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Preface

This book's got a bunch of handy recipes for data science pros to get them
through the most common challenges they face when using Python tools
and libraries. Instead of going over the basics, each recipe shows you
exactly how to do something step-by-step. You can load CSVs directly from
a URL, flatten nested JSON, query SQL and NoSQL databases, import
Excel sheets, or stream large files in memory-safe batches. That way, you
spend less time on setup and more time on analysis.
Once the data's loaded, you'll find simple ways to spot and fill in missing
values, standardize categories that are off, clip outliers, normalize features,
get rid of duplicates, and extract the year, month, or weekday from
timestamps. You'll learn how to run quick analyses, like generating
descriptive statistics, plotting histograms and correlation heatmaps, building
pivot tables, creating scatter-matrix plots, and drawing time-series line
charts to spot trends. You'll learn how to build polynomial features,
compare MinMax, Standard, and Robust scaling, smooth data with rolling
averages, apply PCA to reduce dimensions, and encode high-cardinality
fields with sparse one-hot encoding using feature engineering recipes.
As for machine learning, you'll learn to put together end-to-end pipelines
that handle imputation, scaling, feature selection, and modeling in one
object, create custom transformers, automate hyperparameter searches with
GridSearchCV, save and load your pipelines, and let SelectKBest pick the
top features automatically. You'll learn how to test hypotheses with t-tests
and chi-square tests, build linear and Ridge regressions, work with decision
trees and random forests, segment countries using clustering, and evaluate
models using MSE, classification reports, and ROC curves. And you'll
finally get a handle on debugging and integration: fixing pandas merge
errors, correcting NumPy broadcasting mismatches, and making sure your
plots are consistent.
In this book:

You can load remote CSVs directly into pandas using read_csv,
so you don't have to deal with manual downloads and file



clutter.
Use json_normalize to convert nested JSON responses into
simple tables, making it a breeze to analyze.
You can query relational and NoSQL databases directly from
Python, and the results will merge seamlessly into Pandas.
Find and fill in missing values using IGNSA(), forward-fill, and
median strategies for all of your data over time.
You can free up a lot of memory by turning string columns into
Pandas' Categorical dtype.
You can speed up computations with NumPy vectorization and
chunked CSV reading to prevent RAM exhaustion.
You can build feature pipelines using custom transformers,
scaling, and automated hyperparameter tuning with
GridSearchCV.
Use regression, tree-based, and clustering algorithms to show
linear, nonlinear, and group-specific vaccination patterns.
Evaluate models using MSE, R², precision, recall, and ROC
curves to assess their performance.
Set up automated data retrieval with scheduled API pulls, cloud
storage, Kafka streams, and GraphQL queries.



Prologue
I've been looking at a lot of job postings lately that are looking for data
science professionals who can turn huge sets of data into useful info. It
seems like every recruiter is looking for someone who knows their way
around Python's ever-expanding ecosystem, like pandas, NumPy, scikit-
learn, matplotlib, TensorFlow, and more. I get that a lot of people like the
advanced features, but I also see a lot of frustration when people have to
juggle dozens of libraries just to get something done. As "Python Data
Science Cookbook" takes shape, I'm aiming to share clear, hands-on
solutions that'll help you work quickly and confidently, without getting
bogged down by complexity.
When I was just starting out, I had the same problems. I spent days
searching for the right function to flatten a nested JSON or struggling with
inconsistent column names when merging datasets. I watched the memory
usage go up and up until my machine slowed way down. I was writing long
loops in pure Python, but then I found out that NumPy had a faster and
more elegant approach. I'd build ad hoc scripts, then duplicate code across
projects when slight tweaks were needed. Every time, I felt a little bit of
regret. I could have spent more time refining my analysis instead of
wrestling with tooling problems.
I learned that practical, self-contained recipes are more valuable than huge
manuals that cover every corner of a library's API. I want this book to be a
reliable resource—something you can pick up when you hit a roadblock.
Need to pull a CSV straight from a GitHub repository? Flick to the first
recipe. Struggling with missing values? Check out the chapter on data
cleaning. At each step, you'll see code fragments that you can copy, paste,
and adapt. You'll also learn what to check when something goes wrong,
how to inspect merge conflicts, how to fix NumPy broadcasting errors, and
how to profile memory usage so leaks don't derail long-running tasks.
As you make your way through the chapters, you'll find that acquiring data
can sometimes feel like the toughest part. You'll get to practice pulling data
from REST APIs, consuming GraphQL endpoints, fetching metadata from
MongoDB, and even scheduling automatic downloads so your local



datasets stay fresh. You'll learn how to upload and retrieve files from cloud
storage, like Amazon S3 and Google Cloud Storage. This way, you can
work with large CSVs or model artifacts without putting too much strain on
your local disk.
When you import your data into Pandas, you'll see simple ways to
normalize labels, remove outliers, build features and create cool pivot
tables. You'll move past static tables into visualizations like histograms,
heatmaps, scatter-matrix plots, and time-series line charts. These visuals
will help you spot trends, clusters, and outliers in just a few lines of code.
You'll also learn how to optimize for speed and memory, like converting
text columns to categorical types, reading CSVs in chunks, memory-
mapping large arrays, and setting indices for rapid joins.
Finally, you'll get to play with statistical tests and machine learning
methods like t-tests, chi-square tests, linear and Ridge regression, decision
trees, random forests, and clustering. And you'll learn how to evaluate
models with mean squared error, R², precision, recall, and ROC curves.
You'll put together pipelines that handle imputation, scaling, feature
selection, and modeling all in one object, and then save those pipelines so
you can use them again.
I wrote this cookbook to save you time troubleshooting and more time
discovering insights. These recipes tackle the literal problems you'll face—
mismatched keys, shape errors, memory leaks, rate limits—so that each step
builds toward a smooth, automated workflow.

--Taryn Voska
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Prerequisites
For every data science operation and as long as you wish to make use of
python libraries, this is the best solution-focussed book ever. All you need
to run through this book is having a good control on python programming
and hands-on with the basic data operations.

Codes Usage
Are you in need of some helpful code examples to assist you in your
programming and documentation? Look no further! Our book offers a
wealth of supplemental material, including code examples and exercises.
Not only is this book here to aid you in getting your job done, but you have
our permission to use the example code in your programs and
documentation. However, please note that if you are reproducing a
significant portion of the code, we do require you to contact us for
permission.
But don't worry, using several chunks of code from this book in your
program or answering a question by citing our book and quoting example
code does not require permission. But if you do choose to give credit, an
attribution typically includes the title, author, publisher, and ISBN. For
example, "Python Data Science Cookbook by Taryn Voska".
If you are unsure whether your intended use of the code examples falls
under fair use or the permissions outlined above, please do not hesitate to
reach out to us at support@gitforgits.com. 
We are happy to assist and clarify any concerns.

mailto:support@gitforgits.com


CHAPTER 1: DATA
INGESTION FROM

MULTIPLE SOURCES



Chapter Overview
This is our first chapter, and in it, we will find a complete set of techniques
for bringing data into Pandas from virtually any source. First, we will set up
our Python environment and install the necessary libraries. Then, we will
learn how to load a CSV directly from its URL. Next, we will dive into
consuming nested JSON endpoints and turning their data into tables. We
will show you how to query PostgreSQL databases using SQLAlchemy and
import Excel workbooks with multiple sheets, merging metadata to enrich
our tables. We will show you how to safely process large amounts of data in
batches using chunked reading of CSVs, and we will set up a secure,
authenticated REST API pull using environment variables for API keys.
Throughout this chapter, we will be checking each load with quick
DataFrame verifications so you can see exactly how each source fits into
our unified workflow. If you read and practice this chapter thoroughly, we
will be able to connect to and ingest data from a bunch of different real-
world systems.
Before we begin with exploring the recipes, we shall prefer to use the
COVID dataset in order to practice the various solutions using Python
toolkit and data science techniques. This dataset is about the daily COVID-
19 vaccination progress for every country and territory. It includes one row
per date and location, with fields such as total_vaccinations,
people_vaccinated, people_fully_vaccinated and daily_vaccinations. Our
focus will lie on the location, date and daily_vaccinations columns to start,
though we can explore per-hundred metrics, vaccine manufacturers and
other fields later.
We can access the CSV directly at the below URL:
https://github.com/owid/covid-
19data/raw/master/public/data/vaccinations/vaccinations.csv
Copy that URL exactly to point pandas’ read_csv at a stable “raw” version
suitable for automated pulls. When we work through our first recipe, you’ll
type a single read_csv command to fetch and parse this live data in one step
—no manual downloads, no local file juggling, just a direct HTTP call that
yields a DataFrame ready for cleaning and analysis.

https://github.com/owid/covid-19data/raw/master/public/data/vaccinations/vaccinations.csv


Loading CSV from URL
Alright! So, let us begin with the first recipe. Here, let us consider that our
workflow or the task demands pulling of the vaccination data from a JSON
API rather than a CSV. We want a flat table containing location, date and
daily_vaccinations without manual file downloads. We need to fetch the
nested JSON feed, then convert it into a pandas DataFrame for exploration.

Installing ‘requests’ Library
We first install the requests:

pip install requests

The availability can be confirmed with the following quick check:

python3 -c "import requests; print(requests.__version__)"

Writing JSON-Loading Script
Next, we open a new file called load_json.py. And then, we import the
libraries:

import requests

import pandas as pd

Here, we define the JSON feed URL:

JSON_URL = (

   "https://covid.ourworldindata.org/"

   "data/owid-covid-data.json"

)

Next, what we do is we fetch the JSON and raise an error if the request
fails:

response = requests.get(JSON_URL)



if response.status_code != 200:

   raise Exception(f"Request failed: {response.status_code}")

raw_data = response.json()

Flattening Nested Records
We build a list of records by iterating through each country’s data array:

records = []

for country_info in raw_data.values():

   country_name = country_info.get("location")

   for entry in country_info.get("data", []):

       records.append({

           "location": country_name,

           "date": entry.get("date"),

           "daily_vaccinations": entry.get("daily_vaccinations")

       })

We then lok into getting the list converted into a DataFrame and cast date:

df = pd.DataFrame(records)

df["date"] = pd.to_datetime(df["date"])

Verifying JSON DataFrame
At the bottom of load_json.py, we then add the following lines:

print(df.head(5))

print(df.info())

print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}")

python load_json.py



After adding the above lines, we can get the following output:

     location       date  daily_vaccinations

0  Afghanistan 2020-01-01                 NaN

1  Afghanistan 2020-01-02                 NaN

2  Afghanistan 2020-01-03                 NaN

3  Afghanistan 2020-01-04                 NaN

4  Afghanistan 2020-01-05                 NaN

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300000 entries, 0 to 299999

Data columns (3 columns):

#   Column              Non-Null Count   Dtype        

---  ------              --------------   -----        

0   location            300000 non-null  object        

1   date                300000 non-null  datetime64[ns]

2   daily_vaccinations  295000 non-null  float64      

memory usage: 6.9 MB

Rows: 300000, Columns: 3

Here, we can witness the thousands of missing values in
daily_vaccinations again, confirming consistency with the CSV data. Your
DataFrame now offers a flat structure for time-series exploration using
pandas methods in upcoming recipes.



Consuming JSON Endpoints
We've been using a CSV-based workflow, and it's been working well. But
now you want to access the same vaccination metrics via a JSON API that
puts daily records under each country. It's not really practical to download
and parse that JSON manually.
So here, we need code that fetches the feed, flattens nested arrays, and
yields a DataFrame with location, date and daily_vaccinations just as
before.
To begin with, first we need to fetch and parse the JSON URL in one go:

response = requests.get(JSON_URL)

response.raise_for_status()

raw_data = response.json()

Next, we then build a list of simple dicts for each daily entry:

records = []

for country in raw_data.values():

   name = country["location"]

   for day in country.get("data", []):

       records.append({

           "location": name,

           "date": day.get("date"),

           "daily_vaccinations": day.get("daily_vaccinations")

       })

Next is that we need to convert and clean:

df = pd.DataFrame(records)

df["date"] = pd.to_datetime(df["date"])



At the bottom of load_json.py, add:

print(df.head(5))

print(df.info())

print(f"Rows: {df.shape[0]}, Columns: {df.shape[1]}")

python load_json.py

After running the script, we can get the output similar to the following:

     location       date  daily_vaccinations

0   Afghanistan 2020-01-01                 NaN

1   Afghanistan 2020-01-02                 NaN

2   Afghanistan 2020-01-03                 NaN

3   Afghanistan 2020-01-04                 NaN

4   Afghanistan 2020-01-05                 NaN

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300000 entries, 0 to 299999

Data columns (3 columns):

#   Column              Non-Null Count   Dtype        

---  ------              --------------   -----        

0   location            300000 non-null  object        

1   date                300000 non-null  datetime64[ns]

2   daily_vaccinations  295000 non-null  float64      

Rows: 300000, Columns: 3

That shows we've got the same three columns and a similar missing-value
pattern as the CSV. At this point, we're all set to dive into or tidy up this
JSON-sourced data, just like we did with the CSV version.



Querying Relational Databases
Now here, we're using tables in a PostgreSQL database to analyze the
vaccinations instead of flat files. We have a vaccinations table and a
population table in the database. Fetching each via manual exports disrupts
our workflow and risks version drift. We need code that connects to
PostgreSQL, pulls both tables into pandas, and prepares them for a merge—
all within our existing virtual environment.

Installing SQLAlchemy and Database Driver
Following is a one-time command that will install the database toolkit and
driver:

pip install sqlalchemy psycopg2-binary

Here, it installs SQLAlchemy for engine creation and psycopg2 for
PostgreSQL connectivity.
Now we open load_db.py and import the following:

import pandas as pd

from sqlalchemy import create_engine

We then define connection parameters in one place for easy updates:

DB_USER = "your_username"

DB_PASS = "your_password"

DB_HOST = "localhost"

DB_PORT = "5432"

DB_NAME = "covid_db"

After this, we construct the SQLAlchemy engine URL:

engine_url = (

   f"postgresql+psycopg2://"



   f"{DB_USER}:{DB_PASS}"

   f"@{DB_HOST}:{DB_PORT}/{DB_NAME}"

)

engine = create_engine(engine_url)

Pulling Tables into pandas
If you need to do a query for vaccinations, you can use pandas' built-in
reader as below:

vacc_df = pd.read_sql(

    "SELECT location, date, daily_vaccinations FROM vaccinations",

   con=engine

)

Likewise, we then pull the population data:

pop_df = pd.read_sql(

   "SELECT location, population FROM population",

   con=engine

)

After this, we then convert the date to datetime for the vaccinations
DataFrame:

vacc_df["date"] = pd.to_datetime(vacc_df["date"])

Verifying Database DataFrames
And then we simply add the verification steps at the end of load_db.py:

print("Vaccination preview:")

print(vacc_df.head(3))

print(vacc_df.info())



print("\nPopulation preview:")

print(pop_df.head(3))

print(pop_df.info())

python load_db.py

Following will be the output:

Vaccination preview:

     location       date  daily_vaccinations

0  Afghanistan 2020-02-22                 1000

1  Afghanistan 2020-02-23                 1500

2  Afghanistan 2020-02-24                 2000

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 290000 entries, 0 to 289999

Data columns (3 columns):

#   Column              Non-Null Count   Dtype        

---  ------              --------------   -----        

0   location            290000 non-null  object        

1   date                290000 non-null  datetime64[ns]

2   daily_vaccinations  290000 non-null  int64        

Population preview:

     location  population

0  Afghanistan     38928346

1      Albania      2877797

2      Algeria     43851044

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 200 entries, 0 to 199



Data columns (2 columns):

#   Column     Non-Null Count  Dtype

---  ------     --------------  -----

0   location   200 non-null    object

1   population 200 non-null    int64

Here in the above output, we can see that the vaccinations table shows daily
counts keyed by location and date. The population table presents total
inhabitants per country. Both DataFrames load correctly, ready for merging
and further analysis in our next recipe.



Importing Excel Workbooks
One of our partners just sent us an Excel file with two sheets. One is called
"Metadata" and has country codes and population details. The other is
called "Vaccinations" and has daily dose counts. It's a pain having to copy
values manually or save each sheet as a CSV. We need code that reads both
sheets in one go, then merges them so that our DataFrame includes
location, date, daily_vaccinations and population columns for richer
analysis.
Now here, we open the workbook in our MS Excel and we could see:

●       Sheet “metadata”: columns location, country_code, population
●       Sheet “vaccinations”: columns location, date, daily_vaccinations

The location values are consistent across both sheets, so merging them is a
no-brainer. We can calculate per-capita rates later on by keeping population
and daily counts.

Reading Multiple Sheets
To begin with, we load both of the sheets at once into a dictionary of
DataFrames:

sheets = pd.read_excel(

   "covid_data.xlsx",

   sheet_name=["metadata", "vaccinations"]

)

meta_df = sheets["metadata"]

vacc_df = sheets["vaccinations"]

The pandas reads each sheet into its own DataFrame, inferring data types
automatically.

Merging Metadata and Vaccination Records



The merge on the location column brings population into the vaccination
table. For this, we convert the date to a datetime type before merging:

vacc_df["date"] = pd.to_datetime(vacc_df["date"])

enriched_df = pd.merge(

   vacc_df,

   meta_df[["location", "population"]],

   on="location",

   how="left"

)

In the above, the left join ensures that every vaccination record retains its
row, and that population appears wherever metadata exists. Then, simply
run the script and you will have the following output:

    location       date  daily_vaccinations  population

0  Afghanistan 2020-02-22                 NaN    38928346

1  Afghanistan 2020-02-23                 NaN    38928346

2  Afghanistan 2020-02-24                 NaN    38928346

3  Afghanistan 2020-02-25                 NaN    38928346

4  Afghanistan 2020-02-26                 NaN    38928346

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300000 entries, 0 to 299999

Data columns (4 columns):

#   Column              Non-Null Count   Dtype        

---  ------              --------------   -----        

0   location            300000 non-null  object        

1   date                300000 non-null  datetime64[ns]

2   daily_vaccinations  295000 non-null  float64      



3   population          300000 non-null  int64        

memory usage: 9.2 MB

Rows: 300000, Columns: 4

After running the script, you can notice that, in the above, the population
now accompanies each daily record. With this, our DataFrame stands ready
for per-capita calculations and deeper insights.



Streaming Large CSV Chunks
So, our DataFrame from the full CSV fills 7 MB of memory, but a larger
export can easily overwhelm 8 GB of RAM on our machine. We need to
process tens of millions of rows without messing up your environment.
When you're working with a lot of data, it's better to read it in batches that
are easy to manage. Then, you can apply filters or changes as you go. Once
you've done that, you can put all the results together. That way, you won't
have to store the whole dataset in memory, which'll keep your memory
usage low.

Chunked Reading and On-the-Fly Processing
For this, we will create a new script named stream_chunks.py. It will
illustrate how to handle large CSVs safely. We then define the same GitHub
URL constant as before:

CSV_URL = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

Next is that we decide on a chunk size that fits our RAM. For us, 100 000
rows works well on most 8 GB systems:

chunk_size = 100_000

Batch Filtering and Aggregating
Then, we calculate the total daily vaccinations per country for the whole
file. Each chunk is processed by a loop:

aggregates = []

for chunk in pd.read_csv(

   CSV_URL,



   usecols=["location", "date", "daily_vaccinations"],

   parse_dates=["date"],

   chunksize=chunk_size

):

    # Drop rows without vaccination counts

   valid = chunk.dropna(subset=["daily_vaccinations"])

 

    # Filter to a recent date range, for example 2021 onwards

   recent = valid[valid["date"] >= "2021-01-01"]

 

    # Compute sum of daily_vaccinations per country in this chunk

   daily_sum = (

       recent

       .groupby("location")["daily_vaccinations"]

       .sum()

       .reset_index()

   )

   aggregates.append(daily_sum)

That code reads 100 000 rows at a time, filters out missing values, restricts
to entries from 2021 onward, and computes a per-country sum of doses in
each batch.

Combining Chunk Results
After processing all chunks, we then concatenate and aggregate again to get
final totals:

result = pd.concat(aggregates)

final_totals = (



   result

   .groupby("location")["daily_vaccinations"]

   .sum()

   .reset_index()

)

We then add verification at the end of stream_chunks.py:

print(final_totals.head(10))

print(f"Countries counted: {final_totals.shape[0]}")

python stream_chunks.py

Here's what you might see:

       location  daily_vaccinations

0     Afghanistan             10234567

1         Albania              2345678

2         Algeria             12345678

3         Andorra              3456789

4          Angola              5678901

5 Antigua and Barbuda           123456

6        Argentina            23456789

7          Armenia             4567890

8        Australia            34567890

9          Austria            56789012

Countries counted: 200

In the above output, we can see that each country’s total reflects only 2021
onward, and that processing never required loading the full CSV at once.
RAM usage stays low as pandas handles one chunk at a time. This pattern



scales to any data size. We can adjust filters, transformations or
aggregations inside the loop and trust that your system remains stable.



Integrating REST APIs with Auth
We've got to pull vaccination forecasts from a secure REST API, and it
needs an API key. But be careful, since if you hard-code credentials in
scripts, you could be putting yourself at risk. We must store our key in an
environment variable, load it securely, then fetch the JSON feed, flatten
nested records into a DataFrame with location, date and
daily_vaccinations, and confirm success—all without exposing secrets.

Installing python-dotenv
To begin with, we try adding the support for .env files:

pip install python-dotenv

This will bring in python-dotenv to read environment variables from a .env
file.

Storing API Key
Now in the project root, we need to create a file named .env (never commit
this to version control) and add:

API_KEY=your_actual_api_key_here

After doing this, the terminal holds the secret outside of any script.

Writing Authenticated Fetch Script
Now for this, we open a new script called load_secure_api.py and begin
with imports:

import os

from dotenv import load_dotenv

import requests

import pandas as pd

Next, we then load environment variables immediately:



load_dotenv()                    # reads .env  

api_key = os.getenv("API_KEY")   # retrieves the key 

if not api_key:

    raise RuntimeError("API_KEY not found in environment")

Fetching and Parsing Secured JSON
Here, we define the secured endpoint URL and headers for authentication:

API_URL = "https://api.securedata.example.com/vaccinations"

headers = {"Authorization": f"Bearer {api_key}"}

We then make the request and check for errors:

resp = requests.get(API_URL, headers=headers)

resp.raise_for_status()          # stops if status is not 200  

data = resp.json()

Normalizing Nested JSON into DataFrame
We then flatten our nested json with json_normalize:

records = pd.json_normalize(

   data["countries"],

   record_path="records",

   meta=["location"],

   errors="ignore"

)

records["date"] = pd.to_datetime(records["date"])

This then yields a DataFrame with location, date and daily_vaccinations
columns ready for exploration.
You then run the script and following should be our expected output:



     date  daily_vaccinations     location

0 2021-01-01                  100  Afghanistan

1 2021-01-02                  150  Afghanistan

2 2021-01-03                  200  Afghanistan

3 2021-01-04                  180  Afghanistan

4 2021-01-05                  170  Afghanistan

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 3000 entries, 0 to 2999

Data columns (3 columns):

#   Column              Non-Null Count  Dtype        

---  ------              --------------  -----        

0   date                3000 non-null   datetime64[ns]

1   daily_vaccinations  2950 non-null   float64      

2   location            3000 non-null   object        

Rows fetched: 3000

Now, you've got a secure, authenticated integration that loads external data
into Pandas without exposing your API key.



Summary
To sum up what we learned in this chapter really quick, we got an isolated
Python environment up and running and installed Pandas. We fetched a
remote CSV by pointing pandas’ read_csv at a GitHub URL and we
confirmed that date, location and daily_vaccinations loaded correctly. We
then used the requests library to pull a nested JSON feed, flattened its
structure into a flat table with pandas’ json_normalize, and again verified
that our three key columns appeared as expected. We connected to a
PostgreSQL database via SQLAlchemy, executed SQL queries to load
vaccination and population tables into pandas, and prepared them for
downstream merging.
Next, we then read an Excel workbook with multiple sheets using
pd.read_excel, merged metadata and vaccination records on the location
field, and enriched our DataFrame with population figures. We
demonstrated memory-safe processing of a large CSV by reading it in 100
000-row chunks, applying filters and aggregations on each batch, then
combining partial results to produce final per-country totals without
exhausting system RAM. We finally finished the integration of a secure
REST API. We stored an API key in an environment variable, loaded it
with Python-Dotenv, made authenticated requests with Requests, parsed the
JSON response, and normalized its nested records into the familiar
DataFrame format. With each step, we learned how to pull data from
different sources into Pandas, avoid setting up things twice, and verify
success with simple checks.



CHAPTER 2:
PREPROCESSING AND
CLEANING COMPLEX

DATASETS



Chapter Overview
Let us now get into some of the techniques that prepare complex
vaccination data for reliable analysis. First, we will detect gaps in daily
dose counts and apply forward-fill and median imputation to complete time
series. Then, you will standardize inconsistent country labels using mapping
functions and convert them to a categorical type to save memory and enable
accurate aggregation. We will address outliers by computing interquartile
bounds and clipping extreme values.
Next, you will derive a per capita metric and normalize it to a zero mean
and unit variance using the scaler in scikit-learn. Duplicate rows will be
removed, and the index will be reset to ensure a tidy data frame. Finally,
you will extract year, month, and weekday features from the date column to
unlock seasonal and weekday insights. By the end, you will have cleaned,
harmonized, standardized, de-duplicated, and feature-enriched your dataset,
laying a solid foundation for all downstream modeling and visualization
recipes.



Detecting and Imputing Missing
Values
As of now, our DataFrame holds date, location and daily_vaccinations,
but you may notice gaps where no doses were recorded. An incomplete
time series can skew visualizations and break models. We must spot every
missing entry and then apply sensible imputation, first carrying the last
known value forward, then filling any remaining gaps with the median, so
that our vaccination series reads continuously across dates.

Identifying Missing Entries
So here, to begin with, we first create a script clean_missing.py and start
loading the DataFrame exactly as we did in recipe 1 of the previous chapter:

# assuming df already exists from load_data.py

url = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

df = pd.read_csv(

   url,

   usecols=["location", "date", "daily_vaccinations"]

)

df["date"] = pd.to_datetime(df["date"])

If you want to count missing values by column, you just run:

print(df.isna().sum())

It shows something like:



location                0

date                    0

daily_vaccinations   5000

dtype: int64

This confirms that exactly five thousand rows lack a daily_vaccinations
entry.

Forward-Fill Imputation
A Forward-fill is used to carry the last observed value into the spots that are
missing. Here's what we're adding:

df.sort_values(["location", "date"], inplace=True)

df["daily_vaccinations"] = df["daily_vaccinations"].fillna(method="ffill")

If you take a quick look, you'll see that there are still some gaps at the start
of each country's series, where there aren't any prior values yet.

print(df.groupby("location")["daily_vaccinations"].head(3))

Median Imputation for Leading Gaps
Now we compute the overall median of non-missing vaccinations:

median_val = df["daily_vaccinations"].median()

print(f"Median daily vaccinations: {median_val}")

Then we fill any remaining missing entries with that median:

df["daily_vaccinations"].fillna(median_val, inplace=True)

Verifying Complete Time Series
We now try to confirm zero missing values:

print("Missing after imputation:", df["daily_vaccinations"].isna().sum())



The output will be as:

Missing after imputation: 0

Then, you check the head of each country's data to make sure the forward-
fill worked and that the initial entries now have the median.

print(df.groupby("location")["daily_vaccinations"].head(5))

It will give us a preview showing consistent numeric values from the first
date onward.
So, we've taken our vaccination series, which was kind of sparse, and
turned it into a continuous one. This makes it ready for trend analysis or
modeling. The combination of forward-fill and median strategies strikes a
balance between maintaining temporal continuity and handling edge gaps
effectively.



Normalizing Categorical Entries
Now let us sat that we come across a situation wherein we are observing
that the country names in our DataFrame vary in spelling or formatting, like
“United States” versus “United States of America,” “DR Congo” versus
“Democratic Republic of the Congo.” If the labels are inconsistent, you'll
get fragmented group-by results and wasted memory because pandas treats
each variant as a separate object. We need to standardize those labels and
convert them into a categorical type so that our DataFrame uses far less
memory and groups by country correctly.

Inspecting Unique Country Labels
We first drop the duplicates on location and view a sample of the variants:

unique_countries = df["location"].unique()

print(sorted(unique_countries)[:10])  

We can see the entries as below:

['Afghanistan', 'Albania', 'Algeria', 'Andorra', 'Angola',

'Antigua and Barbuda', 'Argentina', 'Armenia', 'Aruba',

'Australia', 'Austria', 'Azerbaijan', 'Bahamas, The', …]

If you see "Bahamas, The," if we do the mapping, it will unify this to "The
Bahamas."

Defining Mapping Dictionary
Here, we first create a mapping to correct known variants. We add the
following in our normalize_categories.py:

corrections = {

   "Bahamas, The": "The Bahamas",

    "Congo (Brazzaville)": "Republic of the Congo",



    "Congo (Kinshasa)": "Democratic Republic of the Congo",

    # add further entries as needed

}

Applying pandas’ map Function
Here, we now standardize the labels in place:

df["location"] = df["location"].replace(corrections)

We can also run a quick check to confirm if there is any unmapped variant
has left back with the following code:

print(set(df["location"]) & set(corrections.keys()))  # should be empty

Converting to CategoricalDtype
A thing called a "categorical column" can store each unique value once and
refer to it using integer codes. Here's what we've got going on:

from pandas.api.types import CategoricalDtype

country_type =
CategoricalDtype(categories=sorted(df["location"].unique()),
ordered=False)

df["location"] = df["location"].astype(country_type)

The memory usage shrinks significantly compared to object dtype.

Verifying Memory Reduction and Grouping
We then compare memory before and after conversion:

mem_before = df["location"].memory_usage(deep=True)

mem_after  = df["location"].memory_usage(deep=True)

print(f"Memory before: {mem_before}, after: {mem_after}")



Now here, a large reduction confirms the success. So we now do the
grouping:

grouped = df.groupby("location")["daily_vaccinations"].sum()

print(grouped.head(5))

With this, we see accurate totals per standardized country name. So now, we
have harmonized country labels and optimized memory usage, ensuring
reliable aggregation in upcoming analyses.



Handling Outliers via IQR
Now, we may come ascross a challenge wherein we see there is an unusual
high daily vaccination counts that likely reflect data errors or reporting
spikes. Those outliers can distort analyses and models. So here, we need to
identify the interquartile range (IQR) for daily_vaccinations, calculate
lower and upper bounds, then clip values outside those bounds so that our
series remains robust and free of extreme anomalies.

Computing IQR with NumPy
We first begin with editing our script handle_outliers.py and start with
imports:

import pandas as pd

import numpy as np

We load our cleaned DataFrame as before:

# assume df is already loaded and has no missing values

Now, to compute Q1 (25th percentile) and Q3 (75th percentile), we call
NumPy’s percentile:

q1 = np.percentile(df["daily_vaccinations"], 25)

q3 = np.percentile(df["daily_vaccinations"], 75)

iqr = q3 - q1

print(f"IQR: {iqr}, Q1: {q1}, Q3: {q3}")

Defining Outlier Bounds
Here, we need to set the lower bound at Q1 − 1.5×IQR and the upper bound
at Q3 + 1.5×IQR as shown below:

lower_bound = q1 - 1.5 * iqr

upper_bound = q3 + 1.5 * iqr



print(f"Lower bound: {lower_bound}, Upper bound: {upper_bound}")

Clipping Extreme Values
We may need to replace values beyond those bounds with the nearest
bound, for which we can apply pandas’ clip:

df["daily_vaccinations"] = df["daily_vaccinations"].clip(

   lower=lower_bound,

   upper=upper_bound

)

Then we check that no values fall outside the bounds:

min_val = df["daily_vaccinations"].min()

max_val = df["daily_vaccinations"].max()

print(f"Post-clip min: {min_val}, max: {max_val}")

You will be able to observe that the expected output aligns with our
calculated bounds. We may also simply make a quick histogram that shows
the distribution without extreme spikes:

df["daily_vaccinations"].hist(bins=50)

It'll confirm a trimmed distribution ready for modeling without skew from
anomalous records. Now, we've got a system in place to deal with outliers
using something called IQR-based clipping. This keeps our machine
learning and other analyses safe from any distortions.



Standardizing Numeric Features
It's important to be able to compare the number of vaccinations per person
in different countries. But it's tricky because the numbers can fluctuate a lot
based on how many people live in each country. A country that gives
100,000 shots a day seems much bigger than one that gives 10,000, even if
the numbers per person say something different. We've got to transform our
per_capita metric so that it centers at zero with unit variance, letting us
compare on an even playing field.

Applying StandardScaler
We first do the installation of the scikit-learn:

pip install scikit-learn

This pulls in the StandardScaler and other tools. Next, we then open a new
file named standardize_features.py and import libraries:

import pandas as pd

import numpy as np

from sklearn.preprocessing import StandardScaler

We then load the DataFrame which already contains daily_vaccinations
and population:

# reuse load_excel.py logic or replace with your own DataFrame load

df = pd.read_csv(

   "path/to/enriched.csv",

   parse_dates=["date"]

)

Next, we then create a per-capita column (doses per hundred people):

df["per_capita"] = df["daily_vaccinations"] / df["population"] * 100



And finally, we then instantiate and fit the scaler on your per-capita values:

scaler = StandardScaler()

scaled_values = scaler.fit_transform(df[["per_capita"]])

df["per_capita_scaled"] = scaled_values.flatten()

Confirming Zero Mean and Unit Variance
And just to be sure, we will double-check that the transformed data centers
at zero and the span unit variance are in place.

mean = np.mean(df["per_capita_scaled"])

std  = np.std(df["per_capita_scaled"])

print(f"Mean of scaled: {mean:.4f}, Std Dev of scaled: {std:.4f}")

The expectedoutput will be as below:

Mean of scaled: 0.0000, Std Dev of scaled: 1.0000

If we run a quick histogram like previus, then it will confirm a bell shape:

import matplotlib.pyplot as plt

plt.hist(df["per_capita_scaled"], bins=50)

plt.title("Distribution of Scaled Per-Capita Vaccination")

plt.show()

Now, we can observe that our per_capita_scaled metric now sits on a
standardized scale, and it is ready for modeling or comparison without bias
toward high-population countries.



Deduplicating Records
We combined data from several sources to make our enriched DataFrame.
We spot that some rows repeat—perhaps the same location and date appear
twice with identical daily_vaccinations. Those duplicates skew group-by
results and complicate time-series operations. So here, we need to remove
every exact copy and rebuild our index so that row numbers run from zero
without gaps.
To begin with, we first create a new file called deduplicate.py. And like we
did for all other new files; we import pandas and load the DataFrame that
we previously prepared from a CSV export of enriched_df:

import pandas as pd

df = pd.read_csv(

   "enriched.csv",

   parse_dates=["date"]

)

Removing Exact Duplicates
We then call pandas’ drop_duplicates, which by default considers all
columns:

df_clean = df.drop_duplicates()

For a moment, we run a quick check to compare row counts before and
after:

print(f"Before: {df.shape[0]} rows")

print(f"After : {df_clean.shape[0]} rows")

Resetting DataFrame Index



The dropped rows leave gaps in the index. So here, we reset it to a clean
sequence:

df_clean.reset_index(drop=True, inplace=True)

Next, we inspect the first few rows to confirm continuity:

print(df_clean.head(5))

print(df_clean.index[:5])

Verifying a Clean Index
We then run a full info summary. It will show that index runs from zero to
row-count minus one:

print(df_clean.info())

the terminal might display the following:

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 299000 entries, 0 to 298999

Data columns (4 columns):

#   Column              Non-Null Count   Dtype  

---  ------              --------------   -----  

0   location            299000 non-null  object

1   date                299000 non-null  datetime64[ns]

2   daily_vaccinations  299000 non-null  float64

3   population          299000 non-null  int64  

memory usage: 9.1 MB

Now our DataFrame has only unique rows with a neat, sequential index.
Any group-by or time-series operation will proceed without distortion from
repeated records.



Transforming Timestamps
Now in our datset, we can experience that a single date column will limit
our ability to answer questions like which months saw the fastest
vaccination rollouts or whether weekends differ from weekdays. So here,
we need separate features—year, month and weekday—so that we can
group, filter or model temporal patterns with ease.

Setting up Transformation
We first open the transform_timestamps.py, start with pandas and then we
load the cleaned DataFrame, ensuring date is parsed:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

You notice that df.info() already shows date as datetime64, which means
you can directly extract components.

Extracting Year, Month and Weekday
So now, the simple assignments with the .dt accessor pulls each part. We
can simply type and explain each line:

# Extract calendar year for long-term trend analysis 

df["year"] = df["date"].dt.year 

# Extract month number to compare seasonality across months 

df["month"] = df["date"].dt.month 

# Extract weekday name to examine differences between weekdays and
weekends 

df["weekday"] = df["date"].dt.day_name() 

We then point out that .dt.year returns integers like 2020 and 2021,
.dt.month yields values from 1 to 12, and .dt.day_name() produces strings
such as “Monday” and “Saturday.”



Verifying Feature Creation
After this, we may run a combined preview to see all timestamp
components at once:

print(df.loc[:5, ["date", "year", "month", "weekday"]])

The output must show something like the following:

      date  year  month    weekday

0 2020-02-22  2020      2   Saturday

1 2020-02-23  2020      2     Sunday

2 2020-02-24  2020      2     Monday

3 2020-02-25  2020      2    Tuesday

4 2020-02-26  2020      2  Wednesday

5 2020-02-27  2020      2   Thursday

That confirms each new column aligns correctly with the original date.

Checking Data Types and Memory
Next, we then verify that the new columns have appropriate dtypes and note
their memory footprint:

print(df[["year", "month", "weekday"]].dtypes)

print("Memory usage for new cols:",
df[["year","month","weekday"]].memory_usage(deep=True).sum())

Here, we can see that the integer types for year and month, and object
(string) for weekday.

Testing Group-By on New Features
Now here, to demonstrate usefulness, we may continue to group by
weekday and compute average daily vaccinations:



weekday_avg = df.groupby("weekday")
["daily_vaccinations"].mean().reindex(

    ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday", "Sunday"]

)

print(weekday_avg)

We must then observe the patterns such as slightly lower averages on
weekends in our dataset. Next, we then group by month to spot seasonality:

monthly_avg = df.groupby("month")["daily_vaccinations"].mean()

print(monthly_avg)

With this, we unlocked powerful ways to slice and compare vaccination
trends over time. These features will feed directly into visualization and
modeling recipes ahead.



Summary
To sum up our learnings, we successfully identified each of the missing
entries in our vaccination series by calling isna() and counting nulls in the
daily_vaccinations column. We then sorted data by location and date,
carried forward previous values to fill intermediate gaps, and applied
median imputation to address leading nulls. We inspected unique country
labels to spot inconsistencies, defined a mapping dictionary, and replaced
variants like “Bahamas, The” with standardized names. We converted the
location column into a categorical type, slashing memory usage while
preserving accurate group-by behavior.
Later, we were able to manage extreme vaccination spikes or drops, we
computed Q1 and Q3 via NumPy’s percentile, calculated IQR-based
bounds, and clipped values outside the acceptable range. We created a per-
capita metric by dividing daily doses by population and multiplying by 100,
then installed scikit-learn once to apply StandardScaler, transforming
per_capita to zero mean and unit variance. We removed every exact
duplicate row with drop_duplicates() and reset the index to maintain a
clean sequence. Finally, we extracted temporal features—year, month and
weekday—using pandas’ .dt accessor, enabling seasonal and weekday
comparisons.



CHAPTER 3:
PERFORMING QUICK

EXPLORATORY
ANALYSIS



Overview
Now, in this chapter, we will learn how to extract statistical summaries. We
will also learn how to visualize key patterns in vaccination data. The first
step is to summarize central tendencies using built-in and custom
aggregation methods. Then, you will plot histograms to understand
distribution shape and detect skewness. Next, you will compute and
visualize correlations among multiple metrics. A pivot table will enable you
to compare monthly totals across countries at a glance, while a scatter-
matrix plot will reveal the relationships between numeric fields.
Finally, you will create time-series line charts to trace the rollout trajectories
of selected nations. Each part will walk us through writing brief code,
understanding results, and improving your analysis workflow so that you
can rapidly obtain practical knowledge from complicated datasets.



Generating Descriptive Statistics
At the moment, the cleaned and enriched vaccination DataFrame is good to
go, but we're missing a clear picture of the central tendency and variability
across countries and dates. We need to put together a summary of the key
statistics—like the count, mean, median, quartiles, and spread—for daily
dose counts by country. Those metrics will help us decide whether to do
more analysis or modeling.

Previewing Overall Summary
To begin with, we first open the script explore_stats.py, and then load the
cleaned file:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

We then call the built-in summary method:

summary = df["daily_vaccinations"].describe()

print(summary)

The output will be similar to the following:

count    300000.000000

mean       5000.123456

std        4500.789012

min           0.000000

25%        2000.000000

50%        4500.000000

75%        7000.000000

max       25000.000000

Name: daily_vaccinations, dtype: float64



After this, you will now see how many non-null entries existed, the average
daily doses, the standard deviation and the quartile bounds.

Custom Group-by Aggregations
A country-level breakdown reveals regional differences. To get this, we
then code as below:

country_stats = df.groupby("location")["daily_vaccinations"].agg(

   count="count",

   mean="mean",

   median=lambda x: x.median(),

   std="std",

   min="min",

   max="max"

).reset_index()

print(country_stats.head(5))

The sample output might be:

      location  count     mean  median     std    min     max

0   Afghanistan 15000  1200.56    800.0  900.12    0.0   5000.0

1       Albania 15000  2300.78   2100.0 1100.34    0.0   8000.0

2       Algeria 15000  5400.12   5300.0 2000.56  100.0  15000.0

3       Andorra 15000   800.45    750.0  450.23    0.0   2000.0

4        Angola 15000  3300.89   3200.0 1400.78    0.0  10000.0

After this, we then verify that each country has the expected number of
records and see how mean and median compare.

Temporal Summary with Time-Window
Aggregations



To assess weekly patterns, you extract ISO week numbers and then
summarize:

df["week"] = df["date"].dt.isocalendar().week

weekly_stats = df.groupby("week")
["daily_vaccinations"].mean().reset_index()

print(weekly_stats.head(5))

The above shows the average daily doses per ISO week, which can help
you spot changes in the rollout pace. We can also use a quick plot to make
things clear as below:

import matplotlib.pyplot as plt

plt.plot(weekly_stats["week"], weekly_stats["daily_vaccinations"])

plt.title("Average Daily Vaccinations by ISO Week")

plt.xlabel("ISO Week Number")

plt.ylabel("Average Daily Vaccinations")

plt.show()

A line chart appears, showing how global vaccination rates rose and fell
over weeks.
So, with overall and grouped summaries complete, we then havea the
quantified central tendencies and variability. Those insights will inform
threshold choices, outlier handling and feature engineering in upcoming
recipes.



Plotting Histograms
As of now, we have a fully cleaned series of daily vaccination counts but
lack a clear visual sense of its distribution. We want to see how doses
cluster, detect any skew, and identify the most common ranges. A histogram
provides that overview, letting us quantify central mass and tail behavior
before moving on to modeling or further feature work.
To begin with, we create a file named plot_histogram.py and we as usual,
import the necessary libraries:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

And then we load our cleaned DataFrame, and parsing the dates as we did
previously:

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

Computing Skewness
Following is a quick calculation shows whether the distribution leans right
or left:

skewness = df["daily_vaccinations"].skew()

print(f"Skewness: {skewness:.2f}")

Here in this, a positive value means a long right tail (a few days with very
high counts), and a negative value indicates a long left tail.

Plotting Histogram
Next, we then type the following to visualize the full range:

plt.hist(df["daily_vaccinations"], bins=50, edgecolor="black")

plt.title("Distribution of Daily Vaccinations")



plt.xlabel("Daily Doses Administered")

plt.ylabel("Frequency")

plt.tight_layout()

plt.show()

The visualization then renders a histogram showing a peak where most
daily counts fall and tails extending toward rare high or low values.

Identifying Common Vaccination Ranges
Now to pinpoint the modal bin, we can call NumPy’s histogram directly:

counts, bin_edges = np.histogram(df["daily_vaccinations"].dropna(),
bins=50)

max_idx = np.argmax(counts)

common_range = (bin_edges[max_idx], bin_edges[max_idx + 1])

print(f"Most common daily range: {common_range[0]:.0f}–
{common_range[1]:.0f} doses")

The above prints something like “Most common daily range: 3000–4500
doses,” revealing where the bulk of days lie.
A pronounced right tail confirms that a few outlier days far exceed typical
vaccination counts. The peak around our common range shows where
rollout was steady. A slightly positive skew warns us that mean-based
models might overestimate typical performance, suggesting that median or
robust statistics could prove more reliable.
So all in all, we now have a clear visual and numeric grasp of distribution
shape, skewness and modal ranges. Those insights guide choices in feature
transformation and model selection in subsequent recipes.



Correlation Heatmaps
Now coming ot our new challenge is that our DataFrame now holds
multiple vaccination metrics, like total_vaccinations, people_vaccinated,
people_fully_vaccinated and daily_vaccinations. Now here, we want to
quantify how these measures relate to one another. A correlation heatmap
will reveal which pairs move together and highlight any surprising
relationships before we build predictive models.
To begin with, we first create or open the plot_heatmap.py, import the
libraries and load the last DataFrame that includes all vaccination columns:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv("enriched.csv", parse_dates=["date"])

Now we select only the numeric vaccination fields:

metrics = [

   "daily_vaccinations",

   "total_vaccinations",

   "people_vaccinated",

   "people_fully_vaccinated"

]

data = df[metrics].dropna()

Computing Correlation Matrix
After this, we call pandas’ correlation method:

corr = data.corr()

print(corr)



After running this, we can see a 4×4 table of correlation coefficients, where
values near 1.0 indicate strong positive relationships.

Rendering Heatmap with ‘imshow’
We then make use of imshow to visualize the matrix:

plt.figure(figsize=(6, 5))

plt.imshow(corr, interpolation="none", aspect="auto", cmap="coolwarm")

plt.colorbar(label="Correlation Coefficient")

plt.xticks(range(len(metrics)), metrics, rotation=45, ha="right")

plt.yticks(range(len(metrics)), metrics)

plt.title("Correlation Heatmap of Vaccination Metrics")

plt.tight_layout()

plt.show()

After running the above, our screen displays a colored grid where deep reds
mark high positive correlations and blues indicate weaker links.

Interpreting Heatmap
Now in the resulted heatmap, a near-1.0 correlation between
total_vaccinations and people_vaccinated confirms that cumulative doses
and people with at least one shot rise together. A slightly lower correlation
with daily_vaccinations suggests day-to-day counts fluctuate more
independently. The relationship between people_vaccinated and
people_fully_vaccinated reveals how quickly partial recipients become
fully vaccinated.
This above heatmap equips us with a visual map of metric relationships,
and it is going to be useful for feature selection and model design in the
further recipes.



Pivot Tables
Now, although our dataset holds daily dose records, but yet we may desire
to have a concise summary showing monthly totals per country. Manually
grouping each combination takes time and risks errors. So here, we must
use pandas’ pivot_table to aggregate monthly sums by location and
month, producing a clean table that compares countries at a glance.

Preparing Data for Pivoting
So, to begin with, we first open the pivot_table.py and import pandas and
the loading of our cleaned data as we did in all the other previous recipes:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

df["month"] = df["date"].dt.to_period("M")

Now in the above, we specifically type the period in order to reduce the
memory and to clarify the grouping by month.

Building Pivot Table
Here, we make a single call to pivot_table creates our summary:

monthly_pivot = pd.pivot_table(

   df,

   values="daily_vaccinations",

   index="location",

   columns="month",

   aggfunc="sum",

   fill_value=0

)



That yields a DataFrame where each row is a country, each column is a
month, and each cell shows the total doses for that period.

Verifying and Inspecting Results
We then print the first few rows to confirm structure:

print(monthly_pivot.head(5))

Following is the expected output:

month               2020-02  2020-03  2020-04  2020-05  2020-06  ...

location                                                        

Afghanistan              0        0        0     1500     2300  ...

Albania                  0        0        0     5000     7200  ...

Algeria                  0        0        0    10000    13000  ...

Andorra                  0        0        0      800     1200  ...

Angola                   0        0        0     3000     4500  ...

After this, we can confirm that every country appears once and that missing
months default to zero.

Pivot for Comparative Insights
In addition, we can do a quick transpose, such that it highlights countries in
a given month:

print(monthly_pivot["2021-06"].sort_values(ascending=False).head(10))

That lists the top ten countries by total vaccines in June 2021. We can also
chart a few countries’ trends:

subset = monthly_pivot.loc[["United States", "India", "Brazil"], :]

subset.plot(kind="bar", stacked=True, figsize=(10, 6))

A stacked bar chart appears, showing how each country’s monthly totals
build up over time.



Overall, the pivot table now provides a powerful summary of monthly
vaccination volumes by country.



Scatter-Matrix Plots
You have several numeric vaccination metrics—daily doses, totals, partial
and full counts. But, let us say that we want to know how they interact
pairwise. Now here, a scatter-matrix plot shows each variable plotted
against every other, helping you spot clusters, linear relationships or outliers
at a glance. So here, we need to generate one for daily_vaccinations,
total_vaccinations, people_vaccinated and people_fully_vaccinated.
Let us understand first what a scatter matric plot is? It is basically a pair
plot that arranges mini scatter plots in a grid. Each cell shows one variable
on the x-axis and another on the y-axis. Diagonal cells often display
histograms or density plots of a single variable. By viewing all pairs
together, you can detect whether two metrics move in sync, form distinct
clusters, or contain extreme values that merit investigation.
Now to begin with, we first open scatter_matrix.py, import pandas and
matplotlibm, and then load our DataFrame with all vaccination columns:

import pandas as pd

import matplotlib.pyplot as plt

from pandas.plotting import scatter_matrix

df = pd.read_csv("enriched.csv", parse_dates=["date"])

We then select the numeric columns of interest:

features = [

   "daily_vaccinations",

   "total_vaccinations",

   "people_vaccinated",

   "people_fully_vaccinated"

]

data = df[features].dropna()



Generating Plot
Now here, we can make a single call to produce the matrix:

axes = scatter_matrix(

   data,

   figsize=(10, 10),

   diagonal="hist",

   alpha=0.5,

   marker="o",

   edgecolor="k"

)

We can then adjust the labels for readability:

for ax in axes.ravel():

   ax.set_xlabel(ax.get_xlabel(), rotation=45)

   ax.set_ylabel(ax.get_ylabel(), rotation=0)

And then finaly we can render:

plt.suptitle("Pairwise Relationships of Vaccination Metrics")

plt.tight_layout()

plt.show()

Interpreting Clusters, Trends and Outliers
After rendering, you will observe a very tight, upward-sloping clouds
between total_vaccinations and people_vaccinated, confirming that
cumulative doses and partial vaccination move together. A slightly wider
spread appears in plots involving daily_vaccinations, indicating day-to-day
volatility. The diagonal histograms reveal skewness in counts: a long right
tail suggests occasional spikes. And, the outlier points far from the main



cloud mark days or countries with extraordinary numbers, which you may
later investigate or clip.



Time-Series Line Plots
We now come to the last recipe of this chapter. Now in this, lets say that we
want to visualize how vaccination rollouts evolved over time for a handful
of countries—perhaps to compare the pace of administration in the United
States, India and Brazil. And, a simple table of numbers won’t reveal trends
or crossovers. So here, we need a time-series line chart that plots daily
doses for each selected country on the same axes, with clear labels and
styling so we can see which rollout climbed fastest or plateaued.
To proceed, we first open time_series_plots.py and begin with imports and
data loading from the earlier recipe:

import pandas as pd

import matplotlib.pyplot as plt

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

We then choose the countries you want to compare and filter the
DataFrame:

countries = ["United States", "India", "Brazil"]

subset = df[df["location"].isin(countries)]

Pivoting for Line Plot
We then make a pivot, as it makes each country a separate column indexed
by date:

ts = subset.pivot(

   index="date",

   columns="location",

   values="daily_vaccinations"

)



This yields a DataFrame where each column holds the time series for one
country.

Plotting with pandas and Styling
Now to plot, we can simply create a line plot in one call and then adjust its
styling:

ax = ts.plot(

   kind="line",

   figsize=(12, 6),

   linewidth=2,

   alpha=0.8

)

ax.set_title("Daily Vaccinations Over Time", pad=15)

ax.set_xlabel("Date", labelpad=10)

ax.set_ylabel("Daily Doses Administered", labelpad=10)

ax.legend(title="Country", loc="upper left")

plt.xticks(rotation=45)

plt.grid(True, linestyle="--", alpha=0.5)

plt.tight_layout()

plt.show()

In the above script,the linewidth and alpha primarily controls the line
thickness and transparency. And the grid lines and rotated ticks are meant to
improve the readability.
Now for the plot to appear, we run the following script:

python time_series_plots.py

This will display a multi-line chart where each colored line traces a
country’s daily vaccination counts. We can see surges, plateaus and dips at



various dates. The differences in rollout speed become immediately
obvious, guiding further analysis or annotation.



Summary
So in this chapter, we very well generated an overall summary of daily
vaccination counts by calling df.describe(), which showed count, mean,
median, quartiles and standard deviation. We then grouped it by country
and computed custom aggregations—count, mean, median, standard
deviation, minimum and maximum—so that we could compare central
tendencies across nations. We extracted ISO week numbers and calculated
average daily doses per week, revealing how global rollout rates climbed
and dipped over time.
A histogram plot of daily_vaccinations clarified distribution shape,
highlighted a right skew from occasional high-count days and identified the
most common dose range. We then did compute a correlation matrix for
daily_vaccinations, total_vaccinations, people_vaccinated and
people_fully_vaccinated, then rendered it as a heatmap to visualize strong
positive relationships and subtle differences among metrics. A pivot table
aggregated monthly totals per country, producing a concise table that let us
rank and compare vaccine volumes across periods. A scatter-matrix plot
arranged pairwise scatter plots and diagonal histograms, helping us spot
linear trends, clusters and outliers among key metrics.
And then lastly, we did illustrate the rollout trajectories of the time-series
line plots for selected countries over time. This made it simple to see which
nations accelerated or plateaued. Each   of these techniques gave us a
practical, hands-on insight into our cleaned vaccination dataset and
prepared us for deeper modeling steps.



CHAPTER 4: OPTIMIZING
DATA STRUCTURES AND

PERFORMANCE



Overview
We now get into a new chapter. In this chapter, we try to get through and
practice techniques. These techniques make data pipelines faster and leaner.
First, we will vectorize calculations with NumPy to eliminate slow loops.
Then, you will learn to convert string labels into Pandas categorical types
for significant memory savings and consistent group-by results.
Next, we will demonstrate how to process huge CSV files in manageable
chunks and how to map very large arrays to disk with memmap, ensuring
that you never run out of memory. We will learn to set meaningful indices
before joins, which makes merging millions of rows almost instantaneous.
Finally, we will profile your pipeline's memory and speed with the built-in
tools, and then we will apply precise optimizations that'll deliver significant
performance gains. Ultimately, you will have a toolbox of methods to
confidently scale your analyses as data volumes grow.



Vectorizing with NumPy
We now revisit to our scripts wherein we have written a loop to compute
daily percentage changes in vaccinations for each country, but let us say
that it crawled when applied to hundreds of thousands of rows. So here, we
need a more efficient method that operates on entire arrays at once, so we
can calculate day-over-day rates for every country in seconds instead of
minutes.
To begin with, we first open vectorize.py together, and then we load and
sort our data so that vaccination counts sit in chronological order by
country.

import pandas as pd

import numpy as np

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

df.sort_values(["location", "date"], inplace=True)

At this point, you have a DataFrame with daily counts neatly ordered. A
pure-Python loop would fetch each row, compute a difference with its
predecessor, divide by the previous value and append a result. Now here, a
NumPy array, in contrast, performs that same difference and division in
compiled code. We extract the entire column of daily counts as an array:

vals = df["daily_vaccinations"].to_numpy()

Now we allocate an array of identical length to hold our rate changes. We
fill it briefly with NaN so that the first day per country remains undefined:

rate_arr = np.full_like(vals, fill_value=np.nan, dtype=float)

Next, we compute the difference between each day and its predecessor in
one shot, then divide by the previous day’s value wherever that value isn’t
zero. All of this happens in a single vector expression:

diff = vals[1:] - vals[:-1]



prev = vals[:-1]

rates = np.where(prev != 0, diff / prev, 0)

rate_arr[1:] = rates

We place our computed rates back into the DataFrame:

df["rate_change"] = rate_arr

A quick comparison of slice outputs confirms that our vectorized result
matches what the loop would have produced, but finishes far more quickly.
With this pattern, you accelerate rate calculations across all countries
without changing any business logic—only by swapping loops for array
operations.



Leveraging pandas Categorical Dtypes
You notice that the location column still uses object dtype, and your
DataFrame’s memory footprint remains tens of megabytes. Handling
millions of rows with string labels stresses your system. We need to convert
those labels into a categorical type so that each unique country name is
stored once, cutting memory overhead dramatically.
You open categorical_dtype.py and begin by importing pandas:

import pandas as pd

Next, load your deduplicated DataFrame:

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

You check memory usage of the location column before conversion:

mem_before = df["location"].memory_usage(deep=True)

print(f"Memory before: {mem_before:,} bytes")

The output might show something like:

Memory before: 7,200,000 bytes

That tells you how much space your string labels occupy.
Next, you then explain that converting to category replaces each label with
a small integer code and a single lookup table of categories.
A one-line conversion applies that logic:

df["location"] = df["location"].astype("category")

We just wanted to let you know that this change happens in place and you
don't have to repeat it in later recipes. We can measure memory usage
again:

mem_after = df["location"].memory_usage(deep=True)

print(f"Memory after:  {mem_after:,} bytes")



The output may read as below:

Memory after:  1,200,000 bytes

This dramatic drop confirms that the categorical type cut memory by more
than 80%. And, it looks like the way we group things hasn't changed.

grouped = df.groupby("location")["daily_vaccinations"].sum()

print(grouped.head(5))

If you observe it closely, there are identical aggregation results, showing no
loss of functionality. This conversion not only accelerates operations that
rely on integer codes but also keeps your workflows scalable as data grows.



Chunked File Processing
A loaded CSV file put our 8 GB of RAM to the test as the vaccination
records grew into the millions. So, we need a way to read that file in
manageable pieces, process each batch, then combine results. That way, we
can calculate the total global doses without crashing the system.
To begin with, we create a new script, called as chunked_processing.py
and access the CSV URL.

import pandas as pd

CSV_URL = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

We then choose a chunk size that fits comfortably in memory—100 000
rows works well here.

chunk_size = 100_000

totals = []

Next, the loop goes through each chunk, filters out missing counts, limits it
to entries from 2021, and adds up daily vaccinations by country.

for chunk in pd.read_csv(

   CSV_URL,

   usecols=["location", "date", "daily_vaccinations"],

   parse_dates=["date"],

   chunksize=chunk_size

):

   clean = chunk.dropna(subset=["daily_vaccinations"])



   recent = clean[clean["date"] >= "2021-01-01"]

   summary = (

       recent.groupby("location")["daily_vaccinations"]

       .sum()

       .reset_index()

   )

   totals.append(summary)

Now here, we do the concatenation and it pulls all partial summaries into
one table:

combined = pd.concat(totals)

final_totals = (

   combined.groupby("location")["daily_vaccinations"]

   .sum()

   .reset_index()

)

We then print the top results to verify success:

print(final_totals.sort_values(

   by="daily_vaccinations", ascending=False

).head(10))

Once we run this script, then it ensures it does not load more than 100 000
rows at once. With this, our RAM stays stable while you compute global
vaccination totals for 2021 onward.



Memory-Mapped Arrays
Now, there's an issue with the vaccination counts. We've converted those
into a NumPy array and saved it to a binary file, but loading the whole thing
on machines with limited RAM still crashes the session. We've got to work
with datasets larger than memory by mapping the file to disk and reading
only the portions we need on demand.

Converting Data to a Binary Array
So here, we begin in memmap_arrays.py by extracting our
daily_vaccinations column and saving it as a .npy file:

import pandas as pd

import numpy as np

# Load cleaned data

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

vals = df["daily_vaccinations"].to_numpy()

# Save to disk in NumPy’s .npy format

np.save("vaccinations.npy", vals)

We can now have a file vaccinations.npy on disk. Rather than loading with
np.load, we map it.

Loading with Memory Mapping
We then replace a full load with a memory-mapped load:

# mmap_mode='r' opens in read-only mode without loading into RAM

vacc_mmap = np.load("vaccinations.npy", mmap_mode="r")

At this point, vacc_mmap behaves like a NumPy array but doesn’t occupy
RAM for all its elements—only the slices you access.

Inspecting File-backed Array



Next, we then quickly verify shape and dtype:

print("Shape:", vacc_mmap.shape)

print("Dtype:", vacc_mmap.dtype)

This gives us the confidence that the file has mapped correctly.

Performing Calculations
And if you want the global average daily vaccination without having to load
everything, that's an option too. NumPy is pretty efficient, but it does things
in a roundabout way. It reads chunks, but it doesn't do it all at once.

mean_val = vacc_mmap.mean()

print(f"Global mean daily vaccinations: {mean_val:.2f}")

Here, only the small blocks load at a time, keeping RAM usage minimal.

Creating Writable Memory Map
Next, if we need to update values in place like clipping the outliers directly
on disk, we can open in read-write mode:

vacc_mmap_rw = np.memmap(

   "vaccinations.npy",

   dtype=vacc_mmap.dtype,

   mode="r+",

   shape=vacc_mmap.shape

)

# Clip values outside bounds directly on disk

lower, upper = 0, mean_val * 5

vacc_mmap_rw[:] = np.clip(vacc_mmap_rw, lower, upper)

vacc_mmap_rw.flush()  # ensure changes are written



Verifying Memory Efficiency
You monitor RAM while performing these steps and notice usage stays low
even for multi-million–row arrays. Slicing still works as expected:

print(vacc_mmap[100000:100010])

That prints ten values without loading the full array.
With this, we are able to compute the statistics and even modify large arrays
without ever exceeding system memory. This technique scales to datasets
far larger than available RAM.



Efficient Joins via Indexing
After a good amount of time, our DataFrame with daily vaccination counts
and population figures has grown to millions of rows. When we simply call
pd.merge(vacc_df, pop_df, on=["location", "date"]), the operation
grinds to a halt, chewing through RAM and CPU as it scans entire tables for
each match. So here, we now need a way to speed up this join so that
matching rows by country and date happens nearly instantaneously, even on
large datasets.
To do this, we first open efficient_join.py together.

import pandas as pd

Now here, a quick load of both tables shows their raw state:

vacc_df = pd.read_csv("vacc_clean.csv", parse_dates=["date"])

pop_df  = pd.read_csv("pop_clean.csv")

By default, the pandas treats both location and date as regular columns, so
every merge requires a costly lookup. We can teach pandas to use pre-built
indices that function like ordered, hashed pointers into each row.

Setting Strong Indices
First, we tell pandas to index each DataFrame on the join keys:

vacc_df.set_index(["location", "date"], inplace=True)

pop_df.set_index(["location", "date"], inplace=True)

These multi-level indices allow pandas to locate matching rows via direct
index alignment rather than full table scans. We explain that behind the
scenes, pandas builds maps from each unique (location, date) pair to
integer positions, so merges become pointer-based.

Performing Indexed Join



With indices in place, we call join instead of merge, leaning on index
alignment:

joined_df = vacc_df.join(

   pop_df["population"],

   how="left",

   sort=False

)

Here, the join matches on each DataFrame’s existing index. The
how="left" parameter preserves every vaccination record, appending
population where available. Setting sort=False avoids reordering, keeping
the original chronological sequence.

Verifying Performance Gains
We measure time before and after:

import time

# Baseline merge

start = time.time()

_ = pd.merge(

   vacc_df.reset_index(),

   pop_df.reset_index(),

   on=["location", "date"],

   how="left"

)

print("Merge time:", time.time() - start)

# Indexed join

start = time.time()

_ = vacc_df.join(pop_df["population"], how="left", sort=False)



print("Indexed join time:", time.time() - start)

On large tables, the indexed join completes in a fraction of the merge time
—often 5× to 10× faster.

Inspecting Joined DataFrame
We then run a quick check, which then confirms that the population is
aligned correctly as below:

print(joined_df.head(5))

print(joined_df.info())

The sample output will then show that the rows are keyed by (location,
date) with daily_vaccinations and population columns. By setting multi-
level indices on our join keys, we turned a slow table scan into a rapid
pointer lookup. This technique scales gracefully as datasets expand and
becomes essential.



Profiling Operations
It seems like certain steps, like grouping by country or merging tables, are
making our pipeline slow way down. We need a quick way to see which
operations use the most memory and time so we can focus on what matters.

Inspecting Memory Usage
So here, we first do a check on how much memory our DataFrame uses
before any heavy work. For this, we start an interactive IPython session in
your venv:

ipython

Inside, we then import pandas and load the clean data:

In [1]: import pandas as pd

In [2]: df = pd.read_csv("df_clean.csv", parse_dates=["date"])

We then call info with memory_usage='deep' to see a detailed breakdown:

In [3]: df.info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 300000 entries, 0 to 299999

Data columns (total 5 columns):

#   Column               Non-Null Count   Dtype        

---  ------               --------------   -----        

0   location             300000 non-null  object        

1   date                 300000 non-null  datetime64[ns]

2   daily_vaccinations   300000 non-null  float64      

3   population           300000 non-null  int64        

4   rate_change          300000 non-null  float64      



memory usage: 45.0 MB

After this, we see that location alone uses a large chunk of memory.

Timing Expensive Operations
Next, we then identify which operations take longest by using the %timeit
magic:

In [4]: %timeit df.groupby("location")["daily_vaccinations"].sum()

# 1 loop, best of 3: 250 ms per loop

We then measure a merge as well:

In [5]: pop = pd.read_csv("pop_clean.csv")

In [6]: %timeit df.merge(pop, on=["location"], how="left")

# 1 loop, best of 3: 400 ms per loop

The grouping and merging each took a few hundred milliseconds on your
machine.

Profile-based Optimizing
Since the location appears costly, we try to convert it to a categorical type
and re-measure:

In [7]: df["location"] = df["location"].astype("category")

In [8]: df.info(memory_usage="deep")

# memory usage: 10.5 MB

In [9]: %timeit df.groupby("location")["daily_vaccinations"].sum()

# 10 loops, best of 3: 30 ms per loop

In [10]: %timeit df.merge(pop, on=["location"], how="left")

# 10 loops, best of 3: 80 ms per loop

If we observe closely the output, the memory usage drops by over 50%, and
group-by and merge speed up by roughly 8× and 5× respectively.



With this, we have now learned to pinpoint bottlenecks with
df.info(memory_usage='deep') and %timeit, and to apply targeted
optimizations—such as converting columns to categorical—to achieve
dramatic performance gains across your data pipeline.



Summary
Overall, in this chapter, we successfully replaced slow Python loops with
NumPy bulk operations to compute day-over-day rate changes across all
countries in seconds. We then converted our location column into a
categorical type, slashing memory usage by over 80% while preserving
accurate grouping. We read massive CSVs in fixed-size chunks, filtered and
aggregated each batch to calculate global vaccination totals without ever
exhausting RAM.
Next, we mapped large binary arrays to disk with NumPy’s memmap,
letting us compute means and clip outliers on datasets far bigger than
available memory. We set multi-level indices on location and date before
joining vaccination and population tables, turning costly table scans into
near-instant pointer lookups. Finally, we spotted performance hotspots with
df.info(memory_usage='deep') and %timeit, then applied targeted fixes
such as categorical conversion, which then helped us to speed up group-by
and merge operations by up to tenfold.



CHAPTER 5: FEATURE
ENGINEERING AND
TRANSFORMATION



Overview
We have now reached the halfway point of this book. Here, we will explore
techniques that enrich and transform features to create more powerful
models. We will start by creating polynomial and interaction terms to
capture nonlinear relationships in vaccination data. Then, you will compare
the MinMax, standard, and robust scaling strategies to understand how each
one affects the distributions of features.
Next, we will use a seven-day moving average to smooth daily fluctuations
and highlight long-term rollout patterns. Then, we will apply principal
component analysis to collapse multiple features into a few components
that retain most of the variance, which makes visualization and clustering
easier. Finally, we will cover how to efficiently encode high-cardinality
categorical variables using one-hot encoding in a sparse format and
integrate those sparse features into a machine learning pipeline.



Creating Polynomial Features
Right now, our models use just basic vaccination metrics. They might miss
interactions, like the days when a really high daily dose and high per-capita
rates together show a fast rollout. We want to add some complexity to your
data using squared terms and cross-products so that simple linear models
can capture nonlinear effects.
We open a new script named poly_features.py and load the libraries and
the dataframe.

vim poly_features.py

import pandas as pd

from sklearn.preprocessing import PolynomialFeatures

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

# assume per_capita_scaled already exists from previous recipes

We then extract the two columns we want to expand:

X = df[["daily_vaccinations", "per_capita_scaled"]]

After this, we create a PolynomialFeatures instance for degree 2 (squared
and interaction terms) without adding a constant bias column:

poly = PolynomialFeatures(degree=2, include_bias=False)

X_poly = poly.fit_transform(X)

Next, we then generate human-readable feature names and build a new
DataFrame:

feature_names = poly.get_feature_names_out(input_features=
["daily_vaccinations", "per_capita_scaled"])

poly_df = pd.DataFrame(X_poly, columns=feature_names,
index=df.index)



We then combine these new columns with your original data:

df_expanded = pd.concat([df, poly_df], axis=1)

Just make sure the squared and interaction terms are in the right place.

print(df_expanded[feature_names].head(5))

print(f"Original features: {X.shape[1]}, Expanded features:
{X_poly.shape[1]}")

python poly_features.py

It will yield something like:

daily_vaccinations  per_capita_scaled  daily_vaccinations^2
 daily_vaccinations per_capita_scaled  per_capita_scaled^2

0               0.0               -1.23                   0.00                             -0.00          
    1.51

1               0.0               -1.22                   0.00                             -0.00          
    1.49

2               0.0               -1.20                   0.00                             -0.00          
    1.44

3               0.0               -1.19                   0.00                             -0.00          
    1.42

4               0.0               -1.18                   0.00                             -0.00          
    1.39

Original features: 2, Expanded features: 5

With this, we have now squared versions of daily_vaccinations and
per_capita_scaled, plus their interaction term. These enriched features can
feed directly into regression or classification models, helping capture
nonlinear relationships without complex custom code.



Scaling Strategies Compared
As you can see in the models, there's sensitivity to feature scales. A few
large vaccination values had a big impact, while small per-capita figures
barely influenced the results. We want to compare different scaling methods
—MinMax, Standard, and Robust—to see which one gives us balanced
distributions before feeding features into a model.
For this, we create a script named compare_scalers.py with relevant
libraries loaded and the datasset as well:

import pandas as pd

from sklearn.preprocessing import MinMaxScaler, StandardScaler,
RobustScaler

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

X = df[["daily_vaccinations"]]

Then, instantiate each scaler and fit-transform the data.

scalers = {

   "minmax": MinMaxScaler(),

   "standard": StandardScaler(),

   "robust": RobustScaler()

}

scaled = {}

for name, scaler in scalers.items():

   scaled[name] = scaler.fit_transform(X)

Next, we create a comparison table showing key statistics for each scaled
feature:

comparison = pd.DataFrame({



   name: pd.Series(vals.flatten()).describe()

   for name, vals in scaled.items()

})

print(comparison.T)

Following is what we might see:

         count      mean       std   min    25%    50%    75%    max

minmax  300000.0   0.5000   0.3500  0.0   0.200  0.500  0.800  1.0

standard300000.0   0.0000   1.0000 -1.10 -0.700  0.000  0.700  2.50

robust 300000.0   0.0500   0.9000 -0.85 -0.300  0.050  0.400  3.00

As you know, the MinMaxScaler squeezes values into the range of [0,1].
StandardScaler centers on zero with unit variance, and RobustScaler uses
the median and interquartile range to reduce the influence of outliers.
To see the effects of each change on the distribution, just add a quick
histogram for each.

import matplotlib.pyplot as plt

for name, vals in scaled.items():

   pd.Series(vals.flatten()).hist(bins=50)

   plt.title(f"{name.capitalize()} Scaled Distribution")

   plt.xlabel("Scaled Value")

   plt.ylabel("Frequency")

   plt.show()

If you look closely, you'll see that MinMax gives uniform spread, Standard
keeps a Gaussian shape centered on zero, and Robust compresses extreme
values more gently. With these insights, you can choose the scaling method
that best suits your downstream model's robustness and performance.



Computing Rolling Aggregates
The daily numbers of vaccinations being administered are all over the
place, making it tough to spot any real trends. We want to smooth that noise
by averaging each day's value with the six days before it. The seven-day
moving average shows underlying patterns, like sustained increases or
plateaus, without needing to do manual calculations.
So here, we open a rolling_aggregates.py together with the DataFrame:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

Now here, a sort by country and date ensures that each rolling window
covers consecutive days:

df.sort_values(["location", "date"], inplace=True)

We can compute the seven-day average on daily_vaccinations grouped by
country:

df["weekly_avg"] = (

   df

   .groupby("location")["daily_vaccinations"]

   .transform(lambda x: x.rolling(window=7, min_periods=1).mean())

)

The above code processes each country’s time series independently, filling
the first six days with the average of available prior days.
Later, we can run a quick check that shows the new column in action:

print(df.loc[df["location"] == "United States", ["date",
"daily_vaccinations", "weekly_avg"]].head(10))

Following is something you will see as an output:



       date  daily_vaccinations  weekly_avg

0  2020-12-01               10000   10000.000

1  2020-12-02               12000   11000.000

2  2020-12-03               11000   11000.000

3  2020-12-04               13000   11500.000

4  2020-12-05               14000   12000.000

5  2020-12-06               12500   12083.333

6  2020-12-07               13500   12500.000

7  2020-12-08               15000   13214.286

8  2020-12-09               14500   13857.143

9  2020-12-10               16000   14214.286

Finally, to visualize the smoothed trend, we can plot both raw and averaged
series:

import matplotlib.pyplot as plt

subset = df[df["location"] == "United States"].set_index("date")

ax = subset[["daily_vaccinations", "weekly_avg"]].plot(

   figsize=(12, 6),

   alpha=0.8

)

ax.set_title("Daily vs 7-Day Average Vaccinations (United States)")

ax.set_xlabel("Date")

ax.set_ylabel("Doses Administered")

plt.tight_layout()

plt.show()



The resulting line chart highlights how weekly averages remove short-term
spikes, clarifying long-term rollout patterns.
With this, we have now explored to apply rolling window functions to
smooth noisy time series data. This technique makes trend detection and
model inputs far more reliable.



Principal Component Analysis
Now so far, we have worked with multiple scaled vaccination features—
daily_vaccinations, per_capita_scaled and possibly polynomial terms—
but high dimensionality hinders visualization and may introduce noise. So
here, we need to apply PCA so that we capture most variance in just two or
three components, simplifying downstream modeling and insight discovery.
To do this, we open pca_reduction.py with the libraries and the PCA class:

vim pca_reduction.py

import pandas as pd

from sklearn.decomposition import PCA

Next, we then load our DataFrame as usual. Now here, we have already
created the scaled features in earlier recipes and concatenated them into a
CSV named df_features.csv:

df = pd.read_csv("df_features.csv", parse_dates=["date"])

First, we select the numeric feature columns to reduce, for example:

features = [

   "daily_vaccinations",

   "per_capita_scaled",

   "daily_vaccinations^2",

   "per_capita_scaled^2",

   "daily_vaccinations per_capita_scaled"

]

X = df[features]

Then we instantiate the PCA to retain enough components to explain 90%
of the variance:



pca = PCA(n_components=0.90, random_state=42)

X_pca = pca.fit_transform(X)

We then retrieve the number of components chosen and the explained
variance ratio:

n_comp = pca.n_components_

var_ratio = pca.explained_variance_ratio_.cumsum()

print(f"Number of components: {n_comp}")

print("Cumulative explained variance by component:")

for i, ratio in enumerate(var_ratio, start=1):

   print(f" Component {i}: {ratio:.2%}")

The output may look like:

Number of components: 2

Component 1: 85.30%

Component 2: 98.75%

The above output tells us that two principal components capture almost all
variance.
Next, we then create a new DataFrame for these components alongside the
original index:

pca_df = pd.DataFrame(

   X_pca,

    columns=[f"PC{i}" for i in range(1, n_comp+1)],

   index=df.index

)

df_reduced = pd.concat([df, pca_df], axis=1)

We then verify the new DataFrame structure:



print(df_reduced[["PC1", "PC2"]].head(5))

The sample output will be like this:

      PC1        PC2

0 -1.23456   0.12345

1 -1.21098   0.09876

2 -1.18543   0.07654

3 -1.16012   0.05432

4 -1.13457   0.03210

Then plot the first two components to visualize clusters or trends:

import matplotlib.pyplot as plt

plt.scatter(df_reduced["PC1"], df_reduced["PC2"], alpha=0.5, s=10)

plt.title("PCA Projection of Vaccination Features")

plt.xlabel("Principal Component 1")

plt.ylabel("Principal Component 2")

plt.tight_layout()

plt.show()

After running this, a scatter plot appears, showing how countries or dates
cluster in reduced space. With this, we have now reduced multiple
vaccination features down to a handful of principal components that capture
nearly all variability.



One-Hot Encoding High-Cardinality
Our location column holds hundreds of unique country names. If we
naively encode each with a separate binary column, our feature set balloons
and memory usage soars. So here, we need a way to transform these high-
cardinality categories into a machine-learning–friendly format without
exhausting RAM.
For this, first we open a new script called onehot_encoding.py and start by
importing pandas and loading the DataFrame:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

df["location"] = df["location"].astype("category")

We then run a quick memory check. It shows our starting point:

before = df["location"].memory_usage(deep=True)

print(f"Location column memory: {before:,} bytes")

Generating Sparse One-Hot Columns
Now for this, we call get_dummies with sparse=True, which returns a
sparse DataFrame:

dummies = pd.get_dummies(

   df["location"],

   prefix="loc",

   sparse=True,

   dtype=int

)

This creates one column per country but stores it efficiently. We inspect its
memory:



after = dummies.memory_usage(deep=True).sum()

print(f"Sparse one-hot memory: {after:,} bytes")

We can then see a dramatic drop compared to a dense representation.

Integrating with Feature Matrix
Here, we concatenate the sparse dummies alongside numeric features for
modeling:

features = pd.concat(

   [df[["daily_vaccinations", "per_capita_scaled"]], dummies],

   axis=1

)

Now here, the features is a sparse-aware DataFrame. We confirm its
format:

print(features.info())

Converting to SciPy Sparse Matrix
It is very well known that many ML libraries accept the SciPy sparse input.
We export our sparse DataFrame to COO format:

sparse_matrix = features.sparse.to_coo().tocsr()

print(type(sparse_matrix), sparse_matrix.shape)

That yields a csr_matrix with one row per record and one column per
feature, stored compactly in memory.
And finally, as a final check, we plug this sparse matrix into a scikit-learn
pipeline step without error:

from sklearn.linear_model import LogisticRegression

model = LogisticRegression(max_iter=100)

model.fit(sparse_matrix, (df["daily_vaccinations"] > 0).astype(int))



We can see training proceed without swapping to dense arrays, confirming
that our one-hot encoding scales to high-cardinality without blowing out
RAM.



Summary
In summary, we used scikit-learn’s PolynomialFeatures to create the
interactions and squared terms from our vaccination metrics. This allowed
the simple models to capture nonlinear effects. We applied three scaling
strategies—MinMaxScaler, StandardScaler, and RobustScaler—and
compared their impact on feature distributions to determine the most
suitable transformation. We smoothed daily noise by computing seven-day
rolling averages with the rolling method in Pandas, which revealed clearer
trends over time.
Then, we reduced the dimensionality with PCA, retaining two components
that explained over 90 percent of the variance in our scaled features.
Finally, we visualized the resulting clusters. Finally, we transformed
hundreds of country labels into a sparse, one-hot format using pandas's
get_dummies, which we then converted into a SciPy CSR matrix. This
enabled our machine learning pipelines to handle high cardinality without
exhausting memory.



CHAPTER 6: BUILDING
MACHINE LEARNING

PIPELINES



Overview
Here in this chapter, we will learn to package every preprocessing and
modeling step into a single, maintainable pipeline. We will learn to define
end-to-end pipelines that handle imputation, scaling and model fitting with
one command. Next, you will create custom transformer classes to
encapsulate domain logic—such as date feature extraction and missing-
value strategies—so that your code remains DRY and flexible. We will then
apply automated hyperparameter tuning with GridSearchCV, exploring
parameter combinations under cross-validation to find the best model
settings.
After training, you will learn to persist and reload the entire pipeline using
joblib, guaranteeing identical behavior across environments. And then, you
will integrate feature selection within your pipeline by leveraging
SelectKBest, enabling automatic selection of the most informative
vaccination features before fitting. By doing all this, we will be able to
strengthen our practical ability to design robust and scalable machine
learning workflows.



End-to-End Pipelines
Let us think of a challenge wherein we have stitched together the
imputation, scaling and model fitting in separate steps, but switching
between them feels error-prone when you tweak features or try new
estimators. So here, we need a single object that bundles all preprocessing
and modeling into one call, so that you can train and predict in one line and
swap components without rewriting code.
For this, we first open pipeline_end_to_end.py with the as usual imports:

vim pipeline_end_to_end.py

import pandas as pd

from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Ridge

Next, we then load our feature matrix and target. Here, we can predict per-
capita scaled vaccination as a regression example:

df = pd.read_csv("df_features.csv", parse_dates=["date"])

X = df[["daily_vaccinations", "daily_vaccinations^2"]]

y = df["per_capita_scaled"]

We then define a pipeline that first fills missing values with the median,
then standardizes every feature, then fits a Ridge regressor:

pipeline = Pipeline([

   ("imputer", SimpleImputer(strategy="median")),

   ("scaler", StandardScaler()),

   ("model", Ridge(alpha=1.0, random_state=42))



])

We can get the training happenning in one call:

pipeline.fit(X, y)

We also can inspect the trained model’s coefficients immediately:

coefs = pipeline.named_steps["model"].coef_

print("Coefficients:", coefs)

And when you predict on new or held-out data, it also reduces to one line. If
you saved a test split as X_test, you'd write:

preds = pipeline.predict(X_test)

That single object handles imputation, scaling and regression under the
hood. We avoid mistakes from forgetting a transform step, and you can
swap in a different estimator—say RandomForestRegressor()—by
changing only the pipeline definition.
With this end-to-end pipeline, our workflow becomes concise and modular.
We can use the same pattern in classification tasks or more complex feature
assemblies, ensuring that every step runs reliably in sequence.



Custom Transformer Classes
Since our workflow involves encoding date features like year, month, and
weekday, and handling missing values before scaling, it's important to keep
those elements in mind. Putting that logic in for every dataset muddies our
code and invites mistakes. We need transformers that we can reuse and that
plug into any pipeline. That way, we can call each step by name and swap
in new logic without rewriting preprocessing code.
We create a new file named custom_transformers.py with the required
libs:

vim custom_transformers.py

from sklearn.base import BaseEstimator, TransformerMixin

import pandas as pd

Creating DateEncoder Transformer
We then define a transformer that reads a DataFrame with a date column
and appends year, month and weekday features:

class DateEncoder(BaseEstimator, TransformerMixin):

   def __init__(self, date_column="date"):

       self.date_column = date_column

   def fit(self, X, y=None):

       return self

   def transform(self, X):

       X_copy = X.copy()

       X_copy[self.date_column] =
pd.to_datetime(X_copy[self.date_column])

       X_copy["year"]    = X_copy[self.date_column].dt.year

       X_copy["month"]   = X_copy[self.date_column].dt.month



       X_copy["weekday"] = X_copy[self.date_column].dt.dayofweek

       return X_copy.drop(columns=[self.date_column])

We then explain that fit simply returns self, since no learning occurs, and
transform handles both date parsing and feature extraction.

Creating MedianImputer Transformer
Next, we encapsulate missing-value logic for numeric columns:

class MedianImputer(BaseEstimator, TransformerMixin):

   def __init__(self, columns=None):

       self.columns = columns

       self.medians_ = {}

   def fit(self, X, y=None):

       data = X if self.columns is None else X[self.columns]

       self.medians_ = data.median().to_dict()

       return self

   def transform(self, X):

       X_copy = X.copy()

       for col, med in self.medians_.items():

           X_copy[col].fillna(med, inplace=True)

       return X_copy

That transformer computes and stores medians during fit, then fills missing
entries in transform.

Using Transformers in Pipeline
Here, we show how to chain these with scaling and modeling:

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler



from sklearn.linear_model import Ridge

pipeline = Pipeline([

   ("date_encode", DateEncoder(date_column="date")),

   ("impute", MedianImputer(columns=["daily_vaccinations"])),

   ("scale", StandardScaler()),

   ("model", Ridge())

])

Verifying Transformer Behavior
To inspect the output, we load a sample DataFrame and run the pipeline up
to scale:

import pandas as pd

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

processed = pipeline.named_steps["date_encode"].transform(df)

processed = pipeline.named_steps["impute"].transform(processed)

print(processed[["year", "month", "weekday",
"daily_vaccinations"]].head())

From the above script, the sample output shows new temporal columns and
no missing values:

 year  month  weekday  daily_vaccinations

0  2020      2        5              10000.0

1  2020      2        6              12000.0

2  2020      2        0              11000.0

3  2020      2        1              13000.0

4  2020      2        2              14000.0



With these custom transformers, you can encapsulate domain-specific
preprocessing and plug them into any machine learning pipeline, improving
code clarity and reusability.



Hyperparameter Tuning
Let us see some other challenge. Assume that our pipeline imputes, scales
and fits a Ridge model, but default settings may not yield the best
predictions. And the manually adjusting the regularization strength or other
parameters feels like guesswork. So here, we need an automated way to
search across parameter combinations with cross-validation, so that we can
identify the optimal settings and measure their performance reliably.
For this, first we open tune_hyperparams.py with the required libraries:

vim tune_hyperparams.py

import pandas as pd

from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Ridge

from sklearn.model_selection import GridSearchCV, train_test_split

from sklearn.metrics import mean_squared_error

Next, we then load our features and target, and split into training and hold-
out sets:

df = pd.read_csv("df_features.csv", parse_dates=["date"])

X = df[["daily_vaccinations", "daily_vaccinations^2"]]

y = df["per_capita_scaled"]

X_train, X_test, y_train, y_test = train_test_split(

   X, y, test_size=0.2, random_state=42

)

We then define a pipeline that handles missing values, scaling and
regression:



pipeline = Pipeline([

   ("impute", SimpleImputer(strategy="median")),

   ("scale", StandardScaler()),

   ("model", Ridge())

])

Here, a parameter grid lists the alpha values to try for Ridge:

param_grid = {

    "model__alpha": [0.01, 0.1, 1.0, 10.0, 100.0]

}

We then set up GridSearchCV with 5-fold cross-validation and negative
mean squared error as our scoring metric:

grid = GridSearchCV(

   pipeline,

   param_grid,

   cv=5,

   scoring="neg_mean_squared_error",

   n_jobs=-1

)

We then kick off the search by fitting on the training data:

grid.fit(X_train, y_train)

If we try to get a printed summary, it may reveal the best alpha and its
corresponding score:

print("Best alpha:", grid.best_params_["model__alpha"])

print("Best CV MSE:", -grid.best_score_)



After this, we then evaluate on the hold-out set to confirm generalization:

preds = grid.predict(X_test)

mse_test = mean_squared_error(y_test, preds)

print("Test set MSE:", mse_test)

the sample run might display:

Best alpha: 1.0 

Best CV MSE: 0.035 

Test set MSE: 0.038 

This will tell us that alpha=1.0 balanced bias and variance best across
folds, and produced solid performance on unseen data. By wrapping
everything in GridSearchCV, you automated hyperparameter selection and
obtained reliable performance estimates without manual tweaking.



Pipeline Persistence
You’ve tuned and trained a complex pipeline that imputes values, scales
features and fits a regression model. Each time you restart your script or
switch machines, you must retrain from scratch—wasting time and risking
inconsistencies between batch and real-time inference. We must save the
entire pipeline in its trained state so that we can reload it later and call
predict immediately, guaranteeing identical behavior in every environment.
We first open persist_pipeline.py together.

vim persist_pipeline.py

Then, we import what we need:

import pandas as pd

import joblib

from sklearn.pipeline import Pipeline

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Ridge

Next, load and split your data—replicating the setup you used originally:

df = pd.read_csv("df_features.csv", parse_dates=["date"])

X = df[["daily_vaccinations", "daily_vaccinations^2"]]

y = df["per_capita_scaled"]

We then define and train the pipeline exactly as before:

pipeline = Pipeline([

   ("impute", SimpleImputer(strategy="median")),

   ("scale", StandardScaler()),



   ("model", Ridge(alpha=1.0, random_state=42))

])

pipeline.fit(X, y)

Now we persist the trained object to disk with joblib:

joblib.dump(pipeline, "vaccination_pipeline.joblib")

print("Pipeline saved to vaccination_pipeline.joblib")

Here, the message confirms that the entire pipeline—including fitted
imputer, scaler parameters and model coefficients—resides in one file.
After this, in a new Python session or production script, you simply load
and predict:

import joblib

import pandas as pd

# reload the pipeline

loaded_pipeline = joblib.load("vaccination_pipeline.joblib")

# prepare new data (or reuse X from before)

new_X = pd.read_csv("new_data.csv", parse_dates=["date"])[

   ["daily_vaccinations", "daily_vaccinations^2"]

]

# immediate prediction without retraining

predictions = loaded_pipeline.predict(new_X)

print(predictions[:5])

That one-line load ensures that batch jobs and real-time services share the
same preprocessing logic and model weights. No drift, no retraining errors
—just consistent, instant inference.



Feature Selection within Pipelines
There are dozens of features we have generated, like raw metrics,
polynomial terms, and per-capita rates. But training on all of them slows
down model fitting and risks overfitting. Picking the best features manually
each time feels tedious. We want our pipeline to automatically select the top
K vaccination-related features before fitting, so that model training focuses
on the most informative inputs without extra scripting.
To begin with, we open a new file called select_kbest_pipeline.py. with
the as usual libraries:

nano select_kbest_pipeline.py

import pandas as pd

from sklearn.feature_selection import SelectKBest, f_regression

from sklearn.preprocessing import StandardScaler

from sklearn.linear_model import Ridge

from sklearn.pipeline import Pipeline

Next, we then load your feature data. We assume you exported all candidate
features (including squared and interaction terms) in df_expanded.csv with
a target column per_capita_scaled:

df = pd.read_csv("df_expanded.csv", parse_dates=["date"])

X = df.drop(columns=["date", "per_capita_scaled"])

y = df["per_capita_scaled"]

We then decide to keep the top 5 features based on univariate F-tests. A
pipeline defines selection, scaling and regression:

pipeline = Pipeline([

   ("select", SelectKBest(score_func=f_regression, k=5)),

   ("scale", StandardScaler()),



   ("model", Ridge(alpha=1.0, random_state=42))

])

After this, we fit the pipeline on your full data:

pipeline.fit(X, y)

Now here, to see which features were chosen, we extract the boolean mask
and map it back to column names:

mask = pipeline.named_steps["select"].get_support()

selected_features = X.columns[mask].tolist()

print("Selected features:", selected_features)

This will print something like as below:

Selected features: ['daily_vaccinations', 'per_capita_scaled',
'daily_vaccinations^2', 'PC1', 'PC2']

Finally, we then perform a quick cross-validation to confirm that using only
those features does not degrade performance:

from sklearn.model_selection import cross_val_score

scores = cross_val_score(

    pipeline, X, y, cv=5, scoring="neg_mean_squared_error", n_jobs=-1

)

print("CV MSE scores:", -scores)

print("Average CV MSE:", -scores.mean())

With thhis, we can see consistent error rates, showing that the pipeline’s
built-in selection step streamlines feature choice without manual filtering.
By integrating SelectKBest into your pipeline, you automate feature
selection and ensure that every model fit uses only the top predictors. That
saves you time and keeps your workflow concise and maintainable.



Summary
Overall, we built an end-to-end pipeline that imputes missing values, scales
features, and trains a Ridge regression with one call. This simplifies our
workflow and reduces errors from manual step chaining. We encapsulated
date encoding and median imputation in custom transformers by
subclassing BaseEstimator and TransformerMixin, which made those
steps reusable and clear. We then automated hyperparameter tuning with
GridSearchCV.
Next, we persisted the trained pipeline using joblib’s dump and load
functions, ensuring consistent batch and real-time inference without the
need for retraining. We integrated feature selection directly into our pipeline
using SelectKBest with an F-test to allow for the automatic identification of
the top predictors before model fitting. Each recipe in this chapter
reinforced assembling, tuning, and deploying robust, modular workflows in
scikit-learn. This whole chapter taught us how we can easily move our
vaccination data smoothly from raw inputs to predictions with minimal
boilerplate and maximal reproducibility.



CHAPTER 7:
IMPLEMENTING

STATISTICAL AND
MACHINE LEARNING

TECHNIQUES



Overview
This chapter will address the challenges associated with rigorous statistical
testing and machine learning methods on vaccination data. First, we will
apply t-tests and chi-square tests to determine if there are significant
differences in daily rates and high-coverage events across regions. Next,
you will learn to train and interpret linear and Ridge regression models in
order to quantify the impact of demographic and rate-change predictors on
per-capita uptake. Then, we will introduce tree-based learners, such as
decision trees and random forests, to capture nonlinear patterns and extract
feature importances.
Next, we will cover clustering algorithms, which will allow you to segment
countries by rollout behavior using K-means and hierarchical methods. We
will learn to evaluate each model using the appropriate metrics: mean
squared error and R² for regression accuracy, classification reports for
precision and recall, and ROC curves with AUC for classifier performance.
By the end of this chapter, you will have a toolbox of statistical and
machine learning approaches to uncover, validate, and predict vaccination
trends.



Hypothesis Testing
You want to know whether vaccination rates differ significantly between
two regions—say, Europe and Asia. Manual eyeballing of averages feels
inadequate. We must apply a t-test to compare mean daily vaccinations and
a chi-square test to examine whether high-coverage days occur more often
in one region versus another.
To begin with, we first open hypothesis_tests.py, import libraries and load
the cleaned DataFrame:

import pandas as pd

from scipy.stats import ttest_ind, chi2_contingency

df = pd.read_csv("df_clean_with_region.csv", parse_dates=["date"])

Performing Two-Sample t-Test
We then extract daily vaccination arrays for Europe and Asia:

europe = df[df["region"] == "Europe"]["daily_vaccinations"].dropna()

asia   = df[df["region"] == "Asia"]["daily_vaccinations"].dropna()

We just say that t.test shows if the two means are different.

t_stat, p_val = ttest_ind(europe, asia, equal_var=False)

print(f"t-statistic: {t_stat:.3f}, p-value: {p_val:.3e}")

Here, the p-value below 0.05 suggests significant difference in average
daily rates.

Conducting Chi-Square Test
We categorize each day as “high” if daily vaccinations exceed the overall
median:

median_val = df["daily_vaccinations"].median()

df["high_coverage"] = df["daily_vaccinations"] > median_val



A contingency table counts high vs low days per region:

ct = pd.crosstab(df["region"], df["high_coverage"])

print(ct)

That might show:

high_coverage   False   True

region                        

Asia             80000  70000

Europe           60000  90000

Then we apply chi2_contingency to test independence:

chi2, p, dof, _ = chi2_contingency(ct)

print(f"chi2: {chi2:.2f}, p-value: {p:.3e}, dof: {dof}")

Now here, the low p-value indicates that high-coverage days are not equally
likely in both regions.
With this, we have now applied both t-test and chi-square test to assess
differences in vaccination patterns across regions. These statistical methods
guide you in choosing appropriate modeling strategies or in flagging
regional disparities for deeper investigation.



Regression Models
So far, we have built features such as per_capita and demographic
predictors like population and growth rate, but we need to quantify how
those factors drive vaccination uptake. A simple linear model can reveal
which predictors matter most, while Ridge regression helps prevent
overfitting when predictors correlate. We will train both models on our data
and interpret their coefficients to gain actionable insight.
To begin with, we first open the regression_models.py and load the data.

vim regression_models.py

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression, Ridge

from sklearn.metrics import mean_squared_error, r2_score

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

We can have a quick glance shows that df contains per_capita (doses per
100 people), population, and our previously computed rate_change:

print(df[["per_capita", "population", "rate_change"]].head(5))

The output might read:

 per_capita  population  rate_change

0    0.012345    38928346         NaN

1    0.015678    38928346    0.270270

2    0.014321    38928346   -0.086419

3    0.017810    38928346    0.243902

4    0.019876    38928346    0.115702

We then drop the first row to eliminate the NaN in rate_change:



df = df.dropna(subset=["rate_change"])

Next, we select our predictor matrix X and target vector y:

X = df[["population", "rate_change"]]

y = df["per_capita"]

We split into training and test sets for honest evaluation:

X_train, X_test, y_train, y_test = train_test_split(

   X, y, test_size=0.2, random_state=42

)

Training Linear Regression
Now here we must know that a linear model fits coefficients by minimizing
squared error. So here, we instantiate and fit:

linreg = LinearRegression()

linreg.fit(X_train, y_train)

We then print learned coefficients and intercept:

print("Linear Regression intercept:", linreg.intercept_)

print("Coefficients:", dict(zip(X.columns, linreg.coef_)))

Following is the expected output:

Linear Regression intercept: 0.005123

Coefficients: {'population': 1.23e-10, 'rate_change': 0.0456}

We then interpret that every unit increase in rate_change adds roughly
0.0456 to per-capita dose rate, while population has a very small
coefficient, suggesting its effect scales with other factors.

Evaluating Linear Model
The predictions and metrics primarily reveal the fit quality:



y_pred = linreg.predict(X_test)

print("Linear MSE:", mean_squared_error(y_test, y_pred))

print("Linear R2:", r2_score(y_test, y_pred))

So here, we might see:

Linear MSE: 0.000123

Linear R2: 0.72

An R² of 0.72 indicates that 72% of per-capita variance is explained by our
two predictors.

Training Ridge Regression
The ridge adds L2 penalty to shrink coefficients and reduce overfitting
when features correlate. In this, we fit with α=1.0:

ridge = Ridge(alpha=1.0, random_state=42)

ridge.fit(X_train, y_train)

print("Ridge coefficients:", dict(zip(X.columns, ridge.coef_)))

Here, we can notice slightly smaller coefficient magnitudes compared to
LinearRegression, reflecting regularization.

Evaluating Ridge Model
We then check Ridge performance on the test set:

y_pred_r = ridge.predict(X_test)

print("Ridge MSE:", mean_squared_error(y_test, y_pred_r))

print("Ridge R2:", r2_score(y_test, y_pred_r))

If Ridge R² is similar or slightly higher, it confirms that regularization
helped.
We used both LinearRegression and Ridge to figure out how to model
relationships between per-capita vaccination and demographic predictors.



Interpreting the coefficients showed the impact of each feature, and
comparing performance metrics showed if regularization improved
generalization.



Tree-Based Methods
We have seen linear and regularized models but found that they struggle to
capture complex, nonlinear relationships in vaccination patterns—such as
thresholds or interaction effects that don’t follow straight lines. We need
models that adapt flexibly to data shapes, split on feature values
automatically, and reveal which variables drive those splits. Decision trees
and random forests fit that need, letting us learn nonlinear patterns and
extract feature importances without manual feature engineering.
To begin with, we first open tree_models.py and bring up the tree-based
regressors, along with utilities for splitting and evaluation:

vim tree_models.py

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor

from sklearn.metrics import mean_squared_error, r2_score

Next, we then load the   cleaned and the last used DataFrame that already
contains numeric features such as daily_vaccinations, per_capita_scaled,
rate_change and weekly_avg:

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

df["weekly_avg"] = (

   df.groupby("location")["daily_vaccinations"]

     .transform(lambda x: x.rolling(window=7, min_periods=1).mean())

)

Preparing Features and Target



We select the four predictors that Tree-based models handle naturally
without scaling:

X = df[[

   "daily_vaccinations",

   "per_capita_scaled",

   "rate_change",

   "weekly_avg"

]]

y = df["per_capita_scaled"]

A train–test split reserves 20 percent of data for evaluation:

X_train, X_test, y_train, y_test = train_test_split(

   X, y, test_size=0.2, random_state=42

)

Training Decision Tree Regressor
We instantiate a tree with limited depth to avoid overfitting—depth 5
balances flexibility with interpretability:

tree = DecisionTreeRegressor(max_depth=5, random_state=42)

tree.fit(X_train, y_train)

A single decision tree learns splits such as “if daily_vaccinations > 10 000
then …” that capture nonlinear thresholds in data.

Evaluating Tree
We predict on our test set and compute performance:

y_pred_tree = tree.predict(X_test)

mse_tree = mean_squared_error(y_test, y_pred_tree)



r2_tree  = r2_score(y_test, y_pred_tree)

print(f"Decision Tree – MSE: {mse_tree:.6f}, R²: {r2_tree:.3f}")

An R² closer to 1.0 indicates that the tree captures complex patterns better
than linear models.

Inspecting Feature Importances
The DecisionTreeRegressor exposes feature_importances_, showing how
much each split criterion reduced impurity:

importances = tree.feature_importances_

feature_names = X.columns

for name, imp in zip(feature_names, importances):

   print(f"{name}: {imp:.3f}")

Here, a high importance for weekly_avg or rate_change tells us that those
nonlinear patterns matter most when predicting per-capita vaccination rates.

Training Random Forest Regressor
A single tree can overfit despite depth limits. A RandomForestRegressor
builds an ensemble of many trees on random subsets of data and features,
averaging their predictions for robust, nonlinear modeling:

forest = RandomForestRegressor(

   n_estimators=100,

   max_depth=5,

   random_state=42,

   n_jobs=-1

)

forest.fit(X_train, y_train)

Evaluating Forest



We predict with the forest and compare metrics:

y_pred_forest = forest.predict(X_test)

mse_forest = mean_squared_error(y_test, y_pred_forest)

r2_forest  = r2_score(y_test, y_pred_forest)

print(f"Random Forest – MSE: {mse_forest:.6f}, R²: {r2_forest:.3f}")

Often the forest improves R² and lowers MSE, demonstrating its power to
capture subtler nonlinear trends without manual tuning of feature
interactions.

Averaging Feature Importances
We then extract and average importances across all trees:

importances_forest = forest.feature_importances_

for name, imp in zip(feature_names, importances_forest):

   print(f"{name}: {imp:.3f}")

When you compare the importance of a tree versus a forest, you can see
which predictors always lead to accurate results.

Visualizing a Single Tree (Optional)
To see how splits occur, you can plot one tree from the forest:

from sklearn.tree import plot_tree

import matplotlib.pyplot as plt

plt.figure(figsize=(12, 8))

plot_tree(

   forest.estimators_[0],

   feature_names=feature_names,

   filled=True,

   max_depth=3,



   fontsize=8

)

plt.show()

From the plot diagram, you can explore the decision rules like “if
rate_change ≤ 0.2 then … else …” illustrating how the model partitions
data. We can observe that trees capture regimes—periods when daily
vaccinations exceed certain thresholds lead to markedly higher per-capita
rates. Forest importances highlight which metrics matter most across varied
conditions. Unlike linear models, tree-based methods adapt to nonlinearities
without explicit interaction terms.



Clustering Algorithms
We want to group countries by how their vaccination campaigns progressed
—identifying fast adopters versus slow starters. Manually inspecting each
country’s stats is tedious. We must apply clustering to segment nations
based on features like average daily doses and per-capita uptake, so that
patterns emerge automatically.
We open clustering.py, import pandas, clustering tools and a scaler to
prepare our features:

vim clustering.py

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.cluster import KMeans, AgglomerativeClustering

import matplotlib.pyplot as plt

We then load our cleaned dataset and compute country-level summaries:

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

summary = (

   df.groupby("location")

     .agg(

         avg_daily=("daily_vaccinations", "mean"),

         avg_weekly=("weekly_avg", "mean"),

         per_capita_mean=("per_capita", "mean")

     )

     .reset_index()

)



A quick look at summary.head() shows three numeric features for each
country.

print(summary.head())

We then extract those features into X and standardize them so that
clustering isn’t dominated by scale differences:

features = ["avg_daily", "avg_weekly", "per_capita_mean"]

X = summary[features]

scaler = StandardScaler()

X_scaled = scaler.fit_transform(X)

K-Means Clustering
We choose four clusters as a starting point.

kmeans = KMeans(n_clusters=4, random_state=42)

kmeans_labels = kmeans.fit_predict(X_scaled)

summary["kmeans_cluster"] = kmeans_labels

We inspect cluster centers in original feature space by reversing scaling:

centers = scaler.inverse_transform(kmeans.cluster_centers_)

centers_df = pd.DataFrame(centers, columns=features)

print("Cluster centers:\n", centers_df)

A scatter plot of two features reveals distinct groupings:

plt.figure(figsize=(8,6))

for cluster in range(4):

   mask = summary["kmeans_cluster"] == cluster

   plt.scatter(

       summary.loc[mask, "avg_daily"],



       summary.loc[mask, "per_capita_mean"],

       label=f"Cluster {cluster}",

       alpha=0.7

   )

plt.xlabel("Average Daily Vaccinations")

plt.ylabel("Average Per-Capita Vaccinations")

plt.legend()

plt.title("KMeans Clusters of Countries")

plt.tight_layout()

plt.show()

Agglomerative Clustering
We can take a hierarchical approach which can reveal nested group
structures.

agg = AgglomerativeClustering(n_clusters=4, linkage="ward")

summary["agg_cluster"] = agg.fit_predict(X_scaled)

We then compare cluster assignments between methods:

comparison = summary.groupby(["kmeans_cluster", "agg_cluster"]).size()

print("Cluster assignment overlap:\n", comparison)

This gives a table that shows how many countries share the same labels
under both methods. With this, we have now segmented countries into
clusters based on vaccination rollout characteristics. Here, the KMeans gave
us centroids to interpret average behavior, while AgglomerativeClustering
highlighted hierarchical groupings. These clusters can guide targeted policy
analysis or further modeling tailored to different country groups.



Model Evaluation Metrics
We've used regression and classification algorithms to predict vaccination
outcomes, but we're not sure how well they work. A simple accuracy score
doesn't show if your regression errors stay small or if your classification
models handle imbalanced classes right. We need some solid metrics—like
mean squared error for regression, precision/recall reports for classification,
and ROC curves for classifier discrimination—to gauge the model's quality
and make improvements.

Regression Evaluation with MSE
We begin by loading your regression model and test data. In
evaluate_regression.py, import libraries and reload your saved pipeline or
model:

import pandas as pd

import joblib

from sklearn.metrics import mean_squared_error, r2_score

# reload pipeline trained to predict per_capita_scaled

pipeline = joblib.load("vaccination_pipeline.joblib")

# load test set prepared earlier

df = pd.read_csv("df_features.csv", parse_dates=["date"])

X = df[["daily_vaccinations", "daily_vaccinations^2"]]

y = df["per_capita_scaled"]

# split or load previous split; for reproducibility we split again

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(

   X, y, test_size=0.2, random_state=42

)



A single call computes predictions on the hold-out set:

y_pred = pipeline.predict(X_test)

We then calculate the mean squared error and R²:

mse = mean_squared_error(y_test, y_pred)

r2  = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse:.6f}")

print(f"R² Score           : {r2:.4f}")

Following is the expected sample output:

Mean Squared Error: 0.032150 

R² Score           : 0.7542

These values tell you that average squared deviation between predicted and
actual per-capita rates is 0.032. An R² of 0.75 indicates that 75 percent of
variance is explained by your model.
You can inspect error distribution to identify systematic bias:

import matplotlib.pyplot as plt

errors = y_test - y_pred

plt.hist(errors, bins=50, edgecolor="black")

plt.title("Distribution of Prediction Errors")

plt.xlabel("Error (Actual – Predicted)")

plt.ylabel("Frequency")

plt.tight_layout()

plt.show()

If the histogram is centered and symmetrical, it means the errors are
unbiased. Long tails suggest some occasional big misses, which you could
deal with using nonlinear models or feature augmentation.



Classification Evaluation with Precision, Recall and
ROC Curve
We move on to figuring out how to classify things. One example is trying to
predict if a country will reach a certain number of vaccinations for each
person (like more than 50 doses per 100 people). We prepare a binary
target:

# continue in evaluate_regression.py or open evaluate_classification.py

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import classification_report, roc_curve, auc

# define binary target

df["high_coverage"] = (df["per_capita"] > 50).astype(int)

# select features for classification

X_cls = df[["daily_vaccinations", "per_capita_scaled", "rate_change"]]

y_cls = df["high_coverage"]

Xc_train, Xc_test, yc_train, yc_test = train_test_split(

   X_cls, y_cls, test_size=0.2, random_state=42

)

# train a logistic regression

clf = LogisticRegression(solver="liblinear", random_state=42)

clf.fit(Xc_train, yc_train)

We can then have a classification report that summarizes precision, recall
and F1-score:

yc_pred = clf.predict(Xc_test)

report = classification_report(yc_test, yc_pred, target_names=["Low",
"High"])

print(report)



You may expect a similar output like this:

            precision    recall  f1-score   support

        Low       0.82      0.88      0.85     12000

       High       0.80      0.72      0.76      8000

   accuracy                           0.81     20000

  macro avg       0.81      0.80      0.80     20000

weighted avg       0.81      0.81      0.81     20000

Here, we can then observe that precision for the “High” class is 0.80,
meaning 80 percent of predicted high-coverage cases were correct. Recall
of 0.72 indicates that 72 percent of actual high-coverage days were
identified.

Drawing ROC Curve
We then compute the predicted probabilities and ROC metrics:

# probability of positive class

y_prob = clf.predict_proba(Xc_test)[:, 1]

fpr, tpr, thresholds = roc_curve(yc_test, y_prob)

roc_auc = auc(fpr, tpr)

# plot ROC

plt.figure(figsize=(6, 6))

plt.plot(fpr, tpr, label=f"AUC = {roc_auc:.3f}", linewidth=2)

plt.plot([0, 1], [0, 1], linestyle="--", color="gray")

plt.title("ROC Curve for High Coverage Classifier")

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.legend(loc="lower right")



plt.tight_layout()

plt.show()

Here, the AUC above 0.80 shows strong discrimination ability. We adjust
thresholds based on desired trade-offs; for example, a threshold that yields a
higher true positive rate at the cost of more false positives.

Comparing Multiple Models
After this, we wrap the evaluation into a reusable function to compare
classifiers:

def evaluate_classifier(model, X_train, X_test, y_train, y_test):

   model.fit(X_train, y_train)

   y_pred = model.predict(X_test)

   print(classification_report(y_test, y_pred))

   y_prob = model.predict_proba(X_test)[:, 1]

    fpr, tpr, _ = roc_curve(y_test, y_prob)

   print(f"AUC: {auc(fpr, tpr):.3f}")

   plt.plot(fpr, tpr, label=type(model).__name__)

plt.figure(figsize=(6, 6))

evaluate_classifier(LogisticRegression(solver="liblinear"), Xc_train,
Xc_test, yc_train, yc_test)

evaluate_classifier(RandomForestRegressor(random_state=42), Xc_train,
Xc_test, yc_train, yc_test)  # use classifier here

plt.plot([0, 1], [0, 1], "--", color="gray")

plt.title("ROC Comparison")

plt.xlabel("False Positive Rate")

plt.ylabel("True Positive Rate")

plt.legend()



plt.tight_layout()

plt.show()

It's as easy as switching models, and you can compare performance right on
the same plot.
You've used mean squared error and R² to check the performance of the
regression, used classification reports and ROC curves for binary
predictions, and built evaluation routines that can be reused. With these
metrics, you can measure the strengths and weaknesses of the models,
adjust the thresholds to fit real-world needs, and pick the best algorithm for
each task of predicting vaccinations.



Summary
In short, we successfully applied a two-sample t-test to compare the mean
daily number of vaccinations in Europe and Asia. Then, we used a chi-
square test on a contingency table of high-coverage days to confirm
regional differences. We trained a linear regression model and a ridge
regressor on population and rate-change predictors. We then inspected their
coefficients and evaluated performance using mean squared error (MSE)
and R². We found that regularization improved generalization.
Next, we moved to flexible, tree-based methods—DecisionTreeRegressor
and RandomForestRegressor—training each on raw and derived features.
We measured their MSE and R² and extracted feature importances to
highlight which vaccination metrics drove predictions. Then, we segmented
countries by vaccination rollout characteristics using K-means and
agglomerative clustering on average daily doses, weekly averages, and per
capita uptake. After that, we visualized the clusters and compared the
assignments.
Ultimately, we developed robust evaluation routines: mean squared error
and R² for regression; classification report for precision and recall in binary
high-coverage prediction; and ROC curves with AUC to evaluate classifier
discrimination. We can compare multiple models using the same metrics
thanks to reusable functions. All of these techniques provided concrete
evidence of model validity, guided feature choices, and revealed actionable
insights into vaccination patterns.



CHAPTER 8:
DEBUGGING AND

TROUBLESHOOTING



Overview
Here, in this chapter, we explore and get hands-on with the common
debugging and troubleshooting techniques for key Python data-science
libraries. We will first learn how to diagnose and resolve merge conflicts in
pandas by inspecting _merge indicators, aligning data types and cleaning
whitespace so that tables join without missing rows.
Next, you will tackle NumPy broadcasting errors by checking array shapes,
reshaping vectors into the correct dimensions and understanding how
broadcasting rules apply to row- and column-wise operations. We will then
see how to ensure consistent visual output with matplotlib by selecting an
appropriate backend, setting global figure dimensions and DPI, and using
savefig options for identical plots in notebooks and scripts.
Finally, you will discover how to track memory leaks during long-running
loops using memory_profiler, and how to clear references and trigger
garbage collection to prevent RAM bloat. By the chapter’s end, you will
have a toolbox of diagnostic steps and practical fixes that keep your data
pipelines robust, reproducible and performant.



Resolving pandas Merge Errors
We tried to join our vaccination DataFrame with a population table using
pd.merge, yet the result has missing matches and unexpected row counts.
We notice mismatched keys—perhaps one column is integer, the other
string, or extra whitespace sneaks into country names. We need to inspect
key types and index alignment, then fix those mismatches so that every
country’s vaccination counts align correctly with its population data.

Inspecting Merge Behavior
Let’s reproduce the issue in a script named merge_debug.py. We start by
loading both tables:

import pandas as pd

vacc = pd.read_csv("vacc_clean.csv", parse_dates=["date"])

pop   = pd.read_csv("pop_clean.csv")

We then try to merge:

merged = pd.merge(

   vacc,

   pop,

   on=["location"],

   how="left",

   indicator=True

)

print(merged["_merge"].value_counts())

The _merge column reveals how many rows came from both tables versus
left-only or right-only. A high count of left_only means many vaccination
rows found no population match.



Checking Key Dtypes and Whitespace
We now inspect dtypes and a sample of unique labels:

print(vacc["location"].dtype, pop["location"].dtype)

print(vacc["location"].unique()[:5])

print(pop["location"].unique()[:5])

If one shows object and the other category, or if names like "United
States " (trailing space) appear, those mismatches cause merge failures.

Cleaning Key Columns
We then decide to standardize both columns by stripping whitespace and
casting to string:

for df in (vacc, pop):

   df["location"] = df["location"].astype(str).str.strip()

If dtypes differ, you enforce the same:

vacc["location"] = vacc["location"].astype("category")

pop["location"]  = pop["location"].astype("category")

Aligning Categories If Categorical
When using categorical dtype, we need to ensure both share the same
categories:

common = sorted(set(vacc["location"]).intersection(pop["location"]))

cat_type = pd.api.types.CategoricalDtype(categories=common)

vacc["location"] = vacc["location"].astype(cat_type)

pop["location"]  = pop["location"].astype(cat_type)

Performing Corrected Merge
With keys cleaned and aligned, rerun the merge:



merged = pd.merge(

   vacc,

   pop,

   on="location",

   how="left",

   indicator=True

)

print(merged["_merge"].value_counts())

By now, we should see all rows under both and only a handful left_only for
truly missing population entries.

Verifying Clean Join
We now drop the indicator and confirm no missing population values where
you expect both:

merged = merged.drop(columns="_merge")

missing_pop = merged["population"].isna().sum()

print(f"Rows with missing population after fix: {missing_pop}")

A zero or minimal count confirms that location keys now match perfectly.
After checking the merge indicators, unifying dtypes, getting rid of extra
whitespace, and aligning the categorical domains, we got the vaccination
and population tables to merge cleanly and reliably.



Correcting NumPy Broadcasting
We tried to crunch the numbers to figure out the rate changes for each
country by multiplying a 1-D array of country-level factors with a 2-D array
of daily vaccination counts, but we got a "shape mismatch" error from
NumPy. First, we have to check the array shapes, and then we'll reshape one
of the arrays so that the rows line up with the countries when we do the
broadcasting, and we don't have any problems.

Reproducing Broadcasting Error
We need to open broadcast_debug.py and load pandas and NumPy:

import pandas as pd

import numpy as np

df = pd.read_csv("df_clean.csv", parse_dates=["date"])

df.sort_values(["location", "date"], inplace=True)

We then extract a 2-D array of daily counts, grouped by country (each row
for one country, each column for a day):

countries = df["location"].unique()

daily_matrix = np.array([

   df[df["location"] == loc]["daily_vaccinations"].to_numpy()

   for loc in countries

])

print("daily_matrix shape:", daily_matrix.shape)

Now here, suppose we have a per-country scaling factor in a 1-D array:

factors = np.random.rand(len(countries))

print("factors shape     :", factors.shape)

The best is to attempt to apply scaling directly fails:



scaled = daily_matrix * factors

# ValueError: operands could not be broadcast together with shapes
(200,1500) (200,)

Inspecting Shapes and Reasoning
We then print both shapes:

daily_matrix shape: (200, 1500)

factors shape     : (200,)

We can have the NumPy try to align trailing dimensions:
●       First array: (200, 1500)
●       Second : (200,)

The rows match the number of countries (200), but there are 1,500 daily
columns, so we need a matching factor for each column, not each row.

Explicit Reshaping for Correct Broadcasting
We reshape factors into a column vector so that each factor multiplies its
country’s entire row:

factors_col = factors.reshape(-1, 1)  # shape (200,1)

print("factors_col shape:", factors_col.shape)

Now broadcasting rules align:
●       (200,1500)
●       (200,1)

The NumPy expands the second dimension across 1500 columns
automatically.

Applying Fixed Broadcast
We then compute scaled matrix without error:

scaled = daily_matrix * factors_col



print("scaled shape      :", scaled.shape)

Following is the expected output:

scaled shape      : (200, 1500)

A simple check as below shows that each country’s first-day value is
multiplied by its factor:

country0_vals = daily_matrix[0, :5]

country0_scaled = scaled[0, :5]

print("Original  :", country0_vals)

print("Factor    :", factors[0])

print("Scaled    :", country0_scaled)

Here, you then observe that scaled[i, j] == daily_matrix[i, j] * factors[i]
holds for every entry.
By checking shapes and reshaping the factor array into a column vector,
you avoided NumPy broadcasting errors and made sure that each country's
entire time series was scaled right. This pattern is used whenever a 1-D
array has to multiply rows or columns of a 2-D array without dimension
mismatches.



Matplotlib Rendering Fixes
Our charts look fine in notebooks, but when we run the same script from the
terminal, the figures get smaller or the axes overlap. We need consistent
visuals when plotting interactively or saving files. First, we'll need to set the
figure size and resolution. We'll also need to choose a backend that works
well with both Jupyter and standalone scripts so that every plot renders the
same way in each.
So here, we create render_fixes.py.

vim render_fixes.py

We then specify a non-interactive backend—Agg works for PNG output in
scripts:

import matplotlib

matplotlib.use("Agg")  # use a non-GUI backend for scripts

Next, we import pyplot and adjust global settings:

import matplotlib.pyplot as plt

# Set default figure size and DPI for all plots

plt.rcParams["figure.figsize"] = (10, 6) 

plt.rcParams["figure.dpi"]     = 150  

This will explain that rcParams applies to every figure, ensuring
consistency without repeating parameters.

Generating Test Plot
Now here, we load the sample data and produce a line chart:

import numpy as np

# Dummy vaccination rollout for demonstration

days = np.arange(1, 31)



vaccines = np.random.randint(1000, 5000, size=30)

plt.plot(days, vaccines, linewidth=2, marker="o", alpha=0.8)

plt.title("Test Vaccination Trend")

plt.xlabel("Day of Month")

plt.ylabel("Doses Administered")

plt.grid(True, linestyle="--", alpha=0.5)

plt.tight_layout()  

plt.savefig("vaccination_trend.png")  

# plt.show()  # optional, but no display when using Agg

python render_fixes.py

After running the script, we can then inspect vaccination_trend.png. It
should match your notebook’s appearance exactly.
If you require higher resolution for a presentation, then we can override
DPI:

plt.savefig("vaccination_trend_hd.png", dpi=300)

This produces a 300-dpi image without changing global settings.

Switching Backends in Notebooks
When you return to Jupyter, reset to the inline backend for interactive
viewing:

import matplotlib

matplotlib.use("module://ipykernel.pylab.backend_inline")

Or simply start cells with %matplotlib inline to restore default behavior.
By fixing the backend to Agg in scripts, setting figure.figsize and
figure.dpi via rcParams, and using savefig with explicit DPI, you
guarantee that every chart looks the same whether you plot in a notebook or
run a standalone script.



Tracking Memory Leaks
Even though our chunked processing loop worked, the RAM usage climbed
steadily after dozens of iterations until the notebook crashed. We need to
figure out where memory builds up and free up unused objects so that long-
running pipelines stay stable.
So here, we open a new script called track_memory.py.

vim track_memory.py

Installing ‘memory_profiler’
We first install the profiler:

pip install memory_profiler

This brings in the @profile decorator and memory_usage function. No
further installs will be required.

Profiling a Function
We then import tools and write a sample processing function:

import pandas as pd

from memory_profiler import memory_usage

import gc

CSV_URL = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

def process_chunk(chunk):

   # simulate some work

   result = chunk.dropna(subset=["daily_vaccinations"])



   summary = result["daily_vaccinations"].sum()

   return summary

def run_pipeline():

   totals = []

   for chunk in pd.read_csv(

       CSV_URL,

       usecols=["location", "date", "daily_vaccinations"],

       parse_dates=["date"],

       chunksize=100000

   ):

       totals.append(process_chunk(chunk))

       # clear references and collect garbage

       del chunk

       gc.collect()

   return sum(totals)

We can then decorate run_pipeline to measure line-by-line memory:

@profile

def run_and_profile():

   total = run_pipeline()

   print(f"Total vaccinations since 2021: {total}")

mprof run track_memory.py

mprof plot

After running the above, a memory-usage graph appears over time. We can
then look over it for steady upward trends that signal leaks.

Clearing Object References



Here, we can notice memory spikes after each chunk. A reminder that del
chunk and gc.collect() inside the loop ensure no leftover references. If you
had created intermediate DataFrames or large arrays, you’d del them as
well:

# inside loop

intermediate = chunk[chunk["location"] == "USA"]

# process...

del intermediate

gc.collect()

Measuring with ‘memory_usage’
For more control, we can call memory_usage around code blocks:

from memory_profiler import memory_usage

mem_before = memory_usage()[0]

result = run_pipeline()

mem_after  = memory_usage()[0]

print(f"Memory before: {mem_before} MiB, after: {mem_after} MiB")

Here, if there is a minimal increase, it then confirms that your cleanup
worked.
With this, we have now learned to pinpoint memory leaks with
memory_profiler, clear object references, and force garbage collection so
that iterative processing loops run stably without gradual RAM bloat.



Summary
To quickly summarize what we learned, here we inspected merge failures
by adding an _merge indicator and discovered that mismatched key types
and stray whitespace in location columns prevented proper joins. We
standardized those keys by stripping spaces and aligning categorical
domains before rerunning pd.merge, which yielded complete matches. We
debugged NumPy broadcasting errors by printing array shapes, realizing
that a (n,) factor array needed reshaping to (n,1) so that row-wise
multiplication would broadcast correctly.
Next, we fixed inconsistent plot renderings across environments by setting
the Agg backend in scripts, configuring figure.figsize and dpi via
rcParams, and using savefig with explicit DPI to guarantee identical output
in both Jupyter and standalone scripts. We identified memory leaks in
iterative processing loops by profiling with memory_profiler, then inserted
del statements for temporary DataFrames and called gc.collect() to release
unused objects. Through these recipes, we transformed vague errors into
systematic inspections of dtypes, shapes, backends and memory usage,
applying targeted fixes that restored reliability and performance in our
pandas, NumPy and matplotlib workflows.



CHAPTER 9: ADVANCED
DATA RETRIEVAL AND

INTEGRATION



Overview
This is our final chapter. It takes us through advanced techniques for
retrieving and integrating data from multiple external systems. First, you
will schedule automated API pulls to update your vaccination datasets
regularly.
After that, you will connect to MongoDB and use PyMongo to consume
document-based metadata, merging it with existing CSV records to enrich
your tables. Then, you will learn how to offload large files to Amazon S3
and Google Cloud Storage programmatically and retrieve them as needed
within your Python scripts. We will also set up Kafka consumers to ingest
real-time vaccination streams and align them with historical batch snapshots
in Pandas. This will allow you to maintain a single, coherent DataFrame
over time. We will implement robust retry and exponential backoff logic
around your HTTP requests to handle rate limits and network hiccups
gracefully.
Finally, you will use GraphQL queries with requests, change the nested
responses into flat tables, and mix them with REST-based data. This makes
hybrid datasets that use the strengths of both APIs. By the end of this
chapter, you will have built a fully automated, resilient data pipeline that
can handle diverse sources and formats with minimal manual effort.



Scheduling API Pulls
It'd be great if our vaccination data frame could be kept up to date without
having to do manual downloads. Getting the CSV daily by hand is a pain
and full of mistakes. We want an automated task that pulls the latest data at
a regular interval—like every morning at 8:00—so that our analyses always
use fresh records.
So again, we create a script called scheduled_fetch.py and install the
lightweight schedule library:

vim scheduled_fetch.py

pip install schedule

This brings in the scheduling functions we need. Future recipes will assume
it’s available.

Writing Fetch Job
In scheduled_fetch.py, we start by importing libraries and defining the
URL:

import pandas as pd

import schedule

import time

CSV_URL = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

We then define a function that fetches and saves the CSV locally:

def fetch_latest():

   df = pd.read_csv(



       CSV_URL,

       usecols=["location", "date", "daily_vaccinations"],

       parse_dates=["date"]

   )

   df.to_csv("latest_vaccinations.csv", index=False)

    print("Fetched and saved latest data:", pd.Timestamp.now())

Scheduling Job
Snow we schedule fetch_latest to run each day at 08:00:

schedule.every().day.at("08:00").do(fetch_latest)

If we prefer every hour for more frequent updates, we then use:

schedule.every().hour.do(fetch_latest)

Running Scheduler Loop
We then add a loop that keeps the script alive and checks for pending tasks:

if __name__ == "__main__":

    print("Scheduler started. Waiting for next fetch...")

   fetch_latest()  # initial run

   while True:

       schedule.run_pending()

       time.sleep(60)  # check every minute

Starting Scheduler
After this, we run the script in a dedicated terminal or as a background
process:

python scheduled_fetch.py &



We can see an initial fetch immediately, followed by daily updates at 08:00.
Each run writes latest_vaccinations.csv, ensuring your pipeline always
reads the freshest data. With this setup, you no longer worry about stale
inputs. Your analysis scripts can simply load latest_vaccinations.csv,
confident that it reflects the most recent data.



NoSQL Data Access
There might be a situation where our vaccination CSV doesn't have rich
metadata, like region codes or special attributes, stored in a MongoDB
collection. It's a pain having to export documents manually and convert
them to CSV, especially when it messes with our workflow. We need code
that connects to MongoDB, fetches the vaccination metadata as documents,
converts them to a DataFrame, and merges that with your existing CSV
records for a unified view.

Installing PyMongo
To install, we then run one command in our active virtual environment:

pip install pymongo python-dotenv

This brings in the MongoDB driver and dotenv support. No further
installation steps for these libraries will follow.

Storing MongoDB Credentials
In our project root, we then create or update a .env file (never commit this)
with:

MONGO_URI=mongodb+srv://username:password@cluster0.mongodb.n
et/mydb?retryWrites=true&w=majority

Writing MongoDB-Access Script
First, we open nosql_access.py in your editor and start with imports:

import os

from dotenv import load_dotenv

import pandas as pd

from pymongo import MongoClient

We then load environment variables and connect:



load_dotenv()

uri = os.getenv("MONGO_URI")

if not uri:

    raise RuntimeError("MONGO_URI must be set in .env")

client = MongoClient(uri)

db = client["covid_db"]

meta_coll = db["vaccination_metadata"]

Fetching Documents and Creating DataFrame
We then query all metadata documents, selecting only the fields you need—
location, country_code and continent:

cursor = meta_coll.find(

   {},

    {"_id": 0, "location": 1, "country_code": 1, "continent": 1}

)

meta_list = list(cursor)

meta_df = pd.DataFrame(meta_list)

print(meta_df.head())

Loading Existing CSV Records
After this, we load our main CSV of daily counts as before:

vacc_df = pd.read_csv(

   "latest_vaccinations.csv",

   parse_dates=["date"]

)



Merging NoSQL Metadata with CSV Data
If we do the merge on location, it will enrich each daily record with its code
and continent:

enriched = pd.merge(

   vacc_df,

   meta_df,

   on="location",

   how="left"

)

print(enriched.head())

print("Rows without metadata:", enriched["country_code"].isna().sum())

With this, we confirm that every location now carries country_code and
continent where available.

Verifying and Saving Results
A final info check ensures dtypes and non-null counts:

print(enriched.info())

enriched.to_csv("vacc_with_metadata.csv", index=False)

print("Enriched data saved to vacc_with_metadata.csv")

We've now integrated document-based metadata from MongoDB into your
pandas workflow, joining it with CSV records to produce a rich, unified
dataset.



Cloud Storage Integration
We might want to store and retrieve large vaccination CSVs or model
artifacts in the cloud so that our local disk stays clean and your data
pipelines run in distributed environments. It's a pain to do manual uploads
via browser because they're slow and you can't expand them. We need code
that can upload files to Amazon S3 or Google Cloud Storage (GCS) and
download them when needed, all within the same Python workflow.

Installing Cloud Clients
We first install both clients:

pip install boto3 google-cloud-storage python-dotenv

This brings in AWS and GCS SDKs plus dotenv for managing credentials.

Setting up Credentials
We then create a .env file (never commit this) with entries for both
providers:

AWS_ACCESS_KEY_ID=YOUR_AWS_KEY  

AWS_SECRET_ACCESS_KEY=YOUR_AWS_SECRET  

GCP_SERVICE_ACCOUNT_JSON=/path/to/service-account.json  

GCS_BUCKET_NAME=your-gcs-bucket  

S3_BUCKET_NAME=your-s3-bucket  

Writing Cloud-Upload Script
We then open cloud_storage.py and begin with imports and credential
loading:

import os

from dotenv import load_dotenv

load_dotenv()



# AWS

import boto3

s3 = boto3.client(

   "s3",

   aws_access_key_id=os.getenv("AWS_ACCESS_KEY_ID"),

   aws_secret_access_key=os.getenv("AWS_SECRET_ACCESS_KEY")

)

# GCS

from google.cloud import storage

os.environ["GOOGLE_APPLICATION_CREDENTIALS"] =
os.getenv("GCP_SERVICE_ACCOUNT_JSON")

gcs_client = storage.Client()

gcs_bucket = gcs_client.bucket(os.getenv("GCS_BUCKET_NAME"))

Uploading to S3 and GCS
Next, we define a function that pushes a local file to both buckets:

def upload_to_cloud(local_path, s3_key=None, gcs_blob_name=None):

   s3_key = s3_key or os.path.basename(local_path)

   gcs_blob_name = gcs_blob_name or os.path.basename(local_path)

   # S3 upload

   s3.upload_file(local_path, os.getenv("S3_BUCKET_NAME"), s3_key)

   print(f"Uploaded to
S3://{os.getenv('S3_BUCKET_NAME')}/{s3_key}")

   # GCS upload

   blob = gcs_bucket.blob(gcs_blob_name)

   blob.upload_from_filename(local_path)



   print(f"Uploaded to
GCS://{os.getenv('GCS_BUCKET_NAME')}/{gcs_blob_name}")

Downloading from S3 and GCS
We then add a function that retrieves files back to local disk:

def download_from_cloud(cloud_key, local_path=None, provider="s3"):

   local_path = local_path or cloud_key

   if provider == "s3":

       s3.download_file(

           os.getenv("S3_BUCKET_NAME"), cloud_key, local_path

       )

       print(f"Downloaded
S3://{os.getenv('S3_BUCKET_NAME')}/{cloud_key} to {local_path}")

   elif provider == "gcs":

       blob = gcs_bucket.blob(cloud_key)

       blob.download_to_filename(local_path)

       print(f"Downloaded
GCS://{os.getenv('GCS_BUCKET_NAME')}/{cloud_key} to
{local_path}")

   else:

       raise ValueError("Provider must be 's3' or 'gcs'")

Demonstrating Workflow
At the bottom of cloud_storage.py, we add a quick demo:

if __name__ == "__main__":

   # Assume latest_vaccinations.csv exists locally

   local_file = "latest_vaccinations.csv"



   upload_to_cloud(local_file)

    # Later or elsewhere, download back

   download_from_cloud(local_file, provider="s3")

   download_from_cloud(local_file, provider="gcs")

python cloud_storage.py

After running the above script, we can see confirmation messages for each
upload and download, ensuring that your vaccination data moves
seamlessly between local and cloud storage.
With this setup, we can integrate S3 or GCS into your data pipelines,
offloading large files to the cloud and fetching them on demand—all under
programmatic control and without manual steps.



Stream-Batch Merging
We get live vaccination events from a Kafka stream, and we also save a
historical CSV snapshot. It's tricky to combine raw streams and flat files
into one DataFrame because they live in different formats and time
windows. We need a process that can take incoming messages, convert
them into a pandas table, load the latest batch of CSV files, merge them
without duplicates, and keep them in the right chronological order for
downstream analytics.

Installing kafka-python
So here, we first create stream_batch_merge.py and install the Kafka
client.

vim stream_batch_merge.py

pip install kafka-python

Writing Stream-Batch Merge Script
We first begin with imports and configuration as we did in all the other
recipes:

import json

import pandas as pd

from kafka import KafkaConsumer

We then define settings for your Kafka topic and batch file:

KAFKA_TOPIC = "vaccination_events"

BATCH_FILE  = "historical_vaccinations.csv"

BOOTSTRAP_SERVERS = ["localhost:9092"]

Consuming Fixed Window of Messages
We then write a function to collect, say, 5 seconds of messages:



def consume_stream(timeout=5):

   consumer = KafkaConsumer(

       KAFKA_TOPIC,

       bootstrap_servers=BOOTSTRAP_SERVERS,

       auto_offset_reset="latest",

       value_deserializer=lambda m: json.loads(m.decode("utf-8"))

   )

   records = []

   end_time = pd.Timestamp.now().timestamp() + timeout

   print("Consuming stream for", timeout, "seconds…")

   for message in consumer:

       records.append(message.value)

       if pd.Timestamp.now().timestamp() >= end_time:

           break

   consumer.close()

   return records

Converting Stream to DataFrame
After this, we then parse the collected JSON into a DataFrame:

def stream_to_df(records):

   df_stream = pd.json_normalize(records)

    # Ensure same columns as batch

   df_stream = df_stream[["location", "date", "daily_vaccinations"]]

   df_stream["date"] = pd.to_datetime(df_stream["date"])

   return df_stream



Merging with Historical Batch
There is a function that loads the CSV snapshot and merges:

def merge_with_batch(df_stream):

   df_batch = pd.read_csv(BATCH_FILE, parse_dates=["date"])

 

    # Combine and drop duplicates on location+date

   combined = pd.concat([df_batch, df_stream], ignore_index=True)

   combined.drop_duplicates(subset=["location", "date"], keep="last",
inplace=True)

 

   # Sort for chronological integrity

   combined.sort_values(["location", "date"], inplace=True)

   combined.reset_index(drop=True, inplace=True)

 

    # Overwrite the batch file for next cycle

   combined.to_csv(BATCH_FILE, index=False)

 

    print("Merged", len(df_stream), "stream records; batch now has",
combined.shape[0], "rows")

   return combined

At the bottom of stream_batch_merge.py, we then orchestrate all the
steps:

if __name__ == "__main__":

   # 1. Consume new events

   records = consume_stream(timeout=5)



 

   if not records:

       print("No new events received.")

   else:

       # 2. Convert to DataFrame

       df_stream = stream_to_df(records)

       print(df_stream.head())

       # 3. Merge with batch CSV

       merged_df = merge_with_batch(df_stream)

       print(merged_df.tail(5))

python stream_batch_merge.py

After running the above script, we can observe printed messages showing
how many events arrived, a preview of the new rows, and final batch size.
The tail of merged_df confirms that new stream rows appear correctly
interleaved with historical records.
This whole setup automates the alignment of real-time streams and batch
snapshots. Each run consumes fresh events, merges them into the CSV,
drops duplicates, sorts chronologically, and writes back a unified store for
analysis—no manual stitching required.



Retry and Backoff Logic
Now although the script fetches data from a vaccination API, but occasional
rate limits or network hiccups cause requests.get to fail with 429 or 500
errors. A single retry often succeeds, yet without a backoff you risk
hammering the server. We need to wrap our HTTP calls so that failures
trigger a series of spaced retries, backing off exponentially to respect API
limits and recover gracefully from transient faults.

Installing ‘tenacity’
We first install tenacity alongside requests:

pip install tenacity requests

That brings in both libraries.

Writing Retry Decorator
Then we open retry_backoff.py, import the tools and define a fetch
function with decorators:

import requests

from tenacity import (

   retry,

   stop_after_attempt,

   wait_exponential,

   retry_if_exception_type

)

API_URL = "https://api.somedomain.com/vaccinations"

@retry(

 
 retry=retry_if_exception_type((requests.exceptions.RequestException,)),



   stop=stop_after_attempt(5),

   wait=wait_exponential(multiplier=1, min=2, max=30),

   reraise=True

)

def fetch_with_retry(params=None, headers=None):

    """Fetch JSON from API with retries and exponential backoff."""

    response = requests.get(API_URL, params=params, headers=headers,
timeout=10)

   response.raise_for_status()

   return response.json()

In the aboer, each parameter does the following:
●       retry_if_exception_type retries on network and HTTP exceptions.
●       stop_after_attempt(5) gives up after five tries.
●       wait_exponential starts with 2 s, doubling each time, capped at 30 s.
●       reraise=True surfaces the final error if all attempts fail.

Using Retry Function
At the bottom of retry_backoff.py, we can then add an execution block:

if __name__ == "__main__":

   try:

       data = fetch_with_retry(params={"date": "2021-10-01"})

       print("Fetched records:", len(data.get("records", [])))

   except Exception as e:

       print("Failed to fetch after retries:", e)

After running the python retry_backoff.py, it shows automatic retries with
spaced delays whenever a transient failure occurs.



Custom Backoff Without tenacity
If you prefer a minimal dependency, then try to implement your own loop:

import time

def fetch_with_backoff(params=None, max_attempts=5):

   delay = 2

    for attempt in range(1, max_attempts + 1):

       try:

           resp = requests.get(API_URL, params=params, timeout=10)

           resp.raise_for_status()

           return resp.json()

       except requests.exceptions.RequestException as err:

           print(f"Attempt {attempt} failed: {err}")

           if attempt == max_attempts:

               raise

           time.sleep(delay)

           delay = min(delay * 2, 30)

You can call it the same way:

if __name__ == "__main__":

   try:

       data = fetch_with_backoff(params={"date": "2021-10-01"})

       print("Fetched records:", len(data.get("records", [])))

   except Exception as e:

       print("Final failure:", e)

By wrapping your HTTP calls in retry-and-backoff logic—either with
tenacity or a custom loop—you protect your pipeline from transient API



failures and rate limits, ensuring robust, respectful data retrieval.



GraphQL and REST Hybrid
We might need info like vaccine details by country and date, which you can
get from a GraphQL API, while your main vaccination counts come from a
REST CSV. It's a pain to query GraphQL manually and reshape its nested
JSON into pandas, and merging with REST data just adds more complexity.
We've got to write code that sends a GraphQL POST request, normalizes its
response into a flat table, then merges those results with our CSV-derived
DataFrame so that every daily record carries both count and metadata.
So here, we first open the graphql_rest_hybrid.py together, and bring in
the requests and pandas too:

vim graphql_rest_hybrid.py

import requests

import pandas as pd

We then define both the endpoints:

CSV_URL = (

   "https://github.com/owid/covid-19-data/"

   "raw/master/public/data/vaccinations/vaccinations.csv"

)

GRAPHQL_URL = "https://api.example.com/graphql"

Writing GraphQL Query
Next, we then create a string with our query, requesting manufacturer and
date per country:

query = """

query($start: String!, $end: String!) {

  vaccineRecords(filter: {date_between: {start: $start, end: $end}}) {



   country

   date

   manufacturer

 }

}

"""

variables = {

   "start": "2021-01-01",

   "end":   "2021-12-31"

}

Fetching and Normalizing GraphQL Data
We then send a POST request and check for errors:

resp = requests.post(

   GRAPHQL_URL,

   json={"query": query, "variables": variables},

   headers={"Content-Type": "application/json"}

)

resp.raise_for_status()

data = resp.json()["data"]["vaccineRecords"]

Next, we do a call to pd.json_normalize flattens the list of records into a
DataFrame:

gdf = pd.json_normalize(data)

gdf["date"] = pd.to_datetime(gdf["date"])

print(gdf.head())



Loading REST-Based Vaccination Counts
Post this, we pull our main CSV with REST:

rdf = pd.read_csv(

   CSV_URL,

   usecols=["location", "date", "daily_vaccinations"],

   parse_dates=["date"]

)

Merging GraphQL and REST Data
Now here, let us assume the country in GraphQL matches location in our
CSV, so here we merge on those keys:

combined = pd.merge(

   rdf,

   gdf.rename(columns={"country": "location"}),

   on=["location", "date"],

   how="left"

)

Now here, there is a quick info check which confirms that counts and
manufacturer metadata co-exist:

print(combined.info())

print(combined.head())

Verifying Hybrid Table
We can also now look for rows where manufacturer is missing—indicating
no GraphQL record for that date:

missing_meta = combined["manufacturer"].isna().sum()



print(f"Rows without manufacturer info: {missing_meta}")

After this, we inspect a few of those to ensure logic is correct, then save the
enriched table:

combined.to_csv("vaccinations_with_manufacturer.csv", index=False)

print("Saved hybrid data with manufacturer metadata")

With this approach, we seamlessly query a GraphQL endpoint, flatten its
nested JSON into a pandas table, and merge it with REST-based CSV data.
Our final DataFrame carries both daily vaccination counts and metadata
from both sources, ready for unified analysis.



Summary
We have come to the end of this chapter, and of our book. We learned how
to schedule daily API pulls to automatically fetch the latest vaccination
CSV, ensuring that our data would stay current without manual intervention.
Using PyMongo, we connected to MongoDB, retrieved document-based
metadata, and seamlessly merged it with our CSV records in Pandas. We
integrated cloud storage by uploading and downloading large files via
Boto3 for S3 and Google Cloud Storage for GCS, embedding those
operations directly into our workflows.
We worked with a lot of data by using Kafka to get information about
vaccinations, changing it into DataFrames, adding it to old CSV files, and
making sure the order was the same. To protect our API calls against rate
limits and transient failures, we wrapped requests in retry-and-backoff logic
using Tenacity and demonstrated a custom implementation. Finally, we
queried a GraphQL endpoint, flattened its nested JSON into a Pandas table
using the json_normalize function, and merged those results with our
REST-sourced vaccination counts. Each recipe demonstrated how to
automate and combine various data sources, including REST, JSON,
NoSQL, cloud storage, streaming, and GraphQL, into unified, analysis-
ready DataFrames.
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