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Preface

The goal of this book is to give a hands-on approach to computer symbolic computation
using elementary commands of Python. The book treats the symbolic manipulation of
expressions involving rational functions, logic statements, and the exact fractional solu-
tions of systems of linear equations. The book also contains a variety of applications,
including symbolic differentiation and integration. A module with immediately runnable
code is available on GitHub for each chapter, allowing the reader to experiment with,
modify, or build upon the programs.

Numbers used in computer numerical computations are typically floating point num-
bers or integers, both of which are restricted in size due to the computer’s lack of ability
to represent some numbers exactly. This results in rounding errors, which may accu-
mulate during run time, a serious defect in some areas of scientific computing, where
exact answers may be needed. Symbolic computation provides exact results, with num-
bers written as exact fractions and variables processed symbolically. Of course, fractions
may eventually need to be approximated by decimal values, but delaying this conversion
until the end avoids accumulation of errors and so results in better approximations.

The field of symbolic computation can be quite abstract, delving deeply into the study
of algorithms that manipulate mathematical expressions. There are sophisticated software
products, for example Mathematica and Maple, that perform complex symbolic computa-
tions based on these algorithms. Such commercial products also have extensive graphics
capabilities. Additionally, there are computer languages, including Python, with packages
that perform some symbolic computations.

How then does this book fit into field of symbolic computation? First, here’s what it
isn’t: It is not a book on abstract symbolic computation algorithms. Nor is it a book on
how to use commercial products or computer language packages that implement these
algorithms. Indeed, there are excellent books and manuals that fulfil these functions.
Rather, the goal of this book is to give a coding approach to symbolic computation using
elementary commands of Python. In light of the availability of commercial packages, the
reader might reasonably ask, “Why bother?”. It’s a good question, particularly for those
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viii Preface

whose interests lie in end results for applications. But for those interested in how some
of these results may be achieved, the book may have some relevance. The author is quick
note that he does not have any insight into the proprietary code of commercial products.
However, many aspects of symbolic computing can be analyzed and then implemented as
Python programs in a natural and straightforward way. We have attempted to do this in
the book. Of course, the programs developed here do not pretend to compete with pro-
fessional software packages, these usually being the efforts of teams of mathematicians
and programmers and requiring considerable time to develop. Nevertheless, it is hoped
that the methods in the book will give the reader some insight into concrete symbolic
computer mathematics at an elementary level.

The book is organized as follows. Chapter 1 provides the basic concepts of Python
needed to develop the modules in the book. The chapter is anything but encyclopedic.
Excellent manuals are available that discuss in detail the multitude of features in Python.
The chapter is meant to get the reader off and running with as few coding frills as possible.
The module associated with this chapter is Essentials.py.

Chapter 2 collects together many of the common tools required by the programs in the
book. These are primarily concerned with scanning mathematical expressions, retrieving
various symbols, and inserting symbols into these expressions. The module associated
with this chapter is Tools.py.

Chapter 3 develops programs that generate truth tables from expressions involving
logical operators and, conversely, programs that generate such expressions from truth
tables. The module associated with this chapter is Logic.py.

Chapter 4 develops some elementary number theory, including the division algorithm,
the greatest common divisor, prime numbers, congruences and modular arithmetic. One
of the main functions here expands a positive integer into a product of primes, giving
concrete illustrations of the Fundamental Theorem of Arithmetic. The module associated
with this chapter is Number.py.

Chapter 5 constructs a module that simplifies arithmetic expressions involving integers
and complex fractions, providing exact results. The main function is the underpinning of
subsequent symbolic algebra and calculus programs. A new cipher based on the program
is given as an application. The module associated with this chapter is Arithmetic.py.

Chapter 6 develops a module that does one-variable symbolic polynomial algebra.
Applications are made to polynomial calculus and interpolation. The module associated
with this chapter is PolyAlg.py.

Chapter 7 continues the theme of the preceding chapter, developing programs that
extract rational roots and factors from polynomials. The module associated with this
chapter is PolyDiv.py.

Chapter 8 generalizes the module in Chap. 6 to rational expressions in several variables.
Applications are made to multivariable calculus, including a program that symbolically
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calculates partial derivatives of multivariable rational functions and one that gener-
ates Taylor polynomials in two variables. The module associated with this chapter is
MultiAlg.py.

Chapter 9 is the first of a sequence of chapters devoted to symbolic linear algebra.
The first half of the chapter develops a program that generates the reduced row echelon
form of a matrix with rational complex entries. The second half uses the echelon form to
construct exact symbolic solutions of systems of linear equations. The module associated
with this chapter is LinSolve.py.

Chapter 10 develops programs that manipulate matrices algebraically, including a
matrix calculator that produces symbolic results. An application to curve fitting is given.
The module associated with this chapter is MatAlg.py.

Chapter 11 develops programs centering around linear independence of vectors. The
main results concern the range and kernel of a matrix. The module associated with this
chapter is Vectors.py.

Chapter 12 constructs programs that symbolically evaluate determinants. Applications
include a symbolic version of Cramer’s rule as well as some geometry. A final application
generates the inverse of a matrix with rational function entries. The module associated
with this chapter is Determinants.py.

Chapter 13 generalizes the main program in Chap. 8 by allowing expressions that
contain not only variables but also parameters. The main function is used to construct a
program that outputs the partial fraction decomposition of a rational function. The module
associated with this chapter is MultiAlgParams.py.

Much of the mathematics in the book is self-contained, although details are often
omitted, the emphasis being on coding. The material is easily accessible to readers with
a background in basic calculus and linear algebra.

As noted earlier, all code is available on GitHub: https://github.com/hjungh
enn/Python_Code_for_Computer_ Symbolic_Mathematics.

We should mention that the code here is not necessarily the most concise or efficient.
Precedence was given to readability, which frequently entailed introducing extra variables,
statements, or functions. The reader may wish to keep this in mind when constructing
code. Nothing is more frustrating than writing code that you can’t understand two weeks
later. (The author admits to having done this more than once.)

Happy coding!

Vienna, VA, USA Hugo D. Junghenn


https://github.com/hjunghenn/Python_Code_for_Computer_Symbolic_Mathematics
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Python Essentials

Python is a powerful high level computer language with numerous features. In this chapter we
consider those general aspects of the language that will be needed to achieve the mathematical
goals of the book. More specialized features will appear later the text. While not necessary,
the interested reader may wish to supplement the material in this chapter with one of the
many excellent texts on Python.

1.1 Getting Started

There are two main ways to use Python. The first is to write a statement into a Python
interpreter and press Enter; the result is then immediately displayed. This is useful as a
quick learning tool or for testing parts of a long program. The second way is to use a
text editor combined with a Python interpreter to create a text file (called a script) and then
execute the file with a Run button. The file may be saved under a name with the .py extension.
IDLE is the integrated editor which comes by default with Python. It include several features
to make programming simpler, for example, automatic indenting and color coding. We shall
use the script method throughout the book.

1.2 Functions and Methods

A function in Python is a named collection of statements executed together as a unit to
perform a specific task. A function may be passed data (called arguments or parameters)
and may return a value, but neither is necessary. A function runs only when it is called, that
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is, activated by its name, in a program. Functions are reusable so they can simplify code.
Furthermore, splitting a program into a sequence of functions makes the overall logic clearer
and debugging easier. The word function, as it is used here, should not be confused with its
use in mathematics, although there are similarities: a mathematical function is a rule that
takes an input and produces a unique output while a Python function is simply a named
sequence of statements that carries out a task. It need not have input or output values.

There are two main types of functions in Python: built-in library functions and user-
defined functions. An example of the former is the print function introduced in the next
section. A user-defined function in Python is created using the keyword def followed by
the name of the function and executable statements. Here is the general format:

def function_name(arguments): # arguments are optional
statements
return value # return statement is optiomnal

Note the colon and indentation. Python relies on the former to herald a forthcoming group
of statements and the latter to indicate the grouping. The text following the hash sign # is
intended to help explain the code; the Python interpreter skips over this. The use of liberally
sprinkled comments can greatly enhance clarity and help reduce the chance of logical errors.

A method in Python is similar to a function in that is called to perform a particular task.
Some methods may be passed parameters and may return values. Methods are called by
placing a period between the object that the method is associated with and the method’s
name. We shall see examples of methods later. User defined methods are possible, but we
won’t need this feature.

1.3 Values and Variables

A value in Python is a data object such as an integer, decimal, or text. Values are characterized
by their rypes. For example, the numbers 5, 0, and —2 belong the type int (integer). Numbers
with decimal points belong the type float (floating point). Character sequences enclosed in
quotation marks (double or single), as in “I am a string” or ‘3.14159’, belong to the type
str (string). Statements that are either true or false, have type bool (boolean). We discuss all
of these types in more detail in the next few sections. The type complex refers to complex
numbers, thatis, expressions of the form a + bj, where a and b are real numbers and jP=-1.
Python uses the letter j rather than the standard mathematical notation i to avoid conflict in
electrical engineering contexts, where i stands for current. We shall not need this data type
in our calculations as we consider complex numbers only within strings, freeing us to use
the standard letter i for /—1.
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A variable is a name that references a value contained in computer memory. Python does
not require that a variable be explicitly declared; it is created and its type decided the instant
a value is assigned. For example, when the code var = 2.3 is executed, the value 2.3 is
stored in computer memory and inherits the type float. The variable may then be used in code
without destroying the data it is referencing. A variable name must obey certain rules. The
name can only contain letters A—Z, a—z, digits 0-9, or underscores, and cannot start with a
digit. Additionally, names are case sensitive; for example, V and v denote different variables.
Finally, a name cannot be a Python keyword. These are reserved words that Python uses for
built-in functions and variables, and for implementing certain tasks, such as branching or
looping. The code help(' 'keywords'') disgorges Python’s keywords.

The data type of a value or variable can be displayed by the built-in Python function type.
Here are some examples using the print function mentioned earlier. We have also employed
the Python convention of separating statements with semicolons. This is a handy space saver
but should not be used if clarity is compromised.

Input:
# assign values to variables:
vl = 37; v2 = 3.7; v3 = 'thirtyseven'; v4 = 3 < 7

# print data type:
print (type(37), type(3.7), type('thirtyseven'), type(3 < 7))

# print variable type:
print(type(vl), type(v2), type(v3), type(vd))

Output:
# data type of values:
<class 'int'> <class 'float'> <class 'str'> <class 'bool'>

# data type of variables:
<class 'int'> <class 'float'> <class 'str'> <class 'bool'>

The Python functions int (), float (), and str() may be used to convert values from
one type to another. For example,

Input:
print(int(-3.7), float(37), float(3.7e-4), float(3.7e4), str(3.70)

Output:
-3 37.0 0.00037 37000.0 3.7
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Some observations: The function int applied to a float chops off the fractional part of the
number. For example, the statement print (int (3.9999) ,int (-3.9999)) prints the pair
3,-3. The notation 3.7e-4 is shorthand for the number 3.7 x 10~ and calls for the decimal
point to be shifted four places to the left. Similarly, 3.7e4 represents the number 3.7 x 10*
and causes the decimal point to be moved four places to the right.

1.4  Numerical Operations

Python has several operations for evaluating arithmetic expressions. The most common of

these are
+ addition

— substraction

+ multiplication

/ division

s exponentiation
The operations follow the usual precedence rules in arithmetic: exponentiation first, then
multiplication and division (no order of precedence between the two), and finally addition
and subtraction (no order of precedence between the two). Parenthetical expressions are
evaluated as they are encountered. Here are some examples:

Input:
print (5-6*3/2, 5-6/3*%2, 5-6/2%x3, 5-6x*2/3, 6+7/8-(6+7)/8)

Output:
-4.0 1.0 4.25 -7.0 5.25

Input:
vl = 2.3; v2 = 3.2 # assign values to variables vl and v2
v = vi*v2 + v1/v2 - vik*v2 # assign an expression to v
print (v)

Output:

-6.293642707920499
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There are three additional arithmetic operations of importance:

abs() absolute value function
// floor division operator
% modulo operator

The first operator returns the absolute value of a number. For example, abs(-2) = 2. The
floor division operator divides one real number by another and then rounds to the next lowest
integer value. For example,

Input:
print(9//2, -9//2, 9//-2, -(9//2))

Output:
4 -5 -5 -4

The modulo operator returns the remainder » when a positive integer a is divided by a
positive integer b, yielding the so-called division algorithm

a=qxb+r, 0<r<b, r=a%b, q=a//b
Here, a is called the dividend, b the divisor, and g the quotient. For example,
9=09//4) *x44+9%4=2x4+1.

Note that the remainder 1 may be expressed as 4 * (9/4 — 9//4) = 4 % (2.25 — 2). In general
for positive integers a, b one has

a%b =bx(a/b—al/b) (1.1)

Python takes this as the definition of the modulo operator for all integers a, b, b # 0. Try
this with the function

def modulo_test(a,b): # enter integers a, b
return a % b, bx(a/b - a//b) # returns a pair of equal numbers
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1.5 Boolean Operations

The Boolean data type bool refers to conditional statements, that is, statements that are
either true or false. Python give these statements the keyword values True or False. The
Python comparison operators are frequently used in this context:

== equal ! = not equal
< less than <= less than or equal
> greater than >= greater than or equal

One may use variables and operations in conditional statements:

Input:

vl = (4 == 2x%2) # parentheses optional but add clarity
v2 = 6 > 3%2 # optional parentheses omitted here
v3 = 6 != 3%2 # and here

print(vl,v2,v3)

Output:
True False False

Since the comparison operator takes precedence over the assignment operator, the paren-
theses in the first statement of the input are not needed. For added clarity, however, it is
recommended that they be used in contexts like this.

Conditional statements may be combined using the logical operators and,or ,not. The
operators are defined by the following rules, where A and B are conditional statements:

A and B true if and only if both A and B are true
A or B trueif and only if either A or B is true
not A  trueif and only if A is false.

The above operations extend to more than two statements and follow the standard prece-
dence rules: not first, then and, then or. Comparison operators are evaluated before logical
operators. For example,

Input:
print(1 < 2 and not 3 < 4 or 5 < 6)
print(1 < 2 and not (3 < 4 or 5 < 6))

Output:
True
False
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The first statement is evaluated as

(True and not True) or True = (True and False) or True
= False or True
= True

and the second as

True and False
False

True and not(True or True)

While the first statement in the above input code is legitimate, for clarity it is better to write
itas (1 <2 and not 3 <4)or5 < 6.

1.6  String Operations

In this section we describe the more common string functions available in Python. Others
appear in later applications.

Strings are joined together using the concatenation operator + (not to be confused with
the addition operator).

Input:

print('fiddle' + 'faddle')

print('bibbity ' + 'bobbity ' + 'boo') # spaces added
Output:

fiddlefaddle # no spaces

bibbity bobbity boo # spaces after bibbity and bobbity but not boo

The examples show that Python does not put spaces in strings unless it is directed to do so.
It also prints strings without the quotes.

The membership operator in returns True if a specified substring is contained in a given
string and False otherwise.

Input:
print('faddle' in 'fiddlefaddle', 'fuddle' in 'fiddlefaddle')

Output:
True False
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A string is considered as a sequence of characters and as such may be referenced by
their position or index. By convention, the first character of a string is located at index 0,
the second at index 1, etc. We also say that an index points to a character. For example, the
index 3 points to the character 'd' in the string 'abcde' . Indices may be negative, allowing
a character to be referenced from the right. For example, the third character from the right
in a string has index 3.

Input:
v = 'framosham'
print ('framosham' [0], 'framosham' [-3], v[2])

Output:
fha

Input:
print ('framosham'[3:8], 'framosham'[5:9], 'framosham'[5:])

Output:
mosha sham sham

Notice that in the notation [3:8] the letter at index 3 is included but the letter at index
8 is not. If you want a slice that includes the last character of the string you can use a
“fictitious” index which is one more than the index of the last character, or you can use
colon notation such as [j:]. For example, 'drizzle'[2:7]='drizzle' [2:]="'izzle'
You can also use [:j] as a substitute for [0:j]. Each of these yields the j characters
from the beginning of a string up to, but not including the jth character. For example,
'drizzle'[0:5]='drizzle'[:5]="'drizz".

Here’s a script defining a function that uses the slice method to switch the first and last
letters of a given string. The first statement uses the length function len, which returns the
length of a string.

def switch_first_and_last(string):

L = len(string) # length of string
first = string[0] # first character in string
last = string[L-1] # last character in string
middle = string[1:L-1] # characters at positions 1,2,... L-2

return last + middle + first # switch first and last
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Input:
print(switch_first_and_last('read'))

Output:
dear

The Python replace method takes every occurrence of a substring in a given string and
replaces it by another string. In the following example, every occurrence of the substring
''doo' ' is replaced by the string ' 'noo' .

Input:
farmsound = "cockadoodledoo" # given string
newfarmsound = farmsound.replace("doo","noo") # new string
print(farmsound + ',', newfarmsound) # comma separation
Output:

cockadoodledoo, cockanoodlenoo

Notice that the original string ' ' cockadoodledoo'' is unchanged. This is the case for all
string methods: they just return new values. Note also that we have concatenated a comma
to the string variable farmsound in the print function to indicate separation of the items.

The Python method lower converts all letters of a string to lower case. Its analog upper
does the reverse. The methods leave non-letters untouched.

Input:

print('frazzle'.upper()) # invoke upper method
print ('2BEES OR NOT 2BEES'.lower()) # invoke lower method
Output:

FRAZZLE

2bees or not 2bees

The count method returns how many times one string appears in another, either with or
without index constraints:

Input:

st = "framosham"

nl = st.count("am") # total number of am's in str
n2 = st.count("am",7) # number of am's starting at index 7
n3 = st.count("am",2,4) # number of am's from 2 to 3 inclusive
n4 = st.count("am",8) # number of am's starting at index 8

print(nl, n2, n3, n4)
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Output:
2110

The £ind method returns the index in a string of the first occurrence of a given substring,
returning —1 if the substring is not found. Index constraints may be imposed as in the method
count and follow the same rules.

s = 'framosham'

sl = st.find('am') # index of first 'am' in str
s2 = st.find('am',7) # index of first 'am' starting at index 7
s3 = st.find('am',2,4) # index of first 'am' between 2, 3 inclusive
s4 = st.find('am',8) # index of first 'am' starting at index 8

print(sl, s2, s3, s4)

Output:
272-1

A string is immutable, that is, the characters cannot be changed. For example, the following
code does not produce the desired string 'faddle' but rather throws an error. We show in
Sect. 1.8 how to get around this feature.

Input:
'fiddle[1]' = 'a'

Output:
TypeError: 'str' object does not support item assignment

1.7 ASCII Functions

ASCII is an abbreviation for “American Standard Code for Information Interchange.” The
code represents English letters and other characters by various symbols. We shall only need
the integer code for upper case letters, lower case letters, and digits:

Z: 65-90
z: 97-122
9: 48 -57.

A -
e a-
0-
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The Python function ord returns the ASCII code for a given character. The Python
function chr does the reverse: it takes an ASCII code number and returns the corresponding
character.

Input:
print(ord("a"), ord("e"), ord("i"), ord("o"), ord("u"))
print(chr(97), chr(101), chr(105), chr(111), chr(117))

Output:
97 101 105 111 117
aeiou

1.8 Lists

A list in Python is an indexed sequence of items separated by commas and enclosed by
square brackets. It is one of the most-used data structures in Python, and we shall have
many occasions to use it. Part of its usefulness derives from its great versatility, including
the property that items may be of different types. For example, the following code defines
a list variable A containing a string, a float, an integer, a boolean expression, and a type
command.

Input:
A = ['frobish', -4.2, 11, 4 == 5, type(3+2j)]
print (A)

Output:
['frobish', -4.2, 11, False, <class 'complex'>]

A list can contain other lists:

Input:
B =[A, 'I am not a list']
print (B)

Output:
[['frobish',-4.2,11,False,<class 'complex'>],'I am not a list']
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Like strings, lists may be concatenated using a plus sign:

Input:
print(["alpha","beta"] + [1,2,3])

Output:
['alpha, 'beta',1, 2, 3]

As with strings, the members of a list may be referenced using indices which start at 0.
For example,

Input:
c=[['a','p','c'], 3,2,1]
print(C[0], C[1], c[0][2])

Output:
[Ial’ 'b', 'C'] 3 c

The index method returns the index of the first occurrence of an item in the list:

Input:
print(['a','b','c','d'].index('c"'))

Output:
2

The slice function for lists works the same way as for strings, obeying the same rules.

Input:

A = ['frobish', -4.2, 11, 4 == 5, type(3+2j)]

print(A[1:31) # print items with indices 1 and 2
print(A[2:1) # print items from index 2 on
print(A[:31) # print items with indices 0,1 and 2
Output:

[-4.2, 11]

[11, False, <class 'complex'>]
['frobish', -4.2, 11]
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The join method merges into a string the members of a list, with or without a delimiter.

Input:

string = ['aaa', 'bbb', 'ccc']

listl = ''.join(string) # join items in list without delimiter
list2 = ','.join(string) # join items with comma delimiter
print(listl,' ',list2) # insert a space for clarity
Output:

aaabbbccc aaa,bbb,ccc

The split method takes a string and returns a list of its members separated at each
occurrence of a given string character. The separators are eliminated in the splitting process.

Input:

river = 'Mississippi’

print(river.split('i') # separate at the i's
print(river.split('s"')) # separate at the s's
Output:

['M', 'ss', 'ss', 'pp', ''] # no i's
[IMiI’ ||’ 'i', ||’ 'ippi'] # no s's

Input:

river = 'Mississippi’

river_list = list('Mississippi')
print(river_list)

Output:
[IMI’Iil’ISI,ISI’Iil’lsl’lsl’lil’lpl’lpl’lil]

As with strings, the operator in returns True if a given item is contained in a list:

Input:
A = ['frobish', -4.2, 11, 4 == 5, type(3+2j)]
print('frobish' in A, 'frubish' in A)

Output:
True False
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The append method adds another item to a list. The insert method places a new item
at a designated index.

Input:

E=1[] # start with an empty list
E.append('Afghanistan') # first member
print (E)

E.append('Stand') # second member
print (E)

E.insert(1, 'Banana') # insert 'Banana after 'Afghanistan'
print (E)

Output:

['Afghanistan']

['Afghanistan', 'Stand']
['Afghanistan', 'Banana', 'Stand']

Items in a list may be changed simply by overwriting. Thus, in contrast to strings, lists
are mutable.

Input:

E = ['Afghanistan', 'Banana', 'Stand']

E[1]= 'Bandana’ # overwrite 'Banana'
print (E)

Output:
['Afghanistan', 'Bandana', 'Stand']

Input:

E = ['Afghanistan', 'Banana', 'Stand']

E.remove('Afghanistan')

print (E)

E.clear() # remove everything
print (E)

Output:
['Banana', 'Stand']
[1 # empty list
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1.9  Tuples

A tuple is an ordered collection of items separated by commas and enclosed by parentheses.
Itis initialized in the same way as a list, and members of a tuple can be accessed by using the
square bracket index method, exactly as in lists. However, unlike a list, a tuple is immutable,
that is, it cannot be modified. To get around this, one can convert a tuple to a list, change the
list, and then convert the resulting list to a tuple:

Input:

t =01,2,3,4,5) # create a tuple variable
print(t)

s = list(t) # convert it to a list
s[3] =7 # change the 4 to a 7
t = tuple(s) # convert list to tuple
print(t)

Output:

1, 2, 3, 4, 5
1,2,3,7,5)

Tuples are used much less frequently than lists. They are useful in situations where it is
crucial that a particular sequence of items be preserved. We shall have little if any occasion
to use them.

1.10 Sets

The notion of set in Python corresponds closely to its definition in mathematics: a collection
of items separated by commas and enclosed by braces. In contrast to lists and tuples, however,
sets are not indexed, do not have duplicate members and are not ordered. But one can
determine membership and append or remove members of a set directly without using
indices.

Input:

s =11, 2, 3, 'x', 'y'}
print(2 in s)

print(5 in s)

# initialize set s
# check membership

s.add('b") # add another member
print(s)

s.remove('y') # get rid of 'y'
print(s)

Output:

True
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False
{1’ 2’ 3 'b', 'X', lyl}
{1, 2, 3, 'b', 'x'}

The Python function set may be used to convert lists and strings into sets. It may also
be used in conjunction with the 1ist function to remove duplicates from a list.

Input:
print (list(set('Mississippi')))

Output:
[Ipl’ 'M', 'S', 'i']

1.11 Dictionaries

Dictionaries are similar to lists, the essential difference being that items are appended in
the form key:value, where the key is used to find the value as in lists (slicing is not
available). Entries can be deleted using the del statement and revised or added items using
the assignment operator. Here is an example that gives the test scores of several students.

Input:

sample_dictionary = {'Betty':82, 'Ralph':67,'Aaron':85, " 'Sally':91}
print (sample_dictionary['Sally']) # reveal Sally's score
del sample_dictionary['Ralph'] # Ralph dropped course
sample_dictionary['Betty'] = 84 # give Betty 2 more points
sample_dictionary['Bruce'] = 72 # add Bruce's late test score

print (sample_dictionary)

Output:
91 # Sally's score
{'Betty': 84, 'Aaron': 85, 'Sally': 91, 'Bruce': 72}

1.12 The If Elif Else Statement

The if elif else statement is an example of a conditional statement. Such statements
enable the path of a program to branch to other statements depending on conditions that
occur during run time. These conditions are usually in the form of Boolean expressions and
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typically involve comparison and logical operators, discussed earlier. The statement has the
following general form:

if conditionl:

statementsl # statements indented by the recommended 4 spaces
elif condition2:

statements2

elif conditionk:
statementsk
else:
statements

There may be arbitrarily many elif statements or none at all. The code executes as follows:
if conditionl is true, then statementsi are executed, the remaining elif and else state-
ments, if any, are ignored, and control passes to the statement following the code block. On
the other hand, if conditionl is false, then condition? is tested. The process continues in
this manner through the kth statement. The else statement, which is optional, is executed
if conditions 1 to k are false.

Here’s an example of a function that determines which of three distinct numbers is
between the other two.

def in_between(a,b,c):
if (c < aand a < b) or (¢c > a and a > b):
return a
elif (c < band b < a) or (c >b and b > a):
return b
elif (a < cand c < b) or (a > c and ¢ > b):
return c
else:
return "There is no such number."

Sample Run --------
Input:
print (in_between(3,1,2), in_between(3,2,2))

Output:
2 There is no such number.
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1.13 The While Loop

A loop in a program causes a sequence of instructions to execute repeatedly until a given
condition changes, whereupon the loop exits. Such statements are typically used with com-
parison and logical operators. Loops are indispensable in calculations that require a large
number of repeated calculations. There two main types of loops in Python: the while loop
and the for loop. We consider the former in this section, the latter in the next.

The while loop continues until a condition becomes False. Here is the form that we
shall need.

while condition: # continue while condition is true
statements # statements are indented

The following example takes a string and reverses adjacent pairs of characters of the
string, leaving the last one untouched if the number of characters is odd.

def reversepairs(str): # input a string str
L = len(str)
idx = 0 # index for string
revpairs = "' # create an empty string
while idx <= L-2: continue
revpairs = revpairs + str[idx+1] # reverse characters
revpairs = revpairs + str[idx]
idx = idx+2 # increment index by 2
if L%2 !'= 0: # if L not even
revpairs = revpairs + str[L-1] # odd number of letters

return revpairs

- Sample Run -------
Input:
print(reversepairs('123456') # last iteration at idx = 4,digit = 5
print(reversepairs('1234567'))# last iteration at idx = 5,digit = 6

Output:
214365 2143657

Here’s example of a function that calculates the smallest integer n for a sum of the form

1+ ! + ! +o 1t !
2 3 n

to exceed a given number U (upper bound). The sums grow larger and larger but do so very

slowly. For example, running the function reveals that 100,210,581 terms are needed for the

sum to exceed 19, and an additional 172,190,019 terms are required to get past 20.
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def num_reciprocals(U):

s=0; n=20 # initialize sum and counter
while s <= U: # stop loop when sum > U
n=n+1 # increment n
s=s+1/n # update sum with new term
return n
- Sample Run --—-------
Input:

print (num_reciprocals(10))

Output:
12367

You can skip some iterations in a while loop by using the continue statement. For
example:

def num_odd_reciprocals(U):

s =0;n=0 # initialize sum and counter

while s <= U: # stop loop when sum > U
n=n+1 # increment n
if n%2 == 0: continue # skip even numbers
s= s+ 1/n # update sum with new term

return n

—--- Sample Run --

Input:

print('n = ', sum_of_odd_reciprocals(10))

Output:

n = 136200301

You can get out of a while loop by using the break statement. Here’s an example that
takes a list of numbers and returns the product of its reciprocals. The loop breaks if it
encounters a zero, in which case the function returns None.

def invert_and_multiply(numberstring):
numberlist = numberstring.split(',') # make a list from string
L = len(numberlist)
prod = 1; i =0 # initialize product and index

while i < L:
if numberlist([i] == '0':
break
reciprocal = 1/float(numberlist[i])
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prod = prod*reciprocal

i+=1 # simplified notation for i = i+l

if i == L: # made it through ok?

return prod # yep
Sample Run ------

Input:
numberstring = '2,-1,3.3,4.7,5.2,.00003"'
print(invert_and_multiply(numberstring))

Output:
-206.64914281935557

One can replace the break statement by return, obviating the last two lines of code.

1.14 The For Loop

The for loop iterates through a collection objects. Again, indentation is required.

for item in collection: # a list or string
statements # execute until no more items left in collection

Here’s an example that takes a string and returns a string of its vowels and a string of
its consonants. Note that the function returns both strings at once, feature that we avail
ourselves of throughout the text.

def separate_vowels_consonants(instring):
vowels = '' # initialize with null string
consonants = ''
for ch in instring:
if ch in 'aeiou':

vowels = vowels + ch # concatenate to the vowels string
if ord(ch) in range(97,123) and ch not in 'aeiou':
consonants = consonants + ch # ditto for consonants
return vowels, consonants # return both strings in a pair
Sample Run -----——--
Input:
instring = 'honorificabilitudinatatibus'

print (separate_vowels_consonants(instring))

Output:
('ooiiaiiuiaaiu', 'hnrfcbltdnttbs') # strings returned in a pair
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One can also use the range statement in place of collections, specifying start and end
constraints:

Input:
for k in range(2,5): #2<=k<5
print(k, end=' ')

Output:
234

Note that in the range statement the lower number is included but the upper number is not.
Note also use of the end feature in the print function, which enables one to print in a single
line with an intervening symbol, in this case a space.

One can omit iterations with a skip value that replaces the default skip of 1. The following
example prints every third value of , starting with k = 2 and ending k = 11. The skip value
is the last digit in the range statement, in this case 3.

Input:
for k in range(2,12,3):
print(k, end=" ") # print every third k starting with 2
Output:
25811

The skip value can be negative, causing the iteration to reverse.

Input:
# print every third k starting from the end 12. Stop before 2
for k in range(12,2,-3):

print(k, end=" ")

Output:
12 9 6 3

The continue and break are available and are used exactly as in while loops:

Input:

for k in "Mississippi":
if k == "s" or k == "M": continue # skip these letters
if k == "p": break

print(k,end=" ")
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Output:
iii

You can loop over a dictionary as well:

Input:
gradebook = {"Betty": 82, "Ralph": 67, "Aaron": 85, "Sally": 91}
for student in gradebook:

print(student, end=" ") # print names on a single line
print('\n') # skip a line
for grade in gradebook:

print(gradebook([grade] ,end=" ") # print grades on a single line
Output:

Betty Ralph Aaron Sally
# line skipped
82 67 85 91

Here we have used the newline character "\n’ to skip a line.

1.15 Recursion

The word “recursion” in programming refers to a procedure that calls itself. It is similar to
looping in that statements are executed repeatedly. Iterations in a loop cease when a certain
condition is satisfied; recursion ends when a base case or terminating condition is met.

The factorial function provides a simple example of recursion. The diagram in Fig. 1.1
indicates the various recursion levels undergone by the process. Note that multiplication
is delayed (the “ladder” is descended without the operations being performed) until the

Fig. 1.1 Factorial recursion recursion level
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base case n = 1 is reached, whereupon the ladder is ascended, the delayed multiplication
performed at each “rung” of the climb.

def factorial(n)
f=1 # value for n = 1
if n > 1:
f = n *x factorial(n - 1) # do the recursion
return f

Sample Run -------
Input:
print (factorial(50))

Output:
30414093201713378043612608166064768844377641568960512000000000000

Here’s another recursive function. It takes a starting value a; = 1 and a positive number
r and generates a sequence {a,} using the formula

1 r
an = 5 ap—1 + a1

The sequence gets closer and closer to /7.

def square_root(r,n):

a=1 # return 1 if n =1
if n > 1: # continue calling function until n =1
a = square_root(r,n-1) # do the recursion
a= (a+r/a)/2
return a
- Sample Run -------
Input:
r =2 # generate square root of 2
n = 100 # no. of iterations (more gives a better approximation)
s = square_root(r,n) # nth approximation to square root
print (s-2*%(1/2)) # check against Python's square root
Output:
-2.220446049250313e-16 # very small difference

The reader will find simple ways to achieve the same output in these examples using a
loop. However, as examples throughout the book demonstrate, recursion may be the only
practical solution to an iterative task.
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1.16 Modules

A Python module is a text file that contains functions, variables, runnable code, and other
items. A good example is the module math, which contains trig functions, power function,
logarithmic functions, mathematical constants such as = and Euler’s constant e. We shall
occasionally use this module. Modules can also be created. Indeed, the code in this chapter
has been assembled in the module Essentials.py. We shall create additional modules
throughout the text.
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General Tools

In this chapter we develop functions that will be used in a variety of contexts throughout the
book. They deal mainly with arithmetic, algebraic, and logical expressions. The reader may
wish to skim the chapter first, coming back to a particular section as needed. The functions
in this chapter comprise the module Tools.py. The module is headed by the following
statements.

-= -—= -- Tools.py -——-- -
global upper, lower, letters, numeric
upper = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

lower = 'abcdefghjklmnopqrstuvwxyz' # note the missing 'i'
letters = upper+lower
numeric = '.0123456789i'

The term global refers to variables that are available to all functions in the module.

2.1 Mathematical Expressions

Many of the functions in the chapter deal with mathematical expressions. These fall into
three main categories: arithmetic expressions, algebraic expressions, and logical expressions.
An arithmetic expression is a combination of sums, differences, products, quotients, and
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powers of numerics: integers, decimals, fractions and the imaginary number i = «/—1. We
call' Here is an example of an arithmetic expression:

1.2%4.3 + 2.1*%(3.1/4.2 - 5.31)711/(6.4i + (7+i)"20)"(-3).

Note that the expression is written using standard typewriter mathematical notation. In par-
ticular, an asterisk denotes multiplication and the caret symbol denotes exponentiation. We
use the caret symbol instead of Python’s double asterisk for compactness, better readability,
and deference to mathematical convention. Single asterisks between terms may be omitted
if no ambiguity results. For example, the second asterisk in the above expression may be
removed but not the first, although one could also write (1.2) (4.3) for that term. Paren-
theses in exponents, negative or positive, are optional unless there is ambiguity. Parentheses
should be used when in doubt.

An algebraic expression is similar to an arithmetic expression except that it may contain
letters representing variables or parameters, as in

(8x"2 + 7.1A + 5i)/(2y + 1)7123 - 2.3z.

The rules governing arithmetic expressions apply here as well. Variables may have subscripts,
as in x22. The only requirement on subscripts is that pairs such as x and its subscripted
relative x22 may not appear in the same expression. The letter i is deemed a numeric and
so is considered neither a variable nor a parameter.

A logical expression contains letters and the operations

P+d, PqQ = p*q, pP*q, p—>q, P<->q, p'

These will be explained in detail in Chap. 3. An example of such an expression is
(q + r’)<=>(rs > t)

All mathematical expressions in the book are entered as strings and manipulated sym-
bolically.

2.2  Category Functions

The following functions determine if a character is of a particular type, as described in the
above module heading. The first returns False if a letter is found in an expression.

I Recall that we use the standard mathematical symbol i rather than Python’s symbol j.
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def isarithmetic(expr):
for ch in expr:
if ch in letters:
return False
return True

def isnumeric(ch):
return ch in numeric

def isletter(ch):
return ch in letters

def isupper(ch):
return ch in upper

def islower(ch):
return ch in lower

2.3 Index Functions

The function move_past (expr,start,string) takes an expression, a starting index, and
a string of characters, and moves the index from left to right through the expression until it
no longer points to a member of the string. It then returns that index. For example, if expr
='abc1984xyz', start = 4, (pointing to the digit 9), and 'string = 1234567890"', then
the function returns 7, the index of the character 'x'.

def movepast(expr,start,string):
idx = start # index of character in expr
while idx < len(expr):
if expr[idx] not in string:
break
idx+=1
return idx # idx now points to the right of last string symbol

The function move2rparen (expr,start) takes an expression and an index pointing to
a left parenthesis in the expression and returns the index of the matching right parenthesis
by counting instances of both. For example, if expr ='(1+(2+(3+4)))"' and start = 3
(the second left parenthesis) then the function returns 11 (the second right parenthesis). At
this index the numbers of left and right parentheses are equal.
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def move2rparen(expr,start):
# returns index of matching right paren; start is at '('
numleft = 0; numright = 0
idx = start
while idx < len(expr):
ch = expr[idx]
if ch == '(":
numleft += 1 # shorthand for numleft = numleft + 1
if ch == ")":
numright += 1
if numleft == numright:
break
idx += 1
return idx # idx now at matching ')'

24  Retrieving Symbols

The functions in this section return various types of symbols in an expression. The first
considers only lower case letters unequal to i, these customarily used for variables in an
expression. The second function considers lower and upper case letters, the latter custom-
arily used for parameters. It uses the Python function sorted, which sorts the variables
alphabetically for easy reference.

def get_var(expr): # returns the first lower case letter != i
for ch in expr:
if ch in lower: return ch
return '' # no lower case letters found; return null string

def get_vars(expr):
varlist = []
3=0
while j < len(expr):
if expr[j] in letters:

start = j
end = movepast(expr,start+1,'1234567890') # subscripts?
var = expr[start:end] the variable
varlist = varlist + [var] # attach to list
j = end
else:
ja=1
varlist = sorted(list(set(varlist))) # kill duplicates and sort
varstring = ''.join(varlist) # string form

return varlist,varstring # return list and string
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def get_lower (expr):
# gets all lower case letters (except i)
variables = []
for ch in expr:
if ch in lower:
variables = variables + [ch]

if variables == []:
return ''
return ''.join(sorted(list(set(variables)))) # return string

def get_upper (expr) :
# gets all upper case letters
variables = []
for ch in expr:
if ch in upper:
variables = variables + [ch]

if variables == []:
return ''
return ''.join(sorted(list(set(variables))))
--— Sample Run --
Input:

expr = '7x11 +8x12+ 9x13+10x14+11ABcd’'
print(get_vars(expr) [0])
print(get_lower (expr))

print(get_upper (expr))

Output:

[IAI’ 'B', lcl’ 'd', VX11I:|
cdx

AB

25 Preparing Expressions

Several functions are needed to put a given expression into a form suitable for computations.
The first such function, insert_asterisks, takes a mathematical expression and places
asterisks between various symbols so that programs can deal more simply with multiplication
operations. The symbols are numerics and upper and lower case letters (with or without
subscripts).

def insert_asterisks(expr,varbs): # varbs = allowable variables
expr = expr.replace(' ',''") # remove white (blank) space
expr = expr.replace(')(',")*(") # insert between parens
for v in varbs: # insert between paren and var

expr = expr.replace(')'+v,')*'+v)
expr = expr.replace(v+'(',v+'*(")
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for n in numeric: # insert between paren and numeric
expr = expr.replace(')'+n,')*'+n)
expr = expr.replace(n+'(',n+'*(")
for m in varbs: # insert between variables
for n in varbs:
expr = expr.replace(mt+n,m+'*'+n)
for v in varbs: # insert between variable and constants
for n in numeric:
expr = expr.replace(n+v,n+'*'+v)
for v in varbs: # insert between accent and variable (for logic)
expr = expr.replace("'"+v,"'x"+v)
expr = expr.replace("'(","'x(") # for logic
return expr
Sample Run --------
Input:

expr = 'Ayz34v+uB(3.7i+x2F11G_12) "w5'
varbs = get_vars(expr) [0]
print(varbs)

print (insert_asterisks(expr,varbs))

expr = "(p->r'q) (g->(r+p'))"
varbs = get_vars(expr) [0]
print (varbs)

print (insert_asterisks(expr))

Output:
[IAI’ IBI, IF11|’ |G12|’ Iul’ IVI, IWSI, lx2l’ lyl’ Iz34l]
Axy*z34*v+uxB* (3.7i+x2*xF11%G12) "wb

[Ipl s |q|’ 'I"]
(p—>r'*q)*(q->(xr+p'))

The function fix_operands ensures that plus and minus signs have two operands. Specif-

ically, it takes a numeric with a lonely plus or minus sign and prefaces the sign with a zero so
that in calculations all operations are binary. For example, (-5-7) is converted to (0-5-7).

def fix_operands(expr):

if expr[0] == '-': # if '-' at beginning, then
expr = '0-' + expr[1:] # insert 'O’

if expr[0] == '+': # similarly for '+'
expr = '0+' + expr[1:]

expr = expr.replace('(-', '(0-',)

expr = expr.replace('(+', '(0+',)

return expr
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Certain functions may produce unwanted double signs during run time. The function
fix_signs(expr) fixes this as well as related problems.

def fix_signs(expr):

if expr == '' or expr == 'O': return expr
expr = expr.replace('(-)', '-')
expr = expr.replace('(+)', '+')
expr = expr.replace('++','+')
expr = expr.replace('-+','-")
expr = expr.replace('+-','-"')
expr = expr.replace('--','+')
expr = expr.replace('+=','=")

expr = expr.replace('-=','=")

expr = expr.replace('=+','=")

expr = expr.replace('=0-', '=-')
expr = expr.replace('=0+', '=')

# remove beginning and signs:

if expr[0] == '+': expr = expr[1:]

if L>1 and expr[L-1] in '+-': expr = expr[:L-2]
return expr

The following function attaches '~1' to a variable in expr missing a exponent. This
makes the task of extracting exponents uniform. The function ignores variables not specified
in var_list. A letter and a subscripted version may not both appear in var_list

def attach_missing_exp(expr,var_list):
expr = expr.replace(' ',''")
for v in var_list:

expr = expr.replace(v,v + '"1')
return expr.replace('"17','"")

Sample Run ------
Input:

expr = 'x123+y~456z789'

var_list = ['x123','y','z789']
print(attach_missing_exp(expr,var_list))

Output:
x12371+y~4562789"1
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2.6 Extracting Character Groups

The following functions extract various character sequences from an expression. The first
of these takes an expression expr, an index start pointing to the beginning of a desired
sequence in the expression, and the allowable characters in the sequence, and returns the
sequence and the index that points one position beyond the sequence. The remaining func-
tions are special cases of the first.

def extract_sequence(expr,start,characters):
end = movepast (expr,start,characters)
return expr[start:end], end # end is one past sequence

def extract_numeric(expr,start):
return extract_sequence(expr,start,'.01234567891i')

def extract_integer (expr,start):
return extract_sequence(expr,start,'0123456789"')

Sample Run --------
Input:
expr = '3-4+.5432iab+6'
start = 4 # index of decimal point

print(extract_numeric(expr, start))

start = 10 # index of 'a'
print (extract_var(expr, start))

Output:
('.5432i', 10)
('ab', 12)

The next functions are similar in spirit. The function extract_paren uses
move2rparen to extract a parenthetic expression. The function extract_exp takes an expres-
sion and index pointing to the symbol '~' in the expression and returns the exponent that
follows as well as the index immediately after the exponent. Allowable characters are an
initial minus sign, digits 0-9, and the letter ¢, which stands for transpose discussed in a later
chapter. Parentheses around the exponent are optional but should be used if lack thereof
makes for ambiguity.

def extract_paren(expr,start): # index start is at '('
end = move2rparen(expr,start) # end at ')’
end += 1 # one past ')'

return expr[start:end], end # return '(...)', index
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def extract_exp(expr,start): # index start is at '"'
start += 1 # move one past '"'
k = start
if exprl[k] == '(': # parenthetic exponent?
return extract_paren(expr,start) # return group in parens
if expr[k] == '-': # negative exp?
k+=1 # skip past
string = '1234567890t' # allowable characters (t =

end = movepast (expr,k,string) # end is one past exponent

return expr[start:end], end

Sample Run ------
Input:
expr = '3+(7-i+x) " (-54t)+11"'
start = 9 # index of '™

print(extract_exp(expr,start))
expr = '3+(7-i+x) " -b4t+11"'
start = 9

print(extract_exp(expr,start))

expr = '(1+(2+((3+4)+5))+6)"

start = 7 # index of 4th left paren

print (extract_paren(expr,start))

Output:
(' (-54t)"', 16)
('-54t', 14)

(' (3+4) ', 12)

2.7 Inserting and Replacing Characters

The functions in this section insert one string into another or replace part of the string with
another string. The first such function places parentheses around expressions preceded by a
negative sign or containing a fraction symbol ' /'. For example, add_parens('-3') returns

'(-3) "' and add_parens('1/2"') returns ' (1/2)'.

def add_parens(expr):

if expr == '' or expr == '-'
return expr
if expr[0] == '(':
return expr # already has parens
if '/' in expr or '+' in expr[1:] or '-' in expr[1:]:

return '(' + expr + ')'
return expr
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The function replace_string(string,replacement,idx) removes the portion of
string of length len(replacement) that starts at index idx and replaces it with the string
replacement. It returns the new string and the index that points immediately after the
replacement.

def replace_string(string,replacement,idx):
L = len(replacement)
left = string[:idx] # portion of string up to idx-1
right = string[idx+L:] # portion after idx+L-1
return left + replacement + right, idx + L

---- Sample Run ---
Input:
print(replace_string('abcdefg', 'xy',0)) # replace ab with xy
print(replace_string('abcdefg',xy,3)) # replace de with xy
Output:
('xycdefg', 2) # index points to ¢
('abcxyfg', 5) # index points to f

The following function inserts a string into an expression at a specified index without
removing any part of the original string. It also returns the index that points to the character
immediately following the insertion.

def insert_string(expr,insertion,idx):

outstring = expr[:idx] + insertion + expr[idx:]
return outstring, idx + len(insertion)
Sample Run ------
Input:
print(insert_string('abcd', 'xy',0)) # inserts 'xy' before 'abcd'
print(insert_string('abcd', 'xy',2)) # inserts 'xy' after 'b'
Output:

('xyabcd', 2)
('abxycd', 4)

2.8 List Functions

The function string2table takes a string with certain delimiters and returns a list, which
we shall call a rable. The comma-separated portions of the string form sublists, which we
shall call rows. The rows have lengths determined by semicolon delimiters. The function
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provides a convenient way for entering tables, and in particular matrices, into functions that

require such lists.

def string2table(s):

s = s.replace(' ','")
if ';' not in s:
row = s.split(',")
table = [row]

return table
rows = s.split(';"')
table = []
for row in rows:

# remove extra space
# no semicolon

# single row in list

# split into lists at semicolon

# split row entries at commas

rowlist = row.split(',"')
table.append (rowlist)

return table

Sample Run ------
Input:
s =',2;3;4,5,6' # 3 rows
print (string2table(s))
s = '1;2;3;4;5;6' # 6 rows
print(string2table(s))
s ="'1,2,3,4,5,6' # 1 row
print (string2table(s))
Output:
[[lll’ I2I]’ [!3']’ [l4|’ l5l’ I6I]]
ccrery, £'2'3, ['3'7, ['4'], ['5'], ['6']1]
[[Ill’ I2I’ I3|’ l4l’ l5l’ I6I]]

The following function does the reverse of string2table, converting a table into a string.

def table2string(T):

# takes a table and prints a comma\semicolon delimited string
if isinstance(T[0],str):

return ','.join(T)

s ="'

for row in T:
rowstr = ','.join(row)
s =s + ';' + rowstr

return s[1:]

Input:
T = [[|1|’|2|
print (table2string(T))

# single string

,'3'7,0'4','5']1]

T = ['1','2','3','4','5','6']

Sample Run -
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print (table2string(T))

Output:
1,2,3;4,5
1,2,3,4,5,6

The function flatten_double_list (dlist) takes a double list (list of lists) and returns
a single list.

def flatten_double_list(dlist):
slist = []
for d in dlist:
for s in d:
slist.append(s)
return slist

Sample Run ------
Input:

dlist = [['1','2','3'],['4','5','6'],['7','8'],['9']] # double list
print(flatten_double_list(dlist))

Output:
[lll’ I2I, I3I’ l4l’ l5l’ l6l’ I7I’ I8I’ '9']

The function zero_list (n) returns a list of n zeros in string form.

def zero_list(n):
return ['0' for k in range(n)]

The function copy_list (L) takes a list L of any complexity and returns independent
copy of the list. This means that any changes made to the copy will not affect the original
list L. This is in contrast to what happens when one sets a variable K to L: changes made to
the latter are also made to the former.

def copylist(L):
import copy
return copy.deepcopy (L)
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29 Printing Functions

The function print_list(A,direction) prints the inside of a list either horizontally or
vertically depending on the value of the parameter direction, which takes the values

horizontal and vertical.

def print_list(A,direction): # direction horizontal or vertical
for item in A:
if direction == 'horizontal':
print(item,end = ' ') # print horizontally
if direction == 'vertical':
print(item) # print vertically
- Sample Run ------
Input:

A= [Ill, I2I’ |3|]

print(A,'\n")

print_list(A, 'horizontal'); print('\n')
print_list(A,'vertical')

Output:
[Ill’ I2I’ I3l]

123

N

The function format_print (A,nspaces,flush) takes a double list and prints a format-
ted table version with the columns flush left or flush right, depending on the value of the
string parameter flush (='left', 'center', 'right'). The parameter nspaces add spaces
to the columns. The spaces between adjacent columns vary depending on the width of the
entries.

def format_print(A, nspaces, flush):

if len(A) == 0: return
if isinstance(A,str): # if string,
print(A); return # return it
if isinstance(A,list): # if list,
if not isinstance(A[0],list): # but not double list,
print_list(A, 'horizontal') # print horizontally
return
nrows, ncols = len(A), len(A[0]) # dimensions of A

col_width = [0 for j in range(len(A[0]))]
B = copylist(A) # don't destroy A
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for i in range(nrows):
for j in range(ncols): # get width of each column
if len(A[il[j]1) > col_width[jl: # col width[jl=width of
col_width[j] = len(A[i][j]) # largest entry in col j
for i in range(nrows): add spaces to A's entries
for j in range(ncols):
# spaces to left or right of entry:
this_many_spaces = col_width[j] + nspaces - len(A[i][j1)
width = ' 'xthis_many_spaces
half_width = ' '*((this_many_spaces+1)//2)
if flush == 'left':
B[il[j] = B[il1[j] + width
elif flush == 'right':
B[il [j] = width + B[il[j]
else: # entry in middle
B[i] [j] = half_width + B[i][j] + half_width
for i in range(len(B)):
for entry in B[i]:
print(entry, end = '') # print on single line
if i < len(B) - 1:
print('")
Sample Run -------
Input:

s = '1l, 2+3i,
A = string2table(s)
print('left flush:')

format_print(A,2,'left')

print('\n')

print('center:')

format_print(A,2, 'center')

print('\n')

print('right flush:'

)

format_print (4,2, 'right')

1.2356789,4; 5, 6, 7, 8+9i'

Output:

left flush:

1 2+3i 1.2356789 4

5 6 7 8+9i
center:

1 2+3i 1.2356789 4

5 6 7 8+9i
right flush:

1 2+3i 1.2356789 4
5 6 7 8+9i
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The function print_fraction(prepend,num,den,append) uses the preceding function
to print the fraction num/den in a large format. The arguments prepend and append are
optional strings.

def print_fraction(prepend,num,den,append):
maxlen = max(len(num),len(den))
leftspace = ' '*len(prepend)
dash = '-'*maxlen
A = [[leftspace+num], [prepend+ dash + append], [leftspace+den]]
format_print(A, 1, 'center')

Sample Run -
Input:
print_fraction(' ','2468 ','abcdefg','=')
print('\n')

print_fraction('2x','1234 ', 'abcdefg','')

Output:

abcdefg
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Symbolic Logic

We have already had some informal exposure to logic through the Python operators
and,or,not. In this section we formalize the notions underlying these operators and imple-
ment in Python a propositional (Boolean) algebra that is similar in many ways to ordinary
algebra. The functions in the chapter comprise the module Logic . py. Here is the header for
the module.

-- - --- Logic.py --- - -
import Tools as tl

3.1 Compound Statements

A statement or proposition is a declarative sentence which is either true or false but not both.
We shall use the letters p, g, r, ... to designate so-called simple statements. These are given
the truth values 1 for true and O for false and so may be taken as variables.

Compound statements are constructed from simple statements p, ¢ using the logical oper-
ations

(a) conjunction pq (p and gq).

(b) disjunction p + q (p or q).

(¢) negation p’ (not p).

(d) conditinal p — q (p implies g, if p then g).
(e) biconditional p < g (p if and only if q).
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Fig.3.1 Truth table for the

P 9 P4 pt+q P PGP
basic logical operations

1 1 1 1 0 1 1

1 0 0 1 0 0 0

0 1 0 1 1 1 0

0 0 0 0 1 1 1

The notation for these operations is chosen for ease in typing compound statements. The truth
values of these statements are displayed by the truth table in Fig.3.1. The first two columns
list in conventional format all possible truth values 0,1 of the pair of simple statements
P, q. The remaining columns give the corresponding truth values of the above compound
statements.

Note that the conditional p — g is true even if p is false. This is called the principle of
explosion (“from falsehood anything follows”). Note also that the biconditional p <> ¢ is
true precisely when p and g have the same truth values.

Like ordinary algebra, propositional algebra has a hierarchy or precedence of operations.
For example, the negations in the statement pqg’ + p’r are evaluated first, then the conjunc-
tions, and finally the disjunction. A similar hierarchy is observed in the statement pg" — p'r,
the conditional being evaluated last. For more complex statements parentheses are needed.
For example, in the statement (p + p'r) <> (pq’ — r) the parentheses force the bicondi-
tional to be evaluated last; removing the parentheses would result in a different statement.
The module developed in this chapter conforms to these precedence rules.

3.2 Generating a Truth Table

The main function of the module, statement2truthtable (stmt), takes a compound state-
ment and returns its truth table in list form. It also returns two other tables, one that contains
only those rows for which the statement is true, the other containing only those rows for
which the statement is false. A companion function, print_truth_table(table) prints
the tables. Here is a sample run:

Input:

stmt = "((p+q+tr)->qr')<->(py" # input statement
tableA,tableT,tableF = statement2truthtable(stmt)
print_truth_table(tableA); print('\n') # complete table
print_truth_table(tableT) print('\n') # true rows only
print_truth_table(tableF) # false rows only
Output:

par ((p+g+tr)->qr')<->(pq) # the statement is part of the table
111 0

110 1

101 1
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100 1
011 1
010 0
001 1
000 0

par ((p+g+r)->qr')<->(pq)
110
101
100
011
001

B R e

par ((p+g+r)->gr')<->(pq)

111 0
010 0
000 0

The code for the function includes three print statements, allowing the user to follow the
progression of the program. These may be commented out.

def statement2truthtable(stmt):

global idx
stmt = stmt.replace(" ","") # remove white space
var_list, varstring = tl.get_vars(stmt) # variables in stmt
itab = initial_table(len(varstring)) # variable truth values
tableT = [] # table with only true values attached
tableT.append(varstring + ' ' + stmt) # attachment stmt
tableF = [] # table with only false values attached
tableF.append(varstring + ' ' + stmt)
tableA = [] # table with all values attached
tableA.append(varstring + ' ' + stmt)
stmt = tl.insert_asterisks(stmt,var_list)
for i in range(len(itab)): # generate the truth values
row = itabl[i]
ps = stmt # for populating with O"s, 1"s
print("i:",i,', ',end = " ") # for observation
for j in range(len(row)): # insert 1"s, 0"s into ps
ps = ps.replace(varstring[j],row[j]l)
print(ps,end = " ") # for observation
idx = 0 # points to position in string ps
value = eval_stmt(ps,0) # truth value of populated stmt
#print (value, "\n") # for observation
row = row + value # attach truth value of statement
tableA.append (row) # all rows
if value == '1': tableT.append(row) # only true rows

if value == '0': tableF.append(row) # only false rows
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The function insert_asterisks in the above code is used for easy processing of
conjunctions. For example, applying the function to ''(p->r'q) (qg->(z+p"))'' yields
"' (p->r'*q)*(g->(r+p')) ' '. Double quotes are needed here so that single quotes will
be processed by Python as intended, namely as negation symbols and not as string quotes.
The function print_truth_table removes the quotes in the table for clarity. The func-
tion get_vars retrieves the variable names in the statement. The function initial_table
makes columns of 1’s and 0’s for the variables. The function eval_stmt takes a statement
populated with 1°s and 0’s and returns its truth value, which is then attached to the end of
the current row of the table. Here is the code for the print function:

def print_truth_table(table):

print(table[0] .replace('"','')) # remove double quotes "
s = len(table[1])*' ' # space to separate stmt truth value
p = len(table[1])-1 # put in space starting here
for i in range(1l,len(table)):
row = tl.insert_string(tablel[il,s,p) # insert space
print(row.replace("'",'')) # remove single quotes

The function initial_table(numvars) takes as input the number of variables in a
statement and generates the initial columns of a truth table. The columns consist of all
possible combinations of zeros and ones in standard format.

def initial_table(numvars):
# generates a table of 1"s,0"s in standard format

table = []
ncols = numvars
nrows = 2**numvars # number of rows of zeros and ones
for i in range(1,nrows+1): # generate the rows
row = ''
for j in range(l,ncols+1):
tval = zero_one(i,j,ncols) # truth val at (i,j)
row = row + str(tval) # append to row

table.append (row)
return table

-- Sample Run --—————-——-
Input:
tl.print_list(initial_table(4),'h") # print horizontally
Output:

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 \
0010 0001 0000
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The function zero_one(i,j,n) creates all possible zero-one values of n variables
P4, - . .. It is based on the formula

(—1D/2" 7, 1<i<2", 1<j<n,

where i is a row number, and j is a column number. For the case of three variables the

formula generates the following fractions in tabular form with rows i =1,2,...,8 and

columns j = 1,2, 3.

[[0/40/20/17]
1/41/2 1/1
2/42/22/1
3/43/23/1
4/4 4/2 4/1
5/45/25/1
6/46/26/1

| 7/47/27/1 |

Taking integer part of these fractions yields the table of x-values

[0007]
001
012
013
124
125
136

137 ]

Applying the transformation y = int(1 + (-1)7x)/2) to these values produces the
desired truth table ~ _
111
110
101
100
011
010
001
| 000 |

Here is the code that produces the entries of the above table.
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def zero_one(i,j,ncols): # returns truth value at row i and col j
x = int((i-1)/2**(ncols-j)) # 1 <= i <= nrows, 1 <= j <= ncols
y = int((1 + (-D=**x) / 2)
return y

3.3  The Calculation Engine

The calculations in the module are performed by the function eval_stmt (ps,mode), which
takes a statement ps populated with 0’s and 1’s and returns its truth value. The variable mode
determines the order in which the calculations are performed. A global variable idx points
to the characters in ps; it is set to 0, the index of the first character of ps, for each populated
statement. Here is the code:

def eval_stmt(ps,mode):

ps = ps.replace("1'","0") # deal with negation first
ps = ps.replace("0'","1")
global idx
while idx < len(ps):
c = pslidx] # character at index idx
if ¢ in "O1":
p=c # c is a truth value
idx += 1
elif c == "+":
if mode > 0: break # wait for higher mode to finish
idx += 1 # go to lowest mode...
q = eval_stmt(ps,0) # all other calculations come 1st
p = disjunction(p,q) # calculate p+q
elif c == "x":
idx += 1
q = eval_stmt(ps,2) # highest mode:conjunctions first
p = conjunction(p,q) # calculate p*q
elif ¢ == "-": # conditional
if mode > 1: break # wait for conjunction calculation
idx += 2 # skip "->"
q = eval_stmt(ps,1)
p = conditional(p,q) # calculate p->q
elif c == "<": # biconditional
if mode > 1: break
idx += 3 # skip "<->"

q = eval_stmt(ps,1)
p = biconditional(p,q)

elif ¢ == "(":
idx += 1 # skip " ("
p = eval_stmt(ps,0) # evaluate stuff inside ()

idx = idx + 1 # skip ")"
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if idx < len(ps) and ps[idx] == "'":

p = negation(p) # negate paren expression
idx += 1
elif ¢ == ")":
break
return p

To see how the function works, consider the populated statement ps=1+0->1. In the initial
iteration of the while loop (idx = 0), the function reads the first 1 in the statement, sets the
variable p to 1, increments the index, and performs the next iteration. At this point ps [idx]
= 'x' sothecasec = '’ isactivated. The function then increments idx and calls itself to
extract the next value 0 of ps. While still within the called version of the function, the next
iteration is performed. At this point ps[idx] = '-' (the first part of the conditional symbol
->) hence the case ¢ = '-' is activated. However, because the current mode is bigger than
1, the while loop breaks, the value O is returned by the called version of the function, and
the conjunction is performed within the original version of the function. The value of the
mode in this version is 0 so, since we still have ps[idx] = '-', the conditional may finally
be performed. In this way we have ensured that the conjunction is performed before the
conditional, so the desired order (1*0)->1 is achieved rather than the order 1x(0->1). A
similar analysis may be carried out on the populated statement 10 + 1, interpreted by
the function as (1*0)+1. Here, the conjunction is evaluated first, using recursion, and the
disjunction is evaluated last.

Here is the code for the logical operations. The reader may check these by substituting
the values 0,1.

def disjunction(p, q):
return str(min(int(p) + int(q), 1))

def conjunction(p, q):
return str(int(p)*int(q))

def negation(p):
return str(l-int(p))

def conditional(p,q):
return disjunction(negation(p), q)

def biconditional(p,q):
return conjunction(conditional(p,q), conditional(q,p))
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The following scheme shows the evaluation the statement ’ (p+q)->pqr’’ in the (i, j)
for loops of statement2truthtable(stmt).

j=20 j=1 j=2 value
(1+q)—>1qr' (1+1)->11r' (1+1)->111' 0
(1+q)->1gr' (1+1)->11r' (1+1)->110'
(1+q)->1qr' (1+0)->10r' (1+0)->101'
(1+q)->1gr' (1+0)->10r' (1+0)->100'
(0+q)->0qr' (0+1)->01r' (0+1)->011'
(0+q)->0qr' (0+1)->01r' (0+1)->010'
(0+q)->0qr' (0+0)->00r' (0+0)->001"'
(0+q)->0qr' (0+0)->00r' (0+0)->000'

[ A = T e e TS
[}
0 ~NO O WN -

= O O0OO0OOK

3.4 Equivalent Statements

A compound statement that is true for all values of its variables is called a rautology. For
example, the statement p+p' is a tautology; its value is always 1. A compound statement
that is false for all values of its variables is called a contradiction. An example is pp';
its value is always 0. The negation of a tautology is a contradiction and vice-versa. The
following functions check for tautologies and contradictions. It uses the output of the function
statement2truthtable, namely, Atable, Ttable, and Ftable (giving, respectively, all truth
values, only true values, and only false values) and compares the lengths of the tables. For
example, if len(Ttable)=1len(Atable) then the statement is a tautology.

def is_tautology(stmt):

# returns True if Atable and Ttable are same size.

Atable,Ttable,Ftable = statement2truthtable(stmt)

return len(Ttable) == len(Atable)

# True if tautology

def is_contradiction(stmt):

# returns True if Atable and Ftable are same size.

Atable,Ttable,Ftable = statement2truthtable(stmt)

return len(Ftable) == len(Atable) # True if contradiction

-- Sample Run ----------
Input:

stmt = '(p->q) (q->r)->(p->r)'
print(is_tautology(stmt,varstring))

Output:
True
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Two compound statements a and b are said to be equivalent, written a = b, if one statement
is true is whenever the other is true, that is, the statements have precisely the same truth
tables. For example, the statements p’ + g and p — ¢ have identical truth tables, hence are
equivalent.

Another way to determine the equivalence of statements a and b is to check if the
biconditional a <> b is always true, that is, if it is a tautology. The following function uses
this idea to test for equivalence. It takes a pair of statements a, b and applies the function
is_tautology(stmt) to the statement a < b.

def are_equivalent(a,b):
stmt = "(" + a+ ")<>(" + b+ ") # form biconditional
return is_tautology(stmt)

-- Sample Run --------
Input:
print(are_equivalent("(p + @)'" ,"p'q'"))
print(are_equivalent (" (pq)'" ,"pt +q'"))
print(are_equivalent("p -> q" ,"q' > p'")

print(are_equivalent("p(q + r)" ,"pq + pr"))
print(are_equivalent("p + qr","(p + Q) (p + r)"))
print(are_equivalent (" (p+q)+r" ,"p+(gq+r)"))

print (are_equivalent (" (pq)r" ,"pland ™)
Output:

True # DeMorgan's law

True # DeMorgan's law

True # contrapositive

True # distributive law

True # distributive law

True # associative law

True # associative law

3.5 Valid Arguments

An argument in logic is a sequence of statements ay, az, ..., a,, called premises, together
with statement b, called the conclusion. An argument is said to be valid if b is true whenever
all the statements ay, az, . . ., a, are true, that is, whenever the conjunction aa; - - - a, is true.
Figure 3.2 gives some well-known valid arguments displayed in standard form: the premises
placed above a line and the conclusion below.
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hypothetical disjunctive modus
syllogism syllogism ponens
pP—q p+q p—q
q—r Y P
p—r q q

Fig.3.2 Valid arguments

modus
tollens
p—q
q/

/

p

The following program takes a list argument of premises and a conclusion (the last entry)

returns True if the argument is valid and False otherwise.

def isvalid(argument):
argument = argument.replace(" ","")
premises, conclusion = argument.split(";")
premises = premises.split(",")
for i in range(len(premises)):

premises[i] = "(" + premises[i] + ")"

premise = "".join(premises)
stmt = premise + "->(" + conclusion + ")"
if is_tautology(stmt): return "valid"
return "not valid"

Sample Run -----——-—-
Input:

argl = ["p->q","q->r","p->r"]

arg2 = ["p+q" s np L nqn]

argd = ["p->q","p","q"]

arg4 = [up_>qn s nq| ", "P' "]

args = [Ilp_>qll s nqn s upu]

arge = ["p+q" s nqn s npn]

arg7 = [up_>qn s llpl n s llqll]

arg8 = ["P ' _>qn s npqn s nqv "]

args = [argl,arg2,arg3,args,argh,arg6,arg?,args]

for i in range(len(args)):
print('arg',i+l,isvalid(args([i]))

Output:
arg 1 valid # hypothetical syllogism
arg 2 valid # disjunctive syllogism

2

arg 3 valid # modus ponens

arg 4 valid # modus tollens (contrapositive)
arg 5 not valid
arg 6 not valid
arg 7 not valid
arg 8 not valid




3.6 Disjunctive Normal Form 51

3.6 Disjunctive Normal Form

In this section and the next we construct functions that are the reverse of the function
statement2truthtable(stmt) in that they take as input a set of truth values and output a
statement with those values. This is useful in the design logic circuits in computer science,
which are transistor circuits that have input and output of values 1 (high voltage) and 0 (no
voltage).

The first such function tvals2conj takes a string valcombo of values and a string
varstring of variables and produces a conjunction that is true for precisely these val-
ues. For example if varstring = ''pgr'' and valcombo = ''101'', then the function
returns varstring = ''pq'r'’'.

def tvals2conj(varstring,valcombo) :
# true precisely for the combination of values in valcombo

conj = "'
for i in range(len(varstring)):
conj = conj + varstringl[il # attach the variable
if valcombo[i] == '0': # false value?
conj = conj + "'" # attach additionally a negation
return conj
- Sample Run -------
Input:
varstring = "pqrstuvwxy"

valcombo = "1010101010"
print(tvals2conj(varstring,valcombo))

Output:
pq'rs'tu'vw'xy' # true exactly for values in valcombo "1010101010"

The function disj_of_conj takes a string of variables and a string of comma-separated
zero-one combinations and returns a statement that is true for each of these sequences. It
does so by forming the disjunction of the conjunctions that are true for each of the zero-one
combinations.

def disj_of_conj(varstring,valcombos):

disj = "'
valcombos = valcombos.split(',')
for combo in valcombos: # run through desired combos

conj = tvals2conj(varstring,combo)
disj = disj + ' + ' + conj # form the disjunction; pad the +
return disj[3:] # remove first padded +

Sample Run -------
Input:
varstring = "pqr"
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valcombos = "100,111,101"
print(disj_of_conj(varstring,valcombos))

Output:
pq'r' + par + pq'r # true for each valcombo; false for all others

In the sample run, the statement ''pq'r''' is true precisely for the combo ''100'",
"'par'' is true precisely for the combo ''111'',and ''pq'r'’ is true precisely for the
combo ' '101''. Thus the disjunction ' 'pq'r'+pgr+pq'r' "' istrue for each of these combos
and no others. A statement of this form is called a disjunction of basic conjunctions.

The following function takes any statement and returns an equivalent statement which
is a disjunction of basic conjunctions, called the disjunctive normal form of the statement. It
takes the rows of Ttable without the header, joins them into a comma-separated string of
value combinations and feeds the string to disj_of_conj. Print statements are included to
illustrate the program’s progress.

def disjunctive_form(stmt):

stmt = stmt.replace(" ","") # remove white space
varstring = tl.get_vars(stmt) [1] # string form
Ttable = statement2truthtable(stmt) [1][1:] # true rows only
print('Ttable',Ttable)

truecombos = ','.join(Ttable) # convert table to string
print ('truecombos',truecombos) # for observation

return disj_of_conj(varstring,truecombos)

Sample Run ------
Input:

stmt = "((p+q+r)->qr')<->(pq)"

disj = disjunctive_form(stmt)
print('disunctive form:',disj)

Output:

Ttable: [*1101', '1011', '1001', '0111', '0011']
truecombos: 1101,1011,1001,0111,0011

disunctive form: pqr' + pq'r + pq'r' + p'qr + p'q'r

3.7  Conjunctive Normal Form

The function tvals2disj(varstring,valcombo) is the analog of the function
tvals2conj(varstring,valcombo). It takes a string varstring of variables and a string
valcombo of ones and zeros and produces a disjunction that is false for precisely these val-
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ues. For example if varstring = ''pgr'' and valcombo = ''110'', then the function
returns ' 'p'+q'+r'’'

def tvals2disj(varstring,valcombo) :
#false precisely for valcombo
var_list = list(varstring)
valcombo = list(valcombo)
for i in range(len(var_list)):

if valcombol[i] == '1':
var_list[i] = var_list[i] + "' + " # negate
else:
var_list[i] = var_list[i] + " + "
disj = ''.join(var_list)
return disj[:len(disj)-3] # remove last padded plus sign
- Sample Run --—-------
Input:
varstring = "pqrstuvwxy"

valcombo = "1010101010"
print(tvals2disj(varstring,valcombo))

Output:
p'+g+r'+s+t ' tutv'+wtx'+y # false exactly for combo "1010101010"

The function conj_of_disj(varstring,valcombos) takes a string of variables and a
string of value combinations and returns a statement that is false for each of these combina-
tions and no others. It does so by forming the conjunction of the disjunctions that are false
for the value combos.

def conj_of_disj(varstring,valcombos) :

conj =

valcombos = valcombos.split(',')

for combo in valcombos: # run through desired combos
disj = tvals2disj(varstring,combo) #
conj = conj + '(' + disj + ') # form the disjunction

return conj

Sample Run ------
Input:

varstring = "pqr"

valcombos = "100,111,101"
print(conj_of_disj(varstring,valcombos))

Output:
(' +q+ )@ +q" +r)p' +q+r")
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In the sample run the statement '' (p'+q+r)'' is false precisely for the combination
'1100' "', ' (p'+q'+r') ' ' isfalse precisely for the combination ' '111' ' and ' ' (p'+q+r')
is false precisely for the combination ''101''. Thus the conjunction
"' (p'+qtr) (p'+q'+r') (p'+q+r') " is false for each of these combinations and no oth-
ers. A statement of the form '' (p'+q+r) (p'+q'+r') (p'+q+r') "’ is called a conjunction
of basic disjunctions.

The following function takes a statement and returns an equivalent statement which is a
conjunction of basic disjunctions, called the conjunctive normal form of the statement.

def conjunctive_form(stmt):

stmt = stmt.replace(" ","") # remove white space
varstring = tl.get_vars(stmt) [1] # string form
Ftable = statement2truthtable(stmt) [2] [1:] # false rows only
false_combos = ','.join(Ftable)

return conj_of_disj(varstring,false_combos)

- Sample Run -------
Input:

stmt = " ((p+q+r)->qr')<->(pq)"
print(conjunctive_form(stmt))

Output:
(' +q" +r)(p+q +1)(p+q+r)
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Properties of Integers

In this chapter we explore properties of integers, with particular attention to prime numbers.
The functions in the chapter comprise the module Logic.py. The module is headed by

-= -== --= Number.py --------------------------
import math as ma # Python package
import Tools as tl

4.1 Number Bases

Recall that an integer in base 10 is represented by a sequence of digits which are multiplied
by suitable powers of 10. For example,

1234567 =1-10°4+2-10°+3-10*+4-10° +5- 10> + 6 - 10" +7 - 10°.

We have underlined the digits to highlight their role in the expansion. The position of a
digit determines the power of ten. There is nothing particularly special about the number
10, however. Indeed, any integer greater than 1 may serve as a base. For example, in base 5
the same number may be expressed as

3040012325 =3-58+2-5+1.5°+2.52+3.5' +2.5%

Here we have used a subscript to designate the base, omitted for base 10. For base 5 the digits
0—4 are available. For base 2, the so called “binary system,” only the digits O and 1 are allowed.
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This makes binary numbers well-suited for computer calculations, since standard computers
use two-state technology. The number 1234567 in base 2 is 100101101011010000111.

To convert a number n from base 10 to base b one repeatedly divides by b; the remainders
are the desired base b digits. To illustrate, consider the base 7 expansion

n=dy-7+dy-TP+dy-T+di -7 +do- 7
Dividing n by 7 yields
n=gqo-7+dy, whereqo=ds-7>+ds-7>+dr-7" +d.

The number ¢ in the division is the quotient and the digit dy is the remainder, a number
between 0 and b — 1 inclusive. Dividing go by 7 produces the next digit d:

go=q1-7+d1, whereqi=ds 7> +d3-7' +d>.

The process continues until all the digits have been generated.

Capital letters are typically used for bases 10-36. Of particular importance in computer
science is the base 16 or hexadecimal system, which uses the digits 0-9 and the letters A-F.
Here A represents the number 10, B the number 11, etc. The number 1234567 in base 16 is

12D68716 =1-16> +2- 16" +13-16> +6- 162 + 8- 16! +7 - 16°.

For bases larger than 36 one can use lower case letters as well, but this too is limited.
Alternatively, one can use a list for the digits. For example, the base 10 number 1234567 in
base 99, which has the expansion

1-99% +26-99% +95-99' +37.99°,

could be represented by the digit list [1,26,95,37], where it is acknowledged somewhere
that the base is 99, say by attaching it to the beginning of the list.

The functions in this section incorporate both ideas. The first of these,
value_to_digits(n,b), takes a positive integer n, which we shall refer to throughout
the section as a value, and a base b, and returns the digit list together with the base as the first
member of the list. The function uses the floor division operator % and modulo operator //
discussed in Chap. 1.

def value_to_digits(n, b):

# returns the base b digit list of the value n

if n ==
return [0]

base_digit_list = []

while n > O:
digit =n % b # digit is remainder
base_digit_list = [digit]+ base_digit_list # attach digit
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n= n//b # divide out the b
base_digit_list = [b] + base_digit_list # attach base to list
return base_digit_list

-- Sample Run -——---———--
n = 12345678901234567890
b = 2025
print(value_to_digits(n,b))
Output:
[2025, 362, 1150, 1666, 1308, 268, 1440] # b the first entry

For an explicit expansion in terms of powers of the base one can use the following
function:

def digits_to_expansion(base_digit_list):

# converts a base b digit list to a base b expansion
L

expansion =
b = base_digit_list[0]
digits = base_digit_list[1:] # extract base

L = len(digits)
for i in range(L):
exp = str(L-i-1)

digit = digits[i] # get a digit from list
if digit == 0: continue
# attach current digit*b“power to expansion:
if exp == '0':
expansion = expansion+ ' + ' +str(digit)
elif exp == '1':
expansion = expansion+ ' + ' +str(digit)+ '*x' +str(b)
else:
expansion = expansion+ ' + ' +str(digit)+ 'x' + \
str(b) + '"' + exp
return expansion[3:] # remove last padded '+'
-- Sample Run --------
Input:
[2025, 362, 1150, 1666, 1308, 268, 1440] # base = 2025
Output:

362%2025°5 + 1150%202574 + 1666%202573 + 1308%2025°2 + 268%202571\
+ 1440%202570

The function digits_to_value is the reverse of the function value_to_digits. It takes
a list of digits and a base and returns a value. Note that the digit values must be smaller than
the base, since the former are remainders upon division by the latter. The function uses the
Python function eval () to get the value.
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def digits_to_value(base_digit_list):
ex = digits_to_expansion(base_digit_list)
ex = ex.replace('"', "*x*') # eval uses ** for exponentiation
return eval(expansion)

- Sample Run --———-----—-
Input:

b = 2025

base_digit_list = [2025,362, 1150, 1666, 1308, 268, 1440]
value = digits_to_value(base_digit_list)

print(value)

Output:
12345678901234567890

The function value_to_symbols(n,b) below is astring version of the function value_to_digits.
It converts a positive integer (value) n into a string of digit symbols. This works only for
b < 62, the number of available symbols.

def value_to_symbols(n,b): # converts value n into a symbol string
if b > 62: return # not enough digits available
digits = value_to_digits(n,b) # get digit list
digit_symbols = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' \
+ 'abcdefghijklmnopgrstuvwxyz'
symbolstring = ''
for digit in digits: # replace each digit by its symbol
symbolstring = symbolstring + digit_symbols[digit]
return symbolstring

-- Sample Run ------
Input:

n = 12345678901234567890
print(value_to_symbols(n,2))
print(value_to_symbols(n,8))
print(value_to_symbols(n,16))
print(value_to_symbols(n,62))

Output:
1010101101010100101010011000110011101011000111110000101011010010
1255245230635307605322

AB54A98CEB1F0AD2

EhzL6HwZ50w

The function symbols_to_value is the reverse of value_to_symbols(n,b). It converts
a base b < 62 symbol string into a positive integer (value). The function uses the index
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method to find the position of the symbol in the digit_symbols list, the position being the
numerical value of the digit.

def symbols_to_value(symbolstring,b):
# converts a symbol string in base b to its numerical value
digit_symbols = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' \
+ 'abcdefghijklmnopqrstuvwxyz'
digit_list = []
for symbol in symbolstring:

index = digit_symbols.index(symbol) # position of symbol
digit_list.append(index)
return digits_to_value([b]+digit_list) # append base to list
- Sample Run ---------

Input:
print (symbols_to_value('AB54A98CEB1FOAD2',16))

Output:
12345678901234567890

The last function in the section is a combination of the preceding two. It converts a base
a digit string into a base b digit string. The example suggests a possible use in transmitting
secure messages. Here, both the sender and receiver are in possession of the key (a, b), a
pair of numbers that “locks” and “unlocks” the message. Typically the message is written
in digits and uppercase letters, whose values are <36. The bases a and b are then chosen to
larger that 36. The sample run conforms to these restrictions.

def base2base(symbolstring,a,b):
n = symbols_to_value(symbolstring,a)
return value_to_symbols(n,b)

- Sample Run --———---——--
Input:

a = 52; b =62

message = 'THEFILESMUSTBEDELETED'

print (message)

coded_message = base2base(message,a,b)

print (coded_message)

decoded_message = base2base(coded_message,b,a)
print (decoded_message)

Output:
THEFILESMUSTBEDELETED # message
rwjLPPTCo27P9yZD4ZHx # encoded message

THEFILESMUSTBEDELETED # decoded by recipient
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4.2 Divisibility

An integer b is said to divide an integer « if there exists an integer ¢ such that a = ¢gb. The
integers b and g are called divisors or factors of a. For example, +a and +1 are always divisors
of a. Positive divisors of a > 0 other than a and 1, are called proper. Note that a proper divisor
b of a = qb must satisfy the inequality b < a/2. Indeed, if the reverse inequality held we
would have a < 2b < gb = a. If b divides a we write b | a; otherwise we write b { a. Thus
3| 15but4+¢15.

A positive integer with no proper divisors is said to be prime; otherwise, it is said to
be composite. Prime numbers figure prominently in pure mathematics and have important
applications in cryptography.

Here’s a simple program that grinds out the proper divisors of a number @ > 0 by check-
ing if a% b = 0 for all b < a/2. This, of course, is inefficient for large numbers on slow
computers.

def generate_divisors(a):
divisors = []
for b in range(2,int(a/2)+1):

if a%b == O: #b |l a?

divisors.append(b) # yes, attach divisor

divisors = list(set(divisors)) # eliminate duplicates

return sorted(divisors) # sorted for clarity
--- Sample Run ---------

Input:
print(generate_divisors (2*x5*3%*6))

Output:

[2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 81, 96,
108, 144, 162, 216, 243, 288, 324, 432, 486, 648, 729, 864, 972,
1296, 1458, 1944, 2592, 2916, 3888, 5832, 7776, 11664]

4.3 Extended Euclidean Algorithm

The greatest common divisor or gcd of a pair of integers a, b is a positive integer g with the
properties

e g divides a and b,
e if d divides a and b then d divides g.

The ged of a and b is denoted by ged(a, b). We also set
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ged(—a, b) = ged(a, —b) = ged(—a, —b) = ged(a, b).

The standard Euclidean algorithm is a way of computing the gcd. The algorithm takes a
pair of positive integers a > b and computes a sequence of quotients g1, g2, ..., ¢, and a
sequence of remainders r, r1, ..., r,+1 satisfying the following equalities:

ro=a ri=»>

rp =ro—dqiri, O<r2<r1

Fk+1 = Tk—1 — qkTk, 0< Fek+1 < Tk (41)

Fne2 =Tn — qn-1rn—1, 0 <ry <1y

n—1 = TI'n+1 — 4n'n, 0=rnt1 <ra.
The equation ryy1 = ry—1 — qxry may be rewritten as ry—j = gxri + re+1, which is the divi-
sion algorithm applied the pair (r¢_1, r¢), thus generating the new pair (g, r¢+1). Since the
integers ry are nonnegative and strictly decreasing, the inequalities O < rx4; < ry musteven-
tually terminate in a remainder of 0. If we let n be the smallest integer for which r, 1 = 0,
then

n—1 = {4n’n,

Tn—2 =Ty — qn-1qnTn = (1 — gn—1qn)7n

Proceeding with these calculations, one shows that r,, divides all previous r¢, and in particular
a and b. Moreover, if d divides a and b then the calculations (4.1) show that d divides all
successive rx and in particular r,,. Thus r, is the gcd of a and b.

The Python module math has a function gcd that calculates the gcd of a pair of integers.
The following example shows how it works.

Input:
import math
gl = math.gcd(63,27)

g2 = math.gcd(-63,27)
g3 = math.gcd(63,-27)
g4 = math.gcd(-63,-27)

print(gl,g2,g3,g4)

Output:
9999
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We shall not use this function but instead develop from scratch an extension of the Euclidean

algorithm.
The extended Euclidean algorithm works like Euclidean algorithm but has two additional
sequences so, S1, . . . and 7o, t1, . . .. These interact with the quotient and remainder sequences

as follows, where we assume that a, b > 0:
ro=a r1=»>
so=1 s1=0

1o =0 n=1

4.2)
Tkl = Th—1 — qkTk, O <711 <7
Sk+1 = Sk—1 — qkSk,
Tk+1 = tk—1 — Qklk-
Notice that initially
ro = soa + tob and r; = sja + t1b.
Moreover, if at any stage
Tk—l = Sk—1a + tr_1b and rp = spa + b, 4.3)
then
k4l = Sg41a + try1b. (4.4)

Indeed, by (4.2)
Tk+1 = k=1 — qkTk,

and

Sk+1@ + tiy1b = (sk—1 — qrse)a + (tk—1 — qiti)b
= Sg—1a + ti—1b — qr(sxa + 1 b)
= TIg—1 — qkTk

= Tk+1-

It follows by mathematical induction that the equation ry = sga + fxb holds for all k. In
particular, since the gcd of @ and b is r,,, we see that the gcd may be expressed as spa + #,b.
The integers s, and #, are called Bézout coefficients of a and b.

Here is the code for the calculation of the sequences ry,, sy, #,. It implements the equations
in (4.2).
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def div_alg(a,b):
return a // b, a%b

def extended_gcd_pos(a,b): # assumes a,b > 0
r0 =a; rl1 =bo
sO=1; t0 =0
s1 =0; t1 =1

q ="' '; display = [] # initialize
while True:
if r1 == 0:
return [r0, s0O, tO] # gcd and Bezout coefficients
q,r2 = div_alg(r0,rl) # r0 = g*rl + r2

s2 = s0 - g*sl

t2 = t0 - g*xtl

r0 =rl; rl = r2 # shift
sO = s1; s1 = s2 # shift
t0 = t1; tl1 = t2

-- Sample Run --———————-
Input:

a = 12356; b = 68

g,s,t = extended_gcd(a,b)

print(g,s,t)

Output:
4, -7, 1272

def print_Bezout(inputlist,g,coefflist):
Bezout = "'
for i in range(len(inputlist)):
coeff = tl.add_parens(str(coefflist[i]))
integer = tl.add_parens(str(inputlist[i]))
Bezout = Bezout + '('+ coeff +')*('+ integer +')+'

Bezout = Bezout[0:len(Bezout)-1] # remove last '+'
print(str(g) + ' = ' + Bezout)
- Sample Run -——------
Input:
a = 12356
b = 68

g,s,t = extended_gcd(a,b)
inputlist = [a,b]

coefflist = [s,t]

print_Bezout (inputlist,g,coefflist

Output:
4 = (-7)*(12356)+(1272) *(68)
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We can remove the restriction that a and b be positive by applying the function
extended_gcd_pos to the absolute values of ¢ and b to obtain g = s|a| + ¢|b| and then
arguing cases. For example a < 0 and b > 0 then this equation becomes g = (—s)a + tb,
giving us the Bézout representation in this case. Here is the code:

def extended_gcd(a,b): # general integers a, b; returns g,s,t
if a == 0 and b == 0:
return [0,0,0] # 0 = 0%0 + + 0*0
if a == 0 and b >= O:
return [b,0,1] # b= 0*%0 + + 1%b

if a >= 0 and b == 0:

return [a,1,0] # a = 1*a + + 0*b
if a < 0 and b < 0:
g,s,t = extended_gcd_pos(-a,-b) # g = s(-a) + t(-b)
return [g, -s, -t] #g=(-s)a+ (-t)b
if a < 0 and b >= 0:
g,s,t = extended_gcd_pos(-a,b) # g=s(-a) +tb
return [g, -s, t] #g= (-s)a+ tb
if a >= 0 and b < O:
g,s,t = extended_gcd_pos(a,-b) # g = sa + t(-b)
return [g, s, -t] # g=sa+ (-t)b

if a >= 0 and b >= 0:
g,s,t = extended_gcd_pos(a,b) # g=sa+tb
return [g, s, t]

Sample Run -------
Input:

a = 12356; b = -68

g,s,t = extended_gcd(a,b)

inputlist = [a,b]

coefflist = [s,t]

print_Bezout (inputlist,g,coefflist

Output:
4 = (-7)%(12356) + (-1272)*(-68)

4.4  Multi-extended Euclidean Algorithm

The notion of greatest common divisor may be extended to more than two numbers. For
example, ged(a, b, c) is defined as the largest common divisor of the three numbers a, b, and
c. It then follows that

gcd(a, b, c¢) = ged(ged(a, b), ¢)
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as the reader may easily check. Furthermore, there exist integers u, v, x, y such that
ged(ged(a, b), c) = ged(a, b)u + cv, ged(a, b) = ax + by,
from which we obtain we obtain Bézout’s equation for three integers:
ged(a, b, c) = (ax + by)u + cv = axu + byu + cv.
More generally, one has the formula
ged(ay, az, ..., ay) = ged(ged(ay, az), az ..., ay), 4.5)

which may be verified by mathematical induction.

The above formulas suggests the following algorithm: First calculate ged(aj, a) and its
Bezout coefficients, then calculate ged(ged(ay, az), a3) and its coefficients, etc. The coeffi-
cients at each stage are calculated from those of the previous stage as in the above example.
Ultimately, one winds up with the gcd and the coefficient list [sy, s2, ...] related by the
equation

ged(ay, an, ..., ay) = aysy +axsy + -+ apsy- 4.6)
The functionmulti_extended_gcd(ilist) implements the algorithm recursively. The user

enters the variables as a list of integers ay, a2, . . ., a,. The coefficients and successive gcd’s
are generated by the recursive function get_coeffs.

def multi_extended_gcd(inputlist):
global coefflist
n = len(inputlist)

coefflist = ['' for x in range(n)] # make empty list
coefflist[0] = 1 # initialize active part of list
get_coeffs(inputlist) # implement the recursion
g=20

for i in range(len(inputlist)): # get gcd from coefficients

g =g + coefflist[i]*inputlist[i]
return g,coefflist

def get_coeffs(inputlist):
global coefflist
n = len(inputlist)

a = inputlist[0] # first 2 entries of current list
b = inputlist[1]
G = extended_gcd(a,b) # latest gcd with coefficients
x = G[1]; y = G[2] # coefficients of a, b
i=0
while coefflist[i] != '': # update coefficients
coefflist[i] = x*coefflist[il
i=i+1
coefflist[i] =y # attach new coeff at end

if n == 2: return coefflist # finished
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inputlist = inputlist[1:] # otherwise replace 1st entry
inputlist[0] = G[O] # with latest gcd
get_coeffs(inputlist) # and do the process again
- Sample Run --———-----—-
Input:
inputlist = [24,-16,20,14,-21] # find gcd of these

g,coefflist = multi_extended_gcd(inputlist)
print_Bezout (inputlist,g,coefflist)

Output:
1 = (-60)*(24)+(-60)*(-16)+(30) *(20)+(-10) * (14) +(-1)*(-21)

Here’s how the scheme is carried out for the case n = 4:

# original input list # initial coeff list
[al,a2,a3,a4] [1,0,'","'1]

# next list # next list of coeffs
[a12,a3,a4] [x1,y1,'','"']

(al2 = alxxl+a2xyl)

[a123,a4] [x1*x2,y1*x2,y2,"'"']

(a123 = al2*x2+a3%y2= al*x1*x2+a2*xyl*x2+a3*y2)

# final list # final list

[a1234] [x1*x2*%x3,y1*x2*x3,y2*x3,y3]

(a1234 = al23*x3+adxy3 = al*x1*x2*x3+a2*yl*kx2xx3+al3*y2*x3+ ad*y3)

4.5 Least Common Multiple

The least common multiple (Icm) of a pair of positive integers m, n is the smallest positive
integer k that is a multiple of both m and n. We show later that

lem(m, n) - ged(m, n) = mn. 4.7

For example,
Ilcm(4,6) - ged(4,6) =12-2=4-6.

The following function returns the lcm. It uses (4.7) with the function math. gcd.
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def lcm(m,n):
g = ma.gcd(m,n)
return m*n//g

The least common multiple of a sequence of positive integers ay, az, ..., a,, denoted
Iem(ay, az, ..., ay), is the smallest positive integer that is a multiple of each a;. The fol-
lowing function takes a list of integers and returns the lcm.

def listlcm(inputlist):
m = inputlist[0] # initialize
for k in range(1,len(inputlist)):
m = lcm(m,inputlist[k])
return m

Sample Run ----———-—-
Input:
print(listlem([2,3,6,9]))

Output:
18

We revisit these ideas later in the context of the prime decomposition theorem, discussed
in Sect.4.7.

4.6 The Sieve of Eratosthenes

The sieve of Eratosthenes is an algorithm that generates all prime numbers up to some
specified integer N. Here are the steps involved: First, make a list of all integers from 2 to
N. Next, delete of all multiples of 2 larger than 2. This leaves

2,3,5,7,9,11,13, 15,17, 19, 21, 23, 25,27, 29, 31, 33, 35, 37, 39,41, 43,45, . ..
Next the delete all multiples of 3 larger than 3 producing
2,3,5,7,11,13,17,19, 23, 25, 29, 31, 35, 37,41, 43,47, 49, . ..

Since multiples of 4 have already been deleted, the next step is the deletion all multiples of
5 except 5 itself, producing

2,3,5,7,11,13, 17,19, 23, 29, 31, 37,41, 43, 49, . ..
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The process continues until only primes are left. Note that in deleting all multiples mp of a
prime p, one need not consider values m < p, since all such multiples are either prime and
so may be ignored, or they contain a prime factor ¢ < p, a case that has already been dealt
with. For example, to delete all multiples 2 % 7,3 % 7,4 % 7,5 7,67, ... 0of 7 one can start
at 7 x 7. The method is named after Eratosthenes of Cyrene, a Greek mathematician who
lived in the third century BC.

The function sieve (N) implements the algorithm. It first creates a list marks of 1’s and
0’s with the property that marks (k) =1 if and only if & is prime.

def sieve(N): # returns all primes <= N
marks = [1 for i in range(N+1)]
k=2
while (kxk <= N):
if marks[k] == 1: # if k is prime
for i in range(k*k,N+1,k): # mark by O all the multiples
marks[i] = 0O # kxk, (k+1)*k,...
k+=1

primes = []
for k in range(2,len(marks)):
if marks([k] ==
primes.append (k) # attach prime
return primes

-- Sample Run --------
Input:
print(sieve(500))

Output:

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199,
211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277,
281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359,
367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499]

4.7 The Fundamental Theorem of Arithmetic

The theorem in the heading, also called the unique prime factorization theorem, asserts that
every integer N > 2 may be written uniquely as a product of the form

N:pflpgz..‘pf':”’
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where the p;’s are prime, p; < p>... < pp, and the e;’s are positive integers. The theorem
may be established by mathematical induction. The following function returns the prime
factorization of N.

def prime_factorization(N):
prime_list = sieve(N//2+1) # get primes less than N/2 + 1
exponents = []
primes = []

for i in range(len(prime_list)): # run through the primes
p = prime_list[i]

e=0 # initialize exponent for this prime

while N % p == O: # if prime p divides N,

N = N/p # keep dividing it out,

e = e+l # and update the exponent.

if e !'=0: # if p divided N,

primes.append(p) # include it,

exponents.append (e) # and its exponent.

return primes, exponents

def print_factorization(primes,exponents):
p=" # string for prime factorization
for i in range(len(primes)):
p = primes[i]
e = exponents[i]
if e > 1:
P=P+ '"('"+ str(p) +'"'+ str(e) + ')*'
else:
P =P + str(p) + '*'
print(P[:len(P)-1])

Sample Run -----—-—--
Input:

N = 300042

primes,exponents = prime_factorization(N)

print (primes,exponents)
print_factorization(primes,exponents)

Output:
[2, 3, 79, 2111 [1, 2, 1, 1]
2 % 372 x 79 * 211

The Fundamental Theorem of arithmetic has an interesting connection with the notions
of greatest common divisor and least common multiple of positive integers a, b. To see this,
write their prime decompositions as

dy d
a=q{"q5* g™ and b=q{'q5> - q",
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where ¢’s are all the primes in @ and b, but where now some of the exponents may be zero.
It is not hard to verify that

X1 X2

gcd(a,b) — q] q2 yr vz

-gyr and lem(a,b) =q7'¢>> - qi"

where x; = min(d;, e;) and y; = max(d;, e;). Since x; + y; = d; + ¢; (argue by cases), it
follows that ged(a, b) - lcm(a, b) = ab, as asserted earlier.

4.8 Modular Arithmetic

Let m, a, and b be integers with m > 2. Then a is said to be congruent to b modulo m,written
a=b(modm) or a=,, b
if m divides a — b. For example,
17=3 (mod7), —17=1 (mod 6), and —17 = —2 (mod 5).
Note that if r is the remainder upon dividing a by m, that is,
a=gm+r, 0<r<m,

then a — r = gm. Thus every integer a is congruent to one of the numbers 0, 1, ..., m — 1
modulo m.

For the rest of this section we fix m > 2 and denote by R(a) the remainder on division of
m by a. The function R has the following properties:

(@ R(R(a)) = R(a).

(b) R(ms) =0.

(¢) R(a + ms) = R(a).

(d) R(a+b) = R(R(a)+ R(b)).
() R(ab) = R(R(a)R(D)).

Part (a) simply asserts that R(r) = r for any r with 0 < r < m, and (b) says that multiples
of m have zero remainders. For the remaining properties set

a=pm+ R(a), (0 < R(a) <m)and b =gm+ R(b), (0 < R(b) < m).

Part (c) then follows from a + ms = (p + s)m + R(a), which shows that a — R(a) is a mul-
tiple of m.
For part (d) we have
a+b=(p+q)m+ R(a)+ R(b).
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But also,
a+b=sm+ R(a+b)

Thus the right sides are equal:
(p+q)m + R(a) + R(b) = sm + R(a + b)
Therefore,
R((p+¢)m + R(a) + R(b)) = R(sm + R(a +b)).
This equality reduces to (d) by part (c).
Finally for part (e) we have

ab = pqm2 + R(a)gm + R(b)pm 4+ R(a)R(b) = tm + R(ab),

from which it follows that R(a)R(b) = R(ab) + um for some integer u. Taking R of both
sided and using (c) completes the proof.

The set of remainders O, 1,...,m — 1 is denoted by Z,,. We define addition +,,, and
multiplication *,, on Z,, by

a+,b=R(a+b), ax,b=R(ab).

The operations have the following properties:

e associative laws:
(a+,b)+,c=a+,b+,c), and (a *,b) x, c=a *, (b *, c).

e commutative laws:
a+,b=b+,a, anda x, b=>b *x, a.

e existence of identities:
a+,0=0, ax*x, 1=a.

e distributive law:
(a+,b) x,c=ax,b+, ax, c.

e additive inverse:
For each a € Z,, there exists a unique b € Z,, such thata +, b = 0.

e multiplicative inverse:
Ifmanda € Z,, arerelatively prime then exists aunique b # 0 € Z,, suchthata %, b = 1.
In particular, If m is prime, then for each a # 0 € Z,, there exists a unique b # 0 € Z,,
such thata %, b = 1.
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For example, for the distributive law we have

(@ +,, b) x,, c=R((a +,, b))
= R(R(a + b)c)
= R(R(a +b)R(c))
= R((a + b))
= R(ac + bc)
= R(R(ac) + R(bc))

= R((a %, ¢)+ (b *, ¢))

=(a *,c) +, (b *, )

(definition of *,,)
(definition of +,,)
(property (a) of R)
(property (e) of R)

(integer distributive law)

(property (d) of R)
(definition of *,,)
(definition of +,,)

For the multiplicative inverse property note that if m and a € Z,, are relatively prime then
ged(a, m) = 1 = xa + ym, where x, y are the Bézout coefficients of @ and m. Thus

1 = R(1) = R(xa + ym) = R(xa) = R(R(x)R(a)).

Setting » = R(x) and noting that R(a) = a, we have

1 = R(ba) = R(ab) =a %, b.

Here are functions that generate addition and multiplication tables for a user-entered

modulus.

def addition_modtable(m):
table = []
header = []
for k in range(m):
header = header+[str(k)]
header = ['+'] + header
table = [header]
for i in range(m):
row = []
for j in range(m):

row = row + [str((i+j)m)]

row = [str(i)] + row
table = table + [row]
return table

def multiplication_modtable(m):

table = []
header = []
for k in range(m):

header = header+[str (k)]
header = ['*'] + header
table = [header]
for i in range(m):

row = []

# top labels

# body of table

# left labels
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for j in range(m):
row = row + [str((i*j)%m)]
row = [str(i)] + row
table = table + [row]
return table
- Sample Run --——-----—-

Input:
table = addition_modtable(5) # mod 5 addition table
print('mod 5')
tl.format_print(table, 3, 'left')
print('\n')
table =multiplication_modtable(5) # mod 5 addition table
tl.format_print(table, 3, 'left')
print('\n')
table = addition_modtable(4) # mod 4 addition table
print('mod 4')
tl.format_print(table, 3, 'left')
print('\n')
table = multiplication_modtable(4) # mod 4 addition table

tl.format_print(table, 3, 'left')

Output:

mod 5

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3
* 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
mod 4

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

* 0 1 2 3

0 0 0 0 0

1 0 1 2 3

2 0 2 0 2

3 0 3 2 1
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Here are functions that return the additive and multiplicative inverses of an integer a.

def mod_add_inv(a,m):
a = ajm
for b in range(0O,m):
if (a+b)¥m ==
break
return b

def mod_mult_inv(a,m):
for b in range(1,m):

X = axb
if (x¥m) = 1:
return b
return -1 # no inverse

Sample Run -——==
Input:

print (mod_add_inv(40,7))

print (mod_mult_inv(678,7))
print(mod_mult_inv(678,6))

Output:

2

6

no inverse
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Arithmetic

In this chapter we construct the module Arithmetic.py, which evaluates arithmetic expres-
sions with Gaussian rational numbers, that is, complex numbers z = a + bi, where a and b
are rational numbers, called the real and imaginary parts of z, respectively. (Arithmetic
expressions were defined in Chap. 2.) Complex numbers are stored in the module as lists.
For example, the complex number 2/3 + (4/5)i is stored as [2/3,4/5]. All quantities are
in string form. The module is headed by the following import statement:

- -—= --- Arithmetic.py --- -—= -
import Tools as tl
import math as ma

5.1 The Main Function

The function main takes an arithmetic expression and returns a formatted complex number.
Here’s a sample run:

Input:
expr = '(3.2/5i) + 4(7.1i + 2.5/3)°3 - 1.7
print (main(expr) [0])

Output:
-135941/270-(514919/375) i
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A companion function, decimal_approx(fraction,p), returns a decimal approxima-
tion of the fraction that is accurate to p decimal places. The number of decimal places
for the approximation can be quite large. For example, applying main to the expression
(2/7)"10%(1/5°8) yields the fraction 1024/110341894140625. Applying decimal_approx
to this fraction with p = 40 yields the decimal approximation

.0000000000092802467093320448759034459688
= 9.2802467093320448759034459688 * 10~ (-12)

The second form is in so-called scientific notation. By contrast, the Python function eval
applied to the above expression (with the caret symbol ~ replaced by the double asterisk **)
returns only a decimal, in this case 9.280246709332041e-12, considerably less accurate.

Here is the code for main. The supporting functions are developed in the remaining
sections.

def main(expr):
# input: complex arithmetic expression
# output: formatted complex number z=a+bi and list c=[real,imag]
global idx # points to characters in the string expr
expr = expr.replace(' ',''") # remove extra spaces
expr = tl.fix_signs(expr)
expr = tl.fix_operands(expr)
expr = tl.insert_asterisks(expr,'') # no variables
idx = 0 # start
¢ = allocate_ops(expr,0) # does the calculations, returns list
z = pair2complex(c) # convert list c into formatted complex no.
return z,c

5.2 Conversion Functions

The following function takes a decimal (a string comprised of symbols from .0123456789)
and converts it to a fraction.

def decimal2frac(numeric):

if '.' not in numeric: return numeric # not a decimal
whole, decimal = numeric.split('.') #e.g. 12.34 --> 12,34
zeros = '0'*(int(len(decimal))) # '00'
denominator = '1' + zeros # 100
numerator = whole + decimal '1234"'

return numerator + '/' + denominator # 1234/100
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The function frac2intpair(r) takes a string fraction r and returns the numerator and

denominator as integers.

def frac2intpair(r):
if '/' not inr: r =
m,n = r.split('/")
return int(m),int(n)

#r = "'m/n'

r + '/1' # make r a fraction for uniformity

# integer numerator and denominator

The function pair2frac (num,den) does the reverse of frac2intpair (r). It takes a pair
of integers num,den and returns the fraction 'num/den’, suitably formatted and reduced to

lowest terms.

def pair2frac(num,den):

def

# returns fraction num/den reduced

if num == 0: return 'O’

if den < 0: num = -num; den = -den
if num == den: return '1'

if num == -den: return '-1'

if den == 1: return str(num)

num,den = reduce_int_pair(num,den)
return str(num) + '/' + str(den)

reduce_int_pair(a,b):
c = ma.gcd(a,b)
return a//c, b//c

Input:
print (pair2frac(40,-555))

Sample Run

# put minus sign on top

# no denominator needed
# cancel common factor
# combine parts

# largest common factor of a and b

# integer division

Output:
-8/111

The function numeric2list (r) takes a purely real or purely imaginary numeric r and
returns the double list that represents it.

def

numeric2list(r):

if r == 'i': return ['0','1']
if r == '-i': return ['0','-1']
if 'i' not in r:

return [decimal2frac(r),'0']
r = r.replace('i','")
return ['0', decimal2frac(r)]

Sample Run

# purely real

# purely complex
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Input:
print (numeric2list('2.3'))
print (numeric2list('.56i'))

Output:
['23/10', '0']
['0', '56/100']

The function pair2complex(c) takes a pair ¢ = [a,b] of fractions a,b representing a
complex number and returns a formatted complex number a+bi.

def pair2complex(c): # c = [a, b], a, b string fractions

real = c[0]; imag = c[1]
if '/' in real:

num,den = real.split('/")

real = pair2frac(int(num),int(den)) # format real part
if '/' in imag:

num,den = imag.split('/"')

imag = pair2frac(int(num),int(den)) # format imaginary part

imag = '(' + imag + ')
if real != '0':
imag = imag.replace('(-','-(") # pull '-' outside paren

#### special cases:

if real == '0' and imag == '0O': return 'O’

if real == '0' and imag == 'l': return 'i'

if real == '0' and imag == '-1': return '-i'

if imag == '0': return real

if real == '0': return imag + 'i'

if imag == '1': imag = "' # coefficient 1 not needed
if imag == '-1': imag = '-'

#### general case:

c =real + '+' + imag + 'i'
c = tl.fix_signs(c)
return c
--- Sample Run --------
Input:

c=['12/34",'-1/5"]
print (formatcomplex(c))

Output:
6/17-(1/5)1
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5.3  Arithmetic Operations on Fractions

The functions in this section perform arithmetic calculations on fractions represented as

strings r="'m/n', s='p/q’', where m, n, p, g are integers.

def frac_sum(r,s): #r+s =

m/n + p/q = (mg+np)/nq

m,n = frac2intpair(r) # convert fraction to integer pair

p,q = frac2intpair(s)

return pair2frac(m*q + n*p, n*q) # return reduced fraction

def frac_diff(r,s):
t = '-'+4s

# make s negative

t = tl.fix_signs(t) # remove extraneous '+', '-'

return frac_sum(r,t)

def frac_prod(r,s): # r*s
m,n = frac2intpair(r)
p,q = frac2intpair(s)
return pair2frac(mxp,n*q)

def frac_recip(s):
p,q = frac2intpair(s)
return pair2frac(q,p)

def frac_quo(r,s):
t = frac_recip(s)
return frac_prod(r,t)

= m/n * p/q = m¥p/nxq

# q/p

#t=q/p
# (m/n)*(q/p)

def frac_power(s,exp): # (p/q) "exp
if exp == 0: return '1'
t = s; # default
if exp < 0:
exp = —exp # make exponent positive

t = frac_recip(t)
num,den = frac2intpair(t)

# invert t

num,den = num**exp, denx*exp # raise both to positive power

return pair2frac(num,den)

Sample Run ------
Input:
r="'2/3"'"; s ="'5/7"; exp = -4
print('r+s = ', frac_sum(r,s))
print('r-s = ', frac_diff(r,s))
print('rxs = ', frac_prod(r,s))
print('r/s = ', frac_quo(r,s))

print('r"exp = ', frac_power(r,exp))

# reduced m/n
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Output:
r+s = -1/21
r-s = 29/21
rxs = -10/21
r/s = -14/15
rexp = 81/16

5.4 Complex Operations

Arithmetic operations on complex numbers are defined by

(a+bi)yx(c+di)y=(a+c)x b+d)i,
(a + bi)(c +di) = (ac — bd) + (bc + ad)i,
a+ bi _ (a + bi)(c —di) _ ac+bd bc—ad

crdi - A+d2 A+l T aras!

The following functions implement these operations. They operate on pairs u

= [a,b] and

v = [c,d], representing complex numbers a + bi and ¢ + di, respectively, where a, b, ¢, d
are fractions, and return a list [real, imag] of real and imaginary parts of the computation.

def complex_sum(u,v): #u = [a,b]l, v = [c,d], a,b,c,d fractions
a,b = u[0],ul1] # a=m/n, b =p/q, m,n,p,q integers
c,d = v[0],v[1]
real = frac_sum(a,c) # add real parts: atc
imag = frac_sum(b,d) # add imag parts: b+d
return [real,imag] # return string list

def complex_diff(u,v):
a,b = u[0],ul1]
c,d = v[0],v[1]
real = frac_diff(a,c)
imag = frac_diff(b,d)
return [real,imag]

def complex_prod(u,v):
a,b = u[0],ul1]
c,d = v[0],v[1]
ac = frac_prod(a,c)

bd = frac_prod(b,d)
ad = frac_prod(a,d)
bc = frac_prod(b,c)
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real = frac_diff(ac,bd)
imag = frac_sum(ad,bc)
return [real,imag]

def complex_recip(u):
a,b = ul[0],ul1]

if a == 0: return ['0','-'+frac_recip(b)]
if b == 0: return [frac_recip(a),'0']

a2 = frac_power(a,2)

b2 = frac_power(b,2)

a2_plus_b2 = frac_sum(a2,b2)
real = frac_quo(a,a2_plus_b2)
imag = frac_quo(b,a2_plus_b2)
imag = frac_diff('0',imag)
return [real,imag]

def complex_quo(u,v):
w = complex_recip(v)
return complex_prod(u,w)

def complex_power (u,exp) :

if exp == 0: return ['1','0']
if exp < 0:

exp = -exp

u = complex_recip(u)
v=au
for k in range(exp-1):

v = complex_prod(u,v)
return v

Input:

u=1['2/3",'4/5"]

v = [|2|’|_7|]

print('sum = ',complex_sum(u,v))
print('diff ' ,complex_diff (u,v))
print('prod ', complex_prod(u,v))
print('recip = ',complex_recip(v))

# ac - bd, ad + bc

# ['0',-1/1p]
# [1/a,'0']

# a/(a”2 + b"2)

# -b/(a"2 + b~2)

# a/(a”2 + b"2) - i a/(a”2 + b"2)

# u”exp

# multiply u times itself exp-1 times

Sample Run -------

print('quo = ',complex_quo(u,v))
print('power = ',complex_power(u,3))
print ('power = ',complex_power(u,-3))
Output:

sum = ['8/3', '-31/5']

diff = ['-4/3', '39/5']

prod = ['104/15', '-46/15']

recip = ['2/563', '7/53']

quo = ['-64/795', '94/795']

power = ['-664/675', '208/375']

power ['-1400625/1815848"', '-394875/907924']
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5.5 The Allocator

The function allocate_ops (expr,mode) calls on the preceding functions for the compu-
tational tasks. It takes an arithmetic expression expr and returns a complex number in the
form pair of simple fractions. The function operates recursively, calling itself to perform
the operation. The parameter mode is used to enforce hierarchy of operations: addition and
subtraction last. The following examples illustrate the hierarchy.

3/4%2
2°3/4

3/8, 3x4/2
2, 2x3-4

6, 2/374
2, 2-3%4

2/81,
-10

def allocate_ops(expr,mode):
global idx
while idx < len(expr):
ch = expr[idx]
if ch in '.0123456789i':
start = idx

# returns a pair of fractiomns

# character at index idx
# beginning of a numeric

r,idx = tl.extract_numeric(expr, start)

r = numeric2list(r)

elif ch == '+':
if mode > 0: break
idx += 1

s = allocate_ops(expr,0)
r = complex_sum(r,s)
elif ch == '-':
if mode > 0: break
idx += 1
s = allocate_ops(expr,1)
r = complex_diff(r,s)
elif ch == 'x':
if mode > 1:
idx += 1
s = allocate_ops(expr,1)
r = complex_prod(r,s)
elif ch == '"':
idx += 1
exp =
r =
elif ch == '/':
if mode > 1:
idx += 1
s = allocate_ops(expr,1)

break

break

r = complex_quo(r,s)
elif ch == '(':
idx = idx + 1
r = allocate_ops(expr,0)
idx = idx + 1
elif ch == ')': break

return r

allocate_ops(expr,2) [0]
complex_power(r, int(exp))

# wait for higher mode

# wait for higher mode

# get exponent

# get denominator

# skip '('
# calculate stuff inside ()
# skip ')’
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Fig.5.1 Recursion diagram for recursion level
atbxcd 0 a at+bxc d
+
1 b b *cd
*
2 c c~d
3 d

To see how the allocator works, consider the expression 'a+bxc+d~e'. The function,
initially in mode 0, reads a, then goes to '+' and calls itself to retrieve b, goes on to '*' and
calls itself to retrieve ¢, goes on to ' ~' and calls itself to retrieve d, comes back to calculate
c"d, etc. The above diagram traces the journey (Fig.5.1).

5.6 Rendering a Fraction into a Decimal

The function frac_decimal_approx(fraction,p) below takes a fraction and a positive
integer p and calculates a decimal approximation of the fraction to p places. To see how
the function works, suppose we wish to approximate the fraction 45/67 with a decimal that
is accurate to p = 4 places. To achieve this we first multiply the numerator by 10* and then
apply the division algorithm to 450000/67 to obtain

450000 = 6716 x 67 4 43.

Dividing both sides by 10000*67 yields

45 43 43
— =0.6716+ ————— = 0.6716 + — * 107*.
67 = OO0+ oo = 00710 gy < 10
The number on the extreme right is less than 10~* = 0.0001, hence .6716 agrees with 45/67
in 4 decimal places and so is the desired approximation.

In general, to approximate the integer fraction a/b to p decimal places, apply the division
algorithm as follows:

ax10P =qg*xb+r, 0<r <b.



84 5 Arithmetic

Divide both sides by b  107:

a q r _

5 =10r ()10
Since r/b < 1, we have (r/b) * 1077 < 1077, and so a/b and ¢/107 agree in p decimal
places.

The result 0.6716 in the above example is achieved in the program by taking the quotient

g = 6717 and suitably positioning the decimal point, in this case four places to the left. In
general, the positioning depends on both of the integer strings p and g. Here is the code:

def frac_decimal_approx(fraction,p): # fraction = a/b
# input: ratio of integers
# output: approximatoin to p places
if '/' not in fraction:
return fraction
a,b = frac2intpair(fraction)

if a ==

return '1' # trivial case
c = a*x10%x*p
q,r = ¢//b, clb # div alg for c,b
q = str(q); r = str(x)
L = len(q)

# place the decimal point p places to left in q:

if p < L:

approx = q[:L-p]+ '.' + gq[L-p:]
if p == L:

approx = '.' + q
if p > L:

zerostring = (p-L)*'0’

approx = '.' + zerostring + q
L = len(approx)
for i in range(L-1,-1,-1): # remove trailing zeros
if approx[i] != '0':
break # i now at first nonzero before zero trail
approx = approx[:i+1] # chop off zero trail
if approx[len(approx)-1] == '.': # if last symbol is '.
approx = approx.replace('.','") # remove it

return approx

Sample Run ------
Input:

fraction = '45/67'
print(frac_decimal_approx(fraction,4))
print(frac_decimal_approx(fraction,50))

Output:
.6716
.67164179104477611940298507462686567164179104477611
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The function decimal_approx(z,p) generalizes frac_approx by allowing arbitrary
Gaussian rationals as input. It simply applies frac_approx to the real and imaginary parts

of z and returns a formatted complex number with the approximation of each part.

def decimal_approx(z,p):
# input: z = complex number, p = number of decmal places

# output: decimal complex number z and corresponding list d

¢ = main(z) [1] # get real and imaginary parts of z
real = frac_decimal_approx(c[0],p) # approximate real
imag = frac_decimal_approx(c[1],p) # and imaginary parts
d = [real,imag]

w = pair2complex(d) # format number
return w,d # number, list form

-- Sample Run -——---——--
Input:

c = '76/7-(151/29)1i"
print (decimal_approx(c,21) [0])

Output:
10.857142857142857142857-5.2068965517241379310351

5.7  Converting to Scientific Notation

The following function takes a decimal and renders it into scientific notation: a decimal
consisting of a single digit whole part, a fractional part, and a suitable power of 10 to

compensate for moving the decimal point. The sample run illustrates this.

def scientific_notation(decimal):
if '.' not in decimal:
D = len(decimal)

if D == 1: #3-->3
return decimal
if D == 2: # 33 --> 3.3 * 10
return tl.insert_string(decimal,'.',1)[0] + 'x' + '10'
if D > 2: # 333 --> 3.33 * 1072
return tl.insert_string(decimal,'.',1)[0] \

+ '%' + 107" + str(D - 1)
left,right = decimal.split('."')
if left != '' and main(left)[0] == '0O':
left = "'
if left == '':
R = len(right)
right = right.replace('.',"'")
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if R == 1: # .3 --> 3%x10°(-1)
return right + ' *107(-1)'

if R > 1: # .33 -—> 3.3%10°(-1)
return tl.insert_string(right,'.',1)[0] \

+ 'x!' 4 |10"(_1)|
L = len(left)

if L == 1: # 3.3 --> 3.3
return decimal

decimal = decimal.replace('.','')

if L == 2: # 33.3 -—> 3.3%10
return tl.insert_string(decimal,'.',1)[0] + 'x' + '10'

exp = str(L-1)
# 333.3 --> 3.3%1072:
return tl.insert_string(decimal,'.',1)[0] +'*'+'10"'+ str(exp)

Sample Run ------
Input:
dlist = ['1','12','123"',"'.1','.12","'.123"','1.2', '12.3','123.4"']
ddlist = []
for d in dlist: # make a list of pairs [d,sci] for format print
sci = scientific_notation(d)
ddlist.append([d,'="',sci])
tl.format_print(ddlist, 2, 'left')

Output:

12 = 1.2x%10

123 = 1.23%10°2

1 = 1 *%10°(-1)
.12 = 1.2%x10°(-1)
.123 = 1.23%10°(-1)
1.2 1.2

12.3 = 1.23%10
123.4 = 1.234%10°2

5.8 Evaluating an Expression

The following function takes a numerical value and an algebraic expression containing a
variable and evaluates the expression at that value, returning both a Gaussian rational and
an approximation.

def evaluate(expr,varval,p):
var = tl.get_var(expr)
if var == '':
return main(expr) [0], "'
e = expr.replace(var,'(' + varval + ')')
e = tl.fix_signs(e)



5.8 Evaluating an Expression 87

e = main(e) [0]
if p == "'"': return e, "'’
return e, decimal_approx(e,p) [0]

-- Sample Run ———---———--
Input:
expr = '(2x"2 + x + 4)°2/(1+(1/21)x"2 - (7/3)x - 11/8)/(x"2+1)"'
var_val = '1.1'
p=29
expr_val, dec_approx = evaluate(expr,var_val,p)
print ('expression value: ', expr_val)
print('decimal approx: ', dec_approx)
Output:
expression value: -8271874416/202937125+(8506205136/1014685625) i
decimal approx.: -40.76077463+8.3830941581

Here is the analog for expressions with integers modulo a positive integer m.

def mod_evaluate(expr,varval,m):
var = tl.get_var(expr)
exprval = expr.replace(var,'(' + varval + ')')
exprval = tl.fix_signs(exprval)
return int(main(exprval) [0])%

Input:

expr = '(3x-57)"177'

var_val = '2'

for m in range(2,14):
expr_val = mod_evaluate(expr,var_val,m)
print('mod',m,"' ',expr_val)

Sample Run ----——--
Output:
mod 2

mod
mod
mod
mod
mod
mod
mod 9
mod 10
mod 11
mod 12
mod 13

0 ~NO Ok Ww

= O 01l O©OoOUo WwWd = O
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5.9  Ordering Fractions

Because fractions are written as strings, one needs a special function to compare them. Since
main returns a negative fraction with the negative sign attached to the numerator, as in -2/3,
the denominator of a fraction is always positive. It follows that for any pair fractions a; /b;
and ay /b, returned by main,

a a . .
a2z if and only if a1by < azb.
bi b
The functionmin_max_frac uses this fact in determining which of two fractions is the larger,

returning them in order of size, the smaller first.

def min_max_frac(fracl,frac2):
frl = fracl; fr2 = frac2
if '/' not in fri:
frl = fr1 + '/1! # for uniformity
if '/' not in fr2:
fr2 = fr2 + '/1'

al,bl = fril.split('/") # al/bl, b1>0
a2,b2 = fr2.split('/"') # a2/b2, b2>0
al = int(al); bl = int(bl) # convert strings into integers

a2 = int(a2); b2 = int(b2)
if al*b2 < a2*bil:

return fracl,frac2
return frac2,fracil

The function is_less(fracl,frac2) returns True if fraci<=frac2 and False other-
wise. It will be used below in ordering a list of fractions. The function absval returns the
absolute value of a numeric.

def is_less(fracl,frac2):
minfrac,maxfrac = min_max_frac(fracil,frac2)
return minfrac == fracl

def absval(a):
b = main(a) [0] # convert possible decimal into fraction
if is_less(b,'0'):
return tl.fix_signs'-'+ a
else:
return a
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The function frac_sort (frac_list) takes a list of fractions and returns the list sorted
from smallest to largest. It uses the so-called bubble sort algorithm, where the “lighter”
values “float” to the top. The remaining functions use frac_sort to find the indices of the
smallest and largest value in a list.

def frac_sort(frac_list): # min to max
L = len(frac_list)
for i in range(L):
for j in range(i+1,L):
if is_less(frac_list[j],frac_list[i]):
swap = frac_list[i] # put £(i) before £(j)
frac_list[i] = frac_list[j]
frac_list[j] = swap
return frac_list

def index_of_min(frac_list):
sorted_list = frac_sort(frac_list) # small to large
return frac_list.index(sorted_list[0]) # index of smallest no.

def index_of_max(frac_list):
L = len(frac_list)
sorted_list = frac_sort(frac_list)
return frac_list.index(sorted_list[L-1]) # index of largest no.

Sample Run -----
Input:

frac_string = '43/46,-81/83,-64/67,-33/34,671/678,52/55,111/123,7/77"
frac_list = frac_string.split(',"')

print(frac_sort(frac_list))

idx_min = index_of_min(frac_list)

idx_max = index_of_max(frac_list)

print(frac_list[idx_min], frac_list[idx_max])

Output:
['-81/83','-33/34"','-64/67"','7/77','11/12','43/46', 52/565','671/678']
-81/83 671/678

5.10 Application: Roots by Interval Halving

A zero or root of a function f is a value z such that f(z) = 0. The interval halving method
for finding approximate roots applies to continuous functions f, that is, functions that have
no gaps or jumps in their graphs. The method finds an approximate value of a zero of f
located in a given interval [a, b]. The algorithm begins by determining the sign of the product
f(a) f(b).If the sign is negative then the graph of f crosses the x axis somewhere between a
and b, indicating that the interval contains a zero of f. Dividing the interval into two pieces
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Fig.5.2 Interval Halving

method
f f —++ {
a z b
I
-« [, —>
- 3>
I

[a, c] and [c, b] and checking the signs of f(a)f(c) and f(c) f (b) indicates which of these
intervals has a zero. The process continues up to any desired degree of accuracy, measured
by the lengths of the bisected intervals. If an interval length is less than a predetermined
value, then the desired zero may be approximated by any member in the interval. Figure 5.2
illustrates the idea. The interval halving method may miss some zeros. To approximate these
one may need to adjust the initial interval [a, b].

The function interval_halving(f,a,b,accuracy) implements the procedure for alge-
braic expressions f(x).

def interval_halving(f, a, b, accuracy): # f,a,b as strings
accuracy = main(accuracy) [0] # convert to fraction form
while True:
# midpoint of current interval:
c = main('("+ a + '+' + b + ')/2")[0]
cval = evaluate(f,c,'"') # expression values
aval = evaluate(f,a,'')

bval = evaluate(f,b,'"')

prod = main('('+ aval +')('+ bval + ')')[0]

if is_less('0',prod): return 'none' # no zero in [a,b]

if aval == '0': return a # special cases

if bval == '0': return b

if cval == '0': return c

prod = main('('+ aval +')('+ cval + ')")[0]

if is_less(prod,'0'): # a zero between a and c
b=c # new interval is left half

prod = main('('+ cval +')('+ bval + ')')[0]

if is_less(prod,'0'): # a zero between c and b
a=c¢c¢ # new interval is right half

zZ=c # approximate zero

interval_length = main(b + '-('+ a +') ') [0]
if is_less(interval_length,accuracy):

break
return z
Input:
f="02.4-x"2)(x"2+x+1)"2'; a = '.5'; b= '2"; p =50

for i in range(10):
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zeros = '0'*i

accuracy = '.'+ zeros + '1'

p = 50

approx_root = interval_halving(f, a, b, accuracy)
if approx_root == 'none':
print('no root')

break

dec_approx = frac_approx(approx_root,p)

print ('accuracy:

print ('approximate root:

, accuracy)
', approx_root)

print('decimal approximation:', dec_approx,'\n')
Output:
accuracy: 1
approximate root: 49/32
decimal approximation: 1.53125
accuracy: .01
approximate root: 793/512

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

accuracy:
approximate root:

decimal approximation:

1.548828125

.001

6347/4096
1.549560546875

.0001

50761/32768
1.549102783203125

.00001

812221/524288
1.5491886138916015625

.000001

6497789/4194304
1.5491936206817626953125

.0000001

51982303/33554432
1.5491933524608612060546875

.00000001

831716839/536870912
1.54919333569705486297607421875

.000000001

6653734721/4294967296
1.54919333779253065586090087890625

.0000000001

53229877789/34359738368
1.54919333840371109545230865478515625
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5.11 ALinear Fractional Cipher

A cipher consists of two algorithms: one to encode a message and one to decode it. In this
section we use the fractional arithmetic capabilities of main to develop a new cipher. Our
cipher is based on the notion of linear fractional transformation. These are functions of the
form ax +b
y:m, x # —d/c, 4.1
where a, b, ¢, d are fixed real constants and x is a real variable.
The encoding algorithm goes as follows: A message consists of capital letters A-Z, each
of which has an alpha value given by the formula str (ord(letter)-65)). For example, A
has alpha value 0 and B has alpha value 1. An alpha value x of a letter is plugged into (5.1) to
obtain a number y. This is subsequently converted into an integer fraction u/v. The message
is the aggregate of the integer blocks u# and v. All quantities in the program are in string

form. Here is code for the algorithm.

def encryption(message,a,b,c,d): # string message
coded_message = '' # initialize
for i in range(len(message)):
x = str(ord(message[i]) - 65) # alpha value
y="'("+a+ "*x" +x+ "+ +Db+")/" \
"("+ct+ 'kt x4+ '+ d+ ) # formula for y
y = main(y) [0] # value of y
u,v = y.split('/") # get num,den
ifv=="""9Tv="1
coded_message = coded_message + u + ' ' + v + ' '
L = len(coded_message)-1
return coded_messagel[:L] # remove last space
- Sample Run -------
Input:
a = '15.23'; b = '42.72'; c = '63.91'; 4d = '27.45"' # arbitrary

message = 'RUNFORYOURLIVES'
coded_message = encryption(message,a,b,c,d)
print (coded_message)

Output:

30163 111392 34732 130565 24071 85828 11887 34700 25594 92219
30163 111392 13608 52043 25594 92219 34732 130565 30163 111392
21025 73046 968 3169 12085 45652 10364 28309 10562 39261

By way of explanation, the first pair 30163 111392 is the numerator and denominator of the
output of main((17a+b)/(17c+d), where 17 is the alpha number of R, the first letter of the
message.
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The decryption algorithm is the reverse process: it takes a coded message, the blocks
generated by encryption, and converts it into the original message. This is possible because
a linear fractional transformation has an inverse, obtained by solving for x in (5.1):

b—dy

cy—a’

X = (5.2)
Successive pairs of numbers in the coded message are formed into fractions y which are
plugged into (5.2) to obtain the alpha value x. The corresponding character is obtained from
the calculation chr (int (x)) + 65. For example, to decode the first pair 30163 111392 of
the coded message, form the quotient y = 30163/111392 and plug this into (5.2) to obtain

b—d(30163/111392) .
c(30163/111392) —a =~

and use chr (int (17)+65) to get back the letter R.

def decryption(coded_message,a,b,c,d):
coded_message = coded_message.split('

") # split into blocks

i=0
message = '' # initialize
while i < len(coded_message)-1:
u = coded_message[i] # first member of pair
v = coded_message[i+1] # second member of pair
y="C+"'"C+u+ ")/ +v+") + ") # form fraction
X = I(l+b+l_l+d+l*l+y+l)/l \
("t e+ Ky A+ = a+ ) # formula for x
x = ar.main(x) # value of x (alpha number)
letter = chr(int(x) + 65) # convert to its letter
message = message + letter # attach to message
i+=2

# next pair
return message

- Sample Run
Input:

a = '15.23'; b =
coded_message = \
30163 111392 34732 130565 24071 85828 11887 34700 25594 92219 \
30163 111392 13608 52043 25594 92219 34732 130565 30163 111392 \
21025 73046 968 3169 12085 45652 10364 28309 10562 39261

message = decryption(coded_message,a,b,c,d)

print (message)

'42.72'; ¢ = '63.91'; d = '27.45" # same as above

Output:
RUNFORYOURLIVES




®

Check for
updates

Polynomial Algebra 6

In this chapter we construct a module PolyAlg.py that performs algebraic operations on
polynomials symbolically. The ultimate goal of the module is to convert an algebraic com-
bination of polynomials into a single polynomial in standard form. The module is headed
by the following import statements.

—————————————————————————— PolyAlg.py --- -—- -
import Number as nm

import Arithmetic as ar

import Tools as tl

import math as ma

6.1 Polynomial Operations

A polynomial in x is a mathematical expression of the form

1

amx™ +ap_1x" "+ -+ ayx + ao, 6.1)

where the a;’s are complex numbers, a,, # 0, and x is a variable. The integer m is called
the degree of the polynomial. The expression agx*
ay. the coefficient of the term. The number qag is called the constant term and a,, the leading
coefficient. The polynomial is said to be monic if the leading coefficient is one. A term of

is called a rerm of the polynomial and
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a polynomial is also called a monomial. We allow the constant ag to fall under this rubric,
interpreting it as agx®. Thus the constant term, if there is one, may then be viewed as a
coefficient.

Polynomials are added or subtracted by collecting terms with like powers. For multipli-
cation, one must first expand. Here are some simple examples of these operations.

G2+ 6x+7D+CBx+D+=5x>+9x+8
5x24+6x+7)—GBx+1)=5x>4+3x+6
(5x2+6x +7)Bx +1) = 15x> + 23x2 +21x + 7

The general formula for multiplication is

(@nx™ 4 am_1x™ "+ arx + ag) Bux™ + bp1x" " 4o 4 byx + bo)

=cpxP +cpoix? N+t oix + oo,

where p =m +n and ¢ is the sum of all products a;b; with 0 <i <m, 0 < j <n, and
i + j = k. The special case m = 0 is simply multiplication of each term of the second
polynomial by ag, a process called scalar multiplication.

For programming purposes, a polynomial (6.1) is stored as a list P of its coefficients
lam, am—1, ..., a1, apl, so that P[k] = a,,_i. The items in the list are Gaussian rational num-
bers in the form of strings so that exact calculations via the module Arithmetic.py are
possible. The algebraic operations on polynomials are carried out on the lists.

6.2 The Main Function

The function main (expr) takes as input an expression and returns the simplified polynomial
and its list. For the output, one has the choice of a general fractional form, a monic form, or a
form with Gaussian integer coefficients. The latter two forms generally have a compensating
constant factor, which we shall call a multiplier. In the program the six outputs are labeled
as follows: fpol, flist, mpol, mlist, ipol, and ilist. The multiplier is included as the
first member of the lists m1ist and ilist.

def main(expr):
global var
var = tl.get_var(expr)
flist = expr2flist(expr)

fpol = flist2pol(flist) # general fractional form
mlist = flist2mlist(flist)
mpol = mlist2pol(mlist) # monic form

ilist = flist2ilist(flist)
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ipol = ilist2pol(ilist) # integer coefficient form
return fpol,flist,mpol,mlist,ipol,ilist

Sample Run ------
Input:

expr = '(3.1x +1-2.4i)°2 - 7x + 5/8i'
print('fpol: ',fpol)

print('flist:',flist)

print('mpol: ',mpol)

print('ipol: ',ipol)

print('ilist',ilist)

print('\n')

print('fpol: ',ar.evaluate(fpol,varval,4)[0])
print('mpol: ',ar.evaluate(mpol,varval,4)[0])
print('ipol: ',ar.evaluate(ipol,varval,4)[0])

Output:
fpol: (961/100)x~2+(-4/5-(372/25)1i)x-119/25-(217/40)1
flist: ['961/100', '-4/5-(372/25)i', '-119/25-(217/40)i']

mpol: (961/100) (x"2+(-80/961-(48/31)1)x-476/961-(35/62)1)
ipol: (1/200) (1922x"2+(-160-29761i)x-952-10851)
ilist: ['1/200', '1922', '-160-2976i', '-952-1085i']

fpol: ('179964661/1210000-(964769/11000)i', '148.7311-87.70631i')
mpol: ('179964661/1210000-(964769/11000)i', '148.7311-87.70631i')
ipol: ('179964661/1210000-(964769/11000)i', '148.7311-87.70631i')

6.3  Polynomial Operations in Python

For addition of polynomials it is convenient to have a function that prepends zeros to lists
so as to make them the same length. For example, the polynomials

P(x) =3x>+ (2+3i)x + 1and Q(x) =5x> + 7x,
are represented, respectively, by the lists
P = ['3','(2+3i)','1'], Q = [|5|’|0|,|7|,|o|].

To give these lists equal length without changing the polynomials, a zero is prepended to P
to obtain

['O','B','(2+3i)','1']

which represents the polynomial P (x) = Ox3 + 3x2 4+ (2 4 3i)x + 1. Addition is then carried
out the lists term by term:
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[0|’|3|’|(2+31)|’|1|] + [|5|’|0|’|7l’|0|] = ['5','3','(9+3i)','1'],

which represents the polynomial P(x)+ Q(x) = 5x3 4+ 3x% + (9 + 3i)x + 1. Of course,
prepending zeros violates the convention that the leading coefficient be nonzero, but in
this context that is of no consequence. Here is the function that attaches the zeros:

def prependzeros(P,Q):
numzeros = abs(len(P)-len(Q))
Z = tl.zero_list(numzeros)
if len(P) > len(Q): Q = Z+Q # prepend zero list to Q
if len(Q) > len(P): P = Z+P # prepend zero list to P
return P,Q

Since arithmetic operations may introduce leading zeros in a polynomial list, we need a
function that removes these:

def remove_leading_zeros(P):

if len(P) == 1:
return P
while len(P) > 1 and P[0] == '0':
P = P[1:]
return P
Sample Run ------
Input:

print(remove_leading_zeros(['1','2','3'] ))
print(remove_leading_zeros(['0','0','1']))
print(remove_leading_zeros(['0','0']))
print (remove_leading zeros(['0']))

Output:

[Ill’ I2I, I3I]
['1']

['o0']
['0']

The following functions add, subtract, and multiply polynomials. The inputs are polyno-
mials P, Q in the form of lists, as described earlier.

def pol_sum(P,Q):
P,Q = prependzeros(P,Q)
S =1
for i in range(len(P)): # add termwise
s = ar.main('('+ P[i] +")+('+ Q[i] + ') ") [0]
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def

def

def

def

def

S.append(s)
S = remove_leading_zeros(S)

return S

pol_scalar_prod(scalar,P): # returns scalar*P
Q=1

if isinstance(P,str): P = [P]

for entry in P: # multiply each item in P by scalar

s = ar.main(' ('+ scalar +')*('+ entry + ')')[0]
Q.append(s)
return Q

pol_diff (P, Q): # returns P-Q
R = scalar_prod('-1',Q)
return pol_sum(P,R)

pol_prod(P, Q):

M= (]

L = len(P)+len(Q)-1

for k in range(L): # for each k calculate c_k
ck = '0' # reset

for i in range(len(P)):
for j in range(len(Q)):
if i+j ==
ck = ar.main \
(ck + '+('+ P[i] +")('+ Q31 + ') ') [0]
M.append (ck)

return M
pol_power(P,n):
Q=P
if n > 1:
for i in range(n-1): # multiply P by itself n-1 times
Q = pol_prod(P, Q)
return Q
pol_quotient(P,q): # q a scalar

z = ar.main('1/('+q+') ") [0]
return scalar_prod(z,P)

6.4

The Allocator

The following function scans the expression, assigning computational tasks to the functions
in the preceding section. Scalars and variables are converted into their polynomial lists. The
function is similar in logical structure to the eponymous function in Arithmetic.py.
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def allocate_ops(expr,mode):
global idx
P =1

while idx < len(expr):

ch = expr[idx]
if ch in '.0123456789i':
start = idx

r,idx = tl.extract_numeric(expr, start)

P = [r]
elif ch == var:
idx +=1

# list for numeric

# e.g. the 'x' in 'x"3'

# move from var to '"'

exp,idx = tl.extract_exp(expr,idx)

n = int(exp)
P=1['1"] + tl.zero_list(n)
elif ch == '+':
if mode > 0: break
idx += 1
Q = allocate_ops(expr,0)
P = pol_sum(P,Q)
elif ch == '-':
if mode > 0: break
idx += 1
Q = allocate_ops(expr,1)
P = pol_diff(P,Q)

elif ch == 'x':
if mode > 1: break
idx += 1

Q = allocate_ops(expr,1)

P = pol_prod(P,Q)
elif ch == '""':

idx += 1

exp = allocate_ops(expr,2) [0]

P = pol_power(P, int(exp))
elif ch == "'/":

if mode > 1: break

idx += 1

Q = allocate_ops(expr,1)
q = Qo]

P = pol_quotient(P,q)

elif ch == '(':
start = idx

# list for x"n

# wait for higher mode

# wait for higher mode

# inside the list [exp]

# denominator, a scalar

# divide by scalar

paren_expr,end = tl.extract_paren(expr,start)

if not var in paren_expr:

r = ar.complex_calc(paren_expr) [0]

P = [r]
idx=end
else:
idx+=1
P = allocate_ops(expr,0)
idx+=1
elif ch == ')': break

return P




6.5 Generating the Polynomial Lists 101

6.5 Generating the Polynomial Lists

The function expr2f1ist (expr) prepares the expression expr, making it suitable for diges-
tion by the function allocate_ops, and then applies the latter function to obtain the general
fractional coefficient list f1ist.

def expr2flist(expr):
global idx, var
expr = tl.attach_missing_exp(expr,var)
expr = tl.insert_asterisks(expr,var)
idx = 0 # start of expression
flist = allocate_ops(expr,0) # fractional coefficients
return flist

The function f1ist2mlist (f1list) takes the list generated by expr2flist and returns
the corresponding monic form mlist. It calculates the reciprocal of the leading coefficient
in 1ist. Each member of £1ist except the first is multiplied by the reciprocal.

def flist2mlist(flist):
if len(flist) <= 1:

return flist # trivial list
mlist = []
multiplier = flist[0] # leading coefficient of flist

# invert leading coefficient
reciprocal = ar.main( '1/('+ multiplier + ')')[0]
# multiply each coefficient except the first by reciprocal:

for ¢ in flist[1:]:

z = ar.main(' ('+ reciprocal + )('+ c +') ") [0]

mlist.append(z)
mlist = ['1'] + mlist # make monic
mlist = [multiplier] + mlist # prepend compensating factor
return mlist

The function £1ist2ilist(£f1list) takes the list generated by expr2flist and returns
the corresponding integer coefficient form ilist. To do this it multiplies the members of
flist by the least common multiple of their denominators. The compensating multiplier,
the reciprocal of the lcm, is then attached to the result, producing ilist. The function
get_denoms (flist) runs through f1ist gathering the denominators.

def flist2ilist(flist):
ilist = []
denoms = get_denoms(flist)
lcm = nm.listlcm(denoms) # get lcm of denoms
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for item in flist: # multiply each item by the lcm
prod = ar.main(str(lcm) + '*(' + item + ')')[0]
ilist.append(prod)

multiplier = '1/'+ str(lcm) # compensatory factor
multiplier = ar.main(multiplier) [0] # reduce it
ilist = [multiplier] + ilist # prepend multiplier to ilist

return ilist

def get_denoms(flist):
denoms = [1] # default
for i in range(len(flist)):
coeff = flist[i]
re = ar.real(coeff)
im = ar.imag(coeff)
if '/' in re: # get denominator of real part
den = int(re.split('/')[1])
denoms . append (den)
if '/' in im: # get denominator of imag part
den = int(im.split('/")[1])
denoms . append (den)
return list(set(denoms)) # remove duplicates

Sample Run -------
Input:

flist = ['1/12','1/5','1/4"','1/3"]
print(get_denoms(flist))

Output:
[1, 3, 4, 5, 12]

6.6  Converting Lists to Polynomials

The functions in this section produce formatted polynomials from the lists generated by the
functions in the preceding section. The first, flist2pol (flist,var), attaches the coeffi-
cients to powers of the variable (denoted by the generic letter 'x' in the comments).

def flist2pol(flist):

P = attach_parens(flist) # enclose fractions and complex no.s
pol = "' # for polynomial string
L = len(P)
# attach coeffs to var
for exp in range(L): # exponent of term
v = var
if exp == 0: v = "' # omit x"0

coeff = P[L-exp-1] # coefficient of x"exp
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if coeff == '0':
continue # skip zero coeff
if coeff == '1' and exp !'= 0:
coeff = "' # 1 superfluous
if coeff == '-1' and exp != O:
coeff = '-!'
term = coeff + v
if exp > 1: # omit power x"exp for exp =1
term = term + '"' + str(exp)
pol = term + '+' + pol
if pol == '': return 'O’
pol = poll[:len(pol) - 1] # remove extra

pol
pol = tl.fix_signs(pol)
return pol

def attach_parens(pol_list):
L = len(pol_list)
if L <= 1: return pol_list
P =]

for k in range(L-1): # attach parens to all but constant term

coeff = pol_list[k]

#if '/' in coeff or '+' in coeff or '-' in coeff:
coeff = tl.add_parens(coeff)

coeff = tl.fix_signs(coeff)

P.append(coeff)

P.append(pol_list[L-1]) # pick up constant term

return P

pol.replace('( - ', '(=") # make pretty

-- Sample Run -------
Input:

flist = ['-1/2','3", '2i', '6-7i', '2-4i']
print (flist2pol(flist,'x"'))

Output:
(-1/2)x"4+3x"3+2ix"2+(5-71i) x+2-41i

For the monic and integer forms of the polynomial we need to attach the multiplier, which
may require parentheses to be placed around it and/or the polynomial. Polynomials with only
one term require no parentheses. The following function detects this state of affairs. It takes
a list of coefficients and returns True if the list has only one element or if it has only one

nonzero member.

def is_single_term(pol_list):
L = len(pol_list)
if L ==

return True # polynomial has only one term

numzeros = 0

for item in pol_list: # calculates number n of zeros in list
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if item == '0':
numzeros +=1
return numzeros == L-1 # ['1','0','0']: L -1 =2

The function attach_multiplier(pol_list,pol,factor) returns the monic or integer
coefficient polynomial with the multiplier attached and with suitable parentheses.

def

attach_multiplier(pol_list,pol,multiplier):

if multiplier == '1': return pol
if ar.is_complex(multiplier) or ar.is_frac(multiplier):
multiplier = '(' + multiplier + ')'

if not is_single_term(pol_list):
pol = '(' + pol + ")
return multiplier+pol

The next two functions return monic and integer coefficient polynomials.

def

def

mlist2pol (mlist):

if len(mlist) ==

return mlist[0]

multiplier = mlist[0]

P = mlist[1:] # list without multiplier
pol = flist2pol(P)

return attach_multiplier(P,pol,multiplier)

ilist2pol(ilist):

multiplier = ilist[0]

P = ilist[1:]

pol = flist2pol(P)

return attach_multiplier(P,pol,multiplier)

6.7

The Modular Case

In this section we consider the case where the polynomials have integer coefficients modulo
some integer m > 1. Since there is no division involved, the same calculation functions
work for this case. The only difference is that the coefficients of the final polynomial need
to be replaced by their remainders modulo m. The function poly_mod(expr,v,m) takes

an expression in the variable var and with integer coefficients and returns the reduced
polynomial with coefficients modulo m
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def strmod(a,m): # string 'a'
int_a = int(a)
b= (int_a) % m
return str(b) # modulus in string form
def integerlist2modlist(L,m):
# converts each int in list to mod m number
modlist = []
for k in range(len(L)):
modm = strmod(L[k],m)
modlist = modlist + [modm]
return remove_leading_zeros(modlist)
def poly_mod(expr,m):
fpol,flist = main(expr) [0:2] # integer coeff's
modlist = integerlist2modlist(flist,m)
modpol = flist2pol(modlist)
return modpol, modlist
Sample Run -----—-—--
Input:
expr = '(3x-57)"12'
for m in range(2,14):
print('mod',m,' ', poly_mod(expr,'x',m)[0])
Output:
mod 2  x"12+x"8+x"4+1
mod 3 0
mod 4  x"12+2x710+3x"8+3x74+2x"2+1
mod 5 x"12+2x711+x710+2x"7+4x"6+2x"5+x " 2+2x+1
mod 6  3x"12+3x"8+3x74+3
mod 7 x"12+3x711+5x710+3x"9+3x"8+4x"7+2x"5+6x"4+3x"3+6x"2+6x+1
mod 8  x"12+4x711+2x710+4x"9+7x"8+4x"6+7x"4+4x"3+2x"2+4x+1
mod 9 O
mod 10 x"12+2x711+6x"10+5x"8+2x"7+4x"6+2x"5+bx"4+6x"2+2x+1
mod 11 9x712+5x"11+5x+4
mod 12 9x712+6x"10+3x"8+3x"4+6x"2+9
mod 13 x712+6x711+10x"10+8x"9+9x"8+2x"7+12x"6+7x"5+3x"4+5x"3\
+4x"2+11x+1
6.8  Application: Completing the Square

The function complete_square (quad) takes a quadratic ax? 4+ bx + ¢ and returns its com-
pleted square a(x + (1/2)(b/a))? + ¢ — a((1/2)(b/a))>.
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def complete_square(quad):
# a = quad[0], b = quad[1]l, c = quad[2]

coeffs = main(quad) [1] # flist
a = coeffs[0]
b = coeffs[1]
c = coeffs[2]
d = ar.main('(1/2)('+ b +'/' + a + ') ') [0] # (1/2) (b/a)
e = ar.main(a+'('+ d + ')"2')[0] # a((1/2) (b/a)) "2
f = ar.main(c+ '-' + e)[0] # ¢c - a((1/2) (b/a)) "2
g = main('(x' + '+' +d + ')')[0] # x + (1/2) (b/a)
s = tl.fix_signs(a + '('+ g +')72' + '+' + f)
return s

Sample Run ------
Input:

q='3x"2 - 8 + 5'
print(complete_square(q))

Output:
3(x-4/3)"2-1/3

6.9 Application: Lagrange Interpolation

An interpolation function for a set of data points

(x1, y1), (x2,¥2), ..., (xn, Yn), Xj # xi for j # k, (6.2)

is a function f(x) of a continuous variable x such that f(xx) = yx for all k. The underlying
assumption here is that f generates hypothetical data values (x, y = f(x)) for values of
x that are not necessarily the observed values. Such a function usually has a relatively
simple form so that the interpolated values y are easily calculated. Generally, these are only
approximations to the actual data generated by the underlying process but may be sufficiently
accurate to be useful. In this section we consider one of the simplest and most common forms
of interpolation and implement the formula in Python.

The Lagrange interpolation polynomial for the data points in (6.2) is the degree n polyno-

mial .
P(x)=Y_Pj(x),
j=1
where
X — X,
Pj(x) = y;Lj(x) and Lj(x) =[] a
Xj — Xg
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The large pi symbol stands for product and is used like the large sigma in summation. Since

Lj(xj)=1and L;(x;) =0fori # j,

P(x) has the desired interpolation property P (x;) = y for all k.

The function lagrange_interp(data) takes data and returns the expanded version of the
interpolation function. For convenience we use the function data2lists(data) to convert

the entered data (6.2) to a table.

def data2lists(data):

# e.g. data = '(1.7,3.2),(2.2,5.4),(-2.98,.76)"'

data = data.replace(' ','')

data = data.replace('),(',';") # (1.7,3.2; 2.2,5.4; -2.98,.76)
data = data.replace(')','") # (1.7,3.2; 2.2,5.4; -2.98,.76
data = data.replace('(','") #1.7,3.2; 2.2,5.4; -2.98,.76"'
tab = tl.string2table(data) # convert data to tabular form
return tab # [(['1.7','3.2'], ['2.2','5.4'], ['-2.98','.76']]

def lagrange_interp(data):
sum = 'O’
data = data2lists(data)
for j in range(len(data)):
denprod = '1'
numprod = '1'

# get products of numerators and denominators in formula:

for k in range(len(data)):

if k != j:
num = '(x' '-(' + data[k][0] + "))’
numprod = num + '('+ numprod + ')'
numprod = main(numprod) [0]

den = '('+ data[j][0] +'-('+ data[k][0] +')'+')'

denprod = ar.main(den +'('+ denprod +')') [0]
Lj "(" + numprod + ')/(' + denprod + ')'
Pj = main('('+ data[j][1] +")('+ Lj +')")[0]
sum = main(sum +'+'+ Pj)[0]
return main(sum) [0]

Input:

data = '(1.7,3.2),(2.2,5.4),(-2.98,.76)"'
pol = lagrange_interp(data)
print('Lagrange polynomial:\n', pol)

Output:
Lagrange polynomial:
(22690/30303)x"2 + (5749/3885)x - 1120906/757575
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6.10 Application: Polynomial Calculus

In this section we use some of the primary functions developed thus far to construct functions
that differentiate and integrate polynomials. We treat differentiation first.

First Derivative of a Polynomial
The function deriv (P) returns the first derivative of a polynomial. It does so by multiplying
the members of the list of P by their index, the exponent, counted from the right. For
example, the polynomial

P(x) =5x7 +7x> + 9x + 11

with list PL=[5,7,9,11] has derivative
Q(x) = 15x> + 14x +9
with list QL=[15,14,9]. If L denotes the length of PL, then QL may be seen as the list

[5%(L-1),7*(L-2),9%(L-3),11*(L-4)].

Here is the code:

def deriv(P):
flist = main(P) [1]
L = len(flist)
dflist = [] # for the flist of the derivative
for k in range(L-1):
exp = str(L-1-k)
coeff = flist[k]
dcoeff = ar.main( exp + '(' + coeff + ')')[0]
dflist = dflist + [dcoeff]
return flist2pol(dflist)

Sample Run -------
Input:

P = '(3/2)x"12 + 2.004 x"10 - 5ix"8 + 6x"4 + 7x"2 + (11-5i)x + 7.2'
print (deriv(P)

Output:
18x711+(501/25)x"9-40ix"7+24x"3+14x+11-51
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Tangent Line
We can use deriv to find the equation of the line tangent to a polynomial P at a point
(a, P(a), namely, y = P(a) + P'(a)(x — a).

def tangent_line(P,a):
Q = deriv(P)

b = ar.evaluate(P,a,'')[0] # = P(a)
m = ar.evaluate(Q,a,'"') [0] # P'(a) = slope
tan_eqn = b + ' +('+ m +")('+ 'x' + '=' + a +')!
tan_eqn = tl.fix_signs(tan_eqn)
return 'y = '+ tan_eqn
-- Sample Run ———---——--
Input:
P="x"4+5x"3 - 3x"2+ 7x - 9'
a = '-3/4'

print(tangent_line(P,a))

Output:
y = -4539/256+(73/4) (x+3/4)

Higher Order Derivatives
The function dderiv(P,n) finds the nth derivative of a polynomial P.

def dderiv(P,n):

d="P
for k in range(n):
d = deriv(d) # derivative of previous derivative
return d
--- Sample Run --------
Input:

P = '(2.4+3.1i)x710 - 5ix"8 + 6x74 + 7x"2 + 11'
for n in range(12):
print(n,' ', dderiv(P,n))

Output:

(2.4+3.11)x710 - 5ix"8 + 6x"4 + 7x"2 + 11
(24+311)x79+(-401)x"7+24x"3+14x
(216+2791)x"8+(-2801)x"6+72x"2+14
(1728+2232i)x"7+(-16801) x"5+144x
(12096+156241)x"6+(-84001i)x"4+144
(72576+937441)x"5+(-336001)x"3
(362880+4687201)x~4+(-1008001)x"2
(1451520+18748801) x~3+(-2016001i) x
(4354560+56246401)x~2-2016001

0 ~NO O WN - O



110 6 Polynomial Algebra

9 (8709120+112492801i)x
10 8709120+112492801
11 0

Taylor Series
The Taylor series expansion of an infinitely differentiable function f(x) about a point a is an
infinite series in x that, under suitable conditions, converges to f(x):

S (9]
fx) = kZO f k!(“) (x — a).

Here £ denotes the kth derivative of f, where, by convention, f©@ = f. The partial sums

n

()
T =3 LD gy

k!
k=0

are called Taylor polynomials and are useful for approximating f and its integrals.

For polynomials f the series is finite since for k greater than the degree d of f, f® = 0.
The Taylor series then coincides with 7;, for n > d. The following function returns the Taylor
series for polynomials for the case n = degree of f. The run includes a check.

def taylor_series(P,a):
var = tl.get_var(P)

PL = main(P) [1] # list for P

t =" # initialize series
# calculate derivatives up to order degree P = len(PL)-1:

for n in range(len(PL)): # generate Taylor series terms

DP = dderiv(P,n)
c = '('"+ ar.evaluate(DP,a,'') [0]+')/('+str(ma.factorial(n))+"')"

¢ = ar.main(c) [0] # coefficient of term
if c == "'"1': c=""' # remove extraneous '1'
if ¢ == '-1': c = '-!'
¢ = tl.add_parens(c)
if n == 1:
t=C+ l(l +Var+ 1 +a+ l)l + |+| +t
elif n == 0O:
t=c+ t
else:
t=c+ '(" +var + '-' + a+ ') + str(n) + '+' + ¢t

t = t[:len(t)]
return tl.fix_signs(t)

Sample Run ------
Input:

P="'"x4-%x"3+x2+x+1'; a="11"

T = taylor_series(P,a)
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print(T,'\n')
# check:
print (main(T) [0])

Output:
(x-1.1)74+(17/5) (x-1.1) "3+(124/25) (x-1.1) "2+(2447/500) (x-1.1) \
+(34431/10000)

'x"4 - x"3 + x72 +x + 1'

Single Integration of a Polynomial

Recall that an indefinite integral (antiderivative) of a function is determined only up to a
constant ¢, the so-called constant of integration. The function indef_integral (P) below
returns the indefinite integral of a polynomial P for the case ¢ = 0. As with derivatives, the
function works on the list for P. Specifically it divides members of the list by one plus their
index counted from the right. For example, the polynomial

P(x) = 5x° +7x* + 11
with list PL=[5,7,0,11] has integral
Q) = (5/H)x* + (7/3)x* + 11x +0
with list QL=[5/4,7/3,0,11,0]. If L denotes the length of PL then QL may be seen as

[5/L,7/(L-1),0/(L-2),11/L-3,0].

The following code below implements this procedure. The sample run illustrates the
familiar fact that the operations of indefinite integration and differentiation are, up to a
constant, inverses of each other.

def indef_int(P):
flist = main(P) [1] # polynomial list
L = len(flist)
int_flist = []
for k in range(O,L):
exp = str(L-k)
coeff = flist[k]
int_coeff = ar.main('('+ coeff +')/('+ exp +')")[0]
int_flist = int_flist + [int_coeff]
int_flist = int_flist + ['0']
return flist2pol(int_flist)
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Sample Run ------
Input:

P '(2.4+43.11)x710 - 5ix"8 + 6x"4 + 7x"2 + 13'
I = indef_int(P)

print('indefinite integral of P:')
print(I,'\n')

D = deriv(I)
print('derivative of indefinite integral of P:','\n')
print (D, '\n')

D = deriv(P)

I indef_int (D)

print('indefinite integral of derivative of P:')
print(I)

Output:
indefinite integral of P:
(12/55+(31/110)i1)x~11+(-5/9) ix"9+(6/5)x"5+(7/3)x"3+13x

derivative of indefinite integral of P:
(12/5+(31/10)i)x"10-5ix"8+6x"4+7x"2+13

indefinite integral of derivative of P:
(12/5+(31/10)i)x"10-5ix"8+6x " 4+7x"2

To find a definite integral of P we first get an indefinite integral Q and then apply the
fundamental theorem of calculus,

b
[ P(x)dx = Q(b) — Q(a).

def_integral(P,a,b):
var = tl.get_var(P)
I = indef_integral(P)
A = ar.evaluate(I,a,'')[0];
B = ar.evaluate(I,b,'')[0]
return ar.main(B+'-('+A+')"')[0] # fundamental theorem of calc.

Sample Run -------
Input:

P = '(3/2)x"12 + 2.4 x"10 - 5ix"8 + 6x"4 + 7x"2 + 11'
a = '1';b= 13!

print(def_integral(P,a,b))

Output:
478299251/2145-(98410/9) i
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The function indef_integral_with_condition finds the indefinite integral I of a poly-
nomial P subject to a condition of the form 7(s) = ¢. This enables the determination of
the constant of integration. For example, the general indefinite integral of the polynomial
P(x)=x?+3x+5is

1(x) = (1/3)x + (3/2)x* + 5x +c.

If we require that 7(1) =7 we obtain the equation 7=1/3+4+3/24+54c. Thus c =2 —
1/3—3/2=1/6 and so

1(x) = (1/3)x> + (3/2)x% + 5x + 1/6.

def indef_integral_with_condition(P,s,t): # I(s) =t
I = indef_int(P)
B = ar.evaluate(I,s,'')[0]
c=t+ '-('"+B +')' # solve for c
return main(I + '+' + c)[0]

-- Sample Run --—-—————--
Input:

P="x"3-7x"2+9'

s="'1.1"; t ="2.7"'

I = indef_integral_with_condition(P,s,t)

print('I = ',I)

print(t,ar.evaluate(I,s,"'"')[0]) # check if equal
Output:

I = (1/4)x"4+(-7/3)x~3+9x-535243/120000

2.7 27/10 # I(1.1) = 2.7

Iterated Polynomial Integration

The function indef_integral_with_conditions takes a polynomial P and a list of n
conditions and applies the function indef _integral_with_condition n times. For exam-
ple, suppose that we wish to integrate P(x) twice such that the first integration 7;(x) is
subject to the condition /1 (s;) = #; and the second is subject to I(s2) = f,. The function
indef_integral_with_condition enables us to find the constant of integration and there-
fore the complete determination of /;. Integrating the latter we obtain I, (x). Using the above
function again we can find the constant of integration and therefore completely determine
I,. For a concrete example, let A(¢f) denote the acceleration of a particle at time ¢. If the
initial velocity V (0) and the initial position S(0) of the particle are known, then the particle’s
position S(¢) for all time r may be determined by two integrations, one for A(z) to find V (¢),
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using the initial condition for V to evaluate the constant of integration, the other for V (r) to

find S(), using the initial condition for S.

def indef_integral_with_conditions(P,C)

C = tl.string2table(C) # e.g. 'sl,tl;s2,t2'-->[[s1,t1],[s2,t2]]

I=P
for item in C:
s = item[0]; t = item[1]
I = indef_integral_with_condition(I,s,t)

print('I = ',I) # check progress
return main(I,'f') [0] # format I
Sample Run --
Input:
c="'1,2; 3,7; 5,9' # three integrations
P = "x"2-3x+ 7'
I = indef_integral_with_conditions(P,C)
Output:
I = (1/3)x73+(-3/2)x"2+7x-23/6 # I(1) =2
I = (1/12)x74+(-1/2)x"3+(7/2)x"2+(-23/6)x-25/4 # I(3) =7
I = (1/60)x"5+(-1/8)x"4+(7/6)x"3+(-23/12)x"2 \
+(-25/4)x-253/8 # I(5) =

6.11 Application: Special Polynomials

The polynomials described in this section have numerous applications in both pure and
applied mathematics. These applications are beyond the scope of the present text. Our goal
here is simply to develop Python and functions that generate these polynomials. While
there are many ways to do this, the one that is most suited to the spirit of the book is simple
recursion. We shall use this method throughout. Each of the functions takes a positive integer
n and returns a polynomial in the variable x and with degree n. The functions are defined
by recurrence relations which define the recursive aspect of the function. Specifically, the
relations express a polynomial of degree n as a function of similar polynomials of lesser

degree.

Chebyshev Polynomials
The recurrence relation for these polynomials is

Py=1, P =x,
P,=2xPn—1)—P(n—2), n > 2.
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The function ChebyshevPol (n) implements the recurrence.

def ChebyshevPol(n):
if n == 0: return '1'
if n == 1: return 'x'
A = ChebyshevPol(n-1)
B = ChebyshevPol(n-2)
pOl = '(2X)('+ A+ |)_(|+ B + |)|
return main(pol) [4]

---- Sample Run ---
Input:
for n in range(11): print(ChebyshevPol(n))

Output:

1

X

2x72 - 1
4x"3 - 3x

8x"4 - 8x"2 + 1

16x"5 - 20x"3 + bx

32x"6 - 48x74 + 18x72 - 1

64x~7 - 112x°5 + 56x°3 - 7x

128x°8 - 256x°6 + 160x"4 - 32x72 + 1

2566x"9 - 576x"7 + 432x"5 - 120x"3 + 9x

512x710 - 1280x78 + 1120x"6 - 400x"4 + 50x°2 - 1

Legendre Polynomials
The recurrence relation for these polynomials is

Po=1, P =x,
Po=Q—1/m)xPn—1)+U/n—DP(n—2), n>2.

The function LegendrePol (n) implements the relation.

def LegendrePol(n):

if n == 0: return '1'
if n == 1: return 'x'
A = LegendrePol(n-1) # get the 2 previous pols

B = LegendrePol (n-2)
pol = '(2-1/'+ str(n) +")x('+ A +")+(1/'+str(n)+'-1)('+ B +')"'
return main(pol) [4]

Sample Run -
Input:
for n in range(11): print(LegendrePol(n))
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Output:

1

X

(1/2)(3x"2 - 1)

(1/2) (633 - 3x)

(1/8) (35x"4 - 30x°2 + 3)

(1/8) (63x"5 - 70x"3 + 15x)

(1/16) (231x°6 - 315x"4 + 105x"2 - 5)

(1/16) (429x°7 - 693x"5 + 315x"3 - 35x)

(1/128) (6435x°8 - 12012x"6 + 6930x"4 - 1260x°2 + 35)
(1/128) (12165%x~9 - 25740x"7 + 18018x"5 - 4620x°3 + 315%)
(1/256) (46189x~10 - 109395x°8 + 90090x~6 - 30030x"4 + 3465x"2 - 63)

Laguerre Polynomials
The recurrence relation for these polynomials is

Ph=1, Pi=1—x,
P,=Q—-1/n—x/m)Ph—-—1)+A/n—-—1)P(n—2), n > 2.

def LagurrePol(n):
if n == 0: return '1'
if n == 1: return '1-x'
A = LagurrePol(n-1)
B = LagurrePol(n-2)
pol = '(2-1/'"+str(n)+ '-x/'+ str(n) +')('+ A +')+ \
(1/'+str()+'-1) ('+ B +')"'
return main(pol) [4]

Sample Run ------
Input:

for n in range(11): print(LagurrePol(n))

Output:

1

1-x

(1/2) (x"2 - 4x + 2)

(1/6) (- x°3 + 9x°2 - 18x + 6)

(1/24) (x"4 - 16x"3 + 72x"2 - 96x + 24)

(1/120) (- x°5 + 25x"4 - 200x"3 + 600x~2 - 600x + 120)

(1/720) (x~6 - 36x"5 + 450x"4 - 2400x~3 + 5400x"2 - 4320x + 720)

(1/5040) (- x°7 + 49x°6 - 882x"5 + 7350x"4 - 29400x"3 + 52920x"°2 \\
- 35280x + 5040)

(1/40320) (x"8 - 64x"7 + 1568x"6 - 18816x"5 + 117600x"4 \\
- 376320x"3 + 564480x°2 - 322560x + 40320)
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(1/362880) (- x~9 + 81x"8 - 2592x"7 + 42336x°6 - 381024x"5 \\
+ 1905120x"4 - 5080320x"3 + 6531840x"2 - 3265920x \\
+ 362880)
(1/3628800) (x"10 - 100x~9 + 4050x"8 - 86400x"7 + 1058400x°6 \\
- 7620480x"5 + 31752000x"4 - 72576000x~3 + 81648000x~2 \\
- 36288000x + 3628800)

Hermite Polynomials
The recurrence relation for these polynomials is

Ph=1, Pp=1—x,
Py =xPy, —-fﬁ

def HermitePol(n):
if n == 0: return '1'
A = HermitePol(n-1)
B = deriv(A)
pOl = 'X('+ A+ |)_(|+ B + |)|
return main(pol,'i') [0]

Sample Run -----——----—-
Input:
for n in range(11): print(HermitePol(n))

Output:

1

X

x"2-1

x"3+(-3)x

x"4+(-6)x"2+3

x"5+(-10)x"3+15x
x"6+(-15)x"4+45x"2-15
x"7+(-21)x"5+105x"3+(-105)x
x"8+(-28)x"6+210x"4+(-420)x"2+105
x"9+(-36)x"7+378x"5+(-1260)x"3+945x
x"10+(-45)x"8+630x"6+(-3150) x"4+4725x"2-945
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Polynomial Divisibility and Roots

A nonconstant polynomial B is said to divide a polynomial A if there exists a noncon-
stant polynomial Q such that A(x) = B(x)Q(x). The polynomials B and Q are then called
divisors or factors of A. For example, 3x 4+ 2 and (4x — 1) divide 12x2 4+ 5x — 2 since
12x2 4+ 5x — 2 = (3x + 2)(4x — 1). We exclude constant polynomials from these defini-
tions to avoid trivialities. In this chapter we construct a module centered around these ideas.
Specifically, we construct polynomial versions of the division algorithm and the extended
greatest common divisor, both of which were discussed in Chap. 4. All polynomials have
coefficients that are Gaussian rational numbers or integers modulo a positive integer. The
module is headed by the import statements

-- - PolyDiv.py --- -
import PolyAlg as pl

import Arithmetic as ar

import Tools as tl

import Number as nm

import math as ma

71 Division Algorithm for Polynomials

The reader will recall that the division algorithm for integers a and b asserts the existence
of unique integers ¢ and r such that

a=qgb+r, 0<r <|b|.
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There is an analogous theorem for polynomials. It asserts that for given polynomials A and
B there exist polynomials Q and R (unique up to a constant) such that

A= QB+ R, deg(R) < deg(B).

As in the case of integers, A is called the dividend, B the divisor, Q the quotient, and R the
remainder. For example, for A = x> —2x3 4+ 7x%2 —5x + 11 and B = 2x2 + 1, one has

0(x) = (1/2)x2 — (5/4)x +7/2 and R(x) = —(15/4)x + 15/2,

as the reader may check.

The polynomials Q and R may be obtained using long division of A by B. The following
is an example of the long division algorithm organized in a manner that follows the coded
implementation below. We have included all coefficients, zeros as well, as these form the
lists AL, BL, and CL in the code.

(1/2) 2* — (5/49) = + (7/2) Q

BL 22240zx+1| 125+ 0z* — 2z3+ 7z2 — 5z +11 AL
12° + 0z* + (1/2) 23+ 022 + Ox +0 CL

0% + 0zt — (5/2) 2® + 722 — 5z +11 AL

— (5/2) 23+ 02® - (5/4)x + 0 CL

722 — (15/4)x+11 AL

T2t — 0x+7/2 CL

— (15/4)z +15/2 RL

The function div_alg(A,B) implements the algorithm. It takes polynomials A, B and
returns the quotient Q and remainder R.

def div_alg(A,B): # polynomial strings
var = tl.get_var(A)
pl.var = var # global for PolyAlg
AL = pl.main(4) [1] # polynomial list for A
BL = pl.main(B) [1] # polynomial list for B

degree_A = len(AL) - 1
degree_B = len(BL) - 1

if degree_A < degree_B: # trivial case
Q="0";
R = A;
return Q, R

if degree_ B == 0 and B != '0':
Q = pl.main(' ('+A+')/('+B+') ") [0] # divide by constant B
R ="0'

return Q, R
Q=" # initialize quotient string
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while True:

degree = len(AL) - len(BL)

q = '('+ AL[0] +')/('+ BL[O] +')' # q = AL[0]/BL[0]

q = ar.main(q) [0]

# attach power to q:

Q=Q+ '"+('+ '("+ q +')' + var + '"' + str(degree) +')'

Q,QL = pl.main(Q) [0:2]

CL = pl.scalar_prod(q,BL)

# attach O's to DL to match degree of AL

CL = CL + tl.zero_list(len(AL) - len(BL)) len(BL))]

AL = pl.pol_diff (AL,CL)

if len(AL)< len(BL):

break # done

RL = AL
R = pl.flist2pol(RL) # convert to polynomial
return Q, R

Sample Run ------
Input:

A= 6x°7 + (2/5+31)x"3 + (5.3/2)x"2 - 3.4x + 2
B = 2x"2+x+4/i

Q, R = div_alg(A,B)

print('Q =',Q)

print('R =',R)

Output:

Q = 3x75+(-3/2)x"4+(3/4+61)x"3+(-3/8-61)x"2+(-929/80+6i)x \
+3061/160-(15/4) i

R = (-1489/32-(427/10)i)x+17+(3061/40) i

7.2  Extended GCD for Polynomials

The extended greatest common divisor algorithm for polynomials A(x) and B(x) asserts the
existence of unique polynomials G(x), S(x), and T (x) with G monic such that

e G(x) divides A(x) and B(x).
o If D(x) divides A(x) and B(x) then D(x) divides G(x).
o G(x)=Sx)A(x)+ T(x)B(x).

G(x) is called the greatest common divisor (gcd) of A(x) and B(x). Note that any scalar
multiple of G(x) also has these properties with S and T suitably adjusted. The requirement
that G be monic makes G, S, T unique.

The following function takes a pair of polynomials A(x) and B(x) with Gaussian rational
coefficients and finds the polynomials G (x), S(x), and T (x). The code is entirely analogous
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to the version for integers. The difference is in the use of the polynomial version of the
division algorithm.

def poly_gcd(A,B,var): # assumes degree A > degree B
RO = A; R1 =B
S0 = '1'; TO = '0' # initial values
while True:

if i==0:Q=""
G =R0O; S=S0; T=TO # save these: to be returned
if R1 == '0': break
Q,R2 = div_alg(RO,R1) # RO = Q*R1 + R2
S2 =80+ '-("+Q+")(+ S1+")! # S2 = SO - Q*S1
T2 =T0 + '-("+ Q +")('+ T1 +")!' # T2 = TO - Q*T1
S2 = pl.main(82) [0]
T2 = pl.main(T2) [0]
RO = R1; R1 = R2 # shift
S0 = S1; S1 = 82 # shift
TO = T1; T1 = T2 # shift
i+=1

Gmonic,Gmoniclist = pl.main(G) [2:4] # monic version of G

Gmultiplier = Gmoniclist[0]

# divide by Gmultiplier

S = pl.main('(1/('+ Gmultiplier + '))' + '(' + S + ')')[0]

T = pl.main('(1/('+ Gmultiplier + '))' + '(' + T + ')')[0]

if tl.isarithmetic(G): # G a constant
G="1"

else:
G = pl.main('(1/('+ Gmultiplier + '))' + '(' + G + ')')[0]

return G,S,T

- Sample Run --———-----—-
Input:
A = '18x"3 -42x"2 + 30x -6'
B ="'-12x"2 + 10x - 2'
G,S,T = poly_gcd(A,B,'x")
print('G = ',G)
print('s = ',S)
print('T = ',T)
Output:
G = x-1/3
S =2/9

T = (1/3)x-1/2
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7.3 Rational Roots and Linear Factors

A root or zero of a polynomial P(x) is a value a of x for which P(a) = 0. A zero a gives
rise to a linear factor x — a of the polynomial. Indeed, by the division algorithm, there exist
polynomials Q(x) and R(x) such that

P(x)=0x)(x —a)+ R(x), deg(R(x)) <deg(x —a)=1.

If P(a) = 0, then R, a constant, must be zero, hence P(x) = Q(x)(x — a).

If P(x) has rational coefficients, we can use the so-called Rational Root Theorem to
find the rational zeros of P, if any. The theorem applies to polynomials with integer coeffi-
cients, but since any polynomial with rational coefficients is a constant times a polynomial
with integer coefficients, there is no loss of generality here. The theorem asserts that if a
polynomial

Px) = akxk + ak,lxkfl +---+ax+ag

with integer coefficients has a rational root r, then » must be of the form m/n, where m is a
factor of ag and n is a factor of a. The theorem says nothing about nonrational roots. For
example, while the theorem detects the root x = 1 of the polynomial (x — DEZ=2E2+ 1)
it fails to detect the roots 4+/2, +i. Since there is no general method to find all exact roots
of a polynomial, we restrict ourselves to finding rational roots.

The first step is to find the ratios m /n. The following function does this.

def form_ratios(N,D):
# input: positive numerator N, denominator D
# output: reduced ratios divN/divD as strings

R =[] # list for ratios
divN = nm.generate_divisors(N) # list of divisors of N
divD = nm.generate_divisors(D) # list of divisors of D

for i in range(len(divN)):
for j in range(len(divD)):
g = ma.gcd(divN[i], divD[j])
rnum = divN[i]/g # reduces ratio divN[i]/divD[j]
rden = divD[jl/g
r = ar.main(str(rnum) +'/'+ str(rden)) [0]

R.append(r) # append reduced fraction r
if r !'='0":
r = tl.fix_signs('-' + r)
R.append(r) # append negative of r as well
R = list(set(R)) # remove duplicates
return R

The function get_roots_and_factors (P) takesapolynomial P (x) and returns its (rational)
linear factors, their multiplicity (that is, the power to which a linear factor occurs), the leftover
factor that has no rational roots, and the roots themselves.
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def get_roots_and_factors(pol):
# output:lists of roots, multiplicity, factors
var = tl.get_var(pol)

ipol,ilist = pl.main(pol) [4:6] # integer coefficients
L = len(ilist) # = degree_pol + 1
N = ilist[L-1] # constant term
M = ilist[0] # multiplier
D = ilist[1] # leading coefficient

pol = pl.flist2pol(ilist[1:])

ratios = form_ratios(abs(int(N)),abs(int(D))) # possible roots
roots = []

factors = []

multiplicity = []

A = pol # dividend for division algorithm
for r in ratios:
if A == '0': break
if ar.evaluate(A,r,'')[0] '= '0': # check if r a root
continue # r not a root; skip iteration
roots.append(r) # got a root
if r == '0': # get factor (var-0)
B = var
else:
B = tl.fix_signs(var + '-'+ str(r)) # get factor (var-r)
m =0 # initialize multiplicity
while True: # keep dividing out factor
Q, R = div_alg(A,B)
if R == '0': # if B is a factor,
m += 1 # then update multiplicity
A=Q # old A with factor B divided out
else:
break
factors.append(B) # linear factor B
multiplicity.append (m) # its multiplicity
# A now has all linear factor divided out
A = pl.main( '('+ M +") (" + A +')")[2] # absorb M into A

factors = [A] + factors
multiplicity = [1] + multiplicity # trivial multiplicity for A
return roots, multiplicity, factors

Sample Run ------
Input:

pol = '60x78-104x"7+7x"6+85x"5-185x"4+227x"3-136x"2+38x-4'
roots, multiplicity, factors = get_roots_and_factors(pol)

print('roots: ', roots)

print ('multiplicity: ', multiplicity)

print('factors: ', factors)

Output:

roots: ['1/2', '2/5', '1/3']

multiplicity: [1, 1, 1, 2] # multiplicity of A included

factors: ['60(x"4-x"2-2)', 'x-1/2', 'x-2/5', 'x-1/3']
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The function factor_polynomial (P) takes a polynomial P and concatenates the factors

supplied by get_roots_and_factors(P).

def factor_polynomial(pol):

roots, multiplicity, factors = get_roots_and_factors(pol)

if len(factors) == 1: return pol
factorization = "'

for k in range(len(factors)): # run through factors

f = factorsl[k]
if £ == '1":

continue
if '+' in f or '-' in f:

f='('+f+')'

m = multiplicity[k]
ifm=="":

continue
if m != 1:

factorization += f + '"' + str(m)
else:

factorization += £

return factorization

# trivial factor

- Sample Run -------
Input:

pol = '60x"8+(-104)x"7+7x"6+85x"5+(-185)x"4+227x"3+(-136)x"2+38x-4"'

factorization = factor_polynomial (pol)
#check:
pl.main(factorization) [0]

Output:
60(x"4-x"2-2) (x-2/5) (x-1/2) "2(x-1/3)
60x"8-104x"7+7x"6+85x"5-185x"4+227x"3-136x"2+38x-4

7.4  Modular Division Algorithm

The division algorithm for polynomials with integer coefficients mod p is similar to that
for polynomials with rational coefficients. The difference is in the operations that require
division by coefficients. This is reflected in the calculation of the quantity reciprocal in
the code. The calculation uses the inversion function mod_mult_inv from Chap. 4, which

returns —1 if inversion is not possible.
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def div_alg_mod(A,B,p): # A,B polynomial strings, p positive integer
#returns quotient and remainder
var = tl.get_var(A)

AL = pl.main_mod(A,p) [1] # reduced polynomial list of A
BL = pl.main_mod(B,p) [1] # reduced polynomial list of B
if BL[0] == '0': return

degree_A = len(AL) - 1
degree_B = len(BL) - 1

if degree_A < degree_B: # trivial case
Q="10"
R = A;
return Q, R
if degree_B == O:
reciprocal = str(am.mod_mult_inv(int(BL[0]),p))
if reciprocal == '-1':
return 'none', 'none’ # division not possible
Q = pl.poly_mod('('+ A +')('+ reciprocal +')',p) [0]
R =10
return Q, R
Q=" # initialize quotient string

while True:
degree = len(AL) - len(BL)
reciprocal = str(nm.mod_mult_inv(int(BL[0]),p))
if reciprocal == '-1':
return 'none', 'none'’ # division not possible
"('+ AL[0] +')('+ reciprocal +')'
pl.strmod(ar.main(q) [0],p) # q = AL[0]/BL[0]
attach power to q:
=Q + '"+(" + '"('+g+") "' + var + '"' + str(degree) + ')'
QL = pl.poly_mod(Q,p) [0:2]
= pl.pol_scalar_prod(q,BL) # C = g*B
attach 0's to DL to match degree of AL
CL =CL + ['0' for k in range(len(AL) - len(BL))]

q
q
#
Q
Q,
C
#

AL = pl.pol_diff (AL,CL)
AL = pl.integerlist2modlist(AL,p) # reduce
if len(AL)< len(BL): break # done
RL = AL
R = pl.flist2pol(RL) # convert list to polynomial

return Q, R

--- Sample Run ---—-——-——-
Input:
A = 'x"5-2x"3+7x"2-4x+11"'
B = '4x"2+3x+4'
output_list = []
for p in range(2,12): # calculate mod p Q,R for p = 2 to 11
Q,R = div_alg_mod(A,B,p)
row = ['mod',str(p),' Q =',Q,' R =',R]
output_list.append (row)
tl.format_print (output_list, 3, 'left')
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Output:
mod 2 Q= X 4+x R 1
mod 3 Q= x"3+1 R = 2x+1
mod 4 Q= 3x74+2x72+x R = 3
mod 5 Q= 4x"3+2x"2+4x+3 R = x+4
mod 6 Q= none R = none
mod 7 Q= 2x73+2x72+3x+1 R = 2x
mod 8 Q= none R = none
mod 9 Q= Tx"3+6x"2+6x+7 R = 5x+1
mod 10 Q= none R = none
mod 11 Q= 3x73+6x"2+3x+10 R = 9x+4
7.5 Modular Extended Greatest Common Divisor

The function poly_gcd_mod(A,B,p) is the modular analog of poly_gcd. It takes polynomi-
als A, B withinteger coefficients and returns the gcd G (x) of A(x) and B(x) as well as polyno-
mials S(x) and T (x), all with coefficients modulo p, such that G(x) = S(x)A(x) + T (x) B(x).

def

poly_gcd_mod(A,B,p):
RO = A; R1 =B

SO = '1'; TO = '0' # initial values
S1="'0'; T1 = '1"'
i=0
while True:
G =RO; S=S0; T=TO # save:
if R1 == '0': break
Q,R2 = div_alg_mod(RO,R1,p)
if == 'none' or R2 == 'none':

return 'none', 'none', 'none'’
S2 =80+ '-('+Q+")('+ 81 +")
T2 =TO + '-('+Q +")('+ T1 +')!
S2 =pl.poly_mod(S2,p) [0]
T2 =pl.poly_mod(T2,p) [0]
RO = R1; R1 = R2
S0 = S1; S1 = 82
TO = T1; T1 = T2
i+=1

returned

# assumes degree A > degree B

by function

Q*R1 + R2

SO0 - Q*S1
TO - Q*T1

# shift
# shift
# shift

Sample Run

Input:

A=
B =

'8x76+14x"5+12x74+61x"3+70x"2+60x+105"
'10x"5+18x"4+35x"3+63x"2+30x+54"'

output_list = []

for

p in range(2,12):
G,S,T = poly_gcd_mod(A,B,p)
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row = ['mod',str(p),'G =',G,'S =',5,'T =',T]
output_list.append(row)
tl.format_print (output_list, 2, 'left')

Output:

mod 2 G = x+1 S = x+1 T= x

mod 3 G = 2x74+x72 S= 1 T = x+1

mod 4 G = none S = none T = none

mod 5 G = 4x72+1 S = x+4 T = 4x73+3x72+4
mod 6 G = none S = none T = none

mod 7 G = 2x72+3 S = bx"2+6x+1 T = 3x"3+x72+4x+2
mod 8 G = none S = none T = none

mod 9 G = none S = none T = none

mod 10 G = none S = none T = none

mod 11 G = 6x73+7x"2+9x+5 S = x+3 T = 8x"2+6x+2

7.6 Modular Roots and Factors

To find the roots of a polynomial P(x) with integer coefficients mod p one need only run
through the remainders r =0, 1, 2, ... p — 1, checking if P(r) = 0.

def get_mod_roots(pol,var,p):
roots = []
for r in range(1,p):
if pl.pol_mod_eval(pol,str(r),p) == O:
roots.append(r) # got a root
return roots

The function get_mod_factors(P,p) is the analog of get_factors(P).

def get_mod_factors(P,p):
# output: roots, multiplicity, factors lists
var = tl.get_var(P)
lin_factors = []
multiplicity = []
A = pl.poly_mod(P,var,p) [0]

roots = get_mod_roots(A,var,p) # get all roots first
if roots == []: return P
for r in roots:
if r == 0:
B = var
else:

B = tl.fix_signs(var + '-'+ str(r))
m=0 # initialize multiplicity
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while True: # keep dividing out factor B
Q, R = div_alg_mod(A,B,p)

if R == '0'": # if B a factor,

m+=1 # update its multiplicity

A=0Q # old A with factor B divided out

else: break

# A now has all linear factors divided out
lin_factors.append(B) # append linear factor
multiplicity.append (m) # and its multiplicity
leftover_factor = A
return lin_factors, multiplicity, leftover_factor

The function factor_pol_mod(P,p) is the analog of the function factor_pol(P). It takes
a polynomial P and an integer p > 1 and returns its mod p factorization.

def factor_pol_mod(P,p):
lin_factors, multiplicity, leftover = get_mod_factors(P,p)
factorization = ''
for k in range(len(lin_factors)):
1f = lin_factors[k]

if '+' in 1f or '-' in 1f:
1f = '(" + 1f + ')
m = multiplicity[k]
if m ==
continue
if m != 1:
factorization += 1f + '~' + str(m)
else:

factorization += 1f
if not tl.isarithmetic(leftover):
leftover = '(' + leftover + ')'
if leftover == '1':
leftover = "'
return leftover + factorization

--- Sample Run --------
Input:
P = '48x76+(-356)x"5+984x"4+(-1361)x"3+1286x"2+(-1005)x+350"'
for p in range(2,13):

factorization = factor_pol_mod(P,p)

print('mod',p,': ',factorization)

Output:

mod 2: x(x-1)"2

mod 3: (x72+1)(x-1)"3
mod 4: (3x72+3) (x-2)
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mod 5: 3x72(x-2) (x-3)"2(x-4)
mod 6: (4x72+1) (x-1)"2(x-4)
mod 7: (6x"2+6)x(x-3) (x-6)"2
mod 8: (4x74+7x"2+3) (x-6)
mod 9: (3x"3+4x"2+3x+4) (x-1) "2(x-7)
mod 10: (8x"3+2x"2+4x+5)x(x-3) "2
mod 11: (4x~2+4) (x-8)3(x-10)
mod 12: (4x74+4x"3+11x"2+4x+7) (x-10)
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Multivariable Algebra

In this chapter we construct the module MultiAlg. py, which takes an expression involving
monomials of several variables with Gaussian rational coefficients (also called scalars) and
converts it into a single rational function. The module is headed by the import statements

——————————————————————————— MultiAlg.py - -—- -
import Arithmetic as ar

import Tools as tl

import Number as nm

from operator import itemgetter

8.1 Rational Functions and Their Representations

A monomial in several variables, or simply monomial, is an expression consisting of letters
(variables) raised to positive integer powers and a complex number called a coefficient.
Powers and coefficients equal to 1 are omitted as usual. The degree of a monomial is the sum
of its exponents. For example, 2y3xzz is a monomial in the variables x, y, z with coefficient
2 and degree 6. Monomials are multiplied by taking the products of the coefficients and
adding exponents of like variables. For example,

(Bx3y?2)2.1ixyz) = 6.2i x*y32.
We consider constants ¢ as monomials, as in ¢ = ¢x%y0z0.
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A polynomial in several variables or multivariate polynomial is a sum of monomials of
several variables, called the terms of the polynomial. The degree of a polynomial is the
largest degree of its terms. Multivariate polynomials, like polynomials of a single variable,
are added, subtracted, multiplied, and raised to powers by the usual algebraic techniques:
multiplying the monomials and collecting like terms, for example,

3x2(zy + xy) 4 5yx> = 3x2yz + 8x7y.

We order the terms of a polynomial by the degree of the monomials, starting with the highest
degree. The variables within monomials are ordered alphabetically for readability. The right
side in the preceding example adheres to these conventions.

A rational function of several variables is a ratio of multivariate polynomials. Rational
functions may be added, subtracted, multiplied or divided like ordinary fractions. For exam-
ple, if P, O, R, S are polynomials, then

P R PR
oS
and P R PS+ROQ

Q0 S QS

Note that a polynomial P may be viewed as the rational function P /1. This will be useful in
calculations, as it allows polynomials and rational functions to be treated on an equal basis.

A monomial is represented in the module by a list containing the coefficient and
exponents of the variables, the list obtained during run time. For example, if the vari-
able listis ['x','y','z'], then the monomial (3.1 + 2.50)7% is represented by the list
['3.1+2.5i',1,0,6]. A polynomial is represented as a list of monomial lists. For exam-
ple, for the preceding variable list, the monomial 2z3xy? + 3y is represented by the double
list

tcr2', 1, 2, 381, ['3', 0, 1, 0I].

A rational function is represented by two double lists, the first of which is numerator list
and the second the denominator list. For example, for the above variable list, the expression
(2z23xy? + 3y)/(1z0x* — 13) is represented by the list

rcoe2', 1, 2,23, '3, 0, 1, 011, CC'7', 4, o, 61,0'-13', 0, 011 1.

While such nested lists may seem overly intricate, they turn out to be well-suited for
carrying out complicated algebraic operations involving rational functions, multilayered as
these operations are.
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8.2 Overview

Here is the code for the main function of the module. The output is a rational expression
with Gaussian rational coefficients, as well as one with Gaussian integer coefficients and a
compensating multiplier. Also returned are the lists for these expressions.

def main(expr):

global idx # points to current character in expr
global varlist # list of variable names in expr
varlist = tl.get_vars(expr) [0] # extract variable list
if varlist == []: # no varlist?

z,c = ar.main(expr) # then use arithmetic

return z,c,
expr = tl.attach_missing_exp(expr,varlist)
expr = tl.fix_signs(expr)
expr = tl.fix_operands(expr)
expr = tl.insert_asterisks(expr,varlist)

e
>

idx = 0 # point to beginning of expr
R = allocate_ops(expr,0) # do the calculations
num = R[0]; den = R[1]

num = combine_monos (num) # simplify polynomial

den = combine_monos(den)

num = sort_list(num)

den = sort_list(den)

ratlist = [num,den]

rat = list2rational(ratlist)

irat, iratlist = list2int_rational(ratlist)
return rat,ratlist,irat,iratlist

--- Sample Run ---------
Input:

expr = 'z_2/(x-1.1) + 3x/(y1-3.2i)"

rat,rat_list, irat, irat_list = main(expr)
print(rat)

print (irat)

Output:
(3x"2+y1z_2+(-33/10)x+(-16/5)iz_2)/(xy1+(-11/10)y1+(-16/5)ix+(88/25) i)
5(30x"2+10y1z_2-33x-32iz_2)/(50xy1-55y1-160ix+1761i)

Notice that the function allows subscripted variables, in this case y1. The only condition
is that one cannot have both subscripted and unscripted variables with the same letter. For
example, the variables x and x1 are not allowed in the same expression, as this confuses the
function get_vars.
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8.3 Combining Monomials

Calculations are performed on the multilists described earlier. The following function is
central to these calculations. It combines monomials with like powers into a polynomial list.

def combine_monos(P):
# eg. [['2',3,4],('5',3,4],['-3',8,9]11-->[['7",3,4]1,['-3"',8,9]1]

Q=10 # for reduced polynomial
if len(P) == 1:
return P
for i in range(len(P)-1):
if P[i] == '': continue # already added
M = P[i] # ith monomial: [coeff,powers]

# add succeeding like monomials to M:
for j in range(i+1,len(P)):

if P[j] == '":
continue
N = P[j]
if M[1:] == N[1:]: # if powers same, add coefficients
coeffsum = ar.main(M[0] + '+(' + N[0] +')')[0]
M[0] = coeffsum # update M's coefficient
P[j] = "' # mark as already added
Q.append (M) # append nonzero monomial in P[i]
leftover_mono = P[len(P)-1]
if leftover_mono !'= '' and leftover_mono[0] != '0':
Q.append(leftover_mono) # pick up leftover monomial at end

return Q

To see how the function works, consider the list
p=1[[2,3,4, ['4',8,9], ['5',3,4],['-3',8,9], ['11',3,4]1],
which, for the variable list ['x','y'], represents the polynomial
2x3y4 + 4)c8y9 + 5)63y4 — 3)c8y9 + 11x3y4.

The function takes the first monomial’s list, ['2',3,4], adds to it all monomial lists with
the same exponents, and then marks the latter with a null string to indicate that it has already
been added. This process results in the new list

p= [['18',3,4], ['4',8,9], '',['-3',8,9], "'].
The latter list then undergoes the same process, resulting in the final list
p= [['18',3,4], ['1',8,9],'" ,'',"'].

The function returns [['18',3,4], ['1',8,9]].
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8.4 Scalar and Variable Conversion Functions

The following functions are used to convert scalars to rational multilists.

def scalar2mono(s): # attach scalar to zero list
return [s] + [0 for k in range(len(varlist))]

def scalar2rat(s):
return [[scalar2mono(s)], [scalar2mono('1')]]

- Sample Run ---------
Input:

varlist = list('xyz')

print(scalar2mono('2.3/i'))

Output:
ccer2.8/it, o, o, 011, f't', o, o, 0111

The next functions are used to convert a variable to a rational multilist. They are analogous
to the above scalar conversion functions.

def var2mono(var,exp): # variable and its exponent
#e.g. 'x72' > ['1',2,0,...]
M = scalar2mono('1',len(varlist))
position = varlist.find(var)
M[position+1l] = exp # put exponent in correct position
return M

def var2rat(var,exp):

num = var2mono (ch,exp)
den = scalar2mono('1',len(varlist))
R = [[num], [denl]

- Sample Run -------
Input:

varlist = list('xyz')

print(var2rat('y',7))

Output:
ccre'sr, o, 7, 011, r'1', o, o, 011l # =377
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8.5 Calculations

The functions in this section do the actual calculations, following the natural hierarchy of
operations in a rational function. The first function takes two monomial lists, multiplies their
coefficients, and adds the exponents.

def multiply_monos(M,N): # returns product of monomials M,N
K =[] # output list
# multiply coefficients M[0], N[O]:
coeff_prod = ar.main('('+ M[0] +')('+ N[0] +')')[0]
K.append(coeff_prod)

for i in range(1l,len(N)): # add integer exponents of like vars
K.append(M[i] + N[il)
return K
- Sample Run -------
Input:
M=1[2',3,4,5] # 2x"3y~4z"5
N=1[-3',6,7,8] # -3x"6y"7z"8

print (multiply_monos(M,N))

Output:
['-6', 9, 11, 13] # -6x"9y~11z"13

The function multiply_pols(P,Q) takes two polynomial multilists P,Q, multiplies all
possible pairs M, N of the monomial sublists, with M in P and N in Q, and then simplifies the
result by combining monomials.

def multiply_pols(P,Q): # multiplies 2 lists of monomials
R =[] # list for product polynomial
for M in P: # get all possible products Mx*N
for N in Q:
K = multiply_monos(M,N)
R.append (K) # append product to pol list R
R = combine_monos(R) # collect terms
return R
Sample Run -------
Input:

p=1[['2,3,4,5], ['-1',6,7,8]]
Q=1[['5',9,10,11], ['7',12,14,16]]
print (multiply_pols(P,Q))

Output:
[['10', 12, 14, 16], ['14', 15, 18, 21], ['-5', 15, 17, 19], \
['-7', 18, 21, 24]]
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The function multiply_rationals(R,S) multiplies the numerators R[0],S[0] and
denominators R[1],S[1] of the rational lists R, S, thus forming the numerator and denom-
inator of the product. The function divide_rationals(R,S) inverts S and multiplies the
result by R.

def multiply_rationals(R, S): # R = [R[0],R[1]] s = [s[0],S[1]]
num = multiply_pols(R[0], S[0]) # multiply numerators
den = multiply_pols(R[1], S[1]) # multiply denominators

return [num,den]

def divide_rationals(R,S):
T = [s[1],s([0]] # invert S
return multiply_rationals(R,T)

The function rational_power (R,n) takes a rational list R and an integer n and returns
the power R"n.

def rational_power (R,n):
need_to_invert = False

if n == 1: return R # no exponentiation
if n ==
num = ['1'] + [0 for k in range(len(R[0][0])-1)]
den = num
return [num,den] # returns rational list representing '1'
if n < 0:
n=-n
need_to_invert = True
S =R
for i in range(n-1): # multiply R times itself n-1 times

S = multiply_rationals(S, R)
num = S[0]); den = S[1]
if need_to_invert:

return [den,num]
return [num,den]

The following group of functions culminates in one that multiplies a rational list by a
scalar. For example, if s ='1/2"' and

R = [[['2',3,4,5], ['-1',6,7,8]], [['5',9,10,11], ['7',12,13,14]]],
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then the function produces the list

ccc'1',3,4,81, ['-1/2',6,7,8]11, [['5',9,10,11], ['7',12,13,14]]].

def mono_scalar_prod(s,M):
#e.g. '3'x['5',6,7] = ['15',6,7]
prod = ar.main('(' + s +')('" + M[0] + ')')[0] # s times coeff
return [prod] + M[1:]

def pol_scalar_prod(s,P):
#e.g. '3'x[['5',6,7],['7',8,9]] = [['15',6,7], ['21',8,9]]
Q=1
for M in P:
N = mono_scalar_prod(s,M) # multiply each mono by s
Q.append (N)
return Q

def rat_scalar_prod(s,R):
return [pol_scalar_prod(s,R[0]),R[1]] # multiply numerator by s

The last three functions in this section add and subtract rationals.

def add_pols(P,Q):

if P == []: return Q

if Q == []: return P

S = P+Q # concatenate lists
return combine_monos (S) # tidy up
def add_rationals(R,S): # R = [R[0],R[1]], s = [s[0],s[1]]

numR = R[0]; denR = R[1]; numS = S[0]; denS = S[1]
A = multiply_pols(denR,numS)
B = multiply_pols(denS,numR)

num = add_pols(A,B) # denR*numS + denS*numR
num = combine_monos (num)
den = multiply_pols(denR,denS) # denR*denS
den = combine_monos(den)
return [num,den] # (denR*numS + denS*numR)/denR*denS

def subtract_rationals(R, S):
minusS = rat_scalar_prod('-1',S)
return add_rationals(R,minusS)
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8.6 The Allocator

The function allocate_ops (expr ,mode) assigns the computational tasks to the appropriate
function of the preceding section. It is similar to the eponymous function in Chap. 6.

def allocate_ops(expr,mode):
global idx, varlist
R =[]
while idx < len(expr):
ch = expr[idx]
if tl.isnumeric(ch):
start = idx
s,idx = tl.extract_numeric(expr, start)
R = scalar2rat(s)
elif tl.isletter(ch):
var,idx = tl.extract_var(expr,idx)
R = var2rat(var,1)

elif ch == '+':
if mode > 0: break # wait for higher mode
idx += 1

S = allocate_ops(expr,0)

R = add_rationals(R,S)
elif ch == '-"':

if mode > 0: break # wait for higher mode

idx += 1

S = allocate_ops(expr,1)

R = subtract_rationals(R,S)
elif ch == 'x':

if mode > 1: break

idx += 1

S = allocate_ops(expr,1)

R = multiply_rationals(R,S)
elif ch == '/':
if mode > 1: break
idx += 1

S = allocate_ops(expr,1)
R = divide_rationals(R,S)
elif ch == '"":
exp,idx = tl.extract_exp(expr,idx)
exp = ar.main(exp) [0]
R = rational_power (R, int(exp))
elif ch == '(':
start = idx
paren_expr,end = tl.extract_paren(expr,start)
if tl.isarithmetic(paren_expr):
r = ar.main(paren_expr) [0]
num = scalar2mono (r)
den = scalar2mono('1')
R = [[num], [den]]
idx=end
else:
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idx+=1
R = allocate_ops(expr,0)
idx+=1

elif ch == ')': break

return R

8.7 Sorting

The function sort_list (P) sorts the terms of a polynomial list P by degree, which, recall, is
the largest degree of its monomials. For each monomial list, the function adds the exponents
and then attaches the sum to the beginning of the list. The polynomial list is then sorted on
this field. For example, if the polynomial list is

tc'2*, t, 0,31, ['s5', 3, 1, 6], ['7', 0, 3, 211,

then the function first generates the list

(4,'2', 1,0,3], [t0,'5', 3, 1, 6], [5,'7', 0, 3, 21].

The first item of each sublist is the sum of the exponents. Next, the function sorts on these
sums, producing

(f1,'s', 3,1, 61, [5,'7', 0, 3, 2], [4,'2', 1 ,0 ,3]].

Finally, the function removes the sums in the first entry:

tc's', 3,1, 61, ['7', 0, 3, 2], ['2', 1,0 ,3]].

The sorting is done by function itemgetter from the Python package operator, which
allows sorting on any field, in our case the first one.

def sort_list(P): # polynomial list
1 = len(P) # number of mono lists in pol
m = len(P[0]) # length of a mono list
if 1 ==

return P
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Q = tl.copylist(P) # don't change P
for i in range(1): # sum the powers of each mono list
sum = 0
for j in range(1l,m): # sum the powers of ith mono
sum = sum + Q[i] [j]
Q[i] = [sum] + Q[il # attach sum to start of ith momno

# sort pol_list on the first field (sum of powers):

sorted_list = sorted(Q, key=itemgetter(0), reverse = True)

for i in range(1): # remove sum of powers from each mono
# extract 1st part of the mono sorted_list[i]:
sorted_list[i] = sorted_list[i][1:]

return sorted_list

8.8 Coefficient Reduction

The function reduce_coeffs(R) takes a rational list R with integer coefficients and cancels
common factors in the coefficients of the numerator and denominator.

def reduce_coeffs(R):
num = R[0]; den = R[1]

numden = num + den # combine lists
coeffs = []
for i in range(len(numden)):

n = numden[i] [0] # get the coefficient in ith list

re = int(ar.real(n))
im = int(ar.imag(n))

coeffs.append(re) # append real and imaginary parts
coeffs.append(im) # to coeff_list
gcd = nm.multi_extended_gcd(coeffs) [0] # largest common factor
for i in range(len(num)): # divide numerator coeffs by gcd

n = num[i] [0]
num[i] [0] = ar.main('('+ n +')/('+ str(gcd) +')')[0]
for i in range(len(den)): # divide denominator coeffs by gcd
n = den[i] [0]
den[i] [0] = ar.main('('+ n +')/('+ str(ged) +')')[0]
return [num,den]

Sample Run --------
Input:

R =[ [['2+10i',3,4,5],['4',3,7,8]], [['6',3,4,9],['8",3,8,11]] ]
print (R)

Output:
[ [['1+5i',3,4,5], ['2',8,7,8]1], [['3',3,4,9], ['4',3,8,11]] ]




142 8 Multivariable Algebra

In the sample run and for varlist = ['x','y','z'], the rational function

2+ 100)x3y42% + 4x3y778
6x3y479 + 8x3y8z11

is reduced to
(14 5i)x3y*z5 +2x3y728
3x3y4z94—4x3y8z”

8.9 Variable Reduction

The function reduce_vars(R) takes a rational list and cancels common variables
in the numerator and denominator lists. It invokes, for each k, the function
get_smallest_exp(R,k), which returns the minimum exponent in position k of all the
monomials comprising the list R, and then subtracts that exponent from the monomial expo-
nents in position k. Here’s the code:

def get_smallest_exp(R,k):
# returns minimum of all exponents in R in kth monomial position
num = R[0]; den = R[1]
min_exp = 100000 # arbitrary but start high
for M in num:

if min_exp > M[k]: min_exp = M[k]
for M in den:
if min_exp > M[k]: min_exp = M[k]
return min_exp
def reduce_vars(R):
num = R[0]; den = R[1]
L = len(num[0]) # monomial length
for k in range(1,L): # k = position of kth variable's exponent
min_exp = get_smallest_exp(R,k)
for M in num: # run through monomials in numerator
M[k] = M[k] - min_exp # reduce kth exponent in num
for N in den: # run through monomials in denominator
N[k] = N[k] - min_exp # reduce kth exponent in den
return [num,den]
Sample Run ------

Input:
R=1[I[['2',2,5],['5',7,8]1], [['7',3,4],['9',2,11]] ]
print (reduce_vars(R))

Output:
tcc2', o, 11, ['5', 5, 411, [C'7', 1, o1, ['9', 0, 711 ]
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In the sample run and for varlist = ['x','y'], the rational function
2x2y% + 5x7y8
Tx3y* 4+ 9x2yll
is reduced to
2y 4 5x3y*
Tx + 9y’

8.10 Clearing Fractions

The function get_pol_lcm(P) returns the lcm of all the coefficient denominators in the
polynomial P. For this it uses mono_denoms (M) to get the denominators of the real and
imaginary parts of M[0].

def get_pol_lcm(P): # get lcm of all denominators of monomials in P
pol_denoms = []
for M in P:
mono_denoms = get_mono_denoms (M) # denominators M's coeff
pol_denoms = pol_denoms + mono_denoms
return nm.listlcm(pol_denoms)

def get_mono_denoms (M) :

mono_denoms = [1] # default: ensures nonempty list

coeff = M[0]

re = ar.real(coeff) # get real and imaginary parts of coeff

im = ar.imag(coeff)

if '/' in re: # get real part denominator
mono_denoms += [int(re.split('/')[1]1)]

if '/' in im: # imaginary part denominator

mono_denoms += [int(im.split('/')[1]1)]
return mono_denoms

The function clear_pol (P) takes a polynomial list and multiplies the coefficients by the
least common multiple of their denominators.

def clear_pol(P):

Q=10
lcm = str(get_pol_lcm(P)) # lcm of all coeff denominators in P
for M in P: # multiply each coefficient M[0] by lcm

prod = ar.main( lcm +'('+ M[0] +')' )[0]
N = [prod] + M[1:] # concatenate product and exponents of M
Q.append (N)

return lcm, Q

Sample Run -——==
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Input:

p=1[['3/2',8,4,5], ['5/12i',3,7,8],
lcm, Q = clear_pol(P)

print(lcm)

print(Q)

['7/3+(5/6)i',3,4,9]1]

Output:
12

(c'is', 3, 4, 51, ['-5i', 3, 7, 8], ['28+10i', 3, 4, 9]]

In the sample run, the Icm of the denominators 2, 12, 3, 6 is 12. The output list is that of
M but with the coefficient of M multiplied by the lcm. This clears the fractions but of course
changes M. The lcm is returned to commemorate the operation, allowing the recovery of M.

8.11 Converting a List into a Ratio

nal Function

The final task of the module is the conversion of the rational list returned by allocate_ops

into a formatted rational function. This requi

res several steps. The first is carried out by

the function 1list2monomial (M), which converts a monomial list M into the monomial it
represents. For example, if the list of variables is ['x','y','z'], then ['2i',3,4,5] is

converted into the monomial '2ix~3y~4z"5".

def list2monomial (Mlist):
# takes monomial list Mlist and r
coeff = Mlist[0O]
if coeff
return
mono = "'
for k in range(1l,len(Mlist)):
var = varlist[k-1]
exp = Mlist[k]

0!

or coeff == '-0':

if exp == 0: continue # o

mono = mono + var

if exp != 1:

mono = mono + '~' + str(e

if coeff == '1' and mono != '':

coeff = "' # coeff '1'
if coeff == '-1' and mono != '':

coeff = '-'
if coeff != '' or exp != 0:

coeff = tl.add_parens(coeff)

return tl.fix_signs(coeff + mono)

eturns the monomial

# initialize mono string

# run through the variables
# exponent of variable
mit variable with zero exponent
# attach variable
# and exponent if != 1
xp)

superfluous for nontrivial mono
# if monomial is not a constant

# add suitable parens
# attach coeff to mono
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The function 1ist2polnomial (P) converts a polynomial list P, that is, a list of mono-
mial lists, into the required polynomial. For example, if the list of variablesis ['x','y'],
then the polynomial list P = [['-2',3,4],['5',6,7]] is converted into the polynomial

'5x"6y 7-2x"3y"4".

def list2polynomial(P):

Q = sort_list(P)

pol = "'

for M in Q:
mono = list2monomial (M)
if mono == '0': continue
pol = pol + '+' + mono

if pol == '': pol= '0Q'

pol = tl.fix_signs(pol)
return pol

# get the monomial
# skip any zero coeff
# concatenate to pol

The function 1ist2rational (R) converts the numerator and denominator of the rational
list R into formatted polynomials and then returns the ratio.

def list2rational(R):
R = reduce_vars(R)
num = list2polynomial (R[0])
den = list2polynomial(R[1])
if num == '0': return 'O’
if den == '1' or den == '':
if den == '-1":
num = tl.add_parens(num)
return '-' + num
num = tl.add_parens (num)
den = tl.add_parens(den)
return num + '/' + den

# simplify
# convert numerator list to pol
# convert denominator list to pol

return num

# return ratio of pols

- Sample Run -------
Input:
R = [[['2',3,4,5],['-1',6,7,8]], [['5+i',9,10,11],['7',12,14,16]]1]
varlist = 'xyz'

print(list2rational(R))

Output:

(-x"3y"32°3+2)/(7x°9y"10z" 11+ (5+1i)x"6y"62"6)
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8.12 Rational Function with Integer Coefficients

The function 1ist2int_rat (R) takes a rational list R and returns an equal rational function
with integer coefficients. It does so by multiplying the coefficients of the monomials in the
numerator R[0] by the least common multiple of the coefficient denominators, doing the
same thing for denominator R[1], and then attaching the compensating multiplier.

def list2int_rational(R):
# converts rational list into integer rational function
numR = R[0]; denR = R[1]
if numR == denR: return '1',''
lcmP,P = clear_pol(numR)
1cmQ,Q = clear_pol(denR)
factor = ar.main(lcmQ +'/'+ 1lcmP) [0]
irat_list = [P,Q]
irat_list = reduce_coeffs(irat_list)
irat = list2rational (irat_list)
if factor == '1': factor = ''
factor = tl.add_parens(factor)
irat = tl.add_parens(irat)
return factor + irat,irat_list

Sample Run ------
Input:

R=7[I[[1/2",2,3], ['1/3',4,5]], [['1/4+i/5',6,7], ['1/6',8,9]] ]
varlist = ['x','y']

print(list2int_rational(R) [0])

Output:
10(3+2x°2y"2)/ ((15+121)x "4y~ 4+10x"6y"6)

8.13 Evaluating an Expression

The function evaluate (expr,substitutions,p) takes a rational expression, a string of
substitutions for some or all of its variables, and a decimal length p and returns the corre-
sponding decimal value of the expression.

def evaluate(expr,substitutions,p):

if substitutions == '':
return expr

substitutions = substitutions.split(',')

for i in range(len(substitutions)):
substitutions[i] = substitutions[i].replace(' ','"')
var,val = substitutions[i].split('="')
if var == '' or var not in expr: continue
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expr = expr.replace(var,'(' + val + ')')
expr = tl.fix_signs(expr)

# decimal approximation if expr is an arithmetic expression:
if tl.isarithmetic(expr) and p != '':

return ar.decimal_approx(expr,p) [0]
return main(expr) [0]

- Sample Run ---------
Input:

e ="'2+ xy"3 + yz + 3272 + x/(2z+y)"'
print(evaluate(e, 'x=3,y=4,2z=5",5)) # decimal value
print(evaluate(e, 'x=3,y=4,z=5"','")) # fractional value
print(evaluate(e, 'x=3,y=4"',"'"')) # polynomial in z
print(evaluate(e,'x=3","'")) # polynomial in y,z

Output:

289.21428

4049/14

(6z"3+20z"2+404z+779) / (2z+4)
(3y"4+6y"3z+5yz"2+62"3+y"2z+2y+4z+3) / (y+2z)

8.14 Application: Partial Differentiation of Rational Functions

The main function in this section finds partial derivatives of arbitrary orders of rational func-
tions of several variables. It does so by finding the derivatives of the monomials comprising
the function and then assembling these according to the rules for differentiating a rational
function.

Monomial Differentiation

The following function finds the derivative of a monomial with respect to a specified vari-
ables. The function takes the list representing the monomial and the position of the variable’s
exponent in the list, multiplies the constant term by the exponent in the list and reduces that
exponent by one. For example, if the monomial list is ['1.2',3,4,5] (representing the
monomial 1.2 x3y4z5 for the variable list ['x','y','z']) and the position in the list is 2,
(exponent = 4), then the function returns the monomial list ['4.8',3,3,5], having multi-
plied the coefficient 1.2 by the exponent 4 and reduced the exponent to 3.
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def der_mono(Mlist,var_position):
L = len(Mlist)
# if variable is missing or monomial a constant, return zero

if Mlist[var_position] == or is_constant (Mlist):
return ['0'] + [0 for i in range(L-1)]

coeff = Mlist[0] # coefficient of monomial
exp = Mlist[var_position] # exponent of variable
DMlist = tl.copylist(Mlist) # list for derivative
der_coeff = str(exp) + '('+ coeff +')' # coeff of derivative
DMlist[0] = ar.main(der_coeff) [0]

DMlist [var_position] -= 1 # reduce exponent by 1

return DMlist

def is_constant(Mlist): # returns True if M = [c,0,0,...]
if Mlist[0] == '0':
return True
for i in range(1l,len(Mlist)):
if Mlist[i] !'= '0':
return False
return True

Sample Run -------
Input:
Mlist = ['7.5i',3,2,1] # 7.5ix"3y 2z
var_position = 1 # x position in Mlist
print (der_mono(Mlist,var_position))
var_position = 3 # z position in list

print (der_mono(Mlist,var_position))

Output:
['(45/2)i', 2, 2, 1] # (45/2)ix 2y 2z
[*(15/2)i', 3, 2, 0] # (15/2)ix"3y"2

Differentiation of Polynomials

The function der_pol takes a polynomial and a variable and returns the polynomial’s deriva-
tive with respect to that variable. It does so by applying der _mono to each of the monomial
lists comprising that of the polynomial and then assembles the monomial lists into a poly-

nomial list. The function then calls 1ist2polynomial to construct the polynomial.

def der_pol(P,var):
varlist = tl.get_vars(P) [0] # the variables in P
if var not in P: return 'O’
var_position = varlist.index(var) + 1
Plist = main(P) [1][0] # list for P; discard denominator 1
DPlist = [] # list for derivative
for Mlist in Plist: # run through polynomial's monos
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DMlist = der_mono(Mlist,var_position) # mono derivative list
DPlist = [DMlist] + DPlist # attach mono list
derivative = list2polynomial (DPlist)

return derivative

Sample Run ------
Input:
P = 2x"3y"4z"5 + 3x"6y"7z"8
print(der_pol(P,'y"')) # differentiate with respect to y
Output:

8x"3y~3z"5+21x"6y"6z"8

Derivative of a Rational Function

The function der_quotient (num,den, var) takes a rational expression entered as numera-
tor denominator and a variable and uses the function in the preceding section together with
the quotient rule to calculate the derivative with respect to the variable var. Here’s what the
rule looks like using the function t1.print_fraction:

Input:
tl.print_fraction('den * der_num - num * der_den', 'den"2','')

Output:

den~2
def der_quotient(R,var):
if var not in R:
return 'O’
if '/' not in R:
return der_pol(R,var) # no denominator
num,den = R.split('/")
der_num = der_pol (num,var)
der_den = der_pol(den,var)
der_quo_num = '('+ den +')('+ der_num +')-' + \
"(('+ num +')('+ der_den + '))'
der_quo_num = main(der_quo_num) [0] # clean up
der_quo_den = '(' + den + ')"2'
der_quo_den = main(der_quo_den) [0]
der_quo = '(' + der_quo_num + ')/(' + der_quo_den + ')'
der_quo = main(der_quo) [0] # clean up
return der_quo
- -—- --- Sample Run - -—- -—

Input:
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R ='(7xy+3)/(bxy + 11z)'

print('partial with respect to x',der_quotient(R,'x'))
print('partial with respect to y',der_quotient(R,'y'))
print('partial with respect to z',der_quotient(R,'z'))

Qutput:

partial with respect to x: (77yz-15y)/(25x"2y~2+110xyz+121z"2)
partial with respect to y: (77xz-15x)/(25x"2y"2+110xyz+121z"2)
partial with respect to z: (-77xy-33)/(25x"2y"2+110xyz+121z"2)

Higher Order Derivatives

The function partial_deriv(num,den,wrt,substitutions) finds partial derivatives of

arbitrary orders of a rational function of several variables. It takes a numerator and denomina-
tor, a string wrt of variables to differentiate with respect to, and an optional list of numerical
substitutions for the variables, and returns the higher order derivative in symbolic form and
a numerical value for the derivative from the substitutions.

def partial_derivative(R, wrt, substitutions):
wrt = list(wrt)

D =R

for var in wrt: # get successive derivatives
D = der_quotient(D,var)

value = "'

if substitutions != '':
value = evaluate(D,substitutions,'')

- Sample Run ---------
Input:
R = '(2xy+3z)/(xy-1)"'
wrt = 'yx'

subs = 'x = 1,y = 2'

D,val = partial_derivative(R, wrt, subs)
print('derivative wrt '+ wrt +':\n', D)
print('value at ' + subs + ':', val)

Output:

derivative wrt yx:
(3x72y"22+2x"2y"2-32-2) / (x"4y~4-4x"3y " 3+6x"2y " 2-4xy+1)
value at x = 1,y = 2: 9z+6
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Tangent Plane
The function partial_derivative may be used to find the equation

2= f(a,b) + fx(a,b)(x —a) + fy(a,b)(y — b)

of the plane tangent to a surface z = f(x,y) at a point (a, b, f(a,b)) The function
tangent_plane(num,den,a,b) returns this equation for a rational function num/den.

def tangent_plane(R,a,b):
a = str(a); b = str(b)

subs = 'x =' + str(a) + ',y =' + str(b)

c = evaluate(R,subs,'"')

pdx = partial_derivative(R, 'x',subs) [1] # value at (a,b)
pdy = partial_derivative(R, 'y',subs) [1]

pdx = tl.add_parens (pdx)

pdy = tl.add_parens(pdy)

plane = ¢ + '+' + pdx + '(x-' + a + '")+' + pdy + '(y-'+ b +')"'
plane = tl.fix_signs(plane)

return 'z = '+ plane

Sample Run -------
Input:

R = '(2x"2y+3)/(3xy~3-1)'
print(tangent_plane(R,1,2))

Output:
z = 7/23+(16/529) (x-1)+(-206/529) (y-2)

Taylor Series in Two Variables
The Taylor series T (x, y) of a function f (x, y) of two variables about a point (a, b) is defined
as

1 ajJrkf

- J —a) (v — bk
. j!k!afx:Bky(a’b)(x a)! (y —b)".
Js

T(x,y) =
where the sum is taken over all pairs of nonnegative integers j, k. It is the analog of the one
dimensional Taylor series developed in Sect. 6.10. To simplify notation set

8j+kf

—aky(aab)s § = (x —(l), and t= (y _b)s

Cik = —
Ik 0/x

where, by convention, co o = f(a, b). The first few terms of the Taylor series may then be
written
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0,0+
c1,08 +co,1t +
%(CQ’O 52 +2c11 5t + 0,2 l2) +

$(c305° +3c2,1 5% +3c1 2517 + co317) +

%(qyo st 4c31 3+ 622 s2% + 4c13 s+ 0,4 t4)

Here we have separated out the zero order term, the first order terms, the second order terms,
the third order terms and the fourth order terms. We denote these by Sy, S1, S2, S3 and S,

respectively. The general nth order term may be written as

1[/n n n
Sp = E[(())Cn,osn + <l>cn,1 s+ <2>cn,zs"‘2t2 +-

+ < . )Cl,n—l st" 1+ (n)co,n t”]
n—1 n
n

1 n—k .k
= E o n—kkS t
— 1! ’
= (n—k) k!

The first version shows the similarity of the expansion to that

of the binomial theorem.

The second version absorbs the 1/x! into the terms and is the version we use in the Python
implementation below. We shall call S, a fixed order term. We define the nth order Taylor

polynomial as
T, =S8+ S+ -+ S,

Note that the degree of T;, is no more than n.

The above analysis shows that the Taylor series T is the limit of the sequence {7, } of
Taylor polynomials. The crucial point here is that f = T for suitable f, including rational

functions. Thus 7,, may be used as an approximation to f and

its integrals, although the

details are nontrivial. Here we simply construct a function that calculates the nth order

Taylor polynomial of a rational function. The following function
for arbitrary n.

that calculates the sum S,

def fixed_order_term(R,a,b,n):

Ss=" # initialize fixed order term
for k in range(n+1): # 0<=k<=n
j =nk
coeff = term_coeff(R,a,b,j,k) # calculates (1/j'k!c_j,k
if coeff == '0' or coeff == '':
continue
if coeff == '1' and n !'= 0:
coeff = "' # don't attach trivial coefficient
if coeff == '-1':
coeff = '-! # ditto

exp_s = str(j)
exp_t = str(k)
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coeff = tl.add_parens(coeff)

term = coeff + 's”'+ exp_s + 't7'+ exp_t
S=8+ "'+ "'+ term # attach term
if S == '': # happens when partial are zero (maybe for large n)
return ''
# format S

S = S.replace('s™0','")
S = S.replace('t"0','")

if exp_s == '1': S = S.replace('s”1','s') # skip cases s"10,...
if exp_t == '1': S = S.replace('t"1','t")
S = S.replace('s',' (' + main('x-('+ a +')')[0] + ')")

= S.replace('t','(' + main('y-('+ b +')')[0] + "))

S

S = S.replace('(x-0)','x")
S = S.replace('(y-0)','y")
S= tl.fix_signs(S)

return S

def term_coeff(R,a,b,j,k):
wrt = jx'x'+ kx'y'
pval = partial_derivative(R,wrt,'x ='+ a + ',y = '+ b)[1]
f = str(ma.factorial(j)*ma.factorial(k))
coeff = ar.main('(1/('+ £ +'))*(' + pval + ')')[0]
return coeff

Here is the function that puts it all together. The sample run expands a 10th degree
monomial about the point (.5, .3). We take N = 10 to get the complete (finite) Taylor series.
Any N > 10 gives the same result. The function also checks the series by running it through

main.

def taylor_series(P,a,b,N):

TS = '' # list of fixed order terms

TS = fixed_order_term(R,a,b,0)

for n in range(1,N+1):
fot = fixed_order_term(R,a,b,n)
if fot == '': continue
TS = TS + '+' + fot

TS = tl.fix_signs(TS)

return TS

Sample Run -------
Input:

TS = taylor_series('x"4y"6',.5,.3,10)

print (TS, '\n')

# check:

print (main(TS) [0])

Output:
(729/16000000) +(729/2000000) (x+(-1/2))+(729/800000) (y+(-3/10))
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+(2187/2000000) (x+(-1/2)) "2+(729/100000) (x+(-1/2)) (y+(-3/10))
+(243/32000) (y+(-3/10)) "2

+(729/500000) (x+(-1/2)) ~3+(2187/100000) (x+(-1/2)) ~2(y+(-3/10))
+(243/4000) (x+(-1/2)) (y+(-3/10)) "2

+(27/800) (y+(-3/10)) ~3+(729/1000000) (x+(-1/2)) "4

+(729/25000) (x+(-1/2)) ~3(y+(-3/10))

+(729/4000) (x+(-1/2)) "2(y+(-3/10)) "2+(27/100) (x+(-1/2)) (y+(-3/10)) "3
+(27/320) (y+(-3/10)) ~4+(729/50000) (x+(-1/2)) 4 (y+(-3/10))

+(243/1000) (x+(-1/2)) "3(y+(-3/10)) "2+(81/100) (x+(-1/2)) "2(y+(-3/10)) "3
+(27/40) (x+(-1/2)) (y+(-3/10)) ~4+(9/80) (y+(-3/10)) "5

+(243/2000) (x+(-1/2)) "4 (y+(-3/10)) "2+(27/25) (x+(-1/2)) "3(y+(-3/10)) "3
+(81/40) (x+(-1/2)) "2(y+(-3/10)) "4+(9/10) (x+(-1/2)) (y+(-3/10)) "5
+(1/16) (y+(-3/10)) "6+(27/50) (x+(-1/2)) "4 (y+(-3/10)) "3

+(27/10) (x+(-1/2)) "3 (y+(-3/10)) "4+(27/10) (x+(-1/2)) ~2(y+(-3/10)) "5
+(1/2) (x+(-1/2)) (y+(-3/10)) "6+ (27/20) (x+(-1/2)) ~4(y+(-3/10)) "4
+(18/5) (x+(-1/2)) "3(y+(-3/10)) "5+ (3/2) (x+(-1/2)) "2(y+(-3/10)) "6
+(9/5) (x+(-1/2)) "4 (y+(-3/10)) "5+2(x+(-1/2)) "3(y+(-3/10)) "6
+(x+(-1/2))"4(y+(-3/10))"6

x"4y~6 # check ok
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Linear Equations

In this chapter we construct the module LinSolve. py, which provides the complete solution

of a system of linear equations with Gaussian rational coefficients. The module converts a

system of equations, entered as a comma-separated string, into an augmented matrix, feeds
this to a function that finds the row echelon form of the coefficient matrix, and then converts
the reduced echelon form into the solution of the system. The variables of the system may

be letters with or without subscripts. As usual, the letter i is reserved for complex numbers

and is not allowed to be a variable name. The terms in an equation may appear in any order;

their order in the augmented matrix and final solution is determined by the ordering in the

list variables. All matrices have Gaussian rational entries. The module is headed by

import
import
import
global
global
global
global

- LinSolve.py -- - -
Arithmetic as ar

Tools as tl

MultiAlg as mu

prod # for future use
switches # for future use
ops

display

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
H. D. Junghenn, Symbolic Mathematics with Python, Synthesis Lectures on
Mathematics & Statistics, https://doi.org/10.1007/978-3-031-90522-3_9
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9.1 Matrices

An m x n dimensional (complex) matrix is a rectangular array of mn complex numbers
denoted variously by

ail ap - ayj --- A
a ay --- azj --- ay
j . .
mxn a1 ai2"'aij s din
| dm1 Am2 - Amj = Amn |

The number ¢;; in row i and column j is called the (i, j) entry of A. For example, the (2, 3)
entry of the 2 x 4 matrix [ 123 ¢ ]is the number 7. Ann x n matrix is said to have size n. Two
matrices A and B are said to be equal if they have the same dimensions and equal entries:
a;j = b;; for all indices i and j.

The notation in (9.1) is standard: indices start at 1. However, in the programs that follow,
matrices are stored as double lists and hence have indices that start at zero. One must therefore
be careful in writing programs that involve matrices, keeping in mind the dual notation. For

example, for the case m = 3 and n = 2 the above matrix is stored as a list with entries
A = [ [A[0][0], A[0]1[111, [A[11([0l, A[11([111, [A[2]1[o], A[2]1[11] 1.

Here, the list [A[0] [0],A[0] [1]] is the firstrow, [A[1] [0],A[1] [11] the second row, and
[A[2]1[0],A[2]1[1]] the third row. The connection with (9.1) is given by the conversion
formula,

ajj = Ali —1][j — 11|, wherei, j > 1.

All matrices in the text have entries that are Gaussian rational numbers or arithmetic
expressions of these, all written as strings. The module Arithmetic handles these easily,
producing exact fractional values. One can use ar.decimal_approx to produce decimal
approximations to any desired degree of accuracy.
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9.2  Systems of Linear Equations

Anm x n system of linear equations is a collection of m equations in n unknowns of the form

anxy +anxy+---+apmxp = b

a1 xy +axpxy +---+ayxp, = b
9.2)

Am1X1 + amax2 + - - - + Amp Xy = by

The symbols x; are variables and the symbols g;;, b; represent constants. In general these are
complex numbers but for our purposes are restricted to be Gaussian rationals. A solution of
the system (9.2) is a set of values of the variables x1, x7, ..., x, that satisfies the equations.
As we shall see, a system may have no solutions, a unique solution, or infinitely many
solutions.

All of the essential information in the above system may be represented by its augmented

matrix!:
ay apy -+ ap |by
ax| axy --- ay |bs
Aml Am2 -+ Amn |bn

Thus to manipulate the equations of a system one may use the augmented matrix and
manipulate the rows instead.

9.3 The Gauss-Jordan Method

The Gauss-Jordan algorithm provides a way to solve a system of linear equations, or else
determines that the system has no solution. The idea is to transform the system into one
that has precisely the same solutions as the original system but is trivial to solve. The
transformation to a simpler system is accomplished by a sequence of equation operations of
the following form:

(1) Interchange two equations.
(2) Multiply an equation by a nonzero number.
(3) Add a multiple of one equation to another.

! The only purpose of the vertical bar in the matrix is to emphasize that the matrix arose from a system
of equations. The bar is frequently omitted if no confusion can arise.
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The important thing here is that these operations do not change solutions: any solution of
the original system is also a solution of a system obtained by performing these operations
and vice versa.

Equation operations may be expressed as row operations on the augmented matrix of the
system. The above operations then take the following form:

(1) Interchange two rows.
(2) Multiply a row by a nonzero number.
(3) Add a multiple of one row to another row.

The following shorthand notation will be used in the examples to indicate these operations:

Type 1 ra<->rb interchange rows a and b.
Type2 (t)ra multiply row a by a nonzero number ¢.
Type 3 (t)ra+rb addr times row a to another row b.

In the last operation it is row b that is modified; row a is unchanged.

Here’s an example that shows how these operations are typically used to obtain the
solutions of a system:

Example 9.1
4x1 + Sxp + 6x3 = 12,
x1 4+ 2x3 +3x3 =9, 9.3)
Tx1 + 8x2 +9x3 = 15

We apply the following operations to the augmented matrix the system:

456127 4. [123 9
123 9| —> 45612
78915 78915

(dyrl+12 12 3 9 173)2
0-3 —6-24|—"
e+ g —6 —12 —48

1 2 3 9 (o [ 10-1-7
01 2 8|—— |01 2 8
0-6-12-48 | @3 |00 0 0

The last matrix is the augmented matrix of the system
X1 —x3=-7,
x) +2x3 =28 ©4)
which has solutions
x1 = =7+ x3, xp =8 —2x3, x3arbitrary. 9.5)
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The system (9.4) therefore has infinitely many solutions, one for each value of the parameter x3.
Moreover, as observed earlier, row operations don’t modify solutions, so every solution of the
original system is of the form (9.5). Conversely, every solution of this form is a solution of the
original system. This is so because we can reverse the operations that led to (9.4):

01 2 8| ————~ o 1 2 8
00 0 0 (6r2+r3 0—6—12 —48

32 r2 3 9 @yrl+r2
— . |0-3 —6-24

_
0—6—12 —48 (Drlsr3

123 97 .. [45612
45612 | ———> 123 9
78915 78915

It now follows that the original linear system has precisely the solutions given in (9.5). O

The above example illustrates the Gauss-Jordan method: a sequence of row operations
that transform a matrix into one with the following properties:

e All zero rows (rows with only zeros) are below all nonzero rows (rows with at least one
non-zero).

e The first nonzero entry (called the leading entry) in a nonzero row is 1.

e The leading entry in one row is to the left of all leading entries below it.

e All entries above and below a leading entry are zero.

A matrix with the above properties is said to be in reduced row echelon form. For example,
the first matrix below is in reduced row echelon form, the second is not. For emphasis we
have enclosed the leading entries in the first matrix in rectangles.

Mm3000 1351
00000 0072
0002 0000
00000 0003

Any matrix may be transformed into reduced row echelon form by a sequence of row
operations. In particular, this can be done for the augmented matrix of a system of linear
equations. Since the system of linear equations corresponding to a matrix in reduced row
echelon form is essentially trivial, we now have a way of finding the solutions of any system
(or determining that the system has no solutions).

The procedure used to transform a matrix A into row reduced echelon form is described
in the following steps. (We assume that not every entry of A is zero.)
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(a) Find the leftmost column that has at least one nonzero entry. This is called a pivor
column. The pivot position is at the top of the column in what is called the pivor row.

(b) Choose a nonzero entry in the pivot column.

(c) Use atype 1 row operation on the matrix to move the entry to the pivot position.

(d) Use atype 2 row operation to put a 1 in the pivot position.

(e) Use type 3 row operations to put zeros in all but the pivot position of the pivot column.

(f) Find the leftmost non-zero column in the matrix consisting of the rows below the last
pivot row and apply steps (b)—(e). Continue the process until there are no more rows
left to modify.

We shall call the process of placing a one in the pivot position of a column and zeros
elsewhere clearing the column.

Here are some additional examples of the Gauss-Jordan method of solving systems of
linear equations.

Example 9.2 Consider the following system obtained from Example 9.1 by changing the coef-
ficient of x; in the second equation from 1 to 2:

4x1 + Sxp + 6x3 = 12,
2x1 +2x3 +3x3 =9,
Tx1 + 8x2 +9x3 = 15

Here are row operations that reduce the augmented matrix to row echelon form. Again, for
emphasis we have enclosed in a rectangle the entry used to clear a column.

456127 s [223 97 amn 13 3
223 9| —— ", 145612 —— | 45612
78915 78915 78915

(ri+r2 | 11
01

-
(—1)r2+r3 i 00 —3

51 et [10 3 3
— 510 6 0
(=Nr1+r3 _ 3

01 3

233 [103 37 32341 [100 0
- 5 l010-6|—-51]010-6

00 7] (001 7

The last matrix is the augmented matrix of the system

X1 =0,
X2 = —0,
x3 =7

which is therefore the solution of the original system. %
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Example 9.3 Consider the system

X1+ 2xp +3x3 +4x4 =95,
6x1 + 7x3 + 8x3 + x4 = 10,
11x; + 12x0 + 13x3 + 14x4 = 15,
16x1 + 17x2 + 18x3 + 19x4 = 20

Clearing column 1 and then column 2 in the augmented matrix we have

1 23 45 1 2 3 4] 5
6 7 8 910 N 0 —5—-10 —15|-20
111213 14 15 0 —10 —20 —30|—40
16 17 18 19 20 0 —15 —30 —45|-60
10-1-2(-3
R 01 2 3| 4
00 0 0] O
00 0 0] O
The last matrix corresponds to the equivalent system
X1 — X3 —2x4 = =3,

X2 +2x3+3x4 =4
which has solutions
X1 =x3+4+2x4 —3, x2 = —2x3 —3x4 +4, x3,x4 arbitrary.

Thus the set of solutions is described by two parameters, x3 and x4. O

It is easy to construct systems that have no solutions, for example,

xX1+x =1,
X1 +x2=2

Such systems are said to be inconsistent. Note that the last row of the reduced augmented
matrix for the system is [0,0,1], which is characteristic of inconsistent systems.

9.4 Row Operations in List Form

The symbolic strings used in the above examples that denote the row operations are used in
the module for concise, clear display. For internal use it is convenient to have a description
of the row operation in terms of a list. Such a list has the following entries: The first is the
operation type number; the remaining entries give the specifics in terms of rows and scalars.
The following examples illustrate the idea.
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(1) f1,'', 3, 4]
A type 1 operation that switches rows 3 and 4 of a matrix. The symbolic version is
'r3<->r4'.

(2) [2,(1.2 + 3.4i),5,'"']
A type 2 operation that multiplies row 5 by the scalar (1.2 + 3.4i). The symbolic
versionis '(1.2 + 3.4i)r5'.

(3) [3,(12.3/45.6),1,3]
A type 3 operation that adds to row 3 the result of multiplying row 1 by (12.3/45.6).
The symbolic version is ' (12.3/45.6)r1+r3"'.

In (1) no scalar in used, so a null string is put in that position. Similarly, in (2) only one row
is needed, so a null string is placed in the last position.

For the upcoming functions we shall refer to the list version of an operation as simply
an op. To distinguish between the two ways of referring to an operation, we refer the string
version as an opsymbol.

The following functions convert from one representation of a row operation to the other,
that is, from opsymbol to op and vice-versa.

def sym2op(opsym) : # expand string opsym into list op
opsym = opsym.replace(' ','"')
if '<' in opsym: # a<->b
a,b = opsym.split('<->") # no scalar
a = a.replace('r','") # remove the 'r' prefix
b = b.replace('r','")
op = [1,'',int(a),int(b)] # type 1: switch the rows
return op
# extract scalar t from (t)a or (t)atb:
right_most_paren = opsym.rfind(')"') # index of ')
s = opsym[:right_most_paren+1] # extract scalar and parens
the_rest = opsym[right_most_paren+1:] # stuff after right paren
the_rest = the_rest.replace('r','"') # remove the 'r' prefix
s = '('" + ar.main(s) [0] + ') # simplify
if '+' in the_rest: # '(scalar)a+b'’
a, b = the_rest.split('+") # extract the rows
op = [3,s,int(a),int(b)] # type 3
else: # remaining case '(scalar)a'
op = [2,s,int(the_rest), ''] # type 2
return op
Sample Run -----—---
Input:
print('symbolic form: ','list form:')
print ('r2<->r3 ', sym2op('r2<->r3'))

print('(4.2-7/2i + 3.2i)r5 ',sym2op('(4.2-7/21i + 3.2i)r5'))
print('(4.6/5.78)r7 + r11 ',sym2op('(4.6/5.78)xr7 + r11'),'\n')

Output:
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symbolic form: list form:

r2<->r3 1, '+, 2, 3]

(4.2-7/2i + 3.21)r6 [2, '(21/5+(67/10)1)', 5, '']
(4.6/5.78)r7 + ril [3, '(230/289)', 7, 11]

def op2sym(op) :

if op[0] == 1: # [1,'',a,b]
a = opl[2]; b = opl3] # adjust row numbers
op = 'r' + str(a) + '<->' + 'r' + str(b) # ra<->rb

elif op[0] == 2: # [2,t,a,'']
scalar = op[1]; a = opl[2]
op = scalar + 'r' + str(a) (t)ra

else: # [3,t,a,b]
scalar = op[1]

a = opl[2]

b = opl[3]

op = scalar +'r'+ str(a) + '+' +'r'+ str(b) # (t)ra + rb
return op

9.5 Implementing Row Operations

The function row_op_calc(op,A) takes a matrix A and an operation op and applies the
operation to the matrix.

def row_op_calc(op, A):
nrows, ncols = len(A), len(A[0])
optype = op[0]; scalar = opl[1]
B = tl.copylist(A)
if optype == 1: # switch rowa and rowb
for j in range(ncols):
rowa = op[2]-1; rowb = op[3]-1 # list index convention

temp = Blrowal [j] # store rowa entry
B[rowa] [j1 = Blrowb] [j] # copy rowb entry into rowa
B[rowb] [j]1 = temp # copy old rowa entry into rowb
elif optype == 2: # scalar mult
rowa = op[2]-1
for j in range(ncols): # scalar times row
a="'("+ scalar + ')(' + Blrowal [j] + ")'

B[rowa] [j] = ar.main(a) [0]

elif optype == 3: # add scalar*rowa to rowb
rowa = op[2]-1; rowb = op[3]-1
for j in range(ncols):
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a = "'('" + scalar + ') (' + Blrowal[j] + ')+' + B[rowb] [j]
a = tl.fix_signs(a)
B[rowb] [j] = ar.main(a) [0]

return B

The only purpose of following function is to illustrate the steps in the evolution of a matrix
to its row reduced form. The sample run is Example 9.2. (Output is written horizontally to

save space.)

def run_ops(opsyms,A): # apply a list of opsyms to A

print (' AY) # label
tl.format_print(4A,2, 'right'); print('\n')

B = tl.copylist(A)

for opsym in opsyms:

op = sym2op(opsym) # convert operation to list form
B = row_op_calc(op,B)
print(' ',opsym) # label
tl.format_print(B,2, 'right') # check progress
print('\n')
return B
- Sample Run -------

Input:
opsyms = 'ri<->r2,(1/2)rl, (-7)ri+r3, (-4)ri+r2,\

(-1)r2+r3, (-1)r2+r1, (-2/3)r3, (-3/2)r3+rl’

opsyms_list = opsyms.split(',"')

A
A

='4,5,6,12; 2,2,3,9; 7,8,9,15'

tl.string2table(A)

print (run_ops (opsyms_list,A))

Output:
A ri<->r2 (1/2)r1 (-7)r1+r3
4 5 6 12 2 2 3 9 1 1 3/2 9/2 1 1 3/2 9/2
2 2 3 9 4 5 6 12 4 5 6 12 4 5 6 12
7 8 9 15 7 8 9 15 7 8 9 15 0 1 -3/2 -33/2
(-4)r1+r2 (-1)r2+r3 (-1)r2+r1
1 1 3/2 9/2 1 1 3/2 9/2 1 0 3/2 21/2
o 1 0 -6 0o 1 0 -6 0 1 0 -6
0 1 -3/2 -33/2 0 0 -3/2 -21/2 0 0 -3/2 -21/2
(-2/3)r3 (-3/2)r3+r1
1 0 3/2 21/2 1 0 O 0
0 1 0 -6 0 1 0 -6
0 0 1 7 0O 0 1 7
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9.6 Row Echelon Form in Python

The function row_echelon(A) below follows the row-echelon algorithm by finding at each
step a pivot column and a non-zero entry in the column (pivot entry), moving the row
containing this entry up to become a lead row, and then clearing the pivot column using
the pivot entry. The main work is carried out by the function row_op_calc. The job of
row_echelon is to assign the appropriate row operation.

The function row_echelon also keeps track of the number of row switches in the variable
switches and calculates the product prod of the matrix entries whose reciprocals are the
scalar multipliers in type 2 operations during the pivoting process. These variables will be
used in the section on determinants in Chap. 12 and may be ignored for now.

def row_echelon(A):

global prod, switches # for future use
global ops
prod = '1l'; switches = 0 # initialize (later chapter)
ops = []
nrows, ncols = len(A), len(A[0])
toprow = 0; row = 0; col =0 # begin here
B = tl.copylist(A) # don't change A
while toprow < nrows and col < ncols: # find pivot columns
row = toprow # potential leading entry row
# search in col and below toprow for row with entry != O:
while row < nrows and B[row] [col] == '0':
row += 1 # keep going until found entry!=0 in col
if row < nrows:
if Blrow] [col] != '0': # if found entry != 0

# update prod and move row to first
prod = '('+ prod +')('+ Blrow] [col] +')'
prod = ar.main(prod) [0]

if row != toprow:
switches += 1 # update
# switch row and toprow
op = [1,'',row+l,toprow+l] # op row convention
ops . append (op) # keep a record
B = row_op_calc(op, B) # switched
B = clear_col(B, toprow, col) # toprow lead row
toprow = toprow + 1 # next toprow
col = col + 1 # next col to search for next pivot entry

return B, ops # return echelon form and operations

Sample Run ------
Input:

A = tl.string2table('1/3,-11,7-4i,-10;-i,-2,7.8+3.8i,-15;1,1,1,-20")
print (" AY)

tl.format_print(4,2,'right'); print('')

B, ops = row_echelon(A)

print (" reduced')

tl.format_print(B,2, 'right')
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Output:
A
1/3 -11 7-4i -10
-i -2 7.8+3.8i -15
1 i 1 -20
reduced

1 0 0 -354753/21661+(45496/21661)i
0 1 0 -103133/64983+(16747/21661)1
0 0 1 -61720/21661-(33355/64983)1

The function clear_col uses the pivot entry B [toprow] [col] to clear the column

def clear_col(B, toprow, col):

global ops

nrows, ncols = len(B), len(B[0])

pivot_entry = B[toprow] [col] # use entry to clear col
scalar = '1/(' + pivot_entry + ')'

op = [2, scalar, toprow+l, ''] # divide toprow by pivot_entry
ops . append (op) # save for op record
B = row_op_calc(op, B) # make the division

# replace each row by 'row -B[row, coll*toprow:
for row in range(nrows):
if row == toprow or B[row][col] == '0O':
continue # skip toprow and zero entry multiplier
simplify = ar.main('-' + '(' + Blrow] [col]l + ')')[0]
op = [3, '(' + simplify + ')', toprow+l, row+1]

B = row_op_calc(op, B) # do the operation on B
ops.append (op) # save for op record
return B

9.7 Reduced Column Echelon Form

The algorithm used to row reduce a matrix A may be naturally modified to produce the
analogous column reduced form. This amounts to applying row_echelon to the matrix B
obtained from A by converting columns of A into rows and then converting the columns of
the row echelon form into rows. The matrix B is called the transpose of A and is discussed
further in Chap. 10 in connection with matrix algebra.

Here is the function that produces the transpose. (Output in sample run is placed hori-
zontally to save space.)
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def transpose(A):
nrows, ncols = len(A),len(A[0])
T = [[''" for j in range(nrows)] for i in range(ncols)]
for j in range(nrows):
for i in range(ncols): # make jth col of T the jth row of A
T[i1[3] = A[3][i]

return T

Sample Run --
Input:

A = tl.string2table('1,2,3,4;5,6,7,8;9,10,11,12")
T = transpose(4)

print (" A"
tl.format_print (4,2, 'right')
print('\n')

print(' A transpose ')
tl.format_print(T,2, 'right')

Output:
A A transpose
1 2 3 4 15 9
5 6 7 8 2 6 10
9 10 11 12 3 7 11
4 8 12

The function col_echelon(A) returns the column reduced echelon form. The sample
run includes an interesting test. It may be shown that the special form of the last two matrices
and their equality holds generally.

def col_echelon(A):

T = transpose(A) # rows to columns and columns to rows
return transpose(row_echelon(T) [0])

Sample Run ----------
Input:

A = tl.string2mat('1,-2,3,-4,5;-6,7,-8,9,-10;11,-12,13,-14,15")
print('A:")

tl.format_print (4,2, 'right') ;print('\n')

RA = row_echelon(A) [0]
print('row echelon of A:')
tl.format_print(RA,2, 'right') ;print('\n')

CA = col_echelon(A)
print('col echelon of A:')
tl.format_print(CA,2, 'right');print('\n")

CRA = col_echelon(RA)
print('col echelon of row echelon A:')
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tl.format_print(CRA,2, 'right');print('\n')

RCA = row_echelon(CA) [0]
print('row echelon of col echelon A:')
tl.format_print(RCA,2, 'right')

Output:
A:
1 -2 3 -4 5
-6 7 -8 9 -10
11 -12 13 -14 15

row echelon of A:
1 0 -1 2 -3
0O 1 -2 3 -4
0 0 0 0 0

col echelon of A:
1 0O 0 0 O

0 1 0 0 O

-1 -2 0 0 O

col echelon of row echelon A:
1 0 0 0 O
0O 1 0 O O
0O 0 0 0 O

row echelon of col echelon A:
1 0 0 0 O
0O 1 0 0 O
0O 0 0 O O

9.8 Linsolve

The function 1linsolve launches the process of solving a system of linear equations. The
function takes as input either a string of equations or an augmented matrix and returns
the corresponding solution of the system in the form of a list. The print statements show
the intermediate steps. These are activated by setting the global variable display to True.
Deactivate them by setting the variable to False.

def linsolve(equations,augmat,letter,display):
global varlist
if equations != []: # if string of equations were entered
eqnlist = equations.split(',') # convert them to lists
varlist = get_system_variables(eqnlist)
augmat = get_augmat(eqnlist,varlist) # make augmented matrix
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else: # augment matrix was entered
varlist = make_variables(len(augmat[0])-1,letter)

if display:
print('augmat:')
tl.format_print(augmat,4, 'right')
print('\n")

reduced = row_echelon(augmat) [0] # get row reduced form

if display:
print('reduced augmat:')
tl.format_print(reduced,4, 'right')
print('\n')

sol_list = get_solution_list(reduced,varlist)

return sol_list

Here are four sample runs with display set to True. In the first three runs the matrix

variable augmat is set to the empty [1, since equation lists are provided. In the last example
the equations variable is set to the null string, since the augmented matrix is given. The
first example has a unique solution.

Input:
equations = '(1+i)x2 + (2+i1)x3 + x4 + x5 = 1/2, \
x1 + x3 + x4 + x5 =2/3, \
x1 + x2 + x4 + x5 =3/4, \
x1 + x2 + x3 + x5 = 4/5, \
x1 + x2 + x3 + x4 = 5/6'
print (linsolve(equations, []1,'"',True))
Output:
augmat:
0 (1+1) (2+1) 1 1 1/2
1 0 1 1 1 2/3
1 1 0 1 1 3/4
1 1 1 0 1 4/5
1 1 1 1 0 5/6
reduced:
1 0 0 0 0 309/580+(91/580) 1
0 1 0 0 0 5/29-(91/1740) 1
0 0 1 0 0 31/348-(91/1740)1
0 0 0 1 0 17/435-(91/1740) i
0 0 0 0 1 1/174-(91/1740) 1
['x1 = 309/580+(91/580)i', 'x2 = 5/29-(91/1740)i', \
'x3 = 31/348-(91/1740)i', 'x4 = 17/435-(91/1740)i', \

'x5 = 1/174-(91/1740)i']
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The second example has infinitely many solutions, one for each set of values of the
parameters x3,x4,x5.

Input:
equations = ' x1 + 2x2 + 3x3 + 4x4 + bxb = 6,\
7x1 + 8x2 + 9x3 + 10x4 + 11x5 = 12, \
13x1 + 14x2 + 16x3 + 16x4 + 17x5 = 18'
print(linsolve(equations, [],'',True))
Output:
augmat:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18

reduced:
1 0 -1 -2 -3 -4
0 1 2 3 4 5
0 0 0 0 0 0

['x1=3x5+2x4+x3-4"', 'x2=-4x5-3x4-2x3+5', 'x3', 'x4', 'x5']

The third example has no solutions, as evidenced by the third row of the reduced matrix.

Input:
equations = ' x1 + 2x2 + 3x3 + 4x4 + 5x5 =6, \
7x1 + 8x2 + 9x3 + 10x4 + 11x5 = 12, \
13x1 + 14x2 + 15x3 + 16x4 + 17x5 = 18, \
19x1 + 20x2 + 21x3 + 22x4 + 23x5 = 23'
print(linsolve(equations, [1,'"',True))
Output:
augmat:
1 2 3 4 5 6
7 8 9 10 11 12

13 14 15 16 17 18
19 20 21 22 23 23

reduced:
1 0 -1 -2 -3 0
0 1 2 3 4 0
0 0 0 0 0 1 # system inconsistent
0 0 0 0 0 0

[ '] # no solution
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In the final example an augmented matrix and the letter 'x' are given as inputs. The
program returns a unique solution.

- Sample Run --—-———-——-
Input:
a='11,16,6;12,17,7;13,18,8;14,19,9;15,20,10'
print(linsolve([],tl.string2table(a), 'x',))

Output:
augmat:
11 16 6
12 17 7
13 18 8
14 19 9
15 20 10
reduced:
1 0 2
0 1 -1
0 0 0
0 0 0
0 0 0

['x1=2', 'x2=-1']

9.9  Setting Up the Variables

As noted earlier, the function 1linsolve takes either a string of equations or an augmented
matrix. If the former, the program calls get _system_variables, which scans the equations
for the variable names. If the latter, the program calls make_variables, which generates a
standard set of subscripted variables with the base letter the user’s choice. Here is the code.

def get_system_variables(equations): # scan eqns for variables
variables = []
for eqn in equations:

eqn = eqn.replace(' ','')
variables += tl.get_vars(eqn) [0]
return sorted(list(set(variables))) # remove duplicates, sort
def make_variables(dim,letter): # letter for subscripted variables
varlist = []
for n in range(1,dim+1): # print a label for letter

varlist.append(letter+ str(n))
return varlist
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9.10 Creating the Augmented Matrix

The function get_augmat creates the augmented matrix for the system for the case that
equations are the input. It does so row by row, calling eqn2row(eqn) for each equation in
the system.

def get_augmat(eqnlist,varlist):
augmat = []
for egn in eqnlist:
row = eqn2row(eqn,varlist)
augmat . append (row)
return augmat

The function eqn2row(eqn) takes an equation and generates its row in the augmented
matrix. The order of the row entries is determined by the order of the variables in varlist
and not necessarily their order in the equation. The order of the rows is the same as the order
of the equations. The preliminary step insert_delimiters(eqn) separates out the terms
by enclosing variables with commas, allowing easy extraction variables from the expression.
Print statements follow the progress. Comment these out if desired. For added flexibility we
allow a constant on the left side of an entry equation, as in x + 2y + 3z +4 = 5. The only
restriction is that the constant be the last term on the left side.

def insert_delimiters(eqn): # place commas around variables
letters = tl.letters
eqn = tl.attach_missing_coeff(eqn,tl.letters) # for missing '1'

for letter in letters: # place comma before letter
eqn = eqn.replace(letter,','+letter)

i=0

while i < len(eqn):
if eqn[i] not in letters: # skip non letters

i += 1; continue

start = i+l # after variable
end = tl.movepast(eqn,start,'1234567890') # past subscript
eqn = tl.insert_string(eqgn,',',end) # at position end
i = end

return eqn

def eqn2row(eqn,varlist): # convert equation to augmat row
eqn = insert_delimiters(eqn) # enclose variables with commas
print('delimiters ',eqn,'\n') # for observation
components = eqn.split(',') # split off vars and coeffs
print('components: ',components) # for observation

C = len(components)

last = components[C-1]

if last[0] != '=': # place constant if any on right
last = last.split('=')
new_right_side = last[1] + '-(' + last[0] + ')
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new_right_side = ar.main(new_right_side) [0]
components [C-1]= new_right_side
V = len(varlist)
components[C-1] = components[C-1].replace('=','') # right side
row = ['0' for k in range(V)] # initialize row with zeros
for i in range(V): # run through variables in varlist order
var = varlist[i] # var in position i in varlist
for j in range(0,C-2,2): # 2-step iteration;stop before '='
¢ = components[j] # coefficient
v = components[j+1] # variable
if var == v:
row[i] = ¢ # put coeff of var in position i of row

row.append(components[C-1])  # put last component on right side
for i in range(len(row)):

row[i] = tl.fix_signs(row[i])
return row

- Sample Run -----
Input:
varlist = ['x1','x2"','x3"','x4"','u','v'] # entry order in augmat
eqn = '5v-3x4+5x1-4x2+11x3-9u+8=-T7"

print('row:

' ,eqn2row(eqn,varlist))

Output:
delimiters:
components:

row:

5,v,-3,x4,+5,x1,-4,x2,+11,x3,-9,u,+8=-7

[|5|’ lvl, |_3|’ 'X4', l+5l’ 'Xl', l_4l’ 'X2', l+11l’\
'XS', l_gl’ |u|’ |+8=_7|]
[|5|, l_4l, '11', |_3|’ l_9l, 151, 1_15|:|

9.11 Generating the Solutions

The function get_solution_list takes the reduced echelon form of the augmented matrix
and the variable and outputs the solutions. The function translates a row of the reduced matrix
into an equation by solving for the leading variable. For example, the row ['0','1','2",
'3', '4'] is translated into 'x2=4-2x3-3x4'.

def get_solut

if has_ze
retur
sol_list
L = len(r
M = len(r
for k in
if is

right

ion_list(reduced,varlist):

ros_one_row(reduced) :

n [] # no solution

= tl.copylist(varlist) # initialize
educed) # number of rows
educed [0]) # number of columns
range (L) : # run throught rows
_zero_row(reduced[k]): break

_side = reduced[k] [M-1] # last entry in row
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idx = reduced[k].index('1') # column of leading entry '1'
v = varlist[idx] # corresponding variable
# subtract other variables from right side:
for j in range(idx+1,M-1):
right_side = right_side + \
'-('+reduced[k] [j1+') "' + varlistl[j]
right_side = tl.fix_signs(right_side)
right_side = mu.main(right_side) [0]
sol_list[idx] = v + '=' + right_side
return sol_list

def is_zero_row(row):
L = len(row)
for entry in row: # zero row if L is reduced to O
if entry == '0': L =1
return L ==

The function has_zeros_one_row(R) checks if the reduced matrix R has a row of the
form ['0','0',...,'0",'1'], signalling an inconsistent equation.

def has_zeros_one_row(R):
for row in R:
if row[len(row)-1] == '0':
return False
num_zeros = 0
for j in range(len(row)-1):
if row[j] == '0': num_zeros += 1
if num_zeros == len(row)-1: '0,0,...0,1"
return True
return False

9.12 Checking the Solution

The function check_solution(equations,solutions val) takes the original set of equa-
tions, the solutions generated by linsolve, and a number to be substituted into both the
equations and the solutions, and checks if the two calculated values are equal. It works only
for the case of a unique solution.
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def check_solution(equations,solutions):
eqnlist = equations.split(',')

for

if solutions == []:

print('no solution')

return

eqn in egnlist: # run through given equations

for sol in solutioms: # run through generated solutions
var,val = sol.split('=") # separate
var = var.replace(' ','')
val = val.replace(' ','")
eqn = eqn.replace(var,'('+ val +')') # insert value

left_side,right_side = eqn.split('=")
difference = left_side + '-('+ right_side +')'

if mu.multicalc(difference)[0] != '0':
print('solution false') # left_side != right_side
return

print('solution correct')
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Matrix Algebra

10

Under suitable conditions, matrices may be added, subtracted, multiplied, and divided, giving
rise to an algebraic system with properties similar to those of ordinary algebra. In this chapter
we a develop a module MatAlg.py that performs these and other operations. The chapter
culminates in a matrix calculator. All matrices have Gaussian rational entries. The module

is headed by the import statements

- --- MatAlg.py --
import LinSolve as 1s

import PolyAlg as pa

import Number as nm

import Arithmetic as ar

import Tools as tl

import math as ma

10.1 Elementary Matrix Operations

In this section we define and implement the basic matrix operations. We begin with the

easiest: scalar multiplication.

Matrix Scalar Multiple

The scalar multiple zA of a matrix A by a number z is the matrix obtained by multiplying

each entry of A by z:
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app a2 -+ Qin Zapl zapz --- Z4in

azr azp -+ azp a1 242 - - Zdp
A=\ . . . A =

Aml Am2 * - Qmn 2am1 2a4m2 - -+ Lmn

The following function implements the operation. It takes a scalar z and a matrix A in
standard double list form and returns the scalar multiple zA. (Output in sample run is placed
horizontally to save space.)

def scalar_mult(z,A):

B =[]

for row in A:
Brow = [] # list for row scalar multiple
for entry in row: # multiply each entry in row by z

product = ar.main('('+z+') ('+entry+')"')[0]
Brow.append (product)
B.append (Brow)
return B

- Sample Run -------

Input:

z = '2/5'

A= '1,i,-3+7i; 22,-5+i,6+(2/3)i; -7+21,8,1/3.7"'
Atab = tl.string2table(A)

print (" A"
tl.format_print(Atab, 2, 'right')
print('\n')

print (" zA")

tl.format_print(scalar_mult(z,A), 2, 'right')

Output:
A zA
1 i -3+7i 2/5 (2/8)i -6/5+(14/5)1
22 -b+i 6+(2/3)1 44/5 -2+(2/5)i 12/5+(4/15)1i
-7+21i 8 1/3.7 -14/5+(4/5)i 16/5 4/37

Matrix Factorization

The reverse of scalar multiplication is called factoring the matrix. For example the number
2 is factored from each entry in the first matrix, producing twice the second matrix.

2 46 123
8 10 12 =21(456
14 16 18 789
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The following function takes a matrix A with Gaussian rational entries and returns a
matrix with reduced integer entries together with a factor. It first clears any fractions by
multiplying the entries of A by the least common multiple of the entry denominators. Then
f1 = 1/lem is one of the factors. The function then divides the resulting entries by their
greatest common divisor giving rise to a second factor f, = ged. The product f; f> is the
desired factor. In the sample run we have included a check.

def factor_matrix(A):
B = tl.copylist(A)
Bflat = tl.flatten_double_list(B)
denoms = pa.get_denoms(Bflat)

lcm = nm.listlcm(denoms) # get lcm of denoms
lcm = str(lcm)
C = scalar_mult(lcm,B) # clear denominators

g = int(C[0][0])
for row in C:
for entry in row: # get gcd of entries
g = ma.gcd(g,int(entry))
r="'1/" + str(g
D = scalar_mult(r,C) # divide by gcd
factor = ar.main(str(g) + '/' + lcm) [0]
factor = tl.add_parens(factor)
return factor,D

- Sample Run -------

Input:

A=[[e6/7", '30/11', '12/5'], ['24/13', '30/17', '18'],
['32/9', '132/7', '24/7']1]

print('A')

tl.format_print(A,3, 'right'); print('\n')

factor, B = factor_matrix(A)

print('factorization')

print(factor, 'times')

tl.format_print(B,3, 'right'); print('\n')

print('check')

tl.format_print(scalar_mult(factor,B),3, 'right')

Output:
A:
6/7 30/11  12/5
24/13  30/17 18
32/9  132/7  24/7

factorization:

(2/765765) times
328185 1044225 918918
706860 675675 6891885
1361360 7220070 1312740
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check:
6/7 30/11 12/5
24/13 30/17 18
32/9 132/7 24/7

Matrix Sum and Difference

The sum of two m x n matrices

ajp app -+ a biy b2 -+ by
a; az --- axy by by -+ by
Aml Am2 **° Amn b1 b2 -+ b

is defined as
ayy +byy app+biy - ay +byy

a1 +bx1 ax +by - axy +bi,
A+ B= ,

am1 + bt am2 + b2 -+ app + by

Thus to find the sum simply add corresponding entries. The difference A — B of A and B
is defined analogously, corresponding entries subtracted rather than added. Note that the
operations can be carried out only if A and B have the same dimensions.

Here are the implementations. (Output in sample run placed horizontally to save space.)

def add_mat(A,B):

c=1
for i in range(len(A)):
Crow = []

for j in range(len(A[0])):
sum = ar.main(A[i] [j1+'+('+B[i] [j]1+") ") [0]
Crow.append (sum)
C.append (Crow)
return C

def subt_mat(A,B):
C = scalar_mult('-1',B)
if A == '0":
return C
return add_mat(A,C)

Input:
A = tl.string2table('1,2,3;4,5,6')
B = tl.string2table('6,5,4;3,2,1')
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C = add_mat(A,B)

D = subt_mat(A,B)

print (" AY)
tl.format_print(A,2, 'right')
print('\n')

print (" B')
tl.format_print(B,2, 'right')
print('\n')

print(' A + B')
tl.format_print(C,2, 'right')
print('\n')

print (" A -B")
tl.format_print(D,2, 'right')

Output:
A B A+ B A-B
1 2 3 6 5 4 T 7T 7 -5 -3 -1
4 5 6 3 2 1 T 7T 7 1 3 5
Matrix Product

Let A be an m x p matrix and B a p X n matrix:

ayy app --- ayp by by -+ by

ax ax --- azp ba1 by -+ boy
A= . .. B =

Am1 Am2 *** Amp bpl bp2 ce bpn

mxp pxn

The product AB of A and B is the m x n matrix whose (i, j) entry of C is obtained by taking
the ith row of A and the jth column of B and multiplying the corresponding entries together:

11 €12 =+ Cln
€21 €22 v Cop

AB=| . . . . cij = aitbij + aizbaj + aipbp;.
Cml Cm2 *** Cmn

mxn

We have attached the matrix dimensions to highlight their relationship.

Here is the code for multiplying matrices together with a sample run (output of sample
run displayed side by side). For greater flexibility the function allows for matrix scalar
multiplication as well.

def mult_mat(A,B):
if isinstance(A,str):
return scalar_mult(A,B)
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if isinstance(B,str):
return scalar_mult(B,A)

c=10

for i in range(len(A)): # run through rows of A
Crow = []
for j in range(len(B[0])): # run through columns of B

s ="'0'
for k in range(len(A[0])):
s = s+ "+C+A[L][K]+") ("+BIkI [j]+")"
s = ar.main(s) [0]
Crow.append(s)
C.append (Crow)
return C

Sample Run --------
Input:

A = tl.string2table('1,2
I = tl.string2table('1,0,
AT = mult_mat(A,I)

print (' AY)
tl.format_print(A,2, 'right');print('\n')
print (" I')
tl.format_print(I,2,'right');print('\n')
print (" AT")
tl.format_print(AI,2,'right'); print('\n')
I = tl.string2table('1,0,0;0,1,0,;0,0,1")
IA = mult_mat(I,A)

tl.format_print(I,2, 'right');print('\n')
print (" IAY)
tl.format_print(IA,2,'right');print('\n')

3,45 ,10,11,12")
O)O; 2 s s ; 3011?0;0,0,051I)

Output:
A I AT
1 2 3 4 1 0 0 O 1 2 3 4
5 6 7 8 01 0 0 5 6 7 8
9 10 11 12 0 0 1 0 9 10 11 12
0 0 0 1
I IA

1 0 0 1 2 3 4

0 1 0 5 6 7 8

0 0 1 9 10 11 12

The matrices 7 in the sample run are called identity matrices of orders 4 and 3, respectively.
In general, the n x n identity matrix I has 1’s down the main diagonal and 0’s elsewhere.
It is also denoted by I,, the subscript indicating its order. As the sample run suggests,
Al, = I,,A = A for any m x n matrix A. The identity matrix is the analog of the number 1
in ordinary algebra.



10.2 The Inverse of a Matrix 183

10.2 The Inverse of a Matrix

The inverse of an n x n matrix A is an n x n matrix X with the property that AX = I, where
I isthe n x n identity matrix. The inverse is the analog of the reciprocal of a nonzero number
in ordinary algebra. If the inverse exists then it is unique and the equation X A = I also holds.

To find an algorithm for the construction of X we consider first a 2 x 2 matrix A and
write the equation AX = I explicitly as

][]

The entries x; are the unknown entries of the inverse X. Multiplying and equating entries
yields a system in the variables x; and x3 and another in x, and x4:

ax; + bxz =1 and axy; + bxg =0
cx; +dx3 =0 cxy +dxg =1

These can be solved by forming the augmented matrix of each system,

abl ab0
and ,
|:cd0i| |:cdlj|

and then applying the row echelon algorithm twice yielding

10 x; 10 x;
and s
01 x3 01 x4

the solutions appearing in the last column. This is equivalent to applying the row echelon
algorithm to the combined matrix

ablO
[A|I]=|:cd01i|'

If A has an inverse, then the algorithm yields the solution of both systems:

10 x1 x2
01x3x4 |

The inverse matrix X appears on the right and the identity matrix on the left. The process
works for an arbitrary n x n matrix A: Reduce the combined augmented matrix [A|/] to
echelon form, yielding a matrix [B|X]. If B is the identity matrix, then X is the inverse of
A; otherwise, A has no inverse. The standard notation for the inverse of A is A1,
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The function invert_mat implements the algorithm. It takes a square matrix A, attaches
the identity matrix on the right, and then invokes row_echelon. If the left half is the identity
matrix, then the right half is the inverse.

def invert_mat(A):
nrows = len(A)

B = attach_id(A) # attach identity I to the right of A
C = 1ls.row_echelon(B) [0] # row reduce
left,right = split_mat(C) # extract left and right parts
I = makeid(nrows)
if left == I: # compare left part with I
return right # inverse exists
else: return [] # inverse fails to exist
Sample Run -------

Input:

A= '1+2i,2,3;4,5+31,6;7,8,9"'

print('A')

A = tl.string2table(A)
tl.format_print(A,4, 'left')

print('\n')

X = invert_mat(A)

print("A~(-1)")
tl.format_print(X,4, 'left')

print('\n')

print('check AA~(-1):')

tl.format_print (mult_mat(A,X),4, 'left')

Output:

A

1421 2 3

4 5+3i 6

7 8 9+41

A (-1)

-519/4330-(769/2165) i -3/4330+(329/4330)1 51/866+(18/433)i
153/4330+(541/4330) 1 101/4330-(973/4330) 1 15/866+(87/866) i
489/4330+(249/2165) 1 153/4330+(541/4330) i -3/866-(52/433)1

check AA~(-1):
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The following function returns the identity matrix for any specified dimension n.

def makeid(n):
global I
I =[['0" for j in range(n)] for i in range(n)] # zero matrix
for i in range(n):
for j in range(n):
if i == j: I[i1[j] = '1' # 1's along the diagonal
return I

The function attach_id (A) attaches the identity matrix to the right of A. The process is
simplified by attaching the identity to the bottom of the transpose of A and then taking the

transpose of the result.

def attach_id(A):
nrows =len(A)
I = makeid(nrows)
B = 1s.transpose(A)

c=1

for i in range(nrows): # put rows of B in C
C.append(B[i])

for row in I: # put I below B

C.append (row)
return ls.transpose(C)

The function split_mat (A, col) returns the right and left parts of matrix A separated at
column col, that column placed in the left part. (Output in sample run placed horizontally

to save space.)

def split_mat(A): # split into right and left parts
B = transpose(A)
nrows = len(4)
top = [1; bottom = []
for i in range(nrows):
top.append (B[i])
for i in range(nrows,2*nrows):
bottom.append (B[i])
return ls.transpose(top), ls.transpose(bottom)

Sample Run -------
Input:

A = tl.string2table('a,b,c,d,e,f; g,h,i,j,k,1;m,n,0,p,q,r'")
left_part,right_part = split_mat(A)
tl.format_print(A,1,'left'); print('\n')
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tl.format_print(left_part,1,'left'); print('\n')
tl.format_print(right_part,1,'left')

Output:

abcdef abc def
ghijkl ghi jk1
mnopaqr mno pqr

10.3 Matrix Exponentiation

The following function returns positive or negative powers p of a square matrix A. It handles
the case p < 0 by using the easily established fact that A”? = (A~!)? where ¢ = —p > 0.
The sample run illustrates the general rule A? A? = AP*+9 with the example A7A73 = A%,

def power_mat(A,p):
if p == 0:
return makeid(len(A))
if p == 1:
return A
B = tl.copylist(A) # don't alter A
if p < 0:
B = invert_mat(A);
p=-p
if B == []: return []
prod = B
for i in range(p-1): # multiply B times itself p-1 times
prod = mult_mat(prod,B)
return prod

Sample Run --------
Input:
A = tl.string2table('3,1,2;5,4,7;-1,8,3")
B = power_mat(A,7)
C = power_mat(A,-3)
D = mult_mat(B,C)
E = power_mat(A,4)
print('A')
tl.format_print(A,2,'right'); print('\n')
print('A°7")

tl.format_print(B,2, 'right'); print('\n')
print('A~(-3)")

tl.format_print(C,2, 'right'); print('\n')
print ("A"T7*A~(=3)")

tl.format_print(D,2, 'right'); print('\n')
print('A~4"')

tl.format_print(E,2, 'right')
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Output:
3 1 2
5 4 7
-1 8 3

A"T

2330556 4974196 4520096
7379804 15748768 14312476
6485540 13858376 12584004

A~ (-3)
7565/3267  -4771/71874 -262/35937
43/594 -199/6534 61/6534

-1297/6534 2459/35937 -212/35937

A~TxA" (=3)

1434 3092 2782
4498 9818 8792
4090 8482 7860

A4

1434 3092 2782
4498 9818 8792
4090 8482 7860

10.4 Solving Systems Using Matrix Inversion

The inverse matrix operation may be used to solve systems of linear equations that have the
same number of unknowns as equations. First write the system in (9.2) as a matrix equation
AX = B, where

aip app --- ap X by

az ax --- axy X2 by
A= . . . , X=| .|, and B=

aml Am2 *** Amn Xn b,

The matrix A is called the coefficient matrix of the system. If m = n and A~! exists, then,
as in ordinary algebra, one can multiply the equation AX = B on the left by A~!, resulting
in AT'AX = A~'B. Since A~'AX = IX = X, the solution of the system is given by the
matrix equation X = A~!'B. This idea is sometimes useful in matrix calculations.
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10.5 A Matrix Calculator

The functions in this section evaluate algebraic expressions involving matrices. In the
example

(3+1.2i)"(-3) (A"2C - 2D3E~(-5))F + (1-i)A"0,

the capital letters are symbols for matrices entered by the user. The symbol A~0 (for a square
matrix A) denotes the identity matrix with dimensions those of A. The dimensions of a matrix
can be quite large, limited only by computer memory and speed. The user enters matrices
in a list, as shown in the sample run. The list is converted into a dictionary by the function
load_dict. The function print_mat_dict() is included for illustration. (Output matrices
are displayed side by side to save space.)

def load_dict(matrices):
global mat_dict
mat_dict = {}
for mat in matrices: # run through set of matrices
mat = mat.replace(' ','') # remove white space
label,entries = mat.split('=') # separate matrix and label
mat_dict[label] = tl.string2table(entries) # enter in dict.

def print_mat_dict(): # run through dictionary, print items
global mat_dict
for item in mat_dict:

print (' ',item) # print the letter, then the matrix
tl.format_print(mat_dict[item],2,'right')
print('\n")
- Sample Run --—-------
Input:
matrices = ['A = 1,0,3;0,5,6;7,8,0',\
'B =0,2,3;4,6,0;7,0,9', \
'C = -5,0,7;8,-1,0;4,3,0']
load_dict(matrices)

print_mat_dict()

Output:
A B C
1 0 3 0 2 3 -5 0 7
0 5 6 4 6 O 8 -1 0
7 8 0 7 0 9 4 3 0
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Here is the main function for the calculator. The sample runs illustrate various general
laws of matrix algebra. For example, the law (A + B)' = A’ + B! isillustrated in the sample
run by showing that (A + B)" — A’ — B’ is the zero matrix.

def calculator(expression,matrices):
global expr, idx, mat_dict
load_dict(matrices)
expr = expression
expr = expr.replace(' ','')
expr = tl.attach_missing_exp(expr,tl.upper)
expr = tl.fix_signs(expr)
expr = tl.fix_operands(expr)
expr = tl.insert_asterisks(expr,tl.upper)

idx = 0

r = allocate_ops(0)

return r

-- Sample Run -------
Input:
dl = '(A+B)"t- A"t - B"t' # (A+B)"t = A"t+B"t
d2 = '(AB)"t- (B t)A"t' # (AB)"t = (B"t) (A"t)
d3 = '(AB)"(-1)-B~(-1)A"(-1)" # (AB)"(-1)= B (-1A"(-1)
d4 = '(A"t)"(-1) - (AT (-1t # (A7) (-1)=(A"(C-1D)"t
d5 = '(A+B)C - AC-BC' # (A+B)C=AC+BC
dé = '(A"t)"(-1) - (A"(-1) "t # (A"t)"(-D=A"(-1)"t
D = [d1,d2,d3,d4,d5,d6]
matrices = ['A = 3,0,1 ;7,6,0 ;0,8,9',\
'B =0,2,3 ;4,0,6 ;7,8,0',\
'c = 2,0,-3 ;0,6,-2 ;-7,4,0']

for d in D:

tl.format_print(calculator(d,matrices),2, 'right')

print('\n')
Output: # same for each d
0O 0 O
0O 0 O
0O 0 O

Here is the function that assigns the calculations. It is similar in concept to the corre-
sponding functions in Arithmetic.py, PolyAlg.py and MultiAlg.py.

def allocate_ops(mode):
global expr, idx, mat_dict
r =[]
while idx < len(expr):
ch = expr[idx]
if tl.isnumeric(ch):
z,idx = tl.extract_numeric(expr,idx)
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r = ar.maincalc(z) [0]
elif tl.isupper(ch):
r = mat_dict[ch]

idx += 1

elif ch == '+':
if mode > 0: break
idx += 1

s = allocate_ops(0)
r = add_mat(r,s)
elif ch == '-':
if mode > 0: break
idx += 1
s = allocate_ops(1)
r = subt_mat(r,s)
elif ch == 'x':
idx += 1
s = allocate_ops(1)
r = mult_mat(r,s)
elif ch == '"':
if expr[idx+1] == 't':
r = ls.transpose(r)
idx+=2
continue
exp,idx = tl.extract_exp(expr,idx)
exp = ar.main(exp) [0]
if isinstance(r,str):

r = ar.main( '('+ r + ") + exp + ')')[0]

else:
r = power_mat(r, int(exp))
if r == []: return r

elif ch == '(':

start = idx

paren_expr,end = tl.extract_paren(expr,start)

if tl.isarithmetic(paren_expr):
r = ar.main(paren_expr) [0]

idx = end
else:
idx+=1
r = allocate_ops(0)
idx+=1
elif ch == ')': break
return r

# wait for higher mode

# wait for higher mode

# highest mode

# skip '"t' and move on

# fix exp = 0-1

# inverse may not exist

10.6 Application: Moore-Penrose Inverse

An m x n system of equations AX = B may not have a solution, but it is possible to find
a matrix X such that a common error measurement ||AX — B]| is as small as possible. The
matrix X is then called a least squares solution of the equation. The quantity |AX — B]| is
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the square root of sum of the squares of the entries of AX — B and is called the Euclidean
distance from AX to B. It may be shown that a least squares solution is given by the product
X = AT B, where

A+ — DZ(DDl‘)fl(th)flct’

where C and D are described below. Additionally, for this solution, || X|| is as small as
possible, giving us the unique minimal least squares solution of AX = B. The matrix AT is
called the Moore-Penrose inverse of A.

To describe C and D, let R be the reduced row echelon formof Aandlet j; < jp < ... < j,
denote the columns in which a leading entry appears. It may be shown that A = C D, where
C is the m x r matrix obtained from A by deleting all but the columns ji, j, ... j-, and D
is the » x n matrix obtained from R by deleting the last m — r rows (the zero rows). For
example, for the matrix

12312
A=|45615
78918
we have
10-1-10
R=|01 2 11/,
00 0 O

hence r =2, j; = 1, and j, = 2, and the matrices C and D are

12

C=1|45 andD:|:10_]_10i|.
01 2 11
78

The reader may check that A = CD.
The function decompose (A) prints out C and D for any matrix A.

def decompose(4):
R = 1ls.row_echelon(A) [0]
lead_cols = leading_entry_cols(R) # leading entry col numbers
r = len(lead_cols); m = len(A)
C = delete_cols(A, lead_cols) # delete all but these cols of A
D = delete_last_rows(R,m-r) # delete rows r+1,...,m
return C,D,R

def delete_cols(A,col_list):
ncols = len(A[0])
At = transpose(A)
B =[]
for j in range(ncols):
if j in col_list:
B.append (At [j])
C = transpose(B)
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return C

def delete_last_rows(R,k):
D =[]
for i in range(k+1):
D.append(R[i])
return D

def leading_entry_cols(R):
lead_cols = []
for i in range(len(R)):
for j in range(len(R)):

if R[i1[3] '= '0':
lead_cols.append(j)
break

return lead_cols

The function moore_penrose(A) returns A™.

def moore_penrose(A):
C,D,R = decompose(A)
C = tl.table2string(C)
D = tl.table2string(D)
Aplus = 'D7t(DD7t) " (-1) (C7tC)~(-1)C"t'
matrices = ['C='+C, 'D="'+D]
return calculator(Aplus, matrices)

-- Sample Run ----------
Input:

A = tl.string2table('4,5,6;1,2,3;7,8,9')

B = tl.string2table('12,9,14")

print('A')

tl.format_print(A,3, 'right'); print('\n')
print('B°t')

tl.format_print (transpose(B),3, 'right'); print('\n')
Aplus = moore_penrose (A)

print (" Aplus')
tl.format_print(Aplus,3,'right'); print('\n')

LS = mult_mat (Aplus,transpose(B))

print(' minimal least squares solution')
tl.format_print(LS,3, 'right')

Output:

A B°t Aplus

4 5 6 12 -1/6  -23/36 11/36
1 2 3 9 0 -1/18 1/18
7 8 9 14 1/6 19/36 -7/36
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minimal least squares solution:
-125/36

5/18
145/36

10.7 Application: Curve Fitting

Closely related to the notion of interpolation (see Sect. 6.9) is the problem of finding a
function f from a prescribed class, typically polynomials, whose deviation from a given set
data pairs (xg, yx) is as small as possible. Here, contrary to the case of a interpolation function,
it may not be true that f (x;) = yi for all k. Instead, f minimizes a certain error measurement.
The most common choice of this measure, one that readily lends itself to mathematical
analysis, is the square of Euclidean distance introduced in the preceding section:

n
Z | f () — yklz, n = number of data points(x, yi). (10.1)
k=1

Using this measure results in the least squares method of curve fitting. In this section we con-
sider the problem of fitting data to polynomials and construct a function poly_fit(data,m)
that generates, for each m < n, the polynomial of degree m that best fits the data in the least
squares sense.

Consider first the problem of finding a cubic polynomial’

P(x)=co+cix+ czx2 + C3x3
that best fits the data

(x1, y1)» (x2,¥2), ..., (xn, yn), wherex; # xiforj # k.

We seek coefficients cg, ci, ¢z, c3 that minimize

n n

Z [P(xi) — yi]2 = Z [co + c1xi + cox? + 37 — yi]z. (10.2)

i=1 i=1

Using calculus one may show that the coefficients ¢; are the solutions of the linear
system

1'We have written P (x) with leading term last to simplify notation in subsequent expressions.
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n
> leo+cixi +cax? +eax —yi] =0
i=1

n
in [co+cixi +coxf + 337 —yi ] =0
i=1

n
inz[CO'FClxi +oax} e —yi] =0

i=1

n
Zx?[CO +c1x; + C2X,'2 + C3xi3 - )’i] =0.

i=1

Setting
n n
Se=> xf and T =) xfy. (10.3)
i=1 i=1
we can write the system as

coSo +c181 +c28$ + 3853 =T
coS1+c1SH +eS3+ 384 =T
coS2 + 183+ 284 +c3855 =1
c0S3 4+ 184 4+ 285 + 38 = T3

The same analysis works for polynomials of degree m, resulting in the system

coSo+c1S1+--+emSn =T

coS1+c1S + -+ emSur1 =T
(10.4)

coSm + C18Sm1 + -+ cmSom = Ty

This may be written as a matrix equation SC = T, where

So Si s S o Ty

St S o Sl cl T
S=1|. . ) , C=| . | adT =

Sm Sm1 - Som Cm Tn

The polynomial of best fit has coefficients given by the matrix C = S~!T.

For the matrix S to be invertible it is necessary that the degree m of the desired polynomial
be less than the number n of data points. If m = n — 1, then one can choose the coefficients
to obtain an exact fit: P(x;) = y; for each i. In this case the error term
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n n

SPG) =y = [eo+erxi +eax? 4 caix! T = yi]
i=1 i=1

2

is zero, which implies that each term in the sum is zero. This condition gives rise to the

system
2 n—1

1 xy xy -+ x| co V1
1 xo x% xg_l c 2
=1 1. (10.5)
2 —1
1oy x; -0 x)) Cn—1 Yn

Thus C = V~lY, where V is the n x n matrix on the left in (10.5), called a Vandermonde
matrix. The inverse exists because the x;’s are distinct. Indeed, using row properties of
determinants (developed in the next chapter) one easily shows that the determinant of V,
the so-called Vandermonde determinant, is

1_[ (xj — xi),

1<i<j<n

which is not zero since x; — x; fori # j.

The function poly_fit(data,m) takes data in the form of a string of ordered pairs and
returns the polynomial of degree m of best fit. The sample run of the function produces best
fit polynomials of various degrees for a fixed set of data points. As mentioned earlier, if
m = n — 1 one obtains a polynomial that gives an exact fit. In fact, in this case one obtains
the Lagrange interpolating polynomial, as the sample run illustrates.

def poly_fit(data,m):
# requires m < len(data)
# get exact fit when m = len(data)-1
data = data2list(data)
if len(data) <= m:
return
s_mat = S_mat(m,data)

t_mat = T_mat(m,data)
s_mat_inv = invert_mat(s_mat)
C = mult_mat(s_mat_inv,t_mat) # C = s_mat~(-1)*t_mat
flist = tl.flatten_double_list(C)
flist = flist[::-1] # reverse flist
pa.var = 'x'
return pa.flist2pol(flist) # convert list to pol
- Sample Run --———---———--
Input:

data = '(1,3),(2,1.1),(3,5),(4,4.2),(5,9),(6,8.1)"'
print('degree 1 ',poly_fit(data,1),'\n')
print('degree 2 ',poly_fit(data,2),'\n')
print('degree 3 ',poly_fit(data,3),'\n')
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print('degree 4 ',poly_fit(data,4),'\n')
print('degree 5 ',poly_fit(data,5),'\n')
print('lagrange ',pa.lagrange_interp(data),'\n')
print('degree 6 ',poly_fit(data,6))

Output:
degree 1

degree 2
degree 3
degree 4

degree 5

lagrange

none

(242/175)x+17/75
(43/280)x"2+(431/1400)x+83/50

(-133/540)x"~3+(863/315)x"2+(-28349/3780)x+118/15

(-1/60)x"4+(-7/540)x"3+(293/180) x~2+(-20537/3780) x+20/3

(-53/150)x"5+(37/6)x"4+(-809/20)x"3+(3697/30)x"2+ \
(-50999/300) x+422/5

(-53/150)x"5+(37/6)x~4+(-809/20)x"3+(3697/30)x "2+ \
(-50999/300) x+422/5

The function comparisons(pols,data,p) takes alist pols of polynomials P generated
by poly_fit(data,m) and prints for each value of m < n a table that displays the data
values (xk, yx) and the polynomial values

zk = P(xx), k=1,2,...,n, Pinpols.

It also calculates least squares error in using z; to approximate x;. Decimals with p places,
rather than fractions, are used for ease of comparison. The sample run uses the polynomials
and data from the previous sample run.

def comparisons(pols,data,p):

data

pa.data2lists(data)
for m in range(1,len(pols)): # run through the list of pols
table = []
pol = pols[m]
error = '0' # initialize
for k in range(len(data)): # run through the data points

xk = datalk][0]; yk = datalk][1]

xk = ar.main(xk) [0] # convert x,y data to fracs

yk = ar.main(yk) [0]

zk = ar.evaluate(pol,xk,p)[0] # value of pol at x data

diff_squared = '((' + zk + ")-(C' + yk + ")) 2"
error = ar.main(error + '+' + diff_squared) [0]

yk = ar.decimal_approx(yk,p) [0] # approx. y data

zk = ar.decimal_approx(zk,p) [0]
table.append([' ',xk,yk,zk, ' '])
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error = ar.decimal_approx(error,p) [0]

header = ['m = '+str(m), 'xk','yk','zk','error = '+ error]
table = [header] + table

tl.format_print(table, 4, 'right'); print('\n')

Sample Run --
Input:
pols = [poll,pol2,pol3,pold,pol5] # generated in previous run
comparisons (pols,data,4) # four decimal places
Output:
m=1 xk vk zk error = 11.9681
1 3 1.6095
2 1.1 2.9923
3 5 4.3752
4 4.2 5.758
5 9 7.1409
6 8.1 8.5238
m=2 xk yk zk error = 11.0877
1 3 2.1214
2 1.1 2.89
3 5 3.9657
4 4.2 5.3485
5 9 7.0385
6 8.1 9.0357
m=3 xk yk zk error = 7.1568
1 3 2.8603
2 1.1 1.8555
3 5 3.3746
4 4.2 5.9396
5 9 8.073
6 8.1 8.2968
m =4 xk vk zk error = 7.1339
1 3 2.8317
2 1.1 1.9412
3 5 3.3174
4 4.2 5.8825
5 9 8.1587
6 8.1 8.2682
m =5 xk vk zk error = 0
1 3 3
2 1.1 1.1
3 5 5
4 4.2 4.2
5 9 9
6 8.1 8.1
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For the remainder of the section we construct the supporting functions required by
poly_fit. The functions S and T calculate the sums S; and Tj. Data is entered as in the
module lagrange_interp.py and converted by data2lists.

def S(k,data): # returns S_k
s_sum = '0'
for j in range(len(data)):
x = datal[j][0]
power = x + '"' + str(k)
s_sum = ar.main(s_sum + '+' + power) [0]
return s_sum

def T(k,data): # returns T_k
t_sum = '0'
for j in range(len(data)):
x = data[j][0]; y = datalj][1]
power_prod = '('+ x + '"'+ str(k)+ ")x('+y + ')
t_sum = ar.main(t_sum + '+' + power_prod) [0]
return t_sum

def S_mat(m,data): # returns matrix of S_k entries

s_mat = []
for i in range(m+1):

row = []

for j in range(m+1):

row.append(S(i+j,data))

s_mat.append (row)

return s_mat

def T_mat(m,data): # returns column matrix of T_k entries
t_mat = []
for k in range(m+1):
t_mat.append([T(k,data)])
return t_mat

10.8 Elementary Matrices

An elementary matrix is one that can be gotten from the identity matrix by a row operation.
Their importance derives from the fact that a row operation on a matrix A can be achieved by
multiplying A on the left by the elementary matrix produced by performing the operation on
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I. The following example illustrates this. The first three matrices are the result of applying
row operations to the identity I:

001 100 100
Ir1<—>r3: 010 a[(S)r2: 050 ,1(7)r1+r2: 710
100 001 001
If we let
12
A=]34
56

then we can produce same row operations on A by multiplying A on the left by the above
elementary matrices:

56 1 2
Liic sp3A=|12|=Anc>r3, I5n2A=|1520 | =As)m,
34 56
1 2
I A= 1018 | = Agyri4r2.
56
In general, for any matrix A, there exists a sequence E1, E», ..., E, of elementary matrices

such that the product E| E; - - - E,, A is the reduced row echelon form of A.
The following function produces elementary matrices using the ops output of
row_echelon(A). The sample run illustrates the aforementioned property.

def elementary_matrices(A):
# returns list of elementary matrices and their product
nrows = len(4)

I = makeid(nrows) # ops are applied to identity matrix
B, ops = ls.row_echelon(A) # echelon matrix and operations
E =11 # list of elementary
Eprod = I # initialize
n=1 # number for label
for op in ops:

C = 1s.row_op_calc(op,I) # perform op on I

print (' E'+ str(n)); n+=1 # label

tl.format_print(C,2, 'right') # print elementary matrix C

print('\n')

E.append(C) # keep C

Eprod = mult_mat(C,Eprod) # update product

return E, Eprod # elementary matrices and their product
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-- Sample Run ------—-—--
Input:
A = tl.string2table('-2,0,3;0,5,6;7,8,0")
E,Eprod = elementary_matrices(A) # run the program
print (" Eprod')
tl.format_print (Eprod,2, 'right')
print('\n')
print(' Eprod*A') # Eprod*A is the echelon form I

tl.format_print (mult_mat (Eprod,A),2, 'right')

Output:
El E2 E3 E4 E5
-1/2 0 0 1 0 0 1 0 0 1 0 0 10 0
0 1 0 01 0 0 1/5 0 0o 1 0 0 1 0
0 0 1 -7 0 1 0 0 1 0 -8 1 0 0 10/9
E6 E7 Eprod Eprod*A
1 0 3/2 1 0 0 16/3 -8/3 5/3 1 0 0
0 1 0 0 1 -6/5 -14/3 7/3 -4/3 0 1 0
0 0 1 0 0 1 35/9 -16/9 10/9 0 0 1
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An ordered list v = [ay, a3, . . ., a,] of numbers (also called scalars in the present context),
is called an n-dimensional vector. The numbers a; are called the components of the vector.
We identify this mathematical list with the corresponding Python list. In particular, we may
write the components of v as v[0] ,v[1],..,v[n]. Two n-dimensional vectors u, v are said
to be equal if ulk] = v[k] for all k. The vector whose components are all zero is called
the zero vector. For purposes of coding, components of vectors are taken to be Gaussian
rationals.

In this chapter we describe some basic properties of vectors and develop functions that
implement some of associated computational processes. The chapter focusses on the notion
of linear independence of matrix rows and on the range and kernel of a matrix. The functions
in the chapter comprise the module Vectors. py, headed by

import LinSolve as 1ls
import Arithmetic as ar
import MultiAlg as mu
import MatAlg as mat
import Tools as tl
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11.1 Linear Combinations

Vectors may be added, subtracted, and multiplied by a scalar in the same way as matrices,
namely termwise:

z[ay, a2, ..., an]l = [zay, zay, . .., zay]
lai,ao,...,a,1 £[b1, b2, ..., byl =a1 £ b1,a0 £ bo, ..., a, £b,].

Sums of more than two vectors are defined analogously. Here are functions that implement
the operations.

def scalar_mult_vec(z,v):
u =[]
for i in range(len(v)):
prod = '(" + z + ")('+ v[i] + ')
u.append (ar.main(prod) [0])
return u

def add_vec(u,v):
vecsum = []
for i in range(len(u)):
s = ulil + "+' + (" + v[i]l + )"
vecsum.append(ar.main(s) [0] )
return vecsum

def add_vecs(vecs): # add a list vecs of vectors
vecsum = vecs[0]
for i in range(l,len(vecs)):
vecsum = add_vec(vecsum,vecs[i])
return vecsum

def subt_vec(u,v):
w = scalar_mult_vec('(-1)"',v)
return add_vec(u,w)

A linear combination of vectors is a sum of scalar multiples of the vectors. For example,
the vector
(5. NI[1,2,31—14,5,6] + (3/2+)[7,8,9]

is a linear combination of [1, 2, 3], [4, 5, 6], [7, 8, 9]. The scalars 5.7, —1 (implicit), and
3/2 +i are called coefficients of the linear combination. By applying vector operations one
may reduce the linear combination to the single vector

[87/10 4 7i,72/5 + 8i, 201/10 + 9i].
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The function reduce_lincomb does this. It takes a list of coefficients and a list of vectors
and returns the reduced linear combination.

def reduce_lincomb(coeffs,vectors):
lincomb = []
for i in range(len(coeffs)): # multiply coeff by vector
c = coeffs[i]; v = vectors[il
lincomb.append(scalar_mult_vec(c,v))
return add_vecs(lincomb)

- Sample Run -------
Input:

coeffs = '5.7, -1 ,3/3+i'.split(',")

vectors = tl.string2table('1,2,3; 4,5,6; 7,8,9")
print(reduce_lincomb(coeffs,vectors))

Output:
['87/10+7i', '72/5+8i', '201/10+9i']

11.2 Linear Independence

A set of n dimensional vectors is said to be linearly dependent if one or more of the vectors
may be expressed as a linear combination of the others; otherwise, the vectors are said to be
linearly independent. For example, the vectors

[1, 2, 3], [4, 5, 6], [7, 8, 9] (11.1)
are linearly dependent, since
[7,8,9] =2[4,5,6] —[1,2,3].
Note that one can write this equation as
x1[1,2, 3]+ x2[4, 5, 6] + x3[7, 8,9] = [0, 0, 0],

where x; = x3 = 1 and xp = —2. We shall call an equation of this form a dependency relation
among the vectors. If we apply vector operations we can further write this as

[x1 +4xp + 7x3, 2x1 + S5x2 4+ 8x3, 3x1 4+ 6x2 +9x3] = [0, 0, O]
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Equating components of these vectors we obtain the system

X1 +4x2 + 7x3 =0
2x1 + 5x2 + 8x3 =0 (11.2)
3x1 + 6x2 + 9x3 =0

Thus the linear dependence of the vectors in (11.1) is equivalent to the existence of a non-
trivial, that is, not all zero, solution of the system (11.2).
The same analysis applies in general: m vectors

lai1, a1z, ..., a1xl, la21, a2, ..., a1, ..., [@mls w2, - - -, G (11.3)
are linearly dependent if the m by n system

ayxy +axy + -+ appxy =0

apxy +axnxy + - +amexy =0
(11.4)

aipx1 + aypx2 + - 4 ampXm =0

has a nontrivial solution. Notice that the columns of the coefficient matrix are the original
vectors. The augmented matrix B of the system may be gotten by forming a matrix A with
rows the vectors in (11.3), attaching a row of zeros, and taking the transpose of the result:

t

ail a2 --- Qin
ap azr -+ amn 0
ap axy -+ ay
app an -+ am 0
B= =
Am1 Am2 *** Amn
0 0 ... 0 aip azp -+ Ay 0

The row rank of a matrix is the largest number of linearly independent rows (considered
as vectors). The function get_lin_ind_rows below returns a maximal set of linearly inde-
pendent rows of a matrix and thus establishes its row rank. To see how the function works,

consider the matrix
1 23 435

6 7 8 910
1112 13 14 15
16 17 18 19 20

(11.5)

The first step is to determine if the first row of the matrix depends on the remaining rows.
Thus we attempt to solve the system described by the equation

[1,2,3,4,5] =x1[6,7,8,9,10] + x2[11, 12, 13, 14, 15] 4+ x3[16, 17, 18, 19, 20],
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namely,
6x1 + 1lxy + 16x3 = 1
Tx1 + 12xp + 17x3 = 2
8x1 4+ 13x; 4+ 18x3 = 3
9x1 + 14xp + 19x3 =
10x; + 15x0 + 20x3 = 5

The augmented matrix of the system is

678 910 S
111213 14 15
augmat = 16 17 18 19 20 = 813183
914194
1 23 45
1015205

Using linsolve one determines that a solution x1, x;, x3 exists, indicating that [1, 2, 3, 4, 5]
depends on the remaining rows. The next step is to determine whether the second row
[6,7,8,9,10] of A depends on [11, 12, 13, 14, 15], and [16, 17, 18, 19, 20]. Thus we need to
carry out the same procedure for the equation

[6,7,8,9,10] = x1[11, 12, 13, 14, 15] 4+ x»[16, 17, 18, 19, 20].

The program determines that a solution x1, x; exists, indicating that [6, 7, 8, 9, 10] depends
on the rows [11, 12,13, 14, 15] and [16, 17, 18, 19, 20]. The final step is to carry out the
process for the equation

[11,12,13, 14, 15] = x1[16, 17, 18, 19, 20].

This time the program determines that a solution does not exist. (One can also see this
directly.) We conclude that the vectors [11, 12, 13, 14, 15] and [16, 17, 18, 19, 20] are linearly
independent and the vectors [1, 2, 3, 4, 5] and [6, 7, 8, 9, 10] are linear combinations of these.
The function then returns the former pair. Here is the code:

def get_lin_ind_rows(A):

B = tl.copylist(A) # don't change matrix A
while True:
C = B[1:1+ [B[0]] # put first row on bottom

augmat = ls.transpose(C)

solution_list = 1ls.linsolve([],augnmat,'c',False)

if solution_list == []: # no solution
return B # return linearly independent vectors as matrix

B = B[1:] # otherwise remove top row and proceed again
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It should be mentioned that the set of linear independent rows of a matrix is not unique.
For example, one could carry out the above process starting instead from the last row and
working up.

The function print_dependency_relation(A,LI) below takes alist of rows in the form
of a matrix A and a sublist LI of linearly independent rows and returns a dependency relation
for each row in A in LI. For our example, the function solves each of the systems derived
from the following equations for x; and x;

[1,2,3,4,5] = x[11, 12, 13, 14, 15] + x2[16, 17, 18, 19, 20]
[6,7,8,9,10] = x1[11, 12, 13, 14, 15] + x»[16, 17, 18, 19, 20],

and returns these dependency relations, the vectors on the left thus expressed in terms of the
linearly independent vectors on the right.

def print_dependency_relation(A,LI):

for row in A: # run through the rows of A that are not in LI
if row in LI: continue
B = LI+[row] # put row at bottom of LI

augmat = ls.transpose(B)
sol = ls.linsolve([],augmat, 'x',False)
print (row,'=")
for i in range(len(sol)):
coeff = sol[i].split('=')[1]
if i < len(sol)-1:

print (' ('+ coeff +')', LI[i],'+")
else:
print (' ('+ coeff +')', LI[i])
print('\n")
- Sample Run --—-———-——-

Input:

A=1'12,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20"'
A = tl.string2table(A)

LI = get_lin_ind_rows(A)

print(LI,'\n")

print_dependency_relation(A,LI)

Output:

[l1l’ I2I, I3I’ l4l’ l5l] = (3) [Illl’ |12|’ |13l’ l14l, I15I] +
(-2) ['16', '"17', '18', '19', '20']

[l6l’ I7I, I8I’ l9l’ llol] = (2) [Illl’ |12|’ l13l’ I14I, I15I] +
(-1) ['16', '17', '18', '19', '20']
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11.3 The Range of a Matrix

Let V, denote the collection of all n-dimensional vectors with Gaussian rational components.
A nonempty subset V of V,, is said to be a vector space if sums and scalar multiples of
members of V are again members of V, that is, if V is closed under the formation of linear
combinations. Obviously, V,, is itself a vector space. A vector space V is said to be spanned
by vectors v, v2, ..., v, if it consists of all linear combinations of these vectors. In this case
we call V the span of vy, v2, ..., v, and write V = vspan{vy, v2, ..., v,}. For example, the
span of [1,2,3],[4,5, 6], [7, 8, 6] consists of the linear combinations

xi1,2, 3]+ x2[4, 5, 6] + x3[7, 8, 6].

A linearly independent set of vectors that spans V is called a basis for V. It may be shown
that every vector space has a basis and that any two bases have the same number of vectors.
That number is called the dimension of the vector space.

There are two special vector spaces associated with an m x n matrix A, the range and
the kernel. We treat the former in this section and the latter in the next. To describe these
we use the notation Ax, where x = [x1, x2, ..., x,], for the transpose of the column vector
obtained by multiplying A by the transpose of x. Thus if

123
A= 456 and x = [x1, x2, x3],
789
then Ax is the transpose of
123 X1 X1+ 2x2 + 3x3
456 | x| = |4x1 +5x3 + 6x3
789 | x3 Tx1 + 8x2 + 9x3
that is,
Ax = [x1 + 2x2 + 3x3, 4x1 + 5x2 + 6x3, Tx1 + 8x2 + 9x3]. (11.6)

The range R of an m x n matrix A consists of all m dimensional vectors of the form Ax,
where x is an arbitrary n dimensional vector. By properties of matrix multiplication, vector
addition, and scalar multiplication, R is a vector space. Furthermore, since every vector
x 18 a linear combination of the n dimensional vectors [1,0,0,...,0], [0,1,0,...,0], ...,
[0,0,..., 1], it follows that every vector Ax is a linear combination of the vectors

All,0,0,...,0], A[0,1,0,...,0],..., A[0,0,...,1].

These vectors are simply the columns of A. Thus we can find a basis for the range R by
applying the function get_lin_ind_rows of the preceding section to the transpose of A:
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def range_basis(A):
At = ls.transpose(A)
return get_lin_ind_rows(At)

Sample Run --
Input:

A=1'1,2,3,4,5; 6,7,8,9,10; 11,12,13,14,15; 16,17,18,19,20'

A = tl.string2table(A)
print(range_basis(A))
print (LI)

Output:
[[l4l’ Igl’ I14|’ '19']’ [l5l’ Ilol’ l15|’ I20|]]

11.4 The Kernel of a Matrix

The kernel of a matrix A is the set K of all n dimensional vectors x such that Ax is the
zero vector. Properties of matrix multiplication, vector addition, and scalar multiplication
show that K is a vector space. Finding a basis for K means extracting a maximal linearly
independent set from the solutions x of the equation Ax = 0. We illustrate the method for

the matrix
1 23 435

A=]16 7 8 910],
1112 13 14 15

for which K is the set of all solutions of the system

X1
1 23 45]||x 0
6 78 910|[x3|=10
11121314 15| | x4 0
X5
The system has augmented matrix
1 23450
6 78 9100

11121314150

The solution of the system given by linsolve is

['x1=3x5+2x4+x3"', 'x2=-4x5-3x4-2x3', 'x3',
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Here, x1,x2 are the dependent variables and x3,x4,x5 the free variables. Thus K consists
of all vectors of the form

['x3+2x4+3x5', '-2x3-3x4-4x5', 'x3', 'x4', 'x5'].

We can get a basis for K by first setting x3=1,x4=0,x5=0, and then setting x3=0,x4=1,x5=0,
and finally setting x3=0,x4=0,x5=1. This produces the vectors

(1,-2,1,0,0], [2,-3,0,1,0], [3,-4,0,0,1]1,

which form a basis. This is so because the linear independence of the “partial” vectors
[1,0,0],[0,1,0],[0,0,1] confers linear independence on the full vectors

The following code implements the procedure. It takes the solution given by linsolve,
detects the position of the first free variable, removes the dependent variables and their
equality signs, and replaces the independent variables with 1’s and 0’s as described above.

def kernel_basis(A):
zero_row = tl.zero_list(len(A[0]))
At = ls.transpose(A)
augmat = ls.transpose(At + [zero_row])
sol_vec = ls.linsolve([],augmat,'x',False)
free_vars = []
for v in sol_vec: # get free variables
for j in range(1l,len(sol_vec)+1):
var = 'x'+ str(j)
if v == var:
free_vars = free_vars + [v]

basis = []

sol_string = ','.join(sol_vec) # condense to a string for ease
for v in free_vars: # run through free variables
s = sol_string
s = s.replace(v,'(1)") # substitute 1
for w in free_vars: # substitute O for other free vars
if w != v:
s = s.replace(w,'(0)")
s = s.split(',") # make into a vector
basis = basis+[s]
for k in range(len(basis)): # simplify members of basis
for j in range(len(basis[k])):
if '=' in basis[k][j]:

right_side = basis[k][j].split('="')[1]
basis[k] [j] = ar.main(right_side) [0]
else:
basis[k] [j] = ar.main(basis[k] [j]) [0]
return basis
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-- Sample Run ------—-—--

Input:

A=1'1,2,3,4,5,6,7; 8,9,10,11,12,13,14; 15,16,17,18,19,20,21;\
22,23,24,25,26,27,28'

A = tl.string2table(A3)

KB = kernel_basis(A)

tl.format_print(KB,2, 'right') # print basis vectors

print('\n')

#check that Au = zero list for all u in KB
for u in KB:
print (mult_mat_vec(A,u))

Output:

1 -2 1 0 0 0 O # basis vectors
2 -3 01 0 0 O

3 -4 00100

4 -5 000 1 0

5 -6 0 0 0 0 1

[r0', '0', '0', '0'] # Au = zero list
['0', o', '0', 10']

[IOI’ |0|’ IOI, |0|]

[IOI’ o', '0', 10']

[IOI’ |0|’ IOI’ vov]
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The determinant of a square matrix A is a certain number calculated from the entries of A.
In this chapter we describe and implement in Python several ways to find that number, and
give some properties and applications. The module is headed by the import statements

import
import
import
import
import
import
import

-—= -Determinants.py --————----———-——————————-
Tools as tl
Arithmetic as ar
LinSolve as 1ls
MatAlg as mat
Vectors as vec
PolyAlg as pa
MultiAlg as mu

12.1 Permutations

The standard definition of a determinant requires the notion of permutation and parity. A
permutation of a set of symbols is an arrangement of the symbols. For simplicity, we shall
always take the symbols to be integers 1, 2,...,n for some n, called the length of the
partition. We denote a permutation by a list and the collection of permutations by a list of
these lists. For example, the list of length three permutations is

(1, 2,

31, 1, 3, 21, [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
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The number of permutations of n symbols is n!, since there are n different ways to choose
the first symbol of the permutation, and for each of those n — 1 ways to choose the second
symbol, resulting in n(n — 1) ways to choose the first two symbols, etc.

The function permutations (n) returns the list of permutations of length n. It does so by
first creating a list of single number lists, then attaching a distinct second number to each of
the single number list to form a list of double number lists, etc. The process continues until
the desired list of permutations is obtained. In the code we have included print statements

that illuminate the process.

def permutations(n): # generates length n perms
perms = [[k] for k in range(1,n+1)] # first list (singles)
perm_lists = [perms] # put in list of perms
print (perms) # first step
for i in range(1l,n): # generate higher order lists

previous_perms = perm_lists[i-1]
new_perms = []

for j in range(l,n+1): # attach symbols to previous perms

for k in range(len(previous_perms)):
if j not in previous_perms[k]:
new_perms.append([jl+previous_perms [k])

perm_lists.append(new_perms) # next higher length perm
print (new_perms) # print newest perm list
return perm_lists[len(perm_lists)-1] # last: the desired list
Sample Run --
Input:
permutations(3)
Output:

[[11, [21, [31]
(ft, 21, [1, 31, (2, 11, [2, 3], [3, 11, [3, 2]]

(1, 2, 31, [1, 3, 21, [2, 1, 31, [2, 3, 1], [3, 1, 2], [3, 2, 1]]

A permutation p is said to be odd, respectively, even, if the number of pairs 7, j in the
permutation with i < j and p[i] > p[j] odd, respectively, even. The sign of p is —1 is the
permutation is odd, and +1 if the permutation is even. The following function returns the

sign of a permutation by counting the number of “out of order” pairs.

def permutation_sign(p):
L = len(p)
parity = 0
for i in range(L):
for j in range(i+1,L):
if p[j] < plil:

parity += 1 # i< j, pljl < plil

return (-1)**parity



12.2 Leibniz Formula for a Determinant 213

Sample Run -
Input:
p = [3,0,2,4,1]
q = [3,0,2,1,4]
print(permutation_sign(p),',', permutation_sign(q))
Output:
-1,1

12.2 Leibniz Formula for a Determinant

Let A be a matrix of size n, say

app ap -+ Ay
azp ax -+ axpy

Aapl Ap2 -+ Aun

The determinant of A, denoted by |A|, or det(A) is defined as the sum of all terms
s(p)aipa2p(2] - - - » npin]> Where p ranges through the permutations of p of the subscripts
1,2,...,nand s(p) is the sign of p. We write this explicitly as

app a2 --- din

azy) azp - -+ dp
=Y s(P)aip(aip(a) - - - dnpin):
peP

Aapl Ap2 -+ Apn

where P denotes the set of all permutations of 1, 2, ..., n. Here is a function that calculates
the determinant of a square matrix A using the Leibniz formula. As usual, we take the entries
taken be Gaussian rational numbers.

def det_leibnitz(A):
n = len(A[0]) # determinant size
perms = permutations(n)
d="0'
for p in perms:
d = ar.main(d + '+(' + perm_term(A,p) + ')')[0]
return d
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12.3 Laplace Expansion of a Determinant

The Laplace method of evaluating the determinant is recursive in that it depends on deter-
minants of matrices of lesser size, ultimately reaching the case n = 2:

ab

cdl= ad — bc. (12.1)

For n > 2 the value may be found by expansion along any row or column. We illustrate by
expanding along row 1 for the case n = 3:

apy apz a3
a a3 az) ax az) axn
azy axy azz| = dapj —ap + a3 .
asy ass asy ass asy asn
as) azy ass

The terms in the expansion are the entries of row 1, with alternating signs, multiplied by
second order determinants. These are obtained from the original matrix by deleting row 1
and, successively, the columns of the row 1 entries. Here’s an example:

123
456/ =1-
789

56
89

46
79

45
78

2. +3. =—3-2(—6)+3(=3) =0.

Any row may be used for expansion. Column expansions may also be used. The general
rule consists of multiplying an entry a;; by (—1)*/ times the determinant obtained by
deleting row i and column j. In evaluating a determinant one typically picks the row or
column with the most zeros so as to minimize the number of multiplications. We illustrate
with the following example, evaluating along first columns.

123 4 567
0567:l~089:1-5-89:1~5-8-10:400.
008 9 0010 010

00010

The matrices in the calculations are said to be upper triangular, having zeros below the main
diagonal. The above calculations show that the determinant of such a matrix is simply the
product of the entries along the main diagonal.

Here’s a recursive function that uses the first row of the matrix to evaluate a determinant.

def det_laplace(A):
n = len(A)
if n == 2: # base case
return ar.main( '('+ A[0OJ[0] + ') ('+ A[11[1] +')- \
('+ A[11[0] + ") ('+ A[0I[1] +') ") [0]
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d="o
for k in range(n):
B = remove_row_col(A,0,k)
sign = str((-1)*x*k)
d = ar.main(d + '+('+ sign +')('+ A[0][k] +') \
('+ det_laplace(B) + ')')[0]
return d

def remove_row_col(A,r,c):
# returns A with row r and column c deleted
n = len(A) # size of determinant
B=[l; C=10;D=1[]
for k in range(n): # append all rows except r
if k !=r:
B.append(A[k])
C = ls.transpose(B)
for k in range(n): # append all rows except ¢
if k != c:
D.append(C[k])
return ls.transpose(D)

The following version of det_laplace allow letters as determinant entries. These may
serve in applications as parameters or variables. It is gotten by replacing ar.main in the
above code by mu.main. The function will be useful later in calculating the characteristic

polynomial of a matrix.

def det_params(A):

n = len(A)
if n ==
return mu.main( '('+ A[OJ[0] + ') ('+ A[11[1] +')- \
(C'+ A[11[0] +')('+ Af0o][1] +')) ') [0]
d="'0"

for k in range(n):
B = remove_row_col(A,0,k)
sign = str((-1)*x*k)
d = mu.main(d + '+('+ sign +')('+ A[0][k] +') \
('+ det_params(B) + ')')[0]
return d

-- Sample Run -------
Input:

A = tl.string2table('1-x,1,2y;3,2-ax,-1;-1,2,3-xz")
print(det_params(A))

Output:
-ax”~3z+ax”"2z-2axy+2x"2z+3ax"2-3ax+xz+16y-8x
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12.4 Properties of Determinants

The following properties are useful several contexts, including evaluating determinants. The
reader will notice the connection of the first three properties with row operations on a matrix.
We exploit this connection in the next section.

e Switching a pair of rows (or columns) changes the sign of the determinant.

e Multiplying a row or column by a scalar k¥ multiplies the determinant by k. Thus rows or
columns may be factored.

Adding a multiple of one row to another does not change the value of the determinant.
The determinant of a matrix is the same as the determinant of its transpose.

The determinant of the product of matrices is the product of the determinants.

The determinant of the inverse of a matrix is the reciprocal of the determinant of the
matrix.

Here’s an example that uses the first three properties to evaluate a determinant. The
method is akin to the row echelon algorithm.

29 3 26 0 13 0
2 6 0 2222 _yl2 9 3|=(-2)|2 9 3
314 -5 314 -5 314 =5
i 13 0 13 0
%(—2)03 3|=(=2)-3-5/01 1
—3rl 413 05 -5 01 —1
12 +13 b3 0
=D 30)l01 1]|=60
00 -2

The last calculation uses the fact, as noted earlier, that the determinant of an upper triangular
matrix is the product of the entries along the main diagonal.

12.5 Determinants Using Row Echelon

The function det_echelon(A) uses the properties in the preceding section to evaluate the
determinant of A. It does so by running 1s.row_echelon(A), which, recall, produces not
only the reduced row echelon form R of A but also the number switches of row switches
and the product prod of the matrix entries whose reciprocals are the scalar multipliers in
type 2 operations during the pivoting process. Since R is an upper triangular matrix, det(R)
is the product of its diagonal elements. Multiplying det(R) by prod and by (-1) “switches
undoes the effects of row operations on A and so produces det(A).



12.6 Cramer’s Rule 217

def det_

n
R
d
for

s
p

echelon(A):

len(A[0]) #size of determinant
1s.row_echelon(A) [0]

R[0] [0] # first diagonal entry
k in range(1,n): # get product of diagonal entries

d = ar.main( '('+ d +')(C+ R[kI[k] +')")[0]
str((-1)*x1ls.switches)
1s.prod

return ar.main('('+ d +")('+ s +')('+ p +')")[0]

The echelon method of evaluating a determinant is far superior to the previous methods
considered. For example, using det_echelon(A) on the matrix

0 0000000001
0 0000000020
0 0000000300
0 0000004000
0 0000050000
A=|0 0000600000
0 0007000000
0 0080000000
0 0900000000
010000000000
1 0000000000

1

produces the value —39916800 almost instantaneously while the other methods basically
give up (at least on the author’s machine).

12.6 Cramer’s Rule

Determinants provide another way to solve n x n systems of equations

ajxy +apxy +---+apx, = by

ax1x1 +axnxy + -+ amx, = by
(12.2)

ap1X1 + apaXxa + -+ + appxp = by.

To describe the method, write the system in matrix form as AX = B and let Ay be the matrix
obtained by replacing column k by the column B:
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ar -+ arg—1 b1 ay gy ---a

a - app—1 by ax ey - a
A =

anl -+ Apk—1 by Ank+1 ***Adnn

Cramer’s rule asserts that if det(A) # 0, then the system (12.2) has the unique solution
(x1,...,x,), where xy = |Ax|/|A|. The method is readily implemented in Python:

def cramer_rule(A,B):

S =[] # for solution list

d = det_echelon(A)

if d == '0': return []

for k in range(len(A[0])):
C = replace_col(A,B,k) # replace column k of A with B
c = det_echelon(C)
ratio = ar.main(' ("+c+')/'+' ("+d+') ") [0] # c/d
print('x'+str(k+1)+'=',ratio) # print equations
S.append(ratio)

return S

def replace_col(A,B,col):
n = len(A) # size of determinant
c=10
At = ls.transpose(A)
for k in range(n):

if k < col: # keep column k of A
C.append(At[])

if k == col: # replace column col with B
C.append(B)

if k > col and k < n: # keep column k of A

C.append (At [k])
return ls.transpose(C)

Sample Run -----——--
Input:

A="'1,2,3;5,-3.1-i,1;-1,5,6+2i'; B = '4,7,8'

A = tl.string2table(A)

B = tl.string2list(B)
print('\n',cramer_rule(A,B))

Output:

x1= 141106/155945+(182612/155945) i
x2= 46/31189+(45212/31189)i

x3= 160738/155945-(211544/155945) i

['141106/155945+(182512/155945)i', '46/31189+(45212/31189)i',
'160738/155945-(211544/155945)1"']
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The function cramer_rule_params(A,B) is a version of cramer_rule (A,B) that allows
parameters or variables in the matrices A or B. The main difference is that it uses det _params
instead of det_echelon to calculate determinants. Equations with parameters are particu-
larly useful in modelling situations that occur in areas such as physics and economics where
one might need to see how solutions are affected by changing some of the specifics of the
model, these represented by the parameters. The sample run for the case of a single param-
eter shows how the parameter shows up in the solution and how a slight variation of the
parameter affects solution values.

def cramer_rule_params(A,B):

S = [1 # for solution
d = det_params(A)
if d == '0': return []

for k in range(len(A[0])):
C = replace_col(A,B,k)
¢ = det_params(C)

ratio = '('+ c +")/'+' ('+ d +')!
print('x'+str(k+1)+'="',ratio)
S.append(ratio)
return S # solution list
def evaluate_cramer(S,substitutions,p): # p = decimal places

for k in range(len(S)):
e = mu.evaluate(S[k],substitutions,p)

print ('x'+str(k+1)+' =',e)
Sample Run ------

Input:
A ='-3,2a,-5;-1,0,-2;3.09876,-4,1"'
B ="'1,2,3+a'
A = tl.string2table(4)
B = tl.string2list(B)
S = cramer_rule_parameter (A,B)

print('\n')

print('a = 1')
evaluate_cramer(S,'1',5)
print('\n')

print('a = 1.0001:')
evaluate_cramer(S,'1.0001',5)

Output:

x1= (-4a~2-16a+32)/((-64969/6250)a+4)

x2= (-a+52469/3125)/((-64969/6250)a+4)

x3= (2a"2+(114969/6250)a-20)/((-64969/6250) a+4)

a=1:
x1 = -1.87646
x2 = -2.46912

x3 .-6178
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a = 1.0001:
x1 = -1.87578
x2 = -2.4687
x3 = .-6212

12.7 Application: Common Root of Polynomials

Determinants may be used to discover whether a two polynomials
X" + a1 X"V aix 4+ ag, bux™ + by x4 4 byx + by, (12.3)

have a common root. Consider the special case m = n = 2. As a first step we observe that if
each equation has a root r, then, by long division of polynomials, we obtain

a2x2 +ajx +ag = (x —r)(c1x + ¢cp) and b2x2 +bix +by=(x —r)dix + dp)

for some constants ¢; and d;. Solving each equation for x — r and equating the result we

have
arx? +ajx + ag box? 4+ bix + bo
G Bk 0 M RS L Sl B4
c1x +co dix + dy
and so

(a2x? + a1x + ap)(d1x + do) = (bax* + bix + bo)(c1x + o).

Multiplying and collecting terms on each side of the last equation yields

a2d1x3 + (a1dy + Clza’o)x2 + (apdy + a1dy)x + aody
= b201x3 + (b1c1 + bz(:o)x2 + (boc1 + bico)x + boco.

Since this holds for all x, the coefficients of like powers of x must be equal:
axd; = bycy, ardy + axdg = bicy + baco, aody + aydo = boct + bico, aodo = boco.

We regard this as a system of four linear equations in the four unknowns di, dy, —c; and
—C0-
ad, + ba(—cy) =0
aidy + azxdp + bi(—c1) + ba(—co) =0
aopdy + aidy + bo(—cy1) + bi(—co) =0
apdp + bo(—co) =0

By Cramer’s rule this has a nontrivial solution if and only if the determinant of the system
is zero:
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a 0 by O
ay ay by by

ag ai bg by
0 ag 0 by

Taking transposes we obtain the equivalent condition

ay ar ap 0
0 az ay ao| _
byby by 0|
0 by by by

the rows comporting nicely with the standard notation for polynomials.
One shows in a similar manner that polynomials (12.3), for the case m = n, have acommon
root if and only if

am an’l—l e al aO O e O
0 amw am—1--- ar ap---0

-0
O DR 0 am am_l DRCEEY al aO _0
bm b1 -+ by by 0 --- 0|
0 by buy_1- by by 0
0 - 0 by by by by

For the case m # n we can prepend zero terms to the polynomial with lowest degree.
For example, for m = 2 and n = 3 we can write the quadratic (contrary to convention) as
0x3 + ax? + a; x + ap = 0. The resulting determinant is

0 ayajag O
0 0 ax a; ag
bz by by bg O
0 b3 by by by

=0,

Here is a program that takes as input two polynomials P, Q and returns True if they have
a common zero and False otherwise.

def has_common_root (P,Q):

listP = pa.main(P) [1] # get the flists of the polynomials
listQ = pa.main(Q) [1]

M = make_mat(listP,listQ) # make the matrix
tl.format_print(M, 2, 'right') # display matrix

return det_echelon(M) == '0'

def make_mat(listP,listQ):
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M= []

LP = len(listP), LQ = len(listQ)

if LP < LQ: # prepend zeros to listP
1listP = tl.zero_list(LQ - LP) + listP

if LQ < LP: # prepend zeros to listQ
1listQ = tl.zero_list(LP - LQ) + listQ

LP = len(1listP); LQ = len(1listQ) # adjust values

for j in range(LP): # make top half of matrix

row = tl.zero_list(j) + 1listP + tl.zero_list(LQ-1-j)
M.append (row)

for j in range(LQ): # make bottom half of matrix
row = tl.zero_list(j) + 1listQ + tl.zero_list(LP-1-j)
M.append (row)

return M
Sample Run ------

P="'x"2+2x + 3'; Q= "4x"3 + bx"2 + 6x + 7'
print (has_common_root(P,Q),'\n"')
P = 'x"2-2x+1"'; Q = 'x"3-3x"2+3x-1'
print (has_common_root (P,Q))
Output:
01 2 3 0 0 O 0 1 -2 1 0 0 0
0O 01 2 3 0 O 0 0 1 -2 1 0 0
0O 0 01 2 3 0 0 0 0 1 -2 1 0
0O 0 0 0 1 2 3 0 0 0 0 1 -2 1
4 5 6 7 0 0 O 1 -3 3 -1 0 0 0
0 4 5 6 7 0 0 0 1 -3 3 -1 0 0
0O 0 4 5 6 7 0 0 0 1 -3 3 -1 0
0O 0 0 4 5 6 7 0 0 0 1 -3 3 -1
False True

12.8 Application: Plane Through Three Points

A plane in a three dimensional xyz coordinate system has equation of the form ax + by +
cz +d = 0, where the constants a, b, and c are not all zero. Four points (x, y, z), (x1, ¥1, 21),
(x2, ¥2, 22), (x3, ¥3, z3) in space are said to be co-planar if they lie on the same plane, that
is, if there exist a, b, ¢, d, with a, b, and ¢ not all zero, such that

ax+by+cz+d=0
ax;+byi+cz1+d=0
axy+byry+czo+d=0
axz3+bys+czz3+d=0
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This may be viewed as a system of linear equations in the variables a, b, ¢, d. It has a
nontrivial solution if and only if

xy z1

xyyrz1l

x2y2 221

x3y323 1

Thus if three given points (x1, yi1, z1), (x2, 2, 22), and (x3, y3, z3) do not lie on the same
line, then a variable point (x, y, z) lies on the plane if and only if the previous determinant
equality holds. Expanding the determinant along the first row yields the alternate form
Ax — By + Cz = D, where

yiz1 1 x1z1 1 x1 1 X1 Y1 21
A=ymznll,B=xzll,C=x2nl|l, D=|x 2.
y3 23 1 x323 1 x3 y3 1 X3 Y3 23

Here is a function that takes three points given as the Python lists P1 = [x1,y1,z1],P2
= [x2,y2,z2],and P3 = [x3,y3,z3], and returns the equation of the plane through these
points.

def plane(P1,P2,P3):
A = [[P1[1],P1[2],'1'], [P2[1],P2[2],'1'], ([P3[1],P3[2],'1'] ]
B = [[p1[0],P1[2],'1'], [P2[0],P2[2],'1'], [P3[0],P3[2],'1'] ]
¢ = [[p1[0],P1[1],'1'], [P2[0],P2[1],'1'], ([P3[0],P3[1],'1'] ]
D = [[P1[0],P1[1],P1[2]],[P2[0],P2[1],P2[2]], [P3[0],P3[1],P3[2]]]
A = det_echelon(A)

B = det_echelon(B)

C = det_echelon(C)

D = det_echelon(D)

A = tl.add_parens(A)

B = tl.add_parens(B)

C = tl.add_parens(C)

D = tl.add_parens(D)

eqn=A+ le 1 - 1 +B+ Iyl 1 + 1 +C+ lzl "= +D

return tl.fix_signs(eqn)

Sample Run ------
Input:

P1 ='1,0,-3"'.split(',"')

P2 ='0,-2,3'.split(',")

P3 ='1,-4,0'.split(',"')

print(plane(P1,P2,P3

Output:
18x+3y+4z=6
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12.9 Application: Sphere Through Four Points

A sphere with center (a, b, ¢) and radius r is given by the equation
@=a+ (-0’ +@-0?=r% (12.4)

where (x, y, z) are the coordinates of a general point in space. Given four points (x1, y1, z1),
(x2, ¥2, 22), (x3, ¥3, 23), and (x4, y4, z4) that do not lie in the same plane, there exists a unique
sphere containing these points. This is seen by solving the following system of equations
fora, b,cand r:

@1 =) + (1 = b + @ — o =r?

(@ —a)’+ =0’ + (@0’ =r

=)+ (3 =0+ (@ -0 =r

(4 —a)* + (4 —b) + (24— 0)* =1
These are nonlinear equations, but the system may be linearized by expanding the equations
and rewriting the system. For example, expanding the first equation gives

x? —2xia+a*+y} —20b +b* + 21 = 2z1c + ¢* =12,

which may be written

2

2x1a+2y1b+211c‘+r2—az—bz—c =x12+y12+z%.

2 _p2_ 2

Thus, setting k = r> — a — ¢”, we may write the above system as

2x1a 4+ 2y1b +2z1c +k :x12+y12+z%

2x2a +2y2b +2z0c +k = x% + y% +z%

2x3a + 2y3b 4+ 2z3¢c + k = x% + y32 + z%
This is a linear system which may be solved for the unknowns a, b, ¢, k, and consequently
for r, by using Cramer’s rule on the matrices

2x1 2y1 2271 1 Xyt
A=|2x2y:2221 | and B=| x3 +y3+23
2x3 2y3 2z3 1 X3+ + 4

The function sphere (P1,P2,P3,P4) implements this process. It takes as input the four
points, written as lists of coordinates x;, y;, z;, and outputs the center and the radius of the
unique sphere through these points.
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def sphere(P1,P2,P3,P4):

A=1[1; B=11

x1 = P1[0]; y1 = P1[1]; z1 = P1[2]
x2 = P2[0]; y2 = P2[1]; z2 = P2[2]
x3 = P3[0]; y3 = P3[1]; 23 = P3[2]
x4 = PA[0]; y4 = P4[1]; z4 = P4[2]
all = ar.main('2('+ x1 +') ') [0]

al2 = ar.main('2('+ y1 +')')[0]
al3 = ar.main('2('+ z1 +') ") [0]
A.append([all,al12,a13,'1'])

a2l = ar.main('2('+ x2 +') ') [0]
a22 = ar.main('2('+ y2 +')')[0]
a23 = ar.main('2('+ z2 +') ') [0]

A.append([a21,a22,a23,'1'])

a3l = ar.main('2('+ x3 +') ') [0]
a32 = ar.main('2('+ y3 +')')[0]
a33 = ar.main('2('+ z3 +') ') [0]
A.append([a31,a32,a33,'1'])

a4l ar.main('2('+ x4 +') ') [0]
a42 = ar.main('2('+ y4 +')')[0]
a43 = ar.main('2('+ z4 +') ') [0]
A.append([ad41,a42,a43,'1'])

bl = ar.main(x1l+'"2+' + y1 +'"2+!
b2 = ar.main(x2+'"2+' + y2 +'"2+'
b3 = ar.main(x3+'"2+' + y3 +'"2+!
b4 = ar.main(x4+'"2+' + y4 +'"2+'

B = [b1,b2,b3,b4]
C = cramer_rule(A,B)
if ¢ == [1:
print('no sphere')
return '',"’

a,b,c,k = Cc[0], C[1], Cc[2], C[4]

d = |(|+ a +|)"2+| + |(|+ b +|)'\2+| + |(|_+_ c +|)"2|

rsquared = ar.main(k + '+' + d)[0]
radius = '('+ rsquared + ')~ (1/2)'
center = [a,b,c]

return center,radius

- Sample Run
Input:
P1 ='1,0,3'.split(',")
P2 ='0,2,3'.split(',")
P3 ='1,4,0'.split(',")
P4 ='1,2,5'.split(',")

z1l +'72')[0]
z2 +'°2')[0]
z3 +'72') [0]
z4 +'"2')[0]

+ + + o+
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center, radius = sphere(P1,P2,P3,P4)
print('center ',center)
print('radius ' ,radius)

Output:
center
radius

['53/14', '37/14', '33/14']
(2971/196) " (1/2)

12.10 Eigenvalues and Eigenvectors

An eigenvalue of an n x n matrix A is a number x such that AX = xX or, equivalently,
(A —xI)X =0, for some nonzero vector X. The vector X is then called an eigenvector of
A associated with the eigenvalue x. The eigenspace of A associated with the eigenvalue x
is the zero vector together all eigenvectors. Thus the eigenspace is the kernel of the matrix
(A —xI).

By Cramer’s rule the equation (A — x/)X = 0 has a non trivial solution X if and only
if det(A — xI) = 0. The latter equation is called the characteristic equation of A and the
determinant the characteristic polynomial of A. Eigenvalues have important applications in
several disciplines, particularly in physics and engineering.

The following program returns the characteristic polynomial of A. It uses the function
det_params of Sect. 12.3.

def char_pol(A):
B = tl.string2table(A)
for i in range(len(B)):
B[il[i] = '(' + B[i]J[i] + '-x)' # subtract x from diagonal
return det_params(B)

Sample Run -
Input:

A = '1+i,2-3i,3;4,5,6;7,8-51,9'

print (char_pol(A))

Output:
-x"3+(15+i)x"2+(18-561)x+(-30-511i)

The Cayley-Hamilton theorem asserts that substituting A into its characteristic polynomial
results in the zero matrix. For example, the characteristic polynomial of A = [1%]is
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1—x 2
3 4—x

=x?—5x—2

Substituting A into this (replacing 2 by 2I) gives

BiRsHS HR

Here’s a simple program that illustrates the Cayley-Hamilton theorem for any n x n
matrix.

def caley_hamilton(A):
c = char_eqn(4)
c = c.split('=")[0] # left side of equation
constant_term = ar.evaluate(c,'0','')[0]
# subtract constant term:
¢ = pa.main(c + '-(' + constant_term + ')') [0]
c.replace('x','A") # expression in A
# add back constant term times I
c =c+ '+(' + constant_term + ')A"O'
matrix_list = ['A='+A] # 1s.calculator requires this format
return ls.calculator(c,matrix_list)

(¢}
]

Sample Run -------
Input:

A = '1+3i,(2-7i)"°3,3/7.12i; 4.8,5.9,6 -.8i;7/11,8.4,(9-.0987i)"2"'
tl.format_print(caley_hamilton(A),2, 'right')

Output:

o O O
o O o
o O o

12.11 Adjugate Matrix

The adjugate of a square matrix A, denoted by adj(A), is constructed as follows: First,
for each i, j, calculate the determinant M;; of the matrix obtained by removing row i and
column j from A. Then multiply M;;, the so-called ij minor of A, by (—1)'*/ to obtain the
i, j cofactor A. The matrix whose ij entry is C;; is called the cofactor matrix C of A. For
example,
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+ 28] —-[58] +[53]
123
a=l4as6| c=|—|23| +|48]. —|43)
789
+35]. —143] +[43]

(We have inserted commas between entries so that we could illustrate the sign pattern
without causing confusion.) The adjugate of A is defined as the transpose of the cofactor
matrix of A.

The function adjugate (A) returns the adjugate of a matrix. The sample run illustrates
the general property that the adjugate of A divided by the determinant d of A is the inverse
of A (provided d # 0).

def adjugate(A):

n = len(A)

B =[]

for j in range(n):
row = []

for k in range(n):
C = remove_row_col(A,j,k)
d = det_echelon(C)
sign = str((-1)*x(j+k))
d = ar.main('(' + sign + '")(' +d + ')')[0]
row = row + [d]

B.append (row)

return ls.transpose(B)

- Sample Run ------
Input:
A="2,2,3; \
4,5,6; \
7,8,9'

A = tl.string2table('2,2,3;4,5,6;7,8,9')
Adj = adjugate(d)

print('adjugate of A')
tl.format_print(Adj,2,'right'); print('\n')
B = 1s.mult_mat (Adj,A)

print('A times the adjugate of A')
tl.format_print(B,2, 'right'); print('\n')
print('determinant of A')
print(det_echelon(A))

Output:
adjugate of A
-3 6 -3

6 -3 0

-3 -2 2

A times the adjugate of A



12.11  Adjugate Matrix 229

-3 0 0
0 -3 0
0 0 -3

determinant of A
-3

The function adjugate_params is a version of adjugate that allows entries that are
variables. It is gotten by replacing ar.main in the preceding function with mu.main and
has the same defining property, as illustrated in the sample run using a modified version of

mult_mat.

def adjugate_params(A):

n = len(4)

B =[]

for j in range(n):
row = []

for k in range(n):
C = remove_row_col(A,j,k)
d = det_params(C)
sign = str((-1)*x(j+k))
d = mu.main(' (' + sign + '")(' +d + ')')[0]
row = row + [d]

B.append (row)

return ls.transpose(B)

def mult_mat_params(A,B):

c=1

for i in range(len(A)): # run through rows of A
Crow = []
for j in range(len(B[0])): # run through cols of B

s = '0'
for k in range(len(A[0])):
s = s+ "+C+A[L] [k]+') ("+B k]I [3]+"D"
s = mu.main(s) [0]
Crow.append(s)
C.append (Crow)

return C
-- Sample Run -------

Input:
A= 12,2x"2,3; \

4x+y,5,6; \

7,8,-3ax'
A = tl.string2table(4)
print('A:")

tl.format_print(A,2,'right'); print('\n')

Adj = adjugate_params(A)
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print('adjugate of A:')
tl.format_print(Adj,2,'right'); print('\n')

B = mult_mat_params(Adj,A)

print('A times the adjugate of A:')
print(B); print('\n')
print('determinant of A:')
print(det_params(A))

Output:
A:
2 2x72 3
Ax+y 5 6
7 8 -3ax

adjugate of A:
-15ax-48 6ax"3+24 12x72-15
12ax”2+3axy+42 -6ax-21 12x+3y-12
32x+8y-35 14x72-16 -8x"3-2x"2y+10

A times the adjugate of A:
[['24ax"4+6ax”3y+84x~2-30ax+96x+24y-201', '0', '0'], \
['0', '6ax"3y+24ax~4+84x"~2-30ax+24y+96x-201', '0']1, \
['0', '0', '6ax”3y+24ax”4-30ax+84x"2+24y+96x-201"']]

determinant of A:
6ax”3y+24ax~4-30ax+84x"2+96x+24y-201

The sample run shows that

-1

2 2x% 3
4x+y 5 6
7 8 —3ax

1
T 6ax3y 4 24ax* + 84x2 — 30ax + 24y + 96x — 201 *

—15ax —48  6ax> +24 12x%2 - 15
12ax? + 3axy + 42 —6ax —21  12x +3y — 12
32x 48y —35 14x*—16 —8x3y —2x2y + 10
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Multivariable Algebra with Parameters 1 3

In this chapter we construct the module MultiAlgParams . py, which generalizes the module
MultiAlg.py by allowing monomial coefficients to include parameters. Parameters, like
scalars, are treated by the module as constants and placed in the first position of a monomial
list. But unlike scalars, they have no given value during a particular program run. They are
useful in several ways. First, they allow the user to test variations of a function to illuminate
the nature of a particular process or model. Second, they are convenient in situations that
require undetermined coefficients, for example the expansion of a rational function into
a sum of partial fractions or the generation of integer summation formulas. The last two
notions are explore in sections at the end of the chapter.

To avoid confusion, variables are required to be lower case letters and parameters upper

case letters. For example
Ay Bx Cz

xz—1+yz—2+xy—3

is an expression of the required type, with A, B, C the parameters and x, y, z the variables.
The module MultiAlgParams.py is almost identical to MultiAlg.py but with obvious
differences necessitated by the appearance of letters (parameters) in the coefficient entry of a
monomial list. In the following sections we show how the relevant functions in MultiAlg. py
must be modified. For convenience and to avoid possible conflicts we have included in the
module MultiAlgParams.py functions from MultiAlg.py that require no change.
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13 Multivariable Algebra with Parameters

The module is headed by the import statements

import Number as nm

import Arithmetic as ar

import Tools as tl

import MultiAlg as mu

import LinSolve as 1s

import PolyAlg as pa

import PolyDiv as pd

from operator import itemgetter

MultiAlgParams.py -- - _

13.1 The Module

The following subsections describe the specific modifications needed for the inclusion of

parameters.

Main Function

The function main (expr) takes the place of the eponymous function in MultiAlg.

def main(expr):
global idx
global varbs, varbs_list
global pars,pars_list
varbs = tl.get_lower (expr)
pars = tl.get_upper(expr)
if varbs == '' or

return mu.main(expr)

varbs_list = list(varbs)
pars_list = list(pars)

pars == '':

# variable letters in expr
# parameter letters in expr

expr = tl.attach_missing_exp(expr,varbs+pars)

expr = tl.fix_signs(expr)
expr = tl.fix_operands(expr)

expr = tl.insert_asterisks(expr,varbs+pars)

idx = 0

R = allocate_ops(expr,0)
num = R[0]

den = R[1]

num = combine_monos (num)
den = combine_monos (den)
num = sort_list(num)

den = sort_list(den)

ratlist = [num,den]

rat = list2rational(ratlist)

# beginning of expr
# make the calculations
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irat, iratlist = list2int_rational(ratlist)
return rat,ratlist,irat,iratlist

Sample Run ------
Input:

expr = 'Ay/(Bx-1.1) + Cx/(Dz-2.2)'

rat, ratlist, irat, iratlist = main(expr)
print(rat, '\n)

print(irat) # integer coefficients

Output:
(BCx~2+ADyz+(-11/10)Cx+(-11/5) Ay) / (BDxz+(-11/10)Dz+(-11/5) Bx+(121/50))
5(10BCx"2+10ADyz-11Cx-22Ay) / (50BDxz-55Dz-110Bx+121)

Calculations

As before, calculations are performed on multilists. Here are the revised calculation func-
tions, obtained by substituting mu.main for ar .main to handle calculations involving param-
eters.

def combine_monos(P):

Q=10
for i in range(len(P)-1):
if P[i] == '': continue # already added
M = P[i] # ith monomial: [coeff,powers]
if M == [1 or M[0] == '0':
continue
for j in range(i+1l,len(P)): # add succeeding like monos to M
if P[j] == '': continue
N = P[j]

if M[1:] == N[1:]: # if powers the same, add the coeffs
coeffsum = mu.main(M[0] + '+(' + N[0] +')")[0]
M[0] = coeffsum # update M's coefficient
P[j]1 = "' # mark as already added
Q.append(M) # append nonzero monomial in P[i]
leftover_mono = P[len(P)-1]

if leftover_mono !'= '' and leftover_mono[0] != '0':
Q.append(leftover_mono) # pick up leftover monomial at end
return Q

The change in the allocator function is the inclusion of the following elif statement,
which converts a parameter into a rational list.
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elif ch in pars:
idx +=1
exp,idx = tl.extract_exp(expr, idx)
exp = ar.main(exp) [0]
ch=ch+ '"" + exp
R = scalar2rat(ch,len(varbs))

List to Monomial

The difference here is the use of mu.main:

def list2monomial (Mlist):

# takes monomial list and returns monomial

expr =
coeff = Mlist[0]

coeff = mu.main(coeff) [0]
if coeff == '0' or coeff == '-0':
return 'O’

if len(Mlist) ==
return coeff

mono = ''

for i in range(1,len(Mlist)):
var = varbs_list[i-1]
exp = Mlist[i]
#print (2224,1i,var,exp)

# exponent of variable

if exp > 1:
mono = mono + var + '"' + str(exp) # attach exp != 1
elif exp == 1:
mono = mono + var
if coeff == '1':
coeff = "' # coeff 'l' not needed
if coeff == '-1':
coeff = '-!
if coeff != '' or exp != 0:
coeff = tl.add_parens(coeff)
expr = coeff + mono
expr = tl.fix_signs(expr)
return expr
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Integer Coefficients

Here is the replacement for the function that converts to integer coefficients.

def list2int_rational(R):

numR = R[0]; denR = R[1]
if numR == denR:

return '1',"''
lcmP,P = clear_pol(numR)
lcmQ,Q = clear_pol(denR)
factor = mu.main(lcmQ +'/'+ lcmP) [0]
irat_list = [P,Q]
irat = list2rational(irat_list)
if factor == '1': factor = "'
factor = tl.add_parens(factor)
irat = tl.add_parens(irat)
return factor+irat, irat_list

Evaluating an Expression

The evaluation function takes the following form in the parameter setting.

def evaluate(expr,substitutions):
substitutions = substitutions.split(',')
for i in range(len(substitutions)):

substitutions[i] = substitutions[i].replace(' ','"')
var,val = substitutions[i].split('="')
if var == '' or var not in expr: continue

expr = expr.replace(var,'(' + val + ')"')
expr = tl.fix_signs(expr)
if tl.has_no_letters(expr):

return ar.main(expr)[0],'','"',""
return mu.main(expr)

13.2 Application: Sums of Integer Powers

In this section we construct a program that finds a closed expression for sums of the form
Sn,p)=17 427 ... 4 n?

where n and p are positive integers. To see how this works, consider the case p = 2. We
assume that S(n, 2) is a polynomial in n of degree 3 with no constant term (a leap of faith):

S(n,2) = An®> + Bn* + Cn
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We then have
Sn+1,2)=An+ 1) +Bn+1)>+Cn+1).

On the other hand,
S(+1,2) = S(,2) + (n + D* = (An® + Bn* + Cn) + (n + 1)
Subtracting the two versions of S(n, 2) and collecting like powers yields

0=A(m+1D>=n)+B((n+ D> =n?)+C(n+ 1) —n) — (n+1)>
=AGR? +3n+1)+B2n+1)+C—@m>+2n+1) (13.1)
=BA-Dn*+BA+2B—2n+(A+B+C—1).

Equating coefficients to zero we obtain the system

3A =1
3A + 2B =2 (13.2)
A+B+C=1

The solutions are easily seen to be A = 1/3, B =1/2, and C = 1/6, leading to the closed
formula
S(n,2) =n’/3+n*/3+n/6=n(n+1)Q2n+ 1)/6.

Several functions are needed to implement the algorithm. The first forms the differences,
as in (13.1), but in list form.

def pol_diff(p):
term = ''
for k in range(p+1):
letter = tl.upper [k]
power = p-k+1
term = term +'+'+ letter +'((n+1)"'+ str(power) +'-n~'\
+ str(power) +')'

term = term + '- (n+1)"' + str(p)
return main(term) [1] [0] # no denominator
Sample Run -------
Input:

print(pol_diff(2))

Output:
[['3A-1', 2], ['3A+2B-2', 1], ['A+B+C-1', 0]]
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The next function equates to zero the coefficient expressions in the output of pol_diff (p)
and then uses linsolve to find the coefficients.

def get_coefficients(p):
egns = ''
pol_diff_list = pol_diff(p)
for k in range(p+1):
eqns += pol_diff_list[k][0] + '= 0,
coeffs = 1s.linsolve(eqns[:len(eqns)-1],'','' ,False)
return coeffs

-- Sample Run --———————-
Input:
print(get_coefficients(2))

Output:
['A=1/3', 'B=1/2', 'C=1/6"]

The final function creates the formula from the coefficient. Print statements chronical the
evolution of the formula.

def make_formula(p):
coeffs = get_coefficients(p) #e.g. ['A=1/3','B=1/2"','C=1/6"]
formula = "'
L = len(coeffs)
for k in range(L):
if coeffs[k] == '0': continue
coeffs[k] = coeffs[k].split('=')[1] # e.g. 1/3,1/2,1/6
coeffs[k] = tl.add_parens(coeffs[k])
formula = formula + '+' + coeffs[k] + 'n"' + str(L-k)

formula = formula.replace('"1','")
formula = tl.fix_signs(formula)
formula = pa.main(formula) [4] # integer coefficient pol

formula = pd.factor_polynomial (formula)
return formula

- Sample Run -------
Input:
print (make_formula(11))

Output:
((1/12) (n"8+4n"7+2n"6-8n"5+(-5/2)n"4+13n"3+(-3/2)n"2-10n+5) ) (n+1) "2n"2
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13.3 Application: Partial Fractions

A partial fraction expansion of arational function R(x) = P(x)/Q(x) is asum of a polynomial
Pp(x) and terms Ry (x) that are rational functions with denominator degree at most 2 and
numerator degree at most 1:

R(x) = Py(x) + R1(x) + Rp(x) + -+ + R (x).

The expansion finds its most important use in finding the integral of a rational function.
If deg P > deg Q, then Py(x) may be found by the division algorithm. Accordingly, we
consider only the case deg P < deg Q.

For the method to work it is necessary that Q (x) be factored into a product of linear factors
ax + b and irreducible quadratic factors ax* + bx + c. The term irreducible means that the
equation ax? + bx + ¢ = 0 has no real solutions, that is, b> — 4ac < 0. In the discussion that
follows we consider only the case where @ = 1, since this may be achieved by factoring out
the a’s in Q and adjusting P(x)/Q(x) accordingly, for example,

P(x) _ I P(x)
BGx+2)5x2+3x+1) 15 (x +2/3)(x2+3/5x + 1/5)

The following examples demonstrate the various cases that occur in partial fraction expan-
sions. In each case there are unique constants A, B, ... for which the equation holds.

Case 1: Q is a product of distinct linear factors:

2x +5 . A + B
x—-Dx+2 x—-1 x+2

Case 2: Q is a product of linear factors, some repeated:

2x +5 A N B N c
x—-D2x+2) x—-1 @x-1D2 x+2

Case 3: Q is a product of distinct irreducible quadratic factors:

B+2 _ Ax+B +Cx+D
G2 +x+DE2+D T x24+x+1 0 x2+41°

Case 4: Q is a product of quadratic factors, some repeated:

3 +5 Ax + B Cx+D Ex+F

GC2Hx+DE2+D?2 T 24x+1 0 X241 (24D

Case 5: Q is a mix of linear and irreducible quadratic factors:

7x2+3 __A B Cx+D
E4+D2x2+2x4+5 x4+ x+D2 x242x+45
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To find the values of the constants A, B, ..., one clears fractions, subtracts the left side
from the right, collects together coefficients of like powers, sets each of the collected coef-
ficient expressions to zero, and solves the resulting linear system.

We illustrate with the example in Case 5. Multiplying the equation by the denominator
of the left side yields

Tx* +3 = Ax + DO +2x +5) + B(x* +2x +5) + (Cx + D)(x + )%,
which we write as
AG A+ DG +2x +5) + BO® 420 +5) + (Cx + D) (x + 1) = (2% +3) = 0.
Expanding the left side and collecting coefficients of like powers we have
(A+Ox*+BA+B+2C+D—-Tx*+(TA+2B+C)x + (5A+5B +2D —3) =0.
Setting the coefficients to zero we obtain the system

A+C=0
3A+B+2C+D—-7=0
TA+2B+C=0
SA+5B+2D—-3=0

The solutions are then plugged into the equation in Case 5.

To implement the procedure in Python the coefficients of the rational function need to
be Gaussian rationals. The user enters the rational function R = P/Q, with Q factored
as explained above; the program returns its partial fraction expansion. The main function,
partial_fractions, carries out the general technique indicated in the above example. For
clarity, the code includes print statements to illustrate the steps.

def partial_fractions():
global equations, partials_cleared

print('Step 1: get numerator and denominator of rational:')
get_numerator_denominator ()
print (numerator,',',denominator,'\n')

print('Step 2: get denominator factors:')
get_denominator_factors()
print (denominator_factors, '\n')

print('Step 3: make template:')
make_template ()
print(template,'\n')
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print('Step 4: clear partial fractioms:')
clear_partial_fractions()
tl.print_list(partials_cleared,'v"')
print('\n')

print('Step 5: make expression from cleared partial fractiomns:')
make_expression()
print(expr,'\n')

print('Step 6: make equations:')
make_equations()
tl.print_list(equations,'v')
print('\n")

print('Step 7: get letter values:')
get_letter_values()
print(letter_values, '\n')

print('Step 8: print the expansion:\n')
print_expansion()

Here is a sample run.

Input:
rational = '(7x"2+3)/(x+1) (x+2) (x"2+2x+5) 3"
partial_fractions()

Output:
Step 1: get numerator and denominator of rational:
(7x°2+3), (x+1) (x+2) (x"2+2x+5) "3

Step 2: get denominator factors:
['(x+1)', ' (x+2)', '(x"2+2x+5)"3']

Step 3: make template:
(A, "(x+1)'1, ['B', '(x+2)'], ['(Cx+#D)', '(x"2+2x+5)'],
["Ex+F)', ' (x72+2x+5)72'], ['(Gx+H)', '(x72+2x+5)"3']]

Step 4: clear partial fractioms:

X 7+8x76+39x75+122x74+271x"3+420x " 2+425x+250
X"7+7x"6+33x"5+95x"4+203x " 3+285x " 2+275x+125
X"6+7x"5+28x74+70x"3+113x"2+115x+50
X"4+5x73+13x72+19x+10

X" 2+3x+2

Step 5: make expression from cleared partial fractions:
A(x"7+8x76+39x"5+122x"4+271x"3+420x " 2+425x+250) +
B(x"7+7x~6+33x"5+95x"4+203x " 3+285x " 2+275x+125) +
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(Cx+D) (x"6+7x"5+28x"4+70x "~ 3+113x"2+115x+50) +
(Ex+F) (x74+5x"3+13x"2+19x+10) + (Gx+H) (x~2+3x+2)

Step 6: make equations:

A+B+C= 0

8A+7B+D+7C= 0

39A+33B+28C+7D+E= 0
122A+95B+70C+28D+F+5E= 0
271A+203B+113C+70D+13E+5F+G= 0
420A+285B+115C+113D+19E+13F+3G+H-7= 0
425A+275B+50C+115D+10E+19F+3H+2G= 0
250A+125B+50D+10F+2H-3= 0

Step 7: get letter values:

[C'a+, 's/32'], ['B', '-31/125'], ['C', '367/4000'],
['o', '-5/32'], ['E', '123/200'], ['F', '-5/8'],
('¢', '37/10'1, ['H', '9/2']1]

Step 8: print the expansion:
(7x72+3)

(x+1) (x+2) (x"2+2x+5) "3

(367/4000)x-5/32

(x"2+2x+5)
(123/200)x-5/8
(x"2+2x+5) "2

(37/10)x+9/2

(x~2+2x+5) "3

For the remainder of the section we describe the functions used in steps 1-8. The
first, get_numerator_denominator, takes the original rational expression and splits it into

numerator and denominator.
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def get_numerator_denominator():
global numerator, denominator, rational
rational = rational.replace(' ','')
numerator, denominator = rational.split('/')

The function get_denominator_factors splits the factors of the denominator of the
rational into a list. It does so by inserting a comma before each left parenthesis and then
splits the denominator at the newly installed comma.

def get_denominator_factors():
global denominator, denominator_factors
denominator_factors = denominator.replace('(',',(')
denominator_factors = denominator_factors.split(',')
denominator_factors = denominator_factors[1:] #avoid 1st comma

The function make_template creates a list which is used later to form the partial fraction
expansion. For example, the function takes the factor (x2+x+1) and produces the list
[’Ax+B?, (x2+x+1) ]

def make_template():
global template, var
template= []
var = tl.get_var(rational)

k = 65 # ASCII code for 'A'
for den in denominator_factors:
if ')"' not in den: # for uniformity
den = den+'"1' # e.g. (x"2+x+1) --> (x"2+x+1)"1
factor,exp = den.split(')"') # (x"2+x+1)72 --> (x"2+x+1, 2
factor = factor + ')' # -—> (x"2+x+1)
if '"2' not in factor: # linear factor
for i in range(1l, int(exp)+1):
if i == 1: # (x+1) -—>A(x+1)
template.append([chr(k), factor])
else: # (x+1) -—>AG+1)71
template.append([chr(k), factor +'~'+ str(i)l)
k+=1
else: # quadratic factor
for i in range(1l, int(exp)+1):
if i ==1: # (x"2 +x + 1) -——> Ax+B, (x"2 + x + 1)

template.append([' ('+ chr(k) + var +'+'+ \
chr(k+1) +')',factor])
else: # (x"2 +x+ 1) -—> Ax+B, (x"2 + x + 1)7i
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template.append([' ('+ chr(k) + var +'+'+ \
chr(k+1) +')', \
factor +'" '+ str(i)])
k += 2
if k == 90:
break

# ran out of caps

The function clear_partial_fractions effectively takes the right side of the expansion
and multiplies it by the denominator of the given rational expression. For example, for the
rational function (7x% + 3)/(x + 1)2(x? + 2x + 5), which has the expansion

A N B N Cx+D
x+1)  @x+D2 xZ4+2x+5)°

the template is

(A, ' (x+1)'1, ['B', '(x+1)72'1, ['(Cx+D)', '(x"2+2x+5)']]

The function calculates

D2(x24+2x+5
(x+)(x+x+)=x3+3x2+7x+5

x+1)
2,2
x+ D7x +2x+5):x2+2x+5
(x + 1)2
(x+ D22 4+2x 45,
= 2 1
x2+2x+5) et

and returns the right sides of these equations in the list partials_cleared.

def clear_partial_fractions():
global partials_cleared
partials_cleared = []
for t in template:
den = t[1]
Q,R = pd.div_alg(denominator,den)
partials_cleared.append(Q)

#eg. t=1["(CxtD)', '(x"2+2x+5)']
# ' (x"2+2x+5)

The following function takes the list partials_cleared and attaches the letter numer-

ators from the template.
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def make_expression():
global expr
expr = ''
for i in range(len(partials_cleared)):
prod = template[i] [0] + '('+ partials_cleared[i] +')'
expr = expr + '+' + prod
expr = exprl[1l:] # remove first plus

The functionmake_equations usesmain toexpand diff=expr-numerator into standard
polynomial form and then equates the coefficients to zero.

def make_equations():
global equations
equations = "'
make_expression()
diff = expr +'-'+ numerator
diff = main(diff) [1][0]
for entry in diff:
eqn = entry[0] + '= O
equations = equations + ',' + eqn
equations = equations[1:] # remove initial comma

The function get_letter_values feeds the equations formed by the preceding function
to 1s.linsolve, which provides values for the letters in the partial fraction expansion.

def get_letter_values():
global letter_values
letter_values = []
letter_vals = ls.linsolve(equations,'','"') [0]
for item in letter_vals:
letter,value = item.split('="')
letter = letter.replace(' ','')
value = value.replace(' ','")
letter_values.append([letter,value])
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The function substitute_values takes the values obtained in the preceding function
and inserts them into the template letter entries.

def substitute_values():
for j in range(len(template)):
num = template[j] [0]
for item in letter_values:
if item[0] in num:

item[1] = tl.add_parens(item[1])
template[j]1[0] = \
template[j] [0] .replace(item[0],item[1])

The function print_expansion prints the final partial fraction expansion.

def print_expansion():
global template #letter_values
substitute_values()
tl.print_fraction('',numerator,denominator,'') # rational
print('\n")
for j in range(len(template)):

num = template[j][0]

den = templatel[j][1]

num = pa.polycalc(num) [0] # clean up

if num == '0': # nothing to print
continue

if § ==
tl.print_fraction(' = ',num,den,'') # print 1st term
print('\n"')

else:
tl.print_fraction(' + ',num,den,'') # print the rest

print('\n")
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