 404 '= 200 : Couldn't retrieve redirection page
'/lists/the-only-list-in-the-world/': response code was 404 (expected 200)
[...]

FAILED (failures=1, errors=3)

150 | Chapter 7: Working Incrementally



We can fix that easily with an unused parameter in views.py:

lists/views.py (ch071041)
def view_list(request, list_id):

[...]

That takes us down to our expected failure, plus something to do with an /only-list-in-
the-world/ that’s still hanging around somewhere, which I'm sure we can fix later.

FAIL: test_displays_only_items_for_that_list

[...]

AssertionError: 1 != 0 : 'other list item' unexpectedly found in the following
response

[...]

FAIL: test_redirects_after_POST

AssertionError: 404 != 200 : Couldn't retrieve redirection page

'/lists/the-only-1list-in-the-world/': response code was 404 (expected 200)

Let’s make our list view discriminate over which items it sends to the template:

lists/views.py (ch071042)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
items = Item.objects.filter(list=our_list)
return render(request, "list.html", {"items": items})

Adjusting new_list to the New World
It's time to address the /only-list-in-the-world/ failure:

FAIL: test_redirects_after_POST

[...]

AssertionError: 404 != 200 : Couldn't retrieve redirection page
'/lists/the-only-list-in-the-world/': response code was 404 (expected 200)

Let’s have a little look and find the test that’s moaning:

lists/tests.py
class NewListTest(TestCase):

[...]

def test_redirects_after_POST(self):

response = self.client.post("/lists/new", data={"item_text": "A new list item"})
self.assertRedirects(response, "/lists/the-only-list-in-the-world/")

It looks like it hasn't been adjusted to the new world of Lists and Items. The test

should be saying that this view redirects to the URL of the specific new list it just
created.

Each List Should Have ItsOwn URL | 151



lists/tests.py (ch071043)

def test_redirects_after_POST(self):
response = self.client.post("/lists/new", data={"item_text": "A new list item"})
new_list = List.objects.get()
self.assertRedirects(response, f"/lists/{new_list.id}/")

The test still fails, but we can now take a look at the view itself, and change it so it
redirects to the right place:

lists/views.py (ch071044)

def new_list(request):
nulist = List.objects.create()
Item.objects.create(text=request.POST["item_text"], list=nulist)
return redirect(f"/lists/{nulist.id}/")

That gets us back to passing unit tests, phew!

$ python manage.py test lists
[...]

Ran 8 tests in 0.033s

OK
What about the FTs?

The Functional Tests Detect Another Regression

It feels like we're done with migrating to the new URL structure; we must be almost
there?

Well, almost. When we run the FTs, we get:

F.

FAIL: test_can_start_a_todo_list
(functional_tests.tests.NewVisitorTest.test_can_start_a_todo_list)
Traceback (most recent call last):

File "...goat-book/functional_tests/tests.py", line 62, in
test_can_start_a_todo_list

self.wait_for_row_in_list_table("2: Use peacock feathers to make a fly")

[...]
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1l: Use
peacock feathers to make a fly']

Ran 2 tests in 8.617s

FAILED (failures=1)

152 | Chapter7: Working Incrementally



Our new FT is actually passing: different users can get different lists. But the old test
is warning us of a regression. It looks like you can’t add a second item to a list any
more.

It's because of our quick-and-dirty hack where we create a new list for every single
POST submission. This is exactly what we have FTs for!

And it correlates nicely with the last item on our to-do list:

. ook et 4 2 ol
AESF

. Adod URLs #or adding a new item +o an
exiséing fist via POST.

One More URL to Handle Adding Items to an Existing List

We need a URL and view to handle adding a new item to an existing list (/lists/
<list_id>/add_item). We're starting to get used to these now, so we know we’ll need:

1. A new test for the new URL

2. A new entry in urls.py

3. A new view function

One More URL to Handle Adding Items to an Existing List | 153



So, let’s see if we can knock all that together quickly:

lists/tests.py (ch071045)
class NewItemTest(TestCase):
def test_can_save_a_POST_request_to_an_existing_list(self):
other_list = List.objects.create()
correct_list = List.objects.create()

self.client.post(
f"/lists/{correct_list.id}/add_item",
data={"item_text": "A new item for an existing list"},

)

self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.get()

self.assertEqual(new_item.text, "A new item for an existing list")
self.assertEqual(new_item.list, correct_list)

def test_redirects_to_list_view(self):
other_list = List.objects.create()
correct_list = List.objects.create()

response = self.client.post(
f"/lists/{correct_list.id}/add_item",
data={"item_text": "A new item for an existing list"},

)

self.assertRedirects(response, f"/lists/{correct_list.id}/")

Are you wondering about other_list? A bit like in the tests for
viewing a specific list, it's important that we add items to a specific
list. Adding this second object to the database prevents me from
using a hack like List.objects.first() in the view. Yes, that
would be a silly thing to do, and you can go too far down the
road of testing for all the silly things you must not do (there are
an infinite number of those, after all). It's a judgement call, but
this one feels worth it. There’s some more discussion of this in “An
Aside on When to Test for Developer Silliness” on page 366. Oh,
and yes it's an unused variable, and your IDE might nag you about
it, but I find it helps me to remember what it’s for.

So that fails as expected, the list item is not saved, and the new URL currently returns
a 404:

AssertionError: 0 != 1

[...]

AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

154 | Chapter 7: Working Incrementally



The Last New urls.py Entry

Now we've got our expected 404, let’s add a new URL for adding new items to existing
lists:

superlists/urls.py (ch071046)
urlpatterns = [
path("", views.home_page, name="home"),
path("lists/new", views.new_list, name="new_list"),
path("lists/<int:1list_id>/", views.view_list, name="view_list"),
path("lists/<int:list_id>/add_item", views.add_item, name="add_item"),

We've got three very similar-looking URLs there. Let’s make a note on our to-do list;
they look like good candidates for a refactoring:

. ot thl A, . “z

FEOSF
. Ad A URLs #or adding a new item #o an
exiséing fist via POST.
. Retactor away some dvpfication in vr/spy.
The Last New View

Back to the tests, we get the usual missing module view objects:
AttributeError: module 'lists.views' has no attribute 'add_item'
Let’s try:
lists/views.py (ch071047)

def add_item(request):
pass

One More URL to Handle Adding Items to an Existing List | 155



Aha:

TypeError: add_item() got an unexpected keyword argument 'list_id'

lists/views.py (ch071048)
def add_item(request, list_1id):
pass

And then:

ValueError: The view lists.views.add_item didn't return an HttpResponse object.
It returned None instead.

We can copy the redirect() from new_list and the List.objects.get() from
view_list:

lists/views.py (ch071049)
def add_item(request, list_1id):
our_list = List.objects.get(id=1ist_1id)
return redirect(f"/lists/{our_list.id}/")
That takes us to:

self.assertEqual(Item.objects.count(), 1)
AssertionError: 0 != 1

Finally, we make it save our new list item:

lists/views.py (ch071050)
def add_item(request, list_id):
our_list = List.objects.get(id=1ist_1id)
Item.objects.create(text=request.POST["item_text"], list=our_list)
return redirect(f"/lists/{our_list.id}/")
And we're back to passing tests:

Ran 10 tests in 0.050s

0K

Hooray! Did that feel like quite a nice, fluid, unit-test/code cycle?

156 | Chapter 7: Working Incrementally



Testing Template Context Directly

We've got our new view and URL for adding items to existing lists; now we just need
to actually use it in our list.html template. We have a unit test for the form’s action;
let’s amend it:

lists/tests.py (ch071051)

class ListViewTest(TestCase):
def test_uses_list_template(self):
[...]

def test_renders_input_form(self):
mylist = List.objects.create()
response = self.client.get(f"/lists/{mylist.id}/")
self.assertContains(
response,
f'<form method="POST" action="/lists/{mylist.id}/add_item">"',
)

self.assertContains(response, '<input name="item_text"')
def test_displays_only_items_for_that_list(self):
[...]
That fails as expected:

AssertionError: False is not true : Couldn't find '<form method="POST"
action="/lists/1/add_item">"' in the following response

[...]

So, we open it up to adjust the form tag...

lists/templates/list.html
<form method="POST" action="but what should we put here?"s>

..oh.

To get the URL to add to the current list, the template needs to know what list it’s
rendering, as well as what the items are.

One More URL to Handle Adding Items to an Existing List | 157



Well, “programming by wishful thinking’,” let’s just pretend we had access to every-
thing we need, like a l1ist variable in the template:

lists/templates/list.html (ch071052)
<form method="POST" action="/lists/{{ list.id }}/add_item">

That changes our error slightly:

AssertionError: False is not true : Couldn't find '<form method="POST"
action="/1ists/1/add_item">' in the following response

b'<html>\n <head>\n <title>To-Do lists</title>\n </head>\n <body>\n
<h1>Your To-Do list</h1>\n <form method="POST" action="/lists//add_item">\n @

@ Do you see it says /lists//add_item? It's because Django templates will just
silently ignore any undefined variables, and substitute empty strings for them.

Let’s see if we can make our wish come true and pass our list to the template then:

lists/views.py (ch071053)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
items = Item.objects.filter(list=our_list)
return render(request, "list.html", {"items": items, "list": our_list})

That gets us to passing tests:

0K

And we now have an opportunity to refactor, as passing both the list and its items
together is redundant. Here’s the change in the template:

lists/templates/list.html (ch071054)
{% for item in list.item_set.all %} @
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}

@ .item_set is called a reverse lookup. It's one of Django’s incredibly useful bits of
ORM that lets you look up an object’s related items from a different table.

The tests still pass...

0K

7 TDD is a bit like programming by wishful thinking, in that, when we write the tests before the implementa-
tion, we express a wish: we wish we had some code that worked! The phrase “programming by wishful
thinking” actually has a wider meaning, of writing your code in a top-down kind of way. We'll come back and
talk about it more in Chapter 24.

158 | Chapter7: Working Incrementally


https://docs.djangoproject.com/en/5.2/topics/db/queries/#following-relationships-backward

And we can now simplify the view down a little:

lists/views.py (ch071055)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
return render(request, "list.html", {"list": our_list})

And our unit tests still pass:

Ran 10 tests in 0.040s

OK
How about the FTs?

$ python manage.py test functional_tests
[...]

Ran 2 tests in 9.771s

0K
HOORAY! Oh, and a quick check on our to-do list:

o Retactor away some dvpfication in vr/spy.

Irritatingly, the Testing Goat is a stickler for tying up loose ends too, so we've got to
do one final thing. Before we start, we’ll do a commit—always make sure you've got a
commit of a working state before embarking on a refactor:

$ git diff
$ git commit -am "new URL + view for adding to existing lists. FT passes :-)"

One More URL to Handle Adding Items to an Existing List | 159



A Final Refactor Using URL includes

superlists/urls.py is really meant for URLs that apply to your entire site. For URLs that
only apply to the lists app, Django encourages us to use a separate lists/urls.py, to
make the app more self-contained. The simplest way to make one is to use a copy of
the existing urls.py:

$ cp superlists/urls.py lists/

Then we replace the three list-specific lines in superlists/urls.py with an include():

(2]

superlists/urls.py (ch071057)
from import include, path
from import views as list_views @

urlpatterns = [
path("", list_views.home_page, name="home"),
path("lists/", include("lists.urls")), @

While we're at it, we use the import x as y syntax to alias views. This is good
practice in your top-level urls.py, because it will let us import views from multiple
apps if we want—and indeed we will need to later on in the book.

Here’s the include. Notice that it can take a part of a URL as a prefix, which will
be applied to all the included URLSs (this is the bit where we reduce duplication,
as well as giving our code a better structure).

Back in lists/urls.py, we can trim down to only include the latter part of our three
URLs, and none of the other stuff from the parent urls.py:

lists/urls.py (ch071058)
from import path
from import views

urlpatterns = [
path("new", views.new_list, name="new_list"),
path("<int:1list_id>/", views.view_list, name="view_list"),
path("<int:1list_1id>/add_item", views.add_item, name="add_item"),

Rerun the unit tests to check that everything worked.

Ran 10 tests in 0.040s

0K

160

| Chapter7: Working Incrementally



Can You Believe It?

When I saw this test pass, I couldn’t quite believe I did it correctly on the first go. It
always pays to be skeptical of your own abilities, so I deliberately changed one of the
URLs slightly, just to check if it broke a test. It did. We're covered.

Feel free to try it yourself! Remember to change it back, check that the tests all pass
again (including the FTs), and then do a final commit:

$ git status

$ git add lists/urls.py

$ git add superlists/urls.py

$ git diff --staged

$ git commit
Phew. This was a marathon chapter. But we covered a number of important topics,
starting with some thinking about design. We covered rules of thumb like “YAGNI”
and “three strikes and refactor” But, most importantly, we saw how to adapt an
existing codebase step by step, going from working state to working state, to iterate
towards a new design.

I'd say were pretty close to being able to ship this site, as the very first beta of
the superlists website that’s going to take over the world. Maybe it needs a little
prettification first...let’s look at what we need to do to deploy it in the next couple of
chapters.

Some More TDD Philosophy

Working state to working state (aka the Testing Goat versus Refactoring Cat)
Our natural urge is often to dive in and fix everything at once...but if were not
careful, we'll end up like Refactoring Cat, in a situation with loads of changes to
our code and nothing working. The Testing Goat encourages us to take one step
at a time, and go from working state to working state.

Split work out into small, achievable tasks
Sometimes this means starting with “boring” work rather than diving straight in
with the fun stuff, but you’ll have to trust that YOLO-you in the parallel universe
is probably having a bad time, having broken everything and struggling to get the
app working again.

YAGNI
You ain’t gonna need it! Avoid the temptation to write code that you think might
be useful, just because it suggests itself at the time. Chances are, you won't use it,
or you won't have anticipated your future requirements correctly. See Chapter 24
for one methodology that helps us avoid this trap.

AFinal Refactor Using URL includes | 161






CHAPTER 8

Prettification: Layout and Styling,
and What to Test About It

We're starting to think about releasing the first version of our site, but were a bit
embarrassed by how unfinished it looks at the moment. In this chapter, we'll cover
some of the basics of styling, including integrating an HTML/CSS framework called
Bootstrap. We'll learn how static files work in Django, and what we need to do about
testing them.

Testing Layout and Style

Our site is undeniably a bit unattractive at the moment (Figure 8-1).

If you spin up your dev server with manage.py runserver, you
may run into a database error, something like this: “OperationalEr-
ror: no such table: lists_list”. You need to update your local data-
base to reflect the changes we made in models.py. Use manage.py
migrate. If it gives you any grief about IntegrityErrors, just
delete the database file.!

1 What? Delete the database? Have you taken leave of your senses? Not completely. The local dev database often
gets out of sync with its migrations as we go back and forth in our development, and it doesn’t have any
important data in it, so it's OK to blow it away now and again. We'll be much more careful once we have a
“production” database on the server.

163



We can't be going back to Python’s historical reputation for being ugly, so let’s do a
tiny bit of polishing. Here are a few things we might want:

o A large input field for adding to new and existing lists

o Alarge, attention-grabbing, centered box to put it in
How do we apply TDD to these things? Most people will tell you that you shouldn’t

test aesthetics, and theyre right. It’s a bit like testing a constant, in that tests usually
wouldn’t add any value.

To-Do lists X +

< > C O DO localhost:8000

Start a new To-Do list

iEnter a to-do item ‘

Figure 8-1. Our home page, looking a little ugly...

But we can test the essential behaviour of our aesthetics (i.e., that we have any at all).
All we want to do is reassure ourselves that things are working. For example, were
going to use Cascading Style Sheets (CSS) for our styling, and they are loaded as static
files. Static files can be a bit tricky to configure (especially, as we'll see later, when you
move off your own computer and onto a server), so we'll want some kind of simple
“smoke test” that the CSS has loaded. We don't have to test fonts and colours and
every single pixel, but we can do a quick check that the main input box is aligned
the way we want it on each page, and that will give us confidence that the rest of the
styling for that page is probably loaded too.

164 | Chapter 8: Prettification: Layout and Styling, and What to Test About It


https://oreil.ly/ruIZz

Let’s add a new test method inside our functional test (FT):

Sfunctional_tests/tests.py (ch081001)
class NewVisitorTest(LiveServerTestCase):

[...]

def test_layout_and_styling(self):
# Edith goes to the home page,
self.browser.get(self.live_server_url)

# Her browser window is set to a very specific size
self.browser.set_window_size(1024, 768)

# She notices the input box is nicely centered
inputbox = self.browser.find_element(By.ID, "id_new_item")
self.assertAlmostEqual(
inputbox.location["x"] + inputbox.size["width"] / 2,
512,
delta=10,

A few new things here. We start by setting the window size to a fixed size. We then
find the input element, look at its size and location, and do a little maths to check
whether it seems to be positioned in the middle of the page. assertAlmostEqual
helps us to deal with rounding errors and the occasional weirdness due to scrollbars
and the like, by letting us specify that we want our arithmetic to work to within 10
pixels, plus or minus.

If we run the FTs, we get:

$ python manage.py test functional_tests

[...]
.F.

FAIL: test_layout_and_styling
(functional_tests.tests.NewVisitorTest.test_layout_and_styling)
Traceback (most recent call last):

File "...goat-book/functional_tests/tests.py", line 119, in
test_layout_and_styling

self.assertAlmostEqual(

[...]
AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

Ran 3 tests in 9.188s

FAILED (failures=1)

Testing Layoutand Style | 165



That’s the expected failure. Still, this kind of FT is easy to get wrong, so lets use
a quick-and-dirty “cheat” solution, to check that the FT definitely passes when the
input box is centered. We'll delete this code again almost as soon as we've used it to
check the FT:

lists/templates/home.html (ch081002)
<form method="POST" action="/lists/new">
<p style="text-align: center;">
<input name="item_text" 1d="id_new_1item" placeholder="Enter a to-do item" />
</p>
{% csrf_token %}
</form>

That passes, which means the FT works. Let’s extend it to make sure that the input
box is also center-aligned on the page for a new list:

functional_tests/tests.py (ch081003)

# She starts a new list and sees the input is nicely
# centered there too
inputbox.send_keys("testing")
inputbox.send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: testing")
inputbox = self.browser.find_element(By.ID, "id_new_item")
self.assertAlmostEqual(

inputbox.location["x"] + inputbox.size["width"] / 2,

512,

delta=10,

That gives us another test failure:

File "...goat-book/functional_tests/tests.py", line 131, in
test_layout_and_styling
self.assertAlmostEqual(
AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

Let’s commit just the FT:

$ git add functional_tests/tests.py
$ git commit -m "first steps of FT for layout + styling"

166 | Chapter 8: Prettification: Layout and Styling, and What to Test About It



Now it feels like were justified in finding a “proper” solution to improve the styling
for our site. We can back out our hacky text-align: center:

$ git reset --hard

git reset --hard is the “take off and nuke the site from orbit”

Git command, so be careful with it—it blows away all your un-

‘ committed changes. Unlike almost everything else you can do with
T Git, there’s no way of going back after this one.

Prettification: Using a (SS Framework

UI design is hard, and doubly so now that we have to deal with mobile, tablets, and
so forth. That's why many programmers, particularly lazy ones like me, turn to CSS
frameworks to solve some of those problems for them. There are lots of frameworks
out there, but one of the earliest and most popular still, is Bootstrap. Let’s use that.

You can find Bootstrap at getbootstrap.com.
We'll download it and put it in a new folder called static inside the 1ists app:?

$ wget -0 bootstrap.zip https://github.com/twbs/bootstrap/releases/download/\
v5.3.5/bootstrap-5.3.5-dist.zip

$ unzip bootstrap.zip

$ mkdir lists/static

$ mv bootstrap-5.3.5-dist lists/static/bootstrap

$ rm bootstrap.zip

Bootstrap comes with a plain, uncustomised installation in the dist folder. Were
going to use that for now, but you should really never do this for a real site—vanilla
Bootstrap is instantly recognisable, and a big signal to anyone in the know that you
couldn’t be bothered to style your site. Learn how to use Sass and change the font, if
nothing else! There is info in Bootstrap’s docs, or read an introductory guide.

2 On Windows, you may not have wget and unzip, but I'm sure you can figure out how to download Bootstrap,
unzip it, and put the contents of the dist folder into the lists/static/bootstrap folder.

Prettification: Using a CSS Framework | 167


https://getbootstrap.com
https://www.freecodecamp.org/news/how-to-customize-bootstrap-with-sass

Our lists folder will end up looking like this:

[...]
— lists
— __init__.py
}— admin.py
F— apps.py
}— migrations
| H—r...]
}— models.py
— static
L— bootstrap
— css
| | bootstrap-grid.css
| b bootstrap-grid.css.map
| r...]
| '— bootstrap.rtl.min.css.map
L— 3s

.

— bootstrap.bundle.js
— bootstrap.bundle. js.map
[...]

L— bootstrap.min.js.map

T

}— templates

| | home.html
| L list.html
}— tests.py

— urls.py

L— views.py

[...]

Look at the “Getting started” section of the Bootstrap documentation; you'll see it
wants our HTML template to include something like this:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Bootstrap demo</title>
</head>
<body>
<h1>Hello, world!</h1>
</body>
</html>

We already have two HTML templates. We don't want to be adding a whole load of
boilerplate code to each, so now feels like the right time to apply the “Don’t repeat

yourself” rule, and bring all the common parts together. Thankfully, the Django
template language makes that easy using something called template inheritance.

168 | Chapter 8: Prettification: Layout and Styling, and What to Test About It


https://getbootstrap.com/docs/5.3/getting-started/introduction

Django Template Inheritance

Let’s have a little review of what the differences are between home.html and list. html:

$ diff lists/templates/home.html lists/templates/list.html

< <h1>Start a new To-Do list</h1>

< <form method="POST" action="/lists/new">

> <h1>Your To-Do list</hi1>

> <form method="POST" action="/lists/{{ list.id }}/add_item">
[...]

> <table id="id_list_table">

> {% for item in list.item_set.all %}

> <tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
> {% endfor %}

> </table>

They have different header texts, and their forms use different URLs. On top of that,
list.html has the additional <table> element.

Now that were clear on what’s in common and what’s not, we can make the two
templates inherit from a common “superclass” template. We'll start by making a copy
of list.html.:

$ cp lists/templates/list.html lists/templates/base.html

We make this into a base template, which just contains the common boilerplate, and
mark out the “blocks”, places where child templates can customise it:

lists/templates/base.html (ch081007)
<html>
<head>
<title>To-Do lists</title>
</head>

<body>
<h1>{% block header_text %}{% endblock %}</h1>

<form method="POST" action="{% block form_action %}{% endblock %}">
<input name="item_text" id="1d_new_item" placeholder="Enter a to-do item" />
{% csrf_token %}

</form>

{% block table %}
{% endblock %}
</body>

</htnl>

Django Template Inheritance | 169



Let’s see how these blocks are used in practice, by changing home.html so that it
“inherits” from base.html:

lists/templates/home.html (ch081008)
{% extends 'base.html' %}

{% block header_text %}Start a new To-Do list{% endblock %}

{% block form_action %}/lists/new{% endblock %}

You can see that lots of the boilerplate HTML disappears, and we just concentrate on
the bits we want to customise. We do the same for list.html:

lists/templates/list.html (ch081009)
{% extends 'base.html' %}

{% block header_text %}Your To-Do list{% endblock %}
{% block form_action %}/1lists/{{ list.id }}/add_item{% endblock %}

{% block table %}
<table id="id_list_table">
{% for item in list.item_set.all %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}
</table>
{% endblock %}

That’s a refactor of the way our templates work. We rerun the FTs to make sure we
haven’t broken anything:

AssertionError: 102.5 !'= 512 within 10 delta (409.5 difference)
Sure enough, they're still getting to exactly where they were before.
That’s worthy of a commit:

$ git diff -w

# the -w means ignore whitespace, useful since we've changed some html indenting
$ git status

$ git add lists/templates # leave static, for now

$ git commit -m "refactor templates to use a base template"

Integrating Bootstrap

Now it's much easier to integrate the boilerplate code that Bootstrap wants—we won’t
add the JavaScript yet, just the CSS:

170 | Chapter 8: Prettification: Layout and Styling, and What to Test About It



lists/templates/base.html (ch081010)

<!doctype html>
<html lang="en">

<head>
<title>To-Do lists</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="css/bootstrap.min.css" rel="stylesheet">
</head>
[...]

Rows and Columns

Finally, let’s actually use some of the Bootstrap magic! You'll have to read the docu-
mentation yourself, but we should be able to use a combination of the grid system
and the justify-content-center class to get what we want:

lists/templates/base.html (ch081011)

<body>
<div class="container"s>

<div class="row justify-content-center"s>
<div class="col-1g-6 text-center"s
<h1>{% block header_text %}{% endblock %}</h1>

<form method="POST" action="{% block form_action %}{% endblock %}">
<input
name="1tem_text"
id="1d_new_1item"
placeholder="Enter a to-do item"
/>
{% csrf_token %}
</form>
</div>
</div>

<div class="row justify-content-center"s>
<div class="col-1g-6">
{% block table %}
{% endblock %}
</div>
</div>

</div>
</body>

Integrating Bootstrap | 171



(If you've never seen an HTML tag broken up over several lines, that <input> may
be a little shocking. It is definitely valid, but you don’t have to use it if you find it
offensive.)

Take the time to browse through the Bootstrap documentation, if
you've never seen it before. It’s a shopping trolley brimming full of
useful tools to use in your site.

Does that work? Whoops—no, we have an error in our unit tests:

FAIL: test_renders_input_form
(lists.tests.ListViewTest.test_renders_input_form)

[...]
AssertionError: False is not true : Couldn't find '<input name="item_text"' in
the following response

[...]
Ab, it’s because our unit tests are currently a little brittle with respect to whitespace
changes in our <input> tag, which actually don’t matter semantically.

Django does provide the html=True argument to assertContains(), which does help
a bit, but it requires exhaustively specifying every attribute of the element we want to
check on, like this:

172 | Chapter 8: Prettification: Layout and Styling, and What to Test About It


https://getbootstrap.com/docs/5.3/getting-started/introduction

lists/tests.py (ch081011-1)

class HomePageTest(TestCase):
def test_uses_home_template(self):
[...]

def test_renders_1input_form(self):
response = self.client.get("/")
self.assertContains(response, '<form method="POST" action="/lists/new">")
self.assertContains(
response,
'<input name="1item_text" i1d="1d_new_item" placeholder="Enter a to-do item" />',
html=True,

class ListViewTest(TestCase):
def test_uses_list_template(self):

[...]

def test_renders_input_form(self):
mylist = List.objects.create()
response = self.client.get(f"/lists/{mylist.id}/")
self.assertContains(
response,
f'<form method="POST" action="/lists/{mylist.id}/add_item">",

)

self.assertContains(
response,
'<input name="item_text" id="id_new_item" placeholder="Enter a to-do item" />',
html=True,

)

That’s not entirely satisfactory, because all those extra attributes like id and place
holder aren’t really things we want to nail down in unit tests; wed rather have the
freedom to change them in the template without needing to change the tests as well.
They’re more of a presentation concern than a true part of the contract between
backend and frontend.

But it does get the tests to pass:

0K

Integrating Bootstrap | 173



So, for now, let’s make a note to come back to it:

. Find a better way +o vnit test form &
input efements.

So, the unit tests are happy. What about the FTs?
AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

Hmm. No. Why isn't our CSS loading? If you try it manually with runserver and
look around in DevTools, you'll see the browser 404ing when it tries to fetch boot-
strap.min.css. If you watch the runserver terminal session, you'll also see the 404s
there, as in Figure 8-2.

()  To-Dolists X 4+ v

(O] localhost A Q0 O = =

Start a new To-Do list

Enter a to-do item
® O3 Inspector Console [ Debugger PN Network {3} Style Editor () Performance {} Memory > 03 [J] e X
W VFilter URLs Il + Q © [pisable Cache NoThrottiings 3%

All HTML €SS JS XHR Fonts Images Media WS Other

St.. M.. Domain File Initiator Ty.. Transferr.. ¢ [B] Headers Cookies Request Response  Timings
GET @ localhost:... | document html 1.38 kB 9V Filter Headers Block Resend

®© GET @ localhost:... bootstrap.min.css stylesheet html NS_ERR... » GET 000 min.c

GET @@ localhost:... favicon.ico FaviconL.. html cached 2
Status 404 Not Found (D
Version HTTP/1.1
Transferred 291B (0 B size)
Referrer Policy same-origin

Finish: 36 ms [lll DOMContentLoaded: ~ DNS Resolution System

0 3 requests

3.32 kB / 1.67 kB transferred

Figure 8-2. That’s a nope on bootstrap.css

To figure out what’s happening, let’s talk a bit about how Django deals with static files.

174 | Chapter 8: Prettification: Layout and Styling, and What to Test About It




Static Files in Django
Django, and indeed any web server, needs to know two things to deal with static files:

1. How to tell when a URL request is for a static file, as opposed to for some HTML
that’s going to be served via a view function

2. Where to find the static file that the user wants

In other words, static files are a mapping from URLSs to files on disk.

For item 1, Django lets us define a URL “prefix” to say that any URLs that start with
that prefix should be treated as requests for static files. By default, the prefix is /static/.
It's already defined in settings.py:

superlists/settings.py
[...]

# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/5.2/howto/static-files/

STATIC_URL = "static/"

The rest of the settings that we will add to this section all have to do with item 2:
finding the actual static files on disk.

While we’re using the Django development server (manage.py runserver), we can
rely on Django to magically find static files for us—it’ll just look in any subfolder of
one of our apps called static.

You now see why we put all the Bootstrap static files into lists/static. So, why are they
not working at the moment? It’s because were not using the /static/ URL prefix.
Have another look at the link to the CSS in base.html:

<link href="css/bootstrap.min.css" rel="stylesheet">

That href is just what happened to be in the Bootstrap docs. To get it to work, we
need to change it to:

lists/templates/base.html (ch081012)

<link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">

Now when runserver sees the request, it knows that it’s for a static file because it
begins with /static/. It then tries to find a file called bootstrap/css/bootstrap.min.css,
looking in each of our app folders for subfolders called static, and it should find it at
lists/static/bootstrap/css/bootstrap.min.css.

StaticFilesinDjango | 175



So if you take a look manually, you should see it works, as in Figure 8-3.

To-Do lists X +

C O D localhost:8000/lists/5

Your To-Do list

Enter a to-do item ‘

1: Download bootstrap
2: Explain static files

3: Take a screenshot

4: Finish chapter 8!

Figure 8-3. Our site starts to look a little better...

Switching to StaticLiveServerTestCase
If you run the FT though, annoyingly, it still wont pass:

AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

That's because, although runserver automagically finds static files, LiveServer
TestCase doesn’t. Never fear, though: the Django developers have made an even
more magical test class called StaticLiveServerTestCase (see the docs).

Let’s switch to that:

Sfunctional_tests/tests.py (ch081013)

@@ -1,14 +1,14 @@

-from django.test import LiveServerTestCase

+from django.contrib.staticfiles.testing import StaticLiveServerTestCase

from selenium import webdriver

from selenium.common.exceptions import WebDriverException

from selenium.webdriver.common.keys import Keys

import time

MAX_WAIT = 10
-class NewVisitorTest(LiveServerTestCase):
+class NewVisitorTest(StaticLiveServerTestCase):

def setUp(self):

176 | Chapter 8: Prettification: Layout and Styling, and What to Test About It


https://oreil.ly/mh-iO

And now it will find the new CSS, which will get our test to pass:

$ python manage.py test functional_tests
Creating test database for alias 'default'...

Ran 3 tests in 9.764s

Hooray!

Using Bootstrap Components to Improve
the Look of the Site

Let’s see if we can do even better, using some of the other tools in Bootstrap’s panoply.

Jumbotron!

The first version of Bootstrap used to ship with a class called jumbotron for things
that are meant to be particularly prominent on the page. It doesn’t exist anymore, but
old-timers like me still pine for it, so they have a specific page in the docs that tells
you how to re-create it.

Essentially, we massively embiggen the main page header and the input form, putting
it into a grey box with nice rounded corners:

lists/templates/base.html (ch081014)
<body>
<div class="container"s

<div class="row justify-content-center p-5 bg-body-tertiary rounded-3">
<div class="col-1g-6 text-center"s
<h1 class="display-1 mb-4">{% block header_text %}{% endblock %}</hi>
[...]

That ends up looking something like Figure 8-4.

Using Bootstrap Components to Improve the Look of the Site | 177



To-Do lists X ar

< > C Q localhost:8000

Start a new To-Do list

[Enter a to-do item ‘

Figure 8-4. A big grey box at the top of the page

When hacking about with design and layout, it’s best to have a win-
dow open that we can refresh frequently. Use python manage.py
runserver to spin up the dev server, and then browse to http://
localhost:8000 to see your work as we go.

Large Inputs

The jumbotron is a good start, but now the input box has tiny text compared to
everything else. Thankfully, Bootstrap’s form control classes offer an option to set an
input to “large™:

lists/templates/base.html (ch081015)
<input
class="form-control form-control-1g"
name="1item_text"
id="1d_new_1item"
placeholder="Enter a to-do item"

/>

Table Styling

The table text also looks too small compared to the rest of the page now. Adding the
Bootstrap table class improves things, over in list.html:

lists/templates/list.html (ch081016)
<table class="table" 1d="id_list_table">

178 | Chapter 8: Prettification: Layout and Styling, and What to Test About It


http://localhost:8000
http://localhost:8000

Optional: Dark Mode

In contrast to my greybeard nostalgia for jumbotron, here’s something relatively new
to Bootstrap: dark mode!

lists/templates/base.html (ch081017)

<!doctype html>
<html lang="en" data-bs-theme="dark">

Take a look at Figure 8-5. I think that looks great!

To-Do lists X +

C O DO localhost:8000

Your To-Do list

: Scan through bootstrap docs
: mess about with some classes
3: get stuck
4: google and stackoverflow

5: get unstuck

Figure 8-5. Dark modeeeeeeeeee

But it’s very much a matter of personal preference, and my editor will have kittens if I
make all the rest of my screenshots use so much ink, so 'm going to revert it for now.
You're free to keep dark mode on if you like!

Using Bootstrap Components to Improve the Look of the Site | 179



A Semi-Decent Page

Getting it into shape took me a few goes, but I'm reasonably happy with it now
(Figure 8-6).

*»  To-Dolists

C QO O localhost

Your To-Do list

Enter a to-do item

1: Download Bootstrap
2: Explain static Files
3: Take a screenshot

4: Finish Chapter 8!

Figure 8-6. The lists page, looking...good enough for now

If you want to go further with customising Bootstrap, you need to get into compiling
Sass. I've said it already, but I definitely recommend taking the time to do that
someday. Sass/SCSS is a great improvement on plain old CSS, and a useful tool even if
you don’t use Bootstrap.

A last run of the FTs, to see if everything still works OK:

$ python manage.py test functional_tests
[...]

Ran 3 tests in 10.084s

0K

That’s it! Definitely time for a commit:

$ git status # changes tests.py, base.html, list.html, settings.py,
# and untracked lists/static

$ git add .

$ git status # will now show all the bootstrap additions

$ git commit -m "Use Bootstrap to improve layout”

180

| Chapter 8: Prettification: Layout and Styling, and What to Test About It



Parsing HTML for Less Brittle Tests of Key HTML Content

Oh whoops, we nearly forgot our scratchpad:

. Find a better way +o vni¥ test form &
input efements.

When working on layout and styling, you expect to spend most of your time in the
browser, in a cycle of tweaking your HTML and refreshing to see the effects, with
occasional runs of your layout FT, if you have one.

You wouldn’t expect to test-drive design with unit tests. And sure enough, we haven't
run them in a while. Because if we had done, wed have noticed that they're failing:

FAIL: test_renders_input_form
(lists.tests.HomePageTest.test_renders_input_form)

[...]

AssertionError: False is not true : Couldn't find '<input name="item_text"
id="1d_new_1item" placeholder="Enter a to-do item" />' in the following response
b'<!doctype html>\n<html lang="en">\n\n <head>\n <title>To-Do

[...]

<input\n class="form-control form-control-1g"\n
name="item_text"\n id="1d_new_item"\n
placeholder="Enter a to-do item"\n />\n <input

[...]
FAIL: test_renders_input_form
(lists.tests.ListViewTest.test_renders_input_form)

[...]
It's also annoyingly hard to see from the tests output, but it happened when we
introduced the class=form-control form-control-1g.

We really don’'t want this sort of thing breaking our unit tests. Using string matching,
even whitespace-aware string matching, is just the wrong tool for the job.? Let’s switch
to using a proper HTML parser, the venerable Ixml.

3 As famously explained in a classic Stack Overflow post.

Parsing HTML for Less Brittle Tests of Key HTML Content | 181


https://oreil.ly/N-cIc
https://lxml.de

$ pip install 'lxml[cssselect]’
Collecting lxml[cssselect]

[...]
Collecting cssselect>=0.7 (from lxml[cssselect])
[...]

Installing collected packages: 1lxml, cssselect
Successfully installed [...]

(We need the cssselect add-on for the nice CSS selectors.)

And here’s how we use it to write a more focused version of our test that only cares
about the two HTML attributes that actually matter to the integration of frontend and
backend:

1.
2.

The <form> tag’s method and action

The <input> tag’s name

lists/tests.py (ch081019)
import

[...]

class HomePageTest(TestCase):
def test_uses_home_template(self):

[...]

def test_renders_input_form(self):
response = self.client.get("/")
parsed = lxml.html.fromstring(response.content) @
[form] = parsed.cssselect("form[method=P0ST]") @
self.assertEqual(form.get("action"), "/lists/new")
[input] = form.cssselect("input[name=item_text]") @

Here’s where we parse the HTML into a structured object to represent the DOM
(document object model).

Here’s where we use a CSS selector to find our form, implicitly also checking
that it has method="POST". The cssselect() method returns a list of matching
elements.

The [form] = is worth a mention. What we're using here is a special assignment
syntax called “unpacking’, where the lefthand side is a list of variable names and
the righthand side is a list of values. It’s a bit like saying form = parsed.cssse
lect("form[method=POST]")[0], but a bit nicer to read, and a bit more strict

182

| Chapter 8: Prettification: Layout and Styling, and What to Test About It



too. By only putting one element on the left, we're effectively asserting that there
is exactly one element on the right; if there isn’t, we'll get an error.*

O We use the same kind of assignment to assert that the form contains exactly one
input element with the name item_text.

Here’s the same thing in ListViewTest:

lists/tests.py (ch081020)
class ListViewTest(TestCase):
def test_uses_list_template(self):
[...]

def test_renders_input_form(self):
mylist = List.objects.create()
response = self.client.get(f"/lists/{mylist.id}/")
parsed = Ixml.html.fromstring(response.content)
[form] = parsed.cssselect("form[method=POST]")
self.assertEqual(form.get("action"), f"/lists/{mylist.id}/add_item")
[input] = form.cssselect("input[name=item_text]")

That works!

Ran 10 tests in 0.017s

0K

And as always, for any test you've only ever seen green, it’s nice to introduce a
deliberate failure:

lists/templates/base.html (ch081021)
@@ -18,7 +18,7 @@
<form method="POST" action="{% block form_action %}{% endblock %}">
<input

class="form-control form-control-1g"

name="1tem_text"
+ name="geoff"

1d="1d_new_1item"

placeholder="Enter a to-do item"

/>

4 Read more about tuple unpacking and multiple assignment on Trey Hunner’s excellent blog.

Parsing HTML for Less Brittle Tests of Key HTML Content | 183


https://oreil.ly/LMfuB

And let’s see the error message:
[input] = form.cssselect("input[name=item_text]")
AANANNNAN

ValueError: not enough values to unpack (expected 1, got 0)

Hmm you know what? I'm actually not happy with that. The [input] = syntax is
probably another example of me being too clever for my own good.

Let’s try something else that will give us a clearer message about what is on the page
and what isn’t:

lists/tests.py (ch081022)

inputs = form.cssselect("input") @
self.assertIn("item_text", [input.get("name") for input in inputs]) @

@ Wel get alist of all the inputs in the form.

© And then we'll assert that at least one of them has the right name=.
That gives us a more self-explanatory message:

self.assertIn("item_text", [input.get("name") for input in inputs])
~~~~~~~~~~~~~ ANNANANNNANANANNNNNNNNNANNNNANNNNNANNNNNNNNNNNNNNANNNNNANNNNNNNNNNNNNN

AssertionError: 'item_text' not found in ['geoff', 'csrfmiddlewaretoken']

Now I feel good about changing our HTML back:

lists/templates/base.html (ch081023)
@@ -18,7 +18,7 @@
<form method="POST" action="{% block form_action %}{% endblock %}">
<input

class="form-control form-control-1g"
> name="geoff"
+ name="1tem_text"

id="1d_new_item"

placeholder="Enter a to-do item"

/>

Much better!

$ git diff # tests.py
$ git commit -am "use lxml for more specific unit test asserts on html content"

184 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

What We Glossed Over: collectstatic and
Other Static Directories

We saw earlier that the Django dev server will magically find all your static files inside
app folders, and serve them for you. That’s fine during development, but when you’re
running on a real web server, you don’t want Django serving your static content—
using Python to serve raw files is slow and inefficient, and a web server like Apache
or nginx can do this all for you.

For these reasons, you want to be able to gather all your static files from inside their
various app folders and copy them into a single location, ready for deployment. This
is what the collectstatic command is for.

The destination, the place where the collected static files go, needs to be defined in
settings.py as STATIC_ROOT. In the next chapter, we'll be doing some deployment, so
let’s actually experiment with that now. A common and straightforward place to put it
is in a folder called “static” in the root of our repo:

— db.sqlite3

}— functional_tests/

— lists/

}— manage.py

— static/

L— superlists/
Here’s a neat way of specifying that folder, making it relative to the location of the
project base directory:

superlists/settings.py (ch081024)

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/5.2/howto/static-files/

STATIC_URL = "static/"
STATIC_ROOT = BASE_DIR / "static"

Take a look at the top of the settings file, and you’ll see how that BASE_DIR variable is
helpfully defined for us, using pathlib.Path and __file__ (both really nice Python
built-ins).’

5 Notice in the Pathlib wrangling of __file__ that the .resolve() happens before anything else. Always
follow this pattern when working with __file__, otherwise you can see unpredictable behaviours depending
on how the file is imported. Thanks to Green Nathan for that tip!

What We Glossed Over: collectstatic and Other Static Directories | 185

https://github.com/CleanCut/green

Anyway, let’s try running collectstatic:

$ python manage.py collectstatic

171 static files copied to '...goat-book/static'.
And if we look in ./static, we'll find all our CSS files:

$ tree static/

L— xregexp.min.js

ootstrap-grid.css

]

ootstrap.rtl.min.css.map

ootstrap.bundle.js
..

ootstrap.min.js.map

[TT

17 directories, 171 files

collectstatic has also picked up all the CSS for the admin site. The admin site is
one of Djangos powerful features, but we don't need it for our simple site, so let’s

disable it for now:

INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes”,
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"lists",

And we try again:

$ rm -rf static/
$ python manage.py collectstatic

44 static files copied to '...goat-book/static'.

Much better.

superlists/settings.py (ch081025)

186 | Chapter 8: Prettification: Layout and Styling, and What to Test About It

Now we know how to collect all the static files into a single folder, where it’s easy for
a web server to find them. We'll find out all about that, including how to test it, in the
next chapter!

For now, let’s save our changes to settings.py. We'll also add the top-level static folder
to our gitignore, because it will only contain copies of files we actually keep in
individual apps’ static folders:

$ git diff # should show changes in settings.py
$ echo [static >> .gitignore
$ git commit -am "set STATIC_ROOT in settings and disable admin"

A Few Things That Didn't Make It

Inevitably this was only a whirlwind tour of styling and CSS, and there were several
topics that I'd considered covering that didn’t make it. Here are a few candidates for
further study:

o The {% static %} template tag, for more DRY and fewer hardcoded URLs
« Client-side packaging tools, like npm and bower

» Customising Bootstrap with Sass

Recap: On Testing Design and Layout

The tl;dr is: you shouldn’t write tests for design and layout per se. It's too much like
testing a constant, and the tests you write are often brittle.

With that said, the implementation of design and layout involves something quite
tricky: CSS and static files. As a result, it is valuable to have some kind of minimal
“smoke test” that checks that your static files and CSS are working. As we'll see in the
next chapter, it can help pick up problems when you deploy your code to production.

Similarly, if a particular piece of styling required a lot of client-side JavaScript code to
get it to work (dynamic resizing is one I've spent a bit of time on), you'll definitely
want some tests for that (see Chapter 17).

Try to write the minimal tests that will give you the confidence that your design and
layout is working, without testing what it actually is. That includes unit tests! Avoid
asserting on the cosmetic aspects of your HTML in your unit tests.

Aim to leave yourself in a position where you can freely make changes to the design
and layout, without having to go back and adjust tests all the time.

AFew Things That Didn’t Make It | 187

PART II
Going to Production

Is all fun and game until you are need of put it in production.

—DevOps Borat

It’s time to deploy the first version of our site and make it public. They say that if you
wait until you feel ready to ship, then you've waited too long.

Is our site usable? Is it better than nothing? Can we make lists on it? Yes, yes, yes.

No, you can't log in yet. No, you can’t mark tasks as completed. But do we really need
any of that stuft? Not really—and you can never be sure what your users are actually
going to do with your site once they get their hands on it. We think our users want
to use the site for to-do lists, but maybe they actually want to use it to make “top 10
best fly-fishing spots” lists, for which you don’t need any kind of “mark completed”
function. We won’t know until we put it out there.

Over the next couple of chapters were going to go through and actually deploy our
site to a real, live web server.

You might be tempted to skip this bit—there’s lots of daunting stuff in it, and maybe
you think this isn’t what you signed up for. But I strongly urge you to give it a go. This
is one of the sections of the book I'm most pleased with, and it’s one that people often
write to me about saying they were really glad they stuck through it.

If you've never done a server deployment before, it will demystify a whole world for
you, and there’s nothing like the feeling of seeing your site live on the actual internet.
Give it a buzzword name like “DevOps” if that's what it takes to convince you its
worth it.

https://oreil.ly/Q7UDe

The Danger Areas of Deployment

Deploying a site to a live web server can be a tricky topic. Oft heard is the forlorn cry,
“but it works on my machine!”

Some of the danger areas of deployment include:

Networking
Once we're off our own machine, networking issues come in: making sure that
DNS is routing our domain to the correct IP address for our server, making sure
our server is configured to listen to traffic coming in from the world, making
sure it’s using the right ports, and making sure any firewalls in the way are
configured to let traffic through.

Dependencies
We need to make sure that the packages our software relies on (Python, Django,
and so on) are installed on the server and have the correct versions.

The database
There can be permissions and path issues, and we need to be careful about
preserving data between deploys.

Static files (CSS, JavaScript, images, etc.)
Web servers usually need special configuration for serving these.

Security and configuration
Once were on the public internet, we need to worry more about security. Various
settings that are really useful for local development (like the Django debug
page) become dangerous in production (because they expose our source code in
tracebacks).

Reproducibility and divergence between local dev and prod
All of the above add up to differences between your local development environ-
ment and the way code runs in production. We want to be able to reproduce the
way things work on our machine, as closely as possible, in production (and vice
versa) to give us as much confidence as possible that “it works on my machine”
means “it’s going to work in production”

One way to approach the problem is to get a server and start manually configuring
and installing everything, hacking about until it works, and maybe think about
automating things later.!

1 This was, more or less, the approach I took in earlier editions of the book. With a fair bit of testing thrown in,
of course.

But if there’s one thing we've learned in the world of Agile/Lean software develop-
ment, it’s that taking smaller steps usually pays off.

How can we take smaller, safer steps towards a production deployment? Can we
simulate the process of moving to a server so that we can iron out all the bugs before
we actually take the plunge? Can we then make small changes one at a time, solving
problems one by one, rather than having to bite off everything in one mouthful?
Can we use our existing test suite to make sure things work on the server, as well as
locally?

Absolutely we can. And if you've looked at the table of contents, 'm sure youre
already guessing that Docker is going to be part of the answer.

An Overview of Qur Deployment Procedure

Over the next three chapters, I'm going to go through a deployment procedure. It isn’t
meant to be the perfect deployment procedure, so please don’t take it as being best
practice or a recommendation—it’s meant to be an illustration, to show the kinds of
issues involved in putting code into production, and where testing fits in.

Chapter 9
o+ Adapt our functional tests (FTs) so they can run against a container.

o Build a minimal Dockerfile with everything we need to run our site.
o Learn how to build and run a container on our machine.

o Get a first cut of our code up and running inside Docker, with passing tests.

Chapter 10
o Gradually, incrementally change the container configuration to make it
production-ready.

« Regularly rerun the FTs to check we didn’t break anything.

o Address issues to do with the database, static files, secrets, and so on.

Chapter 11
o Set up a “staging” server,' using the same infrastructure that we plan to use for
production.

o Set up areal domain name and point it at this server.

o Install Ansible and flush out any networking issues.

1 Some people prefer the term pre-prod or test environment. Its all the same idea.

Chapter 12
+ Gradually build up an Ansible playbook to deploy our containers on a real server.

« Again, use our FTs to check for any problems.

o Learn how to SSH (Secure Shell) into the server to debug things, locate logs, and
find other useful information.

+ Confidently deploy to production once we have a working deployment script for
staging.

TDD and Docker Versus the Danger Areas of Deployment

Hopefully you can start to see how the combination of TDD, Docker, staging, and
automation are going to help minimise the risk of the various “danger areas”

Containers as mini servers
Containers will act as mini servers letting us flush out issues with dependencies,
static files, and so on. A key advantage is that they’ll give us a way of getting faster
feedback cycles; because we can spin them up locally almost instaneously, we can
very quicly see the effect of any changes.

Packaging Python and system dependencies
Our containers will package up both our Python and system dependencies,
including a production-ready web server and static files system, as well as many
production settings and configuration differences. This minimises the difference
between what we can test locally, and what we will have on our servers. As we'll
see, it will give us a reliable way to reproduce bugs we see in production, on our
local machine.

Fully automated FTs
Our FTs mean that we'll have a fully automated way of checking that everything
works.

Running FTs on staging server
Later, when we deploy our containers to a staging server, we can run the FTs
against that too. It'll be slightly slower and might involve some fiddly compromi-
ses, but it'll give us one more layer of reassurance.

Automating build and deployment
Finally, by fully automating container creation and deployment, and by testing
the end results of both these things, we maximise reproducibility, thus minimis-
ing the risk of deployment to production.

Oh, but there’s lots of fun stuff coming up! Just you wait!

CHAPTER9
Containerization aka Docker

Little boxes, all the same

—Malvina Reynolds

In this chapter, we'll start by adapting our FTs so that they can run against a con-
tainer. And then we'll set about containerising our app, and getting those tests passing
our code running inside Docker:

o We'll build a minimal Dockerfile with everything we need to run our site.

« We'll learn how to build and run a container on our machine.

o We'll make a few changes to our source code layout, like using a src folder.

o Well start flushing out a few issues around networking and the database.

Docker, Containers, and Virtualization

Docker is a commercial product that wraps several free and open source technologies
from the world of Linux, sometimes referred to as “containerization”.

Feel free to skip this section if you already know all about Docker.

You may have already heard of the idea of “virtualization”, which enables a single
physical computer to pretend to be several machines. Pioneered by IBM (amongst
others) on mainframes in the 1960s, it rose to mainstream adoption in the *90s, where
it was sold as a way to optimise resource usage in datacentres. AWS, for example, an

193

offshoot of Amazon, was using virtualization already, and realised it could sell some
spare capacity on its servers to customers outside the business.

So, when you come to deploy your code to a real server in a datacentre, it will be
using virtualization. And, actually, you can use virtualization on your own machine,
with software like VirtualBox or KVM. You can run Windows “inside” a Mac or
Linux laptop, for example.

But it can be fiddly to set up! And nowadays, thanks to containerization, we can do
better because containerization is a kind of even-more-virtual virtualization.

Conceptually, “regular” virtualization works at the hardware level: it gives you multi-
ple virtual machines (VMs) that pretend to be different physical computers, on a
single real machine. So you can run multiple operating systems using separate VMs
on the same physical box, as in Figure 9-1.

e \ \

Physical machine Physical machine
Operating system Virtual machine1 | | Virtual machine 2
System System Other system Operating Operating
Python Python libraries and system 1 system 2
packages packages
GRS
Packages, Different
B LT LT T TP PP PP P PP A programs, packages,
Virtualenv Can etc. programs,
use etc.

Virtualenv

Python Our Python app

Virtualenv
Python
packages

Uses

\. J\\ J

Figure 9-1. Physical versus virtual machines

Containerization works at the operating system (OS) level: it gives you multiple
virtual operating systems that all run on a single real OS.!

—

It's more accurate to say that containers share the same kernel as the host OS. An operating system is made
up of a kernel, and a bunch of utility programs that run on top of it. The kernel is the core of the OS; it’s the
program that runs all the other programs. Whenever your program needs to interact with the outside world,
read a file, or talk to the internet, or start another program, it actually asks the kernel to do it. Starting about
15 years ago, the Linux kernel grew the ability to show different filesystems to different programs, as well as
isolate them into different network and process namespaces; these are the capabilities that underpin Docker
and containerization.

194 | Chapter9: Containerization aka Docker

Containers let us pack the source code and the system dependencies (like Python
or system libraries) together, and our programs run inside separate virtual systems,
using a single real host OS and kernel.? See Figure 9-2 for an illustration.

The upshot of this is that containers are much “cheaper”. You can start one up in
milliseconds, and you can run hundreds on the same machine.

If you're new to all this, I know it’s a lot to wrap your head around!
It takes a while to build a good mental model of what’s happening.
Have a look at Docker’s resources on containers for more explan-
ation. Hopefully, following along with these chapters and seeing
them working in practice will help you to better understand the

theory.

Host operating system

€ |

Host 0S)
programsand || Filesystem

packages

Shares

Docker

Container1

Container
filesystem

Container

"operating system”

Our Python
app
4
Docker
image1

Canmount
parts of

N\

Host operating system

E Docker -

: ! Container1 '1 Container 2 '1 Contalner3
Container1] Container?] Container 3]
1| filesystem |: [filesystem |::| filesystem
A oamen [aeen ||| Aep2

|| copyl : ‘|| copy2 : || copyl

T Basedon] T Basedon] "
) 4 A 4

Docker Docker
image 1 image 2
——

\

J

\

Figure 9-2. Containers share a kernel in the host operating system

2 Because containers all share the same kernel, while virtualization can let you run Windows and Linux on the

same machine, containers on Linux hosts all run Linux, and ones on Windows hosts all run Windows. If

you’re running Linux containers on a Mac or a PC, it’s because you're actually running them on a Linux VM

under the hood.

Docker, Containers, and Virtualization

195

https://www.docker.com/resources/what-container

Why Not Just Use a Virtualenv?

You might be thinking that this sounds a lot like a virtualenv—and youd be right!
Virtualenvs already let us run different versions of Python, with different Python
packages, on the same machine.

What Docker containers give us over and above virtualenvs, is the ability to have
different system dependencies too; things you can’t pip install, in other words. In
the Python world, this could be C libraries, like 1ibpq for PostgreSQL, or libxml2
for parsing XML. But you could also run totally different programming languages in
different containers, or even different Linux distributions. So, server administrators
or platform people like them because it’s one system for running any kind of software,
and they don’'t need to understand the intricacies of any particular language’s packag-
ing systems.

Docker and Your CV

That’s all well and good for the theoretical justification, but let’s get to the real reason
for using this technology, which, as always, is: “it’s fashionable so it’s going to look
good on my CV”.

For the purposes of this book, that’s not such a bad justification really!

Yes, it’s going to be a nice way to have a “pretend” deployment on our own machine,
before we try the real one—but also, containers are so popular nowadays, that it’s very
likely that you're going to encounter them at work (if you haven’t already). For many
working developers, a container image is the final artifact of their work; it's what they
“deliver”, and often the rest of the deployment process is something they rarely have
to think about.

In any case, without further ado, let’s get into it!

As Always, Start with a Test

Let’s adapt our functional tests (FTs) so that they can run against a standalone server,
instead of the one that LiveServerTestCase creates for us.

Do you remember I said that LiveServerTestCase had certain limitations? Well, one
is that it always assumes you want to use its own test server, which it makes available
at self.live_server_url. I still want to be able to do that sometimes, but I also want
to be able to selectively tell it not to bother, and to use a real server instead.

196 | Chapter9: Containerization aka Docker

We'll do it by checking for an environment variable called TEST_SERVER:

functional_tests/tests.py (ch091001)
import

[...]

class NewVisitorTest(StaticLiveServerTestCase):
def setUp(self):
self.browser = webdriver.Firefox()
if test_server := os.environ.get("TEST_SERVER"): Q@@
self.live_server_url = "http://" + test_server ©

© Here’s where we check for the env var.

© If you haven't seen this before, the := is known as the “walrus operator” (more
formally, it’s the operator for an “assignment expression”), which was a contro-
versial new feature from Python 3.8° and it’s not often useful, but it is quite neat
for cases like this, where you have a variable and want to do a conditional on it
straight away. See this article for more explanation.

© Heres the hack: we replace self.live_server_url with the address of our “real”
server.

A clarification: when we say we run tests against our Docker con-
tainer, or against our staging server, that doesn't mean we run the
tests from Docker or from our staging server. We still run the tests
from our own laptop, but they target the place that’s running our
code.

We test that said hack hasn’t broken anything by running the FTs “normally”:

$ python manage.py test functional_tests

[...]
Ran 3 tests in 8.544s

0K

And now we can try them against our Docker server URL—which, once we've done
the right Docker magic, will be at http://localhost:8888.

3 The feature was a favourite of Guido van Rossum’s, but the discussion around it was so toxic that Guido
stepped down from his role as Python’s BDFL, or “Benevolent Dictator for Life”.

As Always, Start withaTest | 197

https://oreil.ly/oDyYs

I'm deliberately choosing a different port to run Dockerised Django
on (8888) from the default port that a local manage.py runserver
would choose (8080). This is to avoid getting in the situation where
I (or the tests) think we're looking at Docker, when we're actually
looking at a local runserver that I've left running in some terminal
somewhere.

Ports

Ports are what let you have multiple connections open at the same time on a sin-
gle machine; the reason you can load two different websites at the same time, for
example.

Each network adapter has a range of ports, numbered from 0 to 65535. In a cli-
ent/server connection, the client knows the port of the server, and the client OS
chooses a random local port for its side of the connection.

When a server is “listening” on a port, no other service can bind to that port at the
same time. That's why you can’t run manage.py runserver in two different terminals
at the same time, because both want to use port 8080 by default.

We'll use the - -failfast option to exit as soon as a single test fails:

$ TEST_SERVER=1localhost:8888 ./manage.py test functional_tests --failfast
[...]
E

ERROR: test_can_start_a_todo_list
(functional_tests.tests.NewVisitorTest.test_can_start_a_todo_list)

Traceback (most recent call last):
File "...goat-book/functional_tests/tests.py", line 38, in
test_can_start_a_todo_list
self.browser.get(self.live_server_url)

[...]

selenium.common.exceptions.WebDriverException: Message: Reached error page: abo
ut:neterror?e=connectionFailure&u=http%3A//localhost%3A8888/[...]

Ran 1 tests in 5.518s

FAILED (errors=1)

If, on Windows, you see an error saying something like
“TEST_SERVER is not recognized as a command’, it’s probably
because you're not using Git Bash. Take another look at the “Pre-
requisites and Assumptions” section.

198 | Chapter9: Containerization aka Docker

You can see that our tests are failing, as expected, because were not running Docker
yet. Selenium reports that Firefox is seeing an error and “cannot establish connection
to the server”, and you can see localhost:8888 in there too.

The FT seems to be testing the right things, so let’s commit:

$ git diff # should show changes to functional_tests.py
$ git commit -am "Hack FT runner to be able to test docker"

Don’t use export to set the TEST_SERVER' environment variable;
otherwise, all your subsequent test runs in that terminal will be
against staging, and that can be very confusing if you're not expect-
ing it. Setting it explicitly inline each time you run the FTs is best.

Making a src Folder

When preparing a codebase for deployment, it’s often convenient to separate out the
actual source code of our production app from the rest of the files that you need in
the project. A folder called src is a common convention.

Currently, all our code is source code really, so we move everything into src (we'll be
seeing some new files appearing outside src shortly):*

$ mkdir src
$ git mv functional_tests lists superlists manage.py src
$ git commit -m "Move all our code into a src folder"

Installing Docker

The Docker documentation is pretty good, and you'll find detailed installation
instructions for Windows, Mac, and Linux.

Choose WSL (Windows Subsystem for Linux) as your backend on
Windows, as we'll need it in the next chapter. You can find installa-
tion instructions on the Microsoft website. This doesn’t mean you
have to switch your development environment to being “inside”
WSL; Docker just uses WSL as a virtualization engine in the back-
ground. You should be able to run all the docker CLI commands
from the same Git Bash console you've been using so far.

4 A common thing to find outside of the src folder is a folder called tests. We won't be doing that while we're
relying on the standard Django test framework, but it can be a good thing to do if you're using pytest, for
example.

Installing Docker | 199

https://docs.docker.com/get-docker
https://learn.microsoft.com/en-us/windows/wsl/install

Docker Alternatives: Podman, nerdctl, etc.

Impartiality commands me to also mention Podman and nerdctl, both like-for-like
replacements for Docker.

They are both pretty much exactly the same as Docker, arguably with a few advan-
tages even.®

I actually tried Podman out on early drafts of this chapter (on Linux) and it worked
perfectly well. But they are both a little less well established and documented; the
Windows installation instructions are a little more DIY, for example. So in the end,
although I'm always a fan of a plucky noncommercial upstart, I decided to stick with
Docker for now. After all, the core of it is still open source, to its credit! But you could
definitely check out one of the alternatives if you feel like it.

You can follow along all the instructions in the book by just substituting the docker
binary for podman or nerdctl in all the CLI instructions:

$ docker run busybox echo hello

becomes

podman run busybox echo hello

or

nerdctl run busybox echo hello

similarly with podman build, nerdtcl build, podman ps, etc.

LRV

Colima: An Alternative Docker Runtime for mac0S

If youre on macOS, you might find the Docker Dekstop licensing terms don’t work
for you. In that case, you can try Colima, which is a “container runtime’, essentially
the backend for Docker. You still use the Docker CLI tools, but Colima provides the
server to run the containers:

$ docker run busybox echo hello

docker: Cannot connect to the Docker daemon at unix:///var/run/docker.sock.
Is the docker daemon running?.

See docker run --help.

S colima start

INFO[0001] starting colima

INFO[0001] runtime: docker

INFO[0001] starting ... context=vm
INFO[0014] provisioning ... context=docker
INFO[0016] starting ... context=docker

INFO[0017] done
$ docker run busybox echo hello
hello

5 Docker uses a central “daemon” to manage containers, which Podman and nerdctl don't.

200 | Chapter9: Containerization aka Docker

https://podman.io
https://github.com/containerd/nerdctl
https://github.com/abiosoft/colima

I used Colima for most of the writing of this book, and it worked fine for me. The
only thing I needed to do was set the DOCKER_HOST environment variable, and that
only came up in Chapter 12:

$ *export DOCKER_HOST=unix:///$HOME/.colima/default/docker.sock
On macOS§, you can use Colima as a backend for nerdctl. Pod-

man ships with its own runtime, for both Mac and Windows
(there is no need for a runtime on Linux).

At the time of writing, Apple had just announced its own container runner, container,
but it was in beta and I didn’t have time to try it out.

Test your installation by running:

$ docker run busybox echo hello world
Unable to find image 'busybox:latest' locally

[...]

latest: Pulling from library/busybox

[...]: Pull complete

Digest: sha256:[...]

Status: Downloaded newer image for busybox:latest
hello world

What’s happened there is that Docker has:

o Searched for a local copy of the “busybox” image and not found it
o Downloaded the image from Docker Hub

o Created a container based on that image

o Started up that container, telling it to run echo hello world

« And we can see it worked!

Cool! We'll find out more about all of these steps as the chapter progresses.

On macOS, if you get errors saying command not found: docker,
obviously the first thing you should do is Google for “macOS
command not found Docker”, but at least one reader has reported
that the solution was Docker Desktop > Settings > Advanced >
Change from User to System.

Installing Docker | 201

https://github.com/apple/container

Building a Docker Image and Running a Docker Container

Docker has the concepts of images as well as containers. An image is essentially a
pre-prepared root filesystem, including the OS, dependencies, and any code you want
to run.

Once you have an image, you can run one or more containers that use the same
image. It’s a bit like saying, once you’ve installed your OS and software, you can start
up your computer and run that software any number of times, without needing to
change anything else.

Another way of thinking about it is: images are like classes, and containers are like
instances.

A First Cut of a Dockerfile

Think of a Dockerfile as instructions for setting up a brand new computer that were
going to use to run our Django server on. What do we need to do? Something like
this, right?

1. Install an operating system.
2. Make sure it has Python on it.
3. Get our source code onto it.

4. Run python manage.py runserver.

We create a new file called Dockerfile in the base folder of our repo, next to the src/
directory we made earlier:

Dockerfile (ch091003)
FROM python:3.14-slim @

COPY src /src @O
WORKDIR /src ©

CMD ["python", "manage.py", "runserver'] @

202 | Chapter9: Containerization aka Docker

@ The FROM line is usually the first thing in a Dockerfile, and it says which base
image we are starting from. Docker images are built from other Docker images!
It's not quite turtles all the way down, but almost. So this is the equivalent of
choosing a base OS, but images can actually have lots of software preinstalled
too. You can browse various base images on Docker Hub. We're using one that’s
published by the Python Software Foundation, called “slim” because it’s as small
as possible. It's based on a popular version of Linux called Debian, and of course
it comes with Python already installed on it.

© The COPY instruction (the uppercase words are called “instructions”) lets you
copy files from your own computer into the container image. We use it to copy
all our source code from the newly created src folder, into a similarly named
folder at the root of the container image.

© WORKDIR sets the current working directory for all subsequent commands. It's a
bit like doing cd /src.

O Finally, the CMD instruction tells Docker which command you want it to run by
default, when you start a container based on that image. The syntax is a bit like
a Python list (although it’s actually parsed as a JSON array, so you have to use
double quotes).

It's probably worth just showing a directory tree, to make sure everything is in the
right place, right? All our source code is in a folder called src, next to our Dockerfile:

}— Dockerfile
— db.sqlite3

— src

| b functional_tests
[1 TI...]

| F lists

[1 TI...]

| b manage.py

| L— superlists

I —r...]

L— static

Building a Docker Image and Running a Docker Container | 203

https://hub.docker.com/_/python
https://hub.docker.com/_/python

Docker Build

You build an image with docker build <path-containing-dockerfile> and well
use the -t <tagname> argument to “tag” our image with a memorable name.

It’s typical to invoke docker build from the folder that contains your Dockerfile, so
the last argument is usually .:

$ docker build -t superlists .

[+] Building 1.2s (8/8) FINISHED docker:default
=> [internal] load build definition from Dockerfile 0.0s
.0s
.1s
.0s
.4s
.2s
.1s
.4s
.0s
.0s
.0s
.5s
.0s
.5s
.0s
.1s
.4s
.0s
.0s
.0s
.2
.1s
.0s
.0s
.0s
.0s

=> => transferring dockerfile: 115B

=> [internal] load .dockerignore

=> => transferring context: 2B

=> [internal] load metadata for docker.io/library/python:slim
=> [internal] load build context

=> => transferring context: 68.54kB

=> [1/3] FROM docker.io/library/python:3.14-slim@sha256:858[...
=> => resolve docker.io/library/python:3.14-s1im@sha256:858[...
=> => sha256:72ba3400286b233f3cce28e35841ed58c9e775d69cf11f[...
=> => sha256:3a72e7f66e827fbb943c494df71d2ae024d0b1db543bf6[. . .
=> => sha256:a7d9a0ac6293889b2e134861072f9099a06d78ca983d71[...
=> => sha256:426290db15737ca92felee6ff4f450dd43dfc093e92804]. ..
=> => sha256:e8b685ab0b21e0c114aa94b28237721d66087c2bb53932[. ..
=> => sha256:85824326bc4ae27a1abb5bc0dd9e08847aa5fe73d8afb5]. ..
=> => extracting sha256:a7d9a0ac6293889b2e134861072f9099a06[. . .
=> => extracting sha256:426290db15737ca92felee6ff4f450dd43d[. ..
=> => extracting sha256:e8b685ab0b21e0c114aa94b28237721d660][. ..
=> [internal] load build context

=> => transferring context: 7.56kB

=> [2/3] COPY src /src

=> [3/3] WORKDIR /src

=> exporting to image

=> => exporting layers

=> => writing image sha256:7b8e1c9fa68e7bad7994fa4le2aca852ca79f01a
=> => naming to docker.io/library/superlists

S S S O T S O STy S QS '
[clol ool oo oMo NoNo oMo o RS o o o o B o o BV N c o o}

204 | Chapter9: Containerization aka Docker

Now we can see our image in the list of Docker images on the system:

$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE
superlists latest 522824a399de 2 minutes ago 164MB
[...]

If you see an error about failed to solve / compute cache key
and src: not found, it may be because you saved the Dockerfile
in the wrong place. Have another look at the directory tree from
earlier.

Docker Run

Once you've built an image, you can run one or more containers based on that image,
using docker run. What happens when we run ours?

$ docker run superlists
Traceback (most recent call last):
File "/src/manage.py", line 11, in main
from django.core.management import execute_from_command_line
ModuleNotFoundError: No module named 'django'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "/src/manage.py", line 22, in <module>
main()
~~m AN
File "/src/manage.py", line 13, in main
raise ImportError(
...<3 lines>...
) from exc
ImportError: Couldn't import Django. Are you sure it's installed and available
on your PYTHONPATH environment variable? Did you forget to activate a virtual
environment?

Ah, we forgot that we need to install Django.

Building a Docker Image and Running a Docker Container | 205

Installing Django in a Virtualenv in Our Container Image

Just like on our own machine, a virtualenv is useful in a deployed environment to
make sure we have full control over the packages installed for a particular project.®

We can create a virtualenv in our Dockerfile just like we did on our own machine
with python -m venv, and then we can use pip install to get Django:

Dockerfile (ch091004)
FROM python:3.14-slim

RUN python -m venv /venv @
ENV PATH="/venv/bin:$PATH" @

RUN pip install "django<6" ©
COPY src /src
WORKDIR /src

CMD ["python", "manage.py", "runserver"]

© Here's where we create our virtualenv. We use the RUN Dockerfile directive, which
is how you run arbitrary shell commands as part of building your Docker image.

® You can't really “activate” a virtualenv inside a Dockerfile, so instead we change
the system path so that the venv versions of pip and python become the default
ones (this is actually one of the things that activate does, under the hood).

© We install Django with pip install, just like we do locally.

6 Even a completely fresh Linux install might have odd things installed in its system site packages. A virtualenv
is a guaranteed clean slate.

206 | Chapter9: Containerization aka Docker

Successful Run

Let’s do the build and run in a single line. This is a pattern I used quite often when

developing a Dockerfile, to be able to quickly rebuild and see the effect of a change:

$ docker build -t superlists . && docker run -it superlists

[+] Building 0.2s (11/11) FINISHED docker:default
[...]

=> [internal] load .dockerignore 0.1s
=> => transferring context: 2B 0.0s
=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 246B 0.0s
=> [internal] load metadata for docker.io/library/python:slim 0.0s
=> CACHED [1/5] FROM docker.io/library/python:slim 0.0s
=> [internal] load build context 0.0s
=> => transferring context: 4.75kB 0.0s
=> [2/5] RUN python -m venv /venv 0.0s
=> [3/5] pip install "django<6" 0.0s
=> [4/5] COPY src /src 0.0s
=> [5/5] WORKDIR /src 0.0s
=> exporting to image 0.0s
=> => exporting layers 0.0s
=> => writing image sha256:[...] 0.0s
=> => naming to docker.io/library/superlists 0.0s

Watching for file changes with StatReloader
Performing system checks...

System check identified no issues (0 silenced).

You have 19 unapplied migration(s). Your project may not [...]
[...]

Django version 5.2, using settings superlists.settings
Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

OK, scanning through that, it looks like the server is running!

Make sure you use the -1t flags to the Docker run command when
running runserver, or any other tool that expects to be run in an
interactive terminal session, otherwise you’ll get strange behaviour,

\ including not being able to interrupt the Docker process with
Ctrl+C. See the following sidebar for an escape hatch.

Installing Django in a Virtualenv in Our Container Image

207

How to Stop a Docker Container

If you've got a container that’s “hanging” in a terminal window, you can stop it from
another terminal.

The Docker daemon lets you list all the currently running containers with docker ps:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

0818e1b8e9bf superlists "/bin/sh -c 'python .." 4 seconds ago Up 4
seconds hardcore_moore

This tells us a bit about each container, including a unique ID and a randomly-
generated name (you can override that if you want to).

We can use the ID or the name to terminate the container with docker stop:’

$ docker stop 0818e1b8e9bf
0818e1b8e9bf

And if you go back to your other terminal window, you should find that the Docker
process has been terminated.

Using the FT to Check That Our Container Works

Let’s see what our FTs think about this Docker version of our site:

$ TEST_SERVER=1localhost:8888 ./src/manage.py test src/functional_tests --failfast
[...]

selenium.common.exceptions.WebDriverException: Message: Reached error page: abo
ut:neterror?e=connectionFailure&u=http%3A//localhost%3A8888/[...]

What’s going on here? Time for a little debugging.

7 There is also a docker killif youre in a hurry. But docker stop will send a SIGKILL if its initial SIGTERM
doesn’t work within a certain timeout (more info in the Docker docs).

208 | Chapter9: Containerization aka Docker

https://docs.docker.com/reference/cli/docker/container/stop

Debugging Container Networking Problems

First, let's try and take a look ourselves, in our browser, by going to http://local
host:8888/, as in Figure 9-3.

Unable to connect

Firefox can't establish a connection to the server at localhost:8888.

+ The site could be temporarily unavailable or too busy. Try again in a few moments.
+ IFyou are unable to load any pages, check your computer’s network connection.

+ IF your computer or network is protected by a firewall or proxy, make sure that Firefox is permitted to access
the web.

Figure 9-3. Cannot connect on that port

Now, let’s take another look at the output from our docker run. Here’s what appeared
right at the end:

Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

Aha! We notice that we’re using the wrong port, the default 8000 instead of the 8888
that we specified in the TEST_SERVER environment variable (or, “env var”).

Let’s fix that by amending the CMD instruction in the Dockerfile:

Dockerfile (ch091005)

[...]
WORKDIR /src

CMD ["python", "manage.py", "runserver", "8888"]

Ctrl+C the current Dockerized container process if it’s still running in your terminal,
then give it another build && run:
$ docker build -t superlists . && docker run -it superlists

[...]
Starting development server at http://127.0.0.1:8888/

Debugging Container Networking Problems | 209

http://localhost:8888/
http://localhost:8888/

Debugging Web Server Connectivity with curl

A quick run of the FT or check in our browser will show us that nope, that doesn’t
work either. Let’s try an even lower-level smoke test, the traditional Unix utility curl.
It's a command-line tool for making HTTP requests.® Try it on your own computer
first:

$ curl -iv localhost:8888

* Trying 127.0.0.1:8888...

* connect to 127.0.0.1 port 8888 [...]

* Trying [::1]:8888...

* connect to ::1 port 8888 [...]

* Failed to connect to localhost port 8888 after 0 ms: [...]
* Closing connection

[
C

o]
url: (7) Failed to connect to localhost port 8888 after 0 ms: [...]

The -iv flag to curl is useful for debugging. It prints verbose
output, as well as full HT'TP headers.

Running Code “Inside” the Container with docker exec

So, we can’t see Django running on port 8888 when we're outside the container. What
do we see if we run things from inside the container?

We can use docker exec to run commands inside a running container. First, we need
to get the name or ID of the container:

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

5ed84681fdf8 superlists "/bin/sh -c 'python .." 12 minutes ago Up 12
minutes trusting_wu

Your values for CONTAINER_ID and NAMES will be different from mine, because they’re
randomly generated. But make a note of one or the other, and then run docker exec
-it <container-id> bash. On most platforms, you can use tab completion for the
container ID or name.

8 curl can do FTP (File Transfer Protocol) and many other types of network requests too! Check out the curl
manual.

210 | Chapter9: Containerization aka Docker

https://man7.org/linux/man-pages/man1/curl.1.html
https://man7.org/linux/man-pages/man1/curl.1.html

Lets try it now. Notice that the shell prompt will change from your default Bash
prompt to root@container-id. Watch out for those in future listings, so that you can
be sure of what’s being run inside versus outside containers.

$ docker exec -it container-id-or-name bash

root@5ed84681fdf8:/src# apt-get update && apt-get install -y curl
Get:1 http://deb.debian.org/debian bookworm InRelease [151 kB]

Get:2 http://deb.debian.org/debian bookworm-updates InRelease [52.1 kB]
[...]

Reading package lists... Done
Building dependency tree... Done
Reading state information... Done

The following additional packages will be installed:
libbrotlil libcur14 libldap-2.5-0 libldap-common libnghttp2-14 1libpsl5
[...]
root@5ed84681fdf8:/src# curl -iv http://localhost:8888
* Trying [...]
* Connected to localhost [...]
GET / HTTP/1.1
Host: localhost:8888
User-Agent: curl/8.6.0
Accept: */*

AV V V V V

HTTP/1.1 200 OK
HTTP/1.1 200 OK
[...]

<!doctype html>
<html lang="en">

<head>
<title>To-Do lists</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link href="/static/bootstrap/css/bootstrap.min.css" rel="stylesheet">
</head>

<body>

[...]
</body>

</html>

Use Ctrl+D to exit from the docker exec bash shell inside the
container.

That’s definitely some HTML! And the <title>To-Do lists</title> looks like its
our HTML, too.

Running Code “Inside” the Container with docker exec | 211

So, we can see Django is serving our site inside the container. Why can’t we see it
outside?

Docker Port Mapping

The (highly, highly recommend) PythonSpeed guide to Docker’s very first section is
called Connection refused?, so I'll refer you there once again for an excellent, detailed
explanation.

But in short: Docker runs in its own little world; specifically, it has its own little
network, so the ports inside the container are different from the ports outside the
container, the ones we can see on our host machine.

So, we need to tell Docker to connect the internal ports to the outside ones—to
“publish” or “map” them, in Docker terminology.

docker run takes a -p argument, with the syntax OUTSIDE:INSIDE. So, you can
actually map a different port number on the inside and outside. But we're just
mapping 8888 to 8888, and that will look like this:

$ docker build -t superlists . && docker run -p 8888:8888 -it superlists

Now that will change the error we see, but only quite subtly (see Figure 9-4). Things
clearly aren’t working yet.

@ Problem loading page

(6) o://localhost:8888

The connection was reset

The connection to the server was reset while the page was loading.

* The site could be temporarily unavailable or too busy. Try again in a few moments.
 If you are unable to load any pages, check your computer’s network connection.

« |f your computer or network is protected by a firewall or proxy, make sure that Firefox is
permitted to access the web.

« If you are trying to load a local network page, please check that Firefox has been granted Local
Network permissions in the macOS Privacy & Security settings.

Try Again

Figure 9-4. Cannot connect on that port

9 Tip: If you use Chrome as your web browser, its error is something like “localhost didn’t send any data.
ERR_EMPTY_RESPONSE”.

212 | Chapter9: Containerization aka Docker

https://oreil.ly/e3gYQ

Similarly, if you try our curl -1iv (outside the container) once again, you’ll see the
error has changed from “Failed to connect’, to “Empty reply”:

$ curl -iv localhost:8888

* Trying [...]

* Connected to localhost (127.0.0.1) port 8888
GET / HTTP/1.1

Host: localhost:8888

User-Agent: curl/8.6.0

Accept: */*

|

Empty reply from server

Closing connection

curl: (52) Empty reply from server

*¥ *¥r—m V. V V V

Depending on your system, instead of (52) Empty reply from
server, you might see (56) Recv failure: Connection reset
by peer. They mean the same thing: we can connect but we don’t
get a response.

Essential Googling the Error Message

The need to map ports and the -p argument to docker run are something you just
pick up, fairly early on in learning Docker. But the next debugging step is quite a bit
more obscure—although admittedly Itamar does address it in his Docker networking
article (did I already mention how excellent it is?).

But if we haven’t read that, we can always resort to the tried and tested “Googling the
error message” technique instead (Figure 9-5).

Running Code “Inside” the Container with dockerexec | 213

https://oreil.ly/VAQhF
https://oreil.ly/VAQhF

|
The internet will make those bad words go away

Essential

Googling the

Error Message

The Practical Developer

?
O RLY @ThePracticalDev

Figure 9-5. An indispensable publication (source: Hacker News)

214 | Chapter9: Containerization aka Docker

https://oreil.ly/2WptY

Everyone’s search results are a little different, and mine are perhaps shaped by years
of working with Docker and Django, but I found the answer in my very first result
(see Figure 9-6), when I searched for “cannot access Django runserver inside Docker”.
The result was was a Stack Overflow post, saying something about needing to specify
0.0.0.0 as the IP address."

mlle cannot connect to django runserver inside docker cor X Y Q y

Videos Ubuntu Windows Mac Images News Books Maps Flights

About 59,000 results (0.30 seconds)

Stack Overflow
https://stackoverflow.com » questions > docker-cant-a..

Docker - Can't access Django server

25| r 2018 — | can not connect to django through the port in the container. I'm using this
address: 0.0.0.0.:8000 and see: http://joxi.ru/Dr8MeGLhkBWnLm.

1 answer - Top answer: Your issue: CMD ["python", "manage.py", "runserver”, "8000"] In order ...
Cannot access running django server? - docker - Stack Overflow 8 Jul 2!

Docker django runs server but browser doesn't show landing ... 18 Mar 2021

Django don't runserver in docker - Stack Overflow 14 Aug 2022

Unable to connect to server when running docker django .. 18 Jan 2017

More results from stackoverflow.com

Figure 9-6. Google can still deliver results

We're nearing the edges of my understanding of Docker now, but as I understand
it, runserver binds to 127.0.0.1 by default. However, that IP address doesn't corre-
spond to a network adapter inside the container, which is actually connected to the
outside world via the port mapping we defined earlier.

10 Kids these days will probably ask an AI right? I have to say, I tried it out, with the prompt being “I'm trying
to run Django inside a Docker container, and I've mapped port 8888, but I still can’t connect. Can you suggest
what the problem might be?”, and it come up with a pretty good answer.

Running Code “Inside” the Container with dockerexec | 215

https://oreil.ly/E_4ed

The long and short of it is that we need use the long-form ipaddr:port version of the
runserver command, using the magic “wildcard” IP address, 0.0.0.0:

Dockerfile (ch091007)

[...]
WORKDIR /src

CMD ["python", "manage.py", "runserver", "0.0.0.0:8888"]

Rebuild and rerun your server, and if you have eagle eyes, you’ll spot it’s binding to
0.0.0.0 instead of 127.0.0.1:

$ docker build -t superlists . && docker run -p 8888:8888 -it superlists

[...]
Starting development server at http://0.0.0.0:8888/

We can verify it's working with curl:

$ curl -iv localhost:8888
* Trying [...]
* Connected to localhost [...]

</body>

</html>

Looking good!

On Debugging

Let me let you in on a little secret: ’'m actually not that good at debugging. We all
have our psychological strengths and weaknesses, and one of my weaknesses is that
when I run into a problem that I can’t see an obvious solution to, I want to throw up
my hands way too soon and say “well, this is hopeless; it can’t be fixed”, and give up.

Thankfully I have had some good role models over the years who are much better at
it than me (hi, Glenn!). Debugging needs the patience and tenacity of a bloodhound.
If at first you don’t succeed, you need to systematically rule out options, check your
assumptions, eliminate various aspects of the problem, simplify things down, and
find the parts that do and don’t work, until you eventually find the cause.

It might seems hopeless at first! But you usually get there eventually.

216 | Chapter9: Containerization aka Docker

Database Migrations

A quick visual inspection confirms—the site is up (Figure 9-7)!

To-Do lists b +

O D localhost

Start a new
To-Do list

Enter a to-do item

Figure 9-7. The site in Docker is up!

Let’s see what our functional tests say:

$ TEST_SERVER=1localhost:8888 ./src/manage.py test src/functional_tests --failfast
[...]
E

ERROR: test_can_start_a_todo_list
(functional_tests.tests.NewVisitorTest.test_can_start_a_todo_list)
Traceback (most recent call last):

File "...goat-book/src/functional_tests/tests.py", line 56, in
test_can_start_a_todo_list

self.wait_for_row_in_list_table("1: Buy peacock feathers")
ANNANNNNNNNANNNNNNANNNNNNNNAN

File "...goat-book/src/functional_tests/tests.py", line 26, in
wailt_for_row_in_list_table
table = self.browser.find_element(By.ID, "id_list_table")

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: [1d="1d_list_table"]; For documentation [...]
Although the FTs can connect happily and interact with our site, they are failing as
soon as they try to submit a new item.

You might have spotted the yellow Django debug page (Figure 9-8) telling us why. It’s
because we haven't set up the database (which, as you may remember, we highlighted
as one of the “danger areas” of deployment).

Database Migrations | 217

(& OperationalError at /lists/new X

C B OD

OperationalError at /lists/new
no such table: lists_list

Request Method: POST
Request URL: http://localhost:8888/lists/new
Django Version: 4.2.7
Exception Type: OperationalError
Exception Value: % sueh table: lists List
Location: 12/site- py. line 328, in execute
Raised during: lists.views.new_list
Python Executable: /venv/bin/python
Python Version: 3.12.1
Python Path:

*/usrflocal /ib/python312. zip' ,
*/usr/local /1ib/python3. 12",
*/usr/fLocal /1ib/python3. 12/1ib-dynload" ,
* /venv/Lib/python3.12/site-packages*]

Server time: Thu, 25 Jan 2024 01:55:09 +0000

Traceback switch to copy-and-paste view
Jvenv/11b/python3. 12/s1te-packages/django/db/backends /utils.py. line B9, in _execute

89, return self.cursor execute(sql, params)

» Local vars

/venv/Lib/python3.12/site-packages/django/db/backends/sqlite3/base. py, line 328, in execute

328. return super()..excute (query, params)

» Local vars

The above exception (no such table: lists_list) was the direct cause of the following exception:

/venv/Lib/pythen3. 12/ py. line 55, in inner

s5. response = get_response(request)

» Local vars

/wenv/\ib/python3.12/site-packages/django/ core/handlers/base .py. line 197, in _get_response

197, response = wrapped_callback(request, *callback args. **callback kvargs)

» Local vars

Figure 9-8. But the database isn’t

The tests saved us from potential embarrassment there. The site
looked fine when we loaded its front page. If wed been a little hasty
and only tested manually, we might have thought we were done,
and it would have been the first users that discovered that nasty
Django debug page. Okay, slight exaggeration for effect—maybe we
would have checked, but what happens as the site gets bigger and
more complex? You can’t check everything. The tests can.

To be fair, if you look back through the runserver command output each time we've
been starting our container, you’ll see it’s been warning us about this issue:

You have 19 unapplied migration(s). Your project may not work properly until
you apply the migrations for app(s): auth, contenttypes, lists, sessions.
Run 'python manage.py migrate' to apply them.

If you don't see this error, it's because your src folder had the
database file in it, unlike mine. For the sake of argument, run rm
src/db.sqlite3 and rerun the build and run commands, and you
should be able to reproduce the error. I promise it’s instructive!

218 | Chapter9: Containerization aka Docker

Should We Run migrate Inside the Dockerfile? No.

So, should we include manage.py migrate in our Dockerfile?

If you try it, you'll find it certainly seems to fix the problem:

Dockerfile (ch091008)

[...]
WORKDIR /src

RUN python manage.py migrate --noinput @

CMD ["python", "manage.py", "runserver", "0.0.0.0:8888"]

@ We run migrate using the --noinput argument to suppress any little “are you
sure” prompts.

If we rebuild the image...

$ docker build -t superlists . && docker run -p 8888:8888 -it superlists

[...]
Starting development server at http://0.0.0.0:8888/

...and try our FTs again, they all pass!
$ TEST_SERVER=localhost:8888 ./src/manage.py test src/functional_tests --failfast
[...]

Ran 3 tests in 26.965s

0K

The problem is that this saves our database file into our system image, which is not
what we want, because the system image is meant to be something fixed and stateless
(whereas the database is living, stateful data that should change over time).

Database Migrations | 219

What Would Happen if We Kept the Database File in the Image

You can try this as a little experiment. Assuming you've got the manage.py migrate
line in your Dockerfile:

1. Create a new to-do list and keep a note of its URL (e.g., at http://localhost:8888/
lists/1).

2. Now, docker stop your container, and rebuild a new one with the same build
&& run command we used earlier.

3. Go back and try to retrieve your old list. It’s gone!

This is because rebuilding the image will give us a brand new database each time.

What we actually want is for our database storage to be “outside” the container
somehow, so it can persist between different versions of our Docker image.

Mounting Files Inside the Container

We want the database on the server to be totally separate data from the data in the
system image. In most deployments, youd probably be talking to a separate database
server, like PostgreSQL. For the purposes of this book, the easiest analogy for a

database that’s “outside” our container is to access the database from the filesystem
outside the container.

That also gives us a convenient excuse to talk about mounting files in Docker, which
is a very Useful Thing to be Able to Do™.

First, let’s revert our change:

Dockerfile (ch091009)
[...]
COPY src /src
WORKDIR /src

CMD ["python", "manage.py", "runserver", "0.0.0.0:8888"]

Then, lets make sure we do have the database on our local filesystem, by running
migrate (when we moved everything into ./src, we left the database file behind):

220 | Chapter9: Containerization aka Docker

$./src/manage.py migrate --noinput
Operations to perform:
Apply all migrations: auth, contenttypes, lists, sessions
Running migrations:
Applying contenttypes.0001_initial... OK
[...]
Applying sessions.0001_initial... OK

Let’s make sure to .gitignore the new location of the database file, and we'll also use

a file called .dockerignore to make sure we can't copy our local dev database into our
Docker image during Docker builds:

$ echo src/db.sqlite3 >> .gitignore
$ echo src/db.sqlite3 >> .dockerignore
Now we rebuild, and try mounting our database file. The extra flag to add to the
Docker run command is --mount, where we specify type=bind, the source path on
our machine," and the target path inside the container:
$ docker build -t superlists . && docker run \
-p 8888:8888 \

--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-it superlists

You're likely to come across the old syntax for mounts, which was
-v. One of the advantages of the new - -mount version is that it will
fail hard if the path you're trying to mount does not exist—it says
something like bind source path does not exist. This avoids a
lot of pain (ask me how I know this).

$ TEST_SERVER=localhost:8888 ./src/manage.py test src/functional_tests --failfast
[...]
Ran 3 tests in 26.965s
oK
AMAZING, IT ACTUALLY WORKSSSSSSSS.

Ahem, that’s definitely good enough for now! Let’s commit:

$ git add -A . # add Dockerfile, .dockerignore, .gitignore
$ git commit -am"First cut of a Dockerfile"

11 If you're wondering about the $PWD in the listing, it’s a special environment variable that represents the current
directory. The initials echo the pwd command, which stands for “print working directory”. Docker requires
mount paths to be absolute paths.

Mounting Files Inside the Container | 221

https://docs.docker.com/reference/dockerfile/#dockerignore-file

Phew. Well, it took a bit of hacking about, but now we can be reassured that the
basic Docker plumbing works. Notice that the FT was able to guide us incrementally
towards a working config, and spot problems early on (like the missing database).

But we really can't be using the Django dev server in production, or running on port
8888 forever. In the next chapter, we'll make our hacky image more production-ready.

But first, time for a well-earned tea break I think, and perhaps a chocolate biscuit.

Docker Recap

Docker lets us reproduce a server environment on our own machine
For developers, ops and infra work is always “fun”, by which I mean a process
full of fear, uncertainty, and surprises—and painfully slow too. Docker helps to
minimise this pain by giving us a mini server on our own machine, which we can
try things out with and get feedback quickly, as well as enable us to work in small
steps.

docker build && docker run
We've learned the core tools for working with Docker. The Dockerfile specifies
our image, docker build builds it, and docker run runs it. build && run
together give us a “start again from scratch” cycle, which we use every time we
make a code change in src, or a change in the Dockerfile."

Debugging network issues
We've seen how to use curl both outside and inside the container with docker
exec. We've also seen the -p argument to bind ports inside and outside, and the
idea of needing to bind to 6.0.0.0.

Mounting files
We've also had a brief intro to mounting files from outside the container, into the
inside. It’s an insight into the difference between the “stateless” system image, and
the stateful world outside of Docker.

12 There’s a common pattern of mounting the whole src folder into your Docker containers in local dev. It means
you don’t need to rebuild for every source code change. I didn't wan't to introduce that here because it also
leads to subtle behaviours that can be hard to wrap your head around, like the db.sqlite3 file being shared with
the container. For this book, the build && run cycle is fast enough, but by all means try out mounting src in
your own projects.

222 | Chapter9: Containerization aka Docker

https://oreil.ly/GtL7w

CHAPTER 10
Making Our App Production-Ready

Our container is working fine but it's not production-ready. Lets try to get it there,
using the tests to keep us safe.

In a way we're applying the red/green/refactor cycle to our productionisation process.
Our hacky container config got us to green, and now we're going to refactor, working
incrementally (just as we would while coding), trying to move from working state to
working state, and using the FTs to detect any regressions.

What We Need to Do

What’s wrong with our hacky container image? A few things: first, we need to host
our app on the “normal” port 80 so that people can access it using a regular URL.

Perhaps more importantly, we shouldn’t use the Django dev server for production; it’s
not designed for real-life workloads. Instead, we'll use the popular Gunicorn Python
WSGI HTTP server.

Djangos runserver is built and optimised for local development
and debugging. It's designed to handle one user at a time; it handles
automatic reloading upon saving of the source code, but it isn’t
optimised for performance, nor has it been hardened against secu-
rity vulnerabilities.

In addition, several options in settings.py are currently unacceptable. DEBUG=True is
strongly discouraged for production, we’ll want to set a unique SECRET_KEY and, as
we'll see, other things will come up.

223

DEBUG=True is considered a security risk, because the Django debug
page will display sensitive information like the values of variables,
and most of the settings in settings.py.

Let’s go through and see if we can fix things one by one.

Switching to Gunicorn

Do you know why the Django mascot is a pony? The story is that Django comes with
so many things you want: an ORM, all sorts of middleware, the admin site...“What
else do you want, a pony?” Well, Gunicorn stands for “Green Unicorn’, which I guess
is what youd want next if you already had a pony...

WEe'll need to first install Gunicorn into our container, and then use it instead of
runserver:
$ python -m pip install gunicorn

Collecting gunicorn

[...]

Successfully installed gunicorn-2[...]

Gunicorn will need to know a path to a “WSGI server” which is usually a function
called application. Django provides one in superlists/wsgi.py. Let’s change the com-
mand that our image runs:

Dockerfile (ch101001)
[...]
RUN pip install "django<6" gunicorn @
COPY src /src

WORKDIR /src

CMD ["gunicorn", "--bind", ":8888", "superlists.wsgi:application"] @
© Installation is a standard pip install.
©® Gunicorn has its own command line, gunicorn. Here’s where we invoke it,

including telling it which port to use, and supplying the dot-notation path to the
WSGI server provided by Django.

1 WSGI stands for Web Server Gateway Interface and it’s the protocol for communication between a web server
and a Python web application. Gunicorn is a web server that uses WSGI to interact with Django, and so is the
web server you get from runserver.

224 | Chapter 10: Making Our App Production-Ready

As in the previous chapter, we can use the docker build && docker run pattern to
try out our changes by rebuilding and rerunning our container:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-it superlists

If you see an error saying Bind for 0.0.0.0:8888 failled: port
is already allocated., it'll be because you still have a container
running from the previous chapter. Do you remember how to use
docker ps and docker stop? If not, have another look at “How to
Stop a Docker Container” on page 208.

The FTs Catch a Problem with Static Files

As we run the FTs, you’'ll see them warning us of a problem, once again. The test for
adding list items passes happily, but the test for layout and styling fails. Good job,
tests!

$ TEST_SERVER=1localhost:8888 python src/manage.py test functional_tests --failfast

[...]

AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

FAILED (failures=1)
And indeed, if you take a look at the site, you'll find the CSS is all broken, as in
Figure 10-1.

The reason that we have no CSS is that although the Django dev server will serve
static files magically for you, Gunicorn doesn't.

To-Do lists X +

O DO localhost:8888

Start a new To-Do list

|Enter a to-do item |

Figure 10-1. Broken CSS

Switching to Gunicorn | 225

One step forwards, one step backwards, but once again we've identified the problem
nice and early. Moving on!

Serving Static Files with WhiteNoise

Serving static files is very different from serving dynamically rendered content from
Python and Django. There are many ways to serve them in production: you can use
a web server like nginx, or a content delivery network (CDN) like Amazon S3. But in
our case, the most straightforward thing to do is to use WhiteNoise, a Python library
expressly designed for serving static? files from Python.

First, we install WhiteNoise into our local environment:
pip install whitenoise

Then we tell Django to enable it, in settings.py’:

src/superlists/settings.py (ch101002)
MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"whitenoise.middleware.WhiteNoiseMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",

[...]
And then we need to add it to our pip installs in the Dockerfile:

Dockerfile (ch101003)
RUN pip install "django<6" gunicorn whitenoise

This manual list of pip installs is getting a little fiddly! We'll come back to that in a
moment. First let’s rebuild and try rerunning our FTs:
$ docker build -t superlists . && docker run \
-p 8888:8888 \

--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-it superlists

And if you take another manual look at your site, things should look much healthier.

2 Believe it or not, this pun didn’t actually hit me until I was rewriting this chapter. For 10 years, it was right
under my nose. I think that makes it funnier actually.

3 Find out more about Django middleware in the docs.

226 | Chapter 10: Making Our App Production-Ready

https://docs.djangoproject.com/en/5.2/topics/http/middleware
https://whitenoise.readthedocs.io

Let’s rerun our FTs to confirm:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests --failfast
[...]

Ran 3 tests in 10.718s
oK
Phew. Let’s commit that:

$ git commit -am"Switch to Gunicorn and Whitenoise"

Using requirements.txt
Let’s deal with that fiddly list of pip installs.

To reproduce our local virtualenv, rather than just manually pip installing things
one by one and having to remember to sync things between local dev and Docker, we
can “save” the list of packages were using by creating a requirements.txt file.*

The pip freeze command will show us everything that’s installed in our virtualenv
at the moment:

$ pip freeze
asgiref==3.8.1
attrs==25.3.0
certifi==2025.4.26
Django==5.2.3
gunicorn==23.0.0
h11==0.16.0

idna==3.10
outcome==1.3.0.post0O
packaging==25.0
PySocks==1.7.1
selenium==4.31.0
sniffio==1.3.1
sortedcontainers==2.4.0
sqlparse==0.5.3
trio==0.30.0
trio-websocket==0.12.2
typing_extensions==4.13.2
urllib3==2.4.0
websocket-client==1.8.0
whitenoise==6.11.0
wsproto==1.2.0

4 There are many other dependency management tools these days so requirements.txt is not the only way to
do it, although it is one of the oldest and best established. As you continue your Python adventures, 'm sure
youw’ll come across many others.

Using requirements.txt | 227

That shows all the packages in our virtualenv, along with their version numbers. Let’s
pull out just the “top-level” dependencies—Django, Gunicorn, and WhiteNoise:

$ pip freeze | grep
Django==5.2[...]

$ pip freeze | grep
$ pip freeze | grep
$ pip freeze | grep

-1 django

-1 django >> requirements.txt
-1 gunicorn >> requirements.txt
-1 whitenoise >> requirements.txt

That should give us a requirements.txt file that looks like this:

django==5.2.3
gunicorn==23.0.0
whitenoise==6.11.0

requirements.txt (ch101004)

Let’s try it out! To install things from a requirements.txt file, you use the -r flag, like

this:

$ pip install -r requirements.txt

Requirement already
./.venv/1lib/python3.
(5.2.[...]
Requirement already
./.venv/1lib/python3.
(23.0.0)

Requirement already
./.venv/1lib/python3.
(6.11.0)

Requirement already
Requirement already

[...]

satisfied: Django==5.2.[...]
14/site-packages (from -r requirements.txt (line 1))

satisfied: gunicorn==23.0.0 in
14/site-packages (from -r requirements.txt (line 2))

satisfied: whitenoise==6.11.0 in
14/site-packages (from -r requirements.txt (line 3))

satisfied: asgiref[...]
satisfied: sqlparse[...]

As you can see, it's a no-op because we already have everything installed. That’s

expected!

Forgetting the -r and running pip install requirements.txt is
such a common error, that I recommend you do it right now and
get familiar with the error message (which is thankfully much more
helpful than it used to be). It's a mistake I still make, all the time.

Anyway, that’s a good first version of a requirements file. Let'’s commit it:

$ git add requirements.txt

$ git commit -m "Add

a requirements.txt with Django, gunicorn and whitenoise"

228 | Chapter 10: Making Our App Production-Ready

Dev Dependencies, Transitive Dependencies, and Lockfiles

You may be wondering why we didn’t add our other key dependency, Selenium,
to our requirements. Or you might be wondering why we didn't just add all the
dependencies, including the “transitive” ones (e.g., Django has its own dependencies
like asgiref and sqlparse, etc.).

As always, I have to gloss over some nuance and trade-offs, but the short answer is:
Selenium is only a dependency for the tests, not the application code; we're never
going to run the tests directly on our production servers.® As for transitive dependen-
cies, they're fiddly to manage without bringing in more tools, and I didn’t want to do
that for this book.

When you have a moment, you should probably to do some further reading on
“lockfiles”, pyproject.toml, hard pinning versus soft pinning, and immediate versus
transitive dependencies.

If I absolutely had to recommend a Python dependency management tool, it would
be pip-tools, which is a fairly minimal one.

Now let’s see how we use that requirements file in our Dockerfile:

Dockerfile (ch101005)
FROM python:3.14-slim

RUN python -m venv /venv
ENV PATH="/venv/bin:$PATH"

COPY requirements.txt /tmp/requirements.txt @
RUN pip install -r /tmp/requirements.txt @

COPY src /src
WORKDIR /src

CMD ["gunicorn", "--bind", ":8888", "superlists.wsgi:application"]

@ We copy our requirements file in, just like the src folder.

© Now instead of just installing Django, we install all our dependencies using pip
install -r.

5 Some people like to separate out test or “dev” dependencies into a separate requirements file called require-
ments.dev.txt, for example. For the record, I think this is a good idea, I just didn’t want to add yet another
concept to the book.

Using requirements.txt | 229

https://github.com/jazzband/pip-tools

Let’s build and run:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-it superlists

And then test to check everything still works:

$ TEST_SERVER=Llocalhost:8888 python src/manage.py test functional_tests --failfast
[...]

OK

Hooray. That’s a commit!

$ git commit -am "Use requirements.txt in Dockerfile"

Using Environment Variables to Adjust Settings for
Production

We know there are several things in settings.py that we want to change for production:

» DEBUG mode is all very well for hacking about on your own server, but it isn't
secure. For example, exposing raw tracebacks to the world is a bad idea.

o SECRET_KEY is used by Django for some of its crypto—things like cookies and
CSRF protection. It’s good practice to make sure the secret key in production
is different from the one in your source code repo, because that code might be
visible to strangers. We'll want to generate a new, random one but then keep it
the same for the foreseeable future (find out more in the Django docs).

Development, staging, and production sites always have some differences in their
configuration. Environment variables are a good place to store those different
settings.®

6 The approach of using environment variables for configuration was originally published by “The 12-Factor
App” manifesto. Another common way of handling this is to have different versions of settings.py for dev
and prod. That can work fine too, but it can get confusing to manage. Environment variables also have the
advantage of working for non-Django stuff too.

230 | Chapter 10: Making Our App Production-Ready

https://oreil.ly/ZdVhR
https://oreil.ly/ZdVhR
https://docs.djangoproject.com/en/5.2/ref/settings/#debug
https://docs.djangoproject.com/en/5.2/ref/settings/#debug
https://docs.djangoproject.com/en/5.2/topics/signing

Setting DEBUG=True and SECRET_KEY

There are lots of ways you might set these settings.

What I propose may seem a little fiddly, but I'll provide a little justification for each
choice. Let them be an inspiration (but not a template) for your own choices!

Note that this 1f statement replaces the DEBUG and SECRET_KEY lines that are included
by default in the settings.py file:

©

src/superlists/settings.py (ch101006)
import

[...]

SECURITY WARNING: don't run with debug turned on in production!
if "DJANGO_DEBUG_FALSE" in os.environ: @

DEBUG = False

SECRET_KEY = os.environ["DJANGO_SECRET_KEY"] @
else:

DEBUG = True ©

SECRET_KEY = "insecure-key-for-dev"

We say we'll use an environment variable called DJANGO_DEBUG_FALSE to switch
debug mode off and, in effect, require production settings (it doesn’t matter what
we set it to, just that it’s there).

And now we say that, if debug mode is off, we require the SECRET_KEY to be set by
a second environment variable.

Otherwise we fall back to the insecure, debug mode settings that are useful for
dev.

The end result is that you don’t need to set any env vars for dev, but production needs
both to be set explicitly, and it will error if any are missing. I think this gives us a little
bit of protection against accidentally forgetting to set one.

Better to fail hard than allow a typo in an environment variable
name to leave you running with insecure settings.

Using Environment Variables to Adjust Settings for Production | 231

Setting Environment Variables Inside the Dockerfile

Now let’s set that environment variable in our Dockerfile using the ENV directive:

Dockerfile (ch101007)
WORKDIR /src

ENV DJANGO_DEBUG_FALSE=1

CMD ["gunicorn", "--bind", ":8888", "superlists.wsgi:application"]

And try it out...

$ docker build -t superlists . && docker run \
-p 8888:8888 \

--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-it superlists

..
File "/src/superlists/settings.py", line 23, in <module>
SECRET_KEY = os.environ["DJANGO_SECRET_KEY"]

NNNNNNNNNN ANANNANANANNNNNNNNNNNNNNAN

[...]
KeyError: 'DJANGO_SECRET_KEY'

Oops. I forgot to set said secret key env var, mere seconds after having dreamt it up!

Setting Environment Variables at the Docker Command Line

We've said we can't keep the secret key in our source code, so the Dockerfile isn’t an
option; where else can we put it?

For now, we can set it at the command line using the -e flag for docker run:

$ docker build -t superlists . && docker run \
-p 8888:8888 \

--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-it superlists

With that running, we can use our FT again to see if we're back to a working state.
$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests --failfast
[...]

AssertionError: 'To-Do' not found in 'Bad Request (400)'

232 | Chapter 10: Making Our App Production-Ready

The eagle-eyed might spot a message saying UserWarning: No
directory at: /src/static/. That’s a little clue about a problem
with static files, which we’re going to deal with shortly. Lets deal
with this 400 issue first.

ALLOWED_HOSTS Is Required When Debug Mode Is Turned Off

It’s not quite working yet (see Figure 10-2)! Let’s take a look manually.

Bad Reguest (400) ® -

U D localhost:8888

Bad Request (400)

Figure 10-2. An unfriendly 400 error

We've set our two environment variables, but doing so seems to have broken things.
However, once again, by running our FTs frequently, were able to identify the
problem early, before we've changed too many things at the same time. We've only
changed two settings—which one might be at fault?

Let’s use the “Googling the error message” technique again, with the search terms
“Django debug false” and “400 bad request”.

Well, the very first link in my search results was Stack Overflow suggesting that a 400
error is usually to do with ALLOWED_HOSTS. And the second was the official Django
docs, which takes a bit more scrolling, but confirms it (see Figure 10-3).

Using Environment Variables to Adjust Settings for Production | 233

https://oreil.ly/gVcLz

] [0) O o =| Djar Central Y8 ope

QO & nttps://duckduckgo.com/?q=djang se+400+bad+request&va

django debug false 400 bad request

Q Al EdImages [Videos News @ Maps (® Shopping 95 Settings

All regions ¥ Safe search: moderate v Any time v

2 https://stackoverflow.com > questions > 19875789 > django-gives-bad-request-400-when-debug...

Django gives Bad Request (400) when DEBUG = False

303 | am new to django-1.6. When | run the django server with DEBUG = True, it's running perfectly. But
when | change DEBUG to False in the settings file, then the server stopped and it gives the following
error on the command prompt: CommandError: You must set settings. ALLOWED_HOSTS if DEBUG is...

dj https://docs.djangoproject.com > en > 5.0 > ref > settings

Settings | Django documentation | Django

When DEBUG=False and AdminEmailHandler is configured in LOGGING ... Failing to do so will result in
all requests being returned as "Bad Request (400)". ... When USE_TZ is False, Django will use naive
datetimes in local time, except when parsing ISO 8601 formatted strings, ...

@ https://dnmtechs.com > troubleshooting-djangos-bad-request-400-error-with-debug-false-in-pyt...

Troubleshooting Django's Bad Request (400) Error with DEBUG = Fal...
Ma There are several common causes for the Bad Request (400) error in Django when

DEBUG is set to False. Let's explore some of them: 1. Invalid CSRF Token Django uses Cross-Site

Request Forgery (CSRF) protection to prevent malicious websites from making unauthorized requests...

Figure 10-3. Search results for “django debug false 400 bad request”
ALLOWED_HOSTS is a security setting designed to reject requests that are likely to be
forged, broken, or malicious because they don't appear to be asking for your site.”

When DEBUG=True, ALLOWED_HOSTS effectively allows localhost (our own machine) by
default, so that’s why it was working OK until now.

There’s more information in the Django docs.

7 HTTP requests contain the address they were intended for in a header called “host”.

234 | Chapter 10: Making Our App Production-Ready

https://docs.djangoproject.com/en/5.2/ref/settings/#allowed-hosts

The upshot is that we need to adjust ALLOWED_HOSTS in settings.py. Let’s use another
environment variable for that:

src/superlists/settings.py (ch101008)

if "DJANGO_DEBUG_FALSE" in os.environ:

DEBUG = False

SECRET_KEY = os.environ["DJANGO_SECRET KEY"]

ALLOWED_HOSTS = [os.environ["DJANGO ALLOWED HOST"]]
else:

DEBUG = True

SECRET_KEY = "insecure-key-for-dev"

ALLOWED_HOSTS = []

This is a setting that we want to change, depending on whether our Docker image is
running locally or on a server, so we'll use the -e flag again:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=1localhost \
-it superlists

Collectstatic Is Required when Debug Is Turned Off

An FT run (or just looking at the site) reveals that we've had a regression in our static
files:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests --failfast
[...]

AssertionError: 102.5 != 512 within 10 delta (409.5 difference)

FAILED (failures=1)

And you might have seen this warning message in the docker run output:

/venv/1lib/python3.14/site-packages/django/core/handlers/base.py:61:
UserWarning: No directory at: /src/static/
mw_1instance = middleware(adapted_handler)

Using Environment Variables to Adjust Settings for Production | 235

We saw this at the beginning of the chapter, when switching from the Django dev
server to Gunicorn, and that was why we introduced WhiteNoise. Similarly, when we
switch DEBUG off, WhiteNoise stops automagically finding static files in our code, and
instead we need to run collectstatic:

Dockerfile (ch101009)
WORKDIR /src

RUN python manage.py collectstatic
ENV DJANGO_DEBUG_FALSE=1

CMD ["gunicorn", "--bind", ":8888", "superlists.wsgi:application"]

Well, it was fiddly, but that should get us to passing tests after we build and run the
Docker container!

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=1localhost \
-it superlists

And...

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests --failfast

[...]
OK

We're nearly ready to ship to production!

Let’s quickly adjust our gitignore, as the static folder is in a new place, and do
another commit to mark this bit of incremental progress:

$ git status

should show dockerfile and untracked src/static folder

$ echo src/static >> .gitignore

$ git status

should now be clean

$ git commit -am "Add collectstatic to dockerfile, and new location to gitignore"

236 | Chapter 10: Making Our App Production-Ready

Switching to a Nonroot User

Lets do one more! By default, Docker containers run as root. Although container
security is a very well-tested ground by now, experts agree it’s still good practice to
use an unprivileged user inside your container.

The main fiddly thing, for us, will be dealing with permissions for the db.sqlite3 file. It
will need to be:

1. Writable by the nonroot user

2. In a directory that’s writable by the nonroot user®

Making the Database Filepath Configurable

First, let’s make the path to the database file configurable using an environment
variable:

src/superlists/settings.py (ch101011)

SECURITY WARNING: don't run with debug turned on in production!
if "DJANGO_DEBUG_FALSE" in os.environ:

DEBUG = False

SECRET_KEY = os.environ["DJANGO_SECRET_KEY"]

ALLOWED_HOSTS = [os.environ["DJANGO_ALLOWED_HOST"]]

db_path = os.environ["DJANGO DB_PATH"] @
else:

DEBUG = True

SECRET_KEY = "insecure-key-for-dev"

ALLOWED_HOSTS = []

db_path = BASE_DIR / "db.sqlite3" @
[...]

Database
https://docs.djangoproject.com/en/5.2/ref/settings/#databases

DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": db_path ©

8 This is surprising. It's due to SQLite wanting to write various additional temporary files during operation.

Switching to a Nonroot User | 237

https://sqlite.org/tempfiles.html

© Inside Docker, we'll assume that an environment variable called DJANGO_DB_PATH
has been set. We save it to a local variable called db_path.

® Outside Docker, we'll use the default path to the database file.

© And we modify the DATABASES entry to use our db_path variable.
Now let’s change the Dockerfile to set that env var, and to create and switch to our

nonroot user, which we may as well call “nonroot” (although it could be anything!):

Dockerfile (ch101012)
WORKDIR /src

RUN python manage.py collectstatic
ENV DJANGO_DEBUG_FALSE=1

RUN adduser --uid 1234 nonroot @
USER nonroot @

CMD ["gunicorn", "--bind", ":8888", "superlists.wsgi:application"]

© We use the adduser command to create our user, explicitly setting its UID to
12347

© The USER directive in the Dockerfile tells Docker to run everything as that user by
default.

Using UIDs to Set Permissions Across Host/Container Mounts

Our user will now have a writable home directory at /home/nonroot, so we'll put the
database file in there. That takes care of the “writable directory” requirement.

Because we're mounting the file from outside though, that’s not quite enough to make
the file itself writable. We'll need to set the owner of the file to be nonroot as well.
Because of the way Linux permissions work, were going to use integer user IDs

9 A more or less arbitrary number, the first non-system user on a system is usually 1000, so it’s nice that this
won't be the same as the elspeth user outside the container. But other than that it could be any number
greater than 1000 really.

238 | Chapter 10: Making Our App Production-Ready

(UIDs). This might seem a bit magical if youre not used to Linux permissions, so
you’ll have to trust me, I'm afraid.'

First, let’s create a file with the right permissions, outside the container:

$ touch container.db.sqlite3

Change the owner to uid 1234
$ sudo chown 1234 container.db.sqlite3

This next step is needed on non-Linux dev environments,

to make sure that the container host VM can write to the file.
Change the file to be group-writeable as well as owner-writeable:
sudo chmod g+rw container.db.sqlite3

o O R

Now let’s rebuild and run our container, changing the - -mount path to our new file,
and setting the DJANGO_DB_PATH environment variable to match:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/container.db.sqlite3",target=/home/nonroot/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=1localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-it superlists

As a first check that we can write to the database from inside the container, let’s use
docker exec to populate the database tables using manage.py migrate:

$ docker ps # note container id
$ docker exec container-id-or-name python manage.py migrate
Operations to perform:

Apply all migrations: auth, contenttypes, lists, sessions
Running migrations:

Applying contenttypes.0001_initial... OK

[...]

Applying lists.0001_initial... OK

Applying lists.0002_1item_text... OK

Applying lists.0003_list... OK

Applying lists.0004_1item_list... OK

Applying sessions.0001_initial... OK

10 Linux permissions aren’t actually implemented using the string names of users; instead they use integer
user IDs (called UIDs). The way we map from the UIDs to strings is using a special file called /etc/passwd.
Because /efc/passwd is not the same inside and outside the container, the UIDs to username mappings inside
and outside are not necessarily the same. However, the permission UIDs are just numbers, and they actually
are stored inside individual files, so they don’t change when you mount files. There’s more info here on this
Stack Overflow post.

Switching to a Nonroot User | 239

https://oreil.ly/ceIfE
https://oreil.ly/ceIfE

And, as after every incremental change, we rerun our FT suite to make sure every-
thing works:

$ TEST_SERVER=1localhost:8888 python src/manage.py test functional_tests --failfast

[...]

0K

Great! We wrap up with a bit of housekeeping; we'll add this new database file to
our .gitignore, and commit:

$ echo container.db.sqlite3 >> .gitignore
$ git commit -am"Switch to nonroot user”

Configuring Logging

One last thing we'll want to do is make sure that we can get logs out of our server. If
things go wrong, we want to be able to get to the tracebacks. And as we'll soon see,
switching DEBUG off means that Django’s default logging configuration changes.

Provoking a Deliberate Error

To test this, we'll provoke a deliberate error by corrupting the database file:
$ echo bla > container.db.sqlite3

Now if you run the tests, you’ll see they fail:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests --failfast
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="id_list_table"]; [...]

And you might spot in the browser that we just see a minimal error page, with no
debug info, as in Figure 10-4 (try it manually if you like).

Server Error (500) X +

QO D localhost:8888/lists/1/add_item

Server Error (500)

Figure 10-4. Minimal default server error 500

240 | Chapter 10: Making Our App Production-Ready

But if you look in your Docker terminal, you'll see there is no traceback:

[2024-02-28 10:41:53 +0000] [7] [INFO] Starting gunicorn 21.2.0

[2024-02-28 10:41:53 +0000] [7] [INFO] Listening at: http://0.0.0.0:8888 (7)
[2024-02-28 10:41:53 +0000] [7] [INFO] Using worker: sync

[2024-02-28 10:41:53 +0000] [8] [INFO] Booting worker with pid: 8

Where have the tracebacks gone? You might have been expecting that the Django
debug page and its tracebacks would disappear from our web browser, but it's more
of shock to see that they are no longer appearing in the terminal either! If youre
like me, you might find yourself wondering if we really did see them earlier and
starting to doubt your own sanity. But the explanation is that Django’s default logging
configuration changes when DEBUG is turned off.

This means we need to interact with the standard library’s logging module, unfortu-
nately one of the most fiddly parts of the Python standard library."

Here’s pretty much the simplest possible logging config, which just prints everything
to the console (i.e., standard out); I've added this code to the very end of the
settings.py file:

src/superlists/settings.py (ch101013)
LOGGING = {

"version": 1,
"disable_existing_loggers": False,
"handlers": {

"console": {"class": "logging.StreamHandler"},
1
"loggers": {

"root": {"handlers": ["console"], "level": "INF0"},
1,

Rebuild and restart our container...

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=1localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-it superlists

11 It’s not necessarily for bad reasons, but it is all very Java-ey and enterprise-y. I mean, yes, separating the
concepts of handlers and loggers and filters, and making it all configurable in a nested hierarchy;, is all well
and good and covers every possible use case, but sometimes you just wanna say “just print stuff to stdout pls”,
and you wish that configuring the simplest thing was a little easier.

Configuring Logging | 241

https://docs.djangoproject.com/en/5.2/ref/logging/#default-logging-configuration
https://docs.djangoproject.com/en/5.2/ref/logging/#default-logging-configuration

Then try the FT again (or submitting a new list item manually) and we now should
see a clear error message:

Internal Server Error: /lists/new
Traceback (most recent call last):
[...]
File "/src/lists/views.py", line 10, in new_list
nulist = List.objects.create()
ANANANNANNANANANNNANNANNNANANNAN

[...]

File "/venv/lib/python3.14/site-packages/django/db/backends/sqlite3/base.py",
line 328, in execute

return super().execute(query, params)
ANANNNNANNNANANNNANNNNNNNNNNANNNNNNNAN

django.db.utils.DatabaseError: file is not a database
We can fix and re-create the database by doing:

$ echo > container.db.sqlite3
$ docker exec -it <container_id> python manage.py migrate

And rerun the FTs to check we're back to a working state.
Let’s do a final commit for this change:

$ git commit -am "Add logging config to settings.py"

Exercise for the Reader: Using the Django check Command

I don’t have time in this book to cover every last aspect of production-readiness.
Apart from anything else, this is a fast-changing area, and security updates to Django
and its best practice recommandations change frequently, so things I write now might
be incomplete by the time you read the book.

I have given a decent overview of the various different axes along which you’ll need
to make production-readiness changes, so hopefully you have a toolkit for how to do
this sort of work.

If youd like to dig into this a little bit more, or if you're preparing a real project for
release into the wild, the next step is to read up on Django’s deployment checklist.

242 | Chapter 10: Making Our App Production-Ready

https://docs.djangoproject.com/en/5.2/howto/deployment/checklist

The first suggestion is to use Django’s “self-check” command, manage.py check
- -deploy. Here’s what it reported as outstanding when I ran it in April 2025:

$ docker exec <container-id> python manage.py check --deploy
System check identified some issues:

WARNINGS:

?: (security.W004) You have not set a value for the SECURE_HSTS_SECONDS
setting. If your entire site is served only over SSL, you may want to consider
setting a value and enabling HTTP Strict Transport Security. Be sure to read
the documentation first; enabling HSTS carelessly can cause serious,
irreversible problems.

?: (security.W008) Your SECURE_SSL_REDIRECT setting is not set to True. Unless
your site should be available over both SSL and non-SSL connections, you may
want to either set this setting True or configure a load balancer or
reverse-proxy server to redirect all connections to HTTPS.

?: (security.W009) Your SECRET_KEY has less than 50 characters, less than 5
unique characters, or it's prefixed with django-insecure- indicating that it
was generated automatically by Django. Please generate a long and random value,
otherwise many of Django's security-critical features will be vulnerable to
attack.

?: (security.W012) SESSION_COOKIE_SECURE is not set to True. Using a
secure-only session cookie makes it more difficult for network traffic sniffers
to hijack user sessions.

?: (security.W016) You have django.middleware.csrf.CsrfViewMiddleware in your
MIDDLEWARE, but you have not set CSRF_COOKIE_SECURE to True. Using a
secure-only CSRF cookie makes it more difficult for network traffic sniffers to
steal the CSRF token.

Why not pick one of these and have a go at fixing it?

Wrap-Up

We might not have addressed every last issue that check --deploy raised, but we've
at least touched on many or most of the things you might need to think about when
considering production-readiness. We've worked in small steps and used our tests all
the way along, and we’re now ready to deploy our container to a real server!

Find out how, in our next exciting installment...
One more recommendation for PythonSpeed and its Docker Pack-

aging for Python Developers article—again, I cannot recommend it
highly enough. Read it before youre too much older!

Wrap-Up | 243

https://pythonspeed.com/docker
https://pythonspeed.com/docker

Production-Readiness Config

A few things to think about when trying to prepare a production-ready configuration:

Don't use the Django dev server in production
Something like Gunicorn or uWSGI is a better tool for running Django; it will let
you run multiple workers, for example.

Decide how to serve your static files
Static files aren’t the same kind of things as the dynamic content that comes from
Django and your web app, so they need to be treated differently. WhiteNoise is
just one example of how you might do that.

Check your settings.py for dev-only config
DEBUG=True, ALLOWED_HOSTS, and SECRET_KEY are the ones we came across, but
you will probably have others (and we'll see more when we start to send emails
from the server).

Change things one at a time and rerun your tests frequently
Whenever we make a change to our server configuration, we can rerun the test
suite, and either be confident that everything works as well as it did before, or
find out immediately if we did something wrong.

Think about logging and observability
When things go wrong, you need to be able to find out what happened. At a
minimum, you need a way of getting logs and tracebacks out of your server, and
in more advanced environments youw’ll want to think about metrics and tracing
too. But we can't cover all that in this book!

Use the Django ‘check” command
python manage.py check --deploy can give you a list of additional settings to
check for production-readiness.

244 | Chapter 10: Making Our App Production-Ready

CHAPTER 11
Getting a Server Ready for Deployment

This chapter is all about getting ready for our deployment. We're going to spin up an
actual server, make it accessible on the internet with a real domain name, and set up
the authentication and credentials we need to be able to control it remotely with SSH
and Ansible.

Manually Provisioning a Server to Host Our Site

We can separate our “deployment” into two tasks:

1. Provisioning a new server to be able to host the code, which includes choosing an
operating system, getting basic credentials to log in, and configuring DNS

2. Deploying our application to an existing server, which includes getting our
Docker image onto the server, starting a container, and configuring it to talk
to the database and the outside world

Infrastructure-as-code tools can let you automate both of these, but the provisioning
parts tend to be quite vendor-specific, so for the purposes of this book, we can live
with manual provisioning.

I should probably stress once more that deployment is something
that varies a lot and, as a result, there are few universal best prac-
tices for how to do it. So, rather than trying to remember the
specifics of what I'm doing here, you should be trying to under-
stand the rationale, so that you can apply the same kind of thinking
in the specific future circumstances you encounter.

245

Choosing Where to Host Our Site

There are loads of different solutions out there these days, but they broadly fall into
two camps:

1. Running your own (probably virtual) server—aka VPS (virtual private server)

2. Using a platform as a service (PaaS) offering like Heroku or my old employers,
PythonAnywhere

With a Paa$, you don’t get your own server; instead, youre renting a “service” at a
higher level of abstraction. Particularly for small sites, a PaaS offers many advantages
over running your own server, and I would definitely recommend looking into them.
We're not going to use a PaaS in this book, however, for several reasons. The main
reason is that I want to avoid endorsing specific commercial providers. Secondly, all
the Paa$ offerings are quite different, and the procedures to deploy to each vary a
lot—learning about one doesn’t necessarily tell you about the others. Any one of them

might radically change their process or business model by the time you get to read
this book.

Instead, we'll learn just a tiny bit of good old-fashioned server admin, including SSH
and manual debugging. Theyre unlikely to ever go away, and knowing a bit about
them will get you some respect from all the grizzled dinosaurs out there.

Spinning Up Our Own Server

I'm not going to dictate how you spin up a server—whether you choose Amazon
AWS, Rackspace, DigitalOcean, your own server in a datacentre, or a Raspberry Pi in
a cupboard under the stairs, any solution should be fine, as long as:

* Your server is running Ubuntu 22.04 (aka “Jammy/LTS”).
» You have root access to it.
o It’s on the public internet (i.e., it has a public IP address).

» You can SSH into it (I recommend using a nonroot user account, with sudo
access, and public/private key authentication).

I'm recommending Ubuntu as a distro because it’s popular and I'm used to it.! If you
know what youre doing, you can probably get away with using something else, but I
won't be able to help you as much if you get stuck.

1 Linux as an operating system comes in lots of different flavours, called “distros” or “distributions”. The
differences between them and their relative pros and cons are, like any seemingly minor detail, of tremendous
interest to the right kind of nerd. We don’t need to care about them for this book. As I say, Ubuntu is fine.

246 | Chapter 11: Getting a Server Ready for Deployment

Step-by-Step Instructions for Spinning Up a Server

I appreciate that, if you've never started a Linux server before and you have absolutely
no idea where to start, this is a big ask, especially when I'm refusing to “dictate”
exactly how to do it.

With that in mind, I wrote a very brief guide on GitHub. I didn’t want to include it
in the book itself because, inevitably, I do end up specifying a specific commercial
provider in there.

Some people get to this chapter, and are tempted to skip the
domain bit and the “getting a real server” bit, and just use a VM on
their own PC. Don’t do this. It’s not the same, and you’ll have more
difficulty following the instructions, which are complicated enough
as it is. If you're worried about cost, have a look at the guide I wrote
for free options.

General Tip for Working with Infrastructure

The most important lesson to remember over the next few chapters is, as always but
more than ever, to work incrementally, make one change at a time, and run your tests
frequently.

When things (inevitably) go wrong, resist the temptation to flail about and make
other unrelated changes in the hope that things will start working again; instead, stop,
go backwards if necessary to get to a working state, and figure out what went wrong
before moving forwards again.

It’s just as easy to fall into the Refactoring Cat trap when working with infrastructure!

Getting a Domain Name

We're going to need a couple of domain names at this point in the book—they can
both be subdomains of a single domain. I'm going to use superlists.ottg.co.uk and
staging.ottg.co.uk. If you don’t already own a domain, this is the time to register onel!
Again, this is something I really want you to actually do. If you've never registered a
domain before, just pick any old registrar and buy a cheap one—it should only cost
you $5 or so, and I promise seeing your site on a “real” website will be a thrill.

Getting a Domain Name | 247

https://github.com/hjwp/Book-TDD-Web-Dev-Python/blob/main/server-quickstart.md

Configuring DNS for Staging and Live Domains

We don’t want to be messing about with IP addresses all the time, so we should point
our staging and live domains to the server. At my registrar, the control screens looked
a bit like Figure 11-1.

Add DNS record
Type * * Required fields
A v
TTL * Unit *
10800 & seconds v

The minimum TTL value for Gandi's LiveDNS is 300 seconds.
Name *

staging .ottg.co.uk
To create a subdomain, indicate what you want to go before
the domain in the field above. Leave the field empty to create a

record for just the bare domain.

IPv4 Address *

165.232.110.81

‘ Cancel

Figure 11-1. Domain setup

In the DNS system, pointing a domain at a specific IP address is referred to as an
“A-record”? All registrars are slightly different, but a bit of clicking around should
get you to the right screen in yours. You'll need two A-records: one for the staging
address and one for the live one. No need to worry about any other type of record.

DNS records take some time to “propagate” around the world (it'’s controlled by a
setting called “TTL) time to live), so once you've set up your A-record, you can
check its progress on a “propagation checking” service like this one: https://www.what
smydns.net/#A/staging.ottg.co.uk.

2 Strictly speaking, A-records are for IPv4, and you can also use AAAA-records for IPv6. Some cheap providers
only support IPv6, and there’s nothing wrong with that.

248 | Chapter 11: Getting a Server Ready for Deployment

https://www.whatsmydns.net/#A/staging.ottg.co.uk
https://www.whatsmydns.net/#A/staging.ottg.co.uk

I’'m planning to host my staging server at staging.ottg.co.uk.

Ansible

Infrastructure-as-code tools, also called “configuration management” tools, come in
lots of shapes and sizes. Chef and Puppet were two of the original ones, and you'll
probably come across Terraform, which is particularly strong on managing cloud
services like AWS.

We're going to use the infrastructure automation tool Ansible—because it’s relatively
popular, because it can do everything we need it to, because I'm biased that it happens
to be written in Python, and because it's probably the one I'm personally most
familiar with.

Another tool could probably have worked just as well! The main thing to remember
is the concept, which is that, as much as possible we want to manage our server
configuration declaratively, by expressing the desired state of the server in a particu-
lar configuration syntax, rather than specifying a procedural series of steps to be
followed one by one.

Ansible Versus SSH: How We'll Talk to Our Server

Figure 11-2 shows how we'll interact with our server using SSH, Ansible, and our FTs.

Server Server
Install
————p| Docker
—
—>| ————
Tests our app Upload Our Docker
onceit’s ;
running, image
using a web ——
browser, J Write .
over HTTP A Config files
Sends commands Canrun on an interactive)
(over SSH protocol) terminal on the server J
Dev machine Dev machine
)
q SSH .
[Ansible][command Iine] Ansible
—_—
FTs

Figure 11-2. Ansible and SSH

Ansible | 249

Our objective is to use Ansible to automate the process of deploying to our server:
making sure that the server has everything it needs to run our app (mostly, Docker
and our container image), and then telling it to start or restart our container.

Now and again, we'll want to “log on” to the server and have a look around manually;
for that, we'll use the ssh command line on our computer, which can let us open up
an interactive console on the server.

Finally, we'll run our FTs against the server, once it's running our app, to make sure
it’s all working correctly.

Start by Making Sure We Can SSH In

At this point and for the rest of the book, I'm assuming that you have a nonroot user
account set up, and that it has sudo privileges, so whenever we need to do something
that requires root access, we use sudo, (or “become” in Ansible terminology); I'll be
explicit about that in the various instructions that follow.

My user is called “elspeth’, but you can call yours whatever you like! Just remember
to substitute it in all the places I've hardcoded it. See the guide I wrote (“Step-by-Step
Instructions for Spinning Up a Server” on page 247) if you need tips on creating a
sudo user.

Ansible uses SSH under the hood to talk to the server, so checking we can log in
“manually” is a good first step:

$ ssh elspeth@staging.ottg.co.uk
elspeth@server$: echo "hello world"
hello world

Look out for that elspeth@server in the command-line listings in
this chapter. It indicates commands that must be run on the server,
as opposed to commands you run on your own PC.

Use WSL on Windows

Ansible will not run natively on Windows (see the docs) but you can use the Win-
dows Subsystem for Linux (WSL), a sort of mini-Linux that Microsoft has made to
run inside Windows.

Follow Microsoft’s instructions for setting up WSL.

Once inside your WSL environment, you can navigate to your project directory
on the host Windows filesystem at /mnt/c/Users/yourusername/Projects/superlists, for
example.

250 | Chapter 11: Getting a Server Ready for Deployment

https://docs.ansible.com/ansible/latest/os_guide/intro_windows.html#using-windows-as-the-control-node
https://learn.microsoft.com/en-us/windows/wsl/setup/environment

You’ll need to use a different virtualenv for WSL:

yourusername@wsl: cd /mnt/c/Users/yourusername/Projects/superlists
yourusername@wsl: python -m venv .venv-wsl
yourusername@wsl: source .venv-wsl/bin/activate

If you are using public key authentication, it’s probably simplest to generate a new
SSH keypair, and add it to home/elspeth/.ssh/authorized_keys on the server:

yourusername@wsl: ssh-keygen

[..]
yourusername@wsl: cat ~/.ssh/.pub*
copy the public key to your clipboard,

I'd suggest you only use WSL when you need to use Ansible.
The alternative is to switch your whole dev environment to WSL, and move your

source code in there, but you might need to overcome a few hurdles around things
like networking.

Debugging Issues with SSH

Here’s a few things to try if you can’t SSH in.

Debugging network connectivity
First, check network connectivity: can we even reach the server?

$ ping staging.ottg.co.uk

if that doesn't work, try the IP address
$ ping 193.184.215.14 # or whatever your IP 1is

also see if the domain name resolves
$ nslookup staging.ottg.co.uk

If the IP works and the domain name doesn’t, and/or if the nslookup doesn’t
work, you should go check your DNS config at your registrar. You may just need
to wait! Try a DNS propagation checker like https://www.whatsmydns.net/#A/stag
ing.ottg.co.uk.

Start by Making Sure We CanSSHIn | 251

https://www.whatsmydns.net/#A/staging.ottg.co.uk
https://www.whatsmydns.net/#A/staging.ottg.co.uk

Debugging SSH auth issues

Next, let’s try and debug any possible issues with authentication.

First, your hosting provider might have the option to open a console directly from
within their web UI Thats worth trying, and if there are any problems there, then
you probably need to restart your server, or perhaps stop it and create a new one.

It's worth double-checking your IP address at this point, in your
provider’s server control panel pages.

Next, we can try debugging our SSH connection:

try the -v flag which turn on verbose/debug output

$ ssh -v elspeth@staging.ottg.uk

OpenSSH_9.7p1, LibreSSL 3.3.6

debugl: Reading configuration data ~/.ssh/config

debugl: Reading configuration data ~/.colima/ssh_config

debugl: Reading configuration data /etc/ssh/ssh_config

debugl: /etc/ssh/ssh_config line 21: include /etc/ssh/ssh_config.d/* matched no files
debugl: /etc/ssh/ssh_config line 54: Applying options for *

debugl: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling

debugl: Connecting to staging.ottg.uk port 22.

ssh: Could not resolve hostname staging.ottg.uk: nodename nor servname provided, or not
known

oops I made a typo! 1t should be ottg.co.uk not ottg.uk

If that doesn’t help, try switching to the root user instead:

$ ssh -v root@staging.ottg.co.uk

[...]

debugl: Authentications that can continue: publickey

debugl: Next authentication method: publickey

debugl: get_agent_identities: bound agent to hostkey

debugl: get_agent_identities: agent returned 1 keys

debugl: Will attempt key: ~/.ssh/id_ed25519 ED25519 SHA256:9ZLxb9zCuGVT1Dm8 [...]
debugl: Will attempt key: ~/.ssh/id_rsa

debugl: Will attempt key: ~/.ssh/id_ecdsa

debugl: Will attempt key: ~/.ssh/id_ecdsa_sk

debugl: Will attempt key: ~/.ssh/id_ed25519_sk

debugl: Will attempt key: ~/.ssh/id_xmss

debugl: Will attempt key: ~/.ssh/id_dsa

debugl: Offering public key: ~/.ssh/id_ed25519 [...]

debugl: Server accepts key: ~/.ssh/id_ed25519 [...]

Authenticated to staging.ottg.co.uk ([165.232.110.81]:22) using "publickey".

That one actually worked! But in the verbose output, you can watch to make sure it
finds the right SSH keys, for example.

252 | Chapter 11: Getting a Server Ready for Deployment

If root works but your nonroot user doesn’t, you may need
to add your public key to /home/yournonrootuser/.ssh/author
ized_keys.

If root doesn’t work either, you may need to add your public SSH key to your
account settings page, via your provider’s web UL That may or may not take effect
immediately; you might need to delete your old server and create a new one.

Remember, that probably means a new IP address!

Security

A serious discussion of server security is beyond the scope of this book, and I'd
warn against running your own servers without learning a good bit more about
it. (One reason people choose to use a PaaS to host their code is that it means
slightly fewer security issues to worry about.) If youd like a place to start, here’s as
good a place as any: https://blog.codelitt.com/my-first-10-minutes-on-a-server-primer-
for-securing-ubuntu.

I can definitely recommend the eye-opening experience of installing Fail2Ban and
watching its logfiles to see just how quickly it picks up on random drive-by attempts
to brute force your SSH login. The internet is a wild place!

Installing Ansible

Assuming we can reliably SSH into the server, it’s time to install Ansible and make
sure it can talk to our server as well.

Take a look at the Ansible installation guide for all the various options, but probably
the simplest thing to do is to install Ansible into the virtualenv on our local machine
(Ansible doesn’t need to be installed on the server):

$ pip install ansible
we also need the Docker SDK for the ansible/docker integration to work:
$ pip install docker

Start by Making Sure We CanSSHIn | 253

https://blog.codelitt.com/my-first-10-minutes-on-a-server-primer-for-securing-ubuntu
https://blog.codelitt.com/my-first-10-minutes-on-a-server-primer-for-securing-ubuntu
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html

Checking Ansible Can Talk to Our Server

This is the last step in ensuring we’re ready: making sure Ansible can talk to our
server.

At the core of Ansible is what’s called a “playbook”, which describes what we want to
happen on our server. Let’s create one now. It’s probably a good idea to keep it in a
folder of its own:

mkdir infra

And here’s a minimal playbook whose job is just to “ping” the server, to check we can
talk to it. It’s in a format called YAML (yet another markup language) which, if you've
never come across before, you will soon develop a love-hate relationship for:*

infra/deploy-playbook.yaml (ch111001)
- hosts: all
tasks:
- name: Ping to make sure we can talk to our server
ansible.builtin.ping:

We won't worry too much about the syntax or how it works at the moment; let’s just
use it to make sure everything works.

To invoke Ansible, we use the command ansible-playbook, which will have been
installed into your virutalenv when we did the pip install ansible earlier.

Here’s the full command we’ll use, with an explanation of each part:

ansible-playbook \
--user=elspeth \ @
-1 staging.ottg.co.uk, \ @O
infra/deploy-playbook.yaml \ @
-VVv

@ The --user= flag lets us specify the user to use to authenticate with the server.
This should be the same user you can SSH with.

@ The -1 flag specifies what server to run against.
© Note the trailing comma after the server hostname. Without this, it won’t work

(it's there because Ansible is designed to work against multiple servers at the
same time).*

3 The “love” part is that YAML is very easy to read and scan through at a glance. The “hate” part is that the
actual syntax is surprisingly fiddly to get right: the difference between lists and key/value maps is subtle and I
can never quite remember it, honestly.

254 | Chapter 11: Getting a Server Ready for Deployment

O Next comes the path to our playbook, as a positional argument.

© Finally the -v or -vv flags control how verbose the output will be—useful for
debugging!

Here’s some example output when I run it:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv
ansible-playbook [core 2.17.5]

config file = None

configured module search path = ['~/.ansible/plugins/modules’,
' Jusr/share/ansible/plugins/modules']

ansible python module location =
...goat-book/.venv/1lib/python3.14/site-packages/ansible

ansible collection location =
~/.ansible/collections:/usr/share/ansible/collections

executable location = ...goat-book/.venv/bin/ansible-playbook

python version = 3.14.0 (main, Oct 11 2024, 22:59:05) [Clang 15.0.0
(clang-1500.3.9.4)] (...goat-book/.venv/bin/python)

jinja version = 3.1.4

libyaml = True
No config file found; using defaults
Skipping callback 'default', as we already have a stdout callback.
Skipping callback 'minimal', as we already have a stdout callback.
Skipping callback 'oneline', as we already have a stdout callback.

PLAYBOOK: deploy-playbook.yaml
1 plays in infra/deploy-playbook.yaml

PLAY [all]

TASK [Gathering Facts]
task path: ...goat-book/infra/deploy-playbook.yaml:1

[WARNING]: Platform linux on host staging.ottg.co.uk is using the discovered
Python interpreter at /usr/bin/python3.10, but future

installation of another Python interpreter could change the meaning of that
path. See https://docs.ansible.com/ansible-
core/2.17/reference_appendices/interpreter_discovery.html for more information.
ok: [staging.ottg.co.uk]

TASK [Ping to make sure we can talk to our server]
task path: ...goat-book/infra/deploy-playbook.yaml:3
ok: [staging.ottg.co.uk] => {"changed": false, "ping": "pong"}

PLAY RECAP
staging.ottg.co.uk : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
Looking good! In the next chapter, we'll use Ansible to get our app up and running
on our server. Il be a thrill, I promise!

4 The “1” in the -1 flag stands for “inventory”. Using the -1 flag is actually a little unconventional. If you read the
Ansible docs, you'll find they usually recommend having an “inventory file”, which lists all your servers, along
with various bits of qualifying metadata. That’s overkill for our use case though!

Start by Making Sure We CanSSHIn | 255

https://docs.ansible.com/ansible-

Server Prep Recap

VPS versus PaaS
We discussed the trade-offs of running your own server versus opting for a PaaS.
A VPS is great for learning, but you might find the lower admin overhead of a
PaaS makes sense for real projects.

Domain name registration and DNS
This tends to be something you only do once, but buying a domain name and
pointing it at your server is an unavoidable part of hosting a web app. Now you
know your TTLs from your A-records!

SSH
SSH is the Swiss Army knife of server admin. The dream is that everything is
automated, but now and again you just gotta open up a shell on that box!

Ansible
Ansible will be our deployment automation tool. We've had the barest of teasers,
but we have it installed and were ready to learn how to use it.

256 | Chapter 11: Getting a Server Ready for Deployment

CHAPTER 12

Infrastructure as Code: Automated
Deployments with Ansible

Automate, automate, automate.

—Cay S. Horstmann

Now that our server is up and running, we want to install our app on it, using our
Docker image and container.

We could do this manually, but a key insight of modern software engineering is that
small, frequent deployments are a must.

This insight about the importance of frequent deployments we owe
to Nicole Forsgren and the State of DevOps reports. They are some
of the only really firm science we have in the field of software
engineering.

Frequent deployments rely on automation,' so we’ll use Ansible.

1 Some readers mentioned a worry that using automation tools would leave them with less understanding of
the underlying infrastructure. But in fact, using automation requires deep understanding of the things youre
automating. So, don’t worry; we'll be taking the time to look under the hood and make sure we know how
things work.

257

https://nicolefv.com/writing

Automation is also key to making sure our tests give us true confidence over our
deployments. If we go to the trouble of building a staging server,” we want to make
sure that it’s as similar as possible to the production environment. By automating
the way we deploy, and using the same automation for staging and prod, we give
ourselves much more confidence.

The buzzword for automating your deployments these days is “infrastructure as code”
(TaC).

Why not ping me a note once your site is live on the web, and send
me the URL? It always gives me a warm and fuzzy feeling...Email
me at obeythetestinggoat@gmail.com.

A First Cut of an Ansible Playbook for Deployment

Let’s start using Ansible a little more seriously. We're not going to jump all the way to
the end though! Baby steps, as always. Let’s see if we can get it to run a simple “hello
world” Docker container on our server.

2 Depending on where you work, what I'm calling a “staging” server, some people would call a “development”
server, and some others would also like to distinguish “preproduction” servers. Whatever we call it, the point
is to have somewhere we can try our code out in an environment that’s as similar as possible to the real
production server. As we'll see, Docker isn’t quite enough!

258 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

mailto:obeythetestinggoat@gmail.com

Let’s delete the old content, which had the “ping”, and replace it with something like
this:

infra/deploy-playbook.yaml (ch121001)
- hosts: all
tasks:

- name: Install docker @
ansible.builtin.apt: @
name: docker.io ©

state: latest
update_cache: true
become: true

- name: Run test container
community.docker.docker_container:
name: testcontainer
state: started
image: busybox
command: echo hello world
become: true

© An Ansible playbook is a series of “tasks”; we now have more than one. In
that sense, it’s still quite sequential and procedural, but the individual tasks
themselves are quite declarative. Each one usually has a human-readable name
attribute.

@ Each task uses an Ansible “module” to do its work. This one uses the built
in.apt module, which provides a wrapper around the apt Debian and Ubuntu
package management tool.

© Each module then provides a bunch of parameters that control how it works.
Here, we specify the name of the package we want to install (“docker.i0™) and tell
it to update its cache first, which is required on a fresh server.

Most Ansible modules have pretty good documentation—check out the builtin.apt
one for example; I often skip to the “Examples” section.

3 In the official Docker installation instructions, you'll see a recommendation to install Docker via a private
package repository. I wanted to avoid that complexity for the book, but you should probably follow those
instructions in a real-world scenario, to make sure your version of Docker has all the latest security patches.

AFirst Cut of an Ansible Playbook for Deployment | 259

https://docs.ansible.com/ansible/latest/collections/ansible/builtin/apt_module.html#examples

Let’s rerun our deployment command, ansible-playbook, with the same flags we
used in the last chapter:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv
ansible-playbook [core 2.16.3]
config file = None
[...]
No config file found; using defaults
BECOME password:
Skipping callback 'default', as we already have a stdout callback.
Skipping callback 'minimal', as we already have a stdout callback.
Skipping callback 'oneline', as we already have a stdout callback.

PLAYBOOK: deploy-playbook.yaml
1 plays in infra/deploy-playbook.yaml

PLAY [all]

TASK [Gathering Facts]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:2
ok: [staging.ottg.co.uk]

PLAYBOOK: deploy-playbook.yaml
1 plays in infra/deploy-playbook.yaml

TASK [Install docker]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:6

ok: [staging.ottg.co.uk] => {"cache_update_time": 1708981325, "cache_updated":
true, "changed": false}

TASK [Install docker]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:6

changed: [staging.ottg.co.uk] => {"cache_update_time": [...]

"cache_updated": true, "changed": true, "stderr": "", "stderr_lines": [],
"stdout": "Reading package lists...\nBuilding dependency tree...\nReading [...]
information...\nThe following additional packages will be installed:\n
wmdocker\nThe following NEW packages will be installed:\n docker wmdocker\n@®

TASK [Run test container]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:13

changed: [staging.ottg.co.uk] => {"changed": true, "container":
{"AppArmorProfile": "docker-default", "Args": ["hello", "world"], "Config":
[...]

PLAY RECAP
staging.ottg.co.uk : ok=3 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
I don’t know about you, but whenever I make a terminal spew out a stream of output,
I like to make little brrp brrp brrp noises—a bit like the computer, Mother, in Alien.
Ansible scripts are particularly satisfying in this regard.

260 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

You may need to use the --ask-become-pass argument to
ansible-playbook if you get an error, “Missing sudo password”*

Idempotence and Declarative Configuration

IaC tools like Ansible aim to be “declarative”, meaning that, as much as possible, you
specify the desired state that you want, rather than specifying a series of steps to get
there.

This concept goes along with the idea of “idempotence’, which is when you want a
thing that has the same effect, whether it is run just once or multiple times.

An example is the apt module that we used to install Docker. It doesn’t crash if
Docker is already installed and, in fact, Ansible is smart enough to check first before
trying to install anything. It makes no difference whether you run it once or many
times.

In contrast, adding an item to our to-do list is not currently idempotent. If I add “Buy
milk” and then I add “Buy milk” again, I end up with two items that both say “Buy
milk”. (We might fix that later, mind you.)

SSHing Into the Server and Viewing Container Logs

Ansible looks like it’s doing its job, but let’s practice our SSH skills, and do some good
old-fashioned system admin. Let’s log in to our server and see if we can see any actual
evidence that our container has run.

After we ssh in, we can use docker ps, just like we do on our own machine. We
pass the -a flag to view all containers, including old/stopped ones. Then we can use
docker 1logs to view the output from one of them:

4 You can also look into “passwordless sudo” if it’s all just too annoying, but that does have security
implications.

SSHing Into the Server and Viewing Container Logs | 261

$ ssh elspeth@staging.superlists.ottg.co.uk
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-67-generic x86_64)

[...]

elspeth@server$ sudo docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

3a2e600fbe77 busybox "echo hello world" 2 days ago Exited (0) 10
minutes ago testcontainer

elspeth@server:$ sudo docker logs testcontainer
hello world

Look out for that elspeth@server in the command-line listings in
this chapter. It indicates commands that must be run on the server,
as opposed to commands you run on your own PC.

SSHing in to check things worked is a key server debugging skill! It's something we
want to practice on our staging server, because ideally we’ll want to avoid doing it on
production machines.

Docker Debugging

Here’s a rundown of some of the debugging tools—some we've already seen and some
new ones we'll use in this chapter. When things don’t go to plan, they can help shed
some light. All of them should be run on the server, inside an SSH session:

* You can check the Container logs using docker logs superlists.

* You can run things “inside” the container with docker exec <container-id-or-
name> <cmd>. A couple of useful examples include docker exec superlists
env, to print environment variables, and just docker exec -it superlists
bash to open an interactive Bash shell, inside the container.

 You can get lots of detailed info on the container using docker inspect super
lists. This is a good place to go check on environment variables, port mappings,
and exactly which image was running, for example.

« You can get detailed info on the image with docker image inspect superlists.
You might need this to check the exact image hash, to make sure it’s the same one
you built locally.

262 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

Allowing Rootless Docker Access

Having to use sudo or become=True to run Docker commands is a bit of a pain. If we
add our user to the docker group, we can run Docker commands without sudo:

infra/deploy-playbook.yaml (ch121001-1)
- name: Install docker

[...]

name: Add our user to the docker group, so we don't need sudo/become
ansible.builtin.user: @

name: '{{ ansible_user }}' @

groups: docker

append: true # don't remove any existing groups.
become: true

- name: Reset ssh connection to allow the user/group change to take effect
ansible.builtin.meta: reset_connection ©

- name: Run test container @

[...]

@ We use the builtin.user module to add our user to the docker group.

O The{{ ... }} syntax enables us to interpolate some variables into our config
file, much like in a Django template. ansible_user will be the user we’re using to
connect to the server—i.e., “elspeth”, in my case.

© As per the task name, we need this for the user/group change to take effect.
Strictly speaking, this is only needed the first time we run the script; if you've got
some time, you can read up on how to make tasks conditional and configure it to
only run if the builtin.user tasks has actually made a change.

O We can remove the become: true from this task and it should still work.

Allowing Rootless Docker Access | 263

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_conditionals.html

Let’s run that:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv

PLAYBOOK: deploy-playbook

.yaml

1 plays in infra/deploy-playbook.yaml

PLAY [all]

TASK [Gathering Facts]
[...]
ok: [staging.ottg.co.uk]

TASK [Install docker]
[...]

ok: [staging.ottg.co.uk] => {"cache_update_time": 1738767216, "cache_updated":

true, "changed": false}

TASK [Add our user to the docker group, so we don't need sudo/become] **¥**x*k*

[...]
changed: [staging.ottg.co

TASK [Reset ssh connection to allow the user/group change to take effect] *****

[...]

META: reset connection

TASK [Run test container]
[...]
changed: [staging.ottg.co

.uk] => {"append":

, "group": 1000, "groups": "docker", [...]

false, "changed": true, [...]

.uk] => {"changed": true, "container": [...]

PLAY RECAP
staging.ottg.co.uk
skipped=0 rescued=0

And check that it worked:

elspeth@server$ docker

CONTAINER ID IMAGE
PORTS NAMES
bd3114e43f55 busybox

6 seconds ago

elsepth@server$ docker
hello world
hello world

: ok=4 changed=2 unreachable=0 failed=0
ignored=0
ps -a # no sudo yay!
COMMAND CREATED

"echo hello world"
testcontainer

logs testcontainer

12 minutes ago

STATUS

Exited (0)

264

| Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

Sure enough, we no longer need sudo, and we can see that a new version of the
container just ran.

You know, that’s worthy of a commit!

$ git add infra/deploy-playbook.yaml
$ git commit -m "Made a start on an ansible playbook for deployment"

Let’s move on to trying to get our actual Docker container running on the server. As
we go through, you'll see that we're going to work through very similar issues to the
ones we've already figured our way through in the last couple of chapters:

« Configuration
o Networking
o The database

Getting Our Image Onto the Server

Typically, you can “push” and “pull” container images to a “container registry”—
Docker offers a public one called Docker Hub, and organisations will often run
private ones, hosted by cloud providers like AWS.

So your process of getting an image onto a server is usually:

1. Push the image from your machine to the registry.

2. Pull the image from the registry onto the server. Usually this step is implicit,
in that you just specify the image name in the format registry-url/image-
name:tag, and then docker run takes care of pulling down the image for you.

But I don’t want to ask you to create a Docker Hub account, nor implicitly endorse
any particular provider, so we're going to “simulate” this process by doing it manually.

Getting Our Image Onto the Server | 265

It turns out you can “export” a container image to an archive format, manually copy
that to the server, and then reimport it. In Ansible config, it looks like this:

infra/deploy-playbook.yaml (ch121002)

name: Install docker

[...]
name: Add our user to the docker group, so we don't need sudo/become
[...]

name: Reset ssh connection to allow the user/group change to take effect

[...]

name: Export container image locally @
community.docker.docker_image:
name: superlists
archive_path: /tmp/superlists-img.tar
source: local
delegate_to: 127.0.0.1

name: Upload image to server @
ansible.builtin.copy:
src: /tmp/superlists-img.tar
dest: /tmp/superlists-img.tar

name: Import container image on server ©
community.docker.docker_image:
name: superlists
load_path: /tmp/superlists-img.tar
source: load
force_source: true @
state: present

name: Run container
community.docker.docker_container:
name: superlists
image: superlists @
state: started
recreate: true @

266

Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

We export the Docker image to a .tar file by using the docker_image module with
the archive_path set to a tempfile, and setting the delegate_to attribute to say
we're running that command on our local machine rather than the server.

We then use the copy module to upload the .tar file to the server.

And we use docker_image again, but this time with load_path and source:
load to import the image back on the server.

The force_source flag tells the server to attempt the import, even if an image of
that name already exists.

We change our “run container” task to use the superlists image, and we'll use
that as the container name too.

Similarly to source: Tload, the recreate argument tells Ansible to re-create
the container even if there’s already one running whose name and image match
“superlists”

If you see an error saying “Error connecting: Error while fetch-
ing server API version’, it may be because the Python Docker
software development kit (SDK) can’t find your Docker dae-
mon. Try restarting Docker Desktop if youre on Windows or
a Mac. If youre not using the standard Docker engine—with
Colima or Podman, for example—you may need to set the
DOCKER_HOST environment variable (e.g., DOCKER_HOST=unix:///
$HOME/ .colima/default/docker.sock) or use a symlink to point
to the right place. See the Colima FAQ or Podman docs.

Getting Our Image Onto the Server | 267

https://oreil.ly/gPJmq
https://oreil.ly/Hqoma

Let’s run the new version of our playbook, and see if we can upload a Docker image to
our server and get it running:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv
[...]

PLAYBOOK: deploy-playbook.yaml
1 plays in infra/deploy-playbook.yaml

PLAY [all]

TASK [Gathering Facts]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:2
ok: [staging.ottg.co.uk]

TASK [Install docker]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:5

ok: [staging.ottg.co.uk] => {"cache_update_time": 1708982855, "cache_updated":
false, "changed": false}

TASK [Add our user to the docker group, so we don't need sudo/become] **¥**x%%*
task path: ...goat-book/infra/deploy-playbook.yaml:11

ok: [staging.ottg.co.uk] => {"append": false, "changed": false, [...]

TASK [Reset ssh connection to allow the user/group change to take effect] *****
task path: ...goat-book/infra/deploy-playbook.yaml:17
META: reset connection

TASK [Export container image locally]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:20

changed: [staging.ottg.co.uk -> 127.0.0.1] => {"actions": ["Archived image
superlists:latest to /tmp/superlists-img.tar, overwriting archive with image
11ff3b83873f0fea93f8ed01bb4abf8b3ab2afa15637ce45d71ecalfe98beab34 named
superlists:latest"], "changed": true, "image": {"Architecture": "amd64",

[...]

TASK [Upload image to server]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:27

changed: [staging.ottg.co.uk] => {"changed": true, "checksum":
"313602fc0cO056c9255eec52e38283522745b612¢c", "dest": "/tmp/superlists-img.tar",
[...]

TASK [Import container image on server]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:32

changed: [staging.ottg.co.uk] => {"actions": ["Loaded image superlists:latest
from /tmp/superlists-img.tar"], "changed": true, "image": {"Architecture":
"amd64", "Author": "", "Comment": "buildkit.dockerfile.v@", "Config":

[...]

TASK [Run container]
task path: ...goat-book/superlists/infra/deploy-playbook.yaml:40

changed: [staging.ottg.co.uk] => {"changed": true, "container":
{"AppArmorProfile": "docker-default", "Args": ["--bind", ":8888",
"superlists.wsgi:application"], "Config": {"AttachStderr": true, "AttachStdin":
false, "AttachStdout": true, "Cmd": ["gunicorn", "--bind", ":8888",
"superlists.wsgi:application"], "Domainname": "", "Entrypoint": null, "Env":
[...]

staging.ottg.co.uk : ok=7 changed=4 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

268

| Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

That looks good!

For completeness, let’s also add a step to explicitly build the image locally (this means
we aren't dependent on having run docker build locally):

infra/deploy-playbook.yaml (ch121003)

- name: Reset ssh connection to allow the user/group change to take effect

[...]

- name: Build container image locally
community.docker.docker_image:
name: superlists
source: build
state: present
build:
path: ..
platform: linux/amd64 @
force_source: true
delegate_to: 127.0.0.1

- name: Export container image locally

[...]

© 1 needed this platform attribute to work around an issue with compatibility
between Apple’s new ARM-based chips and our server’s x86/AMD64 architec-
ture. You could also use this platform: to cross-build Docker images for a
Raspberry Pi from a regular PC, or vice versa. It does no harm in any case.

Taking a Look Around Manually

Time to take another proverbial look under the hood, to check whether it really
worked. Hopefully we'll see a container that looks like ours:

$ ssh elspeth@staging.superlists.ottg.co.uk
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-67-generic x86_64)
[...]

elspeth@server$ docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS

PORTS NAMES

3a2e600fbe77 busybox "echo hello world" 2 days ago Exited (0) 10
minutes ago testcontainer

129e36a42190 superlists "/bin/sh -c \'gunicor.." About a minute ago
Exited (3) About a minute ago superlists

OK! We can see our “superlists” container is there now, both named “superlists” and
based on an image called “superlists”.

The Status: Exited is a bit more worrying though.

Getting Our Image Onto the Server | 269

Still, that’s a good bit of progress, so let’s do a commit (back on your own machine):

$ git commit -am"Build our image, use export/import to get it on the server, try and run it"

Docker logs

Now, back on the server, let’s take a look at the logs of our new container to see if we
can figure out what's happened:

elspeth@server:$ docker logs superlists

[2024-02-26 22:19:15 +0000] [1] [INFO] Starting gunicorn 21.2.0

[2024-02-26 22:19:15 +0000] [1] [INFO] Listening at: http://0.0.0.0:8888 (1)
[2024-02-26 22:19:15 +0000] [1] [INFO] Using worker: sync

[...]

File "/src/superlists/settings.py", line 22, in <module>
SECRET_KEY = os.environ["DJANGO_SECRET_KEY"]

AAANAAA

File "<frozen os>", line 685, in getitem
KeyError: DJANGO_SECRET_KEY
[2024-02-26 22:19:15 +0000] [7] [INFO] Worker exiting (pid: 7)
[2024-02-26 22:19:15 +0000] [1] [ERROR] Worker (pid:7) exited with code 3
[2024-02-26 22:19:15 +0000] [1] [ERROR] Shutting down: Master
[2024-02-26 22:19:15 +0000] [1] [ERROR] Reason: Worker failed to boot.

Oh, whoops; it can’t find the DJANGO_SECRET_KEY environment variable. We need to
set those environment variables on the server too.

Setting Environment Variables and Secrets

When we run our container manually locally with docker run, we can pass in
environment variables with the -e flag. As we'll see, it’s fairly straightforward to repli-
cate that with Ansible, using the env parameter for the docker.docker_contatiner
module that we're already using.

But there is at least one “secret” value that we don’t want to hardcode into our Ansible
YAML file: the Django SECRET_KEY setting.

There are many different ways of dealing with secrets; different cloud providers have
their own tools. There’s also HashiCorp Vault—it has varying levels of complexity and
security.

We don’t have time to go into detail on those in this book. Instead, we'll generate a
one-off secret key value from a random string, and we'll store it to a file on disk on
the server. That’s a reasonable amount of security for our purposes.

270 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

So, here’s the plan:

3.

. We generate a random, one-off secret key the first time we deploy to a new

server, and we store it in a file on disk.

We read the secret key value back from that file to put it into the container’s
environment variables.

We set the rest of the env vars we need as well.

Here’s what it looks like:

infra/deploy-playbook.yaml (ch121005)
- name: Import container image on server

[...]

name: Ensure .secret-key file exists
the intention is that this only happens once per server
ansible.builtin.copy: @
dest: ~/.secret-key
content: "{{ lookup('password', '/dev/null length=32 chars=ascii_letters') }}" @
mode: 0600
force: false # do not recreate file if it already exists.

name: Read secret key back from file
ansible.builtin.slurp: ©

src: ~/.secret-key
register: secret_key

- name: Run container
community.docker.docker_container:
name: superlists
image: superlists
state: started
recreate: true

env: O
DJANGO_DEBUG_FALSE: "1"
DJANGO_SECRET_KEY: "{{ secret_key.content | bé4decode }}" @
DJANGO_ALLOWED_HOST: "{{ inventory_hostname }}" @
DJANGO_DB_PATH: "/home/nonroot/db.sqlite3"

The builtin.copy module can be used to copy local files up to the server, and
also, as were demonstrating here, to populate a file with an arbitrary string
content.

This lookup('password') thing is how we'll get a random string of characters. I
copy-pasted it from Stack Overflow. Come on; there’s no shame in that. The rest
of the builtin.copy directive is designed to save the value to disk, but only if the
file doesn’t already exist. The 0600 permission will ensure that only the “elspeth”
user can read it.

Setting Environment Variables and Secrets | 271

(6]

The slurp command reads the contents of a file on the server, and we can
register its contents into a variable. Slightly annoyingly, it uses base64 encoding
(it’s so you can also use it to read binary files). Anyway, the idea is, even though
we don't rewrite the file on every deploy, we do reread the value on every deploy.

Here’s the env parameter for our container.

Here’s how we get our original value for the secret key, using the | b64decode to
decode it back to a regular string.

inventory_hostname represents the hostname of the current server we're deploy-
ing to, so staging.ottg.co.uk in our case.

Let’s run this latest version of our playbook now:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -v
[...]

PLAYBOOK: deploy-playbook.yaml
1 plays in infra/deploy-playbook.yaml

PLAY [all]

TASK [Gathering Facts]
ok: [staging.ottg.co.uk]

TASK [Install docker]
ok: [staging.ottg.co.uk] => {"cache_update_time": 1709136057, "cache_updated":
false, "changed": false}

TASK [Build container image locally]
changed: [staging.ottg.co.uk -> 127.0.0.1] => {"actions": ["Built image [...]

TASK [Export container image locally]
changed: [staging.ottg.co.uk -> 127.0.0.1] => {"actions": ["Archived image [...]

TASK [Upload image to server]
changed: [staging.ottg.co.uk] => {"changed": true, [...]

TASK [Import container image on server]
changed: [staging.ottg.co.uk] => {"actions": ["Loaded image [...]

TASK [Ensure .env file exists]
changed: [staging.ottg.co.uk] => {"changed": true, [...]

TASK [Run container]
changed: [staging.ottg.co.uk] => {"changed": true, "container": [...]

PLAY RECAP
staging.ottg.co.uk : ok=8 changed=6 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

272

| Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

Manually Checking Environment Variables for Running Containers

We'll do one more manual check with SSH, to see if those env vars were set correctly.
There’s a couple of ways we can do this.

Let’s start with a docker ps to check whether our container is running:

elspeth@server:$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

96d867b42a31 superlists "gunicorn --bind :88.." 6 seconds ago Up 5
seconds superlists

Looking good! The STATUS: Up 5 Seconds is better than the Exited we had before;
that means the container is up and running.

Let’s take a look at the docker logs too:

elspeth@server:~$ docker logs superlists

[2025-05-02 17:55:18 +0000] [1] [INFO] Starting gunicorn 23.0.0

[2025-05-02 17:55:18 +0000] [1] [INFO] Listening at: http://0.0.0.0:8888 (1)
[2025-05-02 17:55:18 +0000] [1] [INFO] Using worker: sync

[2025-05-02 17:55:18 +0000] [7] [INFO] Booting worker with pid: 7

Also looking good; no sign of an error. Now let’s check on those environment
variables. There are two ways we can do this: docker exec env and docker inspect.

docker exec env

One way is to run the standard shell env command, which prints out all environment
variables. We run it “inside” the container with docker exec:

elspeth@server:~$ docker exec superlists env

PATH=/venv/bin: /usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
HOSTNAME=96d867b42a31

DJANGO_DEBUG_FALSE=1

DJANGO_SECRET_KEY=cXACJZTvoPfWFSBSTdixJITIXCWYTnJ1C
DJANGO_ALLOWED_HOST=staging.ottg.co.uk

DJANGO_DB_PATH=/home/nonroot/db.sqlite3
GPG_KEY=7169605F62C751356D054A26A821E680E5FA6305

PYTHON_VERSION=3.14.3
PYTHON_SHA256=40f868bcbdeb8149a3149580bb9bfd407b3321cd48f0be631af955ac92c0e041
HOME=/home/nonroot

Setting Environment Variables and Secrets | 273

docker inspect

Another option—useful for debugging other things too, like image IDs and mounts—
is to use docker inspect:

elspeth@server:~$ docker inspect superlists
[
{
[...]
"Config": {
[...]
"Env'": [
"DJANGO_DEBUG_FALSE=1",
"DJANGO_SECRET_KEY=cXACJZTvoPfWFSBSTdixJTIXCWYTnJ1C",
"DJANGO_ALLOWED_HOST=staging.ottg.co.uk",
"DJANGO_DB_PATH=/home/nonroot/db.sqlite3",
"PATH=/venv/bin:/usr/local/bin:/usr/local/sbin:/usr/[...]
"GPG_KEY=7169605F62C751356D054A26A821E680E5FA6305",
"PYTHON_VERSION=3.14.3",
"PYTHON_SHA256=401868bcbdeb8149a3149580bbobfd407b332[. . .]
1,
"Cmd": [
"gunicorn",
"--bind",
".8888",
"superlists.wsgi:application”
1,
"Image": "superlists",
"Volumes": null,
"WorkingDir": "/src",
"Entrypoint": null,
"OnBuild": null,
"Labels": {}
1
"NetworkSettings": {
[...]
}

1
There’s a lot of output! It's more or less everything that Docker knows about the con-
tainer. But if you scroll around, you can usually get some useful info for debugging

and diagnostics—like, in this case, the Env parameter which tells us what environ-
ment variables were set for the container.

docker 1inspect is also useful for checking exactly which image ID
a container is using, and which filesystem mounts are configured.

Looking good!

274 | (Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

Running FTs to Check on Our Deploy

Enough manual checking via SSH; let’s see what our tests think. The TEST_SERVER
adaptation we made in Chapter 9 can also be used to check against our staging server.

Let’s see what they think:

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
[...]

selenium.common.exceptions.WebDriverException: Message: Reached error page:
about:neterror?e=connectionFailure&u=http%3A//staging.ottg.co.uk/[...]

[...]
Ran 3 tests in 5.014s

FAILED (errors=3)

None of them passed. Hmm. That neterror makes me think it’s another networking

problem.

If your domain provider puts up a temporary holding page, you
may get a 404 rather than a connection error at this point, and the
traceback might have “NoSuchElementException” instead.

Manual Debugging with curl Against the Staging Server

Let’s try our standard debugging technique of using curl both locally and then from

inside the container on the server. First, on our own machine:

$ curl -iv staging.ottg.co.uk

[...]
connect to server
Similarly, depending on your domain/hosting provider, you may

see “Host not found” here instead. Or, if your version of curl is
different, you might see “Connection refused”.

Now let’s SSH in to our server and take a look at the Docker logs:

elspeth@server$ docker logs superlists

[2024-02-28 22:14:43 +0000] [7] [INFO] Starting gunicorn 21.2.0

[2024-02-28 22:14:43 +0000] [7] [INFO] Listening at: http://0.0.0.0:8888 (7)
[2024-02-28 22:14:43 +0000] [7] [INFO] Using worker: sync

[2024-02-28 22:14:43 +0000] [8] [INFO] Booting worker with pid: 8

curl: (7) Failed to connect to staging.ottg.co.uk port 80 after 25 ms: Couldn't

Running FTs to Check on Our Deploy |

275

No errors there. Let’s try our curl:

elspeth@server$ curl -iv localhost
Trying 127.0.0.1:80...
connect to 127.0.0.1 port 80 failed: Connection refused
Trying ::1:80...
connect to ::1 port 80 failed: Connection refused
Failed to connect to localhost port 80 after @ ms: Connection refused
Closing connection 0
curl: (7) Failed to connect to localhost port 80 after @ ms: Connection refused

* %k ¥ X * X

Hmm, curl fails on the server too. But all this talk of port 80, both locally and on the
server, might be giving us a clue. Let’s check docker ps:

elspeth@server:$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS
PORTS NAMES

1dd87cbfa874 superlists "/bin/sh -c 'gunicor.." 9 minutes ago Up 9
minutes superlists

This might be ringing a bell now—we forgot the ports.

We want to map port 8888 inside the container as port 80 (the default web/HTTP
port) on the server:

infra/deploy-playbook.yaml (ch121006)
- name: Run container
community.docker.docker_container:

name: superlists

image: superlists

state: started

recreate: true

env:
DJANGO_DEBUG_FALSE: "1"
DJANGO_SECRET_KEY: "{{ secret_key.content | b64decode }}"
DJANGO_ALLOWED_HOST: "{{ inventory_hostname }}"
DJANGO_DB_PATH: "/home/nonroot/db.sqlite3"

ports: 80:8888

You can map a different port on the outside to the one thats
“inside” the Docker container. In this case, we can map the public-
facing standard HTTP port 80 on the host to the arbitrarily chosen
port 8888 on the inside.

Let’s push that up with ansible-playbook:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, \
infra/deploy-playbook.yaml -v
[...]

276 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

And now give the FTs another go:

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="id_list_table"]; [...]

[...]
Ran 3 tests in 21.047s

FAILED (errors=3)

So, 3/3 failed again, but the FTs did get a little further along. If you saw what was
happening, or if you go and visit the site manually in your browser, you'll see that the
home page loads fine, but as soon as we try and create a new list item, it crashes with
a 500 error.

Mounting the Database on the Server and
Running Migrations

Let’s do another bit of manual debugging, and take a look at the logs from our
container with docker logs. You'll see an OperationalError:

$ ssh elspeth@server docker logs superlists

[...]

django.db.utils.OperationalError: no such table: lists_list
It looks like our database isn't initialised. Aha! Another of those deployment “danger

»
areas.

Just like we did on our own machine, we need to mount the db.sqlite3 file from
the filesystem outside the container. We'll also want to run migrations to create the
database and, in fact, each time we deploy, so that any updates to the database schema
get applied to the database on the server.

Here’s the plan:
1. On the host machine, we'll store the database in elspeth’s home folder; it’s as good
a place as any.

2. We'll set its UID to 1234, just like we did in Chapter 10, to match the UID of the
nonroot user inside the container.

3. Inside the container, we'll use the path /home/nonroot/db.sqlite3—again, just
like in the last chapter.

4. We'll run the migrations with a docker exec, or the Ansible equivalent thereof.

Mounting the Database on the Server and Running Migrations | 277

Here’s what that looks like:

infra/deploy-playbook.yaml (ch121007)
- name: Ensure db.sqlite3 file exists outside container
ansible.builtin.file:
path: "{{ ansible_env.HOME }}/db.sqlite3" @
state: touch @
owner: 1234 # so nonroot user can access it in container
become: true # needed for ownership change

- name: Run container
community.docker.docker_container:
name: superlists
image: superlists
state: started
recreate: true
env:
DJANGO_DEBUG_FALSE: "1"
DJANGO_SECRET_KEY: "{{ secret_key.content | bé64decode }}"
DJANGO_ALLOWED_HOST: "{{ inventory_hostname }}"
DJANGO_DB_PATH: "/home/nonroot/db.sqglite3"
mounts: ©
- type: bind
source: "{{ ansible_env.HOME }}/db.sqlite3" @
target: /home/nonroot/db.sqlite3
ports: 80:8888

- name: Run migration inside container
community.docker.docker_container_exec: @
container: superlists
command: ./manage.py migrate

@ ansible_env gives us access to the environment variables on the server, includ-
ing HOME, which is the path to the home folder (/home/elspeth/ in my case).

@ We use file with state=touch to make sure a placeholder file exists before we
try and mount it in.

© Here is the mounts config, which works a lot like the - -mount flag to docker run.

O And we use the docker.container_exec module to give us the functionality of
docker exec, to run the migration command inside the container.

278 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

Let’s give that playbook a run and...

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -v
[...]

TASK [Run migration inside container]
changed: [staging.ottg.co.uk] => {"changed": true, "rc": 0, "stderr":
"stderr_lines": [], "stdout": "Operations to perform:\n Apply all migrations:
auth, contenttypes, lists, sessions\nRunning migrations:\n Applying
contenttypes.0001_initial... OK\n Applying
contenttypes.0002_remove_content_type_name... OK\n Applying
auth.0001_1initial... OK\n Applying
auth.0002_alter_permission_name_max_length... OK\n Applying

[...]

PLAY RECAP
staging.ottg.co.uk : ok=9 changed=2 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

It Workssss

Try the tests...

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
Found 3 test(s).
[...]

Ran 3 tests in 13.537s
OK

Hooray!

All the tests pass! That gives us confidence that our automated deploy script can
reproduce a fully working app, on a server, hosted on the public internet.

That’s worthy of a commit:
§ git diff

should show our changes in deploy-playbook yaml
$ git commit -am"Save secret key, set env vars, mount db, run migrations. It works :)"

Deploying to Prod
Now that we are confident in our deploy script, let’s try using it for our live site!

The main change is to the -1 flag, where we pass in the production domain name,
instead of the staging one:

$ ansible-playbook --user=elspeth -i www.ottg.co.uk, infra/deploy-playbook.yaml -vv
[...]

Done.
Disconnecting from elspeth@www.ottg.co.uk... done.

Brrp brrp brpp. Looking good? Go take a click around your live site!

DeployingtoProd | 279

git tag the Release

One final bit of admin. To preserve a historical marker, we’ll use Git tags to mark the
state of the codebase that reflects what’s currently live on the server:

$ git tag LIVE

$ export TAG=$(date +DEPLOYED-%F/%H%M) # this generates a timestamp
$ echo STAG # should show "DEPLOYED-" and then the timestamp

$ git tag $TAG

$ git push origin LIVE $TAG # pushes the tags up to GitHub

Now its easy, at any time, to check what the difference is between our current
codebase and what's live on the servers. This will come in handy in a few chapters,
when we look at database migrations. Have a look at the tag in the history:

$ git log --graph --oneline --decorate

* 1d4d814 (HEAD -> main) Save secret key, set env vars, mount db, run
migrations. It works :)

* 95e0fe® Build our image, use export/import to get it on the server, try and
run it

* 5336957 Made a start on an ansible playbook for deployment

[...]

Once again, this use of Git tags isn’t meant to be the one true way.
We just need some sort of way to keep track of what was deployed
when.

Tell Everyone!

You now have a live website! Tell all your friends! Tell your mum, if no one else is
interested! Or, tell me at obeythetestinggoat@gmail.com! I'm always delighted to see a
new reader’s site!

Congratulations again for getting through this block of deployment chapters; I know
they can be challenging. I hope you got something out of them—seeing a practical
example of how to take these kinds of complex changes and break them down
into small, incremental steps, getting frequent feedback from our tests and manual
investigations along the way.

Our next deploy won't be until Chapter 18, so you can switch off
your servers until then if you want to. If youre using a platform
where you only get one month of free hosting, it might run out by
then. You might have to shell out a few bucks, or see if there’s some
way of getting another free month.

280 | Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

mailto:obeythetestinggoat@gmail.com

In the next chapter, it’s back to coding again.

Further Reading

There’s no such thing as the one true way in deployment; I've tried to set you off
on a reasonably sane path, but there are plenty of things you could do differently—
and lots, lots more to learn besides. Here are some resources I used for inspiration,
(including a couple I've already mentioned):

o The original Twelve-Factor App manifesto from the Heroku team
o The official Django docs’ Deployment Checklist
o “How to Write Deployment-friendly Applications” by Hynek Schlawack

o The deployment chapter of Two Scoops of Django by Daniel and Audrey Roy
Greenfield

o The PythonSpeed “Docker packaging for Python developers” guide

Automated Deployment and laC Recap

Here’s a brief recap of what we've been through, which are a fairly typical set of steps
for deployment in general:

Provisioning a server
This tends to be vendor-specific, so we didn’t automate it, but you absolutely can!

Installing system dependencies
In our case, it was mainly Docker. But inside the Docker image, we also had
some system dependencies too, like Python itself. The installation of both types
of dependencies is now automated, and now defined “in code”, whether it’s the
Dockerfile or the Ansible YAML.

Getting our application code (or ‘artifacts”) onto the server
In our case, because were using Docker, the thing we needed to transfer was
a Docker image. Typically, you would do this by pushing and pulling from an
image repository—although in our automation, we used a more direct process,
purely to avoid endorsing any particular vendor.

Setting environment variables and secrets
Depending on how you need to vary them, you can set environment variables
on your local PC, in a Dockerfile, in your Ansible scripts, or on the server itself.
Figuring out which to use in which case is a big part of deployment.

FurtherReading | 281

https://12factor.net
https://docs.djangoproject.com/en/5.2/howto/deployment/checklist
https://oreil.ly/SPDMv
https://oreil.ly/x7PoY
https://pythonspeed.com/docker

Attaching to the database
In our case, we mount a file from the local filesystem. More typically, youd
be supplying some environment variables and secrets to define a host, port,
username, and password to use for accessing a database server.

Configuring networking and port mapping
This includes DNS config, as well as Docker configuration. Web apps need to be
able to talk to the outside world!

Running database migrations
We'll revisit this later in the book, but migrations are one of the most risky parts
of a deployment, and automating them is a key part of reducing that risk.

Going live with the new version of our application
In our case, we stop the old container and start a new one. In more advanced
setups, you might be trying to achieve zero downtime deploys, and looking into
techniques like blue/green deployments, but those are topics for different books.

Every single aspect of deployment can and probably should be automated. Here are a
couple of general principles to think about when implementing IaC:

Idempotence
If your deployment script is deploying to existing servers, you need to design
them so that they work against a fresh installation and against a server that’s
already configured.

Declarative
As much as possible, we want to try and specify what we want the state to be on
the server, rather than how we should get there. This goes hand in hand with the
idea of idempotence.

282 | (Chapter 12: Infrastructure as Code: Automated Deployments with Ansible

PART I

Forms and Validation

Now that we've got things into production, we'll spend a bit of time on validation, a
core topic in web development.

There’s quite a lot of Django-specific content in this part, so if you weren’t familiar
with Django before starting on the book, you may find that taking a little time to run
through the official Django tutorial will complement the next few chapters nicely.

With that said, there are lots of good lessons about test-driven development (TDD)
in general in here too! So, alternatively, if youre not that interested in Django itself,
don't worry too much about the details; instead, look out for the more general
principles of testing.

Here’s a little preview of what we'll cover:

Splitting tests out across multiple files

Using a decorator for Selenium waits/polling

Database-layer validation and constraints

HTMLS5 form validation in the frontend

The Django forms framework

The trade-offs of frameworks in general, and when to stop using them
How far to go when testing for possible coding errors

An overview of all the typical tests for Django views

https://docs.djangoproject.com/en/5.2/intro/tutorial01/#creating-models

CHAPTER 13

Splitting Our Tests into Multiple Files,
and a Generic Wait Helper

Back to local development! The next feature we might like to implement is a little
input validation. But as we start writing new tests, we'll notice that it’s getting hard to
find our way around a single functional_tests.py, and tests.py, so we'll reorganise them
into multiple files—a little refactor of our tests, if you will.

We'll also build a generic explicit wait helper.

Start on a Validation FT: Preventing Blank Items

As our first few users start using the site, we've noticed they sometimes make
mistakes that mess up their lists, like accidentally submitting blank list items, or
inputting two identical items to a list. Computers are meant to help stop us from
making silly mistakes, so let’s see if we can get our site to help.

285

Here’s the outline of the new FT method, which we will add to NewVisitorTestCase:

src/functional_tests/tests.py (ch131001)

def test_cannot_add_empty_list_items(self):
Edith goes to the home page and accidentally tries to submit
an empty list item. She hits Enter on the empty input box

The home page refreshes, and there is an error message saying
that list items cannot be blank

She tries again with some text for the item, which now works
Perversely, she now decides to submit a second blank list item
She receives a similar warning on the list page

And she can correct it by filling some text in
self.fail("write me!")

That’s all very well, but before we go any further—our functional tests (FTs) file is
beginning to get a little crowded. Let’s split it out into several files, in which each has a
single test method.

Remember that FTs are closely linked to “user stories” and features. One way of
organising your FTs might be to have one per high-level feature.

We'll also have one base test class, which they can all inherit from. Here’s how to get
there step by step.

Skipping a Test

Were back to local development now. Make sure that the
TEST_SERVER environment variable is unset by executing the com-
mand unset TEST_SERVER from the terminal.

It's always nice, when refactoring, to have a fully passing test suite. We've just written
a test with a deliberate failure. Let’s temporarily switch it off, using a decorator called
“skip” from unittest:

src/functional_tests/tests.py (ch131001-1)
from unittest import skip

[...]

def test_cannot_add_empty_list_items(self):

286 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

This tells the test runner to ignore this test. You can see it works—if we rerun the
tests, you'll see it’s a pass, but it explicitly mentions the skipped test:

$ python src/manage.py test functional_tests

[...]
Ran 4 tests in 11.577s
0K (skipped=1)

Skips are dangerous—you need to remember to remove them
before you commit your changes back to the repo. This is why
“ line-by-line reviews of each of your diffs are a good idea!

Don’t Forget the “Refactor” in “Red/Green/Refactor”

A criticism that’s sometimes levelled at TDD is that it leads to badly architected code,
as the developer just focuses on getting tests to pass rather than stopping to think
about how the whole system should be designed. I think it’s slightly unfair.

TDD is no silver bullet. You still have to spend time thinking about good design. But
what often happens is that people forget the “refactor” in “red/green/refactor”. The
methodology allows you to throw together any old code to get your tests to pass,
but it also asks you to then spend some time refactoring it to improve its design.
Otherwise, it’s too easy to allow “technical debt” to build up.

Often, however, the best ideas for how to refactor code don’t occur to you straight
away. They may occur to you days, weeks, even months after you wrote a piece of
code, when youre working on something totally unrelated and you happen to see
some old code again with fresh eyes. But if youre halfway through something else,
should you stop to refactor the old code?

The answer is that it depends. In the case at the beginning of the chapter, we haven’t
even started writing our new code. We know we are in a working state, so we can
justify putting a skip on our new FT (to get back to fully passing tests) and do a bit of
refactoring straight away.

Later in the chapter, we'll spot other bits of code we want to alter. In those cases,
rather than taking the risk of refactoring an application that’s not in a working state,
we'll make a note of the thing we want to change on our scratchpad and wait until
were back to a fully passing test suite before refactoring.

Kent Beck has a book-length exploration of the trade-offs of refactor-now versus
refactor-later, called Tidy First?.

Start on a Validation FT: Preventing Blank Items | 287

https://oreil.ly/57WKw
https://www.oreilly.com/library/view/tidy-first/9781098151232

Splitting Functional Tests Out into Many Files

We start putting each test into its own class, still in the same file:

src/functional_tests/tests.py (ch131002)
class FunctionalTest(StaticLiveServerTestCase):
def setUp(self):
[...]
def tearDown(self):
[...]
def wait_for_row_in_list_table(self, row_text):

[...]

class NewVisitorTest(FunctionalTest):
def test_can_start_a_todo_list(self):

[...]
def test_multiple_users_can_start_lists_at_different_urls(self):
[...]

class LayoutAndStylingTest(FunctionalTest):
def test_layout_and_styling(self):
[...]

class ItemValidationTest(FunctionalTest):

def test_cannot_add_empty_list_items(self):
[...]

At this point, we can rerun the FTs and see they all still work:

Ran 4 tests in 11.577s

0K (skipped=1)

That's labouring it a little bit, and we could probably get away with doing this stuff
in fewer steps, but—as I keep saying—practising the step-by-step method on the easy
cases makes it that much easier when we have a complex case.

Now we switch from a single tests file to using one for each class, and one “base” file
to contain the base class that all the tests will inherit from. We'll make four copies
of tests.py, naming them appropriately, and then delete the parts we don’t need from
each:

$ git mv src/functional_tests/tests.py src/functional_tests/base.py

$ cp src/functional_tests/base.py src/functional_tests/test_simple_list_creation.py
$ cp src/functional_tests/base.py src/functional_tests/test_layout_and_styling.py

$ cp src/functional_tests/base.py src/functional_tests/test_list_item_validation.py

288 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

base.py can be cut down to just the FunctionalTest class. We leave the helper
method on the base class, because we suspect we're about to reuse it in our new FT:

src/functional_tests/base.py (ch131003)
import os
import time

from django.contrib.staticfiles.testing import StaticLiveServerTestCase
from selenium import webdriver

from selenium.common.exceptions import WebDriverException

from selenium.webdriver.common.by import By

MAX_WAIT = 5

class FunctionalTest(StaticLiveServerTestCase):
def setUp(self):
[...]
def tearDown(self):
[...]

def wait_for_row_in_list_table(self, row_text):

[...]

Keeping helper methods in a base FunctionalTest class is one
useful way of preventing duplication in FTs. Later in the book
(in Chapter 26), we'll use the “page pattern’, which is related, but
prefers composition over inheritance—always a good thing.

Our first FT is now in its own file, and should be just one class and one test method:

src/functional_tests/test_simple_list_creation.py (ch131004)
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys

from .base import FunctionalTest

class NewVisitorTest(FunctionalTest):
def test_can_start_a_todo_list(self):

[...]
def test_multiple_users_can_start_lists_at_different_urls(self):
[...]

I used a relative import (from .base). Some people like to use them a lot in Django
code (e.g., your views might import models using from .models import List,
instead of from list.models). Ultimately, this is a matter of personal preference. I
prefer to use relative imports only when I'm super, super confident that the relative

Splitting Functional Tests Out into Many Files | 289

position of the thing I'm importing won’t change. That applies in this case because I
know for sure that all the tests will sit next to base.py, which they inherit from.

The layout and styling FT should now be one file and one class:

src/functional_tests/test_layout_and_styling.py (ch131005)

from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys

from .base import FunctionalTest

class LayoutAndStylingTest(FunctionalTest):
[...]

Lastly, our new validation test is in a file of its own too:

src/functional_tests/test_list_item_validation.py (ch131006)
from unittest import skip

from selenium.webdriver.common.by import By @
from selenium.webdriver.common.keys import Keys @

from .base import FunctionalTest

class ItemValidationTest(FunctionalTest):

def test_cannot_add_empty_list_items(self):
[...]

@ These two will be marked as “unused imports” for now but thats OK; we'll use
them shortly.

And we can test that everything worked by rerunning manage.py test functional
_tests, and checking once again that all four tests are run:

Ran 4 tests in 11.577s
0K (skipped=1)

Now we can remove our skip:

src/functional_tests/test_list_item_validation.py (ch131007)

class ItemValidationTest(FunctionalTest):
def test_cannot_add_empty_list_items(self):
[...]

290 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

Running a Single Test File

As a side bonus, were now able to run an individual test file, like this:

$ python src/manage.py test functional_tests.test_list_item_validation

[...]

AssertionError: write me!

Brilliant—no need to sit around waiting for all the FTs when we’re only interested in
a single one. Although, we need to remember to run all of them now and again to
check for regressions. Later in the book, we'll set up a continuous integration (CI)
server to run all the tests automatically—for example, every time we push to the main
branch. For now, a good prompt for running all the tests is “just before you do a
commit’, so let’s get into that habit now:

$ git status
$ git add src/functional_tests
$ git commit -m "Moved FTs into their own individual files"

Great. We've split our FTs nicely out into different files. Next, we'll start writing our
FT. But before long, as you may be guessing, we'll do something similar to our unit
test files.

A New FT Tool: A Generic Explicit Wait Helper

First, let’s start implementing the test—or at least the beginning of it:

src/functional_tests/test_list_item_validation.py (ch131008)
def test_cannot_add_empty_list_items(self):
Edith goes to the home page and accidentally tries to submit
an empty list item. She hits Enter on the empty input box
self.browser.get(self.live_server_url)
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)

The home page refreshes, and there is an error message saying

that list items cannot be blank

self.assertEqual(
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text, @
"You can't have an empty list item", @

)

She tries again with some text for the item, which now works
self.fail("finish this test!")

[...]

A New FT Tool: A Generic Explicit Wait Helper | 291

This is how we might write the test naively:

@ We specify were going to use a CSS class called . invalid-feedback to mark our
error text. We'll see that Bootstrap has some useful styling for those.

® And we can check that our error displays the message we want.

But can you guess what the potential problem is with the test as it’s written now?

OK, I gave it away in the section header, but whenever we do something that causes
a page refresh, we need an explicit wait; otherwise, Selenium might go looking for
the . invalid- feedback element before the page has had a chance to load.

Whenever you submit a form with Keys.ENTER or click something
that is going to cause a page to load, you probably want an explicit
wait for your next assertion.

Our first explicit wait was built into a helper method. For this one, we might decide
that building a specific helper method is overkill at this stage, but it might be nice
to have some generic way of saying in our tests, “wait until this assertion passes”
Something like this:

src/functional_tests/test_list_item_validation.py (ch131009)
[...]

The home page refreshes, and there is an error message saying
that list items cannot be blank
self.wait_for(
lambda: self.assertEqual(@
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,
"You can't have an empty list item",

© Rather than calling the assertion directly, we wrap it in a Lambda function, and we
g Y P
pass it to a new helper method we imagine called wait_for.

If you've never seen lambda functions in Python before, see
“Lambda Functions” on page 294.

292 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

So, how would this magical wait_for method work? Let's head over to base.py,
make a copy of our existing wait_for_row_in_list_table method, and we'll adapt it
slightly:

src/functional_tests/base.py (ch131010)
def wait_for(self, fn): @
start_time = time.time()
while True:
try:
table = self.browser.find_element(By.ID, "id_list_table") @
rows = table.find_element(By.TAG_NAME, "tr")
self.assertIn(row_text, [row.text for row in rows])
return
except (AssertionError, WebDriverException):
if time.time() - start_time > MAX_WAIT:
raise
time.sleep(0.5)

@ We make a copy of the method, but we name it wait_for, and we change its
argument. It is expecting to be passed a function.

©® For now, we've still got the old code that’s checking table rows. Now, how do we
transform this into something that works for any generic fn that’s been passed in?

Like this:

src/functional_tests/base.py (ch131011)
def wait_for(self, fn):
start_time = time.time()
while True:
try:
return fn() @
except (AssertionError, WebDriverException):
if time.time() - start_time > MAX_WAIT:
raise
time.sleep(0.5)

@ The body of our try/except, instead of being the specific code for examining
table rows, just becomes a call to the function we passed in. We also return its
result, to be able to exit the loop immediately if no exception is raised.

A New FT Tool: A Generic Explicit Wait Helper | 293

Lambda Functions

lambda in Python is the syntax for making a one-line, throwaway function. It saves
you from having to use def...(): and an indented block:

>>> myfn = lambda x: x+1

>>> myfn(2)

3

>>> myfn(5)

6

>>> adder = lambda x, y: x + vy
>>> adder(3, 2)

5

In our case, were using it to transform a bit of code, that would otherwise be executed
immediately, into a function that we can pass as an argument, and that can be
executed later, and multiple times:

>>> def addthree(x):
return x + 3

>>> addthree(2)

5

>>> myfn = lambda: addthree(2) # note addthree isn't called immediately here
>>> myfn

<function <lambda> at 0x7f3b140339d8>

>>> myfn()

5

>>> myfn()

5

Let’s see our funky wait_for helper in action:

294 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

$ python src/manage.py test functional_tests.test_list_item_validation

[...]

ERROR: test_cannot_add_empty_list_items (functional_tests.test_list_item_valida
tion.ItemValidationTest.test_cannot_add_empty_list_items)

[...]
Traceback (most recent call last):
File "...goat-book/src/functional_tests/test_list_item_validation.py", line

16, in test_cannot_add_empty_list_items
self.wait_for (@
File "...goat-book/src/functional_tests/base.py", line 25, in wait_for
return fn()®

ANAN

File "...goat-book/src/functional_tests/test_list_item_validation.py", line
18, in <lambda>©
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,®

ANN

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

Ran 1 test in 10.575s

FAILED (errors=1)

The order of the traceback is a little confusing, but we can more or less follow
through what happened:

© In our FT, we call our self.wait_for helper, where we pass the lambda-ified
version of assertEqual.

O We go into self.wait_for in base.py, where we're calling (and returning) fn(),
which refers to the passed lambda function encapsulating our test assertion.

© To explain where the exception has actually come from, the traceback takes us
back into test_list_item_validation.py and inside the body of the lambda function,
and tells us that it was attempting to find the .1invalid-feedback element that
failed.

We're into the realm of functional programming now, passing functions as arguments
to other functions, and it can be a little mind-bending. I know it took me a little while
to get used to! Have a couple of read-throughs of this code, and the code back in the
FT, to let it sink in; and if you're still confused, don’t worry about it too much, and let
your confidence grow from working with it. We'll use it a few more times in this book
and make it even more functionally fun; you'll see.

A New FT Tool: A Generic Explicit Wait Helper | 295

Finishing Off the FT

We'll finish off the FT like this:

src/functional_tests/test_list_item_validation.py (ch131012)
The home page refreshes, and there is an error message saying
that list items cannot be blank
self.wait_for(
lambda: self.assertEqual(
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,
"You can't have an empty list item",

)

She tries again with some text for the item, which now works
self.browser.find_element(By.ID, "id_new_item").send_keys("Purchase milk")
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Purchase milk")

Perversely, she now decides to submit a second blank list item
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)

She receives a similar warning on the list page
self.wait_for(
lambda: self.assertEqual(
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,
"You can't have an empty list item",

)

And she can correct it by filling some text in
self.browser.find_element(By.ID, "id_new_item").send_keys("Make tea")
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("2: Make tea")

Helper Methods in FTs

We've got two helper methods now: our generic self.wait_for helper, and
watt_for_row_in_list_table. The former is a general utility—any of our FTs might
need to do a wait.

The latter also helps prevent duplication across your FT code. The day we decide to
change the implementation of how our list table works, we want to make sure we
only have to change our FT code in one place, not in dozens of places across loads of
FTs...

See also Chapter 26 and Online Appendix: BDD for more on structuring your FT
code.

296 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

https://www.obeythetestinggoat.com/book/appendix_bdd.html

I'll let you do your own “first-cut FT” commit.

Refactoring Unit Tests into Several Files

When we (finally!) start coding our solution, were going to want to add another test
for our models.py. Before we do so, it’s time to tidy up our unit tests in a similar way
to the functional tests.

A difference will be that, because the 1ists app contains real application code as well
as tests, we'll separate out the tests into their own folder:

$ mkdir src/lists/tests

$ touch src/lists/tests/__init__.py

$ git mv src/lists/tests.py src/lists/tests/test_all.py
$ git status

$ git add src/lists/tests

$ python src/manage.py test lists

[...]
Ran 10 tests in 0.034s

0K

$ git commit -m "Move unit tests into a folder with single file"
If you get a message saying “Ran 0 tests”, you probably forgot to add the dunderinit.!
It needs to be there for the tests folder to be recognised as a regular Python package,?
and thus discovered by the test runner.

Now we turn fest_all.py into two files—one called test_views.py, which will only
contain view tests, and one called test_models.py. I'll start by making two copies:

$ git mv src/lists/tests/test_all.py src/lists/tests/test_views.py
$ cp src/lists/tests/test_views.py src/lists/tests/test_models.py

1 “Dunder” is shorthand for double-underscore, so “dunderinit” means __init__.py.

2 Without the dunderinit, a folder with Python files in it is called a namespace package. Usually, they are exactly
the same as regular packages (which do have a __init__.py), but the Django test runner does not recognise
them.

Refactoring Unit Tests into Several Files | 297

https://oreil.ly/V-w3A

And strip test_models.py down to being just the one test:

src/lists/tests/test_models.py (ch131016)
from import TestCase

from import Item, List

class ListAndItemModelsTest(TestCase):
[...]

Whereas test_views.py just loses one class:

src/lists/tests/test_views.py (ch131017)

--- a/src/lists/tests/test_views.py
+++ b/src/lists/tests/test_views.py
33 +74,3 @@ class NewItemTest(TestCase):

)

self.assertRedirects(response, f"/lists/{correct_list.id}/")

-class ListAndItemModelsTest(TestCase):
- def test_saving_and_retrieving_1items(self):

[...]

We rerun the tests to check that everything is still there:

$ python src/manage.py test lists

[...]
Ran 10 tests in 0.040s

oK
Great! That’s another small, working step:

$ git add src/lists/tests
$ git commit -m "Split out unit tests into two files"

Some people like to make their unit tests into a tests folder straight
away, as soon as they start a project. That’s a perfectly good idea; I
just thought I'd wait until it became necessary, to avoid doing too
much housekeeping all in the first chapter!

Well, that’s our FTs and unit tests nicely reorganised. In the next chapter, we'll get
down to some validation proper.

298 | Chapter 13: Splitting Our Tests into Multiple Files, and a Generic Wait Helper

Use a tests folder

Don'’t forget the “refactor” in “red/green/refactor”

Don'’t refactor against failing tests

Try a generic wait_for helper

Tips on Organising Tests and Refactoring

Just as you use multiple files to hold your application code, you should split your
tests out into multiple files:

o For functional tests, group them into tests for a particular feature or user
story.

o For unit tests, use a folder called tests, with a __init__.py.

« You probably want a separate test file for each tested source code file. For
Django, that’s typically test_models.py, test_views.py, and test_forms.py.

 Have at least a placeholder test for every function and class.

The whole point of having tests is to allow you to refactor your code! Use them,
and make your code (including your tests) as clean as you can.

The general rule is that you shouldn't mix refactoring and behaviour change.
Having green tests is our best guarantee that we aren’t changing behaviour. If you
start refactoring against failing tests, it becomes much harder to spot when you're
accidentally introducing a regression.

This applies strongly to unit tests. With FTs, because we often develop against
red FTs anyway, it’s sometimes more tempting to refactor against failing tests. My
suggestion is to avoid that temptation and use an early return, so that it's 100%
clear if, during a refactor, you accidentally introduce a regression that’s picked up
in your FTs.

You can occasionally put a skip on a test that is testing something you haven't
written yet.

More commonly, make a note of the refactor you want to do, finish what you're
working on, and do the refactor a little later when you’re back to a working state.

Don’t forget to remove any skips before you commit your code! You should
always review your diffs line by line to catch things like this.

Having specific helper methods that do explicit waits is great, and it helps to
make your tests readable. But you’ll also often need an ad-hoc, one-line assertion
or Selenium interaction that you’ll want to add a wait to. self.wait_for does the
job well for me, but you might find a slightly different pattern works for you.

Refactoring Unit Tests into Several Files | 299

CHAPTER 14
Validation at the Database Layer

Over the next few chapters, well talk about testing and implementing validation of
user inputs.

In terms of content, there’s going to be quite a lot of material here that's more about
the specifics of Django, and less discussion of TDD philosophy. That doesn’t mean
you won't be learning anything about testing—there are plenty of little testing tidbits
in here, but perhaps it's more about really getting into the swing of things, the rhythm
of TDD, and how we get work done.

Once we get through these three short chapters, I've saved a bit of fun with JavaScript
(1) for the end of Part II. Then it’s on to Part III, where I promise we’ll get right back
into some of the real nitty-gritty discussions on TDD methodology—unit tests versus
integration tests, mocking, and more. Stay tuned!

301

But for now, a little validation. Lets just remind ourselves where our FT is pointing
us:

$ python3 src/manage.py test functional_tests.test_list_item_validation

[...]

ERROR: test_cannot_add_empty_list_items (functional_tests.test_list_item_valida
tion.ItemValidationTest.test_cannot_add_empty_list_items)
Traceback (most recent call last):
File "...goat-book/src/functional_tests/test_list_item_validation.py", line
16, in test_cannot_add_empty_list_items
self.wait_for(

lambda: self.assertEqual(

ANAANNANNNNNNNNANNNANNNANNANNNNNAN

..<2 lines>...
)
N
)
N
[...]
File "...goat-book/src/functional_tests/test_list_item_validation.py", line

18, in <lambda>
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,

ANANNNNANNNNNANNNNNNNANNNNNNNANNNNANNANNNNNNANN

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; For documentation [...]

It’s expecting to see an error message if the user tries to input an empty item.

Model-Layer Validation

In a web app, there are two places you can do validation: on the client side (using
JavaScript or HTML5 properties, as we'll see later), and on the server side. The
server side is “safer” because someone can always bypass the client side, whether it’s
maliciously or due to some bug.

Similarly on the server side, in Django, there are two levels at which you can do
validation. One is at the model level, and the other is higher up at the forms level. I
like to use the lower level whenever possible, partially because I'm a bit too fond of
databases and database integrity rules, and partially because, again, it’s safer—you can
sometimes forget which form you use to validate input, but you're always going to use
the same database.

302 | Chapter 14: Validation at the Database Layer

The self.assertRaises Context Manager

Let’s go down and write a unit test at the models layer. Add a new test method to
ListAndItemModelsTest, which tries to create a blank list item. This test is interest-

ing because it’s testing that the code under test should raise an exception:

src/lists/tests/test_models.py (ch141001)

from import IntegrityError

[...]

class ListAndItemModelsTest(TestCase):
def test_saving_and_retrieving_items(self):

[...]

def test_cannot_save_empty_list_items(self):
mylist = List.objects.create()
item = Item(list=mylist, text="")
with self.assertRaises(IntegrityError):
item.save()

This is a new unit testing technique: when we want to check that doing something

will raise an error, we can use the self.assertRaises context manager.
We could have used something like this instead:

try:

item.save()

self.fail('The save should have raised an exception')
except IntegrityError:

pass

But the with formulation is neater.

If you're new to Python, you may never have seen the with state-
ment. Its the special keyword to use with what are called “context
managers”. Together, they wrap a block of code, usually with some
kind of setup, cleanup, or error-handling code. Theres a good
write-up on Python Morsels.

Django Model Constraints and Their Interaction with Databases
When we run this new unit test, we see the failure we expected:

with self.assertRaises(IntegrityError):
AssertionError: IntegrityError not raised

But all is not quite as it seems, because this test should already pass.

Model-Layer Validation

| 303

https://oreil.ly/z6Eh8

If you take a look at the docs for the Django model fields, youll see under “Field
choices” that the default setting for all fields is blank=False. Because “text field” is a
type of field, it should already disallow empty values.

So, why is the test still failing? Why is our database not raising an IntegrityError
when we try to save an empty string into the text column?

The answer is a combination of Django’s design and the database we're using.

Inspecting Our Constraints at the Database Level

Let’s have a look directly at the database using the dbshell command:

$./src/manage.py dbshell # (this is equivalent to running sqlite3 src/db.sqlite3)
SQLite version 3.[...]
Enter ".help" for usage hints.
sqlite> .schema lists_item
CREATE TABLE IF NOT EXISTS "lists_item" ("id" integer NOT NULL PRIMARY KEY
AUTOINCREMENT, "text" text NOT NULL, "list_id" bigint NOT NULL REFERENCES
"lists_list" ("id") DEFERRABLE INITIALLY DEFERRED);
The text column only has the NOT NULL constraint. This means that the database

would not allow None as a value, but it will actually allow the empty string.

Whilst it is technically possible to implement a “not empty string” constraint
on a text column in SQLite, the Django developers have chosen not to do this.
This is because Django distinguishes between what they call “database-related” and
“validation-related” constraints. As well as empty=False, all fields get a null=False
setting, which translates into the database-level NOT NULL constraint we saw earlier.

Let’s see if we can verify that using our test, instead. We'll pass in text=None instead
of text="" (and change the test name):

src/lists/tests/test_models.py (ch141002)

def test_cannot_save_null_list_1items(self):
mylist = List.objects.create()
item = Item(list=mylist, text=None)
with self.assertRaises(IntegrityError):
item.save()

You'll see that this test now passes:

Ran 11 tests in 0.030s

0K

304 | Chapter 14: Validation at the Database Layer

https://docs.djangoproject.com/en/5.2/ref/models/fields/#blank
https://oreil.ly/kzu65

Testing Django Model Validation

That’s all vaguely interesting, but it’s not actually what we set out to do. How do we
make sure that the “validation-related” constraint is being enforced? The answer is
that, while IntegrityError comes from the database, Django uses ValidationError
to signal errors that come from its own validation.

Let’s write a second test that checks on that:

src/lists/tests/test_models.py (ch141003)

from import ValidationError
from import IntegrityError

[...]

class ListAndItemModelsTest(TestCase):
def test_saving_and_retrieving_items(self):

[...]

def test_cannot_save_null_list_1items(self):
mylist = List.objects.create()
item = Item(list=mylist, text=None)
with self.assertRaises(IntegrityError):
item.save()

def test_cannot_save_empty_list_items(self):
mylist = List.objects.create()
item = Item(list=mylist, text="") @
with self.assertRaises(ValidationError): @
item.save()

@ This time we pass text=

O And were expecting a ValidationError instead of an IntegrityError.

A Django Quirk: Model Save Doesn’t Run Validation
We can try running this new unit test, and we'll see its expected failure. ..

with self.assertRaises(ValidationError):
AssertionError: ValidationError not raised
Wait a minute! We expected this to pass actually! We just got through learning that
Django should be enforcing the blank=False constraint by default. Why doesn’t this
work?

We've discovered one of Djangoss little quirks. For slightly counterintuitive historical
reasons, Django models don't run full validation on save.

Model-Layer Validation | 305

https://oreil.ly/u3N_2
https://oreil.ly/u3N_2

Django does have a method to manually run full validation, however, called
full_clean (more info in the docs). Let’s swap that for the .save() and see if it
works:

src/lists/tests/test_models.py (ch141004)
with self.assertRaises(ValidationError):

item.full_clean()
That gets the unit test to pass:

Ran 12 tests in 0.030s

0K

Good. That taught us a little about Django validation, and the test is there to warn us
if we ever forget our requirement and set blank=True on the text field (try it!).

Recap: Database-level and Model-level Validation in Django

Django distinguishes two types of validation for models:

1. Database-level constraints like null=False or unique=True (as we'll see an exam-
ple of in Chapter 16), which are enforced by the database itself, using things like
NOT NULL or UNIQUE constraints and bubble up as IntegrityErrors if you try to
save an invalid object

2. Model-level validations like blank=False, which are only enforced by Django,
when you call full_clean(), and they raise a ValidationError

The subtlety is that Django also enforces database-level constraints when you call
full_clean(). So, you'll only see IntegrityError if you forget to call full_clean()
before doing a . save().

The FTs are still failing, because were not actually forcing these errors to appear in
our actual app, outside of this one unit test.

306 | Chapter 14: Validation at the Database Layer

https://docs.djangoproject.com/en/5.2/ref/models/instances/#django.db.models.Model.full_clean

Surfacing Model Validation Errors in the View

Let’s try to enforce our model validation in the views layer and bring it up into our
templates so the user can see them. To optionally display an error in our HTML, we
check whether the template has been passed an error variable and, if so, we do this:

src/lists/templates/base.html (ch141005)
<form method="POST" action="{% block form_action %}{% endblock %}">
<input
class="form-control form-control-lg {% if error %}is-invalid{% endif %}" @
name="1tem_text"
id="1d_new_item"
placeholder="Enter a to-do item"
/>
{% csrf_token %}
{% if error %}
<div class="invalid-feedback">{{ error }}</div> @
{% endif %}
</form>

© We add the .is-invalid class to any form inputs that have validation errors.

@ We use a div.invalid-feedback to display any error messages from the server.

Take a look at the Bootstrap docs for more info on form controls.

However, ignore the Bootstrap docs’ advice to prefer client-side
validation. Ideally, having both server- and client-side validation
is the best. If you can’t do both, then server-side validation is the
one you really can’t do without. Check the OWASP checklist, if
you are not convinced yet. Client-side validation will provide faster
feedback on the UL, but it is not a security measure. Server-side val-
idation is indispensable for handling any input that gets processed
by the server—and it will also provide (albeit slower) feedback for
the client side.

Passing this error to the template is the view function’s job. Let’s take a look at the unit
tests in the NewListTest class. I'm going to use two slightly different error-handling
patterns here.

Surfacing Model Validation Errors in the View | 307

https://getbootstrap.com/docs/5.3/forms/validation/#server-side
https://oreil.ly/pkFo8
https://oreil.ly/xAUt8

In the first case, our URL and view for new lists will optionally render the same
template as the home page, but with the addition of an error message. Here’s a unit
test for that:

src/lists/tests/test_views.py (ch141006)
class NewListTest(TestCase):

[...]

def test_validation_errors_are_sent_back_to_home_page_template(self):
response = self.client.post("/lists/new", data={"item_text": ""})
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "home.html")
expected_error = "You can't have an empty list item"
self.assertContains(response, expected_error)

As were writing this test, we might get slightly offended by the /lists/new URL, which
we're manually entering as a string. We've got a lot of URLs hardcoded in our tests,
in our views, and in our templates, which violates the DRY (don’t repeat yourself)
principle. I don’t mind a bit of duplication in tests, but we should definitely be on the
lookout for hardcoded URLs in our views and templates, and make a note to refactor
them out. But we won't do that straight away, because right now our application is in a
broken state. We want to get back to a working state first.

Back to our test, which is failing because the view is currently returning a 302
redirect, rather than a “normal” 200 response:

AssertionError: 302 != 200

Let’s try calling full_clean() in the view:

src/lists/views.py (ch141007)
def new_list(request):
nulist = List.objects.create()
item = Item.objects.create(text=request.POST["item_text"], list=nulist)
item.full_clean()
return redirect(f"/lists/{nulist.id}/")

As we're looking at the view code, we find a good candidate for a hardcoded URL to
get rid of. Let’s add that to our scratchpad:

. Remove hardcoded URLs from views py.

N\ . ~ - . o o AR
- \ o N NG L - AN y ’ ~

308 | Chapter 14: Validation at the Database Layer

Now the model validation raises an exception, which comes up through our view:

[...]
File "...goat-book/src/lists/views.py", line 13, in new_list
item.full_clean()
[...]

django.core.exceptions.ValidationError: {'text': ['This field cannot be
blank.']}

So we try our first approach: using a try/except to detect errors. Obeying the Testing
Goat, we start with just the try/except and nothing else. The tests should tell us what
to code next.

src/lists/views.py (ch141010)
from import ValidationError

[...]

def new_list(request):
nulist = List.objects.create()
item = Item.objects.create(text=request.POST["item_text"], list=nulist)
try:
item.full_clean()
except ValidationError:
pass
return redirect(f"/lists/{nulist.id}/")

That gets us back to the 302 != 200:
AssertionError: 302 != 200

Let’s return a rendered template then, which should take care of the template check as
well:

src/lists/views.py (ch141011)

except ValidationError:
return render(request, "home.html")

And the tests now tell us to put the error message into the template:

AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in the following response

We do that by passing a new template variable in:

src/lists/views.py (ch141012)
except ValidationError:
error = "You can't have an empty list item"
return render(request, "home.html", {"error": error})

Surfacing Model Validation Errors in the View | 309

Hmm, it looks like that didn’t quite work:

AssertionError: False is not true : Couldn't find 'You can't have an empty list
item' in the following response

A little print-based debug...

src/lists/tests/test_views.py (ch141013)
expected_error = "You can't have an empty list item"
print(response.content.decode())
self.assertContains(response, expected_error)

...will show us the cause—Django has HTML-escaped the apostrophe:

$ python src/manage.py test lists
[...]

<div class="invalid-feedback">You can't have an empty list
item</div>

We could hack something like this into our test:
expected_error = "You can't have an empty list item"
But using Django’s helper function html.escape() is probably a better idea:

src/lists/tests/test_views.py (ch141014)
from import html

expected_error = html.escape("You can't have an empty list item")
self.assertContains(response, expected_error)

That passes!

Ran 13 tests in 0.047s

0K

Checking That Invalid Input Isn’t Saved to the Database

Before we go further though, did you notice a little logic error we've allowed to creep
into our implementation? Were currently creating an object, even if validation fails:

src/lists/views.py
item = Item.objects.create(text=request.POST["item_text"], list=nulist)
try:
item.full_clean()
except ValidationError:

[...]

310 | Chapter 14: Validation at the Database Layer

https://docs.djangoproject.com/en/5.2/ref/templates/builtins/#autoescape

Let’s add a new unit test to make sure that empty list items don’t get saved:

src/lists/tests/test_views.py (ch141015)
class NewListTest(TestCase):

[...]

def test_validation_errors_are_sent_back_to_home_page_template(self):

[...]

def test_1invalid_list_items_arent_saved(self):
self.client.post("/lists/new", data={"item_text": ""})
self.assertEqual(List.objects.count(), 0)
self.assertEqual(Item.objects.count(), 0)

That gives:
[...]

Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_views.py", line 43, in
test_invalid_list_items_arent_saved
self.assertEqual(List.objects.count(), 0)
AssertionError: 1 != 0

We fix it like this:

src/lists/views.py (ch141016)
def new_list(request):

nulist = List.objects.create()
item = Item(text=request.POST["item_text"], list=nulist)
try:

item.full_clean()

item.save()
except ValidationError:

nulist.delete()

error = "You can't have an empty list item"

return render(request, "home.html", {"error": error})
return redirect(f"/lists/{nulist.id}/")

Do the FTs pass?

$ python src/manage.py test functional_tests.test_list_item_validation
[...]
File "...goat-book/src/functional_tests/test_list_item_validation.py", line
32, in test_cannot_add_empty_list_items
self.wait_for(
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

Surfacing Model Validation Errorsin the View | 311

Not quite, but they did get a little further. Checking the line in which the error
occurred (line 31 in my case) we can see that we've got past the first part of the test,
and are now onto the second check—that submitting a second empty item also shows
an error.

We've got some working code though, so let’s have a commit:

$ git commit -am "Adjust new list view to do model validation"

Adding an Early Return to Our FT to Let Us Refactor Against Green

Lets put an early return in the FT to separate what we got working from those that
still need to be dealt with:

src/functional_tests/test_list_item_validation.py (ch141017)

class ItemValidationTest(FunctionalTest):
def test_cannot_add_empty_list_items(self):

[...]
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Purchase milk")

return # TODO re-enable the rest of this test.

Perversely, she now decides to submit a second blank list item
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
[...]

We should also remind ourselves not to forget to remove this early return:

. Remove hardcoded URLs from views py.
[o Remove +he early refurn from +he 7.
N e i P PN I

— P N ~_ . -

And now, we can focus on making our code a little neater.

When working on a new feature, its common to realise partway
through that a refactor of the application is needed. Adding an
early return to the FT youre currently working on enables you to
perform this refactor against passing FTs, even while the feature is
still in progress.

312 | Chapter 14: Validation at the Database Layer

Django Pattern: Processing POST Requests in the Same
View That Renders the Form

This time we'll use a slightly different approach—one that’s actually a very common
pattern in Django—which uses the same view to both process POST requests and
render the form that they come from. Whilst this doesn’t fit the REST-ful URL model
quite as well, it has the important advantage that the same URL can display a form,
and display any errors encountered in processing the user’s input; see Figure 14-1.

GET Same end point (invalid) POST
[Nists/<list-id>/ x
HTML includes list items HTML includes items
User loads and add-item form _andformwith errors User submits
page | - invalid form
A

] 301 redirect to reload
(Valid) [lists/<list-id>/
POST W

User submits
valid form

Figure 14-1. Existing list, viewing and adding items in the same end point

The current situation is that we have one view and URL for displaying a list, and one
view and URL for processing additions to that list. We're going to combine them into
one.

In this section, we're performing a refactor at the application level.
We execute our application-level refactor by changing or adding
unit tests, and then adjusting our code. We use the functional tests
to warn us if we ever go backwards and introduce a regression, and
when they’re back to green we'll know our refactor is done. Have
another look at the diagram from the end of Chapter 4 if you need
to get your bearings.

Refactor: Transferring the new_item Functionality into view_list

Let’s take the two old tests from NewItemTest—the ones that are about saving POST
requests to existing lists—and move them into ListViewTest. As we do so, we also
make them point at the base list URL, instead of .../add_item:

Django Pattern: Processing POST Requests in the Same View That Renders the Form | 313

src/lists/tests/test_views.py (ch141030)
class ListViewTest(TestCase):
def test_uses_list_template(self):
[...]

def test_renders_input_form(self):
mylist = List.objects.create()
response = self.client.get(f"/lists/{mylist.id}/")
parsed = lxml.html.fromstring(response.content)
[form] = parsed.cssselect("form[method=POST]")
self.assertEqual(form.get("action"), f"/lists/{mylist.id}/") @
inputs = form.cssselect("input")
self.assertIn("item_text", [input.get("name") for input in inputs])

def test_displays_only_items_for_that_list(self):
[...]

def test_can_save_a_POST_request_to_an_existing_list(self):
other_list = List.objects.create()
correct_list = List.objects.create()

self.client.post(
f"/lists/{correct_list.id}/", @
data={"item_text": "A new item for an existing list"},

)

self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.get()

self.assertEqual(new_item.text, "A new item for an existing list")
self.assertEqual(new_item.list, correct_list)

def test_POST_redirects_to_list_view(self):
other_list = List.objects.create()
correct_list = List.objects.create()
response = self.client.post(
f"/lists/{correct_list.id}/", @

data={"item_text": "A new item for an existing list"},

)

self.assertRedirects(response, f"/lists/{correct_list.id}/")

© We want our form to point at the base URL.

@ And the two tests we've merged in need to target the base URL too.

Note that the NewItemTest class disappears completely. I've also changed the name of
the redirect test to make it explicit that it only applies to POST requests.

314 | Chapter 14: Validation at the Database Layer

That gives:

FAIL: test_POST_redirects_to_list_view
(lists.tests.test_views.ListViewTest.test_POST_redirects_to_list_view)

[...]

AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)
[...]

FAIL: test_can_save_a_POST_request_to_an_existing_list (lists.tests.test_views.
ListViewTest.test_can_save_a_POST_request_to_an_existing_list)

[...]
AssertionError: 0 != 1
[...]

FAIL: test_renders_input_form
(lists.tests.test_views.ListViewTest.test_renders_input_form)

[...]
AssertionError: '/lists/1/add_item' != '/lists/1/'

[...]
Ran 14 tests in 0.025s

FAILED (failures=3)

That last one is something we can fix in the template. Let’s go to list.html, and change
the action attribute on our form so that it points at the existing list URL:

src/lists/templates/list.html (ch141031)
{% block form_action %}/lists/{{ list.id }}/{% endblock %}

Incidentally, that’s another hardcoded URL. Let’s add it to our to-do list and, while
we're thinking about it, there’s one in home.html too:

. Remove hardcoded URLs from views py.

. Remove +he early refurn from +fe F7.

. Remove bardcoded URL From Forms /»n
st htm/ and bhome./tm/.

Django Pattern: Processing POST Requests in the Same View That Renders the Form | 315

We're now down to two failing tests:

FAIL: test_POST_redirects_to_list_view
(lists.tests.test_views.ListViewTest.test_POST_redirects_to_list_view)

[...]

AssertionError: 200 != 302 : Response didn't redirect as expected: Response
code was 200 (expected 302)
[...]

FAIL: test_can_save_a_POST_request_to_an_existing_list (lists.tests.test_views.
ListViewTest.test_can_save_a_POST_request_to_an_existing_list)

[...]
AssertionError: 0 != 1
[...]

Ran 14 tests in 0.025s

FAILED (failures=2)

Those are both about getting the list view to handle POST requests. Let’s copy some
code across from add_1item view to do just that:

o
2]

src/lists/views.py (ch141032)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
if request.method == "POST": @
Item.objects.create(text=request.POST["item text"], list=our_list) @
return redirect(f"/lists/{our_list.id}/") @
return render(request, "list.html", {"list": our_list})

We add a branch for when the method is POST.

And we copy the Item.objects.create() and redirect() lines from the
add_1item view.

That gets us passing unit tests!

Ran 14 tests in 0.047s

0K

Now we can delete the add_item view, as it'’s no longer needed...oops, an unexpected
failure:

[...]

AttributeError: module 'lists.views' has no attribute 'add_item'

316

| Chapter 14: Validation at the Database Layer

It’s because we've deleted the view, but it’s still being referred to in urls.py. We remove
it from there:

src/lists/urls.py (ch141034)

urlpatterns = [
path("new", views.new_list, name="new_list"),
path("<int:list_id>/", views.view_list, name="view_list"),

OK, we're back to the green on the unit tests.
OK
Let’s try a full FT run: they’re all passing!

Ran 4 tests in 9.951s
oK

Our refactor of the add_1item functionality is complete. We should commit there:
$ git commit -am "Refactor list view to handle new item POSTs"

We can remove the early return now:

src/functional_tests/test_list_item_validation.py (ch141035)

@@ -24,8 +24,6 @@ class ItemValidationTest(FunctionalTest):
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Purchase milk")

- return # TODO re-enable the rest of this test.

Perversely, she now decides to submit a second blank list item

And, let’s cross that off our scratchpad too:

. Remove hardcoded URLs from views py.

. Remove~re-earsyretornrromtsrer7
. LRemove bardcoded UKL from Forms /»n
Hst htm/ and bome.hém/.

. NG N N

Django Pattern: Processing POST Requests in the Same View That Renders the Form | 317

Run the FTs again to see what's still there that needs to be fixed:

$ python src/manage.py test functional_tests

[...]

ERROR: test_cannot_add_empty_list_items (functional_tests.test_list_item_valida
tion.ItemValidationTest.test_cannot_add_empty_list_items)

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

Ran 4 tests in 15.276s
FAILED (errors=1)

We're back to working on this one failure in our new FT.

Enforcing Model Validation in view_list

We still want the addition of items to existing lists to be subject to our model
validation rules. Let’s write a new unit test for that; it’s very similar to the one for the
home page, with just a couple of tweaks:

src/lists/tests/test_views.py (ch141036)
class ListViewTest(TestCase):

[...]

def test_validation_errors_end_up_on_lists_page(self):
list_ = List.objects.create()
response = self.client.post(
f"/lists/{1list_.1d}/",
data={"item_text": ""},
)
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "list.html")
expected_error = html.escape("You can't have an empty list item")
self.assertContains(response, expected_error)

Because our view currently does not do any validation, this should fail and just
redirect for all POSTs:

self.assertEqual(response.status_code, 200)
AssertionError: 302 != 200

318 | Chapter 14: Validation at the Database Layer

Here’s an implementation:

src/lists/views.py (ch14l037)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
error = None

if request.method == "POST":

try:
item = Item(text=request.POST["item text"], list=our_list) @
item.full_clean() @
item.save() @
return redirect(f"/lists/{our_list.id}/")

except ValidationError:
error = "You can't have an empty list item"

return render(request, "list.html", {"list": our_list, "error": error})

© Notice we do Item() instead of Item.objects.create().

© Then we call full_clean() before we call save().
It works:

Ran 15 tests in 0.047s

0K

But it’s not deeply satisfying, is it? There’s definitely some duplication of code here;
that try/except occurs twice in views.py, and in general things are feeling clunky.

Let’s wait a bit before we do more refactoring though, because we know were about
to do some slightly different validation coding for duplicate items. We'll just add it to
our scratchpad for now:

o Remove hardcoded URLs from views py.

. Remove~fe—earfrretornrromrtrer7.

. KRemove fardcoded URL From Forms in
Nist.htm/ and bome.hém/.

. Remove dyplication of validation fogic in
views.

Django Pattern: Processing POST Requests in the Same View That Renders the Form | 319

One of the reasons that the “three strikes and refactor” rule exists
is that, if you wait until you have three use cases, each might
be slightly different, and it gives you a better view for what the
common functionality is. If you refactor too early, you may find
that the third use case doesn’t quite fit with your refactored code.

At least our FTs are back to passing:

$ python src/manage.py test functional_tests

[...]
0K

We're back to a working state, so we can take a look at some of the items on our
scratchpad. This would be a good time for a commit (and possibly a tea break):

$ git commit -am "enforce model validation in list view"

Refactor: Removing Hardcoded URLs

Do you remember those name= parameters in urls.py? We just copied them across
from the default example that Django gave us, and I've been giving them some
reasonably descriptive names. Now we find out what they’re for:

src/lists/urls.py
path("new", views.new_list, name="new_list"),
path("<int:list_id>/", views.view_list, name="view_list"),

The {% url %} Template Tag

We can replace the hardcoded URL in home.html with a Django template tag that

2

refers to the URLs “hame”:

src/lists/templates/home.html (ch141038)
{% block form_action %}{% url 'new_list' %}{% endblock %}

We check that this doesn’t break the unit tests:

$ python src/manage.py test lists
OK

Let's do the other template. This one is more interesting, because we pass it a
parameter:

src/lists/templates/list.html (ch141039)
{% block form_action %}{% url 'view_list' list.id %}{% endblock %}

320 | Chapter 14: Validation at the Database Layer

See the Django docs on reverse URL resolution for more info. We run the tests again,
and check that they all pass:

$ python src/manage.py test lists

OK

$ python src/manage.py test functional_tests
OK

Excellent! Let’s commit our progress:

$ git commit -am "Refactor hard-coded URLs out of templates"

And don't forget to cross off the “Remove hardcoded URL...” task as well:

. Remove hardcoded URLs from views py.

. Remove—~re-eariyretornrromtrsrer7

. Remove—hardcodted—CRE—From—Forms—n

. Remove dyplication of validation /ogic in
vews.

Using get_absolute_url for Redirects

Now let’s tackle views.py. One way of doing it is just like in the template, passing in
the name of the URL and a positional argument:

src/lists/views.py (ch141040)
def new_list(request):

[...]

return redirect("view_list", nulist.id)

That would get the unit and functional tests passing, but the redirect function can
do even better magic than that! In Django, because model objects are often associated
with a particular URL, you can define a special function called get_absolute_url
which tells you what page displays the item. It's useful in this case, but it’s also useful
in the Django admin (which I don’t cover in the book, but you'll soon discover
for yourself) because it will let you jump from looking at an object in the admin
view to looking at the object on the live site. I'd always recommend defining a
get_absolute_url for a model whenever there is one that makes sense; it takes no
time at all.

Refactor: Removing Hardcoded URLs | 321

https://docs.djangoproject.com/en/5.2/topics/http/urls/#reverse-resolution-of-urls

All it takes is a super simple unit test in test_models.py:

src/lists/tests/test_models.py (ch141041)

def test_get_absolute_url(self):
mylist = List.objects.create()
self.assertEqual(mylist.get_absolute_url(), f"/lists/{mylist.id}/")

That gives:

AttributeError: 'List' object has no attribute 'get_absolute_url'

The implementation is to use Django’s reverse function, which essentially does the
reverse of what Django normally does with urls.py:

src/lists/models.py (ch141042)
from import reverse

class List(models.Model):
def get_absolute_url(self):
return reverse('"view_list", args=[self.id])

And now we can use it in the view—the redirect function just takes the object we
want to redirect to, and it uses get_absolute_url under the hood automagically!

src/lists/views.py (ch141043)
def new_list(request):

[...]

return redirect(nulist)

There’s more info in the Django docs. Quick check that the unit tests still pass:

0K

322 | Chapter 14: Validation at the Database Layer

https://docs.djangoproject.com/en/5.2/topics/http/shortcuts/#redirect

Then we do the same to view_list:

src/lists/views.py (ch141044)
def view_list(request, list_id):

[...]

item.save()
return redirect(our_list)
except ValidationError:
error = "You can't have an empty list item"

And a full unit test and FT run to assure ourselves that everything still works:

$ python src/manage.py test lists
OK

$ python src/manage.py test functional_tests
OK

Time to cross off our to-dos...

. Removerardcooted-tiRis-Fromvrerspy:

. Remove~fe—earfrretornrromrer7.

. Remove—rardcodted—RE—From—Forms—n

. Remove dyplication of validation fogic in
vews.

And commit...

$ git commit -am "Use get_absolute_url on List model to DRY urls in views"

And were done with that bit! We have working model-layer validation, and we've
taken the opportunity to do a few refactors along the way.

That final scratchpad item will be the subject of the next chapter.

Refactor: Removing Hardcoded URLs | 323

On Database-Layer Validation

As we saw, the specific “not empty” constraint were trying to apply here isn’t enforce-
able by SQLite, and so it was actually Django that ended up enforcing it for us.
However, I always like to push my validation logic down as low as possible:

Validation at the database layer is the ultimate guarantee of data integrity
It can ensure that, no matter how complex your code gets at the layers above, you
have guarantees at the lowest level that your data is valid and consistent.

But it comes at the expense of flexibility
This benefit doesn’t come for free! It’s now impossible, even temporarily, to have
inconsistent data. Sometimes you might have a good reason for temporarily
storing data that breaks the rules rather than storing nothing at all. Perhaps
you're importing data from an external source in several stages, for example.

And it’s not designed for user-friendliness
Trying to store invalid data will cause a nasty IntegrityError to come back from
your database, and possibly the user will see a confusing 500 error page. As we’ll
see in later chapters, forms-layer validation is designed with the user in mind,
anticipating the kinds of helpful error messages we want to send them.

324 | Chapter 14: Validation at the Database Layer

CHAPTER 15
A Simple Form

At the end of the last chapter, we were left with the thought that there was too much
duplication in the validation handling bits of our views. Django encourages you to
use form classes to do the work of validating user input, and choosing what error
messages to display.

We'll use tests to explore the way Django forms work, and then we'll refactor our
views to use them. As we go along, we'll see our unit tests and functional tests, in
combination, will protect us from regressions.

Moving Validation Logic Into a Form

In Django, a complex view is a code smell. Could some of that
logic be pushed out to a form? Or to some custom methods on the
model class? Or (perhaps best of all) to a non-Django module that
represents your business logic?

Forms have several superpowers in Django:

« They can process user input and validate it for errors.

o They can be used in templates to render HTML input elements, and error
messages too.

o And, as we'll see later, some of them can even save data to the database for you.
You don't have to use all three superpowers in every form. You may prefer to roll your

own HTML or do your own saving. But they are an excellent place to keep validation
logic.

325

Exploring the Forms APl with a Unit Test

Let’s do a little experimenting with forms by using a unit test. My plan is to iterate
towards a complete solution, and hopefully introduce forms gradually enough that
they’ll make sense if you've never seen them before.

First we add a new file for our form unit tests, and we start with a test that just looks
at the form HTML:

src/lists/tests/test_forms.py (ch151001)
from import TestCase

from import ItemForm

class ItemFormTest(TestCase):
def test_form_renders_item_text_input(self):
form = ItemForm()
self.fail(form.as_p())

form.as_p() renders the form as HTML. This unit test uses a self.fail for some
exploratory coding. You could just as easily use a manage.py shell session, although
youd need to keep reloading your code for each change.

Let’s make a minimal form. It inherits from the base Form class, and has a single field
called item_text:

src/lists/forms.py (ch151002)
from import forms

class ItemForm(forms.Form):
item_text = forms.CharField()

We now see a failure message that tells us what the autogenerated form HTML will
look like:

AssertionError: <p>

<label for="1d_item_text">Item text:</label>

<input type="text" name="item_text" required id="1id_item_text">
1

[...
</p>

326 | Chapter15:A Simple Form

It’s already pretty close to what we have in base.html. We're missing the placeholder
attribute and the Bootstrap CSS classes. Let’s make our unit test into a test for that:

src/lists/tests/test_forms.py (ch151003)
class ItemFormTest(TestCase):
def test_form_1item_1input_has_placeholder_and_css_classes(self):
form = ItemForm()

rendered = form.as_p()

self.assertIn('placeholder="Enter a to-do item"', rendered)
self.assertIn('class="form-control form-control-1g""', rendered)

That gives us a fail, which justifies some real coding:

self.assertIn('placeholder="Enter a to-do item"', rendered)
ANANANNNNANANNNNNNNNNNNNNANNNNANNNNNNNANNNNNNNNNNANNANANN

AssertionError: 'placeholder="Enter a to-do item"' not found in [...]

How can we customise the input for a form field? We use a “widget”. Here it is with
just the placeholder:

src/lists/forms.py (ch151004)
class ItemForm(forms.Form):
item_text = forms.CharField(

widget=forms.widgets.TextInput(

attrs={

"placeholder": "Enter a to-do item",

}

)s

That gives:

AssertionError: 'class="form-control form-control-1g"' not found in '<p>\n
<label for="1id_item_text">Item text:</label>\n <input type="text"
name="1item_text" placeholder="Enter a to-do item" required id="id_1item_text">\n

\n \n \n \n </p>'
And then:

src/lists/forms.py (ch151005)
widget=forms.widgets.TextInput(
attrs={
"placeholder": "Enter a to-do item",
"class": "form-control form-control-1g",

)s

Moving Validation LogicIntoaForm | 327

Doing this sort of widget customisation would get tedious if we
had a much larger, more complex form. Check out django-crispy-
forms for some help.

Development-Driven Tests: Using Unit Tests for Exploratory Coding

Does this feel a bit like development-driven tests? That’s OK, now and again.

When you're exploring a new API, you're absolutely allowed to mess about with it for
a while before you get back to rigorous TDD. You might use the interactive console,
or write some exploratory code (but you have to promise the Testing Goat that you'll
throw it away and rewrite it properly later).

Here, we're actually using a unit test as a way of experimenting with the forms APL. It
can be a surprisingly good way of learning how something works.

Switching to a Django ModelForm

What’s next? We want our form to reuse the validation code that we've already
defined on our model. Django provides a special class that can autogenerate a form
for a model, called ModelForm. As you'll see, it’s configured using a special inner class
called Meta:

src/lists/forms.py (ch151006)
from import forms

from import Item

class ItemForm(forms.models.ModelForm):
class Meta: @
model = Item
fields = ("text",)

item_text = forms.CharField(@

widget=forms.widgets. TextInput(

attrs={

"placeholder": "Enter a to-do item",

"class": "form-control form-control-lg",
}

);

#)

328 | (Chapter15: A Simple Form

https://django-crispy-forms.readthedocs.org
https://django-crispy-forms.readthedocs.org

@ 1n Meta, we specify which model the form is for and which fields we want it to
use.
@O We'll comment out our manually created field for now.

ModelForm does all sorts of smart stuff, like assigning sensible HTML form input
types to different types of field, and applying default validation. Check out the docs
for more info.

We now have some different-looking form HTML.:

AssertionError: 'placeholder="Enter a to-do item"' not found in '<p>\n

<label for="1d_text">Text:</label>\n <textarea name="text" cols="40"
rows="10" required id="id_text">\n</textarea>\n \n \n \n \n
</p>'

Its lost our placeholder and CSS class. And you can also see that it's using
name="text" instead of name="{item_text". We can probably live with that. But it’s
using a textarea instead of a normal input, and that’s not the UI we want for our
app. Thankfully, you can override widgets for ModelForm fields, similarly to the way
we did it with the normal form:

src/lists/forms.py (ch151007)
class ItemForm(forms.models.ModelForm):
class Meta:
model = Item
fields = ("text",)
widgets = { @
"text": forms.widgets.TextInput(

attrs={
"placeholder": "Enter a to-do item",
"class": "form-control form-control-1g",
}

),

@ We restore some of our commented-out code here, but modified slightly, from
being an attribute declaration to a key in a dict.

That gets the test passing.

Moving Validation LogicIntoaForm | 329

https://docs.djangoproject.com/en/5.2/topics/forms/modelforms

Testing and Customising Form Validation

Now let’s see if the ModelForm has picked up the same validation rules that we defined
on the model. We'll also learn how to pass data into the form, as if it came from the
user:

src/lists/tests/test_forms.py (ch151008)
def test_form_1item_1input_has_placeholder_and_css_classes(self):

[...]

def test_form_validation_for_blank_items(self):
form = ItemForm(data={"text": ""})
form.save()

That gives us:
ValueError: The Item could not be created because the data didn't validate.

Good: the form won't allow you to save if you give it an empty item text. Now let’s see
if we can get it to use the specific error message that we want. The API for checking
form validation before we try to save any data is a function called is_valid:

src/lists/tests/test_forms.py (ch151009)
def test_form_item_input_has_placeholder_and_css_classes(self):

[...]

def test_form_validation_for_blank_items(self):
[...]

def test_form_validation_for_blank_items(self):
form = ItemForm(data={"text": ""})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors["text"], ["You can't have an empty list item"])

Calling form.is_valid() returns True or False, but it also has the side effect of vali-
dating the input data and populating the errors attribute. It’s a dictionary mapping
the names of fields to lists of errors for those fields (it’s possible for a field to have
more than one error).

That gives us:

AssertionError: ['This field is required.'] != ["You can't have an empty list
item"]

330 | Chapter15: A Simple Form

Django already has a default error message that we could present to the user—you
might use it if you were in a hurry to build your web app, but we care enough to make
our message special. Customising it means changing error_messages—another Meta
variable:

src/lists/forms.py (ch151010)

class Meta:

model = Item

fields = ("text",)

widgets = {

"text": forms.widgets.TextInput(
attrs={

"placeholder": "Enter a to-do item",
"class": "form-control form-control-1lg",

}
),
}

error_messages = {"text": {"required": "You can't have an empty list item"}}

0K

You know what would be even better than messing about with all these error strings?
Having a constant:

src/lists/forms.py (ch151011)

EMPTY_ITEM_ERROR = "You can't have an empty list item"

[...]
error_messages = {"text": {"required": EMPTY_ITEM_ERROR}}

Rerun the tests to see that they pass...OK. Now we can change the tests too.

src/lists/tests/test_forms.py (ch151012)

from lists.forms import EMPTY_ITEM_ERROR, ItemForm
[...]

def test_form_validation_for_blank_items(self):
form = ItemForm(data={"text": ""})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors["text"], [EMPTY_ITEM_ERROR])

This is a good example of reusing constants in tests. It makes it
easier to change the error message later.

And the tests still pass:

0K

Moving Validation LogicIntoaForm | 331

Great. Totes committable:

$ git status # should show forms.py and test_forms.py
$ git add src/lists
$ git commit -m "new form for list items"

Attempting to Use the Form in Qur Views

At this point, we may be tempted to carry on—perhaps extend the form to capture
uniqueness validation and empty-item validation.

But there’s a sort of corollary to the “deploy as early as possible” Lean methodology,
which is “merge code as early as possible”. In other words: while building this bit of
forms code, it would be easy to go on for ages, adding more and more functionality
to the form—TI should know, because that’s exactly what I did during the drafting of
this chapter, and I ended up doing all sorts of work making an all-singing, all-dancing
form class before I realised it wouldn’t actually work for our most basic use case.

So, instead, try to use your new bit of code as soon as possible. This makes sure you
never have unused bits of code lying around, and that you start checking your code
against “the real world” as soon as possible.

We have a form class that can render some HTML and do validation of at least
one kind of error—let’s start using it! We should be able to use it in our base.html
template—so, also, in all of our views.

Using the Form in a View with a GET Request

So, let’s start using our form in our home page view:

src/lists/views.py (ch151013)

from import ItemForm
from import Item, List

def home_page(request):
return render(request, "home.html", {"form": ItemForm()})

OK, now lets try using it in the template—we replace the old <input ..> with
{{ form.text }}:

332 | Chapter15: A Simple Form

src/lists/templates/base.html (ch151014)

<form method="POST" action="{% block form_action %}{% endblock %}" >

{{ form.text }} @

{% csrf_token %}

{% if error %}

<div class="invalid-feedback">{{ error }}</div>

{% endif %}

</form>

© {{ form.text }} renders just the HTML input for the text field of the form.
That causes our two unit tests that check on the form input to fail:

[...]

FAIL: test_renders_input_form
(lists.tests.test_views.HomePageTest.test_renders_input_form)
Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_views.py", line 19, in
test_renders_1input_form
self.assertIn("item_text", [input.get("name") for input in inputs])

~~~~~~~~~~~~~ ANNANNANANNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANN

AssertionError: 'item_text' not found in ['text', 'csrfmiddlewaretoken'] @

FAIL: test_renders_input_form
(lists.tests.test_views.ListViewTest.test_renders_input_form)

Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_views.py", line 60, in
test_renders_input_form
self.assertIn("item_text", [input.get("name") for input in inputs])

~~~~~~~~~~~~~ ANNANNNNNNNNANNNNNNNNNNNNNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNN
AssertionError: 'item_text' not found in ['csrfmiddlewaretoken'] @

Ran 18 tests in 0.022s

FAILED (failures=2)

@ The test for the home page is failing because the name attribute of the input box is
now text, not item_text.

© The test for the list view is failing because because we’re not instantiating a form
in that view, so there’s no form variable in the template. The input box isn’t even
being rendered.

Attempting to Use the Form in Our Views | 333

Let’s fix things one at a time. First, let’s back out our change and restore the hand-
crafted HTML input in cases where {{ form }} is not defined:

src/lists/templates/base.html (ch151015)
<form method="POST" action="{% block form_action %}{% endblock %}" >
{% if form %}
{{ form.text }}
{% else %}
<input
class="form-control form-control-lg {% if error %}is-invalid{% endif %}"
name="1item_text"
id="1d_new_item"
placeholder="Enter a to-do item"
/>
{% endif %}
{% csrf_token %}
{% if error %}
<div class="1invalid-feedback">{{ error }}</div>
{% endif %}
</form>

That takes us down to one failure:
AssertionError: 'item_text' not found in ['text', 'csrfmiddlewaretoken']

Lets make a note to come back and tidy this up, and then we'll talk about what’s
happened and how to deal with it:

. Remove dvplication of validation /fogic in
views.

. Remove i branch and hardcoded /npvt
Fas from base.ftm/.

~— P N N . \

The Trade-offs of Django ModelForms: The Frontend Is Coupled to
the Database

This highlights one of the trade-offs of using ModelForm: by auto-generating the form
from the model, we tie the name= attribute of our form’s HTML <input> to the name
of the model field in the database.

In a simple CRUD (create, read, update, and delete) app like ours, that’s probably a
good deal. But it does mean we need to go back and change our assumptions about
what the name= attribute of the input box is going to be.

334 | Chapter15: A Simple Form

While we're at it, it’s worth doing an FT run too:

$ python src/manage.py test functional_tests

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: [1d="1d_new_item"]; [...]

[...]

FAILED (errors=4)

Looks like something else has changed.

If you pause the FTs or inspect the HTML manually in a browser, you'll see that the
ModelForm also changes the id attribute to being 1d_text.!

A Big Find-and-Replace

If we want to change our assumption about these two attributes, we’ll need to embark
on a couple of big find-and-replaces basically:

. Remove duplication of validation fogic in
views.

o Remove i branch and hardcoded inpvt
tas From base.htm/.

. Change inpvt name altribvie From
item_rtext o just fet,

o Change inpuvt id From /d_new_item +o
1A _Fesxt.

But before we do that, let’s back out the rest of our changes and get back to a working
state.

1 It’s actually possible to customise this attribute via the widgets attribute we used earlier, even on a ModelForm,
but because you cannot change the name one, we may as well just accept this too.

ABig Find-and-Replace | 335

Backing Out Our Changes and Getting to a Working State

The simplest way to back out changes is with git. But in this case, leaving a couple of
placeholders does no harm, and they’ll be helpful to come back to later.

So we can leave the {{ form.text }} in the HTML but, by backing out the change
in the view, we'll make sure that branch is never actually exercised. Again, to leave
ourselves a little placeholder, we'll comment out our code rather than deleting it:

src/lists/views.py (ch151016)

def home_page(request):
return render(request, "home.html", {"form": ItemForm()})
return render(request, "home.html")

Be very cautious about leaving commented-out code and unused
if branches lying around. Do so only if you're sure youre coming
back to them very soon, otherwise your codebase will soon get
messy!

Now we can do a full unit test and FT run to confirm were back to a working state:

$ python src/manage.py test lists
Found 18 test(s).

[...]
0K

$ python src/manage.py test functional_tests
Found 4 test(s).

[...]

OK

And let’s do a commit to be able to separate out the rename from anything else:

$ git diff # changes in base.html + views.py
$ git commit -am "Placeholders for using form in view+template, not in use yet"

336 | Chapter15: A Simple Form

And pop an item on the to-do list:

. Remove dyplication of validation fogic in
views.

o Remove /£ branch and hardcoded inpvt
tas from base.htm/.

. Chanse inpvt name attribvie From
item_+ext o just Fext,

. Change inpuvt id From /d_new_item +o
sl _Fext,

. Uncomment vse of Form in home_pase()
view_item +o 1d_+text.

. Use Form /n otber views.

Renaming the name Attribute

So, let’s have a look for item_text in the codebase:

$ grep -Ir item_text src

src/lists/migrations/0003_list.py: ("lists", "0002_1item_text"),
src/lists/tests/test_views.py: self.assertIn("item_text",
[input.get("name") for input in inputs])

[...]

src/lists/templates/base.html: name="1tem_text"
src/lists/views.py: item = Item(text=request.POST["item_text"], list=nulist)
src/lists/views.py: item = Item(text=request.POST["item_text"],

list=our_list)
We can ignore the migration, which is just using item_text as metadata. So the
changes we need to make are in three places:
1. views.py
2. test_views.py
3. base.html

ABig Find-and-Replace | 337

Let’s go ahead and make those. I'm sure you can manage your own find-and-replace!
They should look something like this:

src/lists/tests/test_views.py (ch151017)

@@ -16,12 +16,12 @@ class HomePageTest(TestCase):

class Ne
def

[form] = parsed.cssselect("form[method=POST]")
self.assertEqual(form.get("action"), "/lists/new")

inputs = form.cssselect("input")

self.assertIn("item_text", [input.get("name") for input in inputs])
self.assertIn("text", [input.get("name") for input in inputs])

wListTest(TestCase):

test_can_save_a_POST_request(self):

self.client.post("/lists/new", data={"{item_text": "A new list item"})
self.client.post("/lists/new", data={"text": "A new list item"})
self.assertEqual(Item.objects.count(), 1)

new_item = Item.objects.get()

self.assertEqual(new_item.text, "A new list item")

Or, in views.py:

src/lists/views.py (ch151019)

@@ -12,7 +12,7 @@ def home_page(request):

def new_
nuli
item
item
try:

list(request):

st = List.objects.create()

= Item(text=request.POST["item_text"], list=nulist)
= Item(text=request.POST["text"], list=nulist)

item.full_clean()
item.save()

@@ -29,7 +29,7 @@ def view_list(request, list_id):

if r

equest.method == "POST":

try:
item = Item(text=request.POST["item_text"], list=our_list)
item = Item(text=request.POST["text"], list=our_list)
item.full_clean()
item.save()
return redirect(our_list)

338

Chapter

15: A Simple Form

Finally, in base.html:

src/lists/templates/base.html (ch151020)
@@ -21,7 +21,7 @@
{% else %}
<input

class="form-control form-control-lg {% if error %}is-invalid{% endif %}"

name="1item_text"
+ name="text"

id="1d_new_item"

placeholder="Enter a to-do item"

/>
Once youre done, rerun the unit tests to confirm that the application is self-
consistent:

$ python src/manage.py test lists

[...]
Ran 18 tests in 0.126s

OK
And rerun the FTs too:
$ python src/manage.py test functional_tests

[...]
Ran 4 tests in 12.154s

0K

Good! One down:

. Remove dyplication of validation fogic in

views.

o Remove /¥ branch and hardcoded inpvs
tas from base.rtm/.

. -y o bt

. Change inpuvt jd From /d_new_item +o
sl _Fest,

. Uncomment vse of Form in home_pase()
view_item +o i1d_+text.

. Use Form /n otber views.

ABig Find-and-Replace | 339

Renaming the id Attribute

Now for the id= attribute. A quick grep shows us that id_new_1item appears in the
template, and in all three FT files:

$ grep -r id_new_1item

src/lists/templates/base.html: 1d="1d_new_1item"
src/functional_tests/test_list_item_validation.py:
self.browser.find_element(By.ID, "id_new_item").send_keys(Keys.ENTER)
src/functional_tests/test_list_item_validation.py:
self.browser.find_element(By.ID, "id_new_item").send_keys("Purchase milk")

[...]

That’s a good call for a refactor within the FTs too. Let’s make a new helper method in
base.py:

src/functional_tests/base.py (ch151021)
class FunctionalTest(StaticLiveServerTestCase):

[...]
def get_item_input_box(self):
return self.browser.find_element(By.ID, "id_new_item") @

@ We'll keep the old id for now. Working state to working state!

And then we use it throughout—I had to make four changes in test_simple_list_cre-
ation.py, two in test_layout_and_styling.py, and six in test_list_item_validation.py, for
example:

src/functional_tests/test_simple_list_creation.py

She 1s invited to enter a to-do item straight away
inputbox = self.get_item_1input_box()

Or:

src/functional_tests/test_list_item_validation.py
an empty list item. She hits Enter on the empty input box
self.browser.get(self.live_server_url)
self.get_item_input_box().send_keys(Keys.ENTER)

I won’t show you every single one; I'm sure you can manage this for yourself! You can
redo the grep to check that you've caught them all:

$ grep -r id_new_1item

src/lists/templates/base.html: id="1d_new_1item"
src/functional_tests/base.py: return self.browser.find_element(By.ID,
"id_new_item")

340 | Chapter15: A Simple Form

And we can do an FT run too, to make sure we haven’t broken anything:

$ python src/manage.py test functional_tests

[...]
Ran 4 tests in 12.154s

0K

Good! FT refactor complete—now hopefully we can make the application-level refac-
tor of the id attribute in just two places, and we've been in a working state the whole
way through.

In the FT helper method:

src/functional_tests/base.py (ch151023)

@@ -43,4 +43,4 @@ class FunctionalTest(StaticLiveServerTestCase):
time.sleep(0.5)

def get_1item_input_box(self):
- return self.browser.find_element(By.ID, "id_new_item")
+ return self.browser.find_element(By.ID, "id_text")

And in the template:

src/lists/templates/base.html (ch151024)
@@ -22,7 +22,7 @@
<input
class="form-control form-control-l1g {% if error %}is-invalid{% endif %}"
name="text"
id="1d_new_item"
+ id="1d_text"
placeholder="Enter a to-do item"
/>
{% endif %}

And an FT run to confirm:

$ python src/manage.py test functional_tests

[...]
Ran 4 tests in 12.154s

0K

Hooray!

ABig Find-and-Replace | 341

. Remove dyplication of validation fogic in

views.

o Remove /¥ branch and hardcoded inpvt
tas from base.rtm/.

. - -y bt
7'7'!7’7_1)E*I 7" 7#‘ 'S7 1'!*7-

. - AN SRSNY, .
rol—rexrt

. Uncomment vse of form in home_pase()
view_item +o /d_+text.

. Use Form /n otber views.

A Second Attempt at Using the Form in Qur Views

Now that we've done the groundwork, hopefully we can drop in our form in the
home_page() once again:

src/lists/views.py (ch151025)
def home_page(request):
return render(request, "home.html", {"form": ItemForm()})

Looking good!

$ python src/manage.py test lists
Found 18 test(s).

[...]
0K

342 | Chapter15: A Simple Form

. Remove dyplication of validation fogic in

vews.

o Remove /¥ branch and hardcoded inpvt
tas from base.rtm/.

.) -y W, ;

. £y SN, A prenrt .
J‘ﬂ_—' 'Ei’ .

. . / ¢ 2 B ’

e Aot At
. Use Form in otber views.

Let’s see what happens if we remove that 1f from the template:

src/lists/templates/base.html (ch151026)

@@ -16,16 +16,7 @@
<h1 class="display-1 mb-4">{% block header_text %}{% endblock %}</h1>

<form method="POST" action="{% block form_action %}{% endblock %}" >

- {% if form %}
- {{ form.text }}
- {% else %}
- <input
- class="form-control form-control-l1g {% if error %}is-invalid{% endif %}
- name="text"
- id="1d_text"
- placeholder="Enter a to-do item"
- />
- {% endif %}
+ {{ form.text }}

{% csrf_token %}

{% if error %}

<div class="invalid-feedback">{{ error }}</div>

Aha—the unit tests are there to tell us that we need to use the form in view_list()
too:

AssertionError: 'text' not found in ['csrfmiddlewaretoken']

A Second Attempt at Using the Form in Qur Views | 343

Here’s the minimal use of the form—we won't use it for validation yet, just for getting
the form into the template:

src/lists/views.py (ch151027)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
error = None
form = ItemForm()

if request.method == "POST":

try:
item = Item(text=request.POST["text"], list=our_list)
item.full_clean()
item.save()
return redirect(our_list)

except ValidationError:
error = "You can't have an empty list item"

return render(
request, "list.html", {"list": our_list, "form": form, "error": error}

)

And the tests are happy with that too:

$ python src/manage.py test lists
Found 18 test(s).

[...]
0K

We're done with the template; what’s next?

344 | Chapter15:ASimple Form

. Remove dyplication of validation fogic in

views.

. e 2 , ,)
Fas-Frombasetmt

. - -y bt

. - AN SRSNY, .
rot—rext:

. Yrreomment—vse—or~Form—rn—rome—pasety
View—rtem—Foro—Fexdt

. Use Form /n otber views.

Right, let's move on to the next view that doesn’t use our form yet—new_list().
And actually, that'll help us with the first item, which was the whole point of this
adventure, really: to see if the forms can help us better handle validation.

Let’s see how that works now.

Using the Form in a View That Takes POST Requests

Here’s how we can use the form in the new_list() view, avoiding all the manual
manipulation of request.POST and the error message:

src/lists/views.py (ch151028)

def new_list(request):

form = ItemForm(data=request.POST) @

if form.is_valid(): @
nulist = List.objects.create()
Item.objects.create(text=request.POST["text"], list=nulist)
return redirect(nulist)

else:
return render(request, "home.html", {"form": form}) ©

@ We pass the request.POST data into the form’s constructor.

©® We use form.is_valid() to determine whether this is a good or a bad submis-
sion.

© In the invalid case, we pass the form down to the template, instead of our
hardcoded error string.

Using the Form in a View That Takes POST Requests | 345

That view is now looking much nicer!

But, we have a regression in the unit tests:

FAIL: test_validation_errors_are_sent_back_to_home_page_template (lists.tests.t
est_views.NewListTest.test_validation_errors_are_sent_back_to_home_page_templat

e)

self.assertContains(response, expected_error)
ANNAANANNNANNANNANNNNNANNNANNANNNNNNANN

AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in the following response

b'<!doctype html>\n<html lang="en">\n\n <head>\n <title>To-Do

[...]

Using the Form to Display Errors in the Template

We're failing because we're not yet using the form to display errors in the template.
Here’s how to do that:

src/lists/templates/base.html (ch151029)

<form method="POST" action="{% block form_action %}{% endblock %}" >

{{ form.text }}

{% csrf_token %}

{% if form.errors %} @

<div class="invalid-feedback">{{ form.errors.text }}</div> @

{% endif %}

</form>

@ We change the if to look at form.errors: it contains a list of all the errors for the
form.

@ form.errors.text is magical Django template syntax for form.errors["text"]
—i.e., the list of errors for the text field in particular.

What does that do to our unit tests?

FAIL: test_validation_errors_end_up_on_lists_page (lists.tests.test_views.ListV
iewTest.test_validation_errors_end_up_on_lists_page)

[...]

AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in the following response

346 | Chapter15: A Simple Form

An unexpected failure—it’s actually in the tests for our final view, view_list(). Once
again, because we've changed the base template, which is used by all views, we've
made a change that impacts more places than we intended. Let’s follow our standard
pattern, get back to a working state, and see if we can dig into this a bit.

Get Back to a Working State

Let’s restore the old [% if %} in the template, so we display errors in both old and
new cases:

src/lists/templates/base.html (ch151029-1)
<form method="POST" action="{% block form_action %}{% endblock %}" >
{{ form.text }}
{% csrf_token %}
{% if error %}
<div class="invalid-feedback">{{ error }}</div>
{% endif %}
{% if form.errors %}
<div class="1invalid-feedback">{{ form.errors.text }}</div>
{% endif %}
</form>

And add an item to our stack:

. Remove dyplication of validation fogic in

views

. A 2y ; ot eostentrmood
Fas-Frombasettm/

. - -y bt
rhem—texit~o rstrtexst

. Y SR SRSy, .
Fol—rtest

. Yrreomment—vse—or~Form—rn—rome—pasety

errbemrtordted
. Use Form in otber views
. Remove if error branch from femp/ate

o

Using the Form in a View That Takes POST Requests | 347

A Helper Method for Several Short Tests

Let’s take a look at our tests for both views, particularly the ones that check for invalid
inputs:

src/lists/tests/test_views.py
class NewListTest(TestCase):

[...]
def test_validation_errors_are_sent_back_to_home_page_template(self):
response = self.client.post("/lists/new", data={"text": ""})

self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "home.html")

expected_error = html.escape("You can't have an empty list item")
self.assertContains(response, expected_error)

def test_invalid_list_items_arent_saved(self):
self.client.post("/lists/new", data={"text": ""})
self.assertEqual(List.objects.count(), 0)
self.assertEqual(Item.objects.count(), 0)

class ListViewTest(TestCase):

[...]
def test_validation_errors_end_up_on_lists_page(self):
list_ = List.objects.create()

response = self.client.post(
f"/lists/{list_.id}/",
data={"text": ""},

)

self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "list.html")

expected_error = html.escape("You can't have an empty list item")
self.assertContains(response, expected_error)

I see a few problems here:

1. Were explicitly checking that validation errors prevent anything from being
saved to the database in NewListTest, but not in ListViewTest.

2. Were mixing up the test for the status code, the template, and finding the error in
the result.

Lets be extra meticulous here, and separate out these concerns. Ideally, each test
should have one assert. If we used copy-paste, that would start to involve a lot of
duplication, so using a couple of helper methods is a good idea here.

348 | Chapter15: A Simple Form

Here’s some better tests in NewListTest:

src/lists/tests/test_views.py (ch151029-2)

from lists.forms import EMPTY_ITEM_ERROR
[...]

class NewListTest(TestCase):
def test_can_save_a_POST_request(self):

[...]
def test_redirects_after_POST(self):
[...]

def post_invalid_input(self):
return self.client.post("/lists/new", data={"text": ""})

def test_for_invalid_input_nothing_saved_to_db(self):
self.post_invalid_1input()
self.assertEqual(Item.objects.count(), 0)

def test_for_invalid_input_renders_list_template(self):
response = self.post_invalid_1input()
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "home.html")

def test_for_invalid_input_shows_error_on_page(self):
response = self.post_invalid_input()
self.assertContains(response, html.escape(EMPTY_ITEM_ERROR))

By making a little helper function, post_invalid_input(), we can make three sep-
arate tests without duplicating lots of lines of code. We've seen this several times
now. It often feels more natural to write view tests as a single, monolithic block of
assertions—the view should do this and this and this, then return that with this.

But breaking things out into multiple tests is often worthwhile; as we saw in previous
chapters, it helps you isolate the exact problem you have when you later accidentally
introduce a bug. Helper methods are one of the tools that lower the psychological
barrier, by reducing boilerplate and keeping the tests readable.

Using the Form in a View That Takes POST Requests | 349

Let’s do something similar in ListViewTest:

src/lists/tests/test_views.py (ch151029-3)

class ListViewTest(TestCase):
def test_uses_list_template(self):

def Eéééirenders_input_form(self):
def Eéééidisplays_only_items_for_that_list(self):
def Eéééican_save_a_POST_request_to_an_existing_list(self):
def EéééiPOST_redirects_to_list_view(self):
[...]

def post_invalid_input(self):
mylist = List.objects.create()
return self.client.post(f"/lists/{mylist.id}/", data={"text": ""})

def test_for_invalid_input_nothing_saved_to_db(self):
self.post_invalid_1input()
self.assertEqual(Item.objects.count(), 0)

def test_for_invalid_1input_renders_list_template(self):
response = self.post_invalid_1input()
self.assertEqual(response.status_code, 200)
self.assertTemplateUsed(response, "list.html")

def test_for_invalid_input_shows_error_on_page(self):
response = self.post_invalid_input()
self.assertContains(response, html.escape(EMPTY_ITEM_ERROR))

And let’s rerun all our tests:

$ python src/manage.py test lists
Found 21 test(s).

[...]
oK

Great! We now feel confident that we have a lot of very specific unit tests, which can
point us to exactly what goes wrong if we ever make a mistake.

350 | Chapter15: A Simple Form

So let’s have another go at using our form for all views, by fully committing to the
{{ form.errors }} in the template:

src/lists/templates/base.html (ch151029-4)
@@ -18,9 +18,6 @@
<form method="POST" action="{% block form_action %}{% endblock %}" >

{{ form.text }}

{% csrf_token %}
- {% if error %}
- <div class="1invalid-feedback">{{ error }}</div>
- {% endif %}

{% if form.errors %}

<div class="invalid-feedback">{{ form.errors.text }}</div>
{% endif %}

And we'll see that exactly one test is failing:

FAIL: test_for_1invalid_input_shows_error_on_page (lists.tests.test_views.ListVi
ewTest.test_for_invalid_input_shows_error_on_page)

[...]
AssertionError: False is not true : Couldn't find 'You can't have an empty
list item' in the following response

Using the Form in the Existing Lists View

Let’s try and work step by step towards fully using our form in this final view.

Using the Form to Pass Errors to the Template

At the moment, one test is failing because the view_list() view for existing lists is
not populating form.errors in the invalid case. Let’s address just that:

src/lists/views.py (ch151030-1)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_id)
error = None
form = ItemForm() @

if request.method == "POST":
form = ItemForm(data=request.POST) @
try:

item = Item(text=request.POST["text"], list=our_list)
item.full_clean()
item.save()
return redirect(our_list)
except ValidationError:
error = "You can't have an empty list item"

return render(
request, "list.html", {"list": our_list, "form": form, "error": error} ©

)

Using the Form in the Existing Lists View | 351

@ Lets add this line, in the method=POST branch, and instantiate a form using the
POST data.

@ We already had this empty form for the GET case, but our new one will override
it.

© And it should now drop through to the template here.

That gets us back to a working state!
Found 21 test(s).

[...]
oK

. Remove dyplication of validation fogic in

vews.

. e 2 ; ' rrteorteotrmood
Fas-Frombasefimt

. - -y bt

. E SR SPRSSY, .
Fol—rtest

R Urreommernt—vse—ol~Form—rmr—rome—pase

. Use Form in otber views.

. Removeri-erroritranchrromemprate:

352 | Chapter15: A Simple Form

Refactoring the View to Use the Form Fully

Now let’s start using the form more fully, and remove some of the manual error
handling.

We remove the try/except and replace it with an 1f form.is_valid() check, like
the one in new_list():

src/lists/views.py (ch151030-2)
@@ -26,13 +26,11 @@ def view_list(request, list_1id):

if request.method == "POST":
form = ItemForm(data=request.POST)
- try:
+ if form.is_valid():
item = Item(text=request.POST["text"], list=our_list)
item.full_clean()
item.save()
return redirect(our_list)
- except ValidationError:
- error = "You can't have an empty list item"
return render(
request, "list.html", {"list": our_list, "form": form, "error": error}

And the tests still pass:
0K

Next, we no longer need the .full_clean(), so we can go back to
using .objects.create():

src/lists/views.py (ch151030-3)
@@ -27,9 +27,7 @@ def view_list(request, list_id):
if request.method == "POST":

form = ItemForm(data=request.POST)

if form.is_valid():
- item = Item(text=request.POST["text"], list=our_list)
- item.full_clean()
- item.save()
+ Item.objects.create(text=request.POST["text"], list=our_list)

return redirect(our_list)

The tests still pass:

0K

Using the Form in the Existing Lists View | 353

Finally, the error variable is always None, and is no longer needed in the template
anyhow:

src/lists/views.py (ch151030-4)
@@ -21,7 +21,6 @@ def new_list(request):

def view_list(request, list_id):

our_list = List.objects.get(id=1list_1id)
= error = None

form = ItemForm()

if request.method == "POST":
@@ -30,6 +29,4 @@ def view_list(request, list_id):
Item.objects.create(text=request.POST["text"], list=our_list)
return redirect(our_list)

- return render(
- request, "list.html", {"list": our_list, "form": form, "error": error}

=)

+ return render(request, "list.html", {"list": our_list, "form": form})

And the tests are happy with that!
oK

I think our view is in a pretty good shape now. Here it is in non-diff mode, as a recap:

src/lists/views.py
def view_list(request, list_id):
our_list = List.objects.get(id=1list_1id)
form = ItemForm()

if request.method == "POST":
form = ItemForm(data=request.POST)
if form.is_valid():
Item.objects.create(text=request.POST["text"], list=our_list)
return redirect(our_list)

return render(request, "list.html", {"list": our_list, "form": form})

354 | Chapter15: A Simple Form

I think we can give ourselves the satisfaction of doing some crossing-things-out:

Phew!
Hey, it’s been a while, what do our FTs think?
[...]

ERROR: test_cannot_add_empty_list_items (functional_tests.test_list_item_valida
tion.ItemValidationTest.test_cannot_add_empty_list_items)

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

[...]
Ran 4 tests in 14.897s

FAILED (errors=1)

Oh. All the regression tests are OK, but our validation test seems to be failing—and
failing early too! It’s on the first attempt to submit an empty item. What happened?

Using the Form in the Existing Lists View | 355

An Unexpected Benefit: Free Client-Side Validation
from HTML5

How shall we find out what's going on here? One option is to add the usual
time.sleep just before the error in the FTs, and take a look at what's happening
while they run. Alternatively, spin up the site manually with manage.py runserver if
you prefer. Either way, you should see something like Figure 15-1.

5 To-Dolists

C B O D localhosts

Start a new
To-Do list

[Enter a to-do item

Figure 15-1. HTML5 validation says no

It seems like the browser is preventing the user from even submitting the input when
it's empty. It’s because Django has added the required attribute to the HTML input
(take another look at our as_p() printouts from earlier if you don’t believe me, or
have a look at the source in DevTools).

This is a feature of HTML5; browsers nowadays will do some validation at the client
side if they can, preventing users from even submitting invalid input. Thats actually
good news!

356 | Chapter 15: A Simple Form

https://oreil.ly/z2XiU

But, we were working based on incorrect assumptions about what the user experience
was going to be. Let’s change our FT to reflect this new expectation:

src/functional_tests/test_list_item_validation.py (ch151031)
class ItemValidationTest(FunctionalTest):
def test_cannot_add_empty_list_items(self):
Edith goes to the home page and accidentally tries to submit
an empty list item. She hits Enter on the empty input box
self.browser.get(self.live_server_url)
self.get_item_input_box().send_keys(Keys.ENTER)

The browser intercepts the request, and does not load the list page
self.wailt_for(

lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_text:invalid") @
)

She starts typing some text for the new item and the error disappears
self.get_item_input_box().send_keys("Purchase milk")
self.wailt_for(

lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_text:valid") @
)

And she can submit it successfully
self.get_item_input_box().send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Purchase milk")

Perversely, she now decides to submit a second blank list item
self.get_item_input_box().send_keys(Keys.ENTER)

Again, the browser will not comply
self.wait_for_row_in_list_table("1: Purchase milk")
self.wailt_for(
lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_text:invalid")
)

And she can make it happy by filling some text in
self.get_item_input_box().send_keys("Make tea")
self.wailt_for(
lambda: self.browser.find_element(
By.CSS_SELECTOR,
"#id_text:valid",
)
)
self.get_item_input_box().send_keys(Keys.ENTER)
self.wailt_for_row_in_list_table("2: Make tea")

@ Instead of checking for our custom error message, we check using the CSS
pseudo-selector :invalid, which the browser applies to any HTML5 input that
has invalid input.

® And we check for its converse in the case of valid inputs.

See how useful and flexible our self.wait_for() function is turning out to be?

An Unexpected Benefit: Free Client-Side Validation from HTMLS | 357

Our FT does look quite different from how it started though, doesnt it? ’'m sure that’s
raising a lot of questions in your mind right now. Put a pin in them for a moment; I
promise we'll talk. Let’s first see if we're back to passing tests:

$ python src/manage.py test functional_tests

[...]
Ran 4 tests in 12.154s

0K

A Pat on the Back

First, let’s give ourselves a massive pat on the back: we’ve just made a major change to
our small app—that input field, with its name and ID, is absolutely critical to making
everything work. We've touched seven or eight different files, doing a refactor that’s
quite involved...this is the kind of thing that, without tests, would seriously worry
me. In fact, I might well have decided that it wasn't worth messing with code that
works. But, because we have a full test suite, we can delve around, tidying things up,
safe in the knowledge that the tests are there to spot any mistakes we make. It just
makes it that much more likely that youre going to keep refactoring, keep tidying up,
keep gardening, keep tending to your code, and keep everything neat and tidy and
clean and smooth and precise and concise and functional and good.

And it’s definitely time for a commit:

$ git diff
$ git commit -am "use form in all views, back to working state"

But Have We Wasted a Lot of Time?

But what about our custom error message? What about all that effort rendering the
form in our HTML template? Were not even passing those errors from Django to the
user if the browser is intercepting the requests before the user even makes them! And
our FT isn't even testing that stuff any more!

Well, youre quite right. But there are two or three reasons all our time hasn’t been
wasted. Firstly, client-side validation isn't enough to guarantee youre protected from
bad inputs, so you always need the server side as well if you really care about data
integrity; using a form is a nice way of encapsulating that logic.

Also, not all browsers fully implement HTML5,> so some users might still see our
custom error message. And if or when we come to letting users access our data via an
API (see Online Appendix: Building a REST API), then our validation messages will
come back into use. On top of that, well be able to reuse all our validation and forms

2 Safari was a notable laggard in the last decade; it’s up to date now.

358 | Chapter 15: A Simple Form

https://www.obeythetestinggoat.com/book/appendix_rest_api.html

code when we do some more advanced validation that can’t be done by HTML5
magic.

But you know, even if all that weren’t true, you can’t be too hard on yourself for
occasionally barking up the wrong tree while youre coding. None of us can see the
future, and we should concentrate on finding the right solution rather than the time
“wasted” on the wrong solution.

Using the ModelForm’s Own Save Method

There are a couple more things we can do to make our views even simpler. I've
mentioned that forms are supposed to be able to save data to the database for us. Our
case won't quite work out of the box, because the item needs to know what list to save
to. But it’s not hard to fix that!

We start, as always, with a test. Just to illustrate what the problem is, let’s see what
happens if we just try to call form.save():

src/lists/tests/test_forms.py (ch151033)

def test_form_save_handles_saving_to_a_list(self):
form = ItemForm(data={"text": "do me"})
new_item = form.save()

Django isn't happy, because an item needs to belong to a list:
django.db.utils.IntegrityError: NOT NULL constraint failed: lists_item.list_id

Our solution is to tell the form’s save method what list it should save to:

src/lists/tests/test_forms.py (ch151034)
from import Item, List

[...]

def test_form_save_handles_saving_to_a_list(self):
mylist = List.objects.create()
form = ItemForm(data={"text": "do me"})
new_item = form.save(for_list=mylist) @
self.assertEqual(new_item, Item.objects.get()) @
self.assertEqual(new_item.text, "do me")
self.assertEqual(new_item.list, mylist)

O wel imagine that the .save() method takes a for_list= argument.

©® We then make sure that the item is correctly saved to the database, with the right
attributes.

Using the ModelForm’s Own Save Method | 359

The tests fail as expected, because as usual, it’s still only wishful thinking:

new_item = form.save(for_list=mylist)
TypeError: BaseModelForm.save() got an unexpected keyword argument 'for_list'

Here’s how we can implement a custom save method:

src/lists/forms.py (ch151035)
class ItemForm(forms.models.ModelForm):
class Meta:

[...]

def save(self, for_list):
self.instance.list = for_list
return super().save()

The .instance attribute on a form represents the database object that is being
modified or created. And I only learned that as I was writing this chapter! There are
other ways of getting this to work, including manually creating the object yourself, or
using the commit=False argument to save, but this way seemed neatest. We'll explore
a different way of making a form “know” what list it’s for in the next chapter. A quick
test run to prove it works:

Ran 22 tests in 0.086s

0K

Finally, we can refactor our views. new_list() first:

src/lists/views.py (ch151036)
def new_list(request):
form = ItemForm(data=request.POST)
if form.is_valid():
nulist = List.objects.create()
form.save(for_list=nulist)
return redirect(nulist)
else:
return render(request, "home.html", {"form": form})

Rerun the test to check that everything still passes:

Ran 22 tests in 0.086s
OK

360 | Chapter15: A Simple Form

Then, refactor view_list():

src/lists/views.py (ch151037)
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
form = ItemForm()

if request.method == "POST":
form = ItemForm(data=request.POST)
if form.is_valid():
form.save(for_list=our_list)
return redirect(our_list)

return render(request, "list.html", {"list": our_list, "form": form})

We still have full passes:

Ran 22 tests in 0.111s
0K

And:

Ran 4 tests in 14.367s
0K

Great! Let’s commit our changes:
$ git commit -am "implement custom save method for the form"

Our two views are now looking very much like “normal” Django views: they take
information from a user’s request, combine it with some custom logic or information
from the URL (list_1id), pass it to a form for validation and possible saving, and
then redirect or render a template.

Forms and validation are really important in Django—and in web programming, in
general—so let’s try to make a slightly more complicated one in the next chapter, to
learn how to prevent duplicate items.

Using the ModelForm’s Own Save Method | 361

Tips

Thin views

If you find yourself looking at complex views, and having to write a lot of tests
for them, it's time to start thinking about whether that logic could be moved
elsewhere: possibly to a form, like we've done here. Another possible place would
be a custom method on the model class—and, once the complexity of the app
demands it, out of Django-specific files and into your own classes and functions,
that capture your core business logic.

Each test should test one thing

The heuristic is to be suspicious if there’s more than one assertion in a unit test.
Sometimes two assertions are closely related, so they belong together. But often
your first draft of a test ends up testing multiple behaviours. Therefore, it'’s worth
rewriting it as several tests so that each one can pinpoint specific problems more
precisely, and so one failure doesn’t mask another. Helper functions can keep
your tests from getting too bloated.

Be aware of trade-offs when using frameworks

When we switched to using a ModelForm, we saw that it forced us to change the
name= attribute in our frontend HTML. Django gave us a lot: it autogenerated the
form based on the model, and we have a nice API for doing both validation and
saving objects. But we lost something too—we’ll revisit this trade-off in the next
chapter.

362

Chapter 15: A Simple Form

CHAPTER 16
More Advanced Forms

Let’s look at some more advanced forms usage. We've successfully helped our users to
avoid blank list items, so now let’s help them to avoid duplicate items as well.

Our validation constraint so far has been about preventing blank items, and as you
may remember, it turned out that we can enforce that very easily in the frontend.
Avoiding duplicate items, however, is less straightforward to do in the frontend
(although not impossible, of course), so this chapter will lean more heavily on server-
side validation, and bubbling errors from the backend back up to the UT.

This chapter goes into the more intricate details of Django’s forms framework, so
you have my official permission to skim through it if you already know all about
customising Django forms and how to display errors in the Ul, or if you're reading
this book for the TDD rather than for the Django.

If you're still learning Django, there’s good stuff in here! If you want to just skim-read,
that’s OK too. Make sure you take a quick look at “An Aside on When to Test for
Developer Silliness” on page 366, and “Recap: What to Test in Views” on page 395 at
the end.

363

Another FT for Duplicate Items

We add a second test method to ItemValidationTest, and tell a little story about
what we want to see happen when a user tries to enter the same item twice into their
to-do list:

src/functional_tests/test_list_item_validation.py (ch161001)

def test_cannot_add_duplicate_items(self):
Edith goes to the home page and starts a new list
self.browser.get(self.live_server_url)
self.get_item_1input_box().send_keys("Buy wellies")
self.get_item_input_box().send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Buy wellies")

She accidentally tries to enter a duplicate item
self.get_item_input_box().send_keys("Buy wellies")
self.get_item_input_box().send_keys(Keys.ENTER)

She sees a helpful error message
self.wait_for(
lambda: self.assertEqual(
self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback").text,
"You've already got this in your list",

Why use two test methods instead of extending one, or instead of creating a new
file and class? It’s a judgement call. These two feel closely related; theyre both about
validation on the same input field, so it feels right to keep them in the same file. On
the other hand, theyre logically separate enough that it’s practical to keep them in
different methods:

$ python src/manage.py test functional_tests.test_list_item_validation

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

Ran 2 tests in 9.613s

OK, so we know the first of the two tests passes now. Is there a way to run just the
failing one, I hear you ask? Why, yes indeed:

$ python src/manage.py test functional_tests.\
test_list_item_validation.ItemValidationTest.test_cannot_add_duplicate_items
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: .invalid-feedback; [...]

364 | Chapter 16: More Advanced Forms

In any case, let’s commit it:

$ git commit -am"Ft for duplicate item validation"

Preventing Duplicates at the Model Layer

So, if we want to start to implement our actual objective for the chapter, let’s write a
new test that checks that duplicate items in the same list raise an error:

src/lists/tests/test_models.py (ch161002)
def test_duplicate_items_are_invalid(self):
mylist = List.objects.create()
Item.objects.create(list=mylist, text="bla")
with self.assertRaises(ValidationError):
item = Item(list=mylist, text="bla")
item.full_clean()

And, while it occurs to us, we add another test to make sure we don’t overdo it on our
integrity constraints:

src/lists/tests/test_models.py (ch161003)

def test_CAN_save_same_1item_to_different_lists(self):
listl = List.objects.create()
list2 = List.objects.create()
Item.objects.create(list=1ist1l, text="bla")
item = Item(list=11ist2, text="bla")
item.full_clean() # should not raise

I always like to put a little comment for tests that are checking that a particular use
case should not raise an error; otherwise, it can be hard to see what’s being tested:

AssertionError: ValidationError not raised

If we want to get it deliberately wrong, we can do this:

src/lists/models.py (ch161004)

class Item(models.Model):
text = models.TextField(default="", unique=True)
1list = models.ForeignKey(List, default=None, on_delete=models.CASCADE)

Another FT for Duplicate Items | 365

That lets us check that our second test really does pick up on this problem:

ERROR: test_CAN_save_same_item_to_different_lists (lists.tests.test_models.List
AndItemModelsTest.test_CAN_save_same_item_to_different_lists)
Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_models.py", line 59, in
test_CAN_save_same_1item_to_different_lists
item.full_clean() # should not raise

[...]
django.core.exceptions.ValidationError: {'text': ['Item with this Text already
exists.']}
[...]

An Aside on When to Test for Developer Silliness

One of the judgement calls in testing is when you should write tests that sound like
“check that we haven't done something weird”. In general, you should be wary of
these.

In this case, we've written a test to check that you can’t save duplicate items to the
same list. Now, the simplest way to get that test to pass, the way in which youd write
the fewest lines of code, would be to make it impossible to save any duplicate items.
That justifies writing another test, despite the fact that it would be a “silly” or “wrong”
thing for us to code.

But you can’t be writing tests for every possible way we could have coded something
wrong." If you have a function that adds two numbers, you can write a couple of tests:

assert adder(1, 1) == 2
assert adder(2, 1) ==

But you have the right to assume that the implementation isn’t deliberately screwy or
perverse:

def adder(a, b):
unlikely code!
if a ==
return 666
else:
return a + b

One way of putting it is: trust yourself not to do something deliberately silly, but do
protect against things that might be accidentally silly.

—

With that said, you can come pretty close. Once you get comfortable writing tests manually, take a look at
Hypothesis. It lets you automatically generate input for your tests, covering many more test scenarios than
you could realistically type manually. It's not always easy to see how to use it, but for the right kind of
problem, it can be very powerful; the very first time I used it, it found a bug!

366 | Chapter 16: More Advanced Forms

https://hypothesis.readthedocs.io

Just like ModelForm, models can use an inner class called Meta, and that’s where we
can implement a constraint that says an item must be unique for a particular list—or,
in other words, that text and 1ist must be unique together:

src/lists/models.py (ch161005)

class Item(models.Model):
text = models.TextField(default="")
list = models.ForeignKey(List, default=None, on_delete=models.CASCADE)

class Meta:
unique_together = ("list", "text")

And that passes:

Ran 24 tests in 0.024s

0K

You might want to take a quick peek at the Django docs on model Meta attributes at
this point.

Rewriting the Old Model Test

That long-winded model test did serendipitously help us find unexpected bugs, but
now it’s time to rewrite it. I wrote it in a very verbose style to introduce the Django
ORM, but in fact, we can get the same coverage from a couple of much shorter tests.
Delete test_saving_and_retrieving_items and replace it with this:

src/lists/tests/test_models.py (ch161006)

class ListAndItemModelsTest(TestCase):
def test_default_text(self):
item = Item()
self.assertEqual(item.text, "")

def test_item_1is_related_to_list(self):
mylist = List.objects.create()
item = Item()
item.list = mylist
item.save()
self.assertIn(item, mylist.item_set.all())

[...]

That’s more than enough really—a check of the default values of attributes on a
freshly initialised model object is enough to sense-check that we’ve probably set some
fields up in models.py. The “item is related to list” test is a real “belt and braces” test to
make sure that our foreign key relationship works.

Another FT for Duplicate Items | 367

https://docs.djangoproject.com/en/5.2/ref/models/options

While we're at it, we can split this file out into tests for Item and tests for List (there’s
only one of the latter, test_get_absolute_url):

src/lists/tests/test_models.py (ch161007)

class ItemModelTest(TestCase):
def test_default_text(self):

[...]

class ListModelTest(TestCase):
def test_get_absolute_url(self):
[...]

That’s neater and tidier:

$ python src/manage.py test lists

[...]
Ran 25 tests in 0.092s

0K

Integrity Errors That Show Up on Save

A final aside before we move on. Do you remember the discussion mentioned in
Chapter 14 that some data integrity errors are picked up on save? It all depends on
whether the integrity constraint is actually being enforced by the database.

Try running makemigrations and you’ll see that Django wants to add the
unique_together constraint to the database itself, rather than just having it as an
application-layer constraint:

$ python src/manage.py makemigrations

Migrations for 'lists':

src/lists/migrations/0005_alter_item_unique_together.py
~ Alter unique_together for item (1 constraint(s))

Now let’s run the migration:

$ python src/manage.py migrate

368 | Chapter 16: More Advanced Forms

What to Do If You See an IntegrityError When Running Migrations
When you run the migration, you may encounter the following error:

$ python src/manage.py migrate
Operations to perform:

Apply all migrations: auth, contenttypes, lists, sessions
Running migrations:

Applying lists.0005_alter_item_unique_together...
Traceback (most recent call last):

[...]
sqlite3.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

[...]
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_item.text

The problem is that we have at least one database record that used to be valid but, after
introducing our new constraint—the unique_together—it’s no longer compatible.

To fix this problem locally, we can just delete src/db.sqlite3 and run the migration
again. We can do this because the database on our laptop is only used for dev, so the
data in it is not important.

In Chapter 18, we'll deploy our new code to production, and discuss what to do if we
run into migrations and data integrity issues at that point.

Now, if we change our duplicate test to do a .save instead of a . full_clean...

src/lists/tests/test_models.py (ch161008)
def test_duplicate_items_are_1invalid(self):

mylist = List.objects.create()
Item.objects.create(list=mylist, text="bla")
with self.assertRaises(ValidationError):

item = Item(list=mylist, text="bla")

item. full_clean()

item.save()

Another FT for Duplicate Items | 369

It gives:

ERROR: test_duplicate_items_are_invalid
(lists.tests.test_models.ItemModelTest.test_duplicate_1items_are_invalid)
[...]

sqlite3.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

[...]

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

You can see that the error bubbles up from SQLite, and it’s a different error from the
one we want—an IntegrityError instead of a ValidationError.

Let’s revert our changes to the test, and see them all passing again:

$ python src/manage.py test lists

[...]
Ran 25 tests in 0.092s
0K

And now it’s time to commit our model-layer changes:

$ git status # should show changes to tests + models and new migration
$ git add src/lists

$ git diff --staged

$ git commit -m "Implement duplicate item validation at model layer"

370

| Chapter 16: More Advanced Forms

Experimenting with Duplicate Item Validation at the

Views Layer

Let’s try running our FT, to see if that’s made any difference.

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: .invalid-feedback; [...]

In case you didn't see it as it flew past, the site is 500ing,* as in Figure 16-1 (feel free to

try it out manually).

Request Method:
Request URL:
Django Version:
Exception Type:
Exception Value:
Exception Location:

Raised during:
Python Executable:
Python Version:
Python Path:

Server time:

O D htt

E] IntegrityError at /lists/1/

//127.0.0.1

IntegrityError at /lists/1/

UNIQUE constraint failed: lists_item.list_id, lists_item.text

POST

http://127.0.0.1:8000/lists/1/

5.2.1

IntegrityError

UNIQUE constraint failed: lists_item.list_id, lists_item.text

Iprivate/tmp/superlists/.venv/lib/python3.13/site-packages/django/db/backends/

sqlite3/base.py, line 360, in execute

lists.views.view_list

Iprivate/tmp/superlists/.venv/bin/python

3.13.3

['/private/tmp/superlists/src',
'/Users/harry.percival/.local/share/uv/python/cpython-3.13.3-macos—

aarch64-none/lib/python313.zip’,
'/Users/harry.percival/.local/share/uv/python/cpython-3.13.3-macos-

aarch64-none/lib/python3.13",
'/Users/harry.percival/.local/share/uv/python/cpython-3.13.3-macos-

aarch64-none/lib/python3.13/1ib-dynload"’,
'/private/tmp/superlists/.venv/lib/python3.13/site-packages']

Wed, 21 May 2025 09:35:02 +0000

TraCEbaCK Switch to copy-and-paste view

/private/tmp/superlists/.venv/lib/python3.13/site-packages/django/db/backends/utils.py, line 105, in

_execute
98. warnings.warn(self.APPS_NOT_READY_WARNING_MSG, category=RuntimeWarning)
99, self.db.validate_no_broken_transaction()
100. with self.db.wrap_database_errors:
101. if params is None:
102. # params default might be backend specific.

Figure 16-1. Well, at least it didn’t make it into the database

2 500ing, showing a server error, code 500—of course you can use HTTP status codes as verbs!

Experimenting with Duplicate Item Validation at the Views Layer

3N

We need to be clearer on what we want to happen at the views level. Let’s write a unit
test to set out our expectations:

src/lists/tests/test_views.py (ch161009)
class ListViewTest(TestCase):

[...]

def test_for_invalid_input_nothing_saved_to_db(self):
[...]

def test_for_invalid_1input_renders_list_template(self):
[...]

def test_for_invalid_input_shows_error_on_page(self):
[...]

def test_duplicate_1item_validation_errors_end_up_on_lists_page(self):
1istl = List.objects.create()
Item.objects.create(list=1ist1, text="textey")

response = self.client.post(
f"/lists/{list1.id}/",
data={"text": "textey"},
)

expected_error = html.escape("You've already got this in your list")
self.assertContains(response, expected_error) @
self.assertTemplateUsed(response, "list.html") @
self.assertEqual(Item.objects.all().count(), 1) ©

@ Here’s our main assertion, which is that we want to see a nice error message on
the page.

@ Here's where we check that it’s landing on the normal list page.

© And we double-check that we haven't saved anything to the database.’

That test confirms that the IntegrityError is bubbling all the way up:

File "...goat-book/src/lists/views.py", line 28, in view_list
form.save(for_list=our_list)
~~~~~~~~~ ANANNANNANNNNANNNANNNAN
[...]
django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

3 Harry, didn't we spend time in the last chapter making sure all the asserts were in different tests? Absolutely
yes. Feel free to do that! If I had to justify myself, I'd say that we already have all the granular asserts for one
error type, and this really is just a smoke test that an additional error type is also handled. So, arguably, it
doesn’t need to be so granular.

372 | Chapter 16: More Advanced Forms



We want to avoid integrity errors! Ideally, we want the call to is_valid() to somehow
notice the duplication error before we even try to save. But to do that, our form will
need to know in advance what list it’s being used for. Let’s put a skip on this test for
now:

src/lists/tests/test_views.py (ch161010)
from import skip

def test_duplicate_1item_validation_errors_end_up_on_lists_page(self):

A More Complex Form to Handle Uniqueness Validation

The form to create a new list only needs to know one thing: the new item text. A
form validating that list items are unique will need to know what list theyre in as
well. Just as we overrode the save method on our ItemForm, this time we'll override
the constructor on our new form class so that it knows what list it applies to.

Let’s duplicate our tests from the previous form, tweaking them slightly:

src/lists/tests/test_forms.py (ch161011)

[...]
from import (

DUPLICATE_ITEM_ERROR,

EMPTY_ITEM_ERROR,

ExistingListItemForm,

ItemForm,
)
[...]

class ExistingListItemFormTest(TestCase):
def test_form_renders_item_text_input(self):
list_ = List.objects.create()
form = ExistinglListItemForm(for_list=list_) @
self.assertIn('placeholder="Enter a to-do item"', form.as_p())
def test_form_validation_for_blank_items(self):
list_ = List.objects.create()
form = ExistingListItemForm(for_list=11ist_, data={"text": ""})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors["text"], [EMPTY_ITEM_ERROR])

def test_form_validation_for_duplicate_items(self):
list_ = List.objects.create()
Item.objects.create(list=1list_, text="no twins!")
form = ExistinglListItemForm(for_list=1ist_, data={"text": "no twins!"})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors["text"], [DUPLICATE_ITEM_ERROR])

A More Complex Form to Handle Uniqueness Validation | 373



@ Were specifying that our new ExistingListItemForm will take an argument
for_list= in its constructor, to be able to specify which list the item is for.

Next we iterate through a few TDD cycles until we get a form with a custom
constructor, which just ignores its for_list argument. (I won't show them all, but
I'm sure you’ll do them, right? Remember, the Goat sees all.)

src/lists/forms.py (ch161012)
DUPLICATE_ITEM_ERROR = "You've already got this in your list"
[...]
class ExistingListItemForm(forms.models.ModelForm):
def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)

At this point, our error should be:
ValueError: ModelForm has no model class specified.

Then, let’s see if making it inherit from our existing form helps:

src/lists/forms.py (ch161013)
class ExistingListItemForm(ItemForm):
def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)

Yes, that takes us down to just one failure:

FAIL: test_form_validation_for_duplicate_items (lists.tests.test_forms.Existing
ListItemFormTest.test_form_validation_for_duplicate_items)

[...]
self.assertFalse(form.is_valid())
AssertionError: True is not false

The next step requires a little knowledge of Django’s validation system—you can read
up on it in the Django docs on model validation and form validation.

374 | Chapter 16: More Advanced Forms


https://docs.djangoproject.com/en/5.2/ref/models/instances/#validating-objects
https://docs.djangoproject.com/en/5.2/ref/forms/validation

We can customise validation for a field by implementing a clean_<fieldname>()
method, and raising a ValidationError if the field is invalid:

src/lists/forms.py (ch161013-1)
from import ValidationError

[...]

class ExistingListItemForm(ItemForm):
def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)
self.instance.list = for_list

def clean_text(self):
text = self.cleaned_data["text"]
if self.instance.list.item_set.filter(text=text).exists():
raise forms.ValidationError (DUPLICATE_ITEM_ERROR)
return text

That makes the tests happy:

Found 29 test(s).

[...]
0K (skipped=1)

We're there! A quick commit:

$ git diff
$ git add src/lists/forms.py src/lists/tests/test_forms.py
$ git commit -m "implement ExistingListItemForm, add DUPLICATE_ITEM_ERROR message"

Using the Existing List ltem Form in the List View

Now let’s see if we can put this form to work in our view. We remove the skip and,
while we're at it, we can use our new constant:

src/lists/tests/test_views.py (ch161014)
from import (
DUPLICATE_ITEM_ERROR,
EMPTY_ITEM_ERROR,

[...]

def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
[...]
expected_error = html.escape(DUPLICATE_ITEM_ERROR)
self.assertContains(response, expected_error)

[...]

Using the Existing List Item Form in the List View | 375



We see our IntegrityError once again:

django.db.utils.IntegrityError: UNIQUE constraint failed: lists_item.list_id,
lists_1item. text

Our fix for this is to switch to using the new form class:

src/lists/views.py (ch161016)
from import ExistinglListItemForm, ItemForm

[...]
def view_list(request, list_id):
our_list = List.objects.get(id=1ist_1id)
form = ExistinglListItemForm(for_list=our_list) @

if request.method == "POST":
form = ExistinglListItemForm(for_list=our_list, data=request.POST) @
if form.is_valid():
form.save(for_list=our_list) @

[...]

@ We swap out ItemForm for ExistingListItemForm, and pass in the for_list=.

© This is a bit annoying—we're duplicating the for_list= argument. This form
should already know this!

Customising the Save Method on Our New Form

Programming by wishful thinking, as always. Let’s specify in our views.py that we
wish we could call save() without the duplicated argument:

src/lists/views.py (ch161016-1)
@@ -25,6 +25,6 @@ def view_list(request, list_id):
if request.method == "POST":
form = ExistinglListItemForm(for_list=our_list, data=request.POST)
if form.is_valid():
- form.save(for_list=our_list)
+ form.save()
return redirect(our_list)
return render(request, "list.html", {"list": our_list, "form": form})

That gives us a failure as expected:

File "...goat-book/src/lists/views.py", line 28, in view_list
form.save()

TypeError: ItemForm.save() missing 1 required positional argument: 'for_list'

376 | Chapter 16: More Advanced Forms



Let’s drop down to the forms level, and write another unit test for how we want our
save method to work:

src/lists/tests/test_forms.py (ch161017)
class ExistingListItemFormTest(TestCase):

[...]
def test_form_save(self):
mylist = List.objects.create()
form = ExistingListItemForm(for_list=mylist, data={"text": "hi"})
self.assertTrue(form.is_valid())
new_item = form.save()
self.assertEqual(new_item, Item.objects.get())

We can make our form call the grandparent save method:

src/lists/forms.py (ch161018)
class ExistingListItemForm(ItemForm):

[...]
def save(self):
return forms.models.ModelForm.save(self) @

@ This manually calls the grandparent save(). Personal opinion here: I could have
used super(), but I prefer not to use super() when it requires arguments, say,
to get a grandparent. I find Python 3’s super () with no arguments is awesome to
get the immediate parent. Anything else is too error-prone—and, besides, I find
it ugly. YMMV.

OK, how does that look? Yep, both the forms level and views level tests now pass:

$ python src/manage.py test lists

[...]
Ran 30 tests in 0.082s

0K

Time to see what our FTs think!

Using the Existing List Item Form in the List View | 377



The FTs Pick Up an Issue with Bootstrap Classes

Unfortunately, the FTs are telling us we're not done:

$ python src/manage.py test functional_tests.test_list_item_validation

[...]
FAIL: test_cannot_add_duplicate_items [...]

[...]
AssertionError: != "You've already got this in your list"
+ You've already got this in your list

Let’s spin up the server with runserver and try it out manually—with DevTools
open—to see what’s going on. If you look through the HTML, you’ll see our error div
is there, with the correct error text, but it’s greyed out, indicating that it’s hidden (as
in Figure 16-2).

To-Do lists

O D hitp:/flocalhost

Your To-Do
list

1: Doppleganger

® €3 inspector [ Console [ Debugger N Network {} Style Editor () Performance 40k Memory [ Storage T Accessibility 338 Application 01 () - X

Q_Search HTML 4+ A VFilter Styles thov cls + ¥ @ O B Layout Computed Changes~

<hl class:

isplay-1 mb-4">Your To-Do list</h1> element i { inline + Flexbox
v <form method b

0ST" action="/lists/9/">
orm-control form-control-lg" type="text" *, trafter, tibefore i { tstrap.css: 1t

Select a Flex container or item to

" value="Dopplegan placeholder="Enter a to-do item" box-sizing: border-box; continue.
" aria-invalid="tr aria-describedby="id_text_error {}"> } - Grid

<1rlmut type="hidden" nam?:"csrfm:g;e;agetoken" Teautrmsaat, | herited from div

value= pss9gf m1p JTEAULFMix41"> i ot .

v diy claseinvatid-feedback's .invalid-feedback i { _forms.scssiz7  CSS Gridis notin use on this page
id_text_error" class="errorlist"> fD'l"’Suﬂ e invatid-cotor) + Box Model
<li>You've already got this in your list</li> N color: @ var{—bs-form-invalid-color);
</ul>
</div> Inherited from div margin []

o .text-center i { ~utilities.scss:67 border

\( g-bo... > div.col-g-6.text-center > form > div.invalid-feedback > ul#id_text_error.errorlist > li > text-alian: center !important: padding ©

Figure 16-2. Our error div is there but it's hidden

I had to dig through the docs a little, but it turns out that Bootstrap requires form
elements with errors to have another custom class, is-invalid. You can actually try
this out in DevTools! If you double-click, you can edit the HTML and add the class,
as in Figure 16-3.

378 | Chapter 16: More Advanced Forms


https://getbootstrap.com/docs/5.2/forms/validation/#server-side

Q_Search HTML + £ v

Y T =TT — U TG TG T
<hl class="display-1 mb—4">Your To-Do list</hl> 4
w <form method="POST" action="/lists/9/"> Th

<input id="1id_text" |[class="form-control form—control-lg is-invalid"|
type="text" name="text" value="Doppleganger" placeholder="Enter a to-do el
item" required="" aria-invalid="true" aria-describedby="id_text_error ">}
<input type="hidden" name="csrfmiddlewaretoken" . f
value="YUPFFHYdopss9gfDwBibuMuAxCh5FmlpCf82h2sD244yU2bHNUENj Tt4utFMix41"> va
w<div class="invalid-feedback is-invalid"> i

w<ul id="id_text_error" class="errorlist">
P <liz[=</1i>

Figure 16-3. Hack it in manually—yay

Conditionally Customising CSS Classes for Invalid Forms

Speaking of hackery, 'm starting to get a bit nervous about the amount of hackery
were doing in our forms now, but let’s try getting this to work by doing even more
customisation in our forms.

We want this behaviour for both types of form really, so it can go in the tests for the
parent ItemForm class:

src/lists/tests/test_forms.py (ch161019-1)

class ItemFormTest(TestCase):
def test_form_item_input_has_placeholder_and_css_classes(self):

[...]
def test_form_validation_for_blank_items(self):
[...]

def test_1invalid_form_has_bootstrap_1is_invalid_css_class(self):
form = ItemForm(data={"text": ""})
self.assertFalse(form.is_valid())
field = form.fields["text"]
self.assertEqual(
field.widget.attrs["class"], @
"form-control form-control-1g is-invalid",

)

def test_form_save_handles_saving_to_a_list(self):

[...]

@ Here’s where you can inspect the class attribute on the input field widget.

Conditionally Customising CSS Classes for Invalid Forms | 379



And here’s how we can make it work, by overriding the is_valid() method:

src/lists/forms.py (ch161019-2)

class ItemForm(forms.models.ModelForm):
class Meta:

[...]

def is_valid(self):
result = super().is_valid() @
if not result:
self.fields["text"].widget.attrs["class"] += " is-invalid" @
return result ©

def save(self, for_list):
[...]

© We make sure to call the parent is_valid() method first, so we can do all the
normal built-in validation.

® Here’s how we add the extra CSS class to our widget.

©® And we remember to return the result.

It’s not too bad—but, as I say, I'm getting nervous about the amount of fiddly code in
our forms classes. Let'’s make a note on our scratchpad, and come back to it when our
FT is passing perhaps:

. Review amovnt of hackery in forms.py.

W Y N S N N

380 | Chapter 16: More Advanced Forms



Speaking of our FT, let’s see how it does now:

$ python src/manage.py test functional_tests.test_list_item_validation

[...]

FAIL: test_cannot_add_empty_list_1items (functional_tests.test_list_item_validat
ion.ItemValidationTest.test_cannot_add_empty_list_items)
Traceback (most recent call last):
File "...goat-book/src/functional_tests/test_list_1item_validation.py", line
47, in test_cannot_add_empty_list_items
self.wait_for_row_in_list_table("2: Make tea")
File "...goat-book/src/functional_tests/base.py", line 37, in
wait_for_row_in_list_table
self.assertIn(row_text, [row.text for row in rows])
AssertionError: '2: Make tea' not found in ['1l: Make tea', '2: Purchase milk']

Ooops; what happened here (Figure 16-4)?

Your To-Do list

Enter a to-do item

1: Make Tea

2: Purchase Milk

Figure 16-4. The cart is before the horse

A Little Digression on Queryset Ordering and String Representations

Something seems to be going wrong with the ordering of our list items. Trying to fix
this by iterating against an FT is going to be slow, so let’s work at the unit test level.

We'll add a test that checks that list items are ordered in the sequence they are inser-
ted. You'll have to forgive me if I jump straight to the right answer, using intuition
borne of long experience, but I suspect that it might be sorting alphabetically based
on list text instead (what else would it sort by after all?), so I'll pick some text values
designed to test that hypothesis:

Conditionally Customising CSS Classes for Invalid Forms | 381



src/lists/tests/test_models.py (ch161020)
class ListModelTest(TestCase):
def test_get_absolute_url(self):
[...]

def test_list_items_order(self):

listl = List.objects.create()
iteml = Item.objects.create(list=1ist1, text="i1")
item2 = Item.objects.create(list=1ist1, text="item 2")
item3 = Item.objects.create(list=1ist1, text="3")
self.assertEqual(

listl.item_set.all(),

[item1, item2, item3],

FTs are a slow feedback loop. Switch to unit tests when you want to
drill down on edge case bugs.

That gives us a new failure, but it’s not very readable:

AssertionError: <QuerySet [<Item: Item object (3)>, <Item[40 chars]2)>]> !=
[<Item: Item object (1)>, <Item: Item obj[29 chars](3)>]

We need a better string representation for our Item model. Let’s add another unit test:

src/lists/tests/test_models.py (ch161021)
class ItemModelTest(TestCase):

[...]

def test_string_representation(self):
item = Item(text="some text")
self.assertEqual(str(item), "some text")

Ordinarily, you would be wary of adding more failing tests when
you already have some—it makes reading test output that much
more complicated, and just generally makes you nervous. Will we
ever get back to a working state? In this case, theyre all quite
simple tests, so I'm not worried.

That gives us:

AssertionError: 'Item object (None)' != 'some text'

382 | Chapter 16: More Advanced Forms



And it also gives us the other two failures. Let’s start fixing them all now:

src/lists/models.py (ch161022)
class Item(models.Model):

[...]

def __str__(self):
return self.text

Now we’re down to one failure, and the ordering test has a more readable failure
message:

AssertionError: <QuerySet [<Item: 3>, <Item: 11>, <Item: item 2>]> != [<Item:
11>, <Item: item 2>, <Item: 3>]

That confirms our suspicion that the ordering was alphabetical.

We can fix that in the class Meta:

src/lists/models.py (ch161023)
class Item(models.Model):
[...]
class Meta:
ordering = ("id",)
unique_together = ("list", "text")

Does that work?

AssertionError: <QuerySet [<Item: 11>, <Item: item 2>, <Item: 3>]> != [<Item:
11>, <Item: item 2>, <Item: 3>]

Urp? It has worked; you can see the items are in the same order, but the tests are
confused.

I keep running into this problem actually—Django QuerySets don’t compare well
with lists. We can fix it by converting the QuerySet to a list in our test:*

src/lists/tests/test_models.py (ch161024)
self.assertEqual(
list(listl.item_set.all()),
[item1, item2, item3],

4 You could also check out assertSequenceEqual from unittest, and assertQuerysetEqual from Django’s
test tools—although I confess, when I last looked at assertQuerysetEqual, I was quite baffled...

Conditionally Customising CSS Classes for Invalid Forms | 383



That works; we get a fully passing unit test suite:

Ran 33 tests in 0.034s

OK
We do need a migration for that ordering change though:

$ python src/manage.py makemigrations
Migrations for 'lists':
src/lists/migrations/0006_alter_item_options.py
~ Change Meta options on item

And as a final check, we rerun all the FTs:

$ python src/manage.py test functional_tests
[...]

Ran 5 tests in 19.048s
0K
Hooray! Time for a final commit:

git status
git add src
git commit -m "Add is-invalid css class, fix list item ordering

On the Trade-offs of Django ModelForms, and
Frameworks in General

Let’s come back to our scratchpad item:

o Review amovnt of hackery in forms.py.

384 | Chapter 16: More Advanced Forms



Lets take a look at the current state of our forms classes. We've got a real mix of
presentation logic, validation logic, and ORM/storage logic:

src/lists/forms.py
class ItemForm(forms.models.ModelForm):
class Meta:
model = Item
fields = ("text",)
widgets = {
"text": forms.widgets.TextInput(
attrs={
"placeholder": "Enter a to-do item", @
"class": "form-control form-control-lg", @

)’
}
error_messages = {"text": {"required": EMPTY_ITEM_ERROR}}

def is_valid(self):
result = super().is_valid()
if not result:
self.fields["text"].widget.attrs["class"] += " is-invalid" @
return result

def save(self, for_list): ©
self.instance.list = for_list
return super().save()

class ExistingListItemForm(ItemForm):

def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)
self.instance.list = for_list ©

def clean_text(self):
text = self.cleaned_data["text"]
if self.instance.list.item_set.filter(text=text).exists(): @

raise forms.ValidationError (DUPLICATE_ITEM_ERROR) @

return text

def save(self):
return forms.models.ModelForm.save(self) ©

@ Presentation logic
® Validation logic

© ORM/storage logic

On the Trade-offs of Django ModelForms, and Frameworks in General | 385



I think what’s happened is that we've reached the limits of the Django forms frame-
worK’s sweet spot. ModelForms can be great because they can do presentation, valida-
tion, and database storage all in one go, so you can get a lot done without much code.
But once you want to customise the default behaviours for each of those things, the
code you do end up writing starts to get hard to understand.

Let’s see what things would look like if we tried to:

1. Move the responsibility for presentation and the rendering of HTML back into
the template.

2. Stop using ModelForm and do any database logic more explicitly, with less magic.

Another Flip-flop!

We spent most of the last chapter switching from handcrafted HTML to having our
form autogenerated by Django, and now were switching back. It’s a little frustrating,
and I could have gone back and changed the booK’s outline to avoid the back and
forth, but I prefer to show software development as it really is.

We often try things out and end up changing our minds. Particularly with frame-
works like Django, you can find yourself taking advantage of autogenerated shortcuts
for as long as they work. But at some point, you meet the limits of what the frame-
work designers have anticipated, and it’s time to go back to doing the work yourself.

Frameworks have trade-offs. It doesn’t mean you should always reinvent the wheel!
It's OK to cut yourself some slack for “wasting time” on avenues that don’t work out,
or revisiting decisions that worked well in the past, but don’t work so well now.

Moving Presentation Logic Back into the Template

We're talking about another refactor here; we want to move some functionality out of
the form and into the template/views layer. How do we make sure we've got good test
coverage?

« We currently have some tests for the CSS classes including is-invalid in
test_forms.py.

» We have some tests of some form attributes in test_views.py—e.g., the asserts on
the input’s name.
o And the FTs, ultimately, will tell us if things “really work” or not, including

testing the interaction between our HTML, Bootstrap, and the browser (e.g., CSS
visibility).

386 | Chapter 16: More Advanced Forms



What we are learning is that the things were testing in test_forms.py will need to
move.

Lower-level tests are good for exploring an API, but they are tightly
coupled to it. Higher-level tests can enable more refactoring.

Here’s one way to write that kind of test:

src/lists/tests/test_views.py (ch161025-1)
class ListViewTest(TestCase):

[...]
def test_for_invalid_input_shows_error_on_page(self):
[...]

def test_for_invalid_input_sets_1is_invalid_class(self):
response = self.post_invalid_1input()
parsed = lxml.html.fromstring(response.content)
[input] = parsed.cssselect("input[name=text]")
self.assertIn("is-invalid", input.get("class"))

def test_duplicate_item_validation_errors_end_up_on_lists_page(self):

[...]

That’s green straight away:

Ran 34 tests in 0.040s

0K

As always, it’s nice to deliberately break it, to see whether it has a nice failure message,
if nothing else. Let’s do that in forms.py:

src/lists/forms.py (ch161025-2)
@@ -24,7 +24,7 @@ class ItemForm(forms.models.ModelForm):
def is_valid(self):

result = super().is_valid()

if not result:
- self.fields["text"].widget.attrs["class"] += " is-invalid"
+ self.fields["text"].widget.attrs["class"] += " boo!"

return result

def save(self, for_list):

On the Trade-offs of Django ModelForms, and Frameworks in General | 387



Reassuringly, both our old test and the new one fail:

[...]

FAIL: test_invalid_form_has_bootstrap_is_invalid_css_class (lists.tests.test_fo
rms.ItemFormTest.test_invalid_form_has_bootstrap_1is_invalid_css_class)
Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_forms.py", line 30, in
test_1invalid_form_has_bootstrap_1is_1invalid_css_class
self.assertEqual(

field.widget.attrs["class"],

ANNANNNNNNNNNNNNNNNNNNNNNNNNN

"form-control form-control-1lg is-invalid",
ANANNNNANANNNANNNNNNNNNNNNNNANNNANNNNNNNNNNANNNNNNN

)

AssertionError: 'form-control form-control-1g boo!' != 'form-control
form-control-1g is-invalid'
- form-control form-control-1lg boo!

2 AAAA

+ form-control form-control-1lg is-invalid
? AANANANANNANN

FAIL: test_for_invalid_input_sets_is_invalid_class (lists.tests.test_views.List
ViewTest.test_for_invalid_input_sets_1is_invalid_class)

Traceback (most recent call last):
File "...goat-book/src/lists/tests/test_views.py", line 129, in
test_for_1invalid_input_sets_1is_1invalid_class

self.assertIn("is-invalid", input.get("class"))
ANNANNNNANNNNNNNANNNNNNANNNANNANNNANNNNNNNAN

Ran 34 tests in 0.039s
FAILED (failures=2)
Let’s revert that and get back to passing.

So, rather than using the {{ form.text }} magic in our template, let’s bring back our
handcrafted HTML. It'll be longer, but at least all of our Bootstrap classes will be in
one place, where we expect them, in the template:

388 | Chapter 16: More Advanced Forms



src/lists/templates/base.html (ch161025-4)
@@ -16,10 +16,22 @@
<h1 class="display-1 mb-4">{% block header_text %}{% endblock %}</h1>

<form method="POST" action="{% block form_action %}{% endblock %}" >
- {{ form.text }}
{% csrf_token %}
<input ©@
id="1d_text"
name="text"
class="form-control @
form-control-1g
{% if form.errors %}is-invalid{% endif %}"
placeholder="Enter a to-do item"
value="{{ form.text.value | default:'' }}" ©
aria-describedby="1d_text_feedback" @
required
/>
{% if form.errors %}
- <div class="1invalid-feedback">{{ form.errors.text }}</div>
<div 1d="1d_text_feedback" class="invalid-feedback"> @
{{ form.errors.text.0 }} ©
</div>
{% endif %}
</form>
</div>

+ o+ F o+ o+ o+ o+ o+ o+

+ + +

@ Here’s our artisan <input> once again, and the most important custom setting
will be its class attributes.

@ Asyou can see, we can use conditionals even for providing additional class-es.’

© The | default “filter” is a way to avoid the string “None” from showing up as
the value in our input field.

O We add an id to the error message to be able to use aria-describedby on the
input, as recommended in the Bootstrap docs; it makes the error message more
accessible to screen readers.

© Ifyou just try to use form.errors. text, you'll see that Django injects a <ul> list,
because the forms framework can report multiple errors for each field. We know
we've only got one, so we can use use form.errors.text.0.

5 We've split the input tag across multiple lines so it fits nicely on the screen. If you've not seen that before, it
may look a little weird, but I promise it is valid HTML. You don’t have to use it if you don't like it though.

On the Trade-offs of Django ModelForms, and Frameworks in General | 389



That passes:

Ran 34 tests in 0.034s

0K

Out of curiosity, let’s try a deliberate failure here:

src/lists/templates/base.html (ch161025-5)

@@ -22,7 +22,7 @@
name="text"
class="form-control

form-control-1g

- {% if form.errors %}is-invalid{% endif %}"

+ {% if form.errors %}isnt-invalid{% endif %}"
placeholder="Enter a to-do item"
value="{{ form.text.value | default:'' }}"
aria-describedby="1d_text_feedback"

The failure looks like this:

self.assertIn("is-invalid", input.get("class"))
ANNANANNNNANANNNANNNNANNANNNANNANNANNANNNANNNNANNNAN

AssertionError: 'is-invalid' not found in 'form-control\n
form-control-1g\n isnt-invalid'

390 | Chapter 16: More Advanced Forms



Hmm, that’s not ideal actually. Let’s tweak our assert:

src/lists/tests/test_views.py (ch161025-6)
def test_for_invalid_input_sets_is_invalid_class(self):
response = self.post_invalid_input()
parsed = lxml.html.fromstring(response.content)
[input] = parsed.cssselect("input[name=text]")
self.assertIn("is-invalid", set(input.classes)) @

© Rather than using get("class"), which returns a raw string, 1xml can give us the
classes as a list (well, actually a special object, but one that we can turn into a set).

That’s more semantically correct, and gives a better error message:

self.assertIn("is-invalid", set(input.classes))
~~~~~~~~~~~~~ ANNANANNANANNNNNNNANNNNNNANNANNANNANNNNANNNN

AssertionError: 'is-invalid' not found in {'form-control', 'isnt-invalid',
'form-control-1g'}

OK, thats good; we can revert the deliberate mistake in base.html.
Let’s do a quick FT run to check we've got it right:

$ python src/manage.py test functional_tests.test_list_item_validation
Found 2 test(s).

[...]
oK

Good!

On the Trade-offs of Django ModelForms, and Frameworks in General | 391

Tidying Up the Forms

Now let’s start tidying up our forms. We can start by deleting the three presentation-
layer tests from ItemFormTest:

src/lists/tests/test_forms.py (ch161026)
@@ -10,28 +10,11 @@ from lists.models import Item, List

class ItemFormTest(TestCase):
- def test_form_item_input_has_placeholder_and_css_classes(self):
- form = ItemForm()

- rendered = form.as_p()

- self.assertIn('placeholder="Enter a to-do item"', rendered)
- self.assertIn('class="form-control form-control-1g"', rendered)

def test_form_validation_for_blank_items(self):
form = ItemForm(data={"text": ""})
self.assertFalse(form.is_valid())
self.assertEqual(form.errors["text"], [EMPTY_ITEM_ERROR])

- def test_invalid_form_has_bootstrap_1is_invalid_css_class(self):
- form = ItemForm(data={"text": ""})

- self.assertFalse(form.is_valid())

- field = form.fields["text"]

- self.assertEqual(

- field.widget.attrs["class"],

- "form-control form-control-1lg is-invalid",

-)

def test_form_save_handles_saving_to_a_list(self):
mylist = List.objects.create()
form = ItemForm(data={"text": "do me"})
@@ -42,11 +25,6 @@ class ItemFormTest(TestCase):

class ExistingListItemFormTest(TestCase):
- def test_form_renders_item_text_input(self):
- list_ = List.objects.create()
- form = ExistinglListItemForm(for_list=1list_)
- self.assertIn('placeholder="Enter a to-do item"', form.as_p())
def test_form_validation_for_blank_items(self):
list_ = List.objects.create()
form = ExistinglListItemForm(for_list=1list_, data={"text": ""})

392 | Chapter 16: More Advanced Forms

And now we can remove all that custom logic from the base ItemForm class:

src/lists/forms.py (ch161027)

@@ -11,22 +11,8 @@ class ItemForm(forms.models.ModelForm):
class Meta:

- def

def

model = Item
fields = ("text",)

widgets = {
"text": forms.widgets.TextInput(
attrs={
"placeholder": "Enter a to-do item",
"class": "form-control form-control-1g",
1
).
J

error_messages = {"text": {"required": EMPTY_ITEM_ERROR}}

is_valid(self):
result = super().is_valid()
if not result:
self.fields["text"].widget.attrs["class"] += " is-invalid"
return result

save(self, for_list):
self.instance.list = for_list
return super().save()

Deleting code, yay!

At this point we should be down to 31 passing tests:

Ran 31 tests in 0.024s

0K

Switching Back to Simple Forms

Now let’s change our forms away from being ModelForms and back to regular forms.
We'll keep the save() methods for now, but we'll switch to using the ORM more
explicitly, rather than relying on the ModelForm magic:

On the Trade-offs of Django ModelForms, and Frameworks in General | 393

src/lists/forms.py (ch161028)

@@ -7,27 +7,29 @@ EMPTY_ITEM_ERROR = "You can't have an empty list item"
DUPLICATE_ITEM_ERROR = "You've already got this in your list"

-class ItemForm(forms.models.ModelForm):

- class Meta:

- model = Item

- fields = ("text",)

- error_messages = {"text": {"required": EMPTY_ITEM_ERROR}}
+class ItemForm(forms.Form):

+ text = forms.CharField(

+ error_messages={"required": EMPTY_ITEM_ERROR},

+ required=True,
+

)

def save(self, for_list):

- self.instance.list = for_list

- return super().save()

return Item.objects.create(
list=for_list,
text=self.cleaned_data["text"],

+ + + o+

class ExistingListItemForm(ItemForm):
def __init__(self, for_list, *args, **kwargs):
super().__init__(*args, **kwargs)
- self.instance.list = for_list
+ self._for_list = for_list

def clean_text(self):
text = self.cleaned_data["text"]
- if self.instance.list.item_set.filter(text=text).exists():
+ if self._for_list.item_set.filter(text=text).exists():
raise forms.ValidationError(DUPLICATE_ITEM_ERROR)
return text

def save(self):
- return forms.models.ModelForm.save(self)
+ return super().save(for_list=self._for_list)

We should still have passing tests at this point:

Ran 31 tests in 0.026s

0K

And we're in a better place I think!

394

| Chapter 16: More Advanced Forms

Wrapping Up: What We've Learned About Testing Django

We're now at a point where our app looks a lot more like a “standard” Django app,
and it implements the three common Django layers: models, forms, and views. We no
longer have any “training wheel” tests, and our code looks pretty much like code wed
be happy to see in a real app.

We have one unit test file for each of our key source code files. Here’s a recap of the
biggest (and highest-level) one: test_views.

Recap: What to Test in Views

By way of a recap, let’s see an outline of all the test methods and main assertions in
our test_views. This isn't to say you should copy-paste these exactly—it's more like a
list of things you should at least consider testing:

src/lists/tests/test_views.py, selected test methods and asserts

class ListViewTest(TestCase):
def test_uses_list_template(self):

response = self.client.get(f"/lists/{mylist.id}/") 0
self.assertTemplateUsed(response, "list.html") 9

def test_renders_1input_form(self):
parsed = Ixml.html.fromstring(response.content) e
self.assertIn("text", [input.get("name") for input in inputs]) e

def test_displays_only_items_for_that_list(self):
self.assertContains(response, "itemey 1") 0
self.assertContains(response, "itemey 2") 0
self.assertNotContains(response, "other list item") 0

def test_can_save_a_POST_request_to_an_existing_list(self):
self.assertEqual(new_item.text, "A new item for an existing list") e

def test_POST_redirects_to_list_view(self):
self.assertRedirects(response, f"/lists/{correct_list.id}/") 9

def test_for_invalid_input_nothing_saved_to_db(self):
self.assertEqual(Item.objects.count(), 0) G

def test_for_invalid_input_renders_list_template(self):
self.assertEqual(response.status_code, 200) G
self.assertTemplateUsed(response, "list.html") 6

def test_for_invalid_input_shows_error_on_page(self):
self.assertContains(response, html.escape(EMPTY_ITEM_ERROR)) e

def test_duplicate_item_validation_errors_end_up_on_lists_page(self):
self.assertContains(response, expected_error) 0
self.assertTemplateUsed(response, "list.html") ﬂ
self.assertEqual(Item.objects.all().count(), 1) e

© Use the Django test client.

@® Optionally (this is a bit of an implementation detail), check the template used.

Wrapping Up: What We've Learned About Testing Django | 395

© Check that key parts of your HTML are present. Things that are critical to the
integration of frontend and backend are good candidates, like form action and
input name attributes. Using 1xml might be overkill, but it does give you less
brittle tests.

O Think about smoke-testing any other template contents, or any logic in the
template: any {% for %} or {% if %} might deserve a check.

@ For POST requests, test the valid case via its database side effects, and the
redirect response.

@ For invalid requests, it's worth a basic check that errors make it back to the
template.

@ You don't always have to have ultra-granular tests though.

Next, we'll try to make our data validation more friendly by using a bit of client-side
code. Uh-oh, you know what that means...

396 | Chapter 16: More Advanced Forms

PART IV
More Advanced Topics in Testing

“Oh my gosh, what? Another section? Harry, I'm exhausted. It’s already been four
hundred pages; I don’t think I can handle a whole nother section of the book.
Particularly not if it’s called ‘Advanced...maybe I can get away with just skipping it?”

Oh no, you can't! This may be called the “advanced” section, but it’s full of really
important topics for test-driven development (TDD) and web development. No way
can you skip it. If anything, it’s even more important than the first two sections.

First off, we'll get into that sine qua non of web development: JavaScript. Seeing how
TDD works in another language can give you a whole new perspective.

We'll be talking about a key technique, “spiking”, which is where you relax the strict
rules of TDD and allow yourself a bit of exploratory hacking.

A common objection to TDD is “how can I write tests if I don't
even know what I'm doing?” Spiking is the bit where you get to
play around and figure things out, so you can come back and do it
test-first later.

We'll be talking about how to integrate third-party systems, and how to test them.
We'll cover mocking, which is hard to avoid in the world of Python testing.!

1 Although not impossible! Check out the book Cosmic Python, which has tips on testing without mocks. I
happen to know that at least one of the two authors is incredibly wise.

https://www.cosmicpython.com

We'll talk about test fixtures and server-side debugging, and how to set up a con-
tinuous integration (CI) environment. None of these things are take-it-or-leave-it,
optional, luxury extras for your project—they’re all vital!

Inevitably, the learning curve does get a little steeper in this section. You may find
yourself having to read things a couple of times before they sink in, or you may find
that things don’t work on the first go, and that you need to do a bit of debugging on
your own.

But I encourage you to persist with it! The harder it is, the more rewarding it is, right?
And, remember, I'm always happy to help if you're stuck; just drop me an email at
obeythetestinggoat@gmail.com.

Come on; I promise the best is yet to come!

mailto:obeythetestinggoat@gmail.com

CHAPTER 17
A Gentle Excursion into JavaScript

You can never understand one language until you understand at least two.

—Geoffrey Willans, English author and journalist

Our new validation logic is good, but wouldn’t it be nice if the duplicate-item error
messages disappeared once the user started fixing the problem, just like our nice
HTML5 validation errors do?

Try it—spin up the site with ./src/manage.py runserver, start a list, and if you
try to submit an empty item, you get the “Please fill out this field” pop-up, and it
disappears as soon as you enter some text. By contrast, enter an item twice, you get
the “You've already got this in your list” message in red—and even if you edit your
submission to something valid, the error stays there until you submit the form (see
Figure 17-1).

Your To-Do list

[something different ©) J

You've already got this in your list

1: something

Figure 17-1. But I've fixed it!

399

To get that error to disappear dynamically, wed need a teeny-tiny bit of JavaScript.
Python is a delightful language to program in. JavaScript wasn't always that. But many
of the rough edges have been smoothed off, and I think it’s fair to say that JavaScript
is actually quite nice now. And in the world of web development, using JavaScript is
unavoidable. So let’s dip our toes in, and see if we can’t have a bit of fun.

I'm going to assume you know the basics of JavaScript syntax. If
not, the Mozilla guides on MDN are always good quality. I've also
heard good things about Eloquent JavaScript, if you prefer a real
book.

Starting with an FT

Let’s add a new functional test (FT) to the ItemValidationTest class; that asserts that
our error message disappears when we start typing:

src/functional_tests/test_list_item_validation.py (ch171001)

def test_error_messages_are_cleared_on_1input(self):

Edith starts a list and causes a validation error:
self.browser.get(self.live_server_url)
self.get_item_1input_box().send_keys("Banter too thick")
self.get_item_1input_box().send_keys(Keys.ENTER)
self.wait_for_row_in_list_table("1: Banter too thick")
self.get_item_input_box().send_keys("Banter too thick")
self.get_item_1input_box().send_keys(Keys.ENTER)
self.watt_for(@
lambda: self.assertTrue(@
self.browser.find_element(
By.CSS_SELECTOR, ".invalid-feedback"
).is_displayed() @

)

She starts typing in the input box to clear the error
self.get_item_1input_box().send_keys("a")

She 1s pleased to see that the error message disappears
self.wait_for(
lambda: self.assertFalse(
self.browser.find_element(
By.CSS_SELECTOR, ".invalid-feedback"
).is_displayed() @

400

Chapter 17: A Gentle Excursion into JavaScript

https://oreil.ly/RCAPk
https://eloquentjavascript.net

© We use another of our wait_for invocations, this time with assertTrue.

® is_displayed() tells you whether an element is visible or not. We can't just rely
on checking whether the element is present in the DOM, because were now going
to mark elements as hidden, rather than removing them from the document
object model (DOM) altogether.

The FT fails appropriately:

$ python src/manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input

FAIL: test_error_messages_are_cleared_on_input (functional_tests.test_list_item
_validation.ItemValidationTest.test_error_messages_are_cleared_on_input)
[...]
File "...goat-book/src/functional_tests/test_list_item_validation.py", line
89, in <lambda>
lambda: self.assertFalse(

self.browser.find_element(

LYYV Y.V V.YV V V.V V V.V V.V VVVVVVVVVN

By.CSS_SELECTOR, ".invalid-feedback"

Y VYV V.VV V.V V.V VVVVVVVVVVVVVVVVVVVVVVV

).1is_displayed()

AAAAAANAANNANANAN

)

S

AssertionError: True is not false

But, before we move on: three strikes and refactor! We've got several places where we
find the error element using CSS. Let’s move the logic to a helper function:

src/functional_tests/test_list_item_validation.py (ch171002)
class ItemValidationTest(FunctionalTest):
def get_error_element(self):
return self.browser.find_element(By.CSS_SELECTOR, ".invalid-feedback")

[...]

StartingwithanFT | 401

And we then make three replacements in test_list_item_validation, like this:

src/functional_tests/test_list_item_validation.py (ch171003)

self.wait_for(
lambda: self.assertEqual(
self.get_error_element().text,
"You've already got this in your list",

)
[...]
self.wait_for(
lambda: self.assertTrue(self.get_error_element().is_displayed()),

)
[...]
self.wait_for(
lambda: self.assertFalse(self.get_error_element().is_displayed()),

)

We still have our expected failure:

$ python src/manage.py test functional_tests.test_list_item_validation

[...]
lambda: self.assertFalse(self.get_error_element().1s_displayed()),

~~~~~~~~~~~~~~~~ ANNNNNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNAN

AssertionError: True is not false

I like to keep helper methods in the FT class that’s using them, and
only promote them to the base class when they’re actually needed
elsewhere. It stops the base class from getting too cluttered. You
ain’t gonna need it (YAGNI)!

A Quick Spike

This will be our first bit of JavaScript. We're also interacting with the Bootstrap CSS
framework, which we maybe don’t know very well.

In Chapter 15, we saw that you can use a unit test as a way of exploring a new API or
tool. Sometimes though, you just want to hack something together without any tests
at all, just to see if it works, to learn it or get a feel for it.

That’s absolutely fine! When learning a new tool or exploring a new possible solution,
it’s often appropriate to leave the rigorous TDD process to one side, and build a
little prototype without tests, or perhaps with very few tests. The Goat doesn’t mind
looking the other way for a bit.

402 | Chapter17:A Gentle Excursion into JavaScript



It’s actually fine to code without tests sometimes, when you want to
explore a new tool or build a throwaway proof-of-concept—as long
as you geniunely do throw that hacky code away, and start again
with TDD for the real thing. The code always comes out much
nicer the second time around.

This kind of prototyping activity is often called a “spike”, for reasons that aren't
entirely clear, but it’s a nice memorable name."

Before we start, let’s commit our FT. When embarking on a spike, you want to be able
to get back to a clean slate:

$ git diff # new method in src/tests/functional_tests/test_list_item_validation.py
$ *git commit -am"FT that validation errors disapper on type"

Always do a commit before embarking on a spike.

A Simple Inline Script

I hacked around for a bit, and here’s more or less the first thing I came up with.
I'm adding the JavaScript inline, in a <script> tag at the bottom of our base.html
template:

src/lists/templates/base.html (ch171004)
[...]

</div>

<script>
const textInput = document.querySelector("#id_text"); @
textInput.oninput = () => { OO
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none"; @
}

</script>

</body>
</html>

1 This chapter shows a very small spike. We'll come back and look at the spiking process again, with a weightier
Python/Django example, in Chapter 19 .

AQuick Spike | 403


https://oreil.ly/Ey27H
https://oreil.ly/Ey27H

o

document.querySelector is a way of finding an element in the DOM, using CSS
selector syntax, very much like the Selenium find_element(By.CSS_SELECTOR)
method from our FTs. Grizzled readers may remember having to use jQuery’s $
function for this.

oninput is how you attach an event listener “callback” function, which will be
called whenever the user inputs something into the text box.

Arrow functions, () => {...}, are the new way of writing anonymous functions
in JavaScript, a bit like Python’s lambda syntax. I think they’re cute! Arguments go
in the round brackets and the function body goes in the curly brackets. This is
a function that takes no arguments—or I should say, ignores any arguments you
try to give it. So, what does it do?

It finds the error message element, and then hides it by setting its style.display
to “none’.

That’s actually good enough to get our FT passing:

$ python src/manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input

Found 1 test(s).

[...]

Ran 1 test in 3.284s

0K

It's good practice to put your script loads at the end of your body
HTML, as it means the user doesn’t have to wait for all your
JavaScript to load before they can see something on the page. It also
helps to make sure most of the DOM has loaded before any scripts
run. See also “Columbo Says: Wait for Onload” on page 430 later in
this chapter.

404

| Chapter 17: A Gentle Excursion into JavaScript



Using the Browser DevTools

The test might be happy, but our solution is a little unsatisfactory. If you actually try
it in your browser, you’ll see that although the error message is gone, the input is still
red and invalid-looking (see Figure 17-2).

Your To-Do list

‘ Banter perfectly ordinary © ‘

You've already got this in your list

1: Banter too thick

Figure 17-2. The error message is gone but the input box is still red

You're probably imagining that this has something to do with Bootstrap. We might
have been able to hide the error message, but we also need to tell Bootstrap that this
input no longer has invalid contents.

This is where I'd normally open up DevTools. If level one of hacking is spiking
code directly into an inline <script> tag, level two is hacking things directly in the
browser, where it’s not even saved to a file!

In Figure 17-3, you can see me directly editing the HTML of the page, and finding
out that removing the is-1invalid class from the input element seems to do the trick.
It not only removes the error message, but also the red border around the input box.

AQuick Spike | 405



1 & . o . e G 'Theb ¥ Libro.fr Visual Jasmin

QO D localhost:8000/lists w

valid | 498 x 48

Your To-Do list

® O3 Inspector (D Performance 4k Memory [E Storage bility $88 Application
T y F e B Layout Compy
thov .cls + v Flexbox

Pseudo- Sele
elements

ct a Flex containg

This Element 7 ©7id
Ui CSSGridis not in usq

ext" placeholder="Enter a to-do item" element {

> et ) Box Model

Figure 17-3. Editing the HTML in the browser DevTools

We have a reasonable solution now; let’s write it down:

| o Remove is-invalid Bootstrap CSS c/ass +o
] hide error message and red border.

Time to de-spike!

406 | Chapter17:A Gentle Excursion into JavaScript



Do We Really Need to Write Unit Tests for This?

Do we really need to write unit tests for this? By this point in the book, you probably
know I'm going to say “yes’, but let’s talk about it anyway.

Our FT definitely covers the functionality that our JavaScript is delivering, and we
could extend it if we wanted to, to check on the colour of the input box or to look at
the input element’s CSS classes. And if I was really sure that this was the only bit of
JavaScript we were ever going to write, I probably would be tempted to leave it at that.

But I want to press on for two reasons. Firstly, because any book on web development
has to talk about JavaScript and, in a TDD book, I have to show a bit of TDD in
JavaScript.

More importantly though, as always, we have the boiled frog problem.> We might not
have enough JavaScript yet to justify a full test suite, but what about when we come
along later and add a tiny bit more? And a tiny bit more again?

It’s always a judgement call. On the one hand YAGNI, but on the other hand, I think
it’s best to put the scaffolding in place early so that going test-first is the easy choice
later.

I can already think of several extra things I'd want to do in the frontend! What about
resetting the input to being invalid if someone types in the exact duplicate text again?

Choosing a Basic JavaScript Test Runner

Choosing your testing tools in the Python world is fairly straightforward. The stan-
dard library unittest package is perfectly adequate, and the Django test runner also
makes a good default choice. More and more though, people will choose pytest for its
assert-based assertions, and its fixture management. We don’t need to get into the
pros and cons now! The point is that there’s a “good enough” default, and there’s one
main popular alternative.

The JavaScript world has more of a proliferation! Mocha, Karma, Jester, Chai, AVA,
and Tape are just a few of the options I came across when researching for the third
edition.

I chose Jasmine, because it’s still popular despite being around for nearly a decade,
and because it offers a “stand-alone” test runner that you can use without needing to
dive into the whole Node.js/NPM ecosystem.

2 For a reminder, read back on this problem in “On the Merits of Trivial Tests for Trivial Functions” on page 47.

Choosing a Basic JavaScript Test Runner | 407


http://pytest.org

An Overview of Jasmine

By now, we're used to the way that testing works with Python’s unittest library:

1.
2.

We have a tests file, separate from the code we're actually testing.

We have a way of grouping blocks of code into a test: it's a method, whose name
starts with test_, on a class that inherits from unittest.TestCase.

. We have a way of making assertions in the test (the special assert methods, e.g.,

self.assertEqual()).

We have a way of grouping related tests together (putting them in the same
class).

. We can specify shared setup and cleanup code that runs before and after all the

tests in a given group, the setUp() and tearDown() methods.

We have some additional helpers that set up our app in a way that simulates what
happens “in real life’—whether that’s Selenium and the LiveServerTestCase, or
the Django test client. This is sometimes called the “test harness”

There are going to be fairly straightforward equivalents for the first five of these
concepts in Jasmine:

1.
2.
3.

4.
5.

There is a tests file (Spec.js).
Tests go into an anonymous function inside an it() block.

Assertions use a special function called expect(), with a syntax based on method
chaining for asserting equality.

Blocks of related tests go into a function in a describe() block.

setUp() and tearDown() are called beforeEach() and afterEach(), respectively.

There are some differences for sure, but you'll see over the course of the chapter that
they’re fundamentally the same. What is substantially different is the “test harness”
part—the way that Jasmine creates an environment for us to work against.

Because we're using the browser runner, what were actually going to do is define an
HTML file (SpecRunner.html), and the engine for running our code is going to be an
actual browser (with JavaScript running inside it).

That HTML will be the entry point for our tests, so it will be in charge of importing
our framework, our tests file, and the code under test. It’s essentially a parallel,
standalone web page that isn't actually part of our app, but it does import the same
JavaScript source code that our app uses.

408

| Chapter 17: A Gentle Excursion into JavaScript



Setting Up Our JavaScript Test Environment

Let’s download Jasmine now:

$ wget -0 jasmine.zip \
https://github.com/jasmine/jasmine/releases/download/v4.6.1/jasmine-standalone-4.6.1.zip

$ unzip jasmine.zip -d src/lists/static/tests

$ rm jasmine.zip

# if you're on Windows you may not have wget or unzip,

# but 1'm sure you can manage to manually download and unzip the jasmine release

# move the example tests "Spec" file to a more central location
$ mv src/lists/static/tests/spec/PlayerSpec.js src/lists/static/tests/Spec.js

# delete all the other stuff we don't need
$ rm -rf src/lists/static/tests/src
$ rm -rf src/lists/static/tests/spec

That leaves us with a directory structure like this:

$ tree src/lists/static/tests
src/lists/static/tests
}— MIT.LICENSE
— spec.js
}— SpecRunner.html
L— 1ib
L— jasmine-4.6.1
— boot®. js
}— boot1.js
— jasmine-html.js
— jasmine.css
— jasmine.js
L— jasmine_favicon.png

3 directories, 9 files

SpecRunner.html is the file that ties the proverbial room together. So, we need to go
edit it to make sure it’s pointing at the right places, to take into account the things
we've moved around:

@@ -14,12 +14,10 @@
<script src="1lib/jasmine-4.6.1/bootl.js"></script>

<!-- include source files here... -->
- <script src="src/Player.js"></script>
- <script src="src/Song.js"></script>
+ <script src="../lists.js"></script>

<!-- include spec files here... -->
- <script src="spec/SpecHelper.js"></script>
- <script src="spec/PlayerSpec.js"></script>
+ <script src="Spec.js"></script>

</head>

Setting Up Our JavaScript Test Environment | 409



We change the source files to point at a (for-now imaginary) lists.js file that we'll put
into the static folder, and we change the spec files to point at the single Spec.js file, in
the static/tests folder.

Our First Smoke Test: Describe, It, Expect

Now, let’s open up that Spec.js file and strip it down to a single minimal smoke test:

src/lists/static/tests/Spec.js (ch171007)
describe("Superlists JavaScript", () => { @

{t("should have working maths", () => { @
expect(1l + 1).toEqual(2); ©
s

s

@ The describe block is a way of grouping tests together, a bit like we use classes in

our Python tests. It starts with a string name, and then an arrow function for its
body.

© The it block is a single test, a bit like a method in a Python test class. Similarly
to the describe block, we have a name and then a function to contain the test
code. As you can see, the convention is for the descriptive name to complete the
sentence started by it, in the context of the describe() block earlier; so, they
often start with “should”.

© Now we have our assertion. This is a little different from assertions in unittest; it’s
using what’s sometimes called “expect” style, often also seen in the Ruby world.
We wrap our “actual” value in the expect() function, and then our assertions
are methods on the resulting expect object, where .toEqual is the equivalent of
assertEqual in Python.

Running the Tests via the Browser

Lets see how that looks. Open up SpecRunner.html in your browser; you can do this
from the command line with:

$ firefox src/lists/static/tests/SpecRunner.html
# or, on a mac:
$ open src/lists/static/tests/SpecRunner.html

Or, you can navigate to it in the address bar, using the file:// protocol—
something like this: file://home/your-username/path/to/superlists/src/lists/static/tests/
SpecRunner.html.

410 | Chapter17:A Gentle Excursion into JavaScript



Either way you get there, you should see something like Figure 17-4.

El Jasmine Spec Runner v4.6.1 X +

[ file:fj/Users/harry.percival/v Yy ©

@Jasmine 4.6.1

1 spec, @ failures, randomized with seed 65617 finished in 0.001s

Superlists JavaScript
¢ should have working maths

Figure 17-4. The Jasmine spec runner in action

Let’s try adding a deliberate failure to see what that looks like:

src/lists/static/tests/Spec.js (ch171008)
it("should have working maths", () => {
expect(1l + 1).toEqual(3);
s

Now if we refresh our browser, we'll see red (Figure 17-5).

El Jasmine Spec Runner v4.6.1 X +

C O file:fjfprivateftmp/goat-book/stat {¥

@Jasmine 4.6.1

1 spec, 1 failure, randomized with seed 04965 finished in @.002s

Spec List | Failures

Superlists JavaScript > should have working maths

Expected 2 to equal 3.

<Jasmine>
@file:///private/tmp/goat-book/static/tests/Spec.js:4:19
<Jasmine>

Figure 17-5. Our Jasmine tests are now red

Our First Smoke Test: Describe, It, Expect | 411




Is the Jasmine Standalone Browser Test Runner Unconventional?

Is the Jasmine standalone browser test runner unconventional? I think it probably is,
to be honest. Although, the JavaScript world moves so fast, so I could be wrong by the
time you read this.

What I do know is that, along with moving very fast, JavaScript things can very
quickly become very complicated. A lot of people are working with frameworks these
days (React being the main one), and that comes with TypeScript, transpilers, Node.js,
NPM, the massive node_modules folder—and a very steep learning curve.

In this chapter, my aim is to stick with the basics. The standalone/browser-based test
runner lets us write tests without needing to install Node.js or anything else, and it
lets us test interactions with the DOM. That’s enough to give us a basic environment
in which to do TDD in JavaScript.

If you decide to go further in the world of frontend, you probably will eventually get
into the complexity of frameworks and TypeScript and transpilers, but the basics we
work with here will still be a good foundation.

We will actually take things a small step further in this book, including dipping our
toes into NPM and Node.js in Chapter 25, where we will get CLI-based JavaScript
tests working. So, look out for that!

Testing with Some DOM Content

What do we actually want to test? We want some JavaScript that will hide
the .invalid-feedback error div when the user starts typing into the input box.
In other words, our code is going to interact with the input element on the page and
with the div.invalid-feedback.

Lets look at how to set up some copies of these elements in our JavaScript test
environment, for our tests and our code to interact with:

412 | Chapter 17: A Gentle Excursion into JavaScript



src/lists/static/tests/Spec.js (ch171010)

describe("Superlists JavaScript", () => {
let testdiv; @

beforeEach(() => { @
testDiv = document.createElement("div"); @
testDiv.innerHTML = ° @
<form>
<input
id="1d_text"
name="text"
class="form-control form-control-1lg is-invalid"
placeholder="Enter a to-do item"
value="Value as submitted"
aria-describedby="1d_text_feedback"
required
/>
<div id="1d_text_feedback" class="invalid-feedback">An error message</div>
</f0rm>

document.body.appendChild(testDiv);
bs

afterEach(() => { @
testDiv.remove();

s

@ The beforeEach and afterEach functions are Jasmine’s equivalent of setUp and
tearDown.

© The document global is a built-in browser variable that represents the current
HTML page. So, in our case, it’s a reference to the SpecRunner.html page.

© We create a new div element and populate it with some HTML that matches the
elements we care about from our Django template. Notice the use of backticks (")
to enable us to write multiline strings. Depending on your text editor, it may even
nicely syntax-highlight the HTML for you.

O A little quirk of JavaScript here, because we want the same testDiv variable to
be available inside both the beforeEach and afterEach functions: we declare the
variable with let in the containing scope outside of both functions.

In theory, we could have just added the HTML to the SpecRunner.html file, but by
using beforeEach and afterEach, I'm making sure that each test gets a completely
fresh copy of the HTML elements involved, so that one test can’t affect another.

Testing with Some DOM Content | 413



To ensure isolation between browser-based JavaScript tests, use
beforeEach() and afterEach() to create and tidy up any DOM
elements that your code needs to interact with.

Let’s now play with our testing framework to see if we can find DOM elements
and make assertions on whether they are visible. We'll also try the same style.dis
play=none hiding technique that we originally used in our spiked code:

src/lists/static/tests/Spec.js (ch171011)

it("should have a useful html fixture", () => {
const errorMsg = document.querySelector(".invalid-feedback");
expect(errorMsg.checkvisibility()).toBe(true); @

bs

it("can hide things manually and check visibility in tests", () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none"; @
expect(errorMsg.checkvisibility()).toBe(false); ©

Hs

@ We retrieve our error div with querySelector again, and then use another fairly
new API in JavaScript-Land called checkvisibility() to check if it’s displayed
or hidden.?

© We manually hide the element in the test, by setting its style.display to “none”
(Again, our objective here is to smoke-test, both our ability to hide things and
our ability to test that they are hidden.)

© And we check it worked, with checkVisibility() again.

Notice that 'm being really good about splitting things out into multiple tests, with
one assertion each. Jasmine encourages that by deprecating the ability to pass failure
messages into individual expect/toBe expressions, for example.

3 Read up on the checkVisibility() method in the MDN documentation.

414 | Chapter 17: A Gentle Excursion into JavaScript


https://oreil.ly/hk6qg

If you refresh the browser, you should see that all passes:

2 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* can hide things manually and check visibility in tests
* should have a useful html fixture

(From now on, T'll show the Jasmine outputs as text, like this, to avoid filling the
chapter with screenshots.)

Building a JavaScript Unit Test for Our
Desired Functionality

Now that we're acquainted with our JavaScript testing tools, we can start to write the
real thing:

src/lists/static/tests/Spec.js (ch171012)

1t("should have a useful html fixture", () => { @
const errorMsg = document.querySelector(".invalid-feedback");
expect(errorMsg.checkVisibility()).toBe(true);

bs

it("should hide error message on input", () => { @
const textInput = document.querySelector("#id_text"); @
const errorMsg = document.querySelector(".invalid-feedback");

textInput.dispatchEvent(new InputEvent("input")); @

expect(errorMsg.checkVisibility()).toBe(false); @
b

@ Asits not doing any harm, let’s keep the first smoke test.
@ Let’s change the second one, and give it a name that describes what we want to
happen; our objective is that, when the user starts typing into the input box, we

should hide the error message.

© We retrieve the <input> element from the DOM, in a similar way to how we
found the error message div.

O Here's how we simulate a user typing into the input box.

© And here’s our real assertion: the error div should be hidden after the input box
sees an input event.

Building a JavaScript Unit Test for Our Desired Functionality | 415



That gives us our expected failure:

2 specs, 1 failure, randomized with seed 12345 finished in 0.005s
Spec List | Failures

Superlists JavaScript > should hide error message on input
Expected true to be false.

<Jasmine>
@file:///...goat-book/src/lists/static/tests/Spec.js:38:40
<Jasmine>

Now let’s try reintroducing the code we hacked together in our spike, into lists.js:

src/lists/static/lists.js (ch171014)

const textInput = document.querySelector("#id_text");
textInput.oninput = () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none";

};

That doesn’t work! We get an unexpected error:

2 specs, 2 failures, randomized with seed 12345 finished in 0.005s
Error during loading: TypeError: textInput is null in
file:///...goat-book/src/lists/static/lists.js line 2

Spec List | Failures

Superlists JavaScript > should hide error message on input
Expected true to be false.

<Jasmine>
@file:///...goat-book/src/lists/static/tests/Spec.js:38:40
<Jasmine>

416 | Chapter17: A Gentle Excursion into JavaScript



If your Jasmine output shows Script error instead of textInput is null, open
up the DevTools console, and you’ll see the actual error printed in there, as in
Figure 17-6.

O file://ftmp/goat-book/static/tests/SpecRunner.html

®Jasmine 4.6.1

® X

2 specs, 2 failures, randomized with seed 28547 finished in 0.005s

Error during loading: Script error. in file:///tmp/goat-book/static/lists.js line @

Spec List | Failures

Superlists tests > error message should be hidden on input

Expected true to be false.

<Jasmine>

@file:///tmp/goat-book/static/tests/Spec.js:38:40

<Jasmine>

promise callback*specStarted@file:///tmp/goat-book/static/tests/1ib/jasmine-4.6.1/jasmine.js:1846:41
<Jasmine>

@file:///tmp/goat-book/static/tests/1ib/jasmine-4.6.1/boot@.js:50:23
@file:///tmp/goat-book/static/tests/1ib/jasmine-4.6.1/boot@.js:65:3

(W {3 Inspector ([ Console [ Debugger fy Network {} Style Editor () Performance {} Memory 1 e X

W Filter Outpt Errors_Warnings Info _Logs Debug | CSS XHR Requests ¥

Uncaught TypeError: textInput is null
<anonymous> file tmp/goat-book
[Learn More]

Figure 17-6. textInput is null, one way or another

textInput is null, it says. Let’s see if we can figure out why.

Fixtures, Execution Order, and Global State:
Key Challenges of JavaScript Testing

One of the difficulties with JavaScript in general, and testing in particular, is under-
standing the order of execution of our code (i.e., what happens when). When does
our code in lists.js run, and when do each of our tests run? How do they all interact
with global state—that is, the DOM of our web page and the fixtures that we've
already seen are supposed to be cleaned up after each test?

4 Some users have also reported that Google Chrome will show a different error, to do with the browser
preventing loading local files. If you really can’t use Firefox, you might be able to find some solutions on Stack
Overflow.

Fixtures, Execution Order, and Global State: Key Challenges of JavaScript Testing | 417


https://oreil.ly/EkwdH
https://oreil.ly/EkwdH

console.log for Debug Printing

Let’s add a couple of debug prints, or “console.logs™:

src/lists/static/tests/Spec.js (ch171015)
console.log("Spec.js loading");

describe("Superlists JavaScript", () => {
let testDiv;

beforeEach(() => {
console.log("beforeEach");
testDiv = document.createElement("div");

[...]

it("should have a useful html fixture", () => {
console.log("in test 1");
const errorMsg = document.querySelector(".invalid-feedback");

[...]

it("should hide error message on input", () => {
console.log("in test 2");
const textInput = document.querySelector("#id_text");

[...]
And the same in our actual JavaScript code:

src/lists/static/lists.js (ch171016)
console.log("lists.js loading");
const textInput = document.querySelector("#id_text");
textInput.oninput = () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none";

¥

418 | Chapter 17: A Gentle Excursion into JavaScript



Rerun the tests, opening up the browser debug console (Ctrl+Shift+I or Cmd+Alt+])
and you should see something like Figure 17-7.

C O file:///privateftmp/goat-book/static/tests/SpecRunner.html Dk

@Jasmine 4.6.1

® X

2 specs, 2 failures, randomized with seed 27326 finished in 0.003s

Error during loading: Script error. in file:///private/tmp/goat-book/static/lists.js line @

Spec List | Failures

Superlists tests > error message should be hidden on input

Expected true to be false.

<Jasmine>

@file:///private/tmp/goat-book/static/tests/Spec.js:43:40

<Jasmine>

promise callback*specStarted@file:///private/tmp/goat-book/static/tests/1ib/jasmine-4.6.1/jasmine.js:1846:41

G‘ f‘}\nspeclor Console O Debugger T¢ Network {) Style Editor mPerformance »

[ﬁ Filter Outpu Errors Warnings Info Logs Debug

Uncaught TypeError: textInput is null
<anonymous> file:///private/tmp/goa
[Learn More]

Spec.js loading
beforeEach

in test 1

beforeEach

in test 2

Figure 17-7. Jasmine tests with console. log debug outputs

What do we see?

1. First, lists.js loads.

2. Then, we see the error saying textInput is null.
3. Next, we see our tests loading in Spec.js.
4

. Then, we see a beforeEach, which is when our test fixture actually gets added to
the DOM.

5. Finally, we see the first test run.

This explains the problem: when lists.js loads, the input node doesn’t exist yet.

Fixtures, Execution Order, and Global State: Key Challenges of JavaScript Testing | 419



Using an Initialize Function for More Control Over
Execution Time

We need more control over the order of execution of our JavaScript. Rather than just
relying on the code in lists.js running whenever it is loaded by a <script> tag, we can
use a common pattern: define an “initialize” function and call that when we want to
in our tests (and later in real life).’

Here’s what that function could look like:

src/lists/static/lists.js (ch171017)

console.log("lists.js loading");
const initialize = () => {
console.log("initialize called");
const textInput = document.querySelector("#id_text");
textInput.oninput = () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none";
IH
b

And in our tests file, we call initialize() in our key test:

src/lists/static/tests/Spec.js (ch171018)

it("should have a useful html fixture", () => {
console.log("in test 1");
const errorMsg = document.querySelector(".invalid-feedback");
expect(errorMsg.checkVisibility()).toBe(true);

s

it("should hide error message on input", () => {
console.log("in test 2");
const textInput = document.querySelector("#id_text");
const errorMsg = document.querySelector(".invalid-feedback");

initialize(); @
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.checkVisibility()).toBe(false);
b
s

5 Have you been enjoying the British English spelling in the book so far and are shocked to see the zin
“initialize”? By convention, even us Brits often use American spelling in code, because it makes it easier for
international colleagues to read, and to make it correspond better with code samples on the internet.

420 | Chapter17:A Gentle Excursion into JavaScript



© This is where we call initialize(). We don’t need to call it in our fixture
sense-check.

And that will actually get our tests passing!

2 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* should hide error message on input
* should have a useful html fixture

And now the console. log outputs should be in a more sensible order:

lists.js loading lists.js:1:9
Spec.js loading Spec.js:1:9
beforeEach Spec.js:7:13
in test 1 Spec.js:31:13
beforeEach Spec.js:7:13
in test 2 Spec.js:37:13
initialize called lists.js:3:11

Deliberately Breaking Our Code to Force Ourselves to
Write More Tests

I'm always nervous when I see green tests. We've copy-pasted five lines of code from
our spike with just one test. That was a little too easy, even if we did have to go
through that little initialize() dance.

So, let’s change our initialize() function to deliberately break it. What if we just
immediately hide errors?

src/lists/static/lists.js (ch171019)
const initialize = () => {
// const textInput = document.querySelector("#id_text");
// textInput.oninput = () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none";
//}s
b

Oh dear, as I feared—the tests just pass:

2 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* should hide error message on input
* should have a useful html fixture

Deliberately Breaking Our Code to Force Ourselves to Write More Tests | 421



We need an extra test, to check that our initialize() function isn’t overzealous:

src/lists/static/tests/Spec.js (ch171020)

it("should hide error message on input", () => {
[...]
b

it("should not hide error message before event is fired", () => {
const errorMsg = document.querySelector(".invalid-feedback");
initialize();
expect(errorMsg.checkVisibility()).toBe(true); @

b

@ In this test, we don't fire the input event with dispatchEvent, so we expect the
error message to still be visible.

That gives us our expected failure:

3 specs, 1 failure, randomized with seed 12345 finished in 0.005s

Spec List | Failures

Superlists JavaScript > should not hide error message before event is fired
Expected false to be true.

<Jasmine>

@file:///...goat-book/src/lists/static/tests/Spec.js:48:40

<Jasmine>

This justifies us to restore the textInput.oninput():

src/lists/static/lists.js (ch171021)

const initialize = () => {
const textInput = document.querySelector("#id_text");
textInput.oninput = () => {
const errorMsg = document.querySelector(".invalid-feedback");
errorMsg.style.display = "none";
IH
b

Red/Green/Refactor: Removing Hardcoded Selectors

The #id_text and .invalid-feedback selectors are “magic constants” at the
moment. It would be better to pass them into initialize(), both in the tests and
in base.html, so that theyre defined in the same file that actually has the HTML
elements.

422 | Chapter17:A Gentle Excursion into JavaScript



And while we're at it, our tests could do with a bit of refactoring too, to remove some
duplication. We'll start with that, by defining a few more variables in the top-level
scope, and populate them in the beforeEach:

src/lists/static/tests/Spec.js (ch171022)

describe("Superlists JavaScript", () => {
const inputId = "id_text"; @

const errorClass = "invalid-feedback"; @
const inputSelector = “#${inputld}’'; @
const errorSelector = '.${errorClass}’; @

let testDiv;
let textInput; ©
let errorMsg; ©

beforeEach(() => {
console.log("beforeEach");
testDiv = document.createElement("div");
testDiv.innerHTML = °
<form>
<input
id="${inputld}" @
name="text"
class="form-control form-control-lg is-invalid"
placeholder="Enter a to-do item"
value="Value as submitted"
aria-describedby="1d_text_feedback"
required
/>
<div 1d="1id_text_feedback" class="${errorClass}">An error message</div> @
</form>

document.body.appendChild(testDiv);
textInput = document.querySelector(inputSelector); @
errorMsg = document.querySelector(errorSelector); @

bs

@ Lets define some constants to represent the selectors for our input element and
our error message div.

©® We can use JavaScript’s string interpolation (the equivalent of f-strings) to then
define the CSS selectors for the same elements.

© Well also set up some variables to hold the elements were always referring to in
our tests (these can’t be constants, as we'll see shortly).

O We use a bit more interpolation to reuse the constants in our HTML template. A
first bit of de-duplication!

© Heres why textInput and errorMsg can’t be constants: were re-creating the
DOM fixture in every beforeEach, so we need to re-fetch the elements each time.

Red/Green/Refactor: Removing Hardcoded Selectors | 423



Now we can apply some DRY (“don’t repeat yourself”) to strip down our tests:

src/lists/static/tests/Spec.js (ch171023)
it("should have a useful html fixture", () => {
expect(errorMsg.checkVisibility()).toBe(true);

s

it("should hide error message on input", () => {
initialize();
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.checkVisibility()).toBe(false);
bs

it("should not hide error message before event is fired", () => {
initialize();
expect(errorMsg.checkVisibility()).toBe(true);

b

You can definitely overdo DRY in test, but I think this is working out very nicely.
Each test is between one and three lines long, meaning it’s very easy to see what each
one is doing, and what it’s doing differently from the others.

We've only refactored the tests so far, so let’s check that they still pass:

3 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* should hide error message on input
* should have a useful html fixture
* should not hide error message before event is fired

424 | Chapter 17: A Gentle Excursion into JavaScript



The next refactor is wanting to pass the selectors to initialize(). Let’s see what
happens if we just do that straight away, in the tests:

src/lists/static/tests/Spec.js (ch171024)
@@ -40,14 +40,14 @@ describe("Superlists JavaScript", () => {
b

it("should hide error message on input", () => {
- initialize();
+ initialize(inputSelector, errorSelector);
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.checkVisibility()).toBe(false);
b

it("should not hide error message before event is fired", () => {
- initialize();
initialize(inputSelector, errorSelector);
expect(errorMsg.checkVisibility()).toBe(true);
b
b;

B

Now we look at the tests:

3 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* should hide error message on input
* should have a useful html fixture
* should not hide error message before event is fired

They still pass!

You might have been expecting a failure to do with the fact that initialize() was
defined as taking no arguments—but we passed two! That’s because JavaScript is too
chill for that. You can call a function with too many or too few arguments, and
JavaScript will just deal with it.

Let’s fish those arguments out in initialize():

src/lists/static/lists.js (ch171025)
const initialize = (inputSelector, errorSelector) => {
const textInput = document.querySelector(inputSelector);
textInput.oninput = () => {
const errorMsg = document.querySelector(errorSelector);
errorMsg.style.display = "none";
I
1

Red/Green/Refactor: Removing Hardcoded Selectors | 425



And the tests still pass:
3 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Lets deliberately use the arguments the wrong way round, just to check we get a
failure:

src/lists/static/lists.js (ch171026)
const initialize = (errorSelector, inputSelector) => {

Phew, that does indeed fail:

3 specs, 1 failure, randomized with seed 12345 finished in 0.005s
Spec List | Failures

Superlists JavaScript > should hide error message on input
Expected true to be false.

<Jasmine>
@file:///...goat-book/src/lists/static/tests/Spec.js:46:40
<Jasmine>

OK, back to the right way around:

src/lists/static/lists.js (ch171027)
const initialize = (inputSelector, errorSelector) => {

Does it Work?

And for the moment of truth, we'll pull in our script and invoke our initialize
function on our real pages. Lets use another <script> tag to include our lists.js,
and strip down the the inline JavaScript to just calling initialize() with the right
selectors:

src/lists/templates/base.html (ch171028)
</div>

<script src="/static/lists.js"></script>
<script>

initialize("#id_text", ".invalid-feedback");
</script>

</body>
</html>

426 | Chapter17:A Gentle Excursion into JavaScript



Aaaand we run our FT:

$ python src/manage.py test functional_tests.test_list_item_validation.\
ItemValidationTest.test_error_messages_are_cleared_on_input

[...]
Ran 1 test in 3.023s

0K
Hooray! That’s a commit!

$ git add src/lists
$ git commit -m"Despike our js, add jasmine tests"

We're using a <script> tag to import our code, but modern Java-
Script lets you use import and export to explicitly import particu-
lar parts of your code. However, that involves specifying the scripts
as modules, which is fiddly to get working with the single-file test
runner we're using. So, I decided to use the “simple” old-fashioned
way. By all means, investigate modules in your own projects!

Testing Integration with CSS and Bootstrap

As the tests flashed past, you may have noticed an unsatisfactory bit of red, still left
around our input box. Wait a minute! We forgot one of the key things we learned in
our spike!

o Remove is-invalidl Bootstrap CSS class +o
hidle error messase and red border.

We don't need to manually hack style.display=none; we can work with the Boot-
strap framework and just remove the .is-invalid class.

Testing Integration with (SS and Bootstrap | 427



OK, let’s try it in our implementation:

src/lists/static/lists.js (ch171029)
const initialize = (inputSelector, errorSelector) => {
const textInput = document.querySelector(inputSelector);
textInput.oninput = () => {
textInput.classList.remove("is-invalid");
b
b

Oh dear; it seems like that doesn’t quite work:

3 specs, 1 failure, randomized with seed 12345 finished in 0.005s
Spec List | Failures

Superlists JavaScript > should hide error message on input

Expected true to be false.

<Jasmine>

@file:///...goat-book/src/lists/static/tests/Spec.js:46:40

<Jasmine>
What’s happening here? Well, as hinted in the section title, were now relying on the
integration with Bootstraps CSS, but our test runner doesn’t know about Bootstrap
yet.

We can include it in a reasonably familiar way, which is by including it in the <head>
of our SpecRunner.html file:

src/lists/static/tests/SpecRunner.html (ch171030)
<link rel="stylesheet" href="1ib/jasmine-4.6.1/jasmine.css">

<!-- Bootstrap CSS -->
<link href="../bootstrap/css/bootstrap.min.css" rel="stylesheet">

<script src="1ib/jasmine-4.6.1/jasmine.js"></script>

That gets us back to passing tests:

3 specs, 0 failures, randomized with seed 12345 finished in 0.005s

Superlists JavaScript
* should hide error message on input
* should have a useful html fixture
* should not hide error message before event is fired

Let’s do a little more refactoring. If your editor is set up to do some JavaScript linting,
you might have seen a warning saying:

'errorSelector' is declared but its value is never read.

428 | Chapter17:A Gentle Excursion into JavaScript



Great! Looks like we can get away with just one argument to our initialize()
function:

src/lists/static/lists.js (ch171031)
const initialize = (inputSelector) => {
const textInput = document.querySelector(inputSelector);
textInput.oninput = () => {
textInput.classList.remove("is-invalid");
b
b

Are you enjoying the way the tests keep passing even though we're giving the function
too many arguments? JavaScript is so chill, man. Let’s strip them down anyway:

src/lists/static/tests/Spec.js (ch171032)
@@ -40,14 +40,14 @@ describe("Superlists JavaScript", () => {
H;

it("should hide error message on input", () => {
- initialize(inputSelector, errorSelector);
+ initialize(inputSelector);
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.checkVisibility()).toBe(false);
H;

it("should not hide error message before event is fired", () => {
- initialize(inputSelector, errorSelector);
+ initialize(inputSelector);
expect(errorMsg.checkVisibility()).toBe(true);
H;
b;

And the base template, yay. Nothing more satisfying than deleting code:

src/lists/templates/base.html (ch171033)
<script>
initialize("#id_text");
</script>

And we can run the FT one more time, just for safety:

0K

Testing Integration with (SS and Bootstrap | 429



Trade-offs in JavaScript Unit Testing Versus Selenium

Similarly to the way our Selenium tests and our Django unit tests interact, we have
an overlap between the functionality covered by our JavaScript unit tests and our
Selenium FTs.

As always, the downside of the FTs is that they are slow, and they can’t always point
you towards exactly what went wrong. But they do give us the best reassurance that
all our components—in this case, browser, CSS framework, and JavaScript—are all
working together.

On the other hand, by using the jasmine-browser-runner, we are also testing the
integration between our browser, our JavaScript, and Bootstrap. This comes at the
expense of having a slightly clunky testing setup.

If you wanted to switch to faster, more focused unit tests, you could try the following:

o Stop using the browser runner.
« Switch to a node-based CLI test runner.

o Change from asserting using checkVisibility() (which wont work without a
real DOM) to asserting what the JavaScript code is actually doing—removing
the .is-invalid CSS class.

It might look something like this:

src/lists/static/tests/Spec.js

it("should hide error message on input", () => {
initialize(inputSelector);
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.classList).not.toContain("is-invalid");

s

The trade-off here is that you get faster, more focused unit tests, but you need to lean
more heavily on Selenium to test the integration with Bootstrap. That could be worth
it, but probably only if you start to have a lot more JavaScript code.

Columbo Says: Wait for Onload

Wait, there’s just one more thing...

—Columbo (fictional trench-coat-wearing American detective known for his
persistence)

As always, there’s one final thing. Whenever you have some JavaScript that interacts
with the DOM, its good to wrap it in some “onload” boilerplate to make sure that

430 | Chapter17:A Gentle Excursion into JavaScript



the page has fully loaded before it tries to do anything. Currently it works anyway,
because we've placed the <script> tag right at the bottom of the page, but we
shouldn't rely on that.

The MDN documentation on this is good, as usual.

The modern JavaScript onload boilerplate is minimal:

src/lists/templates/base.html (ch171034)
<script>
window.onload = () => {
initialize("#id_text");
1

</script>

That’s a commit, folks!

$ git status

$ git add src/lists/static # all our js and tests

$ git add src/lists/templates # changes to the base template
$ git commit -m"Javascript to hide error messages on input"

JavaScript Testing in the TDD Cycle

You may be wondering how these JavaScript tests fit in with our “double loop” TDD
cycle (see Figure 17-8).

Red
(failing FT)

Write anew
PT for the Functional test loop Unit test loop
next feature.
Refactor H Green
Green I

(passing FT,
complete feature)

Figure 17-8. Double-loop TDD reminder

The answer is that the JavaScript unit-test/code cycle plays exactly the same role as
the Python unit one:

JavaScript Testinginthe TDD Cyde | 431


https://oreil.ly/buBe8

Write an FT and see it fail.
Figure out what kind of code you need next: Python or JavaScript?
Write a unit test in either language, and see it fail.

Write some code in either language, and make the test pass.

ok e

Rinse and repeat.

Phew. Well, hopefully some sense of closure there. The next step is to deploy our new
code to our servers.

There is more JavaScript fun in this book too! Have a look at the Online Appendix:
Building a REST API), when you're ready for it.

Want a little more practice with JavaScript? See if you can get our
error messages to be hidden when the user clicks inside the input
element, as well as just when they type in it. You should be able to
FT it too, if you want a bit of extra Selenium practice.

JavaScript Testing Notes

Selenium as the outer loop
One of the great advantages of Selenium is that it enables you to test that your
JavaScript really works, just as it tests your Python code. But, as always, FTs are a
very blunt tool, so it’s often worth pairing them with some lower-level tests.

Choosing your testing framework
There are many JavaScript test-running libraries out there. Jasmine has been
around for a while, but the others are also worth investigating.

Idiosyncrasies of the browser
No matter which testing library you use, if youre working with Vanilla JavaScript
(i.e., not a framework like React), you'll need to work around the key “gotchas” of
JavaScript:

o The DOM and HTML fixtures
o Global state

 Understanding and controlling execution order

Frontend frameworks
An awful lot of frontend work these days is done in frameworks, React being the
1,000-pound gorilla. There are lots of resources on React testing out there, so I'll
let you go out and find them if you need them.

432 | Chapter17: A Gentle Excursion into JavaScript


https://www.obeythetestinggoat.com/book/appendix_rest_api.html
https://www.obeythetestinggoat.com/book/appendix_rest_api.html

CHAPTER 18
Deploying Our New Code

It’s time to deploy our brilliant new validation code to our live servers. This will be a
chance to see our automated deploy scripts in action for the second time. Let’s take
the opportunity to make a little deployment checklist.

At this point I always want to say a huge thanks to Andrew Godwin
and the whole Django team. In the first edition, I used to have a
whole long section, entirely devoted to migrations. Since Django
1.7, migrations now “just work”, so I was able to drop it altogether.
I mean yes this all happened nearly ten years ago, but still—open
source software is a gift. We get such amazing things, entirely for
free. It's worth taking a moment to be grateful, now and again.

The Deployment Checklist

Let’s make a little checklist of pre-deployment tasks:
1. We run all our unit tests and functional tests (FTs) in the regular way—just in
case!

2. We rebuild our Docker image and run our tests against Docker on our local
machine.

3. We deploy to staging, and run our FTs against staging.
4. Now we can deploy to prod.

433



A deployment checKlist like this should be a temporary measure.
Once you've worked through it manually a few times, you should
be looking to take the next step in automation: continuous deploy-
ment straight to production using a CI/CD (continuous integra-
tion/continuous development) pipeline. We'lll touch on this in
Chapter 25.

A Full Test Run Locally

Of course, under the watchful eye of the Testing Goat, we're running the tests all the
time! But, just in case:

$ cd src & python manage.py test
[...]

Ran 37 tests in 15.222s

0K

Quick Test Run Against Docker

The next step towards production is running things in Docker. This was one of the
main reasons we went to the trouble of containerising our app: to reproduce the
production environment as faithfully as possible on our own machine.

434 | Chapter 18: Deploying Our New Code



So let’s rebuild our Docker image and spin up a local Docker container:

$ *docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-1t superlists

=> [internal] load build definition from Dockerfile 0.0s
=> => transferring dockerfile: 371B 0.0s
=> [internal] load metadata for docker.io/library/python:3.14-slim 1.4s
[...]

=> => naming to docker.io/library/superlists 0.0s

+ docker run -p 8888:8888 --mount
type=bind,source="$PWD/src/db.sqlite3",target=/src/db.sqlite3 -e
DJANGO_SECRET_KEY=sekrit -e DJANGO_ALLOWED_HOST=localhost -e EMAIL_PASSWORD -it
superlists

[2025-01-27 21:29:37 +0000] [7] [INFO] Starting gunicorn 22.0.0

[2025-01-27 21:29:37 +0000] [7] [INFO] Listening at: http://0.0.0.0:8888 (7)
[2025-01-27 21:29:37 +0000] [7] [INFO] Using worker: sync

[2025-01-27 21:29:37 +0000] [8] [INFO] Booting worker with pid: 8

And now, in a separate terminal, we can run our FT suite against the Docker:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests
[...]

Ran 6 tests in 17.047s

0K

Looking good! Let’s move on to staging.

Quick Test Run Against Docker | 435



Staging Deploy and Test Run

Here’s our ansible-playbook command to deploy to staging:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv
[...]

PLAY [all] *w=* * * * * * * * *
TASK [Gathering Facts] * * * * * * *
[...]

ok: [staging.ottg.co.uk]

TASK [Install docker] * * * * * * *
ok: [staging.ottg.co.uk] => {"cache_update_time": [...]

TASK [Add our user to the docker group, so we don't need sudo/become] ****kkk*
ok: [staging.ottg.co.uk] => {"append": true, "changed": false, [...]

TASK [Reset ssh connection to allow the user/group change to take effect] ***¥**

TASK [Build container image locally] * * * * * *
changed: [staging.ottg.co.uk -> 127.0.0.1] => {"actions": ["Built image

[...]

TASK [Export container image locally] * * * * *
changed: [staging.ottg.co.uk -> 127.0.0.1] => {"actions": ["Archived image [...]

TASK [Upload image to server]
changed: [staging.ottg.co.uk] => {"changed": true, "checksum": [...]

TASK [Import container image on server] * * * * *
changed: [staging.ottg.co.uk] => {"actions": ["Loaded image superlists:latest

[...]

TASK [Ensure .secret-key file exists] * * * * *
ok: [staging.ottg.co.uk] => {"changed": false, "dest":

[...]

TASK [Read secret key back from file] * * * * *
ok: [staging.ottg.co.uk] => {"changed": false, "content":

[...]

TASK [Ensure db.sqlite3 file exists outside container] * * *

changed: [staging.ottg.co.uk] => {"changed": true, "dest": [...]

TASK [Run container]
changed: [staging.ottg.co.uk] => {"changed": true, "container":

[...]

TASK [Run migration inside container]

changed: [staging.ottg.co.uk] => {"changed": true, "rc": 0, "stderr": "",
[...]

PLAY RECAP

staging.ottg.co.uk : ok=12  changed=7 unreachable=0 failed=0

skipped=0 rescued=0 ignored=0

436 | Chapter 18: Deploying Our New Code



If your server is offline because you ran out of free credits with
your provider, you'll have to create a new one. Skip back to Chap-
ter 11 if you need.

And now we run the FTs against staging:

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
oK

Hooray!

Production Deploy

As all is looking well, we can deploy to prod!

$ ansible-playbook --user=elspeth -i www.ottg.co.uk, infra/deploy-playbook.yaml -vv

What to Do If You See a Database Error

Because our migrations introduce a new integrity constraint, you may find that it fails
to apply because some existing data violates that constraint. For example, here’s what
you might see if any of the lists on the server already contain duplicate items:

sqlite3.IntegrityError: columns list_id, text are not unique

At this point, you have two choices:

1. Delete the database on the server and try again—after all, it’s only a toy project!

2. Create a data migration. You can find out more in the Django migrations docs.

How to Delete the Database on the Staging Server
Here’s how you might do option 1:
ssh elspeth@staging.ottg.co.uk rm db.sqlite3

The ssh command takes an arbitrary shell command to run as its last argument, so
we pass in rm db.sqlite3. We don't need a full path because we keep the SQLite
database in our home folder.

Try not to accidentally delete your production database.

What to Do If You See a Database Error | 437


https://docs.djangoproject.com/en/5.2/topics/migrations/#data-migrations

Wrap-Up: git tag the New Release

The last thing to do is to tag the release in our version control system (VCS)—its
important that were always able to keep track of what's live:

$ git tag -f LIVE # needs the -f because we are replacing the old tag
$ export TAG="date +DEPLOYED-%F/%H%M"

$ git tag $TAG

$ git push -f origin LIVE $TAG

Some people don’t like to use push -f and update an existing tag,
and will instead use some kind of version number to tag their
releases. Use whatever works for you.

And on that note, we can wrap up the last of the concepts we discussed in Part III,
and move on to the more exciting topics that comprise Part IV. Can’t wait!

Deployment Procedure Review

We've done a couple of deploys now, so this is a good time for a little recap:

o Deploy to staging first.
» Run our FTs against staging.
« Deploy to live.

o Tag the release.

Deployment procedures evolve and get more complex as projects grow, and it’s an
area that can become hard to maintain—full of manual checks and procedures—if
you’re not careful to keep things automated. There’s lots more to learn about this, but
it’s out of scope for this book. Dave Farley’s video on continuous delivery is a good
place to start.

438 | Chapter 18: Deploying Our New Code


https://oreil.ly/X2O_T

CHAPTER 19

User Authentication, Spiking,
and De-Spiking

Our beautiful lists site has been live for a few days, and our users are starting to come
back to us with feedback. “We love the site’, they say, “but we keep losing our lists.
Manually remembering URLSs is hard. Itd be great if it could remember what lists wed
started”

Remember Henry Ford and faster horses. Whenever you hear a user requirement, it’s
important to dig a little deeper and think—what is the real requirement here? And
how can I make it involve a cool new technology I've been wanting to try out?

Clearly the requirement here is that people want to have some kind of user account
on the site. So, without further ado, let’s dive into authentication.

Naturally we're not going to mess about with remembering passwords ourselves—
besides being so "90s, secure storage of user passwords is a security nightmare wed
rather leave to someone else. We'll use something fun called “passwordless authenti-
cation” instead.’

Passwordless Auth with “Magic Links”

What authentication system could we use to avoid storing passwords ourselves?
OAuth? OpenID? “Sign in with Facebook”? Ugh. For me, those all have unacceptable
creepy overtones; why should Google or Facebook know what sites you're logging in
to and when?

1 If you insist on storing your own passwords, Django’s default authentication module is ready and waiting for
you. It’s nice and straightforward, and I'll leave it to you to discover on your own.

439



Instead, for the second edition,? I found a fun approach to authentication that now
goes by the name of “Magic Links”, but you might call it “just use email’”.

The system was invented (or at least popularised) back in 2014 by someone annoyed
at having to create new passwords for so many websites. They found themselves just
using random, throwaway passwords, not even trying to remember them, and using
the “forgot my password” feature whenever they needed to log in again. You can read
all about it on Medium.

The concept is: just use email to verify someone’s identity. If youre going to have a
“forgot my password” feature, then you're trusting email anyway, so why not just go
the whole hog? Whenever someone wants to log in, we generate a unique URL for
them to use, email it to them, and they then click through that to get into the site.

It’s by no means a perfect system, and in fact there are lots of subtleties to be thought
through before it would really make a good login solution for a production website,
but this is just a fun toy project so let’s give it a go.

A Somewhat Larger Spike

Reminder: a spike is a phase of exploratory coding, where we can
code without tests, in order to explore a new tool or experiment
with a new idea. We will come back and redo the code “properly”
with TDD later.

To get this Magic Links project set up, the first thing I did was take a look at existing
Python and Django authentication packages, like django-allauth, but both of them
looked overcomplicated for this stage (and besides, it'll be more fun to code our
own!).

So instead, I dived in and hacked about, and after a few dead ends and wrong
turns, I had something that just about works. I'll take you on a tour, and then we'll
go through and “de-spike” the implementation—that is, replace the prototype with
tested, production-ready code.

You should go ahead and add this code to your own site too, and then you can have a
play with it. Try logging in with your own email address, and convince yourself that it
really does work.

2 In the first edition, I used an experimental project called “Persona’, cooked up by some of the wonderful
techno-hippie-idealists at Mozilla, but sadly that project was abandoned.

440 | Chapter 19: User Authentication, Spiking, and De-Spiking


https://oreil.ly/je14i
https://oreil.ly/je14i
https://docs.allauth.org

Starting a Branch for the Spike

This spike is going to be a bit more involved than the last one, so we'll be a little more
rigorous with our version control. Before embarking on a spike it’s a good idea to
start a new branch, so you can still use your VCS without worrying about your spike
commits getting mixed up with your production code:

$ git switch -c passwordless-spike

Let’s keep track of some of the things we're hoping to learn from the spike:

. Aow +o send emas/s
. Generatding and recosnising vrigve fokens
| e Aow #o avthenticate someone in Dyanso
Frontend Login Ul

Let’s start with the frontend by adding in an actual form to enter your email address
into the navbar, along with a logout link for users who are already authenticated:

src/lists/templates/base.html (ch191001)

<body>
<div class="container"s>

<div class="navbar">
{% if user.is_authenticated %}
<p>Logged in as {{ user.email }}</p>
<form method="POST" action="/accounts/logout">
{% csrf_token %}
<button 1d="1d_logout" type="submit">Log out</button>
</form>
{% else %}
<form method="POST" action ="accounts/send_login_email">
Enter email to log in: <input name="email" type="text" />
{% csrf_token %}
</form>
{% endif %}
</div>

<div class="row justify-content-center p-5 bg-body-tertiary rounded-3">

[...]

A Somewhat Larger Spike | 441



Sending Emails from Django
The login will be something like Figure 19-1.

1. Fillin login
form with
email.

POST: email=user@email.com SuPerIIStS

/send-login-email endpoint:

E T Create token linked to
: user@email.com
Email with magic link, including tokens \& @

email.

/account/login endpoint:
Is the token valid?
If yes, log user in.

3. Click link
in email.

GET: link-incl-token

N
5
=
g

Figure 19-1. Overview of the Magic Links login process

1. When someone wants to log in, we generate a unique secret token for them, link
it to their email, store it in the database, and send it to them.

2. The user then checks their email, which will have a link for a URL that includes
that token.

3. When they click that link, we check whether the token exists in the database and,
if so, they are logged in as the associated user.

First, let’s prep an app for our accounts stuff:

$ cd src & python manage.py startapp accounts && cd ..
$ 1s src/accounts
init.py admin.py apps.py migrations models.py tests.py views.py

And we'll wire up urls.py with at least one URL. In the top-level superlists/uris.py...

src/superlists/urls.py (ch191003)
from import include, path
from import views as list_views

urlpatterns = [
path("", list_views.home_page, name="home"),
path("lists/", include("lists.urls")),
path("accounts/", include("accounts.urls")),

442 | Chapter 19: User Authentication, Spiking, and De-Spiking



And we give the accounts module its own urls.py:

src/accounts/urls.py (ch191004)
from django.urls import path

from accounts import views

urlpatterns = [
path("send_login_email", views.send_login_email, name="send_login_email"),

]

Here’s the view that’s in charge of creating a token associated with the email address
that the user puts in our login form:

src/accounts/views.py (ch191005)
import sys
import uuid

from django.core.mail import send_mail
from django.shortcuts import render

from accounts.models import Token

def send_login_email(request):
email = request.POST["email"]
uid = str(uuid.uuid4())
Token.objects.create(email=email, uid=uid)
print("saving uid", uid, "for email", email, file=sys.stderr)
url = request.build_absolute_uri(f"/accounts/login?uid={uid}")
send_mail(
"Your login link for Superlists",
f"Use this link to log in:\n\n{url}",
"noreply@superlists"”,
[email],
)

return render(request, "login_email_sent.html")

For that to work, we’ll need a template with a placeholder message confirming the
email was sent:

src/accounts/templates/login_email_sent.html (ch191006)
<html>
<h1>Email sent</h1>

<p>Check your email, you'll find a message with a link that will log you into
the site.</p>

</html>

ASomewhat Larger Spike | 443



(You can see how hacky this code is—wed want to integrate this template with our
base.html in the real version.)

Email Server Config for Django

The django docs on email explain how send_mail() works, as well as how you
configure it by telling Django what email server to use, and how to authenticate
with it. Here, I'm just using my Gmail®> account for now—but you can use any email
provider you like, as long as they support SMTP (Simple Mail Transfer Protocol):

src/superlists/settings.py (ch191007)

EMAIL_HOST = "smtp.gmail.com"

EMAIL_HOST_USER = "obeythetestinggoat@gmail.com"
EMAIL_HOST_PASSWORD = os.environ.get("EMAIL_PASSWORD")
EMAIL_PORT = 587

EMAIL_USE_TLS = True

If you want to use Gmail as well, you’ll probably have to visit your
Google account security settings page. If youre using two-factor
authentication, you’ll want to set up an app-specific password. If
youre not, you will probably still need to allow access for less
secure apps. You might want to consider creating a new Google
account for this purpose, rather than using one containing sensitive
data.

Another Secret, Another Environment Variable

Once again, we have a “secret” that we want to avoid keeping directly in our source
code or on GitHub, so another environment variable is used in the os.environ.get.
To get this to work, we need to set it in the shell that’s running my dev server:

$ export EMAIL_PASSWORD="ur-email-server-password-here"

Later, we'll see about adding that to the env file on the staging server as well.

3 Didn’t I just spend a whole intro banging on about the privacy implications of using Google for login, only to
go on and use Gmail? Yes, it’s a contradiction (honest, I will move off Gmail one day!). But in this case I'm just
using it for testing, and the important thing is that 'm not forcing Google on my users.

444 | Chapter 19: User Authentication, Spiking, and De-Spiking


https://docs.djangoproject.com/en/5.2/topics/email
https://myaccount.google.com/apppasswords
https://www.google.com/settings/security/lesssecureapps
https://www.google.com/settings/security/lesssecureapps

Storing Tokens in the Database

How are we doing? Let’s review where we're at in the process:

1% o Aot o—sero-emarts

{

. Generating and recosnising vnigre fokens
| e How +o avthbenticate someone in Dyanso

PN N\ e Ny TN N N P |
, S e W __ \

N

We'll need a model to store our tokens in the database—they link an email address
with a unique ID. It’s pretty simple:

src/accounts/models.py (ch191008)
from import models

class Token(models.Model):
email = models.EmailField()
uid = models.CharField(max_length=255) @

@ Django does have a specific UID (universally unique identifier) fields type for
many databases, but I just want to keep things simple for now.

The point of this spike is about authentication and emails, not optimising database
storage. We've got enough things we need to learn as it is!

Let’s switch on our new accounts app in settings.py:

src/superlists/settings.py (ch191008-1)

INSTALLED_APPS = [

# "django.contrib.admin",

"django.contrib.auth",

"django.contrib.contenttypes"”,

"django.contrib.sessions",

"django.contrib.messages",

"django.contrib.staticfiles",

"lists",

"accounts",

ASomewhat Larger Spike | 445



We can then do a quick migrations dance to add the token model to the database:

$ python src/manage.py makemigrations
Migrations for 'accounts':

src/accounts/migrations/0001_initial.py

+ Create model Token

$ python src/manage.py migrate
Operations to perform:

Apply all migrations: accounts, auth, contenttypes, lists, sessions
Running migrations:

Applying accounts.0001_initial... OK

And at this point, if you actually try the email form in your browser, you'll see it really
does send an actual real email—to your real email address hopefully (best not spam
someone else now!). See Figures 19-2 and 19-3.

« C O D localhost ‘

Email sent

Check your email, you'll find a message with a link that will log you into the site.

Figure 19-2. Looks like we might have sent an email

Your login link for Superlists D nbox x

tome ~

@'@;QE obeythetestinggoat@gmail.com

Use this link to log in:

http://localhost:8000/accounts/login?uid=ed9d5b19-863b-4d87-83f9-c7fb07508657

<<—\ Reply ) (ﬁ Forward>

Figure 19-3. Yep, looks like we received it

446 | Chapter 19: User Authentication, Spiking, and De-Spiking



Custom Authentication Models

OK, so we've done the first half of “Generating and recognising unique tokens™:

. Grererating and recosn/sing vrigve Hfokens
. How +o avthenticate someone in Dyan 50

)
|
|
{
v Aewtosensemars
|
|
t

P o N e S RN P
e e e ~ e N s \

But, before we can move on to recognising them and making the login work end-to-
end though, we need to explore Django’s authentication system. The first thing well
need is a user model. I took a dive into the Django auth documentation and tried to
hack in the simplest possible one:

src/accounts/models.py (ch191009)

from import (
AbstractBaseUser,
BaseUserManager,

)

[...]

class ListUser(AbstractBaseUser):
emall = models.EmailField(primary_key=True)
USERNAME_FIELD = "email"
# REQUIRED FIELDS = ['email', 'height']

objects = ListUserManager()

def is_staff(self):
return self.email == "harry.percival@example.com"

def is_active(self):
return True

ASomewhat Larger Spike | 447


https://docs.djangoproject.com/en/5.2/topics/auth/customizing

That’s what I call a minimal user model! One field, none of this first name/last name/
username nonsense, and—pointedly—no password! That’s somebody else’s problem!

But, again, you can see that this code isnt ready for production—from the
commented-out lines to the hardcoded Harry email address. We'll neaten this up
quite a lot when we de-spike.

To get it to work, I needed to add a model manager for the user, for some reason:

src/accounts/models.py (ch191010)
[...]

class ListUserManager(BaseUserManager):
def create_user(self, email):
ListUser.objects.create(email=email)

def create_superuser(self, email, password):
self.create_user(email)

No need to worry about what a model manager is at this stage; for now, we just need
it because we need it, and it works. When we de-spike, we’ll examine each bit of code
that actually ends up in production and make sure we understand it fully.

We'll need to run makemigrations and migrate again to make the user model real:

$ python src/manage.py makemigrations
Migrations for 'accounts':
src/accounts/migrations/0002_listuser.py
+ Create model ListUser
$ python src/manage.py migrate

[...]
Running migrations:
Applying accounts.0002_listuser... OK

Finishing the Custom Django Auth

Let’s review our scratchpad:

. Hor~to—serot-emarss
. Grenerating and recosnising vrigve fokens

How +o avthbenticate someone in Djanso

448 | Chapter 19: User Authentication, Spiking, and De-Spiking



Hmm, we can’'t quite cross off anything yet. Turns out the steps we thought wed go
through aren’t quite the same as the steps we're actually going through (this is not
uncommon, as I'm sure you know).

Still, we're almost there—our last step will combine recognising the token and then
actually logging the user in. Once we’ve done this, we'll be able to pretty much strike
off all the items on our scratchpad.

So here’s the view that actually handles the click-through from the link in the email:

src/accounts/views.py (ch191011)

import

import

from import authenticate

from import login as auth_login
from import send_mail

from import redirect, render

from import Token

def send_login_email(request):

[...]

def login(request):
print("login view", file=sys.stderr)
uld = request.GET.get("uid")
user = authenticate(request, uid=uid)
if user is not None:
auth_login(request, user)
return redirect("/")

The authenticate() function invokes Django’s authentication framework, which we
configure using a custom “authentication backend,” whose job it is to validate the
UID (unique identifier) and return a user with the right email.

ASomewhat Larger Spike | 449



We could have done this stuff directly in the view, but we may as well structure things
the way Django expects. It makes for a reasonably neat separation of concerns:

src/accounts/authentication.py (ch191012)
import sys

from accounts.models import ListUser, Token

from django.contrib.auth.backends import BaseBackend

class PasswordlessAuthenticationBackend(BaseBackend):
def authenticate(self, request, uid):

print("uid", uid, file=sys.stderr)

if not Token.objects.filter(uid=uid).exists():
print("no token found", file=sys.stderr)
return None

token = Token.objects.get(uid=uid)

print("got token", file=sys.stderr)

try:
user = ListUser.objects.get(email=token.email)
print("got user", file=sys.stderr)
return user

except ListUser.DoesNotExist:
print("new user", file=sys.stderr)
return ListUser.objects.create(email=token.email)

def get_user(self, email):
return ListUser.objects.get(email=email)

Again, lots of debug prints in there, and some duplicated code—not something wed
want in production, but it works...as long as we add it to seftings.py (it doesn’t matter
where):

src/superlists/settings.py (ch191012-1)

AUTH_USER_MODEL = "accounts.ListUser"
AUTHENTICATION_BACKENDS = [
"accounts.authentication.PasswordlessAuthenticationBackend",

1

450 | Chapter 19: User Authentication, Spiking, and De-Spiking



And finally, a logout view:

src/accounts/views.py (ch191013)

from import authenticate

from import login as auth_login
from import logout as auth_logout
[...]

def logout(request):
auth_logout(request)
return redirect("/")

Add login and logout to our urls.py...

src/accounts/urls.py (ch191014)

urlpatterns = [
path("send_login_email", views.send_login_email, name="send_login_email"),
path("login", views.login, name="login"),
path("logout", views.logout, name="logout"),

And we should be all done! Spin up a dev server with runserver and try it—believe it
or not, it actually works (see Figure 19-4).

Your login link for Superiists.

O 8 & hy

mail. google.com/mai

M Gmail

Compose
Your login link for Superlists © nbox x (=]
Inbox 6,220

A% obeythetestinggoat@gmail.com 208PM(1hourage) Yr @ €

tome + @

Starred

Snoozed

Important 3  To-Dolists

Sent

O O localhost:
Drafts 1

Logged in as obeythetestinggoat@gmail.com Log out

Categories

More

dsels

Start a new To-Do list

Enter a to-do item

Figure 19-4. It works! It works!

A Somewhat Larger Spike | 451



If you get an SMTPSenderRefused error message, don’t forget to
set the EMAIL_PASSWORD environment variable in the shell that’s
running runserver. Also, if you see a message saying “Application-
specific password required’, thats a Gmail security policy. Follow
the link in the error message.

That’s pretty much it! Along the way, I had to fight pretty hard, including clicking
around the Gmail account security UI for a while, stumbling over several missing
attributes on my custom user model (because I didn’t read the docs properly), and
even at one point switching to the dev version of Django to overcome a bug, which
thankfully turned out to be a red herring.

But we now have a working solution! Let’s commit it on our spike branch:
$ git status

$ git add src/accounts
$ git commit -am "spiked in custom passwordless auth backend"

Time to de-spike!

452 | Chapter 19: User Authentication, Spiking, and De-Spiking



De-Spiking

De-spiking means rewriting your prototype code using TDD. In this section, we'll
work through how to do that in a safe and methodical way. We'll take the knowledge
we've acquired during the spiking process—whether that’s in our heads, in our notes,
or in our branch in Git—and apply it as we re-implement gradually in a test-first way.
And the hope is that our code will turn out a bit nicer the second time around!

Making a Plan

While it’s fresh in our minds, let’s make a few notes based on what we've learned
about what we know were probably going to need to build during our de-spike:

. Token mode/ with emar) and UZD

. View o create Foken and send /ogin emasr/
ind/. ur/ W/ foken UZD

. Cuséom  vser mode/ with USER-
NAME._FZELD=emar/

. Avtbentication backend with avtbents-
cate() and set_vserO Funchions

o Resistering avth backend in settings.py

. Losin view calfs avthenticate() and
/osin() “rom dyango. contrib.avts

. Losout view calfs dyangso.contrib.avth.fos-
ovt

Wring an FT Against the Spiked Code

We now have enough information to “do it properly”. So, what’s the first step? An
FT, of course! We'll stay on the spike branch for now to see our FT pass against our
spiked code. Then we'll go back to our main branch and commit just the FT.

De-Spiking | 453



Here’s a first, simple version of the FT:

src/functional_tests/test_login.py (ch191018)

import re

from django.core import mail
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys

from .base import FunctionalTest

TEST_EMAIL = "edith@example.com" @
SUBJECT = "Your login link for Superlists"

class LoginTest(FunctionalTest):
def test_login_using_magic_link(self):
# Edith goes to the awesome superlists site
# and notices a "Log in" section in the navbar for the first time
# It's telling her to enter her email address, so she does
self.browser.get(self.live_server_url)
self.browser.find_element(By.CSS_SELECTOR, "input[name=email]").send_keys(
TEST_EMAIL, Keys.ENTER
)

# A message appears telling her an email has been sent
self.wailt_for(
lambda: self.assertIn(
"Check your email",
self.browser.find_element(By.CSS_SELECTOR, "body").text,

)

# She checks her email and finds a message
email = mail.outbox.pop() @
self.assertIn(TEST_EMAIL, email.to)
self.assertEqual(email.subject, SUBJECT)

# It has a URL link in it
self.assertIn("Use this link to log in", email.body)
url_search = re.search(r"http://.+/.+$", email.body)
if not url_search:
self.fail(f"Could not find url in email body:\n{email.body}")
url = url_search.group(0)
self.assertIn(self.live_server_url, url)

# she clicks it
self.browser.get(url)

# she is logged in!
self.wailt_for(

lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_logout"),
)
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertIn(TEST_EMAIL, navbar.text)

454 | Chapter 19: User Authentication, Spiking, and De-Spiking



@ Whenever you're testing against something that can send real emails, you don’t
want to use a real address. It’s best practice to use a special domain like @exam
ple.com, which has been reserved for exactly this sort of thing, to avoid acciden-
tally spamming anyone!

©® Were you worried about how we were going to handle retrieving emails in our
tests? Thankfully, we can cheat for now! When running tests, Django gives us
access to any emails that the server tries to send via the mail.outbox attribute.
We'll discuss checking “real” emails in Chapter 23.

And if we run the FT, it works!

$ python src/manage.py test functional_tests.test_login
[...]

Not Found: /favicon.ico

saving uid [...]

login view

uid [...]

got token

new user

Ran 1 test in 2.729s

0K

You can even see some of the debug output I left in my spiked view implementations.
Now it’s time to revert all of our temporary changes, and reintroduce them one by
one in a test-driven way.

Reverting Our Spiked Code
We can revert our spike using our version control system:

$ git switch main # switch back to main branch

$ rm -rf src/accounts # remove any trace of spiked code
$ git add src/functional_tests/test_login.py

$ git commit -m "FT for login via email”

Now we rerun the FT and let it be the main driver of our development, referring back
to our scratchpad from time to time when we need to:

$ python src/manage.py test functional_tests.test_login
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: input[name=email]; [...]

[...]

De-Spiking | 455



If you see an exception saying “No module named accounts’, you
may have missed a step in the de-spiking process—maybe a com-
mit or the change of branch.

The first thing it wants us to do is add an email input element. Bootstrap has some
built-in classes for navigation bars, so we'll use them, and include a form for the login
email:*

src/lists/templates/base.html (ch191020)
<body>
<div class="container">

<nav class="navbar">
<div class="container-fluid">
<a class="navbar-brand" href="/">Superlists</a>
<form method="POST" action="/accounts/send_login_email">
<div class="input-group">
<label class="navbar-text me-2" for="id_emaill_input">
Enter your email to log in
</1label>
<input
id="1d_emaill_input"
name="email"
class="form-control"
placeholder="your@email.com"
/>
{% csrf_token %}
</div>
</form>
</div>
</nav>

<div class="row justify-content-center p-5 bg-body-tertiary rounded-3">
<div class="col-1g-6 text-center"s>
<h1 class="display-1 mb-4">{% block header_text %}{% endblock %}</h1>
[...]

4 We are now introducing a conceptual dependency from the base template to the accounts app because its
URL is in the form. I didn’t want to spend time on this in the book, but this might be a good time to consider
moving the template out of lists/templates and into superlists/templates. By convention, that’s the place for
templates whose scope is wider than a single app.

456 | Chapter 19: User Authentication, Spiking, and De-Spiking



At this point, you’ll find that the unit tests start to fail:

ERROR: test_renders_1input_form

[...]
[form] = parsed.cssselect("form[method=POST]")

ANANANAN

ValueError: too many values to unpack (expected 1, got 2)

ERROR: test_renders_input_form
[form] = parsed.cssselect("form[method=POST]")

ANANANAN

ValueError: too many values to unpack (expected 1, got 2)

It's because these unit tests had a hard assumption that there’s only one POST form
on the page. Let’s change them to be more resilient. Here’s how you might change the
first one:

src/lists/tests/test_views.py (ch191020-1)

def test_renders_input_form(self):

response = self.client.get("/")

parsed = lxml.html.fromstring(response.content)

forms = parsed.cssselect("form[method=P0ST]") @

self.assertIn("/lists/new", [form.get("action") for form in forms]) @

[form] = [form for form in forms if form.get("action") == "/lists/new"] ©

inputs = form.cssselect("input") @

self.assertIn("text", [input.get("name") for input in inputs]) @

@ We get all forms, rather than using the clever [form] = syntax.

@ We check that at least one of the forms has the right action= URL. I'm using
assertIn(), so we get a nice error message. If we can’t find the right URL, we'll
see the list of URLSs that do exist on the page.

© Now we can feel free to go back to unpacking, and get the right form, based on its
action attribute.

O The rest of the test is as before.

De-Spiking | 457



Here’s a similar set of changes in the second test:

src/lists/tests/test_views.py (ch191020-2)
@@ -65,10 +65,12 @@ class ListViewTest(TestCase):

def test_renders_input_form(self):

mylist = List.objects.create()
- response = self.client.get(f"/lists/{mylist.id}/")
+ url = f"/lists/{mylist.id}/"
+ response = self.client.get(url)

parsed = lxml.html.fromstring(response.content)
- [form] = parsed.cssselect("form[method=POST]")
- self.assertEqual(form.get("action"), f"/lists/{mylist.id}/")
forms = parsed.cssselect("form[method=POST]")
self.assertIn(url, [form.get("action") for form in forms])
[form] = [form for form in forms if form.get("action") == url]
inputs = form.cssselect("input")
self.assertIn("text", [input.get("name") for input in inputs])

+ + +

It’s pretty much the same edit, except this time I decided to have a url variable, to
remove the duplication of using /lists/{mylist.id}/ three times. That gets our
unit tests passing again:

0K

If we try our FT again, we'll see it fails because the login form doesn’t send us to a
real URL yet—you’ll see the Not found: message in the server output, as well as the
assertion reporting the content of the default 404 page:

$ python src/manage.py test functional_tests.test_login

[...]
Not Found: /accounts/send_login_email
[...]

AssertionError: 'Check your email' not found in 'Not Found\nThe requested
resource was not found on this server.'
Time to start writing some Django code. We begin, like in the spike, by creating an
app called accounts to hold all the files related to login:
$ cd src && python manage.py startapp accounts && cd ..

$ 1s src/accounts
init.py admin.py apps.py migrations models.py tests.py views.py

You could even do a commit just for that, to be able to distinguish the placeholder
app files from our modifications.

458 | Chapter 19: User Authentication, Spiking, and De-Spiking



A Minimal Custom User Model

Let’s turn to the models layer:®

. Token mode/ with emar) and UZD

. View to creade token and send /osin emas/
ind/. ur/ W/ foken UZD

. Custom vser mode/ with USER-
NAME . FTEL D=emar/

. Avtbentication backend with avthents-
cateQ) and set_vser() Funchions

. Registering avth backend /n settings.py

. Login view calfs avthenticate() ano
lo5in() From oyanso.contrib.avts

. Lo qu/ view calls dyango. contrib.avih./o 05—
ovt

We know we have to build a token model and a custom user model, and the user
model was the messiest part in our spike. So, let’s have a go at redoing that test-first,
to see if it comes out nicer.

Django’s built-in user model makes all sorts of assumptions about what information
you want to track about users—from explicitly requiring a first name and last name®
to forcing you to use a username. I'm a great believer in not storing information
about users unless you absolutely must, so a user model that records an email address
and nothing else sounds good to me!

Let’s start straight away with a tests folder instead of fests.py in this app:

$ rm src/accounts/tests.py
$ mkdir src/accounts/tests
$ touch src/accounts/tests/__init__.py

5 In this chapter, we're building things in a “bottom-up” way, starting with the models, and then building the
layers on top—the views and templates that depend on them. This is a common approach, but it’s not the only
one! In Chapter 24 we'll explore building software from the outside in, which has all sorts of advantages too.

6 This is a decision that even some prominent Django maintainers have said they now regret—not everyone has
a first and last name.

A Minimal Custom User Model | 459



And now, let’s add a test_models.py to say:

src/accounts/tests/test_models.py (ch191023)
from django.test import TestCase

from accounts.models import User

class UserModelTest(TestCase):
def test_user_1is_valid_with_email_only(self):
user = User(email="a@b.com")
user.full_clean() # should not raise

That gives us the expected failure:

$ python src/manage.py test accounts

[...]

ImportError: cannot import name 'User' from 'accounts.models'
(...goat-book/src/accounts/models.py)

OK, let’s try the absolute minimum then:

src/accounts/models.py (ch191024)
from django.db import models

class User(models.Model):
email = models.EmailField()

That gives us an error because Django won't recognise models unless theyre in
INSTALLED_APPS:

RuntimeError: Model class accounts.models.User doesn't declare an explicit
app_label and isn't in an application in INSTALLED_APPS.

So, let’s add it to settings.py:

src/superlists/settings.py (ch191025)

INSTALLED_APPS = [

# "django.contrib.admin",

"django.contrib.auth",

"django.contrib.contenttypes",

"django.contrib.sessions",

"django.contrib.messages",

"django.contrib.staticfiles",

"accounts",

"lists",

460 | Chapter 19: User Authentication, Spiking, and De-Spiking



And that gets our tests passing!
0K

Now lets see if we've built a user model that Django can actually work with.
Theres a built-in function in django.contrib.auth called get_user_model()—
which retrieves the currently active user model and, as we'll see, also performs some
checks on it. Let’s use it in our tests:

src/accounts/tests/test_models.py (ch191026-1)

from import auth
from import TestCase
from import User

class UserModelTest(TestCase):
def test_model_is_configured_for_django_auth(self):
self.assertEqual(auth.get_user_model(), User)

def test_user_1is_valid_with_email_only(self):

[...]

That gives:

AssertionError: <class 'django.contrib.auth.models.User's> != <class
'accounts.models.User'>

OK, so lets try wiring up our model inside settings.py, in a variable called
AUTH_USER_MODEL:

src/superlists/settings.py (ch191026-2)
AUTH_USER_MODEL = "accounts.User"

Now when we run our tests, Django complains that our custom user model is missing
a couple of bits of metadata. In fact, it's so unhappy that it won’t even run the tests:

$ python src/manage.py test accounts

Traceback (most recent call last):

[...]

File ".../django/contrib/auth/checks.py", line 46, in check_user_model
if not isinstance(cls.REQUIRED_FIELDS, (list, tuple)):

ANANNANANNANNANNANNNNNNAN

AttributeError: type object 'User' has no attribute 'REQUIRED_FIELDS'

Sigh. Come on, Django; it’s only got one field, so you should be able to figure out the
answers to these questions for yourself.

A Minimal Custom User Model | 461



Here you go:

src/accounts/models.py (ch191027)

class User(models.Model):
email = models.EmailField()

REQUIRED_FIELDS = []

Next silly question?”
AttributeError: type object 'User' has no attribute 'USERNAME_FIELD'

We'll go through a few more of these, until we get to:

src/accounts/models.py (ch191029)

class User(models.Model):
email = models.EmailField()

REQUIRED_FIELDS = []
USERNAME_FIELD = "email"
is_anonymous = False
is_authenticated = True

And now we get a slightly different error:

$ python src/manage.py test accounts
[...]

SystemCheckError: System check identified some issues:

ERRORS:
accounts.User: (auth.E003) 'User.email' must be unique because it is named as
the 'USERNAME_FIELD'.

Well, the simple way to fix that would be like this:

src/accounts/models.py (ch191030)
email = models.EmailField(unique=True)

And now we get a different error again, slightly more familiar this time! Django is a
bit happier with the structure of our custom user model, but it’s unhappy about the
database:

django.db.utils.OperationalError: no such table: accounts_user

7 You might ask, if I think Django is so silly, why don’t I submit a pull request to fix it? It should be quite a
simple fix. Well, I promise I will, as soon as I've finished updating the book. For now, snarky comments will
have to suffice.

462 | Chapter 19: User Authentication, Spiking, and De-Spiking



In other words, we need to create a migration:

$ python src/manage.py makemigrations
Migrations for 'accounts':
src/accounts/migrations/0001_initial.py
+ Create model User

And our tests pass:

$ python src/manage.py test accounts

[...]
Ran 2 tests in 0.001s
0K

But our model isn't quite as simple as it could be. It has the email field, and also an
autogenerated “ID” field as its primary key. We could make it even simpler!

Tests as Documentation

Lets go all the way and make the email field the primary key,® and thus implicitly
remove the autogenerated id column. Although we could just do it and our test
would still pass, and conceivably claim it was “just a refactor”, it would be better to
have a specific test:

src/accounts/tests/test_models.py (ch191032)

class UserModelTest(TestCase):
def test_model_is_configured_for_django_auth(self):

[...]
def test_user_1is_valid_with_email_only(self):
[...]

def test_email_is_primary_key(self):
user = User(email="a@b.com")
self.assertEqual(user.pk, "a@b.com")

Itll help us remember if we ever come back and look at the code again in future:

self.assertEqual(user.pk, "a@b.com")
AssertionError: None != 'a@b.com'

8 Emails may not be the perfect primary key in real life. One reader—clearly deeply scarred—wrote me an
emotional email about how much they’ve suffered for over a decade from trying to deal with the consquences
of using email as a primary key, particularly how it makes multiuser account management nearly impossible.
So, as ever, YMMV.

A Minimal Custom User Model | 463



Your tests can be a form of documentation for your code—they
express the requirements for a particular class or function. Some-
times, if you forget why you've done something a particular way,
going back and looking at the tests will give you the answer. That’s
why it’s important to make your tests readable, including giving
them explicit, verbose method names.

Here’s the implementation (primary_key makes the unique=True obsolete):

src/accounts/models.py (ch191033)
email = models.EmailField(primary_key=True)

And we mustn’t forget to adjust our migrations:

$ rm src/accounts/migrations/0001_1initial.py
$ python src/manage.py makemigrations
Migrations for 'accounts':
src/accounts/migrations/0001_initial.py
+ Create model User

Now both our tests pass:

$ python src/manage.py test accounts

[...]
Ran 3 tests in 0.001s
0K

It’s probably a good time for a commit, too:

$ git add src/accounts
$ git commit -m "custom user model with email as primary key"

And we can cross off one item from our de-spiking list. Hooray!

464 | Chapter 19: User Authentication, Spiking, and De-Spiking



. Token mode/ with emar) and UZD

. View +o creade token and send /osin emas/
ind/. vr/ W/ foken UZD

. Crstom—vser—mooter—whth—SSER-
NAME—FZEL D=emar/

o Avtbentication backend with avihents-
cate() and set_vser() Functions

. Registering avth backend /n settings.py

. Login view calfs avthenticate() ano
1o5in() from dyango.contrib.avish

. Lo qu/ view calls dyango. contrib.avéb /o 05—
ovt

A Token Model to Link Emails with a Unique ID

Next let’s build a token model. Here’s a short unit test that captures the essence—you
should be able to link an email to a unique ID, and that ID shouldn't be the same
twice in a row:

src/accounts/tests/test_models.py (ch191035)
from import Token, User

class TokenModelTest(TestCase):
def test_links_user_with_auto_generated_uid(self):
token1l = Token.objects.create(email="a@b.com")
token2 = Token.objects.create(email="a@b.com")
self.assertNotEqual(tokenl.uid, token2.uid)

I won’t show every single listing for creating the token class in models.py; I'll let you
do that yourself instead. Driving Django models with basic TDD involves jumping
through a few hoops because of the migration, so you’ll see a few iterations like this—
minimal code change, make migrations, get new error, delete migrations, re-create
new migrations, another code change, and so on...

$ python src/manage.py test accounts

[...]

TypeError: Token() got unexpected keyword arguments: 'email'

I'll trust you to go through these conscientiously—remember, I may not be able to see
you, but the Testing Goat can!

AToken Model to Link Emails with a Unique ID | 465



You might go through a hoop like this one, for example, where you find yourself
needing to create and then delete a migration for an incomplete solution:

$ python src/manage.py makemigrations
Migrations for 'accounts':
src/accounts/migrations/0002_token.py
+ Create model Token
$ python src/manage.py test accounts
AttributeError: 'Token' object has no attribute 'uid'. Did you mean: 'id'?
$ rm src/accounts/migrations/0002_token.py

Eventually, you should get to this code...

src/accounts/models.py (ch191038)
class Token(models.Model):
email = models.EmailField()
uid = models.CharField(max_length=40)

And this error:

$ python src/manage.py test accounts

[...]

self.assertNotEqual(tokenl.uid, token2.uid)

[ [N

AssertionError: ==

And here we have to decide how to generate our random unique ID field. We could
use the random module, but Python actually comes with another module specifically
designed for generating unique IDs called “UUID” (for “universally unique ID”). We
can use it like this:

src/accounts/models.py (ch191040)
import

[...]

class Token(models.Model):
email = models.EmailField()
uid = models.CharField(default=uuid.uuid4, max_length=40) @

@ The default= argument for a field can be either a static value or a callable that
returns a value at the time the model is created. In our case, using a callable
means we'll get a different unique ID for every model.

466 | Chapter 19: User Authentication, Spiking, and De-Spiking



And, perhaps with a bit more wrangling of makemigrations...

$ rm src/accounts/migrations/0002_token.py
$ python src/manage.py makemigrations
Migrations for 'accounts':
src/accounts/migrations/0002_token.py
+ Create model Token

...that should get us to passing tests:

$ python src/manage.py test accounts

[...]
Ran 4 tests in 0.015s

0K

So, we are well on our way!

o Foker—rmootes/ st emarsarnad-ED

. View o create Foken and send /ogin emasr/
ind/. ur/ W/ foken UZD

o Costom——ser——mpote/— it h—ISER-
AMAME—FTLEL D=emar!

. Avtbentication backend with avébents-
cate() and set_vserO Funchions

o Resistering avth backend in settings.py

. Login view calfs avthenticate() anA
/o5in() “rom dyange. contrib.avth

. Losout view calfs dyangso.contrib.avth.fos-
ovt

The models layer is done, at least. In the next chapter, we'll get into mocking—a key

technique for testing external dependencies like email.

A Token Model to Link Emails with a Unique ID

467



Exploratory Coding, Spiking, and De-Spiking

Spiking
Spiking is exploratory coding to find out about a new API, or to explore the
feasibility of a new solution. Spiking can be done without tests. It’s a good idea
to do your spike on a new branch, and go back to your main branch when
de-spiking.

De-spiking
De-spiking means taking the work from a spike and making it part of the
production codebase. The idea is to throw away the old spike code altogether,
and start again from scratch, using TDD once again. De-spiked code can often
come out looking quite different from the original spike, and usually much nicer.

Writing your FT against spiked code
Whether or not this is a good idea depends on your circumstances. The reason it
can be useful is because it can help you write the FT correctly—figuring out how
to test your spike can be just as challenging as the spike itself. On the other hand,
it might constrain you to reimplementing a solution very similar to your spiked
one; something to watch out for.

468 | Chapter 19: User Authentication, Spiking, and De-Spiking



CHAPTER 20
Using Mocks to Test External Dependencies

In this chapter, we'll start testing the parts of our code that send emails—i.e., the
second item on our scratchpad:

. Fotern—moote/orFremart-arnd-ti D

. View o creadte token and send fosin emasr/
ine/. vr/ W/ foken UZD

o Crstom—vser—moote/—whrh—LSEAR-
NAMEFZEL D=emar/

. Avtbentication backend with avthents-
cate() and set_vser( functions

o Resistering avth backend in settings.py

. Login view calfs avthenticate() anod
lo5in() From dyanso.contsib.avts

. Losout view calls dyango.contrib.avits.fos-
ovt

In the functional test (FT), you saw that Django gives us a way of retrieving any
emails it sends by using the mail.outbox attribute. But in this chapter, I want to
demonstrate a widespread testing technique called mocking. So, for the purpose of
these unit tests, we'll pretend that this nice Django shortcut doesn’t exist.

469



Am I telling you not to use Djangos mail.outbox? No—use it; it's a neat helper. But I
want to teach you about mocks because they’re a useful general-purpose tool for unit
testing external dependencies. You may not always be using Django! And even if you
are, you may not be sending email—any interaction with a third-party API is a place
you might find yourself wanting to test with mocks.

To Mock or Not to Mock?

I once gave a talk called “Stop Using Mocks”; it’s entirely possible to find ways to write
tests for external dependencies without using mocks at all.

I’'m covering mocking in this book because it’s such a common technique, but it does
come with some downsides, as we'll see. Other techniques—including dependency
injection and the use of custom fake objects—are well worth exploring, but they’re
more advanced.

My second book Architecture Patterns with Python goes into some detail on these
alternatives.

Before We Start: Getting the Basic Plumbing In

Let’s just get a basic view and URL set up first. We can do so with a simple test to
ensure that our new URL for sending the login email should eventually redirect back
to the home page:

src/accounts/tests/test_views.py (ch201001)
from import TestCase

class SendLoginEmailViewTest(TestCase):
def test_redirects_to_home_page(self):
response = self.client.post(
"/accounts/send_login_email", data={"email": "edith@example.com"}

)

self.assertRedirects(response, "/")

470 | Chapter 20: Using Mocks to Test External Dependencies


https://oreil.ly/XJPbT
https://www.cosmicpython.com

Wire up the include in superlists/urls.py, plus the url in accounts/urls.py, and get the
test passing with something a bit like this:

src/accounts/views.py (ch201004)

from import send_mail @
from import redirect

def send_login_email(request):
return redirect("/")

@ T'veadded the import of the send_mail function as a placeholder for now.
If you've got the plumbing right, the tests should pass at this point:

$ python src/manage.py test accounts

[...]
Ran 5 tests in 0.015s

0K

OK, now we have a starting point—so let’s get mocking!

Mocking Manually—aka Monkeypatching

When we call send_matil in real life, we expect Django to be making a connection to
our email provider, and sending an actual email across the public internet. That’s not
something we want to happen in our tests. It's a similar problem whenever you have
code that has external side effects—calling an API, sending out an SMS, integrating
with a payment provider, whatever it may be.

When running our unit tests, we don't want to be sending out real payments or
making API calls across the internet. But we would still like a way of testing that our
code is correct. Mocks' give us one way to do that.

Actually, one of the great things about Python is that its dynamic nature makes it very
easy to do things like mocking—or what’s sometimes called monkeypatching. Lets
suppose that, as a first step, we want to get to some code that invokes send_mail with
the right subject line, “from” address, and “to” address. That would look something
like this:

1 I'm using the generic term “mock’, but testing enthusiasts like to distinguish other types of a general class
of test tools called “test doubles”, including spies, fakes, and stubs. The differences don’t really matter for
this book, but if you want to get into the nitty-gritty, check out the amazing wiki by Justin Searls. Warning:
absolutely chock full of great testing content.

Mocking Manually—aka Monkeypatching | 471


https://github.com/testdouble/contributing-tests/wiki/Test-Double
https://oreil.ly/vXHWY

src/accounts/views.py (expected future contents)
def send_login_email(request):
email = request.POST["email"]
# expected future code:
send_mail(
"Your login link for Superlists",
"some kind of body text tbc",
"noreply@superlists",
[email],
)

return redirect("/")

How can we test this without calling the real send_mail function? The answer is that
our test can ask Python to swap out the send_mail function for a fake version, at
runtime, just before we invoke the send_login_ematil view.

Check this out:

src/accounts/tests/test_views.py (ch201005)
from django.test import TestCase

import accounts.views @

class SendLoginEmailViewTest(TestCase):
def test_redirects_to_home_page(self):
[...]

def test_sends_maill_to_address_from_post(self):
self.send_mail_called = False

def fake_send_mail(subject, body, from_email, to_list): @
self.send_mail_called = True
self.subject = subject
self.body = body
self.from_email = from_email
self.to_list = to_list

accounts.views.send_mail = fake_send_mail @

self.client.post(
"/accounts/send_login_email", data={"email": "edith@example.com"}

)

self.assertTrue(self.send_mail_called)
self.assertEqual(self.subject, "Your login link for Superlists")
self.assertEqual(self.from_email, "noreply@superlists")
self.assertEqual(self.to_list, ["edith@example.com"])

472 | Chapter 20: Using Mocks to Test External Dependencies



© We define a fake_send_mail function, which looks like the real send_mail
function, but all it does is save some information about how it was called, using
some variables on self.

@ Then, before we execute the code under test by doing the self.client.post,
we swap out the real accounts.views.send_mail with our fake version—it’s as
simple as just assigning it.

It's important to realise that there isn't really anything magical going on here; were
just taking advantage of Python’s dynamic nature and scoping rules.

Up until we actually invoke a function, we can modify the variables it has access to, as
long as we get into the right namespace. That’s why we import the top-level accounts
module: to be able to get down to the accounts.views module, which is the scope in
which the accounts.views.send_login_email function will run.

This isn’t even something that only works inside unit tests—you can do this kind of
monkeypatching in any Python code! That may take a little time to sink in. See if
you can convince yourself that it’s not all totally crazy—and then consider a couple of
extra details that are worth knowing:

o Why do we use self as a way of passing information around? It’s just a con-
venient variable that’s available both inside the scope of the fake_send_mail
function and outside of it. We could use any mutable object, like a list or a
dictionary, as long as we are making in-place changes to an existing variable that
exists outside our fake function. (Feel free to have a play around with different
ways of doing this, if you're curious, and see what works and doesn’t.)

o The “before” is critical! I cant tell you how many times I've sat there, wondering
why a mock isn’t working, only to realise that I didn’t mock before I called the
code under test.

Let’s see if our hand-rolled mock object will let us test-drive some code:

$ python src/manage.py test accounts

[...]
self.assertTrue(self.send_mail_called)

AssertionError: False is not true

Mocking Manually—aka Monkeypatching | 473



So let’s call send_matil, naively:

src/accounts/views.py (ch201006-1)
from import send_mail @

[...]

def send_login_email(request):
send_mail() @
return redirect("/")

@ This import should still be in the file from earlier, but in case an overenthusiastic
IDE has removed it, I'm re-listing it for you here.

© Here’s our new call to send_mail().
That gives:

TypeError: SendLoginEmailViewTest.test_sends_mail_to_address_from_post.<locals>
.fake_send_mail() missing 4 required positional arguments: 'subject', 'body',
'from_email', and 'to_list'

It looks like our monkeypatch is working! We've called send_mail, and it's gone into
our fake_send_mail function, which wants more arguments. Let’s try this:

src/accounts/views.py (ch201006-2)
def send_login_email(request):
send_mail("subject", "body", "from_email", ["to email"])
return redirect("/")

That gives:

self.assertEqual(self.subject, "Your login link for Superlists")
AssertionError: 'subject' != 'Your login link for Superlists'

That’s working pretty welll Now we can work step-by-step, all the way through to
something like this:

src/accounts/views.py (ch201006)
def send_login_email(request):
email = request.POST["email"]
send_mail(
"Your login link for Superlists",
"body text tbc",
"noreply@superlists"”,
[email],
)

return redirect("/")

474 | Chapter 20: Using Mocks to Test External Dependencies



And we have passing tests!

$ python src/manage.py test accounts
Ran 6 tests in 0.016s

0K

Brilliant! We've managed to write tests for some code, which would ordinarily go out
and try to send real emails across the internet, and by “mocking out” the send_email
function, we’re able to write the tests and code all the same.?

But our hand-rolled mock has a couple of problems:

o It involved a fair bit of boilerplate code, populating all those self.xyz variables
to let us assert on them.

o More importantly, although we didn’t see this, the monkeypatching will persist
from one test to the next, breaking isolation between tests. This can cause serious
confusion.

The Python Mock Library

The mock package was added to the standard library as part of Python 3.3. It provides
a magical object called a Mock; try this out in a Python shell:

>>> from import Mock

>>> m = Mock()

>>> m.any_attribute

<Mock name='mock.any_attribute' i1d='140716305179152'>
>>> type(m.any_attribute)

<class 'unittest.mock.Mock'>

>>> m.any_method()

<Mock name='mock.any_method()"' 1d='140716331211856"'>
>>> m.foo()

<Mock name='mock.foo()' 1d='140716331251600"'>

>>> m.called

False

>>> m.foo.called

True

>>> m.bar.return_value = 1

>>> m.bar(42, var="thing')

1

>>> m.bar.call_args

call(42, var="thing')

2 Again, we're acting as if Django’s mail.outbox didn't exist, for the sake of learning. After all, what if you were
using Flask? Or what if this was an API call, not an email?

The Python Mock Library | 475



A mock is a magical object for a few reasons:

o It responds to any request for an attribute or method call with other mocks.

+ You can configure it in turn to return specific values when called.

o It enables you to inspect what it was called with.

Sounds like a useful thing to be able to use in our unit tests!

Using unittest.patch

And as if that weren't enough, the mock module also provides a helper function called
patch, which we can use to do the monkeypatching we did by hand earlier.

I'll explain how it all works shortly, but let’s see it in action first:

src/accounts/tests/test_views.py (ch201007)
from unittest import mock

from django.test import TestCase

[...]

class SendLoginEmailViewTest(TestCase):
def test_redirects_to_home_page(self):

[...]

.patch("accounts.views.send_mail") @
def test_sends_mail_to_address_from_post(self, mock_send_mail): @
self.client.post(
"/accounts/send_login_email", data={"email": "edith@example.com"}

)

self.assertEqual(mock_send_mail.called, True)

(subject, body, from_email, to_list), kwargs = mock_send_mail.call_args
self.assertEqual(subject, "Your login link for Superlists")
self.assertEqual(from_email, "noreply@superlists")
self.assertEqual(to_list, ["edith@example.com"])

Here’s the decorator—we’ll go into detail about how it works shortly.

Here’s the extra argument we add to the test method. Again, detailed explanation
to come, but as you'll see, it's going to do most of the work that fake_send_mail
was doing before.

476

| Chapter20: Using Mocks to Test External Dependencies



If you rerun the tests, you'll see they still pass. And because we're always suspicious of
any test that still passes after a big change, let’s deliberately break it just to see:

src/accounts/tests/test_views.py (ch201008)
self.assertEqual(to_list, ["schmedith@example.com"])

And lets add a little debug print to our view as well, to see the effects of the
mock.patch:

src/accounts/views.py (ch201009)
def send_login_email(request):
emall = request.POST["email"]
print(type(send_mail))
send_mail(

[...]

Let’s run the tests again:

$ python src/manage.py test accounts

[...]
....<class 'function's>
.<class 'unittest.mock.MagicMock'>

[...]
AssertionError: Lists differ: ['edith@example.com'] !=
['schmedith@example.com']

[...]
Ran 6 tests in 0.024s

FAILED (failures=1)

Sure enough, the tests fail. And we can see, just before the failure message, that
when we print the type of the send_mail function, in the first unit test it’s a normal
function, but in the second unit test we're seeing a mock object.

Let’s remove the deliberate mistake and dive into exactly what’s going on:

src/accounts/tests/test_views.py (ch201011)

.patch("accounts.views.send_mail") @
def test_sends_mail_to_address_from_post(self, mock_send_mail): @
self.client.post( ©
"/accounts/send_login_email", data={"email": "edith@example.com"}

)

self.assertEqual(mock_send_mail.called, True) @

(subject, body, from_email, to_list), kwargs = mock_send_mail.call_args @
self.assertEqual(subject, "Your login link for Superlists")
self.assertEqual(from_email, "noreply@superlists")
self.assertEqual(to_list, ["edith@example.com"])

The Python Mock Library | 477



© The mock.patch() decorator takes a dot-notation name of an object to
monkeypatch. Thats the equivalent of manually replacing the send_mail in
accounts.views. The advantage of the decorator is that, firstly, it automatically
replaces the target with a mock. And secondly, it automatically puts the original
object back at the end! (Otherwise, the object stays monkeypatched for the rest of
the test run, which might cause problems in other tests.)

@ patch then injects the mocked object into the test as an argument to the test
method. We can choose whatever name we want for it, but I usually use a
convention of mock_ plus the original name of the object.

© We call our view under test as usual, but everything inside this test method has
our mock applied to it, so the view won't call the real send_mail object; it'll be
seeing mock_send_mail instead.

O And we can now make assertions about what happened to that mock object
during the test. We can see it was called...

© ...and we can also unpack its various positional and keyword call arguments, to
examine what it was called with. (See “On Mock call_args” on page 507 in the
next chapter for a longer explanation of .call_args.)

All crystal clear? No? Don’'t worry; we'll do a couple more tests with mocks to see if
they start to make more sense as we use them more.

Getting the FT a Little Further Along

First let’s get back to our FT and see where it’s failing:

$ python src/manage.py test functional_tests.test_login

[...]

AssertionError: 'Check your email' not found in 'Superlists\nEnter your email

to log in\nStart a new To-Do list'
Submitting the email address currently has no effect. Hmmm. Currently our form is
hardcoded to send to /accounts/send_login_email. Let’s switch to using the {% url %}
syntax just to make sure it’s the right URL:

src/lists/templates/base.html (ch201012)

<form method="POST" action="{% url 'send_login_email' %}">

Does that help? Nope, same error. Why? Ah, nothing to do with the URL actually; it’s
because were not displaying a success message after we send the user an email. Let’s
add a test for that.

478 | Chapter 20: Using Mocks to Test External Dependencies



Testing the Django Messages Framework

We'll use Django's “messages framework’, which is often used to display ephemeral
“success” or “warning” messages to show the results of an action, something like
what’s shown in Figure 20-1.

Superlists Enter your email to log in = your@email.com

Check your email, we've sent you a link you can use to log in.

Start a new
To-Do list

Enter a to-do item

Figure 20-1. A green success message

Have a look at the Django messages docs if you haven’t come across it already. Testing
Django messages is a bit contorted:

src/accounts/tests/test_views.py (ch201013)

def test_adds_success_message(self):
response = self.client.post(
"/accounts/send_login_email",
data={"email": "edith@example.com"},
follow=True, @
)

message = list(response.context["messages"])[0] @
self.assertEqual(

message.message,

"Check your email, we've sent you a link you can use to log in.",
)

self.assertEqual(message.tags, "success"

The Python Mock Library | 479


https://docs.djangoproject.com/en/5.2/ref/contrib/messages

@ We have to pass follow=True to the test client to tell it to get the page after the
302-redirect.

@ Then we examine the response context for a messages iterable, which we have
to listify before it’ll play nicely. (We'll use these later in a template with {% for
message in messages %}.)

That gives:

$ python src/manage.py test accounts
[...]

message = list(response.context["messages"])[0]
IndexError: list index out of range

And we can get it passing with:

src/accounts/views.py (ch201014)
from import messages

[...]

def send_login_email(request):
[...]
messages.success(
request,
"Check your email, we've sent you a link you can use to log in.",
)

return redirect("/")

480 | Chapter 20: Using Mocks to Test External Dependencies



Mocks Can Leave You Tightly Coupled to the Implementation

This sidebar is an intermediate-level testing tip. If it goes over
your head the first time around, come back and take another
look when you've finished this chapter.

I said testing messages is a bit contorted; it took me several goes to get it right. In fact,
at a previous employer, we gave up on testing them like this and decided to just use
mocks. Let’s see what that would look like in this case:

src/accounts/tests/test_views.py (ch201014-2)
.patch("accounts.views.messages")
def test_adds_success_message_with_mocks(self, mock_messages):
response = self.client.post(
"/accounts/send_login_email", data={"email": "edith@example.com"}

)

expected = "Check your email, we've sent you a link you can use to log in."
self.assertEqual(

mock_messages.success.call_args,

mock.call(response.wsgi_request, expected),

We mock out the messages module, and check that messages.success was called
with the right arguments: the original request and the message we want.

And you could get it passing by using the exact same code as earlier. Here’s the
problem though: the messages framework gives you more than one way to achieve
the same result. I could write the code like this:

src/accounts/views.py (ch201014-3)
messages.add_message(
request,
messages.SUCCESS,
"Check your email, we've sent you a link you can use to log in.",

And the original, non-mocky test would still pass. But our mocky test will fail,
because were no longer calling messages.success; were calling messages.add_mes
sage. Even though the end result is the same and our code is “correct’, the test is
broken.

This is what it means to say that using mocks leave you “tightly coupled with the
implementation”. We usually say it’s better to test behaviour, not implementation
details; test what happens, not how you do it. Mocks often end up erring too much on
the side of the “how” rather than the “what”.

The Python Mock Library | 481




Test should be about behaviour, not implementation. If your
tests tie you to specific implementation details, they will pre-
vent you from refactoring as freely.

Adding Messages to Our HTML

What happens next in the functional test? Ah. Still nothing. We need to actually add
the messages to the page. Something like this:

src/lists/templates/base.html (ch201015)
[...]

</nav>

{% if messages %}
<div class="row">
<div class="col-md-12">
{% for message in messages %}
{% if message.level_tag == 'success' %}
<div class="alert alert-success">{{ message }}</div>
{% else %}
<div class="alert alert-warning">{{ message }}</div>
{% endif %}
{% endfor %}
</div>
</div>
{% endif %}

Now do we get a little further? Yes!

$ python src/manage.py test accounts

[...]
Ran 7 tests in 0.023s

0K

$ python src/manage.py test functional_tests.test_login
[...]

AssertionError: 'Use this link to log in' not found in 'body text tbc'

We need to fill out the body text of the email, with a link that the user can use to log
in. Let’s just cheat for now though, by changing the value in the view:

482 | Chapter 20: Using Mocks to Test External Dependencies



src/accounts/views.py (ch201016)
send_mail(
"Your login link for Superlists",
"Use this link to log in",
"noreply@superlists"”,
[email],

That gets the FT a little further:

$ python src/manage.py test functional_tests.test_login
[...]

AssertionError: Could not find url in email body:
Use this link to log in

OK, I think we can call the send_login_email view done for now:

rnet—urSwirFoken-ITD
o Crstom—vser—moote/—wriih—/SER-

; NAMEAZES D=emar/
[ o Avibentication backend with avihenti-

cate() and set_vserO functions

. Resistering avth backend in settings.py

. Login view calfs avithenticate() ano
lo5in() From oyanso.contsib.avts

. Losout view calfs dyango.contrib.avth./os-
ovt

Starting on the Login URL

We're going to have to build some kind of URL! Let’s build the minimal thing, just a
placeholder really:

src/accounts/tests/test_views.py (ch201017)
class LoginViewTest(TestCase):
def test_redirects_to_home_page(self):
response = self.client.get("/accounts/login?token=abcd123")
self.assertRedirects(response, "/")

The Python Mock Library | 483



We're imagining we'll pass the token in as a GET parameter, after the ?. It doesn't
need to do anything for now.

I'm sure you can find your way through to getting the boilerplate in for a basic URL
and view, via errors like these:

No URL:

AssertionError: 404 != 302 : Response didn't redirect as expected: Response
code was 404 (expected 302)

No view:
AttributeError: module 'accounts.views' has no attribute 'login'’
Broken view:

ValueError: The view accounts.views.login didn't return an HttpResponse object.
It returned None instead.

OK!

$ python src/manage.py test accounts

[...]

Ran 8 tests in 0.029s
OK

And now we can give people a link to use. It still won't do much though, because we
still don’t have a token to give to the user.

Checking That We Send the User a Link with a Token

Back in our send_login_email view, we've tested the email subject, and the “from’,
and “to” fields. The body is the part that will have to include a token or URL they can
use to log in. Let’s spec out two tests for that:

484

| Chapter20: Using Mocks to Test External Dependencies



src/accounts/tests/test_views.py (ch201021)

from accounts.models import Token

[...]

class SendLoginEmailViewTest(TestCase):
def test_redirects_to_home_page(self):

[...]
def test_adds_success_message(self):
[...]

.patch("accounts.views.send_mail")
def test_sends_mail_to_address_from_post(self, mock_send_mail):

[...]

def test_creates_token_associated_with_email(self): @
self.client.post(

"/accounts/send_login_email", data={"email": "edith@example.com"}

)
token = Token.objects.get()
self.assertEqual(token.email, "edith@example.com")

.patch("accounts.views.send_mail")

def test_sends_link_to_login_using_token_uid(self, mock_send_mail): @

self.client.post(

"/accounts/send_login_email", data={"email": "edith@example.com"}

)

token = Token.objects.get()

expected_url = f"http://testserver/accounts/login?token={token.uid}"
(subject, body, from_email, to_list), kwargs = mock_send_mail.call_args

self.assertIn(expected_url, body)

database is associated with the email address from the POST request.

© The first test is fairly straightforward; it checks that the token we create in the

© The second one is our second test using mocks. We mock out the send_mail

function again using the patch decorator, but this time were interested in the

body argument from the call arguments.

Running them now will fail because we're not creating any kind of token:

$ python src/manage.py test accounts

[...]

accounts.models.Token.DoesNotExist: Token matching query does not exist.

[...]

accounts.models.Token.DoesNotExist: Token matching query does not exist.

We can get the first one to pass by creating a token:

The Python Mock Library

| 485



src/accounts/views.py (ch201022)
from import Token

[...]

def send_login_email(request):
email = request.POST["emaill"]
token = Token.objects.create(email=email)
send_mail(

[...]

And now the second test prompts us to actually use the token in the body of our
email:

[...]

AssertionError:
'"http://testserver/accounts/login?token=[...]
not found in 'Use this link to log in'

FAILED (failures=1)

So, we can insert the token into our email like this:

src/accounts/views.py (ch201023)
from import reverse

[...]

def send_login_email(request):
emaill = request.POST["emaill"]
token = Token.objects.create(email=email)
url = request.build_absolute_uri( @
reverse("login") + "?token=" + str(token.uid),

)
message_body = f"Use this link to log in:\n\n{url}"
send_mail(
"Your login link for Superlists",
message_body,
"noreply@superlists"”,
[email],
)
[...]

© request.build_absolute_uri deserves a mention—it’s one way to build a “full”
URL, including the domain name and the HTTP(S) part, in Django. There are
other ways, but they usually involve getting into the “sites” framework, which gets
complicated pretty quickly. You can find lots more discussion on this if youre
curious by doing a bit of googling.

And the tests pass:

0K

486 | Chapter 20: Using Mocks to Test External Dependencies



I think that’s our send_login_email view done:

. Ctrstom—vser—mooter—hrih—/SEF-
NAME— A TEL D= mar/
. Avtbentication backend with avihents-

cate() and set_vserO Funchions

. Resistering avth backend in settings.py

. Login view calfs avthenticate() anA
/osin() “rom dyango. contrib.avth

. Losoud view calfs dyangso.contrib.avih.fog-
ovt

The next piece in the puzzle is the authentication backend, whose job it will be to
examine tokens for validity and then return the corresponding users. Then, we need
to get our login view to actually log users in, if they can authenticate.

De-Spiking Our Custom Authentication Backend

Here’s how our authentication backend looked in the spike:

class PasswordlessAuthenticationBackend(BaseBackend):
def authenticate(self, request, uid):

print("uid", uid, file=sys.stderr)

if not Token.objects.filter(uid=uid).exists():
print("no token found", file=sys.stderr)
return None

token = Token.objects.get(uid=uid)

print("got token", file=sys.stderr)

try:
user = ListUser.objects.get(email=token.email)
print("got user", file=sys.stderr)
return user

except ListUser.DoesNotExist:
print("new user", file=sys.stderr)
return ListUser.objects.create(email=token.email)

def get_user(self, email):
return ListUser.objects.get(email=email)

De-Spiking Our Custom Authentication Backend | 487



Decoding this:

o We take a UID and check if it exists in the database.
o We return None if it doesn’t.

o If it does exist, we extract an email address, and either find an existing user with
that address or create a new one.

One if = One More Test

A rule of thumb for these sorts of tests: any if means an extra test, and any try/
except means an extra test. So, this should be about three tests. How about some-
thing like this?

src/accounts/tests/test_authentication.py (ch201024)

from django.http import HttpRequest
from django.test import TestCase

from accounts.authentication import PasswordlessAuthenticationBackend
from accounts.models import Token, User

class AuthenticateTest(TestCase):
def test_returns_None_if_no_such_token(self):
result = PasswordlessAuthenticationBackend().authenticate(
HttpRequest(), "no-such-token"
)

self.assertIsNone(result)

def test_returns_new_user_with_correct_email_if_token_exists(self):
email = "edith@example.com"
token = Token.objects.create(email=email)
user = PasswordlessAuthenticationBackend().authenticate(
HttpRequest(), token.uid
)
new_user = User.objects.get(email=email)
self.assertEqual(user, new_user)

def test_returns_existing_user_with_correct_email_if_token_exists(self):
email = "edith@example.com"
existing_user = User.objects.create(email=email)
token = Token.objects.create(email=email)
user = PasswordlessAuthenticationBackend().authenticate(
HttpRequest(), token.uid
)

self.assertEqual(user, existing_user)

488 | Chapter 20: Using Mocks to Test External Dependencies



In authenticate.py, we'll just have a little placeholder:

src/accounts/authentication.py (ch201025)
class PasswordlessAuthenticationBackend:

def authenticate(self, request, uid):
pass

How do we get on?

$ python src/manage.py test accounts

ERROR: test_returns_new_user_with_correct_email_if_token_exists (accounts.tests
.test_authentication.AuthenticateTest.test_returns_new_user_with_correct_email_
if_token_exists)
Traceback (most recent call last):

File "...goat-book/src/accounts/tests/test_authentication.py", line 21, in
test_returns_new_user_with_correct_email_if_token_exists

new_user = User.objects.get(email=email)

[...]

accounts.models.User.DoesNotExist: User matching query does not exist.

FAIL: test_returns_existing_user_with_correct_email_1if_token_exists (accounts.t
ests.test_authentication.AuthenticateTest.test_returns_existing_user_with_corre
ct_emaill_if_token_exists)
Traceback (most recent call last):

File "...goat-book/src/accounts/tests/test_authentication.py", line 31, in
test_returns_existing_user_with_correct_emaill_if_token_exists

self.assertEqual(user, existing_user)
ANANANANNANNNANNANANANNNANNNAN

Ran 13 tests in 0.038s

FAILED (failures=1, errors=1)

De-Spiking Our Custom Authentication Backend | 489



Here’s a first cut:

src/accounts/authentication.py (ch201026)
from import Token, User

class PasswordlessAuthenticationBackend:
def authenticate(self, request, uid):
token = Token.objects.get(uid=uid)
return User.objects.get(email=token.email)

Now, instead of one FAIL and one ERROR, we get two ERRORS:

$ python src/manage.py test accounts

ERROR: test_returns_None_1if_no_such_token (accounts.tests.test_authentication.A
uthenticateTest.test_returns_None_if_no_such_token)
[...]

accounts.models.Token.DoesNotExist: Token matching query does not exist.

ERROR: test_returns_new_user_with_correct_email_if_token_exists (accounts.tests
.test_authentication.AuthenticateTest.test_returns_new_user_with_correct_email_
if_token_exists)

[...]

accounts.models.User.DoesNotExist: User matching query does not exist.

Notice that our third test, test_returns_existing_user_with_correct_email_
if_token_exists, is actually passing. Our code does currently handle the “happy
path”, where both the token and the user already exist in the database.

Let’s fix each of the remaining ones in turn. Notice how the test names are telling us
exactly what we need to do. First, test_returns_None_if_no_such_token, which is
telling us what to do if the token doesn’t exist:

src/accounts/authentication.py (ch201027)
def authenticate(self, request, uid):
try:
token = Token.objects.get(uid=uid)
return User.objects.get(email=token.email)
except Token.DoesNotExist:
return None

That gets us down to one failure:

490

| Chapter20: Using Mocks to Test External Dependencies



ERROR: test_returns_new_user_with_correct_email_if_token_exists (accounts.tests
.test_authentication.AuthenticateTest.test_returns_new_user_with_correct_email_
if_token_exists)

[...]

accounts.models.User.DoesNotExist: User matching query does not exist.

FAILED (errors=1)

OK, so we need to return a new_user_with_correct_email if_token_exists? We
can do that!

src/accounts/authentication.py (ch201028)
def authenticate(self, request, uid):
try:
token = Token.objects.get(uid=uid)
return User.objects.get(email=token.email)
except User.DoesNotExist:
return User.objects.create(email=token.email)
except Token.DoesNotExist:
return None

That’s turned out neater than our spike!

The get_user Method

We've handled the authenticate function, which Django will use to log new users
in. The second part of the protocol we have to implement is the get_user method,
whose job is to retrieve a user based on their unique identifier (the email address), or
to return None if it can’t find one. (Have another look at the spiked code if you need a
reminder.)

Here are a couple of tests for those two requirements:

src/accounts/tests/test_authentication.py (ch201030)
class GetUserTest(TestCase):
def test_gets_user_by_email(self):
User.objects.create(email="another@example.com")
desired_user = User.objects.create(email="edith@example.com")
found_user = PasswordlessAuthenticationBackend().get_user("edith@example.com")
self.assertEqual(found_user, desired_user)

def test_returns_None_1if_no_user_with_that_email(self):
self.assertIsNone(
PasswordlessAuthenticationBackend().get_user("edith@example.com")

)

And our first failure:

AttributeError: 'PasswordlessAuthenticationBackend' object has no attribute
'get_user'

De-Spiking Our Custom Authentication Backend | 491



Let’s create a placeholder one then:

src/accounts/authentication.py (ch201031)

class PasswordlessAuthenticationBackend:
def authenticate(self, request, uid):

[...]

def get_user(self, email):
pass

Now we get:

self.assertEqual(found_user, desired_user)
AssertionError: None != <User: User object (edith@example.com)>

And (step by step, just to see if our test fails the way we think it will):

src/accounts/authentication.py (ch201033)
def get_user(self, email):
return User.objects.first()

That gets us past the first assertion, and onto:

self.assertEqual(found_user, desired_user)
AssertionError: <User: User object (another@example.com)> != <User: User object
(edith@example.com)>

And so, we call get with the email as an argument:

src/accounts/authentication.py (ch201034)
def get_user(self, email):
return User.objects.get(email=email)

Now our test for the None case fails:

ERROR: test_returns_None_if_no_user_with_that_email (accounts.tests.test_authen
tication.GetUserTest.test_returns_None_if_no_user_with_that_email)

[...]

accounts.models.User.DoesNotExist: User matching query does not exist.

492 | Chapter 20: Using Mocks to Test External Dependencies



That prompts us to finish the method like this:

src/accounts/authentication.py (ch201035)
def get_user(self, email):
try:
return User.objects.get(email=email)
except User.DoesNotExist:
return None @

© You could just use pass here, and the function would return None by default.
However, because we specifically need the function to return None, the “explicit is
better than implicit” rule applies here.

That gets us to passing tests:
OK

And we have a working authentication backend!

ettt TD

o Ctrstom—vser—mooter—hrth—SEA-
AAME A ZEL D rrar/

. fodbedionds oot Lhonds:
tateO-and-selr—tserO-ronctrons

o Resistering avth backend in settings.py
. Login view calfs avthenticate() ano
Lo5in() From dyanso.contsib.avts

. Losoud view calfs dyango.contrib.avth./os-
ovt

Let’s call that a win and, in the next chapter, we'll work on integrating it into our login
view and getting our FT passing.

De-Spiking Our Custom Authentication Backend | 493



On Mocking in Python

Mocking and external dependencies
One place to consider using mocking is when we have an external dependency
that we don’t want to actually use in our tests. A mock can be used to simulate
the third-party API. Whilst it is possible to “roll your own” mocks in Python,
a mocking framework like the unittest.mock module provides a lot of helpful
shortcuts that will make it easier to write (and more importantly, read) your tests.

The mock library
The unittest.mock module from Python’s standard library contains most every-
thing you might need for monkeypatching and mocking in Python.?

Monkeypatching
This is the process of replacing an object in a namespace at runtime. We use it
in our unit tests to replace a real function that has undesirable side effects with a
mock object, using the mock.patch decorator.

The mock.patch decorator
unittest.mock provides a function called patch, which can be used to “mock
out” (monkeypatch) any object from the module you're testing. It's commonly
used as a decorator on a test method. Importantly, it “undoes” the mocking at the
end of the test for you, to avoid contamination between tests.

Mocks can leave you tightly coupled to the implementation
As discussed in the earlier sidebar, mocks can leave you tightly coupled to your
implementation. For that reason, you shouldn’t use them unless you have a good
reason.

3 This library was originally written as a standalone package by Michael Foord while he was working at the
company that later spawned PythonAnywhere, a few years before I joined. It became part of the standard
library in Python 3.3. Michael was a friend, and sadly passed away in 2025.

494 | Chapter 20: Using Mocks to Test External Dependencies




CHAPTER 21
Using Mocks for Test Isolation

In this chapter, we'll finish up our login system. While doing so, well explore an alter-
native use of mocks: to isolate parts of the system from each other. This enables more
targeted testing, fights combinatorial explosion, and reduces duplication between
tests.

In this chapter, we start to drift towards what’s called “London-
school TDD”, which is a variant on the “Classical” or “Detroit”
style of TDD that I mostly show in the book. We won't get into
the details here, but London-school TDD places more emphasis
on mocking and isolating parts of the system. As always, there are
pros and cons! Read more at Online Appendix: Test Isolation and
“Listening to Your Tests”.

Along the way, we'll learn a few more useful features of unittest.mock, and well also
have a discussion about how many tests are “enough”.

495


https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html
https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html

Using Our Auth Backend in the Login View

tateO-and-selr—tserO-Fonctrons
Resistering avth backend in settings.py
Losin view calfs avithenticate() and
/osin() “rom dyango. contrib.avtsh

Losoud view calfs dyangso.contrib.avth./os-
ovt

We got our auth backend ready in the last chapter; now we need use the backend in
our login view. But first, as our scratchpad says, we need to add it to settings.py:

AUTH_USER_MODEL = "accounts.User"
AUTHENTICATION_BACKENDS = [
"accounts.authentication.PasswordlessAuthenticationBackend",

1

[...

]

That was easy!

src/superlists/settings.py (ch211001)

496

Chapter 21: Using Mocks for Test Isolation



rres—urd s A oken D
. Crstom—vser—mooter—whth—SSER-
AAME S ZEL D raar!
. bttt e mrot—sop . 2
i tateO-and sel—vserO-Fonctons
! S .

. Login view calfs avthenticate() ano
1o5in() from dyango.contrib.avish

. Za;ou/ view calfs Ayan Jp,fﬂﬂ‘/ﬂz.at//ﬁ./ﬂj—
ovt

y -~ T ~ N —

Next, let’s write some tests for what should happen in our view. Looking back at the
spike again:

src/accounts/views.py
def login(request):

print("login view", file=sys.stderr)
uid = request.GET.get("uid")
user = auth.authenticate(uid=uid)
if user is not None:

auth.login(request, user)
return redirect("/")

You can view the contents of files from the spike using, for exam-
ple, git show passwordless-spike:src/accounts/views.py.

We call django.contrib.auth.authenticate and then, if it returns a user, we call
django.contrib.auth.login.

This is a good time to check out the Django docs on authentication
for a little more context.

Using Our Auth Backend in the Login View | 497


https://docs.djangoproject.com/en/5.2/topics/auth/default/#how-to-log-a-user-in

Straightforward Non-Mocky Test for Qur View

Here’s the most obvious test we might want to write, thinking in terms of the
behaviour we want:

o If someone has a valid token, they should get logged in.

o If someone tries to use an invalid token (or does not have one), it should not log
them in.

Here’s how we might add the happy-path test for the user with the valid token:

src/accounts/tests/test_views.py (ch211002)
from import auth

[...]

class LoginViewTest(TestCase):
def test_redirects_to_home_page(self):

[...]

def test_logs_in_if_given_valid_token(self):
anon_user = auth.get_user(self.client) @
self.assertEqual(anon_user.is_authenticated, False) @

token = Token.objects.create(email="edith@example.com")
self.client.get(f"/accounts/login?token={token.uid}")

user = auth.get_user(self.client)
self.assertEqual(user.is_authenticated, True) @
self.assertEqual(user.email, "edith@example.com") ©

O Weuse Django’s auth.get_user() to extract the current user from the test client.

@ We verify were not logged in before we start. (This isn'’t strictly necessary, but it’s
always nice to know you’re on firm ground.)

© And here’s where we check that we've been logged in, with a user with the right
email address.
And that will fail as expected:

self.assertEqual(user.is_authenticated, True)
AssertionError: False != True

498 | Chapter21: Using Mocks for Test Isolation



We can get it to pass by “cheating’, like this:

src/accounts/views.py (ch211003)

from django.contrib import auth, messages
[...]

from accounts.models import Token, User

def send_login_email(request):

[...]

def login(request):
user = User.objects.create(email="edith@example.com")
auth.login(request, user)
return redirect("/")

0K

That forces us to write another test:

src/accounts/tests/test_views.py (ch211004)
def test_shows_login_error_1if_token_1invalid(self):

response = self.client.get("/accounts/login?token=1invalid-token", follow=True)
user = auth.get_user(self.client)
self.assertEqual(user.is_authenticated, False)
message = list(response.context["messages"])[0]
self.assertEqual(

message.message,

"Invalid login link, please request a new one",

)

self.assertEqual(message.tags, "error"
And now we get that passing by using the most straightforward implementation...

src/accounts/views.py (ch211005)
def login(request):

if Token.objects.filter(uid=request.GET["token"]).exists(): @

user = User.objects.create(email="edith@example.com") @ ©

auth.login(request, user)
else:

messages.error(request, "Invalid login link, please request a new one") @
return redirect("/")

@ Oh wait; we forgot about our authentication backend and just did the query
directly from the token model! Well that’s arguably more straightforward, but
how do we force ourselves to write the code the way we want to—i.e., using
Django’s authentication API?

Using Our Auth Backend in the Login View | 499



©® Oh dear, and the email address is still hardcoded. We might have to think about
writing an extra test to force ourselves to fix that.

© Oh—also, were hardcoding the creation of a user every time, but actually, we
want to have the get-or-create logic that we implemented in our backend.

O This bit is OK at least!

Is this starting to feel a bit familiar? We've already written all the tests for the various
permutations of our authentication logic, and we're considering writing equivalent
tests at the views layer.

Combinatorial Explosion
Table 21-1 recaps the tests we might want to write at each layer in our application.

Table 21-1. What we want to test in each layer

Views layer Authentication backend Models layer
« Valid token means user is logged < Returns correct existing user for a valid token « Token associates email and UID
in « (reates a new user for a new email address ~ « User can be retrieved from token
+ Invalid token means user is not . Returns none for an invalid token uib
logged in

We already have three tests in the models layer, and five in the authentication layer.
We started off writing the tests in the views layer, where—conceptually—we only
really want two test cases, and we're finding ourselves wondering if we need to write a
whole bunch of tests that essentially duplicate the authentication layer tests. This is an
example of the combinatorial explosion problem.

The Car Factory Example
Imagine we're testing a car factory:

o First, we choose the car type: normal, station-wagon, or convertible.
o Then, we choose the engine type: petrol, diesel, or electric.

« Finally, we choose the colour: red, white, or hot pink.

500 | Chapter21: Using Mocks for Test Isolation



Here’s how it might look in code:

def build_car(car_type, engine_type, colour):
engine = _create_engine(engine_type)
naked_car = _assemble_car(engine, car_type)
finished_car = _paint_car(naked_car, colour)
return finished_car

How many tests do we need? Well, the upper bound to test every possible combina-
tion is 3 x 3 x 3 = 27 tests. That’s a lot!

How many tests do we actually need to write? Well, it depends on how we're testing,
how the different parts of the factory are integrated, and what we know about the
system. Do we need to test every single colour? Maybe! Or, maybe, if were happy
that we can do two different colours, then we’re happy that we can do any number—
whether it’s two, three, or hundreds. Perhaps we need two tests, maybe three.

OK, but do we need to test that painting works for all the different engine types? Well,
the painting process is probably independent of engine type: if we can paint a diesel
in red, we can paint it in pink or white too.

But, perhaps it is affected by the car type: painting a convertible with a fabric roof
might be a very different technological process to painting a hard-bodied car. So, wed
probably want to test that painting in general works for each car type (three tests), but
we don't need to test that painting works for every engine type.

What we're analysing here is the level of “coupling” between the different parts of the
system. Painting is tightly coupled to car type, but not to engine type. Painting “needs
to know” about car types, but it does not “need to know” about engine types.

The more tightly coupled two parts of the system are, the more
tests you'll need to write to cover all the combinations of their
behaviour.

Another way of thinking about it is: what level are we writing tests at? You can
choose to write low-level tests that cover only one part of the assembly process, or
higher-level ones that test several steps together—or perhaps all of them end-to-end.
See Figure 21-1.

Combinatorial Explosion | 501



Engine type Car type Colour

. 0 . .
SeecsetcaLe Seec s etceLe Seecots et

Naked car Finished car

Build engine

Low-level tests Low-level tests Low-level tests
Inputs = engine_type x3 Inputs = engine 3, car_type x3 Inputs = naked car x9, colour x3

Output = engine x3 Output = naked car x9 Output = finished car x27

. =>3tests? =>9tests? . =>27 tests? No.

Stceccccsencontoee R e =*"  Engine type doesn't matter,
Intermediate tests 3 tests for each body type
Inputs = engine_type x3, car_type x3 3tests for each colour
Output = named car x9 =6 tests max
Intermediate tests

Inputs = engine 3, car_type x3, colour x3
Output = finished_car x27

End-to-end tests
Inputs = engine_type x3, car_type x3, colour x3
Output = finished_car x27

Figure 21-1. Analysing how many tests are needed at different levels

Analysing things in these terms, we think about the inputs and outputs that apply to
each type of test, as well as which attributes of the inputs matter, and which don't.

Testing the first stage of the process—building the engine—is straightforward. The
“engine type” input has three possible values, so we need three tests of the output,
which is the engine. If we're testing at the end-to-end level, no matter how many tests
we have in total, we know we'll need at least three to be the tests that check if we can
produce a car with a working engine of each type.

Testing the painting needs a bit more thought. If we test at the low level, the inputs
are a naked car and a paint colour. There are theoretically nine types of naked car; do
we need to test all of them? No. The engine type doesn’t matter; we only need to test
one of each body type. Does that mean 3 x 3 = 9 tests? No. The colour and body type
are independent. We can just test that all three colours work, and that all three body
types work—so that’s six tests.

What about at the end-to-end level? It depends if we’re being rigorous about “closed-
box” testing, where we're not supposed to know anything about how the production
process works. In that case, maybe we do need 27 tests. But if we allow that we know
about the internals, then we can apply similar reasoning to what we used at the lower
level. However many tests we end up with, we need three of them to be checking each
colour, and three that check that each body type can be painted.

Let’s see if we can apply this sort of analysis to our authentication system.

502 | Chapter21: Using Mocks for Test Isolation



Using Mocks to Test Parts of Our System in Isolation

To recap, so far we have some minimal tests at the models layer, and we have
comprehensive tests of our authentication backend, and were now wondering how
many tests we need at the views layer.

Here’s the current state of our view:

src/accounts/views.py
def login(request):

if Token.objects.filter(uid=request.GET["token"]).exists():

user = User.objects.create(email="edith@example.com")

auth.login(request, user)
else:

messages.error(request, "Invalid login link, please request a new one")
return redirect("/")

We know we want to transform it to something like this:

src/accounts/views.py
def login(request):
if user := auth.authenticate(uid=request.GET.get("token")) @
auth.login(request, user) @
else:
messages.error(request, "Invalid login link, please request a new one") @

return redirect("/")

@ We want to refactor our logic to use the authenticate() function from our
backend. Really good place for a walrus (:=) too!

@ We have the happy path where the user gets logged in.

© We have the unhappy path where the user gets an error message instead.

But currently, our tests are letting us “get away” with the wrong implementation. Here
are three possible options for getting ourselves to the right state:

1. Add more tests for all possible combinations at the view level (token exists but
no user, token exists for an existing user, invalid token, etc.), until we end up
duplicating all the logic in the auth backend in our view—and then feel justified
in refactoring across to just calling the auth backend.

2. Stick with our current two tests, and decide it’s OK to refactor already.

3. Test the view in isolation, using mocks to verify that we call the auth backend.

Using Mocks to Test Parts of Our System in Isolation | 503



Each option has pros and cons! If I was going for option (1), essentially going all in
on test coverage at the views layer, I'd probably think about deleting all the tests at the
auth layer afterwards.

If you were to ask me what my personal preference or instinctive choice would be,
I'd say at this point it might be to go with (2), and say with one happy-path and one
unhappy-path test, were OK to refactor and switch across already.

But because this chapter is about mocks, let’s investigate option (3) instead. Besides,
it'll be an excuse to do fun things with them, like playing with .return_value.

So far, we've used mocks to test external dependencies, like Django’s mail-sending
function. The main reason to use a mock we've discussed so far is to isolate ourselves
from external side effects—in this case, to avoid sending out actual emails during our
tests.

In this section, we'll look at a different possible use case for mocks: testing parts of
our own code in isolation from each other, as a way of reducing duplication and
avoiding combinatorial explosion in our tests.

Mocks Can Also Let You Test the Implementation, When It Matters

On top of that, the fact that were using the Django auth.authenticate function
rather than calling our own code directly is relevant. Django has already introduced
an abstraction: to decouple the specifics of authentication backends from the views
that use them. This makes it easier for us to add further backends in future.

So in this case (in contrast to the example in “Mocks Can Leave You Tightly Coupled
to the Implementation” on page 481) the implementation does matter, because we've
decided to use a particular, specific interface to implement our authentication system.
This is something we might want to document and verify in our tests—and mocks are
one way to enable that.

504 | Chapter21: Using Mocks for Test Isolation



Starting Again: Test-Driving Our Implementation
with Mocks

Lets see how things would look if we had decided to test-drive our implementation
with mocks in the first place. We'll start by reverting all the authentication stuff, both
from our test and from our view.

Let’s disable the test first (we can re-enable them later to sense-check things):

src/accounts/tests/test_views.py (ch211006)
class LoginViewTest(TestCase):

def test_redirects_to_home_page(self): @

[...]
def DONT_test_logs_in_if_given_valid_token(self): @

[...]
def DONT_test_shows_login_error_if_token_invalid(self): @

[...]

@ We can leave the test for the redirect, as that doesn’t involve the auth framework.

© We change the test name so it no longer starts with test_, using a highly
noticeable set of capital letters so we don’t forget to come back and re-enable
them later. I call this “DONTifying” tests. :)

Now let’s revert the view, and replace our hacky code with some to-dos:

src/accounts/views.py (ch211007)
# from django.contrib import auth, messages @
from import messages

[...]

def login(request):
# TODO: call authenticate(), @
# then auth.login() with the user if we get one,
# or messages.error() if we get None.
return redirect("/")

@ In order to demonstrate a common error message shortly, I'm also reverting our
import of the contrib.auth module.

©® And here’s where we delete our first implementation and replace it with some
to-dos.

Starting Again: Test-Driving Our Implementation with Mocks | 505



Let’s check that all our tests pass:

$ python src/manage.py test accounts

[...]
Ran 15 tests in 0.021s

0K

Now let’s start again with mock-based tests. First, we can write a test that makes sure
we call authenticate() correctly:

src/accounts/tests/test_views.py (ch211008)
class LoginViewTest(TestCase):

[...]

.patch("accounts.views.auth") @
def test_calls_authenticate_with_uid_from_get_request(self, mock_auth): @
self.client.get("/accounts/login?token=abcd123")
self.assertEqual(
mock_auth.authenticate.call_args, ©
mock.call(uid="abcd123"), @

We expect to be using the django.contrib.auth module in views.py, and we
mock it out here. Note that this time, we're not mocking out a function; we’re
mocking out a whole module, and thus implicitly mocking out all the functions
(and any other objects) that module contains.

As usual, the mocked object is injected into our test method.

This time, we've mocked out a module rather than a function. So we examine the
call_args—not of the mock_auth module, but of the mock_auth.authenticate
function. Because all the attributes of a mock are more mocks, that’s a mock too.
You can start to see why Mock objects are so convenient, compared to trying to
build your own.

Now, instead of “unpacking” the call args, we use the call function for a neater
way of saying what it should have been called with—that is, the token from the
GET request. (See “On Mock call_args” on page 507.)

506

| Chapter21: Using Mocks for Test Isolation



On Mock call_args

The .call_args property on a mock represents the positional and keyword argu-
ments that the mock was called with. It’s a special “call” object type, which is essen-
tially a tuple of (positional_args, keyword_args). positional_args is itself a
tuple, consisting of the set of positional arguments. keyword_args is a dictionary.
Here they all are in action:

>>> from import Mock, call

>>> m = Mock()

>>> m(42, 43, 'positional arg 3', key='val', thing=666)
<Mock name='mock()' 1d='139909729163528"'>

>>> m.call_args
call(42, 43, 'positional arg 3', key='val', thing=666)

>>> m.call_args == ((42, 43, 'positional arg 3'), {'key': 'val', 'thing': 666})
True

>>> m.call_args == call(42, 43, 'positional arg 3', key='val', thing=666)

True

So in our test, we could have done this instead:

src/accounts/tests/test_views.py
self.assertEqual(
mock_auth.authenticate.call_args,
((,), {'uid': 'abcd123'})

)
# or this

args, kwargs = mock_auth.authenticate.call_args
self.assertkEqual(args, (,))
self.assertEqual(kwargs, {'uid': 'abcd123'})

But you can see how using the call helper is nicer.

See also “Avoid Mocks Magic assert_called...Methods?” on page 510, for some
discussion of call_args versus the magic assert_called_with methods.

What happens when we run the test? The first error is this:

$ python src/manage.py test accounts

[...]

AttributeError: <module 'accounts.views' from
'...goat-book/src/accounts/views.py'> does not have the attribute 'auth'

Starting Again: Test-Driving Our Implementation with Mocks | 507



module foo does not have the attribute bar is a common
first failure in a test that uses mocks. Its telling you that youre
trying to mock out something that doesn't yet exist (or isn’t yet
imported) in the target module.

Once we reimport django.contrib.auth, the error changes:

src/accounts/views.py (ch211009)
from django.contrib import auth, messages

[...]

Now we get:

FAIL: test_calls_authenticate_with_uid_from_get_request [...]

[...]

AssertionError: None != call(uid='abcd123')

It’s telling us that the view doesn’t call the auth.authenticate function at all. Let’s fix
that, but get it deliberately wrong, just to see:

src/accounts/views.py (ch211010)
def login(request):
# TODO: call authenticate(),
auth.authenticate("bang!")
# then auth.login() with the user if we get one,
# or messages.error() i1f we get None.
return redirect("/")

Bang, indeed!
$ python src/manage.py test accounts
[...]
AssertionError: call('bang!') != call(uid='abcd123')
[...]

FAILED (failures=1)

Let’s give authenticate the arguments it expects then:

src/accounts/views.py (ch211011)
def login(request):
# TODO: call authenticate(),
auth.authenticate(uid=request.GET["token"])
# then auth.login() with the user if we get one,
# or messages.error() if we get None.
return redirect("/")

508 | Chapter21: Using Mocks for Test Isolation



That gets us to passing tests:

$ python src/manage.py test accounts
Ran 16 tests in 0.023s

0K

Using mock.return_value

Next, we want to check that if the authenticate function returns a user, we pass that
into auth.login. Let’s see how that test looks:

src/accounts/tests/test_views.py (ch211012)
.patch("accounts.views.auth") @
def test_calls_auth_login_with_user_if_there_is_one(self, mock_auth):
response = self.client.get("/accounts/login?token=abcd123")
self.assertEqual(
mock_auth.login.call_args, @
mock.call(
response.wsgi_request, ©
mock_auth.authenticate.return_value, @

)’

We mock the contrib.auth module again.
This time we examine the call args for the auth. login function.

We check that it’s called with the request object that the view sees...

© ©6 0 ©

...and we check that the second argument was “whatever the authenticate()
function returned”. Because authenticate() is also mocked out, we can use its
special .return_value attribute. We know that, in real life, that will be a user
object. But in this test, it’s all mocks. Can you see what I mean about mocky tests
being hard to understand sometimes?

When you call a mock, you get another mock. But you can also get a copy of that
returned mock from the original mock that you called. Boy, it sure is hard to explain
this stuff without saying “mock” a lot! Another little console illustration might help:

>>> m = Mock()

>>> thing = m()

>>> thing

<Mock name='mock()' 1d='140652722034952">
>>> m.return_value

<Mock name='mock()' 1d='140652722034952">
>>> thing == m.return_value

True

Starting Again: Test-Driving Our Implementation with Mocks | 509



Avoid Mock’s Magic assert_called...Methods?

If youve used unittest.mock before, you may have come across its special
assert_called. .. methods, and you may be wondering why I didn't use them.

For example, instead of doing:
self.assertEqual(a_mock.call_args, call(foo, bar))
You can just do:
a_mock.assert_called_with(foo, bar)
And the mock library will raise an AssertionError for you if there is a mismatch.

Why not use that? For me, the problem with these magic methods is that it’s too easy
to make a silly typo and end up with a test that always passes:

a_mock.asssert_called_with(foo, bar) # will always pass

Unless you get the magic method name exactly right,' it will just silently return
another mock, and you may not realise that you've written a test that tests nothing at
all. That's why I prefer to always have an explicit unittest method in there.

In any case, what do we get from running the test?

$ python src/manage.py test accounts

[...]
AssertionError: None != call(<WSGIRequest: GET '/accounts/login?t[...]

Sure enough, it’s telling us that we're not calling auth.login() at all yet. Let’s first try
doing that deliberately wrong as usual!

src/accounts/views.py (ch211013)

def login(request):

# TODO: call authenticate(),

auth.authenticate(uid=request.GET["token"])

# then auth.login() with the user if we get one,

auth.login("ack!")

# or messages.error() if we get None.

return redirect("/")

1 There was actually an attempt to mitigate this problem in Python 3.5, with the addition of an unsafe
argument that defaults to False, which will cause the mock to raise AttributeError for some common
misspellings of assert_. Just not, for example, the one I'm using here—so I prefer not to rely on that. More
info in the Python docs.

2 If youre using Pytest, there’s an additional benefit to seeing the assert keyword rather than a normal method
call: it makes the assert pop out.

510 | Chapter21: Using Mocks for Test Isolation


https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock
https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock.assert_called

Ack, indeed!

$ python src/manage.py test accounts

[...]

ERROR: test_redirects_to_home_page
[...]

TypeError: login() missing 1 required positional argument: 'user'

FAIL: test_calls_auth_login_with_user_if_there_is_one [...]
[...]

AssertionError: call('ack!') != call(<WSGIRequest: GET

' Jaccounts/login?token=[...]

[...]
Ran 17 tests in 0.026s

FAILED (failures=1, errors=1)

That’s one expected failure from our mocky test, and one (more) unexpected failure
from the non-mocky test.

Let’s see if we can fix them:

src/accounts/views.py (ch211014)

def login(request):

# TODO: call authenticate(),

user = auth.authenticate(uid=request.GET["token"])

# then auth.login() with the user if we get one,

auth.login(request, user)

# or messages.error() if we get None.

return redirect("/")

Well, that does fix our mocky test, but not the other one; it now has a slightly
different complaint:

ERROR: test_redirects_to_home_page
(accounts.tests.test_views.LoginViewTest.test_redirects_to_home_page)

[...]

File "...goat-book/src/accounts/views.py", line 33, in login
auth.login(request, user)
[...]

AttributeError: 'AnonymousUser' object has no attribute '_meta'

It's because we're still calling auth.login indiscriminately on any kind of user, and
that’s causing problems back in our original test for the redirect, which isn’t currently
mocking out auth. login.

Starting Again: Test-Driving Our Implementation with Mocks | 511



We can get back to passing like this:

src/accounts/views.py (ch211015)
def login(request):
# TODO: call authenticate(),
if user := auth.authenticate(uid=request.GET["token"]):
# then auth.login() with the user if we get one,
auth.login(request, user)

This gets our unit test passing:

$ python src/manage.py test accounts

[...]

0K

Using .return_value During Test Setup

I'm a little nervous that we've introduced an if without an explicit test for it. Testing
the unhappy path will reassure me. We can use our existing test for the error case to
crib from.

We want to be able to set up our mocks to say: auth.authenticate() should return
None. We can do that by setting the . return_value on the mock:

src/accounts/tests/test_views.py (ch211016)

.patch("accounts.views.auth")
def test_adds_error_message_if_auth_user_1is_None(self, mock_auth):
mock_auth.authenticate.return_value = None @

response = self.client.get("/accounts/login?token=abcd123", follow=True)

message = list(response.context["messages"])[0]
self.assertEqual( @

message.message,

"Invalid login link, please request a new one",

)

self.assertEqual(message.tags, "error"

@ We use .return_value on our mock once again. But this time, we assign to it
before it’s used (in the setup part of the test—aka the “arrange” or “given” phase),
rather than reading from it (in the assert/“when” part), as we did earlier.

©® Our asserts are copied across from the existing test for the error case,
DONT_test_shows_login_error_if_token_invalid().

512 | Chapter21: Using Mocks for Test Isolation



That gives us this somewhat cryptic, but expected failure:

ERROR: test_adds_error_message_if_auth_user_is_None [...]

[...]
message = list(response.context["messages"])[0]
ANAN

IndexError: list index out of range

Essentially, that’s saying there are no messages in our response. We can get it passing
like this, starting with a deliberate mistake as always:

src/accounts/views.py (ch211017)
def login(request):
# TODO: call authenticate(),
if user := auth.authenticate(uid=request.GET["token"]):
# then auth.login() with the user if we get one,
auth.login(request, user)
else:
# or messages.error() if we get None.
messages.error(request, "boo")
return redirect("/")

Which gives us:
AssertionError: 'boo' != 'Invalid login link, please request a new one'

And so:

src/accounts/views.py (ch211018)
def login(request):

# TODO: call authenticate(),
if user := auth.authenticate(uid=request.GET["token"]):

# then auth.login() with the user if we get one,

auth.login(request, user)
else:

# or messages.error() i1f we get None.

messages.error(request, "Invalid login link, please request a new one")
return redirect("/")

Now our tests pass:

$ python src/manage.py test accounts

[...]
Ran 18 tests in 0.025s

0K

Starting Again: Test-Driving Our Implementation with Mocks | 513



And we can do a final refactor to remove those comments:

from

src/accounts/views.py (ch211019)
import Token @

def login(request): @
if user := auth.authenticate(uid=request.GET["token"]):

auth.login(request, user)

else:

messages.error(request, "Invalid login link, please request a new one")

return redirect("/")

@ We no longer need to explicitly import the user model

@ and our view is down to just five lines.

Lovely! What's next?

UnDONTifying

Remember we still have the DONTified, non-mocky tests? Let’s re-enable now to
sense-check that our mocky tests have driven us to the right place:

@@ -63,7

- def

@@ -74,7

+ def

src/accounts/tests/test_views.py (ch211020)
+63,7 @@ class LoginViewTest(TestCase):
response = self.client.get("/accounts/login?token=abcd123")
self.assertRedirects(response, "/")

DONT_test_logs_1in_1if_given_valid_token(self):
test_logs_in_if_given_valid_token(self):

anon_user = auth.get_user(self.client)
self.assertEqual(anon_user.is_authenticated, False)

+74,7 @@ class LoginViewTest(TestCase):
self.assertEqual(user.is_authenticated, True)
self.assertEqual(user.email, "edith@example.com")

DONT_test_shows_login_error_if_token_invalid(self):
test_shows_login_error_1if_token_invalid(self):
response = self.client.get("/accounts/login?token=invalid-token", follow=True)

Sure enough, they both pass:

$ python src/manage.py test accounts

[...]

Ran 20 tests in 0.025s

0K

514

| Chapter21: Using Mocks for Test Isolation



Deciding Which Tests to Keep

We now definitely have duplicate tests:

src/accounts/tests/test_views.py

class LoginViewTest(TestCase):
def test_redirects_to_home_page(self):

[...]

def test_logs_1in_1if_given_valid_token(self):
[...]

def test_shows_login_error_1if_token_1invalid(self):

[...]

.patch("accounts.views.auth")
def test_calls_authenticate_with_uid_from_get_request(self, mock_auth):

[...]

.patch("accounts.views.auth")
def test_calls_auth_login_with_user_1if_there_1is_one(self, mock_auth):

[...]

.patch("accounts.views.auth")
def test_adds_error_message_if_auth_user_1is_None(self, mock_auth):

[...]

The redirect test could stay the same whether we're using mocks or not. We then have
two non-mocky tests for the happy and unhappy paths, and three mocky tests:

1. One checks that we are integrated with our auth backend correctly.

2. One checks that we call the built-in auth.login function correctly, which tests
the happy path.

3. And one checks that we set an error message in the unhappy path.

Deciding Which TeststoKeep | 515



I think there are lots of ways to justify different choices here, but my instinct tends
to be to avoid using mocks if you can. So, I propose we delete the two mocky tests
for the happy and unhappy paths, as they are reasonably covered by the non-mocky
ones. But I think we can justify keeping the first mocky test, because it adds value
by checking that were doing our authentication the “right” way—i.e., by calling into
Django’s auth.authenticate() function (instead of, for example, instantiating and
calling our auth backend ourselves, or even just implementing authentication inline
in the view).

“Test behaviour, not implementation” is a GREAT rule of thumb
for tests. But sometimes, the fact that you’re using one implementa-
tion rather than another really is important. In these cases, a mocky
test can be useful.

So let’s delete our last two mocky tests. I'm also going to rename the remaining one to
make our intention clear; we want to check we are using the Django auth library:

src/accounts/tests/test_views.py (ch211021)

.patch("accounts.views.auth")
def test_calls_django_auth_authenticate(self, mock_auth):

[...]
And were down to 17 tests:

$ python src/manage.py test accounts

[...]
Ran 18 tests in 0.015s

0K

516 | Chapter21: Using Mocks for Test Isolation



The Moment of Truth: Will the FT Pass?

We're just about ready to try our functional test! Let’s just make sure our base
template shows a different navbar for logged-in and non-logged-in users. Our FT
relies on being able to see the user’s email in the navbar in the logged-in state, and it
needs a “Log out” button too:

src/lists/templates/base.html (ch211022)

<nav class="navbar">
<div class="container-fluid">
<a class="navbar-brand" href="/">Superlists</a>
{% if user.email %} ©@
<span class="navbar-text">Logged in as {{ user.email }}</span>
<form method="POST" action="TODO">
{% csrf_token %}
<button id="id_logout" class="btn btn-outline-secondary" type="submit">
Log out
</button>
</form>
{% else %}
<form method="POST" action="{% url 'send_login_email' %}">
<div class="input-group">
<label class="navbar-text me-2" for="id_email_input">
Enter your email to log in
</label>
<input
id="1d_email_input"
name="email"
class="form-control"
placeholder="your@email.com"
/>
{% csrf_token %}
</div>
</form>
{% endif %}
</div>
</nav>

@ Heresanew {% if %}, and navbar content for logged-in users.

The Moment of Truth: Will the FTPass? | 517



OK, there’s a to-do in there about the log-out button. We'll get to that, but how does
our FT look now?

$ python src/manage.py test functional_tests.test_login
[...]

Ran 1 test in 3.282s

0K

It Works in Theory! Does It Work in Practice?

Wow! Can you believe it? I scarcely can! Time for a manual look around with
runserver:

$ python src/manage.py runserver
[...]
Internal Server Error: /accounts/send_login_email
Traceback (most recent call last):
File "...goat-book/accounts/views.py", line 20, in send_login_email

ConnectionRefusedError: [Errno 111] Connection refused

Using Our New Environment Variable, and Saving It to .env

You'll probably get an error, like I did, when you try to run things manually. It’s
because of two things.

Firstly, we need to re-add the email configuration to settings.py:

src/superlists/settings.py (ch211023)
EMAIL_HOST = "smtp.gmail.com"
EMAIL_HOST_USER = "obeythetestinggoat@gmail.com"
EMAIL_HOST_PASSWORD = os.environ.get("EMAIL_PASSWORD")
EMAIL_PORT = 587
EMAIL_USE_TLS = True

Secondly, we (probably) need to reset the EMAIL_PASSWORD in our shell:

$ export EMAIL_PASSWORD="yoursekritpasswordhere"

518 | Chapter21: Using Mocks for Test Isolation



Using a Local .env File for Development

Until now, we've not needed to “save” any of our local environment variables, because
the command-line ones are easy to remember and type, and we've made sure all the
other ones that affect config settings have sensible defaults for dev. But there’s just no
way to get a working login system without this one!

Rather than having to go look up this password every time you start a new shell, it’s
quite common to save these sorts of settings into a local file in your project folder
named .env. Its a convention that makes it a hidden file, on Unix-like systems at
least:

$ echo .env >> .gitignore # we don't want to commit our secrets into git!
$ echo EMAIL_PASSWORD="yoursekritpasswordhere" >> .env
$ set -a; source .env; set +a;

It does mean you have to remember to do that weird set -a; source... dance,
every time you start working on the project, as well as remembering to activate your
virtualenv.

If you search or ask around, you'll find there are some tools and shell plugins that
load virtualenvs and .env files automatically, or Django plugins that handle this stuff
too. A few options:

 Django-specific: django-environ or django-dotenv
o More general Python project management: Pipenv

o Or even: roll your own

And now...
$ python src/manage.py runserver

...you should see something like Figure 21-2.

It Works in Theory! Does It Work in Practice? | 519


https://django-environ.readthedocs.io
https://github.com/jpadilla/django-dotenv
https://docs.pipenv.org
https://oreil.ly/F9iV3

Superlists Enter your email to log in = your@email.com

Check your email, we've sent you a link you can use to log in.

Start a new
To-Do list

Enter a to-do item

Figure 21-2. Check your email...

Woohoo!

I've been waiting to do a commit up until this moment, just to make sure everything
works. At this point, you could make a series of separate commits—one for the
login view, one for the auth backend, one for the user model, one for wiring up the
template. Or you could decide that—because theyre all interrelated, and none will
work without the others—you may as well just have one big commit:

$ git status

$ git add .

$ git diff --staged

$ git commit -m "Custom passwordless auth backend + custom user model"

520 | Chapter21: Using Mocks for Test Isolation



. Lo Jou/ view calls dyango. contrib.avth./o 05—
ovt

Finishing Off Our FT: Testing Logout

The last thing we need to do before we call it a day is to test the logout button. We
extend the FT with a couple more steps:

src/functional_tests/test_login.py (ch211024)

[...]
# she i1s logged in!
self.wailt_for(

lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_logout"),
)
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertIn(TEST_EMAIL, navbar.text)

# Now she logs out
self.browser.find_element(By.CSS_SELECTOR, "#id_logout").click()

# She 1s logged out
self.wailt_for(
lambda: self.browser.find_element(By.CSS_SELECTOR, "input[name=email]")

)
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertNotIn(TEST_EMAIL, navbar.text)

With that, we can see that the test is failing because the logout button doesn’t have a
valid URL to submit to:

$ python src/manage.py test functional_tests.test_login

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: input[name=email]; [...]

Finishing Off Qur FT: Testing Logout | 521



So, let’s tell the base template that we want a new URL named “logout”™

src/lists/templates/base.html (ch211025)

{% if user.email %}
<span class="navbar-text">Logged in as {{ user.email }}</span>
<form method="POST" action="{% url 'logout' %}">
{% csrf_token %}
<button id="1d_logout" class="btn btn-outline-secondary" type="submit">
Log out
</button>
</form>
{% else %}

If you try the FTs at this point, you’ll see an error saying that the URL doesn’t exist

yet:

$ python src/manage.py test functional_tests.test_login

Internal Server Error: /

[...]

django.urls.exceptions.NoReverseMatch: Reverse for 'logout' not found. 'logout'
is not a valid view function or pattern name.

ERROR: test_login_using_magic_link
(functional_tests.test_login.LoginTest.test_login_using_magic_link)

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: #id_logout; [...]

Implementing a logout URL is actually very simple: we can use Django’s built-in
logout view, which clears down the user’s session and redirects them to a page of our

choice:
src/accounts/urls.py (ch211026)
from import views as auth_views
from import path

from . import views

urlpatterns = [
path("send_login_email", views.send_login_email, name="send_login_email"),
path("login", views.login, name="login"),
path("logout", auth_views.LogoutView.as_view(next_page="/"), name="logout"),

522

| Chapter21: Using Mocks for Test Isolation


https://docs.djangoproject.com/en/5.2/topics/auth/default/#module-django.contrib.auth.views
https://docs.djangoproject.com/en/5.2/topics/auth/default/#module-django.contrib.auth.views

And that gets us a fully passing FT—indeed, a fully passing test suite:

$ python src/manage.py test functional_tests.test_login

[...]

OK

$ cd src && python manage.py test
[...]

Ran 56 tests in 78.124s

0K

We're nowhere near a truly secure or acceptable login system here.
As this is just an example app for a book, we'll leave it at that, but
in “real life” youd want to explore a lot more security and usability

\ issues before calling the job done. We're dangerously close to “roll-
ing our own crypto” here, and relying on a more established login
system would be much safer. Read more at https://security.stackex
change.com/a/18198.

In the next chapter, we'll start trying to put our login system to good use. In the
meantime, do a commit and enjoy this recap.

Finishing Off Our FT: Testing Logout | 523


https://security.stackexchange.com/a/18198
https://security.stackexchange.com/a/18198

On Mocking in Python

Using mock.return_value

The .return_value attribute on a mock can be used in two ways. You can read
it, to access the return value of a mocked-out function, and thus check on how
it gets used later in your code; this usually happens in the “assert” or “then” part
of your test. Alternatively, you can assign to it, usally up-front in the “arrange” or
“given” part of your test, as a way of saying “I want this mocked-out function to
return a particular value”.

Mocks can ensure test isolation and reduce duplication

You can use mocks to isolate different parts of your code from each other, and
thus test them independently. This can help you to avoid duplication, because
youre only testing a single layer at a time, rather than having to think about
combinations of interactions of different layers. Used extensively, this approach
leads to “London-style” TDD, but that’s quite different from the style I mostly
follow and show in this book.

Mocks can enable you to verify implementation details

Most tests should test behaviour, not implementation. At some point though, we
decided using a particular implementation was important. And so, we used a
mock as a way to verify that, and to document it for our future selves.

There are alternatives to mocks, but they require rethinking how your code is structured

In a way, mocks make it “too easy”. In programming languages that lack Python’s
dynamic ability to monkeypatch things at runtime, developers have had to work
on alternative ways to test code with dependencies. While these techniques
can be more complex, they do force you to think about how your code is
structured—to cleanly identify your dependencies and build clean abstractions
and interfaces around them. Further discussion is beyond the scope of this book,
but check out Cosmic Python.

524

Chapter 21: Using Mocks for Test Isolation



http://cosmicpython.com

CHAPTER 22

Test Fixtures and a Decorator
for Explicit Waits

Now that we have a functional authentication system, we want to use it to identify
users, and to show them all the lists they have created.

To do that, were going to have to write FTs that have a logged-in user. Rather than
making each test go through the (time-consuming) login email dance, we want to be
able to skip that part.

This is about separation of concerns. Functional tests aren’t like unit tests, in that they
don’t usually have a single assertion. But, conceptually, they should be testing a single
thing. There’s no need for every single FT to test the login/logout mechanisms. If we
can figure out a way to “cheat” and skip that part, well spend less time waiting for
tests to repeat these duplicated setup steps.

Don't overdo de-duplication in FTs. One of the benefits of an FT
is that it can catch strange and unpredictable interactions between
different parts of your application.

In this short chapter, we'll start writing our new FT, and use that as an opportunity
to talk about de-duplication using test fixtures for FTs. We'll also refactor out a nice
helper for explicit waits, using Python’s lovely decorator syntax.

525



Skipping the Login Process by Pre-creating a Session

It’s quite common for a user to return to a site and still have a cookie, which means
they are “pre-authenticated”, so this isn’t an unrealistic cheat at all. Here’s how you can
set it up:

src/functional_tests/test_my_lists.py (ch221001)

from import settings

from import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
from import SessionStore

from import FunctionalTest

User = get_user_model()

class MyListsTest(FunctionalTest):
def create_pre_authenticated_session(self, email):

user = User.objects.create(email=email)

session = SessionStore()

session[SESSION_KEY] = user.pk @

session[BACKEND _SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[O]

session.save()

## to set a cookie we need to first visit the domain.

## 404 pages load the quickest!

self.browser.get(self.live_server_url + "/404_no_such_url/")

self.browser.add_cookie(

dict(

name=settings.SESSION_COOKIE_NAME,
value=session.session_key, @
path:”/“ s

@ We create a session object in the database. The session key is the primary key of
the user object (which is actually the user’s email address).

© We then add a cookie to the browser that matches the session on the server—on
our next visit to the site, the server should recognise us as a logged-in user.

Note that, as it is, this will only work because were using LiveServerTestCase, so
the User and Session objects we create will end up in the same database as the test
server. At some point, we'll need to think about how this will work against Docker or
staging.

526 | Chapter22: Test Fixtures and a Decorator for Explicit Waits



Django Sessions: How a User’s Cookies Tell the Server
They Are Authenticated

This is an attempt to explain sessions, cookies, and authentication in Django.

HTTP is a “stateless” protocol, meaning that the protocol itself doesn't keep track of
any state from one request to the next, and each request is independent of the next.
There’s no built-in way to tell that a series of requests come from the same client.

For this reason, servers need a way of recognising different clients with every single
request. The usual solution is to give each client a unique session ID, which the
browser will store in a text file called a “cookie” and send with every request.

The server will store that ID somewhere (by default, in the database), and then it can
recognise each request that comes in as being from a particular client.

If you log in to the site using the dev server, you can actually take a look at your
session ID by hand if you like. It’s stored under the key sessionid by default. See
Figure 22-1.

) | To-Dolists

C oD /localhost:800(

Superlists Logged in as obeythetestinggoat@gmail.com

¢ 0

L O e

Start a new To-Do list

Enter a tn-dn item
R {3 Inspector Console [ Debugger N Network {} Style Editor () Performance [E) Storage »» 01 () - X
» B cache storage  Filter ltems + @ Bl Y Filtervalues

v E Cookies Name Value Domain Path Expires / Max- ¥ Data

® nttp:/flocalhost:8000 csrftoken | fsupT8UVfcic... | localhost / Wed, 10 Jun2 ¥ f
sessionid  f7g6lp5v48yw... localhost / Wed, 25 Jun Created:"Wed, 11 Jun 2025 15:50:45 GMT"
Domain:"localhost"
» B Local storage Expires / Max-Age:"Wed, 25 Jun 2... 15:50:45 GMT"
» [ session Storage HostOnly:true
HttpOnly:true
Last Accessed:"Wed, 11 Jun 2025 15:50:45 GMT"
Path:"f"
SamesSite:"Lax"

» B indexed DB

Secure:false
Size:41

Figure 22-1. Examining the session cookie in the DevTools UI
These session cookies are set for all visitors to a Django site, whether they’re logged in
or not.

When we want to recognise a client as being a logged-in and authenticated user,
again, rather than asking the client to send their username and password with every

Skipping the Login Process by Pre-creating a Session | 527



single request, the server can actually just mark that client’s session as authenticated,
and associate it with a user ID in its database.

A Django session is a dictionary-like data structure, and the user ID is stored under
the key given by django.contrib.auth.SESSION_KEY. You can check this out in
a . /manage.py shell if you like:

You can also store any other information you like on a user’s session, as a way of
temporarily keeping track of some state. This works for non-logged-in users too.
Just use request.session inside any view, and it works as a dictionary. There’s more
information in the Django docs on sessions.

$ python src/manage.py shell
[...]

In [1]: from django.contrib.sessions.models import Session

# substitute your session id from your browser cookie here

In [2]: session = Session.objects.get(
session_key="8u0pygdy9blo696g3n40078ygt618y0y"

)

In [3]: print(session.get_decoded())
{'_auth_user_1id': 'obeythetestinggoat@gmail.com', '_auth_user_backend"':
'accounts.authentication.PasswordlessAuthenticationBackend'}

Checking That It Works

To check that the create_pre_authenticated_session() system works, it would
be good to reuse some of the code from our previous test. Let's make a couple
of functions: wait_to_be_logged_in and wait_to_be_logged_out. To access them
from a different test, we'll need to pull them up into FunctionalTest. We'll also
tweak them slightly so that they can take an arbitrary email address as a parameter:

src/functional_tests/base.py (ch221002)

class FunctionalTest(StaticLiveServerTestCase):

[...]

def wait_to_be_logged_in(self, email):
self.wailt_for(
lambda: self.browser.find_element(By.CSS_SELECTOR, "#id_logout"),
)
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertIn(email, navbar.text)

def wailt_to_be_logged_out(self, email):
self.wailt_for(
lambda: self.browser.find_element(By.CSS_SELECTOR, "input[name=email]")
)
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertNotIn(email, navbar.text)

528

Chapter 22: Test Fixtures and a Decorator for Explicit Waits


https://docs.djangoproject.com/en/5.2/topics/http/sessions

Hmm, that’s not bad. But 'm not quite happy with the amount of duplication of
watit_for stuff in here. Let's make a note to come back to it and let’s first get these
helpers working:

o Clean yp wart_+or stvf¥in basepy.

1R o Ve W N\ L e
N e A > ~ N - v
/ ~. L N N \,

First, we use them in test_login.py:

src/functional_tests/test_login.py (ch221003)
def test_login_using_magic_link(self):
[...]
# she is logged in!
self.walt_to_be_logged_in(email=TEST_EMAIL)

# Now she logs out
self.browser.find_element(By.CSS_SELECTOR, "#id_logout").click()

# She is logged out
self.walt_to_be_logged_out(email=TEST_EMAIL)

Just to make sure we haven’t broken anything, we rerun the login test:

$ python src/manage.py test functional_tests.test_login

[...]
oK

And now we can write a placeholder for the “My lists” test, to see if our pre-
authenticated session creator really does work:

src/functional_tests/test_my_lists.py (ch221004)
def test_logged_in_users_lists_are_saved_as_my_lists(self):
email = "edith@example.com"
self.browser.get(self.live_server_url)
self.wait_to_be_logged_out(email)

# Edith is a logged-in user
self.create_pre_authenticated_session(email)
self.browser.get(self.live_server_url)
self.walt_to_be_logged_in(email)

That gets us:

Skipping the Login Process by Pre-creating a Session | 529



$ python src/manage.py test functional_tests.test_my_lists

[...]
0K

That’s a good place for a commit:

$ git add src/functional_tests
$ git commit -m "test_my_lists: precreate sessions, move login checks into base"

JSON Test Fixtures Considered Harmful

When we pre-populate the database with test data—as we’'ve done here with the User
object and its associated Session object—what we're doing is setting up what’s called
a “test fixture”

If you look up “Django fixtures”, you’ll find that Django has a built-in way of saving
objects from your database using JSON (using manage.py dumpdata), and automati-
cally loading them in your test runs using the fixtures class attribute on TestCase.

You'll find people out there saying not to use JSON fixtures, and I tend to agree.
They’re a nightmare to maintain when your model changes. Plus, it’s difficult for the
reader to tell which of the many attribute values specified in the JSON are critical for
the behaviour under test, and which of them are just filler.

Finally, even if tests start out sharing fixtures, sooner or later one test will want
slightly different versions of the data, and you end up copying the whole thing around
to keep them isolated. Again, it’s hard to tell what’s relevant to the test and what is just
happenstance.

It’s usually much more straightforward to just load the data directly using the Django
ORM.

Once you have more than a handful of fields on a model,
and/or several related models, you’ll want to factor out some
nice helper methods with descriptive names to build out your
data. A lot of people also like factory_boy, but I think the
most important thing is the descriptive names.

Our Final Explicit Wait Helper: A Wait Decorator

We've used decorators a few times in our code so far, but it’s time to learn how they
actually work by making one of our own. First, let'’s imagine how we might want
our decorator to work. It would be nice to be able to replace all the custom wait/retry/
timeout logic in wait_for_row_in_list_table() and the inline self.wait_fors()
in the wait_to_be_logged_in/out. Something like this would look lovely:

530 | Chapter22: Test Fixtures and a Decorator for Explicit Waits


https://oreil.ly/Nklcr
https://factoryboy.readthedocs.org

src/functional_tests/base.py (ch221005)

def wait_for_row_in_list_table(self, row_text):
rows = self.browser.find_elements(By.CSS_SELECTOR, "#id_list_table tr")
self.assertIn(row_text, [row.text for row in rows])

def wait_to_be_logged_in(self, email):
self.browser.find_element(By.CSS_SELECTOR, "#id_logout")
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertIn(email, navbar.text)

def wait_to_be_logged out(self, email):
self.browser.find_element(By.CSS_SELECTOR, "input[name=email]")
navbar = self.browser.find_element(By.CSS_SELECTOR, ".navbar")
self.assertNotIn(email, navbar.text)

Are you ready to dive in? Although decorators are quite difficult to wrap your
head around,' the nice thing is that we've already dipped our toes into functional
programming in our self.wait_for() helper function. That’s a function that takes
another function as an argument—and a decorator is the same. The difference is that
the decorator doesn’t actually execute any code itself; it returns a modified version of
the function that it was given.

Our decorator wants to return a new function, which will keep retrying the function
being decorated—catching our usual exceptions until a timeout occurs. Here’s a first
cut:

src/functional_tests/base.py (ch221006)
def wait(fn): @
def modified_fn(): ©
start_time = time.time()
while True: @
try:
return fn() ©
except (AssertionError, WebDriverException) as e: @
if time.time() - start_time > MAX_WAIT:
raise e
time.sleep(0.5)

return modified_fn @

1 I'know it took me a long time before I was comfortable with them, and I still have to think about them quite
carefully whenever I make one.

Our Final Explicit Wait Helper: A Wait Decorator | 531



]

(5]

A decorator is a way of modifying a function; it takes a function as an
argument...

...and returns another function as the modified (or “decorated”) version.
Here’s where we define our modified function.

And here’s our familiar loop, which will keep catching those exceptions until the
timeout.

And as always, we call our original function and return immediately if there are
no exceptions.

That’s almost right, but not quite; try running it?

$ python src/manage.py test functional_tests.test_my_lists
[...]
self.wait_to_be_logged_out(email)
TypeError: wait.<locals>.modified_fn() takes O positional arguments but 2 were
given

532

| Chapter22: Test Fixtures and a Decorator for Explicit Waits



Unlike in self.wait_for, the decorator is being applied to functions that have
arguments:

src/functional_tests/base.py

def wait_to_be_logged_in(self, email):
self.browser.find_element(By.CSS_SELECTOR, "#id_logout")
[...]

wait_to_be_logged_in takes self and email as positional arguments. But when it’s
decorated, it’s replaced with modified_fn, which currently takes no arguments. How
do we magically make it so our modified_fn can handle the same arguments as
whatever function the decorator is given?

The answer is a bit of Python magic, *args and **kwargs, more formally known as
“variadic arguments” (apparently—I only just learned that):

src/functional_tests/base.py (ch221007)
def wait(fn):
def modified _fn(*args, **kwargs): @
start_time = time.time()
while True:
try:
return fn(*args, **kwargs) @
except (AssertionError, WebDriverException) as e:
if time.time() - start_time > MAX_WAIT:
raise e
time.sleep(0.5)

return modified_fn

(1] Using *args and **kwargs, we specify that modified_fn() may take any arbi-
trary positional and keyword arguments.

©® As we've captured them in the function definition, we make sure to pass those
same arguments to fn() when we actually call it.

One of the fun things this can be used for is to make a decorator that changes the
arguments of a function. But we won’t get into that now. The main thing is that our
decorator now works!

$ python src/manage.py test functional_tests.test_my_lists

[...]
0K

Our Final Explicit Wait Helper: A Wait Decorator | 533


https://docs.python.org/3/tutorial/controlflow.html#arbitrary-argument-lists

And do you know what's truly satisfying? We can use our wait decorator for our
self.wait_for helper as well! Like this:

src/functional_tests/base.py (ch221008)

def wait_for(self, fn):
return fn()

Lovely! Now all our wait/retry logic is encapsulated in a single place, and we
have a nice easy way of applying those waits—either inline in our FTs using
self.wait_for(), or on any helper function using the @watit decorator.

Let’s just check all the FTs still pass of course:

Ran 8 tests in 19.379s

0K

Do a commit, and we’re good to cross off that scratchpad item:

In the next chapter, we'll try to deploy our code to staging, and use the pre-
authenticated session fixtures on the server. As we'll see, it'll help us catch a little
bug or two!

534 | Chapter22: Test Fixtures and a Decorator for Explicit Waits



Lessons Learned

Decorators
Decorators can be a great way of abstracting out different levels of concerns.
They let us write our test assertions without having to think about waits at the
same time.

De-duplicating your FT5, with caution

Every single FT doesn't need to test every single part of your application. In our
case, we wanted to avoid going through the full login process for every FT that
needs an authenticated user, so we used a test fixture to “cheat” and skip that part.
You might find other things you want to skip in your FTs. A word of caution,
however: functional tests are there to catch unpredictable interactions between
different parts of your application, so be wary of pushing de-duplication to the
extreme.

Test fixtures
Test fixtures refers to test data that needs to be set up as a precondition before a
test is run—often this means populating the database with some information, but
as we've seen (with browser cookies), it can involve other types of preconditions.

Avoiding JSON fixtures
Django makes it easy to save and restore data from the database in JSON format
(and others) using the dumpdata and loaddata management commands. I would
tend to recommend against them, as they are painful to manage when your data-
base schema changes. Use the ORM, with some nicely named helper functions
instead.

Our Final Explicit Wait Helper: A Wait Decorator | 535






CHAPTER 23
Debugging and Testing Server Issues

Popping a few layers off the stack of things we're working on: we have nice wait-for
helpers; what were we using them for? Oh yes, waiting to be logged in. And why was
that? Ah yes, we had just built a way of pre-authenticating a user. Let’s see how that
works against Docker and our staging server.

The Proof Is in the Pudding: Using Docker to Catch
Final Bugs

Remember the deployment checklist from Chapter 18? Let’s see if it can’t come in
handy today!

First, we rebuild and start our Docker container locally, on port 8888:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/container.db.sqlite3",target=/home/nonroot/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-it superlists
[...]
=> => naming to docker.io/library/superlists [...]
[2025-01-27 22:37:02 +0000] [7] [INFO] Starting gunicorn 22.0.0
[2025-01-27 22:37:02 +0000] [7] [INFO] Listening at: http://0.0.0.0:8888 (7)
[2025-01-27 22:37:02 +0000] [7] [INFO] Using worker: sync
[2025-01-27 22:37:02 +0000] [8] [INFO] Booting worker with pid: 8

If you see an error saying bind source path does not exist,
you've lost your container database somehow. Create a new one
with touch contatiner.db.sqlite3.

537



Now let’s make sure our container database is fully up to date, by running migrate
inside the container:

$ docker exec $(docker ps --filter=ancestor=superlists -q) python manage.py migrate
Operations to perform:

Apply all migrations: accounts, auth, contenttypes, lists, sessions
Running migrations:

[...]

That little $(docker ps --filter=ancestor=superlists -q) is
a neat way to avoid manually looking up the container ID. An
alternative would be to just set the container name explicitly in our

docker run commands, using - -name.

And now, let’s do an FT run:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests
[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: #id_logout; [...]

[...]
AssertionError: 'Check your email' not found in 'Server Error (500)'
[...]

FAILED (failures=1, errors=1)

We can't log in—either with the real email system or with our pre-authenticated
session. Looks like our nice new authentication system is crashing when we run it in
Docker.

Let’s practice a bit of production debugging!

Inspecting the Docker Container Logs

When Django fails with a 500 or “unhandled exception” and DEBUG is off, it doesn’t
print the tracebacks to your web browser. But it will send them to your logs instead.

538 | Chapter23: Debugging and Testing Server Issues



Check Our Django LOGGING Settings

It's worth double-checking at this point that your settings.py still contains the LOGGING
settings that will actually send stuff to the console:

src/superlists/settings.py

LOGGING = {
"version": 1,
"disable_existing_loggers": False,

"handlers": {

"console": {"class": "logging.StreamHandler"},
1,
"loggers": {

"root": {"handlers": ["console"], "level": "INFO"},
}s

Rebuild and restart the Docker container if necessary, and then either rerun the FT, or
just try to log in manually.

If you switch to the terminal that’s running your Docker image, you should see the
traceback printed out in there:

Internal Server Error: /accounts/send_login_email
Traceback (most recent call last):

[...]
File "/src/accounts/views.py", line 16, in send_login_email
send_mail(
NNNNNNNNN A
"Your login link for Superlists",
ANANNNANNNNNNNNANNNANNNANNNNNNNNNNANNNAN
...<2 lines>...
[email],
AANANNNANN
)
N
[...]

self.connection.sendmail(
A

from_email, recipients, message.as_bytes(linesep="\r\n")
ANANNNANNNNNNNNANNNANNNANNNNNNNNNNNNNNNNNNANNNANNNANNNNNNNNNNNNAN

)

IAY
File "/usr/local/lib/python3.14/smtplib.py", line 876, in sendmail
raise SMTPSenderRefused(code, resp, from_addr)
smtplib.SMTPSenderRefused: (530, b'5.7.0 Authentication Required. [...]

Inspecting the Docker ContainerLogs | 539



Sure enough, that looks like a pretty good clue as to what’s going on: we're getting a
“sender refused” error when trying to send our email. Good to know our local Docker
setup can reproduce the error on the server!

Another Environment Variable in Docker

So, Gmail is refusing to let us send emails, is it? Now why might that be? “Authentica-
tion required”, you say? Oh, whoops; we haven't told the server what our password is!

As you might remember from earlier chapters, our settings.py expects to get the email
server password from an environment variable named EMAIL_PASSWORD:

src/superlists/settings.py
EMAIL_HOST_PASSWORD = os.environ.get("EMAIL_PASSWORD")

Let’s add this new environment variable to our local Docker container run command.
First, set your email password in your terminal if you need to:

$ echo SEMAIL_PASSWORD
# if that's empty, let's set it:
$ export EMAIL_PASSWORD="yoursekritpasswordhere"

Now let’s pass that environment variable through to our Docker container using one
more -e flag—this one fishing the env var out of the shell we’re in:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/container.db.sqlite3",target=/home/nonroot/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-e EMAIL_PASSWORD \
-it superlists

If you use -e without the =something argument, it sets the env var
inside Docker to the same value set in the current shell. It’s like
saying -e EMAIL_PASSWORD=$EMAIL_PASSWORD.

540 | Chapter 23: Debugging and Testing Server Issues



And now we can rerun our FT again. We'll narrow it down to just the test_login

test, because that’s the main one that has a problem:
$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests.test_login
[...]
ERROR: test_login_using_magic_link
(functional_tests.test_login.LoginTest.test_login_using_magic_link)

Traceback (most recent call last):
File "...goat-book/src/functional_tests/test_login.py", line 32, in
test_login_using_magic_link
email = mail.outbox.pop()
IndexError: pop from empty list
Well, not a pass, but the tests do get a little further. It looks like our server can now
send emails. (If you check the Docker logs, you'll see there are no more errors.) But

our FT is saying it can’t see any emails appearing in mail.outbox.

mail.outbox Won't Work Outside Django’s Test Environment

The reason is that mail.outbox is a local, in-memory variable in Django, so that’s
only going to work when our tests and our server are running in the same process—
like they do with unit tests or with LiveServerTestCase FTs.

When we run against another process, be it Docker or an actual server, we can’t
access the same mail.outbox variable. If we want to actually inspect the emails that
the server sends we need another technique in our tests against Docker (or later,
against the staging server).

Deciding How to Test “Real” Email Sending

This is a point at which we have to explore some trade-offs. There are a few different
ways we could test email sending:

1. We could build a “real” end-to-end test, and have our tests log in to an email
server using the POP3 protocol to retrieve the email from there. That’s what I did
in the first and second editions of this book.

2. We can use a service like Mailinator or Mailsac, which gives us an email account
to send to, along with APIs for checking what mail has been delivered.

3. We can use an alternative, fake email backend whereby Django will save the
emails to a file on disk, for example, and we can inspect them there.

4. We could give up on testing email on the server. If we have a minimal smoke test
confirming that the server can send emails, then we don’t need to test that they
are actually delivered.

Deciding How to Test “Real” Email Sending | 541


https://docs.djangoproject.com/en/5.2/topics/email/#file-backend

Table 23-1 lays out some of the pros and cons.

Table 23-1. Testing strategy trade-offs

Strategy Pros Cons

End-to-end with POP3 Maximally realistic, tests the whole system  Slow, fiddly, unreliable

Email testing service e.g., As realistic as real POP3, with better APls Slow, possibly expensive (and | don't

Mailinator/Mailsac for testing want to endorse any particular commercial
provider)

File-based fake email backend Faster, more reliable, no network calls, tests ~ Still fiddly, requires managing database
end-to-end (albeit with fake components)  and filesystem side effects

Giving up on testing email on Fast, simple Less confidence that things work “for real”
the server/Docker

We're exploring a common problem in testing integration with external systems; how
far should we go? How realistic should we make our tests?

In this case, I'm going to suggest we go for the last option, which is not to test email
sending on the server or in Docker. Email itself is a well-understood protocol (reader,
it’s been around since before I was born, and thats a while ago now), and Django has
supported sending email for more than a decade. So, I think we can afford to say, in
this case, that the costs of building testing tools for email outweigh the benefits.

I'm going to suggest we stick to using mail.outbox when were running local tests,
and we configure our FTs to just check that Docker (or, later, the staging server)
seems to be able to send email (in the sense of “not crashing”). We can skip the bit
where we check the email contents in our FT. Remember, we also have unit tests for
the email content!

I explore some of the difficulties involved in getting these kinds
of tests to work in Online Appendix: Functional Tests for External
Dependencies, so go check that out if this feels like a bit of a
cop-out!

542 | Chapter 23: Debugging and Testing Server Issues


https://www.obeythetestinggoat.com/book/appendix_fts_for_external_dependencies.html
https://www.obeythetestinggoat.com/book/appendix_fts_for_external_dependencies.html

Here’s where we can put an early return in the FT:

src/functional_tests/test_login.py (ch231009)

# A message appears telling her an email has been sent
self.wait_for(
lambda: self.assertIn(
"Check your email",
self.browser.find_element(By.CSS_SELECTOR, "body").text,

)

if self.test_server:
# Testing real email sending from the server is not worth it.
return

# She checks her email and finds a message
email = mail.outbox.pop()

This test will still fail if you don’t set EMAIL_PASSWORD to a valid value in Docker or
on the server, meaning it would still have warned us of the bug we started the chapter
with—so that’s good enough for now.

Here’s how we populate the FunctionalTest.test_server attribute:

src/functional_tests/base.py (ch231010)
class FunctionalTest(StaticLiveServerTestCase):
def setUp(self):
self.browser = webdriver.Firefox()
self.test_server = os.environ.get("TEST_SERVER") @
if self.test_server:
self.live_server_url = "http://" + self.test_server

@ We upgrade test_server to be an attribute on the test object, so we can access
it in various places in our FTs (we'll see several examples later). Sad to see our
walrus go, though!

And you can confirm that the FT fails if you don’t set EMAIL_PASSWORD in Docker, or
passes, if you do:

$ TEST_SERVER=1localhost:8888 python src/manage.py test functional_tests.test_login
[...]

0K

Now let’s see if we can get our FTs to pass against the server. First, we'll need to figure
out how to set that env var on the server.

Deciding How to Test “Real” Email Sending | 543



An Alternative Method for Setting Secret Environment
Variables on the Server

In Chapter 12, we dealt with setting the SECRET_KEY by generating a random value,
and then saving it to a file on the server. We could use a similar technique here. But,
just to give you an alternative, I'll show how to pass the environment variable directly
up to the container, without storing it in a file:

infra/deploy-playbook.yaml (ch231012)
env:
DJANGO_DEBUG_FALSE: "1"
DJANGO_SECRET_KEY: "{{ secret_key.content | b64decode }}"
DJANGO_ALLOWED_HOST: "{{ inventory_hostname }}"
DJANGO_DB_PATH: "/home/nonroot/db.sqlite3"
EMAIL_PASSWORD: "{{ lookup('env', 'EMAIL_PASSWORD') }}" @

© lookup() with env as its argument is how you look up local environment vari-
ables—i.e., the ones set on the computer you're running Ansible from.

This means you'll need the EMAIL_PASSWORD environment variable to be set on your
local machine every time you want to run Ansible.

Let’s consider some pros and cons of the two approaches:

o Saving the secret to a file on the server means you don’t need to “remember” or
store the secret anywhere on your own machine.

« In contrast, always passing it up from the local environment does mean you can
change the value of the secret at any time.

o In terms of security, they are fairly equivalent—in either case, the environment
variable is visible via docker 1inspect.

If we rerun our full FT suite against the server, you should see that
the login test passes, and were down to just one failure, in test_logged
_in_users_lists_are_saved_as_my_lists():

544 | Chapter 23: Debugging and Testing Server Issues



$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
[...]
ERROR: test_logged_1in_users_lists_are_saved_as_my_lists
(functional_tests.test_my_lists.MyListsTest.test_logged_in_users_lists_are_saved_[...]
Traceback (most recent call last):
File "...goat-book/src/functional_tests/test_my_lists.py", line 36, in
test_logged_1in_users_lists_are_saved_as_my_lists
self.wait_to_be_logged_in(email)
AANANANNAN

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: #id_logout; [...]

[...]

Ran 8 tests in 30.087s
FAILED (errors=1)

Let’s look into that next.

Debugging with SQL

Let’s switch back to testing locally against our Docker container:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests.test_my_lists
[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: #id_logout; [...]
FAILED (errors=1)
It looks like the attempt to create pre-authenticated sessions doesn’t work, so were

not being logged in. Let’s do a bit of debugging with SQL.

First, try logging in to your local “runserver” instance (where things definitely work)
and take a look in the normal local database, src/db.sqlite3:

$ sqlite3 src/db.sqlite3
SQLite version 3.43.2 2023-10-10 13:08:14
Enter ".help" for usage hints.

sqlite> select * from accounts_token; @
1|obeythetestinggoat@gmail.com|11d3e26d-32a3-4434-af71-5e0f62fefc52
2| obeythetestinggoat@gmail.com|25a570c8-736f-42e4-931b-ed5c410b5b51

sqlite> select * from django_session; @
tv2m5byccfs05gfpkc118k4pep097y3c| .eIxVjEsKgOAMQO-StcwBurIogTcYYgwzol. . .]

© We can do a SELECT * in our tokens table to see some of the tokens we've been
creating for our users.

©® And we can take a look in the django_session table. You should find the first
column matches the session ID you’ll see in your DevTools.

Debuggingwith SQL | 545



Let’s do a bit of debugging. Take a look in container.db.sqlite3:

$ sqlite3 container.db.sqlite3
SQLite version 3.43.2 2023-10-10 13:08:14
Enter ".help" for usage hints.

sqlite> select * from accounts_token; @

sqlite> select * from django_session; @

@ The users table is empty. (If you do see edith@example.com in here, its from a
previous test run. Delete and re-create the database if you want to be sure.)

@ And the sessions table is definitely empty.

Now, let’s try manually. If you visit localhost:8888 and log in—getting the
token from your email—you’ll see it works. You can also run functional_
tests.test_login and you’ll see that pass.

If we look in the database again, we'll see some more data:

$ sqlite3 container.db.sqlite3
SQLite version 3.43.2 2023-10-10 13:08:14
Enter ".help" for usage hints.

sqlite> select * from accounts_token;
3| obeythetestinggoat@gmail.com|115812a3-7d37-485c-9c15-337b12293f69
4| edith@example.com|a901bee9-88aa-4965-9277-a13723a6bfel

sqlite> select * from django_session;
09df51nmvpi137mpv5bwjoghh2a4y51h|.eJxVjEsKgOAMQO-[. . .]
So, there’s nothing fundamentally wrong with the Docker environment. It’s seems like
it’s specifically our test utility function create_pre_authenticated_session() that
isn’t working.

At this point, a little niggle in your head might be growing louder, reminding us of a
problem we anticipated in the last chapter: LiveServerTestCase only lets us talk to
the in-memory database. That’s where our pre-authenticated sessions are ending up!

Managing Fixtures in Real Databases

We need a way to make changes to the database inside Docker or on the server.
Essentially, we want to run some code outside the context of the tests (and the test
database) and in the context of the server and its database.

546 | Chapter 23: Debugging and Testing Server Issues


mailto:obeythetestinggoat@gmail.com
mailto:edith@example.com

A Django Management Command to Create Sessions

When trying to build a standalone script that works with Django (i.e., can talk to the
database and so on), there are some fiddly issues you need to get right, like setting the
DJANGO_SETTINGS_MODULE environment variable and setting sys.path correctly.

Instead of messing about with all that, Django lets you create your own “management
commands” (commands you can run with python manage.py), which will do all that
path-mangling for you. They live in a folder called management/commands inside
your apps:

$ mkdir -p src/functional_tests/management/commands

$ touch src/functional_tests/management/__init__.py

$ touch src/functional_tests/management/commands/__init__.py
The boilerplate in a management command is a class that inherits from
django.core.management.BaseCommand, and that defines a method called handle:

src/functional_tests/management/commands/create_session.py (ch231014)

from import settings

from import BACKEND_SESSION_KEY, SESSION_KEY, get_user_model
from import SessionStore

from import BaseCommand

User = get_user_model()

class Command(BaseCommand):
def add_arguments(self, parser):
parser.add_argument("email")

def handle(self, *args, **options):
session_key = create_pre_authenticated_session(options["email"])
self.stdout.write(session_key)

def create_pre_authenticated_session(email):
user = User.objects.create(email=email)
session = SessionStore()
session[SESSION_KEY] = user.pk
session[BACKEND_SESSION_KEY] = settings.AUTHENTICATION_BACKENDS[O]
session.save()
return session.session_key

We've taken the code for create_pre_authenticated_session from test_my_lists.py.
handle will pick up an email address from the parser, and then return the session key
that we'll want to add to our browser cookies, and the management command prints
it out at the command line.

Managing Fixtures in Real Databases | 547



Try it out:

$ python src/manage.py create_session a@b.com
Unknown command: 'create_session'. Did you mean clearsessions?

One more step: we need to add functional_tests to our settings.py so that its
recognised as a real app that might have management commands as well as tests:

src/superlists/settings.py (ch231015)
+++ b/superlists/settings.py
@@ -42,6 +42,7 @@ INSTALLED_APPS = [
"accounts",
"lists",
+ "functional_tests",

Beware of the security implications here. We're now adding some
remotely executable code for bypassing authentication to our
default configuration. Yes, someone exploiting this would need

\ to have already gained access to the server, so it was game over
anyway, but nonetheless, this is a sensitive area. If you were doing
something like this in a real application, you might consider adding
an if environment != prod, or similar.

Now it works:

$ python src/manage.py create_session a@b.com
qnslckvp2aga7tméexuivyb@oblakzzwl

If you see an error saying the auth_user table is missing, you may
need to run manage.py migrate. In case that doesn’t work, delete
the db.sqlite3 file and run migrate again to get a clean slate.

548 | Chapter 23: Debugging and Testing Server Issues



Getting the FT to Run the Management Command on the Server

Next, we need to adjust test_my_1lists so that it runs the local function when were
using the local in-memory test server from LiveServerTestCase. And, if we're run-
ning against the Docker container or staging server, it should run the management
command instead.

src/functional_tests/test_my_lists.py (ch231016)

from import settings

from import FunctionalTest

from import create_session_on_server @

from import create_pre_authenticated_session

class MyListsTest(FunctionalTest):
def create_pre_authenticated_session(self, email):
if self.test_server: @
session_key = create_session_on_server(self.test_server, email)
else:
session_key = create_pre_authenticated_session(email)

## to set a cookie we need to first visit the domain.
## 404 pages load the quickest!
self.browser.get(self.live_server_url + "/404_no_such_url/")
self.browser.add_cookie(
dict(

name=settings.SESSION_COOKIE_NAME,

value=session_key,

path:”/“ s

@ Programming by wishful thinking, let’s imagine we'll have a module called
container_commands with a function called create_session_on_server() in it.

© Heres the if where we decide which of our two session-creation functions to
execute.

Running Commands Using Docker Exec and (Optionally) SSH

You may remember docker exec from Chapter 9; it lets us run commands inside
a running Docker container. That’s fine for when were running against the local
Docker, but when were against the server, we need to SSH in first.

Managing Fixtures in Real Databases | 549



There’s a bit of plumbing here, but I've tried to break things down into small chunks:

src/functional_tests/container_commands.py (ch231018)

import subprocess

USER = "elspeth"

def

def

def

def

def

def

create_session_on_server(host, email):
return _exec_1in_container(
host, ["/venv/bin/python", "/src/manage.py", "create_session", email] @

)

_exec_1in_container(host, commands):
if "localhost" in host: @
return _exec_1in_container_locally(commands)
else:
return _exec_1in_container_on_server(host, commands)

_exec_1in_container_locally(commands):
print(f"Running {commands} on inside local docker container")
return _run_commands(["docker", "exec", _get_container_id()] + commands) ©

_exec_1in_container_on_server(host, commands):
print(f"Running {commands!r} on {host} inside docker container")
return _run_commands(
["ssh", f"{USER}@{host}", "docker", "exec", "superlists"] + commands @
)

_get_contatiner_1id():
return subprocess.check_output( @

["docker", "ps", "-q", "--filter", "ancestor=superlists"] ©
).strip()
_run_commands (commands) :

process = subprocess.run( @
commands,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
check=False,

)

result = process.stdout.decode()

if process.returncode != 0:
raise Exception(result)

print(f"Result: {result!r}")

return result.strip()

550

Chapter 23: Debugging and Testing Server Issues



@ We invoke our management command with the path to the virtualenv Python,
the create_session command name, and pass in the email we want to create a
session for.

® We dispatch to two slightly different ways of running a command inside a con-
tainer, with the assumption that a host on “localhost” is a local Docker container,
and the others are on the staging server.

© To run a command on the local Docker container, were going to use docker
exec, and we have a little extra hop first to get the correct container ID.

O To run a command on the Docker container that’s on the staging server, we still
use docker exec, but we do it inside an SSH session. In this case we don’t need
the container ID, because the container is always named “superlists”

© Finally, we use Python’s subprocess module to actually run a command. You can
see a couple of different ways of running it here, which differ based on how we're
handing errors and output; the details don’t matter too much.

Recap: Creating Sessions Locally Versus Staging
Does that all make sense? Perhaps a little ASCII-art diagram will help:

Locally:
B R + R T +
| MyListsTest | | .management.commands.create_session |
| .create_pre_authenticated_session | --> | .create_pre_authenticated_session |
| (locally) | | (locally) |
B R + R T +

R LT T + L L +
| MyListsTest | | .management.commands.create_session |
| .create_pre_authenticated_session | | .create_pre_authenticated_session |
| (locally) | | (in Docker) |
R LT T + L L +
| A
v |
B e R + |
| server_tools | R + R e EE e T LT +
| .create_session_on_server | --> | docker exec | --> | ./manage.py create_session |
| (locally) | LEEEE R + | (in Docker) |
R TR + R +

Managing Fixtures in Real Databases | 551



Against Docker on the server:

B e T + B e e R +
| MyListsTest | | .management.commands.create_session |
| .create_pre_authenticated_session | | .create_pre_authenticated_session |
| (locally) | | (on server) |
B e T + B e e R +
| A
v |
B TP + |
| server_tools | LEEEEE + EEEE R + R R R +
| .create_session_on_server | -> | ssh | -> | docker | -> | ./manage.py create_session |
| (locally) | | | | exec | | (on server) |
R R P + +e---- + B + B R +

We do love a bit of ASCII art now and again!

An Alternative for Managing Test Database Content:
Talking Directly to the Database

An alternative way of managing database content inside Docker, or on a server, would
be to talk directly to the database.

Because we're using SQLite, that involves writing to the file directly. This can be fiddly
to get right, because when were running inside Django’s test runner, Django takes
over the test database creation, so you end up having to write raw SQL and manage
your connections to the database directly.

There are also some tricky interactions with the filesystem mounts and Docker, as
well as the need to have the SECRET_KEY env var set to the same value as on the server.

If we were using a “classic” database server like PostgreSQL or MySQL, wed be able to
talk directly to the database over its port, and that’s an approach I've used successfully
in the past but it’s still quite tricky, and usually requires writing your own SQL.

Testing the Management Command

In any case, let’s see if this whole rickety pipeline works. First, locally, to check that we
didn’t break anything:

$ python src/manage.py test functional_tests.test_my_lists

[...]
oK

552 | Chapter 23: Debugging and Testing Server Issues


https://oreil.ly/Uk1y_
https://oreil.ly/Uk1y_

Next, against Docker—rebuild first:

$ docker build -t superlists . && docker run \
-p 8888:8888 \
--mount type=bind,source="$PWD/container.db.sqlite3",target=/home/nonroot/db.sqlite3 \
-e DJANGO_SECRET_KEY=sekrit \
-e DJANGO_ALLOWED_HOST=localhost \
-e DJANGO_DB_PATH=/home/nonroot/db.sqlite3 \
-e EMAIL_PASSWORD \
-it superlists

And then we run the FT (that uses our fixture) against Docker:

$ TEST_SERVER=1localhost:8888 python src/manage.py test functional_tests.test_my_lists

[...]
OK

Next, we run it against the server. First, we re-deploy to make sure our code on the
server is up to date:

$ ansible-playbook --user=elspeth -i staging.ottg.co.uk, infra/deploy-playbook.yaml -vv
And now we run the test:

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test \
functional_tests.test_my_lists

Found 1 test(s).

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

Running '/venv/bin/python /src/manage.py create_session edith@example.com' on
staging.ottg.co.uk inside docker container

Result: '7n0320gf179t2e7z30lv9ct7b3d4dmas\n’

Ran 1 test in 4.515s

oK
Destroying test database for alias 'default'...

Looking good! We can rerun all the tests to make sure...

$ TEST_SERVER=staging.ottg.co.uk python src/manage.py test functional_tests
[...]

[elspeth@staging.ottg.co.uk] run:
~/sites/staging.ottg.co.uk/.venv/bin/python

[...]

Ran 8 tests in 89.494s

0K

Hooray!

Testing the Management Command | 553



Test Database Cleanup

One more thing to be aware of: now that were running against a real database, we
don’t get cleanup for free any more. If you try running the tests twice—locally or
against Docker—you’ll run into this error:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests.test_my_lists

[...]

django.db.utils.IntegrityError: UNIQUE constraint failed: accounts_user.email
It’s because the user we created the first time we ran the tests is still in the database.
When we're running against Django’s test database, Django cleans up for us. Let’s try
and emulate that when were running against a real database:

src/functional_tests/container_commands.py (ch231019)

def reset_database(host):
return _exec_in_container(
host, ["/venv/bin/python", "/src/manage.py", "flush", "--noinput"]
)

And let’s add the call to reset_database() in our base test setUp() method:

src/functional_tests/base.py (ch231020)
from import reset_database

[...]

class FunctionalTest(StaticLiveServerTestCase):
def setUp(self):
self.browser = webdriver.Firefox()
self.test_server = os.environ.get("TEST_SERVER")
if self.test_server:
self.live_server_url = "http://" + self.test_server
reset_database(self.test_server)

If you try to run your tests again, you'll find they pass happily:

$ TEST_SERVER=localhost:8888 python src/manage.py test functional_tests.test_my_lists
[...]

OK

Probably a good time for a commit! :)

554 | Chapter 23: Debugging and Testing Server Issues



Warning: Be Careful Not to Run Test Code
Against the Production Server!

We're in dangerous territory now that we have code that can directly affect a database
on the server. You want to be very, very careful that you don’t accidentally blow away
your production database by running FTs against the wrong host.

You might consider putting some safeguards in place at this point. You almost defi-
nitely want to put staging and production on different servers, for example, and make
it so that they use different key pairs for authentication, with different passphrases.

I also mentioned not including the FT management commands in INSTALLED_APPS
for production environments.

This is similarly dangerous territory to running tests against clones of production
data. I could tell you a little story about accidentally sending thousands of duplicate
invoices to clients, for example. LFMF! And tread carefully.

Wrap-Up

Actually getting your new code up and running on a server always tends to flush
out some last-minute bugs and unexpected issues. We had to do a bit of work to get
through them, but we've ended up with several useful things as a result.

We now have a lovely generic wait decorator, which will be a nice Pythonic helper
for our FTs from now on. We've got some more robust logging configuration. We
have test fixtures that work both locally and on the server, and we've come out with a
pragmatic approach for testing email integration.

But before we can deploy our actual production site, wed better actually give the
users what they wanted—the next chapter describes how to give them the ability to
save their lists on a “My lists” page.

Wrap-Up | 555



Lessons Learned Catching Bugs in Staging

It’s nice to be able to repro things locally.
The effort we put into adapting our app to use Docker is paying off. We dis-
covered an issue in staging, and were able to reproduce it locally. That gives
us the ability to experiment and get feedback much quicker than trying to do
experiments on the server itself.

Fixtures also have to work remotely.
LiveServerTestCase makes it easy to interact with the test database using the
Django ORM for tests running locally. Interacting with the database inside
Docker is not so straightforward. One solution is docker exec and Django
management commands, as I've shown, but you should explore what works for
you—connecting directly to the database over SSH tunnels, for example.

Be very careful when resetting data on your servers.
A command that can remotely wipe the entire database on one of your servers is
a dangerous weapon, and you want to be really, really sure it’s never accidentally
going to hit your production data.

Logging is critical to debugging issues on the server.
At the very least, you’ll want to be able to see any error messages that are being
generated by the server. For thornier bugs, you’ll also want to be able to do the
occasional “debug print”, and see it end up in a file somewhere.

556 | Chapter 23: Debugging and Testing Server Issues



CHAPTER 24

Finishing “My Lists”: Outside-In TDD

In this chapter, Id like to talk about a technique called outside-in TDD. It’s pretty
much what we've been doing all along. Our “double-loop” TDD process, in which
we write the functional test first and then the unit tests, is already a manifestation of
outside-in—we design the system from the outside, and build up our code in layers.
Now I'll make it explicit, and talk about some of the common issues involved.

The Alternative; Inside-Out

The alternative to “outside-in” is to work “inside-out’, which is the way most people
intuitively work before they encounter TDD. After coming up with a design, the
natural inclination is sometimes to implement it starting with the innermost, lowest-
level components first.

For example, when faced with our current problem, providing users with a “My lists”
page of saved lists, the temptation is to start at the models layer: we probably want
to add an “owner” attribute to the List model object, reasoning that an attribute like
this is “obviously” going to be required. Once that’s in place, we would modify the
more peripheral layers of code—such as views and templates—taking advantage of
the new attribute, and then finally add URL routing to point to the new view.

It feels comfortable because it means youre never working on a bit of code that is
dependent on something that hasn’t yet been implemented. Each bit of work on the
inside is a solid foundation on which to build the next layer out.

But working inside-out like this also has some weaknesses.

557



Why Prefer “Outside-In"?

The most obvious problem with inside-out TDD is that it requires us to stray from
a TDD workflow. Our functional test’s first failure might be due to missing URL
routing, but we decide to ignore that and go off adding attributes to our database
model objects instead.

We might have ideas in our head about the desired behaviour of our inner layers like
database models, and often these ideas will be pretty good—but they are actually just
speculation about what’s really required, because we haven't yet built the outer layers
that will use them.

One problem that can occur is building inner components that are more general or
more capable than we actually need, which is a waste of time and an added source
of complexity for your project. Another common problem is that you create inner
components with an API that is convenient for their own internal design, but which
later turns out to be inappropriate for the calls that your outer layers would like to
make...worse still, you might end up with inner components which, you later realise,
don’t actually solve the problem that your outer layers need solved.

In contrast, working outside-in enables you to use each layer to imagine the most
convenient API you could want from the layer beneath it. Let’s see it in action.

The FT for “My Lists”

As we work through the following functional test, we start with the most outward-
facing (presentation layer), through to the view functions (or “controllers”), and lastly
the innermost layers, which in this case will be model code. See Figure 24-1.

558 | Chapter 24: Finishing “My Lists": Outside-In TDD



8

User Outside!
u :
Presentation layer )
(aka "view” in MVC) Templates

Views layer i
(aka “controllers” in MVC) Views ->| ol \
—I_/

Models layer Django models (g

—I_J

Database

%

=

Figure 24-1. The layer in our application

While were drawing diagrams, would it help to sketch out what we're imagining? See
Figure 24-2.

User email harry@example.com's lists

in header

Use first item

: « Drop off shoes for mending.
H « Call the ambassador.
. « Find a good Prolog tutorial.

text as link text.

Figure 24-2. A sketch of the “My lists” page

The FT for “My Lists” | 559



Let’s incarnate this idea in FT form. We know our create_pre_authenticated_ses
sion code works now, so we can just fill out the actual body of the test to describe
how a user might interact with this prospective “My lists” page:

src/functional_tests/test_my_lists.py (ch241001)
from selenium.webdriver.common.by import By

[...]

def test_logged_1in_users_lists_are_saved_as_my_lists(self):
# Edith is a logged-in user
self.create_pre_authenticated_session("edith@example.com")

# She goes to the home page and starts a list
self.browser.get(self.live_server_url)
self.add_list_item("Reticulate splines") @
self.add_list_item("Immanentize eschaton")
first_list_url = self.browser.current_url

# She notices a "My lists" link, for the first time.
self.browser.find_element(By.LINK_TEXT, "My lists").click()

# She sees her email is there in the page heading
self.wait_for(
lambda: self.assertIn(
"edith@example.com",
self.browser.find_element(By.CSS_SELECTOR, "h1").text,

)

# And she sees that her list is in there,
# named according to its first list item
self.wait_for(

lambda: self.browser.find_element(By.LINK_TEXT, "Reticulate splines")
)
self.browser.find_element(By.LINK_TEXT, "Reticulate splines").click()
self.wait_for(

lambda: self.assertEqual(self.browser.current_url, first_list_url)

)

© Well define this add_list_item() shortly.

As you can see, we create a list with a couple of items. Then, we check that this list

>«

appears on a new “My lists” page, and that it’s “named” after the first item in the list.

560 | Chapter 24: Finishing “My Lists”: Outside-In TDD



Let’s validate that it really works by creating a second list, and seeing that appear on
the “My lists” page as well. The FT continues, and while we're at it, we check that only
logged-in users can see the “My lists” page:

src/functional_tests/test_my_lists.py (ch241002)
o]
self.wailt_for(
lambda: self.assertEqual(self.browser.current_url, first_list_url)

)

# She decides to start another list, just to see
self.browser.get(self.live_server_url)
self.add_list_item("Click cows")

second_list_url = self.browser.current_url

# Under "my lists", her new list appears
self.browser.find_element(By.LINK_TEXT, "My lists").click()
self.walt_for(lambda: self.browser.find_element(By.LINK_TEXT, "Click cows"))
self.browser.find_element(By.LINK_TEXT, "Click cows").click()
self.wailt_for(

lambda: self.assertEqual(self.browser.current_url, second_list_url)

)

# She logs out. The "My lists" option disappears
self.browser.find_element(By.CSS_SELECTOR, "#id_logout").click()
self.wailt_for(
lambda: self.assertEqual(
self.browser.find_elements(By.LINK_TEXT, "My lists"),
[1,

Our FT uses a new helper method, add_list_item(), which abstracts away the
process of entering text into the right input box. We define it in base.py:

src/functional_tests/base.py (ch241003)
from selenium.webdriver.common.keys import Keys

[...]

def add_list_item(self, item_text):
num_rows = len(self.browser.find_elements(By.CSS_SELECTOR, "#id_list_table tr"))
self.get_item_input_box().send_keys(item_text)
self.get_item_input_box().send_keys(Keys.ENTER)
item_number = num_rows + 1
self.walt_for_row_in_list_table(f"{item_number}: {item_text}")

And while we're at it, we can use it in a few of the other FTs—like this, for example:

The FT for “My Lists” | 561



src/functional_tests/test_layout_and_styling.py (ch241004-2)
# She starts a new list and sees the input is nicely
# centered there too
- inputbox.send_keys("testing")
- inputbox.send_keys(Keys.ENTER)
- self.wait_for_row_in_list_table("1: testing")
+ self.add_list_item("testing")

I think it makes the FTs a lot more readable. I made a total of six changes—see if you
agree with me.

Let’s do a quick run of all FTs, a commit, and then back to the FT we're working on.
The first error should look like this:

$ python src/manage.py test functional_tests.test_my_lists

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: My lists; [...]

The Qutside Layer: Presentation and Templates

The test is currently failing because it can't find a link saying “My lists” We can
address that at the presentation layer, in base.html, in our navigation bar. Here’s the
minimal code change:

src/lists/templates/base.html (ch241005)

<nav class="navbar">
<div class="container-fluid">

<a class="navbar-brand" href="/">Superlists</a>

{% if user.email %}
<a class="navbar-1link" href="#">My lists</a>
<span class="navbar-text">Logged in as {{ user.email }}</span>
<form method="POST" action="{% url 'logout' %}">

[...]

Of course the href="#" means that link doesn’'t actually go anywhere, but it does get
our FT along to the next failure:

$ python src/manage.py test functional_tests.test_my_lists
[...]

lambda: self.assertIn(

"edith@example.com",
AANAANANANNANANANNNNNNNNANAN

self.browser.find_element(By.CSS_SELECTOR, "h1").text,

ANANNNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNANNNNNNNNNANNNNAANN
N

AssertionError: 'edith@example.com' not found in 'Your To-Do list

562 | Chapter 24: Finishing “My Lists": Outside-In TDD



That is telling us that were going to have to build a page that at least has the user’s
email in its header. Let’s start with the basics—a URL and a placeholder template for
it. Again, we can go outside-in, starting at the presentation layer with just the URL
and nothing else:

src/lists/templates/base.html (ch241006)
{% if user.email %}
<a class="navbar-1ink" href="{% url 'my_lists' user.email %}">My lists</a>

Moving Down One Layer to View Functions
(the Controller)

That will cause a template error in the FT:

$ ./src/manage.py test functional_tests.test_my_lists

[...]
Internal Server Error: /
[...]
File "...goat-book/src/lists/views.py", line 8, in home_page
return render(request, "home.html", {"form": ItemForm()})
[...]

django.urls.exceptions.NoReverseMatch: Reverse for 'my_lists' not found.
'my_lists' is not a valid view function or pattern name.

[...]

ERROR: test_logged_in_users_lists_are_saved_as_my_lists [...]

[...]

selenium.common.exceptions.NoSuchElementException: [...]
To fix it, we'll need to start moving from working at the presentation layer, gradually

into the controller layer—Djangos URLs and views. As always, we start with a test. In
this layer, a unit test is the way to go:

src/lists/tests/test_views.py (ch241007)
class MyListsTest(TestCase):
def test_my_lists_url_renders_my_lists_template(self):
response = self.client.get("/lists/users/a@b.com/")
self.assertTemplateUsed(response, "my_lists.html")

That gives:

$ python src/manage.py test lists
[...]

AssertionError: No templates used to render the response

Moving Down One Layer to View Functions (the Controller) | 563



That’s because the URL doesn't exist yet, and a 404 has no template. Let’s start our fix
in urls.py:

src/lists/urls.py (ch241008)

urlpatterns = [
path("new", views.new_list, name="new_list"),
path("<int:list_id>/", views.view_list, name="view_list"),
path("users/<str:email>/", views.my_lists, name="my_ lists"),

That gives us a new test failure, which informs us of what we should do. As you can
see, it’s pointing us at a views.py. We're clearly in the controller layer:

path("users/<str:email>/", views.my_lists, name="my_lists"),
ANAAANANNANANNANAN

AttributeError: module 'lists.views' has no attribute 'my_lists'

Let’s create a minimal placeholder then:

src/lists/views.py (ch241009)
def my_lists(request, email):
return render(request, "my_lists.html")

Let’s also create a minimal template, with no real content except for the header that
shows the user’s email address:

src/lists/templates/my_lists.html (ch241010)
{% extends 'base.html' %}

{% block header_text %}{{ user.email }}'s Lists{% endblock %}

That gets our unit tests passing:

$ ./src/manage.py test lists

[...]
OK

And hopefully it will address the current error in our FT:

$ python src/manage.py test functional_tests.test_my_lists

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: Reticulate splines; [...]
Step by step! Sure enough, the FT gets a little further. It can now find the email in the
<h1>, but it's now saying that the “My lists” page doesn't yet show any lists. It wants
them to appear as clickable links, named after the first item.

564 | Chapter 24: Finishing “My Lists": Outside-In TDD



Another Pass, Qutside-In

At each stage, we're still letting the FT drive what development we do. Starting again
at the outside layer, in the template, we begin to write the template code wed like to
use to get the “My lists” page to work the way we want it to. As we do so, we start to
specify the API we want from the code at the layers below.

A Quick Restructure of Qur Template Composition

Let’s take a look at our base template, base.html. It currently has a lot of content that’s
specific to editing to-do lists, which our “My lists” page doesn’t need:

src/lists/templates/base.html
<div class="container">

<pav class="navbar">

[...]

</nav>

{% if messages %}
[...
{% endif %}

<div class="row justify-content-center p-5 bg-body-tertiary rounded-3">
<div class="col-1g-6 text-center">
<h1l class="display-1 mb-4">{% block header_text %}{% endblock %}</h1>

<form method="POST" action="{% block form_action %}{% endblock %}" > @
[...]
</form>
</div>
</div>

<div class="row justify-content-center">
<div class="col-1g-6">
{% block table %} @
{% endblock %}
</div>
</div>

</div>

<script src="/static/lists.js"></script> ©

[...]

Another Pass, Qutside-In | 565



@ The <form> tag is definitely something we only want on pages where we edit lists.
Everything else up to this point is generic enough to be on any page.

© Similarly, the {% block table %} isnt something wed need on the “My lists”
page.

© Finally, the <script> tag is specific to lists too.
So, we’ll want to change things so that base.html is a bit more generic.

Let’s recap. We've got three actual pages we want to render:

1. The home page (where you can enter a first to-do item to create a new list)
2. The “List” page (where you can view an existing list and add to it)

3. The “My lists” page (which is a list of all your existing lists)

And the home page and list page both share the same “form” elements and the [ists.js
JavaScript. But the “List” page is the only one that needs to show the full table of list
items. The “My lists” page doesn’t need anything related to editing or displaying lists.

So, we have some things shared between all three, and some only shared between the
first and second.

So far, we've been using inheritance to share the common parts of our templates, but
this is a good place to start using composition instead. At the moment, we're saying
that “home” is a type of “base” template, but with the “table” section switched off,
which is a bit awkward. Let’s not make it even more awkward by saying that “list” is
a “base” template with both the form and the table switched oft! It might make more
sense to say that “home” is a type of base template that includes a list form, but no
table, and that “list” includes both the list form and the list table.

People often say “prefer composition over inheritance’, because
inheritance can become hard to reason about as the inheritance
hierarchy grows. Composition is more flexible and often makes
more sense. For a lengthy discussion of this topic, see Hynek Schla-
wack’s definitive article on subclassing in Python.

566 | Chapter 24: Finishing “My Lists": Outside-In TDD


https://hynek.me/articles/python-subclassing-redux
https://hynek.me/articles/python-subclassing-redux

So, let’s do the following:

1. Pull out the <form> tag and the lists.js <script> tag into into some blocks we can
“include” in our home page and lists page.

2. Move the <table> block so it only exists in the list page.

3. Take all the list-specific stuff out of the base.html template, making it into a more
generic page with a header and a placeholder for generic content.

We'll use what’s called an include to compose reusable template fragments when we
don’t want to use inheritance.

An Early Return So We're Refactoring Against Green

Before we start refactoring, let’s put an early return in our FT, so we're refactoring
against green tests:

src/functional_tests/test_my_lists.py (ch241010-0)
# She sees her email is there in the page heading
self.wait_for(
lambda: self.assertIn(
"edith@example.com",
self.browser.find_element(By.CSS_SELECTOR, "h1").text,
)
)

return # TODO: resume here after templates refactor
# And she sees that her list is in there,

# named according to its first list item

[...]

Verify the FTs are all green:

Ran 8 tests in 19.712s

0K

Another Pass, Qutside-In | 567


https://docs.djangoproject.com/en/5.2/ref/templates/builtins/#include

Factoring Out Two Template includes

First let’s pull out the form and the script tag from base.html:

src/lists/templates/base.html (ch241010-1)

@@ -58,43 +58,19 @@
<div class="col-1g-6 text-center">
<h1 class="display-1 mb-4">{% block header_text %}{% endblock %}</h1>

- <form method="POST" action="{% block form_action %}{% endblock %}" >
- {% csrf_token %}

- <input
- id="1d_text"
- name="text"

- class="form-control

- form-control-1lg

- {% if form.errors %}is-invalid{% endif %}"

- placeholder="Enter a to-do item"

- value="{{ form.text.value }}"

- aria-describedby="1d_text_feedback"

- required

. />

- {% if form.errors %}

- <div 1d="1d_text_feedback" class="invalid-feedback">
- {{ form.errors.text.0 }}

- </div>

- {% endif %}

- </form>

+ {% block extra_header %}

+ {% endblock %}
+

</div>
</div>

- <div class="row justify-content-center">
- <div class="col-1g-6">

- {% block table %}

- {% endblock %}

- </div>

- </div>

+ {% block content %}

+ {% endblock %}
</div>

- <script src="/static/lists.js"></script>
- <script>

- window.onload = () => {

- initialize("#id_text");

= 18

- </script>

+ {% block scripts %}

+ {% endblock %}

</body>
</html>

568 | Chapter 24: Finishing “My Lists": Outside-In TDD



You can see we've replaced all the list-specific stuff with three new blocks:

1. extra_header for anything we want to put in the big header section
2. content for the main content of the page
3. scripts for any JavaScript we want to include

Let’s paste the <form> tag into a file at src/lists/templates/includes/form.html (having a
subfolder in templates for includes is a common practice):

src/lists/templates/includes/form.html (ch241010-2)

<form method="POST" action="{{ form_action }}" > @
{% csrf_token %}

<input
id="1d_text"
name="text"

class="form-control
form-control-1g
{% if form.errors %}is-invalid{% endif %}"
placeholder="Enter a to-do item"
value="{{ form.text.value | default:'' }}"
aria-describedby="1d_text_feedback"
required
/>
{% if form.errors %}
<div id="1d_text_feedback" class="invalid-feedback">
{{ form.errors.text.0 }}
</div>
{% endif %}
</form>

© This is the only change; we've replaced the {% block form_action %} with
{{ form_action }}.

Let’s paste the script tags verbatim into a new file at includes/scripts.html:

src/lists/templates/includes/scripts.html (ch241010-3)
<script src="/static/lists.js"></script>

<script>
window.onload = () => {
initialize("#1d_text");
1

</script>

Another Pass, Qutside-In | 569



Now let’s look at how to use the include, and how the form_action change plays out
in the changes to home.html:

(3]

src/lists/templates/home.html (ch241010-4)
{% extends 'base.html' %}

{% block header_text %}Start a new To-Do list{% endblock %}

{% block extra_header %}
{% url 'new_list' as form_action %} @

{% include "includes/form.html" with form=form form_action=form_action %} @
{% endblock %}

{% block scripts %} ©

{% include "includes/scripts.html" %}
{% endblock %}

The {% url ... as %} syntax lets us define a template variable inline.
Then we use {% include ... with key=value... %} to pull in the contents of
the form.html template, with the appropriate context variables passed in—a bit

like calling a function.!

The scripts block is just a straightforward include with no variables.

1 Strictly speaking, you could have omitted the with= in this case, as included templates automatically get the
context of their parent. But sometimes you want to pass a context variable under a different name, so I like the
with, for consistency and explicitness.

570

| Chapter24: Finishing “My Lists": Qutside-In TDD



Now let’s see it in list. himl:

2]

(3]

src/lists/templates/list.html (ch241010-5)
@@ -2,12 +2,24 @@

{% block header_text %}Your To-Do list{% endblock %}
-{% block form_action %}{% url 'view_list' list.id %}{% endblock %}

-{% block table %}

+{% block extra_header %} @

+ {% url 'view_list' list.id as form_action %}
+ {% include "includes/form.html" with form=form form_action=form_action %}
+{% endblock %}

+

+{% block content %} @

+<div class="row justify-content-center">

+ <div class="col-1g-6">

<table class="table" id="id_list_table">
{% for item in list.item_set.all %}
<tr><td>{{ forloop.counter }}: {{ item.text }}</td></tr>
{% endfor %}
</table>

+ </div>

+</div>
+{% endblock %}
+
+{% block scripts %} ©
+ {% include "includes/scripts.html" %}

{% endblock %}

The block table becomes an extra_header block, and we use the include to
pull in the form.

The block table becomes a content block, with all the HTML we need for our
table.

And the scripts block is the same as the one from home.html.

Now a little rerun of all our FTs to make sure we haven’t broken anything:

Ran 8 tests in 19.712s

0K

Another Pass, Outside-In | 571



OK, let’s remove the early return:

src/functional_tests/test_my_lists.py (ch241010-6)

@@ -44,7 +44,6 @@ class MyListsTest(FunctionalTest):
self.browser.find_element(By.CSS_SELECTOR, "h1").text,

)
)

- return # TODO: resume here after templates refactor

# And she sees that her list is in there,
# named according to its first list item

And we'll commit that as a nice refactor:

$ git add src/lists/templates

$ git commit -m "refactor templates to use composition/includes”
Now let’s get back to our outside-in process, and to working in our template to drive
out the requirements for our views layer.

Designing Our API Using the Template

With the early return removed, our FT is back to telling us that we need to actually
show our lists—named after their first items—on the new “My lists” page:

$ ./src/manage.py test functional_tests.test_my_lists

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines; [...]

(If you haven't taken a look around the site recently, it does look pretty blank—see
Figure 24-3.)

572 | Chapter 24: Finishing “My Lists": Outside-In TDD



Superlists My lists Logged In as harry@example.com Log out

harry@example.com's
Lists

harry@example.com's lists

Figure 24-3. Not much to see here
So, in my_lists.html, we can now work in the content block:

src/lists/templates/my_lists.html (ch241010-7)
[...]

{% block content %}
<h2>{{ owner.email }}'s lists</h2> @
<ul>
{% for list in owner.lists.all %} @
<li><a href="{{ list.get_absolute_url }}">{{ list.name }}</a></li> ©
{% endfor %}
</ul>
{% endblock %}

We've made several design decisions in this template that are going to filter their way
down through the code:

© We want a variable called owner to represent the user in our template. This is
what will allow one user to view another user’s lists.

©® We want to be able to iterate through the lists created by that user using
owner.lists.all. (I happen to know how to make this work with the Django
ORM.)

© We want to use list.name to print out the “name” of the list, which is currently
specified as the text of its first element.

Another Pass, Qutside-In | 573



Programming by Wishful Thinking Again, Still

The phrase “programming by wishful thinking” was first popularised by the amaz-
ing, mind-expanding textbook Structure and Interpretation of Computer Programs
(SICP), which I cannot recommend highly enough.

In it, the authors use it as a way to think about and write code at a higher level of
abstraction, without worrying about the details of a lower level that might not even
exist yet. For them, it’s a key tool for designing programs and managing complexity.

We've been doing a lot of “programming by wishful thinking” in this book. We've
talked about how TDD itself is a form of wishful thinking; our tests express that we
wish we had code that worked in such-and-such a way.

Outside-in TDD is very much an extension of this philosophy. We start writing code
at the higher levels based on what we wish we had at the lower levels, even though it
doesn’t exist yet...

YAGNI also comes into it. By driving our development from the outside in, each
piece of code we write is only there because we know it’s actually needed by a higher
layer and, ultimately, by the user.

We can rerun our FTs to check that we didn’t break anything, and to see whether
we've gotten any further:

$ python src/manage.py test functional_tests

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: Reticulate splines; [...]

Ran 8 tests in 77.613s

FAILED (errors=1)
Well, no further—but at least we didn’t break anything. Time for a commit:

$ git add src/lists
$ git diff --staged # urls+views.py, templates
$ git commit -m "url, placeholder view, and first-cut templates for my_lists"

574 | Chapter 24: Finishing “My Lists": Outside-In TDD


https://oreil.ly/5EZNI
https://oreil.ly/5EZNI

Moving Down to the Next Layer:
What the View Passes to the Template

Now our views layer needs to respond to the requirements we've laid out in the
template layer, by giving it the objects it needs—in this case, the list owner:

src/lists/tests/test_views.py (ch241011)
from accounts.models import User

[...]

class MyListsTest(TestCase):
def test_my lists_url_renders_my_lists_template(self):
[...]

def test_passes_correct_owner_to_template(self):
User.objects.create(email="wrong@owner.com")
correct_user = User.objects.create(email="a@b.com")
response = self.client.get("/lists/users/a@b.com/")
self.assertEqual(response.context["owner"], correct_user)

That gives:

KeyError: 'owner'

So:

src/lists/views.py (ch241012)

from accounts.models import User

[...]

def my_lists(request, email):
owner = User.objects.get(email=email)
return render(request, "my lists.html", {"owner": owner})

That gets our new test passing, but we’ll also see an error from the previous test. We
just need to add a user for it as well:

src/lists/tests/test_views.py (ch241013)
def test_my_lists_url_renders_my_lists_template(self):

User.objects.create(email="a@b.com")
[...]
And we get to an OK:

0K

Another Pass, Qutside-In | 575



The Next “Requirement” from the Views Layer:
New Lists Should Record Owner

Before we move down to the model layer, there’s another part of the code at the view
layer that will need to use our model: we need some way for newly created lists to be
assigned to an owner, if the current user is logged in to the site.

Here’s a first crack at writing the test:

src/lists/tests/test_views.py (ch241014)
class NewListTest(TestCase):

[...]

def test_list_owner_is_saved_if_user_1is_authenticated(self):
user = User.objects.create(email="a@b.com")
self.client.force_login(user) @
self.client.post("/lists/new", data={"text": "new item"})
new_list = List.objects.get()
self.assertEqual(new_list.owner, user)

@ force_login() is the way you get the test client to make requests with a logged-
in user.

The test fails as follows:

AttributeError: 'List' object has no attribute 'owner'

To fix it, let’s first try writing code like this:

src/lists/views.py (ch241015)
def new_list(request):
form = ItemForm(data=request.POST)
if form.is_valid():
nulist = List.objects.create()
nulist.owner = request.user @
nulist.save() @
form.save(for_list=nulist)
return redirect(nulist)
else:
return render(request, "home.html", {"form": form})

© Well set the .owner attribute on our new list.

©® And we'll try and save it to the database.

576 | Chapter 24: Finishing “My Lists": Outside-In TDD



But it won't actually work, because we don’t know how to save a list owner yet:

self.assertEqual(new_list.owner, user)
AANANNNANNNNANNAAN

AttributeError: 'List' object has no attribute 'owner'

A Decision Point: Whether to Proceed to the Next Layer
with a Failing Test

In order to get this test passing, as it's written now, we have to move down to the
model layer. However, it means doing more work with a failing test, which is not
ideal. The alternative is to rewrite the test to make it more isolated from the level
below, using mocks.

On the one hand, it’s a lot more effort to use mocks, and it can lead to tests that are
harder to read. On the other hand, advocates of London-school TDD are very keen
on the approach. You can read an exploration of this approach in Online Appendix:
Test Isolation and “Listening to Your Tests”.

For now, we'll accept the trade-off: moving down one layer with failing tests, but
avoiding the extra mocks.

Let’s do a commit, and then tag the commit as a way of remembering our position if
we want to revisit this decision later:

$ git commit -am "new_list view tries to assign owner but cant"

$ git tag revisit_this_point_with_1isolated_tests

Moving Down to the Model Layer

Our outside-in design has driven out two requirements for the model layer: we want
to be able to assign an owner to a list using the attribute .owner, and we want to be
able to access the list’s owner with the API owner.lists.all().

Let’s write a test for that:

Moving Down to the Model Layer | 577


https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html
https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html

src/lists/tests/test_models.py (ch241018)
from accounts.models import User

[...]

class ListModelTest(TestCase):
def test_get_absolute_url(self):

[...]
def test_list_1items_order(self):
[...]

def test_lists_can_have_owners(self):
user = User.objects.create(email="a@b.com")
mylist = List.objects.create(owner=user)
self.assertIn(mylist, user.lists.all())

And that gives us a new unit test failure:

mylist = List.objects.create(owner=user)
[...]

TypeError: List() got unexpected keyword arguments: 'owner'
The naive implementation would be this:

from django.conf import settings

[...]

class List(models.Model):
owner = models.ForeignKey(settings.AUTH_USER_MODEL)

But we want to make sure the list owner is optional. Explicit is better than implicit,
and tests are documentation, so let’s have a test for that too:

src/lists/tests/test_models.py (ch241020)
def test_list_owner_1is_optional(self):
List.objects.create() # should not raise

The correct implementation is this:

src/lists/models.py (ch241021)
class List(models.Model):
owner = models.ForeignKey(
"accounts.User",
related_name="1l1ists",
blank=True,
null=True,
on_delete=models.CASCADE,
)

def get_absolute_url(self):
return reverse('"view_list", args=[self.id])

578 | Chapter 24: Finishing “My Lists": Outside-In TDD



Now running the tests gives the usual database error:

return super().execute(query, params)
AANNNNANNNNNNANNNNN

django.db.utils.OperationalError: table lists_list has no column named owner_id
Because we need to make some migrations:

$ python src/manage.py makemigrations
Migrations for 'lists':
src/lists/migrations/0007_list_owner.py
+ Add field owner to list

We're almost there; a couple more failures in some of our old tests:

ERROR: test_can_save_a_POST_request

[...]

ValueError: Cannot assign "<SimplelLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x1069852e>>":
must be a "User" instance.

[...]

"List.owner"

ERROR: test_redirects_after_POST

[...]
ValueError: Cannot assign "<SimplelLazyObject:
<django.contrib.auth.models.AnonymousUser object at 0x106a1b440>>": "List.owner"

must be a "User" instance.

We're moving back up to the views layer now, just doing a little tidying up. Notice that
these are in the existing test for the new_list view, when we haven't got a logged-in
user.

The tests are reminding us to think of this use case too: we should only save the list
owner when the user is actually logged in. The .1s_authenticated attribute we came
across in Chapter 19 comes in useful now:?

src/lists/views.py (ch241023)

if form.is_valid():
nulist = List.objects.create()
if request.user.is_authenticated:
nulist.owner = request.user
nulist.save()
form.save(for_list=nulist)
return redirect(nulist)

[...]

2 When they’re not logged in, Django represents users using a class called AnonymousUser, whose .1is_authenti
cated is always False.

Moving Down to the Model Layer | 579



And that gets us passing!

$ python src/manage.py test lists
[...]

Ran 36 tests in 0.237s

0K
This is a good time for a commit:

$ git add src/lists
$ git commit -m "lists can have owners, which are saved on creation.”

Final Step: Feeding Through the .name API
from the Template

The last thing our outside-in design wanted came from the templates, which want to
be able to access a list “name” based on the text of its first item:

src/lists/tests/test_models.py (ch241024)
def test_list_name_1is_first_item_text(self):
list_ = List.objects.create()
Item.objects.create(list=1list_, text="first item")
Item.objects.create(list=11ist_, text="second item")
self.assertEqual(list_.name, "first item")

src/lists/models.py (ch241025)

def name(self):
return self.item_set.first().text

And that, believe it or not, actually gets us a passing test and a working “My lists”
page (see Figure 24-4)!

$ python src/manage.py test functional_tests

[...]
Ran 8 tests in 93.819s

0K

580 | Chapter 24: Finishing “My Lists": Outside-In TDD



) To-Do lists - Mozilla Firefox

Fle Edt Yew Hstory Bookmarks Iools Help

{7 To-Do lisks +
€ ) @ localhostia0sy lstsjusers/edith % 0email.com/ 77 v & [B- sosgle Pl e &
Superlists My lists Logged in as edith@email.com  Log out

My Lists

edith@email.com’s lists

« Reticulate splines
« Click cows

x wWebDriver

Figure 24-4. The “My lists” page, in all its glory (and proof I did test on Windows)

The @property Decorator in Python

If you haven't seen it before, the @roperty decorator transforms a method on a class
to make it appear to the outside world like an attribute.

This is a powerful feature of the language, because it makes it easy to implement
“duck typing”—to change the implementation of a property without changing the
interface of the class. In other words, if we decide to change .name into being a “real”
attribute on the model, stored as text in the database, then we will be able to do
so entirely transparently—as far as the rest of our code is concerned, will still be
able to just access .name and get the list name, without needing to know about the
implementation.

Raymond Hettinger gave a classic, beginner-friendly talk on this topic at PyCon back
in 2013, which I enthusiastically recommend (it covers about a million good practices
for Pythonic class design besides). Of course, in the Django template language, .name
would still call the method even if it didn’t have @property, but that’s a particularity of
Django, and doesn’t apply to Python in general...

In the next chapter, it’s time to recruit some computers to do more of the work for us.
Let’s talk about continuous integration (CI).

Final Step: Feeding Through the .name API from the Template | 581


https://oreil.ly/WQ2CX
https://oreil.ly/WQ2CX

Outside-In TDD

Outside-in TDD
This is methodology for building code, driven by tests, which proceeds by start-
ing from the “outside” layers (presentation, GUI), and moving “inwards” step
by step, via view/controller layers, down towards the model layer. The idea is to
drive the design of your code from how it will be used, rather than trying to
anticipate requirements from the bottom up.

Programming by wishful thinking
The outside-in process is sometimes called “programming by wishful thinking”.
Actually, any kind of TDD involves some wishful thinking. Were always writing
tests for things that don't exist yet.

The pitfalls of outside-in
Outside-in isn’t a silver bullet. It encourages us to focus on things that are
immediately visible to the user, but it won't automatically remind us to write
other critical tests that are less user-visible—things like security, for example.
You'll need to remember them yourself.

582 | Chapter 24: Finishing “My Lists": Outside-In TDD



CHAPTER 25
Cl: Continuous Integration

As our site grows, it takes longer and longer to run all of our functional tests. If this
continues, the danger is that were going to stop bothering.

Rather than let that happen, we can automate the running of functional tests by
setting up “continuous integration”, or CI. That way, in day-to-day development, we
can just run the FT that we're working on at that time, and rely on CI to run all the
other tests automatically and let us know if we've broken anything accidentally.

The unit tests should stay fast enough that we can keep running the full suite locally,
every few seconds.

Continuous integration is another practice that was popularised by
Kent Beck’s extreme programming (XP) movement in the 1990s.

As we'll see, one of the great frustrations of configuring CI is that the feedback loop is
so much slower than working locally. As we go along, we'll look for ways to optimise
for that where we can.

While debugging, well also touch on the theme of reproducibility. It’s the idea that
we want to be able to reproduce behaviours of our CI environment locally—in the
same way that we try and make our production and dev environments as similar as
possible.

583


https://martinfowler.com/bliki/ExtremeProgramming.html

Clin Modern Development Workflows

We use CI for a number of reasons:

» As mentioned, it can patiently run the full suite of tests, even if they’ve grown too
large to run locally.

o It can act as a “gate” in your deployment/release process, to ensure that you never
deploy code that isn’t passing all the tests.

« In open source projects that use a “pull request” workflow, it's a way to ensure
that any code submitted by potentially unknown contributors passes all your
tests, before you consider merging it.

o It’s (sadly) increasingly common in corporate environments to see this pull
request process and its associated CI checks to be used as the default way for
teams to merge all code changes.!

Choosing a Cl Service

In the early days, CI would be implemented by configuring a server (perhaps under
a desk in the corner of the office) with software on it that could pull down all the
code from the main branch at the end of each day, and scripts to compile all the code
and run all the tests—a process that became known as a “build” Then, each morning,
developers would take a look at the results, and deal with any broken builds.

As the practice spread, and feedback cycles grew faster, CI software matured. CI
has become a common cloud-based service, designed to integrate with code hosting
providers like GitHub—or even provided directly by the same providers. GitHub has
“GitHub Actions”, and because it’s like, right there, it's probably the most popular
choice for open source projects these days. In a corporate environment, you might
come across other solutions like CircleCI, Travis CI, and GitLab.

It is still absolutely possible to download and self-host your own CI server; in the first
and second editions of this book, I demonstrated the use of Jenkins, a popular tool
at the time. But the installation and subsequent admin/maintenance burden is not
effort-free, so for this edition I wanted to pick a service more like the kind of thing
you're likely to encounter in your day job—while trying not to endorse the largest
commercial provider. There’s nothing wrong with GitHub Actions! It just doesn’t
need any more help dominating the market.

1 I'say “sadly” because you should be able to trust your colleagues, not put them through a process designed
for open source projects to de-risk code contributions from random strangers on the internet. Look up
“trunk-based development” if you want to see more old people shouting at clouds on this topic.

584 | Chapter25: CI: Continuous Integration



So I've decided to use GitLab in this book. It is absolutely a commercial service, but it
retains an open source version, and you can self-host it if you want to. The syntax (it’s
always YAML...) and core concepts are common across all providers, so the things
you learn here will be replicable in whichever service you encounter in future.

Like most of the services out there, GitLab has a free tier, which will work fine for our
purposes.

Getting Our Code into GitLab

GitLab is primarily a code hosting service, like GitHub, so the first thing to do is get
our code up there.

Signing Up
Head over to GitLab.com, and sign up for a free account.

Then, head over to your profile page, and find the SSH Keys section, and upload a
copy of your public key.

Starting a Project

Then, use the New Project - Create Blank Project option, as in Figure 25-1. Feel free
to name the project whatever you want; you can see I've fancifully named mine with a

«,_»

z”. I'm a free spirit, what can I say.

Create blank project

Create a blank project to store your files, plan your work, and collaborate on code, among other things.

Project name

[ Superlistz ]

Must start with a lowercase or uppercase letter, digit, emoji, or underscore. Can also contain dots, pluses, dashes, or spaces.

Project URL Project slug

https://gitlab.com/hjwp/ | | superlistz

Project deployment target (optional)

Select the deployment target ~

Visibility Level (3

O & Private
Project access must be granted explicitly to each user. If this project is part of a group, access is granted to members of the group.
P Internal &

The project can be accessed by any logged in user except external users.

@@Pubﬁc

The project can be accessed without any authentication.

Figure 25-1. Creating a new repo on GitLab

Getting Our Code into GitLab | 585


https://gitlab.com

Pushing Our Code Up Using Git Push

First, we set up GitLab as a “remote” for our project:

# substitute your username and project name as necessary

$ git remote add gitlab git@gitlab.com:yourusername/superlists.git
$ git remote -v

gitlab git@gitlab.com:hjwp/superlistz.git (fetch)

gitlab git@gitlab.com:hjwp/superlistz.git (push)

origin git@github.com:hjwp/book-example.git (fetch)

origin git@github.com:hjwp/book-example.git (push)

# (as you can see i already had a remote for github called origin)

Now we can push up our code with git push:

$ git push gitlab
Enumerating objects: 706, done.
Counting objects: 100% (706/706), done.
Delta compression using up to 11 threads
Compressing objects: 100% (279/279), done.
Writing objects: 100% (706/706), 918.72 KiB | 131.25 MiB/s, done.
Total 706 (delta 413), reused 682 (delta 408), pack-reused 0 (from Q)
remote: Resolving deltas: 100% (413/413), done.
To gitlab.com:hjwp/superlistz.git
* [new branch] main -> main
branch main set up to track gitlab/main.

If you refresh the GitLab Ul, you should now see your code, as in Figure 25-2.

B superlists
@ lists have a .name attribute. --ch241025--
Harry authored 6 months ago
Name Last commit
Einfra some shellscripts for deploy and stuff --ch...
Basre lists have a .name attribute. --ch241025--
@ .dockerignore dockerignore with db.sqlite3 in --ch091011--
< .gitignore .gitignore src/static. --ch101010--
& Dockerfile Add collectstatic to Dockerfile. --ch101009--
& requirements.txt requirements.txt with django, gunicorn, and...

Figure 25-2. CI project files on GitLab

586 | Chapter25: CI: Continuous Integration



Setting Up a First Cut of a Cl Pipeline

The “pipeline” terminology was popularised by Dave Farley and Jez Humble in their
book Continuous Delivery (Addison-Wesley). The name alludes to the fact that a CI
build typically has a series, where the process flows from one to another.

Go to Build — Pipelines, and you’ll see a list of example templates. When getting to
know a new configuration language, it’s nice to be able to start with something that
works, rather than a blank slate. I chose the Python example template and made a few
customisations, but you could just as easily start from a blank slate and paste what I
have here (YAML, once again, folks!):

.gitlab-ci.yml (ch251001)
# Use the same image as our Dockerfile
image: python:slim

# These two settings let us cache pip-installed packages,
# it came from the default template
variables:
PIP_CACHE_DIR: "$CI_PROJECT DIR/.cache/pip"
cache:
paths:
- .cache/pip

# "setUp" phase, before the main build
before_script:
- python --version ; pip --version # For debugging
- pip install virtualenv
- virtualenv .venv
- source .venv/bin/activate

# This is the main build
test:
script:

- pip install -r requirements.txt @
# unit tests
- python src/manage.py test lists accounts @
# (if those pass) all tests, incl. functional.
- pip install selenium ©
- cd src &% python manage.py test @

@ We start by installing our core requirements.

@ T've decided to run the unit tests first. This gives us an “early failure” if there’s any
problem at this stage, and saves us from having to run—and more importantly,
wait for—the FTs to run.

Setting Up a First Cut of a Cl Pipeline | 587



© Then we need Selenium for the functional tests. Again, I'm delaying this pip
install until it’s absolutely necessary, to get feedback as quickly as possible.

O And here is a full test run, including the functional tests.

It’s a good idea in CI pipelines to try and run the quickest tests first,
so that you can get feedback as quickly as possible.

You can use the GitLab web UI to edit your pipeline YAML, and then when you save
it, you can go check for results straight away.

But it is also just a file in your repo! So as we go on through the chapter, you can also
just edit it locally. You'll need to commit it and then git push up to GitLab, and then
go check the Jobs section in the Build UI to see the results of your changes:

$ git push gitlab

First Build! (and First Failure)

Whichever way you click through the UI, you should be able to find your way to see

the output of the build job, as in Figure 25-3.

vJ

0D+ &
(a4 n =4

Q searchor goto...

Your pinned items appear here.

Pipeline editor
Pipeline schedules
Artifacts

Secure

me

Harry | Book Example / Jobs / #9169625197

test

© Failed  Started 1day ago by €2 Harry

on green-6.saas-linux-snall-amdé4.runners-manager.gitlab.con/default Y
KxHNyexq, system ID: s_a201ab37b78a

Preparing the “docker+machine" executor

hnyexg-s-1-s-amd64-1739876819-eb85c8df. . .
Getting source from Git repository

Fetching changes with git depth set to 20...
Initialized empty Git repository in /builds/hjwp/book-example/.git/
Created fresh repository.

Checking out d575c74b as detached HEAD (ref is chapter_25_CI)...
Skipping Git submodules setup

$ git remote set-url origin "${CI_REPOSITORY_URL}"

o/ @

Project -
IR Duration: 41seconds
Search visible log output B =] v ..
B) ook brampe Bl Fiishecs 108y 50
Queued: 0 seconds
* Pinned v Running with gitlab-runner 17.7.8~pre.103.9896916a8 (896916a8) ) .
Timeout: 1h (from project) @

Runner: #32976645 (YKxHNyex) 6-
green.saas-linux-small-
amd64.runners-

88 Manage ® Using Docker executor with image python:slim ... manager.gitlab.com/default
& Code 5 Pulling docker image python:slim ...
Using docker image sha256:efb22c 21b9b6d96c14376463c153e0a66bFad0F27c7 Commit d575¢74b G‘}
& Build - 5ce548099b7d7826dd for python:slim with digest python@sha256:ae9f9ac894é First cut of a gitlab ci config. —-ch25100
7077edlefefb6d9042132d28134ba201b2820227d46cFeffd3174 ... 1--
Pipelines Preparing environment
| pr Running on runner-ykxhnyexq-project-67104673-concurrent-8 via runner-ykx Pipeline #1676311183 (@ Faied for ch

apter_25_CI [}

test v

Related jobs

- © test

Figure 25-3. First build on GitLab

588

| Chapter25: CI: Continuous Integration




Here’s a selection of what I saw in the output console:

Running with gitlab-runner 17.7.0~pre.103.9896916a8 (896916a8)
on green-1.saas-linux-small-amd64.runners-manager.gitlab.com/default
JLgUopmM, system ID: s_deaa2ca®9de7
Preparing the "docker+machine" executor 00:20
Using Docker executor with image python:latest ...
Pulling docker image python:latest ...
[...]
$ python src/manage.py test lists accounts
Creating test database for alias 'default'...
Found 55 test(s).
System check identified no issues (0 silenced).
.................. /builds/hjwp/book-example/.venv/1ib/python3.14/site-packages/django/core
/handlers/base.py:61: UserWarning: No directory at: /builds/hjwp/book-example/src/static/
mw_1instance = middleware(adapted_handler)

Ran 53 tests in 0.129s
0K
Destroying test database for alias 'default'...
$ pip install selenium
Collecting selenium
Using cached selenium-4.28.1-py3-none-any.whl.metadata (7.1 kB)
Collecting urllib3<3,>=1.26 (from urllib3[socks]<3,>=1.26->selenium)
[...]
Successfully installed attrs-25.1.0 certifi-2025.1.31 h11-0.14.0 idna-3.10
outcome-1.3.0.post0 pysocks-1.7.1 selenium-4.28.1 sniffio-1.3.1 sortedcontainers-2.4.0
tri0-0.29.0 trio-websocket-0.12.1 typing_extensions-4.12.2 urllib3-2.3.0
websocket-client-1.8.0 wsproto-1.2.0
$ cd src && python manage.py test
Creating test database for alias 'default'...
Found 63 test(s).
System check identified no issues (0 silenced).
........ /builds/hjwp/book-example/.venv/1lib/python3.14/site-packages/django/core/handlers
/base.py:61: UserWarning: No directory at: /builds/hjwp/book-example/src/static/
mw_1instance = middleware(adapted_handler)
............................................... EEEEEEEE

ERROR: test_layout_and_styling (functional_tests.test_layout_and_styling.
LayoutAndStylingTest.test_layout_and_styling)
Traceback (most recent call last):
File "/builds/hjwp/book-example/src/functional_tests/base.py", line 30, in setUp
self.browser = webdriver.Firefox()

[...]

selenium.common.exceptions.WebDriverException: Message: Process unexpectedly closed with
status 255

Ran 61 tests in 8.658s

FAILED (errors=8)

selenium.common.exceptions.WebDriverException: Message: Process unexpectedly closed with
status 255

First Build! (and First Failure) | 589



If GitLab won’t run your build at this point, you may need to
go through some sort of identity-verification process. Check your
profile page.

You can see we got through the unit tests, and then in the full test run we have 8
errors out of 63 tests. The FTs are all failing. 'm “lucky” because I've done this sort
of thing many times before, so I know what to expect: it’s failing because Firefox isn’t
installed in the image we're using.

Let’s modify the script, and add an apt install. Again we'll do it as late as possible:

gitlab-ci.yml (ch251002)
# This is the main build
test:
script:
- pip install -r requirements.txt
# unit tests
- python src/manage.py test lists accounts
# (if those pass) all tests, incl. functional.
- apt update -y && apt install -y firefox-esr @
- pip install selenium
- cd src && python manage.py test

@ We use the Debian Linux apt package manager to install Firefox. firefox-esr is
the “extended support release’, which is a more stable version of Firefox to test
against.

590 | Chapter25: Cl: Continuous Integration



When you save that change (and commit and push if necessary), the pipeline will run
again. If you wait a bit, you'll see we get a slightly different failure:

$ apt-get update -y && apt-get install -y firefox-esr

Get:1 http://deb.debian.org/debian bookworm InRelease [151 kB]

Get:2 http://deb.debian.org/debian bookworm-updates InRelease [55.4 kB]

Get:3 http://deb.debian.org/debian-security bookworm-security InRelease [48.0 kB]

[...]

The following NEW packages will be installed:
adwaita-icon-theme alsa-topology-conf alsa-ucm-conf at-spi2-common
at-spi2-core dbus dbus-bin dbus-daemon dbus-session-bus-common
dbus-system-bus-common dbus-user-session dconf-gsettings-backend
dconf-service dmsetup firefox-esr fontconfig fontconfig-config

[...]

Get:117 http://deb.debian.org/debian-security bookworm-security/main amdé64

firefox-esr amd64 128.7.0esr-1~deb12ul [69.8 MB]

[...]

Selecting previously unselected package firefox-esr.

Preparing to unpack .../105-firefox-esr_128.7.0esr-1~deb12ul_amd64.deb ...

Adding 'diversion of /usr/bin/firefox to /usr/bin/firefox.real by firefox-esr

Unpacking firefox-esr (128.7.0esr-1~deb12ul) ...

[...]

Setting up firefox-esr (128.7.0esr-1~deb12ul) ...

update-alternatives: using /usr/bin/firefox-esr to provide

Jusr/bin/x-www-browser (x-www-browser) in auto mode

[...]

ERROR: test_multiple_users_can_start_lists_at_different_urls
(functional_tests.test_simple_list_creation.NewVisitorTest.
test_multiple_users_can_start_lists_at_different_urls)
Traceback (most recent call last):
File "/builds/hjwp/book-example/src/functional_tests/base.py", line 30, in setUp
self.browser = webdriver.Firefox()

[...]
selenium.common.exceptions.WebDriverException: Message: Process unexpectedly
closed with status 1

Ran 61 tests in 3.654s
FAILED (errors=8)

We can see Firefox installing OK, but we still get an error. This time, it’s exit code 1.

First Build! (and First Failure) | 591



Trying to Reproduce a Cl Error Locally

The cycle of “change .gitlab-ci.yml, push, wait for a build, check results” is painfully
slow. Let’s see if we can reproduce this error locally.

To reproduce the CI environment locally, I put together a quick Dockerfile, by
copy-pasting the steps in the script section and prefixing them with RUN commands:

infra/Dockerfile.ci (ch251003)
FROM python:slim

RUN pip install virtualenv
RUN virtualenv .venv

# this won't work
# RUN source .venv/bin/activate
# use full path to venv instead.

COPY requirements.txt requirements.txt

RUN .venv/bin/pip install -r requirements.txt
RUN apt update -y && apt install -y firefox-esr
RUN .venv/bin/pip install selenium

COPY infra/debug-ci.py debug-ci.py
CMD .venv/bin/python debug-ci.py

And let’s add a little debug script at debug-ci.py:

infra/debug-ci.py (ch251004)

from import webdriver

# just try to open a selenium session
webdriver.Firefox().quit()

592

| Chapter25: CI: Continuous Integration



We build and run it like this:

$ docker build -f infra/Dockerfile.ci -t debug-ci . && \
docker run -it debug-ci

[...]

=> [internal] load build definition from infra/Dockerfile.ci
=> => transferring dockerfile: [...]

=> [internal] load metadata for docker.io/library/python:slim [...

=> [1/8] FROM docker.io/library/python:slim@sha256:[...]

=> CACHED
=> CACHED
=> CACHED
=> CACHED
=> CACHED
=> CACHED

[2/8]
[3/8]
[4/8]
[5/8]
[6/8]
[7/8]

RUN pip install virtualenv

RUN virtualenv .venv

COPY requirements.txt requirements.txt

RUN .venv/bin/pip install -r requirements.txt
RUN apt update -y && apt install -y firefox-esr
RUN .venv/bin/pip install selenium

=> [8/8] COPY infra/debug-ci.py debug-ci.py
=> exporting to image

=> => exporting layers

=> => writing image sha256:[...]

=> => naming to docker.io/library/debug-ci
Traceback (most recent call last):

File

"//.venv/1lib/python3.14/site-packages/selenium/webdriver/common/driver_finder.py",

line 67, in _binary_paths
output = SeleniumManager().binary_paths(self._to_args())

[...]

selenium.common.exceptions.WebDriverException: Message: Unsupported

platform/architecture combination: linux/aarch64

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
File "//debug-ci.py", line 4, in <module>
webdriver.Firefox().quit()

[...]

selenium.common.exceptions.NoSuchDriverException: Message: Unable to obtain
driver for firefox; For documentation on this error, please visit:
https://www.selenium.dev/documentation/webdriver/troubleshooting/errors/driver_location

[clol oo oo oo ol

.0s

Os
0s
Os
0s
Os
0s
Os
0s
Os

.0s

You might not see this—that “Unsupported platform/architecture combination” error
is spurious; it’s because I was on a Mac. Let’s try again with:

$ docker build -f infra/Dockerfile.ci -t debug-ci --platform=linux/amd64 . && \
docker run --platform=1linux/amd64 -it debug-ci

[...]

Traceback (most recent call last):
File "//debug-ci.py", line 4, in <module>
webdriver.Firefox().quit()

[...]

selenium.common.exceptions.WebDriverException: Message: Process unexpectedly
closed with status 1

OK, that’s a reproduction of our issue. But no further clues yet!

First Build! (and First Failure)

593


https://www.selenium.dev/documentation/webdriver/troubleshooting/errors/driver_location

Enabling Debug Logs for Selenium/Firefox/Webdriver

Getting debug information out of Selenium can be a bit fiddly. I tried two avenues:
setting options and setting the service. The former doesn’t really work as far as I
can tell, but the latter does:

(2]

infra/debug-ci.py (ch251005)

import
from import webdriver

options = webdriver.FirefoxOptions() @
options.log.level = "trace"

service = webdriver.FirefoxService( @
log_output=subprocess.STDOUT, service_args=["--log", "trace"]

)

# just try to open a selenium session
webdriver.Firefox(options=options, service=service).quit()

This is how I attempted to increase the log level using options. I had to reverse-
engineer it from the source code, and it doesn't seem to work anyway, but I
thought I'd leave it here for future reference. There is some limited info in the
Selenium docs.

This is the FirefoxService config class, which does seem to let you print some
debug info. I'm configuring it to print to standard output.

Sure enough, we can see some output now!

594

| Chapter25: CI: Continuous Integration


https://www.selenium.dev/documentation/webdriver/browsers/firefox/#log-output

$ docker build -f infra/Dockerfile.ci -t debug-ci --platform=1linux/amd64 . && \
docker run --platform=1linux/amd64 -it debug-ci

[...]

1234567890111  geckodriver INFO Listening on 127.0.0.1:XXXX
1234567890112  webdriver::server DEBUG  -> POST /session
{"capabilities": {"firstMatch": [{}], "alwaysMatch": {"browserName": "firefox",
"acceptInsecureCerts": true, ... , "moz:firefoxOptions": {"binary":

"Jusr/bin/firefox", "prefs": {"remote.active-protocols": 1}, "log": {"level":

"trace"}}}}}

1234567890111  geckodriver::capabilities DEBUG  Trying to read firefox
version from ini files

1234567890111  geckodriver::capabilities DEBUG Trying to read firefox
version from binary

1234567890111  geckodriver::capabilities DEBUG  Found version
128.10.1esr

1740029792102  mozrunner::runner INFO Running command:

MOZ_CRASHREPORTER="1" MOZ_CRASHREPORTER_NO_REPORT="1"
MOZ_CRASHREPORTER_SHUTDOWN="1" [...]

"--remote-debugging-port" [...]

"-no-remote" "-profile" "/tmp/rust_mozprofile[...]

1234567890111  geckodriver::marionette DEBUG Waiting 60s to connect to
browser on 127.0.0.1

1234567890111  geckodriver::browser TRACE  Failed to open
/tmp/rust_mozprofile[...]

1234567890111  geckodriver::marionette TRACE Retrying in 100ms

Error: no DISPLAY environment variable specified

1234567890111  geckodriver::browser DEBUG Browser process stopped: exit

status: 1

1234567890112  webdriver::server DEBUG <- 500 Internal Server Error
{"value":{"error":"unknown error","message":"Process unexpectedly closed with
status 1","stacktrace":""}}

Traceback (most recent call last):
File "//debug-ci.py", line 13, in <module>
webdriver.Firefox(options=options, service=service).quit()

[...]
selenium.common.exceptions.WebDriverException: Message: Process unexpectedly
closed with status 1

Well, it wasn’t immediately obvious what’s going on there, but I did eventually get a

clue from the line that says no DISPLAY environment variable specified.

Out of curiosity, I thought I'd try running firefox directly:

$ docker build -f infra/Dockerfile.ci -t debug-ci --platform=linux/amd64 . && \
docker run --platform=1linux/amd64 -it debug-ci firefox

[...]

Error: no DISPLAY environment variable specified

Sure enough, the same error.

2 If you remember from Chapter 9, docker run by default runs the command specified in CMD, but you can
override that by specifying a different command to run at the end of the parameter list.

First Build! (and First Failure) | 595



Enabling Headless Mode for Firefox

If you search around for this error, you'll eventually find enough pointers to the
answer: Firefox is crashing because it can't find a display. Servers are “headless’,
meaning they don’t have a screen. Thankfully, Firefox has a headless mode, which we
can enable by setting an environment variable, MOZ_HEADLESS.

Let’s confirm that locally. We'll use the -e flag for docker run:

$ docker build -f infra/Dockerfile.ci -t debug-ci --platform=1linux/amd64 . && \
docker run -e MOZ_HEADLESS=1 --platform=1linux/amd64 -it debug-ci

1234567890111  geckodriver INFO Listening on 127.0.0.1:43137

[...]

*** You are running in headless mode.

[...]

1234567890112  webdriver::server DEBUG  Teardown [...]

1740030525996  Marionette DEBUG  Closed connection 0

1234567890111  geckodriver::browser DEBUG Browser process stopped: exit

status: 0

1234567890112  webdriver::server DEBUG <- 200 OK [...]

It takes quite a long time to run, and there’s lots of debug out, but...it looks OK!
That’s no longer an error.

Let’s set that environment variable in our CI script:

.gitlab-ci.yml (ch251006)
variables:
# Put pip-cache in home folder so we can use gitlab cache
PIP_CACHE_DIR: "SCI_PROJECT_DIR/.cache/pip"
# Make Firefox run headless.
MOZ_HEADLESS: "1"

Using a local Docker image to reproduce the CI environment is
a hint that it might be worth investing time in running CI in a
custom Docker image that you fully control; this is another way of
improving reproducibility. We won't have time to go into detail in
this book though.

And we'll see what happens when we do git push gitlab again.

596

| Chapter25: CI: Continuous Integration



A Common Bugbear: Flaky Tests

Did it work for you? For me, it almost did. All but one of the FTs passed, but I did see
one unexpected error:

+ python manage.py test functional_tests
...... F.

FAIL: test_can_start_a_todo_list
(functional_tests.test_simple_list_creation.NewVisitorTest)

Traceback (most recent call last):
File "...goat-book/functional_tests/test_simple_list_creation.py", line
38, in test_can_start_a_todo_list
self.wailt_for_row_in_list_table('2: Use peacock feathers to make a fly')
File "...goat-book/functional_tests/base.py", line 51, in
wailt_for_row_in_list_table
raise e
File "...goat-book/functional_tests/base.py", line 47, in
wailt_for_row_in_list_table
self.assertIn(row_text, [row.text for row in rows])
AssertionError: '2: Use peacock feathers to make a fly' not found in ['1: Buy
peacock feathers']

Now, you might not see this error, but it's common for the switch to CI to flush out
some “flaky” tests—things that will fail intermittently. In CI, a common cause is the
“noisy neighbour” problem, where the CI server might be much slower than your
own machine, thus flushing out some race conditions—or in this case, just randomly
hanging for a few seconds, taking us past the default timeout.

Let’s give ourselves some tools to help debug though.

Taking Screenshots

To be able to debug unexpected failures that happen on a remote server, it would be
good to see a picture of the screen at the moment of the failure, and maybe also a
dump of the page’s HTML.

We can do that using some custom logic in our FT class tearDown. We'll need to do
a bit of introspection of unittest internals (a private attribute called ._outcome) but
this will work:?

3 ...or at least until the next Python version. Using private APIs is risky, but I couldn’t find a better way.

Taking Screenshots | 597



src/functional_tests/base.py (ch251007)
import os
import time
from datetime import datetime
from pathlib import Path

[...]
MAX_WAIT = 5

SCREEN_DUMP_LOCATION = Path(__file__).absolute().parent / "screendumps"
[...]

class FunctionalTest(StaticLiveServerTestCase):
def setUp(self):

[...]

def tearDown(self):

if self._test_has_failed():

if not SCREEN_DUMP_LOCATION.exists():
SCREEN_DUMP_LOCATION.mkdir(parents=True)

self.take_screenshot()
self.dump_html()

self.browser.quit()

super().tearDown()

def _test_has_failed(self):
# slightly obscure but couldn't find a better way!
return self._outcome.result.failures or self._outcome.result.errors

We first create a directory for our screenshots if necessary, and then we take our
screenshot and dump the HTML. Let’s see how those will work:

src/functional_tests/base.py (ch251008)

def take_screenshot(self):
path = SCREEN_DUMP_LOCATION / self._get_filename("png")
print("screenshotting to", path)
self.browser.get_screenshot_as_file(str(path))

def dump_html(self):
path = SCREEN_DUMP_LOCATION / self._get_filename("html")
print("dumping page HTML to", path)
path.write_text(self.browser.page_source)

And finally, here’s a way of generating a unique filename identifier, which includes the
name of the test and its class, as well as a timestamp:

src/functional_tests/base.py (ch251009)

def _get_filename(self, extension):

timestamp = datetime.now().isoformat().replace(":", ".")[:19]

return (
f'"{self.__class__.__name__}.{self._testMethodName}-{timestamp}.{extension}"

)

598 | Chapter25: CI: Continuous Integration



You can test this first locally by deliberately breaking one of the tests—with a
self.faill() half-way through, for example—and you’ll see something like this:

$ ./src/manage.py test functional_tests.test_my_lists

[...]

Fscreenshotting to ...goat-book/src/functional_tests/screendumps/MyListsTest.te
st_logged_1in_users_lists_are_saved_as_my_lists-[...]

dumping page HTML to ...goat-book/src/functional_tests/screendumps/MyListsTest.
test_logged_1in_users_lists_are_saved_as_my_lists-[...]

Fscreenshotting to ...goat-book/src/functional_tests/screendumps/MyListsTest.te
st_logged_1in_users_lists_are_saved_as_my_lists-2025-02-18T11.29.00.png

dumping page HTML to ...goat-book/src/functional_tests/screendumps/MyListsTest.
test_logged_1in_users_lists_are_saved_as_my_lists-2025-02-18T711.29.00.html

Why not try and open one of those files up? It’s kind of satisfying.

Saving Build Outputs (or Debug Files) as Artifacts

We also need to tell GitLab to “save” these files, for us to be able to actually look at
them. Those are called artifacts:

gitlab-ci.yml (ch251012)
test:
[...]

script:

[...]

artifacts: @
when: always ©
paths: @
- src/functional_tests/screendumps/

© artifacts is the name of the key, and the paths argument is fairly self-
explanatory. You can use wildcards here—more info in the GitLab docs.

@ One thing the docs didn’t make obvious is that you need when: always, because
otherwise it won’t save artifacts for failed jobs. That was annoyingly hard to
figure out!

In any case, that should work. If you commit the code and then push it back to
GitLab, we should be able to see a new build job:

$ echo "src/functional_tests/screendumps" >> .gitignore
$ git commit -am "add screenshot on failure to FT runner”
$ git push

Saving Build Outputs (or Debug Files) as Artifacts | 599


https://docs.gitlab.com/ci/jobs/job_artifacts

In its output, we'll see the screenshots and HTML dumps being saved:

screendumps/LoginTest.test_can_get_email_link_to_log_in-window0-2014-01-22T717.45.12.html
Fscreenshotting to /builds/hjwp/book-example/src/functional_tests/screendumps/
NewVisitorTest.test_can_start_a_todo_list-2025-02-17T17.51.01.png

dumping page HTML to /builds/hjwp/book-example/src/functional_tests/screendumps/
NewVisitorTest.test_can_start_a_todo_list-2025-02-17T17.51.01.html

Not Found: /favicon.ico

.screenshotting to /builds/hjwp/book-example/src/functional_tests/screendumps/
NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls-2025-02-17T17.
51.06.png

dumping page HTML to /builds/hjwp/book-example/src/functional_tests/screendumps/
NewVisitorTest.test_multiple_users_can_start_lists_at_different_urls-2025-02-17T717.51.
06.html

FAIL: test_can_start_a_todo_list (functional_tests.test_simple_list_creation.NewVisitorTest.
test_can_start_a_todo_list)

[...]

And to the right, some new UI options appear to Browse the artifacts, as in
Figure 25-4.

o @

Duration: 1 minute 57 seconds
Finished: 1 minute ago
Queued: 0 seconds

Timeout: 1h (from project) @

Runner: #12270845 (JLgUopmM) 1-
green.saas-linux-small-
amd64.runners-
manager.gitlab.com/default

Job artifacts (2

These artifacts are the latest. They will
not be deleted (even if expired) until
newer artifacts are available.

Keep Download Browse

Figure 25-4. Artifacts appear on the right of the build job

600 | Chapter25: CI: Continuous Integration



And if you navigate through, you’ll see something like Figure 25-5.

[0 Harry / Book Example / Jobs / #9164768462 |/ Artifacts

© failed  Job #9164768462 in pipeline #1675495761 for b2cf969a from chapter_25_CI by & Harry 3 minutes ago

Artifacts

[2) NewVisitorTest.test_can_start_a_todo_list-2025-02-17T22.54.11.png [3 471KiB

t

Superlists Enter your email tolog in  your@email.com

Your To-Do
list

1: By peacock feathers

Figure 25-5. Our screenshot in the GitLab Ul, looking unremarkable

If in Doubt, Try Bumping the Timeout!

Your build might be clear, but mine was still failing, and those screenshots didn't offer
any obvious clues. Hmm. Well, when in doubt, bump the timeout—as the old adage
goes:

src/functional_tests/base.py
MAX_WAIT = 10

Then we can rerun the build by pushing, and confirm it now works.

If in Doubt, Try Bumping the Timeout! | 601



A Successful Python Test Run

At this point, we should get a working pipeline (see Figure 25-6).

~ 0O+ & Harry / Book Example / Jobs / #9134843106
o 3 =1

Q Search or go to...

System check identified no issues (8 silenced).
/builds/hjwp/book-example/.venv/Lib/python3.13/site-packages/django/core/handlers/base. |

Project

mw_instance = middleware(adapted_handler)
B Book Example

# Pinned v
Ran 55 tests in 0.145s
Your pinned items appear here. 0K
Destroying test database for alias 'default’...
88 Manage > $ cd src & python manage.py test
Creating test database for alias 'default’...
<> Code >
Found 63 test(s).
& Build v System check identified no issues (@ silenced).
/builds/hjwp/book-example/.venv/lib/python3.13/site-packages/django/core/handlers/base.py:61: Usel
Pipelines mw_instance = middleware(adapted_handler)
I T Not Found: /favicon.ico
Pipeline editor .Not Found: /favicon.ico

.Not Found: /favicon.ico

Pipeline schedules .Not Found: /favicon.ico

Artifacts .Not Found: /484_no_such_url/
Not Found: /favicon.ico

D secure > .Not Found: /favicon.ico

@ Deploy S .Not Found: /favicon.ico

@ Operate >
Ran 63 tests in 39.849s

' Monitor > oK

I (e . Destroying test database for alias 'default'...
Saving cache for s sful job

@ Settings N Creating cache default-protected. ..

.cache/pip: found 456 matching artifact files and directories

Created cache
Cleaning up project directory and file based variables
Job succeeded

Figure 25-6. A successful GitLab pipeline

Running Our JavaScript Tests in Cl

There’s a set of tests we almost forgot—the JavaScript tests. Currently our “test run-
ner” is an actual web browser. To get them running in CI, we need a command-line
test runner.

Our JavaScript tests currently test the interaction between our code
and the Bootstrap framework/CSS, so we still need a real browser
to be able to make our visibility checks work.

Thankfully, the Jasmine docs point us straight towards the kind of tool we need:
Jasmine browser runner.

602 | Chapter25: CI: Continuous Integration



https://github.com/jasmine/jasmine-browser-runner

Installing Node.js

It’s time to stop pretending we're not in the JavaScript game. We're doing web devel-
opment; that means we do JavaScript; that means were going to end up with Node.js
on our computers. It’s just the way it has to be.

Follow the instructions on the Node.js home page. It should guide you through
installing the “node version manager” (nvm), and then to getting the latest version of
node:

$ nvm install --lts
Installing Node v22.17.0 (armé4)

[...]
$ node -v
v22.17.0

Installing and Configuring the Jasmine Browser Runner

The docs suggest we install it like this, and then run the init command to generate a
default config file:

$ cd src/lists/static

$ npm install --save-dev jasmine-browser-runner jasmine-core

[...]
added 151 packages in 4s

$ cat package.json # this is the equivalent of requirements.txt

{

"devDependencies": {
"jasmine-browser-runner": "23.0.0",
"jasmine-core": "~5.6.0"

}

}

$ 1s node_modules/
# will show several dozen directories

$ npx jasmine-browser-runner init
Wrote configuration to spec/support/jasmine-browser.mjs.

Well, we now have about a million files in node_modules/ (which is JavaScripts
version of a virtualenv, essentially), and we also have a new config file in spec/support/

jasmine-browser.mjs. That’s not the ideal place, because we've said our tests live in a
folder called tests. So, let’s move the config file in there:

$ mv spec/support/jasmine-browser.mjs tests/jasmine-browser-runner.config.mjs
$ rm -rf spec

Running Our JavaScript TestsinCl | 603


http://nodejs.org

Then let’s edit it slightly, to specify a few things correctly:

src/lists/static/tests/jasmine-browser-runner.config.mjs (ch251013)

export default {
srcDir: ".", @
srcFiles: [
" js"
1,
specDir: "tests", @
specFiles: [
"**[*[sS]pec.js"

1,

helpers: [
"helpers/**/*. js"

1,

env: {

stopSpecOnExpectationFailure: false,
stopOnSpecFailure: false,
random: true,
forbidDuplicateNames: true
1
listenAddress: "localhost",
hostname: "localhost",
browser: {
name: "headlessFirefox" @
}
b

@ Our sourece files are in the current directory, src/lists/static—i.e., lists.js.
@ Our spec files are in fests/.
© And here we say we want to use the headless version of Firefox. (We could have

done this by setting MOZ_HEADLESS at the command line again, but this saves us
from having to remember.)

604 | Chapter25: CI: Continuous Integration



Lets try running it now. We use the --config option to pass it to the now non-
standard path to the config file:

$ npx jasmine-browser-runner runSpecs \
--config=tests/jasmine-browser-runner.config.mjs

Jasmine server is running here: http://localhost:62811

Jasmine tests are here: ...goat-book/src/lists/static/tests

Source files are here: ...goat-book/src/lists/static

Running tests in the browser...

Randomized with seed 17843

Started

.F.

Failures:
1) Superlists tests error message should be hidden on input
Message:
Expected true to be false.
Stack:
<Jasmine>
@http://localhost:62811/spec/Spec.js:46:40
<Jasmine>

3 specs, 1 failure
Finished in 0.014 seconds
Randomized with seed 17843 (jasmine-browser-runner runSpecs --seed=17843)
Could be worse! One failure out of three specs. Unfortunately, it’s the most important

test:

src/lists/static/tests/Spec.js

1t("should hide error message on input", () => {
initialize(inputSelector);
textInput.dispatchEvent(new InputEvent("input"));

expect(errorMsg.checkVisibility()).toBe(false);
b

Ah yes, if you remember, I said that the main reason we need to use a browser-based
test runner is because our visibility checks depend on the Bootstrap CSS framework.

In the HTML spec runner we've configured so far, we load Bootstrap using a <link>
tag:

src/lists/static/tests/SpecRunner.html

<!-- Bootstrap CSS -->
<link href="../bootstrap/css/bootstrap.min.css" rel="stylesheet">

Running Our JavaScript TestsinCl | 605



And here’s how we load it for jasmine-browser-runner:

src/lists/static/tests/jasmine-browser-runner.config.mjs (ch251014)
export default {
srcDir: ".",
srcFiles: [
" js"
1,
specDir: "tests",
specFiles: [
"*% [*[sS]pec.js"
1,
cssFiles: [ @
"bootstrap/css/bootstrap.min.css" @

1,

helpers: [
"helpers/**/*. js"

1,

@ The cssFiles key is how you tell the runner to load, er, some CSS. I found that
out in the docs.

Let’s give that a go...

$ npx jasmine-browser-runner runSpecs \
--config=tests/jasmine-browser-runner.config.mjs

Jasmine server is running here: http://localhost:62901

Jasmine tests are here: .../goat-book/src/lists/static/tests

Source files are here: .../goat-book/src/lists/static

Running tests in the browser...

Randomized with seed 06504

Started

3 specs, 0 failures
Finished in 0.016 seconds
Randomized with seed 06504 (jasmine-browser-runner runSpecs --seed=06504)

Hooray! That works locally—let’s get it into CI:

$ cd - # go back to the project root

# add the package.json, which saves our node depenencies

$ git add src/lists/static/package.json src/lists/static/package-lock.json
# ignore the node_modules/ directory

$ echo "node_modules/" >> .gitignore

# and our config file

$ git add src/lists/static/tests/jasmine-browser-runner.config.mjs

$ git add .gitignore

$ git commit -m "config for node + jasmine-browser-runner for JS tests”

606 | Chapter25: CI: Continuous Integration


https://jasmine.github.io/api/browser-runner/edge/Configuration.html

Adding a Build Step for JavaScript

We now want two different build steps, so let’s rename test to test-python and
move all its specific bits like variables and before_script inside it, and then create
a separate step called test- js, with a similar structure:

gitlab-ci.yml (ch251018)
test-python:
# Use the same image as our Dockerfile
image: python:slim @

variables: @
# Put pip-cache in home folder so we can use gitlab cache
PIP_CACHE_DIR: "$CI_PROJECT DIR/.cache/pip"
# Make Firefox run headless.
MOZ_HEADLESS: "1"

cache: @
paths:
- .cache/pip

# "setUp" phase, before the main build
before_script: @
- python --version ; pip --version # For debugging
- pip install virtualenv
- virtualenv .venv
- source .venv/bin/activate

script:

- pip install -r requirements.txt

# unit tests

- python src/manage.py test lists accounts
(if those pass) all tests, incl. functional.
apt update -y && apt install -y firefox-esr
pip install selenium
cd src && python manage.py test

**

artifacts:
when: always
paths:
- src/functional_tests/screendumps/

test-js: @

image: node:slim

script:
- apt update -y && apt install -y firefox-esr ©
- cd src/lists/static
- npm install @
- npx jasmine-browser-runner runSpecs

--config=tests/jasmine-browser-runner.config.mjs @

Running Our JavaScript TestsinCl | 607



© image, variables, cache, and before_script all move out of the top level and
into the test-python step, as they’re all specific to this step only now.

@ Here’s our new step, test-js.
© We install Firefox into the node image, just like we do for the Python one.

O We don'’t need to specify what to npm install, because that’s all in the package-
lock.json file.
© And here’s our command to run the tests.

And slap me over the head with a wet fish if that doesn't pass on the first go! See
Figure 25-7 for a successful pipeline run.

wunmm @ouvavoyy gy

$ npx jasmine-browser-runner runSpecs --config=tests/jasmine-browser-runner.config.mj }
Add a build step for js tests

s
Jasmine server is running here: http://localhost:41385

Jasmine tests are here: /builds/hjwp/book-example/src/lists/static/tests Pipeline #1677384934 @ Passed  for
Source files are here: /builds/hjwp/book-example/src/lists/static chapter_25_CI [}
Running tests in the browser...
test v
Randomized with seed 49739
Started
Related jobs

3 specs, 0 failures
Finished in 0.116 seconds

d test-python

Randomized with seed 49739 (jasmine-browser-runner runSpecs --seed=49739)
Cleaning up project directory and file based variables 00:00
Job succeeded

- @ testjs

Figure 25-7. Wow, there are those JavaScript tests, passing on the first attempt!

608 | Chapter25: CI: Continuous Integration



Tests Now Pass

And there we are! A complete CI build featuring all of our tests! See Figure 25-8.

@ Passed  Harry created pipeline for commit asb49899 [3 8 minutes ago, finished 6 minutes ago
For chapter_25_CI

latest €O 2 jobs (@) 2.92 (¥ 1 minute 46 seconds, queued for 1 seconds

Pipeline  Jobs 2 Tests 0

test
@ testjs c

@ test-python

Q

Figure 25-8. Here are both our jobs in all their green glory

Nice to know that, no matter how lazy I get about running the full test suite on my
own machine, the CI server will catch me. Another one of the Testing Goat’s agents in
cyberspace, watching over us...

Alternatives: Woodpecker and Forgejo

I want to give a shout out to Woodpecker CI and Forgejo, two of the newer self-
hosted CI options. And while I'm at it, to Jenkins, which did a great job for the first
and second editions, and still does for many people.

If you want true independence from overly commercial interests, then self-hosted is
the way to go. You'll need your own server for both of these.

I tried both, and managed to get them working within an hour or two. Their docu-
mentation is good.

If you do decide to give them a go, I'd say, be a bit cautious about security options. For
example, you might decide you don’t want any old person from the internet to be able
to sign up for an account on your server:

DISABLE_REGISTRATION: true

But more power to you for giving it a go!

Tests Now Pass | 609


https://woodpecker-ci.org
https://forgejo.org
https://jenkins.io

Some Things We Didn’t Cover

CI is a big topic and, inevitably, I couldn’t cover everything. Here’s a few pointers to
things you might want to learn about.

Defining a Docker Image for Cl

We spent quite a bit of time debugging—for example, the unhelpful messages when
Firefox wasn't installed. Just as we did when preparing our deployment, it’s a big help
having an environment that you can run on your local machine that’s as close as
possible to what you have remotely; that's why we chose to use a Docker image.

In CI, our tests also run a Docker image (python:slim and node:slim), so one
common pattern is to define a Docker image within your repo that you'll use for CL
Ideally, it should also be as similar as possible to the one you use in production! A
typical solution here is to use multistage Docker builds—with a base stage, a prod
stage, and a dev/CI stage. In our case, the last stage would have Firefox, Selenium,
and other test-only dependencies in it, which we don’t need for prod.

You can then run your tests locally inside the same Docker image that’s used in CI.
Reproducibility is one of the key attributes we're aiming for. The

more your project grows in complexity, the more it's worth invest-
ing in minimising the differences between local dev, CI, and prod.

Caching

We touched on the use of caches in CI for the pip download cache, but as CI
pipelines grow in maturity, you'll find you can make more and more use of caching.
For example, it might be a good idea to cache your node_modules/ directory.

It’s a topic for another time, but this is yet another way of trying to speed up the
feedback cycle.

Automated Deployment, aka Continuous Delivery (CD)

The natural next step is to finish our journey into automation, and set up a pipeline
that will deploy our code all the way to production, each time we push code...as long
as the tests pass!

I work through an example of how to do that in the Online Appendix: Continuous
Deployment (CD). If you're feeling inspired, I'd encourage you to take a look.

Now, onto our last chapter of coding, everyone!

610 | Chapter25: CI: Continuous Integration


https://www.obeythetestinggoat.com/book/appendix_CD.html
https://www.obeythetestinggoat.com/book/appendix_CD.html

Best Practices for Cl (Including Selenium Tips)

Set up CI as soon as possible for your project.
As soon as your functional tests take more than a few seconds to run, you’ll find
yourself avoiding running them. Give this job to a CI server, to make sure that all
your tests are being run somewhere.

Optimise for fast feedback.
CI feedback loops can be frustratingly slow. Optimising things to get results
quicker is worth the effort. Run your fastest tests first, and use caches to try to
minimise time spent on, for example, dependency installation.

Set up screenshots and HTML dumps for failures.
Debugging test failures is easier if you can see what the page looked like when the
failure occurred. This is particularly useful for debugging CI failures, but it’s also
very useful for tests that you run locally.

Be prepared to bump your timeouts.
A CI server may not be as speedy as your laptop—especially if it's under load,
running multiple tests at the same time. Be prepared to be even more generous
with your timeouts, in order to minimise the chance of random failures.

Take the next step, CD (continuous deployment).
Once were running tests automatically, we can take the next step, which is
to automate our deployments (when the tests pass). See the Online Appendix:
Continuous Deployment (CD).

Some Things We Didn't Cover | 611


https://www.obeythetestinggoat.com/book/appendix_CD.html
https://www.obeythetestinggoat.com/book/appendix_CD.html




CHAPTER 26

The Token Social Bit, the Page Pattern,
and an Exercise for the Reader

Are jokes about how “everything has to be social now” slightly old hat? Yes, Harry;
they were old hat 10 years ago when you started writing this book, and they’re posi-
tively prehistoric now. Irregardless, let’s say lists are often better shared. We should
allow our users to collaborate on their lists with other users.

Along the way, we'll improve our FTs by starting to implement something called the
“page object pattern”. Then, rather than showing you explicitly what to do, 'm going
to let you write your unit tests and application code by yourself. Don’t worry; you
won't be totally on your own! I'll give an outline of the steps to take, as well as some
hints and tips.

But still—if you haven’t already, this is the chapter where you get a chance to spread
your wings. Enjoy!

613



An FT with Multiple Users, and addCleanup

Let’s get started—we'll need two users for this FT:

src/functional_tests/test_sharing.py (ch261001)

from selenium import webdriver
from selenium.webdriver.common.by import By

from .base import FunctionalTest

def quit_if_possible(browser):
try:
browser.quit()
except:
pass

class SharingTest(FunctionalTest):
def test_can_share_a_list_with_another_user(self):
# Edith is a logged-in user
self.create_pre_authenticated_session("edith@example.com")
edith_browser = self.browser
self.addCleanup(lambda: quit_if_possible(edith_browser))

# Her friend Onesiphorus is also hanging out on the lists site
oni_browser = webdriver.Firefox()

self.addCleanup(lambda: quit_if_possible(oni_browser))
self.browser = oni_browser
self.create_pre_authenticated_session("onesiphorus@example.com")

# Edith goes to the home page and starts a list
self.browser = edith_browser
self.browser.get(self.live_server_url)
self.add_list_item("Get help")

# She notices a "Share this list" option
share_box = self.browser.find_element(By.CSS_SELECTOR, 'input[name="sharee"]")
self.assertEqual(

share_box.get_attribute("placeholder"),

"your -friend@example.com",

The interesting feature to note about this section is the addCleanup function, whose
documentation you can find online. It can be used as an alternative to the tearDown
function as a way of cleaning up resources used during the test. It's most useful when
the resource is only allocated halfway through a test, so you don’t have to spend time
in tearDown with a bunch of conditional logic designed to clean up resources that
may or may not have been used by the point the test failed.

614 | Chapter 26: The Token Social Bit, the Page Pattern, and an Exercise for the Reader


https://docs.python.org/3/library/unittest.html#unittest.TestCase.addCleanup

addCleanup is run after tearDown, which is why we need that try/except formu-
lation for quit_if_possible. By the time the test ends, the browser assigned to
self.browser—whether it was edith_browser or oni_browser—will already have
been quit by tearDown().

We'll also need to move create_pre_authenticated_session from fest_my_lists.py
into base.py, so we can use it in more than one test.

OK, let’s see if that all works:

$ python src/manage.py test functional_tests.test_sharing

[...]

Traceback (most recent call last):

File "...goat-book/src/functional_tests/test_sharing.py", line 33, in

test_can_share_a_list_with_another_user

[...]

selenium.common.exceptions.NoSuchElementException: Message: Unable to locate

element: input[name="sharee"]; [...]
Great! It seems to have made it through creating the two user sessions, and it gets
onto an expected failure—there is no input for an email address of a person to share a
list with on the page.

Let’s do a commit at this point, because we've got at least a placeholder for our FT,
we've got a useful modification of the create_pre_authenticated_session function,
and were about to embark on a bit of an FT refactor:

$ git add src/functional_tests
$ git commit -m "New FT for sharing, move session creation stuff to base"

The Page Pattern

Before we go any further, I want to show an alternative method for reducing duplica-
tion in your FTs, called “page objects”.

We've already built several helper methods for our FTs—including add_list_item,
which we've used here—but if we just keep adding more and more, it's going to get
very crowded. I've worked on a base FT class that was over 1,500 lines long, and that
got pretty unwieldy.

The Page Pattern | 615


https://www.selenium.dev/documentation/test_practices/encouraged/page_object_models

Page objects are an alternative that encourage us to store all the information and
helper methods about the different types of pages on our site in a single place. Let’s
see how that might look for our site, starting with a class to represent any lists page:

src/functional_tests/list_page.py

from import By
from import Keys
from import wait

class ListPage:
def __init__(self, test):
self.test = test @

def get_table_rows(self): ©
return self.test.browser.find_elements(By.CSS_SELECTOR, "#id_list_table tr")

def wait_for_row_in_list_table(self, item_text, item_number): @
expected_row_text = f"{item_number}: {item_text}"
rows = self.get_table_rows()
self.test.assertIn(expected_row_text, [row.text for row in rows])

def get_item_input_box(self): @
return self.test.browser.find_element(By.ID, "id_text")

def add_list_item(self, item_text): @
new_item_no = len(self.get_table_rows()) + 1
self.get_item_input_box().send_keys(item_text)
self.get_item_input_box().send_keys(Keys.ENTER)
self.walt_for_row_in_list_table(item_text, new_item_no)
return self @

@ Its initialised with an object that represents the current test. That gives us the
ability to make assertions, access the browser instance via self.test.browser,
and use the self.test.wait_for function.

@ T've copied across some of the existing helper methods from base.py, but I've
tweaked them slightly...

© For example, this new method is used in the new versions of the old helper
methods.

O Returning self is just a convenience. It enables method chaining, which we'll see
in action immediately.

616 | Chapter 26: The Token Social Bit, the Page Pattern, and an Exercise for the Reader


https://oreil.ly/I1Sr7

Let’s see how to use it in our test:

src/functional_tests/test_sharing.py (ch261004)

from .list_page import ListPage

[...]

# Edith goes to the home page and starts a list
self.browser = edith_browser
self.browser.get(self.live_server_url)

list_page = ListPage(self).add_list_item("Get help")

Let’s continue rewriting our test, using the page object whenever we want to access
elements from the lists page:

src/functional_tests/test_sharing.py (ch261008)
# She notices a "Share this list" option
share_box = list_page.get_share_box()
self.assertEqual(
share_box.get_attribute("placeholder"),
"your -friend@example.com",

)

# She shares her list.
# The page updates to say that it's shared with Onesiphorus:
list_page.share_list_with("onesiphorus@example.com")

We add the following three functions to our ListPage:

def

def

def

src/functional_tests/list_page.py (ch261009)
get_share_box(self):
return self.test.browser.find_element(
By.CSS_SELECTOR,
'input[name="sharee"]"',

)

get_shared_with_list(self):

return self.test.browser.find_elements(
By.CSS_SELECTOR,
".list-sharee",

)

share_list_with(self, email):
self.get_share_box().send_keys(email)
self.get_share_box().send_keys(Keys.ENTER)
self.test.wait_for(
lambda: self.test.assertIn(
email, [item.text for item in self.get_shared_with_list()]

)

The Page Pattern | 617



The idea behind the page pattern is that it should capture all the information about
a particular page in your site. That way, if you later want to go and make changes to
that page—even just simple tweaks to its HTML layout—you’ll have a single place to
adjust your functional tests, rather than having to dig through dozens of FTs.

The next step would be to pursue the FT refactor through our other tests. I'm
not going to show that here, but it's something you could do for practice, to get a
feel for what the trade-offs are like between “don’t repeat yourself” (DRY) and test
readability...

Extend the FT to a Second User, and the “My Lists” Page

Let’s spec out just a little more detail of what we want our sharing user story to be.
Edith has seen on her list page that the list is now “shared with” Onesiphorus, and
then we can have Onesiphorus log in and see the list on his “My lists” page—maybe in
a section called “lists shared with me”:

src/functional_tests/test_sharing.py (ch261010)
from import MyListsPage

list_page.share_list_with("onesiphorus@example.com")

# Onesiphorus now goes to the lists page with his browser
self.browser = oni_browser
MyListsPage(self).go_to_my_lists_page("onesiphorus@example.com")

# He sees Edith's list in there!
self.browser.find_element(By.LINK_TEXT, "Get help").click()

618 | Chapter 26: The Token Social Bit, the Page Pattern, and an Exercise for the Reader



That means another function in our MyListsPage class:

src/functional_tests/my_lists_page.py (ch261011)
from selenium.webdriver.common.by import By

class MyListsPage:
def __init__(self, test):
self.test = test

def go_to_my_lists_page(self, email):
self.test.browser.get(self.test.live_server_url)
self.test.browser.find_element(By.LINK_TEXT, "My lists").click()
self.test.wait_for(
lambda: self.test.assertIn(
email,
self.test.browser.find_element(By.TAG_NAME, "h1").text,
)
)

return self

Once again, this is a function that would be good to carry across into test_my_lists.py,
along with maybe a MyListsPage object.

In the meantime, Onesiphorus can also add things to the list:

src/functional_tests/test_sharing.py (ch261012)
# On the list page, Onesiphorus can see says that it's Edith's list
self.wait_for(
lambda: self.assertEqual(list_page.get_list_owner(), "edith@example.com")
)

# He adds an item to the list
list_page.add_list_item("H1 Edith!")

# When Edith refreshes the page, she sees Onesiphorus's addition
self.browser = edith_browser

self.browser.refresh()

1ist_page.wait_for_row_in_list_table("Hi Edith!", 2)

That’s another addition to our ListPage object:

src/functional_tests/list_page.py (ch261013)
class ListPage:

[...]

def get_list_owner(self):
return self.test.browser.find_element(By.ID, "id_list_owner").text

Extend the FT to a Second User, and the “My Lists” Page | 619



It's long past time to run the FT and check if all of this works!

$ python src/manage.py test functional_tests.test_sharing
[...]
File "...goat-book/src/functional_tests/test_sharing.py", line 35, in
test_can_share_a_list_with_another_user
share_box = list_page.get_share_box()
[...]

return self.test.browser.find_element(
A

By.CSS_SELECTOR,

ANNNNNANNNNNNNNANN

"{nput[name="sharee"]"',
AANANNNANANNANANNNNNNNNNNNNNAN

[...]
selenium.common.exceptions.NoSuchElementException: Message: Unable to locate
element: input[name="sharee"]; [...]

That’s the expected failure; we don’t have an input for email addresses of people to
share with. Let’s do a commit:

$ git add src/functional_tests
$ git commit -m "Create Page objects for list pages, use in sharing FT"

An Exercise for the Reader

I probably didn’t really understand what I was doing until after having completed the
“exercise for the reader” in the page pattern chapter.

—TJain H. (reader)

There’s nothing that cements learning like taking the training wheels off, and getting
something working on your own, so I hope you'll give this a go.

By this point in the book, you should have all the elements you need to test-drive this
new feature, from the outside in. The FT is there to guide you, and this feature should
take you down into both the views and the models layers. So, give it a go!

Step-by-Step Guide

If youd like a bit more help, here’s an outline of the steps you could take:

1. You'll need a new section in list.html, initially with just a form containing an
input box for an email address. That should get the FT one step further.

2. Next, you'll need a view for the form to submit to. Start by defining the URL in
the template—maybe something like lists/<list_id>/share.

3. Then, you’ll have your first unit test. It can be just enough to get a placeholder
view in. You want the view to respond to POST requests and respond with a

620 | Chapter 26: The Token Social Bit, the Page Pattern, and an Exercise for the Reader



redirect back to the list page. The test could be called something like ShareList
Test.test_post_redirects_to_lists_page.

. You build out your placeholder view, as just a two-liner that finds a list and

redirects to it.

. You can then write a new unit test that creates a user and a list, does

a POST with their email address, and checks that the user is added
to mylist.shared_with.all() (a similar ORM usage to “My lists”). That
shared_with attribute won’t exist yet; youre going outside-in.

. So, before you can get this test to pass, you'll have to move down to the

model layer. The next test, in test_models.py, can check that a list has a
shared_with.add() method that works with a user’s email address, and that
shared_with.all() subsequently includes that user.

. You'll then need a ManyToManyField. You'll probably see an error message about

a clashing related_name, which you’ll find a solution for if you look around the
Django docs.

8. It will need a database migration.

11.

12.

. That should get the model tests passing. Pop back up to fix the view test.
10.

You may find that the redirect view test fails, because it’s not sending a valid
POST request. You can either choose to ignore invalid inputs, or adjust the test to
send a valid POST.

Then, head back up to the template level; on the “My lists” page, you'll want a
<ul> with a for loop of the lists shared with the user. On the lists page, you also
want to show who the list is shared with, and mention who the list owner is. Look
back at the FT for the correct classes and IDs to use. You could have brief unit
tests for each of these if you like, as well.

You might find that spinning up the site with runserver helps you iron out any
bugs and fine-tune the layout and aesthetics. If you use a private browser session,
you’'ll be able to log multiple users in.

An Exercise for the Reader | 621



By the end, you might end up with something that looks like Figure 26-1.

Superlists My lists Logged in as elspeth@example.com

Your To-Do
list

1: Collect underpants

2: ...

3: Profit!
List owner
elspeth@example.com
Shared with

harry@example.com

Share this list:

your-friend@example.com

Figure 26-1. Sharing lists

622 | Chapter 26: The Token Social Bit, the Page Pattern, and an Exercise for the Reader



The Page Pattern, and the Real Exercise for the Reader

Applying DRY to your functional tests
Once your FT suite starts to grow, you'll find different tests using similar parts of

the UL Try to avoid having constants—like the HTML IDs or classes of particular
UI elements—duplicated across your FTs.

The page pattern
Moving helper methods into a base FunctionalTest class can become unwieldy.
Consider using individual page objects to hold all the logic for dealing with
particular parts of your site.

An exercise for the reader
I hope you've actually tried this out! Try to follow the outside-in method, and

occasionally try things out manually if you get stuck. The real exercise for the
reader, of course, is to apply TDD to your next project. I hope you'll enjoy it!

In the next chapter, we'll wrap up with a discussion of the trade-offs in testing, and
some of the considerations involved in choosing which kinds of tests to use, and

when.

An Exercise for the Reader | 623






CHAPTER 27
Fast Tests, Slow Tests, and Hot Lava

The database is hot lava!
—Casey Kinsey

We've come to the end of the book, and the end of our journey with this to-do app
and its tests. Let’s recap our test structure so far:

o We have a suite of functional tests that use Selenium to test that the whole
app really works. On several occasions, the FTs have saved us from shipping
broken code—whether it was broken CSS, a broken database due to filesystem
permissions, or broken email integration.

o And we have a suite of unit tests that use Django test client, enabling us to
test-drive our code for models, forms, views, URLs, and even (to some extent)
templates. They’ve enabled us to build the app incrementally, to refactor with
confidence, and they’ve supported a fast unit-test/code cycle.

» We've also spent a good bit of time on our infrastructure, packaging up our app
with Docker for ease of deployment, and we've set up a CI pipeline to run our
tests automatically on push.

However, being a simple app that could fit in a book, there are inevitably some
limitations and simplifications in our approach. In this chapter, Id like to talk about
how to carry your testing principles forward, as you move into larger, more complex
applications in the real world.

Let’s find out why someone might say that the database is hot lava!

625



Why Do We Test? Our Desiderata for Effective Tests

At testdesiderata.com, Kent Beck and Kelly Sutton outline several desiderata (desira-
ble characteristics) for tests:

o Isolated: Tests should return the same results regardless of the order in which
they are run.

o Composable: We should be able to test different dimensions of variability sepa-
rately and combine the results.

o Deterministic: If nothing changes, the test results shouldn’t change.
« Fast: Tests should run quickly.

o Writable: Tests should be cheap to write, relative to the cost of the code being
tested.

+ Readable: Tests should be comprehensible for readers, invoking the motivation
for writing the particular test.

+ Behavioural: Tests should be sensitive to changes in the behaviour of the code
under test. If the behaviour changes, the test result should change.

o Structure-agnostic: Tests should not change their results if the structure of the
code changes.

o Automated: Tests should run without human intervention.
« Specific: If a test fails, the cause of the failure should be obvious.

o Predictive: If the tests all pass, then the code under test should be suitable for
production.

« Inspiring: Passing the tests should inspire confidence.

We've talked about almost all of these desiderata in the book: we talked about
isolation when we switched to using the Django test runner. We talked about com-
posability when discussing the car factory example in Chapter 21. We talked about
tests being readable when we talked about the given-when-then structure and when
implementing helper methods in our FTs. We talked about testing behaviour rather
than implementation at several points, including in the mocking chapters. We talked
about structure in the forms chapters, when we showed that the higher-level views
tests enabled us to refactor more freely than the lower-level forms tests. We've talked
about splitting up our tests to have fewer assertions to make them more specific. We
talked about determinism when discussing flaky tests and the use of wait_for() in
our FTs, for example, as well as in the production debugging chapter.

And in this chapter, we're going to talk primarily about speed, and about what makes
tests inspiring.

626 | Chapter27: Fast Tests, Slow Tests, and Hot Lava


https://testdesiderata.com

But first, it's worth taking a step back from the preceding list, and asking: “What do
we want from our tests?”

Confidence and Correctness (Preventing Regression)

A fundamental part of programming is that, now and again, you need to check
whether “it works”. Automated testing is the solution to the problem that checking
things manually can quickly become tedious and be unreliable. We want our tests to
tell us that our code works—both at the low level of individual functions or classes,
and at the higher level of “does it all hang together?”

A Productive Workflow

Our tests need to be fast enough to write, but more importantly, fast to run. We
want to get into a smooth, productive workflow, and try to enter that holy credo
of programmers—the “flow state” Beyond that, we want our tests to take some of
the stress out of programming, encouraging us to work in small increments, with
frequent bursts of dopamine from seeing green tests.

Driving Better Design

And our tests should help us to write better code: first, by enabling fearless refactor-
ing and, second, by giving us feedback on the design of our code. Writing the tests
first lets us think about our API from the outside in, before we write it—and we've
seen that. But in this chapter, well also talk about the potential for tests to give you
feedback on your design in more subtle ways. As we'll see, designing code to be
more testable often leads to code that has clearly identified dependencies, and is more
modular and more decoupled.

As we continuously think about what kinds of tests to write, we are trying to achieve
the optimum balance of these different desiderata.

Were Our Unit Tests Integration Tests All Along?
What Is That Warm Glow Coming from the Database?

Almost all of the “unit” tests in the book perhaps should have been called integration
tests, because they all rely on Django’s test runner, which gives us a real database
to talk to. Many also use the Django test client, which does a lot of magic with
the middleware layers that sit between requests. The end result is that our tests are
heavily integrated with both the database and Django itself.

Were Our Unit Tests Integration Tests All Along? What Is That Warm Glow Coming from the Database? | 627



We've Been in the “Sweet Spot”

Now, actually, this has been a pretty good thing for us so far. We're very much in the
“sweet spot” of Django’s testing tools. Our unit tests have been fast enough to enable
a smooth workflow, and they’ve given us a strong reassurance that our application
really works—from the models all the way up to the templates. By allying them with a
small-ish suite of functional tests, we've got a lot of confidence in our code. And we've
been able to use them to get at least a bit of feedback on our design, and to enable lots
of refactoring.

What Is a “True” Unit Test? Does it Matter?

But people will often tell you that a “true” unit test should be more isolated. It's meant
to test a single “unit” of software, and your database “should” be outside of that. Why
do they say that (other than for the smugness they get from should-ing us)?

As you can tell, I think the argument from definitions is a bit of a red herring. But
you might hear instead, “the database is hot laval”’—as Casey Kinsey put it in a
memorable DjangoCon talk. There is real feeling and real experience behind these
comments. What are people getting at?

Integration and Functional Tests Get Slower Over Time

The problem is that, as your application and codebase grow, involving the database
in every single test starts to carry an unacceptable cost—in terms of execution speed.
Casey’s company, for example, was struggling with test suites that took several hours.

At PythonAnywhere, our functional test suite didn’t just rely on the database; it
would spin up a full test cluster of six virtual machines. A full run used to take at least
12 hours, and wed have to wait overnight for our results. That was one of the least
productive parts of an otherwise extraordinary workflow.

At Kraken, the full test suite does only take about 45 minutes, which is not bad for
nearly 10 million lines of code, but that’s only thanks to a quite frankly ridiculous
level of parallelisation and associated expenditure on CI. We're now spending a lot of
effort on trying to move more of our unit tests to being “true” unit tests.

The problem is that these things don't scale linearly. The more database tables you
have, the more relationships between them, and that starts to increase geometrically.

So you can see why, over time, these kinds of tests are going to fail to meet our
desiderata because they’re too slow to enable a productive workflow and a fast
enough feedback cycle.

628 | Chapter27: Fast Tests, Slow Tests, and Hot Lava



Don't take it from me! Gary Bernhardt, a legend in both the Ruby
and Python testing communities, has a talk simply called “Fast Test,
Slow Test”, which is a great tour of the problems I'm discussing
here.

The Holy Flow State

Thinking sociologically for a moment, we programmers have our own culture and
our own “religion” in a way. It has many congregations within it—such as the cult
of TDD, to which you are now initiated. There are the followers of Vim and the
heretics of Emacs. But one thing we all agree on—one particular spiritual practice,
our own transcendental meditation—is the holy flow state. That feeling of pure focus,
of concentration, where hours pass like no time at all, where code flows naturally
from our fingers, where problems are just tricky enough to be interesting but not so
hard that they defeat us...

There is absolutely no hope of achieving flow if you spend your time waiting for a
slow test suite to run. Anything longer than a few seconds and you’re going to let your
attention wander, you context-switch, and the flow state is gone. And the flow state is
a fragile dream; once it’s gone, it takes a long time to come back.!

We're Not Getting the Full Potential Benefits of Testing

TDD experts often say, “It should be called test-driven design, not test-driven devel-
opment”. What do they mean by that?

We have definitely seen a bit of the positive influence of TDD on our design. We've
talked about how our tests are the first clients of any API we create, and we've talked
about the benefits of “programming by wishful thinking” and outside-in.

But there’s more to it. These same TDD experts also often say that you should “listen
to your tests”. Unless you've read the online Appendix: Test Isolation and “Listening
to Your Tests”, that will still sound like a bit of a mystery.

So, how can we get to a position where our tests are giving us maximum feedback on
our design?

1 Some people say it takes at least 15 minutes to get back into the flow state. In my experience, that’s overblown,
and I sometimes wonder if it’s thanks to TDD. I think TDD reduces the cognitive load of programming.
By breaking our work down into small increments, by simplifying our thinking—“What's the current failing
test? What's the simplest code I can write to make it pass?”—it’s often actually quite easy to context-switch
back into coding. Maybe it’s less true for the times when we're doing design work and thinking about what
the abstractions in our code should be though. But also there’s absolutely no hope for you if you've started
scrolling social media while waiting for your tests to finish. See you in 20 minutes to an hour!

Were Our Unit Tests Integration Tests All Along? What Is That Warm Glow Coming from the Database? | 629


https://oreil.ly/ga28I
https://oreil.ly/ga28I
https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html
https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html

The Ideal of the Test Pyramid

I know I said I didn’t want to get bogged down into arguments based on definitions,
but let’s set out the way people normally think about these three types of tests:

Functional/end-to-end tests
FTs check that the system works end-to-end, exercising the full stack of the
application, including all dependencies and connected external systems. An FT
is the ultimate test that it all hangs together, and that things are “really” going to
work.

Integration tests
The purpose of an integration test should be to check that the code you write is
integrated correctly with some “external” system or dependency.

(True) unit tests
Unit tests are the lowest-level tests, and are supposed to test a single “unit” of
code or behaviour. The ideal unit test is fully isolated from everything external to
the unit under test, such that changes to things outside cannot break the test.

The canonical advice is that you should aim to have the majority of your tests be
unit tests, with a smaller number of integration tests, and an even smaller number of
functional tests—as in the classic “test pyramid” of Figure 27-1.

Integration
tests

Unit testsssss

Figure 27-1. The test pyramid

Bottom layer: unit tests (the vast majority)
These isolated tests are fast and they pinpoint failures precisely. We want these to
cover the majority of our functionality, and the entirety of our business logic if
possible.

Middle layer: integration tests (a significant portion)
In an ideal world, these are reserved purely for testing the interactions between
our code and external systems—Ilike the database, or even (arguably) Django
itself. These are slower, but they give us the confidence that our components
work together.

630 | Chapter27: Fast Tests, Slow Tests, and Hot Lava



Top layer: a minimal set of functional/end-to-end tests
These tests are there to give us the ultimate reassurance that everything works
end-to-end and top-to-bottom. But because they are the slowest and most brittle,
we want as few of them as possible.

On Acceptance Tests

What about “acceptance tests”? You might have heard this term bandied about. Often,
people use it to mean the same thing as functional tests or end-to-end tests. But, as
taught to me by one of the legends of quality assurance at MADE.com (Hi, Marta!),
any kind of test can be an acceptance test if it maps onto one of your acceptance
criteria.

The point of an acceptance test is to validate a piece of behaviour that’s important to
the user. In our application, that'’s how we've been thinking about our FTs.

But, ultimately, using FTs to test every single piece of user-relevant functionality is
not sustainable. We need to figure out ways to have our integration tests and unit
tests do the work of verifying user-visible behaviour, understood at the right level of
abstraction.

Learn more in the video on acceptance test-driven development (ATDD) by Dave
Farley.

Avoiding Mock Hell

Well that’s all very well, Harry (you might say), but our current test setup is nothing
like this! How do we get there from here? We've seen how to use mocks to isolate
ourselves from external dependencies. Are they the solution then?

As I was at pains to point out the mocking chapters, the use of mocks comes with
painful trade-offs:

o They make tests harder to read and write.

o They leave your tests tightly coupled to implementation details.

« As aresult, they tend to impede refactoring.

o And, in the extreme, you can sometimes end up with mocks testing mocks,

almost entirely disconnected from what the code actually does.

Ed Jung calls this Mock Hell.

This isn’t to say that mocks are always bad! But just that, from experience, attempting
to use them as your primary tool for decoupling your tests from external dependen-
cies is not a viable solution; it carries costs that often outweigh the benefits.

Avoiding Mock Hell | 631


https://oreil.ly/Pf8Np
https://oreil.ly/sm16H

I'm glossing over the use of mocks in a London-school approach
to TDD. See the Online Appendix: Test Isolation and “Listening to
Your Tests”.

The Actual Solutions Are Architectural

The actual solution to the problem isn't obvious from where we’re standing. It lies in
rethinking the architecture of our application. In brief, if we can decouple the core
business logic of our application from its dependencies, then we can write true unit
tests for it that do not depend on those, um, dependencies.

Integration tests are most necessary at the boundaries of a system—at the points
where our code integrates with external systems—like the database, filesystem, net-
work, or a Ul Similarly, it's at the boundaries that the downsides of test isolation
and mocks are at their worst, because it’s at the boundaries that youre most likely to
be annoyed if your tests are tightly coupled to an implementation, or to need more
reassurance that things are integrated properly.

Conversely, code at the core of our application—code that’s purely concerned with our
business domain and business rules, code thats entirely under our control—has no
intrinsic need for integration tests.

So, the way to get what we want is to minimise the amount of our code that has to
deal with boundaries. Then we test our core business logic with unit tests, and test the
rest with integration and functional tests.

But how do we do that?

632 | Chapter27: Fast Tests, Slow Tests, and Hot Lava


https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html
https://www.obeythetestinggoat.com/book/appendix_purist_unit_tests.html

Ports and Adapters/Hexagonal/Onion/Clean Architecture

The classic solutions to this problem from the object-oriented world come under dif-
ferent names, but they’re all variations of the same trick: identifying the boundaries,
creating an interface to define those boundaries, and then using that interface at test
time to swap out fake versions of your real dependencies.

Steve Freeman and Nat Pryce, in their book Growing Object-Oriented Software, Gui-
ded by Tests, call this approach “Ports and Adapters” (see Figure 27-2).

Figure 27-2. Ports and Adapters (diagram by Nat Pryce)

This pattern, or variations of it, are known as “Hexagonal Architecture” (by Alistair
Cockburn), “Clean Architecture” (by Robert C. Martin, aka Uncle Bob), or “Onion
Architecture” (by Jeffrey Palermo).

The Actual Solutions Are Architectural | 633



Time for a Plug! Read More in “Cosmic Python”

At the end of the process of writing this book (the first time around) I realised
that I was going to have to learn about these architectural solutions, and it was at
MADE.com that I met Bob Gregory who was to become my coauthor. There, we
explored “ports and adapters” and related architectures, which were quite rare at the
time in the Python world.

So if youd like a take on these architectural patterns with a Pythonic twist, check
out Architecture Patterns with Python, which we subtitled “Cosmic Python”, because
“cosmos” is the opposite of “chaos”, in Greek.

Functional Core, Imperative Shell

Gary Bernhardt pushes this further, recommending an architecture he calls “Func-
tional Core, Imperative Shell”, whereby the “shell” of the application (the place where
interaction with boundaries happens) follows the imperative programming paradigm,
and can be tested by integration tests, functional tests, or even (gasp!) not at all (if it’s
kept minimal enough).

But the core of the application is actually written following the functional program-
ming paradigm (complete with the “no side effects” corollary), which allows fully
isolated, “pure” unit tests—without any mocks or fakes.

Check out Gary’s presentation titled “Boundaries” for more on this approach.

The Central Conceit: These Architectures Are “Better”

These patterns do not come for free! Introducing the extra indirection and abstrac-
tion can add complexity to your code. In fact, the creator of Ruby on Rails, David
Heinemeier Hansson (DHH), has a famous blog post where he describes these archi-
tectures as test-induced design damage. That post eventually led to quite a thoughtful
and nuanced discussion between DHH, Martin Fowler, and Kent Beck.

Like any technique, these patterns can be misused, but I wanted to make the case for
their upside: by making our software more testable, we also make it more modular
and maintainable. We are forced to clearly separate our concerns, and we make it
easier to do things like upgrade our infrastructure when we need to. This is the place
where the “improved design” desiderata comes in.

Making our software more testable also often leads to a better
design.

634 | Chapter27: Fast Tests, Slow Tests, and Hot Lava


https://www.cosmicpython.com
https://oreil.ly/of8pU
https://dhh.dk/2014/test-induced-design-damage.html
https://martinfowler.com/articles/is-tdd-dead

Testing in Production
I should also make brief mention of the power of observability and monitoring.

Kent Beck tells a story about his first few weeks at Facebook, when one of the first
tests he wrote turned out to be flaky in the build. Someone just deleted it. Shocked
and asking why, he was told, “We know production is up. Your test is just producing
noise; we don’t need it”. 2

Facebook has such confidence in its production monitoring and observability that it
can provide them with most of the feedback they need about whether the system is
working.

Not everywhere is Facebook! But it’s a good indication that automated tests aren’t the
be-all and end-all.

The Hardest Part: Knowing When to Make the Switch

When is it time to hop out?

For small- to medium-sized applications, as we've seen, the Django test runner and
the integration tests it encourages us to write are just fine. The problem is knowing
when it’s time to make the change to a more decoupled architecture, and to start
striving explicitly for the test pyramid.

It’s hard to give good advice here, as I've only experienced environments where either
someone else made the decision before I joined, or the company is already struggling
with a point where it’s (at least arguably) too late.

One thing to bear in mind, though, is that the longer you leave it, the harder it is.
Another is that because the pain is only going to set in gradually, like the apocryphal
boiled frogs, youre unlikely to notice until youre past the “perfect” moment to
switch. And on top of that, it’s never going to be a convenient time to switch. This is
one of those things, like tech debt, that is always going to struggle to justify itself in
the face of more immediate priorities.

2 There’s a transcript of this story.

The Hardest Part: Knowing When to Make the Switch | 635


https://oreil.ly/jhXg8

So, perhaps one strategy would be an Odysseus pact: tie yourself to the mast, and
make a commitment—while the tests are still fast—to set a “red line” for when to
switch. For example, “If the tests ever take more than 10 seconds to run locally, then
it’s time to rethink the architecture”

I'm not saying 10 seconds is the right number, by the way. I know plenty of people
who are perfectly happy to wait 30 seconds. And I know Gary Bernhardt, for one,
would get very nervous at a test suite that takes more than 100 milliseconds.

But I think the idea of drawing that line in the sand, wherever it is, before you get
there, might be a good way to fight the “boiled frog” problem. Failing all of that, if the
best time to make the change was “ages ago’, then the second best time is “right now”.

Other than that, I can only wish you good luck, and hope that by warning you of the
dangers, you'll keep an eye on your test suite and spot the problems before they get
too large.

Happy testing!

Wrap-Up

In this book, I've been able to show you how to use TDD, and have talked a bit
about why we do it and what makes a good test. But were inevitably limited by the
scope of the project. What that means is that some of the more advanced uses of
TDD, particularly the interplay between testing and architecture, have been beyond
the scope of this book.

But I hope that this chapter has been a bit a guide to find your way around that topic
as your career progresses.

636 | Chapter27: Fast Tests, Slow Tests, and Hot Lava



Further Reading

A few places to go for more inspiration:

“Fast Test, Slow Test” and “Boundaries”
Gary Bernhardt’s talks from Pycon 2012 and 2013. His screencasts are also well
worth a look.

Integration tests are a scam
J.B. Rainsberger has a famous rant about the way integration tests will ruin your
life.® Then check out a couple of follow-up posts, particularly the defence of
acceptance tests, and the analysis of how slow tests kill productivity.

Ports and Adapters
Steve Freeman and Nat Pryce wrote about this in their book. You can also catch
a good discussion in Steve’s talk. See also Uncle Bobs description of the clean
architecture, and Alistair Cockburn coining the term “Hexagonal Architecture”.

The test-double testing wiki
Justin Searls’ online resource is a great source of definitions and discussions on
testing pros and cons, and arrives at its own conclusions of the right way to do
things: testing wiki.

Fowler on unit tests
Martin Fowler (author of Refactoring) offers a balanced and pragmatic tour of
what unit tests are, and of the trade-offs around speed.

A take from the world of functional programming
Grokking Simplicity by Eric Normand explores the idea of “Functional Core,
Imperative Shell”. Don’t worry; you don't need a crazy functional programming
language like Haskell or Clojure to understand it—it’s written in perfectly sensi-
ble JavaScript.

3 Rainsberger actually distinguishes “integrated” tests from “integration” tests: an integrated test is any test that’s
not fully isolated from things outside the unit under test.

Wrap-Up | 637


https://oreil.ly/6OJKP
https://oreil.ly/aw-rF
http://www.destroyallsoftware.com
https://oreil.ly/j4ck-
http://www.jbrains.ca/permalink/using-integration-tests-mindfully-a-case-study
http://www.jbrains.ca/permalink/using-integration-tests-mindfully-a-case-study
http://www.jbrains.ca/permalink/part-2-some-hidden-costs-of-integration-tests
http://vimeo.com/83960706
https://oreil.ly/2UExy
https://oreil.ly/2UExy
https://alistair.cockburn.us/hexagonal-architecture
https://github.com/testdouble/contributing-tests/wiki/Test-Driven-Development
http://martinfowler.com/bliki/UnitTest.html




Obey the Testing Goat!

Let’s get back to the Testing Goat.

“Groan’, I hear you say—“Harry, the Testing Goat stopped being funny about 17
chapters ago”. Bear with me; 'm going to use it to make a serious point.

Testing Is Hard

I think the reason the phrase “Obey the Testing Goat” first grabbed me when I saw it
was that it spoke to the fact that testing is hard—not hard to do in and of itself, but
hard to stick to, and hard to keep doing.

It always feels easier to cut corners and skip a few tests. And it’s doubly hard psycho-
logically because the payoff is so disconnected from the point at which you put in
the effort. A test you spend time writing now doesn’t reward you immediately; it
only helps much later—perhaps months later when it saves you from introducing a
bug while refactoring, or catches a regression when you upgrade a dependency. Or,
perhaps it pays you back in a way that’s hard to measure, by encouraging you to
write better-designed code, but you convince yourself you could have written it just
as elegantly without tests.

I myself started slipping when I was writing the test framework for this book. Being
quite a complex beast, it has tests of its own, but I cut several corners. So, coverage
isn’t perfect, and I now regret it because it’s turned out quite unwieldy and ugly (go
on; I've open sourced it now, so you can all point and laugh).

639


https://github.com/hjwp/Book-TDD-Web-Dev-Python/tree/master/tests

Keep Your Cl Builds Green

Another area that takes real hard work is continuous integration. You saw in Chap-
ter 25 that strange and unpredictable bugs sometimes occur in CI. When you’re look-
ing at these and thinking “it works fine on my machine”, there’s a strong temptation to
just ignore them...but, if youre not careful, you start to tolerate a failing test suite in
CI, and pretty soon your CI build is actually useless, and it feels like too much work
to get it going again. Don't fall into that trap. Persist, and you’ll find the reason that
your test is failing, and you’ll find a way to lock it down and make it deterministic,
and green, again.

Take Pride in Your Tests, as You Do in Your Code

One of the things that helps is to stop thinking of your tests as being an incidental
add-on to the “real” code, and to start thinking of them as being a part of the finished
product that you're building—a part that should be just as finely polished and just as
aesthetically pleasing, and a part you can be justly proud of delivering...

So, do it because the Testing Goat says so. Do it because you know the payoff will be
worth it, even if it's not immediate. Do it out of a sense of duty, or professionalism,
or perfectionism, or sheer bloody-mindedness. Do it because its a good thing to
practice. And, eventually, do it because it makes software development more fun.

Remember to Tip the Bar Staff

This book wouldnt have been possible without the backing of my publisher, the
wonderful O’'Reilly Media. If youre reading the free edition online, I hope you’ll
consider buying a real copy...if you don’t need one for yourself, then maybe as a gift
for a friend?

’
Don’t Be a Stranger!
I hope you enjoyed the book. Do get in touch and tell me what you thought!

Harry

o https://fosstodon.org/@hjwp
o obeythetestinggoat@gmail.com

640 | Obey the Testing Goat!


https://fosstodon.org/@hjwp
mailto:obeythetestinggoat@gmail.com

Bibliography

A few books about TDD and software development that I've mentioned in the book,
and which I enthusiastically recommend:

Abelson, Hal, Jerry Sussman, and Julie Sussman. Structure and Interpretation of Com-
puter Programs (MIT Press, 1996).

Anderson, Ross. Security Engineering, Third Edition (Wiley, 2020). https://
www.cl.cam.ac.uk/archive/rjal4/book.html

Beck, Kent. Test Driven Development: By Example (Addison-Wesley, 2002).
Farley, Dave. Modern Software Engineering (Addison-Wesley, 2021).
Fowler, Martin. Refactoring (Addison-Wesley, 2018).

Freeman, Steve and Nat Pryce. Growing Object-Oriented Software Guided by Tests
(Addison-Wesley, 2009).

641






APPENDIX A
Cheat Sheet

By popular demand, this “cheat sheet” is loosely based on the recap/summary boxes
from the end of each chapter. The idea is to provide a few reminders, and links to the
chapters where you can find out more to jog your memory. I hope you find it useful!

Initial Project Setup

o Start with a user story and map it to a first functional test.

o Pick a test framework—unittest is fine, and options like py.test, nose, or
Green can also offer some advantages.

» Run the functional test and see your first expected failure.

o Pick a web framework such as Django, and find out how to run unit tests against
it.

o Create your first unit test to address the current FT failure, and see it fail.

Do your first commit to a VCS like Git.

Relevant chapters: Chapter 1, Chapter 2, Chapter 3.

643



The Basic TDD Workflow: Red/Green/Refactor

e Red, Green, Refactor e “3 Strikes and Refactor”
+ Double-loop TDD (Figure A-1) » “Working State to Working State”
o Triangulation « “YAGNI”

o The scratchpad

Red
(failing FT)

Write anew

PT for the Functional test loop Unit test loop
next feature.
Refactor H Green
Green I

(passing FT,
complete feature)

Figure A-1. Double-loop TDD

Relevant chapters: Chapter 4, Chapter 5, Chapter 7.

Moving Beyond Dev-Only Testing

o Start system testing early. Ensure your components work together: web server,
static content, database.

o Build a production environment early, and automate deployment to it.
— PaaS versus VPS
— Docker
— Ansible versus Terraform

o Think through deployment pain points: the database, static files, dependencies,
how to customise settings, and so on.

o Build a CI server as soon as possible, so that you don’t have to rely on self-
discipline to see the tests run.

Relevant chapters: Part II, Chapter 25.

644 | Appendix A: Cheat Sheet




General Testing Best Practices

o Each test should test one thing.
o Test behaviour rather than implementation.
» “Don't test constants”.

o Try to think beyond the charmed path through the code, and think through edge
cases and error cases.

« Balance the “test desiderata”

Relevant chapters: Chapter 4, Chapter 14, Chapter 15, Chapter 27.

Selenium/Functional Testing Best Practices

o Use explicit rather than implicit waits, and the interaction/wait pattern.

o Avoid duplication of test code--helper methods in a base class and the page
pattern are possible solutions.

o Avoid double-testing functionality. If you have a test that covers a time-consuming
process (e.g., login), consider ways of skipping it in other tests (but be aware of
unexpected interactions between seemingly unrelated bits of functionality).

 Look into BDD tools as another way of structuring your FTs.

Relevant chapters: Chapter 23, Chapter 25, Chapter 26.

Outside-In

Default to working outside-in. Use double-loop TDD to drive your development,
start at the Ul/outside layers, and work your way down to the infrastructure layers.
This helps ensure that you write only the code you need, and flushes out integration
issues early.

Relevant chapter: Chapter 24.

The Test Pyramid

Be aware that integration tests will get slower and slower over time. Find ways to shift
the bulk of your testing to unit tests as your project grows in size and complexity.

Relevant chapter: Chapter 27.

Cheat Sheet | 645






APPENDIX B
What to Do Next

Here I offer a few suggestions for things to investigate next, to develop your testing
skills, and to apply them to some of the cool new technologies in web development
(at the time of writing!).

I might write an article about some of these in the future. But why not try to beat me
to it, and write your own blog post chronicling your attempt at any one of these?

I’'m very happy to answer questions and provide tips and guidance on all these topics,
so if you find yourself attempting one and getting stuck, please don’t hesitate to get in
touch at obeythetestinggoat@gmail.com!

Switch to Postgres

SQLite is a wonderful little database, but it won’t deal well once you have more than
one web worker process fielding your site’s requests. Postgres is everyone’s favourite
database these days, so find out how to install and configure it.

You'll need to figure out a place to store the usernames and passwords for your local,
staging, and production Postgres servers. Take a look at Chapter 12 for inspiration.

Experiment with keeping your unit tests running with SQLite, and compare how
much faster they are than running against Postgres. Set it up so that your local
machine uses SQLite for testing, but your CI server uses Postgres.

Does any of your functionality actually depend on Postgres-specific features? What
should you do then?

647


mailto:obeythetestinggoat@gmail.com

Run Your Tests Against Different Browsers

Selenium supports all sorts of different browsers, including Chrome, Safari, and
Internet Exploder. Try them all out and see if your FT suite behaves any differently.

In my experience, switching browsers tends to expose all sorts of race conditions in
Selenium tests, and you will probably need to use the interaction/wait pattern a lot
more.

The Django Admin Site

Imagine a story where a user emails you wanting to “claim” an anonymous list.
Let’s say we implement a manual solution to this, involving the site administrator
manually changing the record using the Django admin site.

Find out how to switch on the admin site, and have a play with it. Write an FT that
shows a normal, non-logged-in user creating a list, then have an admin user log in,
go to the admin site, and assign the list to the user. The user can then see it in their
“My Lists” page.

Write Some Security Tests

Expand on the login, my lists, and sharing tests—what do you need to write to assure
yourself that users can only do what they’re authorized to?

Test for Graceful Degradation

What would happen if our email server goes down? Can we at least show an apolo-
getic error message to our users?

Caching and Performance Testing

Find out how to install and configure memcached. Find out how to use Apache’s ab
to run a performance test. How does it perform with and without caching? Can
you write an automated test that will fail if caching is not enabled? What about the
dreaded problem of cache invalidation? Can tests help you to make sure your cache
invalidation logic is solid?

JavaScript Frameworks

Check out React, Vue.js, or perhaps my old favourite, Elm.

648 | Appendix B: What to Do Next



Async and Websockets

Supposing two users are working on the same list at the same time. Wouldn't it be
nice to see real-time updates, so if the other person adds an item to the list, you see it
immediately? A persistent connection between client and server using websockets is
the way to get this to work.

Check out Django’s async features and see if you can use them to implement dynamic
notifications.

To test it, you'll need two browser instances (like we used for the list sharing tests),
and check that notifications of the actions from one appear in the other, without
needing to refresh the page...

Switch to Using pytest

pytest lets you write unit tests with less boilerplate. Try converting some of your unit
tests to using py.test. You may need to use a plugin to get it to play nicely with Django.

Check Out coverage.py

Ned Batchelder’s coverage.py will tell you what your test coverage is—what percent-
age of your code is covered by tests. Now, in theory, because we've been using
rigorous TDD, we should always have 100% coverage. But it’s nice to know for sure,
and it’s also a very useful tool for working on projects that didn’t have tests from the
beginning.

Client-Side Encryption

Here’s a fun one: what if our users are paranoid about the NSA, and decide they no
longer want to trust their lists to The Cloud? Can you build a JavaScript encryption
system, where the user can enter a password to encypher their list item text before it
gets sent to the server?

One way of testing it might be to have an “administrator” user that goes to the Django
admin view to inspect users’ lists, and checks that they are stored encrypted in the
database.

Your Suggestion Here
What do you think I should put here? Suggestions, please!

WhattoDoNext | 649






APPENDIX C

Source Code Examples

All of the code examples I've used in the book are available in my repo on GitHub. So,
if you ever want to compare your code against mine, you can take a look at it there.

Each chapter has its own branch named after it, like so: https://github.com/hjwp/book-

example/tree/chapter_01.

Be aware that each branch contains all of the commits for that chapter, so its state
represents the code at the end of the chapter.

Full List of Links for Each Chapter

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 13
Chapter 14
Chapter 15

chapter_01

chapter_02_unittest
chapter_03_unit_test_first_view
chapter_04_philosophy_and_refactoring
chapter_05_post_and_database
chapter_06_explicit_waits_1
chapter_07_working_incrementally
chapter_08_prettification
chapter_09_docker
chapter_10_production_readiness
chapter_11_server_prep
chapter_13_organising_test_files
chapter_14_database_layer_validation

chapter_15_simple_form

651


https://github.com/hjwp/book-example
https://github.com/hjwp/book-example/tree/chapter_01
https://github.com/hjwp/book-example/tree/chapter_01
https://github.com/hjwp/book-example/tree/chapter_01
https://github.com/hjwp/book-example/tree/chapter_02_unittest
https://github.com/hjwp/book-example/tree/chapter_03_unit_test_first_view
https://github.com/hjwp/book-example/tree/chapter_04_philosophy_and_refactoring
https://github.com/hjwp/book-example/tree/chapter_05_post_and_database
https://github.com/hjwp/book-example/tree/chapter_06_explicit_waits_1
https://github.com/hjwp/book-example/tree/chapter_07_working_incrementally
https://github.com/hjwp/book-example/tree/chapter_08_prettification
https://github.com/hjwp/book-example/tree/chapter_09_docker
https://github.com/hjwp/book-example/tree/chapter_10_production_readiness
https://github.com/hjwp/book-example/tree/chapter_11_server_prep
https://github.com/hjwp/book-example/tree/chapter_13_organising_test_files
https://github.com/hjwp/book-example/tree/chapter_14_database_layer_validation
https://github.com/hjwp/book-example/tree/chapter_15_simple_form

Chapter GitHub branch name & hyperlink

Chapter 16 chapter_16_advanced_forms
Chapter 17 chapter_17_javascript

Chapter 18 chapter_18_second_deploy
Chapter 19 chapter_19_spiking_custom_auth
Chapter 20 chapter_20_mocking_1

Chapter 21 chapter_21_mocking_2

Chapter 22 chapter_22_fixtures_and_wait_decorator
Chapter 23 chapter_23_debugging_prod
Chapter 24 chapter_24_outside_in

Chapter 25 chapter_25_(l

Chapter 26 chapter_26_page_pattern

Online Appendix: Test Isolation, and Listening to Your Tests appendix_purist_unit_tests
Online Appendix: BDD appendix_bdd

Online Appendix: Building a REST API appendix_rest_api

Using Git to Check Your Progress

If you feel like developing your Git-Fu a little further, you can add my repo as a
remote:

git remote add harry https://github.com/hjwp/book-example.git
git fetch harry

And then, to check your difference from the end of Chapter 4:
git diff harry/chapter_04_philosophy_and_refactoring

Git can handle multiple remotes, so you can still do this even if youre already
pushing your code up to GitHub or Bitbucket.

Be aware that the precise order of, say, methods in a class may differ between your
version and mine. It may make diffs hard to read.

Downloading a ZIP File for a Chapter

If, for whatever reason, you want to “start from scratch” for a chapter, or skip ahead,'
and/or you're just not comfortable with Git, you can download a version of my code
as a ZIP file, from URLs following this pattern:

https://github.com/hjwp/book-example/archive/chapter_01.zip

1 I don’t reccommend skipping ahead. I haven’t designed the chapters to stand on their own; each relies on the
previous ones, so it may be more confusing than anything else...

652 | Appendix C: Source Code Examples


https://github.com/hjwp/book-example/tree/chapter_16_advanced_forms
https://github.com/hjwp/book-example/tree/chapter_17_javascript
https://github.com/hjwp/book-example/tree/chapter_18_second_deploy
https://github.com/hjwp/book-example/tree/chapter_19_spiking_custom_auth
https://github.com/hjwp/book-example/tree/chapter_20_mocking_1
https://github.com/hjwp/book-example/tree/chapter_21_mocking_2
https://github.com/hjwp/book-example/tree/chapter_22_fixtures_and_wait_decorator
https://github.com/hjwp/book-example/tree/chapter_23_debugging_prod
https://github.com/hjwp/book-example/tree/chapter_24_outside_in
https://github.com/hjwp/book-example/tree/chapter_25_CI
https://github.com/hjwp/book-example/tree/chapter_26_page_pattern
https://github.com/hjwp/book-example/tree/appendix_purist_unit_tests
https://github.com/hjwp/book-example/tree/appendix_bdd
https://github.com/hjwp/book-example/tree/appendix_rest_api
https://github.com/hjwp/book-example/archive/chapter_01.zip

https://github.com/hjwp/book-example/archive/chapter_04_philosophy_and_refactor
ing.zip

Don’t Let it Become a Crutch!

Try not to sneak a peek at the answers unless you're really, really stuck. Like I said at
the beginning of Chapter 3, there’s a lot of value in debugging errors all by yourself,
and in real life, there’s no “harrys repo” to check against and find all the answers.

Happy coding!

Source Code Examples | 653


https://github.com/hjwp/book-example/archive/chapter_04_philosophy_and_refactoring.zip
https://github.com/hjwp/book-example/archive/chapter_04_philosophy_and_refactoring.zip




Symbols

## (double-hashes), 121
:= (walrus) operator, 197
@property decorator, 581
{% csrf_token %}, 71

{% for ... endfor %}, 96
{% url %}, 320

A
A-records, 248
AAAA-records (IPv6), 248
acceptance tests, 16, 631
(see also functional tests)
adapters, ports and, 633
aesthetics, testing, 164
(see also design and layout testing)
agile movement, 115
aliases in Git, 13
ALLOWED_HOSTS setting, 233
Amazon Web Services (AWS), 194
Ansible, 249, 256
automated deployments with, 257-282
checking Docker logs on container
deployment, 270
checking if container deployment
worked, 269
first draft of playbook for deployment,
258-261
getting container image onto server,
265-269
setting environment variables and
secrets on Docker container, 270-274
checking interactions with server, 254-255
deployment to staging, playbook for, 435

Index

installing, 253
using with SSH for server interactions,
250-253
using WSL on Windows with, 250
architectures of applications, 632
Functional Core, Imperative Shell, 634
Hexagonal/Clean/Onion architectures, 633
upside of architectural patterns, 634
Arrange, Act, Assert, 95
artifacts, 599
AssertionError, 8, 110
assertions
helper functions in unittest for, 20
one assertion per unit test, 362
pytest, 407
race conditions and, 127
wrapping in lambda function and passing to
wait helper, 292
assertRegex, 120
authentication, 439-468
avoiding secrets in source code, 444
cookies and, 527
custom authentication models, 447
custom Django authentication, 449-452
de-spiking authentication code, 453-458
frontend login U, 441
minimal custom user model, 459-464
passwordless, 439
sending emails from Django, 442-444
skipping in FTs, 525
SSH, debugging issues with, 252
storing tokens in databases, 445
token model to link emails, 465-467
automated deployment, 610

655



additional resources, 281

automation of tests, giving confidence in
deployments, 258

AWS (Amazon Web Services), 194

B
backend, testing contract between frontend
and, 66
Bash shell (Git Bash), 198
BDD (behaviour-driven development), 95
behaviour
acceptance criteria for, 16
testing behaviour, not implementation, 56
testing for To-Do page, 66
Big Design Up Front, 115
black box tests (see functional tests)
blank items, preventing, 285-291
Bootstrap
dark mode, 179
documentation, 168, 307
downloading, 167
integrating, 170
is-invalid CSS class, 405
JavaScript test's integration with, 427
large inputs, 178
table styling, 178
uniqueness constraint, failure on, 378
using components of to improve looks of
site, 177
boundaries between system components
integration tests and, 632
browsers
browser-based test runner (Jasmine),
603-607
editing HTML using DevTools, 405
Jasmine standalone browser test runner, 412
running Jasmine spec runner test, 410
business logic, decoupling from dependencies,
632

C

caching in CI pipelines, 610
call_args property, 507
cheat sheet
moving beyond dev-only testing, 644
project setup, 643
TDD workflow, 644
testing best practices, 645
CI (see continuous integration)

class-based generic views (CBGV's)
key tests and assertions, 395
Clean Architecture pattern, 633
client-side validation, 307
from HTMLS5, 356
code design, better, tests driving, 627
code examples, obtaining and using, xxi, 64,
651
code smell, 79
Colima, alternative container runtime for
MacOS, 200
collectstatic command, 185-187, 235
combinatorial explosion, 500
commented-out code, 336
comments
usefulness (or lack of), 17
comments and questions, xvii
companion video, xxiii
complex views versus thin views, 362
composition over inheritance principle, 566
configuration management tools, 249
configurations
dev settings, changing for production, 230
production-ready, issues to consider, 244
console.log, 418
constants
“Don’t Test Constants” rule, 51
constraints
database-related and validation-related, 304
for form input uniqueness, in Meta
attributes, 367
contact information, xvii
containerization, 193
containers, 195
capabilities of versus virtualenvs, 196
checking that Docker container works, 208
debugging networking problems for, 209
Docker resources on, 195
getting container image onto server,
265-269
installing Django in virtualenv in container
image, 206-208
making production-ready, 223-244
mounting files in Docker, 220
rebuilding Docker image and local con-
tainer, 434
running code inside with docker exec,
210-216
continuous delivery (CD), 610

656 | Index



continuous deployment (CD), 611
continuous integration (CI), 583
benefits of, 583
building the pipeline, 588-597
choosing a service, 584
defining Docker image for, 610
QUnit JavaScript tests, 602-608
screenshots, 597-601
self-hosted CI options, 609
setting up CI pipeline, first cut, 587-602
timeout bumping, 601
tips, 611, 640
controller layer (outside-in TDD), 563
cookies, 526
session, 527
core application code, 632
functional core, imperative shell, 634
cross-site request forgery (CSRF), 70
CSS (Cascading Style Sheets)
challenges of static files, 164, 225
CSS frameworks, 167-168
pseudo-selector :invalid, 357
removing hardcoded selectors, 423
Sass/SCSS improvement on, 180
curl utility, 210
debugging against staging staging server
with, 275
CV (curriculum vitae), Docker and, 196

D

dark mode (Bootstrap), 179
data integrity errors, 304, 324, 368
database migrations, 83, 98
adding token model to database, 446
data integrity errors on uniqueness, 368
into Docker container, 217-220
new field requiring new migration, 85
database testing
creating test database automatically, 104
database-layer validation, 301-324
functional and integration tests getting
slower, 628
HTML POST requests
creating, 66-71
processing, 71
redirect following, 90-93
saving, 86-90
invalid input, 310
object-relational mapper (ORM), 81-85

production database creation, 98-100
rendering items in the template, 94-97
safeguarding production databases, 555, 556
template syntax, 74-78
test database cleanup, 554
three strikes and refactor rule, 320
databases
alternative for managing test database con-
tent, 552
deleting database on staging server, 437
deployed database, integrity error, 437
local dev database out of sync with migra-
tions, 163
mounting on deployed server and running
migrations, 277-279
DEBUG settings, 223, 230
collectstatic required when DEBUG turned
off, 235
setting DEBUG=True, 231
debugging
catching bugs in staging, 555
of container networking problems, 209
in DevTools, 140
Django debug page, 70
Docker, 262
of functional tests, 127
improving error messages, 76
of functional tests, 69
patience and tenacity in, 216
print-based, 310, 418
screenshots for, 597-601, 611
server-side
baking in logging code, 556
of staging server deployment
manually, using curl, 275
using manual visits to the site, 97
of web server connectivity using curl, 210
declarative IaC tools, 261
decorators
benefits of, 535
property decorator, 581
skip test decorator, 286
wait decorator, 530-534
default branch name in Git, 11
dependencies
decoupling business logic from, 632
dev and transitive, 229
dependency management tools, 227
deployment

Index | 657



automating with Ansible, 249, 257-282
continuous delivery, 610
danger areas of, 190
deploying to production, 279
procedure for, 433-438
running functional tests to check server
deployment, 275-277
design and layout testing
best practices for, 187
Bootstrap integration, 170
Bootstrap tools, 177
collecting static files for deployment,
185-187
CSS frameworks, 167-168
Django template inheritance, 169
selecting test targets, 163-167
developer silliness, when to test for, 366
development server
deploying, 258
running with manage.py, 8
development-driven tests, 328
DevTools (developer tools)
debugging in, 140
editing HTML in, 405
Django framework
authentication system, 447
class-based generic views, 395
code structure in, 26
commands and concepts
python functional_tests.py, 43
python manage.py runserver, 43
python manage.py test, 43
python manage.py test functional_tests,
108
python manage.py test lists, 108
unit-test/code cycle, 43
custom authentication system, 449-452
deployment checklist and check --deploy
command, 242
documentation, 497
fixtures, 530
installation, xxxv
installing in virtualenv in container image,
206-208
messages framework, testing, 479-482
middleware, 226
model constraints and interaction with
databases, 303

models not running full validation on save,
305
object-relational mapper (ORM), 81-85
running Dockerized Django, 198
running functional and/or unit tests, 107
runserver, limitations of, 223
sending emails, 442-444, 469
sessions, 528
set up, 4-14
project creation, 7, 643
static files in, 175-177
sweet spot of Django's testing tools, 628
template inheritance, 169
Test Client, 36-41
tutorials, xxx, 82
unit testing in, 26-42
validation, layers of, 302
django-allauth, 440
django-crispy-forms, 328
DJANGO_SECRET_KEY environment vari-
able, 270
Docker, 193

adding email password environment vari-
able to local container, 540

alternatives to, 200

Ansible running simple container on our
server, 258-261

building image and running a container,
202-205
docker build command, 204
docker run command, 205
first draft of Dockerfile, 202

capabilities of containers versus virtualenvs,
196

checking logs of container deployed to
server, 270

debugging, 262

defining container image for CI, 610

getting container image onto our server,
265-269

installing, 199

installing app on server, 257

mounting files in, 220

resources on containers, 195

rootless access, allowing, 263-265

running code inside container with docker
exec, 210-216

running commands using docker exec, 549

658 | Index



setting environment variables and secrets,
270-274
checking environment variables with
docker ps, 273
checking settings with docker exec env,
273
checking settings with docker inspect,
274
setting environment variables at command
line, 232
test run against, 434
testing database migrations in, 217-220
use of, asset on your CV, 196
using to catch bugs in authentication sys-
tem, 537
viewing container logs on, 261
Dockerfiles, 202
changing to set DJANGO_DB_PATH and to
nonroot user, 238
database migrations and, 219
setting environment variables in, 232
DOCKER_HOST environment variable, 201,
267
documentation, tests as, 463
domains
checking DNS using propagation checker,
251
configuring DNS for staging and live
domains, 248
domain name registration and DNS, 256
getting a domain name, 247
passing production domain name to Ansi-
ble playbook, 279
Don't Repeat Yourself (DRY), 424
Don’t Repeat Yourself (DRY), 77, 79, 623
“Don’t Test Constants” rule, 51
double-hashes (##), 121
double-loop TDD, 63
duck typing, 581
dumpdata command, 535
dunderinit, 297, 299
duplicate items testing
complex form for, 373
functional test for, 364-370
in the list view, 375-384
at the views layer, 371
duplication, eliminating, 77, 504-514, 524, 535,
615-618

E
early return, 312, 317, 543
emails
checking sending of link with a token, 484
checking sending of link with token, 484
sending from Django, 442-444, 469
testing real email sending, 541-543
token model linking with unique ID,
465-467
using to verify identity, 440
end-to-end tests (see functional tests)
ENV directive (Dockerfiles), 232
environment variables, 196, 444
email password in Docker, 540
secret, alternative method for setting on
server, 544-545
setting and checking on deployed Docker
container, 270-274
using to adjust production settings, 230-237
errata, xxi
error messages, 69
(see also troubleshooting)
Django runserver inside Docker, access
problem, 213
improving in tests, 76
passing custom error message to assertX
methods in unittest, 61
errors
reproducing CI error locally, 592
expected failures, 18, 24
explicit and implicit waits, 50, 108-112, 291,
530-534
exploratory coding, 328 (see also spiking and
de-spiking)
external dependencies, 470, 494

F

--failfast option, 198

feature tests, 16

features, 16

feedback, xvii

find and replace, 335

Firefox, 5
benefits of, xxx
enabling debug logs for, 594
enabling headless mode for, 596
installing, xxxiv
installing in container image, 590
upgrading, 6, 106

Index | 659



fixtures
JSON fixtures, 530, 535
managing in real databases, 546-552
staging and, 556
flaky tests, 597, 611
flow, holy state of, 629
foreign keys, 145
form control classes (Bootstrap), 178, 307
form data validation
benefits of, 325, 358
best practices, 362
for duplicate items, 364-396
moving validation logic to forms, 325-332
preventing blank items, 285-291
processing POST and GET requests, 351
processing POST requests, 345
testing and customizing validation, 330
using forms in views, 332
using form’s own save method, 359-361
wiring up form to send POST request, 66-68
Forms API, 326
(see also form data validation)
frameworks
JavaScript, 412
trade-offs of using, 362, 384
frontend, testing contract between backend
and, 66
full_clean method, 306
Functional Core, Imperative Shell Architecture
pattern, 634
functional programming, 295
functional tests (FTs), 630
creating, 5
debugging for To-Do list home page form,
68-71
debugging techniques, 69, 127
for duplicate items, 364-370
ensuring isolation, 104-107
FT-driven development, outside-in techni-
que, 565-575
helper methods in, 296
implicit/explicit waits and time.sleeps,
108-112, 291
involving the database, getting slower, 628
JavaScript, 400-432
for mocks, 517
with multiple users, 613-623
outside-in technique, 558-562
passing test on home page, 60

running single test files, 291
spiked code and, 468

splitting into many files, 288-290
structuring test code, 613-623
troubleshooting hung tests, 6
versus unit tests, 26, 525

using unittest module, 15-23

for validation, 285-291

G

geckodriver, xxxiv
upgrading, 6
generator expressions, 50
generic explicit wait helper, 291-295, 299
GET requests, 332
getting help, 25, 247, 647
get_absolute_url, 321
get_user method, 491
Git
commented-out code and if branches, cau-
tion with, 336
commits, 11, 22
creating branches, 441
default branch name, choosing, 11
diff -w, 170
downloading, xxx
moving files, 104
reset --hard, 167
reverting spiked code, 455
starting repositories, 10
tagging releases, 280, 438
Git Bash, 198
GitHub, 64
GitHub or GitLab VCS, cloud-based, pushing
work to, 14
.gitignore file, 11
GitLab
building a CI pipeline in, 588
getting code into, 585-587
saving build outputs as artifacts, 599
Given / When / Then, 95
global state, 417, 432
Gmail, 444
"Googling the error message" technique, 213
grep command, 335
Gunicorn
benefits of, 244
logging setup, 538
static files, problem with, 225

660 | Index



switching to, 224

H
headless mode, 596
helper methods, 296, 402, 530
for short form validation tests, 348
Hexagonal Architecture pattern, 633
holy flow state, 629
home page and list view functionality, separat-
ing, 123
host/container mounts, using UIDs to set per-
missions, 238
hosting services, 246
HTML
GET requests, 332
parsing for less brittle tests of content, 181
POST requests
creating, 66
debugging, 127
Django pattern for processing, 313-320
processing, 71
redirect following, 90-93
saving, 86-90
screenshot dumps, 611
script loads at end of body, 404
tutorials, xxx
HTML fixtures, 417
HTML5
browsers' support for, 358
client-side validation from, 356

TaC (see infrastructure as code)
idempotence, 261, 282
images (container), 202
implicit and explicit waits, 108-112, 291,
530-534
imports, relative, in Django, 289
includes, URL, final refactor using, 160
infrastructure as code (IaC), 245, 257, 258
declarative tools for, 261
recap of [aC and automated deployment,
281
tools for, 249
infrastructure, working with, 247
__init_ ,297,299
initialize function in JavaScript testing, 420
inline scripts (JavaScript), 403
inside-out TDD, 557

versus outside-in, 558

integration tests, 630
benefits and drawbacks of, 637
involving the database, getting slower, 628
versus unit tests, 82, 627

IntegrityErrors, 163, 303

invalid input, 310
(see also model-layer validation)

isolation of tests
ensuring in functional tests, 104-107
using mocks for, 577

ItemForm class, removing custom logic from,
393

iterative development style, 65, 121

J

Jasmine, 407
installing, 409
installing and configuring browser runner,
603-607
standalone browser test runner, 412
unittest and, 408
JavaScript, 400
calling functions with too few or too many
arguments, 425
import and export in to import code, 427
JavaScript testing
additional resources, 400
in CI, 602-608
first smoke test, describe, it, and expect, 410
functional test, 400
inline script calling initialize with right
selectors, 426
JavaScript interacting with the DOM, wrap-
ping in onload boilerplate, 430
key challenges of, 417-427
managing global state, 417, 432
red/green/refactor, removing hardcoded
selectors, 423
in the TDD cycle, 431
test running libraries, 407-412, 432
testing integration with CSS and Bootstrap,
427
testing with DOM content, 412-415
trade-offs in unit testing versus Selenium,
430
unit test, 415
using initialize function to control execu-
tion time, 420

Index | 661



JSON fixtures, 530, 535
jumbotron (Bootstrap), 177

K

kwargs, 533

L
lambda functions, 294
wrapping assertion in and passing to wait
helper, 292
layout (see CSS; design and layout testing)
Linux, xxxii
different flavors or distributions, 246
server, creating, 247
list comprehensions, 50
list items, 285-291
list view functionality, separating from home
page, 123
lists
creating, test class for, 136
URL and view for new list creation, 137
LiveServerTestCase, 104, 196, 526
loaddata command, 535
lockfiles, 229
logging, 556
configuring for production-ready container
app, 240-242
enabling debug logs for Firefox/Sele-
nium/Webdriver, 594
inspecting Docker container logs, 538
login process, skipping, 526
(see also authentication)
Ixml parser, 182

M
MacOS, xxxi
magic links, 439
mail.outbox attribute, 469
not working outside of Django, 541
manage.py file, 7
migrate, 163
running a development server, 8
working directory containing, 10
management command (Django) to create ses-
sions, 547
getting it to run on server, 549
testing the command, 552
messages

adding to HTML for page, 482
messages framework (Django), testing, 479-482
Meta attributes, 367
meta-comments, 121
minimum viable app, using functional tests as
spec, 16
minimum viable applications, 115
mocks
avoiding mock hell, 631
benefits and drawbacks of, 469
de-spiking custom authentication, 487-493
deciding whether to use, 470
functional test for, 517
isolating tests using, 577
logout link, 521
manual, 471-475
mock.return_value, 509
practical application of, 518
preparing for, 470
Python Mock library, 475-487, 494
reducing duplication with, 504-514, 524
use of, tight coupling with implementation,
481
model-layer validation
benefits and drawbacks of, 302, 324
Django model constraints and database
interactions, 303
inspecting constraints at database layer, 304
POST requests processing, 313-320
preventing duplicate items, 365
removing hardcoded URLs, 320-323
running full validation, 305
self.assertRaises context manager, 303
surfacing errors in the view, 307-312
testing Django model validation, 305
model-view-controller (MVC) pattern, 29, 117
ModelForms, 328
switching from to simple forms, 393
trade-offs of, 384
tradeoffs of, 334
using save method, 359-361
models, forms, and views (Django layers), 395
modules (Ansible), 259
monkeypatching, 471-475, 494
multiple lists testing
incremental design implementation, 118
iterative development style, 121
list item URLs, 135-142
refactoring, 130

662 | Index



regression test, 119-121
separate list viewing templates, 131-134
small vs. big design, 115-118

MVC (model-view-controller) pattern, 29, 117

N
nerdctl, 200
network adapters, range of ports, 198
network connectivity, debugging, 251
Node.js, 407, 412

installing, 603
NoSuchElementException, 109
nslookup, 251

0
OAuth, 439
object-oriented architecture, ports and adapt-
ers, 633
object-relational mapper (ORM), 81-85
observability and monitoring, 635
Onion Architecture pattern, 633
Openid, 439
operating system (OS), containerization at OS
level, 194
outside-in TDD
accessing list name through the template,
580
controller layer, 563
defined, 582
drawbacks of, 582
FT-driven development, 565-575
versus inside-out, 558
model layer, 577-581
outside layer, 562
views layer, 576

P

PaaS (see platform-as-a-service)
Page pattern
adding a second Page object, 618
benefits of, 623
FT with multiple user, 614
practical exercise, 620
reducing duplication with, 615-618
passwords, 439
passwordless authentication with magic
links, 439
patch decorator, 494

patch function in unittest and mock modules,
476
pip-tools, dependency management, 229
pipelines (CI), 587
platform-as-a-service (PaaS), 246, 253
VPS versus, 256
playbooks, 259
(see also Ansible)
Podman, 200
ports, 198
Docker port mapping, 212
mapping between container and deployed
server, 276
POST requests
creating, 66-71
debugging, 127
Django pattern for processing, 313-320
POST test is too long code smell, address-
ing, 93
processing, 71
redirect following, 90-93
saving, 86-90
prerequisite knowledge, xxix-xxxvii
presentation logic, moving from form to tem-
plate, 386
presentation-layer tests, deleting from Item-
FormTest, 392
primary key, 84
print
debugging with, 69, 310, 418
production databases, 555, 556
production, testing in, 635
production-ready deployment, 437
conﬁguration, preparing, 244
using Gunicorn, 224
programming by wishful thinking, 158, 582
prototyping (see spiking and de-spiking)
public/private key pairs
SSH keys, 252
pytest, 407
versus unittest, 22
Python 3
@property decorator, 581
installation and setup
Linux installation, xxxii
MacOS installation, xxxi
virtualenv set up and activation, xxxiv-
XXXVii
Windows installation, xxxii

Index | 663



introductory books on, xxix
lambda functions, 294
Mock library, 475-487, 494
with statements, 303
python-social-auth, 440
PythonAnywhere, 246

Q

queryset ordering, 381-384
questions and comments, xvii

R
race conditions, 127
Red/Green/Refactor, 62, 130, 287, 299
inner and outer loops in, 63
removing hardcoded selectors, 423
refactoring, 52-54, 58, 79-80, 130, 286, 299
early return in FT to refactor against green,
312
red/green/refactor, 287
"three strikes and refactor" rule, 320
of unit tests into several files, 297
regression, 102, 119-121
preventing, 627
relational database theory, 84
relative imports, 289
Representational State Transfer (REST)
inspiration gained from, 117
reproducibility, 610
required attribute (HTML input), 356
requirements.txt, 227-230
reverse lookups, 158
Roman numerals in examples, 9
root user, 246
allowing rootless Docker access, 263-265
switching to in SSH debugging, 252
routing, 40
(see also URL mappings)

S

Sass/SCSS, 180

scratchpad to-do list, 102

screenshots, 597-601, 611

scripts, building standalone, 547

secret values, 544

secrets

setting and checking on deployed Docker

container, 270-273

setting secret environment variables on
server, 544-545
storing in environment variables, 444
SECRET_KEY setting, 230
security issues and settings
cross-site request forgery, 70
login systems, 523
server security, 253
selectors (CSS)
removing hardcoded selectors, 423
Selenium, 4
best CI practices, 611
enabling debug logs for, 594
helper functions to conduct waits, 110
implicit waits, avoiding, 113
installation, xxxv
and JavaScript, 432
testing user interactions with, 48-51
trade-offs in JavaScript unit testing and, 430
upgrading, 6
Selenium WebDriver, 5
self variable, 473
self.assertRaises context manager, 303
self.wait_for helper method, 296, 299, 530
send_mail function, 442-444
mocking, 471-475
server provisioning, 245
creating a server, 246-247
getting a domain name, 247
guide to, 247
learning more about server security, 253
recap of, 255
server-side validation, 307
sessions
creating locally versus staging, 551
Django management command to create,
547
pre-creating, 526-528
testing pre-creation of sessions, 528
shell of application, Imperative Shell pattern,
634
skip test decorator, 286
sleep (see time.sleeps)
small vs. big design, 115-118, 161
smoke tests, 57
SMTP (Simple Mail Transfer Protocol), 444
SMTPSenderRefused error message, 452
software requirements, XxX-XXXiv
spike, 402

664 | Index



spiking and de-spiking
branching your VCS, 441
de-spiking authentication code, 453
de-spiking custom authentication, 487-493
defined, 402, 468
spiking magic links authentication, 440-453
SQL
debugging creation of pre-authenticated ses-
sions with, 545-546
SQLite
dealing with permissions for db.sqlite3 file,
237-240
src folder, 199
SSH, 256
debugging issues with, 251-253
making sure you can SSH to the server, 250
running commands on Docker container
running on the server, 549
SSHing into server and viewing container
logs, 261-263
using with Ansible to interact with server,
250
staging server
deleting database on, 437
deploying, 258
deployment to and test run, 435
staging sites
fixtures and, 556
local versus staged sessions, 551
manual server provisioning, 245
StaleElementException, 109
static files
challenges of, 164, 190
collecting for deployment, 185-187
collectstatic required when debug turned
off, 235
finding, 175
Gunicorn's problem with, 225
serving with WhiteNoise, 226
URL requests for, 175
StaticLiveServerTestCase, 176
string representations, 381-384
style (see CSS; design and layout testing)
superlists folder, 7
system tests (see functional tests)

T

table styling (Bootstrap), 178
templates

checking that right template is used, 55
composition, 565
designing APIs using, 573
Django template inheritance, 169
messaging confirming login email sent, 443
moving presentation logic from form back
to, 386
passing variables to, 74
refactoring unit tests to use, 52-54
separate list viewing templates, 131-134
syntax, 74
tags
{% csrf_token %}, 71
{% for ... endfor %}, 96
{% url %}, 320
{{ forloop.counter }}, 99
testing template context directly, 157
using form to display errors in, 346
using form to pass errors to, 351
views layer and, 575
Test Client (Django), 36-41
test files
organizing and refactoring, 299
running single, 291
splitting FTs into many, 288-290
splitting unit tests into several, 297
test fixtures, 530, 535
test pyramid, 630
striving explicitly for, 635
test running libraries, 407
Test-Driven Development (TDD)
adapting existing code incrementally,
115-161
additional resources, 25
concepts
DRY, 77
expected failures, 24
Red/Green/Refactor, 62, 287, 299
regression, 102
running tests against, 197
scratchpad to-do list, 102
three strikes and refactor, 102, 320
triangulation, 77, 102
unexpected failures, 75, 102
unit-test/code cycle, 33
user stories, 24
future investigations, 647-649
JavaScript testing in double loop TDD cycle,
431

Index | 665



need for, xvii-xix, 45-47
outside-in technique, 557-582
overall process of, 62-64, 118, 644
philosophy of
bucket of water analogy, 46
split work into smaller tasks, 161
working state to working state, 148, 161
YAGNI, 116, 161
prerequisite knowledge assumed, xxix-
XXXVii
resources for further reading, 637
testing behaviour of aesthetics, 164
testing in views, 395
video-based instruction, xxiii
testing best practices, 93, 113, 362, 645
Testing Goat
defined, 3
philosophy of, 639
working state to working state, 115, 148
tests
desiderata for effective tests, 625
as documentation, 463
giving maximum feedback on code design,
629
organized into classes in unittest, 20
taking pride in as in code, 640
TEST_SERVER environment variable, 196
thin views versus complex views, 362
three strikes and refactor rule, 79-80, 102, 320
time.sleeps, 69
debugging with, 69
removing magic sleeps, 108-112
to-do lists website, building, 15
tokens
creating, view for, 443
passing in GET pararameter to login URL,
483
storing in the database, 445
token model linking emails and UID,
465-467
tracebacks, 38
triangulation, 77, 102
troubleshooting
hung functional tests, 6
URL mappings, 123
virtualenv activation, xxxvi
tuple unpacking and multiple assignment, 182
typographical conventions, xx

U

Ubuntu, server running Ubuntu 22.04, 246
unexpected failures, 75, 102
uniqueness validation, 373
(see also duplicate items testing)
unit tests, 407, 630
in Django
test databases, 104
unit testing a view, 30
unit-test/code cycle, 33
writing basic, 28-42
“Don’t Test Constants” rule, 51
Forms API, 326
versus functional tests, 26, 525
versus integration tests, 82, 627
JavaScript, 415
length of, 87
refactoring in, 52-54, 58
refactoring into several files, 297
testing only one thing, 93, 362
trade-offs in JavaScript unit testing versus
Selenium, 430
true unit tests, 628
using for exploratory coding, 328
writing for form in To-Do list home page,
67
unit-test/code cycle, 33, 43, 62
unittest module
basic functional test creation, 15-23
contents of, 19
documentation, 120
how testing works with, 407
mock module and, 476
passing custom error message to assertX
methods in, 61
pytest versus, 22
skip test decorator, 286
unittest. TestCase class, 20
using augmented version of, 28
unpacking, 182
URL mappings, 40, 123-130, 135-142, 320-323
for static files, 175
URL for new list creation, 137
URLs
final list view refactor using URL includes,
160
parameters from, passing to views, 150
starting login URL, 483

666 | Index



URL to handle adding items to existing list,
153
user IDs (UIDs)
for Django sessions, 528
using to set permissions across host/con-
tainer mounts, 238
user interactions
form data validation, 325-362
preventing blank items, 285-291
preventing duplicate items, 364-396
testing with Selenium, 48-51
validating inputs at database layer, 301-324
user models
Django authentication user model, 447
minimum custom user model for authenti-
cation, 459-464
user stories, 16, 24

v

validation (see form data validation; model-
level validation)
database layer, 301-324
ValidationErrors, 305
variadic arguments, 533
version control systems (VCSs), 10
(see also Git)
video-based instruction, xxiii
views
import syntax aliasing, 160
passing URL parameters to, 150
thin versus complex views, 362
virtualenv (virtual environment), xxxi
activating and using in functional test, 8
capabilities of Docker and containers ver-
sus, 196
installation and setup, xxxiv-xxxvii
installing Django in virtualenv in container
image, 206
pip freeze command showing all contents,
227

virtualization, 193
containerization and, 194

VMs (virtual machines), 194

VPS (virtual private server), 246
versus Paa$, 256

]

waits
explicit and implicit and time.sleeps,
108-112
explicit wait helper, wait decorator, 530-534
generic explicit wait helper, 291-296
wait_for helper method, 299
wait_for_row_in_list_table helper method, 296,
530
wait_to_be_logged_in/out, 530
walrus operator (:=), 197
web browsers
Firefox, xxx
running Jasmine spec runner test, 410
textInput is null errors and, 417
Web Server Gateway Interface (WSGI), 224
Webdriver
enabling debug logs for, 594
WebDriverException, 110
WhiteNoise library, serving static files with, 226
Windows
tips, xxxii
Windows Subsystem for Linux (WSL), 199, 250
with statements, 303
working state to working state, 148, 161
WSGI (Web Server Gateway Interface), 224
WSL (Windows Subsystem for Linux), 199

Y
YAGNI (You ain’t gonna need it!), 116, 161
YAML (yet another markup language), 254

Index | 667



About the Author

After an idyllic childhood spent playing with BASIC on French 8-bit computers like
the Thomson T07 whose keys go “boop” when you press them, Harry Percival spent
a few years being deeply unhappy with economics and management consultancy.
Soon, he rediscovered his true geek nature, and was lucky enough to fall in with a
bunch of XP fanatics, working on the pioneering but sadly defunct Resolver One
spreadsheet. He now works at PythonAnywhere LLP, and spreads the gospel of
test-driven development worldwide at talks, workshops, and conferences, with all the
passion and enthusiasm of a recent convert.

Colophon

The animal on the cover of Test-Driven Development with Python is a cashmere goat.
Though all goats can produce a cashmere undercoat, only those goats selectively
bred to produce cashmere in commercially viable amounts are typically considered
“cashmere goats”. Cashmere goats thus belong to the domestic goat species Capra
hircus.

The exceptionally fine, soft hair of the undercoat of a cashmere goat grows alongside
an outercoat of coarser hair as part of the goat’s double fleece. The cashmere under-
coat appears in winter to supplement the protection offered by the outercoat, called
“guard hair”. The crimped quality of cashmere hair in the undercoat accounts for its
lightweight yet effective insulation properties.

The name “cashmere” is derived from the Kashmir Valley region on the Indian
subcontinent, where the textile has been manufactured for thousands of years. A
diminishing population of cashmere goats in modern Kashmir has led to the cessa-
tion of exports of cashmere fiber from the area. Most cashmere wool now originates
in Afghanistan, Iran, Outer Mongolia, India, and—predominantly—China.

Cashmere goats grow hair of varying colors and color combinations. Both males and
females have horns, which serve to keep the animals cool in summer and provide the
goats’ owners with effective handles during farming activities.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover image is from Wood’s Animate Creation. The series design is by Edie
Freedman, Ellie Volckhausen, and Karen Montgomery. The cover fonts are Gilroy
Semibold and Guardian Sans. The text font is Adobe Minion Pro; the heading font
is Adobe Myriad Condensed; the code font is Dalton Maag’s Ubuntu Mono; and the
Scratchpad font is ORAHand-Medium.



O'REILLY"

Learn from experts.
Become one yourself.

60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O'Reilly learning platform free for 10 days.

©2025 O'Reilly Media, Inc. O'Reilly is a registered trademark of O'Reilly Media, Inc. 718900_7x9.1875



	Cover
	Copyright
	Table of Contents
	Preface
	Why I Wrote a Book About Test-Driven Development
	Aims of This Book
	Outline
	Conventions Used in This Book
	Submitting Errata
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Companion Video
	License for the Free Edition

	Preface to the Third Edition: 
TDD in the Age of AI
	AI Is Both Insanely Impressive and Incredibly Unreliable
	Mitigations for AI’s Shortcomings Sure Look a Lot Like TDD
	Leaky Abstractions and the Importance of Experience
	My Own Experiences with AI

	The AI-Enabled Workflow of the Future

	Prerequisites and Assumptions
	Python 3 and Programming
	How HTML Works
	Django
	JavaScript
	Required Software Installations
	Installing Firefox

	Setting Up Your Virtualenv
	Activating and Deactivating the Virtualenv
	Installing Django and Selenium
	Some Error Messages You’re Likely to See When You Inevitably Fail to Activate Your Virtualenv


	Acknowledgments
	Additional Thanks for the Second Edition
	Additional Thanks for the Third Edition

	Part I. The Basics of TDD and Django
	Chapter 1. Getting Django Set Up Using a 
Functional Test
	Obey the Testing Goat! Do Nothing Until You Have a Test
	Getting Django Up and Running
	Starting a Git Repository

	Chapter 2. Extending Our Functional Test Using 
the unittest Module
	Using a Functional Test to Scope Out a 
Minimum Viable App
	The Python Standard Library’s unittest Module
	Commit

	Chapter 3. Testing a Simple Home Page 
with Unit Tests
	Our First Django App and Our First Unit Test
	Unit Tests, and How They Differ from Functional Tests
	Unit Testing in Django
	Django’s MVC, URLs, and View Functions
	Unit Testing a View
	At Last! We Actually Write Some Application Code!
	The Unit-Test/Code Cycle

	Our Functional Tests Tell Us We’re Not Quite Done Yet
	Reading Tracebacks
	urls.py

	Chapter 4. What Are We Doing with All These Tests? (And, Refactoring)
	Programming Is Like Pulling a Bucket of Water 
Up from a Well
	Using Selenium to Test User Interactions
	The “Don’t Test Constants” Rule, and Templates 
to the Rescue
	Refactoring to Use a Template

	Revisiting Our Unit Tests
	Test Behaviour, Not Implementation

	On Refactoring
	A Little More of Our Front Page
	Recap: The TDD Process
	Double-Loop TDD


	Chapter 5. Saving User Input: Testing the Database
	Wiring Up Our Form to Send a POST Request
	Testing the Contract Between Frontend and Backend
	Debugging Functional Tests
	Debugging with time.sleep

	Processing a POST Request on the Server
	Passing Python Variables to Be Rendered in the Template
	An Unexpected Failure
	Improving Error Messages in Tests

	Three Strikes and Refactor
	The Django ORM and Our First Model
	Our First Database Migration
	The Test Gets Surprisingly Far
	A New Field Means a New Migration

	Saving the POST to the Database
	Redirect After a POST
	Better Unit Testing Practice: Each Test Should Test 
One Thing
	Rendering Items in the Template
	Creating Our Production Database with migrate
	Recap

	Chapter 6. Improving Functional Tests: Ensuring Isolation and Removing Magic Sleeps
	Ensuring Test Isolation in Functional Tests
	Running Just the Unit Tests

	On Implicit and Explicit Waits, and Magic time.sleeps

	Chapter 7. Working Incrementally
	Small Design When Necessary
	Not Big Design Up Front
	YAGNI!
	REST-ish

	Implementing the New Design Incrementally Using TDD
	Ensuring We Have a Regression Test
	Iterating Towards the New Design
	Taking a First, Self-Contained Step: One New URL
	Separating Out Our Home Page and List View Functionality
	The FTs Detect a Regression
	Getting Back to a Working State as Quickly as Possible
	Green? Refactor

	Another Small Step: A Separate Template 
for Viewing Lists
	A Third Small Step: A New URL for Adding List Items
	A Test Class for New List Creation
	A URL and View for New List Creation
	Removing Now-Redundant Code and Tests
	A Regression! Pointing Our Forms at the New URL
	Debugging in DevTools

	Biting the Bullet: Adjusting Our Models
	A Foreign Key Relationship
	Adjusting the Rest of the World to Our New Models

	Each List Should Have Its Own URL
	Capturing Parameters from URLs
	Adjusting new_list to the New World

	The Functional Tests Detect Another Regression
	One More URL to Handle Adding Items to an Existing List
	The Last New urls.py Entry
	The Last New View
	Testing Template Context Directly

	A Final Refactor Using URL includes
	Can You Believe It?


	Chapter 8. Prettification: Layout and Styling, 
and What to Test About It
	Testing Layout and Style
	Prettification: Using a CSS Framework
	Django Template Inheritance
	Integrating Bootstrap
	Rows and Columns

	Static Files in Django
	Switching to StaticLiveServerTestCase

	Using Bootstrap Components to Improve 
the Look of the Site
	Jumbotron!
	Large Inputs
	Table Styling
	Optional: Dark Mode
	A Semi-Decent Page

	Parsing HTML for Less Brittle Tests of Key HTML Content
	What We Glossed Over: collectstatic and 
Other Static Directories
	A Few Things That Didn’t Make It


	Part II. Going to Production
	Chapter 9. Containerization aka Docker
	Docker, Containers, and Virtualization
	Why Not Just Use a Virtualenv?
	Docker and Your CV

	As Always, Start with a Test
	Making a src Folder

	Installing Docker
	Building a Docker Image and Running a Docker Container
	A First Cut of a Dockerfile
	Docker Build
	Docker Run

	Installing Django in a Virtualenv in Our Container Image
	Successful Run

	Using the FT to Check That Our Container Works
	Debugging Container Networking Problems
	Debugging Web Server Connectivity with curl

	Running Code “Inside” the Container with docker exec
	Docker Port Mapping
	Essential Googling the Error Message

	Database Migrations
	Should We Run migrate Inside the Dockerfile? No.

	Mounting Files Inside the Container

	Chapter 10. Making Our App Production-Ready
	What We Need to Do
	Switching to Gunicorn
	The FTs Catch a Problem with Static Files

	Serving Static Files with WhiteNoise
	Using requirements.txt
	Using Environment Variables to Adjust Settings for Production
	Setting DEBUG=True and SECRET_KEY
	Setting Environment Variables Inside the Dockerfile
	Setting Environment Variables at the Docker Command Line
	ALLOWED_HOSTS Is Required When Debug Mode Is Turned Off
	Collectstatic Is Required when Debug Is Turned Off

	Switching to a Nonroot User
	Making the Database Filepath Configurable
	Using UIDs to Set Permissions Across Host/Container Mounts

	Configuring Logging
	Provoking a Deliberate Error

	Exercise for the Reader: Using the Django check Command
	Wrap-Up

	Chapter 11. Getting a Server Ready for Deployment
	Manually Provisioning a Server to Host Our Site
	Choosing Where to Host Our Site
	Spinning Up Our Own Server

	Getting a Domain Name
	Configuring DNS for Staging and Live Domains
	Ansible
	Ansible Versus SSH: How We’ll Talk to Our Server

	Start by Making Sure We Can SSH In
	Debugging Issues with SSH
	Installing Ansible
	Checking Ansible Can Talk to Our Server


	Chapter 12. Infrastructure as Code: Automated Deployments with Ansible
	A First Cut of an Ansible Playbook for Deployment
	SSHing Into the Server and Viewing Container Logs
	Allowing Rootless Docker Access
	Getting Our Image Onto the Server
	Taking a Look Around Manually

	Setting Environment Variables and Secrets
	Manually Checking Environment Variables for Running Containers

	Running FTs to Check on Our Deploy
	Manual Debugging with curl Against the Staging Server

	Mounting the Database on the Server and 
Running Migrations
	It Workssss
	Deploying to Prod
	git tag the Release
	Tell Everyone!
	Further Reading


	Part III. Forms and Validation
	Chapter 13. Splitting Our Tests into Multiple Files, 
and a Generic Wait Helper
	Start on a Validation FT: Preventing Blank Items
	Skipping a Test

	Splitting Functional Tests Out into Many Files
	Running a Single Test File
	A New FT Tool: A Generic Explicit Wait Helper
	Finishing Off the FT
	Refactoring Unit Tests into Several Files

	Chapter 14. Validation at the Database Layer
	Model-Layer Validation
	The self.assertRaises Context Manager
	Django Model Constraints and Their Interaction with Databases
	Inspecting Our Constraints at the Database Level
	Testing Django Model Validation
	A Django Quirk: Model Save Doesn’t Run Validation

	Surfacing Model Validation Errors in the View
	Checking That Invalid Input Isn’t Saved to the Database
	Adding an Early Return to Our FT to Let Us Refactor Against Green

	Django Pattern: Processing POST Requests in the Same View That Renders the Form
	Refactor: Transferring the new_item Functionality into view_list
	Enforcing Model Validation in view_list

	Refactor: Removing Hardcoded URLs
	The {% url %} Template Tag
	Using get_absolute_url for Redirects


	Chapter 15. A Simple Form
	Moving Validation Logic Into a Form
	Exploring the Forms API with a Unit Test
	Switching to a Django ModelForm
	Testing and Customising Form Validation

	Attempting to Use the Form in Our Views
	Using the Form in a View with a GET Request
	The Trade-offs of Django ModelForms: The Frontend Is Coupled to 
the Database

	A Big Find-and-Replace
	Backing Out Our Changes and Getting to a Working State
	Renaming the name Attribute
	Renaming the id Attribute

	A Second Attempt at Using the Form in Our Views
	Using the Form in a View That Takes POST Requests
	Using the Form to Display Errors in the Template
	Get Back to a Working State
	A Helper Method for Several Short Tests

	Using the Form in the Existing Lists View
	Using the Form to Pass Errors to the Template
	Refactoring the View to Use the Form Fully

	An Unexpected Benefit: Free Client-Side Validation 
from HTML5
	A Pat on the Back
	But Have We Wasted a Lot of Time?

	Using the ModelForm’s Own Save Method

	Chapter 16. More Advanced Forms
	Another FT for Duplicate Items
	Preventing Duplicates at the Model Layer
	Rewriting the Old Model Test
	Integrity Errors That Show Up on Save

	Experimenting with Duplicate Item Validation at the Views Layer
	A More Complex Form to Handle Uniqueness Validation
	Using the Existing List Item Form in the List View
	Customising the Save Method on Our New Form

	The FTs Pick Up an Issue with Bootstrap Classes
	Conditionally Customising CSS Classes for Invalid Forms
	A Little Digression on Queryset Ordering and String Representations

	On the Trade-offs of Django ModelForms, and Frameworks in General
	Moving Presentation Logic Back into the Template
	Tidying Up the Forms
	Switching Back to Simple Forms

	Wrapping Up: What We’ve Learned About Testing Django


	Part IV. More Advanced Topics in Testing
	Chapter 17. A Gentle Excursion into JavaScript
	Starting with an FT
	A Quick Spike
	A Simple Inline Script
	Using the Browser DevTools

	Choosing a Basic JavaScript Test Runner
	An Overview of Jasmine
	Setting Up Our JavaScript Test Environment
	Our First Smoke Test: Describe, It, Expect
	Running the Tests via the Browser

	Testing with Some DOM Content
	Building a JavaScript Unit Test for Our 
Desired Functionality
	Fixtures, Execution Order, and Global State: 
Key Challenges of JavaScript Testing
	console.log for Debug Printing

	Using an Initialize Function for More Control Over Execution Time
	Deliberately Breaking Our Code to Force Ourselves to Write More Tests
	Red/Green/Refactor: Removing Hardcoded Selectors
	Does it Work?
	Testing Integration with CSS and Bootstrap
	Columbo Says: Wait for Onload
	JavaScript Testing in the TDD Cycle

	Chapter 18. Deploying Our New Code
	The Deployment Checklist
	A Full Test Run Locally
	Quick Test Run Against Docker
	Staging Deploy and Test Run
	Production Deploy
	What to Do If You See a Database Error
	How to Delete the Database on the Staging Server

	Wrap-Up: git tag the New Release

	Chapter 19. User Authentication, Spiking, 
and De-Spiking
	Passwordless Auth with “Magic Links”
	A Somewhat Larger Spike
	Starting a Branch for the Spike
	Frontend Login UI
	Sending Emails from Django
	Email Server Config for Django
	Another Secret, Another Environment Variable
	Storing Tokens in the Database
	Custom Authentication Models
	Finishing the Custom Django Auth

	De-Spiking
	Making a Plan
	Wring an FT Against the Spiked Code
	Reverting Our Spiked Code

	A Minimal Custom User Model
	Tests as Documentation

	A Token Model to Link Emails with a Unique ID

	Chapter 20. Using Mocks to Test External Dependencies
	Before We Start: Getting the Basic Plumbing In
	Mocking Manually—aka Monkeypatching
	The Python Mock Library
	Using unittest.patch
	Getting the FT a Little Further Along
	Testing the Django Messages Framework
	Adding Messages to Our HTML
	Starting on the Login URL
	Checking That We Send the User a Link with a Token

	De-Spiking Our Custom Authentication Backend
	One if = One More Test
	The get_user Method


	Chapter 21. Using Mocks for Test Isolation
	Using Our Auth Backend in the Login View
	Straightforward Non-Mocky Test for Our View

	Combinatorial Explosion
	The Car Factory Example

	Using Mocks to Test Parts of Our System in Isolation
	Mocks Can Also Let You Test the Implementation, When It Matters

	Starting Again: Test-Driving Our Implementation 
with Mocks
	Using mock.return_value
	Using .return_value During Test Setup
	UnDONTifying

	Deciding Which Tests to Keep
	The Moment of Truth:  Will the FT Pass?
	It Works in Theory!  Does It Work in Practice?
	Using Our New Environment Variable, and Saving It to .env

	Finishing Off Our FT: Testing Logout

	Chapter 22. Test Fixtures and a Decorator 
for Explicit Waits
	Skipping the Login Process by Pre-creating a Session
	Checking That It Works

	Our Final Explicit Wait Helper: A Wait Decorator

	Chapter 23. Debugging and Testing Server Issues
	The Proof Is in the Pudding: Using Docker to Catch 
Final Bugs
	Inspecting the Docker Container Logs
	Another Environment Variable in Docker
	mail.outbox Won’t Work Outside Django’s Test Environment

	Deciding How to Test “Real” Email Sending
	An Alternative Method for Setting Secret Environment Variables on the Server
	Debugging with SQL
	Managing Fixtures in Real Databases
	A Django Management Command to Create Sessions
	Getting the FT to Run the Management Command on the Server
	Running Commands Using Docker Exec and (Optionally) SSH
	Recap: Creating Sessions Locally Versus Staging

	Testing the Management Command
	Test Database Cleanup
	Wrap-Up

	Chapter 24. Finishing “My Lists”: Outside-In TDD
	The Alternative: Inside-Out
	Why Prefer “Outside-In”?
	The FT for “My Lists”
	The Outside Layer: Presentation and Templates
	Moving Down One Layer to View Functions 
(the Controller)
	Another Pass, Outside-In
	A Quick Restructure of Our Template Composition
	An Early Return So We’re Refactoring Against Green
	Factoring Out Two Template includes
	Designing Our API Using the Template
	Moving Down to the Next Layer: 
What the View Passes to the Template

	The Next “Requirement” from the Views Layer: 
New Lists Should Record Owner
	A Decision Point: Whether to Proceed to the Next Layer 
with a Failing Test

	Moving Down to the Model Layer
	Final Step: Feeding Through the .name API 
from the Template

	Chapter 25. CI: Continuous Integration
	CI in Modern Development Workflows
	Choosing a CI Service
	Getting Our Code into GitLab
	Signing Up
	Starting a Project
	Pushing Our Code Up Using Git Push

	Setting Up a First Cut of a CI Pipeline
	First Build!  (and First Failure)
	Trying to Reproduce a CI Error Locally
	Enabling Debug Logs for Selenium/Firefox/Webdriver
	Enabling Headless Mode for Firefox

	A Common Bugbear: Flaky Tests
	Taking Screenshots
	Saving Build Outputs (or Debug Files) as Artifacts
	If in Doubt, Try Bumping the Timeout!
	A Successful Python Test Run
	Running Our JavaScript Tests in CI
	Installing Node.js
	Installing and Configuring the Jasmine Browser Runner
	Adding a Build Step for JavaScript

	Tests Now Pass
	Some Things We Didn’t Cover
	Defining a Docker Image for CI
	Caching
	Automated Deployment, aka Continuous Delivery (CD)


	Chapter 26. The Token Social Bit, the Page Pattern, 
and an Exercise for the Reader
	An FT with Multiple Users, and addCleanup
	The Page Pattern
	Extend the FT to a Second User, and the “My Lists” Page
	An Exercise for the Reader
	Step-by-Step Guide


	Chapter 27. Fast Tests, Slow Tests, and Hot Lava
	Why Do We Test? Our Desiderata for Effective Tests
	Confidence and Correctness (Preventing Regression)
	A Productive Workflow
	Driving Better Design

	Were Our Unit Tests Integration Tests All Along? 
What Is That Warm Glow Coming from the Database?
	We’ve Been in the “Sweet Spot”
	What Is a “True” Unit Test?  Does it Matter?
	Integration and Functional Tests Get Slower Over Time
	We’re Not Getting the Full Potential Benefits of Testing

	The Ideal of the Test Pyramid
	Avoiding Mock Hell
	The Actual Solutions Are Architectural
	Ports and Adapters/Hexagonal/Onion/Clean Architecture
	Functional Core, Imperative Shell
	The Central Conceit: These Architectures Are “Better”

	The Hardest Part: Knowing When to Make the Switch
	Wrap-Up
	Further Reading



	Obey the Testing Goat!
	Testing Is Hard
	Keep Your CI Builds Green
	Take Pride in Your Tests, as You Do in Your Code
	Remember to Tip the Bar Staff

	Don’t Be a Stranger!

	Bibliography
	Appendix A. Cheat Sheet
	Initial Project Setup
	The Basic TDD Workflow: Red/Green/Refactor
	Moving Beyond Dev-Only Testing
	General Testing Best Practices
	Selenium/Functional Testing Best Practices
	Outside-In
	The Test Pyramid

	Appendix B. What to Do Next
	Switch to Postgres
	Run Your Tests Against Different Browsers
	The Django Admin Site
	Write Some Security Tests
	Test for Graceful Degradation
	Caching and Performance Testing
	JavaScript Frameworks
	Async and Websockets
	Switch to Using pytest
	Check Out coverage.py
	Client-Side Encryption
	Your Suggestion Here

	Appendix C. Source Code Examples
	Full List of Links for Each Chapter
	Using Git to Check Your Progress
	Downloading a ZIP File for a Chapter
	Don’t Let it Become a Crutch!

	Index
	About the Author
	Colophon


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




