

Python for Excel
SECOND EDITION

A Modern Environment for Automation and Data
Analysis

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Felix Zumstein

Python for Excel
by Felix Zumstein

Copyright © 2025 Zoomer Analytics LLC. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa
Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Michelle Smith

Development Editor: Melissa Potter

Production Editor: Jonathon Owen

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

March 2021: First Edition

Revision History for the Early Release

2025-10-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492081005 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python
for Excel, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

http://oreilly.com/
http://oreilly.com/catalog/errata.csp?isbn=9781492081005

The views expressed in this work are those of the author, and do not
represent the publisher’s views. While the publisher and the author have
used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without limitation
responsibility for damages resulting from the use of or reliance on this
work. Use of the information and instructions contained in this work is at
your own risk. If any code samples or other technology this work contains
or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof
complies with such licenses and/or rights.

979-8-341-64029-0

[LSI]

Brief Table of Contents (Not Yet
Final)

Part 1: Introduction to Python

Chapter 1: Why Python for Excel? (available)

Chapter 2: Development Environment (available)

Chapter 3: Getting Started with Python (available)

Part 2: Introduction to pandas

Chapter 4: NumPy Foundations (available)

Chapter 5: Data Analysis with pandas (unavailable)

Part 3: Python in Excel

Chapter 6: Getting Started with Python in Excel (unavailable)

Chapter 7: Time Series Analysis with pandas (unavailable)

Chapter 8: Copilot in Excel (unavailable)

Part 4: xlwings

Chapter 9: Excel Automation (unavailable)

Chapter 10: Python-Powered Excel Tools (unavailable)

Chapter 11: The Python Package Tracker (unavailable)

Chapter 12: User-Defined Functions (unavailable)

Part 5: xlwings Lite

Chapter 13: Scripts (unavailable)

Chapter 14: Custom Functions (unavailable)

Part 6: Reading and Writing Excel Files Without Excel

Chapter 15: Excel File Manipulation with pandas (unavailable)

Chapter 16: Excel File Manipulation with Reader and Writer Packages
(unavailable)

Chapter 1. Why Python for
Excel?

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 1st chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at mpotter@oreilly.com.

Many Excel users start to reconsider their spreadsheet tools when they hit a
limitation. A classic example is when Excel workbooks contain so much
data and so many formulas that they become slow or in the worst case,
crash. Don’t let it get that far! If you work on mission-critical workbooks
where errors can result in financial or reputational damage or if you spend
hours updating Excel workbooks manually, you should add a programming
language to your tool belt. A programming language allows you to
automate error-prone copy/paste processes and can turn unreadable Excel
formulas into maintainable functions. It can also connect your spreadsheet
to external systems such as a database, allowing you to trim down your
workbook and make it fast again. This book uses Python as the
programming language for Excel, so let’s take a quick look at the origins of
our two main characters!

Given how fast technology moves, Excel and Python have both been
around for a remarkably long time: Excel was first launched in 1985 by

mailto:mpotter@oreilly.com

Microsoft— and this may come as a surprise— it was only available for
Apple Macintosh. Windows users had to wait until 1987 when Excel 2.0
came out. Microsoft wasn’t the first player in the spreadsheet market,
though: VisiCorp came out with VisiCalc in 1979, followed by Lotus
Software in 1983 with Lotus 1-2-3. Even Microsoft had another application
in the game: three years before Excel, they released Multiplan, a
spreadsheet program for MS-DOS.

Python was born in 1991, just six years after Excel. While Excel became
popular early on, Python had a longer journey before it got traction as a
scripting language and in web development. In 2005, Python started to
become a serious alternative for scientific computing when NumPy, a
package for array-based computing and linear algebra, was released.
NumPy combined two predecessor packages and therefore streamlined all
development efforts around scientific computing into a single project.
Today, it forms the basis of countless scientific packages, including pandas,
which came out in 2008 and which is largely responsible for the widespread
adoption of Python in the world of finance and data science that started to
happen around 2010. Today, thanks to the growing scientific ecosystem,
Python has become one of the most commonly used languages for machine
learning (ML) and artificial intelligence (AI).

In this chapter, I will point out what the advantages of Python are compared
to Excel’s traditional programming language, VBA (Visual Basic for
Applications). I will focus on Python’s core principles, scientific computing
capabilities, and its modern language features. To conclude, I will introduce
a few tools that you will get access to as a Python developer.

Python Core Principles
Like every programming language, Python has a few core principles that
shaped it into what it is today: a general-purpose language with an emphasis
on readability. Python is open source and cross-platform, and it comes with
a comprehensive standard library. In this section, I’ll explain what all this
means and why it matters.

General-Purpose Language
Python is a general-purpose programming language, meaning it wasn’t
designed for a specific domain like web development or data analysis:
Python can be used for many different purposes, including Excel
automation, machine learning, and large-scale web applications. This also
means that you could turn your Python-powered Excel tools into fully-
fledged web applications without having to rewrite the code with the
business logic. In contrast, VBA was designed as a domain-specific
language to automate and extend Microsoft Office applications.
Consequently, VBA code can’t be used outside of the Microsoft ecosystem
— it would need to be rewritten in another language if you want to turn your
Excel tool into a web app.

Beyond being general-purpose, Python was designed with another key
principle in mind: readability.

Readability Counts
If your code is readable, it is easy to follow and understand. This makes it
easier to spot errors and maintain the code going forward. And maintenence
is where most time is spent in programming rather than writing the code in
the first place. That’s why one line in The Zen of Python is “readability
counts.” The Zen of Python is a concise summary of Python’s core design
principles, and we will learn how to print it in the next chapter. Let’s have a
look at the following VBA code snippet:

If i < 5 Then
 Debug.Print "i is smaller than 5"
ElseIf i <= 10 Then
 Debug.Print "i is between 5 and 10"
Else
 Debug.Print "i is bigger than 10"
End If

In VBA, you can reformat the code into the following, which is completely
equivalent:

If i < 5 Then
 Debug.Print "i is smaller than 5"
 ElseIf i <= 10 Then
 Debug.Print "i is between 5 and 10"
 Else
 Debug.Print "i is bigger than 10"
End If

In the first version, the visual indentation aligns with the logic of the code.
This makes it easy to read and understand. In the second version, it’s much
harder to spot the ElseIf and Else conditions when you glance over it.

To enforce readability, Python doesn’t accept code that is formatted like the
second example: it forces you to align the visual indentation with the logic
of the code. To do this, Python relies on indentation to define code blocks as
you use them in if statements. Instead of indentation, the majority of
programming languages use curly braces to define code blocks, and VBA
uses keywords such as End If, as we’ve just seen.

You will learn all about Python’s indentation rules in Chapter 3. Now,
however, I’ll explain what it means when they say that Python comes with
batteries included.

Batteries Included
Python comes with a rich set of built-in functionality delivered by its
standard library. The Python community likes to refer to it by saying that
Python comes with “batteries included.” Whether you need to uncompress a
ZIP file, read the values of a CSV file, or want to send an email, Python’s
standard library has you covered, and you can achieve all this in usually just
a few lines of code. With VBA, you are often required to write a lot of code
or install an add-in for these basic tasks. Another issue with VBA is that it
isn’t truly cross-platform. Let’s see why this matters!

Cross-Platform
Even if you develop your programs on a laptop that runs on Windows or
macOS, it’s likely that one day, you want to run your application on a server

or in the cloud. Servers allow you to access your application over the web
or run your Python script fully automated as part of a pipeline. In fact, I will
show you how to run Python code on a server in the next chapter by
introducing you to hosted Jupyter notebooks. The vast majority of servers
run on Linux, an operating system that is stable, secure, and open source.
And since Python programs run on all major operating systems, this will
take out much of the pain when you transition from your local machine to a
server or cloud setup.

In contrast, even though Excel VBA runs on Windows and macOS, it’s easy
to introduce functionality that only runs on Windows. In the official VBA
documentation or on community forums, you will often see code like this:

Set fso = CreateObject("Scripting.FileSystemObject")

Whenever you have a CreateObject call or are being told to add a
reference in the VBA editor, you are usually dealing with code that will
only run on Windows.

With Python’s core principles covered, let’s now find out why scientific
computing has become so big in Python.

Scientific Computing
As we’ve seen before, an important reason for Python’s success is the fact
that it was created as a general-purpose programming language. The
capabilities for scientific computing were added later on in the form of
third-party packages. This has the unique advantage that a data scientist and
a web developer can work with the same programming language. Being
able to build scientific applications out of a single language reduces
friction, implementation time, and costs. Scientific packages like NumPy
and pandas give us access to a very concise way of formulating
mathematical problems. As an example, let’s have a look at a famous
financial formula from Modern Portfolio Theory, used to calculate the
portfolio variance:

σ
2
= w

⊺
Cw

The portfolio variance is denoted by σ2, while w is the weight vector of the
individual assets and C is the portfolio’s covariance matrix. If w and C are
Excel ranges, you can calculate the portfolio variance in VBA like so:

variance =
Application.MMult(Application.MMult(Application.Transpose(w), C),
w)

Compare this to the almost mathematical notation in Python, assuming that
w and C are pandas DataFrames or NumPy arrays (I will formally introduce
them in Part 2):

variance = w.T @ C @ w

But it’s not just about aesthetics and readability: NumPy and pandas use
compiled Fortran and C code under the hood, which is much faster than
VBA when working with big matrices. Other packages that we’ll use in this
book are written in Rust or C++ for performance reasons, but no matter
what low-level language is used, Python provides the tools to create user-
friendly packages. This allows you to take advantage of high-performance
libraries without needing to understand their underlying implementation.

Thanks to the growing scientific ecosystem, Python has become the de-
facto lingua franca for machine learning and AI. All important machine
learning frameworks, such as scikit-learn, Tensorflow, PyTorch, or
XGBoost are available as Python packages. And AI platforms such as
ChatGPT offer a Python library to interact with their service
programmatically.

OPEN SOURCE SOFTWARE (OSS)
Python is open source software (OSS). If software is distributed under
an open source license, it means that its source code is freely available
at no cost, allowing everybody to contribute new functionality, bug
fixes, or documentation. Python itself and almost all third-party Python
packages are open source and most commonly maintained by
developers in their spare time. This is not always an ideal state: if your
company is relying on certain packages, you have an interest in the
continued development and maintenance of these packages by
professional programmers. Fortunately, the scientific Python
community has recognized that some packages are too important to
leave their fate in the hands of a few volunteers.

That’s why in 2012, NumFOCUS, a nonprofit organization, was created
to sponsor various Python packages and projects in the area of scientific
computing. NumFOCUS sponsors many popular Python packages,
including pandas and NumPy, but nowadays they also support projects
from various other languages, including R, Julia, and JavaScript.
Similarly, Python is overseen by the Python Software Foundation that
welcomes new members and donors.

Missing support for scientific computing is an obvious limitation in VBA.
But even if you look at the core language features, VBA has fallen behind.

Modern Language Features
Since Excel 2000, the VBA language isn’t actively developed anymore.
This, however, doesn’t mean it’s dead: Microsoft is still shipping updates to
VBA to be able to automate new Excel features. For example, Excel 2016
added support to automate Power Query. A language that stopped evolving
such a long time ago is missing out on modern language concepts that were
introduced in all major programming languages over the years. In this

https://numfocus.org/

section, we’re going to look at some of them, including text and error
handling, array support, web APIs, and modules.

Working with Text
VBA has very limited tools to work with strings, i.e., text data. Let’s have a
look at the following sentence:

This was printed by a language called "VBA".

To print this with the language name stored in a variable, you would write
the following code in VBA:

lang = "VBA"
message = "This was printed by a language called """ & lang &
"""."
Debug.Print message

This is a very short string, but it’s already hard to know how many quotes
you have to put where. Python, on the other hand, has powerful f-strings,
which we will cover in Chapter 3. The same example reads like this in
Python:

lang = "Python"
message = f'This was printed by a language called "{lang}".'
print(message)

Just like with text, handling arrays in VBA comes with its own set of
challenges, as we will see next.

Array Support
Working with arrays in VBA is hard and verbose. For example, multiplying
all values in an array by two looks something like this:

Dim numbers(1 To 4) As Integer
Dim doubled() As Integer
Dim i As Integer

' Initialize array
numbers(1) = 1
numbers(2) = 2
numbers(3) = 3
numbers(4) = 4

' Double each element
ReDim doubled(LBound(numbers) To UBound(numbers))
For i = LBound(numbers) To UBound(numbers)
 doubled(i) = numbers(i) * 2
Next i

In Python, you can write the same in two lines of code (I will show you
how this works in Chapter 4):

import numpy as np

numbers = np.array([1, 2, 3, 4])
doubled = numbers * 2

Python makes working with arrays easy. The same is true for web APIs, our
next topic.

Web APIs
Microsoft stopped investing in VBA around the time the internet became
mainstream. It’s therefore not surprising that downloading data from a Web
API is a cumbersome task in VBA, especially if you want it to work across
Windows and macOS.

In contrast, Python has various packages that make it easy to talk to a Web
APIs. Since Web APIs usually send their response in the JSON (JavaScript
Object Notation) format, accessing the information of interest is straight
forward, as Python— unlike VBA— has built-in support to read JSON. We
will see how all this works in Chapter 10.

Nowadays, Python also supports asynchronous programming via its asyncio
library. This makes network requests such as talking to a web API or
accessing databases highly efficient. Asynchronous programming is an

advanced topic though, so we will mostly ignore it in this book. Rather, let’s
continue with the differences in error handling between VBA and Python.

Error Handling
If you’d like to handle an error gracefully in VBA, it goes something like
this:

Sub PrintReciprocal(number)
 ' There will be an error if "number" is 0 or a string
 On Error GoTo ErrorHandler
 result = 1 / number
 GoTo CleanUp

ErrorHandler:
 Debug.Print "There was an error: " & Err.Description
 result = "N/A"

CleanUp:
 Debug.Print "The reciprocal is: " & result
 On Error GoTo 0 ' Reset error handling
End Sub

Please note that you might calculate the reciprocal differently in real life— I
only use it here as an example to make it easier to follow the code flow.
VBA error handling involves the use of labels like ErrorHandler and
CleanUp. You instruct the code to jump to these labels via the GoTo
statements. Early on, labels were recognized to be responsible for what
many programmers would call spaghetti code: a nice way of saying that the
flow of the code is hard to follow and therefore difficult to maintain. That’s
why modern languages use more advanced error handling— Python uses the
try/except statements that I will introduce in Chapter 11.

With error handling out of our way, let’s conclude this section by comparing
how modules differ in Python and VBA.

Modules

Modules are a way to break up your code into different sections, usually
files. While VBA supports modules, it has limitations:

No isolation between modules

No matter in which module you define e.g., a function, it will be
available globally. This means that you can’t use the same function
name in different modules.

Hidden dependencies

Since VBA doesn’t require explicit imports when using objects from
other modules, it’s hard to understand which functions or variables a
module actually relies on.

In Chapter 3, I will introduce you to how Python modules work and how
they allow you to selectively import a function or variable from another
module to prevent these issues.

With the modern language features covered, we can move on to the last
section in this chapter: it explains the various tools that you get access to as
a Python developer.

Tooling
Modern programming languages like Python rely on a set of tools that make
software development a lot more reliable. In this section, I’ll give you a
short introduction to a few of these, including package management,
testing, and version control.

Package Manager
While Python’s standard library covers an impressive amount of
functionality, it— as discussed before— doesn’t come with any domain-
specific functionality such as data science libraries or web frameworks.
This is where PyPI comes in. PyPI stands for Python Package Index and is

https://pypi.org/

a giant repository where everybody (including you!) can upload Python
packages that add additional functionality to Python.

PYPI VS. PYPY
PyPI is pronounced “pie pea eye.” This is to differentiate PyPI from PyPy which is
pronounced “pie pie” and which is a fast alternative implementation of Python.

A package manager allows you to install additional packages like pandas
with a simple command. What sounds easy is in reality a very complex task
as a package often depends on other packages and these again on yet
another set of packages. The package manager makes sure that these
dependencies and sub-dependencies are installed with compatible versions
and that you can reproduce your exact set of dependencies on another
machine. For example, when you install pandas, NumPy is automatically
installed as a dependency. In this book, we will use the uv package
manager, which I will introduce in the next chapter.

In VBA, there is no package manager, so you either have to use add-ins or
copy/paste VBA code whenever you create a new Excel file. However, both
of these solutions have issues: on the one hand, add-ins are global, so you
have to use the same version of the add-in for every workbook. This can
cause compatibility issues with workbooks you created with an older
version of the add-in. On the other hand, copy/pasting VBA code is a
nightmare for maintainability: if you fix the code in one workbook, you
have to apply the fix to all other workbooks, too.

While the package manager makes it easy to add new functionality to your
projects, another important aspect of professional software development is
testing, which makes sure your code works as expected.

Testing
When you tell an Excel developer to test their workbooks, they will most
likely perform a few random checks, e.g., click a button and see if the

macro still does what it is supposed to do. This is, however, a risky strategy:
Excel makes it easy to introduce errors that are hard to spot. For example,
you can overwrite a formula with a hardcoded value. Or you forget to adjust
a formula in a hidden column.

When you tell a Python developer or an AI assistant to test their code, they
will write unit tests. As the name suggests, it’s a mechanism to test
individual components of your program. For example, unit tests make sure
that a single function of a program works properly. Most programming
languages offer a way to run unit tests automatically. Running automated
tests will increase the reliability of your codebase and can prevent you from
introducing bugs while making changes to your codebase.

Pretty much all programming languages offer a test framework to write unit
tests without much effort— but not Excel. Fortunately, by connecting Excel
with Python, you get access to Python’s unit testing frameworks, most
notably pytest. While a more in-depth presentation of unit tests is beyond
the scope of this book, I invite you to have a look at my blog post, in which
I walk you through the topic.

Unit tests are often set up to run automatically when you commit your code
to your version control system. The next section explains what a version
control system is and why working with Excel files can make version
control difficult to use.

Version Control
A version control system (VCS) tracks changes in your source code over
time, allowing you to see who changed what, when, and why, and allows
you to revert to old versions at any point in time. The most popular version
control system nowadays is Git. It was originally created to manage the
Linux source code and since then has conquered the programming world.
Excel offers a version history if you save your file on OneDrive or
SharePoint and are subscribed to Microsoft 365, but this doesn’t cover VBA
code. Therefore, the most popular version control system for Excel still
looks like this:

https://docs.pytest.org/
https://oreil.ly/crwTm
https://git-scm.com/

currency_converter_v1.xlsx
currency_converter_v2_2020_04_21.xlsx
currency_converter_final_edits_Bob.xlsx
currency_converter_final_final.xlsx

If, unlike in this sample, the Excel developer sticks to a certain convention
in the file name, there’s nothing inherently wrong with that. But keeping a
version history of your files locally locks you out of important aspects of
source control in the form of easier collaboration, peer reviews, sign-off
processes, and audit logs. And if you want to make your workbooks more
secure and stable, you don’t want to miss out on these things. Most
commonly, Git is used in connection with a web-based platform like
GitHub or GitLab. These platforms allow you to work with so-called pull
requests, which allow developers to formally request that their changes are
merged into the main codebase. A pull request offers the following
information:

Who is the author of the changes

When were the changes made

What is the purpose of the changes

Which code was added, changed, or removed

This allows a coworker or an AI assistant to review the changes and flag
any potential issues. VBA can’t be easily version-controlled with Git as it is
stored in the Excel workbook, which Git can’t read. However, when you
write Python code in standalone files, you can use Git to its full potential.
Not all code the code in this book lives in a standalone Python file, though.
For example, Python in Excel, which we’ll meet in Chapter 6 stores the
Python code in Excel cells, so you can’t easily commit it to Git. But you
can use Git for many other use cases that we’ll meet in this book, like the
Excel tool we’ll build in Chapter 10.

Conclusion

In this chapter, we met Python and Excel, two very popular technologies
that have been around for decades— a long time compared to many other
software that we use today.

Python comes with powerful features that are missing in Excel: the standard
library, package managers, libraries for scientific computing, and cross-
platform compatibility. By learning how to combine Excel with Python, you
get the best of both worlds: Excel provides a familiar and easy-to-use user
interface, while Python allows you to save time through automation,
leverage scientific packages, and gain the flexibility to scale your
application beyond Excel.

Now that you know why Python is such a powerful companion for Excel,
it’s time to set up your development environment so you can to write your
first lines of Python code!

Chapter 2. Development
Environment

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 2nd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at mpotter@oreilly.com.

To write VBA code, it’s enough to launch Excel and open the VBA editor.
To use a full Python installation, it’s a bit more work. If this book were only
about Python in Excel (Part 3) and xlwings Lite (Part 5), we wouldn’t have
to install anything locally. But using Python from Excel covers only one
side of the story—we don’t want to miss out on the other side, which is
using Excel from Python (Part 4 and Part 6). Besides that, both Python in
Excel and xlwings Lite have certain limitations that a full Python
installation doesn’t have. This chapter will make you familiar with all the
tools you need as a Python developer. We will start with a quick
introduction to the Terminal, the most fundamental programming tool.
We’ll continue with the installation of uv, a modern package manager,
before using it to install Python itself. With Python installed, we will run
our first code snippets in Jupyter notebooks and VS Code: Jupyter
notebooks allow us to work with data, code, and charts in an interactive
way, which makes them a serious competitor to Excel workbooks. Visual
Studio Code (VS Code) is a powerful text editor that works great for

mailto:mpotter@oreilly.com

writing, running, and debugging Python code. As this book is about Excel, I
am focusing on Windows and macOS in this chapter. Let’s get started by
downloading the companion repository!

Companion Repository
To install Python and run the examples in this book, you first need to
download the companion repository. Go to
https://github.com/fzumstein/python-for-excel/tree/2e and click on the green
Code button, then select Download ZIP. This downloads a file called
python-for-excel-2e.zip. Once downloaded, extract the ZIP file into your
Documents folder by following the instructions according to your operating
system:

Windows

Right-click the downloaded ZIP file and select Extract All. In the dialog
box, click on Browse, select the Documents folder, then click the Select
Folder button to confirm. The dialog box should now show a path
similar to this one: C:\Users\username\Documents. To finish, click on
Extract. This will unzip the contents to something along these lines:
C:\Users\username\Documents\python-for-excel-2e.

macOS

Double-click the ZIP file to extract the files into a folder called python-
for-excel-2e (note that some browsers like Safari do this automatically).
Then copy the extracted folder to the Documents directory so that the
full path becomes somthing along these lines:
/Users/username/Documents/python-for-excel-2e.

Alternatively, if you know how to work with Git version control, feel free to
clone the repository to your Documents folder instead of downloading the
ZIP file manually.

https://github.com/fzumstein/python-for-excel/tree/2e

With the companion repository sitting in your Documents folder, let me
give you a quick introduction to the Terminal, as we will use it to install
Python.

Using the Terminal
The Terminal is the most fundamental programming tool, and we will use it
extensively to e.g., run Python scripts. If you have never used a Terminal,
don’t worry: you only need to know a handful of commands to work
through this book. Once you get used to it, using the Terminal is often faster
and more convenient than clicking your way through graphical user menus.
Before we start, let me remind you that you should only type in the
commands shown in bold. Text in regular font represents Terminal output
that you won’t need to type. Let’s now open a Terminal:

Windows

Click on the Windows Start menu, type in Command Prompt in the
search box and click on the Command Prompt entry that appears.
Alternatively, use the keyboard shortcut Windows+R to open the Run
box. Then type cmd into the box and hit Enter. The input line of the
Command Prompt will look something like this:

C:\Users\username>

macOS

Press Command-Space or open the Launchpad, then type Terminal
and hit Enter. Alternatively, open the Finder and navigate to
Applications > Utilities, where you will find the Terminal app that you
can double-click. Once the Terminal appears, its input line looks
something like this:

username@MacBook ~ %

The tilde stands for the home directory, which is usually
/Users/username. To see the full path of your current directory, type
pwd followed by Enter. pwd stands for print working directory.

TERMINAL
Going forward, whenever I write “Terminal,” I am referring to the Command
Prompt on Windows and the Terminal on macOS. Recent versions of Windows
even default to opening the Command Prompt inside a new app, which is, indeed,
called Terminal.

In a Terminal, try out the commands outlined in Table 2-1. I’ll explain each
command in more detail after the table.

Table 2-1. Commands for the Terminal

Command Windows macOS

List files in current directory dir ls -la

Change directory (relative) cd path\to\dir cd path/to/dir

Change directory (absolute) cd C:\path\to\di
r

cd /path/to/di
r

Change to D drive D: (doesn’t exist)

Change to parent directory cd .. cd ..

Scroll through previous
commands

↑ (up-arrow) ↑ (up-arrow)

List files in current directory

On Windows, type in dir for directory, then hit Enter. This will print
the content of the directory you are currently in.

On macOS, type in ls -la followed by Enter. ls is short for list
directory contents, and -la will print the output in the long listing
format and include all files, including hidden ones.

FILE EXTENSIONS
Unfortunately, Windows and macOS hide file extensions by default in
the Windows Explorer or macOS Finder, respectively. This can make it
harder to work with Python scripts and the Terminal, as they will
require you to refer to files including their extensions. When working
with Excel, showing file extensions also helps you understand whether
you’re dealing with the default xlsx file, a macro-enabled xlsm file, or
any of the other Excel file formats. Here is how you make the file
extensions visible:

Windows

Open a File Explorer and click on the View tab. Under Show, click
on “File name extensions” to activate it.

macOS

Open the Finder and go to Preferences by hitting Command-,
(Command-comma). On the Advanced tab, check the box next to
“Show all filename extensions.”

Change directory

Type cd Doc and hit the Tab key. If you are in your home folder and
using an English version of Windows or macOS, hitting the Tab key

will autocomplete cd Doc to cd Documents (cd stands for change
directory). If you are in a different folder, simply start to type the
beginning of one of the directory names you saw with the previous
command (dir or ls -la) before hitting the Tab key to
autocomplete. Then hit Enter to change into the autocompleted
directory. If you are on Windows and need to change your drive, you
first need to type in the drive name before you can change into the
correct directory:

C:\Users\username> D:

D:\> cd data

D:\data>

Note that by starting your path with a directory or file name that is
within your current directory, you are using a relative path, e.g., cd
Documents. If you would like to go outside of your current directory,
you can type in an absolute path, e.g., cd C:\Users on Windows or
cd /Users on macOS (mind the forward slash at the beginning).

PERMISSIONS ON MACOS
When you change into the Documents directory on a Terminal on macOS and run a
command such as ls for the first time, you will be shown the following pop-up
window: “Terminal would like to access files in your Documents folder.” Make sure to
click on “Allow.” If you clicked “Don’t Allow” by mistake, go to Apple menu > System
Settings > Privacy Security > Files & Folders > Terminal. Click on the dropdown so that
you can enable the toggle for the Documents Folder.

Change to parent directory

To go to your parent directory, i.e., one level up in your directory
hierarchy, type cd .. followed by Enter (make sure that there is a
space between cd and the dots). You can combine this with a directory
name: if you want to go up one level and change to the Desktop, enter

cd ..\Desktop. On macOS, replace the backslash with a forward
slash.

CHANGE TO THE DIRECTORY OF THE COMPANION
REPOSITORY

Most Terminal commands in this book need to be run from the directory
of the companion repository. In these cases, to prevent confusion, I’ll
always include the appropriate cd command:

Windows

cd %USERPROFILE%\Documents\python-for-excel-2e

%USERPROFILE% is a so-called environment variable, which
points to your home directory, e.g., C:\Users\username. If you
already are in the correct directory, you can ignore this line. The
Terminal, i.e., Command Prompt, shows the full path on its input
line, so it’s easy to check in which directory you are:

C:\Users\username\Documents\python-for-excel-2e>

macOS

cd ~/Documents/python-for-excel-2e

As I mentioned earlier in this section, ~ points to your home
directory, e.g., /Users/username. If you already are in the correct
directory, you can ignore this line. Since macOS only shows the
name of the current directory, you may want to run the pwd
command that we met earlier to check the full path of your current
directory:

username@MacBook python-for-excel-2e % pwd

/Users/username/Documents/python-for-excel-2e

Scroll through previous commands

Use the up-arrow key to scroll through the previous commands. This
will save you many keystrokes if you need to run the same commands
over and over again. If you scroll too far, use the down-arrow key to
scroll back.

And that’s it! You are now able to fire up a Terminal and run commands in
the desired directory. Let’s use your new skills right away to install Python!

Installing Python
In this section, you will install Python by using uv, a modern command-line
tool. We therefore start this section by installing uv itself. At the end of this
section, you’ll be running an interactive Python session.

Installing uv
While uv is primarily a package manager (see Chapter 1), it covers a lot
more functionality, including the installation of Python itself. To install uv,
use the following instructions according to your operating system. If you hit
an issue, consult the original installation instructions for up-to-date
information.

Windows

In a Terminal, i.e., Command Prompt, type the following command:

powershell -ep ByPass -c "irm https://astral.sh/uv/install.ps1

| iex"

Now hit Enter to run the command and—importantly—close and reopen
the Command Prompt to finish the installation.

https://docs.astral.sh/uv/getting-started/installation

macOS

In the Terminal, type the following command:

curl -LsSf https://astral.sh/uv/install.sh | sh

Now hit Enter to run the command and— importantly— close and reopen
the Terminal to finish the installation. To properly close the Terminal,
make sure to use the keyboard shortcut Command-Q.

After reopening the Terminal, type uv and hit Enter: this should print the
help page of uv. If it doesn’t, make sure to properly restart the Terminal
before trying again. Let’s now use uv to install Python and the third-party
packages that we’ll use!

Installing Python and Packages
Now that we have uv installed, let’s use it to install Python and all the
packages that we will use in this book. In a Terminal, first change into the
directory of the companion repo, then install Python and the packages by
running the following commands (hit Enter after each line):

Windows (Terminal)

cd %USERPROFILE%\Documents\python-for-excel-2e

uv sync

macOS (Terminal)

cd ~/Documents/python-for-excel-2e

uv sync

uv will rely on the following files from the companion repo to know what it
has to install:

.python-version (defines the Python version)

pyproject.toml (project meta data)

uv.lock (contains all packages with their exact version)

During the installation, uv creates the folder .venv in the root of the
companion repository, which is a virtual environment, see sidebar. To get a
more detailed introduction to uv and see how you can create your own
projects, have a look at Appendix A.

VIRTUAL ENVIRONMENT
A virtual environment is an isolated workspace with its own Python
interpreter and set of packages. Imagine you’re working on two projects
at the same time: project A might use Python 3.13 with pandas 2.3.2,
while Project B requires Python 3.14 with pandas 3.0.0. Since code
written for pandas 2.3.2 might need modifications to be compatible
with pandas 3.0.0, using a single version of pandas for all your projects
doesn’t work. Virtual environments solve this issue by keeping each
project’s dependencies separate.

With Python and our packages installed, let’s start an interactive Python
session!

Python REPL
You can start an interactive Python session by running uv run python
in a Terminal. An interactive Python session is called a REPL, which stands
for read-eval-print loop: Python reads your input, evaluates it, and prints
the result, then waits for your next input. Remember, if you already are in
the directory of the companion repository, you don’t need to run the first
line with the cd command:

Windows (Terminal)

cd %USERPROFILE%\Documents\python-for-excel-2e

uv run python

Python 3.13.7 (main, Aug 28 2025, 17:02:49) [MSC v.1944 64 bit

(AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more

information.

>>>

macOS (Terminal)

cd ~/Documents/python-for-excel-2e

uv run python

Python 3.13.7 (main, Aug 28 2025, 17:02:49) [Clang 19.1.6] on

darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>>

UV RUN
uv makes it easy to use the correct virtual environment if you follow these rules:

1. Change into the directory of your project, in our case, that’s the directory of
the companion repository.

2. Run your commands with uv run. As we’ve just seen, uv run python
starts an interactive interpreter and uv run hello_world.py runs a
Python script, as we will see in a moment.

Let’s play around a bit! Note that >>> in an interactive session means that
Python expects your input; you don’t have to type this in. In contrast, the
lines without >>> show the output of the command on the previous line.
Follow along by typing in each line that starts with >>> and confirm with
the Enter key:

>>> 3 + 4
7
>>> "python " * 3
'python python python '

Remember the Zen of Python that I mentioned in the previous chapter? Run
the following code (i.e., hit Enter after typing it in) and you’ll get a witty
version of the guiding principles of Python:

>>> import this

To exit out of your Python session, type quit followed by the Enter key.
Alternatively, hit Ctrl-D on macOS or Ctrl+Z on Windows. On Windows,
you need to additionally press Enter.

Running code in a Python REPL can be helpful at times, but there’s a more
comfortable way to run code interactively: Jupyter notebooks!

Jupyter Notebooks
In the previous section, I showed you how to start an interactive Python
session in a Terminal. This is useful if you want a bare-bones environment
to test out something simple. For the majority of your work, however, you
want an environment that is easier to use. For example, going back to
previous commands and displaying charts is hard with a Python REPL.
That’s why Jupyter notebooks have emerged as one of the most popular
ways to run scientific Python code. You interact with Jupyter notebooks in
the browser and they allow you to tell a story by combining executable
Python code with formatted text, pictures, and charts. They are beginner-
friendly and thus especially useful for the first steps of your Python journey.

They are, however, also hugely popular for teaching, prototyping, and
researching, as they facilitate reproducible research.

Jupyter notebooks have become a serious competitor to Excel as they cover
roughly the same use case as a workbook: you can quickly prepare, analyze,
and visualize data. The difference from Excel is that Jupyter notebooks
don’t mix data and business logic: the Jupyter notebook holds your code
and charts, whereas you typically consume data from an external file or a
database. Having Python code visible in your notebook makes it easy to see
what’s going on, whereas in Excel the formulas are hidden behind a cell’s
value.

In this section, I’ll show you the basics of how you run and navigate a
Jupyter notebook. Along the way, you will learn about different types of
notebook cells and why the run order of cells matters. Let’s get started with
our first notebook!

Running Jupyter Notebooks
Using a Terminal, launch a Jupyter notebook server:

Windows (Terminal)

cd %USERPROFILE%\Documents\python-for-excel-2e

uv run jupyter notebook

macOS (Terminal)

cd ~/Documents/python-for-excel-2e

uv run jupyter notebook

This will automatically open your browser and show the Jupyter dashboard
with the files in the directory from where you were running the command.

On the top right of the Jupyter dashboard, click on New, then select Python
3 from the dropdown list (see Figure 2-1).

Figure 2-1. The Jupyter dashboard

This will open a new browser tab with your first empty Jupyter notebook as
shown in Figure 2-2.

Figure 2-2. An empty Jupyter notebook

JUPYTER NOTEBOOKS IN THE CLOUD
Jupyter notebooks have become so popular that they are offered as a
hosted solution by various cloud providers. I am introducing three
services here that are all free to use. The great thing about running
notebooks in the cloud is that you don’t need to install anything locally.

Binder

Binder is a service provided by Project Jupyter, the organization
behind Jupyter notebooks. Binder is meant to try out the Jupyter
notebooks from public Git repositories. It’s read-only— you can’t
store anything on Binder and hence you don’t need to sign up or log
in to use it.

Google Colab

Google Colab (short for Colaboratory) is Google’s notebook
platform. Unfortunately, the majority of the Jupyter notebook
keyboard shortcuts don’t work, but you can access files on your
Google Drive, including Google Sheets.

Kaggle Notebooks

Kaggle is a platform for data science and machine learning with a
huge collection of datasets. Kaggle has been part of Google since
2017.

The easiest way to run the Jupyter notebooks of the companion
repository in the cloud is by going to its Binder URL. You will be
working on a read-only copy of the companion repository, so feel free
to edit and break stuff as you like! Note, however, that since Part 4
requires a local installation of Excel, you also need to run the notebooks
locally for that part.

https://mybinder.org/
https://oreil.ly/4PLcS
https://kaggle.com/
https://mybinder.org/v2/gh/fzumstein/python-for-excel/2e

It’s a good habit to click on Untitled next to the Jupyter logo to rename your
workbook into something more meaningful, e.g., first_notebook. The lower
part of Figure 2-2 shows a notebook cell— move on to the next section to
learn more about them!

Notebook Cells
In Figure 2-2, you see an empty cell with a blinking cursor. If the cursor
doesn’t blink, click into the cell with your mouse, i.e., to the right of [].
Now repeat the exercise from the last section: type in 3 + 4 and run the
cell by either clicking on the Run button in the menu bar at the top or—
much easier— by hitting Shift+Enter. This will run the code in the cell, print
the result below the cell and jump to the next cell. In this case, it inserts an
empty cell below as we only have one cell so far. While a cell is calculating,
it shows [*] and when it’s done, the asterisk turns into a number, e.g.,
[1]. Below the cell you will have the corresponding output labeled with
the same number. Every time you run a cell, the number increases by one,
helping you understand the order in which cells were executed. Going
forward, I will show the code samples in this format:

In [1]: 3 + 4
Out[1]: 7

As you can see, I am additionally showing the labels In and Out in front
of the cell number to make it clearer what the input and output is. This
notation allows you to follow along easily by typing 3 + 4 into a
notebook cell. When running it by hitting Shift+Enter, you will get what I
show as output under Out[1]. If you read this book in an electronic
format supporting colors, you will notice that the input cell formats strings,
numbers, and so on with different colors to make it easier to read. This is
called syntax highlighting.

DISPLAY OF CELL OUTPUT
If the last line in a cell returns a value, it is automatically printed by the Jupyter
notebook under Out[]. However, when you use the print function or when you get
an exception, it is printed without the Out[] label. The code samples in this book are
formatted to reflect this behavior.

RUNNING CODE EXAMPLES
To run the examples in this book, you have two options: create a new
Jupyter notebook and type the code manually, or open the respective
Jupyter notebook file, e.g., ch02.ipynb, by clicking on it in the Jupyter
dashboard (see Figure 2-1). Using the Jupyter notebooks from the
companion repository allows you to run and edit the examples without
typing them from scratch.

Cells can have different types, two of which are of interest to us:

Code

This is the default type. Use it whenever you want to run Python code.

Markdown

Markdown is a syntax that uses standard text characters for formatting
and can be used to include nicely formatted explanations and
instructions in your notebook.

To change a cell’s type to Markdown, select the cell, then choose
Markdown in the cell mode dropdown (see Figure 2-2). I’ll show you a
keyboard shortcut to change the cell mode in Table 2-2. After changing an
empty cell into a Markdown cell, type in the following text, which explains
a few Markdown rules:

This is a first-level heading

This is a second-level heading

You can make your text *italic* or **bold** or `monospaced`.

* This is a bullet point
* This is another bullet point

After hitting Shift+Enter, the text will be rendered into nicely formatted
HTML. At this point, your notebook should look like what’s in Figure 2-3.

Markdown cells also allow you to include images, videos, or formulas; see
the Jupyter notebook docs.

https://oreil.ly/elGTF

Figure 2-3. The notebook after running a code cell and a Markdown cell

Now that you know about the code and Markdown cell types, it’s time to
learn an easier way to navigate between cells: the next section introduces
the edit and command mode along with a few keyboard shortcuts.

Edit vs. Command Mode
When you interact with cells in a Jupyter notebook, you are either in the
edit mode or command mode:

Edit mode

Clicking into a cell starts the edit mode: the cursor in the cell is
blinking. Instead of clicking into a cell, you can also hit Enter when the
cell is selected.

Command mode

To switch into command mode, hit the Escape key; the blinking cursor
will disappear. The most important keyboard shortcuts that you can use
while being in command mode are shown in Table 2-2.

Table 2-2. Keyboard shortcuts (command mode)

Shortcut Action

Shift+Enter Run the cell and proceed to the next cell (works also in
edit mode)

↑ (up-arrow) Move cell selector up

↓ (down-arrow) Move cell selector down

b Insert a new cell below the current cell

a Insert a new cell above the current cell

dd Delete the current cell (type two times the letter d)

m Change cell type to Markdown

y Change cell type to code

Knowing these keyboard shortcuts allows you to work with notebooks very
efficiently. In the next section, I’ll show you a common gotcha that you
need to be aware of when using Jupyter notebooks: the importance of
running cells in order.

Run Order Matters
As easy and user-friendly notebooks are to get started, they also make it
easy to get into confusing states if you don’t run cells sequentially. Assume
you have the following notebook cells that are run from top to bottom:

In [2]: a = 1
In [3]: a
Out[3]: 1
In [4]: a = 2

Cell Out[3] prints the value 1 as expected. However, if you go back and
run In[3] again, you will end up in this situation:

In [2]: a = 1
In [5]: a
Out[5]: 2
In [4]: a = 2

Out[5] now shows the value 2, which is probably not what you would
expect when you read the notebook from the top, especially if cell [4] is
further down. To prevent such cases, I would recommend rerunning not just
a single cell, but all of its previous cells, too. Jupyter notebooks offer an
easy way to accomplish this under the menu Run > Run All Above Selected
Cell.

MARIMO NOTEBOOKS
The issue with the run order isn’t the only limitation with Jupyter
notebooks. marimo notebooks are a modern notebook solution that
attempts to address these limitations. Here are the main advantages of
marimo notebooks:

Reactive

As we’ve just seen, in Jupyter notebooks, you need to make sure
that you run cells in the correct order. marimo notebooks solve this
issue via reactivity: whenever the value of a variable changes, all
cells that depend on that variable are recalculated automatically.
This, however, implies that you can’t redefine your variables: you
can’t define a = 1 in one cell and write a = 2 in another cell.

Compatible with version control

Jupyter notebooks are hard to version control with Git as they are
stored in JSON format rather than as a Python file and because they
include output values. marimo notebooks are regular Python files
instead.

Run as script

Jupyter notebooks were designed to run interactively via a web
interface. marimo notebooks can also be run from the Terminal,
accepting command-line parameters.

Run as web app

marimo notebooks can be deployed as web apps with interactive
controls while the source code is hidden.

This book sticks to Jupyter notebooks as they are still more popular
than marimo notebooks, but if you want to go all in with notebooks,
make sure to give marimo a try!

https://marimo.io/

Now that you know how to work with Jupyter notebooks, you’ll learn about
how to write and run regular Python files. To do this, we’ll use Visual
Studio Code, a powerful text editor with great Python support.

Visual Studio Code
In this section, we’ll install and configure Visual Studio Code (VS Code), a
free text editor from Microsoft. After introducing its most important
components, we’ll write a first Python script and run it in a few different
ways. To begin with, however, let me explain the difference between
Python scripts and Jupyter notebooks and why I chose VS Code for this
book.

While Jupyter notebooks are amazing for interactive workflows like
researching, teaching, and experimenting, they are less ideal if you want to
write Python scripts geared toward a production environment. Also, more
complex projects that involve multiple files and developers are hard to
manage with only Jupyter notebooks. In this case, you want to use a proper
text editor to write and run regular Python files. In theory, you could use
just about any text editor, but in reality, you want one that “understands”
Python. That is, a text editor that supports at least the following features:

Syntax highlighting

The editor colors words differently based on whether they represent a
function, a string, a number, etc. This makes it much easier to read the
code.

Autocomplete

Autocomplete or IntelliSense, as Microsoft calls it, automatically
suggests code completions so that you have to type less and consult
documentation less frequently.

And soon enough, you have additional needs:

Run code

Switching back and forth between the text editor and an external
Terminal to run your code can be a hassle.

Debugger

A debugger allows you to step through the code line by line.

Version control

Having built-in support for Git version control saves you from using an
external tool.

AI assistant

AI coding assistants like GitHub Copilot can read and edit your files
directly in the editor.

There is a wide spectrum of tools that can help you with all that, and as
usual, every developer has different needs and preferences. Some may
indeed want to use a no-frills text editor together with an external Terminal.
Others may prefer an integrated development environment (IDE): IDEs try
to put everything you’ll ever need into a single tool, which can make them
bloated.

I chose VS Code for this book as it has quickly become one of the most
popular code editors after its initial release in 2015. What makes VS Code
such a popular tool? In essence, it’s the right mix between a bare-bones text
editor and a full-blown IDE: VS Code is a mini IDE that comes with the
essential tools out of the box, but everything else needs to be added via
extensions:

Cross-platform

VS Code runs on Windows, macOS, and Linux. There are also cloud-
hosted versions like GitHub Codespaces.

Integrated tools

https://oreil.ly/bDGWE

VS Code comes with a debugger, a Terminal, support for Git version
control, and has GitHub Copilot built-in.

Extensions

Additional functionality, e.g., Python support, is added via extensions
that can be installed with a simple click.

Lightweight

Depending on your operating system, the VS Code installer is around
100–150 MB.

VISUAL STUDIO CODE VS. VISUAL STUDIO
Don’t confuse Visual Studio Code with Visual Studio, the IDE! While you can use
Visual Studio for Python development, it’s a heavy installation and is traditionally used
to work with .NET languages like C#.

To find out if you agree with my praise for VS Code, there is no better way
than trying it out yourself. The next section gets you started!

Installation and Configuration
Download the installer from the VS Code home page. For the installation,
use the following instructions according to your operating system. In case
of an issue, please refer to the original documentation.

Windows

Double-click the installer, accept the license agreement, then accept all
defaults. Once installed, open VS Code via the Windows Start menu,
where you will find it under Visual Studio Code.

macOS

Double-click the ZIP file to unpack the app (some browsers, like Safari,
do this automatically). Then drag and drop Visual Studio Code.app into

https://oreil.ly/26Jfa
https://code.visualstudio.com/docs

the Applications folder: you can now start it from the Launchpad. You
need to confirm the pop-up message saying “Visual Studio Code.app is
an app downloaded from the internet. Are you sure you want to open
it?” by clicking the Open button.

When you open VS Code for the first time, it looks like Figure 2-4. Note
that I have switched from the default dark theme to a light theme to make
the screenshots easier to read. I have also closed the welcome message.

Figure 2-4. Visual Studio Code

Here is an overview of the main menus and interface elements highlighted
in Figure 2-4:

Activity Bar

On the lefthand side, you see the Activity Bar with the following icons
from top to bottom:

Explorer

Search

Source Control

Run and Debug

Extensions

Status Bar

At the bottom of the editor, you have the Status Bar. Once you have
completed the configuration and edit a Python file, you will see e.g.,
which Python interpreter is being used.

Command Palette

You can show the Command Palette via F1 or with the keyboard
shortcut Ctrl+Shift+P (Windows) or Command-Shift-P (macOS). If you
are unsure about something, your first stop should always be the
Command Palette, as it gives you easy access to almost everything you
can do with VS Code. For example, if you are looking for keyboard
shortcuts, type in keyboard shortcuts, select the entry “Help:
Keyboard Shortcuts Reference,” and hit Enter.

VS Code is a great text editor out of the box, but to make it work nicely
with Python, you need to install two extensions:

Python by Microsoft (core language support)

Jupyter by Microsoft (Jupyter notebook support)

To install them, click on the Extensions icon on the Activity Bar and search
for “Python.” Install the Python extension that shows Microsoft as the
author. Once this is installed, search for “Jupyter”, again authored by
Microsoft, and click Install. After installing an extension, VS Code will
show a welcome document— feel free to close it. Now finalize the
configuration according to your platform:

Windows

Open the Command Palette and type default profile. Select the
entry that reads “Terminal: Select Default Profile” and hit Enter. In the
dropdown menu, select Command Prompt and confirm by hitting Enter.
This prevents VS Code to run into a permission error when activating
the virtual environment in PowerShell, which is the default Terminal.

macOS

Open the Command Palette and type shell command. Select the
entry that reads “Shell Command: Install code command in PATH” and
hit Enter. This is required so that you can start VS Code conveniently
from the Terminal.

Now that VS Code is installed and configured, let’s use it to write and run
our first Python script!

Running a Python Script
While you can open VS Code via the Start menu on Windows or
Launchpad on macOS, it’s often faster to open VS Code from the Terminal,
where you are able to launch it via the code command. Therefore, start a

new Terminal and use cd to change into the directory you want to open (in
our case that’s the directory of the companion repository), then instruct VS
Code to open the current directory, which is represented by the dot:

Windows (Terminal)

cd %USERPROFILE%\Documents\python-for-excel-2e

code .

macOS (Terminal)

cd ~/Documents/python-for-excel-2e

code .

Starting VS Code this way opens the companion repository directly in the
Explorer on the Activity Bar. Note that VS Code will ask “Do you trust the
authors of the files in this folder?” Confirm this dialog by clicking the “Yes,
I trust the authors” button. If you don’t want to use the code command,
just start VS Code normally and open the companion repository via File >
Open Folder.

When you hover over the file list in the Explorer on the Activity Bar, you
will see the New File button appear as shown in Figure 2-5. Click on New
File and call your file hello_world.py, then hit Enter. Once it opens in the
editor, write the following line of code:

print("hello world!")

Remember that Jupyter notebooks print the result of the last line
automatically? When you run a regular Python script, you need to tell
Python explicitly what to print, which is why you need to use the print
function here. While you are in a Python file, the Status Bar will now show
your Python environment “py4xl”; this name is defined in pyproject.toml.
Since VS Code automatically selects virtual environments in the project’s

root folder, you don’t have to select the environment manually. Your setup
should now look like the one in Figure 2-5.

Figure 2-5. VS Code with hello_world.py open

Before we can run the script, make sure to save it by hitting Ctrl+S on
Windows or Command-S on macOS. With Jupyter notebooks, we could hit
Shift+Enter to run a cell. With VS Code, you can run your code from either
the Terminal or by clicking the Run button. Running Python code from the
Terminal is how you usually run scripts on a server, so it’s important to
know how this works.

Terminal
In a Terminal, in the directory of hello_world.py, i.e., in the directory of the
companion repository, run the script by using uv run:

Windows (Terminal)

cd %USERPROFILE%\Documents\python-for-excel-2e

uv run hello_world.py

macOS (Terminal)

cd ~/Documents/python-for-excel-2e

uv run hello_world.py

This will show the following output:

hello world!

If you are not in the same directory as your Python file, you need to use the
full path to your Python file:

Windows (Terminal)

uv run %USERPROFILE%\Documents\python-for-excel-

2e\hello_world.py

macOS (Terminal)

uv run ~/Documents/python-for-excel-2e/hello_world.py

LONG FILE PATHS ON THE TERMINAL
A convenient way to deal with long file paths is to drag and drop the file onto your
Terminal. This will write the full path to wherever the cursor is in the Terminal. Note
that it will write the full absolute path to the Terminal, so it won’t use
%USERPROFILE% or ~.

Instead of using an external Terminal, you can also use the Terminal that’s
integrated into VS Code.

Terminal in VS Code
You don’t need to switch away from VS Code to work with the Terminal:
VS Code has an integrated Terminal that you can show via the keyboard
shortcut Ctrl+` or via View > Terminal. Since it opens in the project folder,
you don’t need to change the directory first:

Windows and macOS (Terminal)

uv run hello_world.py

The integrated Terminal allows you to run a Python script directly from VS
Code. For an even easier experience, VS Code offers the Run button.

Run button
When you edit a Python file, you will see a Play icon at the top right— this
is the Run Python File button, as shown in Figure 2-5. Clicking it will open

the Terminal at the bottom automatically and run the code.

OPENING FILES IN VS CODE
VS Code has an unconventional default behavior when you single-click a file in the
Explorer on the Activity Bar: the file is opened in preview mode, which means that the
next file that you single-click will open in the same tab unless you have edited the file.
If you want to switch off the single-click behavior (so only a double-click will open it),
go to Preferences > Settings (Ctrl+, on Windows or Command-, on macOS). Under
Workbench > “List: Open Mode” set the dropdown to “doubleClick.”

If you encounter an issue when running a Python script, a debugger can
help you find the cause.

Debugger
If you’ve ever used the VBA debugger in Excel, I have good news for you:
debugging with VS Code is a very similar experience. Let’s start by
opening the file debugging.py from the companion repository in VS Code.
Click into the margin to the left of line number 4 so that a red dot appears—
this is your breakpoint where code execution will be paused. Now click on
the dropdown of the play button at the top right and select “Python
Debugger: Debug Python File.” This runs the code until it hits the
breakpoint. The line with the breakpoint will be highlighted and code
execution pauses, see Figure 2-6.

Figure 2-6. VS Code with the debugger stopped at the breakpoint

If the Variables section doesn’t show up automatically on the left, make
sure to click on the Run and Debug menu to see the values of the variables.
Alternatively, you can also hover over a variable in the source code and get
a tooltip with its value. At the top, you will see the Debug Toolbar that
gives you access to the following buttons from left to right: Continue, Step
Over, Step Into, Step Out, Restart, and Stop. When you hover over them,
you will see their keyboard shortcuts.

Let’s see what each of these buttons does:

Continue

This continues to run the program until it either hits the next breakpoint
or the end of the program. If it reaches the end of the program, the
debugging process will stop.

Step Over

The debugger will advance one line. Step Over means that the debugger
will not visually step through lines of code that are outside of your
current scope. For example, it runs functions in one step instead of
going through each line inside them.

Step Into

If you have code that calls a function or class, etc., Step Into will cause
the debugger to step into that function or class. If the function or class is
in a different file, the debugger will open this file for you.

Step Out

If you stepped into a function with Step Into, Step Out causes the
debugger to return to the next higher level until eventually, you will be
back on the highest level from where you called Step Into initially.

Restart

This will stop the current debug process and start a new one from the
beginning.

Stop

This will stop the current debug process.

Now that you know what each button does, click on Step Over to advance
one line and see how variable c appears in the Variables section, then finish
this short debugging exercise by clicking on Continue.

At this point, you know how to create, run, and debug Python scripts in VS
Code. However, VS Code can also run Jupyter notebooks— here’s how this
works.

Running Jupyter Notebooks with VS Code
Instead of spinning up a Jupyter notebook server in the Terminal, you can
run notebooks directly in VS Code thanks to the Jupyter extension that we
installed earlier. To create a new Jupyter notebook, open the Command
Palette and search for “Create: New Jupyter Notebook.” If you want to open
an existing file instead, open it like any other file from the file explorer in
VS Code. With Jupyter notebooks, VS Code shows the py4xl virtual
environment on the top right of the notebook as the Python interpreter (in
the context of a Jupyter notebook, this is called the Jupyter kernel), see
Figure 2-7. If VS Code shows Select Kernel instead of the
environment name, click on it to select the correct Python environment
py4xl.

Figure 2-7. Jupyter notebooks in VS Code

Running Jupyter notebooks in VS Code makes things easier as you don’t
need to run the Jupyter notebook server manually in a Terminal. The main
advantage, however, is that you get access to the tools that VS Code offers
such as code completion, GitHub Copilot, and the debugger.

ALTERNATIVE TEXT EDITORS AND IDES
Tools are something individual, and just because this book is based on
VS Code doesn’t mean you shouldn’t have a look at other options.
Some of these options include:

Zed is a free and fast text editor by the creators of the retired
Atom editor.

Sublime is a fast commercial text editor.

Notepad++ is a free text editor for Windows.

PyCharm is an IDE with a free community edition and a
professional edition that adds support for scientific tools and
web development.

Spyder is similar to MATLAB’s IDE and comes with a
variable explorer.

Positron is a free IDE for data science that supports both
Python and R.

JupyterLab is a web-based IDE developed by the Jupyter
notebook team.

Wing Python IDE is available in both free and paid versions.

PyDev is originally based on the Eclipse IDE but nowadays
also available as a VS Code extension.

Besides these solutions, there’s a growing number of AI-centric IDEs
such as Cursor. Given how rapidly this landscape is evolving, I
recommend searching the web for the latest products.

Conclusion

https://zed.dev/
https://oreil.ly/9FVLD
https://oreil.ly/7Ksk9
https://oreil.ly/OrIj-
https://spyder-ide.org/
https://positron.posit.co/
https://jupyter.org/
https://wingware.com/
https://pydev.org/
https://cursor.com/

In this chapter, apart from installing Python, I’ve introduced you to all the
essential tools that we will work with throughout this book: the Terminal,
uv, Jupyter notebooks, and VS Code. We also ran a tiny bit of Python code
in a Python REPL, in a Jupyter notebook, and as a script in VS Code.

I do recommend you get comfortable with the Terminal, as it will give you
a lot of power once you get used to it. Ultimately, the Terminal is where you
run your Python code— whether directly, through VS Code’s integrated
Terminal, or via the VS Code play button.

With a working development environment, you are now ready to tackle the
next chapter, where you’ll learn enough Python to be able to follow the rest
of the book.

Chapter 3. Getting Started with
Python

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 3rd chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at mpotter@oreilly.com.

With Python and VS Code installed, you have everything in place to get
started. Although this chapter doesn’t go much further than the basics, it
still covers a lot of ground. If you are at the beginning of your coding
career, there may be a lot to digest. However, most concepts will get clearer
once you use them in later chapters as part of a practical example, so there’s
no need to worry if you don’t understand something fully the first time
around. If you are a seasoned VBA developer, I will try to make your
transition to Python a little easier by drawing parallels between the two
languages and pointing out any caveats.

I’ll start this chapter with Python’s basic data types, such as integers and
strings. After that, I will introduce indexing and slicing, a core concept in
Python that gives you access to specific elements of a sequence. Up next
are data structures like lists and dictionaries that can hold multiple objects.
I’ll continue with the if statement and the for and while loops before
getting to an introduction of functions and modules that allow you to

mailto:mpotter@oreilly.com

organize and structure your code. To wrap this chapter up, I will show you
how to format your Python code properly. As you have probably guessed by
now, this chapter is as technical as it can get. Running the examples for
yourself in a Jupyter notebook is therefore a good idea to make everything a
bit more interactive and playful. Either type the examples yourself or run
them by using the notebook ch03.ipynb from the companion repository.

Data Types
Python, like every other programming language, treats numbers, text,
booleans, etc. differently by assigning them a different data type. The data
types that we will use most often are integers, floats, booleans, and strings.
In this section, I am going to introduce them one after another with a few
examples. To be able to understand data types, though, I first need to
explain what an object is.

Objects
In Python, everything is an object, including numbers, strings, functions,
and everything else that we’ll meet in this chapter. Objects can make
complex things easy and intuitive by giving you access to a set of variables
and functions. The variables hold the object’s data (often called state),
while the functions let you perform actions. So before anything else, let me
say a few words about variables and functions!

Variables
In Python, a variable is a name that you assign to an object by using the
equal sign. In the first line of the following example, the name a is assigned
to the object 3:

In [1]: a = 3
 b = 4
 a + b
Out[1]: 7

This works the same for all objects, which is simpler compared to VBA,
where you use the equal sign for data types like numbers and strings and the
Set statement for objects like workbooks or worksheets. In Python, you
change a variable’s type simply by assigning it to a new object. This is
referred to as dynamic typing:

In [2]: a = 3
 print(a)
 a = "three"
 print(a)
3
three

Unlike VBA, Python is case-sensitive, so a and A are two different
variables. Variable names must follow certain rules:

They must start with either a letter or an underscore

They must consist of letters, numbers, and underscores

After this short introduction to variables, let’s see how we can make
function calls!

Functions
I will introduce functions with a lot more detail later in this chapter. For
now, you should simply know how to call built-in functions like print
that we used in the previous code sample. To call a function, you add
parentheses to the function name and provide the arguments within the
parentheses, which is pretty much equivalent to the mathematical notation:

function_name(argument1, argument2, ...)

Let’s now look at how variables and functions work in the context of
objects!

Attributes and methods

In the context of objects, variables are called attributes and functions are
called methods: attributes give you access to the data of an object, and
methods allow you to perform an action. To access attributes and methods,
you use the dot notation like this: myobject.attribute and
myobject.method().

Let’s make this a bit more tangible: if you write a car racing game, you
would most likely use an object that represents a car. The car object could
have a speed attribute that allows you to get the current speed via
car.speed, and you might be able to accelerate the car by calling the
accelerate method car.accelerate(10), which would increase the
speed by ten miles per hour.

The type of an object and with that its behavior is defined by a class, so the
previous example would require you to write a Car class. The process of
getting a car object out of a Car class is called instantiation, and you
instantiate an object by calling the class in the same way as you call a
function: car = Car(). We won’t write our own classes in this book, but
if you are interested in how this works, have a look at Appendix C.

We will use a first object method in the next section to make a string— i.e.,
a piece of text— uppercase, and we will get back to the topic of objects and
classes when we talk about datetime objects toward the end of this
chapter. Now, however, let’s move on with those objects that have a
numeric data type!

Numeric Types
The data types int and float represent integers and floating-point
numbers, respectively. To find out what data type an object has, use the
built-in function type:

In [3]: type(4)
Out[3]: int
In [4]: type(4.4)
Out[4]: float

If you want to force a number to be a float instead of an int, it’s good
enough to use a trailing decimal point or the float constructor (a
constructor is a function that creates a specific object):

In [5]: type(4.)
Out[5]: float
In [6]: float(4)
Out[6]: 4.0

The last example can also be turned around: using the int constructor, you
can turn a float into an int. If the fractional part is not zero, it will be
truncated:

In [7]: int(4.9)
Out[7]: 4

EXCEL CELLS ALWAYS STORE FLOATS
You may need to convert a float to an int when you read in a number from an Excel
cell and provide it as an argument to a Python function that expects an integer. The
reason is that numbers in Excel cells are always stored as floats behind the scenes, even
if Excel shows you what looks like an integer.

Python has a few more numeric types that I won’t discuss in this book:
there are the decimal, fraction, and complex data types. If floating-
point inaccuracies are an issue (see sidebar), use the decimal type for
exact results. These cases are rare, though. As a rule of thumb: if Excel
would be good enough for the calculations, use floats.

FLOATING-POINT INACCURACIES
By default, Excel often shows rounded numbers: type =1.125-1.1
into a cell, and you will see 0.025. While this might be what you
expect, it is not what Excel stores internally. Change the display format
to show at least 16 decimals, and it will change to
0.0249999999999999. This is the effect of floating-point
inaccuracy: computers live in a binary world, i.e., they calculate only
with zeros and ones. Certain decimal fractions like 0.1 can’t be stored
as a finite binary floating-point number, which explains the result from
the subtraction. In Python, you will see the same effect, but Python
doesn’t hide the decimals from you:

In [8]: 1.125 - 1.1
Out[8]: 0.02499999999999991

Mathematical operators
Calculating with numbers requires the use of mathematical operators like
the plus or minus sign. Except for the power operator, there shouldn’t be
any surprise if you come from Excel:

In [9]: 3 + 4 # Sum
Out[9]: 7
In [10]: 3 - 4 # Subtraction
Out[10]: -1
In [11]: 3 / 4 # Division
Out[11]: 0.75
In [12]: 3 * 4 # Multiplication
Out[12]: 12
In [13]: 3**4 # The power operator (Excel uses 3^4)
Out[13]: 81
In [14]: 3 * (3 + 4) # Use of parentheses
Out[14]: 21

COMMENTS
In the previous examples, I was describing the type of operation by
using comments (e.g., # Sum). Comments help other people (and
yourself a few weeks after writing the code) to understand what’s going
on in your program. My advice is to only comment those things that are
not already evident from reading the code. AI-generated code often
comes with a lot of comments— it doesn’t hurt to remove those that
aren’t adding any value. Anything starting with a hash sign is a
comment in Python and is ignored when you run the code:

In [15]: # This is a sample we've seen before.
 # Every comment line has to start with a #
 3 + 4
Out[15]: 7
In [16]: 3 + 4 # This is an inline comment
Out[16]: 7

Most editors have a keyboard shortcut to comment/uncomment lines. In
Jupyter notebooks and VS Code, it is Ctrl+/ (Windows) or Command-/
(macOS). Note that Markdown cells in Jupyter notebooks won’t accept
comments— if you start a line with a # there, Markdown will interpret
this as a heading.

With integers and floats covered, let’s move straight to booleans!

Booleans
The boolean types in Python are True or False, exactly like in VBA. The
boolean operators and, or, and not, however, are all lowercase, while
VBA shows them capitalized. Boolean expressions are similar to how they
work in Excel formulas, except for equality and inequality operators:

In [17]: 3 == 4 # Equality (Excel uses 3 = 4)
Out[17]: False
In [18]: 3 != 4 # Inequality (Excel uses 3 <> 4)
Out[18]: True

In [19]: 3 < 4 # Smaller than. Use > for bigger than.
Out[19]: True
In [20]: 3 <= 4 # Smaller or equal. Use >= for bigger or equal.
Out[20]: True
In [21]: # You can chain logical expressions
 # In VBA, this would be: 10 < 12 And 12 < 17
 # In Excel formulas, this would be: =AND(10 < 12, 12 <
17)
 10 < 12 < 17
Out[21]: True
In [22]: not True # "not" operator
Out[22]: False
In [23]: False and True # "and" operator
Out[23]: False
In [24]: False or True # "or" operator
Out[24]: True

Every Python object evaluates to either True or False. The majority of
objects are True, but there are some that evaluate to False including
None (see sidebar), False, 0 or empty data types, e.g., an empty string or
an empty list (I’ll introduce strings and lists in a moment).

NONE
None is a built-in constant and represents “the absence of a value”
according to the official docs. For example, if a function does not
explicitly return anything, it returns None. It is also a good choice to
represent empty cells in Excel as we will see in Part 3 and Part 4.

To double-check if an object is True or False, use the bool constructor:

In [25]: bool(2)
Out[25]: True
In [26]: bool(0)
Out[26]: False
In [27]: bool("some text") # We'll get to strings in a moment
Out[27]: True
In [28]: bool("")
Out[28]: False
In [29]: bool(None)
Out[29]: False

With booleans in our pocket, there is one more basic data type left: text
data, better known as strings.

Strings
If you have ever worked with strings in VBA that are longer than one line
and contain variables and literal quotes, you probably wished it was easier.
Fortunately, this is an area where Python is particularly strong. Strings can
be expressed by using either double quotes (") or single quotes ('). The
only condition is that you have to start and end the string with the same type
of quotes. You can use + to join (“concatenate”) strings or * to repeat them.
Since we were repeating strings in the previous chapter, here is a sample
using the plus sign:

In [30]: "A double quote string. " + 'A single quote string.'
Out[30]: 'A double quote string. A single quote string.'

Depending on what you want to write, using single or double quotes can
help you to easily print literal quotes without the need to escape them. If
you still need to escape a character, you precede it with a backslash:

In [31]: print("Don't wait! " + 'Learn how to "speak" Python.')
Don't wait! Learn how to "speak" Python.
In [32]: print("It's easy to \"escape\" characters with a leading
\\.")
It's easy to "escape" characters with a leading \.

When you are mixing strings with variables, you usually work with f-
strings, short for formatted string literal. Simply put an f in front of your
string and use variables in between curly braces:

In [33]: # Note how Python allows you to conveniently assign
multiple
 # values to multiple variables in a single line
 first_adjective, second_adjective = "free", "open
source"
 f"Python is {first_adjective} and {second_adjective}."
Out[33]: 'Python is free and open source.'

As I mentioned at the beginning of this section, strings are objects like
everything else, and they offer a few methods (i.e., functions) to perform an
action on that string. For example, this is how you transform between upper
and lowercase letters:

In [34]: "PYTHON".lower()
Out[34]: 'python'
In [35]: "python".upper()
Out[35]: 'PYTHON'

GETTING HELP
How do you know what attributes certain objects like strings offer and
what arguments their methods accept? The answer depends on the tool
you use: with classic Jupyter notebooks, hit the Tab key after typing the
dot that follows an object, for example "python".<Tab>. This will
make a dropdown appear with all the attributes and methods that this
object offers. If your cursor is in a method, for example within the
parentheses of "python".upper(), hit Shift+Tab to get the
description of that function. VS Code will display this information
automatically as a tooltip. If you run a Python REPL, use
dir("python") to get the available attributes and
help("python".upper) to print the description of the upper
method. Other than that, it’s always a good idea to get back to Python’s
online documentation. If you are looking for the documentation of
third-party packages like pandas, it’s helpful to search for them on
PyPI, Python’s package index, where you will find the links to the
respective home pages and documentation. Nowadays, AI assistants
like ChatGPT or Microsoft Copilot are also a great way to get support if
you are lost, see Chapter 8.

When working with strings, you often need to select parts of a string: for
example, you may want to get the USD part out of the EURUSD exchange
rate notation. The next section shows you Python’s powerful indexing and
slicing mechanism that allows you to do this easily.

https://docs.python.org/
https://pypi.org/

Indexing and Slicing
Indexing and slicing give you access to specific elements of a sequence.
Since strings are sequences of characters, we can use them to learn how it
works. In the next section, we will meet additional sequences like lists and
tuples that support indexing and slicing too.

Indexing
Figure 3-1 introduces the concept of indexing. Python is zero-based, which
means that the first element in a sequence is referred to by index 0.
Negative indices from -1 allow you to refer to elements from the end of the
sequence.

Figure 3-1. Indexing from the beginning and end of a sequence

COMMON ERROR TRAPS FOR VBA DEVELOPERS
If you are coming from VBA, indexing is a common error trap. VBA uses one-based
indexing for most collections like sheets (Sheets(1)) but uses zero-based indexing
for arrays (MyArray(0)), although that default can be changed. Another difference is
that VBA uses parentheses for indexing while Python uses square brackets.

The syntax for indexing is as follows:

sequence[index]

Accordingly, you access specific elements from a string like this:

In [36]: language = "PYTHON"
In [37]: language[0]
Out[37]: 'P'
In [38]: language[1]
Out[38]: 'Y'
In [39]: language[-1]
Out[39]: 'N'
In [40]: language[-2]
Out[40]: 'O'

If you want to extract more than just a single character, you have to use
slicing.

Slicing
If you want to get more than one element from a sequence, use the slicing
syntax, which works as follows:

sequence[start:stop:step]

Python uses half-open intervals: the start index is included while the
stop index is not. If you leave the start or stop arguments away, it
will include everything from the beginning or to the end of the sequence,
respectively. step determines the direction and the step size: for example,
2 will return every second element and -3 will return every third element
starting from the end of the sequence. The default step size is one:

In [41]: language[:3] # Same as language[0:3]
Out[41]: 'PYT'
In [42]: language[1:3]
Out[42]: 'YT'
In [43]: language[-3:] # Same as language[-3:6]
Out[43]: 'HON'
In [44]: language[-3:-1]
Out[44]: 'HO'
In [45]: language[::2] # Every second element
Out[45]: 'PTO'
In [46]: language[-1:-4:-1] # A negative step goes from end to
beginning
Out[46]: 'NOH'

So far we’ve looked at just a single index or slice operation, but Python also
allows you to chain multiple index and slice operations together. For
example, if you want to get the second character out of the last three
characters, you could do it like this:

In [47]: language[-3:][1]
Out[47]: 'O'

This is the same as language[-2] so in this case, it wouldn’t make
much sense to use chaining, but it will make more sense when we use
indexing and slicing with lists, one of the data structures that I am going to
introduce in the next section.

Data Structures
Python provides powerful data structures that make it easy to work with
collections of objects. In this section, I am going to introduce lists,
dictionaries, tuples, and sets. While each of these data structures has
slightly different characteristics, they are all able to hold multiple objects.
In VBA, you may have used collections or arrays to hold multiple values.
VBA even offers a data structure called dictionary that works conceptually
the same as Python’s dictionary. It is, however, only available on the
Windows version of Excel. Let’s get started with lists, the data structure that
you will probably use most.

Lists
Lists are capable of holding multiple objects of different data types. They
are so versatile that you will use them all the time. You create a list as
follows:

[element1, element2, ...]

Here are two lists, one with the names of Excel files and the other one with
a few numbers:

In [48]: file_names = ["one.xlsx", "two.xlsx", "three.xlsx"]
 numbers = [1, 2, 3]

Like strings, lists can easily be merged (“concatenated”) with the plus sign.
This also shows you that lists can hold different types of objects:

In [49]: file_names + numbers
Out[49]: ['one.xlsx', 'two.xlsx', 'three.xlsx', 1, 2, 3]

As lists are objects like everything else, they can also have other lists as
their elements. I will refer to them as nested lists:

In [50]: nested_list = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

If you rearrange this to span over multiple lines, you can easily recognize
that this is a very nice representation of a matrix, or a range of spreadsheet
cells. Note that the square brackets implicitly allow you to break the lines
(see sidebar). Via indexing and slicing, you get the elements you want:

In [51]: cells = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]
In [52]: cells[1] # Second row
Out[52]: [4, 5, 6]
In [53]: cells[1][1:] # Second row, second and third column
Out[53]: [5, 6]

LINE CONTINUATION
Sometimes, a line of code can get so long that you will need to break it
up into two or more lines to keep your code readable. Technically, you
can either use parentheses or a backslash to break up the line:

In [54]: a = (1 + 2
 + 3)
In [55]: a = 1 + 2 \
 + 3

Python’s style guide, however, prefers that you use implicit line breaks
if possible: whenever you are using an expression that contains
parentheses, square brackets, or curly braces, use them to create a line
break without having to introduce an additional character. I will say
more about Python’s style guide toward the end of this chapter.

You can change elements in lists:

In [56]: users = ["Linda", "Brian"]
In [57]: users.append("Jennifer") # Most commonly you add to the
end
 users
Out[57]: ['Linda', 'Brian', 'Jennifer']
In [58]: users.insert(0, "Kim") # Insert "Kim" at index 0
 users
Out[58]: ['Kim', 'Linda', 'Brian', 'Jennifer']

To delete an element, use either pop or del. While pop is a method, del
is implemented as a statement in Python:

In [59]: users.pop() # Removes and returns the last element by
default
Out[59]: 'Jennifer'
In [60]: users
Out[60]: ['Kim', 'Linda', 'Brian']
In [61]: del users[0] # del removes an element at the given
index

Some other useful things you can do with lists are:

In [62]: len(users) # Length
Out[62]: 2
In [63]: "Linda" in users # Check if users contains "Linda"
Out[63]: True
In [64]: print(sorted(users)) # Returns a new sorted list
 print(users) # The original list is unchanged
['Brian', 'Linda']
['Linda', 'Brian']
In [65]: users.sort() # Sorts the original list
 users
Out[65]: ['Brian', 'Linda']

Note that you can use len and in with strings as well:

In [66]: len("Python")
Out[66]: 6
In [67]: "free" in "Python is free and open source."
Out[67]: True

To get access to elements in a list, you refer to them by their index, i.e.,
position— that’s not always practical. Dictionaries, the topic of the next
section, allow you to get access to elements via a key (often a name).

Dictionaries
Dictionaries map keys to values. You will come across key/value
combinations all the time. The easiest way to create a dictionary is as
follows:

{key1: value1, key2: value2, ...}

While lists allow you to access elements by index, i.e., position, dictionaries
allow you to access elements by key. As with indices, keys are accessed via
square brackets. The following code samples will use the dictionary
exchange_rates, which maps currency pairs (“key”) to exchange rates
(“value”):

In [68]: exchange_rates = {"EURUSD": 1.1152, "GBPUSD": 1.2454,
"AUDUSD": 0.6161}
In [69]: exchange_rates["EURUSD"] # Access the EURUSD exchange
rate
Out[69]: 1.1152

To change existing values or add new key/value pairs, do the following:

In [70]: exchange_rates["EURUSD"] = 1.2 # Change an existing
value
 exchange_rates
Out[70]: {'EURUSD': 1.2, 'GBPUSD': 1.2454, 'AUDUSD': 0.6161}
In [71]: exchange_rates["CADUSD"] = 0.714 # Add a new key/value
pair
 exchange_rates
Out[71]: {'EURUSD': 1.2, 'GBPUSD': 1.2454, 'AUDUSD': 0.6161,
'CADUSD': 0.714}

To merge two or more dictionaries, use the pipe operator. If the second
dictionary contains keys from the first one, the values from the first will be
overridden. You can see this happening in the following example by
looking at the GBPUSD exchange rate:

In [72]: exchange_rates | {"SGDUSD": 0.7004, "GBPUSD": 1.2222}
Out[72]: {'EURUSD': 1.2,
 'GBPUSD': 1.2222,
 'AUDUSD': 0.6161,
 'CADUSD': 0.714,
 'SGDUSD': 0.7004}

Many objects can serve as keys; the following is an example with integers:

In [73]: currencies = {1: "EUR", 2: "USD", 3: "AUD"}
In [74]: currencies[1]
Out[74]: 'EUR'

By using the get method, dictionaries allow you to use a default value in
case the key doesn’t exist:

In [75]: # currencies[100] would raise an exception. Instead of
100,

 # you could use any other non-existing key, too.
 currencies.get(100, "N/A")
Out[75]: 'N/A'

Dictionaries can often be used when you would use a Case statement in
VBA. The previous example could be written like this in VBA:

ccy = 100
Select Case ccy
Case 1
 Debug.Print "EUR"
Case 2
 Debug.Print "USD"
Case 3
 Debug.Print "AUD"
Case Else
 Debug.Print "N/A"
End Select

Now that you know how to work with dictionaries, let’s move on to the next
data structure: tuples. They are similar to lists except for one big difference.

Tuples
Tuples are similar to lists with the difference that they are immutable: once
created, their elements can’t be changed. While you can often use tuples
and lists interchangeably, tuples are the obvious choice for a collection that
never changes throughout the program. Technically, tuples are created by
separating values with commas:

mytuple = element1, element2, ...

However, using parentheses often makes it easier to read:

In [76]: currencies = ("EUR", "GBP", "AUD")

Tuples allow you to access elements the same way as lists, but they won’t
allow you to change elements. Instead, merging (“concatenating”) tuples

will create a new tuple behind the scenes, then bind your variable to this
new tuple:

In [77]: currencies[0] # Accessing the first element
Out[77]: 'EUR'
In [78]: # Concatenating tuples will return a new tuple
 currencies + ("SGD",)
Out[78]: ('EUR', 'GBP', 'AUD', 'SGD')

I explain the difference between mutable vs. immutable objects in detail in
Appendix C, but for now, let’s have a look at the last data structure of this
section: sets.

Sets
Sets are collections that have no duplicate elements. While you can use
them for set theory operations, in practice they often help you to get the
unique values of a list or a tuple. You create sets by using curly braces:

{element1, element2, ...}

To get the unique objects in a list or a tuple, use the set constructor like so:

In [79]: set(["USD", "USD", "SGD", "EUR", "USD", "EUR"])
Out[79]: {'EUR', 'SGD', 'USD'}

Other than that, you can apply set theory operations like union and
intersection:

In [80]: portfolio1 = {"USD", "EUR", "SGD", "CHF"}
 portfolio2 = {"EUR", "SGD", "CAD"}
In [81]: # Same as portfolio2.union(portfolio1)
 portfolio1.union(portfolio2)
Out[81]: {'CAD', 'CHF', 'EUR', 'SGD', 'USD'}
In [82]: # Same as portfolio2.intersection(portfolio1)
 portfolio1.intersection(portfolio2)
Out[82]: {'EUR', 'SGD'}

For a full overview of set operations, see the official docs. Before moving
on, let’s quickly revise the four data structures we just met in Table 3-1. It
shows a sample for each data structure in the notation I used in the previous
paragraphs, the so-called literals. Additionally, I am also listing their
constructors that offer an alternative to using the literals and are often used
to convert from one data structure to another. For example, to convert a
tuple to a list, do:

In [83]: currencies = ("USD", "EUR", "CHF")
 currencies
Out[83]: ('USD', 'EUR', 'CHF')
In [84]: list(currencies)
Out[84]: ['USD', 'EUR', 'CHF']

Table 3-1. Data structures

Data Structure Literals Constructor

List [1, 2, 3] list((1, 2, 3))

Dictionary {"a": 1, "b": 2} dict(a=1, b=2)

Tuple (1, 2, 3) tuple([1, 2, 3])

Set {1, 2, 3} set((1, 2, 3))

At this point, you know all important data types including basic ones like
floats and strings, and data structures like lists and dictionaries. Next, you’ll
learn how to make your code respond to different conditions and how to
write loops.

Control Flow

https://oreil.ly/ju4ed

This section presents the if statement as well as the for and while
loops. The if statement allows you to execute certain lines of code only if
a condition is met, and the for and while loops will execute a block of
code repeatedly. To use these control flow statements, however, you need to
understand one of Python’s most noteworthy particularities: significant
white space. So let’s start with this!

Code Blocks and the pass Statement
A code block defines a section in your source code that is used for
something special. For example, you use a code block to define the lines
over which your program is looping or it makes up the definition of a
function. In Python, you define code blocks by indenting them, not by using
keywords (like in VBA) or curly braces (like in most other languages). This
is referred to as significant white space. The Python community has settled
on four spaces as indentation, but you usually type them in by hitting the
Tab key: both Jupyter notebooks and VS Code will automatically convert
tabs into four spaces. Let me show you how code blocks are formally
defined by using the if statement:

if condition:
 pass # Do nothing

The line preceding the code block always terminates with a colon. Since the
end of the code block is reached when you no longer indent the line, you
need to use the pass statement if you want to create a dummy code block
that does nothing. In VBA, this would correspond to the following:

If condition Then
 ' Do nothing
End If

Note that “Do nothing” is a comment in both versions, and could be left
out. Now that you know how to define code blocks, I can properly
introduce the if statement.

The if Statement and Conditional Expressions
To introduce the if statement, let me reproduce the example from
“Readability Counts” in Chapter 1, but this time in Python:

In [85]: i = 20
 if i < 5:
 print("i is smaller than 5")
 elif i <= 10:
 print("i is between 5 and 10")
 else:
 print("i is bigger than 10")
i is bigger than 10

If you would do the same as we did in Chapter 1, i.e., indent the elif and
else statements, you would get a SyntaxError. Python won’t let you
indent your code differently from the logic. Compared to VBA, the
keywords are lowercase and instead of ElseIf in VBA, Python uses
elif. Note that in Python, a simple if statement doesn’t require any
parentheses around it and to test if a value is True, you don’t need to do
that explicitly. Here is what I mean by that:

In [86]: is_important = True
 if is_important:
 print("This is important.")
 else:
 print("This is not important.")
This is important.

The same works if you want to check if a sequence like a list is empty or
not:

In [87]: values = []
 if values:
 print(f"The following values were provided:
{values}")
 else:
 print("There were no values provided.")
There were no values provided.

Conditional expressions, also called ternary operators, allow you to use a
more compact style for simple if/else statements:

In [88]: is_important = False
 print("important") if is_important else print("not
important")
not important

With if statements and conditional expressions in our pocket, let’s move
on to for and while loops.

The for and while Loops
If you need to do something repeatedly, a for loop can often do the work
for you. for loops iterate over the items of a sequence like a list, a tuple, or
a string (remember, strings are sequences of characters). As an introductory
example, let’s create a for loop that takes each element of the
currencies list, assigns it to the variable currency and prints it— one
after another until there are no more elements in the list:

In [89]: currencies = ["USD", "HKD", "AUD"]

 for currency in currencies:
 print(currency)
USD
HKD
AUD

As a side note, VBA’s For Each statement is close to how Python’s for
loop works. The previous example could be written like this in VBA:

Dim currencies As Variant
Dim ccy As Variant 'currency is a reserved word in VBA

currencies = Array("USD", "HKD", "AUD")

For Each ccy In currencies
 Debug.Print ccy
Next

In Python, if you need a variable that keeps track of the number of iterations
in a for loop (“counter variable”), the range or enumerate built-in
functions can help you with that. Let’s first look at range, which provides
a sequence of numbers: you call it by either providing a single stop
argument or by providing a start and stop argument, with an optional
step argument. start is inclusive, stop is exclusive, and step
determines the step size, with 1 being the default:

range(stop) # Option 1
range(start, stop, step) # Option 2

range evaluates lazily, which means that it generates numbers on the fly
and without explicitly asking for it, you won’t see the whole sequence. This
lazy evaluation is memory-efficient, as range doesn’t need to store all
numbers at once:

In [90]: range(5)
Out[90]: range(0, 5)

Converting the range to a list makes the values visible:

In [91]: list(range(5)) # stop argument
Out[91]: [0, 1, 2, 3, 4]
In [92]: list(range(2, 5, 2)) # start, stop, step arguments
Out[92]: [2, 4]

Normally, you want to use range directly though, to take advantage of its
memory-efficiency:

In [93]: for i in range(3):
 print(i)
0
1
2

If you need a counter variable while looping over a sequence, use
enumerate. It returns a sequence of (index, element) tuples. By

default, the index starts at zero and increments by one. You can use
enumerate in a loop like this:

In [94]: for i, currency in enumerate(currencies):
 print(i, currency)
0 USD
1 HKD
2 AUD

Looping over tuples and sets works the same as with lists. When you loop
over dictionaries, however, Python will loop over the keys:

In [95]: exchange_rates = {"EURUSD": 1.1152, "GBPUSD": 1.2454,
"AUDUSD": 0.6161}
 for currency_pair in exchange_rates:
 print(currency_pair)
EURUSD
GBPUSD
AUDUSD

Use the items method to get the key and the value as a tuple:

In [96]: for currency_pair, exchange_rate in
exchange_rates.items():
 print(currency_pair, exchange_rate)
EURUSD 1.1152
GBPUSD 1.2454
AUDUSD 0.6161

To exit a loop immediately, use the break statement:

In [97]: for i in range(15):
 if i == 2:
 break
 else:
 print(i)
0
1

You skip the remainder of an iteration with the continue statement,
which means that the loop continues with the next element i:

In [98]: for i in range(4):
 if i == 2:
 continue
 else:
 print(i)
0
1
3

When comparing for loops in VBA with Python, there is a subtle
difference: in VBA, the counter variable increases beyond your upper limit
after finishing the loop:

For i = 1 To 3
 Debug.Print i
Next i
Debug.Print i

This prints:

1
2
3
4

In Python, it behaves like you would probably expect it to:

In [99]: for i in range(1, 4):
 print(i)
 print(i)
1
2
3
3

Instead of looping over a sequence, you can also use while loops to run a
loop while a certain condition is true:

In [100]: n = 0
 while n <= 2:
 print(n)
 n += 1

0
1
2

AUGMENTED ASSIGNMENT
I have used the augmented assignment notation in the last example: n += 1. This is the
same as if you would write n = n + 1. This also works with the other mathematical
operators that I’ve introduced earlier on; for example, n = n - 2 can be written as n
-= 2.

Quite often, you will need to collect certain elements in a list for further
processing. In this case, Python offers an alternative to writing loops: list,
dictionary, and set comprehensions.

List, Dictionary, and Set Comprehensions
List, dictionary, and set comprehensions are technically a way to create the
respective data structure, but they often replace a for loop, which is why I
am introducing them here. As an introductory example, in the following list
of USD currency pairs, you need to select those currencies where USD is
quoted as the second currency. You could write the following for loop:

In [101]: currency_pairs = [
 "USDJPY",
 "USDGBP",
 "USDCHF",
 "USDCAD",
 "AUDUSD",
 "NZDUSD",
]
In [102]: usd_quote = []
 for pair in currency_pairs:
 if pair[3:] == "USD":
 usd_quote.append(pair[:3])
 usd_quote
Out[102]: ['AUD', 'NZD']

This is often easier to write with a list comprehension. A list comprehension
is a concise way of creating a list. You can grab its syntax from the
following example, which does the same as the previous for loop:

In [103]: [pair[:3] for pair in currency_pairs if pair[3:] ==
"USD"]
Out[103]: ['AUD', 'NZD']

If you don’t have any condition to satisfy, simply leave the if part away.
For example, to invert all the currency pairs so that the first currency comes
second and vice versa, you would do:

In [104]: [f"{pair[3:]}{pair[:3]}" for pair in currency_pairs]
Out[104]: ['JPYUSD', 'GBPUSD', 'CHFUSD', 'CADUSD', 'USDAUD',
'USDNZD']

With dictionaries, there are dictionary comprehensions:

In [105]: exchange_rates = {"EURUSD": 1.1152, "GBPUSD": 1.2454,
"AUDUSD": 0.6161}
 {k: v * 100 for (k, v) in exchange_rates.items()}
Out[105]: {'EURUSD': 111.52, 'GBPUSD': 124.54, 'AUDUSD': 61.61}

And with sets, there are set comprehensions:

In [106]: {s + "USD" for s in ["EUR", "GBP", "EUR", "HKD",
"HKD"]}
Out[106]: {'EURUSD', 'GBPUSD', 'HKDUSD'}

At this point, you are able to write simple scripts, as you know most of the
basic building blocks of Python. In the next section, you will learn how to
organize your code to keep it maintainable when your projects start to get
bigger.

Code Organization

In this section, we’ll bring our code into a maintainable strucutre: I’ll start
by introducing functions with all the details that you will commonly need
before I’ll show you how to split your code into different Python modules.
The knowledge about modules will then allow us to look into the
datetime module that is part of the standard library.

Functions
Even if you will use Python for simple scripts only, you are still going to
write functions regularly: they allow you to reuse the same lines of code
from anywhere in your program. We’ll start this section by defining a
function before we see how to call it!

Defining functions
To write your own function in Python, you have to use the keyword def,
which stands for function definition. Unlike VBA, Python doesn’t
differentiate between a function and a Sub procedure. In Python, the
equivalent of a Sub procedure is simply a function without a return
statement. Functions in Python follow the syntax for code blocks, i.e., you
end the first line with a colon and indent the body of the function:

def function_name(required_argument,
optional_argument=default_value, ...):
 return result

Required arguments

Required arguments do not have a default value. Multiple arguments are
separated by commas.

Optional arguments

You make an argument optional by supplying a default value. None is
often used to make an argument optional if there is no meaningful
default.

Return value

The return statement defines the result that the function returns. If
you leave it away, the function returns None.

To be able to play around with a function, let’s define one that is able to
convert the temperature from Fahrenheit or Kelvin to degrees Celsius:

In [107]: def convert_to_celsius(degrees, source="fahrenheit"):
 if source.lower() == "fahrenheit":
 return (degrees - 32) * (5 / 9)
 elif source.lower() == "kelvin":
 return degrees - 273.15
 else:
 # Exceptions will be introduced in Chapter 11
 raise ValueError(f"Don't know how to convert
from {source}")

I am using the string method lower, which transforms the provided strings
to lowercase. This allows us to accept the source string with any
capitalization while the comparison will still work. With the
convert_to_celsius function defined, let’s see how we can call it!

Calling functions
As briefly mentioned at the beginning of this chapter, you call a function by
adding parentheses to the function name, enclosing the function arguments:

result = function_name(positional_arg, arg_name=value, ...)

Positional arguments

If you provide a value as a positional argument (positional_arg),
the values are matched to the arguments according to their position in
the function definition.

Keyword arguments

By providing the argument in the form arg_name=value, you’re
providing a keyword argument. This has the advantage that you can
provide the arguments in any order. It is also more explicit to the reader
and can make it easier to understand. For example, if the function is
defined as f(a, b), you could call the function like this: f(b=1,
a=2). This concept also exists in VBA under the name named
arguments with the following syntax: f(b:=1, a:=1).

Let’s play around with the convert_to_celsius function to see how
this works in practice:

In [108]: convert_to_celsius(100, "fahrenheit") # Positional
arguments
Out[108]: 37.77777777777778
In [109]: convert_to_celsius(100) # Will use the default source
("fahrenheit")
Out[109]: 37.77777777777778
In [110]: convert_to_celsius(source="kelvin", degrees=0) #
Keyword arguments
Out[110]: -273.15

Now that you know how to define and call functions, let’s see how to
organize them with the help of modules.

Modules and the import Statement
When you work on bigger projects, you will have to split your code into
different files to make it easier to maintain. As we have already seen in the
previous chapter, Python files have the extension .py and you usually refer
to your main file as a script. If you want your main script to access
functionality from other files, you need to import that functionality first. In
this context, Python source files are called modules. To get a better feeling
for how this works and what the different import options are, open the file
temperature.py (Example 3-1) in VS Code. You’ll find it in the root
directory of the companion repository. If you need a refresher on how to
open files in VS Code, have another look at Chapter 2.

Example 3-1. temperature.py
TEMPERATURE_SCALES = ("fahrenheit", "kelvin", "celsius")

def convert_to_celsius(degrees, source="fahrenheit"):
 if source.lower() == "fahrenheit":
 return (degrees - 32) * (5 / 9)
 elif source.lower() == "kelvin":
 return degrees - 273.15
 else:
 # Exceptions will be introduced in Chapter 11
 raise ValueError(f"Don't know how to convert from
{source}")

print("This is the temperature module.")

To be able to import the temperature module, temperature.py needs to
be in the same directory as the Jupyter notebook— this is already the case in
the companion repository. To import, you only use the name of the module,
without the .py ending. After running the import statement, you will have
access to all the objects in that Python module via the dot notation. For
example, use temperature.convert_to_celsius() to perform
your conversion:

In [111]: import temperature
This is the temperature module.
In [112]: temperature.TEMPERATURE_SCALES
Out[112]: ('fahrenheit', 'kelvin', 'celsius')
In [113]: temperature.convert_to_celsius(120, "fahrenheit")
Out[113]: 48.88888888888889

Note that I used uppercase letters for TEMPERATURE_SCALES to express
that it is a constant— I will say more about that toward the end of this
chapter. When you execute the cell with import temperature, Python
will run the temperature.py file from top to bottom. You can easily see this
happening since importing the module will fire the print function at the
bottom of temperature.py.

MODULES ARE ONLY IMPORTED ONCE
If you run the import temperature cell again, you will notice that it does not print
anything anymore. This is because Python modules are only imported once per session.
If you change code in a module that you import, you need to restart your Python
interpreter to pick up all the changes. To restart a Jupyter notebook, click on the Restart
button at the top of a notebook in VS Code, or go to Kernel > Restart Kernel in classic
Jupyter notebooks.

In reality, you usually don’t print anything in modules. This was only to
show you the effect of importing a module more than once. Most
commonly, you put functions and classes in your modules (for more on
classes, see Appendix C). If you don’t want to type temperature every
time you use an object from the temperature module, change the import
statement like this:

In [114]: import temperature as tp
In [115]: tp.TEMPERATURE_SCALES
Out[115]: ('fahrenheit', 'kelvin', 'celsius')

Assigning an alias such as tp to your module can make it easier to use
while it’s still always clear where an object comes from. Many third-party
packages suggest a specific convention when using an alias. For example,
pandas is using the alias pd. There is one more option to import objects
from another module:

In [116]: from temperature import TEMPERATURE_SCALES,
convert_to_celsius
In [117]: TEMPERATURE_SCALES
Out[117]: ('fahrenheit', 'kelvin', 'celsius')

THE __PYCACHE__ FOLDER
When you import the temperature module, you will see that Python creates a folder
called __pycache__ with files that have the .pyc extension. These are bytecode-
compiled files that the Python interpreter creates when you import a module. For our
purposes, we can simply ignore this folder, as it is a technical detail of how Python runs
your code.

When using the from ... import ... syntax, you import specific
objects only. By doing this, you are importing them directly into the
namespace of your main script: that is, without looking at the import
statements, you won’t be able to tell whether the imported objects were
defined in your current Python script or Jupyter notebook or if they come
from another module. This could cause conflicts: if your main script has a
function called convert_to_celsius, it would override the one that
you are importing from the temperature module. If, however, you use
one of the two previous methods, your local function and the one from the
imported module could live next to each other as
convert_to_celsius and
temperature.convert_to_celsius.

DON’T NAME YOUR SCRIPTS LIKE EXISTING
PACKAGES

A common source for errors is to name your Python file the same as an existing Python
package or module. If you create a file to play around with pandas, don’t call that file
pandas.py, as this can cause conflicts.

Now that you know how the import mechanism works, let’s use it to import
the datetime module! This will also allow you to learn a few more things
about objects and classes.

The datetime Class

Working with date and time is a common operation in Excel, but it comes
with limitations: for example, date-formatted cells don’t support smaller
units than milliseconds and time zones are not supported at all. In Excel,
date and time are stored as a simple float called the date serial number. The
Excel cell is then formatted to display it as date and/or time. For example,
January 1, 1900 has the date serial number of 1, which means that this is
also the earliest date that you can work with in Excel. Time gets translated
into the decimal part of the float, e.g., 01/01/1900 10:10:00 is
represented by 1.4236111111.

In Python, to work with date and time, you import the datetime module,
which is part of the standard library. The datetime module contains a
class with the same name that allows us to create datetime objects. Since
having the same name for the module and the class can be confusing, I will
use the following import convention throughout this book: import
datetime as dt. This makes it easy to differentiate between the
module (dt) and the class (datetime).

Up to this point, we were mostly using literals to create objects like lists or
dictionaries. Literals refer to the syntax that Python recognizes as a specific
object type— in the case of a list, this would be something like [1, 2,
3]. However, the majority of objects have to be created by calling their
class: this process is called instantiation, and objects are therefore also
called class instances. Calling a class works the same way as calling a
function, i.e., you add parentheses to the class name and provide the
arguments as we did with functions. To instantiate a datetime object, you
need to call the class like this:

import datetime as dt
dt.datetime(year, month, day, hour, minute, second, microsecond,
timezone)

Let’s go through a couple of examples to see how you work with
datetime objects in Python. For the purpose of this introduction, we’ll
ignore time zones and work with time-zone-naive datetime objects. If

you want to know more about time zones though, have a look at Appendix
C for a short introduction.

In [118]: # Import the datetime module as "dt"
 import datetime as dt
In [119]: # Instantiate a datetime object called "timestamp"
 timestamp = dt.datetime(2020, 1, 31, 14, 30)
 timestamp
Out[119]: datetime.datetime(2020, 1, 31, 14, 30)
In [120]: # Datetime objects have attributes to access specific
components.
 # Here, we are extracting the day:
 timestamp.day
Out[120]: 31
In [121]: # The difference of two datetime objects returns a
timedelta object
 timestamp - dt.datetime(2020, 1, 14, 12, 0)
Out[121]: datetime.timedelta(days=17, seconds=9000)
In [122]: # Add or subtract timedelta objects to shift datetime
values
 timestamp + dt.timedelta(days=1, hours=4, minutes=11)
Out[122]: datetime.datetime(2020, 2, 1, 18, 41)

To format datetime objects into strings, you usually use f-strings.
Alternatively, datetime objects have a strftime method that can do
the same. I will show both options in the code examples below. To parse a
string and convert it into a datetime object, use the strptime function
(you can find an overview of the accepted format codes in the datetime
docs):

In [123]: # Format a datetime object via f-string.
 # Note that the format specifier starts with a colon.
 f"{timestamp:%d/%m/%Y %H:%M}"
Out[123]: '31/01/2020 14:30'
In [124]: # This is equivalent to the f-string
 timestamp.strftime("%d/%m/%Y %H:%M")
Out[124]: '31/01/2020 14:30'
In [125]: # Parse a string into a datetime object
 dt.datetime.strptime("12.1.2020", "%d.%m.%Y")
Out[125]: datetime.datetime(2020, 1, 12, 0, 0)

https://oreil.ly/gXOts

After this short introduction to the datetime module, let’s move on to the
last topic of this chapter, which is about formatting your code properly and
discovering bugs without even running your code.

Code Formatting, Linting, and Type Hinting
In this section, you’ll learn how to format your code according to the
official Python style guide. To do the formatting automatically, I will show
you the Ruff package, which is both a code formatter and linter. While the
formatter edits your code to e.g., always use the same amout of empty lines
after a function, a linter checks your code for style and programming errors.
To conclude, I’ll introduce you to type hints: they help editors like VS Code
provide better code autocompletion and allow type-checkers to catch type-
related errors. To get started, let’s find out what PEP 8 means!

PEP 8: Style Guide for Python Code
While going through the code samples in this chapter, you may have
noticed that I was sometimes using variable names with underscores or in
all caps. To explain my formatting choices, let me introduce you to Python’s
official style guide. Python uses so-called Python Enhancement Proposals
(PEP) to discuss the introduction of new language features. One of these,
the Style Guide for Python Code, is often referred to by its number: PEP 8.
PEP 8 is a set of style recommendations for the Python community; if
everybody who works on the same code adheres to the same style guide, the
code becomes much more readable. Example 3-2 shows a short Python file
that introduces the most important conventions.

Example 3-2. pep8_sample.py
"""This script shows a few PEP 8 rules."""

import datetime as dt

TEMPERATURE_SCALES = (
 "fahrenheit",

 "kelvin",
 "celsius",
)

class TemperatureConverter:
 pass # Doesn't do anything at the moment

def convert_to_celsius(degrees, source="fahrenheit"):
 """This function converts degrees Fahrenheit or Kelvin
 into degrees Celsius.
 """
 if source.lower() == "fahrenheit":
 return (degrees - 32) * (5 / 9)
 elif source.lower() == "kelvin":
 return degrees - 273.15
 else:
 # Exceptions will be introduced in Chapter 11
 raise ValueError(f"Don't know how to convert from
{source}")

celsius = convert_to_celsius(44, source="fahrenheit")
non_celsius_scales = TEMPERATURE_SCALES[:-1]

print("Current time: " + dt.datetime.now().isoformat())
print(f"The temperature in Celsius is: {celsius}")

Explain what the script or module does with a docstring at the top. A
docstring is a special type of string, enclosed with triple quotes. Apart
from serving as a string for documenting your code, a docstring also
makes it easy to write strings over multiple lines and is useful if your
text contains a lot of double-quotes or single-quotes, as you won’t need
to escape them. They are also useful to write multiline SQL queries, as
we will see in Chapter 11.
All imports are at the top of the file, one per line. List the imports of the
standard library first, then those of third-party packages, and finally
those from your own modules. This sample only makes use of the
standard library.
Use capital letters with underscores for constants. Use a maximum line
length of 79 characters. If possible, take advantage of parentheses,

square brackets, or curly braces for implicit line breaks.
Separate classes and functions with two empty lines from the rest of the
code.
Despite the fact that many classes from the standard library, like
datetime, are lowercase, your own classes should use
CapitalizedWords (also called “CamelCase”). For more on
classes, see Appendix C.
Inline comments should be separated by at least two spaces from the
code. Code blocks should be indented by four spaces.
Functions and function arguments should use lowercase names with
underscores if they improve readability. Don’t use spaces between the
argument name and its default value unless you are using type hints (I
will introduce type hints at the end of this section).
A function’s docstring should also list and explain the function
arguments and its return value. I haven’t done this here to keep the
sample short.
Don’t use spaces around the colon.
Use spaces around mathematical operators. If operators with different
priorities are used, you may consider adding spaces around those with
the lowest priority only.
Use lowercase names for variables. Make use of underscores if they
improve readability. When assigning a variable name, use spaces around
the equal sign. However, when calling a function, don’t use spaces
around the equal sign used with keyword arguments.
With indexing and slicing, don’t use spaces around the square brackets.

This is a simplified summary of PEP 8, so it’s a good idea to have a look at
the original PEP 8. PEP 8 clearly states that it is a recommendation and that
your own style guides will take precedence. After all, consistency is the
most important factor.

In practice, I didn’t format Example 3-2 by hand. Instead, I used a package
called Ruff to do the work for me— let me show you how it works!

https://oreil.ly/3fTTZ

Ruff
In order to save you from manually applying the PEP 8 rules, let me
introduce you to Ruff, a Python package that is both a code formatter and
linter. Let’s start with the formatter before looking at the linter!

Formatter
The Ruff formatter is an opinionated formatter, meaning it offers only a few
options you can change. This has the nice effect that the code looks
consistent across all projects that use it. The Ruff formatter largely follows
PEP 8 with a few exceptions— for instance, it uses a default line length of
88 characters while PEP 8 uses 79. Apart from formatting the actual code,
Ruff also sorts the import statements at the top of your file. Since Ruff is a
drop-in replacement for Black (the package that made automatic code
formatting popular in Python), you can also say that Ruff produces Black-
style formatting.

To try out Ruff, open a Terminal and run uv run ruff format in the
directory of your companion repository:

Windows (Terminal)

$ cd %USERPROFILE%\Documents\python-for-excel-2e

$ uv run ruff format pep8_sample.py

macOS (Terminal)

$ cd ~/Documents/python-for-excel-2e

$ uv run ruff format pep8_sample.py

It will show 1 file left unchanged, as the file is already properly
formatted. However, if you introduce a change to pep8_sample.py, for
example, by inserting a few empty lines, they will be removed when you

https://docs.astral.sh/ruff
https://black.readthedocs.io/

run the command again. After this quick intorduction to the formatter, let’s
continue with the linter!

Linter
A linter checks your source code for programming and style errors without
running your code. To run Ruff’s linter, use ruff check (as usual, you
can ignore the cd command if you are already in the directory of the
companion repository):

Windows (Terminal)

$ cd %USERPROFILE%\Documents\python-for-excel-2e

$ uv run ruff check pep8_sample.py

macOS (Terminal)

$ cd ~/Documents/python-for-excel-2e

$ uv run ruff check pep8_sample.py

It will show All checks passed! as the file doesn’t have any errors.
However, if you, for example, insert import os at the top of
pep8_sample.py and run the command again, Ruff will return the following
error message: os imported but unused.

RUFF VS CODE EXTENSION
If you are working with VS Code, instead of running the Ruff commands manually, it’s
arguably more convenient to install the Ruff extension. Once installed, linting issues are
marked directly in the editor with squiggly lines and you can format your code via the
command palette: fire it up using the keyboard shortcut Ctrl+Shift+P (Windows) or
Command-Shift-P (macOS) and search for “Ruff: Format Document”.

https://marketplace.visualstudio.com/items?itemName=charliermarsh.ruff

To find errors that a linter can’t catch, e.g., supplying the wrong data type as
a function argument, you can use type hints together with a type checker.
Another benefit of type hints is that they enable editors such as VS Code to
offer much better code completion— reason enough to look at them in a
little more detail!

Type Hints
In VBA, you often see code that prefixes each variable with an abbreviation
for the data type, like strEmployeeName or wbWorkbookName. While
nobody will stop you from doing this in Python, it isn’t commonly done.
You also won’t find an equivalent to VBA’s Option Explicit or Dim
statement to declare the type of a variable. Instead, Python offers type hints.
Type hints are also called type annotations and allow you to declare the data
type of a variable. They are optional and have no effect on how the code is
run by the Python interpreter. Third-party packages, however, can make use
of these type hints during runtime. For example, in Chapter 12, we will see
how xlwings makes use of type hints to convert Excel values into specific
Python objects. The main ideas of type hints are:

Improve autocompletion in editors like VS Code

Let type checkers find type-related errors (like linters, type
checkers don’t need to run your code)

To understand how type annotations work in Python, here is the function
signature of our familiar temperature converter with type hints:

def convert_to_celsius(degrees: float, source: str =
"fahrenheit") -> float:
 ...

As you can see, type hints are added by writing a colon and the expected
type after each parameter, and the return type is specified after the closing
parenthesis using ->. Go ahead and edit the file pep8_sample.py: add type

hints and an additional line of code to print whether degrees is actually
an integer, so that the function now starts as follows:

def convert_to_celsius(degrees: float, source: str =
"fahrenheit") -> float:
 """This function converts degrees Fahrenheit or Kelvin
 into degrees Celsius.
 """
 print(f"degrees is an int: {degrees.is_integer()}")
 ...

With type hints, VS Code shows a list of attributes, including
is_integer, when you type the dot after degrees, see Figure 3-2. If
you remove the float type annotation from the degrees parameter
again, you won’t get this code autocompletion anymore.

Figure 3-2. Code autocompletion after adding type hints

There are various type checkers available for Python code. For example,
Pylance, a VS Code extension by Microsoft, has one included. Pylance got
automatically installed during the installation of the Python extension in
Chapter 2. However, by default, the Pylance type checker is off, so if you
want to enable it, open the VS Code settings via Ctrl+, (Windows) or

Command+, (macOS), then search for
@id:python.analysis.typeCheckingMode: this will pull up the
respective page on the settings with instructions on how to enable the type
checker. Another type checker is Ty, which is from the same team as Ruff.
To try it out, open a Terminal and, if you are not already in the root
directory of your companion repository, change into it first:

Windows (Terminal)

$ cd %USERPROFILE%\Documents\python-for-excel-2e

$ uv run ty check pep8_sample.py

macOS (Terminal)

$ cd ~/Documents/python-for-excel-2e

$ uv run ty check pep8_sample.py

You should get All checks passed!. However, if you change line 30
in pep8_sample.py from this:

celsius = convert_to_celsius(44, source="fahrenheit")

to this:

celsius = convert_to_celsius("forty-four", source="fahrenheit")

and then run the command again, Ty will complain with the following error:
Argument to function convert_to_celsius is
incorrect.

Despite the benefits that type hints bring, some Python programmers argue
that they make the code harder to read. In this book, I will use type hints
occasionally, where they make sense.

https://docs.astral.sh/ty

Conclusion
This chapter was a packed introduction to Python. We met the most
important building blocks of the language, including data structures,
functions, and modules. We also touched on some of Python’s
particularities like meaningful white space and code formatting guidelines,
better known as PEP 8. To continue with this book, you won’t need to know
all the details: as a beginner, just knowing about lists and dictionaries,
indexing and slicing, as well as how to work with functions, modules, for
loops, and if statements will get you far already.

Compared to VBA, I find Python more consistent and powerful but at the
same time easier to learn. If you are a VBA die-hard fan and this chapter
didn’t convince you just yet, I am pretty sure the next part will: there, I will
give you an introduction to array-based calculations before starting our data
analysis journey with the pandas library. Let’s get started with Part 2 by
learning a few basics about NumPy!

Chapter 4. NumPy Foundations

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 4th chapter of the final book. Please note that the
GitHub repo will be made active later on.

If you’d like to be actively involved in reviewing and commenting on
this draft, please reach out to the editor at mpotter@oreilly.com.

As you may recall from Chapter 1, NumPy is the core package for scientific
computing in Python, providing support for array-based calculations and
linear algebra. As NumPy is a key dependency of pandas, I am going to
introduce its basics in this chapter: after explaining what a NumPy array is,
we will look into vectorization and broadcasting, two important concepts
that allow you to write concise mathematical code and that you will find
again in pandas. After that, we’re going to see why NumPy offers special
functions called universal functions before we wrap this chapter up by
learning how to get and set values of an array and by explaining the
difference between a view and a copy of an array. Even if we will hardly
use NumPy directly in this book, knowing its basics will make it easier to
learn pandas in the next chapter.

Getting Started with NumPy
In this section, you’ll learn about one- and two-dimensional NumPy arrays
and what’s behind the technical terms vectorization, broadcasting, and

mailto:mpotter@oreilly.com

universal function.

NumPy Array
To perform array-based calculations with nested lists, you have to write
some sort of loop. For example, you can use a nested list comprehension to
add a number to every element in matrix:

In [1]: matrix = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]
In [2]: [[element + 1 for element in row] for row in matrix]
Out[2]: [[2, 3, 4], [5, 6, 7], [8, 9, 10]]

This isn’t very readable and more importantly, looping through each
element is slow with big arrays. Depending on your use case and the size of
the arrays, working with NumPy arrays instead of Python lists can make
your calculations from a couple of times to around a hundred times faster.
NumPy achieves this performance by using code written in C and Fortran—
these are compiled programming languages that are much faster than
Python. A NumPy array is an N-dimensional array for homogenous data.
Homogenous means that all elements in the array need to have the same
data type. Most commonly, you are dealing with one- and two-dimensional
arrays of floats as schematically displayed in Figure 4-1.

Figure 4-1. A one-dimensional and two-dimensional NumPy array

Let’s create a one- and two-dimensional array to work with throughout this
chapter:

In [3]: # Import NumPy with the "np" alias
 import numpy as np
In [4]: # Constructing an array with a simple list results in a
1d array
 array1 = np.array([10, 100, 1000.0])
 array1
Out[4]: array([10., 100., 1000.])
In [5]: # Constructing an array with a nested list results in a
2d array
 array2 = np.array([[1.0, 2.0, 3.0],
 [4.0, 5.0, 6.0]])
 array2
Out[5]: array([[1., 2., 3.],
 [4., 5., 6.]])

ONE-DIMENSIONAL ARRAYS
A one-dimensional array has only one axis, so it does not have an explicit column or
row orientation. While this behaves like arrays in VBA, it’s different in MATLAB, a
programming language used for similar use cases as NumPy. In MATLAB, one-
dimensional arrays always have a column or row orientation.

Even if array1 has two integers (10 and 100) and only one float (1000),
the homogeneity of NumPy arrays forces the data type of the array to be
float64, which is capable of accommodating all elements. To learn about
an array’s data type, access its dtype attribute:

In [6]: array1.dtype
Out[6]: dtype('float64')

Did you notice that dtype displays float64 instead of the plain float
type you saw in the last chapter? This is because NumPy uses its own
numerical data types (float64 stands for 64-bit floating-point number).
This usually isn’t an issue though, as in most cases you can use a NumPy
float anywhere you would use a native Python float. If you ever need to
explicitly convert from a NumPy data type to a Python data type, simply
use the corresponding constructor (I will say more about accessing an
element from an array shortly):

In [7]: array1[0]
Out[7]: np.float64(10.0)
In [8]: # Convert from a NumPy float64 to a native Python float
 float(array1[0])
Out[8]: 10.0

For a full list of NumPy’s data types, see the NumPy docs. With NumPy
arrays, you can write simple code to perform array-based calculations, as
we will see next.

Vectorization and Broadcasting

https://numpy.org/doc/stable/user/basics.types.html

If you build the sum of two NumPy arrays, NumPy will perform an
element-wise operation so you don’t have to loop through the elements
yourself. This is called vectorization. It allows you to write concise code,
practically representing the mathematical notation:

In [9]: array2 + array2
Out[9]: array([[2., 4., 6.],
 [8., 10., 12.]])

If you use two arrays with different shapes in an arithmetic operation,
NumPy extends— if possible— the smaller array automatically across the
larger array so that their shapes become compatible. This is called
broadcasting. The first example illustrates how this works by summing up
an array with a scalar, the second example multiplies a one-dimensional
array with a two-dimensional array:

In [10]: array2 + 1
Out[10]: array([[2., 3., 4.],
 [5., 6., 7.]])
In [11]: array2 * array1
Out[11]: array([[10., 200., 3000.],
 [40., 500., 6000.]])

SCALAR
Scalar refers to a single-element data type like a float or an string. This is to
differentiate them from data structures with multiple elements like lists, dictionaries, or
NumPy arrays.

To perform matrix multiplications or dot products, use the @ operator. This
sample shows a matrix multiplication of array2 with its transpose:

In [12]: array2 @ array2.T # array2.T is a shorthand for
array2.transpose()
Out[12]: array([[14., 32.],
 [32., 77.]])

Don’t be intimidated by the terminology I’ve introduced in this section such
as scalar, vectorization, or broadcasting! All this works the same in Excel if
you use named ranges together with dynamic arrays. Figure 4-2 shows the
previous examples together with the respective array-based Excel formula.
As you can see, the formulas look the same with NumPy and Excel, with
only the last one being slightly different. The screenshot is taken from
array_calculations.xlsx, which you will find in the xl directory of the
companion repository.

Figure 4-2. Array-based calculations in Excel

You know now that arrays perform arithmetic operations element-wise, but
how can you apply a function on every element in an array? This is what
universal functions are here for.

Universal Functions (ufunc)
Universal functions (ufunc) work on every element in a NumPy array. For
example, if you use Python’s standard square root function from the math
module on a NumPy array, you will get an error:

In [13]: import math
In [14]: math.sqrt(array2) # This will raise en Error

TypeError Traceback (most recent
call last)
Cell In[14], line 1
----> 1 math.sqrt(array2) # This will raise en Error

TypeError: only length-1 arrays can be converted to Python
scalars

You could, of course, write a nested loop to compute the square root of
every element and build a new NumPy array from the result:

In [15]: # We're using a nested list comprehension to do the
looping
 np.array([[math.sqrt(element) for element in row] for
row in array2])
Out[15]: array([[1. , 1.41421356, 1.73205081],
 [2. , 2.23606798, 2.44948974]])

This makes sense in cases where NumPy doesn’t offer a ufunc and the array
is small enough. However, if NumPy has a ufunc, you should use it, as it
will be much faster with big arrays— apart from being easier to type and
read:

In [16]: np.sqrt(array2)

Out[16]: array([[1. , 1.41421356, 1.73205081],
 [2. , 2.23606798, 2.44948974]])

Some of NumPy’s ufuncs, like sum, are additionally available as array
methods: if you want the sum of each column in an two-dimensional array,
do the following:

In [17]: array2.sum(axis=0) # Returns a 1d array
Out[17]: array([5., 7., 9.])

The argument axis=0 refers to the axis along the rows while axis=1
refers to the axis along the columns, as depicted in Figure 4-1. Leaving the
axis argument away sums up the whole array:

In [18]: array2.sum()
Out[18]: np.float64(21.0)

You will meet more NumPy ufuncs in later chapters, as they can also be
used with pandas DataFrames.

So far, we’ve always worked with the entire array. The next section shows
you how to manipulate parts of an array and introduces a few helpful array
constructors.

Creating and Manipulating Arrays
I’ll start this section by showing you how to get and set specific elements of
an array before introducing a few useful array constructors, including one to
create pseudorandom numbers. To wrap it up, I’ll explain the difference
between a view and a copy of an array.

Getting and Setting Array Elements
In the last chapter, I showed you how to access specific elements of a list
via indexing and slicing. As an example, to get the first element of the first
row from a nested list called matrix, you write matrix[0][0]. NumPy

arrays, however, expect you to provide the index and slice arguments for
both dimensions in a single pair of square brackets:

numpy_array[row_selection, column_selection]

For one-dimensional arrays, this simplifies to
numpy_array[selection]. When you select a single element, you
will get back a scalar; otherwise, you will get back a one- or two-
dimensional array. Remember that slice notation uses a start index
(included) and an end index (excluded) with a colon in between, as in
start:end. By leaving away the start and end index, you are left with a
colon, which therefore stands for all rows or all columns in a two-
dimensional array. I have visualized a few examples in Figure 4-3, but you
may also want to give Figure 4-1 another look, as the indices and axes are
labeled there. Remember, by slicing a column or row of a two-dimensional
array, you end up with a one-dimensional array, not with a two-dimensional
column or row vector!

Figure 4-3. Selecting elements of a NumPy array

To play around with the examples shown in Figure 4-3, run the following
code:

In [19]: array1[2] # Returns a scalar
Out[19]: np.float64(1000.0)
In [20]: array2[0, 0] # Returns a scalar
Out[20]: np.float64(1.0)
In [21]: array2[:, 1:] # Returns a 2d array
Out[21]: array([[2., 3.],
 [5., 6.]])

In [22]: array2[:, 1] # Returns a 1d array
Out[22]: array([2., 5.])
In [23]: array2[1, :2] # Returns a 1d array
Out[23]: array([4., 5.])

So far, I have constructed the sample arrays by hand, i.e., by providing
numbers in a list. In practice, though, NumPy offers several functions to
create arrays more easily!

Useful Array Constructors
NumPy offers a few ways to construct arrays that will also be helpful to
create pandas DataFrames, as we will see in Chapter 5. One way to easily
create arrays is to use the arange function. This stands for array range
and is similar to the built-in function range that we met in the previous
chapter— with the difference that arange returns a NumPy array.
Combining it with reshape allows us to quickly generate an array with
the desired dimensions:

In [24]: np.arange(2 * 5).reshape(2, 5) # 2 rows, 5 columns
Out[24]: array([[0, 1, 2, 3, 4],
 [5, 6, 7, 8, 9]])

Another common need, for example for Monte Carlo simulations, is to
generate arrays of normally distributed pseudorandom numbers. NumPy
makes this easy:

In [25]: rng = np.random.default_rng() # Random number generator
 rng.standard_normal((2, 3)) # 2 rows, 3 columns
Out[25]: array([[-0.59754275, 1.00201726, -1.53665617],
 [0.04746927, 1.34369702, 1.2722003]])

Other helpful constructors are np.ones and np.zeros to create arrays
with ones and zeros, respectively, and np.eye to create an identity matrix.
We’ll come across some of these constructors again in the next chapter, but
for now, let’s continue with the difference between a view and a copy of a
NumPy array.

View vs. Copy
NumPy arrays return views when you slice them. This means that you are
working with a subset of the original array without copying the data. Setting
a value on a view will therefore also change the original array:

In [26]: # This is the original array
 array2
Out[26]: array([[1., 2., 3.],
 [4., 5., 6.]])
In [27]: # Slicing means that subset is a view
 subset = array2[:, :2]
 subset
Out[27]: array([[1., 2.],
 [4., 5.]])
In [28]: # Changing a value in subset...
 subset[0, 0] = 1000
In [29]: # ...changes the subset...
 subset
Out[29]: array([[1000., 2.],
 [4., 5.]])
In [30]: # ...but also the original array
 array2
Out[30]: array([[1000., 2., 3.],
 [4., 5., 6.]])

If that’s not what you want, create your subset as a copy:

subset = array2[:, :2].copy()

Working on a copy will leave the original array unchanged.

Conclusion
In this chapter, I showed you how to work with NumPy arrays and
explained the concepts of vectorization and broadcasting. Putting these
technical terms aside, using arrays should feel quite intuitive given that they
follow the mathematical notation very closely. While NumPy is an
incredibly powerful library, there are two main issues when you intend to
use it for data analysis:

Homogeneous data types

NumPy arrays require all elements to have the same data type. This, for
example, means that you can’t perform any arithmetic operations when
your array contains a mix of text and numbers.

Missing labels

NumPy arrays don’t provide labels for rows or columns, which makes it
harder to keep track of what each column or row represents.

To solve these issues, pandas provides the data structures Series and
DataFrame. The next chapter will teach you how to use them!

	Brief Table of Contents (Not Yet Final)
	1. Why Python for Excel?
	Python Core Principles
	General-Purpose Language
	Readability Counts
	Batteries Included
	Cross-Platform

	Scientific Computing
	Modern Language Features
	Working with Text
	Array Support
	Web APIs
	Error Handling
	Modules

	Tooling
	Package Manager
	Testing
	Version Control

	Conclusion

	2. Development Environment
	Companion Repository
	Using the Terminal
	Installing Python
	Installing uv
	Installing Python and Packages
	Python REPL

	Jupyter Notebooks
	Running Jupyter Notebooks
	Notebook Cells
	Edit vs. Command Mode
	Run Order Matters

	Visual Studio Code
	Installation and Configuration
	Running a Python Script
	Debugger
	Running Jupyter Notebooks with VS Code

	Conclusion

	3. Getting Started with Python
	Data Types
	Objects
	Numeric Types
	Booleans
	Strings

	Indexing and Slicing
	Indexing
	Slicing

	Data Structures
	Lists
	Dictionaries
	Tuples
	Sets

	Control Flow
	Code Blocks and the pass Statement
	The if Statement and Conditional Expressions
	The for and while Loops
	List, Dictionary, and Set Comprehensions

	Code Organization
	Functions
	Modules and the import Statement
	The datetime Class

	Code Formatting, Linting, and Type Hinting
	PEP 8: Style Guide for Python Code
	Ruff
	Type Hints

	Conclusion

	4. NumPy Foundations
	Getting Started with NumPy
	NumPy Array
	Vectorization and Broadcasting
	Universal Functions (ufunc)

	Creating and Manipulating Arrays
	Getting and Setting Array Elements
	Useful Array Constructors
	View vs. Copy

	Conclusion

