

Intermediate Python and
Large Language Models

Dilyan Grigorov

Intermediate Python and Large Language Models

ISBN-13 (pbk): 979-8-8688-1474-7		 ISBN-13 (electronic): 979-8-8688-1475-4
https://doi.org/10.1007/979-8-8688-1475-4

Copyright © 2025 by Dilyan Grigorov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover image by Trevor M@Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

Dilyan Grigorov
Varna, Varna, Bulgaria

https://doi.org/10.1007/979-8-8688-1475-4

To my son, my family, and the entire Python Software
Foundation and AI community around the world.

v

Table of Contents

About the Author��xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

Chapter 1: �LangChain and Python: Basics��� 1

LangChain Basics and Basic Components��� 3

Chains��� 3

Prompts�� 4

Memory�� 4

Tools and Agents�� 4

Retrieval-Augmented Generation (RAG)��� 4

Data Loaders�� 4

Integrations and Extensibility��� 5

LLM Outputs and Postprocessing��� 5

LangChain Installation�� 5

Packages Overview�� 6

Installing from Source�� 7

How to Prompt?��� 7

Prompt Engineering�� 8

Role Prompting��� 8

Few-Shot Prompting�� 11

Key Benefits��� 12

Alternating Human/AI Messages�� 14

Chain Prompting��� 14

Key Characteristics��� 14

https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec20

vi

Steps for Chain Prompting��� 15

Using Chain Prompting in LangChain��� 15

Additional Benefits��� 16

Chain-of-Thought Prompting�� 18

Advanced Tips for Effective Prompt Engineering��� 19

What Are Chains?��� 22

Chain Components��� 23

Chain Types�� 24

1. Simple Chain�� 24

2. Sequential Chain�� 26

3. Conversational Chain�� 28

4. Multi-input Chain�� 32

5. Multi-output Chain�� 34

6. Router Chain��� 37

7. Control Flow Chain��� 40

8. Retrieval-Aware Chain�� 42

9. Agent Chain�� 45

10. Parallel Chain��� 50

11. Custom Chain��� 54

Conclusion��� 57

Chapter 2: �LangChain and Python: Advanced Components������������������������������������� 59

LangChain Memory�� 61

Understanding LangChain’s Memory Module�� 61

Key Capabilities of the Memory Module�� 61

Why Memory Matters��� 62

When to Use the Memory Module�� 62

Core Processes in the Memory System: Reading and Writing��� 62

Structuring a Memory System��� 63

LangChain Memory Types�� 64

ConversationBufferMemory�� 64

ConversationBufferWindowMemory��� 66

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_1#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec40
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec41
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec43
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_2
https://doi.org/10.1007/979-8-8688-1475-4_2
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec10

vii

ConversationSummaryMemory�� 72

Conversation Summary Buffer Memory��� 74

Conversation Token Buffer Memory��� 77

KnowledgeGraphMemory��� 80

EntityMemory��� 82

VectorStoreMemory�� 84

Selecting the Appropriate Memory Type�� 89

Implementing Memory in LangChain�� 89

LangChain Document Loaders��� 91

Common Document Loaders�� 92

Specialized Document Loaders�� 92

LangChain Embedding Models��� 94

LangChain Indexes and Retrievers��� 98

Indexes in LangChain: Structure and Types�� 98

Types of Indexes��� 99

Retrievers in LangChain: Querying and Optimization��� 99

End-to-End Workflow: From Indexing to Retrieval�� 102

Real-World Applications of LangChain Indexes and Retrievers�� 103

Using LangChain Indexing API�� 106

Technical Structure of the Indexing API�� 107

Deletion Modes and Content Maintenance��� 107

Requirements and Compatibility�� 108

Important Considerations��� 109

Agents in LangChain�� 110

Defining Agents�� 110

Types of Agents in LangChain��� 111

Tools As Extensions of Language Models��� 112

Content Generation vs. Reasoning Engines�� 112

Exploring Autonomous Agents: AutoGPT and BabyAGI��� 115

LLM Models in LangChain�� 119

Chat Models�� 119

Supported LLMs��� 126

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_2#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec33
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec35
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec39
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec45
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec102

viii

LLMs vs. Chat Models�� 130

Large Language Models (LLMs)�� 130

Chat Models�� 130

Instruct Models�� 134

Key Benefits of Instruct Models�� 135

A Comprehensive List of Popular Instruct Models�� 135

Summary��� 137

Chapter 3: Building Advanced Applications Powered by LLMs with
LangChain and Python��� 139

App 1: YouTube Video Summarizer��� 141

How to Build the App�� 142

Step 1: Get Your OpenAI API Key��� 142

Step 2: Run the Following Commands�� 142

Step 3: Execute the Following Command��� 143

Step 4: Import the Whisper Model and Process the Video�� 144

Step 5: Read the Written Content in a File�� 144

Step 6: Use LangChain to Split a Text File into Smaller Chunks��� 144

Step 7: Summarize the Preprocessed Content��� 146

Step 8: Define a Prompt Template Using LangChain's PromptTemplate������������������������������ 147

Step 9: Summarization Pipeline��� 148

App 2: Chat with a GitHub Repository�� 148

How It Works�� 149

Step 1: Select a GitHub Repository and Download It As Zip��� 149

Step 2: Install All Libraries Required��� 149

Step 3: Import the Libraries and Obtain the Needed API Keys�� 149

Step 4: Get Repository Content��� 150

Step 5: Fetch All Files��� 151

Step-by-Step Explanation��� 152

Step 6: Creating a Searchable Database�� 153

Step-by-Step Explanation��� 153

Step 7: Creating the Actual Chatting Feature Function��� 154

Step-by-Step Explanation��� 155

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_2#Sec103
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec104
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec106
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec108
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec109
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec110
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec111
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec23

ix

App 3: Financial Report Analysis App��� 156

Key Features��� 157

Step 1: Install All Required Libraries��� 157

Step 2: Set Up OpenAI API Key and Add It to the Code��� 157

Step 3: Import All Required Libraries�� 157

Step 4: Process Financial Reports�� 158

Step 5: Preparing and Indexing Text Data for Efficient Retrieval Using AI-Powered
Search and Question Answering (QA)��� 160

1. Splitting the Extracted Text into Smaller Chunks��� 160

2. Generating Text Embeddings�� 161

3. Storing and Indexing the Text Chunks in a FAISS Database��� 161

4. Setting Up the AI-Powered Retrieval and QA System��� 161

Step 6: Ask a Question�� 162

App 4: Automate and Enhance Your Blog Posts with LangChain and Google Search����������������� 162

Step 1: Install All Required Libraries��� 163

Step 2: Define Three Variables—Title, Text All, and Text to Change�������������������������������������� 163

Step 3: Define Your API Keys��� 164

Step 4: Generate Search Results�� 165

Step 5: Get Search Results��� 167

Step 6: Find the Most Relevant Results�� 171

Step 7: Split into Chunks�� 172

Step 7: Create Embeddings�� 172

Step 8: Extend the Sentence�� 174

App 6: YouTube Scriptwriting Tool�� 176

Step 1: Install All Required Libraries and Import Them�� 176

Step 2: Authenticate in Google Drive As We Use Google Colab and Insert Your
OpenAI API Key��� 177

Step 3: Download Your Desired YouTube Video, Extract the Audio, and
Convert It to MP3�� 178

Step 4: Transcribe Audio��� 178

Step 5: Generate Outline��� 179

Step 6: Expand the Script��� 179

Step 7: Combine All and Run the Tool��� 180

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec33
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec35
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec39
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec41
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec42
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec43
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec44
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec45
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec47
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec48
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec53
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec54

x

App 7: Email Generator�� 184

Key Features��� 184

Step 1: Install All Required Libraries and Import Them�� 185

Step 2: Generate Response with OpenAI�� 185

Step 3: Combine All Together and Generate Email��� 187

App 8: CSV Data Analysis App�� 188

Step 1: Install All Required Libraries and Import Them�� 188

Step 2: Generate and Add Your OpenAI API Key�� 189

Step 3: Load Your CSV File�� 189

Step 4: Create a LangChain Agent�� 192

App 9: Knowledge Base Voice Assistant�� 194

Step 1: Install the Required Libraries and Import Them��� 194

Step 2: Generate and Add Your OpenAI API Key�� 195

Step 3: Develop Voice Interaction��� 195

Step 4: Load Knowledge Base from the Web and Create the QA Chain�������������������������������� 196

Step 5: Combine Them All Together�� 198

App 10: Analyzing Codebase with LangChain�� 200

Step 1: Install All Required Libraries��� 200

Step 2: Generate and Add Your OpenAI API Key�� 201

Step 3: Upload and Load the Files�� 201

Step 4: Create and Store Code Embeddings��� 202

Step 5: Create Retriever and Retrieval Chain��� 203

App 11: Recommender System with LangChain�� 206

How It Works�� 207

Step 1: Install and Import the Required Libraries��� 207

Step 2: Generate and Add Your OpenAI API Key and Then Import All Libraries Required������ 208

Step 3: Load Up Some Sample Data��� 208

Step 4: Convert Data into LangChain Document Format and Generate Embeddings����������� 209

Step 5: Define an Advanced Retrieval Function�� 210

Step 6: Integrate a QA System Using LangChain�� 211

Step 7: Set Up an AI Conversational Agent��� 211

Step 8: Test the System�� 213

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec55
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec56
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec57
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec58
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec59
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec60
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec61
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec62
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec63
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec64
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec65
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec66
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec67
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec68
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec69
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec70
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec71
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec72
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec73
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec74
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec75
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec76
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec77
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec78
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec79
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec80
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec81
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec82
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec83
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec84
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec85
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec86

xi

App 12: PDF Files Chatbot�� 215

Step 1: Install All Required Libraries��� 215

Step 2: Generate and Add Your OpenAI API Key�� 216

Step 3: Upload Your PDF Files, Access Them, and Create a Vector Store Database������������� 216

Step 4: Create a Chatbot with Memory��� 218

Step 5: Ask the Chatbot and Receive an Answer�� 219

Summary��� 220

Chapter 4: �Deploying LLM-Powered Applications�� 223

Integrating LLMs into Web and Mobile Applications�� 224

Hosted Models�� 225

Prepackaged Models�� 227

Factors to Consider When Choosing a Method��� 230

LLM Cloud Deployment and Scalability Considerations��� 231

Deployment Architecture�� 231

Infrastructure�� 232

Performance��� 233

Cost Management�� 233

Monitoring�� 234

High Availability and Fault Tolerance�� 234

Compliance and Ethics��� 235

Tools for Deploying LLMs��� 235

Model Hosting Frameworks�� 235

Example: Saving a Model Locally, Uploading It to Hugging Face, and Calling It������������������� 237

Optimization Tools�� 238

ONNX Example�� 241

Cloud Services�� 242

AWS SageMaker Example�� 243

Orchestration and Scaling�� 245

Edge and Mobile Deployment��� 246

APIs for Hosted Models�� 246

Distributed Inference and Fine-Tuning��� 247

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec87
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec88
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec89
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec90
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec91
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec92
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec93
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec26

xii

Monitoring and Observability��� 247

LLM Inference Challenges: A Comprehensive Exploration�� 248

LLM Memory Optimization�� 251

LLM Compression��� 255

Attention Layer Optimization�� 259

Scheduling Optimization in LLM Deployment��� 261

Summary��� 263

Chapter 5: �Building and Fine-Tuning LLMs�� 265

Architecture of Large Language Models (LLMs)�� 266

At the Foundation of Any LLM Lies the Process of Tokenization�� 267

Self-Attention Mechanism�� 268

Layer Normalization and Residual Connections��� 268

Transformer Blocks�� 269

At the Output Layer, LLMs Operate Differently Depending on Their Design�������������������������� 269

Variations in LLM Architectures�� 270

Fine-Tuning Strategies and Considerations��� 271

What Is LLM Fine-Tuning?�� 271

Data Requirements for Fine-Tuning�� 272

LLM Fine-Tuning Techniques�� 273

Primary Approaches to Fine-Tuning��� 273

Why Fine-Tune Embedding Models?�� 274

How to Fine-Tune Embedding Models�� 275

Popular Techniques for Fine-Tuning Embeddings�� 276

Striking the Balance��� 277

Prominent Fine-Tuning Methods�� 277

Fine-Tuning Process and Best Practices�� 280

a. Data Preparation��� 280

b. Choosing the Right Pretrained Model��� 281

c. Identifying the Right Parameters for Fine-Tuning��� 281

d. Validation�� 282

e. Detect Bias, Fairness, and Groundedness of LLMs��� 285

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_4#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec42
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_5
https://doi.org/10.1007/979-8-8688-1475-4_5
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec44

xiii

Detecting Data Drift When Fine-Tuning�� 290

f. Model Iteration�� 293

g. Model Deployment�� 293

Fine-Tuning Applications�� 293

a. Sentiment Analysis��� 294

b. Chatbots��� 294

c. Summarization�� 294

Advanced Fine-Tuning Techniques for LLMs�� 295

Low-Rank Adaptation (LoRA)�� 295

Prompt Tuning�� 297

Federated Fine-Tuning��� 298

When to Not Use LLM Fine-Tuning��� 299

Pretrained Models Are Already Sufficient��� 299

Insufficient or Low-Quality Data��� 300

High Computational Costs and Resource Constraints�� 300

Regulatory, Privacy, and Ethical Constraints��� 301

Maintaining Model Versatility��� 301

Task Scope Is Uncertain or Evolving��� 302

High-Risk Scenarios Requiring Predictability and Stability�� 302

Ethics and Bias in AI and LLMs�� 303

Understanding AI Ethics and Its Relevance to LLMs��� 303

Core Ethical Challenges in LLMs�� 303

Promoting Fairness and Equity in LLMs��� 305

Addressing Broader Ethical Concerns�� 306

Regulation and Policy for Ethical AI�� 307

Future Directions�� 307

LLM Fine-Tuning Example�� 308

Step 1: Loading Dataset��� 308

Step 2: Tokenization�� 308

Step 3: Training and Evaluation Sets�� 309

Step 4: Adapting the Model�� 310

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_5#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec53
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec54
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec55
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec56
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec57
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec58
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec59
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec60
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec61
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec62
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec63
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec64
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec65
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec66
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec67
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec68
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec69
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec70
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec76
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec77
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec79
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec80
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec81
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec82
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec83
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec84
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec85

xiv

Step 5: Fine-Tuning the Model�� 310

Step 6: Evaluation��� 312

What Happens Internally During Fine-Tuning��� 312

Conclusion��� 315

�Index�� 317

Table of Contents

https://doi.org/10.1007/979-8-8688-1475-4_5#Sec86
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec87
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec88
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec89

xv

About the Author

Dilyan Grigorov is a software developer with a passion for

Python software development, generative deep learning

and machine learning, data structures, and algorithms.

He was a Stanford student in the Graduate Program on

Artificial Intelligence in the classes of people like Andrew

Ng, Fei-Fei Li, and Christopher Manning. He has been

mentored by software engineers and AI experts from

Google and NVIDIA. Dilyan is an advocate for open

source and the Python language itself. He has 16 years

of industry experience programming in Python and

has spent 5 of those years researching and testing generative AI solutions. His passion

for them stems from his background as an SEO specialist dealing with search engine

algorithms daily. He enjoys engaging with the software community, often giving talks at

local meetups and larger conferences. In his spare time, he enjoys reading books, hiking

in the mountains, taking long walks, playing with his son, and playing the piano.

xvii

About the Technical Reviewer

Tuhin Sharma is Sr. Principal Data Scientist at Red Hat in

the Data & AI group. Prior to that, he worked at Hypersonix

as an AI architect. He also cofounded and has been CEO

of Binaize, a website conversion intelligence product for

ecommerce SMBs. Previously, he was part of IBM Watson

where he worked on NLP and ML projects, a few of which

were featured on Star Sports and CNN-IBN. He received a

master’s degree from IIT Roorkee and a bachelor’s degree

from IIEST Shibpur in Computer Science. He loves to code

and collaborate on open source projects. He is one of the top

25 contributors of pandas. He has four research papers and

five patents in the fields of AI and NLP. He is a reviewer of

the IEEE MASS conference, Springer Nature, and Packt publications in the AI track. He

writes deep learning articles for O’Reilly in collaboration with the AWS MXNET team. He

is a regular speaker at prominent AI conferences like O’Reilly’s Strata Data & AI, PyCon,

PyData, ODSC, GIDS, DevConf, etc.

xix

Acknowledgments

I give a big thanks to the entire team at my publisher, Apress, and heartfelt thanks to two

people who supported me throughout this book’s writing process—Alexandre Blanchet

(a software engineer with more than ten years of professional experience) and Haiguang

Li. Alexandre’s words about the book deeply moved me, and I’d love to share them

with you:

I grew up in a small French city where speaking multiple languages was
rare. From an early age, I loved computers and creativity, but wasn’t sure
about my career path. Everything changed in high school when I discovered
coding—I had found my place.

Back then, Python wasn’t as popular, but I saw its potential. Despite lim-
ited job opportunities in my area, I committed to mastering it, believing in
its future. Over the past decade, working at companies big and small has
deepened my skills beyond what I learned in school.

Today, I use that experience to guide students in accelerating their Python
learning. That’s how I met Dilyan. From the start, his curiosity and drive
stood out. He dedicates himself fully to mastering his craft, and it has been
a pleasure to support his journey.

Dilyan quickly grasped Python and machine learning, leading to this
book’s creation. Beyond technical skills, he brings rare qualities—attention
to detail, excellent time management, and versatility in marketing, SEO,
business, and writing.

Some people drain your energy; others inspire you. Dilyan is the latter. Our
weekly coding sessions are always energizing, pushing us both to grow. I’m
proud of this book—a testament to Dilyan’s hard work, passion, and dedi-
cation. I’m confident it will inspire and empower your learning journey.

xxi

Introduction

The evolution of artificial intelligence (AI) has ushered in a new era of possibilities,

transforming the way we interact with technology, automate tasks, and solve complex

problems. At the heart of this revolution are large language models (LLMs), which power

applications ranging from conversational agents to content generation, data retrieval,

and beyond. This book serves as an advanced comprehensive guide to understanding,

developing, and deploying LLM-powered applications, with an advanced focus on

Python and LangChain. It is designed for AI enthusiasts, data scientists, machine

learning engineers, developers, and researchers who are looking to deepen their

understanding of LLMs and their real-world applications.

The book bridges the gap between theory and practice, providing a road map for

building advanced intelligent systems that leverage the power of language models.

Throughout the chapters, I emphasize hands-on learning, providing code examples,

best practices, and troubleshooting strategies to help you build efficient and effective

AI-driven applications. By the end of your journey, you will have a strong foundation in

LLMs and the ability to apply them to a wide range of real-world challenges.

The book is divided into several key chapters, each focusing on a critical aspect of

working with LLMs and LangChain.

•	 Chapter 1—LangChain and Python: Basics: This chapter

introduces the fundamentals of LangChain, a powerful framework

for integrating LLMs into applications. It covers the core advanced

concepts, including chains, memory, tools, and agents, along with

how to structure prompts effectively for different tasks.

•	 Chapter 2—LangChain and Python: Advanced Components:
Building on the basics, this chapter explores LangChain’s advanced

features, such as memory management, multiagent systems, and

external data integrations. Readers will learn to create applications

with contextual awareness and adaptability.

https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_2

xxii

•	 Chapter 3—Building Advanced Applications Powered by
LLMs with LangChain and Python: This chapter delves into the

development of practical applications using LangChain and Python.

It includes real-world examples like YouTube video summarizers and

document retrieval tools, demonstrating how to implement advanced

workflows and optimize model performance.

•	 Chapter 4—Deploying LLM-Powered Applications: Once an LLM

application is built, deploying it effectively is crucial. This chapter

covers cloud deployment strategies, model-serving solutions,

optimization techniques, and best practices for ensuring scalability,

security, and performance in production environments.

•	 Chapter 5—Building and Fine-Tuning LLMs: For those looking to

take customization further, this chapter explains the principles of

training and fine-tuning LLMs. It discusses transformer architectures,

pretraining paradigms, fine-tuning strategies, and ethical

considerations in deploying AI responsibly.

Happy reading and coding!

Introduction

https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_5

1
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_1

CHAPTER 1

LangChain and Python:
Basics
LangChain is a powerful new framework in Python that simplifies building intelligent

applications using natural language processing (NLP) and large language models (LLMs).

It reduces complexity, making AI-powered solutions more accessible to developers. At

its core, LangChain provides a set of abstractions and utilities that make it easier to build,

customize, and deploy NLP-based workflows, such as chatbots, automated data analysis,

summarization tools, and much more. Given Python’s status as the go-to language for

AI and data science, integrating LangChain with Python creates a powerful toolset for

developers and data practitioners looking to enhance their NLP projects.

LangChain’s primary goal is to simplify how developers interact with language

models and manage their outputs in context-rich applications. Typically, when

using a language model like OpenAI’s GPT, there’s a need to set up workflows for

input, processing, context handling, and response generation. LangChain provides

a framework to define and chain these elements, known as “chains,” enabling more

complex and sophisticated NLP applications without needing to manually handle all

aspects of the process.

Python has a rich set of libraries for machine learning (e.g., TensorFlow, PyTorch)

and NLP (e.g., spaCy, NLTK). LangChain seamlessly fits into this ecosystem by offering

high-level abstractions that allow developers to quickly integrate language models into

their applications. Key benefits include

•	 Ease of Integration: LangChain abstracts much of the complexity

involved in setting up prompts, model calls, and response handling,

making it easier to build and deploy applications.

https://doi.org/10.1007/979-8-8688-1475-4_1#DOI

2

•	 Modularity and Flexibility: LangChain enables chaining multiple

LLM calls together, combining different models, and adding context

to create more advanced applications, such as multistep question-

answering systems or conversational agents.

•	 Handling Context and Memory: One of LangChain’s strengths is its

ability to manage context and memory effectively. For conversational

AI or tasks that require understanding of a sequence of interactions,

LangChain provides utilities to track and store context throughout

the conversation or workflow.

•	 Scalability and Deployment: By working within the Python

ecosystem, LangChain can be easily integrated into larger projects,

data pipelines, or cloud-deployed applications, making it a practical

choice for both experimentation and production-level applications.

With Python and LangChain, developers can build a wide range of NLP

applications:

•	 Chatbots and Conversational Agents: Implement agents that can

handle context-aware conversations, manage user intents, and

respond dynamically to user queries

•	 Data Extraction and Summarization: Create pipelines that

process large amounts of text, extract key information, and produce

summaries or insights

•	 Automated Content Generation: Use language models to generate

content for blogs, reports, or documentation based on given prompts

or templates

•	 Question-Answering Systems: Build tools that allow users to ask

questions about specific documents or datasets, where the system

can pull and present relevant information

In this first chapter, we will explore how to use LangChain with Python to create

advanced language model applications, discussing its key components and providing

practical examples to get you started.

Chapter 1 LangChain and Python: Basics

3

This chapter also

•	 Introduces LangChain as a Python framework for building LLM-

powered apps like chatbots and summarizers, with a focus on

modularity, memory, and context handling

•	 Covers core concepts: chains, prompts, memory, tools, agents, RAG,

data loaders, and integrations

•	 Explains installation of LangChain and related packages (e.g.,

langchain-core, langchain-openai, langgraph)

•	 Provides prompt engineering techniques: role prompting, few-shot,

chain prompting, chain-of-thought, alternating messages, and

refinement tips

•	 Describes various chain types: simple, sequential, conversational,

multi-input/output, router, control flow, retrieval-aware, and agent

chains—with code examples

�LangChain Basics and Basic Components
As I mentioned, LangChain is a powerful framework designed for developing

applications that integrate large language models (LLMs) like OpenAI’s GPT-4 into

workflows or pipelines that can perform a variety of complex tasks. It is particularly

helpful for creating applications that require language model capabilities, whether for

natural language understanding, processing, or generation.

Here are the fundamental components and concepts of LangChain.

�Chains
Chains are sequences of operations (or steps) designed to process and transform data.

In LangChain, chains can be created to link together multiple steps that involve LLMs,

transforming the input through a sequence of transformations or tasks. A simple chain

might involve querying an LLM with a prompt, whereas more complex chains can

combine multiple actions, like API calls, data retrieval, or conditional logic.

Chapter 1 LangChain and Python: Basics

4

�Prompts
Prompts are the input that LLMs use to generate responses. LangChain allows users to

design prompts dynamically, enabling the creation of tailored queries based on different

scenarios or contexts. You can create prompt templates that include variables to be filled

in based on user inputs or other data.

�Memory
Memory allows a chain to retain state throughout a conversation or across multiple

interactions. This feature is particularly useful for applications that require context over

time, such as chatbots or assistants, where responses need to be informed by the history

of the conversation.

�Tools and Agents
LangChain provides tools that interact with external systems or APIs, such as databases,

search engines, or custom APIs. Agents are advanced chains that can decide which tool

to use based on the input they receive. For example, an agent could determine whether

to perform a search, fetch data from a database, or generate a response directly.

�Retrieval-Augmented Generation (RAG)
RAG is a method where LLMs are combined with external data sources to enhance

their outputs. Unlike standard LLM queries that rely on pretrained knowledge, RAG

dynamically retrieves up-to-date information from external sources before responding,

ensuring better accuracy and contextual awareness. For example, an LLM may query

a knowledge base or a search engine to find relevant information before generating a

response. LangChain supports RAG through its retrieval tools and agents, making it

suitable for applications that require updated or domain-specific information.

�Data Loaders
LangChain includes data loaders for various types of data sources, like local files, APIs,

and databases. These loaders help convert raw data into a format that can be processed

or queried by an LLM.

Chapter 1 LangChain and Python: Basics

5

�Integrations and Extensibility
LangChain is designed to integrate easily with other tools and libraries. It supports

various LLM back ends (such as OpenAI, Hugging Face, and others) and can be

extended with custom chains, agents, or tools. This makes it flexible for creating custom

applications across different domains.

�LLM Outputs and Postprocessing
LangChain provides ways to interpret and process the outputs from LLMs. Since LLMs

may produce complex or unstructured data, LangChain includes components for

parsing, formatting, and further transforming these outputs to be more usable for the

application.

By leveraging these concepts, LangChain allows for building powerful, customizable

LLM-powered applications efficiently.

�LangChain Installation
The LangChain ecosystem is divided into multiple packages, allowing you to selectively

install only the specific features or functionality you need.

To install the main langchain package, run on Python 3.11:

pip install langchain==0.3.20

Although this package serves as a good starting point for using LangChain, its real

value lies in integrating with various model providers and datastores. The necessary

dependencies for these integrations are not included by default and must be installed

separately. The steps to do so are provided below.

The LangChain ecosystem consists of different packages designed for modular

functionality, most of which rely on “langchain-core.” This package includes base

classes and abstractions, providing a foundation for the rest of the ecosystem. When

installing any package, you don’t need to explicitly install its dependencies like

“langchain-core.” However, if you need features from a specific version, you may do so,

ensuring compatibility with other integrations.

Chapter 1 LangChain and Python: Basics

6

�Packages Overview

•	 LangChain Core: Contains essential abstractions and LangChain

Expression Language (LCEL). Automatically installed with

“langchain” or separately with

pip install langchain-core==0.3.41

•	 Integration Packages: Packages like “langchain-openai” or

“langchain-anthropic” offer support for specific integrations. The

complete list of these integrations can be found under the “Partner

libs” section in the API reference of the LangChain documentation.

To install any of them, use

pip install langchain-openai==0.3.7

Integrations that haven’t been split into their own packages are

part of “langchain-community,” installed via

pip install langchain-community==0.3.19

•	 Experimental Package: “langchain-experimental” hosts research

and experimental code. You can install it with

pip install langchain-experimental==0.3.4

•	 LangGraph: A library designed for building stateful, multiactor

applications with LLMs, which integrates seamlessly with LangChain

but can be used independently:

pip install langgraph==0.3.5

•	 LangServe: A tool to deploy LangChain runnables and chains as

REST APIs. It is included with the LangChain CLI. If you need both

client and server functionalities, install using

pip install "langserve[all]"

For just the client or server, use "langserve[client]" or

"langserve[server]".

Chapter 1 LangChain and Python: Basics

7

•	 LangChain CLI: Useful for managing LangChain templates and

LangServe projects:

pip install langchain-cli==0.0.35

•	 LangSmith SDK: Installed automatically with “langchain” but does

not depend on “langchain-core.” It can be used separately if you’re

not using LangChain:

pip install langsmith==0.3.12

�Installing from Source
To install any package from the source, clone the LangChain repository, navigate to the

specific package’s directory (e.g., “PATH/TO/REPO/langchain/libs/{package}”), and run

pip install -e .

This allows for flexible and targeted functionality, letting you selectively integrate or

develop with specific packages in the ecosystem.

�How to Prompt?
When working with large language models (LLMs), prompt engineering becomes an

essential skill. A well-crafted prompt can significantly enhance the quality of a model’s

output, even when using less powerful or open source models. By understanding how to

shape inputs effectively, you can guide LLMs to produce accurate, context-appropriate

responses. Throughout this module, we’ll explore the art and science of prompt creation,

enabling you to fully harness the power of your models and achieve the best results

possible.

One of the primary focuses will be on writing tailored prompts to achieve specific

tasks, such as generating responses in a certain format or adhering to stylistic guidelines.

We’ll also examine how few-shot prompts can allow a model to quickly learn new tasks

and generalize to unseen scenarios. This technique is especially useful when you need

customization with minimal data, as it provides an efficient way to adapt model behavior

on the fly.

Chapter 1 LangChain and Python: Basics

8

�Prompt Engineering
Prompt engineering is an emerging field focused on developing and refining prompts

for effective use of large language models (LLMs) across a variety of applications. The

goal is to enhance how LLMs process, understand, and generate text, making prompt

engineering essential for numerous NLP tasks. Crafting high-quality prompts can reveal

both the potential and the boundaries of what LLMs can achieve, and a well-designed

prompt can significantly improve the accuracy and relevance of the model’s responses.

Throughout this lesson, you’ll gain hands-on experience with practical examples,

helping you understand the nuances of prompt quality. We’ll explore how different

prompts can lead to significantly different results, highlighting what makes a prompt

“good” or “bad.” By the end, you’ll be equipped with techniques to create powerful

prompts that enhance model performance, enabling it to provide contextually relevant,

accurate, and insightful responses to any given task.

�Role Prompting
Role prompting is a technique that asks an LLM to take on a specific role or persona,

helping guide its response in line with a certain tone, style, or perspective. For example,

you might prompt the model to act as a "copywriter," "teacher," or "data analyst." This

provides the LLM with a frame of reference, shaping how it interprets and answers

the prompt.

To work effectively with role prompting, follow these steps:

•	 Define the Role Clearly: Clearly specify the role in your prompt to

set the context for the model. For example, you might write: “As a

copywriter, craft catchy taglines for AWS services that grab attention.”

The model will interpret the role and respond accordingly, adopting

the language and style of a copywriter.

•	 Generate Output from the LLM: Once the role is defined, use

your prompt to produce an output. The model will use the role as

guidance to tailor its response appropriately, focusing on the style,

language, or structure that aligns with the defined role.

•	 Iterative Refinement: Analyze the output to see if it meets the

desired criteria. If the results are not as expected, refine the prompt

by being more specific about the role or the style of the response.

Chapter 1 LangChain and Python: Basics

9

This iterative process is crucial for achieving high-quality outputs.

For example, if the response as a “copywriter” lacks creativity, you

might adjust the prompt to include specific instructions like “use a

playful tone and focus on benefits.”

By guiding the model’s behavior through role prompting, you can influence how it

understands the task and the perspective it adopts, making it a versatile technique for a

wide range of applications. This strategy not only improves the quality of the responses

but also enables you to adapt the model’s outputs to fit the context of different tasks

more effectively.

Note  For the following example, please get your OpenAI API key here: https://
platform.openai.com/api-keys.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

Initialize the LLM with OpenAI's model

llm = ChatOpenAI(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4",
temperature=0.5)
template = """
As a futuristic poet, I want to write a poem that captures the essence of
{emotion}.
Can you suggest a title for a poem about {emotion} set in the year {year}?
"""
prompt = PromptTemplate(
 input_variables=["emotion", "year"],
 template=template,
)

Input data for the prompt
input_data = {"emotion": "solitude", "year": "2500"}

chain = prompt | llm

response = chain.invoke(input_data)

Chapter 1 LangChain and Python: Basics

https://platform.openai.com/api-keys
https://platform.openai.com/api-keys

10

print("Emotion: solitude")
print("Year: 2500")
print("AI-generated poem title:", response)

Output:

Emotion: solitude
Year: 2500
AI-generated poem title: content='"Echoes in the Void: Solitude in the 26th
Century"' additional_kwargs={'refusal': None} response_metadata={'token_
usage': {'completion_tokens': 16, 'prompt_tokens': 44, 'total_tokens': 60,
'completion_tokens_details': {'audio_tokens': None, 'reasoning_tokens':
0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens': 0}},
'model_name': 'gpt-4-0613', 'system_fingerprint': None, 'finish_reason':
'stop', 'logprobs': None} id='run-c41b514e-f8f5-43a9-96c3-f0ab35fdaad6-0'
usage_metadata={'input_tokens': 44, 'output_tokens': 16, 'total_tokens':
60, 'input_token_details': {'cache_read': 0}, 'output_token_details':
{'reasoning': 0}}

The prompt in this code is effective for several reasons:

	 1.	 Clear and Contextual Role Setting

By stating, “As a futuristic poet,” the prompt establishes a role and

context. This framing helps guide the model to think creatively

like a poet, shaping its response to reflect a poetic tone and

futuristic theme. Such context allows the LLM to adopt the right

style, making the output more imaginative and relevant.

	 2.	 Specificity of Emotion and Time Frame

The prompt specifically asks for a poem title that captures the

emotion of “{emotion}” set in the year “{year}.” This precision

helps the model generate contextually rich and emotionally

relevant titles, directly related to the emotion and future scenario.

The use of variables makes it adaptable for different contexts,

creating versatility.

Chapter 1 LangChain and Python: Basics

11

	 3.	 Open-Ended Creativity

The prompt is open-ended, allowing the LLM to generate

diverse, creative titles without being overly restrictive. By not

setting limitations on how the title should sound, the model can

explore artistic and evocative language, enhancing the quality of

the output.

	 4.	 Task-Focused Guidance

The primary task is to create a poem title that evokes a specific

emotion in a futuristic context. This direct focus helps the LLM

avoid unrelated content, concentrating only on creating a unique

title that matches the theme and style outlined in the prompt.

	 5.	 Encouragement of Thematic Coherence

By guiding the LLM to align its output with an emotional and

futuristic time frame, the prompt ensures the response will have

both thematic and temporal coherence. This makes the resulting

poem title not just relevant but also compelling and imaginative,

showcasing how prompts can evoke specific styles and tones

effectively.

�Few-Shot Prompting
Few-shot prompting is a technique used in the context of large-scale language models

to guide the model’s output by providing a small number of task-specific examples

within the input prompt. Unlike traditional machine learning approaches, which require

extensive datasets and iterative training, few-shot prompting leverages a model’s pre-

existing knowledge to perform tasks with minimal supervision.

In few-shot prompting, the model is presented with a limited number of input/

output pairs—usually between one and five—that illustrate the desired task. These

examples serve as a form of implicit training within the prompt itself. The model uses

these pairs to infer the relationship between inputs and outputs, allowing it to generalize

and respond appropriately to new, unseen queries that follow the same pattern.

This technique builds on the premise that large language models, trained on vast

amounts of diverse text data, can generalize across different domains. By presenting

a few examples, the model can adjust its behavior dynamically without the need for

Chapter 1 LangChain and Python: Basics

12

explicit retraining or fine-tuning. Few-shot prompting thus demonstrates the flexibility

and contextual reasoning ability of such models, allowing them to perform a wide range

of tasks from a minimal set of instructions.

The effectiveness of few-shot prompting depends largely on the model’s capacity to

understand and generalize from the examples provided. It is a powerful approach for

tasks where extensive labeled data is not readily available, offering an efficient method

for leveraging pretrained models in a variety of applications.

�Key Benefits
•	 No Additional Training: You don’t need to fine-tune the model; it

can perform tasks based on the few examples given.

•	 Adaptability: It can handle multiple tasks by simply providing

examples for different tasks.

•	 Efficiency: Fewer examples are needed compared to traditional

training methods, making it a practical approach for many

applications.

Few-shot prompting is especially effective with very large pretrained models like

GPT-3, which have enough capacity to learn from minimal examples.

Example:

from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

Initialize the language model with specific settings
language_model = ChatOpenAI(
 �api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D2HWBxJgCW

rjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_rPSrC
fXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",

 model_name="gpt-4o-mini",
 temperature=0
)

Chapter 1 LangChain and Python: Basics

13

Sample color-to-emotion associations
color_emotion_pairs = [
 {"color": "red", "emotion": "energy"},
 {"color": "blue", "emotion": "peace"},
 {"color": "green", "emotion": "growth"},
]

Template for formatting examples in a structured way
example_structure = """
Color: {color}
Associated Emotion: {emotion}\n
"""

Create the example prompt template
color_prompt_template = PromptTemplate(
 input_variables=["color", "emotion"],
 template=example_structure,
)

Construct a few-shot prompt template using the color-emotion pairs
few_shot_color_prompt = FewShotPromptTemplate(
 examples=color_emotion_pairs,
 example_prompt=color_prompt_template,
 �prefix="Here are a few examples demonstrating the emotions linked with

colors:\n\n",
 �suffix="\n\nNow, considering the new color, predict the associated

emotion:\n\nColor: {input}\nEmotion:",
 input_variables=["input"],
 example_separator="\n",
)

Generate the final prompt for a new color input
final_prompt_text = few_shot_color_prompt.format(input="purple")

Use the generated prompt and run it through the language model
final_prompt = PromptTemplate(template=final_prompt_text, input_
variables=[])
prompt_chain = final_prompt | language_model

Chapter 1 LangChain and Python: Basics

14

Get the AI-generated response for the input color
model_output = prompt_chain.invoke({})

Print the input color and its corresponding predicted emotion
print("Color: purple")
print("Predicted Emotion:", model_output.content)

Output:

Color: purple
Predicted Emotion: Color: purple
Associated Emotion: creativity

�Alternating Human/AI Messages
This strategy involves using few-shot prompting with alternating human and AI

responses. It’s particularly useful for chat-based applications, as it helps the language

model grasp the flow of conversation and generate contextually relevant replies.

Though this method excels in handling conversational dynamics and is simple to

implement for chat applications, it is less adaptable for other types of use cases and

works best with chat-specific models. However, alternating human and AI messages can

be applied creatively, such as building a prompt to translate English into pirate language

in a chat format.

�Chain Prompting
Chain prompting is a technique where multiple prompts are linked together in a

sequence, with the output of one prompt being used as the input for the next. This

method allows for progressively refining or expanding the context of the interaction,

enabling the model to handle more complex tasks or multistep reasoning.

�Key Characteristics
	 1.	 Sequential Flow: The process involves feeding the output from

one step directly into the next, enabling the model to “remember”

and build upon previous information.

Chapter 1 LangChain and Python: Basics

15

	 2.	 Dynamic Adjustments: At each step, new information can be

introduced based on the model’s prior responses, allowing for

iterative improvements in the result.

�Steps for Chain Prompting
	 1.	 Initial Prompt: Start by providing an initial prompt to generate a

base response.

	 2.	 Extract Information: Identify relevant details or key elements

from the generated output.

	 3.	 New Prompt Construction: Create a subsequent prompt using

the extracted information, adding new context or instructions to

refine the output further.

	 4.	 Repeat Process: Continue chaining prompts as necessary, each

building on the last, until the desired final output is obtained.

�Using Chain Prompting in LangChain
To implement chain prompting in LangChain, you can leverage its PromptTemplate

class. This class simplifies the construction of prompts by allowing for dynamic input

values, making it ideal for situations where prompts need to evolve based on previous

answers.

•	 PromptTemplate enables you to

•	 Build prompts that adapt dynamically to changing inputs,

ensuring flexibility in prompt chains

•	 Simplify the process of passing outputs from one step to the next

by easily substituting variables or new context into each prompt

Chapter 1 LangChain and Python: Basics

16

�Additional Benefits
•	 Complex Workflows: Chain prompting allows for handling more

advanced tasks that require multiple steps, such as multiturn

conversations, solving multipart problems, or conducting research

in stages.

•	 Error Handling: If an intermediate step yields an incomplete or

ambiguous response, chain prompting enables you to adjust the

following prompts to clarify or correct the issue.

•	 Interactive Exploration: This approach allows for a more

exploratory dialogue, where each prompt can refine the context,

helping to uncover deeper insights.

In LangChain, combining chain prompting with other techniques like few-shot
prompting or memory-based approaches allows you to build complex, multistep

systems that leverage the power of large language models effectively.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

Initialize the language model
llm = ChatOpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQ
yi3D2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZx
iOA_rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
 model_name="gpt-4o-mini",
 temperature=0)

Prompt 1: Ask for the scientist who developed the theory of general
relativity
question_template = """Who is the scientist that formulated the theory of
general relativity?
Answer: """
prompt_for_scientist = PromptTemplate(template=question_template, input_
variables=[])

Chapter 1 LangChain and Python: Basics

17

Prompt 2: Ask for a brief explanation of the scientist's theory of
general relativity
fact_template = """Give a brief explanation of {scientist}'s theory of
general relativity.
Answer: """
prompt_for_fact = PromptTemplate(input_variables=["scientist"],
template=fact_template)

Create a runnable chain for the first prompt to retrieve the
scientist's name
chain_for_question = prompt_for_scientist | llm

Get the response for the first question
response_to_question = chain_for_question.invoke({})

Extract the scientist's name from the response
scientist_name = response_to_question.content.strip()

Create a runnable chain for the second prompt using the extracted
scientist's name
chain_for_fact = prompt_for_fact | llm

Input data for the second prompt
fact_input = {"scientist": scientist_name}

Get the response for the second question about the theory
response_to_fact = chain_for_fact.invoke(fact_input)

Output the scientist's name and the explanation of their theory
print("Scientist:", scientist_name)
print("Theory Description:", response_to_fact)

Output:

Scientist: The scientist who formulated the theory of general relativity is
Albert Einstein.
Theory Description: content="Albert Einstein's theory of general
relativity, formulated in 1915, is a fundamental theory of gravitation
that describes gravity not as a force, but as a curvature of spacetime
caused by mass. According to this theory, massive objects like planets and

Chapter 1 LangChain and Python: Basics

18

stars warp the fabric of spacetime around them, and this curvature affects
the motion of other objects, causing them to follow curved paths. General
relativity has profound implications for our understanding of the universe,
including the behavior of black holes, the expansion of the universe, and
the bending of light around massive objects. It has been confirmed through
numerous experiments and observations, making it a cornerstone of modern
physics." additional_kwargs={'refusal': None} response_metadata={'token_
usage': {'completion_tokens': 131, 'prompt_tokens': 36, 'total_tokens':
167, 'completion_tokens_details': {'audio_tokens': None, 'reasoning_
tokens': 0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_
tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint':
'fp_e2bde53e6e', 'finish_reason': 'stop', 'logprobs': None} id='run-
d16897c9-54a3-4feb-9a7c-fe481798c984-0' usage_metadata={'input_tokens': 36,
'output_tokens': 131, 'total_tokens': 167, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}

�Chain-of-Thought Prompting
Chain-of-thought prompting (CoT) is a technique designed to encourage large language

models (LLMs) to explain their reasoning process, leading to more accurate outcomes.

By presenting few-shot examples that showcase step-by-step reasoning, CoT helps

guide the model to articulate its thought process when responding to prompts. This

method has proven effective for tasks such as arithmetic, common sense reasoning, and

symbolic logic.

In the context of LangChain, CoT offers several advantages. First, it helps deconstruct

complex problems by guiding the model to break them into smaller, more manageable

steps, which makes the problem easier to solve. This is especially useful for tasks

involving calculations, logic, or multistep reasoning. Second, CoT can help the model

generate more coherent and contextually relevant outputs by leading it through related

prompts. This results in more accurate and meaningful responses, particularly for tasks

that require deep comprehension of a problem or domain.

However, there are some limitations to CoT. One significant drawback is that it

generally improves performance only when applied to models with approximately 100

billion parameters or more. Smaller models often generate illogical reasoning chains,

which can result in lower accuracy compared to standard prompting. Additionally,

Chapter 1 LangChain and Python: Basics

19

CoT’s effectiveness varies across different types of tasks. While it excels in tasks involving

arithmetic, common sense, and symbolic reasoning, it may offer fewer benefits or even

hinder performance in other task categories.

�Advanced Tips for Effective Prompt Engineering
	 1.	 Be Specific with Your Prompt: Provide clear and detailed

instructions in your prompt. The more context, background, and

specifics you give, the better the LLM can interpret and generate

a relevant response. Vague prompts lead to generalized or

incomplete answers.

	 2.	 Encourage Conciseness: If the response needs to be short and

to the point, be explicit about it. You can request responses to be

limited to a specific number of words or sentences, which forces

the model to focus on delivering the essential information.

	 3.	 Ask for Reasoning or Explanations: When dealing with complex

tasks, encourage the model to explain its reasoning or show the

steps it took to arrive at its answer. This improves the quality of

results, particularly for problem-solving, logic, and reasoning

tasks, ensuring transparency in the process.

	 4.	 Iterate and Refine Prompts: Prompt engineering is rarely a one-

time activity. Iteration is key—test and tweak your prompts to

see how different phrasing or added details change the model’s

response. Refine until the output aligns with your expectations.

	 5.	 Use Examples to Guide Responses: One of the most powerful

ways to guide LLMs is by using few-shot learning. By showing the

model a few examples of what you’re looking for, you significantly

increase the chance of receiving an answer that mirrors your

expectations in tone, format, or reasoning.

	 6.	 Apply Constraints: If you’re looking for specific formats or a

particular structure (e.g., bulleted lists, headings, step-by-step

processes), be clear about these constraints in your prompt. This

helps the model organize its output according to your needs.

Chapter 1 LangChain and Python: Basics

20

	 7.	 Task-Specific Prompting: Tailor your prompts to the specific task

at hand. For example, creative writing prompts should encourage

open-ended responses, while technical prompts should focus on

precision, structure, and accuracy. Each type of task may require a

different approach to prompt engineering.

	 8.	 Leverage Clarifying Questions: If the initial response isn’t what

you expected, ask the model to elaborate or clarify specific points.

This helps guide the conversation in a more meaningful direction

and ensures the model understands and focuses on what’s

important.

	 9.	 Balance Open-Endedness and Constraints: For tasks where

creativity is needed, such as brainstorming, use more open-ended

prompts to allow the model to explore a variety of ideas. For tasks

requiring accuracy, use tighter constraints to keep the model

focused on relevant and correct answers.

	 10.	 Adjust Prompt Length: The length of your prompt can influence

the quality of the response. For some tasks, a simple, concise

prompt works best, while more complex tasks might require

detailed, multipart instructions. Experiment with prompt length

to see what works for different types of questions.

	 11.	 Include Key Terms: If your task requires specific technical

language, jargon, or domain-specific terms, include those

directly in the prompt. This helps guide the model toward more

specialized and accurate outputs, especially in fields like science,

technology, or law.

	 12.	 Specify the Role of the LLM: Sometimes, framing the model’s

role in the prompt can improve the result. For instance, start your

prompt with phrases like “As a teacher,” or “You are an expert in…”

to influence the model’s tone and style of response, aligning it

with the required task.

	 13.	 Set an Output Persona: In certain tasks, you can request the

model to assume a specific persona or tone. For example, ask the

model to respond like a teacher, researcher, or customer service

agent to tailor the responses to different contexts or audiences.

Chapter 1 LangChain and Python: Basics

21

	 14.	 Utilize Multiturn Dialogue: For tasks that require deeper

exploration, consider breaking the problem down into a series of

smaller questions. This approach not only helps the model focus

on individual components of a complex task but also provides

you with an opportunity to guide the conversation progressively

toward a complete answer.

	 15.	 Test Edge Cases: For robustness, test how your prompt performs

with edge cases or atypical inputs. This helps ensure that the LLM

performs well across a variety of scenarios and doesn’t generate

inaccurate or nonsensical results in unusual situations.

	 16.	 Account for Model Limitations: Remember that LLMs have

limitations in their knowledge and reasoning capabilities. Not all

prompts will yield perfect responses, and some answers might

lack depth or accuracy in certain specialized domains. Recognize

when an LLM has reached its limit, and avoid overrelying on it for

highly specialized or sensitive tasks.

	 17.	 Keep Bias in Check: Be mindful of the potential for biases in

LLM-generated outputs. Craft prompts that minimize the chances

of generating biased, harmful, or inappropriate content. Avoid

phrasing that could steer the model toward biased or harmful

assumptions.

	 18.	 Incorporate Multiple Prompt Variations: Instead of relying

on one version of a prompt, try asking the same question or

requesting the same task using several different prompt phrasings.

This technique helps in uncovering new insights or variations in

response quality.

By applying these strategies, you can enhance your ability to interact effectively

with large language models, improving the quality and relevance of their outputs. As

AI tools continue to evolve, mastery of prompt engineering will remain a critical skill

for developers, researchers, and professionals who rely on LLMs to optimize their

workflows.

Chapter 1 LangChain and Python: Basics

22

�What Are Chains?
A LangChain chain is a structured sequence of operations in the LangChain framework,

where various components like language models, tools, and external APIs are connected

to perform complex tasks. The primary purpose of a chain is to manage and coordinate

interactions between different modules, allowing for multistep reasoning and advanced

workflows when working with large language models (LLMs).

Key characteristics of a LangChain chain:

•	 Modular Design: Chains are designed to be modular, meaning

individual components can be easily added, removed, or replaced.

This allows for flexibility in constructing workflows depending on the

use case, from simple to highly sophisticated tasks. Each module or

component typically has a clearly defined input/output structure.

•	 Multistep Processing: Chains facilitate multistep operations by

passing the output of one component as the input to another. This

enables more advanced reasoning, decision-making, or actions that

require several stages of processing, such as combining language

understanding with tool execution or validation.

•	 Control Flow: Chains can incorporate control flow mechanisms,

such as conditional logic or loops, enabling the workflow to branch

or iterate based on the intermediate results. This allows for dynamic

behavior, adjusting the sequence of actions depending on the inputs

or outputs at each step.

•	 Handling Intermediate Outputs: A chain can retain intermediate

outputs, either for logging purposes, debugging, or as part of a larger

workflow. This allows for transparency in the process, making it

easier to inspect how each step contributes to the final result.

•	 Interaction with External Systems: Chains are not limited to just

working with language models. They can interact with external

systems, such as databases, APIs, search engines, or knowledge

bases, to fetch relevant information or execute tasks that go beyond

natural language processing. This is particularly useful for retrieving

real-time data, performing calculations, or executing functions that

require interaction with other platforms.

Chapter 1 LangChain and Python: Basics

23

•	 Memory Management: Some chains integrate memory, allowing

them to store and recall past interactions, decisions, or context. This

feature is particularly valuable for applications like conversational

agents, where maintaining context over multiple interactions is

critical for coherent and contextually aware responses.

•	 Scalability: Chains can be constructed in a scalable manner,

allowing developers to design workflows that handle both simple

tasks (such as a single prompt) or more intricate, multistep processes

involving numerous components and external services.

•	 Reusability: LangChain encourages reusability by enabling the

creation of reusable chains that can be applied to different tasks

without reconfiguring the entire workflow. Developers can design a

chain once and use it for various applications or modify it for similar

tasks with minimal changes.

LangChain chains are an essential mechanism for building sophisticated

applications that go beyond simple LLM queries, orchestrating complex interactions in a

seamless, structured, and highly configurable way.

�Chain Components
A LangChain chain consists of several key components that work together to create

multistep workflows.

First, prompt templates are used to guide LLM outputs by filling in placeholders

with dynamic values, helping customize the responses. The core of the system,

language models (LLMs), generate responses based on the input prompts. Chains can

also integrate with external tools, such as APIs or databases, to fetch data or perform

additional tasks beyond text generation.

Memory is another crucial component, allowing the chain to store and recall

information across interactions, ensuring continuity, especially in conversational

contexts. Input variables provide dynamic data that personalize the chain’s behavior,

while output parsers process and format model outputs for further steps or final

responses.

Chapter 1 LangChain and Python: Basics

24

More complex tasks can be handled by nested chains (subchains), which break

down workflows into smaller, manageable steps. Decision logic introduces conditional

branching, enabling the chain to adapt based on input or intermediate results. Chains

can also include retrieval components to fetch relevant information from external

sources, enhancing context and accuracy.

Control flow governs the sequence and timing of operations, ensuring tasks are

performed in the right order. To ensure robustness, error handling mechanisms are

built in, managing failures and triggering retries or alternative steps when needed. API
connectors allow chains to interact with external services, expanding functionality,

while logs and debugging tools track execution, helping with monitoring and

troubleshooting.

These components enable LangChain chains to integrate LLMs with tools, logic, and

external data sources, allowing for flexible and complex workflows tailored to various

applications.

�Chain Types
In LangChain, there are several types of chains that can be used to construct workflows

depending on the complexity, purpose, and specific requirements of the task. Each

chain type serves a different function and can be adapted or combined to create versatile

applications. Here are the most common types of LangChain chains.

�1. Simple Chain
A simple chain consists of a single operation or a straightforward sequence of

operations. This type of chain takes an input, processes it through one or more steps,

and generates a single output. It’s often used for basic tasks, such as filling in a prompt

template and calling an LLM to generate a response.

•	 Usage: Direct question-answering tasks, summarization, or text

transformation

•	 Components: Usually involves a single prompt template, one LLM

call, and an output

Chapter 1 LangChain and Python: Basics

25

Example:

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAI

Step 1: Define the language model (in this case, OpenAI's GPT)
llm = OpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D
2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_
rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
 �temperature=0.7) # Set the desired temperature for response

variability

Step 2: Define the prompt template
prompt_template = """
Summarize the following question briefly:
{user_question}
"""

Step 3: Create the PromptTemplate object
prompt = PromptTemplate(
 input_variables=["user_question"],
 template=prompt_template,
)

Step 4: Create the LLMChain using the language model and prompt template
 chain = prompt | llm

Step 5: Input the user's question and run the chain
user_question = "Can you explain how photosynthesis works in simple terms?"

output = chain.invoke(user_question)

Print the summarized question
print("Summarized Question:", output)

Output:

Summarized Question:
Explaining photosynthesis in simple terms.

Chapter 1 LangChain and Python: Basics

26

�2. Sequential Chain
A sequential chain involves multiple steps arranged in a strict linear sequence. Each

step’s output becomes the input for the next step. These chains are useful when tasks

need to be completed in a particular order.

•	 Usage: When multistep reasoning or progressive tasks are needed

(e.g., generating an outline, followed by writing content based on that

outline)

•	 Components: Multiple operations, such as LLM calls, external API

interactions, or data transformations that occur in sequence

Example:

from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAI

Step 1: Define the language model
llm = OpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D
2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_
rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
 temperature=0.7)

Step 2: Create the first prompt template to summarize the question
summary_prompt_template = """
Summarize the following question briefly:
{user_question}
"""

Step 3: Create the second prompt template to generate a short answer
answer_prompt_template = """
Provide a brief answer to the following question:
{summarized_question}
"""

Step 4: Create PromptTemplate objects for both prompts
summary_prompt = PromptTemplate(

Chapter 1 LangChain and Python: Basics

27

 input_variables=["user_question"],
 template=summary_prompt_template,
)
answer_prompt = PromptTemplate(
 input_variables=["summarized_question"],
 template=answer_prompt_template,
)

Step 5: Create LLMChain objects for both steps
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
answer_chain = LLMChain(llm=llm, prompt=answer_prompt)

Step 6: Create a SimpleSequentialChain that links both chains together
sequential_chain = SimpleSequentialChain(
 chains=[summary_chain, answer_chain]
)

Step 7: Input the user's question and run the sequential chain
user_question = "Can you explain how photosynthesis works in simple terms?"
output = sequential_chain.run(user_question)
Print the output of the sequential chain
print("Final Output:", output)

Output:

Photosynthesis is the process by which plants and some other organisms use
sunlight to turn water and carbon dioxide into oxygen and sugar. This sugar
is then used as a source of energy for the plant's growth and development.
The process takes place in the chloroplasts of plant cells and requires
the presence of chlorophyll, a green pigment that absorbs sunlight. During
photosynthesis, carbon dioxide is taken in through small openings on the
leaves called stomata, and water is absorbed through the roots. Sunlight
is then used to convert these substances into energy in the form of sugar,
while oxygen is released as a byproduct. This process is vital for the
survival of plants, as well as for maintaining oxygen levels in the Earth's
atmosphere.

Chapter 1 LangChain and Python: Basics

28

�3. Conversational Chain
This chain is used in conversational agents where maintaining context is critical. It

leverages memory to store and recall previous interactions, enabling the model to

respond in a way that reflects the ongoing conversation.

•	 Usage: Chatbots, virtual assistants, customer support applications, or

any system requiring multiturn conversations

•	 Components: LLMs for generating responses, memory for storing

context, and potentially external tools for more complex interactions

Note I n the latest version of LangChain, you don’t need to add the openai_api_
key parameter anymore, but you need to define it as an environmental variable.

Example:

import os
Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6
erQJ4dQyi3D2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHI
R3FMCDZxiOA_rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA"
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
Step 1: Define a prompt template for conversation, using a variable for
user input
prompt = ChatPromptTemplate.from_messages(
 [("user", "{user_input}")]
)
Step 2: Set up the ChatOpenAI model (gpt-3.5-turbo in this case) with
temperature control
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Chapter 1 LangChain and Python: Basics

29

Step 3: Create memory to store conversation history
memory = ConversationBufferMemory()

Step 4: Create the chain combining prompt, model, and output parser

chain = LLMChain(prompt=prompt, llm=llm, memory=memory, output_
parser=StrOutputParser())
Simulate a conversation by invoking the chain with memory
First user input
response_1 = chain.invoke({"user_input": "Can you explain what
photosynthesis is?"})
print("AI Response 1:", response_1)
Second user input
response_2 = chain.invoke({"user_input": "What happens during the light-
dependent reactions?"})
print("AI Response 2:", response_2)
Third user input
response_3 = chain.invoke({"user_input": "Can you summarize both for me?"})
print("AI Response 3:", response_3)
print(memory)

Output:

AI Response 1: {'user_input': 'Can you explain what photosynthesis is?',
'history': '', 'text': 'Sure! Photosynthesis is the process by which green
plants, algae, and some bacteria convert light energy, usually from the
sun, into chemical energy in the form of glucose (sugar). This process
takes place in the chloroplasts of plant cells and involves the absorption
of carbon dioxide and water, which are converted into glucose and oxygen
through a series of complex chemical reactions. The glucose produced
through photosynthesis is used by the plant for energy and growth, while
the oxygen is released into the atmosphere as a byproduct. Photosynthesis
is essential for the survival of plants and other photosynthetic organisms,
as well as for the overall health of ecosystems.'}
AI Response 2: {'user_input': 'What happens during the light-dependent
reactions?', 'history': 'Human: Can you explain what photosynthesis is?\
nAI: Sure! Photosynthesis is the process by which green plants, algae, and

Chapter 1 LangChain and Python: Basics

30

some bacteria convert light energy, usually from the sun, into chemical
energy in the form of glucose (sugar). This process takes place in the
chloroplasts of plant cells and involves the absorption of carbon dioxide
and water, which are converted into glucose and oxygen through a series of
complex chemical reactions. The glucose produced through photosynthesis is
used by the plant for energy and growth, while the oxygen is released into
the atmosphere as a byproduct. Photosynthesis is essential for the survival
of plants and other photosynthetic organisms, as well as for the overall
health of ecosystems.', 'text': 'During the light-dependent reactions,
also known as the light reactions, several key processes take place in the
thylakoid membranes of the chloroplast:\n\n1. Absorption of light: Light
energy is absorbed by chlorophyll and other pigments in the photosystems,
specifically Photosystem II and Photosystem I.\n\n2. Water splitting: The
absorbed light energy is used to split water molecules into oxygen, protons
(H+ ions), and electrons. This process releases oxygen as a byproduct.\n\
n3. Electron transport chain: The energized electrons from Photosystem II
are passed along a series of proteins in the electron transport chain,
generating ATP through the process of chemiosmosis.\n\n4. Production
of ATP and NADPH: The flow of electrons through the electron transport
chain ultimately leads to the production of ATP and NADPH, which are both
energy carriers used in the Calvin cycle.\n\nOverall, the light-dependent
reactions convert light energy into chemical energy in the form of ATP and
NADPH, which are then used in the Calvin cycle to produce glucose and other
organic compounds.'}
AI Response 3: {'user_input': 'Can you summarize both for me?', 'history':
'Human: Can you explain what photosynthesis is?\nAI: Sure! Photosynthesis
is the process by which green plants, algae, and some bacteria convert
light energy, usually from the sun, into chemical energy in the form of
glucose (sugar). This process takes place in the chloroplasts of plant
cells and involves the absorption of carbon dioxide and water, which are
converted into glucose and oxygen through a series of complex chemical
reactions. The glucose produced through photosynthesis is used by the plant
for energy and growth, while the oxygen is released into the atmosphere
as a byproduct. Photosynthesis is essential for the survival of plants
and other photosynthetic organisms, as well as for the overall health of

Chapter 1 LangChain and Python: Basics

31

ecosystems.\nHuman: What happens during the light-dependent reactions?\
nAI: During the light-dependent reactions, also known as the light
reactions, several key processes take place in the thylakoid membranes
of the chloroplast:\n\n1. Absorption of light: Light energy is absorbed
by chlorophyll and other pigments in the photosystems, specifically
Photosystem II and Photosystem I.\n\n2. Water splitting: The absorbed light
energy is used to split water molecules into oxygen, protons (H+ ions),
and electrons. This process releases oxygen as a byproduct.\n\n3. Electron
transport chain: The energized electrons from Photosystem II are passed
along a series of proteins in the electron transport chain, generating ATP
through the process of chemiosmosis.\n\n4. Production of ATP and NADPH: The
flow of electrons through the electron transport chain ultimately leads
to the production of ATP and NADPH, which are both energy carriers used
in the Calvin cycle.\n\nOverall, the light-dependent reactions convert
light energy into chemical energy in the form of ATP and NADPH, which
are then used in the Calvin cycle to produce glucose and other organic
compounds.', 'text': 'Sure! The first passage discusses the importance of
self-care and setting boundaries to prevent burnout. It emphasizes the
need to prioritize mental and physical well-being in order to maintain a
healthy work-life balance.\n\nThe second passage highlights the benefits
of meditation for reducing stress and anxiety. It suggests incorporating
mindfulness practices into daily routines to improve overall mental health
and emotional well-being.'}
chat_memory=InMemoryChatMessageHistory(messages=[HumanMessage(conte
nt='Can you explain what photosynthesis is?', additional_kwargs={},
response_metadata={}), AIMessage(content='Sure! Photosynthesis is the
process by which green plants, algae, and some bacteria convert light
energy, usually from the sun, into chemical energy in the form of glucose
(sugar). This process takes place in the chloroplasts of plant cells
and involves the absorption of carbon dioxide and water, which are
converted into glucose and oxygen through a series of complex chemical
reactions. The glucose produced through photosynthesis is used by the
plant for energy and growth, while the oxygen is released into the
atmosphere as a byproduct. Photosynthesis is essential for the survival
of plants and other photosynthetic organisms, as well as for the overall

Chapter 1 LangChain and Python: Basics

32

health of ecosystems.', additional_kwargs={}, response_metadata={}),
HumanMessage(content='What happens during the light-dependent reactions?',
additional_kwargs={}, response_metadata={}), AIMessage(content='During the
light-dependent reactions, also known as the light reactions, several key
processes take place in the thylakoid membranes of the chloroplast:\n\
n1. Absorption of light: Light energy is absorbed by chlorophyll and other
pigments in the photosystems, specifically Photosystem II and Photosystem
I.\n\n2. Water splitting: The absorbed light energy is used to split
water molecules into oxygen, protons (H+ ions), and electrons. This
process releases oxygen as a byproduct.\n\n3. Electron transport chain:
The energized electrons from Photosystem II are passed along a series
of proteins in the electron transport chain, generating ATP through the
process of chemiosmosis.\n\n4. Production of ATP and NADPH: The flow of
electrons through the electron transport chain ultimately leads to the
production of ATP and NADPH, which are both energy carriers used in the
Calvin cycle.\n\nOverall, the light-dependent reactions convert light
energy into chemical energy in the form of ATP and NADPH, which are then
used in the Calvin cycle to produce glucose and other organic compounds.',
additional_kwargs={}, response_metadata={}), HumanMessage(content='Can
you summarize both for me?', additional_kwargs={}, response_metadata={}),
AIMessage(content='Sure! The first passage discusses the importance of
self-care and setting boundaries to prevent burnout. It emphasizes the
need to prioritize mental and physical well-being in order to maintain a
healthy work-life balance.\n\nThe second passage highlights the benefits
of meditation for reducing stress and anxiety. It suggests incorporating
mindfulness practices into daily routines to improve overall mental health
and emotional well-being.', additional_kwargs={}, response_metadata={})])

�4. Multi-input Chain
This type of chain accepts multiple inputs, which are processed either in parallel or

in sequence depending on the workflow. It allows for more complex scenarios where

various types of data or inputs must be handled together.

Chapter 1 LangChain and Python: Basics

33

•	 Usage: When a task requires different sources of information,

such as combining data from a user input and an external API or

multiple models

•	 Components: Several input sources (e.g., a prompt and a knowledge

base), multiple models, and tools to combine and process the inputs

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import SimpleSequentialChain

Step 1: Define the first prompt to accept a question and context
question_prompt = ChatPromptTemplate.from_messages(
 �[("user", "Given the context: '{context}', answer the question:

'{question}'")]
)
Step 2: Define the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 3: Create the output parser
output_parser = StrOutputParser()

Step 4: Combine the prompt and model into a chain
This is a simple chain that handles multiple inputs (question and
context)
chain = question_prompt | llm | output_parser

Step 5: Define the inputs for the multi-input chain
inputs = {
 "question": "How does photosynthesis work?",
 �"context": "Photosynthesis is the process used by plants to convert

light energy into chemical energy."
}

Chapter 1 LangChain and Python: Basics

34

Step 6: Run the chain with both inputs
response = chain.invoke(inputs)
Output the response
print("Response:", response)

Output:

Response: Photosynthesis works by plants using sunlight to convert carbon
dioxide and water into glucose (sugar) and oxygen. This process takes place
in the chloroplasts of plant cells, where the green pigment chlorophyll
absorbs sunlight and initiates the chemical reactions that produce glucose.
The oxygen produced is released into the atmosphere as a byproduct.

�Why Multi-input?

	 1.	 Multi-input Prompt: The ChatPromptTemplate defines a template

that accepts two inputs: context and question. This prompt will

insert both into the message for the language model.

	 2.	 Model: The ChatOpenAI model (gpt-3.5-turbo) is used to process

the input and generate a response.

	 3.	 Output Parser: The StrOutputParser is used to parse the model’s

response into a string format. We will discuss the output parsers a

bit later in the book.

	 4.	 Chain Construction: The chain combines the prompt, model,

and output parser, handling both the question and context

together as inputs.

	 5.	 Invoke: The .invoke() method is used to pass the inputs (both

the question and the context) to the chain for processing.

�5. Multi-output Chain
A multi-output chain takes an input and produces multiple outputs. This type of chain is

useful when you want to generate different types of results based on a single input, such

as extracting multiple pieces of information or generating multiple response options.

Chapter 1 LangChain and Python: Basics

35

•	 Usage: Use cases where the same input must be processed in

different ways, such as generating summaries, key takeaways, and

action items from a single document

•	 Components: One input, multiple steps or LLM calls, and a set

of outputs

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import LLMChain
from langchain.chains import SequentialChain

Step 1: Define the prompt for generating a summary
summary_prompt = ChatPromptTemplate.from_messages(
 [("user", "Please summarize the following text: {input_text}")]
)

Step 2: Define the prompt for extracting key points
key_points_prompt = ChatPromptTemplate.from_messages(
 �[("user", "Extract the key points from the following text: {input_

text}")]
)

Step 3: Set up the ChatOpenAI model (same model for both tasks)
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
Step 4: Create the output parser
output_parser = StrOutputParser()

Step 5: Create LLMChain for summarization and key point extraction
summary_chain = LLMChain(prompt=summary_prompt, llm=llm, output_
key="summary") # Changed output key to "summary"
key_points_chain = LLMChain(prompt=key_points_prompt, llm=llm, output_
key="key_points") # Changed output key to "key_points"

Step 6: Create a SequentialChain that runs both chains (true
multi-output)
multi_output_chain = SequentialChain(
 chains=[summary_chain, key_points_chain],

Chapter 1 LangChain and Python: Basics

36

 input_variables=["input_text"], # single input passed to both chains
 output_variables=["summary", "key_points"] # two outputs
)

Step 7: Define the input text
input_text = """
Photosynthesis is a process used by plants to convert light energy into
chemical energy. During photosynthesis,
plants take in carbon dioxide (CO2) and water (H2O) from the air and soil.
Within the plant cell, the water is oxidized,
meaning it loses electrons, while the carbon dioxide is reduced, meaning it
gains electrons. This process converts
the water into oxygen and the carbon dioxide into glucose. The plant then
releases the oxygen back into the air,
and stores energy in the form of glucose molecules.
"""

Step 8: Run the multi-output chain using apply() for multiple outputs
outputs = multi_output_chain.apply([{"input_text": input_text}])[0]

Step 9: Output the responses
print("Summary:", outputs['summary'])
print("Key Points:", outputs['key_points'])

Output:

Summary: Photosynthesis is a process where plants convert light energy into
chemical energy by taking in carbon dioxide and water to produce oxygen and
glucose. The plant releases the oxygen and stores the glucose for energy.
Key Points: - Photosynthesis is a process used by plants to convert light
energy into chemical energy.
- Plants take in carbon dioxide and water from the air and soil.
- Water is oxidized and carbon dioxide is reduced during photosynthesis.
- The result is oxygen and glucose production.
- �Oxygen is released back into the air, while glucose is stored as energy
in the plant.

Chapter 1 LangChain and Python: Basics

37

�Why It’s a Multi-output Chain

	 1.	 Single Input: The input (input_text) is passed once and processed

through multiple chains.

	 2.	 Multiple Outputs: The input is processed in two different ways

(summary and key points), and the outputs are stored in distinct

keys (summary, key_points).

	 3.	 Sequential Execution: The SequentialChain ensures that both

chains run in sequence, with the same input generating multiple

outputs in a single invocation.

Handling Multiple Outputs with apply():

•	 Since SequentialChain supports multiple output variables, we use

apply() instead of run() to handle cases where more than one output

is generated. This is essential for returning a dictionary with multiple

output keys.

�6. Router Chain
The router chain acts as a decision-making hub that directs the input to different

subchains based on predefined conditions or classifications. It’s useful when you have

various workflows that depend on the type of input.

•	 Usage: For tasks requiring conditional logic, such as routing

customer queries to the right department (billing, technical support,

etc.) or choosing the right model based on input complexity

•	 Components: A router module that decides which subchain to

invoke, along with those subchains themselves

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

Step 1: Define the prompts for summarization and key points extraction

Chapter 1 LangChain and Python: Basics

38

Summarization prompt
summary_prompt = ChatPromptTemplate.from_messages(
 [("user", "Please summarize the following text: {input_text}")]
)

Key points extraction prompt
key_points_prompt = ChatPromptTemplate.from_messages(
 �[("user", "Extract the key points from the following text: {input_

text}")]
)
Classifier prompt to determine if the input is asking for a "summary" or
"key points extraction"
classifier_prompt = ChatPromptTemplate.from_messages(
 �[("user", "Classify this request as 'summarization' or 'key points

extraction': {input_text}")]
)
Step 2: Define the language model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 3: Define chains using the pipe operator
Chain for classifying input
classifier_chain = classifier_prompt | llm | StrOutputParser()

Chain for summarization
summary_chain = summary_prompt | llm | StrOutputParser()
Chain for key points extraction
key_points_chain = key_points_prompt | llm | StrOutputParser()
Step 4: Define a function to handle the routing based on classification
def router_chain(input_text):
 # Classify the input (is it a request for summarization or key points?)
 classification = classifier_chain.invoke({"input_text": input_text})
 # Route to the appropriate chain based on the classification result
 if "summarization" in classification.lower():
 return summary_chain.invoke({"input_text": input_text})
 elif "key points extraction" in classification.lower():
 return key_points_chain.invoke({"input_text": input_text})

Chapter 1 LangChain and Python: Basics

39

 else:
 # Fallback to the summary chain if the classification is unclear
 return summary_chain.invoke({"input_text": input_text})

Step 5: Define input texts
input_text_1 = "Summarize this text: Photosynthesis is a process used by
plants to convert light energy into chemical energy."
input_text_2 = "Give me the key points of the following text:
Photosynthesis is a process used by plants to convert light energy into
chemical energy."

Step 6: Run the router chain on different inputs
output_1 = router_chain(input_text_1)
output_2 = router_chain(input_text_2)

Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)

Output:

Output 1: Photosynthesis is the process that plants use to convert light
energy into chemical energy.
Output 2: - Photosynthesis is a process used by plants
- Plants convert light energy into chemical energy through photosynthesis

�Why Router Chain?

•	 Prompt Definition: Each prompt is defined using

ChatPromptTemplate.from_messages(). This includes the summary_

prompt, key_points_prompt, and classifier_prompt for routing.

•	 Chained Operations: The chains (classifier_chain, summary_chain,

and key_points_chain) are created using the pipe (|) operator to

chain together the prompt, model (ChatOpenAI), and output parser

(StrOutputParser).

•	 Router Function: The router_chain function first invokes the

classifier_chain to classify the input as either a “summarization” or

“key points extraction” task.

Chapter 1 LangChain and Python: Basics

40

•	 Based on the classification result, it dynamically routes the input to

the appropriate chain (summary_chain or key_points_chain). If the

classification is unclear, it defaults to the summarization chain.

•	 Running the Chain: The router_chain function is run on two

different inputs, input_text_1 and input_text_2, and the outputs are

printed.

�7. Control Flow Chain
A control flow chain allows branching and conditional execution based on the results of

intermediate steps. The workflow can change dynamically depending on the decisions

made at each stage, enabling complex reasoning processes.

•	 Usage: Scenarios where certain actions are taken only if specific

conditions are met, such as checking the confidence level of a

model’s output or validating an API response

•	 Components: Logic that governs branching (e.g., if-else statements),

conditional steps, and error handling mechanisms

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
Step 1: Define prompts for different tasks
Prompt to answer a definition-related question
definition_prompt = ChatPromptTemplate.from_messages(
 [("user", "Define the following concept: {concept}")]
)

Prompt to perform a calculation
calculation_prompt = ChatPromptTemplate.from_messages(
 [("user", "Calculate the following: {calculation}")]
)

Classifier prompt to determine if the input is asking for a "definition"
or a "calculation"
classifier_prompt = ChatPromptTemplate.from_messages(

Chapter 1 LangChain and Python: Basics

41

 �[("user", "Classify this request as 'definition' or 'calculation':
{input_text}")]

)

Step 2: Set up the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
Step 3: Define chains using the pipe operator

Chain for classifying input
classifier_chain = classifier_prompt | llm | StrOutputParser()

Chain for definition tasks
definition_chain = definition_prompt | llm | StrOutputParser()

Chain for calculation tasks
calculation_chain = calculation_prompt | llm | StrOutputParser()

Step 4: Define a function to handle control flow based on classification
def control_flow_chain(input_text):
 # �Classify the input (is it a request for a definition or a

calculation?)
 classification = classifier_chain.invoke({"input_text": input_text})
 # Route to the appropriate chain based on the classification result
 if "definition" in classification.lower():
 concept = input_text.replace("Define", "").strip()
 return definition_chain.invoke({"concept": concept})
 elif "calculation" in classification.lower():
 calculation = input_text.replace("Calculate", "").strip()
 return calculation_chain.invoke({"calculation": calculation})
 else:
 # Default response if classification is unclear
 return "Sorry, I didn't understand your request."

Step 5: Define input texts
input_text_1 = "Define photosynthesis"
input_text_2 = "Calculate 5 + 3"

Chapter 1 LangChain and Python: Basics

42

Step 6: Run the control flow chain on different inputs
output_1 = control_flow_chain(input_text_1)
output_2 = control_flow_chain(input_text_2)

Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)

Output:

Output 1: Photosynthesis is the process by which green plants, algae, and
some bacteria convert light energy, usually from the sun, into chemical
energy in the form of glucose. This process involves the absorption of
carbon dioxide and water, which are then converted into oxygen and glucose
through a series of chemical reactions. Oxygen is released as a byproduct
of this process, making photosynthesis essential for the survival of most
living organisms on Earth.
Output 2: 5 + 3 = 8

�Key Features of the Control Flow Chain

	 1.	 Conditional Logic: The input is processed using conditional

logic to determine which chain (definition or calculation) should

handle the request.

	 2.	 Dynamic Routing: Based on the classification result, the input is

dynamically routed to the appropriate chain.

	 3.	 Flexible Task Handling: This control flow chain can easily be

extended to handle more types of inputs, making it a versatile way

to manage tasks based on user requests.

�8. Retrieval-Aware Chain
This chain is integrated with a retrieval mechanism, such as a vector database or a

search engine, to retrieve relevant information before making decisions or generating

responses. It’s typically used in situations where context or additional data is needed to

complete the task.

Chapter 1 LangChain and Python: Basics

43

•	 Usage: Question-answering systems that need to pull information

from knowledge bases or document repositories to provide

accurate answers

•	 Components: A retrieval component (e.g., vector search or

document retrieval) combined with LLM calls to process the

retrieved information

Note  For the next example, you need to run the command pip install
faiss-gpu as we use faiss.

Example:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
Step 1: Set up the FAISS vector store with embeddings
This example assumes the OpenAI API is configured and available
Define some documents (texts) related to quantum computing
documents = [
 �"Quantum computing is a type of computation that harnesses the

collective properties of quantum states.",
 �"Quantum computers use quantum bits, or qubits, which can represent and

store more information than classical bits.",
 �"The fundamental principle of quantum computing is superposition, which

allows qubits to be in multiple states at once.",
 �"Entanglement is another key property of quantum computing, allowing

qubits to be interconnected no matter the distance."
]

Step 2: Embed the documents using OpenAI embeddings
embeddings = OpenAIEmbeddings() # �Ensure you have OpenAI API keys

configured

Chapter 1 LangChain and Python: Basics

44

Step 3: Create a FAISS vector store from the documents and their
embeddings
vector_store = FAISS.from_texts(documents, embeddings)

Step 4: Define the prompt that will use the retrieved context
retrieval_prompt = ChatPromptTemplate.from_messages(
 �[("user", "Given the following context, answer the question:

{context}")]
)

Step 5: Define the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
Step 6: Define the retrieval-aware chain using FAISS
def retrieval_aware_chain(input_query):
 # Step 6.1: Retrieve relevant documents based on the query
 �retrieved_documents = vector_store.similarity_search(input_query)

FAISS similarity search
 �context = " ".join([doc.page_content for doc in retrieved_

documents]) # Combine documents into a single context
 # Step 6.2: Run the LLM chain with the retrieved context
 �response = (retrieval_prompt | llm | StrOutputParser()).

invoke({"context": context})
 return response

Step 7: Define an input query
input_query = "What is quantum entanglement?"

Step 8: Run the retrieval-aware chain
output = retrieval_aware_chain(input_query)

Step 9: Print the output
print("Output:", output)

Output:

Output: What is entanglement in quantum computing?
Entanglement is a key property of quantum computing that allows qubits to
be interconnected no matter the distance.

Chapter 1 LangChain and Python: Basics

45

�9. Agent Chain
An agent chain is designed to allow a language model to interact with multiple tools or

APIs autonomously. The LLM acts as an agent, deciding which tool to use and when,

allowing for highly dynamic workflows where the model selects the appropriate actions.

•	 Usage: Complex applications where the model must autonomously

decide which action to take, such as querying an API, searching a

database, or executing a code snippet

•	 Components: The agent (LLM) interacts with external tools, APIs, or

modules and follows predefined logic or dynamically generated plans

Example:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.tools import Tool, BaseTool
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
import math

Step 1: Define the tools (calculator and retrieval tool)

Define a calculator tool to perform basic math operations
class CalculatorTool(BaseTool):
 def _run(self, input_query: str) -> str:
 """Run the calculator tool to perform basic arithmetic."""
 try:
 # �Extract the mathematical expression by removing "calculate"

or "Calculate"
 �expression = input_query.lower().replace("calculate", "").

strip()
 �return str(eval(expression)) # Use eval safely for basic

calculations
 except Exception:
 return "Invalid calculation."

Chapter 1 LangChain and Python: Basics

46

 def name(self):
 return "calculator"

 def description(self):
 �return "A simple calculator tool for performing basic arithmetic

operations."

Create an instance of CalculatorTool
calculator_tool = CalculatorTool()

Define the FAISS-based retrieval tool for information retrieval
documents = [
 �"Quantum computing is a type of computation that harnesses the

collective properties of quantum states.",
 �"Quantum computers use quantum bits, or qubits, which can represent and

store more information than classical bits.",
 �"The fundamental principle of quantum computing is superposition, which

allows qubits to be in multiple states at once.",
 �"Entanglement is another key property of quantum computing, allowing

qubits to be interconnected no matter the distance."
]

embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_texts(documents, embeddings)

class RetrievalTool(BaseTool):
 def _run(self, input_query: str) -> str:
 �"""Run the retrieval tool to search the vector store for relevant

information."""
 retrieved_documents = vector_store.similarity_search(input_query)
 return " ".join([doc.page_content for doc in retrieved_documents])

 def name(self):
 return "retrieval"

 def description(self):
 return "A tool for retrieving information about quantum computing."

Chapter 1 LangChain and Python: Basics

47

Create an instance of RetrievalTool
retrieval_tool = RetrievalTool()

Step 2: Define the agent prompt with explicit instructions
agent_prompt = ChatPromptTemplate.from_messages(
 �[("user", "If the query asks to perform a calculation (e.g., 'calculate

5 + 7'), respond with 'calculate'. "
 �"If the query asks for information (e.g., 'What is quantum

computing?'), respond with 'retrieve'. "
 "Input: {input_query}")]
)

Step 3: Define the ChatOpenAI model (the agent)
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 4: Define the agent chain function
def agent_chain(input_query):
 # Ask the agent to classify the task (calculation or retrieval)
 �agent_decision = (agent_prompt | llm | StrOutputParser()).

invoke({"input_query": input_query})

 # Based on the agent's decision, invoke the appropriate tool
 if "calculate" in agent_decision.lower():
 return calculator_tool._run(input_query)
 else:
 return retrieval_tool._run(input_query)

Step 5: Define the input queries
input_query_1 = "Calculate 5 + 7"
input_query_2 = "Explain quantum superposition"

Step 6: Run the agent chain on different inputs
output_1 = agent_chain(input_query_1) # Expecting a calculation result
output_2 = agent_chain(input_query_2) # Expecting information
retrieval result

Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)

Chapter 1 LangChain and Python: Basics

48

Output:

Output 1: 12
Output 2: The fundamental principle of quantum computing is superposition,
which allows qubits to be in multiple states at once. Quantum computing is
a type of computation that harnesses the collective properties of quantum
states. Entanglement is another key property of quantum computing, allowing
qubits to be interconnected no matter the distance. Quantum computers use
quantum bits, or qubits, which can represent and store more information
than classical bits.

�Breakdown of Key Steps of This More Complicated Code

•	 CalculatorTool Definition: A class CalculatorTool is defined,

inheriting from BaseTool.

•	 The _run() method is implemented, which

•	 Strips the word “calculate” from the input query.

•	 Evaluates the remaining mathematical expression (e.g., “5 + 7”)

using eval().

•	 Returns the result of the calculation.

•	 If the evaluation fails (e.g., for invalid expressions), it returns

“Invalid calculation.”

•	 RetrievalTool Definition

•	 A class RetrievalTool is defined, inheriting from BaseTool.

•	 The _run() method is implemented, which

•	 Uses FAISS to perform a similarity search based on the input

query (e.g., “Explain quantum superposition”).

•	 Retrieves relevant documents from the vector store.

•	 Concatenates the content of the retrieved documents into a

single response.

Chapter 1 LangChain and Python: Basics

49

•	 Embedding and Vector Store Setup

•	 A list of documents related to quantum computing is created.

•	 OpenAIEmbeddings are used to embed these documents into

vectors.

•	 The document embeddings are stored in a FAISS vector store,

which allows for similarity-based document retrieval.

•	 Agent Prompt Setup

•	 The agent prompt is defined, providing explicit instructions to
the language model:

•	 If the input asks for a calculation (e.g., “Calculate 5 + 7”), the

model should respond with “calculate.”

•	 If the input asks for information (e.g., “What is quantum

superposition?”), the model should respond with “retrieve.”

•	 Agent Chain Function

•	 The function agent_chain(input_query) performs the
following steps:

•	 Passes the input query to the agent prompt (via the

language model).

•	 The agent responds with either “calculate” or “retrieve,”

based on the task.

•	 Depending on the agent's decision:

•	 If “calculate” is returned, it calls the CalculatorTool to

perform the calculation.

•	 If “retrieve” is returned, it calls the RetrievalTool to fetch

relevant information from the FAISS vector store.

Chapter 1 LangChain and Python: Basics

50

�10. Parallel Chain
A parallel chain allows multiple processes to run simultaneously, with their results

combined at the end. This can improve efficiency when independent tasks can be

processed at the same time.

•	 Usage: Situations where different tasks or models can be executed

in parallel, such as generating multiple drafts of a text or performing

several independent API calls

•	 Components: Multiple parallel operations that feed into a final

aggregation or decision step

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI

Step 1: Set up the OpenAI model
model = ChatOpenAI()

Step 2: Define the chains for independent tasks

Chain to summarize a concept
summarize_chain = ChatPromptTemplate.from_template("Summarize the concept
of {concept}") | model

Chain to provide detailed information about the concept
information_chain = ChatPromptTemplate.from_template("Provide detailed
information about {concept}") | model

Step 3: Set up the parallel chain to run both tasks concurrently
parallel_chain = RunnableParallel(summary=summarize_chain,
information=information_chain)

Step 4: Define the input concept
input_concept = {"concept": "Quantum computing"}

Step 5: Run the parallel chain with the input concept
outputs = parallel_chain.invoke(input_concept)

Chapter 1 LangChain and Python: Basics

51

Step 6: Print the outputs
print("Summary Output:", outputs["summary"])
print("Information Output:", outputs["information"])

Output:

Summary Output: content='Quantum computing is a type of computing that
utilizes the principles of quantum mechanics to perform operations on
data. Unlike classical computing, which uses bits as the fundamental unit
of information, quantum computing uses quantum bits, or qubits, which can
exist in multiple states simultaneously. This allows quantum computers to
perform complex calculations much faster than classical computers, making
them potentially capable of solving problems that are currently infeasible
with traditional computing methods.' additional_kwargs={'refusal': None}
response_metadata={'token_usage': {'completion_tokens': 85, 'prompt_
tokens': 15, 'total_tokens': 100, 'completion_tokens_details': {'audio_
tokens': None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_
tokens': None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125',
'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None}
id='run-748514c4-35eb-4ccc-a3a8-68dee2c3fa74-0' usage_metadata={'input_
tokens': 15, 'output_tokens': 85, 'total_tokens': 100, 'input_token_
details': {'cache_read': 0}, 'output_token_details': {'reasoning': 0}}
Information Output: content='Quantum computing is a type of computing
that uses quantum-mechanical phenomena, such as superposition and
entanglement, to perform operations on data. Unlike classical computing,
which uses bits to represent data as either 0 or 1, quantum computing
uses quantum bits, or qubits, which can exist in multiple states
simultaneously due to superposition.\n\nOne of the key principles of
quantum computing is superposition, which allows qubits to exist in
a state that is a combination of both 0 and 1 at the same time. This
enables quantum computers to perform multiple calculations simultaneously,
making them potentially much faster than classical computers for certain
types of problems.\n\nAnother important concept in quantum computing is
entanglement, which allows qubits to be correlated with each other in
such a way that the state of one qubit can instantly affect the state of
another, regardless of the distance between them. This property enables

Chapter 1 LangChain and Python: Basics

52

quantum computers to perform certain types of operations more efficiently
than classical computers.\n\nQuantum computing has the potential to
revolutionize fields such as cryptography, drug discovery, optimization,
and machine learning by solving complex problems that are currently
infeasible for classical computers. However, quantum computers are
still in the early stages of development and face significant technical
challenges, such as maintaining the coherence of qubits and scaling up
to larger systems.\n\nCompanies such as IBM, Google, and Microsoft are
investing heavily in quantum computing research and development, and there
are also startups and research institutions around the world working on
advancing the field. As quantum computing continues to progress, it holds
the promise of enabling breakthroughs in a wide range of scientific and
technological applications.' additional_kwargs={'refusal': None} response_
metadata={'token_usage': {'completion_tokens': 326, 'prompt_tokens':
13, 'total_tokens': 339, 'completion_tokens_details': {'audio_tokens':
None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_tokens':
None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-
e5913f67-0055-4117-8d86-a5ba913e2dc3-0' usage_metadata={'input_tokens': 13,
'output_tokens': 326, 'total_tokens': 339, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}

�What Does the Code Do?

	 1.	 Model Setup

•	 ChatOpenAI() is instantiated to serve as the language model for

both tasks (summarization and detailed information retrieval).

	 2.	 Chain Definitions

•	 summarize_chain: A prompt asks the model to summarize the

given concept (e.g., “Quantum computing”).

•	 information_chain: A prompt asks the model to provide detailed

information about the same concept.

Chapter 1 LangChain and Python: Basics

53

	 3.	 Parallel Execution with RunnableParallel

•	 RunnableParallel is used to execute both chains concurrently.

•	 Two chains are passed as arguments (summary for the

summarization chain and information for the detailed

information chain), which will run in parallel.

	 4.	 Input Concept

•	 The input concept is a dictionary containing the key “concept”

with the value “Quantum computing.”

•	 This input is passed to both chains.

	 5.	 Running the Chains in Parallel

•	 The invoke() method is called on parallel_chain to execute both

chains concurrently.

•	 The outputs are returned as a dictionary with keys “summary”

and “information.”

	 6.	 Outputs

•	 The outputs from both chains (summary and detailed

information) are printed.

�Key Features of RunnableParallel

•	 Concurrent Execution: Both chains are executed concurrently,

reducing the overall time required for execution.

•	 Flexible Input Handling: The same input (“Quantum computing”)

is passed to both chains, but you can modify it to handle different

inputs for each chain if needed.

•	 Combined Outputs: The results from both chains are combined

into a single output dictionary, where each key corresponds to the

respective chain’s output.

Chapter 1 LangChain and Python: Basics

54

�11. Custom Chain
Custom chains are tailored to the specific needs of an application, combining various

components in novel ways. Developers can create a custom sequence of operations

that fit their unique use case, combining steps from different chain types into a bespoke

workflow.

•	 Usage: When none of the prebuilt chain types meet the specific

requirements of the task, and custom logic, steps, or external

integrations are needed

•	 Components: A combination of modules, tools, logic, and LLMs to

suit the custom requirements of the application

These LangChain chain types provide a flexible framework for building diverse

and sophisticated workflows tailored to the specific needs of different applications.

By combining or modifying these chain types, developers can orchestrate complex

interactions and achieve nuanced, multistep tasks when working with large

language models.

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from langchain_openai import ChatOpenAI

Step 1: Set up the OpenAI model
model = ChatOpenAI()

Step 2: Define the chain for summarizing the concept
summarize_chain = ChatPromptTemplate.from_template("Summarize the concept
of {concept}") | model

Step 3: Define the chain for generating a quiz question based on
the summary
quiz_chain = ChatPromptTemplate.from_template("Create a quiz question based
on the summary: {summary}") | model

Step 4: Create a custom chain that first summarizes, then
generates a quiz
class CustomChain(Runnable):

Chapter 1 LangChain and Python: Basics

55

 def invoke(self, input_data):
 # First, get the summary of the concept
 �summary = summarize_chain.invoke({"concept": input_

data["concept"]})

 # Then, use the summary to generate a quiz question
 quiz_question = quiz_chain.invoke({"summary": summary})

 # Return both the summary and the quiz question
 return {"summary": summary, "quiz_question": quiz_question}

Step 5: Create an instance of the custom chain
custom_chain = CustomChain()

Step 6: Define the input concept
input_concept = {"concept": "Quantum computing"}

Step 7: Run the custom chain with the input concept
output = custom_chain.invoke(input_concept)

Step 8: Print the outputs
print("Summary Output:", output["summary"])
print("Quiz Question Output:", output["quiz_question"])

Output:

Summary Output: content='Quantum computing is a type of computing that
uses quantum-mechanical phenomena, such as superposition and entanglement,
to perform operations on data. This allows quantum computers to process
information much faster than classical computers. Quantum computing has the
potential to revolutionize fields such as cryptography, optimization, and
drug discovery by solving complex problems that are currently intractable
for classical computers.' additional_kwargs={'refusal': None} response_
metadata={'token_usage': {'completion_tokens': 76, 'prompt_tokens':
15, 'total_tokens': 91, 'completion_tokens_details': {'audio_tokens':
None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_tokens':
None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-7
bc1450c-9826-4b69-8677-7d76f6cba1f7-0' usage_metadata={'input_tokens': 15,

Chapter 1 LangChain and Python: Basics

56

'output_tokens': 76, 'total_tokens': 91, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}
Quiz Question Output: content='How does quantum computing utilize
superposition and entanglement to perform operations on data, and
what advantages does this offer over classical computing methods?'
additional_kwargs={'refusal': None} response_metadata={'token_usage':
{'completion_tokens': 28, 'prompt_tokens': 284, 'total_tokens': 312,
'completion_tokens_details': {'audio_tokens': None, 'reasoning_tokens':
0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens':
0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None,
'finish_reason': 'stop', 'logprobs': None} id='run-9cf17c37-ac7c-48ab-b468-
c6ef3b7389f5-0' usage_metadata={'input_tokens': 284, 'output_tokens': 28,
'total_tokens': 312, 'input_token_details': {'cache_read': 0}, 'output_
token_details': {'reasoning': 0}}

�Key Features of a Custom Chain

•	 Custom Processing Logic: The CustomChain class defines a two-

step process: first generating a summary and then creating a quiz

question based on the summary.

•	 Sequential Execution: The chain runs each step in sequence,

passing the result of one step (summary) into the next step (quiz

question generation).

•	 Combined Outputs: The chain returns both outputs (summary and

quiz question) in a single response.

�What Does This Code Do?

•	 Model Setup: Initializes a ChatOpenAI model to handle both

summarization and quiz generation tasks

•	 Summarization Chain: Defines a chain (summarize_chain) that

generates a summary of a concept based on a given input (e.g.,

“Quantum computing”)

•	 Quiz Generation Chain: Defines a chain (quiz_chain) that creates a

quiz question based on the summary of the concept

Chapter 1 LangChain and Python: Basics

57

•	 CustomChain Class

•	 Step 1: Generates a summary of the concept using the

summarize_chain

•	 Step 2: Uses the summary to generate a quiz question with the

quiz_chain

•	 Combined Output: Returns both the summary and the quiz

question as output

•	 Execution: Runs the custom chain by passing the concept

(“Quantum computing”), and the chain outputs both a summary and

a quiz question

•	 Outputs: Prints the generated summary and the quiz question based

on the input concept

�Conclusion
In this chapter, we covered the basics of LangChain and its integration with Python

for building advanced NLP applications. We explored key components such as chains,

prompts, memory, and tools, which enable developers to create flexible and scalable

workflows. LangChain simplifies the process of working with large language models,

allowing for efficient management of context and multistep processing.

By mastering these fundamental concepts, you are now equipped to build a variety

of language model-based applications, from simple chatbots to more complex data

retrieval systems.

In the next chapter, we’ll dive deeper into more advanced components and

conceptions like LangChain Memory, which enables models to retain information

across interactions. We’ll also explore agents and tools in LangChain, which allow

dynamic decision-making, and discuss indexes and retrievers, essential for handling

large datasets efficiently. These advanced features will help you build even more

powerful and context-aware NLP applications.

Chapter 1 LangChain and Python: Basics

59
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_2

CHAPTER 2

LangChain and Python:
Advanced Components
As the fields of machine learning and natural language processing continue to

advance, Python remains at the heart of innovation, providing a robust ecosystem of

tools, libraries, and frameworks. Among these, LangChain has emerged as a powerful

framework tailored specifically to streamline and enhance workflows around large

language models (LLMs). While foundational components of LangChain simplify

common tasks such as chaining models, querying, and prompt management, there

exists an extensive suite of advanced components that significantly expands LangChain’s

utility. This chapter delves into these advanced features, guiding readers through their

purpose, application, and implementation in Python to tackle complex LLM workflows

effectively.

LangChain’s advanced components, including tools for memory management,

custom agent creation, tools, indexes, and retrievers, provide practitioners with a

sophisticated toolkit that caters to varied and challenging use cases. These components

allow developers to push beyond basic model interactions, enabling functionalities

such as real-time memory recall, multiagent systems, and seamless integration of

external data sources, each enhancing the adaptability and intelligence of LLM-based

applications.

In this chapter, we will explore these advanced components in-depth, breaking

down their architecture, discussing best practices, and showcasing practical applications

with Python. By the end of this chapter, readers will be equipped with the knowledge to

leverage LangChain’s full potential in developing customized, resilient, and intelligent

language model applications.

https://doi.org/10.1007/979-8-8688-1475-4_2#DOI

60

We begin by highlighting the evolving role of Python in AI and introducing

LangChain as a powerful framework for building sophisticated LLM-based applications.

The introduction sets the stage for exploring the advanced tools and capabilities that

LangChain offers.

•	 Python’s Role in AI and NLP

	 Python remains the foundational language driving innovation in

machine learning and natural language processing.

•	 Introduction to LangChain

	 LangChain is presented as a framework designed to streamline

the development of applications powered by large language

models (LLMs).

•	 Beyond the Basics

While LangChain simplifies core tasks like chaining and prompt

management, this chapter focuses on its advanced components,

including

•	 Memory systems

•	 Custom agents

•	 External tools

•	 Indexes and retrievers

•	 Capabilities of Advanced Components

These tools enable

•	 Real-time memory recall

•	 Multiagent systems

•	 Contextual and personalized interactions

•	 Integration with diverse external data sources

Chapter 2 LangChain and Python: Advanced Components

61

�LangChain Memory
In developing applications that harness large language models (LLMs), a common

challenge is enabling these models to “remember” past interactions, mimicking

conversational context and continuity. LangChain Memory addresses this by providing

mechanisms to store, retrieve, and utilize conversation history within LangChain

workflows. Unlike traditional stateless models, memory-enabled systems can reference

past exchanges, allowing them to maintain a consistent narrative, track user preferences,

and dynamically adapt responses over time.

This subtopic covers LangChain’s memory capabilities, exploring different memory

types (short-term, long-term, and specialized memory modules) and demonstrating

how each can enhance interactive applications. From personalizing user interactions to

facilitating complex dialogues in customer service or education, LangChain Memory is

a transformative tool for developing applications that feel more intuitive and responsive

to users.

�Understanding LangChain’s Memory Module
In LangChain, the Memory module plays a foundational role in enabling large language

models (LLMs) to retain information between calls of a chain or agent. This persistence

of state is essential in scenarios where the language model benefits from remembering

past interactions, allowing it to make more contextually relevant and informed decisions.

By offering a standard interface for storing and retrieving information across

interactions, LangChain’s Memory module allows developers to equip language models

with memory and continuity. This ability to remember is invaluable for applications such

as personal assistants, autonomous agents, and agent-based simulations, where the model

needs to retain user preferences, previous queries, or other critical details over time.

�Key Capabilities of the Memory Module
The Memory module enables an LLM to maintain a running context by storing user

inputs, system responses, and any other relevant information from past interactions.

This stored data can then be accessed in future interactions, giving the model a sense of

continuity and memory, which results in more accurate, contextually aware responses

and decisions.

Chapter 2 LangChain and Python: Advanced Components

62

�Why Memory Matters
The Memory module transforms a language model from a reactive agent into one that

can adapt and respond based on past interactions. This continuity is crucial for creating

interactive and personalized applications. With memory, the language model can

provide richer responses by leveraging prior knowledge, which is particularly valuable in

applications like personal assistants, customer support agents, and educational tutors.

�When to Use the Memory Module
Use the Memory module whenever you want to build applications requiring context

and continuity across interactions. For instance, a personal assistant application would

benefit from memory as it allows the model to retain user preferences, recall previous

questions, and track ongoing issues. Similarly, in autonomous agents and simulations,

memory allows the model to make decisions that reflect accumulated knowledge,

making interactions feel more coherent and informed.

�Core Processes in the Memory System: Reading
and Writing
Each memory system within LangChain performs two essential tasks: reading from

memory and writing to memory. During any run, the model accesses its memory system

at two key points:

•	 Reading from Memory: Before executing its main logic, the model

reads stored information to augment user inputs, allowing it to make

more informed decisions during processing.

•	 Writing to Memory: After generating a response, the model records

the details of the current interaction to memory, ensuring that this

information is available for future reference.

These read and write operations make it possible for the model to maintain context

across interactions, giving it the ability to build on prior knowledge.

Chapter 2 LangChain and Python: Advanced Components

63

�Structuring a Memory System
When designing a memory system, two core considerations come into play:

•	 State Storage Method: At the heart of the memory system is a

record of all chat interactions. LangChain’s memory module

provides flexibility in how these interactions are stored, ranging from

temporary in-memory lists for quick access to persistent database

solutions for long-term storage.

•	 State Querying Approach: Storing chat logs is straightforward;

the challenge lies in developing algorithms to interpret these logs

meaningfully. A basic memory system might simply display recent

messages, while a more sophisticated system might summarize the

last “K” interactions. The most advanced systems can even identify

entities from stored chats and retrieve relevant details about those

entities when needed in the current session. This adaptability allows

developers to tailor the memory query method to the specific needs

of the application.

LangChain’s Memory module offers a straightforward setup for initiating basic

memory systems while supporting the creation of more advanced and customized

systems as necessary.

By incorporating LangChain’s Memory module, developers can create language

model-driven applications that are not only responsive and adaptive but also capable

of continuous learning and refinement. This module equips LLMs with memory and

context, making them more capable, personalized, and effective in delivering consistent,

user-centric experiences.

Note  LangChain Memory is a powerful feature designed initially to enhance
chatbots’ functionality, by enabling them to retain context and significantly improve
their conversational capabilities. Traditionally, chatbots process each user prompt
independently, without considering the history of interactions. This isolated
approach often results in responses that lack continuity, leading to disjointed and
sometimes unsatisfying user experiences. LangChain addresses this challenge
by offering dedicated memory components that manage and utilize previous

Chapter 2 LangChain and Python: Advanced Components

64

chat messages, seamlessly integrating them into conversational chains. This
functionality is vital for creating chatbots that need to remember prior interactions,
allowing them to provide coherent and contextually relevant responses that feel
more natural and engaging to users.

�LangChain Memory Types
LangChain offers a rich suite of memory types that equip language models with the

ability to remember, recall, and integrate contextual information from prior interactions.

Each memory type is uniquely suited for different use cases, ranging from simple chat

histories to complex knowledge-based and entity-driven contexts. These options allow

developers to build applications with varying levels of depth, persistence, and relational

awareness, creating personalized, coherent, and dynamic user experiences.

Here’s an in-depth look at each type of memory offered by LangChain.

�ConversationBufferMemory
ConversationBufferMemory is a straightforward memory type that stores a verbatim

transcript of all interactions within a session. This approach maintains a full

conversation history, allowing the language model to reference any part of the ongoing

exchange and to provide contextually aware responses.

•	 Use Case: Applications where a complete record of interactions

is valuable, such as detailed customer support systems, coaching

applications, and collaborative brainstorming tools.

•	 Advantages: By keeping all interactions in memory, the model

can access comprehensive context, which helps ensure consistent

responses.

•	 Limitations: For long or continuous interactions, storing a full

transcript can become resource-intensive, potentially leading to

performance issues if not managed correctly. One drawback is that it

retains the complete interaction history (up to the maximum token

limit supported by the specific LLM), which means that for each new

Chapter 2 LangChain and Python: Advanced Components

65

question, the entire prior discussion is sent to the LLM API as tokens.

This can lead to significant costs, as API usage fees are based on the

total number of tokens processed per interaction. Additionally, as

the conversation grows, this can introduce latency, impacting the

model’s response time due to the increasing amount of data being

processed with each API call.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the memory
memory = ConversationBufferMemory(return_messages=True)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)
Example interaction 1
user_input_1 = "Hello, can you help me with some Python code?"

Chapter 2 LangChain and Python: Advanced Components

66

response_1 = conversation_chain.run(input=user_input_1)
print(response_1)
Example interaction 2
user_input_2 = "I need help with writing a loop."
response_2 = conversation_chain.run(input=user_input_2)
print(response_2)
Example interaction 3
user_input_3 = "Thanks! How do I make it run faster?"
response_3 = conversation_chain.run(input=user_input_3)
print(response_3)

Output:

Of course! I'd be happy to help. What do you need assistance with
in Python?
Of course! What kind of loop are you trying to write in Python? Do you have
a specific task or problem that you need help with? Let me know the details
so I can assist you better.
There are several ways you can optimize your Python code to make it run
faster. Here are some tips:
1. **Use appropriate data structures**: Choose the right data structure for
your task. For example, if you need to perform a lot of lookups, consider
using a dictionary instead of a list.
2. **Avoid unnecessary operations**: Make sure your code is not performing
redundant calculations or operations that can be eliminated. Review your
code to see if there are any unnecessary loops or computations.
............

�ConversationBufferWindowMemory
ConversationBufferWindowMemory stores only the last “N” interactions,

essentially creating a rolling window of recent conversation context. Unlike

ConversationBufferMemory, this approach retains only the most recent exchanges,

thereby reducing the storage burden.

Chapter 2 LangChain and Python: Advanced Components

67

•	 Use Case: Ideal for scenarios where only the latest context is relevant,

such as chat-based Q&A or short-session customer support. It’s also

well-suited for lightweight applications where continuity is needed

but only over recent exchanges.

•	 Advantages: It conserves resources by limiting the memory scope,

which is useful for applications handling high volumes of user

interactions.

•	 Limitations: Since it only keeps a limited number of exchanges, this

memory type may lose earlier parts of the conversation, which could

affect continuity in applications where longer context is essential.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferWindowMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the memory with a window of 3 messages
memory = ConversationBufferWindowMemory(k=3, return_messages=True)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,

Chapter 2 LangChain and Python: Advanced Components

68

 prompt=chat_prompt,
 memory=memory
)

Example interactions
interactions = [
 "Hello, can you help me with some Python code?",
 "I need help with writing a loop.",
 "What are some best practices for functions?",
 "How do I make my code run faster?",
 "What should I know about error handling?",
]

Running each interaction and printing the results, focusing on
memory usage
for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

 # Print the current state of memory (only the last k interactions)
 current_memory = memory.load_memory_variables({})['history']
 memory_contents = [msg.content for msg in current_memory]
 print(f"Current Memory State: {memory_contents}\n")

Output:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Of course! I'd be happy to help. What do you need
assistance with in Python?
Current Memory State: ['Hello, can you help me with some Python code?', "Of
course! I'd be happy to help. What do you need assistance with in Python?"]

Interaction 2: User Input: I need help with writing a loop.
Assistant Response: Sure! I can help with that. What specific task or
purpose would you like the loop to achieve?
Current Memory State: ['Hello, can you help me with some Python code?', "Of
course! I'd be happy to help. What do you need assistance with in Python?",

Chapter 2 LangChain and Python: Advanced Components

69

'I need help with writing a loop.', 'Sure! I can help with that. What
specific task or purpose would you like the loop to achieve?']

Interaction 3: User Input: What are some best practices for functions?
Assistant Response: When writing functions in Python, here are some best
practices to keep in mind:
1. **Function Naming**: Choose descriptive and meaningful names for your
functions that reflect their purpose or behavior. Use lowercase letters and
underscores to separate words (snake_case).
2. **Function Length**: Keep your functions concise and focused on a single
task. If a function becomes too long or complex, consider refactoring it
into smaller, more manageable functions….............
Current Memory State: ['Hello, can you help me with some Python code?',
"Of course! I'd be happy to help. What do you need assistance with in
Python?", 'I need help with writing a loop.', 'Sure! I can help with
that. What specific task or purpose would you like the loop to achieve?',
'What are some best practices for functions?', "When writing functions in
Python, here are some best practices to keep in mind:\n\n1. **Function
Naming**: Choose descriptive and meaningful names for your functions that
reflect their purpose or behavior. Use lowercase letters and underscores
to separate words (snake_case).\n\n2. **Function Length**: Keep your
functions concise and focused on a single task. If a function becomes too
long or complex, consider refactoring it into smaller, more manageable
functions.\n\n3. **Function Documentation**: Always include a docstring
at the beginning of your function to describe its purpose, parameters,
and return value. This helps other developers (and your future self)
understand the function's functionality.\n\n4. **Parameter Passing**: Avoid
using global variables inside functions. Instead, pass necessary data as
parameters to make your functions more modular and reusable.\n\n5. **Return
Values**: Clearly define what your function should return, even if it's
None. This makes it easier to understand how the function interacts with
the rest of your code.\n\n6. **Error Handling**: Implement appropriate
error handling within your functions to gracefully handle unexpected
situations and provide meaningful error messages to the user.\n\n7. **Code
Readability**: Write clean and readable code by following Python's style
guide (PEP 8). Use proper indentation, spacing, and naming conventions

Chapter 2 LangChain and Python: Advanced Components

70

to enhance code clarity.\n\n8. **Testing**: Write unit tests for your
functions to ensure they work as expected under different scenarios. This
helps catch bugs early and maintain the reliability of your code.\n\nBy
following these best practices, you can write more maintainable, reusable,
and understandable functions in your Python code."]

Interaction 4: User Input: How do I make my code run faster?
Assistant Response: Improving the performance of your code can involve
various strategies. Here are some general tips to help make your Python
code run faster:
1. **Use Efficient Data Structures**: Choose the appropriate data
structures for your tasks. For example, use dictionaries for fast lookups,
sets for membership tests, and lists for sequential data.
2. **Avoid Unnecessary Loops**: Minimize the number of loops and iterations
in your code. Consider using list comprehensions or built-in functions like
`map()`, `filter()`, and `reduce()`.........
Current Memory State: ['I need help with writing a loop.', 'Sure! I can
help with that. What specific task or purpose would you like the loop to
achieve?', 'What are some best practices for functions?', "When writing
functions in Python, here are some best practices to keep in mind:\n\
n1. **Function Naming**: Choose descriptive and meaningful names for your
functions that reflect their purpose or behavior. Use lowercase letters
and underscores to separate words (snake_case).\n\n2. **Function Length**:
Keep your functions concise and focused on a single task. If a function
becomes too long or complex, consider refactoring it into smaller, more
manageable functions.\n\n3. **Function Documentation**: Always include
a docstring at the beginning of your function to describe its purpose,
parameters, and return value. This helps other developers (and your future
self) understand the function's functionality.\n\n4. **Parameter Passing**:
Avoid using global variables inside functions. Instead, pass necessary
data as parameters to make your functions more modular and reusable.\n\
n5. **Return Values**: Clearly define what your function should return,
even if it's None. This makes it easier to understand how the function
interacts with the rest of your code.\n\n6. **Error Handling**: Implement
appropriate error handling within your functions to gracefully handle
unexpected situations and provide meaningful error messages to the user.\n\

Chapter 2 LangChain and Python: Advanced Components

71

n7. **Code Readability**: Write clean and readable code by following
Python's style guide (PEP 8). Use proper indentation, spacing, and naming
conventions to enhance code clarity.\n\n8. **Testing**: Write unit tests
for your functions to ensure they work as expected under different
scenarios. This helps catch bugs early and maintain the reliability of
your code.\n\nBy following these best practices, you can write more
maintainable, reusable, and understandable functions in your Python code.",
'How do I make my code run faster?', "Improving the performance of your
code can involve various strategies. Here are some general tips to help
make your Python code run faster:\n\n1. **Use Efficient Data Structures**:
Choose the appropriate data structures for your tasks. For example, use
dictionaries for fast lookups, sets for membership tests, and lists for
sequential data.\n\n2. **Avoid Unnecessary Loops**: Minimize the number
of loops and iterations in your code. Consider using list comprehensions
or built-in functions like `map()`, `filter()`, and `reduce()`.\n\n3.
Optimize Algorithm Complexity: Analyze the algorithmic complexity
of your code and try to optimize it. Use efficient algorithms and data
structures to reduce time complexity.\n\n4. **Cache Results**: If certain
calculations or operations are repeated, consider caching the results
to avoid redundant computations.\n\n5. **Use Built-in Functions**: Take
advantage of Python's built-in functions and libraries, as they are often
optimized for performance.\n\n6. **Avoid Global Variables**: Minimize the
use of global variables, as accessing them can be slower compared to local
variables.\n\n7. **Profile Your Code**: Use Python's built-in profiling
tools like cProfile to identify bottlenecks in your code and optimize
the performance-critical sections.\n\n8. **Consider Cython or Numba**:
For computationally intensive tasks, consider using Cython or Numba to
compile Python code to C or machine code for improved performance.\n\
n9. **Optimize I/O Operations**: If your code involves reading or writing
large amounts of data, optimize I/O operations by using buffered I/O or
asynchronous programming.\n\n10. **Parallelize Tasks**: For tasks that
can be parallelized, consider using libraries like `multiprocessing`
or `concurrent.futures` to leverage multiple CPU cores for faster
execution.\n\nBy applying these strategies and considering the specific
requirements of your code, you can optimize its performance and make it run
faster."]

Chapter 2 LangChain and Python: Advanced Components

72

Interaction 5: User Input: What should I know about error handling?
Assistant Response: When it comes to error handling in Python, here are
some key points to keep in mind:

1. **Types of Errors**: Understand the different types of errors that can
occur in your code, such as syntax errors, runtime errors, and logical
errors. Python provides built-in exception classes to handle these errors.
2. **try-except Block**: Use a `try-except` block to catch and handle
exceptions in your code. The `try` block contains the code that might
raise an exception, while the `except` block handles the exception if it
occurs.............
Current Memory State: ['What are some best practices for functions?',
"When writing functions in Python, here are some best practices to keep in
mind:\n\n1. **Function Naming**....."]

�ConversationSummaryMemory
ConversationSummaryMemory creates a running summary of the conversation,

synthesizing essential points while filtering out less relevant details. This summarized

memory offers a condensed view of the interaction, capturing the conversation’s main

ideas, key decisions, and any important details that need continuity.

•	 Use Case: Suitable for applications requiring ongoing context

without an exhaustive log, such as personal assistants, tutoring

systems, or patient tracking in healthcare, where high-level

summaries of conversations provide value.

•	 Advantages: Reduces memory load by storing only summarized

data while retaining crucial context. This balance between detail and

memory efficiency helps create responses that maintain coherence

without overwhelming resources.

•	 Limitations: Summarization may overlook nuances or less

prominent details, which could be essential for some applications.

Developing an effective summarization approach is critical for

making this memory type work well.

Chapter 2 LangChain and Python: Advanced Components

73

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the summary memory
memory = ConversationSummaryMemory(llm=chat_model)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)

Example interactions
interactions = [
 "Hello, can you help me with some Python code?",
 "I need help with writing a loop."
]

Running each interaction and printing the results, focusing on
memory usage

Chapter 2 LangChain and Python: Advanced Components

74

for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

 # Print the current summarized state of memory
 current_summary = memory.load_memory_variables({})['history']
 print(f"Current Memory Summary: {current_summary}\n")

Output:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Sure, I'd be happy to help! What specifically do you
need assistance with in your Python code?
Current Memory Summary: The human asks the AI for help with some Python
code. The AI is willing to assist and asks for specifics about the code
that needs help.
Interaction 2: User Input: I need help with writing a loop.
Assistant Response: Of course! I'd be happy to help. Could you please
provide more details about what you are trying to achieve with the loop in
your Python code?
Current Memory Summary: The human asks the AI for help with some Python
code. The AI is willing to assist and asks for specifics about the code
that needs help, such as details about the loop the human is trying
to write.

�Conversation Summary Buffer Memory
Conversation Summary Buffer Memory combines conversation summarization with

a recent message buffer, offering a memory that captures both high-level context and

recent details. This approach is useful for applications that need to retain the essence of

previous exchanges while keeping immediate context close at hand.

•	 How It Works: Conversation Summary Buffer Memory continuously

updates a summary of the conversation’s main ideas, storing

the most essential points from past interactions. Alongside this

Chapter 2 LangChain and Python: Advanced Components

75

summary, it maintains a small, recent buffer containing the last “N”

messages in full, providing immediate context without overloading

the memory with the entire conversation history.

•	 Use Case: Ideal for applications requiring a mix of long-term

continuity and immediate context, such as personal assistants,

coaching applications, or educational tools. For example, a

therapeutic chatbot might retain a summary of past sessions while

also keeping recent exchanges to stay relevant in ongoing dialogues.

•	 Advantages: This memory type balances memory usage and

contextual richness, keeping a distilled summary to capture key

points over time while retaining recent details. This design ensures

the model can respond with continuity and relevance, even across

extended conversations.

•	 Limitations: Summarization may miss minor details or nuances

not captured in the main summary, which could affect applications

needing precise recall of historical interactions. Additionally,

the limited buffer size means that only a small portion of recent

exchanges is retained verbatim, which may not suit applications that

need a longer-term message history.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryBufferMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Chapter 2 LangChain and Python: Advanced Components

76

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the summary buffer memory with a window of 3 messages
memory = ConversationSummaryBufferMemory(llm=chat_model, max_token_
limit=100)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)

Example interactions
interactions = [
 "Hello, can you help me with some Python code?",
 "I need help with writing a loop."
]

Running each interaction and printing the results, focusing on
memory usage
for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

 # Print the current summarized state of memory
 current_summary = memory.load_memory_variables({})['history']
 print(f"Current Memory Summary and Recent Buffer: {current_summary}\n")

Example:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Of course! I'll do my best to help you with your Python
code. What do you need assistance with?
Current Memory Summary and Recent Buffer: Human: Hello, can you help me
with some Python code?

Chapter 2 LangChain and Python: Advanced Components

77

AI: Of course! I'll do my best to help you with your Python code. What do
you need assistance with?

Interaction 2: User Input: I need help with writing a loop.
Assistant Response: AI: Sure, I'd be happy to help you with writing a
loop in Python. What specific task or goal would you like to achieve with
the loop?
Current Memory Summary and Recent Buffer: Human: Hello, can you help me
with some Python code?
AI: Of course! I'll do my best to help you with your Python code. What do
you need assistance with?
Human: I need help with writing a loop.
AI: AI: Sure, I'd be happy to help you with writing a loop in Python. What
specific task or goal would you like to achieve with the loop?

�Conversation Token Buffer Memory
Conversation Token Buffer Memory manages conversation memory based on a

defined token limit, maintaining recent exchanges within a specified token capacity

rather than message count. This memory type ensures efficient context retention by

storing interactions until a preset token threshold is reached.

•	 How It Works: Conversation Token Buffer Memory tracks the

number of tokens used in each message and trims older interactions

as new ones are added once the token count exceeds the set limit.

By using tokens as the metric, this memory type accommodates

messages of varying lengths without exceeding model

processing limits.

•	 Use Case: Well-suited for applications needing to stay within strict

token constraints, such as chatbots with token-based memory limits

or customer service agents operating within resource constraints. For

instance, a support chatbot could retain recent exchanges within a

token cap, ensuring the model remains within processing capacity

while preserving relevant context.

Chapter 2 LangChain and Python: Advanced Components

78

•	 Advantages: The token-based approach offers flexibility and

efficiency, especially for applications with limited memory resources.

This memory type adapts easily to conversations with variable

message lengths, ensuring that the most recent context is preserved

within a fixed token boundary.

•	 Limitations: Important context may be lost when older messages

are removed due to token limits, which could affect continuity in

longer conversations. Additionally, shorter messages may result in

more frequent trimming if the token cap is low, potentially impacting

continuity in extensive sessions.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationTokenBufferMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the token buffer memory with a small max token limit
memory = ConversationTokenBufferMemory(llm=chat_model, max_token_limit=30)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,

Chapter 2 LangChain and Python: Advanced Components

79

 memory=memory
)

Example interactions
interactions = [
 "Hi, I need help with Python.",
 "How do I create a list?"
]

Run each interaction and print the memory state
for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

 # Print the current state of the token-limited memory buffer
 current_buffer = memory.load_memory_variables({})['history']
 print(f"Current Memory Buffer (Token-Limited): {current_buffer}\n")

Output:

Interaction 1: User Input: Hi, I need help with Python.
Assistant Response: Sure, I'd be happy to help you with Python. What
specifically do you need assistance with?
Current Memory Buffer (Token-Limited): AI: Sure, I'd be happy to help you
with Python. What specifically do you need assistance with?

Interaction 2: User Input: How do I create a list?
Assistant Response: To create a list in Python, you can use square brackets
`[]` and separate the elements with commas. Here's an example:

```python
my_list = [1, 2, 3, 4, 5]
```
In this example, `my_list` is a list containing the numbers 1, 2, 3, 4, and
5. You can create lists with different types of elements, such as strings,
numbers, or even other lists. Let me know if you need further assistance
with lists or any other Python topics!
Current Memory Buffer (Token-Limited):

Chapter 2 LangChain and Python: Advanced Components

80

�KnowledgeGraphMemory
KnowledgeGraphMemory organizes information into a knowledge graph structure,

representing interactions in terms of entities and their relationships. By storing and

linking entities, KnowledgeGraphMemory allows the model to reference and reason

about relationships, creating a structured representation of the conversation history.

•	 Use Case: This memory type excels in applications where

complex relationships or structured knowledge is critical, such

as recommendation engines, expert systems, or domain-specific

assistants (e.g., legal or medical applications). It’s also useful for

situations requiring relational understanding.

•	 Advantages: Provides a structured and rich contextual layer, allowing

the model to perform entity-based reasoning and relational analysis.

It enables advanced interactions where understanding relationships

is crucial.

•	 Limitations: Implementing a knowledge graph structure can be

more complex and computationally intensive than simpler memory

types, especially as the number of entities and relationships grows.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationKGMemory # Ensure this class is
available in your version

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant that keeps track of information in a knowledge graph.")
human_prompt = HumanMessagePromptTemplate.from_template("User: {input}")

Chapter 2 LangChain and Python: Advanced Components

81

Wrap prompts in a ChatPromptTemplate with an expected input variable
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the Knowledge Graph memory
memory = ConversationKGMemory(llm=chat_model)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)

Example interactions
interactions = [
 "Alice is a software engineer.",
 "Alice works at OpenAI.",
 "Bob is Alice's manager.",
]

Run each interaction and print the knowledge graph state
for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 �response = conversation_chain.run(input=user_input)

Passing the user input
 print(f"Assistant Response: {response}")

 # �Retrieve and print all memory variables to check for the
knowledge graph

 try:
 �memory_variables = memory.load_memory_variables({"input": "who is

bob"}) # Provide a dummy input
 print("Memory Variables:", memory_variables)

 except ValueError as e:
 print(f"Error retrieving memory variables: {e}")

Chapter 2 LangChain and Python: Advanced Components

82

Output:

Interaction 1: User Input: Alice is a software engineer.
Assistant Response: Statement added: Alice is a software engineer.
Memory Variables: {'history': 'On Alice: Alice is a software engineer.'}
Interaction 2: User Input: Alice works at OpenAI.
Assistant Response: Got it! Alice works at OpenAI.
Memory Variables: {'history': ''}
Interaction 3: User Input: Bob is Alice's manager.
Assistant Response: Statement recorded: Bob is Alice's manager.
Memory Variables: {'history': 'On Bob: Bob is manager. Bob manages Alice.'}

�EntityMemory
EntityMemory focuses specifically on tracking entities and their relevant details across

interactions. Rather than storing the full transcript, EntityMemory captures only specific

attributes or facts associated with key entities, such as a user’s name, preferences, or

recurring topics.

•	 Use Case: This memory type is particularly valuable for applications

centered around user profiles or personalization, such as customer

service chatbots, ecommerce recommendation systems, and user-

focused applications where remembering specific details about users

enhances the experience.

•	 Advantages: By honing in on relevant entities, EntityMemory helps

the model recall user-specific details efficiently, without the overhead

of full conversations. It’s an effective way to provide a personalized

experience without excessive memory usage.

•	 Limitations: Since only targeted entity information is stored, this

memory type might miss broader context outside of the entity-

specific data, which could affect applications needing holistic

continuity across sessions.

Chapter 2 LangChain and Python: Advanced Components

83

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationEntityMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are
a helpful assistant that keeps track of entities mentioned in the
conversation.")
human_prompt = HumanMessagePromptTemplate.from_template("User: {input}\n")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up the Entity Memory
memory = ConversationEntityMemory(llm=chat_model)

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)

Example interactions
interactions = [
 "Alice is a software engineer.",
 "Alice works at OpenAI.",
 "Bob is Alice's manager.",
]

Run each interaction and print the entity memory state

Chapter 2 LangChain and Python: Advanced Components

84

for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

 # Retrieve and print the current state of entity memory
 �entity_memory = memory.load_memory_variables({"input": "Show me

names?"}).get("entities", "No entities tracked.")
 print(f"Current Entity Memory: {entity_memory}\n")

Output:

Interaction 1: User Input: Alice is a software engineer.
Assistant Response: Got it! Alice is a software engineer.
Current Entity Memory: {'Alice': 'Alice is a software engineer.'}

Interaction 2: User Input: Alice works at OpenAI.
Assistant Response: Got it! Alice works at OpenAI.
Current Entity Memory: {'Alice': 'Alice is a software engineer who works at
OpenAI.', 'OpenAI': 'OpenAI is the workplace of Alice.'}

Interaction 3: User Input: Bob is Alice's manager.
Assistant Response: Got it! Bob is Alice's manager.
Current Entity Memory: {'Alice': 'Alice is a software engineer who works at
OpenAI, and Bob is her manager.', 'OpenAI': 'OpenAI is where Alice works,
and Bob is her manager.', 'Bob': "Bob is Alice's manager."}

�VectorStoreMemory
VectorStoreMemory employs vector embeddings to store conversation elements based

on semantic similarity, rather than literal text. By encoding past interactions into vector

space, this memory type enables retrieval based on conceptual similarity, allowing the

model to identify relevant topics or contexts from previous conversations.

•	 Use Case: This approach is ideal for applications needing rapid

access to related information, such as personalized content

recommendations, topic-based knowledge retrieval, and advanced

conversational systems that require nuanced understanding of user

context over time.

Chapter 2 LangChain and Python: Advanced Components

85

•	 Advantages: Vector-based memory enables flexible and rapid

retrieval, allowing the model to match current queries with

semantically similar past interactions. This enhances contextual

relevance, especially in applications where users revisit similar topics

or inquiries.

•	 Limitations: Vector-based memory requires computational

resources to compute and store embeddings. Additionally, the

retrieval may sometimes favor conceptually similar information over

exact conversational details, which could affect applications where

exact recall is needed.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import VectorStoreRetrieverMemory
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.docstore import InMemoryDocstore
import faiss
import numpy as np

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Initialize the embedding model for vector storage
embedding_model = OpenAIEmbeddings()

Set up FAISS index with the correct embedding dimension
embedding_dim = 1536 # Ensure this matches the dimension of embeddings
index = faiss.IndexFlatL2(embedding_dim)

Set up FAISS vector store with additional required components
vector_store = FAISS(
 embedding_function=embedding_model.embed_query,
 index=index,

Chapter 2 LangChain and Python: Advanced Components

86

 docstore=InMemoryDocstore({}), # Initialize an empty docstore
 index_to_docstore_id={} # Start with an empty ID mapping
)

Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a
helpful assistant with memory capabilities.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

Set up VectorStoreRetrieverMemory with the FAISS vector store
memory = VectorStoreRetrieverMemory(retriever=vector_store.as_retriever())

Create the chain with memory
conversation_chain = LLMChain(
 llm=chat_model,
 prompt=chat_prompt,
 memory=memory
)

Example interactions to store in memory
interactions = [
 "I'm planning a trip to Italy.",
 "Can you suggest some historic sites to visit?"
]

Run each interaction, store it in the vector memory, and display
retrievals
for i, user_input in enumerate(interactions, 1):
 print(f"Interaction {i}: User Input: {user_input}")
 response = conversation_chain.run(input=user_input)
 print(f"Assistant Response: {response}")

Chapter 2 LangChain and Python: Advanced Components

87

 # Retrieve similar memory entries based on the latest user input
 related_memory = memory.retriever.get_relevant_documents(user_input)
 print("\nRelated Memory Entries (from VectorStore):")
 for entry in related_memory:
 print(f"- {entry.page_content}")
 print("\n" + "="*50 + "\n")

Output:

Interaction 1: User Input: I'm planning a trip to Italy.
Assistant Response: That's great! Italy is a beautiful country with so
much to see and do. Do you need any help with planning your trip or
recommendations on places to visit?
Related Memory Entries (from VectorStore):
- input: I'm planning a trip to Italy.
text: That's great! Italy is a beautiful country with so much to see and
do. Do you need any help with planning your trip or recommendations on
places to visit?
==
Interaction 2: User Input: Can you suggest some historic sites to visit?
Assistant Response: Sure! Italy is full of historic sites that are
definitely worth visiting. Here are some popular historic sites in Italy:
1. The Colosseum in Rome: A iconic symbol of ancient Rome, this
amphitheater is one of the most well-preserved Roman structures in
the world.
2. The Roman Forum in Rome: Once the center of Roman public life, the Roman
Forum is a sprawling archaeological site with ruins of ancient government
buildings, temples, and monuments.
3. Pompeii: This ancient Roman city was buried by the eruption of Mount
Vesuvius in 79 AD, preserving it in remarkable detail. You can explore the
well-preserved ruins of homes, temples, and public buildings.
4. The Leaning Tower of Pisa: Located in the city of Pisa, this iconic
tower is known for its distinctive lean and is part of the Cathedral Square
complex, a UNESCO World Heritage Site.

Chapter 2 LangChain and Python: Advanced Components

88

5. The Vatican City: A city-state within Rome, the Vatican is home to St.
Peter's Basilica, the Sistine Chapel, and the Vatican Museums, which house
an incredible collection of art and artifacts.
These are just a few of the many historic sites you can visit in Italy. Let
me know if you need more information or recommendations!

Related Memory Entries (from VectorStore):
- input: Can you suggest some historic sites to visit?
text: Sure! Italy is full of historic sites that are definitely worth
visiting. Here are some popular historic sites in Italy:
1. The Colosseum in Rome: A iconic symbol of ancient Rome, this
amphitheater is one of the most well-preserved Roman structures in
the world.
2. The Roman Forum in Rome: Once the center of Roman public life, the Roman
Forum is a sprawling archaeological site with ruins of ancient government
buildings, temples, and monuments.
3. Pompeii: This ancient Roman city was buried by the eruption of Mount
Vesuvius in 79 AD, preserving it in remarkable detail. You can explore the
well-preserved ruins of homes, temples, and public buildings.
4. The Leaning Tower of Pisa: Located in the city of Pisa, this iconic
tower is known for its distinctive lean and is part of the Cathedral Square
complex, a UNESCO World Heritage Site.
5. The Vatican City: A city-state within Rome, the Vatican is home to St.
Peter's Basilica, the Sistine Chapel, and the Vatican Museums, which house
an incredible collection of art and artifacts.
These are just a few of the many historic sites you can visit in Italy. Let
me know if you need more information or recommendations!
- input: I'm planning a trip to Italy.
text: That's great! Italy is a beautiful country with so much to see and
do. Do you need any help with planning your trip or recommendations on
places to visit?
==

Chapter 2 LangChain and Python: Advanced Components

89

�Selecting the Appropriate Memory Type
Each LangChain Memory type has unique strengths, tailored to specific

application needs:

•	 Full Conversation Memory (ConversationBufferMemory): For

applications needing complete historical context

•	 Recent Context Memory (ConversationBufferWindowMemory): For

lightweight interactions focused on immediate past exchanges

•	 Summarized Context Memory (ConversationSummaryMemory):

For condensed, high-level overviews that retain key points without

storing details

•	 Relational Memory (KnowledgeGraphMemory): For structured

applications needing entity-based reasoning and complex

relationship tracking

•	 Entity-Focused Memory (EntityMemory): For personalized user

experiences based on key details about entities

•	 Semantic Memory (VectorStoreMemory): For flexible, concept-

driven applications that benefit from semantic similarity retrieval

�Implementing Memory in LangChain
To utilize memory effectively within LangChain, developers need to configure the

appropriate memory type based on the application’s requirements. Each type can be

initialized with specific settings that determine how data is stored, retrieved, and utilized

within a conversational chain. Implementing memory in LangChain typically involves

•	 Setting Up the Memory Type: Initialize the selected memory type

and configure its storage limits, retrieval logic, and any other relevant

parameters.

•	 Integrating with the LLMChain: Embed the memory module into

the LLMChain to ensure the model reads from memory during each

call, supplements user inputs with contextual information, and writes

new data back to memory.

Chapter 2 LangChain and Python: Advanced Components

90

•	 Managing Memory Life Cycle: Depending on the application,

developers may need to define how long information persists in

memory and establish any clearing or summarizing protocols as

interactions grow.

LangChain’s memory options provide both flexibility and precision, empowering

developers to create conversational AI systems that adapt seamlessly to user needs,

preserve relevant context, and enhance the coherence of interactions. By selecting the

memory type that best aligns with the application’s goals, developers can build more

responsive, personalized, and efficient conversational agents.

When deploying a LangChain-powered RAG (retrieval-augmented generation)

server in production—especially in environments where multiple replicas or pods are

used, such as in Kubernetes—it is crucial to architect the memory system in a way that

ensures scalability, consistency, and persistence across instances. LangChain’s memory

features are powerful for enabling continuity in conversational AI, but in a stateless

deployment model, developers must externalize memory storage to avoid context loss or

inconsistency between user sessions.

To persist memory across replicas, it is recommended to use an external memory

store. Options include Redis (e.g., via RedisChatMessageHistory); vector databases

like FAISS, Pinecone, Weaviate, or Qdrant for semantic memory; or even traditional

databases such as PostgreSQL or MongoDB for storing structured conversation logs.

These solutions allow all replicas to read from and write to a centralized memory source,

ensuring that user sessions remain consistent regardless of which pod processes the

request.

Each user or conversation should be associated with a unique session identifier—

such as a user_id, session_id, or conversation_id—which should be passed with every

request. This allows the server to correctly retrieve the corresponding memory from

the centralized store. Middleware in your API layer can be used to manage session

resolution and memory access, ensuring the right context is injected into each

interaction with the language model.

While sticky sessions can be used temporarily to route users to the same pod, this

approach is not recommended for long-term scalability or reliability. Centralized

memory storage is a more robust solution, especially in distributed environments that

may auto-scale or experience pod restarts.

Chapter 2 LangChain and Python: Advanced Components

91

Memory management also involves defining life cycle rules. Developers should use

TTL (Time-To-Live) settings or similar expiration mechanisms to automatically clean

up unused or stale memory entries. LangChain also supports summarization strategies

that help reduce memory size over time while retaining core contextual information.

Applications should implement logic to determine when memory should be reset or

archived, such as after a defined period of inactivity or at the end of a conversation

session.

From an operational perspective, logging and monitoring memory access is

essential. Developers should track memory reads, writes, and retrieval times and

set up alerts for failures or inconsistencies. Tools such as Prometheus, Grafana, and

OpenTelemetry can provide visibility into memory performance and help detect

anomalies.

For multitenant applications, memory should be logically partitioned by tenant_id to

ensure data isolation and compliance. Role-based access control should be enforced on

the memory back end to prevent unauthorized access across tenants or sessions.

Prior to production rollout, load testing should be conducted to evaluate memory

pressure under concurrent sessions and long conversations. Testing should verify

that memory retrieval is performant and that API token usage remains within budget,

especially if memory content is included in each prompt sent to the LLM.

In summary, production deployment of memory-enabled RAG servers using

LangChain requires careful planning and infrastructure. By externalizing memory

storage, implementing robust session management, and monitoring life cycle and

performance, developers can build scalable, reliable, and context-aware conversational

systems that maintain coherence across distributed workloads.

�LangChain Document Loaders
LangChain’s Document Loaders simplify data ingestion by offering flexible, modular

ways to load and preprocess data from a wide array of file types and online sources. With

document loaders, users can retrieve structured and unstructured data from formats

such as PDFs, Word documents, web pages, and even APIs, making it easier to analyze,

summarize, or use the content within machine learning applications. This versatility in

data sourcing is crucial for applications involving document search, question answering,

or content generation, where the quality of data input directly impacts results.

Chapter 2 LangChain and Python: Advanced Components

92

Here is an expanded list of some of the popular and specialized document loaders

supported by LangChain, as noted in the LangChain documentation.

�Common Document Loaders

•	 PDF Loaders: Extracts text from PDF files and supports different

parsing methods, making it suitable for documents that include

images, tables, or specific layouts.

•	 Word Document Loader: This loader extracts text from .doc

and .docx formats, making it ideal for processing Microsoft Word

documents.

•	 CSV and Excel Loaders: These loaders bring in data from CSV

and Excel files, organizing tabular data that can be beneficial for

structured datasets, reports, and analytics workflows.

•	 Notion Loader: Enables direct integration with Notion, allowing

users to pull data from Notion pages and databases for teams that

work collaboratively in this platform.

•	 Web Page Loader: A versatile loader that fetches content from

URLs, transforming raw web pages into structured text suitable for

processing in NLP applications.

•	 Google Drive Loader: This loader retrieves documents from Google

Drive, making it easy to process cloud-stored files shared within

organizations or teams.

�Specialized Document Loaders

•	 HTML Loader: Imports data from HTML files, allowing users to

capture structured web content in its native format, often useful for

scraping and processing online content.

•	 Markdown Loader: Processes Markdown files, commonly used for

documentation and technical content, to ensure compatibility in

documentation-heavy workflows.

Chapter 2 LangChain and Python: Advanced Components

93

•	 S3 and Azure Blob Storage Loaders: Connect to cloud storage

solutions like Amazon S3 and Azure Blob Storage, ideal for

organizations with large datasets stored in these services.

•	 Gmail Loader: Retrieves emails from a Gmail account, parsing email

threads for analysis, insights, or summarization.

•	 YouTube Loader: Allows loading transcripts and captions from

YouTube videos, providing an easy way to turn video content into text

for analysis or summarization.

•	 API Loader: A flexible loader that integrates with APIs, allowing users

to bring in real-time data from external services or databases.

•	 Slack Loader: Loads message data from Slack, useful for teams

needing to analyze conversations, gather feedback, or synthesize

team communications.

•	 Dropbox Loader: Connects to Dropbox, enabling access to files

stored in this platform and allowing data analysis for collaborative or

cloud-based environments.

•	 Confluence Loader: Retrieves content from Confluence,

useful for teams using it as their documentation or knowledge

management tool.

•	 GitHub Repository Loader: Pulls text from GitHub repositories,

useful for software documentation, code analysis, or processing

README files and other documentation stored in GitHub.

•	 RSS Feed Loader: Loads data from RSS feeds, making it convenient

for applications needing to stay updated with live information from

news sites, blogs, or other sources.

•	 JSON and XML Loaders: These loaders are used for structured

data in JSON and XML formats, common in APIs, data interchange

formats, and various structured data applications.

By leveraging these document loaders, LangChain allows users to build sophisticated

data pipelines tailored to the specific data needs of their NLP and machine learning

workflows. The wide range of loaders supports various content sources, allowing teams

to seamlessly integrate data from multiple platforms and formats into their applications.

Chapter 2 LangChain and Python: Advanced Components

94

Example:

from langchain.document_loaders import TextLoader
Initialize the TextLoader with the path to the text file
file_path = "example.txt" # Replace with your text file path
loader = TextLoader(file_path)

Load the document
documents = loader.load()

Display the loaded document
for doc in documents:
 print("Document Content:")
 print(doc.page_content)
 print("\nMetadata:")
 print(doc.metadata)

Output:
Depending on your txt file content.

If you don’t have a document feel free to download one with dummy data by using

this command: curl https://sample-files.com/downloads/documents/txt/long-
doc.txt> ./example.txt

�LangChain Embedding Models
An embedding model is a type of machine learning model that converts data, such as

words, sentences, or images, into dense vector representations, often called embeddings.

These embeddings are typically high-dimensional numeric arrays that capture the

semantic or structural characteristics of the input data, allowing similar items to

have similar vector representations. In natural language processing, embedding

models enable computers to understand relationships and meanings between

words or sentences by placing them in a continuous, multidimensional space where

related concepts are closer together. This transformation facilitates tasks like search,

classification, and similarity measurement by making comparisons between items more

efficient and intuitive.

Chapter 2 LangChain and Python: Advanced Components

https://sample-files.com/downloads/documents/txt/long-doc.txt
https://sample-files.com/downloads/documents/txt/long-doc.txt

95

The field of embedding models has undergone substantial development over the

years. A key turning point arrived in 2018 when Google launched BERT (Bidirectional

Encoder Representations from Transformers), a model that transformed text into vector

representations, achieving remarkable performance across numerous NLP tasks. Despite

its advancements, BERT was not optimized for creating sentence embeddings efficiently,

leading to the development of SBERT (Sentence-BERT).

SBERT adapted BERT’s architecture to produce semantically rich sentence

embeddings, which could be quickly compared using similarity metrics like cosine

similarity, significantly reducing the computational demands for tasks such as sentence

similarity searches. Today, the ecosystem of embedding models is varied, with many

providers offering unique implementations. Researchers and practitioners frequently

consult benchmarks like the Massive Text Embedding Benchmark (MTEB) for objective

performance comparisons.

Unified Interface for Embedding Models
LangChain offers a standardized interface to interact with various embedding

models, streamlining the process through two core methods:

•	 embed_documents: Embeds multiple texts (documents)

•	 embed_query: Embeds a single text (query)

This differentiation is essential, as some providers implement distinct embedding

approaches for documents, which are used as searchable content, and for queries, which

serve as the search input. For instance, LangChain’s .embed_documents method can

efficiently embed a list of text strings.

Measuring Similarity in Embedding Space
Each embedding acts as a coordinate in a high-dimensional space, where the

position of each point reflects the meaning of its text. In this space, texts with similar

meanings are located close to one another, akin to synonyms in a thesaurus. Converting

text into numerical representations allows for swift similarity comparisons between text

pairs, independent of their original form or length. Common similarity metrics include

•	 Cosine Similarity: Measures the cosine of the angle between

two vectors

•	 Euclidean Distance: Calculates the straight-line distance between

two points

•	 Dot Product: Determines the projection of one vector onto another

Chapter 2 LangChain and Python: Advanced Components

96

This approach enables meaningful and efficient comparisons, making it a

foundational technique in modern NLP applications.

from langchain_openai import OpenAIEmbeddings
embeddings_model = OpenAIEmbeddings()
embeddings = embeddings_model.embed_documents(
 [
 "Hi there!",
 "Oh, hello!",
 "What's your name?",
 "My friends call me World",
 "Hello World!"
]
)
len(embeddings), len(embeddings[0])

Output:

(5, 1536)

LangChain integrates with a diverse array of embedding models, enabling users

to generate vector representations of text for various applications. Here are 20 notable

embedding models available within LangChain:

	 1.	 OpenAI Embeddings: Provides robust embeddings suitable for a

wide range of natural language processing tasks

	 2.	 Cohere Embeddings: Offers versatile embeddings designed for

tasks such as semantic search and text classification

	 3.	 Hugging Face Transformers: Features a collection of

transformer-based models capable of producing high-quality

embeddings for different languages and domains

	 4.	 Google Vertex AI: Delivers embeddings through Google’s

managed machine learning platform, facilitating seamless

integration with other Google Cloud services

	 5.	 Nomic Embeddings: Specializes in embeddings tailored for

large-scale data visualization and analysis

Chapter 2 LangChain and Python: Advanced Components

97

	 6.	 IBM watsonx.ai: Provides embeddings as part of IBM’s suite of AI

tools, suitable for enterprise applications

	 7.	 Amazon Bedrock: Offers embeddings through Amazon’s fully

managed service, supporting various AI applications

	 8.	 DeepInfra Embeddings: Utilizes serverless inference to provide

access to a variety of LLMs and embedding models

	 9.	 Jina AI: Provides high-performance embeddings optimized for

search and retrieval tasks

	 10.	 GigaChat Embeddings: Offers embeddings designed for

conversational AI applications

	 11.	 GPT4All: A free-to-use, locally running chatbot that provides

embeddings without requiring Internet access

	 12.	 Gradient AI: Allows creation of embeddings and fine-tuning of

LLMs through a simple web API

	 13.	 Fireworks Embeddings: Provides embeddings included in the

langchain_fireworks package for text embedding tasks

	 14.	 Elasticsearch: Generates embeddings using a hosted embedding

model within the Elasticsearch platform

	 15.	 ERNIE: A text representation model based on Baidu Wenxin large-

scale model technology

	 16.	 FastEmbed by Qdrant: A lightweight, fast Python library built for

embedding generation

	 17.	 LASER: Language-Agnostic SEntence Representations by Meta AI,

supporting multiple languages

	 18.	 Llama-cpp: Provides embeddings using the Llama-cpp library

	 19.	 MiniMax: Offers an embeddings service suitable for various

NLP tasks

	 20.	 MistralAI: Provides embeddings through MistralAI’s models,

suitable for diverse applications

Chapter 2 LangChain and Python: Advanced Components

98

These integrations allow users to select the most appropriate embedding model for

their specific needs, leveraging LangChain’s unified interface to streamline the process.

�LangChain Indexes and Retrievers
In LangChain, indexes and retrievers are essential tools that manage large datasets

for applications using large language models (LLMs). These components are critical

in efficiently storing and retrieving relevant information, powering applications like

question-answering (QA) systems, chatbots, document search, and retrieval-augmented

generation (RAG). Here’s an in-depth look at how each of these components works.

�Indexes in LangChain: Structure and Types
Indexes are data structures that organize and store datasets, making them accessible for

quick retrieval. This process typically involves loading documents, breaking them into

manageable chunks, embedding these chunks into vector representations, and creating

indexes. Indexes in LangChain can be of various types, each designed to suit different

application needs.

•	 Document Loading and Chunking: In the indexing process,

documents are first loaded and divided into smaller chunks. Text

splitters are used to create chunks that are small enough for efficient

processing while retaining context. This chunking process is

especially useful for handling large documents that exceed typical

processing limits.

•	 Embedding: Each chunk of text is embedded into a high-

dimensional vector space, where similar content resides near each

other. This embedding step is crucial for vector indexes, which

rely on semantic similarities between vectors to identify relevant

information.

•	 Index Creation: LangChain’s API offers a flexible approach to

creating indexes, allowing developers to build different types of

indexes based on their application needs. By utilizing embedding

models, these indexes capture the nuances of each document,

enabling advanced search capabilities across the dataset.

Chapter 2 LangChain and Python: Advanced Components

99

�Types of Indexes
•	 Vector Indexes: Vector indexes convert document chunks into

vectors that capture their semantic meaning. When a user query

is converted into a vector, the vector index can perform similarity

searches to retrieve documents close to the query in vector space.

This approach is particularly useful for RAG applications, where

contextual relevance is essential.

•	 Keyword Indexes: For applications focused on specific keywords,

keyword indexes use sparse retrieval methods, such as term

frequency-inverse document frequency (TF-IDF) or BM25, to match

exact keywords in the documents. Though quicker than vector

indexes, they are less capable of capturing the deeper semantic

relationships between words.

•	 Hybrid and Custom Indexes: LangChain also supports hybrid

indexes, which combine vector and keyword matching for

applications requiring both semantic and exact keyword relevance.

Custom indexes enable developers to define specialized retrieval

logic, making them adaptable for domain-specific needs.

LangChain’s indexing API is designed to be efficient, tracking document versions

through hashing to ensure that only modified content is reindexed. This setup minimizes

redundant data processing and maintains an up-to-date index.

�Retrievers in LangChain: Querying and Optimization
Retrievers are components that query indexes to extract relevant document chunks

based on a user query. They manage how indexes are searched, with various retrieval

strategies tailored to different types of queries and datasets.

•	 Similarity Search Retriever: Often paired with vector indexes,

similarity search retrievers identify documents whose vector

representations closely match the query vector. This type of retriever

excels at semantic search, where conceptually similar content is

prioritized over exact keyword matches, and is commonly used in

RAG systems, conversational agents, and QA applications.

Chapter 2 LangChain and Python: Advanced Components

100

•	 Sparsity-Based Retriever: This retriever relies on exact keyword

matching and is typically used with keyword indexes. By leveraging

TF-IDF or BM25, sparsity-based retrievers prioritize documents

containing specific terms, making them ideal for applications that

focus on term-specific searches, such as document or product

searches.

•	 Hybrid Retriever: Combining the strengths of vector and sparse

retrieval methods, hybrid retrievers allow for a more flexible

search experience by capturing both conceptual similarity and

exact keyword matches. This versatility is valuable for complex

applications where both semantic relevance and keyword accuracy

are important.

•	 Memory-Based Retriever: Used primarily in conversational

applications, memory-based retrievers retain the context of previous

interactions, enabling continuous dialogue. This continuity is

essential in applications that require long-term engagement, such as

customer service chatbots and virtual assistants.

LangChain’s extensive suite of retrievers provides flexible options for retrieving

documents, data, and context from a wide variety of sources. Each retriever is optimized

for specific types of data, ensuring that users can select a solution tailored to their needs,

whether for research, enterprise knowledge management, or specialized application

domains. Here is more detail on some of the popular retrievers in LangChain:

•	 AmazonKnowledgeBasesRetriever: This retriever interfaces

with Amazon’s knowledge bases, making it suitable for enterprise

environments with a vast knowledge repository in AWS. It enables

streamlined access to structured corporate data and FAQs.

•	 AzureAISearchRetriever: Powered by Microsoft Azure’s AI Search,

this retriever offers advanced capabilities for searching through

large datasets hosted on Azure. It is especially effective in enterprise

settings that rely on the Azure ecosystem for data storage.

•	 ElasticsearchRetriever: Integrating directly with Elasticsearch, this

retriever is highly efficient for indexing and retrieving documents

based on keywords and relevance scoring, ideal for scalable search

applications in both public and private databases.

Chapter 2 LangChain and Python: Advanced Components

101

•	 MilvusCollectionHybridSearchRetriever: This retriever combines

vector-based and scalar searches through Milvus, an open source

vector database. It is optimal for applications requiring both

semantic and traditional keyword matching.

•	 VertexAISearchRetriever: Utilizing Google’s Vertex AI, this retriever

allows developers to perform high-quality searches across datasets

managed within Google Cloud, offering seamless integration with

other Google services and tools.

•	 ArxivRetriever: This retriever accesses scholarly papers directly from

arXiv.org, making it perfect for academic research, literature reviews,

and scientific inquiry.

•	 TavilySearchAPIRetriever: Designed for Internet-wide searches, this

retriever leverages the Tavily API to bring back relevant web results,

useful for general web-based information retrieval.

•	 WikipediaRetriever: Accesses content from Wikipedia, allowing

users to retrieve well-organized information on a wide range of

topics. It’s ideal for summarizing general knowledge and historical

information.

•	 BM25Retriever: BM25 is a classic algorithm in information retrieval,

and this retriever brings it to LangChain without needing an

external search platform. It is useful for applications requiring local,

traditional keyword-based retrieval.

•	 SelfQueryRetriever: Unique in its capability, this retriever processes

and interprets its own queries, offering high flexibility in search tasks

where query understanding is essential.

•	 MergerRetriever: This retriever combines results from multiple

retrievers, aggregating various sources to improve recall and

coverage. It is highly suitable for applications needing diverse data

retrieval.

•	 DeepLakeRetriever: With Deep Lake’s multimodal database, this

retriever accesses complex datasets, including structured and

unstructured data, useful for multimedia or cross-domain projects.

Chapter 2 LangChain and Python: Advanced Components

102

•	 AstraDBRetriever: Leveraging DataStax Astra, this retriever is ideal

for organizations using Cassandra-based databases, combining

scalability with vector capabilities for advanced search functionality.

•	 ActiveloopDeepMemoryRetriever: By utilizing Activeloop’s Deep

Memory system, this retriever can store and retrieve data efficiently,

making it a valuable option for high-performance applications

needing rapid access to historical data.

•	 AmazonKendraRetriever: This retriever integrates with Amazon

Kendra, Amazon’s intelligent search service, allowing for precise and

context-aware search, particularly useful in enterprise environments.

•	 ArceeRetriever: Designed for specialized and secure NLP

applications, this retriever can be adapted to smaller, purpose-

specific language models and secure environments.

•	 BreebsRetriever: As a retriever specifically created for the Breebs

system, it provides an efficient, targeted search for users leveraging

Breebs for NLP tasks.

•	 AzureCognitiveSearchRetriever: This retriever works with Azure

Cognitive Search, which is well-suited for organizations in the

Microsoft ecosystem, offering customizable search options and

robust scalability.

•	 BedrockRetriever: By integrating with Amazon Bedrock, this

retriever provides seamless retrieval capabilities within Amazon’s AI

suite, suitable for AWS-centric machine learning applications.

�End-to-End Workflow: From Indexing to Retrieval
In LangChain’s workflow, indexes and retrievers interact in a streamlined sequence:

•	 Indexing Process: Initially, the document corpus is loaded, divided

into chunks, embedded, and stored within a vector or keyword index.

This indexing step captures each chunk’s semantic meaning and

stores it in a database, like a vector database, which can be used for

quick similarity searches.

Chapter 2 LangChain and Python: Advanced Components

103

•	 Retrieval Process: When a query is made, the retriever

communicates with the relevant index to retrieve the most relevant

chunks. Whether using similarity search, keyword matching, or both,

the retriever pulls information aligned with the query. This retrieved

content is then passed to the LLM, which generates a response by

reasoning over the retrieved data.

�Real-World Applications of LangChain Indexes
and Retrievers
Retrieval-augmented generation (RAG) applications utilize LangChain’s retrievers to

bring in external information in real time, effectively augmenting a model’s knowledge

with up-to-date data. In the RAG framework, the retriever’s role is to select documents

relevant to a user’s query, enabling the LLM to reference specific information during

response generation. This process significantly enhances the quality and accuracy of

generated answers by grounding them in reliable, external sources.

For instance, when the model needs to answer a question about recent scientific

findings or news, RAG ensures that the most relevant and current information is

retrieved and considered. This dynamic integration of external knowledge is particularly

valuable in domains where accuracy and context are crucial, such as medical research,

financial analysis, and technical support, as it allows the model to produce responses

informed by the latest data.

In question-answering (QA) and search systems, LangChain’s retrieval

mechanisms are employed to sift through large datasets, pinpointing the specific

information needed to answer direct queries. This capability is indispensable in

customer support, where users frequently seek answers to targeted questions about

products, services, or policies. Similarly, educational platforms leverage QA systems

to help students and researchers retrieve information from vast databases or digital

libraries.

Here, the retriever works by filtering through indexed content and extracting the

passages most relevant to the query. By presenting the most pertinent information first, QA

applications powered by LangChain’s retrievers improve user satisfaction, reduce search

time, and increase the precision of answers. Research assistants and document-heavy

industries, such as law and academia, can also benefit from QA systems, as they streamline

the retrieval of highly specific knowledge from expansive collections of information.

Chapter 2 LangChain and Python: Advanced Components

104

Conversational agents leverage LangChain’s memory-based retrievers to

create engaging and personalized dialogue experiences. Unlike typical retrieval

tasks, conversational applications require continuity, as users expect the system to

“remember” prior exchanges and respond contextually. Memory-based retrievers

enable these systems to track and recall relevant information from previous interactions,

allowing the agent to build upon past conversations. This is particularly advantageous in

customer service, where understanding a user’s past queries can help address ongoing

issues more effectively, and in personal assistant applications, where maintaining

familiarity with a user’s preferences and history enhances personalization.

For example, in virtual health assistants, memory retention enables the agent to

remember past symptoms or medical advice, providing users with a consistent and

coherent experience across multiple interactions.

Overall, LangChain’s indexes and retrievers are foundational in building robust,

adaptable applications that deliver real-time, accurate, and contextually aware

responses. From dynamically pulling the latest information for RAG to improving

efficiency in QA systems and fostering continuity in conversational agents, these tools

support a wide range of real-world use cases that require precise, responsive, and

intelligent information retrieval.

Example:

from langchain.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.docstore import InMemoryDocstore
from langchain.schema import Document
import faiss

Step 1: Prepare Sample Documents
documents = [
 �Document(page_content="Italy is a beautiful country in Europe, known

for its rich history and culture. It has famous landmarks like the
Colosseum and Leaning Tower of Pisa.", metadata={"title": "About
Italy"}),

Chapter 2 LangChain and Python: Advanced Components

105

 �Document(page_content="Italian cuisine is popular worldwide, with
dishes like pasta, pizza, and gelato. Each region in Italy has its own
unique culinary specialties.", metadata={"title": "Italian Cuisine"}),

 �Document(page_content="Rome is the capital city of Italy, known for its
ancient history and architecture, including the Vatican City and the
Pantheon.", metadata={"title": "Rome - The Capital"})

]

Step 2: Initialize Embeddings and Vector Store
embedding_model = OpenAIEmbeddings()
embedding_dim = 1536 # Ensure this matches the embedding model
index = faiss.IndexFlatL2(embedding_dim)

Set up FAISS vector store
vector_store = FAISS(
 embedding_function=embedding_model.embed_query,
 index=index,
 docstore=InMemoryDocstore({}), # Empty docstore to start
 index_to_docstore_id={} # Start with an empty mapping
)

Add documents to the vector store
vector_store.add_documents(documents)

Step 3: Set Up the Retrieval-Enhanced Generation (RAG) Chain
retriever = vector_store.as_retriever()
llm = ChatOpenAI(model="gpt-3.5-turbo")

Create the RAG chain
rag_chain = RetrievalQA.from_chain_type(
 llm=llm,
 chain_type="stuff",
 retriever=retriever
)

Step 4: Ask Questions and Get Answers
questions = [
 "Tell me about Italy.",

Chapter 2 LangChain and Python: Advanced Components

106

 "What food is Italy famous for?",
 "What are some historical sites in Rome?"
]

for question in questions:
 answer = rag_chain.run(question)
 print(f"Question: {question}")
 print(f"Answer: {answer}\n")

Output:

Question: Tell me about Italy.
Answer: Italy is a beautiful country in Europe, known for its rich history,
culture, and stunning landscapes. It has famous landmarks like the
Colosseum in Rome and the Leaning Tower of Pisa. Rome is the capital city
of Italy, famous for its ancient history and architecture, including the
Vatican City and the Pantheon. Italian cuisine is popular worldwide, with
dishes like pasta, pizza, and gelato being well-loved. Each region in Italy
has its own unique culinary specialties, making it a food lover's paradise.
Question: What food is Italy famous for?
Answer: Italy is famous for dishes like pasta, pizza, gelato, risotto, and
tiramisu. Each region in Italy has its own unique culinary specialties,
making Italian cuisine diverse and beloved worldwide.
Question: What are some historical sites in Rome?
Answer: Some historical sites in Rome include the Colosseum, Roman Forum,
Pantheon, and the Vatican City.

�Using LangChain Indexing API
In this chapter, we explore a foundational workflow for indexing documents

using LangChain’s indexing API. This API allows you to import and synchronize

documents from various sources into a vector store, offering a systematic approach to

managing document data for efficient retrieval. The indexing API supports a range of

optimizations, ensuring that documents are indexed only when necessary, thus saving

both time and computational resources.

Chapter 2 LangChain and Python: Advanced Components

107

One of the primary advantages of the indexing API is its ability to prevent redundant

content in the vector store. By avoiding the reindexing of unchanged documents

and skipping duplicate content, this tool significantly enhances retrieval speed and

efficiency. Furthermore, the API avoids recalculating embeddings for previously indexed

documents unless they have been altered, ensuring that the vector store is always up-to-

date without wasting resources. This workflow aligns particularly well with vector search

applications, where precision and efficiency in document retrieval are paramount.

�Technical Structure of the Indexing API
LangChain’s indexing process relies on a robust mechanism managed by a component

called the RecordManager. This manager serves as a tracker, logging each document

addition to the vector store with essential metadata.

Each document receives a unique hash—a digital signature that represents the

content of both the text and its metadata. This hash, alongside the time of writing and

the document’s source identifier, enables the system to maintain efficient, organized

indexing, even when documents undergo several stages of transformation, such as text

chunking, which divides lengthy texts into smaller, manageable sections for indexing.

�Deletion Modes and Content Maintenance
To maintain an efficient vector store, LangChain offers several deletion modes to handle

outdated or redundant documents. Three main modes—None, Incremental, and Full—
each provide different levels of automation for clearing old or modified data.

•	 The None mode requires manual cleanup, allowing developers to

directly manage obsolete content.

•	 Incremental mode continuously clears out old data as it processes

new content, efficiently minimizing outdated entries.

•	 Full mode, in contrast, performs a complete cleanup after each batch

of documents is indexed, ensuring that no old or duplicate data

remains.

Chapter 2 LangChain and Python: Advanced Components

108

For example, if the content of a document changes, both Incremental and Full
modes will delete the previous version from the vector store. However, if a source

document is removed entirely, Full mode will erase it automatically, while Incremental
will not. This staged approach to deletion ensures the accuracy and efficiency of the

indexing process while maintaining data integrity.

In cases where documents are modified, there may be a brief interval in which both

the old and new versions coexist in the store. Incremental mode minimizes this overlap,

as it cleans up continuously. Full mode, however, clears outdated data only after all new

data has been processed, which may lead to a slightly longer overlap period.

�Requirements and Compatibility
For optimal functionality, it’s recommended to use LangChain’s indexing API with vector

stores that support document management by ID, as this enables precise addition and

deletion operations. Notably, the indexing API is compatible with a wide range of vector

stores, including popular options like Pinecone, Redis, FAISS, and Weaviate. Each of

these stores supports key features such as add_documents and delete methods with ID

arguments, which allow for accurate document management.

Compatible Vector Stores:

•	 Aerospike: High-performance, scalable database for real-time data

storage and retrieval

•	 AstraDB: Distributed, cloud-native database built on Apache

Cassandra for scalable applications

•	 Azure Cosmos DB NoSQL/Vector Search: Microsoft’s scalable

NoSQL database with vector search capabilities

•	 Cassandra: Open source, distributed database designed for

scalability and reliability

•	 Chroma: Vector database optimized for handling

high-dimensional data

•	 Databricks Vector Search: Integrated vector search within

Databricks for enhanced data processing

•	 DeepLake: Vector database for machine learning datasets, optimized

for deep learning workflows

Chapter 2 LangChain and Python: Advanced Components

109

•	 Elastic Vector Search: Vector-based search support within

Elasticsearch for relevant data insights

•	 FAISS: Open source library for fast, approximate nearest neighbor

search, commonly used for vector search

•	 Milvus: Open source, cloud-native vector database optimized for

high-performance similarity search

•	 MongoDB Atlas Vector Search: MongoDB’s vector search

capabilities for enhanced data retrieval

•	 Pinecone: Fully managed vector database for real-time search and

machine learning applications

•	 Qdrant: High-performance vector database supporting semantic

search and similarity matching

•	 Redis: In-memory datastore with modules supporting vector search

for low-latency applications

•	 SingleStoreDB: Distributed SQL database optimized for real-time

analytics and vector search

•	 Supabase Vector Store: Open source alternative to Firebase with

vector storage capabilities

•	 Vespa Store: Open source platform for real-time indexing and

serving of large datasets

•	 Weaviate: Open source vector search engine with built-in NLP

support for semantic search

•	 Tencent VectorDB: Vector database by Tencent for fast, efficient data

retrieval in AI applications

�Important Considerations
LangChain’s RecordManager uses a timestamp-based mechanism for determining

when content should be cleaned. However, in rare situations where two tasks execute

consecutively within a very short time interval, this mechanism may experience

limitations, potentially leaving some content temporarily unprocessed. This issue

Chapter 2 LangChain and Python: Advanced Components

110

is unlikely in practical applications, as the RecordManager uses high-resolution

timestamps, and indexing tasks typically take more than a few milliseconds to complete.

This time-based approach helps ensure accuracy while preserving system performance

and responsiveness.

�Agents in LangChain
In the evolving landscape of artificial intelligence, language models (LLMs) and

frameworks like LangChain have redefined our approaches to data analysis, information

synthesis, and content generation. At the heart of these capabilities lies the concept

of agents—intelligent systems that employ LLMs to orchestrate complex tasks and

make informed decisions. In this chapter, we’ll delve into the dual roles agents play in

harnessing LLMs: as content generators and as reasoning engines.

Leveraging their extensive pretrained knowledge, LLMs can function as content

generators, producing unique, engaging content from scratch. Alternatively, when

deployed as reasoning engines, they synthesize and manage information from multiple

sources, analyzing data and planning actionable steps. Both approaches bring distinct

advantages and challenges, with the optimal use case determined by the task’s

specific needs.

�Defining Agents
In the context of LLMs, agents facilitate the decision-making process by determining

what actions to take and in what sequence. These actions can include using a tool,

observing the results, or generating a response for the user. Effective use of agents allows

AI systems to operate with precision and adaptability.

Agents in LangChain, for instance, employ a high-level API to streamline complex

interactions and decision-making processes. Before diving into practical applications,

understanding key terms is essential:

•	 Tool: A designated function for performing a specific task, such as

conducting a Google Search, querying a database, or executing code

in a Python environment. A tool’s interface typically consists of a

function that accepts a string input and returns a string output.

•	 Language Model (LLM): The core language model that powers the

agent, responsible for understanding and generating text.

Chapter 2 LangChain and Python: Advanced Components

111

•	 Agent: The orchestrating system that integrates LLMs and tools,

executing commands based on user input and contextual cues.

LangChain supports several standard agents accessible through the

high-level API, and customized agents can also be implemented

as needed.

�Types of Agents in LangChain
Currently, most agents in LangChain fall into two primary categories:

	 1.	 Action Agents: Designed for direct, single-action tasks, Action

Agents execute straightforward commands and are ideal for brief,

specific interactions.

	 2.	 Plan-and-Execute Agents: These agents take a broader approach,

planning a sequence of actions to achieve a goal and executing

each action step-by-step. This type is suited for complex, long-

term tasks that require sustained focus. However, the extended

planning process may result in increased latency. A practical

approach is to employ an Action Agent within a Plan-and-Execute

Agent’s workflow, allowing for efficiency without sacrificing depth.

In a typical Action Agent workflow

	 1.	 The agent receives user input and selects the appropriate tool

or action.

	 2.	 The chosen tool is activated, and its output (or “observation”) is

recorded.

	 3.	 The observation, along with the history of actions, is passed back

to the agent to guide the next step.

	 4.	 The agent iterates through this process until it determines no

further actions are required, at which point it provides a direct

response to the user.

Chapter 2 LangChain and Python: Advanced Components

112

�Tools As Extensions of Language Models
Agents gain flexibility and relevance through the use of tools, which extend the

capabilities of LLMs by interfacing with external data sources, APIs, and computational

resources. Tools enable agents to access up-to-date information, run code, and interact

with files—crucial functions given that LLMs are often limited to static, pretrained data.

By incorporating tools, agents can enrich the LLM’s understanding with real-time data

and more precise context, thereby enhancing its decision-making ability.

�Content Generation vs. Reasoning Engines
When employing an LLM through agents, two primary modes of operation emerge:

content generation and reasoning.

	 1.	 Content Generators: In this role, an LLM produces content purely

from its internal knowledge, drawing upon a rich reservoir of

pretrained data to create unique and creative outputs. However,

this can also result in unverified or speculative information, often

referred to as “hallucinations.”

	 2.	 Reasoning Engines: When acting as a reasoning engine, the

agent functions more as an information manager than a creator.

In this mode, it seeks to gather, verify, and synthesize relevant

information, frequently with the aid of external tools. The LLM

draws on data sources related to the topic and constructs new,

accurate content by summarizing and integrating critical insights.

By understanding these dual modes—content generation and reasoning—users

can better tailor LLM-powered agents to meet diverse task requirements, from creative

writing to intricate data analysis, thus maximizing the model’s potential in each unique

application.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool

Chapter 2 LangChain and Python: Advanced Components

113

from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
import os

Define document contents
document1_content = "The capital of France is Paris. Paris is known for its
art, fashion, and culture."
document2_content = "The capital of Japan is Tokyo. Tokyo is famous for its
technology and vibrant city life."

Create Document objects
documents = [
 Document(page_content=document1_content),
 Document(page_content=document2_content)
]

Split text into chunks for vector indexing
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
docs = text_splitter.split_documents(documents)

Create an embedding model for indexing
embedding = OpenAIEmbeddings()

Create a FAISS vector store with the documents and embeddings
vector_store = FAISS.from_documents(docs, embedding)

Initialize OpenAI model using Chat API with gpt-3.5-turbo
llm = ChatOpenAI(model="gpt-3.5-turbo")

Define a tool to query the vector store
def query_vector_store(query: str) -> str:
 results = vector_store.similarity_search(query, k=1)
 �return results[0].page_content if results else "No relevant

information found."

tools = [
 Tool(
 name="Document Index",
 func=query_vector_store,

Chapter 2 LangChain and Python: Advanced Components

114

 �description="Use this tool to answer questions about the capital
cities in the documents."

)
]

Set up the agent
agent = initialize_agent(
 tools=tools,
 llm=llm,
 agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
 verbose=True
)

Ask a question
question = "What is the capital of Japan?"
response = agent({"input": question})
print(response["output"])

How it works:

•	 The agent receives a natural language query ("What is the
capital of Japan?").

•	 It analyzes the input and sees that there’s a tool
available called "Document Index" with a description
suggesting it's useful for capital city questions.

•	 Using the ReAct reasoning, it decides to call the tool
(query_vector_store(...)) with the input.

•	 The tool queries the FAISS vector store for relevant info
and returns the most relevant chunk.

•	 The agent then returns the final answer.

AgentType.ZERO_SHOT_REACT_DESCRIPTION ells LangChain to use an
agent that:

•	 Uses reasoning and tools in a step-by-step fashion (ReAct),

Chapter 2 LangChain and Python: Advanced Components

115

•	 Figures everything out without seeing examples (zero-shot),

•	 Relies on tool names and descriptions to choose the
right action.

Output:

> Entering new AgentExecutor chain...
I should use the Document Index tool to search for the capital of Japan in
the documents.
Action: Document Index
Action Input: "capital of Japan"
Observation: The capital of Japan is Tokyo. Tokyo is famous for its
technology and vibrant city life.
Thought:I now know the final answer
Final Answer: The capital of Japan is Tokyo.

> Finished chain.
The capital of Japan is Tokyo.

�Exploring Autonomous Agents: AutoGPT and BabyAGI
AutoGPT and BabyAGI represent groundbreaking advancements in the realm of

autonomous agents—AI systems designed to accomplish tasks with minimal human

supervision. Their unique ability to independently work toward specific objectives has

garnered significant attention, with AutoGPT amassing over 100,000 stars on GitHub

and sparking global curiosity. These agents offer a glimpse into the future of AI-driven

autonomy and promise transformative applications across various domains.

AutoGPT, an open source platform, utilizes GPT-4 to systematically explore the

Internet, decompose complex tasks into manageable subtasks, and even initiate new

agents to help achieve its goals. BabyAGI operates similarly, integrating GPT-4, a vector

store, and LangChain to create tasks based on prior outcomes and a primary objective.

Although still in development, both systems highlight the immense potential of

autonomous agents and underscore their rapid progress and broad applicability.

Chapter 2 LangChain and Python: Advanced Components

116

Autonomous agents like AutoGPT and BabyAGI appeal to the AI community for

three main reasons:

•	 Minimal Human Involvement: Unlike traditional models that rely

on human input (e.g., ChatGPT), these agents require little guidance

to operate.

•	 Diverse Applications: From personal assistance to task automation,

their potential use cases are expansive.

•	 Rapid Development: The swift evolution of these technologies

signals their potential to revolutionize various industries.

To optimize the performance of autonomous agents, it is essential to set well-defined

goals, which might include generating natural language content, providing accurate

responses, or refining actions based on user feedback.

�What Is AutoGPT?

AutoGPT is an autonomous agent capable of operating independently until it reaches a

specified goal. This agent leverages three core features:

	 1.	 Internet Connectivity: AutoGPT accesses the web in real time,

allowing for ongoing research and information gathering.

	 2.	 Self-Prompting: It generates and organizes subtasks

autonomously to tackle larger goals.

	 3.	 Task Execution: AutoGPT executes tasks, including activating

additional AI agents. However, this feature sometimes encounters

challenges, such as task loops or misinterpretations.

Initially conceived as a general-purpose agent capable of handling virtually any task,

AutoGPT’s broad scope revealed limitations in efficiency. Consequently, the trend has

shifted toward developing specialized agents tailored for specific tasks, thus enhancing

their practical utility.

Chapter 2 LangChain and Python: Advanced Components

117

�How Does AutoGPT Work?

AutoGPT’s design allows it to go beyond simple text generation, transforming it into a

task-oriented agent capable of creating, prioritizing, and executing complex sequences

of actions. This operational model allows AutoGPT to

	 1.	 Understand overarching goals

	 2.	 Break goals into subtasks

	 3.	 Execute tasks

	 4.	 Adjust actions based on contextual information

AutoGPT relies on plug-ins for Internet browsing and other external access. Its

memory module stores context, enabling it to evaluate situations, self-correct, and

reprioritize as necessary. This dynamic feedback loop allows AutoGPT to perform as a

proactive, goal-oriented agent rather than a passive language model.

This independence opens new possibilities in AI-driven productivity but introduces

challenges around control, unintended consequences, and ethical considerations.

�What Is BabyAGI?

Like AutoGPT, BabyAGI is an autonomous agent designed to operate continuously,

drawing from a task list, executing actions, and creating new tasks based on previous

outcomes. However, BabyAGI employs a distinct approach, integrating four specialized

sub-agents to manage its operations:

	 1.	 Execution Agent: Executes tasks by constructing prompts

based on the objective and feeding them to a language model

(e.g., GPT-4)

	 2.	 Task Creation Agent: Generates new tasks from prior task results

and objectives, creating a list of new tasks

	 3.	 Prioritization Agent: Orders tasks based on urgency or

importance

	 4.	 Context Agent: Merges results from previous executions to

maintain continuity across tasks

Chapter 2 LangChain and Python: Advanced Components

118

�Key Features of BabyAGI

BabyAGI exemplifies the potential for autonomous agents to manage and adapt to

complex workflows:

•	 Autonomous Task Management: BabyAGI dynamically generates

new tasks and reprioritizes its task list in response to updated goals or

information.

•	 Efficient Storage and Search: BabyAGI uses GPT-4 for task

execution, a vector database for efficient data storage, and LangChain

for decision-making.

•	 Adaptability: BabyAGI not only completes tasks but also enriches

and stores results in a database, enabling it to learn and evolve based

on new data.

This integration of GPT-4 and LangChain capabilities allows BabyAGI to interact

with its environment and perform efficiently within defined constraints.

�A Practical Implementation of BabyAGI

BabyAGI’s implementation with LangChain provides flexibility; while it currently uses

a FAISS vector store, users can adapt it to other storage solutions. In a recent update (as

of August 2023), LangChain reorganized some experimental features, moving them to a

new library called langchain_experimental. To implement BabyAGI with the updated

LangChain library, install the experimental package and modify code references

accordingly.

AutoGPT and BabyAGI offer a fascinating look into the potential of autonomous

AI. Through continuous innovation, these agents are setting the stage for future AI

systems capable of independent operation, complex decision-making, and task

execution across diverse environments. Whether streamlining workflows, managing

data, or providing real-time assistance, autonomous agents promise to transform AI

from a reactive tool into a proactive, learning system poised to reshape the boundaries of

human–AI collaboration.

Chapter 2 LangChain and Python: Advanced Components

119

�LLM Models in LangChain
�Chat Models
�AI21 Labs

AI21 Labs offers models designed for natural language understanding and generation,

tailored to enhance interaction in various applications.

�Alibaba Cloud PAI EAS

A lightweight, cost-effective AI solution from Alibaba Cloud, PAI EAS facilitates scalable

deployments and high-performance machine learning, suitable for a range of business

applications and data-driven insights.

�Anthropic

Anthropic’s conversational models prioritize safe and interpretable AI interactions,

offering reliable tools and guidance for integration into projects requiring advanced

language understanding.

�Anyscale

Anyscale’s integration with LangChain allows seamless access to scalable chat models,

suitable for enhancing complex AI applications and workflows in diverse environments.

�Azure OpenAI

Microsoft Azure’s OpenAI integration enables developers to deploy and scale OpenAI’s

advanced language models, optimized for a range of applications from customer service

to sophisticated content generation.

�Azure ML Endpoint

A comprehensive platform by Azure for building, training, and deploying machine

learning models, Azure ML Endpoint allows for streamlined deployment of

conversational AI with enterprise-grade scalability.

Chapter 2 LangChain and Python: Advanced Components

120

�Baidu Qianfan

A unified platform from Baidu AI Cloud, Qianfan offers end-to-end solutions for large

model development, from training and deployment to performance tuning and scaling.

�AWS Bedrock

Amazon’s AWS Bedrock provides a foundation for deploying conversational AI models at

scale, backed by robust infrastructure for handling various use cases, including customer

service, virtual assistants, and more.

�Cohere

With a focus on accessible language models, Cohere provides tools for natural language

understanding, enabling quick deployment of conversational AI into customer-facing or

internal applications.

�Databricks

The Databricks Lakehouse Platform unifies data, analytics, and AI, providing an

integrated solution that allows organizations to develop, train, and deploy chat models

efficiently on a single platform.

�DeepInfra

DeepInfra’s serverless AI inference service provides easy access to conversational

models, offering a cost-effective, scalable way to deploy natural language applications

without extensive infrastructure.

�Eden AI

Eden AI aggregates top-tier AI models, uniting various providers under one platform,

enabling developers to seamlessly integrate and compare multiple chat solutions in their

applications.

�EverlyAI

EverlyAI allows users to scale machine learning models in the cloud, providing robust

solutions for integrating conversational AI into applications that need to handle high-

volume interactions.

Chapter 2 LangChain and Python: Advanced Components

121

�Fireworks

Fireworks AI chat models offer powerful language capabilities tailored for customer

service, education, and content generation, designed to help businesses implement

responsive, intuitive AI.

�GigaChat

Integrated with LangChain, GigaChat enables the development of conversational AI

with a focus on providing adaptive, context-sensitive responses, ideal for interactive

applications.

�Google AI

Google AI offers a comprehensive suite of chat models designed for seamless interaction,

optimized to support complex, multiturn conversations in various application scenarios.

�Google Cloud Vertex AI

Vertex AI on Google Cloud delivers advanced chat model solutions, allowing developers

to train, optimize, and deploy large language models that drive enhanced user

interactions.

�GPTRouter

GPTRouter serves as an open source API gateway, enabling easy access and routing

across various large language models, simplifying the deployment of conversational AI

in diverse projects.

�Groq

Groq’s chat models provide a high-speed solution for conversational AI, helping

businesses implement responsive, scalable models that perform well in interactive, real-

time environments.

Chapter 2 LangChain and Python: Advanced Components

122

�ChatHuggingFace

Hugging Face offers an extensive library of chat models that can be easily integrated

with LangChain, allowing developers to experiment with and deploy a variety of

conversational AI solutions.

�IBM watsonx.ai

IBM’s watsonx.ai foundation models are designed for enterprise-grade conversational

AI, providing reliable and secure solutions for handling complex customer interactions

and data management.

�JinaChat

JinaChat’s models bring efficient natural language processing capabilities to a range of

applications, making it easy to integrate responsive AI into both customer-facing and

internal platforms.

�Kinetica

Kinetica’s AI tools support transforming natural language into actionable data insights,

making it a valuable platform for conversational AI that interacts with and analyzes real-

time data.

�LiteLLM

LiteLLM provides simplified access to major language models like Anthropic, Azure, and

Hugging Face, streamlining the deployment of conversational AI in diverse applications.

�LiteLLM Router

LiteLLM’s Router enables seamless integration and routing among various chat model

providers, offering flexibility and ease of management across different AI platforms.

�Llama 2 Chat

Llama 2 Chat integrates Llama-2 large language models with additional chat capabilities,

creating a robust tool for applications requiring natural language understanding and

conversation.

Chapter 2 LangChain and Python: Advanced Components

123

�Llama API

LlamaAPI offers hosted language models through LangChain, allowing developers to

deploy and manage interactive conversational applications efficiently.

�LlamaEdge

LlamaEdge enables local and cloud-based deployment of LLMs in GGUF format,

providing flexible, efficient options for integrating chat capabilities.

�Llama.cpp

The Llama.cpp Python library provides simple bindings for lightweight Llama models,

making it easier to integrate and experiment with conversational AI solutions.

�maritalk

Maritalk introduces its conversational models with a focus on responsive, user-friendly

dialogue capabilities suitable for various customer-facing applications.

�MiniMax

MiniMax offers large language models geared toward enterprise applications, providing

reliable, scalable solutions for complex conversational tasks.

�MistralAI

MistralAI offers robust tools and guidance for deploying conversational models that can

handle multiturn interactions in diverse applications.

�MLX

MLX’s chat models facilitate conversational AI use, helping developers integrate intuitive

and responsive dialogue systems into their projects.

�Moonshot

Moonshot, a Chinese startup, provides enterprise-focused large language models,

offering scalable AI solutions for businesses across various industries.

Chapter 2 LangChain and Python: Advanced Components

124

�Naver

Naver provides an intuitive platform for conversational AI, enabling users to deploy and

customize chat models for interactive applications.

�NVIDIA AI Endpoints

NVIDIA’s AI Endpoints deliver high-performance chat models that cater to complex

interactions, making it suitable for applications requiring advanced conversational

capabilities.

�ChatOCIModelDeployment

Oracle’s OCIModelDeployment chat models offer seamless integration within Oracle’s

ecosystem, facilitating enterprise-grade conversational AI.

�OCIGenAI

Oracle’s GenAI models allow users to leverage AI capabilities with a focus on reliability,

scalability, and seamless deployment across diverse environments.

�ChatOctoAI

OctoAI provides access to efficient compute resources, enabling developers to integrate

fast and responsive conversational AI models into their projects.

�Ollama

Ollama allows users to run open source models like LLaMA either locally or in the cloud,

providing a flexible solution for deploying conversational AI.

�OpenAI

OpenAI’s chat models offer advanced language capabilities, making it easy to implement

responsive and accurate conversational AI for various use cases.

Chapter 2 LangChain and Python: Advanced Components

125

�Perplexity

Perplexity AI models offer tools for natural language processing and conversational AI,

supporting accurate and dynamic user interactions.

�PremAI

PremAI is an all-in-one platform simplifying the development of robust chat

applications, helping users create, train, and deploy conversational AI quickly.

�PromptLayer ChatOpenAI

PromptLayer connects with OpenAI models to log and track interactions, making it

easier to monitor and improve conversational performance.

�SambaNovaCloud

SambaNovaCloud’s chat models provide scalable conversational AI options, ideal for

applications with high volumes of complex interactions.

�SambaStudio

SambaStudio facilitates the deployment and management of chat models, offering a

comprehensive solution for organizations looking to integrate conversational AI.

�Snowflake Cortex

Snowflake Cortex integrates large language models directly within the Snowflake

platform, enabling seamless access to chat models alongside analytics.

�solar

Solar-powered AI solutions for sustainable applications in natural language processing

and conversational AI.

�SparkLLM Chat

iFlyTek’s SparkLLM offers a powerful conversational AI model, providing high-quality

language understanding and interaction capabilities.

Chapter 2 LangChain and Python: Advanced Components

126

�Nebula (Symbl.ai)

Nebula from Symbl.ai specializes in conversation analytics, supporting businesses with

models designed for complex conversational analysis and interaction.

�Tongyi Qwen

Alibaba’s DAMO Academy developed Tongyi Qwen, a large language model offering

advanced conversational capabilities suitable for various applications.

�Upstage

Upstage’s chat models are designed for quick integration, providing a flexible solution

for conversational AI in customer service and engagement applications.

�vLLM Chat

vLLM can be deployed to mimic the OpenAI API, offering users a flexible, compatible

chat model that integrates easily into existing workflows.

�Volc Enging Maas

Volc Enging Maas chat models offer a scalable AI platform for businesses looking to

integrate conversational AI solutions.

�YandexGPT

YandexGPT’s models are available via LangChain, enabling integration with Yandex’s

conversational AI for localized and global applications.

�Supported LLMs
•	 AI21 Labs: Juristic models for legal and technical language in natural

interactions

•	 Aleph Alpha: Luminous models for text understanding and

generation, ideal for content creation and support

•	 Alibaba Cloud PAI EAS: Comprehensive platform for scalable AI

model training, deployment, and management

Chapter 2 LangChain and Python: Advanced Components

127

•	 Amazon API Gateway: Managed API service for easy deployment

and management of back-end services

•	 Anyscale: Fully managed Ray platform for distributed AI applications

•	 Azure ML: End-to-end platform for building, training, and deploying

machine learning models

•	 Azure OpenAI: Deployment of OpenAI models through Azure for

advanced NLP

•	 Baichuan LLM: Large language model focused on conversational AI

for health and well-being

•	 Baidu Qianfan: Platform for training, deploying, and optimizing

large language models on Baidu AI Cloud

•	 Baseten: Simplifies model deployment and operation within the

LangChain ecosystem

•	 Beam: API wrapper for deploying large language models with

scalable resources

•	 Bedrock (Amazon): Documentation for integrating NLP models

within Amazon’s infrastructure

•	 Clarifai: AI platform for managing the full AI life cycle, from data

preparation to deployment

•	 Cloudflare Workers AI: Edge-deployed generative models for low-

latency language AI

•	 Cohere: Models for natural language processing, enhancing

language understanding and interaction

•	 Databricks: Lakehouse platform for unified data, analytics, and AI

model management

•	 DeepInfra: Serverless AI service for easy deployment of

language models

•	 Eden AI: Aggregated API access to top AI models, supporting diverse

AI integrations

Chapter 2 LangChain and Python: Advanced Components

128

•	 ExLlamaV2: Optimized library for running large models on local

hardware

•	 ForefrontAI: Platform for fine-tuning and deploying open source

language models

•	 GigaChat: Tools for interactive conversational AI in dynamic

environments via LangChain

•	 Google Vertex AI: Model deployment and scaling tools for machine

learning workflows

•	 GPT4All: Open source ecosystem for robust conversational agents

•	 Gradient: Supports model fine-tuning and deployment, integrated

with LangChain

•	 Hugging Face: Extensive model repository for deploying and

managing NLP models

•	 IBM watsonx.ai: Enterprise-grade tools for managing large

language models

•	 Intel IPEX-LLM: PyTorch library optimized for running models on

Intel CPUs/GPUs

•	 Llama.cpp: Lightweight bindings for Llama models in Python

applications

•	 Minimax: Chinese startup providing NLP services and

conversational AI

•	 Modal: Serverless compute platform for easy AI deployment

•	 MosaicML: Managed inference for NLP applications, supporting

model customization

•	 NLP Cloud: Scalable NLP models for companies via API

•	 NVIDIA: High-performance model deployment on NVIDIA hardware

•	 Oracle Generative AI: Oracle’s scalable infrastructure for AI model

training and deployment

Chapter 2 LangChain and Python: Advanced Components

129

•	 OpenAI: Guidance for integrating OpenAI’s models in various

applications

•	 OpenLLM: Open platform compatible with OpenAI’s API for model

management

•	 OpenVINO: Toolkit for running AI models on Intel hardware

•	 Replicate: Cloud platform for easy access and deployment of

AI models

•	 SageMaker: Amazon’s platform for building and deploying machine

learning models

•	 SambaNova: Tools for running and managing open source models in

enterprise applications

•	 SparkLLM: iFlyTek’s large language model for complex NLP tasks

•	 StochasticAI: Platform for AI model life cycle management

•	 TextGen: Gradio-based web UI for interactive content generation

•	 Titan Takeoff: Tools for small, efficient language models in business

•	 Together AI: Collaborative language models for distributed

environments

•	 Tongyi Qwen: Alibaba’s model for broad NLP applications

•	 Writer: AI-driven platform for generating multilingual content for

marketing and writing

•	 Xorbits Inference (Xinference): Scalable library for large language

model serving

•	 YandexGPT: Integration support for multilingual capabilities with

YandexGPT

Chapter 2 LangChain and Python: Advanced Components

130

�LLMs vs. Chat Models
�Large Language Models (LLMs)
Large language models are AI systems trained on vast amounts of text data to perform a

broad range of language tasks, such as summarization, text generation, translation, and

sentiment analysis. LLMs, like OpenAI’s GPT, are primarily designed for general-

purpose language processing and can be adapted to various applications by using

prompt engineering, fine-tuning, or transfer learning. They generate responses based on

context without specific training for conversational flows, making them versatile but less

specialized for natural, interactive dialogue.

�Key Characteristics of LLMs

•	 General Purpose: Capable of handling a broad spectrum of

language tasks

•	 Few-Shot and Zero-Shot Learning: Can handle tasks with minimal

examples or prompts

•	 Less Interactive: Not optimized specifically for dynamic

conversation or managing turns in a dialogue

�Chat Models
Chat models are specialized derivatives or adaptations of LLMs fine-tuned specifically

for conversational AI, making them better suited to applications like customer service

bots, virtual assistants, or real-time chat interactions. These models have been trained

on conversational data, allowing them to understand and manage conversational

nuances such as tone, context retention, multiturn dialogue, and even empathy. They

are optimized to handle back-and-forth interactions with users and manage context over

extended exchanges.

�Key Characteristics of Chat Models

Here are the key characteristics of chat models (Table 2-1):

Chapter 2 LangChain and Python: Advanced Components

131

•	 Dialogue-Focused: Trained on conversational data for a more

interactive, turn-based flow

•	 Context Management: Maintains context across multiple dialogue

turns, supporting natural back-and-forth interactions

•	 User Alignment: Often refined for specific use cases like customer

support, virtual assistants, and real-time conversation

•	 AI21: High-quality embeddings in LangChain for tasks like

information retrieval, recommendations, and text similarity

•	 Aleph Alpha: Semantic embeddings with Luminous models for

document comparison and search

•	 Anyscale: Embeddings optimized for distributed AI applications,

supporting large-scale deployments

•	 AwaDB: AI-native database focused on scalable embedding storage

and retrieval for AI insights

•	 AzureOpenAI: Scalable embedding models for intelligent search and

text applications

•	 Baidu Qianfan: Unified platform for embedding and model

management on Baidu AI Cloud

•	 Bedrock (Amazon): Managed embedding service with diverse

models for NLP applications

Table 2-1.  Key Characteristics of Chat Models

Feature LLMs Chat Models

Purpose Broad language tasks Optimized for conversation

Training Data General Internet or document data Conversational data

Context
Management

Limited in longer interactions Manages context across exchanges

Interaction Style One-off responses Multiturn, interactive

Use Cases Content creation, summarization,

analysis, image analysis and generation

Chatbots, customer service, virtual

assistants

Chapter 2 LangChain and Python: Advanced Components

132

•	 BGE on Hugging Face: High-quality vector embeddings for search

and retrieval

•	 Clarifai: End-to-end AI platform with embedding generation and

data management tools

•	 Cloudflare Workers AI: Distributed embeddings with reduced

latency for global data access

•	 Cohere: Embeddings in LangChain for natural language

understanding and data-centric applications

•	 Databricks: Lakehouse platform integrating embeddings with large-

scale data processing

•	 DeepInfra: Serverless embeddings for real-time applications

•	 EDEN AI: Platform with diverse embedding options for search,

categorization, and similarity scoring

•	 Elasticsearch: Embedding support for enhanced search relevance

and data-driven insights

•	 FastEmbed by Qdrant: Lightweight, high-speed embedding library

for real-time applications

•	 Fireworks: Flexible embeddings for search and clustering in

LangChain

•	 GigaChat: Efficient embeddings for AI-driven applications and high-

interaction tasks

•	 Google Vertex AI: Enterprise embeddings optimized for large-scale

data management

•	 GPT4All: Local embeddings focused on privacy for offline

applications

•	 Gradient: Platform for embedding generation and fine-tuning for

specific data needs

•	 Hugging Face: Versatile embeddings accessible through LangChain

for NLP workflows

Chapter 2 LangChain and Python: Advanced Components

133

•	 IBM Watsonx.ai: Enterprise-grade semantic embeddings for data

processing and analytics

•	 Intel Transformers: Optimized, quantized embeddings for efficient

data representation

•	 Jina: Embedding support for search, recommendation, and indexing

•	 John Snow Labs: Healthcare-focused embeddings for scientific text

•	 LASER by Meta AI: Multilingual embeddings for cross-lingual

applications

•	 Llama.cpp: Efficient bindings for Llama embeddings in constrained

environments

•	 LocalAI: Local, cloud-free embeddings for secure data processing

•	 MiniMax: Robust embeddings supporting complex NLP tasks

•	 ModelScope: Repository with multilingual embedding options

•	 MosaicML: Managed embeddings for scalable, customizable data

representation

•	 Naver: High-performance embeddings for search, translation, and

indexing

•	 NLP Cloud: Secure, fast embeddings for reliable semantic tasks

•	 NVIDIA NIMs: NVIDIA-optimized embeddings for high-

performance AI

•	 Oracle Generative AI: Scalable, managed embeddings for enterprise

applications

•	 OpenAI: High-quality embeddings for similarity matching and

clustering

•	 OpenClip: Open source multimodal embeddings linking text

and images

•	 OpenVINO: Intel-optimized embeddings for efficient language

model deployment

Chapter 2 LangChain and Python: Advanced Components

134

•	 Oracle AI Vector Search: Embeddings for AI-driven database

applications

•	 Pinecone: Vectorized storage and retrieval powering search and

recommendation

•	 SageMaker (Amazon): Large-scale embedding generation for

managed AI infrastructure

•	 SambaNova: Scalable embeddings for complex data needs in AI

applications

•	 Sentence Transformers on Hugging Face: High-quality embeddings

for search and clustering

•	 SpaCy: Embeddings for text classification and similarity tasks

•	 TensorFlow Hub: Pretrained models for NLP embedding

deployment

•	 TextEmbed: REST API for scalable, low-latency embedding

generation

•	 Titan Takeoff: Lightweight embeddings for cost-effective AI in

business

•	 Together AI: Collaborative embeddings for distributed applications

•	 Voyage AI: Advanced embeddings for analytics and

recommendations

•	 YandexGPT: Multilingual embeddings for diverse language tasks

�Instruct Models
Instruct models are a specialized class of language models fine-tuned to follow natural

language instructions, making them highly effective for task-oriented and interactive

applications. Unlike base models—which are primarily trained to predict the next word

in a sequence—instruct models are designed to interpret user input as a directive and

respond with relevant, goal-focused outputs. This makes them especially useful in

frameworks like LangChain, where agents are expected to make decisions, use tools, and

complete multistep reasoning tasks based on a single user prompt.

Chapter 2 LangChain and Python: Advanced Components

135

In LangChain, instruct models are crucial for agent types, which require the model to

understand tool descriptions, choose the right tools, and execute tasks in a step-by-

step manner using the ReAct (Reasoning and Acting) paradigm. For example, when a

user asks, “What is the capital of Japan?”, an instruct model can identify that a knowledge

lookup is needed, select a vector search tool, retrieve the relevant information, and

present a concise answer—all without requiring hard-coded logic or examples.

These models work exceptionally well in scenarios where clarity, precision,

and contextual relevance are important. They reduce the need for complex prompt

engineering and support a wide range of applications such as question answering,

summarization, data extraction, content generation, and conversational agents.

�Key Benefits of Instruct Models

•	 Follow natural language instructions without needing detailed

prompt formatting

•	 Understand and use external tools when paired with agent

frameworks

•	 Perform multistep reasoning and planning

•	 Ideal for applications requiring structured output or task completion

�A Comprehensive List of Popular Instruct Models

•	 OpenAI

•	 text-davinci-003

•	 gpt-3.5-turbo

•	 gpt-4

•	 Anthropic

•	 Claude 1, Claude 2, Claude 3

•	 Google DeepMind

•	 Gemini Pro

•	 Gemini Ultra

Chapter 2 LangChain and Python: Advanced Components

136

•	 Meta

•	 LLaMA 2 Chat

•	 LLaMA 3 Chat

•	 Mistral

•	 Mistral Instruct v0.2

•	 Mixtral (Mixture of Experts) Instruct

•	 Cohere

•	 Command R

•	 Command R+

•	 Command Light

•	 Amazon

•	 Titan Text Lite

•	 Titan Text Express

•	 TII (Technology Innovation Institute)

•	 Falcon-7B-Instruct

•	 Falcon-40B-Instruct

•	 MosaicML

•	 MPT-7B-Instruct

•	 Databricks

•	 Dolly v2

•	 Open Source Community

•	 Alpaca

•	 Vicuna

•	 OpenChat

•	 Nous-Hermes

Chapter 2 LangChain and Python: Advanced Components

137

•	 Zephyr

•	 Orca

•	 Baize

These instruct models are foundational for building intelligent agents and

chat systems that can understand tasks, interact with tools, and produce reliable,

context-aware responses. Selecting the right instruct model depends on the use case,

performance requirements, and whether the deployment is cloud-based or local.

�Summary
LangChain’s advanced components—like memory modules, embedding models,

document loaders, retrievers, and agents—offer powerful building blocks for creating

intelligent, context-aware applications. These tools allow developers to go beyond

simple prompt chaining, enabling capabilities such as conversational memory, dynamic

reasoning, document search, and seamless integration with external tools and data

sources. With these components, LangChain empowers developers to build robust,

adaptive systems tailored to real-world needs.

In the next chapter, we’ll explore how to apply these features by developing a variety

of advanced, practical applications. From personal assistants and customer support bots

to document Q&A systems and multiagent workflows, we’ll walk through real use cases

that demonstrate LangChain’s full potential in action.

Chapter 2 LangChain and Python: Advanced Components

139
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_3

CHAPTER 3

Building Advanced
Applications Powered
by LLMs with LangChain
and Python
In the rapidly evolving world of artificial intelligence, large language models (LLMs) have

emerged as powerful engines that drive innovative applications, transforming the way

we interact with technology. This chapter is a deep dive into the sophisticated strategies

and techniques that harness the full potential of these models. Here, we explore how to

go beyond basic implementations and craft complex, robust systems that leverage LLMs

to address real-world challenges.

At the core of our discussion is LangChain—a versatile framework designed to

streamline the integration of LLMs into advanced application architectures. LangChain

provides a modular and extensible environment that simplifies the orchestration of

language model tasks, allowing developers to build applications that can manage

multistep reasoning, handle dynamic interactions, and maintain contextual continuity

across extended dialogues. Coupled with the power and flexibility of Python, LangChain

equips you with the tools to push the boundaries of what is possible in modern software

development.

In this chapter, we begin by revisiting the foundational concepts behind LLMs,

setting the stage for a more nuanced understanding of their capabilities and limitations.

We then transition into an exploration of LangChain’s architecture, examining its key

components and how they work together to facilitate advanced workflows. Through

https://doi.org/10.1007/979-8-8688-1475-4_3#DOI

140

detailed examples and hands-on exercises, you will learn how to implement complex

pipelines that integrate external data sources, manage iterative processing, and optimize

performance under demanding conditions.

As we progress, the focus shifts to the practical challenges encountered when

building advanced LLM-powered applications. We will discuss strategies for fine-tuning

model behavior, mitigating errors, and ensuring scalability in production environments.

Special emphasis is placed on designing systems that not only perform efficiently but

also maintain high levels of reliability and security. This chapter provides insights into

best practices for monitoring, debugging, and continuously improving your applications,

ensuring that they remain robust in the face of evolving requirements and emerging

threats.

Moreover, we will highlight cutting-edge use cases that demonstrate the

transformative impact of advanced LLM applications. From intelligent virtual assistants

that seamlessly manage complex conversations to automated content generation

systems capable of nuanced analysis and synthesis, you will see how the principles

discussed can be applied to a diverse array of challenges. By dissecting these real-world

examples, you will gain a deeper appreciation of the potential for innovation when

combining LangChain’s orchestration capabilities with Python’s rich ecosystem.

Whether you are an experienced developer looking to elevate your skill set or a

curious practitioner eager to explore the next frontier in AI application development,

this chapter is designed to equip you with the knowledge and tools necessary to

build advanced, production-grade systems. By the end of our journey, you will have

a comprehensive understanding of how to harness LLMs effectively, enabling you to

create applications that are not only intelligent but also adaptive, scalable, and ready for

the challenges of tomorrow.

In the next pages, we will

•	 Build a YouTube Video Summarizer

•	 Automatically transcribe and summarize long YouTube videos for

quick content digestion

•	 Create a GitHub repository chatbot

•	 Interact with code bases conversationally by indexing and

querying repository files

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

141

•	 Develop a financial report analysis tool

•	 Analyze and extract insights from financial documents

using AI-driven retrieval and Q&A

•	 Enhance blog content with Google Search

•	 Use LLMs and live web data to intelligently expand and enrich

blog posts

•	 Automate YouTube scriptwriting

•	 Generate structured, engaging scripts from video transcripts with

GPT models

•	 Design an AI-powered email generator

•	 Instantly craft professional, personalized email responses using a

customizable prompt

•	 Analyze CSV data with AI assistance

•	 Load, summarize, and visualize datasets with natural language

commands and visual tools

Each app is presented with

•	 Step-by-step implementation instructions

•	 Clear explanations of LangChain and OpenAI integrations

•	 Tips for optimizing performance, usability, and scalability

By the end of this chapter, you’ll be equipped to build your own intelligent,

production-ready applications with Python and LLMs.

�App 1: YouTube Video Summarizer
In the digital age, YouTube has become a vast repository of knowledge, offering millions

of videos on various topics, from educational lectures to industry insights. However,

watching long videos to extract key information can be time-consuming. This is where a

YouTube Video Summarizer with LangChain comes into play.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

142

A YouTube Video Summarizer is an AI-powered tool that automatically transcribes

and summarizes YouTube videos, providing users with a concise and structured

overview of the content. By leveraging LangChain, a framework designed for building

applications with large language models (LLMs), the summarizer efficiently processes

video transcripts and distills essential insights.

This tool utilizes natural language processing (NLP) to extract meaningful

information, making it easier for users to grasp the key points of a video in seconds

rather than minutes or hours. Whether you are a researcher, student, or content creator,

a YouTube Video Summarizer with LangChain enhances productivity by offering

quick and accurate video summaries, helping you stay informed without watching

entire videos.

�How to Build the App

�Step 1: Get Your OpenAI API Key
You need to get your OpenAI API key here: https://platform.openai.com/settings/
organization/api-keys.

�Step 2: Run the Following Commands
Run the following commands in your environment—in our case, this is Google

Colab—to install libraries needed:

!pip install langchain==0.3.23 activeloop-deeplake==3.9.5 openai==1.3.12
tiktoken==0.7.0 langchain-openai==0.3.12

!pip install -q yt_dlp
!pip install -q git+https://github.com/openai/whisper.git
Also install ffmpeg:
conda install ffmpeg

For Google Colab:

!apt-get update -qq && apt-get install -y ffmpeg

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://platform.openai.com/settings/organization/api-keys
https://platform.openai.com/settings/organization/api-keys

143

Note D ue to the security precautions taken by YouTube, you need to download
a browser extension to download the cookies from your browser for your
desired video.

For example, for Chrome you can use: https://chromewebstore.google.com/
detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc. Then, upload

the cookie file to your Google Colab files.

�Step 3: Execute the Following Command
Execute the following command to download your video with your desired file name:

!yt-dlp --cookies cookies.txt -f "bestvideo[ext=mp4]+bestaudio[ex
t=m4a]/best[ext=mp4]" -o "my_video.mp4" "https://www.youtube.com/
watch?v=Gx5qb1uHss4"

Explanation of the command:

•	 -f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]"

•	 This ensures that yt-dlp downloads the best quality MP4 video

and best M4A audio and then merges them.

•	 If a single MP4 format video with audio is available, it

downloads that.

•	 -o "my_video.mp4"

•	 This sets the output filename as my_video.mp4.

•	 --cookies cookies.txt

•	 This allows yt-dlp to use authentication for downloading

restricted videos.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://chromewebstore.google.com/detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc
https://chromewebstore.google.com/detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc

144

�Step 4: Import the Whisper Model and Process the Video
import whisper

model = whisper.load_model("base")
result = model.transcribe("my_video.mp4")
print(result['text'])

This Python script utilizes OpenAI’s Whisper model for automatic speech

recognition (ASR) to transcribe the audio from a given video file. It begins by importing

the Whisper library, which is responsible for handling the transcription process. Next, it

loads a pretrained Whisper model, specifically the “base” version, which is a lightweight

model compared to larger variants like “medium” or “large.” If the model is not already

available locally, it will be automatically downloaded from OpenAI’s servers.

Once the model is loaded, the script processes the specified video file by extracting

its audio and converting the spoken content into text. Finally, the transcribed text is

extracted from the result and printed to the console.

�Step 5: Read the Written Content in a File
with open ('text.txt', 'w') as file:
 file.write(result['text'])

�Step 6: Use LangChain to Split a Text File into
Smaller Chunks
Let’s use LangChain to split a text file into smaller chunks for further processing, such as

feeding into a language model.

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

text_splitter = RecursiveCharacterTextSplitter(
 chunk_size=1000, chunk_overlap=0, separators=[" ", ",", "\n"]

)

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

145

with open('text.txt') as f:
 text = f.read()

texts = text_splitter.split_text(text)
docs = [Document(page_content=t) for t in texts[:4]]

Step-by-Step Explanation

	 1.	 Import necessary modules from LangChain

•	 RecursiveCharacterTextSplitter: A utility for breaking long texts

into smaller pieces while trying to maintain meaning

•	 Document: A simple wrapper around text content, useful when

dealing with large documents

	 2.	 Initialize the text splitter

•	 The RecursiveCharacterTextSplitter is configured with

•	 chunk_size=1000: Each chunk will have a maximum of 1000
characters.

•	 chunk_overlap=0: No overlap between chunks.

•	 separators=[“ ”, “,”, “\n”]: The text will be split preferentially at

spaces, then commas, then newlines.

	 3.	 Read text from a file (text.txt)

•	 The text content is loaded into memory as a single string.

	 4.	 Split the text into smaller chunks

•	 split_text(text): The loaded text is split into multiple chunks of up

to 1000 characters each.

•	 The splitting occurs recursively, prioritizing the given separators.

	 5.	 Convert the first four chunks into Document objects

•	 The first four chunks (texts[:4]) are wrapped in Document

objects.

•	 Each Document stores its corresponding chunk as page_content.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

146

�Step 7: Summarize the Preprocessed Content
from langchain.chains.summarize import load_summarize_chain
import textwrap
from langchain_openai import OpenAI
from langchain.chains import LLMChain
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate

Initialize OpenAI LLM
llm = OpenAI(api_key="sk-proj-Mi0xm6IEXSZ8ULyof8caT3BlbkFJNHaISzb3nz3hsau8t
qyn", model="gpt-3.5-turbo-instruct", temperature=0)
chain = load_summarize_chain(llm, chain_type="map_reduce")

output_summary = chain.invoke(docs)
wrapped_text = textwrap.fill(output_summary["output_text"], width=100)

Step-by-step execution:

	 1.	 Import necessary libraries

•	 load_summarize_chain: A utility to create a summarization

pipeline

•	 textwrap: Used to format the output text

•	 OpenAI: Initializes OpenAI’s GPT model for text processing

•	 LLMChain: A generic LangChain wrapper for using LLMs

•	 PromptTemplate: Allows customization of prompts for the LLM

	 2.	 Initialize OpenAI language model

•	 The OpenAI LLM is initialized with

•	 The GPT-3.5 Turbo Instruct model

•	 Temperature = 0, ensuring deterministic (consistent)

responses

•	 The API key (which should be kept secret)

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

147

	 3.	 Load a summarization chain

•	 The load_summarize_chain(llm, chain_type="map_reduce")

initializes a two-step summarization pipeline:

•	 Map Stage: Each document is summarized individually.

•	 Reduce Stage: The individual summaries are combined into

a final, coherent summary.

	 4.	 Invoke the summarization chain

•	 chain.invoke(docs): The chain takes docs (a list of Document

objects) and processes them.

•	 output_summary["output_text"]: Extracts the final

summarized text.

	 5.	 Format the summary output

•	 textwrap.fill(output_summary["output_text"], width=100)

wraps the summary text so that lines do not exceed 100
characters in width.

�Step 8: Define a Prompt Template Using LangChain's
PromptTemplate
The following code defines a prompt template using LangChain’s PromptTemplate to

structure input for an LLM (large language model), such as OpenAI’s GPT models:

prompt_template = """Write a concise bullet point summary of the following:

{text}

CONSCISE SUMMARY IN BULLET POINTS:"""

BULLET_POINT_PROMPT = PromptTemplate(template=prompt_template,
 input_variables=["text"])

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

148

�Step 9: Summarization Pipeline
chain = load_summarize_chain(llm,
 chain_type="stuff",
 prompt=BULLET_POINT_PROMPT)

output_summary = chain.run(docs)

wrapped_text = textwrap.fill(output_summary,
 width=1000,
 break_long_words=False,
 replace_whitespace=False)
print(wrapped_text)

This code sets up a summarization pipeline using LangChain and an LLM, such

as OpenAI’s GPT-3.5 Turbo. The process begins by initializing a summarization chain

with a specific configuration. The chain type is set to process all text at once, rather than

breaking it into smaller sections. A custom prompt template is used to instruct the model

to generate a structured bullet-point summary.

Once the summarization chain is created, it is executed using a list of documents

as input. The chain processes the text and generates a concise summary. The resulting

summary is then formatted for better readability by ensuring that lines do not exceed a

certain width, words are not split across lines, and whitespace formatting is preserved.

Finally, the formatted summary is displayed as output.

�App 2: Chat with a GitHub Repository
This Python application enables users to interact with a GitHub repository using natural

language. It utilizes LangChain, OpenAI embeddings, and FAISS vector storage to

process and retrieve relevant code snippets, documentation, and README contents

from a repository.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

149

�How It Works
	 1.	 Fetches Repository Data: Uses the GitHub API to retrieve all files

in the repository

	 2.	 Embeds and Indexes Content: Converts text into embeddings for

efficient search

	 3.	 Conversational Retrieval: Allows users to ask questions and get

relevant information

	 4.	 Memory Support: Maintains context in ongoing conversations for

a better chat experience

�Step 1: Select a GitHub Repository and Download It As Zip
For example, https://github.com/milaan9/07_Python_Advanced_Topics, and get

its username and repo name—in this case, its milaan9, and the name of the repo is

07_Python_Advanced_Topics. Or in other words, you can find it in the form https://
github.com/{user_name}/{repo_name}.

�Step 2: Install All Libraries Required
!pip install langchain==0.3.23 openai==1.3.12 faiss-cpu==1.8.0
tiktoken==0.7.0 requests==2.31.0 python-dotenv==1.0.1

!pip install langchain-community==0.3.23

�Step 3: Import the Libraries and Obtain the Needed
API Keys
For OpenAI: https://platform.openai.com/api-keys

For GitHub: https://github.com/settings/tokens

import os
import requests
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://github.com/milaan9/07_Python_Advanced_Topics
https://github.com/{user_name}/{repo_name}
https://github.com/{user_name}/{repo_name}
https://platform.openai.com/api-keys
https://github.com/settings/tokens

150

from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI

load_dotenv()

GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

headers = {"Authorization": f"token {GITHUB_TOKEN}"}

�Step 4: Get Repository Content
The function is designed to retrieve the contents of a GitHub repository using the

GitHub API. It allows you to access files and directories within a repository.

	 1.	 It accepts three inputs

•	 The owner of the repository (a username or organization name).

•	 The repository name to fetch data from.

•	 An optional path specifying a file or folder within the repository.

If no path is provided, it retrieves the root directory.

	 2.	 It builds a URL

•	 The function constructs a web address following GitHub’s API

format. This URL points to the requested repository and its

contents.

	 3.	 It sends a request to GitHub

•	 A request is made to GitHub’s servers to fetch the contents of the

specified file or folder.

	 4.	 It checks for a successful response

•	 If GitHub responds successfully, the function extracts and returns

the content in a structured format (as data).

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

151

•	 If the request fails (e.g., due to incorrect repository details,

permission issues, or rate limits), an error message is displayed,

and an empty response is returned.

	 5.	 It handles different repository structures

•	 If the request targets a directory, the function retrieves a list of its

files and subdirectories.

•	 If it targets a file, it fetches the file’s content and relevant

metadata.

def get_repo_contents(owner, repo, path=""):
 url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}"
 response = requests.get(url, headers=headers)
 if response.status_code == 200:
 return response.json()
 else:
 print("Error fetching repo contents:", response.json())
 return []

�Step 5: Fetch All Files
def fetch_all_files(owner, repo, path="", collected_files=None):
 if collected_files is None:
 collected_files = {}

 contents = get_repo_contents(owner, repo, path)

 for item in contents:
 if item["type"] == "file":
 �file_content = requests.get(item["download_url"],

headers=headers).text
 collected_files[item["path"]] = file_content
 elif item["type"] == "dir":
 fetch_all_files(owner, repo, item["path"], collected_files)

 return collected_files

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

152

In this function, we retrieve all files from a GitHub repository, including those

inside subdirectories. It works by recursively navigating through the repository’s

structure and collecting file contents.

�Step-by-Step Explanation

	 1.	 It initializes a dictionary to store files

•	 If no dictionary is provided, an empty one is created to store file

paths and their contents.

	 2.	 It retrieves repository contents

•	 The function calls another function to fetch the list of files and

folders at a given location in the repository.

•	 If no specific path is provided, it starts from the root directory.

	 3.	 It loops through each item in the retrieved list

•	 If the item is a file, the function

•	 Downloads its content from GitHub

•	 Stores the file’s path as a key and its content as a value in the

dictionary

•	 If the item is a directory, the function

•	 Calls itself again (recursion), using the directory’s path as the

new starting point

•	 This ensures all nested files and folders are processed

	 4.	 It returns a dictionary containing all files

•	 After processing all files and directories, the function returns a

dictionary where

•	 Each key represents a file’s path within the repository

•	 Each value contains the corresponding file’s content

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

153

�Step 6: Creating a Searchable Database
def create_vector_db(files):
 texts = []
 for path, content in files.items():
 texts.append(f"### {path}\n{content}")

 �text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_
overlap=100)

 docs = text_splitter.create_documents(texts)

 embeddings = OpenAIEmbeddings()
 vectorstore = FAISS.from_documents(docs, embeddings)
 return vectorstore

In this function, we create a searchable database from a collection of files by

converting their contents into numerical representations (embeddings) that allow

efficient retrieval.

�Step-by-Step Explanation

	 1.	 It prepares the text data

•	 The function starts with an empty list to store text data.

•	 It loops through each file in the input dictionary, which contains

file paths as keys and their contents as values.

•	 Each file’s content is formatted with a header that includes the

file path, ensuring that file names remain associated with their

contents.

	 2.	 It splits the text into chunks

•	 Since some files may be large, the function breaks them into

smaller chunks.

•	 A text-splitting tool is used to divide the text while maintaining

some overlap between chunks to preserve context.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

154

•	 This ensures that each chunk is not too large for processing while

still making sense when analyzed.

	 3.	 It converts text into embeddings

•	 The function uses an embedding model to transform the text

chunks into numerical vectors.

•	 These embeddings capture the semantic meaning of the

text, making it possible to search for similar content based on

meaning rather than exact words.

	 4.	 It stores the embeddings in a searchable database

•	 A specialized database (FAISS) is used to store these embeddings

efficiently.

•	 FAISS allows quick searching and retrieval of relevant text based

on similarity to a given query.

	 5.	 It returns the searchable database

•	 The final result is a structured vector database that enables quick

searches for relevant file contents.

�Step 7: Creating the Actual Chatting Feature Function
def chat_with_repo(owner, repo):
 files = fetch_all_files(owner, repo)
 vectorstore = create_vector_db(files)
 retriever = vectorstore.as_retriever()

 �memory = ConversationBufferMemory(memory_key="chat_history", return_
messages=True)

 chat = ConversationalRetrievalChain.from_llm(
 llm=ChatOpenAI(model_name="gpt-4", temperature=0.5),
 retriever=retriever,
 memory=memory
)

 print("Chat with the GitHub repository! Type 'exit' to quit.")

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

155

 while True:
 query = input("You: ")
 if query.lower() == "exit":
 break
 response = chat.run(query)
 print("Bot:", response)

It allows a user to interactively chat with a GitHub repository by retrieving relevant

information from its contents.

�Step-by-Step Explanation

	 1.	 It fetches all files from the repository

•	 The function retrieves the entire repository’s contents, including

files in subdirectories.

•	 This ensures that all text-based content is available for

processing.

	 2.	 It creates a searchable vector database

•	 The fetched files are processed and converted into a vector
database.

•	 This allows the chatbot to search for relevant information

efficiently.

	 3.	 It sets up a retriever

•	 A retriever is initialized from the vector database.

•	 The retriever helps the chatbot find relevant file contents when

answering questions.

	 4.	 It initializes memory for conversations

•	 A memory module is added to keep track of past interactions.

•	 This allows the chatbot to maintain context throughout the

conversation.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

156

	 5.	 It creates a conversational AI model

•	 A GPT-4 language model is loaded to generate responses.

•	 The model uses the retriever to find relevant repository content

when answering questions.

	 6.	 It starts an interactive chat

•	 The function displays a message prompting the user to start

chatting.

•	 It continuously takes user input, processes it, and provides

responses.

•	 If the user types "exit", the chat ends.

Output:

Enter GitHub owner/org: milaan9
Enter repository name: 07_Python_Advanced_Topics
Chat with the GitHub repository! Type 'exit' to quit.
You: What are the advanced topics in the repo?
Bot: The advanced topics in the repository are:

1. Python Iterators
2. Python Generators
3. Python Closure
4. Python Decorators
 - Python args and kwargs
5. Python Property
6. Python RegEx

�App 3: Financial Report Analysis App
This app is designed to streamline financial data analysis by leveraging AI-powered
document retrieval and natural language processing. Built with LangChain, FAISS,
and OpenAI models, it allows users to efficiently search and analyze financial reports,

specifically those from Amazon, but it can be adapted for any financial documents.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

157

�Key Features
•	 Automated PDF Parsing: Extracts financial data from multiple PDF

reports.

•	 AI-Driven Search: Uses advanced embeddings and retrieval

mechanisms to provide quick answers to financial queries.

•	 Efficient Data Management: Utilizes FAISS for fast and scalable

vector-based document retrieval.

•	 Conversational Querying: Enables users to ask specific questions

(e.g., “What was Amazon’s revenue in Q3 2021?”) and get direct

answers.

This tool is ideal for financial analysts, researchers, and business professionals

who need instant insights from large datasets without manually scanning through

reports. Whether you’re tracking revenue trends, identifying financial performance, or

analyzing key business metrics, this app provides a seamless and intelligent solution to

financial document analysis.

�Step 1: Install All Required Libraries
!pip3 install langchain faiss-cpu pypdf openai tiktoken langchain-openai
langchain-community

�Step 2: Set Up OpenAI API Key and Add It to the Code
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = “Your OpenAI Key”

�Step 3: Import All Required Libraries
from langchain_openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAI

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

158

from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain.document_loaders import PyPDFLoader

import requests
import tqdm
from typing import List

�Step 4: Process Financial Reports
import requests
import tqdm
from typing import List

financial reports of amamzon, but can be replaced by any URLs of pdfs
urls = ['https://s2.q4cdn.com/299287126/files/doc_financials/Q1_2018_-_8-K_
Press_Release_FILED.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_financials/Q2_2018_

Earnings_Release.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Q318-Amazon-

Earnings-Press-Release.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_news/archive/AMAZON.COM-

ANNOUNCES-FOURTH-QUARTER-SALES-UP-20-TO-$72.4-BILLION.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_financials/Q119_Amazon_

Earnings_Press_Release_FINAL.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Amazon-

Q2-2019-Earnings-Release.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Q3-2019-

Amazon-Financial-Results.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Amazon-

Q4-2019-Earnings-Release.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/Q1/AMZN-

Q1-2020-Earnings-Release.pdf',
 �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/q2/

Q2-2020-Amazon-�Earnings-Release.pdf',

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

159

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/q4/
Amazon-Q4-2020-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q1/
Amazon-Q1-2021-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q2/AMZN-
Q2-2021-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q3/
Q3-2021-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/
business_and_financial_update.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q1/
Q1-2022-Amazon-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q2/
Q2-2022-Amazon-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q3/
Q3-2022-Amazon-Earnings-Release.pdf',

 �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q4/
Q4-2022-Amazon-Earnings-Release.pdf'

]

def load_reports(urls: List[str]) -> List[str]:
 """ Load pages from a list of urls"""
 pages = []

 for url in tqdm.tqdm(urls):
 r = requests.get(url)
 path = url.split('/')[-1]
 with open(path, 'wb') as f:
 f.write(r.content)
 loader = PyPDFLoader(path)
 local_pages = loader.load_and_split()
 pages.extend(local_pages)
 return pages

pages = load_reports(urls)

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

160

The code downloads Amazon’s financial reports in PDF format, extracts their text,

and stores the content in a list. It starts by iterating through a predefined list of URLs,

downloading each PDF using the requests library, and saving the files locally. Then, it

processes each file with PyPDFLoader to extract and split the text into pages, which are

appended to a list. The tqdm library provides a progress bar to track the downloading

process. Finally, the extracted text from all PDFs is stored in the pages list for further

analysis. However, the script is missing an import for PyPDFLoader, which would cause an

error unless added manually. Additionally, the saved PDFs are not deleted after extraction.

�Step 5: Preparing and Indexing Text Data for Efficient
Retrieval Using AI-Powered Search and Question
Answering (QA)

�1. Splitting the Extracted Text into Smaller Chunks

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(pages)

•	 What it does:

•	 The extracted text from financial reports (stored in pages) is often

long and unstructured.

•	 The CharacterTextSplitter takes these texts and breaks them
into smaller chunks of 1000 characters each (chunk_size=1000).

•	 There is no overlap between chunks (chunk_overlap=0),

meaning each piece of text is distinct.

•	 Why it’s needed:

•	 Splitting text into smaller sections allows for better indexing and

faster retrieval when querying later.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

161

�2. Generating Text Embeddings
embeddings = OpenAIEmbeddings()

•	 What it does:

•	 Uses OpenAI’s embedding model to convert text chunks into

numerical vectors.

•	 These vectors capture the meaning of the text so they can be

efficiently searched.

•	 Why it’s needed:

•	 A numerical representation (embedding) allows us to perform

semantic search—meaning we can find relevant information

even if the search query does not exactly match the words in
the document.

�3. Storing and Indexing the Text Chunks
in a FAISS Database
db = FAISS.from_documents(texts, embeddings)

•	 What it does:

•	 Uses FAISS (Facebook AI Similarity Search), a powerful vector
database, to store the generated embeddings.

•	 FAISS allows for efficient and fast searching of similar text

embeddings.

•	 Why it’s needed:

•	 Instead of searching through raw text, we search through
embeddings, making retrieval faster and more accurate.

�4. Setting Up the AI-Powered Retrieval and QA System
qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(model='gpt-3.5-turbo'),
chain_type='stuff', retriever=db.as_retriever())

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

162

•	 What it does:

•	 Uses ChatGPT (gpt-3.5-turbo) to answer user queries based on

the indexed documents.

•	 The retriever=db.as_retriever() ensures that relevant
text chunks are retrieved from FAISS before being processed

by the AI.

•	 The chain_type='stuff' method combines the retrieved text

into a single response.

•	 Why it’s needed:

•	 This setup allows the app to answer questions like “What

was Amazon’s revenue in Q3 2021?” based on financial reports

without needing a human to manually search the documents.

�Step 6: Ask a Question
qa.invoke("What is the revenue in 2021 Q3?")

Output:

{'query': 'What is the revenue in 2021 Q3?',
 'result': 'The revenue for Amazon in 2021 Q3 was $110.8 billion.'}

�App 4: Automate and Enhance Your Blog Posts
with LangChain and Google Search
Artificial intelligence is transforming the field of copywriting by acting as a powerful

writing assistant. Modern language models can detect grammar and spelling errors,

adjust tone, summarize content, and even expand text. However, these models

sometimes lack the deep domain expertise needed to provide high-quality extensions

for specific topics.

In this lesson, we’ll guide you through building an application that seamlessly

enhances text sections. The process starts by prompting a language model (such as

ChatGPT) to generate relevant search queries based on the existing content. These

queries are then used with the Google Search API to retrieve authoritative information

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

163

from the Web. Finally, the most relevant results are provided as context to the model,

allowing it to generate more accurate and well-informed content suggestions.

�Step 1: Install All Required Libraries
!pip install langchain==0.0.208 deeplake==3.9.27 openai==0.27.8 tiktoken
!pip install -q newspaper3k==0.2.8 python-dotenv
!pip install lxml_html_clean

�Step 2: Define Three Variables—Title, Text All, and Text
to Change
Here, we have three variables that store an article’s title and content (text_all) from

Artificial Intelligence News. Additionally, the text_to_change variable identifies the

specific section of the text that we want to expand. These constants serve as reference

points and will remain unchanged throughout the lesson.

title = "OpenAI Chief: AI Oversight 'Crucial' for Future Innovation"

text_all = """ Altman underscored the immense potential of AI advancements
such as ChatGPT and DALL-E 2 in tackling global challenges like climate
change and disease research. However, he also cautioned against the
unchecked proliferation of increasingly capable AI models. To address
these concerns, he suggested that governments explore regulatory measures,
including licensing frameworks and stringent testing protocols for high-
capability AI systems. Altman reaffirmed OpenAI's dedication to responsible
AI development, ensuring rigorous evaluations before deploying new
technologies. Senators Josh Hawley and Richard Blumenthal acknowledged AI's
disruptive impact and the necessity of understanding its ramifications on
elections, employment, and national security. To illustrate AI's power,
Blumenthal played an audio clip generated by an AI voice cloning system
trained on his past speeches. He raised alarms over AI-related threats such
as misinformation, manipulated media, discrimination, cyber harassment, and
identity fraud. Additionally, he warned about the displacement of human
workers amid an AI-driven economic transformation."""

text_to_change = """ Senators Josh Hawley and Richard Blumenthal

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

164

acknowledged AI's disruptive impact and the necessity of understanding
its ramifications on elections, employment, and national security. To
illustrate AI's power, Blumenthal played an audio clip generated by an AI
voice cloning system trained on his past speeches."""

We start by generating potential search queries from the paragraph we want to

expand. These queries are then used to retrieve relevant documents from a search

engine (such as Bing or Google Search), which are subsequently broken down into

smaller chunks. Next, we compute embeddings for these chunks and store both the

chunks and their embeddings in a Deep Lake dataset. Finally, the most relevant chunks

are retrieved from Deep Lake based on their similarity to the original paragraph. These

retrieved chunks are then incorporated into a prompt to enhance the paragraph with

additional context and information.

�Step 3: Define Your API Keys
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = "Your API Key"
os.environ["GOOGLE_API_KEY"] = "Your API Key"
os.environ["GOOGLE_CSE_ID"] = "Your ID"

�How to Get Your API Keys and ID

To use the Google Search API, we first need to set up an API key and a custom search

engine. Start by navigating to the Google Cloud Console and creating a project, and

then, enable the Custom Search API under Enable APIs and Services (Google will

provide instructions if necessary). After that, generate an API key by clicking CREATE
CREDENTIALS at the top and selecting API KEY.

Once these steps are complete, configure the environment variables “GOOGLE_
CSE_ID” and “GOOGLE_API_KEY”, allowing the Langchain Google wrapper to connect

seamlessly with the API.

Next, go to the Programmable Search Engine dashboard: https://
programmablesearchengine.google.com/controlpanel/create, create a custom search

engine, and ensure that the “Search the entire web” option is selected. The search engine

ID will be displayed in the Details section.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://programmablesearchengine.google.com/controlpanel/create
https://programmablesearchengine.google.com/controlpanel/create

165

Go to the page with all search engines: https://programmablesearchengine.
google.com/controlpanel/all, and click the one you have just created. Then, copy the

Search engine ID.

�Step 4: Generate Search Results
The following code leverages OpenAI’s ChatGPT model to analyze an article and

generate three relevant search queries. It begins by defining a prompt that instructs

the model to suggest Google search queries for gathering more information on the

topic. The “LLMChain” component connects the “ChatOpenAI” model with the

“ChatPromptTemplate”, forming a structured pipeline for interacting with the model.

Once the response is received, the code splits it by newline and removes the initial

characters to extract the search queries. This approach works because the API was

instructed to format each query as a new line starting with “-”. (Alternatively, the same

result can be achieved using the “OutputParser” class.)

Before executing the code, ensure that your OpenAI API key is stored in the

“OPENAI_API_KEY” environment variable.

from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
 ChatPromptTemplate,
 HumanMessagePromptTemplate,
)

template = """ You are an exceptional copywriter and content creator.

You're reading an article with the following title:

{title}

You've just read the following piece of text from that article.

{text_all}

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://programmablesearchengine.google.com/controlpanel/all
https://programmablesearchengine.google.com/controlpanel/all

166

Inside that text, there's the following TEXT TO CONSIDER that you want to
enrich with new details.

{text_to_change}

What are some simple and high-level Google queries that you'd do to search
for more info to add to that paragraph?
Write 3 queries as a bullet point list, prepending each line with -.
"""

human_message_prompt = HumanMessagePromptTemplate(
 prompt=PromptTemplate(
 template=template,
 input_variables=["text_to_change", "text_all", "title"],
)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])

Before executing the following code, make sure to have
your OpenAI key saved in the “OPENAI_API_KEY” environment variable.
chat = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.5)
chain = LLMChain(llm=chat, prompt=chat_prompt_template)

response = chain.run({
 "text_to_change": text_to_change,
 "text_all": text_all,
 "title": title
})

response_queries = [line[2:] for line in response.split("\n")]
queries = [item.replace('"', "") for item in response_queries]
print(queries)

Output: ['impact of AI on elections and democracy 2023 ', 'AI voice
cloning technology examples and implications ', 'AI effects on employment
and workforce displacement 2023 ']

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

167

�Step 5: Get Search Results
To use the Google Search API, we first need to set up an API key and a custom search

engine. Start by navigating to the Google Cloud Console, and then, generate an API key

by clicking CREATE CREDENTIALS at the top and selecting API KEY. Next, go to the

Programmable Search Engine dashboard, and ensure that the “Search the entire web”

option is enabled. The search engine ID will be displayed in the Details section.

Additionally, you may need to enable the “Custom Search API” under Enable APIs
and Services (Google will provide further instructions if required). Once these steps are

complete, configure the environment variables GOOGLE_CSE_ID and GOOGLE_API_

KEY, enabling the Google wrapper to interact with the API.

The next step is to use the generated search queries from the previous section

to retrieve relevant sources from Google. The LangChain library offers the

GoogleSearchAPIWrapper, which handles search queries and retrieves results. To

process the results efficiently, we define a function using the top_n_results parameter.

Then, the Tool class creates a wrapper around this function, making it compatible

with AI agents so they can interact with external data sources. We request only the

top five search results and then concatenate them for each query into the all_results

variable for further processing.

from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper

Initialize the Google Search API Wrapper
search = GoogleSearchAPIWrapper()
TOP_N_RESULTS = 5

def top_n_results(query):
 """Fetch top N search results for a given query."""
 results = search.results(query, TOP_N_RESULTS)
 if not results:
 return [{"Result": "No good Google Search Result was found"}]
 return results

Define the search tool
search_tool = Tool(

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

168

 name="Google Search",
 description="Search Google for recent results.",
 func=top_n_results
)

Sample queries list
queries = ['Senators Josh Hawley Richard Blumenthal AI regulation
statements', 'impact of AI on elections jobs security 2023', 'AI voice
cloning technology examples implications']
all_results = []

Run search for each query
for query in queries:
 try:
 results = search_tool.run(query)
 all_results.extend(results)
 except Exception as e:
 all_results.append({"Error": str(e)})

Print all collected search results
print(all_results)

The “all_results” variable may contain a different number of web addresses—derived

from three search queries generated by ChatGPT, each returning the top five Google

search results. However, using all retrieved content as context in our application is not an

optimal approach due to technical, financial, and contextual constraints.

First, language models (LLMs) have input length limitations, typically ranging

from 2K to 4K tokens, depending on the model. While alternative chain types can help

bypass this constraint, staying within the model’s token window is often more efficient

and produces better results.

Second, cost considerations come into play. The more text we send to the API, the higher

the cost. Although splitting prompts into multiple chains is an option, we must be mindful

that API pricing is based on token usage, making excessive input size financially inefficient.

Finally, contextual relevance matters. The retrieved search results will likely

contain overlapping or similar information. Instead of using all results indiscriminately,

selecting the most relevant ones ensures a more focused and meaningful expansion of

the content.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

169

Output: [{'title': '[2023-09-08] Blumenthal & Hawley Announce Bipartisan
Framework ...', 'link': 'https://www.blumenthal.senate.gov/newsroom/press/
release/blumenthal-and-hawley-announce-bipartisan-framework-on-artificial-
intelligence-legislation', 'snippet': 'Sep 8, 2023 ... [WASHINGTON, D.C.] –
U.S. Senators Richard Blumenthal (D-CT) and Josh Hawley (R-MO), Chair and
Ranking Member of the Senate Judiciary\xa0...'}, {'title': 'U.S. Artificial
Intelligence Policy: Legislative and Regulatory ...', 'link': 'https://www.
cov.com/en/news-and-insights/insights/2023/10/us-artificial-intelligence-
policy-legislative-and-regulatory-developments', 'snippet': "Oct 20, 2023
... Separate from Leader Schumer's effort, Senators Richard Blumenthal
(D ... This proposal follows legislation Senators Blumenthal and Hawley\
xa0..."}, {'title': "The Future is Here: Senate Judiciary Committee's
Oversight of AI ...", 'link': 'https://www.crowell.com/en/insights/client-
alerts/the-future-is-here-senate-judiciary-committees-oversight-of-ai-and-
principles-for-regulation', 'snippet': 'Jul 25, 2023 AI systems.
Ranking Member Josh Hawley (R-MO) gave a shorter statement, identifying his
main priorities as workers, children, consumers, and\xa0...'}, {'title':
'THE PHILOSOPHY OF AI: LEARNING FROM HISTORY, SHAPING ...', 'link':
'https://www.congress.gov/118/chrg/CHRG-118shrg53996/CHRG-118shrg53996.
pdf', 'snippet': 'Nov 8, 2023 ... Present: Senators Peters [presiding],
Hassan, Rosen, Blumenthal,. Ossoff, Butler, Johnson, and Hawley. OPENING
STATEMENT OF SENATOR PETERS1.'}, {'title': 'Hawley, Blumenthal Introduce
Bipartisan Legislation to Protect ...', 'link': 'https://www.hawley.senate.
gov/hawley-blumenthal-introduce-bipartisan-legislation-protect-consumers-
and-deny-ai-companies-section/', 'snippet': 'Jun 14, 2023 ... Today
U.S. Senators Josh Hawley (R-Mo.) ... Last week, Senator Hawley announced
five guiding principles for the future of AI legislation.'}, {'title': 'CED
Issues Statement on Ensuring Safe, Accessible, Credible', 'link': 'https://
www.conference-board.org/press/CED-statement-safe-accessible-credible-
elections', 'snippet': 'CED Issues Statement on Ensuring Safe, Accessible,
Credible Elections. 2022-11-04. Dr. Lori Esposito Murray, President
of the ... Explore the Impact of AI on Your Business. Members receive
complimentary registration - Learn more >>'}, {'title': 'Pew Research
Center | Numbers, Facts and Trends Shaping Your ...', 'link': 'https://
www.pewresearch.org/', 'snippet': 'Pew Research Center is a nonpartisan,

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

170

nonadvocacy fact tank that informs the public about the issues, attitudes
and trends shaping the world.'}, {'title': 'Why Not A.I.? Insights from HR
Teams on Worker Financial Security', 'link': 'https://www.aspendigital.
org/blog/ai-for-worker-financial-security/', 'snippet': 'Oct 26, 2023 ...
In recent years, headlines have been rife with horror stories about the
impact of artificial intelligence (AI) on human resources (HR) work.'},
{'title': 'emerging technology – Alliance For Securing Democracy', 'link':
'https://securingdemocracy.gmfus.org/tag/emerging-technology/', 'snippet':
'... artificial intelligence will impact democratic institutions and
elections moving forward. ... The ASD AI Election Security Handbook.
Introduction The typical\xa0...'}, {'title': 'Election Officials Under
Attack', 'link': 'https://documents.ncsl.org/wwwncsl/Summit/2023/Session-
Resources/Election-Officials-Under-Attack-Brennan-Center-for-Justice.pdf',
'snippet': 'Jun 16, 2021 ... associations) to improve working conditions
and to better empower election officials to impact election policy. ...
How AI Puts Elections at Risk.'}, {'title': 'Preventing the Harms of AI-
enabled Voice Cloning | Federal Trade ...', 'link': 'https://www.ftc.
gov/policy/advocacy-research/tech-at-ftc/2023/11/preventing-harms-ai-
enabled-voice-cloning', 'snippet': 'Nov 16, 2023 voices in a way
that is hard to detect by ear. This progress in voice cloning technology
offers promise for Americans in, for example\xa0...'}, {'title': 'Federal
Communications Commission FCC 24-17 Before the ...', 'link': 'https://docs.
fcc.gov/public/attachments/FCC-24-17A1.pdf', 'snippet': 'Feb 8, 2024 ...
understand the implications of emerging AI technologies ... Bad actors are
using voice cloning – a generative AI technology that uses a recording\
xa0...'}, {'title': 'Voice Cloning Technology and its Legal Implications:
An IP Law ...', 'link': 'https://iplawusa.com/voice-cloning-technology-and-
its-legal-implications-an-ip-law-perspective/', 'snippet': "Aug 26, 2023
... Voice cloning technology is a cutting-edge development in the domain
of artificial intelligence (AI) that involves creating a digital replica
of a person's\xa0..."}, {'title': "AI Voice Cloning – and Its Misuse – Has
Opened a Pandora's Box of ...", 'link': 'https://ipwatchdog.com/2023/08/09/
ai-voice-cloning-misuse-opened-pandoras-box-legal-issues-heres-know/
id=163859/', 'snippet': 'Aug 9, 2023 ... Voice cloning, a technology

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

171

that enables the replication of human voices from large language models
using artificial intelligence (AI),\xa0...'}, {'title': 'Top 5 Frequently
Asked Questions About Voice Cloning Technology', 'link': 'https://www.
respeecher.com/blog/top-5-frequently-asked-questions-about-voice-cloning-
technology', 'snippet': 'Jun 4, 2024 ... Technology Used: The complexity
and sophistication of the AI and machine learning algorithms employed can
significantly impact the cost.'}]

�Step 6: Find the Most Relevant Results
As previously noted, Google Search provides URLs for each source, but we still need to

extract the actual content from these pages. This is where the newspaper package comes

in handy—it allows us to retrieve webpage content using the .parse() method. The

following code iterates through the search results and attempts to extract the text from

each linked page.

import newspaper

pages_content = []

for result in all_results:
 try:
 article = newspaper.Article(result["link"])
 article.download()
 article.parse()

 if len(article.text) > 0:
 pages_content.append({ "url": result["link"], "text": article.text })
 except:
 continue

print("Number of pages: ", len(pages_content))

Output: Number of pages: 11

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

172

�Step 7: Split into Chunks
The output above indicates that only 11 pages were processed instead of the expected 15.

This discrepancy can occur because the newspaper library may struggle to extract

content in certain cases, such as when search results lead to PDF files or when websites

impose restrictions on web scraping.

Next, it’s essential to split the extracted content into smaller chunks to prevent

exceeding the model’s input length. The code below achieves this by segmenting the text

based on either newlines or spaces, depending on the structure of the content. It ensures

that each chunk contains 3000 characters with an overlap of 100 characters between

consecutive chunks to maintain context.

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_
overlap=100)

docs = []
for d in pages_content:
 chunks = text_splitter.split_text(d["text"])
 for chunk in chunks:
 �new_doc = Document(page_content=chunk, metadata={ "source":

d["url"] })
 docs.append(new_doc)

print("Number of chunks: ", len(docs))

Output: Number of chunks: 26

�Step 7: Create Embeddings
As shown, the docs variable now contains 26 chunks of data. The next step is to identify

the most relevant chunks to use as context for the large language model. To achieve this,

we leverage the OpenAIEmbeddings class, which utilizes OpenAI to convert text into a

vector space that captures semantic meaning.

We then proceed to embed both the document chunks and the target sentence from

the main article that we want to expand. This sentence, which was selected at the start of

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

173

the lesson, is stored in the text_to_change variable. By comparing embeddings, we can

retrieve the most relevant chunks to enrich the expanded content.

from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

docs_embeddings = embeddings.embed_documents([doc.page_content for doc
in docs])
query_embedding = embeddings.embed_query(text_to_change)

To measure the relevance of document chunks, we use the **cosine similarity**

metric, which calculates the distance between high-dimensional embedding vectors.

This metric helps determine how closely two points are positioned within the vector

space. Since embeddings capture contextual meaning, **closer vectors indicate stronger

semantic similarity**, making high-scoring documents ideal sources for expansion.

We utilize the “cosine_similarity” function from the **sklearn** library to compute

the similarity between each document chunk and the target sentence. This function

returns the **indices of the top three most relevant chunks**, ensuring that the model

receives the most meaningful context for generating expanded content.

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def get_top_k_indices(list_of_doc_vectors, query_vector, top_k):
 # convert the lists of vectors to numpy arrays
 list_of_doc_vectors = np.array(list_of_doc_vectors)
 query_vector = np.array(query_vector)

 # compute cosine similarities
 �similarities = cosine_similarity(query_vector.reshape(1, -1), list_of_

doc_vectors).flatten()

 # sort the vectors based on cosine similarity
 sorted_indices = np.argsort(similarities)[::-1]

 # retrieve the top K indices from the sorted list
 top_k_indices = sorted_indices[:top_k]

 return top_k_indices

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

174

top_k = 3
best_indexes = get_top_k_indices(docs_embeddings, query_embedding, top_k)
best_k_documents = [doc for i, doc in enumerate(docs) if i in best_indexes]

�Step 8: Extend the Sentence
Now, we can define the prompt using additional information retrieved from Google

Search. The template includes six input variables:

•	 title: Holds the main article’s title

•	 text_all: Represents the full article being processed

•	 text_to_change: The specific section of the article that requires

expansion

•	 doc_1, doc_2, doc_3: The top three most relevant Google search

results, used as contextual references

The rest of the code follows the same structure as the Google query generation
process. It defines a HumanMessage template, ensuring compatibility with the ChatGPT

API. The model is set with a high temperature to promote creative output. Finally, the

LLMChain class constructs a processing chain that integrates the model and the prompt,

executing the expansion task using the .run() method.

template = """You are an exceptional copywriter and content creator.

You're reading an article with the following title:

{title}

You've just read the following piece of text from that article.

{text_all}

Inside that text, there's the following TEXT TO CONSIDER that you want to
enrich with new details.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

175

{text_to_change}

Searching around the web, you've found this ADDITIONAL INFORMATION from
distinct articles.

{doc_1}

{doc_2}

{doc_3}

Modify the previous TEXT TO CONSIDER by enriching it with information from
the previous ADDITIONAL INFORMATION.
"""

human_message_prompt = HumanMessagePromptTemplate(
 prompt=PromptTemplate(
 template=template,
 �input_variables=["text_to_change", "text_all", "title", "doc_1",

"doc_2", "doc_3"],
)
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_
prompt])

chat = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.9)
chain = LLMChain(llm=chat, prompt=chat_prompt_template)

response = chain.run({
 "text_to_change": text_to_change,
 "text_all": text_all,
 "title": title,
 "doc_1": best_k_documents[0].page_content,
 "doc_2": best_k_documents[1].page_content,
 "doc_3": best_k_documents[2].page_content
})

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

176

print("Text to Change: ", text_to_change)
print("Expanded Variation:", response)

Output: Text to Change: Senators Josh Hawley and Richard Blumenthal
acknowledged AI's disruptive impact and the necessity of understanding
its ramifications on elections, employment, and national security. To
illustrate AI's power, Blumenthal played an audio clip generated by an AI
voice cloning system trained on his past speeches.
Expanded Variation: Certainly! Here's an enriched version of the previously
specified text, incorporating relevant details from the additional information:

Senators Josh Hawley (R-MO) and Richard Blumenthal (D-CT), Chair and
Ranking Member of the Senate Judiciary Subcommittee on Privacy, Technology,
and the Law, acknowledged AI's disruptive impact and the necessity of
understanding its ramifications on elections, employment, and national
security. To illustrate AI's power, Blumenthal played an audio clip
generated by an AI voice cloning system trained on his past speeches,
showcasing the technology's potential for misuse. In light of these
concerns, both senators announced a bipartisan legislative framework aimed
at establishing guardrails for artificial intelligence..............

�App 6: YouTube Scriptwriting Tool
The YouTube Scriptwriting Tool is an AI-driven assistant designed to help content

creators craft engaging, well-structured scripts for their videos. By leveraging GPT-

powered AI, this tool streamlines the scriptwriting process, ensuring compelling

storytelling, clear messaging, and audience engagement.

�Step 1: Install All Required Libraries and Import Them
These dependencies are essential for building a YouTube Scriptwriting Tool with

AI-powered transcription, content generation, and automation. Here’s why each package

is used:

•	 openai: Provides access to GPT models for generating YouTube video

scripts, improving structure, and enhancing content

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

177

•	 langchain: A framework that integrates LLMs, text processing, and

retrieval-based AI for better script structuring

•	 google-colab: Ensures compatibility with Google Colab, allowing the

tool to run smoothly in a cloud environment

•	 yt_dlp: A powerful tool for downloading YouTube videos, enabling

AI-based script generation by transcribing existing content

•	 langchain-community: Extends LangChain’s capabilities with

community-maintained integrations for improved AI workflows

•	 openai-whisper: A state-of-the-art AI model for speech-to-text

transcription, used to convert YouTube videos into text-based scripts

•	 torch: A deep learning framework required for Whisper’s AI model,

enabling fast and efficient transcription

!pip install openai langchain google-colab yt_dlp langchain-community
!pip install -U openai-whisper torch

import openai
import os
import re
import subprocess
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from google.colab import auth
import whisper

�Step 2: Authenticate in Google Drive As We Use Google
Colab and Insert Your OpenAI API Key
auth.authenticate_user()
os.environ['OPENAI_API_KEY'] = input("Enter your OpenAI API Key: ")
gpt = ChatOpenAI(temperature=0.7, model_name="gpt-4")

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

178

�Step 3: Download Your Desired YouTube Video, Extract
the Audio, and Convert It to MP3
Step 2: Download YouTube Audio
def download_audio(video_url):
 �video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*",

video_url)
 if not video_id_match:
 return None

 video_id = video_id_match.group(1)
 audio_filename = f"{video_id}.mp3"

 �command = f"yt-dlp -x --audio-format mp3 -o '{audio_filename}'
{video_url}"

 os.system(command)

 return audio_filename if os.path.exists(audio_filename) else None

�Step 4: Transcribe Audio
Step 3: Transcribe Audio
def transcribe_audio(audio_filename):
 model = whisper.load_model("small")
 result = model.transcribe(audio_filename)
 return result["text"]

This function transcribes audio into text using OpenAI’s Whisper model.

	 1.	 Loads Whisper’s “small” model (whisper.load_
model("small"))

	 2.	 Transcribes the given audio file (model.transcribe(audio_
filename))

	 3.	 Returns the extracted text (result["text"])

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

179

�Step 5: Generate Outline
Step 4: Generate an Outline
def generate_outline(transcript_text):
 outline_prompt = PromptTemplate(
 input_variables=["transcript_text"],
 template="""
 �You are a professional YouTube scriptwriter. Analyze the following

transcribed YouTube video:
 "{transcript_text}"

 �Create an engaging script outline, including an introduction, key
sections, and a conclusion.

 """
)

 outline_chain = LLMChain(llm=gpt, prompt=outline_prompt)
 return outline_chain.run(transcript_text)

This function above generates a structured outline for a YouTube script from a

transcribed video.

	 1.	 Defines a prompt template (PromptTemplate) that instructs

the AI to analyze the transcript and create an outline with an

introduction, key sections, and a conclusion

	 2.	 Creates an AI processing chain (LLMChain) using gpt (a
GPT model)

	 3.	 Runs the AI model to generate an engaging script outline from the

given transcript

�Step 6: Expand the Script
Step 5: Expand Script
def expand_script(outline):
 script_prompt = PromptTemplate(
 input_variables=["outline"],
 template="""

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

180

 Given the following YouTube script outline:
 {outline}

 �Expand each section into a complete, engaging script with natural
dialogue and a strong narrative flow.

 Include timestamps and suggested visuals where relevant.
 """
)

 script_chain = LLMChain(llm=gpt, prompt=script_prompt)
 return script_chain.run(outline)

This function expands a script outline into a full YouTube script using AI.

	 1.	 Defines a prompt template (PromptTemplate) that instructs the

AI to convert the outline into a detailed script, ensuring natural

dialogue and strong narrative flow

	 2.	 Creates an AI processing chain (LLMChain) using gpt (a

GPT model)

	 3.	 Runs the AI model to generate a fully developed script, including

timestamps and suggested visuals for better content structuring

�Step 7: Combine All and Run the Tool
Step 6: Run the Tool
if __name__ == "__main__":
 video_url = input("Enter the YouTube video URL: ")

 print("\nDownloading audio from video...\n")
 audio_filename = download_audio(video_url)
 if not audio_filename:
 print("Audio download failed! Exiting.")
 else:
 print("Audio downloaded successfully!")

 print("\nTranscribing audio...\n")
 transcript_text = transcribe_audio(audio_filename)

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

181

 print("Transcript generated successfully!\n")
 print(transcript_text)

 print("\nGenerating script outline from transcript...\n")
 outline = generate_outline(transcript_text)
 print(outline)

 input("Press Enter to generate the full script...")
 print("\nExpanding into full script...\n")
 full_script = expand_script(outline)
 print(full_script)

Output:

Enter the YouTube video URL: https://www.youtube.com/shorts/9YFT5HqL5m8

Downloading audio from video...

Audio downloaded successfully!

Transcribing audio...

Transcript generated successfully!

 �While loop in Python. Firstly write out the following lines of code,
making sure you remember the colons and the indents. Save it, then run it.
It works.

Generating script outline from transcript...

Title: Mastering the While Loop in Python

Introduction:
- Welcoming viewers to the channel and the video
- �Briefly discussing the importance of understanding Python loops,
especially the "while loop"

- Outlining the objectives for the video

Section 1: Understanding the While Loop
- Explaining what a while loop is in the context of Python
- Discussing the use cases and benefits of using while loops

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

182

Section 2: Structuring the While Loop
- �Explaining the syntax of the while loop, emphasizing the importance of
colons and indents

- Showing on screen an example of the structure of a basic while loop

Section 3: Writing the Code
- Taking viewers through the process of writing a simple while loop code
- �Highlighting key points such as the use of colons and indents, how to
structure the loop, and what each line of code does

Section 4: Saving and Running the Code
- Demonstrating how to save and run the code
- Discussing potential errors that could occur and how to troubleshoot

Conclusion:
- Recapping the importance and structure of while loops in Python
- Encouraging viewers to practice writing their own while loops
- Reminding viewers to like, share, and subscribe for more Python tutorials
- �Teasing the topic of the next video and bidding viewers farewell until
next time.

Press Enter to generate the full script...

Expanding into full script...

Title: Mastering the While Loop in Python

[Introduction 00:00]

(Visual: Channel logo animation)

HOST: "Hey there coding enthusiasts, welcome back to our channel, your
trusted guide to everything Python! We all know how crucial loops are
in Python, don't we? And today, we're diving deep into the fascinating
world of 'While Loops' in Python. We'll be exploring what they are, how to
structure them, and finally, we'll write some code together. So, let's get
started!"

(Visual: Text Animation - "Mastering the While Loop in Python")

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

183

[Section 1: Understanding the While Loop 00:30]

(Visual: Video Animation - "While Loop Concept")

HOST: "So what exactly is a while loop? In Python, a while loop is used
for iterative tasks, which simply means, it helps you execute the same
code over and over again until a certain condition is met. It's like
telling your computer, 'Hey, keep doing this task while this condition is
true!'. And the benefits? It's a massive time-saver and a powerful tool for
handling repetitive tasks."

[Section 2: Structuring the While Loop 01:15]

(Visual: Screen recording - Python IDE with blank code file)

HOST: "Now, let's talk about how we structure a while loop in Python. The
syntax is straightforward. We start with the keyword 'while', followed
by the condition, and then a colon. The code you want to repeat goes
underneath, indented for clarity. Let's look at a basic example."

(Visual: Coding example on Python IDE)

[Section 3: Writing the Code 02:30]

(Visual: Screen Recording - Python IDE with code example)

HOST: "Let's write a simple while loop code together, shall we? Remember,
our indents and colons are key here. We'll structure our loop, line by
line, and I'll explain each part as we go along."

(Visual: Host typing and explaining the code)

[Section 4: Saving and Running the Code 04:50]

(Visual: Screen Recording - Python IDE)

HOST: "Once we've written our code, it's time to save and run it. But
remember, errors can occur. Maybe we've missed a colon or misstructured our
loop. Don't worry, I'll show you common errors and how to troubleshoot them."

(Visual: Demonstration of saving, running, and troubleshooting the code)

[Conclusion 06:40]

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

184

(Visual: Host on screen)

HOST: "And that, my friends, is the while loop in Python! Remember,
practice is key, so try writing your own while loops. Don't forget to hit
the like button if you found this tutorial helpful, and share it with your
fellow coders. Subscribe for more Python tutorials, and stay tuned for our
next video where we'll be delving into another exciting Python topic. Until
then, keep coding!"

(Visual: End screen with like, share, and subscribe animation)

�App 7: Email Generator
The AI Email Generator is a powerful tool designed to automate and enhance email

writing using AI. By leveraging GPT-powered language models, this tool helps users craft

professional, personalized, and context-aware emails in seconds.

�Key Features

•	 Automated Email Drafting: Generate emails based on prompts or

key points.

•	 Personalization: Adjust tone, style, and recipient details for a

tailored approach.

•	 Quick Edits and Refinements: Modify content instantly with AI

suggestions.

•	 Template-Based Generation: Create emails for business, customer

support, marketing, and more.

•	 Grammar and Tone Enhancement: Ensure clarity, professionalism,

and engagement.

Ideal for professionals, businesses, and individuals, the AI Email Generator

streamlines communication, saves time, and improves email effectiveness with AI-

driven precision.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

185

�Step 1: Install All Required Libraries and Import Them
!pip install langchain openai langchain_community

from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import os

These dependencies are essential for building an AI-powered Email Generator using

LangChain and OpenAI. Here’s why each package is needed:

•	 langchain: The core framework for integrating LLMs (like GPT-4) to

generate, refine, and personalize email content

•	 openai: Provides access to GPT-powered AI for drafting professional,

context-aware emails

•	 langchain_community: Enhances LangChain with community-

supported integrations for better performance and extended

capabilities

This setup enables smart, AI-driven email generation, making the process faster,

more efficient, and highly personalized.

�Step 2: Generate Response with OpenAI
def generate_email_response(api_key, original_email, sender_name,
recipient_name, response_tone="professional"):

 os.environ["OPENAI_API_KEY"] = api_key

 template = PromptTemplate(
 �input_variables=["original_email", "sender_name", "recipient_name",

"response_tone"],
 template="""
 �Read the following email from {sender_name} and generate a well-

structured, contextually relevant response for {recipient_name}.
 �Ensure the tone of the response is {response_tone} and

appropriately addresses the content of the original email.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

186

 Original Email:
 {original_email}

 �Keep the response concise yet informative, maintaining politeness
and clarity.

 """,
)

 llm = OpenAI(model="gpt-3.5-turbo")
 chain = LLMChain(llm=llm, prompt=template)

 response_email = chain.run({
 "original_email": original_email,
 "sender_name": sender_name,
 "recipient_name": recipient_name,
 "response_tone": response_tone
 })

 return response_email

In this code, the generate_email_response() function takes an API key, an original

email, the sender and recipient names, and an optional response tone (defaulting to

“professional”).

It first sets the OpenAI API key as an environment variable (os.environ["OPENAI_
API_KEY"] = api_key) to authenticate requests to OpenAI’s API.

A PromptTemplate is then defined, guiding the AI to read the original email and

generate a contextually relevant, well-structured response. The AI

•	 Adapts the tone (e.g., professional, friendly)

•	 Addresses the recipient appropriately

•	 Keeps the response concise, polite, and informative

An LLM model (OpenAI()) is initialized, and an LLMChain (chain) is created to

process the prompt dynamically.

The function executes the chain with the given email details, generating an AI-

written email response, which is then returned.

This setup saves time, enhances professionalism, and ensures clarity, making it

useful for customer support, business communication, and automated email responses.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

187

�Step 3: Combine All Together and Generate Email
if __name__ == "__main__":
 api_key = input("Enter your OpenAI API key: ")
 original_email = input("Enter the original email content: ")
 sender_name = input("Enter the sender's name: ")
 recipient_name = input("Enter the recipient's name: ")
 �response_tone = input("Enter the response tone (e.g., professional,

friendly, casual): ")

 �response = generate_email_response(api_key, original_email, sender_
name, recipient_name, response_tone)

 print("\nGenerated Email Response:\n")
 print(response)

Note D on’t forget to generate your OpenAI API key.

Output:

Enter your OpenAI API key:
Enter the original email content: Let's have a meeting together?
Enter the sender's name: Anthony
Enter the recipient's name: James
Enter the response tone (e.g., professional, friendly, casual):
Professional
<ipython-input-5-279420fd8784>:30: LangChainDeprecationWarning: The
class `OpenAI` was deprecated in LangChain 0.0.10 and will be removed in
1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U
:class:`~langchain-openai` and import as `from :class:`~langchain_openai
import OpenAI``.
 llm = OpenAI()
<ipython-input-5-279420fd8784>:31: LangChainDeprecationWarning: The class
`LLMChain` was deprecated in LangChain 0.1.17 and will be removed in 1.0.
Use :meth:`~RunnableSequence, e.g., `prompt | llm`` instead.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

188

 chain = LLMChain(llm=llm, prompt=template)
<ipython-input-5-279420fd8784>:33: LangChainDeprecationWarning: The method
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0.
Use :meth:`~invoke` instead.
 response_email = chain.run({
Generated Email Response:

Dear Anthony,

Thank you for reaching out to me about having a meeting together. I am
always open to discussing and collaborating on any important matters.

Could you please provide more details about the meeting? This will help
me prepare and make the most of our time together. Additionally, please
suggest a few dates and times that work for you so we can schedule the
meeting accordingly.

I look forward to meeting with you and discussing further.

Best regards,
James

�App 8: CSV Data Analysis App
The CSV Data Analysis App is a powerful tool designed to help users efficiently analyze,

visualize, and extract insights from structured datasets. By leveraging AI, data processing

libraries, and interactive visualizations, this app makes it easy to explore large CSV files,

perform statistical analysis, and generate meaningful reports.

�Step 1: Install All Required Libraries and Import Them
!pip install pandas langchain openai matplotlib seaborn langchain_community
langchain_experimental

import pandas as pd
import langchain
from langchain.llms import OpenAI
from langchain_experimental.agents import create_pandas_dataframe_agent

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

189

import matplotlib.pyplot as plt
import seaborn as sns
import os

These dependencies enable a CSV Data Analysis App by integrating AI, data

processing, and visualization:

•	 pandas: Loads and manipulates CSV files.

•	 langchain and openai: Uses GPT-4 for AI-powered insights

and queries

•	 matplotlib and seaborn: Creates professional data visualizations

•	 langchain_community and langchain_experimental: Enhances AI

integration with modern tools

This setup allows users to analyze, visualize, and gain AI-driven insights from CSV

datasets, making data exploration faster and smarter.

�Step 2: Generate and Add Your OpenAI API Key
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Load Your CSV File
This code below loads, previews, and analyzes a CSV file using pandas.

The load_csv(file_path) function takes a file path as input and loads the CSV file

into a pandas DataFrame using pd.read_csv().

It then prompts the user to enter the CSV file path, loads the data into df, and

displays key insights:

	 1.	 Data Preview: Prints the first five rows of the dataset using df.
head(), providing a quick look at the data structure

	 2.	 Basic Statistics: Prints summary statistics with df.describe(),

showing key metrics like mean, min, max, and standard deviation

for numerical columns

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

190

Function to load CSV
def load_csv(file_path):
 return pd.read_csv(file_path)

Load CSV
file_path = input("Enter the path to your CSV file: ")
df = load_csv(file_path)

Display data preview
print("\n### Data Preview")
print(df.head())

Display basic statistics
print("\n### Basic Statistics")
print(df.describe())

Note T o get the path of a file in Google Colab, upload the file, right-click with
your cursor, and select “Copy path.”

Output:

Enter the path to your CSV file: /content/langchain_broad-match_
us_2025-02-19.csv

Data Preview
 Keyword Intent Volume \
0 langchain js Navigational 1000
1 langchain openai Informational 1000
2 langchain tools Informational 1000
3 langchain tutorial Navigational 1000
4 langchain_community.llms Informational 1000

 Trend Keyword Difficulty \
0 1.00,0.38,1.00,0.68,0.46,0.68,0.38,0.52,0.52,0... 44
1 0.62,1.00,0.81,0.62,0.36,0.62,0.45,0.55,0.45,0... 35
2 0.37,0.52,0.08,1.00,0.68,0.52,0.68,0.52,0.52,0... 41

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

191

3 0.44,0.44,0.81,0.81,0.62,0.62,0.55,0.55,1.00,0... 54
4 0.13,0.36,1.00,0.54,0.36,0.02,0.04,0.03,0.00,0... 18

 CPC (USD) Competitive Density \
0 0.00 0.01
1 3.63 0.01
2 2.48 0.00
3 2.98 0.11
4 0.00 0.00

 SERP Features Number of Results
0 Sitelinks, Video, People also ask, Related sea... 6260000
1 Video, People also ask, Related searches 11600000
2 Sitelinks, Video, Related searches 16400000
3 Sitelinks, Video, People also ask, Related sea... 8510000
4 Image pack, Video 42

Basic Statistics
 Volume Keyword Difficulty CPC (USD) Competitive Density \
count 284.000000 284.000000 284.000000 284.000000
mean 288.204225 28.419014 0.878275 0.019014
std 200.324685 12.485063 2.212721 0.069697
min 110.000000 0.000000 0.000000 0.000000
25% 140.000000 20.000000 0.000000 0.000000
50% 210.000000 27.000000 0.000000 0.000000
75% 320.000000 36.000000 0.000000 0.010000
max 1000.000000 83.000000 17.340000 0.830000

 Number of Results
count 2.840000e+02
mean 3.444161e+06
std 5.098099e+06
min 0.000000e+00
25% 9.700000e+01
50% 5.330000e+05
75% 5.745000e+06
max 3.630000e+07

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

192

�Step 4: Create a LangChain Agent
LangChain Agent for querying data
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
LangChain Agent for querying data
if OPENAI_API_KEY:
 llm = OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
 �agent = create_pandas_dataframe_agent(llm, df, verbose=True, allow_

dangerous_code=True)

 query = input("\nAsk a question about the data: ")
 if query:
 print("\nAnalyzing...")
 response = agent.run(query)
 print("\n**Response:**", response)
else:
 �print("\nWarning: OpenAI API Key not found. Please set it as an

environment variable.")

The code above sets up a LangChain agent to interact with a CSV dataset using GPT-

powered AI queries.

First, it retrieves the OpenAI API key from the environment (os.environ["OPENAI_
API_KEY"]). If the key exists, it initializes an LLM instance (OpenAI) with temperature=0

for deterministic responses.

It then creates a Pandas DataFrame agent using create_pandas_dataframe_
agent(llm, df, verbose=True, allow_dangerous_code=True). This agent allows

users to ask natural language questions about the dataset, and the AI will analyze and

generate insights based on the data.

The program then prompts the user for a query. If a question is provided, the agent

processes the request, runs the query on the DataFrame, and returns an AI-generated

response.

If the API key is missing, it prints a warning message, instructing the user to set up

the key.

This setup enables AI-powered data analysis, allowing users to interact with CSV

datasets using natural language instead of manual coding.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

193

Output:

Ask a question about the data: What's the data about?

Analyzing...

> Entering new AgentExecutor chain...
<ipython-input-16-9aca66b979d8>:11: LangChainDeprecationWarning: The method
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0.
Use :meth:`~invoke` instead.
 response = agent.run(query)
Thought: The data is about keywords and their corresponding attributes.
Action: python_repl_ast
Action Input: df.info()<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284 entries, 0 to 283
Data columns (total 9 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 Keyword 284 non-null object
 1 Intent 284 non-null object
 2 Volume 284 non-null int64
 3 Trend 284 non-null object
 4 Keyword Difficulty 284 non-null int64
 5 CPC (USD) 284 non-null float64
 6 Competitive Density 284 non-null float64
 7 SERP Features 284 non-null object
 8 Number of Results 284 non-null int64
dtypes: float64(2), int64(3), object(4)
memory usage: 20.1+ KB
 The data has 284 rows and 9 columns.
Action: python_repl_ast
Action Input: df.shape(284, 9)I now know the final answer
Final Answer: The data has 284 rows and 9 columns. It contains information
about keywords, their intent, volume, trend, keyword difficulty, CPC,
competitive density, SERP features, and number of results.

> Finished chain.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

194

�App 9: Knowledge Base Voice Assistant
The Knowledge Base Voice Assistant is an AI-driven system that enables users to

interact with a knowledge base using natural voice commands. By integrating speech

recognition, large language models (LLMs), and vector search, this assistant allows for

seamless and intelligent access to vast amounts of information.

Designed for businesses, research teams, and customer support, this voice-enabled

assistant can retrieve answers, summarize documents, and provide real-time insights

from structured and unstructured data sources. By leveraging LangChain, OpenAI’s

GPT models, and vector databases, the assistant delivers accurate and context-aware

responses in a conversational format.

�Step 1: Install the Required Libraries and Import Them
Install dependencies
!pip install SpeechRecognition gtts langchain faiss-cpu openai

import speech_recognition as sr
from gtts import gTTS
import os
import IPython.display as ipd
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from google.colab import files

These dependencies enable a voice-controlled AI assistant by integrating speech
recognition, retrieval, and AI-powered responses:

•	 SpeechRecognition: Converts speech to text for voice input

•	 gTTS: Converts AI-generated text to speech for voice output

•	 LangChain: Manages LLM interactions and knowledge retrieval

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

195

•	 FAISS: Enables fast, semantic search in the knowledge base

•	 OpenAI: Uses GPT-4 to generate intelligent responses

Together, these tools allow users to speak queries, retrieve relevant information,
and hear AI-generated answers, making knowledge access seamless and intuitive.

�Step 2: Generate and Add Your OpenAI API Key
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Develop Voice Interaction
def speak(text):
 """Convert text to speech using gTTS and play it."""
 tts = gTTS(text=text, lang='en')
 tts.save("response.mp3")
 ipd.display(ipd.Audio("response.mp3"))

def listen():
 """Process uploaded audio file and convert to text."""
 recognizer = sr.Recognizer()
 print("Please upload an audio file (wav format).")
 uploaded = files.upload()

 for filename in uploaded.keys():
 with sr.AudioFile(filename) as source:
 audio = recognizer.record(source)
 try:
 return recognizer.recognize_google(audio)
 except sr.UnknownValueError:
 return "Sorry, I could not understand."
 except sr.RequestError:
 return "Could not request results."

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

196

This code enables voice interaction for an AI assistant by handling both text-to-

speech (TTS) output and speech-to-text (STT) input using gTTS and SpeechRecognition.

The speak(text) function takes a text input, converts it into speech using gTTS

(Google Text-to-Speech), and saves the generated audio as "response.mp3". It then plays

the audio using IPython’s audio player (ipd.Audio), allowing users to hear the assistant’s

response.

The listen() function processes an uploaded audio file (in .wav format)

and converts speech into text. It uses SpeechRecognition’s Recognizer to handle

transcription. The user is prompted to upload an audio file, which is then processed:

	 1.	 Loads the uploaded file

	 2.	 Extracts audio data using sr.AudioFile()

	 3.	 Recognizes speech using Google’s speech-to-text API

(recognize_google)

	 4.	 Returns the transcribed text or an error message if speech

is unclear (UnknownValueError) or if the API request fails

(RequestError)

This setup allows the assistant to listen to user queries, process them as text, and

respond with AI-generated speech, enabling a full voice-based knowledge assistant

experience.

Note S ince we develop this app in Google Colab, this platform doesn’t provide us
with microphone access, so all audio interaction has to be recorded as .wav files
and uploaded to Google Colab.

�Step 4: Load Knowledge Base from the Web and Create
the QA Chain
Load knowledge base from the web
def load_knowledge_base():
 """Load and process online resources for retrieval."""
 urls = [
 "https://en.wikipedia.org/wiki/Artificial_intelligence",

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

197

 "https://en.wikipedia.org/wiki/Natural_language_processing"
]

 loader = WebBaseLoader(urls)
 documents = loader.load()
 �text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_

overlap=200)
 texts = text_splitter.split_documents(documents)

 embeddings = OpenAIEmbeddings()
 vectorstore = FAISS.from_documents(texts, embeddings)
 return vectorstore

def create_qa_chain(vectorstore):
 """Set up LangChain's RetrievalQA model."""
 llm = ChatOpenAI()
 retriever = vectorstore.as_retriever()
 return RetrievalQA.from_chain_type(llm=llm, retriever=retriever)

The code above fetches knowledge from the Web, processes it into a retrievable

format, and sets up an AI-powered Q&A system using LangChain.

The load_knowledge_base() function

	 1.	 Defines a list of URLs containing knowledge (Wikipedia pages on

AI and NLP)

	 2.	 Uses WebBaseLoader to fetch and extract the content from these

web pages

	 3.	 Splits the extracted text into chunks of 1000 characters, ensuring

200-character overlap for better context retention using

CharacterTextSplitter

	 4.	 Converts these text chunks into vector embeddings using

OpenAIEmbeddings, allowing semantic search

	 5.	 Stores the processed embeddings in a FAISS vector database,

which enables efficient retrieval of relevant knowledge

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

198

The create_qa_chain(vectorstore) function

	 1.	 Initializes an LLM-powered chatbot using ChatOpenAI()

	 2.	 Converts the FAISS vector store into a retriever, allowing the AI to

find relevant information from stored knowledge

	 3.	 Creates a retrieval-based question-answering (QA) system using

RetrievalQA.from_chain_type(), enabling users to ask natural

language questions and get context-aware answers

This setup allows an AI assistant to retrieve and answer questions based on web-

sourced knowledge, making it useful for automated research assistants, chatbots, and

real-time information retrieval systems.

�Step 5: Combine Them All Together
def main():
 """Main loop for voice interaction."""
 vectorstore = load_knowledge_base()
 qa_chain = create_qa_chain(vectorstore)

 speak("Hello! Please upload an audio file with your query.")
 while True:
 query = listen()
 if query.lower() in ["exit", "quit", "stop"]:
 speak("Goodbye!")
 break

 print(f"User: {query}")
 response = qa_chain.run(query)
 print(f"Assistant: {response}")
 speak(response)

This code creates a voice-interactive AI assistant that retrieves information from a

web-based knowledge base and responds using speech.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

199

The main() function

	 1.	 Loads the knowledge base by calling load_knowledge_
base(), which fetches and processes online content into a

retrievable format

	 2.	 Creates a Q&A system using create_qa_chain(vectorstore),

allowing AI-driven responses based on stored knowledge

	 3.	 Welcomes the user with speech using speak("Hello! Please
upload an audio file with your query."), prompting them to

submit a voice query

	 4.	 Enters a loop where

•	 It listens for user input via listen(), which converts speech

into text

•	 If the user says "exit", "quit", or "stop", the assistant ends the

conversation with a goodbye message

•	 Otherwise, it retrieves and generates an AI-powered response

using qa_chain.run(query), prints it, and speaks the response

aloud using speak(response)

Output—if all works correctly:

Figure 3-1.  Voice Assistant Output

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

200

�App 10: Analyzing Codebase with LangChain
The Analyzing Codebase with LangChain app is an AI-powered tool designed to help

developers, engineers, and teams efficiently explore and understand complex code

bases. By leveraging LangChain’s advanced language processing capabilities, the app

can extract insights, answer questions, and provide recommendations based on the

structure and logic of a given code repository.

Using large language models (LLMs) like GPT-4, along with vector search and

semantic retrieval, this app enables users to quickly navigate source code, identify

dependencies, summarize functions, and even detect potential issues—all without

manually scanning through thousands of lines of code.

�Step 1: Install All Required Libraries
!pip install langchain openai chromadb tiktoken
!pip install -U langchain-community
!pip install unstructured

These installation commands ensure that all necessary dependencies are available

for building an AI-powered code base analysis tool using LangChain. Here’s why each

package is needed:

•	 langchain: The core framework that enables interaction with large

language models (LLMs), vector databases, and advanced AI tools for

processing and analyzing code.

•	 openai: Provides access to OpenAI’s models (like GPT-4), which

can generate insights, summarize code, and answer questions

intelligently.

•	 chromadb: A vector database used for efficient storage and retrieval

of embeddings. This is crucial for semantic search, allowing the AI to

find relevant code snippets quickly.

•	 tiktoken: A tokenizer for OpenAI models that helps efficiently count

and manage tokens, ensuring that the AI processes code efficiently

while staying within model constraints.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

201

•	 langchain-community: The updated package containing community-

supported integrations for third-party tools like ChromaDB, OpenAI,

FAISS, and more. Keeping this updated ensures compatibility with

the latest LangChain features.

•	 unstructured: A powerful library for extracting and processing text

from complex files and documents, including code files, PDFs, and

markdowns. This helps in parsing, cleaning, and structuring raw

code data before embedding it into a vector database.

•	 As an alternative, you can use Docling. It is an innovative document

processing tool developed by xAI, designed to streamline the

extraction and analysis of information from various file formats

like PDFs, images, and text documents. It leverages advanced AI

techniques to enable users to quickly interpret and interact with

complex documents, making it a valuable asset for research, data

analysis, and knowledge management.

�Step 2: Generate and Add Your OpenAI API Key
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Upload and Load the Files
The next lines of code scan a directory for Python (.py) files, reads their content, and

stores them in a structured format for further processing, such as embedding or AI-

powered analysis.

The load_code_files function does the following:

	 1.	 Uses the glob module to find all Python files (.py) within the

specified directory ("./my_codebase") and its subdirectories

(recursive=True)

	 2.	 Initializes an empty list called documents to store the

extracted code

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

202

	 3.	 Iterates over each Python file found:

•	 Opens the file in read mode with UTF-8 encoding

•	 Reads the entire content of the file

•	 Appends a dictionary containing the file’s path and content to

the documents list

	 4.	 Returns the documents list, which now contains the path and
source code of each Python file

The example usage calls load_code_files(), storing the result in documents. It then

prints the total number of Python files loaded.

import glob

def load_code_files(directory="./my_codebase"):
 code_files = glob.glob(f"{directory}/**/*.py", recursive=True)
 documents = []
 for file_path in code_files:
 with open(file_path, "r", encoding="utf-8") as file:
 documents.append({"path": file_path, "content": file.read()})
 return documents

Example Usage
documents = load_code_files()
print(f"Loaded {len(documents)} code files.")

�Step 4: Create and Store Code Embeddings
This code automates the process of loading, processing, and embedding a code base

for efficient search and retrieval using LangChain and OpenAI embeddings.

First, it uses DirectoryLoader to scan the ./my_codebase directory (feel free to

change it according to your needs) for all Python files (**/*.py) (you can look for the file

extension according to your programming language). It loads these files into memory as

documents, displaying a progress indicator during the process.

Next, the RecursiveCharacterTextSplitter is used to split the loaded code into
smaller chunks of 500 characters, with a 50-character overlap between chunks. This

ensures that when the AI retrieves and processes code, it maintains context across split

sections.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

203

After splitting the code, embeddings are generated using OpenAI’s

OpenAIEmbeddings, which converts each chunk into a vector representation. These

embeddings allow for semantic search, meaning the AI can find relevant code snippets

based on meaning rather than just exact keyword matches.

Finally, these embeddings are stored in a Chroma vector database using Chroma.
from_documents(docs, embedding_model), making the code searchable and retrievable

based on AI-powered similarity searches.

This setup enables AI-powered code search, understanding, and analysis, making

it useful for automated documentation, intelligent code retrieval, and AI-assisted
debugging.

from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma

Load code files
loader = DirectoryLoader("./my_codebase", glob="**/*.py", show_
progress=True)
documents = loader.load()

Split code into chunks
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.split_documents(documents)

Generate embeddings
embedding_model = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(docs, embedding_model)

print("Code embeddings stored successfully!")

�Step 5: Create Retriever and Retrieval Chain
from langchain.chains import create_retrieval_chain
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts import ChatPromptTemplate

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

204

Setup LLM
llm = ChatOpenAI(model="gpt-4", temperature=0)

Create retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})

Define the prompt template
prompt = ChatPromptTemplate.from_template(
 �"You are an AI code assistant. Explain the following query based on the

code context:\n\nQuery: {input}\n\nContext: {context}"
)

Create retrieval chain
qa_chain = create_retrieval_chain(retriever, prompt | llm |
RunnablePassthrough())

Function to Query the Codebase
def query_codebase(query):
 result = qa_chain.invoke({"input": query}) # Run the query
 print("\n Full Response:", result) # Debug: print full output
 return result['answer']

Example Usage
query = "How does the class Tomorrow work?"
response = query_codebase(query)
print("\n Search Result:\n", response)

This code sets up an AI-powered code retrieval and explanation system using

LangChain, allowing users to ask questions about a code base and receive intelligent,

context-aware responses.

First, it initializes a GPT-4 model using ChatOpenAI with temperature=0, ensuring

deterministic responses for accurate code explanations.

Next, a retriever is created from the vectorstore, configured to return the top
five most relevant code snippets (k=5) when queried. This ensures that only the most

relevant parts of the code base are retrieved for explanation.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

205

A prompt template is then defined using ChatPromptTemplate.from_template(),

instructing the AI to act as a code assistant. It dynamically inserts

•	 The user query ({input})

•	 The retrieved code context ({context})

This ensures that responses are directly based on the actual code base.

The retrieval chain (qa_chain) is then created using create_retrieval_chain(). It

follows a structured pipeline:

	 1.	 Retrieve relevant code snippets (retriever)

	 2.	 Format the query and retrieved context into the prompt

(prompt)

	 3.	 Generate an AI-powered explanation using GPT-4 (llm)

	 4.	 Pass through the final response (RunnablePassthrough())

The query_codebase function allows users to input a natural language question
about the code base. It runs the qa_chain, processes the query, and returns an AI-

generated response. For debugging, it also prints the full response object.

Finally, an example query is run:

•	 The user asks “How does the class Tomorrow work?” (replace it
with your own query).

•	 The system searches the vectorized code base for relevant code

snippets.

•	 GPT-4 generates an explanation based on the retrieved context.

•	 The response is printed, providing a clear AI-generated answer about

the code.

This setup enables AI-powered code analysis, making it useful for developer
assistance, code documentation, debugging, and understanding large code bases.

Output:

Search Result:
 content="The `Tomorrow` class is designed to handle asynchronous tasks
in Python. It uses the `concurrent.futures.ThreadPoolExecutor` to manage
a pool of worker threads that can execute tasks in parallel.\n\nHere's a

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

206

breakdown of how the `Tomorrow` class works:\n\n- The `__init__` method
initializes an instance of the `Tomorrow` class with a `future` object
and a `timeout` value. The `future` object represents a computation or
I/O bound task that hasn't completed yet.\n\n- The `__getattr__` method
waits for the result of the `future` object and then returns the attribute
with the specified name from the result.\n\n- The `result` property is a
shortcut for getting the result of the `future` object.\n\n- The `__iter__`
method allows an instance of the `Tomorrow` class to be iterable. It waits
for the result of the `future` object and then returns an iterator for the
result.\n\n- The `_wait` method waits for the result of the `future` object
with the specified timeout and then returns the result.\n\nThe `async_`
function is a decorator that makes a function run asynchronously. It takes
a number of threads `n`, a `base_type` which should be a type of executor,
and an optional `timeout`. It returns a `Tomorrow` object that represents
the asynchronous execution of the function.\n\nThe `threads` function is
a shortcut for using the `async_` decorator with `ThreadPoolExecutor`
as the `base_type`. It takes a number of threads `n` and an optional
`timeout`, and returns a decorator that makes a function run asynchronously
using a thread pool." additional_kwargs={} response_metadata={'token_
usage': {'completion_tokens': 338, 'prompt_tokens': 887, 'total_tokens':
1225, 'completion_tokens_details': {'accepted_prediction_tokens': 0,
'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens':
0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}},
'model_name': 'gpt-4', 'system_fingerprint': None, 'finish_reason': 'stop',
'logprobs': None} id='run-8368c60d-3758-41b5-ad9f-6f000b64c48d-0'

�App 11: Recommender System with LangChain
A Recommender System with LangChain is an AI-powered system that suggests

relevant content, products, or information by leveraging LangChain’s capabilities in

natural language processing, vector databases, and large language models (LLMs). It

integrates retrieval-augmented generation (RAG) techniques, semantic search, and

embeddings to provide intelligent and personalized recommendations.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

207

�How It Works

	 1.	 Data Ingestion and Processing: The system processes and

structures input data, which could be product descriptions,

research papers, articles, or user preferences.

	 2.	 Text Embedding and Vector Storage: Text data is converted

into embeddings using models like OpenAIEmbeddings. The

embeddings are stored in a vector database like FAISS, Pinecone,

or ChromaDB.

	 3.	 Retrieval Based on Similarity: When a user queries the system,

their input is also converted into an embedding and compared

against stored embeddings to find the most relevant matches.

	 4.	 LLM-Enhanced Recommendations: A language model (such

as GPT-4) can refine and explain the recommendations by

generating context-aware suggestions based on retrieved results.

	 5.	 Personalization and Context Memory: By integrating memory
mechanisms like ConversationBufferMemory(), the system can

refine recommendations based on user preferences and past

interactions.

�Step 1: Install and Import the Required Libraries
!pip install langchain openai==0.28 faiss-cpu tiktoken
!pip install -U langchain-community

These installation commands ensure that all necessary dependencies are available

for building a LangChain-based AI system, such as a PDF chatbot or a recommender
system. Here’s why each package is used:

•	 langchain: The core framework for integrating large language models

(LLMs), vector databases, and retrieval-based AI applications.

•	 openai==0.28: Installs version 0.28 of the OpenAI Python package,

which allows interaction with GPT-4, GPT-3.5, and embeddings

models. Using a specific version ensures compatibility with

LangChain.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

208

•	 faiss-cpu: A vector database optimized for fast similarity search,

used to store and retrieve text embeddings efficiently.

•	 tiktoken: A tokenizer for OpenAI models that helps optimize token

usage and ensures the chatbot stays within token limits.

•	 langchain-community: The updated package for community-

supported integrations, replacing older LangChain modules for

better maintenance and compatibility with third-party tools like

FAISS, Pinecone, and OpenAI.

�Step 2: Generate and Add Your OpenAI API Key and Then
Import All Libraries Required
from langchain.schema import Document
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.tools import Tool
from langchain.agents import initialize_agent

Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Load Up Some Sample Data
Sample data (list of items to recommend)
data = [
 "The Lord of the Rings - A fantasy novel by J.R.R. Tolkien.",
 "Harry Potter - A young wizard's journey by J.K. Rowling.",
 "The Matrix - A sci-fi movie about a simulated reality.",
 "Inception - A movie about dreams within dreams.",
 "The Witcher - A fantasy book and TV series about a monster hunter.",
 "Game of Thrones - A TV series based on A Song of Ice and Fire.",

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

209

 "Interstellar - A sci-fi movie about space exploration.",
 "Dune - A sci-fi novel by Frank Herbert about interstellar politics.",
 �"Blade Runner - A dystopian sci-fi movie exploring artificial

intelligence.",
 �"Neuromancer - A cyberpunk novel by William Gibson about hackers

and AI."
]

�Step 4: Convert Data into LangChain Document Format
and Generate Embeddings
Convert data into LangChain Document format
documents = [Document(page_content=item) for item in data]

Generate Embeddings
embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_documents(documents, embeddings)

The code above processes raw text data, converts it into LangChain’s Document

format, and then generates vector embeddings to store in a FAISS database for efficient

retrieval.

The first line transforms each item in the data list into a LangChain Document

object, which is a standardized format for handling text in LangChain-based

applications. This is necessary because LangChain’s retrieval mechanisms expect data to

be in this structured format.

Next, an instance of OpenAIEmbeddings is created. This model converts text into

numerical vector representations (embeddings), which enable semantic search—

meaning the system can find similar documents based on meaning rather than just

keywords.

Finally, a FAISS vector store is created from the processed documents using their

embeddings. FAISS (Facebook AI Similarity Search) is a vector database optimized for

fast and efficient similarity search, allowing quick retrieval of relevant information from

large datasets.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

210

�Step 5: Define an Advanced Retrieval Function
In the following, we define an advanced retrieval function that finds the most relevant

documents based on a user’s query using vector similarity search.

The function get_advanced_recommendations takes three parameters:

	 1.	 query: The user’s input or search phrase

	 2.	 k: The number of top matching results to return (default is 3)

	 3.	 return_scores: A boolean flag indicating whether to return

similarity scores alongside the recommendations

The function calls vector_store.similarity_search_with_score(query, k=k),

which searches the FAISS vector store for the k most similar documents based on

their embeddings. The results include both the retrieved document objects and their

similarity scores.

If return_scores is True, the function returns a list of tuples containing both the

document content and its similarity score. Otherwise, it returns only the document

content without scores.

This approach enables semantic search and recommendation generation, making

it useful for applications like chatbots, document retrieval systems, and AI-powered
recommendation engines that need to find the most contextually relevant information.

Define an advanced retrieval function
def get_advanced_recommendations(query, k=3, return_scores=False):
 �"""Returns the top-k most similar items based on user query, optionally

with similarity scores."""
 �results_with_scores = vector_store.similarity_search_with_

score(query, k=k)
 if return_scores:
 �return [(doc.page_content, score) for doc, score in results_

with_scores]
 else:
 return [doc.page_content for doc, _ in results_with_scores]

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

211

�Step 6: Integrate a QA System Using LangChain
Then, it’s time to set up a question-answering (QA) system using LangChain by

integrating a retrieval-based approach with an LLM (GPT-4).

The RetrievalQA.from_chain_type function creates a QA pipeline that retrieves

relevant information from a vector store before generating answers. It takes three key

parameters:

	 1.	 llm=ChatOpenAI(model="gpt-4"): Uses OpenAI’s GPT-4 model to

process and generate responses.

	 2.	 retriever=vector_store.as_retriever(): Converts the FAISS
vector store into a retriever that can find the most relevant

documents based on user queries.

	 3.	 chain_type="stuff": Specifies the document processing method.

The "stuff" method takes the retrieved documents, combines

their content, and passes them directly to the LLM for response

generation.

This setup enables semantic search-based question answering, where the system

retrieves the most relevant documents from the vector store and leverages GPT-4 to

generate accurate, context-aware answers. It’s useful for chatbots, document search
engines, and AI assistants that need to provide precise responses based on stored

knowledge.

Integrate a QA system using LangChain
qa_chain = RetrievalQA.from_chain_type(
 llm=ChatOpenAI(model="gpt-4"),
 retriever=vector_store.as_retriever(),
 chain_type="stuff"
)

�Step 7: Set Up an AI Conversational Agent
The code below continues by setting up an AI-powered conversational agent

using LangChain, integrating both a question-answering (QA) system and a

recommendation system with conversational memory.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

212

The answer_query function takes a user’s input and retrieves an AI-generated

answer using the qa_chain.run(query) method. This ensures responses are based on

relevant retrieved information.

A conversational memory is implemented using ConversationBufferMemory(mem
ory_key="chat_history"). This allows the chatbot to remember previous interactions,

improving the coherence of multiturn conversations.

Two tools are defined using the Tool class:

	 1.	 recommendation_tool: Calls get_advanced_recommendations()

to retrieve the top five most relevant recommendations based

on a query, including similarity scores

	 2.	 qa_tool: Calls answer_query() to generate AI-powered answers

based on retrieved documents

The LangChain Agent is then initialized using initialize_agent():

•	 It includes the QA and recommendation tools.

•	 Uses GPT-4 as the language model

(llm=ChatOpenAI(model="gpt-4")).

•	 Implements a zero-shot-react-description agent, meaning the AI

can reason and select the best tool dynamically.

•	 Maintains a conversation history using memory.

•	 Runs in verbose mode, providing detailed execution logs for

debugging.

This setup enables the AI agent to act as an intelligent assistant, capable of both

answering questions and providing recommendations in an interactive and memory-

enhanced conversation.

Function to answer user queries intelligently
def answer_query(query):
 """Returns an AI-generated answer based on retrieved information."""
 return qa_chain.run(query)

Implement Conversational Memory
memory = ConversationBufferMemory(memory_key="chat_history")

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

213

Define tools for the LangChain agent
recommendation_tool = Tool(
 name="Recommendation System",
 �func=lambda query: get_advanced_recommendations(query, k=5, return_

scores=True),
 description="Provides top recommendations based on a user query."
)

qa_tool = Tool(
 name="QA System",
 func=answer_query,
 description="Answers questions using an AI-powered retrieval system."
)

Initialize LangChain Agent
agent = initialize_agent(
 tools=[recommendation_tool, qa_tool],
 llm=ChatOpenAI(model="gpt-4"),
 agent="zero-shot-react-description",
 memory=memory,
 verbose=True
)

�Step 8: Test the System
Example Queries
query = "I love sci-fi movies about space."
recommendations = get_advanced_recommendations(query, k=5, return_
scores=True)
print("Top Recommendations with Scores:")
for rec, score in recommendations:
 print(f"- {rec} (Score: {score:.4f})")

Intelligent QA System Example
query_qa = "What are some movies about AI?"
answer = answer_query(query_qa)
print("\nAI-Powered Answer:")
print(answer)

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

214

Interactive Agent Example
user_input = "Give me a recommendation for fantasy books."
agent_response = agent.run(user_input)
print("\nAgent Response:")
print(agent_response)

op Recommendations with Scores:
- Interstellar - A sci-fi movie about space exploration. (Score: 0.2047)
- The Matrix - A sci-fi movie about a simulated reality. (Score: 0.3131)
- �Blade Runner - A dystopian sci-fi movie exploring artificial
intelligence. (Score: 0.3341)

- �Dune - A sci-fi novel by Frank Herbert about interstellar politics.
(Score: 0.3552)

- �Inception - A movie about dreams within dreams. (Score: 0.3911)
AI-Powered Answer:
Some movies about artificial intelligence include "Blade Runner" and "The
Matrix".
> Entering new AgentExecutor chain...
The user is asking for a recommendation, not a factual answer.
Action: Recommendation System
Action Input: Fantasy books
Observation: [('The Lord of the Rings - A fantasy novel by
J.R.R. Tolkien.', 0.2408208), ('The Witcher - A fantasy book and TV series
about a monster hunter.', 0.27408585), ("Harry Potter - A young wizard's
journey by J.K. Rowling.", 0.29327092), ('Dune - A sci-fi novel by Frank
Herbert about interstellar politics.', 0.35180575), ('Game of Thrones - A
TV series based on A Song of Ice and Fire.', 0.37026554)]
Thought:The recommendation system has provided a list of fantasy books.
There's no need to go further.
Final Answer: Here are some fantasy books you might enjoy: 'The Lord of
the Rings' by J.R.R. Tolkien, 'The Witcher' series, 'Harry Potter' series
by J.K. Rowling, 'Dune' by Frank Herbert, and the 'Game of Thrones' series
based on 'A Song of Ice and Fire'.
> Finished chain.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

215

Agent Response:
Here are some fantasy books you might enjoy: 'The Lord of the Rings'
by J.R.R. Tolkien, 'The Witcher' series, 'Harry Potter' series by
J.K. Rowling, 'Dune' by Frank Herbert, and the 'Game of Thrones' series
based on 'A Song of Ice and Fire'.

�App 12: PDF Files Chatbot
A PDF Chatbot with LangChain is an AI-powered assistant designed to interact with

and extract insights from PDF documents. Using LangChain, a framework for building

applications with large language models (LLMs), the chatbot can read, process, and

answer questions based on the content of uploaded PDFs. This enables users to

efficiently search for specific information, summarize sections, or analyze documents

without manually going through large amounts of text.

Typically, a PDF chatbot integrates text extraction tools (like PyMuPDF or

PDFMiner), vector databases for semantic search, and LLM-powered reasoning to

provide accurate responses. This makes it useful for legal documents, research papers,

contracts, and reports, improving workflow automation and knowledge retrieval.

�Step 1: Install All Required Libraries
!pip install langchain pypdf faiss-cpu openai tiktoken
!pip install -U langchain-community

•	 langchain: The core framework that enables interaction with large

language models (LLMs), document loading, vector databases, and

reasoning capabilities.

•	 pypdf: A Python library for extracting text from PDF files, allowing the

chatbot to read and process document content.

•	 faiss-cpu: A vector database library developed by Facebook AI for

fast and efficient similarity search, crucial for storing and retrieving

document embeddings.

•	 openai: Provides access to OpenAI’s LLMs (like GPT-4) for natural

language understanding and generating responses.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

216

•	 tiktoken: A tokenizer used for counting tokens efficiently when

working with OpenAI models, helping in cost estimation and

ensuring token limits are managed properly.

•	 langchain-community: An updated version of LangChain’s

community-supported integrations. It includes various third-party

tool integrations (like OpenAI, FAISS, Pinecone, and more) for better

support and maintenance.

Then, import them:

import os
import faiss
import pickle
import time
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory

�Step 2: Generate and Add Your OpenAI API Key
Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Upload Your PDF Files, Access Them, and Create
a Vector Store Database
The following code sets up a system to process PDFs, extract text, split it into chunks, and

store the processed data in a FAISS vector database for efficient retrieval. It first defines a

directory named “vector_store” where the FAISS database will be stored.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

217

The “load_pdfs” function takes a list of PDF file paths, extracts text from each

file using “PyPDFLoader”, and compiles all extracted text into a list. It then uses

“RecursiveCharacterTextSplitter” to break the text into smaller chunks of 500

characters, ensuring a 100-character overlap between chunks for context preservation.

The “create_or_load_vector_store” function checks if a FAISS vector store

already exists in the specified directory. If it does, it loads the stored embeddings using

“FAISS.load_local”. If not, it processes the PDFs by calling “load_pdfs”, generates text

embeddings using “OpenAIEmbeddings”, and creates a new FAISS vector store. This

new vector store is then saved locally for future use. The function returns the vector

store, enabling efficient document search and retrieval using vector similarity.

Directory to store vector database
DB_FAISS_PATH = "vector_store"

Load and Process PDFs
def load_pdfs(pdf_paths):
 all_documents = []
 for pdf in pdf_paths:
 loader = PyPDFLoader(pdf)
 documents = loader.load()
 all_documents.extend(documents)

 # Split text into chunks
 �text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_

overlap=100)
 chunks = text_splitter.split_documents(all_documents)
 return chunks

Create or Load FAISS Vector Store
def create_or_load_vector_store(pdf_paths):
 if os.path.exists(DB_FAISS_PATH):
 print("[INFO] Loading existing vector store...")
 vectorstore = FAISS.load_local(DB_FAISS_PATH, OpenAIEmbeddings())

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

218

 else:
 print("[INFO] Creating new vector store...")
 chunks = load_pdfs(pdf_paths)
 vectorstore = FAISS.from_documents(chunks, OpenAIEmbeddings())
 vectorstore.save_local(DB_FAISS_PATH)
 return vectorstore

�Step 4: Create a Chatbot with Memory
Then, we initialize a chatbot that can retrieve information from a vector store and

engage in a conversation while maintaining memory. The get_chatbot function

sets up a chatbot using the GPT-4 model through ChatOpenAI. It also initializes a

ConversationBufferMemory to store the chat history, allowing the bot to remember

previous exchanges within a session. The ConversationalRetrievalChain is then

created, which enables the chatbot to retrieve relevant information from the vector store

while keeping track of the conversation context.

The chat_with_bot function provides an interactive chat interface. It prints a

message indicating that the chatbot is ready and waits for user input in a loop. If

the user types “exit” or “quit,” the loop breaks, and the program terminates the chat

session. Otherwise, the user’s query is passed to the qa_chain, which retrieves relevant

information from the vector store and generates a response. The chatbot’s reply is then

printed, allowing for a continuous back-and-forth interaction.

Initialize Chatbot with Memory
def get_chatbot(vectorstore):
 llm = ChatOpenAI(model_name="gpt-4")
 �memory = ConversationBufferMemory(memory_key="chat_history", return_

messages=True)
 qa_chain = ConversationalRetrievalChain.from_llm(
 llm, retriever=vectorstore.as_retriever(), memory=memory
)
 return qa_chain

Chat with the bot
def chat_with_bot(qa_chain):
 print("\n[INFO] Chatbot is ready! Type 'exit' to quit.")

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

219

 while True:
 query = input("\nYou: ")
 if query.lower() in ["exit", "quit"]:
 print("\n[INFO] Exiting chat...\n")
 break
 response = qa_chain.run(query)
 print(f"Bot: {response}")

�Step 5: Ask the Chatbot and Receive an Answer
Main function
if __name__ == "__main__":
 �pdf_files = ["Jira_Software.pdf", "ML+Cheat+Sheet_2.pdf"] # Replace

with your PDFs
 vectorstore = create_or_load_vector_store(pdf_files)
 chatbot = get_chatbot(vectorstore)
 chat_with_bot(chatbot)

Output:

[INFO] Creating new vector store...
<ipython-input-6-5c12dafc1a0e>:25: LangChainDeprecationWarning: The class
`OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed
in 1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U
:class:`~langchain-openai` and import as `from :class:`~langchain_openai
import OpenAIEmbeddings``.
 vectorstore = FAISS.from_documents(chunks, OpenAIEmbeddings())
<ipython-input-7-ec9b7022866c>:3: LangChainDeprecationWarning: The class
`ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in
1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U
:class:`~langchain-openai` and import as `from :class:`~langchain_openai
import ChatOpenAI``.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

220

 llm = ChatOpenAI(model_name="gpt-4")
<ipython-input-7-ec9b7022866c>:4: LangChainDeprecationWarning: Please
see the migration guide at: https://python.langchain.com/docs/versions/
migrating_memory/
 �memory = ConversationBufferMemory(memory_key="chat_history", return_
messages=True)

[INFO] Chatbot is ready! Type 'exit' to quit.

You: What is the model in the Jira software pdf?
<ipython-input-7-ec9b7022866c>:18: LangChainDeprecationWarning: The method
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0.
Use :meth:`~invoke` instead.
 response = qa_chain.run(query)
Bot: The model in the JIRA software PDF is a deep learning system designed
to automate the categorization and prioritization of JIRA tickets. It aims
to accurately extract relevant insights from ambiguous text, classify
tickets based on urgency and relevance, and eliminate the manual triaging
effort. The input to the model consists of a sequence of discrete tokens,
represented as an integer vector. The study compares different approaches
to address the complexity of JIRA ticket classification.

You: exit

[INFO] Exiting chat...

�Summary
In Chapter 3, we explored the development of advanced applications powered by large

language models (LLMs) using LangChain and Python. We examined how LangChain

provides a modular approach to building AI-driven solutions, enabling capabilities like

multistep reasoning, dynamic interactions, and seamless data integration. Through

practical implementations, such as YouTube video summarization and intelligent

document analysis, we demonstrated how LLMs can be applied to real-world problems.

Additionally, we addressed key challenges, including optimizing model behavior,

handling errors, and ensuring application scalability in production environments.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://doi.org/10.1007/979-8-8688-1475-4_3

221

With a strong foundation in application development, we now shift our focus to

deployment strategies in Chapter 4. Building LLM-powered applications is just the

beginning—successfully deploying them at scale requires careful consideration of

infrastructure, optimization, and performance management. This chapter explores

cloud deployment strategies, memory and computational efficiency techniques, and

best practices for ensuring security and scalability. By understanding the complexities

of deploying LLM applications, you will be equipped to transition from development

to real-world implementation, making AI-powered solutions accessible and efficient in

production environments.

Chapter 3 Building Advanced Applications Powered by LLMs with LangChain and Python

https://doi.org/10.1007/979-8-8688-1475-4_4

223
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_4

CHAPTER 4

Deploying LLM-Powered
Applications
The deployment of large language models (LLMs) marks a pivotal step in transforming

cutting-edge AI research into impactful real-world applications. Whether enabling

conversational agents, automating content creation, or driving decision-making tools,

LLMs unlock opportunities for innovation across industries. However, deploying

these powerful models is far from straightforward. It requires navigating a landscape

of technical challenges, architectural choices, and optimization techniques to ensure

performance, scalability, and efficiency in production environments.

This chapter focuses on the critical aspects of deploying LLM-powered applications,

equipping you with the knowledge to tackle this complex process effectively. We will

begin with an exploration of cloud deployment strategies and scalability considerations,

essential for ensuring that your application can handle varying loads and user demands.

Building on this foundation, we’ll delve into best practices for deploying LLMs in

production, highlighting strategies that balance speed, cost, and reliability.

Next, we’ll explore the tools available for deploying LLMs, from infrastructure

frameworks to model-serving solutions, providing a comprehensive toolkit to simplify

and streamline the process. As with any cutting-edge technology, deploying LLMs

comes with its challenges. From inference latency and memory constraints to managing

large-scale infrastructure, we will identify the hurdles you may encounter and propose

solutions to address them.

Optimization plays a central role in deploying LLMs effectively. We’ll examine

memory optimization techniques and compression strategies that can reduce resource

usage without compromising model performance. Additionally, we’ll investigate

advanced techniques for optimizing attention layers, a critical component of LLMs, and

explore scheduling optimizations at various levels—request, batch, and iteration—to

enhance throughput and responsiveness.

https://doi.org/10.1007/979-8-8688-1475-4_4#DOI

224

This chapter outlines the core strategies, tools, and challenges involved in deploying

large language models at scale:

•	 Overview: Why LLM deployment matters and key challenges

•	 Deployment: Cloud setup, scalability, performance, and cost

•	 Integration: Hosted, prepackaged, and open source models

•	 Tools: Frameworks, platforms, and example workflows

•	 Optimization: Compression, attention, memory, and scheduling

•	 Challenges: Latency, scaling, reliability, and efficiency

•	 Takeaways: Best practices for scalable, ethical deployment

By the end of this chapter, you’ll gain a clear understanding of the strategies and

tools necessary to deploy LLMs at scale, overcoming technical barriers while ensuring

your applications meet the demands of users and stakeholders. Deploying LLM-powered

applications is a multifaceted challenge, but with the right knowledge and approach, you

can turn these models into practical, high-performing solutions that deliver real value.

Let’s dive in.

Note  While this chapter includes examples and tools, its purpose is not to
provide a definitive framework for deploying your LLM application. Each use case
is unique and requires a tailored approach.

�Integrating LLMs into Web and Mobile Applications
Large language models (LLMs) have revolutionized how applications handle language

understanding and generation, opening up possibilities for automating complex

tasks, improving efficiency, and enhancing user experiences. From content creation

and sentiment analysis to answering queries and driving conversational AI, LLMs

can transform a variety of industries. However, integrating LLMs into your workflow

requires thoughtful planning, as the method you choose will impact costs, scalability,

customization, and privacy. Below, we explore three primary approaches to integrating

LLMs: hosted models, prepackaged solutions, and deploying open source models.

Chapter 4 Deploying LLM-Powered Applications

225

�Hosted Models
Hosted models offer the quickest and easiest way to access the capabilities of LLMs.

Companies like OpenAI, Google Cloud Platform (GCP), and Azure provide hosted

services, allowing users to interact with pretrained models like GPT or Gemini through

APIs. This option eliminates the need for infrastructure setup or maintenance and allows

even nontechnical teams to implement advanced AI features.

�How Hosted Models Work

Hosted models operate via API interfaces. Developers send requests (or “prompts”) to

the service provider’s server and receive the model’s response. These APIs are typically

well-documented and designed to be user-friendly, enabling seamless integration with

existing systems.

Advantages of Hosted Models

•	 No Setup Required: Hosted models require no installation,

infrastructure configuration, or optimization. This makes them ideal

for teams with limited technical resources or those needing quick

deployment.

•	 Scalability Managed by Providers: Cloud providers automatically

scale resources to meet usage demands, ensuring smooth operation

during peak loads.

•	 Simplified Interfaces: APIs abstract away technical complexities,

making it easy to send text prompts and receive model responses.

•	 Rich Tooling Ecosystem: Hosted model providers offer a wide range

of tools that streamline development, orchestration, and integration.

For example:

•	 Anthropic’s Model Context Protocol (MCP): Enables advanced

context management when using Claude in multiagent or tool-

augmented setups.

•	 OpenAI Function Calling and Assistant API: Allows developers

to define tools/functions the model can invoke, making it easier

to build agents and tool-using workflows.

Chapter 4 Deploying LLM-Powered Applications

226

•	 LangChain and LlamaIndex Integrations: Many providers

support or offer integrations with popular frameworks for

chaining model calls, retrieval-augmented generation (RAG), and

memory handling.

•	 Azure OpenAI Studio and Playground: Provides a GUI

for model testing, prompt engineering, and deployment

configuration directly from the cloud console.

•	 Google Vertex AI Extensions for Gemini: Supports building

multimodal workflows, tool integration, and connecting to

enterprise data sources.

Challenges of Hosted Models

•	 Cost: Usage fees are based on API calls or data processed, and costs

can escalate with high-volume applications.

•	 Limited Customization: Hosted models are “as-is,” meaning

users cannot fine-tune them for niche applications or domain-

specific needs.

•	 Data Privacy Concerns: Sending sensitive or proprietary data to a

third-party server—such as through a hosted model or an external

API like OpenAI’s—can be risky, particularly in sensitive industries

like finance, healthcare, or legal services. However, if you self-host an

LLM on a VPN-enabled server, many of these data privacy concerns

can be significantly mitigated, since the data remains within your

controlled environment.

Hosted models are best suited for projects with minimal customization needs,

moderate budgets, and tight timelines. They are also a great choice for prototyping and

proof-of-concept work, allowing teams to experiment with LLM capabilities before

committing to more complex implementations.

Chapter 4 Deploying LLM-Powered Applications

227

�Prepackaged Models
Prepackaged models provide a balance between ease of use and control. These are

pretrained language models offered by platforms like Hugging Face, optimized and

bundled with essential tools for deployment. Designed to simplify the deployment

process, prepackaged models allow users to leverage advanced AI while retaining more

control over their infrastructure.

Components of Prepackaged Models

•	 Model Selection: Models are pretrained on large datasets and

fine-tuned for specific domains, enabling applications in areas like

customer support, healthcare, or finance.

•	 Optimization: To enhance performance and efficiency, prepackaged

models are optimized using techniques such as

•	 Quantization: Reduces memory usage and speeds up inference

by converting model parameters to lower precision formats

•	 Pruning: Removes redundant parameters, reducing model size

without significantly affecting accuracy

•	 Distillation: Creates a smaller “student” model trained to mimic

the larger model’s behavior, improving efficiency for deployment

•	 Bundled Software: These models come with preintegrated software

components such as

•	 Inference Engines: Optimize the execution of model

computations

•	 APIs or SDKs: Provide user-friendly interfaces for developers to

interact with the model

•	 Deployment Scripts: Facilitate the installation and configuration

of models on different platforms.

•	 Documentation: Includes detailed guides on setup, usage, and

troubleshooting

Chapter 4 Deploying LLM-Powered Applications

228

Advantages of Prepackaged Models

•	 Better Control: Compared to hosted models, prepackaged models

allow users to fine-tune and optimize for specific use cases.

•	 Data Privacy: Models can be deployed on private infrastructure,

ensuring sensitive data never leaves the organization’s systems.

•	 Streamlined Setup: Prepackaged solutions simplify what could

otherwise be a highly complex deployment process.

Challenges of Prepackaged Models

•	 Technical Expertise Needed: While more accessible than open

source models, prepackaged solutions still require some familiarity

with infrastructure setup and maintenance.

•	 Upfront Investment: Infrastructure and initial deployment may

require financial and resource investment.

Prepackaged models are ideal for organizations looking to maintain some control

over data and customization while leveraging ready-made tools to simplify deployment.

�Deploying Open Source Models

Open source models provide the highest level of control and flexibility. Developers

download model weights (parameters) and adapt the models to their unique

requirements. Open source solutions are often shared through repositories like

Hugging Face, providing a wide range of options from lightweight models to highly

advanced LLMs.

�Steps to Deploy Open Source Models

•	 Model Selection: Choose a model that aligns with your application’s

goals, such as accuracy, efficiency, or resource constraints.

•	 Download the Model: Use repositories like Hugging Face’s

Transformers library to access and load the model.

Chapter 4 Deploying LLM-Powered Applications

229

•	 Environment Setup: Configure hardware (GPUs, TPUs) and software

environments. Popular frameworks include

•	 Text Generation Inference (TGI): Optimized for large-scale text

generation

•	 Transformer Agents: For specific applications requiring complex

workflows

Model Deployment

•	 Local Deployment: For testing or small-scale applications, a local

environment is sufficient.

•	 Cloud Deployment: For large-scale use, containerization (e.g.,

Docker) is often employed to manage dependencies and streamline

deployment.

Advantages of Open Source Deployment

•	 Maximum Control: Users can customize, fine-tune, and modify

models to suit specific needs.

•	 Data Privacy: By deploying models on local or private infrastructure,

organizations maintain complete control over sensitive data.

•	 Cost Efficiency: While initial setup costs may be high, eliminating

API usage fees can lead to significant long-term savings.

Challenges of Open Source Deployment

•	 High Technical Expertise Required: Teams must have a strong

background in machine learning, model optimization, and

infrastructure management.

•	 Complex Setup: Deployment requires significant time and effort,

especially for large models that demand high computational

resources.

•	 Maintenance: Ongoing updates and optimizations are necessary to

ensure the model remains performant and efficient.

Open source deployment is best suited for organizations with advanced technical

capabilities and a need for tailored solutions.

Chapter 4 Deploying LLM-Powered Applications

230

�Factors to Consider When Choosing a Method
When deciding how to integrate LLMs into your applications, consider these key factors:

Technical Expertise

•	 Hosted models are ideal for beginners or teams with limited

technical skills.

•	 Prepackaged models require moderate technical expertise.

•	 Open source models demand advanced skills in machine learning

and infrastructure management.

Data Privacy

•	 If handling sensitive or proprietary data, avoid hosted models where

data is transmitted to third-party servers.

•	 Prepackaged and open source models deployed on private

infrastructure offer greater privacy.

Cost

•	 Hosted models involve ongoing operational costs tied to usage.

•	 Prepackaged models balance initial setup costs with manageable

long-term expenses.

•	 Open source models require significant upfront investment in

infrastructure but eliminate recurring API fees.

Scalability

•	 Hosted models handle scaling automatically.

•	 Prepackaged solutions often include tools for scaling in cloud

environments.

•	 Open source models require custom scaling solutions, increasing

complexity.

Customization Needs

•	 Hosted models provide limited customization.

•	 Prepackaged and open source models enable significant

customization for domain-specific tasks.

Chapter 4 Deploying LLM-Powered Applications

231

Integrating large language models into your applications can unlock powerful

capabilities, but the method you choose depends on your specific needs, resources, and

constraints. Hosted models offer unparalleled simplicity and scalability but come with

ongoing costs and privacy trade-offs. Prepackaged models provide a middle ground,

offering ease of deployment with more control over customization. Open source models

give full flexibility and privacy but require significant technical expertise and effort.

By carefully evaluating your project’s goals, budget, and technical capacity, you can

select the method that aligns best with your objectives. Whether you prioritize speed

to market, control over data, or long-term cost savings, there is an approach to fit your

needs, enabling you to leverage the transformative power of LLMs.

�LLM Cloud Deployment and
Scalability Considerations
Deploying and scaling a large language model (LLM) in the cloud is a multifaceted

process that requires thorough planning, precise execution, and ongoing management.

To ensure efficient performance, high availability, and cost-effectiveness, several aspects

must be carefully considered. Below is an in-depth exploration of these considerations.

�Deployment Architecture
The architecture of an LLM deployment forms the foundation of its performance

and scalability. Key architectural considerations include the use of load balancers to

distribute incoming requests evenly across model instances. This ensures that no single

instance becomes a bottleneck and enhances system reliability. Cloud-native load

balancers, such as those provided by AWS, Google Cloud, and Microsoft Azure, are well-

suited for this purpose.

Auto-scaling is another essential feature, enabling the infrastructure to

dynamically adjust the number of model instances based on request volume and latency

metrics. This ensures optimal resource utilization and cost-effectiveness during periods

of fluctuating demand. Advanced auto-scaling setups might involve predictive scaling,

where machine learning models forecast demand based on historical data, allowing for

preemptive scaling to avoid latency spikes.

Chapter 4 Deploying LLM-Powered Applications

232

Caching frequently requested responses can significantly reduce computational

load and improve response times. For example, implementing a cache layer for common

queries ensures that these can be served without invoking the full inference pipeline.

Leveraging distributed cache systems such as Redis or Memcached can add scalability

and reliability to the caching layer.

Queue systems for asynchronous processing are valuable for handling

workloads where immediate responses are not required. These systems decouple

request submission from processing, allowing for better resource management during

peak traffic periods. For example, tasks like batch translations or large document

summarizations can be offloaded to a message queue system like RabbitMQ or AWS

SQS, ensuring seamless operation even during high-demand periods.

�Infrastructure
The infrastructure supporting LLM deployments must be optimized for high-

performance inference. GPU clusters are essential for handling the computational

demands of LLMs, particularly during inference. Monitoring GPU utilization ensures

that resources are effectively used and identifies underutilized instances for cost savings.

Advanced GPU resource management might involve GPU pooling or dynamic resource

reallocation to ensure maximum efficiency.

Memory and storage optimization is critical for managing large model weights.

Techniques such as model sharding, where weights are distributed across multiple

devices, can help accommodate larger models. Additionally, ensuring sufficient storage

bandwidth and capacity minimizes bottlenecks during inference. Employing high-speed

NVMe storage or direct-attached storage (DAS) can provide the necessary throughput

for data-intensive operations.

Network capacity planning is another vital consideration. High-throughput

inference requires robust networking to minimize latency and ensure smooth data flow

between components. Using software-defined networking (SDN) or high-bandwidth

interconnects can further enhance network performance. Employing container

orchestration tools like Kubernetes streamlines the deployment process, providing

scalability, fault tolerance, and simplified management. Kubernetes operators designed

for AI workloads, such as Kubeflow, can further enhance the efficiency of managing LLM

deployments.

Chapter 4 Deploying LLM-Powered Applications

233

�Performance
Optimizing the performance of LLM systems involves several strategies. Model

quantization reduces the precision of weights and activations (e.g., from FP32 to INT8),

lowering computational requirements and speeding up inference without significantly

affecting accuracy. Similarly, model distillation creates smaller, efficient models that

replicate the performance of larger ones. These methods not only improve performance

but also reduce infrastructure costs.

Batching requests is an effective way to maximize GPU utilization. By processing

multiple requests simultaneously, batching reduces overhead and increases throughput.

This approach is especially effective in high-demand environments, such as customer

support systems or real-time recommendation engines.

Response streaming allows the system to deliver initial tokens of a response while

generating subsequent tokens. This approach improves perceived latency and is

particularly useful for conversational applications, such as chatbots or virtual assistants.

Integrating response streaming with adaptive pacing algorithms can further refine user

experience by dynamically adjusting token delivery based on network conditions and

user interaction.

Load testing is critical for identifying performance bottlenecks and ensuring that the

system can handle expected traffic volumes. Tools like Locust or JMeter can simulate

workloads and provide actionable insights. More advanced testing setups might involve

chaos engineering techniques, where intentional disruptions are introduced to test the

system’s resilience under failure scenarios.

�Cost Management
Effective cost management ensures the sustainability of LLM deployments. Instance

right-sizing involves selecting hardware configurations that align with workload patterns.

Overprovisioning resources can lead to unnecessary expenses, while underprovisioning

can impact performance. Regular audits of resource utilization can identify

opportunities to optimize costs.

Spot instances, which offer spare cloud capacity at reduced prices, are ideal for

noncritical workloads or batch processing. However, these instances can be preempted,

so they should be used with failover mechanisms. Employing checkpointing techniques

allows for intermediate progress to be saved, minimizing the impact of instance

termination.

Chapter 4 Deploying LLM-Powered Applications

234

Multiregion deployments reduce latency by bringing resources closer to end users.

This approach also enhances availability by providing redundancy in case of regional

outages. Utilizing cost-efficient regions for noncritical workloads can further optimize

expenses without compromising service quality.

Resource allocation based on priority tiers ensures that critical workloads receive the

necessary resources, while lower-priority tasks are executed with cost-saving measures.

Implementing tiered resource allocation policies can streamline budgeting and

operational efficiency.

�Monitoring
Robust monitoring practices are essential for maintaining the health and performance

of LLM systems. Key metrics to monitor include inference latency, throughput, error

rates, and resource utilization across the stack. Tools like Prometheus, Grafana, and

cloud-native monitoring services can provide real-time visibility into these metrics. For

more granular monitoring, integrating AI-focused observability tools like MLFlow or

SageMaker Monitor can track model-specific performance indicators.

Monitoring model performance is crucial for detecting degradation over time.

Regular evaluations can identify when retraining or fine-tuning is needed. Drift

detection mechanisms can flag changes in input data distribution that may affect model

accuracy, prompting timely intervention.

Cost per inference tracking provides insights into the economic efficiency of the

deployment, helping teams identify opportunities for optimization. Establishing

alerts for anomalies in resource utilization or costs ensures proactive issue resolution.

Additionally, employing predictive analytics can forecast resource requirements, aiding

in more strategic planning.

�High Availability and Fault Tolerance
To ensure reliability, LLM deployments must be designed for high availability and

fault tolerance. Deploying resources across multiple regions provides redundancy

and ensures that services remain available even during regional outages. Advanced

configurations might involve active-active setups, where multiple regions actively serve

requests, further enhancing reliability and reducing latency.

Chapter 4 Deploying LLM-Powered Applications

235

Regular backups of model weights, configurations, and data are essential for disaster

recovery. Automated recovery mechanisms should be in place to restore services

quickly in case of failures. Implementing retry logic in the communication between

components can address transient errors and enhance overall reliability. For critical

workloads, employing consensus protocols like Raft or Paxos can ensure consistent state

management across distributed systems.

�Compliance and Ethics
Compliance with data privacy regulations, such as GDPR or CCPA, is essential when

deploying LLMs. This involves securing user data, obtaining necessary consents,

and implementing robust data governance policies. Leveraging privacy-preserving

techniques such as differential privacy or federated learning can further enhance

compliance.

Bias mitigation is another critical consideration. Regular audits of the model’s

behavior can help detect and reduce biases, ensuring fair and ethical outcomes.

Incorporating fairness metrics into the development pipeline can provide ongoing

insights into model behavior. Transparency about the model’s limitations and behavior

builds trust with users and stakeholders. Creating detailed documentation and user

guides about model use cases and potential risks enhances accountability.

Deploying and scaling LLMs in the cloud is a complex but rewarding endeavor.

By carefully considering deployment architecture, infrastructure, performance, cost

management, monitoring, high availability, and compliance, organizations can create

reliable, efficient, and ethical solutions. Continuous improvement and adaptation to

emerging technologies and challenges will ensure long-term success in leveraging the

power of LLMs. In this rapidly evolving field, staying informed and proactive will be key

to maintaining competitive advantage and delivering value to users.

�Tools for Deploying LLMs
�Model Hosting Frameworks
Frameworks and libraries provide the foundation for hosting and serving machine

learning models, enabling developers to create robust APIs and interfaces.

Chapter 4 Deploying LLM-Powered Applications

236

•	 Hugging Face Transformers: One of the most popular libraries for

working with LLMs. It supports pretrained models for tasks like text

generation, summarization, and more. The library includes extensive

integration with other tools for fine-tuning and deployment.

•	 Hugging Face Accelerate: Simplifies the deployment of models on

distributed systems and multi-GPU setups. It integrates seamlessly

with Hugging Face Transformers, making it ideal for scaling up

training or inference.

•	 FastAPI: A modern, high-performance web framework for Python

that allows developers to quickly create APIs for exposing LLM

functionalities. Its asynchronous capabilities make it highly suitable

for LLM inference.

•	 Flask: Lightweight and simple, Flask is often used for prototyping

and building small-scale APIs to serve models.

•	 TorchServe: Specifically designed for PyTorch models,

TorchServe offers features like batch inference, metrics tracking,

and customizable handlers for complex preprocessing or

postprocessing tasks.

•	 TensorFlow Serving: A powerful system for serving TensorFlow

models at scale, with built-in support for versioning and A/B testing

of deployed models.

•	 Gradio: A low-code framework to create user interfaces for LLMs.

It’s perfect for building demos or interactive applications for text

generation, question answering, or other LLM tasks.

•	 Streamlit: Similar to Gradio, but more focused on building

dashboards and interactive data-driven applications for LLM

outputs.

•	 BentoML: Offers an end-to-end workflow for deploying and serving

machine learning models. It supports multiple back ends and

provides a unified interface for deployment.

•	 TRITON Inference Server: Developed by NVIDIA, Triton supports

multiple machine learning frameworks (e.g., PyTorch, TensorFlow,

ONNX) and offers GPU-optimized inference pipelines.

Chapter 4 Deploying LLM-Powered Applications

237

�Example: Saving a Model Locally, Uploading It to Hugging
Face, and Calling It

	 1.	 Install transformers and huggingface_hub: type: pip install
transformers==4.50.3 huggingface_hub==0.30.1

	 2.	 Log in to Hugging Face: type: huggingface-cli login

	 3.	 Save your model locally. For this example, let’s save a pretrained

distilbert-base-uncased model.

from transformers import AutoModelForSequenceClassification,
AutoTokenizer
Load the model and tokenizer
model_name = "distilbert-base-uncased"
model = AutoModelForSequenceClassification.from_
pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Save the model and tokenizer locally
model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")

	 4.	 Upload the model to Hugging Face

from huggingface_hub import upload_folder

from huggingface_hub import create_repo
create_repo(repo_name)
Define your repository name
repo_name = "your-username/my-first-model"

Upload the model directory
upload_folder(
 folder_path="./my_model",
 repo_id=repo_name,
 commit_message="Initial model upload"
)

Chapter 4 Deploying LLM-Powered Applications

238

print(f"Model uploaded to https://huggingface.co/{repo_name}")

Your model will now be available at https://huggingface.co/your-
username/my-first-model.

	 5.	 Calling the model

from transformers import AutoModelForSequenceClassification,
AutoTokenizer

Load the model from Hugging Face
model_name = "your-username/my-first-model"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_
pretrained(model_name)

Example text
input_text = "Hugging Face makes working with AI easy and fun!"
inputs = tokenizer(input_text, return_tensors="pt")

Get predictions
outputs = model(**inputs)
print(outputs.logits) # Logits for classification

Output:

It depends on the specific task your model is designed to solve.

�Optimization Tools
Optimization tools are essential for reducing inference latency and memory usage,

especially when deploying large models.

•	 ONNX (Open Neural Network Exchange): Converts models to an

open format that can run on optimized runtimes across various

hardware architectures. ONNX is a critical step for deploying LLMs

on diverse platforms.

•	 ONNX Runtime: An execution engine for ONNX models that

accelerates inference through hardware-specific optimizations.

Chapter 4 Deploying LLM-Powered Applications

239

•	 DeepSpeed: Designed for both training and inference, DeepSpeed

offers features like ZeRO optimization to handle memory-intensive

LLMs, making it possible to train and deploy models with limited

resources.

•	 NVIDIA TensorRT: Provides GPU-accelerated inference by

optimizing neural networks, particularly effective for transformer-

based architectures.

•	 Hugging Face Optimum: A library that bridges Hugging Face

Transformers with optimized inference techniques using ONNX,

TensorRT, and other acceleration technologies.

•	 Intel Neural Compressor: Specializes in quantizing models to lower

precision (e.g., INT8) for faster inference on Intel processors.

•	 BitsAndBytes: A tool for quantizing large models down to as low

as 4-bit precision, ideal for reducing resource demands without

significant performance loss.

•	 OpenVINO: An Intel toolkit that optimizes and deploys models for

CPUs, GPUs, and edge devices, suitable for use cases where LLMs

need to run in constrained environments.

•	 TVM/Apache TVM: A deep learning compiler stack that automates

optimization and deployment across a wide range of hardware

platforms.

•	 vLLM is a high-performance inference and serving engine designed

to optimize the deployment of large language models (LLMs). It

addresses common performance bottlenecks such as inefficient

memory usage, high latency, and limited throughput under

concurrent workloads.

vLLM stands for virtualized LLM. It is an open source project

developed to support fast, efficient, and scalable LLM inference,

particularly in production environments or applications with high

traffic and real-time demands.

Chapter 4 Deploying LLM-Powered Applications

240

•	 Key Optimizations and Features

•	 PagedAttention Mechanism: Traditional inference systems

allocate fixed memory blocks for each request, often leading

to fragmentation and underutilization. vLLM introduces

PagedAttention, a dynamic memory management scheme

that allocates attention key/value caches more efficiently.

This allows for better memory utilization, the ability to serve

many concurrent requests, and improved performance in

real-time scenarios.

•	 High Throughput and Low Latency: vLLM is designed to

minimize token-level processing overhead, enabling fast

generation and response times even with large models. This

makes it particularly well-suited for applications that rely

on streaming outputs, such as chat interfaces or interactive

assistants.

•	 Multitenancy and Session Management: vLLM supports

multiple simultaneous sessions by virtualizing GPU memory

usage. This enables multiple users or model endpoints to

share GPU resources without the need for duplicating model

weights or running separate processes.

•	 OpenAI-Compatible API: vLLM provides an OpenAI-

compatible API interface, making it easy to integrate with

existing services and tools that rely on OpenAI’s format.

This allows for quick migration or testing without significant

changes to the frontend or client infrastructure.

•	 Integration and Ecosystem: vLLM is compatible with

Hugging Face Transformers and can leverage additional

performance enhancements through integrations with

FlashAttention, DeepSpeed, and Triton kernels. This

flexibility makes it a strong choice for both research and

production use.

Chapter 4 Deploying LLM-Powered Applications

241

�ONNX Example

	 1.	 Install required libraries

pip install torch transformers onnx onnxruntime

	 2.	 Export a PyTorch model to ONNX. We will use a Hugging Face

transformer model (e.g., distilbert-base-uncased) and save it in

ONNX format.

import torch
from transformers import AutoTokenizer,
AutoModelForSequenceClassification

Load model and tokenizer
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_
pretrained(model_name)

Example input
text = "Hugging Face makes AI accessible."
inputs = tokenizer(text, return_tensors="pt")

Export the model to ONNX
torch.onnx.export(
 model, # Model
 �(inputs["input_ids"], inputs["attention_mask"]), # �Input

arguments
 "model.onnx", # Output file
 input_names=["input_ids", "attention_mask"], # Input names
 output_names=["logits"], # Output name
 �dynamic_axes={"input_ids": {0: "batch_size"}, "attention_

mask": {0: "batch_size"}}, # Dynamic batch
 �opset_version=11 # ONNX

opset version
)

print("Model exported to ONNX format as 'model.onnx'")

Chapter 4 Deploying LLM-Powered Applications

242

	 3.	 Run the ONNX model using ONNX Runtime. Load the ONNX
model, and perform inference using the ONNX Runtime
library:

import onnxruntime as ort
import numpy as np

Load the ONNX model
onnx_model_path = "model.onnx"
ort_session = ort.InferenceSession(onnx_model_path)

Tokenize the input text
inputs = tokenizer(text, return_tensors="np") �# Use NumPy format

for ONNX Runtime

Prepare inputs
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]

Run inference
outputs = ort_session.run(
 None, # Output names (None means all outputs)
 �{"input_ids": input_ids, "attention_mask": attention_mask}, #

Input dictionary
)

Extract logits
logits = outputs[0]
print("Logits:", logits)

Output:

It depends on the specific task your model is designed to solve.

�Cloud Services
Cloud platforms provide the necessary compute resources and infrastructure to host

LLMs at scale.

Chapter 4 Deploying LLM-Powered Applications

243

•	 AWS SageMaker: An end-to-end machine learning platform with

tools for training, tuning, and deploying LLMs. SageMaker endpoints

allow for seamless integration with other AWS services.

•	 Google Cloud Vertex AI: A managed service that supports

training and deploying large models with TPU integration for high

performance.

•	 Microsoft Azure: Offers the OpenAI Service, allowing users to

leverage GPT models like GPT-4 and Codex directly within their

applications.

•	 IBM Watson Studio: Focuses on enterprise-grade AI, providing tools

for building, deploying, and managing large-scale AI applications.

•	 Lambda Labs: Specializes in high-performance GPUs for

training and serving LLMs, ideal for teams requiring raw

computational power.

•	 Paperspace Gradient: Simplifies LLM workflows with preconfigured

infrastructure and tools for collaborative model development.

•	 Replicate: Provides hosted APIs for deploying pretrained models

with minimal configuration.

•	 Modal: Allows seamless deployment of machine learning pipelines

to the cloud with support for GPUs and scalable infrastructure.

�AWS SageMaker Example

	 1.	 Install the required libraries: pip install boto3 sagemaker
transformers.

Ensure you have an AWS account and the AWS CLI configured

with appropriate permissions to use SageMaker.

	 2.	 Upload a pretrained model to S3.

import boto3
from transformers import AutoModelForSequenceClassification,
AutoTokenizer

Chapter 4 Deploying LLM-Powered Applications

244

AWS setup
bucket_name = "your-s3-bucket-name" �# Replace with your S3

bucket name
prefix = "models/bert" �# Folder path in the bucket
s3 = boto3.client("s3")

Load pre-trained model
model_name = "distilbert-base-uncased"
model = AutoModelForSequenceClassification.from_
pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

Save model locally
model.save_pretrained("./model")
tokenizer.save_pretrained("./model")

Upload to S3
s3.upload_file("./model/config.json", bucket_name, f"{prefix}/
config.json")
s3.upload_file("./model/pytorch_model.bin", bucket_name,
f"{prefix}/pytorch_model.bin")
s3.upload_file("./model/tokenizer_config.json", bucket_name,
f"{prefix}/tokenizer_config.json")
s3.upload_file("./model/vocab.txt", bucket_name, f"{prefix}/
vocab.txt")
print(f"Model uploaded to S3: s3://{bucket_name}/{prefix}")

	 3.	 Deploy the model on SageMaker. Use SageMaker to deploy the
model as an endpoint.

import sagemaker
from sagemaker.huggingface import HuggingFaceModel

Specify the model's S3 location
model_data = f"s3://{bucket_name}/{prefix}"

Define the Hugging Face model parameters
huggingface_model = HuggingFaceModel(
 model_data=model_data,

Chapter 4 Deploying LLM-Powered Applications

245

 role="your-sagemaker-execution-role", �# Replace with your IAM
role for SageMaker

 transformers_version="4.17", �# Adjust based on the
model's version

 pytorch_version="1.10",
 py_version="py38",
)

Deploy the model as a SageMaker endpoint
predictor = huggingface_model.deploy(
 initial_instance_count=1,
 instance_type="ml.m5.large", # Instance type for hosting
)
print("Model deployed to SageMaker!")

	 4.	 After deploying the model, you can send data to the endpoint
for inference.

Example text
input_text = "SageMaker makes deploying ML models easy!"

Prepare the input for the model
data = {"inputs": input_text}

Send the data to the deployed endpoint
response = predictor.predict(data)

Print the model's prediction
print("Model Prediction:", response)

�Orchestration and Scaling
As deployments grow, orchestration and scaling tools help manage complexity and

ensure reliability.

•	 Kubernetes: A container orchestration system for managing

distributed applications. It’s widely used for scaling LLM

deployments in production.

Chapter 4 Deploying LLM-Powered Applications

246

•	 Ray Serve: A scalable model serving library built on the Ray

framework, suitable for distributed inference workloads.

•	 Kubeflow: A Kubernetes-native platform for building and deploying

end-to-end machine learning workflows.

•	 MLflow: A tool for tracking experiments, packaging models, and

managing deployments. MLflow simplifies version control and

collaborative workflows.

•	 Airflow: Workflow orchestration tool to automate the deployment

and monitoring of LLM pipelines.

•	 Argo Workflows: Provides Kubernetes-native workflows for

automating complex multistep processes.

�Edge and Mobile Deployment
Deploying LLMs to edge devices ensures low-latency inference and privacy preservation.

•	 TensorFlow Lite: Optimizes TensorFlow models for mobile and

embedded systems, with support for hardware acceleration

•	 PyTorch Mobile: Enables PyTorch models to run on mobile devices,

supporting custom optimizations

•	 NVIDIA Jetson Platform: Combines hardware and software for

deploying LLMs on edge devices with GPU acceleration

•	 CoreML: Apple’s framework for running machine learning models on

iOS/macOS devices

•	 Edge Impulse: Simplifies deploying LLMs to constrained edge

hardware for industrial applications

�APIs for Hosted Models
For developers who prefer using hosted solutions, APIs offer a quick way to access

powerful LLMs.

•	 OpenAI API: Provides access to GPT models for a wide range of

applications, from chatbots to text summarization

Chapter 4 Deploying LLM-Powered Applications

247

•	 Cohere API: Focused on NLP tasks like embeddings, classification,

and generation

•	 Anthropic Claude API: Offers conversational models with an

emphasis on safety and alignment

•	 AI21 Labs API: Provides robust LLMs like Jurassic for various text-

processing tasks

�Distributed Inference and Fine-Tuning
Handling large models across multiple nodes or GPUs requires specialized tools.

•	 DeepSpeed-Inference: Optimized for scaling LLM inference across

distributed systems

•	 Alpa: Automates parallelization strategies for large-scale models

•	 FlexGen: Enables efficient inference of large models on limited

hardware

•	 FasterTransformer: NVIDIA’s library for high-speed transformer

model inference

�Monitoring and Observability
To ensure models perform well in production, monitoring tools are essential.

•	 Prometheus: Collects real-time metrics for system and model

monitoring

•	 Grafana: Visualizes performance metrics in interactive dashboards

•	 Datadog: Offers observability tools for tracking model and

system health

•	 Weights & Biases (W&B): Tracks experiments and monitors

deployed models

Chapter 4 Deploying LLM-Powered Applications

248

�LLM Inference Challenges: A Comprehensive Exploration
Deploying large language models (LLMs) for inference has become one of the most

pressing challenges in modern AI systems. As these models grow in size and complexity,

their potential for high-quality natural language understanding and generation is

matched by the technical difficulties of serving them in production environments. Below

is a deeper exploration of the key challenges and emerging solutions.

�Latency in Inference

Latency remains one of the most critical challenges in LLM inference, especially for

real-time applications. Unlike traditional models, which can often process entire inputs

in parallel, LLMs use autoregressive decoding during text generation. This means they

generate outputs token by token, where the computation of each token depends on the

previous one. This sequential nature introduces inherent delays, particularly noticeable

in tasks requiring long-form outputs, such as content generation or summarization.

Further exacerbating latency issues is the variability in request complexity. Some

inputs may require only a few steps of computation, while others—due to higher token

counts or more complex prompts—demand significantly longer processing times.

Balancing these requirements while maintaining consistent response times is an

ongoing area of optimization.

�Computational Demands and Resource Constraints

LLMs are computationally intensive. A single inference operation can require trillions

of floating-point operations (FLOPs), even for moderately sized inputs. These demands

necessitate the use of high-performance hardware, such as GPUs or TPUs. However,

such hardware is expensive and limited in availability, making large-scale deployment a

costly endeavor.

Moreover, memory requirements for LLM inference are immense. For instance,

storing model weights for a 175-billion-parameter model like GPT-3 requires over

700 GB of memory in its full-precision form. This memory requirement grows when

considering additional overhead for processing large batch sizes, caching intermediate

computations, or handling multiple concurrent requests. Techniques like model

quantization, weight sharing, and offloading parts of the computation to disk or slower

memory are frequently used to mitigate this challenge but often at the expense of

throughput or accuracy.

Chapter 4 Deploying LLM-Powered Applications

249

�Scalability and Multitenancy

Scalability is essential for deploying LLMs in environments with high and variable traffic.

Inference systems must handle thousands or even millions of concurrent requests while

ensuring consistent quality and low latency. This challenge becomes more pronounced

in multitenant systems, where multiple users or applications share the same underlying

infrastructure. Resource allocation in such environments must be dynamic and efficient

to avoid resource contention or overprovisioning.

Load balancing is a critical component of scalability. Requests must be distributed

intelligently across available hardware to ensure that no single device becomes

a bottleneck. Strategies such as request-level load balancing, horizontal scaling

(replicating the model across devices), and vertical scaling (improving individual device

performance) are common solutions, though they introduce their own complexities in

deployment and maintenance.

�The Trade-Off Between Batching and Responsiveness

Batching multiple inference requests is a widely used technique to improve hardware

utilization and throughput. By grouping requests, the system can process them in

parallel, leveraging the full computational capabilities of GPUs or TPUs. However,

batching comes with a trade-off: as batch sizes increase, the time individual requests

spend waiting for others to join the batch grows, leading to higher latency.

Dynamic batching algorithms aim to strike a balance between these competing

goals. By adaptively adjusting batch sizes based on workload and latency requirements,

these systems can optimize for both throughput and responsiveness. Nonetheless, fine-

tuning these algorithms is complex and often requires a deep understanding of both

hardware and application-specific requirements.

�Model Parallelism and Distributed Systems

For extremely large models, it is often impossible to fit the entire model into the memory

of a single device. Model parallelism, where the model is split across multiple devices,

is a common solution. However, this approach introduces communication overhead,

as devices need to exchange data during inference. Latency and bandwidth constraints

in distributed systems can become bottlenecks, particularly when deploying across

geographically distributed data centers.

Chapter 4 Deploying LLM-Powered Applications

250

Pipeline parallelism, which segments the model into stages processed in a

pipeline fashion, can alleviate some of these issues but requires careful scheduling

and synchronization to avoid idle devices. Combining pipeline parallelism with other

techniques, such as tensor parallelism (splitting computations across devices), can yield

further optimizations but adds to the complexity of implementation.

�Cost Efficiency

The financial cost of LLM inference is another major concern. Deploying a single

large model at scale can lead to significant expenses in hardware acquisition, energy

consumption, and operational maintenance. For businesses, these costs can quickly

become prohibitive, especially if the model is used in applications with low profit

margins.

One emerging approach to cost efficiency is using smaller, distilled versions of

large models for inference. Knowledge distillation transfers the knowledge from a large

“teacher” model to a smaller “student” model, which can approximate the teacher’s

performance while being faster and cheaper to run. Similarly, serverless architectures

and spot instances are being explored to dynamically scale infrastructure costs based

on demand.

�Reliability and Robustness

Inference systems must be not only fast and scalable but also reliable and robust.

Ensuring that an LLM produces consistent and accurate results under varying conditions

is a persistent challenge. For example, minor variations in input phrasing can sometimes

lead to drastically different outputs. Furthermore, system failures, such as hardware

outages or network delays, can disrupt service quality.

Robust monitoring and failover mechanisms are essential to mitigate these risks.

Techniques like request retries, checkpointing, and fallback models (smaller models

that can serve as a backup) are often employed to ensure reliability. Additionally, fine-

tuning models for specific tasks or domains can enhance robustness by reducing output

variability and improving contextual understanding.

Chapter 4 Deploying LLM-Powered Applications

251

�Ethical and Security Considerations

Inference systems for LLMs are not immune to ethical and security challenges.

Outputs must be monitored to avoid generating harmful or biased content. Real-time

filtering mechanisms or safety layers can help mitigate these risks but add additional

computational overhead.

Moreover, deploying LLMs as APIs or services exposes them to potential abuse, such

as adversarial inputs designed to exploit the model or denial-of-service (DoS) attacks

targeting the infrastructure. Security measures, including input validation, rate limiting,

and anomaly detection, are critical to maintaining the integrity and reliability of these

systems.

�LLM Memory Optimization
Memory optimization is an essential focus in the deployment and training of large

language models (LLMs). These models, with their immense parameter sizes and

resource requirements, often push the limits of modern hardware. To make them

practical and scalable for real-world applications, researchers and engineers have

developed sophisticated techniques to optimize memory usage. These optimizations

span hardware, software, and algorithmic domains, addressing challenges that arise in

both training and inference contexts.

�The Memory Challenges of LLMs

At the heart of LLM memory usage are three main components: model weights,

activations, and gradients. Model weights are the parameters learned during training

and used during inference, while activations are the intermediate results generated

during computation. Gradients, relevant during training and fine-tuning, represent the

derivatives used to update the weights.

Each of these components requires significant memory, and their combined

requirements can exceed the capabilities of even high-end GPUs or TPUs. For instance:

•	 A single layer in a transformer model might have billions of

parameters, and models with hundreds of layers are now common.

•	 Activations scale with both the number of parameters and the input

sequence length, particularly in attention mechanisms, where the

memory scales quadratically with the sequence length.

Chapter 4 Deploying LLM-Powered Applications

252

•	 Gradients require storage of additional memory copies of weights

and activations during backpropagation.

Given these demands, optimizing memory usage is a critical step in ensuring the

viability of LLMs across various applications.

�Key Memory Optimization Techniques

	 1.	 Precision Reduction (Quantization)

One of the most effective methods for memory optimization

is reducing the numerical precision of model weights and

activations. Models typically operate in 32-bit floating-point

(FP32) precision during training. Reducing this to FP16 (half-

precision) or INT8 (integer precision) can halve or even quarter

the memory footprint. Advances in quantization-aware training

allow models to retain nearly the same performance even

at reduced precision. Some techniques dynamically adjust

precision during computation to maintain critical details while

optimizing memory.

	 2.	 Gradient Checkpointing (Activation Recomputation)

In a standard training process, activations from the forward

pass are stored for use during backpropagation. For very large

models, this storage becomes a memory bottleneck. Gradient

checkpointing addresses this by saving only a subset of activations

during the forward pass and recomputing them as needed during

backpropagation. While this approach increases computation

time, it drastically reduces memory usage, enabling larger models

to be trained on the same hardware.

	 3.	 Model Offloading

Offloading involves moving parts of the model or activations

from GPU memory to CPU memory or even disk storage. This

technique takes advantage of the larger capacity of slower storage

mediums to hold less frequently accessed data. For example,

weights of layers that are not currently being used can be

Chapter 4 Deploying LLM-Powered Applications

253

temporarily offloaded and loaded back when needed. Advances

in memory management algorithms ensure minimal latency in

retrieving offloaded data, making this approach viable for both

training and inference.

	 4.	 Optimized Attention Mechanisms

The attention mechanism, a cornerstone of transformer-based

LLMs, is one of the largest consumers of memory, scaling

quadratically with the input sequence length. Techniques such

as sparse attention, sliding window attention, and low-rank

approximations have been developed to reduce the memory

requirements of attention computations. These methods

approximate the full attention mechanism while maintaining high

accuracy, significantly cutting memory usage for long sequences.

	 5.	 Model Parallelism

When a model is too large to fit into a single device, model

parallelism splits the model across multiple devices. In tensor

parallelism, individual layers are divided across devices, with

computations performed in parallel. Pipeline parallelism further

splits the model into stages that run in sequence but across

different devices. Both approaches distribute memory usage

but introduce challenges such as communication overhead and

synchronization, which must be carefully managed to avoid

bottlenecks.

	 6.	 Memory-Efficient Architectures

Designing architectures with memory efficiency in mind is

another approach. Techniques such as reversible layers, where

intermediate activations can be reconstructed instead of stored,

reduce memory requirements during both training and inference.

Some emerging architectures are explicitly designed to minimize

memory usage while maintaining the expressive power of

traditional transformers.

Chapter 4 Deploying LLM-Powered Applications

254

	 7.	 Compression Techniques (Pruning and Distillation)

Pruning removes redundant parameters from the model, reducing

the size of the model without significantly impacting performance.

For example, sparsity can be introduced by identifying weights

that contribute minimally to outputs and setting them to zero.

Knowledge distillation takes this a step further by training a

smaller “student” model to replicate the behavior of a larger

“teacher” model. The result is a more compact model with

lower memory requirements, ideal for inference on resource-

constrained devices.

	 8.	 Dynamic and Adaptive Batching

During inference, batching multiple requests together improves

efficiency but increases memory usage. Dynamic batching

algorithms analyze the available memory and workload in

real time, adjusting batch sizes accordingly. Micro-batching,

where a large batch is split into smaller sub-batches processed

sequentially, ensures that memory constraints are respected

without sacrificing throughput.

	 9.	 Unified Memory Architectures

Modern hardware advancements, such as unified memory

architectures, allow models to utilize both high-speed GPU

memory and larger, slower system memory seamlessly. This

hierarchical memory management ensures frequently accessed

data remains in faster memory, reducing bottlenecks caused by

offloading.

�Trade-Offs in Memory Optimization

While these techniques can significantly reduce memory requirements, they often come

with trade-offs:

•	 Computation Time: Techniques like gradient checkpointing and

offloading save memory but increase computational overhead,

leading to longer training or inference times.

Chapter 4 Deploying LLM-Powered Applications

255

•	 Accuracy: Quantization and pruning, while reducing memory, may

lead to small losses in model performance, requiring careful tuning.

•	 Complexity: Implementing advanced memory optimization

techniques, such as model parallelism or custom attention

mechanisms, adds complexity to system design and maintenance.

�Future Directions

As LLMs continue to grow in size and importance, memory optimization will remain a

critical area of research and innovation. Some emerging trends include

•	 Hardware-Specific Optimizations: New hardware, such as custom

AI accelerators (e.g., NVIDIA’s Hopper GPUs or Google’s TPUv5),

is being designed with memory optimization in mind, providing

native support for techniques like quantization and memory-efficient

attention.

•	 Neurosymbolic Systems: Combining neural models with symbolic

reasoning systems can reduce memory usage by offloading some

tasks to more efficient symbolic systems.

•	 Federated and Decentralized Models: Splitting computations

across distributed devices or edge systems can alleviate memory

bottlenecks, particularly for real-time applications.

Memory optimization is a cornerstone of making LLMs scalable, accessible, and

efficient. By addressing memory constraints through a combination of hardware

advances, algorithmic innovations, and architectural adjustments, the transformative

potential of LLMs can be realized in a wide array of applications, from consumer devices

to enterprise systems.

�LLM Compression
Compression techniques for large language models (LLMs) are essential to address

the challenges posed by their massive size and computational demands. These models

often contain hundreds of billions of parameters, resulting in substantial memory

requirements and high inference costs. Compression aims to reduce the model’s size

and computational complexity while preserving its performance, making it feasible to

deploy LLMs in resource-constrained environments or at scale.

Chapter 4 Deploying LLM-Powered Applications

256

The need for compression arises because the size of LLMs directly impacts their

latency, energy consumption, and cost of deployment. Without compression, the

operational requirements of LLMs are prohibitive for many real-world applications,

especially for edge devices or real-time systems. Effective compression strikes a balance

between model size and performance, ensuring that accuracy and generalization are

retained even as the model is scaled down.

�Quantization

Quantization is one of the most widely used compression techniques for LLMs. It

involves reducing the numerical precision of the model’s weights and activations. For

example, full-precision 32-bit floating-point (FP32) representations can be converted to

16-bit (FP16) or 8-bit integers (INT8). This reduction significantly decreases the memory

footprint and computational overhead of the model.

Quantization can be applied in different stages of model deployment. During

training, quantization-aware training ensures that the model learns to operate effectively

at lower precisions. Post-training quantization, applied after the model is trained, is

simpler to implement but may result in minor accuracy degradation. Advances in this

area, such as mixed-precision quantization and adaptive quantization, allow further

optimization by using lower precision for less critical parts of the model while retaining

higher precision for sensitive components.

�Pruning

Pruning reduces a model’s size by identifying and removing parameters that contribute

minimally to its performance. This approach assumes that many of the parameters

in LLMs are redundant and can be safely eliminated without significantly affecting

accuracy.

There are several methods for pruning, including structured pruning, which removes

entire layers, filters, or attention heads, and unstructured pruning, which targets

individual weights. Pruning is often iterative: the model is pruned and then fine-tuned to

recover any lost performance. While structured pruning results in models that are easier

to implement on hardware, unstructured pruning often achieves higher compression

ratios at the cost of increased deployment complexity.

Chapter 4 Deploying LLM-Powered Applications

257

�Knowledge Distillation

Knowledge distillation trains a smaller “student” model to mimic the behavior of a larger

“teacher” model. The student model learns not only from the teacher’s outputs but

also from the intermediate representations and logits generated by the teacher during

training. This process transfers knowledge from the larger model to the smaller one,

enabling the student model to achieve similar performance with significantly fewer

parameters.

Distillation is particularly effective for compressing LLMs while retaining their

accuracy. It is widely used in scenarios where the smaller model must operate in latency-

sensitive environments, such as mobile devices or edge computing. The resulting

student models are faster and more memory-efficient, making them suitable for

deployment without significant hardware investments.

�Low-Rank Factorization

Low-rank factorization is a mathematical approach that approximates the large weight

matrices of LLMs with smaller, low-rank matrices. Since many of the learned parameters

in neural networks are redundant, this technique leverages the inherent structure of

these matrices to reduce their size.

By decomposing weight matrices into smaller components, low-rank factorization

can reduce memory requirements and computational complexity. This method is

particularly effective for compressing fully connected layers and attention mechanisms,

which often dominate the size of LLMs.

�Sparsity-Inducing Techniques

Sparsity-inducing techniques aim to make LLMs more efficient by introducing sparsity

into their parameters or activations. Sparse models only activate or utilize a subset of

their weights for any given input, significantly reducing computation and memory usage.

Techniques like sparse attention mechanisms focus on reducing the quadratic

complexity of traditional attention by limiting computations to relevant portions of

the input. Similarly, sparsity in weight matrices can be achieved through training with

regularization techniques like L1 or L2 penalties or by applying threshold-based pruning

during or after training.

Chapter 4 Deploying LLM-Powered Applications

258

�Compression Challenges and Trade-Offs

While compression significantly reduces the size and computational demands of LLMs,

it comes with trade-offs. Reducing precision or pruning weights may lead to slight

degradation in model accuracy, particularly for tasks requiring nuanced understanding

or generation. Knowledge distillation, while effective, requires additional training cycles,

increasing the computational cost during the compression phase.

Another challenge lies in the implementation of compressed models on hardware.

Techniques like pruning or sparsity require specialized software and hardware

optimizations to fully realize their benefits. For example, unstructured sparsity may lead

to irregular memory access patterns, reducing efficiency on standard GPUs or CPUs. As

a result, the choice of compression techniques often depends on the target deployment

environment and available hardware capabilities.

�Future Directions in LLM Compression

Advances in LLM compression continue to evolve as researchers aim to balance

performance, size, and efficiency. Techniques such as dynamic pruning, which adjusts

model size based on input complexity, and hybrid methods that combine quantization

with pruning or distillation are gaining attention. Additionally, hardware innovations,

such as custom accelerators designed to handle compressed models, are making it easier

to deploy LLMs in resource-constrained settings.

Another emerging trend is task-specific compression, where a general-purpose

LLM is fine-tuned and compressed for specific applications. This approach allows the

model to retain high performance on targeted tasks while reducing its size and resource

requirements.

In conclusion, LLM compression is a critical area of research and practice that

enables the deployment of these powerful models in diverse environments. By

employing techniques like quantization, pruning, knowledge distillation, and low-rank

factorization, organizations can make LLMs more efficient and accessible, unlocking

their potential in a wider range of applications. As the demand for scalable and efficient

AI systems grows, innovations in compression will play a central role in shaping the

future of LLM deployment.

Chapter 4 Deploying LLM-Powered Applications

259

�Attention Layer Optimization
The attention mechanism, particularly in transformer-based architectures, is a

foundational component of large language models (LLMs). It enables models to

identify and focus on relevant parts of the input sequence, capturing dependencies

between tokens regardless of their distance from one another. However, the attention

mechanism is also one of the most resource-intensive components of these models,

with its memory and computational costs scaling quadratically with the input sequence

length. This presents significant challenges in both training and inference, especially for

tasks involving long documents or real-time processing. Attention layer optimization

seeks to address these challenges by improving the efficiency of this mechanism while

maintaining or enhancing its performance.

The quadratic complexity of standard self-attention arises from the need to compute

attention scores for all pairs of tokens in the input sequence. For an input sequence of

length nnn, this requires O(n2)O(n^2)O(n2) operations and memory, which becomes

impractical for large nnn. This limitation drives the need for optimizations that reduce

the computational and memory overhead of attention layers without sacrificing the

quality of the model’s outputs.

One approach to optimization is the use of sparse attention mechanisms. Unlike

dense attention, which calculates scores for every pair of tokens, sparse attention

restricts the computation to a subset of token pairs based on predefined patterns or

learned relevance. For example, sliding window attention only considers a fixed number

of neighboring tokens for each position, significantly reducing the computational

burden. Similarly, global–local attention mechanisms combine local attention for

nearby tokens with global attention for a few critical tokens, striking a balance between

efficiency and expressiveness.

Another method involves low-rank approximations, which approximate the

attention matrix using techniques like singular value decomposition (SVD) or low-

rank factorization. These methods exploit the observation that attention matrices

often have low intrinsic rank, meaning much of the information can be captured

using a smaller number of components. By reducing the dimensionality of the

attention computation, low-rank approximations reduce both memory usage and

computational requirements.

Chapter 4 Deploying LLM-Powered Applications

260

For applications involving very long sequences, hierarchical attention mechanisms

have proven effective. In this approach, the model processes the input in chunks,

computing attention within each chunk before aggregating information across chunks.

This hierarchical structure reduces the number of pairwise comparisons required,

enabling the processing of much longer sequences without incurring prohibitive costs.

Efficient attention kernels have also been developed to leverage hardware-specific

optimizations. These kernels are tailored for parallel computation on GPUs and TPUs,

minimizing memory access bottlenecks and maximizing throughput. For instance, some

implementations use fused operations that combine multiple computation steps into a

single kernel call, reducing overhead and improving efficiency.

Another avenue for optimization is the incorporation of approximate algorithms

that simplify the attention computation. For example, random feature methods

approximate the softmax function used in attention calculations, enabling linear rather

than quadratic scaling. These methods introduce minor approximations to the final

results but significantly accelerate computation, making them suitable for latency-

sensitive applications.

Optimizing attention layers also involves modifying the model’s architecture to

be more efficient. Techniques like reformer models and performers replace standard

attention mechanisms with alternative formulations that are inherently more scalable.

These models achieve linear or near-linear complexity in terms of sequence length,

making them practical for processing very large inputs.

Despite these advancements, attention layer optimization is not without trade-offs.

Reducing the computational and memory requirements often involves approximations

or simplifications that can degrade model performance, especially for tasks requiring

fine-grained or global contextual understanding. Therefore, the choice of optimization

technique depends on the specific application and its requirements for accuracy,

latency, and resource availability.

Looking forward, the development of hybrid approaches that combine multiple

optimization techniques is a promising area of research. For instance, combining sparse

attention with low-rank approximations or hierarchical attention with efficient kernels

can yield even greater efficiency gains. Furthermore, advances in hardware design,

such as specialized AI accelerators, are expected to further enhance the practicality of

optimized attention mechanisms.

In summary, attention layer optimization is critical for making LLMs scalable

and efficient. By reducing the computational and memory demands of the attention

mechanism, these optimizations enable the deployment of LLMs in a broader range

Chapter 4 Deploying LLM-Powered Applications

261

of applications, from real-time systems to tasks involving extremely long documents.

As the complexity and utility of LLMs continue to grow, innovations in attention layer

optimization will remain a central focus in the evolution of AI architectures.

�Scheduling Optimization in LLM Deployment
Scheduling optimization is a vital aspect of deploying large language models (LLMs),

ensuring efficient allocation of computational resources to meet the diverse demands

of real-world applications. LLM inference is a resource-intensive process, requiring

significant compute and memory, often under stringent latency constraints. Scheduling

optimization involves orchestrating tasks, allocating hardware resources, and managing

workloads to maximize throughput, minimize latency, and balance system utilization.

The complexity of scheduling arises from the variability in LLM workloads. Input

sizes, model architectures, and user demands can differ significantly, making static

scheduling strategies inefficient. Effective scheduling optimization dynamically adjusts

to these variations, enabling the deployment of LLMs in environments ranging from

high-throughput server clusters to latency-critical edge devices.

One of the foundational challenges in scheduling optimization is balancing batching

and responsiveness. Batching groups multiple requests into a single computation to

maximize hardware utilization, as modern accelerators like GPUs and TPUs perform

more efficiently with larger workloads. However, batching can introduce delays for

individual requests, particularly in latency-sensitive applications such as chatbots or

virtual assistants. Dynamic batching algorithms address this trade-off by adaptively

adjusting batch sizes based on current workloads and system conditions, ensuring a

balance between efficiency and responsiveness.

•	 Request-level scheduling focuses on managing individual inference

requests in a way that meets application-specific requirements. For

instance, in a multitenant environment, different applications may

have varying latency and accuracy priorities. Scheduling strategies

must allocate resources accordingly, ensuring that high-priority

tasks are not delayed by lower-priority workloads. This often involves

implementing sophisticated priority queues, resource allocation

policies, and preemption mechanisms.

Chapter 4 Deploying LLM-Powered Applications

262

•	 Batch-level scheduling expands this concept to aggregate

workloads. It determines how requests are grouped into batches and

assigns these batches to available hardware. The goal is to maximize

hardware utilization without exceeding memory limits or causing

contention among processes. Efficient batch-level scheduling often

relies on predictive algorithms that anticipate workloads based on

historical patterns or incoming request rates, allowing the system to

preemptively allocate resources and adjust batch sizes.

•	 Iteration-level scheduling comes into play during training or

iterative inference processes, such as fine-tuning or beam search.

These processes involve multiple steps, each with varying resource

requirements and dependencies. Effective scheduling ensures

that the necessary resources are available at each step, minimizing

idle time and synchronization delays. For distributed training

setups, iteration-level scheduling must also account for interdevice

communication, ensuring that data transfers are efficiently managed

to prevent bottlenecks.

•	 Continuous batching is a dynamic approach that handles incoming

requests on a rolling basis, rather than waiting for a fixed batch size

or time window. This technique is particularly useful for real-time

systems where input patterns are unpredictable. By continuously

adjusting the batch size and processing intervals based on the

current system state, continuous batching minimizes latency while

maintaining high throughput.

The underlying hardware architecture plays a significant role in scheduling

optimization. Modern accelerators offer features like multistream processing and

hardware virtualization, enabling concurrent execution of multiple tasks. Scheduling

algorithms must leverage these capabilities effectively, distributing workloads to

maximize parallelism and minimize contention. Additionally, heterogeneity in

hardware resources, such as a mix of CPUs, GPUs, and TPUs, introduces another layer

of complexity, requiring intelligent scheduling strategies that assign tasks to the most

suitable device based on task characteristics and hardware capabilities.

Chapter 4 Deploying LLM-Powered Applications

263

Communication and synchronization in distributed systems also affect scheduling

optimization. In scenarios where models are split across multiple devices (e.g., model

parallelism or pipeline parallelism), scheduling must account for data dependencies

and interdevice communication overhead. Techniques like overlapping computation

with communication, scheduling communication-intensive tasks during idle

periods, and optimizing data transfer paths are crucial for maintaining efficiency in

distributed setups.

Scheduling optimization must also consider energy efficiency and cost constraints,

especially in cloud environments. Dynamically scaling resources based on demand,

leveraging spot instances, and utilizing energy-aware scheduling algorithms can reduce

operational costs while maintaining service quality. For edge deployments, where energy

and compute resources are limited, scheduling strategies must minimize resource usage

without compromising performance.

Finally, scheduling optimization is increasingly incorporating machine learning-
driven approaches. Predictive models trained on historical data can forecast workload

patterns, enabling proactive resource allocation and batch adjustments. Reinforcement

learning algorithms can dynamically adapt scheduling policies based on real-time

feedback, continuously improving efficiency over time.

In summary, scheduling optimization in LLM deployment is a multifaceted

challenge that balances efficiency, responsiveness, and cost. By orchestrating tasks and

resources effectively across various levels—request, batch, and iteration—scheduling

ensures that LLMs can meet the demands of diverse applications. As LLMs continue to

grow in size and complexity, advances in scheduling strategies will play a critical role in

enabling scalable, cost-effective, and high-performance deployments.

�Summary
This chapter offers a comprehensive and practical guide to deploying LLM-powered

applications, bridging the gap between cutting-edge AI models and real-world usability.

It excels in explaining the technical complexities of deployment, covering everything

from cloud infrastructure and optimization strategies to scheduling and memory

management.

Chapter 4 Deploying LLM-Powered Applications

264

By clearly outlining three integration pathways—hosted, prepackaged, and open

source—the chapter empowers readers to choose an approach aligned with their

technical expertise, privacy needs, and cost considerations. It also dives deep into

advanced topics like attention layer optimization, model compression, and scalability

techniques, providing an invaluable toolkit for practitioners.

Overall, this chapter is an essential resource for anyone looking to operationalize

LLMs efficiently and responsibly, balancing performance, scalability, and ethics.

Chapter 4 Deploying LLM-Powered Applications

265
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_5

CHAPTER 5

Building and Fine-Tuning
LLMs
The transformative power of large language models (LLMs) has reshaped industries,

redefined human–computer interaction, and expanded the boundaries of artificial

intelligence. As these models grow in size and sophistication, so too does the complexity

of building and fine-tuning them. This chapter delves into the art and science of

developing LLMs, providing a road map for practitioners seeking to navigate the

intricacies of this fascinating domain.

LLMs, such as GPT, BERT, and their derivatives, are pretrained on a vast corpora,

enabling them to perform a range of tasks, from text generation to sentiment analysis

and beyond. However, harnessing the full potential of these models often requires

customizing them for specific applications. This is where fine-tuning comes into
play. Fine-tuning not only optimizes the model for domain-specific use cases but

also enhances its efficiency and effectiveness by tailoring it to unique datasets and

requirements.

In this chapter, we explore both the foundational principles and practical techniques

of building and fine-tuning LLMs. Whether you are an AI researcher, a data scientist, or

a developer, understanding these principles is key to unlocking the potential of LLMs for

your projects.

Key Themes of This Chapter

•	 Understanding the Foundations of LLMs: We begin by examining

the architectural components that make LLMs so powerful. From

transformers to attention mechanisms, we unravel the building

blocks that enable these models to achieve remarkable feats in

natural language understanding and generation.

https://doi.org/10.1007/979-8-8688-1475-4_5#DOI

266

•	 The Pretraining Paradigm: Pretraining is the backbone of LLMs.

By training on diverse and extensive datasets, these models learn

generalizable patterns and relationships within language. We’ll

discuss how pretraining is conducted and its impact on downstream

applications.

•	 Fine-Tuning Strategies: Fine-tuning transforms a general-purpose

LLM into a task-specific powerhouse. We’ll walk through different

fine-tuning methodologies, including supervised fine-tuning,

instruction tuning, and reinforcement learning from human

feedback (RLHF).

•	 Practical Considerations and Challenges: Building and fine-

tuning LLMs come with unique challenges, from computational

requirements to ethical considerations. We provide insights into

overcoming these hurdles and ensuring responsible AI deployment.

The rapid evolution of LLMs means that staying current with techniques for building

and fine-tuning them is more critical than ever. The ability to adapt these models to

meet specific needs is what distinguishes a good implementation from a transformative

one. Moreover, as ethical concerns and biases in AI take center stage, it is imperative to

approach the fine-tuning process with responsibility and care.

By the end of this chapter, you will have a comprehensive understanding of how to

build and fine-tune LLMs, equipping you with the knowledge to bring cutting-edge AI

solutions to life. Whether you aim to improve customer experiences, automate complex

workflows, or pioneer new frontiers in AI, the principles outlined here will serve as

your guide.

Embark on this journey to unravel the intricacies of LLMs and discover how to

harness their immense potential for innovation and impact.

�Architecture of Large Language Models (LLMs)
Large language models (LLMs), such as GPT-4 and BERT, are intricate systems designed

to process, comprehend, and generate humanlike text. These models are powered by

the Transformer architecture, a revolutionary framework that enables them to capture

Chapter 5 Building and Fine-Tuning LLMs

267

the complexities of language and context. Through multiple interconnected layers and

components, LLMs achieve their remarkable capabilities in tasks ranging from text

generation to translation and beyond.

�At the Foundation of Any LLM Lies the Process
of Tokenization
This is where the input text is divided into smaller units called tokens, which could be

entire words, subwords, or even individual characters. Tokenization helps the model

handle text efficiently, particularly in cases involving rare or compound words. After this

step, each token is transformed into a numerical representation or embedding that the

model can process.

Figure 5-1.  Large Language Models Common Architecture

Chapter 5 Building and Fine-Tuning LLMs

268

The embedding layer plays a critical role in translating tokens into dense vectors in a

high-dimensional space. These vectors capture the semantic and syntactic meanings of

the tokens, enabling the model to understand their relationships. Word embeddings can

either be pretrained, as in techniques like Word2Vec and GloVe, or learned dynamically

during training, as seen in modern contextual embeddings like those in BERT. However,

since Transformers lack an inherent sense of sequence, positional embeddings are

added to these vectors to encode the order of tokens in the text. This ensures the model

can differentiate between similar phrases with varying word arrangements.

�Self-Attention Mechanism
Central to the Transformer architecture is the self-attention mechanism, which allows

the model to focus on relevant parts of the input sequence while processing each

token. This mechanism relies on three components: Query, Key, and Value vectors.
By calculating the dot product of Query and Key vectors, the model determines the

relevance of one token to another. The resulting scores are normalized to produce

attention weights, which are then used to weight the Value vectors. This process ensures

that each token’s representation is enriched by its relationship with other tokens in the

sequence.

Moreover, the Transformer employs multihead attention, where multiple attention

heads analyze different aspects of the input simultaneously. This parallel approach

enables the model to capture a wide range of linguistic relationships, from syntax to

semantics.

Once the self-attention mechanism completes its operation, the output is passed

through a feedforward neural network. This component consists of fully connected

layers with nonlinear activation functions, such as ReLU, which allow the model to learn

complex transformations. The output of the feedforward network refines the token
representations, enabling the model to discern intricate patterns in the data.

�Layer Normalization and Residual Connections
To stabilize the training process and improve gradient flow, the architecture incorporates

layer normalization and residual connections.

Chapter 5 Building and Fine-Tuning LLMs

269

•	 Layer normalization ensures consistent input scaling across layers,

reducing the risk of vanishing or exploding gradients.

•	 Residual connections, on the other hand, add the input of a layer

directly to its output, preserving critical information and allowing for

the successful training of deeper networks.

�Transformer Blocks
The architecture stacks multiple Transformer blocks, each containing self-attention and

feedforward layers, to learn hierarchical representations of the input. Early layers in the

stack capture surface-level features like word boundaries, while deeper layers focus on

abstract, semantic relationships. This hierarchical approach enables LLMs to process

text at various levels of complexity, from syntax to context and meaning.

�At the Output Layer, LLMs Operate Differently Depending
on Their Design
In autoregressive models like GPT, the objective is to predict the next token in a

sequence based on the tokens that precede it. In masked language models like BERT,

the model is trained to predict missing or masked tokens, leveraging the context on both

sides of the sequence.

Regardless of the objective, the final step involves passing the output through a

softmax layer, which converts the model’s predictions into probabilities over the

vocabulary. The most probable token is then selected, completing the model’s task of

generating or understanding text.

This sophisticated architecture enables LLMs to perform a wide range of natural

language processing tasks with exceptional accuracy and fluency. By combining

innovations like self-attention, hierarchical representations, and efficient embedding

techniques, these models have transformed how we interact with and leverage language

in technology. From powering chatbots to advancing scientific research, LLMs continue

to redefine the possibilities of artificial intelligence.

Chapter 5 Building and Fine-Tuning LLMs

270

�Variations in LLM Architectures
LLMs built on the Transformer architecture have evolved into three main categories,

each optimized for specific tasks. Below is a detailed look at these categories:

	 1.	 Autoencoders

•	 Definition: Use only the encoder part of the Transformer

architecture while omitting the decoder after pretraining.

•	 Examples: Models like BERT (Bidirectional Encoder

Representations from Transformers) and RoBERTa.

•	 Use Cases: Ideal for tasks requiring understanding of context,

such as sentiment analysis, text classification, and named entity

recognition.

•	 Training Methodology: Trained using Masked Language

Modeling (MLM), where specific words or tokens in a sequence

are masked, and the model learns to predict them. This approach

enhances the model’s contextual understanding.

	 2.	 Auto-Regressors

•	 Definition: Use the decoder part of the Transformer while

discarding the encoder after pretraining.

•	 Examples: GPT series (Generative Pretrained Transformer)

and BLOOM.

•	 Use Cases: Designed for text generation, story writing, question

answering, and summarization. These models excel in generating

coherent and contextually relevant text.

•	 Training Methodology: Employ Causal Language Modeling,

where the model predicts the next token in a sequence based on

preceding tokens, allowing it to generate sequential outputs.

	 3.	 Sequence-to-Sequence Models

•	 Definition: Incorporate both the encoder and decoder

components of the Transformer.

Chapter 5 Building and Fine-Tuning LLMs

271

•	 Examples: Models like T5 (Text-to-Text Transfer Transformer)

and BART (Bidirectional and Auto-Regressive Transformers).

•	 Use Cases: Versatile models suited for translation,

summarization, and question-answering tasks.

•	 Training Methodology: Often trained with techniques like span

corruption, where parts of the input are deliberately distorted,

and the model learns to reconstruct the original.

�Fine-Tuning Strategies and Considerations
�What Is LLM Fine-Tuning?
Fine-tuning involves adjusting the parameters of a pretrained large language model

to better suit a specific task or domain. While models like GPT are equipped with

extensive general language knowledge, they lack the specialized expertise required for

certain areas. Fine-tuning overcomes this limitation by enabling the model to learn

from domain-specific data, enhancing its accuracy and effectiveness for particular

applications.

Through fine-tuning, the model is exposed to task-specific examples, allowing it to

grasp the subtleties and nuances of the domain. This process transforms a general-

purpose language model into a specialized tool, maximizing the potential of LLMs for

targeted use cases.

Fine-tuning is particularly useful in scenarios where you need the following:
Customization
Every domain or task comes with its own distinct language patterns, terminologies,

and contextual intricacies. Fine-tuning a pretrained LLM enables customization,

allowing the model to better understand these unique characteristics and generate

domain-specific content. This tailoring ensures that the model’s outputs align with your

specific requirements, delivering accurate and contextually relevant results.

Whether you are working with legal documents, medical records, business reports,

or proprietary company data, fine-tuning empowers LLMs to provide specialized

expertise. By training the model on domain-specific datasets, you can harness the

capabilities of LLMs while ensuring they meet the precision and relevance demanded by

your use case.

Chapter 5 Building and Fine-Tuning LLMs

272

Data Compliance
Industries like healthcare, finance, and law operate under stringent regulations

governing the use and protection of sensitive information. Fine-tuning LLMs on

proprietary or regulated data allows organizations to develop models that comply with

data privacy and security standards.

This approach minimizes the risks of exposing sensitive information to external

systems while creating models that are securely trained on in-house or industry-specific

data. Fine-tuning enhances the privacy, security, and regulatory compliance of LLM

applications.

Limited Labeled Data
In many practical scenarios, acquiring large volumes of labeled data for specific

tasks or domains is both challenging and costly. Fine-tuning addresses this issue by

making the most of existing labeled data, enabling a pretrained LLM to adapt effectively

to smaller datasets.

This method allows organizations to overcome data scarcity while still achieving

notable improvements in the model’s performance and relevance. Even with limited

labeled data, fine-tuning ensures the model delivers accurate and reliable results

tailored to the task or domain.

�Data Requirements for Fine-Tuning
To fine-tune a large language model (LLM) effectively, it’s critical to understand the

data requirements necessary to support both training and validation. Below are key

guidelines to ensure a successful fine-tuning process:

	 1.	 Use a Large Dataset

The size of the training and validation dataset should align with

the complexity of the task and the model being fine-tuned.

Typically, thousands or tens of thousands of examples are

recommended. While larger models can learn more effectively

from smaller datasets, having sufficient data is still essential to

prevent overfitting or eroding the knowledge gained during the

pretraining phase.

Chapter 5 Building and Fine-Tuning LLMs

273

	 2.	 Ensure High Data Quality

The dataset should be clean, consistent, and free from incomplete

or incorrect examples. High-quality data helps the model learn

effectively and reduces the risk of introducing errors or biases

during fine-tuning.

	 3.	 Use a Representative Dataset

The fine-tuning dataset should accurately reflect the types of

data the model will encounter in its intended use. For example, if

fine-tuning for sentiment analysis, the dataset should include data

from diverse sources, genres, and domains, capturing the range

of human emotions. Balanced distribution across categories (e.g.,

positive, negative, neutral sentiments) is also important to prevent

skewed predictions.

	 4.	 Provide Sufficiently Specified Inputs

The dataset should contain clear and detailed input information

to guide the desired output. For instance, when fine-tuning

a model for email generation, inputs should include specific

prompts that direct the model’s creativity and relevance.

Additionally, the dataset should define expectations for length,

style, and tone, ensuring that the model generates outputs aligned

with your requirements.

�LLM Fine-Tuning Techniques
�Primary Approaches to Fine-Tuning
Fine-tuning large language models (LLMs) is the process of adjusting their parameters

to meet specific task requirements. The extent of these adjustments depends on the

complexity of the task and the desired outcome. Broadly, two primary approaches to

fine-tuning have emerged: feature extraction and full fine-tuning. Each method offers

unique strengths and trade-offs. Let’s explore them.

Chapter 5 Building and Fine-Tuning LLMs

274

�a. Feature Extraction (Repurposing)

Feature extraction, often referred to as repurposing, treats the pretrained LLM as a fixed

feature extractor. This approach capitalizes on the model’s vast knowledge, which has

been developed by training on expansive datasets covering a variety of language features

and patterns.

In this method, the majority of the model remains frozen, while only the final layers

are trained on task-specific data. By focusing adjustments on these layers, the model

adapts its rich, pre-existing representations to the specific requirements of the task.

This approach is particularly efficient, as it minimizes computational costs and training

time while still delivering reliable, domain-specific results. Feature extraction is ideal for

tasks where the pretrained model’s foundational understanding suffices and only minor

refinements are needed.

�b. Fine-Tuning Embedding Models

Fine-tuning embedding models for large language models (LLMs) is a powerful

technique to adapt pretrained models to specific tasks or domains, improving their

performance on downstream applications like text classification, semantic search,

question answering, or clustering. Embedding models, which convert text into dense

vector representations, are a core component of LLMs, capturing semantic and syntactic

relationships between words, phrases, or entire documents.

Embedding models in LLMs (e.g., BERT, RoBERTa, or sentence-transformers) map

input text into a high-dimensional vector space where similar meanings are positioned

closer together. Pretrained LLMs come with embeddings learned from vast, general-

purpose datasets, but these embeddings may not be optimal for specialized tasks or

domains (e.g., medical texts, legal documents, or informal social media language). Fine-

tuning adjusts these embeddings to better align with the target task or data.

�Why Fine-Tune Embedding Models?

•	 Domain Adaptation: Pretrained embeddings may not capture

domain-specific nuances.

•	 Task-Specific Optimization: Fine-tuning tailors embeddings to

prioritize features relevant to a specific task, like sentiment analysis

or entity recognition.

Chapter 5 Building and Fine-Tuning LLMs

275

•	 Improved Performance: Adjusted embeddings often lead to better

accuracy, precision, or recall in downstream applications.

•	 Efficiency: Fine-tuning an embedding model can be less resource-

intensive than retraining an entire LLM from scratch.

�How to Fine-Tune Embedding Models
Fine-tuning typically involves adjusting the pretrained weights of the embedding

layer (and sometimes the entire model) using a task-specific dataset. Here’s a general

workflow:

	 1.	 Select a Pretrained Model

	 a.	 Start with a model like BERT, DistilBERT, or a sentence-transformer

(e.g., all-MiniLM-L6-v2) suited to your task.

	 b.	 Choose based on size, speed, and whether it’s designed for

sentence-level or token-level embeddings.

	 2.	 Prepare a Task-Specific Dataset

	 a.	 Collect labeled data relevant to your task (e.g., positive/negative

reviews for sentiment analysis).

	 b.	 For unsupervised fine-tuning, use unlabeled domain-specific

text (e.g., scientific papers) and a self-supervised objective like

contrastive learning.

	 3.	 Choose a Fine-Tuning Strategy

	 a.	 Full Fine-Tuning: Update all model parameters, including the

embedding layer and subsequent layers. This is computationally

expensive but often yields the best results.

	 b.	 Embedding-Only Fine-Tuning: Adjust only the embedding layer

while freezing the rest of the model. This is faster and useful when

computational resources are limited.

	 c.	 Adapter-Based Fine-Tuning: Add small, task-specific layers (adapters)

to the model while keeping the original embeddings mostly frozen. This

balances efficiency and performance.

Chapter 5 Building and Fine-Tuning LLMs

276

	 4.	 Define a Loss Function

	 a.	 For supervised tasks: Use cross-entropy loss (classification),

mean squared error (regression), etc.

	 b.	 For unsupervised tasks: Use contrastive loss (e.g., InfoNCE)

or triplet loss to bring similar embeddings closer and push

dissimilar ones apart.

	 5.	 Train the Model

	 a.	 Use a framework like PyTorch or Hugging Face’s Transformers library.

	 b.	 Set hyperparameters: learning rate (e.g., 2e–5), batch size, and epochs.

A smaller learning rate is often preferred to avoid catastrophic

forgetting of pretrained knowledge.

	 c.	 Monitor performance on a validation set to prevent overfitting.

	 6.	 Evaluate and Iterate

	 a.	 Test the fine-tuned embeddings on your task (e.g., cosine

similarity for semantic search, accuracy for classification).

	 b.	 Adjust the dataset, loss function, or strategy if results are suboptimal.

�Popular Techniques for Fine-Tuning Embeddings

•	 Masked Language Modeling (MLM): Continue pretraining on

domain-specific data by masking words and predicting them,

refining the embeddings for that domain.

•	 Contrastive Learning: Train embeddings to distinguish positive

pairs (similar texts) from negative pairs (dissimilar texts), common in

sentence-transformers.

•	 Prompt-Based Fine-Tuning: Use task-specific prompts to guide

the model, indirectly influencing embeddings without extensive

retraining.

•	 Knowledge Distillation: Fine-tune a smaller embedding model

by learning from a larger, pretrained LLM, preserving quality while

reducing size.

Chapter 5 Building and Fine-Tuning LLMs

277

�c. Full Model Fine-Tuning

Full fine-tuning, on the other hand, takes a more comprehensive approach. Instead of

freezing parts of the model, this method trains the entire model on task-specific data.

Each layer of the model is updated, allowing it to adapt fully to the nuances of the new

dataset.

This approach is especially advantageous when the task-specific dataset is large

or significantly differs from the data used in pretraining. By enabling all layers to

learn from the new data, full fine-tuning fosters a deeper and more precise alignment

between the model and the task, often leading to superior performance. However, this

process demands greater computational resources, more training time, and meticulous

management to avoid overfitting or destabilizing the model.

�Striking the Balance
Both approaches carry immense potential, and the choice between them depends on

the complexity of the task, the availability of data, and the computational resources at

hand. Whether repurposing the model’s pretrained strengths through feature extraction

or deeply reconfiguring it with full fine-tuning, these methods highlight the incredible

adaptability of LLMs—bringing us closer to uncovering new possibilities and solutions

in a world full of linguistic complexity.

�Prominent Fine-Tuning Methods
Fine-tuning large language models (LLMs) involves adjusting their parameters to meet

specific requirements. These methods are broadly categorized into supervised fine-
tuning and reinforcement learning from human feedback (RLHF), each offering

distinct techniques to adapt models effectively to targeted applications. Below is an in-

depth exploration of these methods.

�a. Supervised Fine-Tuning

Supervised fine-tuning uses labeled datasets where each input is paired with a correct

label or output. The model learns by adjusting its parameters to predict these labels

accurately. This method builds on the model’s pre-existing knowledge from pretraining,

adapting it to specific tasks. It is widely used for customizing LLMs and improving task-

specific performance.

Chapter 5 Building and Fine-Tuning LLMs

278

�Key Techniques in Supervised Fine-Tuning

	 1.	 Basic Hyperparameter Tuning: This straightforward approach

involves manually adjusting hyperparameters like learning rate,

batch size, and the number of epochs to optimize the model’s

performance. The goal is to balance learning efficiency with

the risk of overfitting. Well-chosen hyperparameters enhance

the model’s ability to generalize and improve its accuracy on

specific tasks.

	 2.	 Transfer Learning is ideal when task-specific data is limited. The

model, pretrained on a large general dataset, is fine-tuned with a

smaller, task-specific dataset. This method significantly reduces

the training time and data requirements while often delivering

superior results compared to training from scratch. It effectively

repurposes the knowledge embedded in the model for new

applications.

	 3.	 Multitask Learning: In this technique, the model is fine-tuned

on multiple related tasks simultaneously. The shared learning

process helps the model generalize better across tasks, leveraging

common patterns and relationships. It is particularly beneficial

when individual tasks have limited labeled data, as the combined

dataset provides richer training signals. Multitask learning

requires labeled datasets for each task and improves performance

for closely related tasks.

	 4.	 Few-Shot Learning enables the model to perform a task with

minimal labeled data. The model relies on its pre-existing

knowledge from pretraining, using a few examples to adapt to the

new task. During inference, prompts include examples or “shots”

to guide the model’s responses. This technique is highly effective

when labeled data is scarce or expensive to obtain and can

complement RLHF when human feedback is incorporated.

	 5.	 Task-Specific Fine-Tuning focuses entirely on optimizing the

model for a particular task. This approach involves refining

the model’s parameters to suit the domain’s unique nuances,

Chapter 5 Building and Fine-Tuning LLMs

279

improving accuracy and relevance. While related to transfer

learning, task-specific fine-tuning hones in on the exact

requirements of a single task rather than broadly adapting

pretrained features.

�b. Reinforcement Learning from Human Feedback (RLHF)

RLHF is an innovative approach where human feedback is integrated into the model’s

training process. This method trains models to produce outputs that align with human

expectations, leveraging human evaluators’ expertise and judgment to improve

contextual and practical accuracy.

�Key Techniques in RLHF

	 1.	 Reward Modeling uses human evaluations to guide the model’s

learning. The model generates multiple outputs, which are ranked

or scored by human evaluators. Based on these rankings, the model

predicts the human-provided rewards and adjusts its behavior to

maximize these rewards. This technique allows the model to learn

complex tasks defined by nuanced human preferences.

	 2.	 Proximal Policy Optimization (PPO) is a reinforcement

learning algorithm designed to optimize the model’s policy

while maintaining stability. The model updates its parameters

iteratively to maximize the expected reward. A constraint ensures

that updates are incremental, avoiding drastic changes that

could destabilize the model. This balance between exploration

and stability makes PPO an efficient and reliable reinforcement

learning method.

	 3.	 Comparative Ranking focuses on relative quality rather than

absolute evaluation.

Human evaluators rank multiple outputs, allowing the model to

learn from these comparative judgments. By analyzing ranked

outputs, the model improves its ability to generate higher-quality

responses. This method provides nuanced feedback, helping the

model understand subtle differences in output quality.

Chapter 5 Building and Fine-Tuning LLMs

280

	 4.	 Preference Learning is a specialized form of RLHF where human

evaluators provide preferences between pairs of outputs. The

model learns to align its behavior with human preferences, even

when explicit numerical rewards are difficult to define. This

approach captures complex, subjective judgments, enabling the

model to perform tasks requiring humanlike decision-making.

	 5.	 Parameter-Efficient Fine-Tuning (PEFT)

PEFT focuses on updating only a subset of the model’s

parameters. By modifying specific layers or adding task-specific

components, this method reduces computational and storage

demands. PEFT maintains performance comparable to full fine-

tuning while being resource-efficient, making it a practical choice

for many applications.

Choosing the Right Method
The choice between supervised fine-tuning and RLHF—and the techniques within

each—depends on the task’s complexity, data availability, and desired outcomes.

Supervised fine-tuning is ideal for well-defined tasks with labeled datasets, while

RLHF excels in scenarios requiring nuanced, context-driven outputs guided by human

judgment. Together, these methods highlight the adaptability and potential of fine-

tuning in harnessing the full power of LLMs.

�Fine-Tuning Process and Best Practices
Fine-tuning a pretrained language model to meet specific use case requirements

involves following a structured process. This ensures that the model is optimized to

deliver accurate and effective results. Below are the key steps and best practices for fine-

tuning, along with examples of its applications.

�a. Data Preparation
Data preparation is a foundational step in the fine-tuning process. It involves curating

and preprocessing the dataset to ensure relevance and quality for the target task. This

step typically includes the following:

Chapter 5 Building and Fine-Tuning LLMs

281

•	 Cleaning the Data: Removing duplicates, incomplete entries, or

irrelevant information

•	 Handling Missing Values: Addressing gaps in the dataset to maintain

consistency

•	 Formatting the Text: Aligning the data structure with the model’s

input requirements

Data augmentation techniques, such as paraphrasing or synonym replacement, can

also expand the dataset and improve the model’s robustness. Proper data preparation

directly impacts the model’s ability to learn and generalize effectively, leading to

enhanced task-specific performance and accurate outputs.

�b. Choosing the Right Pretrained Model
Selecting a pretrained model that aligns with the specific requirements of your task is

crucial for successful fine-tuning. Key considerations include

•	 Model Architecture: Understanding the layers and configurations of

the model

•	 Input/Output Specifications: Ensuring compatibility with the task

•	 Model Size and Training Data: Balancing computational resources

and task requirements

•	 Performance Benchmarks: Reviewing how well the model performs

on tasks similar to yours

Choosing a pretrained model that closely matches the target task helps streamline

the fine-tuning process and maximize its adaptability and effectiveness in your

application.

�c. Identifying the Right Parameters for Fine-Tuning
Configuring fine-tuning parameters ensures optimal learning and adaptation to task-

specific data. Key parameters include

•	 Learning Rate: Determines how quickly the model updates during

training

Chapter 5 Building and Fine-Tuning LLMs

282

•	 Batch Size: Influences the efficiency of gradient calculations

•	 Number of Epochs: Controls the training duration to avoid

underfitting or overfitting

Freezing certain layers (typically the earlier ones) while training the later layers is a

common practice. This helps retain general knowledge from pretraining while allowing

the model to adapt to task-specific requirements. Striking a balance between leveraging

pretrained knowledge and learning new features is key to effective fine-tuning.

�d. Validation
Validation ensures the fine-tuned model performs as expected on unseen data. This step

involves

•	 Using a validation dataset to evaluate performance

•	 Monitoring metrics such as accuracy, loss, precision, and recall to

assess the model’s generalization capabilities

Validation highlights areas where the model may need further improvement,

enabling adjustments to parameters or data to optimize performance. Regular validation

throughout the fine-tuning process ensures consistent alignment with task goals.

�Evaluation Metrics and Benchmarks for Fine-Tuning LLMs

When fine-tuning large language models (LLMs), it’s important to apply the right

evaluation metrics and benchmarks to assess performance accurately. The choice of

metric depends heavily on the task (e.g., classification, generation, reasoning, etc.).

�Classification Tasks (e.g., Sentiment Analysis, Intent Detection)

•	 Accuracy: Measures the proportion of correct predictions

•	 Precision/Recall/F1 Score: Especially useful for imbalanced

datasets

•	 ROC-AUC: Captures the model’s ability to distinguish

between classes

•	 Confusion Matrix: Offers insights into types of classification errors

Chapter 5 Building and Fine-Tuning LLMs

283

�Text Generation Tasks (e.g., Summarization,
Translation, Dialogue)

•	 BLEU: Based on n-gram overlap; commonly used in translation

•	 ROUGE: Measures recall; widely used in summarization tasks

•	 METEOR: Accounts for synonymy and stemming

•	 BERTScore: Uses contextual embeddings to assess semantic

similarity

•	 GLEU/chrF: Variants of BLEU that better capture fluency in

certain cases

�Reasoning and Question Answering

•	 Exact Match (EM): Measures strict correctness of answers

•	 F1 Score: Based on token overlap between the predicted and

reference answers

•	 Accuracy@k/Hits@k: Common in retrieval and multiple-choice

settings

•	 Faithfulness/Consistency: Often assessed through human

evaluation

�Dialogue and Chatbot Evaluation

•	 BLEU/METEOR/ROUGE: Evaluate fluency and relevance

•	 DialogRPT/USR: Model-based metrics that approximate human

judgments

•	 Human Evaluation: Often necessary to assess coherence,

appropriateness, and personality

Chapter 5 Building and Fine-Tuning LLMs

284

�General Model Evaluation

•	 Perplexity: Reflects how well the model predicts text (lower is better)

•	 Log-Likelihood: Useful for comparing model variants

•	 Toxicity/Bias Scores: Measured with external tools or datasets, such

as Perspective API or RealToxicityPrompts

�Common Benchmarks

�Language Understanding

•	 GLUE/SuperGLUE: A suite of diverse tasks including sentiment,

entailment, and coreference

•	 MMLU (Massive Multitask Language Understanding): Tests

knowledge across a wide range of academic subjects

•	 BBH (Big-Bench Hard): A challenging benchmark for reasoning

•	 HellaSwag/WinoGrande: Focused on commonsense and pronoun

resolution

�Summarization

•	 CNN/DailyMail, XSum, Gigaword: Used to evaluate abstractive

summarization performance

�Machine Translation

•	 WMT: A standard benchmark for translation tasks with yearly

competitions

�Question Answering

•	 SQuAD, NaturalQuestions, TriviaQA, HotpotQA: Range from fact-

based to reasoning-heavy question answering

Chapter 5 Building and Fine-Tuning LLMs

285

�Dialogue

•	 PersonaChat, DSTC, MultiWOZ: Datasets for evaluating both open-

domain and task-oriented dialogue systems

�Retrieval and Retrieval-Augmented Generation (RAG)

•	 BEIR: A diverse benchmark suite for retrieval-based tasks

•	 MS MARCO: Commonly used for passage ranking and open-

domain QA

�Best Practices

•	 Use a combination of metrics for a more comprehensive evaluation.

•	 Include both automated and human evaluations, especially for

subjective tasks.

•	 Track metric changes before and after fine-tuning to measure

improvements.

•	 Consider using LLM-as-a-judge or prompt-based evaluation for

complex outputs.

�e. Detect Bias, Fairness, and Groundedness of LLMs
Detecting bias, fairness, and groundedness in large language models (LLMs) is a critical

task, especially when evaluating retrieval-augmented generation (RAG) systems.

Frameworks like RAGAS and TruLens provide structured approaches to assess these

qualities using specific metrics and methodologies.

�Groundedness

Groundedness measures how well an LLM’s response is supported by the retrieved

context or source material, ensuring it doesn’t hallucinate or deviate from the provided

information. Both RAGAS and TruLens offer ways to evaluate this.

Chapter 5 Building and Fine-Tuning LLMs

286

•	 RAGAS Framework

•	 Metric: Faithfulness is the primary metric for groundedness

in RAGAS. It assesses whether the LLM’s response aligns with

the retrieved context by breaking the response into individual

statements and verifying each against the source material.

•	 How It Works: RAGAS uses an LLM to evaluate the response. For

each statement in the output, it checks if the retrieved context

supports it, often employing a chain-of-thought reasoning

process to provide a score (e.g., 0 to 1) and explanations. A

low faithfulness score indicates potential hallucinations or

unsupported claims.

•	 Implementation: You provide the query, retrieved context, and

LLM-generated response. RAGAS then computes the faithfulness

score by analyzing factual consistency.

•	 TruLens Framework

•	 Metric: Groundedness is explicitly measured in TruLens as part

of the RAG Triad (context relevance, groundedness, answer

relevance). It evaluates how well each part of the response is

anchored in the retrieved context.

•	 How It Works: TruLens uses a feedback function powered by an

LLM (e.g., GPT-3.5) to score groundedness. It parses the response

into segments and checks their alignment with the context,

providing a score and reasoning for transparency.

•	 Implementation: Using TruLens, you set up an evaluator with a

Tru object and a recorder to log the query, context, and response.

The framework then runs the groundedness evaluation, allowing

you to tweak parameters like chunk size or retrieval strategy

based on results.

Chapter 5 Building and Fine-Tuning LLMs

287

�Bias

Bias in LLMs refers to unfair or skewed outputs that reflect prejudices in training data

or model behavior, often related to demographics, ideologies, or social groups. While

RAGAS and TruLens don’t directly target bias as a standalone metric, their evaluation

techniques can be adapted to detect it.

•	 RAGAS Framework

•	 Approach: Bias isn’t a predefined metric in RAGAS, but you can

detect it indirectly through faithfulness and answer relevance.

For example, if an LLM consistently generates responses that

misrepresent certain groups (e.g., gender or race) despite

accurate context, this could indicate bias.

•	 How to Detect: Create a diverse set of queries and contexts

targeting sensitive attributes (e.g., “Describe a typical software

engineer” with contexts mentioning different genders). Compare

the faithfulness scores across these responses. Disparities in

how the LLM interprets or uses context for different groups may

suggest bias.

•	 Limitations: RAGAS focuses on factual alignment, so subtle

biases (e.g., tone or omission) might require additional

qualitative analysis or custom metrics.

•	 TruLens Framework

•	 Approach: TruLens also lacks a direct bias metric but can be

extended to assess bias through groundedness and answer

relevance evaluations across varied inputs.

•	 How to Detect: Test the LLM with prompts designed to probe for

bias (e.g., “Provide a job recommendation for a male vs. female

candidate” with identical contexts). Analyze the groundedness

scores to see if the LLM deviates from the context differently

based on demographic factors. Low groundedness for specific

groups might indicate biased interpretation.

Chapter 5 Building and Fine-Tuning LLMs

288

•	 Customization: TruLens allows custom feedback functions.

You could define a bias-specific metric by comparing response

patterns across demographic variations, leveraging its systematic

experiment tracking to establish baselines.

�Fairness

Fairness evaluates whether an LLM treats different groups equitably, avoiding

discrimination or unequal performance. Neither RAGAS nor TruLens has an explicit

fairness metric, but their evaluation pipelines can be adapted to assess fairness

indirectly.

•	 RAGAS Framework

•	 Approach: Use context recall and answer relevance to check if the

LLM retrieves and uses context equitably across groups. Context

recall measures how much of the relevant context is included,

while answer relevance ensures the response addresses the query

appropriately.

•	 How to Detect: Design evaluation datasets with balanced

representation (e.g., equal mentions of different ethnicities

or genders in contexts). Run RAGAS to compute recall and

relevance scores for each group. Significant score variations (e.g.,

higher relevance for one gender) could indicate unfairness in

retrieval or generation.

•	 Practical Steps: Generate synthetic datasets with counterfactuals

(e.g., swapping gender in prompts), and analyze if the LLM’s

performance remains consistent.

•	 TruLens Framework

•	 Approach: Leverage the RAG Triad to assess fairness by ensuring

context relevance, groundedness, and answer relevance are

consistent across diverse inputs.

•	 How to Detect: Test the LLM with a dataset covering multiple

demographic groups (e.g., FairFace or Bias in Bios). Evaluate the

triad metrics for each group. For instance, if context relevance

Chapter 5 Building and Fine-Tuning LLMs

289

is lower for underrepresented groups, it might suggest biased

retrieval; if answer relevance varies, it could point to unfair

generation.

•	 Experimentation: TruLens supports iterative testing. Adjust

retrieval parameters (e.g., sentence window size) and observe

their impact on fairness metrics, aiming for uniform performance

across groups.

�Practical Steps to Implement

	 1.	 Dataset Preparation

	 a.	 Curate a diverse evaluation set with queries and contexts spanning

demographics, ideologies, or other bias-prone areas.

	 b.	 Include counterfactual examples (e.g., changing “he” to “she” in prompts)

to test consistency.

	 2.	 RAGAS Setup

	 a.	 Install RAGAS (pip install ragas), and input your query, context, and

response.

	 b.	 Run faithfulness and relevance evaluations, and then analyze scores for

patterns indicating bias or unfairness.

	 3.	 TruLens Setup

	 a.	 Install TruLens (pip install trulens-eval), and initialize a Tru object.

	 b.	 Define a recorder with your RAG pipeline, and run evaluations using the

RAG Triad. Compare results across groups.

RAGAS Example:

from ragas import evaluate
from datasets import Dataset

data = Dataset.from_dict({
 "question": ["What’s France’s capital?"],
 "context": ["France’s capital is Paris."],
 "answer": ["Paris"]

Chapter 5 Building and Fine-Tuning LLMs

290

})
result = evaluate(data, metrics=["faithfulness"])
print(result["faithfulness"])
Output: 1.0 (grounded)

If answer were “London,” score would be ~0.0 (ungrounded).

TruLens Example:

from trulens_eval import Tru, Feedback from trulens_eval.feedback import
Groundedness
tru = Tru()
groundedness = Groundedness()
feedback = Feedback(groundedness.groundedness_measure)
result = tru.run_feedback_functions(record={"query": "2020 election
winner?", "context": "Joe Biden won.", "response": "Joe Biden"})
print(result)
Output: ~0.9 (grounded)

�Detecting Data Drift When Fine-Tuning
Detecting data drift when fine-tuning a large language model (LLM) is crucial to ensure

the model remains effective and generalizes well to new data. Data drift occurs when the

distribution of the incoming data (e.g., the fine-tuning dataset or real-world inference

data) diverges from the distribution of the original training dataset. Here’s a step-by-step

approach to detect data drift during fine-tuning:

	 1.	 Define Key Metrics and Features

•	 Text Features: Extract relevant features from your dataset, such

as token frequency, sentence length, vocabulary size, n-gram

distributions, or embeddings (e.g., from a pretrained model

like BERT).

•	 Task-Specific Metrics: If fine-tuning for a specific task (e.g.,

classification), monitor label distributions, class balance, or other

task-relevant statistics.

•	 Baseline: Use the original training dataset (or a representative

subset) as a reference for comparison.

Chapter 5 Building and Fine-Tuning LLMs

291

	 2.	 Statistical Tests

•	 Distribution Comparison: Apply statistical tests to compare the

original training data and the fine-tuning data:

•	 Kolmogorov-Smirnov (KS) Test: For continuous features

like sentence length or embedding distances

•	 Chi-Square Test: For categorical data like label distributions

or token frequencies

•	 Wasserstein Distance: Measures the “distance” between two

distributions, useful for embeddings or numerical features

•	 Thresholds: Set significance thresholds (e.g., p-value < 0.05) to

flag significant drift.

	 3.	 Embedding-Based Drift Detection

•	 Generate Embeddings: Use the pretrained LLM (before fine-

tuning) to encode both the original training data and the fine-

tuning data into a latent space (e.g., mean-pooled embeddings).

•	 Compare Distributions: Calculate drift using metrics like

•	 Cosine Similarity: Between average embeddings of the two

datasets

•	 Maximum Mean Discrepancy (MMD): A kernel-based

method to measure divergence between distributions

•	 KL Divergence: If you can estimate probability densities (e.g.,

via histograms or kernel density estimation)

•	 Visualization: Use t-SNE or PCA to visualize embeddings and

spot clusters or shifts

	 4.	 Monitor Model Performance

•	 Validation Set: Maintain a held-out validation set from the

original training distribution. Track performance metrics (e.g.,

accuracy, perplexity, F1 score) during fine-tuning.

Chapter 5 Building and Fine-Tuning LLMs

292

•	 Performance Drop: A significant drop might indicate the fine-

tuning data is drifting too far from the original distribution,

causing the model to overfit or lose generalization.

•	 Cross-Dataset Evaluation: Periodically evaluate the fine-tuned

model on both the original validation set and a sample of the

fine-tuning data to detect discrepancies.

	 5.	 Concept Drift in Task-Specific Fine-Tuning

•	 Label Shift: Check if the label distribution changes (e.g., a

sentiment model seeing more negative samples in fine-tuning

than in training).

•	 Covariate Shift: Compare input feature distributions (e.g., topics,

vocabulary) while assuming the task remains the same.

•	 Semantic Shift: Use topic modeling (e.g., LDA) or keyword

analysis to detect changes in the underlying themes or concepts.

	 6.	 Practical Example

•	 Suppose you’re fine-tuning an LLM for customer support

classification:

•	 Extract token frequencies and embeddings from the original

training data (e.g., product reviews) and the fine-tuning data

(e.g., live chat logs).

•	 Run a KS test on sentence lengths and a Wasserstein distance

on embeddings.

•	 If p-values indicate significant drift or distances exceed a

threshold, investigate further (e.g., new slang in chats not

present in reviews).

	 7.	 Mitigation

If drift is detected, consider

•	 Reweighting: Adjust the fine-tuning data to align with the

original distribution.

Chapter 5 Building and Fine-Tuning LLMs

293

•	 Regularization: Use techniques like weight decay or domain-

adversarial training to reduce overfitting to drifted data.

•	 Data Augmentation: Blend original and fine-tuning data to

smooth the transition.

�f. Model Iteration
Iteration involves refining the model based on evaluation results. This step includes

•	 Adjusting fine-tuning parameters, such as learning rate or the extent

of layer freezing

•	 Implementing regularization techniques to prevent overfitting

•	 Exploring alternative architectures or training strategies

Iterative improvements allow engineers to progressively enhance the model’s

capabilities, ensuring it meets the desired performance levels before deployment.

�g. Model Deployment
Deployment transitions the fine-tuned model from development to real-world

application. Key considerations during this phase include

•	 Ensuring hardware and software compatibility with the

deployment environment

•	 Integrating the model into existing systems or workflows

•	 Addressing scalability, real-time performance, and security measures

Successful deployment ensures the model operates seamlessly in its intended

environment, delivering the enhanced capabilities achieved through fine-tuning.

�Fine-Tuning Applications
Fine-tuning pretrained models is a powerful way to adapt general-purpose LLMs for

specific tasks. Below are some of the most prominent use cases where fine-tuning offers

significant benefits.

Chapter 5 Building and Fine-Tuning LLMs

294

�a. Sentiment Analysis
Fine-tuned models enable accurate sentiment analysis, providing insights from

customer feedback, social media posts, and product reviews. Businesses can use these

insights to

•	 Identify trends and gauge customer satisfaction

•	 Inform marketing strategies and product development

•	 Track public sentiment for proactive reputation management

For example, a company might fine-tune a model on its specific customer data

to better understand feedback nuances, helping drive targeted improvements and

customer engagement.

�b. Chatbots
Fine-tuning enhances chatbot performance, enabling more engaging and contextually

relevant conversations. Applications include

•	 Customer Service: Providing personalized assistance and

resolving queries

•	 Healthcare: Answering medical questions and offering

patient support

•	 Ecommerce: Assisting with product recommendations and

transactions

•	 Finance: Offering personalized financial advice and account

management

By adapting language models to specific industries, fine-tuned chatbots become

valuable tools for improving user interactions and customer satisfaction.

�c. Summarization
Fine-tuned models can generate concise, informative summaries of lengthy documents,

articles, or conversations, streamlining information retrieval. Applications include

Chapter 5 Building and Fine-Tuning LLMs

295

•	 Academic Research: Condensing research papers for quick

understanding

•	 Corporate Environments: Summarizing reports and emails to aid

decision-making

•	 Legal and Medical Fields: Providing summaries of case files or

patient histories for efficient review

Fine-tuned summarization models enable professionals to process vast amounts of

information more effectively, improving productivity and knowledge management.

Fine-tuning pretrained language models unlocks their potential to deliver optimized,

task-specific outcomes. By following a structured process and adhering to best practices

in data preparation, parameter configuration, validation, iteration, and deployment,

organizations can harness the power of LLMs to address unique challenges. From

sentiment analysis and chatbots to summarization, fine-tuned models demonstrate

versatility and effectiveness, offering significant benefits across industries and

applications.

�Advanced Fine-Tuning Techniques for LLMs
As large language models (LLMs) grow in size and complexity, traditional fine-tuning

approaches can become computationally expensive, resource-intensive, or insufficient

for specialized needs. Advanced fine-tuning techniques have emerged to address these

limitations, offering innovative ways to adapt LLMs efficiently and effectively. This

section explores four prominent methods—Low-Rank Adaptation (LoRA), Prompt

Tuning, Continual Learning, and Federated Fine-Tuning—each pushing the boundaries

of how LLMs can be customized for diverse applications.

�Low-Rank Adaptation (LoRA)
Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning technique that

updates only a small subset of a model’s weights, reducing the computational and

memory burden of full fine-tuning. Instead of modifying all parameters, LoRA

introduces low-rank updates to specific weight matrices (e.g., in the attention layers),

allowing the model to adapt to new tasks while keeping the original pretrained

weights frozen.

Chapter 5 Building and Fine-Tuning LLMs

296

Mechanics

•	 LoRA assumes that the changes needed for task-specific adaptation

lie in a low-dimensional subspace of the full weight matrix.

•	 For a weight matrix W W W in the model, LoRA adds a low-rank

decomposition ΔW=A·B \Delta W = A \cdot B ΔW=A·B, where A A A

and B B B are smaller matrices with rank r r r (much smaller than the

original dimensions).

•	 During fine-tuning, only A A A and B B B are trained, while W W

W remains unchanged. The updated weights are computed as

W′=W+ΔW W' = W + \Delta W W′=W+ΔW during inference.

Advantages

•	 Efficiency: Reduces memory usage and training time significantly

(e.g., fine-tuning a billion-parameter model might require updating

only 0.1% of parameters).

•	 Modularity: Task-specific updates can be stored separately and

swapped in or out without altering the base model.

•	 Scalability: Ideal for fine-tuning massive models like GPT-3 or

LLaMA on resource-constrained hardware.

Challenges

•	 May underperform full fine-tuning on highly specialized tasks

requiring extensive adaptation

•	 Requires careful selection of the rank r r r to balance efficiency and

expressiveness

Use Cases

•	 Fine-tuning LLMs for multiple domain-specific chatbots (e.g., legal,

medical) with minimal storage overhead

•	 Adapting large models on edge devices where memory and compute

are limited

Chapter 5 Building and Fine-Tuning LLMs

297

Example: A company fine-tunes a 175-billion-parameter LLM for customer support

using LoRA, reducing the trainable parameters from 175 billion to a few million,

achieving comparable performance to full fine-tuning with a fraction of the GPU hours.

�Prompt Tuning
Prompt Tuning shifts the focus from modifying model weights to optimizing task-specific

prompts, leveraging the pretrained LLM’s inherent capabilities without altering its

parameters. This method is particularly useful for extremely large models where full

fine-tuning is impractical.

Mechanics

•	 Instead of updating the model, a set of trainable prompt embeddings

(virtual tokens) is prepended to the input sequence.

•	 These embeddings are optimized during training to guide the model

toward desired outputs for a specific task.

•	 The pretrained weights remain frozen, and only the prompt

embeddings (a tiny fraction of parameters) are adjusted.

Advantages

•	 Ultraefficient: Requires updating far fewer parameters than even

PEFT methods like LoRA (e.g., tens of thousands vs. millions).

•	 Preserves Model Integrity: Avoids risks of overfitting or catastrophic

forgetting since the core model is unchanged.

•	 Flexibility: Prompts can be easily swapped for different tasks, making

it ideal for multitask scenarios.

Challenges

•	 Performance may lag behind full fine-tuning for complex tasks

requiring deep adaptation.

•	 Designing effective initial prompts can be nontrivial and task-

dependent.

Chapter 5 Building and Fine-Tuning LLMs

298

Use Cases

•	 Rapid prototyping of task-specific applications (e.g., sentiment

analysis, summarization) without retraining the model

•	 Deploying a single LLM to handle multiple tasks by switching

prompts dynamically (e.g., a virtual assistant toggling between

scheduling and translation)

Example: An ecommerce platform uses prompt tuning to adapt a pretrained LLM

for product description generation, training a 100-token prompt to produce concise,

brand-aligned outputs without touching the model’s 70B parameters.

�Federated Fine-Tuning
Federated Fine-Tuning takes fine-tuning into decentralized territory, training LLMs

across multiple devices or institutions without centralizing sensitive data, a critical

feature for privacy-sensitive fields like healthcare or finance. In this setup, local models

are fine-tuned on individual datasets—say, patient records at different hospitals—and

their updates are aggregated into a global model without ever sharing the raw data. This

aggregation typically uses techniques like federated averaging, where weight updates are

combined to refine the shared model.

The result is a collaboratively trained LLM that respects data privacy and complies

with regulations like GDPR or HIPAA, all while leveraging diverse datasets. However,

this approach faces hurdles: coordinating training across heterogeneous devices can be

complex, and differences in data distribution may lead to suboptimal performance. A

consortium of hospitals might employ Federated Fine-Tuning to develop a diagnostic

chatbot, each contributing local insights to a shared model without compromising

patient confidentiality.

Together, these advanced techniques highlight the evolving landscape of LLM fine-

tuning, offering solutions to the practical and ethical challenges of adapting massive

models. LoRA and Prompt Tuning excel in efficiency, making fine-tuning accessible

even for resource-constrained settings, while Continual Learning ensures models

remain versatile over time. Federated Fine-Tuning, meanwhile, bridges the gap between

customization and privacy, opening doors to collaborative AI development.

Chapter 5 Building and Fine-Tuning LLMs

299

Each method carries unique strengths and trade-offs, and their application depends

on the task, resources, and constraints at hand. By mastering these approaches,

practitioners can unlock the full potential of LLMs, tailoring them to an ever-widening

array of real-world challenges with precision and responsibility.

�When to Not Use LLM Fine-Tuning
Fine-tuning large language models (LLMs) has revolutionized how AI can be tailored to

specific tasks and domains, but it is not always the best or most appropriate approach. In

some situations, fine-tuning might not provide a clear advantage, and in others, it may

even introduce risks or inefficiencies. Understanding the limitations and trade-

offs of fine-tuning is crucial for making informed decisions about whether it is the right

approach for your use case. Below is an in-depth exploration of when and why fine-

tuning may not be suitable.

�Pretrained Models Are Already Sufficient
Pretrained LLMs, like GPT and similar models, are designed to handle a broad range of

language tasks effectively. They have been trained on massive datasets covering diverse

topics, allowing them to perform well in many general-purpose scenarios without

additional fine-tuning. For instance, tasks like summarization, basic question answering,

and translation often yield satisfactory results using pretrained models. By leveraging

prompt engineering, users can guide the model to perform specific tasks by simply

designing inputs that include instructions or examples.

For example, a customer service application might ask the model to generate polite

responses to common questions. By crafting a few-shot prompt with sample questions

and answers, the pretrained model can adapt its output to align with the desired tone

and style. This avoids the need for fine-tuning, which would involve additional costs and

complexity. Fine-tuning in such cases may only yield marginal improvements, making it

an inefficient use of resources.

Chapter 5 Building and Fine-Tuning LLMs

300

�Insufficient or Low-Quality Data
Fine-tuning requires access to task-specific data that is not only sufficient in quantity but

also high in quality. The dataset should be clean, well-labeled, and representative of the

domain the model will be applied to. When these criteria are not met, fine-tuning can

introduce significant challenges.

If the dataset is too small, the model risks overfitting to the limited examples, which

could lead to poor generalization to new inputs. For example, if a legal document

analysis model is fine-tuned on only a handful of annotated cases, it might perform

well on similar examples but fail when presented with novel or slightly different legal

contexts. Moreover, if the dataset contains errors, inconsistencies, or biases, the model

might incorporate these issues into its outputs, amplifying them in unintended ways.

In cases where high-quality data is unavailable or difficult to curate, other

approaches, such as few-shot learning, transfer learning, or prompt engineering, may

be more practical. These methods allow the model to perform tasks effectively without

relying heavily on extensive task-specific datasets.

�High Computational Costs and Resource Constraints
Fine-tuning LLMs can be resource-intensive, requiring significant computational power,

time, and storage. Training a large model, especially those with billions of parameters,

involves running complex computations across high-performance hardware like GPUs

or TPUs. This can result in prohibitive costs, particularly for organizations with limited

budgets or infrastructure.

The fine-tuned model may also demand additional storage and memory for

deployment, especially if the updated parameters increase the overall size of the model.

For lightweight applications or environments with strict resource constraints, such as

mobile devices or edge computing, deploying a fine-tuned model may be impractical.

Instead, relying on pretrained models as-is, or applying techniques like parameter-

efficient fine-tuning (PEFT), can help achieve acceptable performance without the

overhead of full fine-tuning.

Chapter 5 Building and Fine-Tuning LLMs

301

�Regulatory, Privacy, and Ethical Constraints
Certain industries, such as healthcare, finance, and government, are subject to stringent

regulations around data privacy, security, and usage. Fine-tuning often involves training

a model on proprietary or sensitive data, which can raise significant legal and ethical

concerns. For example, fine-tuning a medical diagnostic model using patient records

might violate data privacy regulations like HIPAA (Health Insurance Portability and

Accountability Act) or GDPR (General Data Protection Regulation).

Even if data anonymization techniques are employed, there is always a risk that

sensitive information could be inadvertently encoded in the model’s parameters. This

could lead to unintended exposure of confidential information, especially in scenarios

where the model is accessed by third parties. In such cases, organizations might consider

using techniques like reinforcement learning from human feedback (RLHF) or synthetic

data generation to achieve their goals without compromising privacy.

Ethical concerns also arise when fine-tuning is performed without careful

consideration of biases in the training data. If the dataset reflects societal biases or

discriminatory practices, the fine-tuned model may perpetuate or amplify these biases,

leading to harmful or unfair outcomes. Organizations must weigh these risks carefully

and explore alternative methods that minimize ethical liabilities.

�Maintaining Model Versatility
Fine-tuning customizes a model for a specific task, often at the expense of its general-

purpose capabilities. For applications that require flexibility across multiple tasks or

domains, this specialization can become a limitation. For instance, a model fine-

tuned for legal text summarization might lose its ability to perform other tasks, such as

conversational AI or financial analysis, as effectively as it did in its pretrained state.

This loss of versatility is particularly concerning in use cases where the model needs

to operate in diverse contexts or adapt to evolving requirements. In such situations,

techniques like adapter layers, which allow task-specific customization without altering

the core model, or dynamic prompt engineering, which leverages the model’s pretrained

knowledge, can offer better solutions. These approaches preserve the model’s general-

purpose utility while enabling targeted improvements.

Chapter 5 Building and Fine-Tuning LLMs

302

�Task Scope Is Uncertain or Evolving
When the exact requirements of a task are unclear or likely to change over time, fine-

tuning can become a costly and time-consuming iterative process. For example, an

organization exploring AI applications in customer service might initially require a

model to answer basic inquiries but later expand its scope to include complex problem-

solving or multilingual support. Fine-tuning the model for each incremental change

would be inefficient, requiring repeated adjustments to data, training processes, and

deployment strategies.

In such exploratory contexts, pretrained models with flexible prompting capabilities

are often a better choice. They allow for rapid prototyping and experimentation without

the need for extensive fine-tuning. Once the requirements stabilize, organizations can

evaluate whether fine-tuning or another optimization method is necessary.

�High-Risk Scenarios Requiring Predictability and Stability
In high-stakes applications, such as legal decision-making, medical diagnoses, or

financial forecasting, the predictability and stability of the model’s behavior are

paramount. Fine-tuned models, especially those trained on narrowly defined datasets,

can exhibit unpredictable performance when encountering out-of-distribution inputs.

This variability poses significant risks in scenarios where incorrect or unreliable outputs

could have serious consequences.

For these applications, it may be better to rely on the more generalized capabilities

of pretrained models, which are often more robust across a wider range of inputs.

Additionally, employing methods like human-in-the-loop systems, where model outputs

are reviewed and verified by domain experts, can enhance reliability without the need

for fine-tuning.

While fine-tuning offers powerful customization options for large language models,

it is not always the most appropriate or effective approach. Scenarios where the

pretrained model already performs well, where data quality or quantity is insufficient,

or where computational resources are limited make fine-tuning less viable. Similarly,

regulatory and ethical concerns, the need for model versatility, uncertain task

requirements, or high-risk applications may favor alternative strategies.

Organizations should carefully assess their goals, constraints, and the specific needs

of their applications before deciding to fine-tune an LLM. By leveraging pretrained

models through prompt engineering, few-shot learning, or lightweight customization

Chapter 5 Building and Fine-Tuning LLMs

303

techniques, many of the advantages of LLMs can be realized without the added

complexities and risks associated with full fine-tuning. This thoughtful approach ensures

efficient use of resources while maximizing the impact and effectiveness of AI solutions.

�Ethics and Bias in AI and LLMs
The ethics of artificial intelligence (AI), particularly in the context of large language

models (LLMs), is a cornerstone of responsible development and deployment. As LLMs

become increasingly integrated into everyday applications, addressing their ethical

dimensions is essential to ensure alignment with human values, societal well-being,

and fundamental rights. This discussion explores the multifaceted nature of AI ethics,

highlights specific challenges associated with LLMs, and examines actionable solutions

to foster responsible AI development.

�Understanding AI Ethics and Its Relevance to LLMs
AI ethics encompasses a set of principles, values, and guidelines aimed at ensuring that

AI systems are designed and utilized responsibly. The ethical landscape for LLMs is

particularly complex due to their linguistic nature and widespread applicability. These

models influence communication, information dissemination, decision-making, and

even creative processes, making their ethical alignment a critical priority.

Ethical considerations for LLMs include transparency, fairness, accountability,

privacy, human agency, and societal impact. Unlike conventional AI systems, LLMs

directly interface with human language, amplifying their potential to shape opinions,

reinforce biases, and impact decision-making processes. The ethical challenges

they present demand proactive engagement from researchers, developers, ethicists,

policymakers, and society.

�Core Ethical Challenges in LLMs
�Bias in Language Models

Bias is one of the most pressing ethical concerns in LLMs. These models learn from vast

datasets, which often reflect societal prejudices and inequalities. Consequently, LLMs

can perpetuate or amplify biases in their outputs.

Chapter 5 Building and Fine-Tuning LLMs

304

•	 Types of Bias

Bias in LLMs manifests in various forms:

•	 Stereotypical Bias: Reinforcing societal stereotypes related to

race, gender, or ethnicity

•	 Gender Bias: Unequal representation or treatment of genders in

generated content

•	 Cultural Bias: Misrepresentation or oversimplification of

cultural nuances

•	 Political Bias: Favoring certain political ideologies, potentially

compromising neutrality

•	 Sources of Bias

The primary sources of bias include

•	 Training Data: The datasets used to train LLMs often contain

historical inequalities and unbalanced representation.

•	 Algorithmic Bias: The mathematical frameworks and

optimization techniques can inadvertently introduce or

amplify biases.

•	 Impact of Bias

	 Bias in LLMs can result in discriminatory outputs, spread

misinformation, and reinforce systemic inequalities. For instance,

biased hiring systems or legal decision-making tools can perpetuate

unfair practices, while misinformation in media amplifies distorted

narratives.

�Privacy and Data Usage

The datasets used to train LLMs often include text scraped from publicly available

sources, raising concerns about privacy and data ownership. Training data may

inadvertently contain sensitive personal information, leading to potential privacy

breaches.

Chapter 5 Building and Fine-Tuning LLMs

305

LLMs can also generate outputs that inadvertently reveal private or sensitive

information. This challenge underscores the need for robust anonymization techniques,

responsible data collection practices, and adherence to privacy laws such as GDPR

and HIPAA.

�Transparency and Accountability

LLMs operate as “black boxes,” making it difficult to trace how specific outputs are

generated. This lack of transparency poses challenges in understanding and auditing

decision-making processes, particularly in high-stakes applications like healthcare, law,

or finance. When errors or biased outputs occur, it becomes challenging to attribute

responsibility, complicating accountability.

�Misinformation and Manipulation

The ability of LLMs to generate realistic and humanlike text raises significant risks of

misuse. They can be exploited to create fake news, spam, phishing content, or deep

fakes, undermining trust in digital information ecosystems. Their role in amplifying

misinformation makes it imperative to develop safeguards against malicious use.

�Environmental Impact

The computational demands of training and running LLMs contribute to substantial

energy consumption and carbon emissions. The environmental footprint of large-scale

AI systems raises concerns about sustainability and aligns with broader societal goals to

combat climate change.

�Promoting Fairness and Equity in LLMs
Ensuring fairness and equity in LLMs involves addressing biases while fostering

inclusivity. Achieving these goals requires targeted strategies:

	 1.	 Diverse Training Data

Curating balanced and representative datasets reduces bias and

ensures equitable representation of all groups.

Chapter 5 Building and Fine-Tuning LLMs

306

	 2.	 Fairness Metrics

Defining measurable fairness criteria provides benchmarks to

assess and mitigate bias.

	 3.	 Bias Auditing and Mitigation

Regular audits of LLM outputs help identify biased patterns.

Techniques such as adversarial training and debiasing algorithms

can mitigate identified biases.

	 4.	 Human-Centered Design

Involving diverse stakeholders, including ethicists and domain

experts, ensures the inclusion of varied perspectives in AI design

and deployment.

�Addressing Broader Ethical Concerns
�Responsible AI Development

Responsible AI development demands a commitment to ethical principles:

•	 Beneficence: AI systems should prioritize societal well-being and

avoid harm.

•	 Transparency: Clear documentation of training data,

methodologies, and limitations is essential.

•	 Accountability: Developers must take responsibility for their

systems’ outputs and impacts.

•	 Privacy: Respecting individual privacy rights is nonnegotiable.

Embedding these principles into every stage of LLM development helps align their

capabilities with ethical standards.

Chapter 5 Building and Fine-Tuning LLMs

307

�Regulation and Policy for Ethical AI
Effective governance frameworks are essential to address the ethical challenges posed by

LLMs. Current efforts include

•	 Transparency Reporting: Mandating disclosure of data sources,

methodologies, and known limitations

•	 Ethics Review Boards: Establishing independent review bodies to

assess the societal implications of AI systems

•	 Regulatory Compliance: Enforcing adherence to data protection

laws and ethical guidelines

Policy recommendations should focus on fostering collaboration between

governments, industry leaders, and ethicists to establish standards for ethical AI

development.

�Future Directions
Advancing ethical practices in LLMs requires ongoing research and innovation. Key

areas of focus include

•	 Interpretable AI: Enhancing the transparency of LLM decision-

making processes

•	 Energy Efficiency: Developing greener algorithms and hardware to

reduce environmental impact

•	 Holistic AI Design: Encouraging interdisciplinary collaboration to

create culturally sensitive and ethical AI systems

Ethical considerations are integral to the responsible development and deployment

of LLMs. By addressing issues such as bias, privacy, transparency, and environmental

impact, the AI community can ensure that these technologies serve as tools for

societal progress rather than harm. Through collaboration, regulation, and continuous

innovation, LLMs can be aligned with human values, fostering trust, fairness, and

accountability in their applications.

Chapter 5 Building and Fine-Tuning LLMs

308

�LLM Fine-Tuning Example
This example demonstrates fine-tuning GPT-2 for sentiment classification using the

“mteb/tweet_sentiment_extraction” dataset. The process includes preparing the dataset,

tokenizing the text, modifying GPT-2 with a classification head, and training the model

to predict sentiment labels (positive, negative, neutral). By leveraging the pretrained

capabilities of GPT-2, fine-tuning ensures efficient training, requiring less labeled data

while achieving task-specific accuracy.

First, install the following libraries:

pip install datasets
pip install transformers
pip install evaluate

�Step 1: Loading Dataset
dataset = load_dataset("mteb/tweet_sentiment_extraction")

This dataset is specifically designed for sentiment classification and contains

•	 Text Data: The tweets themselves, stored in the “text” column

•	 Labels: Sentiment annotations (e.g., positive, negative, neutral),

stored in the “label” column

Fine-tuning requires a labeled dataset because the model learns to map inputs

(tweets) to outputs (sentiment labels). The dataset is already split into training and

testing subsets:

•	 Training Set: Used to adjust the model’s weights during learning

•	 Testing Set: Used to evaluate the model’s performance on

unseen data

�Step 2: Tokenization
Before the text can be fed into the model, it must be tokenized. Tokenization converts

raw text into numerical representations (tokens) that the model can process:

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token

Chapter 5 Building and Fine-Tuning LLMs

309

The GPT-2 tokenizer maps each word, subword, or character in the text to an

index in the model’s vocabulary. For example, “Hello world!” might become [15496,

995, 0]. GPT-2 doesn’t have a predefined padding token because it was designed for

text generation tasks. For classification tasks, where inputs are batched together, all

sequences must be the same length.

Padding ensures that shorter sequences are extended to match the longest sequence

in a batch. Since GPT-2 lacks a specific padding token, its End-of-Sequence (EOS) token

(<|endoftext|>) is used as a placeholder.

The tokenization function is defined as follows:

def tokenize_function(examples):
 �return tokenizer(examples["text"], padding="max_length",

truncation=True)

This function tokenizes the “text” column in the dataset while

•	 Padding: Ensuring all sequences in a batch have the same length by

adding the padding token where necessary

•	 Truncation: Cutting off longer sequences that exceed the model’s

maximum input size (1024 tokens for GPT-2)

The dataset is tokenized using

tokenized_datasets = dataset.map(tokenize_function, batched=True)

This prepares the data for fine-tuning, converting raw text into numerical inputs

compatible with GPT-2.

�Step 3: Training and Evaluation Sets
To speed up training and experimentation, the code creates smaller subsets of the

training and testing datasets:

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).
select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).
select(range(1000))

Chapter 5 Building and Fine-Tuning LLMs

310

Note  Only 1000 examples are selected from each split. This reduces
computational load during development while retaining enough data to
meaningfully fine-tune and evaluate the model.

�Step 4: Adapting the Model
GPT-2, by default, is a generative model. To make it suitable for classification, it is

adapted as follows:

model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=3)
model.config.pad_token_id = tokenizer.pad_token_id

•	 GPT2ForSequenceClassification: This class extends GPT-2 by

adding a classification head—a linear layer that maps the model’s

outputs to a fixed number of labels (in this case, three sentiment

classes: positive, negative, and neutral).

•	 Retaining Pretrained Weights: The pretrained weights in GPT-2’s

transformer layers are retained. These layers encode general

language understanding, such as syntax and semantics. Fine-tuning

updates these weights slightly to make the model focus on the

nuances of sentiment analysis.

•	 Padding Token ID: The model is configured to recognize the

padding token added during tokenization. This ensures the model

ignores padding tokens during training and evaluation.

�Step 5: Fine-Tuning the Model
The Trainer class simplifies the fine-tuning process by managing the training loop,

including batching, gradient updates, and evaluation. Training is configured as follows:

training_args = TrainingArguments(
 output_dir="test_trainer",
 evaluation_strategy="epoch",
 per_device_train_batch_size=4,

Chapter 5 Building and Fine-Tuning LLMs

311

 per_device_eval_batch_size=4,
 gradient_accumulation_steps=4,
 num_train_epochs=3,
 save_steps=1000,
 logging_dir="./logs",
 logging_steps=500,
)

•	 Batch Size: Determines how many examples are processed

simultaneously. A smaller batch size reduces memory usage.

•	 Gradient Accumulation: Combines gradients over multiple batches

before updating model weights. This effectively increases the batch

size without exceeding memory limits.

•	 Evaluation Strategy: The model is evaluated at the end of

each epoch.

•	 Number of Epochs: The training loop runs three times through the

entire training set.

The Trainer is initialized with the following:

trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=small_train_dataset,
 eval_dataset=small_eval_dataset,
 tokenizer=tokenizer,
 compute_metrics=compute_metrics,
)

The Trainer

•	 Processes the training data in batches

•	 Computes the loss for each batch by comparing the model’s

predictions to the true labels

Chapter 5 Building and Fine-Tuning LLMs

312

•	 Propagates the loss backward to compute gradients

•	 Updates the model’s weights using an optimizer, gradually improving

its ability to classify sentiment

�Step 6: Evaluation
Once training is complete, the model’s performance is evaluated on the test set:

results = trainer.evaluate()
print("Evaluation Results:", results)

During evaluation:

•	 The model processes unseen examples from the test set and predicts

sentiment labels.

•	 Predictions are compared to the true labels, and the accuracy metric

is computed to measure performance.

The compute_metrics function is defined to calculate accuracy:

def compute_metrics(eval_pred):
 logits, labels = eval_pred
 predictions = np.argmax(logits, axis=-1)
 return metric.compute(predictions=predictions, references=labels)

This function converts the model’s raw predictions (logits) into class probabilities

and calculates how many predictions match the true labels.

�What Happens Internally During Fine-Tuning

	 1.	 Forward Pass

•	 The input (tokenized tweets) passes through GPT-2’s transformer

layers. These layers process the input to produce contextualized

representations for each token.

Chapter 5 Building and Fine-Tuning LLMs

313

	 2.	 Classification Head

•	 The classification head processes the output of the transformer

layers, mapping the contextualized representations to the three

sentiment classes (positive, negative, neutral).

	 3.	 Loss Calculation

•	 The predicted sentiment logits are compared to the true labels

using a loss function (e.g., cross-entropy loss). This quantifies

how far off the predictions are.

	 4.	 Backward Pass

•	 Gradients are computed by propagating the loss backward

through the model. These gradients indicate how much to adjust

each weight to reduce the loss.

	 5.	 Weight Updates

•	 The optimizer updates the model’s weights, gradually improving

its ability to classify sentiment accurately.

By the end of fine-tuning:
The model becomes specialized for sentiment classification while retaining its

general language understanding capabilities. The pretrained layers are slightly adjusted

to focus on sentiment-related patterns in text. The classification head learns to map

GPT-2’s outputs to the sentiment labels effectively.

The whole code:

Importing required libraries
from datasets import load_dataset
import pandas as pd
import numpy as np
from transformers import GPT2Tokenizer, GPT2ForSequenceClassification,
TrainingArguments, Trainer
import evaluate

Loading the dataset
dataset = load_dataset("mteb/tweet_sentiment_extraction")

Chapter 5 Building and Fine-Tuning LLMs

314

Loading the tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

Setting the padding token
tokenizer.pad_token = tokenizer.eos_token

Tokenization function
def tokenize_function(examples):
 �return tokenizer(examples["text"], padding="max_length",

truncation=True)

Tokenizing the dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)

Splitting the dataset into a smaller train and evaluation set
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).
select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).
select(range(1000))

Loading the model
model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=3)

Ensuring the model uses the same padding token
model.config.pad_token_id = tokenizer.pad_token_id

Defining the evaluation metric
metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
 logits, labels = eval_pred
 predictions = np.argmax(logits, axis=-1)
 return metric.compute(predictions=predictions, references=labels)

Defining training arguments
training_args = TrainingArguments(
 output_dir="test_trainer",
 evaluation_strategy="epoch",
 �per_device_train_batch_size=4, # Adjust batch size for your

GPU/CPU memory

Chapter 5 Building and Fine-Tuning LLMs

315

 per_device_eval_batch_size=4,
 gradient_accumulation_steps=4, # For gradient accumulation
 num_train_epochs=3,
 save_steps=1000,
 logging_dir="./logs",
 logging_steps=500,
)

Initializing the Trainer
trainer = Trainer(
 model=model,
 args=training_args,
 train_dataset=small_train_dataset,
 eval_dataset=small_eval_dataset,
 tokenizer=tokenizer, # Ensure tokenizer is passed to Trainer
 compute_metrics=compute_metrics,
)

Training the model
trainer.train()

Evaluating the model
results = trainer.evaluate()
print("Evaluation Results:", results)

Output:

Evaluation Results: {'eval_loss': 0.8756747841835022, 'eval_accuracy':
0.724, 'eval_runtime': 104.1054, 'eval_samples_per_second': 14.408, 'eval_
steps_per_second': 3.602, 'epoch': 4.949333333333334}

�Conclusion
Fine-tuning large language models represents a pivotal step in adapting general-purpose

AI systems to meet the nuanced demands of real-world applications. This chapter

has provided a comprehensive overview of the architectural foundations of LLMs, the

strategies for customizing them through fine-tuning, and the evaluation frameworks

Chapter 5 Building and Fine-Tuning LLMs

316

necessary to ensure their effectiveness and reliability. From selecting the appropriate

model architecture to implementing advanced techniques like LoRA, prompt tuning,

and federated learning, practitioners are equipped with a diverse toolkit to enhance LLM

performance across domains.

As the AI landscape continues to evolve, fine-tuning is not only a means of

optimization—it is a practice that must be approached with rigor, responsibility, and

adaptability. Ethical considerations, data quality, regulatory compliance, and resource

constraints all play a critical role in determining whether fine-tuning is appropriate

and how it should be executed. Evaluation metrics and benchmarks, including both

automated and human-in-the-loop methods, further ensure that fine-tuned models

align with intended goals while minimizing risk.

Ultimately, the ability to tailor LLMs for specific tasks, industries, or user needs is

what transforms these models from powerful generalists into specialized, high-impact

tools. Whether improving sentiment analysis, powering intelligent chatbots, or enabling

domain-specific summarization, fine-tuning unlocks the full potential of large language

models. The knowledge and strategies explored in this chapter lay the foundation for

responsible and effective deployment of LLMs in today’s data-driven world.

Chapter 5 Building and Fine-Tuning LLMs

317
© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4

Index

A
Agents

AutoGPT/BabyAGI, 115–118
categories, 111, 112
content generation/reasoning, 112–115
decision-making process, 110, 111
intelligent systems, 110
tools, 112
workflow, 111

AI, see Artificial intelligence (AI)
API, see Application processing

interface (API)
Amazon web services (AWS), 243–245
Application processing interface

(API), 106–110
Google Search, 164
hosted models, 246

Artificial intelligence (AI)
agents, 110
analyzing codebase, 200

API keys, 201
installation commands, 200, 201
load_code_files function, 201
loading, processing, and

embedding, 202, 203
retriever/retrieval chain, 205–208

CSV data analysis app
dependencies, 189
LangChain agent, 192–194
libraries, 188
loading process, 189–192
OpenAI API keys, 189

email generator, 184–188
dependencies, 185
features, 184
OpenAI, 185, 186
source code, 186, 187

ethics/bias, 303–307
environmental footprint, 305
fairness and equity, 305
language models, 303
misinformation/manipulation, 305
ongoing research/innovation, 307
principles/values/guidelines, 303
privacy/data ownership, 304
regulation/policy, 307
responsible development, 306
transparency/accountability, 305

financial data analysis, 156–162
GitHub repository, 148
Google Search, 162–176
Knowledge Base Voice

Assistant, 194–199
LLMs (see Large language

models (LLMs))
PDF files Chatbot, 215

API keys, 216
libraries, 215, 216
main function, 219, 220
memory, 218, 219
text extraction tools, 215
vector store database, 216–218

recommender system
conversational agent, 211, 212

https://doi.org/10.1007/979-8-8688-1475-4#DOI

318

document format, 209–211
FAISS vector store, 209
installation commands, 207
OpenAI API key, 208
question-answering (QA)

system, 211
retrieval function, 210–212
sample data, 208
system testing, 213
working process, 206

YouTube (see YouTube Video
Summarizer)

ASR, see Automatic speech
recognition (ASR)

AutoGPT/BabyAGI agents
autonomous agents, 115
communities, 116
features, 116
operational model, 117

Automatic speech
recognition (ASR), 144

B
BabyAGI agents, 117

implementation, 118
operations, 117
workflows, 118
See also AutoGPT/BabyAGI agents

BERT, see Bidirectional Encoder
Representations from
Transformers (BERT)

Bidirectional Encoder
Representations from
Transformers (BERT), 95

C
Chain-of-thought prompting (CoT), 18, 19
Chains

agent chain, 45–48
characteristics, 22
code complication, 48, 49
components, 22–24
conditional logic, 42
control flow, 22, 40–42
conversational agents, 28–32
customization, 54–57
external systems, 22
handling intermediate outputs, 22
input prompts, 34
memory management, 23
modular design, 22
multiple inputs, 32–34
multistep processing, 22
output options, 34–37
parallel chain, 50–52
predefined conditions/

classifications, 37
retrieval mechanism, 42–45
RetrievalTool, 48
reusability, 23
router chain, 37–40
run() method, 48
RunnableParallel, 53
scalability, 23
sequential chain, 26–28
sequential execution, 56
simple chain, 24–26
source code, 52, 53
types, 24

Comma Separated Values (CSV),
188–194

Artificial intelligence (AI) (cont.)

INDEX

319

CoT, see Chain-of-thought
prompting (CoT)

CSV, see Comma Separated
Values (CSV)

D
Deployments, LLMs

APIs/hosted models, 246
architectural consideration, 231, 232
attention layer optimization

approximate algorithms, 260
efficient attention kernels, 260
foundational component, 259
hierarchical attention, 260
hybrid approaches, 260
low-rank approximations, 259
quadratic complexity, 259
sparse attention mechanisms, 259

auto-scaling, 231
AWS SageMaker, 243–245
batching groups, 261
batch-level scheduling, 262
bias mitigation, 235
calling model, 238
cloud platforms, 242
communication/synchronization, 263
compliance/ethics, 235
compression techniques

challenges, 255
distillation, 257
knowledge distillation, 257
low-rank factorization, 257
pruning, 256
quantization, 256
sparsity-inducing techniques, 257
techniques, 258
trade-offs, 258

continuous batching, 262
cost management, 233
edge/mobile deployment, 246
frameworks and libraries, 235, 236
handling large models, 247
high availability/fault tolerance, 234
hosting/serving models, 235
hugging face, 237, 238
inference challenges, 248

batching algorithms, 249
cost efficiency, 250
distributed system, 249
ethical and security challenges, 251
financial cost, 250
latency issues, 248
load balancing, 249
memory requirements, 248
model parallelism, 249
multitenant systems, 249
pipeline parallelism, 250
reliability/robustness, 250
robust monitoring and failover, 250
scalability, 249

infrastructure, 232
iteration-level scheduling, 262
load testing, 233
memory and storage optimization, 232
memory optimization

attention mechanism, 253
components, 251
compression, 254
dynamic batching algorithms, 254
efficient architectures, 253
emerging trends, 255
gradient checkpointing

addresses, 252
model parallelism, 253
numerical precision, 252

INDEX

320

offloading model, 252
requirements, 251
trade-offs, 254
unified memory architectures, 254

monitoring model performance, 234
monitoring/observability tools, 247
network capacity planning, 232
ONNX models, 238, 239
open source solutions, 228
optimization tools, 238–240
orchestration and scaling tools, 245
performance, 233
queue systems, 232
request-level scheduling, 261
resource allocation, 234
response streaming, 233
scheduling optimization,

261–263
ZeRO optimization, 239

Document loaders
CSV and Excel files, 92
definition, 91
Google Drive, 92
notion pages, 92
PDF files, 92
platforms/formats, 93
specialization, 92–94
word document, 92

E
Embedding models

core methods, 95
definition, 94
foundational technique, 96
integrations, 98–100
metrics, 95

SBERT/BERT, 95
substantial development, 95

F
Financial data analysis app

AI-powered retrieval/QA system, 162
extracted text, 160
FAISS database, 161
features, 156
generating text embedding, 160
libraries, 157
process financial reports, 158–160
question, 162
semantic search, 161

Fine-tuning process
AI ethics/bias, 303–307
augmentation techniques, 281
bias, 287, 288
chatbot performance, 294
classification tasks, 282
comprehensive evaluation, 285
computational costs, 300
customization, 271
customization options, 302
data compliance, 272
data drift

deployment, 293
iteration, 293
step-by-step approach, 290

data preparation, 280
data requirements, 272, 273
definition, 271
detecting bias/fairness/

groundedness, 285
dialogue/chatbot evaluation, 283
dialogue systems, 285
embedding models

Deployments, LLMs (cont.)

INDEX

321

approaches, 274
full model, 277
interaction, 274
techniques, 276
workflow, 275, 276

ethical liabilities, 301
evaluation metrics/benchmarks, 282
fairness, 288, 289
feature extraction, 274
federated model, 298, 299
few-shot learning, 278
foundational principles/practical

techniques, 265
groundedness, 285, 286
high-stakes applications, 302
hyperparameters, 278
implementation, 289, 290
insufficient/low-quality data, 300
labeled data, 272
language understanding, 284
low-rank adaptation, 295–297
machine translation, 284
methods, 277
model evaluation, 284
model versatility, 301
multitask learning, 278
parameters, 281
possibilities/solutions, 277
pretrained models, 281, 299
primary approaches, 273
prompt tuning, 297, 298
question answering, 284
RAGAS/TruLens, 285–289
reasoning/question answering, 283
regulatory/privacy, 301
resource constraints, 300
retrieval-based tasks, 285
RLHF model, 279, 280

sentiment analysis, 294
sentiment classification

evaluation, 312
generative model, 310
internal classification, 312–315
libraries, 308
loading dataset, 308
padding, 309
tokenization, 308
trainer class, 310–312
training/experimentation, 309

summarization, 284, 294
supervised method, 277–279
task scope, 302
text generation tasks, 283
transfer learning, 278
validation, 282

Floating-point operations (FLOPs), 248
FLOPs, see Floating-point

operations (FLOPs)

G, H
GitHub repository

actual chatting function, 154, 155
API keys, 149
fetch files, 152
get repository content, 150, 151
libraries installation, 149
natural language, 148
repo, 149
searchable database, 153
step-by-step explanation, 152–156
working process, 149

Google Search
API keys, 164
consecutive chunks, 172
embedding creation, 172–174

INDEX

322

generate search results, 165–167
get search engine, 167–171
key/search engine, 164
language model, 162
libraries, 163
parse() method, 171
prompt definition, 174–176
query generation process, 174
variables (title/text format), 163, 164

I, J
Indexing process

considerations, 109
content maintenance, 108
creation, 98
definition, 98
deletion modes, 107, 108
document management, 108, 109
documents, 106
hybrid, 99
primary advantages, 107
RecordManager, 107
retrievers (see Retrievers)
technical structure, 107
vectors, 99

Instruct models
base models, 134
benefits, 135
foundational system, 137–139
ReAct (Reasoning and Acting)

paradigm, 135

K
Knowledge Base Voice Assistant

dependencies, 194, 195

OpenAI API key, 195
output process, 199, 200
Q/A system, 197–199
speak(text) function, 196
voice interaction, 196, 197

L
LangChain

agents (see Agents)
AI (see Artificial intelligence (AI))
analyzing codebase, 200–206
chains (see Chains)
components, 2, 3
fundamental concepts, 3

chains, 3
data loaders, 4
integrations/extensibility, 5
LLM outputs/post processing, 5
memory, 4
prompts, 4
RAG method, 4
tools/agents, 4

installation
ecosystem, 5
packages, 6, 7
source, 7

key benefits, 1, 2
memory (see Memory management)
NLP applications, 2
prompt engineering, 7–21
versatile framework, 139
YouTube Video Summarizer, 141–148

LangChain Expression
Language (LCEL), 6

Large language models (LLMs), 1, 3,
59, 223

chains, 22–57

Google Search (cont.)

INDEX

323

characteristics, 130
chat models

AI21 Labs, 119
Anthropic conversational

models, 119
Anyscale’s integration, 119
AWS Bedrock, 120
Baidu Qianfan, 120
characteristics, 130–134
ChatHuggingFace, 122
ChatOCIModelDeployment

models, 124
Cohere, 120
Databricks Lakehouse

Platform, 120
DeepInfra’s serverless, 120
Eden AI, 120
EverlyAI, 120
Fireworks, 121
GigaChat, 121
Google AI, 121
GPTRouter serves, 121
Groq’s models, 121
IBM watsonx.ai, 122
iFlyTek’s SparkLLM, 125
JinaChat models, 122
Kinetica AI tools, 122
LiteLLM router, 122
Llama 2 Chat, 122
LlamaAPI, 123
Llama.cpp, 123
LlamaEdge, 123
maritalk, 123
MiniMax, 123
MistralAI, 123
ML endpoint, 119
MLX chat models, 123
Moonshot, 123

Naver, 124
Nebula (Symbl.ai), 126
NVIDIA AI Endpoints, 124
OctoAI, 124
Ollama/OpenAI, 124
OpenAI integration, 119
Oracle GenAI models, 124
Perplexity AI models, 125
PremAI, 125
PromptLayer, 125
SambaNovaCloud models, 125
SambaStudio, 125
Snowflake Cortex, 125
Solar-powered AI solutions, 125
Tongyi Qwen, 126
Upstage models, 126
Vertex AI, 121
vLLM chat, 126
Volc Enging Maas, 126
YandexGPT models, 126

deployment (see Deployments, LLMs)
derivatives/adaptations, 130
fine-tuning (see Fine-tuning process)
foundational concepts, 139
instruct models, 134–137
integration (see Web and mobile

applications)
integrations, 5
language tasks, 130
natural interactions, 126–129
post-process, 5
prompt engineering, 7–21
transformer architecture

architecture, 266, 267
autoregressive models, 269
blocks, 269
categories, 270, 271
embedding layer, 268

INDEX

324

layer normalization/residual
connections, 268

self-attention mechanism, 268
softmax layer, 269
sophisticated architecture, 269
tokenization, 267, 268

LCEL, see LangChain Expression
Language (LCEL)

LLMs, see Large language models (LLMs)
LoRA, see Low-Rank Adaptation (LoRA)
Low-Rank Adaptation (LoRA), 295–297

M
Machine learning (ML), 1
Masked Language Modeling (MLM), 276
Massive Text Embedding

Benchmark (MTEB), 95
MCP, see Model Context Protocol (MCP)
Memory management

addresses, 61
capabilities, 61
components, 59
ConversationBufferMemory, 64–66
ConversationBuffer

WindowMemory, 66–72
ConversationSummaryMemory, 72–74
core considerations, 63
document loaders, 91–94
embedding model, 94–98
EntityMemory, 82–84
equip language models, 64
implementation, 89–91
indexes, 98, 99
KnowledgeGraphMemory, 80–82
language model-driven

applications, 63

modules, 61, 62
reading/writing operations, 62
selection type, 89
summarization, 74–77
token buffer memory, 77–80
tools/capabilities, 60
transforms, 62
VectorStoreMemory, 84–89

ML, see Machine learning (ML)

MLM, see Masked Language

Modeling (MLM)

Model Context Protocol (MCP), 225
MTEB, see Massive Text Embedding

Benchmark (MTEB)

N
Natural language processing (NLP),

1, 59, 142
applications, 2

NLP, see Natural language
processing (NLP)

O
ONNX, see Open Neural Network

Exchange (ONNX)
Open Neural Network Exchange (ONNX),

238, 239

P, Q
Parameter-Efficient

Fine-Tuning (PEFT), 280
PEFT, see Parameter-Efficient

Fine-Tuning (PEFT)

Prompt engineering
definition, 8

Large language models (LLMs) (cont.)

INDEX

325

few-shot
benefits, 12–14
chain prompting, 14–19
definition, 11
human/AI messages, 14
input/output pairs, 11
chain prompting, 15

role prompting, 8–11
strategies, 21–23
thematic coherence, 11

Python
LangChain, 2 (see also LangChain)

R, S
RAG, see Retrieval-augmented

generation (RAG)
Reinforcement learning from human

feedback (RLHF), 266, 277
approach, 279
comparative ranking, 279
PEFT performance, 280
preference learning, 280
proximal policy optimization (PPO), 279
reward modeling, 279
supervised method, 280

Retrieval-augmented generation (RAG),
4, 90, 103, 285

hosted models, 226
recommender system, 206–215

Retrievers
components, 99–102
conversational agents, 104
end-to-end workflow, 102
queries/datasets, 99
question-answering (QA), 103
real time application, 103–106
sparsity, 100

T, U, V
Term frequency-inverse document

frequency (TF-IDF), 99

Text Generation Inference (TGI), 229

TF-IDF, see Term frequency-inverse

document frequency (TF-IDF)

TGI, see Text Generation Inference (TGI)

W, X
Web and mobile applications

core strategies/tools/challenges, 224
customization, 230
factors, 230, 231
hosted models

advantages, 225–227
capabilities, 225
challenges, 226

ongoing operational costs, 230
prepackaged models

advantages, 228
challenges, 228
components, 227
deployment, 228, 229
open source models, 228
platforms, 227

scalability, 230
sensitive/proprietary data, 230
technical expertise, 230

Y, Z
YouTube Video Summarizer

commands, 142
explanation, 143
OpenAI API key, 142
pre-processed content, 145, 146
prompt template, 147

INDEX

326

scriptwriting tool, 176
audio extraction, 178
authentication, 177
dependencies, 176
outline generation, 179
running tool, 180–184

script expand, 179
transcribe audio, 178

summarization pipeline, 148
text file/smaller chunks,

144–146
Whisper model/process, 144
written content, 144

YouTube Video Summarizer (cont.)

Index

	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: LangChain and Python: Basics
	LangChain Basics and Basic Components
	Chains
	Prompts
	Memory
	Tools and Agents
	Retrieval-Augmented Generation (RAG)
	Data Loaders
	Integrations and Extensibility
	LLM Outputs and Postprocessing

	LangChain Installation
	Packages Overview
	Installing from Source

	How to Prompt?
	Prompt Engineering
	Role Prompting
	Few-Shot Prompting
	Key Benefits
	Alternating Human/AI Messages
	Chain Prompting
	Key Characteristics
	Steps for Chain Prompting
	Using Chain Prompting in LangChain
	Additional Benefits
	Chain-of-Thought Prompting
	Advanced Tips for Effective Prompt Engineering

	What Are Chains?
	Chain Components
	Chain Types
	1. Simple Chain
	2. Sequential Chain
	3. Conversational Chain
	4. Multi-input Chain
	Why Multi-input?

	5. Multi-output Chain
	Why It’s a Multi-output Chain

	6. Router Chain
	Why Router Chain?

	7. Control Flow Chain
	Key Features of the Control Flow Chain

	8. Retrieval-Aware Chain
	9. Agent Chain
	Breakdown of Key Steps of This More Complicated Code

	10. Parallel Chain
	What Does the Code Do?
	Key Features of RunnableParallel

	11. Custom Chain
	Key Features of a Custom Chain
	What Does This Code Do?

	Conclusion

	Chapter 2: LangChain and Python: Advanced Components
	LangChain Memory
	Understanding LangChain’s Memory Module
	Key Capabilities of the Memory Module
	Why Memory Matters
	When to Use the Memory Module
	Core Processes in the Memory System: Reading and Writing
	Structuring a Memory System
	LangChain Memory Types
	ConversationBufferMemory
	ConversationBufferWindowMemory
	ConversationSummaryMemory
	Conversation Summary Buffer Memory
	Conversation Token Buffer Memory
	KnowledgeGraphMemory
	EntityMemory
	VectorStoreMemory

	Selecting the Appropriate Memory Type
	Implementing Memory in LangChain

	LangChain Document Loaders
	Common Document Loaders
	Specialized Document Loaders

	LangChain Embedding Models
	LangChain Indexes and Retrievers
	Indexes in LangChain: Structure and Types
	Types of Indexes
	Retrievers in LangChain: Querying and Optimization
	End-to-End Workflow: From Indexing to Retrieval
	Real-World Applications of LangChain Indexes and Retrievers

	Using LangChain Indexing API
	Technical Structure of the Indexing API
	Deletion Modes and Content Maintenance
	Requirements and Compatibility
	Important Considerations

	Agents in LangChain
	Defining Agents
	Types of Agents in LangChain
	Tools As Extensions of Language Models
	Content Generation vs. Reasoning Engines
	Exploring Autonomous Agents: AutoGPT and BabyAGI
	What Is AutoGPT?
	How Does AutoGPT Work?
	What Is BabyAGI?
	Key Features of BabyAGI
	A Practical Implementation of BabyAGI

	LLM Models in LangChain
	Chat Models
	AI21 Labs
	Alibaba Cloud PAI EAS
	Anthropic
	Anyscale
	Azure OpenAI
	Azure ML Endpoint
	Baidu Qianfan
	AWS Bedrock
	Cohere
	Databricks
	DeepInfra
	Eden AI
	EverlyAI
	Fireworks
	GigaChat
	Google AI
	Google Cloud Vertex AI
	GPTRouter
	Groq
	ChatHuggingFace
	IBM watsonx.ai
	JinaChat
	Kinetica
	LiteLLM
	LiteLLM Router
	Llama 2 Chat
	Llama API
	LlamaEdge
	Llama.cpp
	maritalk
	MiniMax
	MistralAI
	MLX
	Moonshot
	Naver
	NVIDIA AI Endpoints
	ChatOCIModelDeployment
	OCIGenAI
	ChatOctoAI
	Ollama
	OpenAI
	Perplexity
	PremAI
	PromptLayer ChatOpenAI
	SambaNovaCloud
	SambaStudio
	Snowflake Cortex
	solar
	SparkLLM Chat
	Nebula (Symbl.ai)
	Tongyi Qwen
	Upstage
	vLLM Chat
	Volc Enging Maas
	YandexGPT

	Supported LLMs

	LLMs vs. Chat Models
	Large Language Models (LLMs)
	Key Characteristics of LLMs

	Chat Models
	Key Characteristics of Chat Models

	Instruct Models
	Key Benefits of Instruct Models
	A Comprehensive List of Popular Instruct Models

	Summary

	Chapter 3: Building Advanced Applications Powered by LLMs with LangChain and Python
	App 1: YouTube Video Summarizer
	How to Build the App
	Step 1: Get Your OpenAI API Key
	Step 2: Run the Following Commands
	Step 3: Execute the Following Command
	Step 4: Import the Whisper Model and Process the Video
	Step 5: Read the Written Content in a File
	Step 6: Use LangChain to Split a Text File into Smaller Chunks
	Step 7: Summarize the Preprocessed Content
	Step 8: Define a Prompt Template Using LangChain's PromptTemplate
	Step 9: Summarization Pipeline

	App 2: Chat with a GitHub Repository
	How It Works
	Step 1: Select a GitHub Repository and Download It As Zip
	Step 2: Install All Libraries Required
	Step 3: Import the Libraries and Obtain the Needed API Keys
	Step 4: Get Repository Content
	Step 5: Fetch All Files
	Step-by-Step Explanation
	Step 6: Creating a Searchable Database
	Step-by-Step Explanation
	Step 7: Creating the Actual Chatting Feature Function
	Step-by-Step Explanation

	App 3: Financial Report Analysis App
	Key Features
	Step 1: Install All Required Libraries
	Step 2: Set Up OpenAI API Key and Add It to the Code
	Step 3: Import All Required Libraries
	Step 4: Process Financial Reports
	Step 5: Preparing and Indexing Text Data for Efficient Retrieval Using AI-Powered Search and Question Answering (QA)
	1. Splitting the Extracted Text into Smaller Chunks
	2. Generating Text Embeddings
	3. Storing and Indexing the Text Chunks in a FAISS Database
	4. Setting Up the AI-Powered Retrieval and QA System
	Step 6: Ask a Question

	App 4: Automate and Enhance Your Blog Posts with LangChain and Google Search
	Step 1: Install All Required Libraries
	Step 2: Define Three Variables—Title, Text All, and Text to Change
	Step 3: Define Your API Keys
	How to Get Your API Keys and ID

	Step 4: Generate Search Results
	Step 5: Get Search Results
	Step 6: Find the Most Relevant Results
	Step 7: Split into Chunks
	Step 7: Create Embeddings
	Step 8: Extend the Sentence

	App 6: YouTube Scriptwriting Tool
	Step 1: Install All Required Libraries and Import Them
	Step 2: Authenticate in Google Drive As We Use Google Colab and Insert Your OpenAI API Key
	Step 3: Download Your Desired YouTube Video, Extract the Audio, and Convert It to MP3
	Step 4: Transcribe Audio
	Step 5: Generate Outline
	Step 6: Expand the Script
	Step 7: Combine All and Run the Tool

	App 7: Email Generator
	Key Features
	Step 1: Install All Required Libraries and Import Them
	Step 2: Generate Response with OpenAI
	Step 3: Combine All Together and Generate Email

	App 8: CSV Data Analysis App
	Step 1: Install All Required Libraries and Import Them
	Step 2: Generate and Add Your OpenAI API Key
	Step 3: Load Your CSV File
	Step 4: Create a LangChain Agent

	App 9: Knowledge Base Voice Assistant
	Step 1: Install the Required Libraries and Import Them
	Step 2: Generate and Add Your OpenAI API Key
	Step 3: Develop Voice Interaction
	Step 4: Load Knowledge Base from the Web and Create the QA Chain
	Step 5: Combine Them All Together

	App 10: Analyzing Codebase with LangChain
	Step 1: Install All Required Libraries
	Step 2: Generate and Add Your OpenAI API Key
	Step 3: Upload and Load the Files
	Step 4: Create and Store Code Embeddings
	Step 5: Create Retriever and Retrieval Chain

	App 11: Recommender System with LangChain
	How It Works
	Step 1: Install and Import the Required Libraries
	Step 2: Generate and Add Your OpenAI API Key and Then Import All Libraries Required
	Step 3: Load Up Some Sample Data
	Step 4: Convert Data into LangChain Document Format and Generate Embeddings
	Step 5: Define an Advanced Retrieval Function
	Step 6: Integrate a QA System Using LangChain
	Step 7: Set Up an AI Conversational Agent
	Step 8: Test the System

	App 12: PDF Files Chatbot
	Step 1: Install All Required Libraries
	Step 2: Generate and Add Your OpenAI API Key
	Step 3: Upload Your PDF Files, Access Them, and Create a Vector Store Database
	Step 4: Create a Chatbot with Memory
	Step 5: Ask the Chatbot and Receive an Answer

	Summary

	Chapter 4: Deploying LLM-Powered Applications
	Integrating LLMs into Web and Mobile Applications
	Hosted Models
	How Hosted Models Work

	Prepackaged Models
	Deploying Open Source Models
	Steps to Deploy Open Source Models

	Factors to Consider When Choosing a Method

	LLM Cloud Deployment and Scalability Considerations
	Deployment Architecture
	Infrastructure
	Performance
	Cost Management
	Monitoring
	High Availability and Fault Tolerance
	Compliance and Ethics

	Tools for Deploying LLMs
	Model Hosting Frameworks
	Example: Saving a Model Locally, Uploading It to Hugging Face, and Calling It
	Optimization Tools
	ONNX Example
	Cloud Services
	AWS SageMaker Example
	Orchestration and Scaling
	Edge and Mobile Deployment
	APIs for Hosted Models
	Distributed Inference and Fine-Tuning
	Monitoring and Observability
	LLM Inference Challenges: A Comprehensive Exploration
	Latency in Inference
	Computational Demands and Resource Constraints
	Scalability and Multitenancy
	The Trade-Off Between Batching and Responsiveness
	Model Parallelism and Distributed Systems
	Cost Efficiency
	Reliability and Robustness
	Ethical and Security Considerations

	LLM Memory Optimization
	The Memory Challenges of LLMs
	Key Memory Optimization Techniques
	Trade-Offs in Memory Optimization
	Future Directions

	LLM Compression
	Quantization
	Pruning
	Knowledge Distillation
	Low-Rank Factorization
	Sparsity-Inducing Techniques
	Compression Challenges and Trade-Offs
	Future Directions in LLM Compression

	Attention Layer Optimization
	Scheduling Optimization in LLM Deployment

	Summary

	Chapter 5: Building and Fine-Tuning LLMs
	Architecture of Large Language Models (LLMs)
	At the Foundation of Any LLM Lies the Process of Tokenization
	Self-Attention Mechanism
	Layer Normalization and Residual Connections
	Transformer Blocks
	At the Output Layer, LLMs Operate Differently Depending on Their Design
	Variations in LLM Architectures

	Fine-Tuning Strategies and Considerations
	What Is LLM Fine-Tuning?
	Data Requirements for Fine-Tuning

	LLM Fine-Tuning Techniques
	Primary Approaches to Fine-Tuning
	a. Feature Extraction (Repurposing)
	b. Fine-Tuning Embedding Models

	Why Fine-Tune Embedding Models?
	How to Fine-Tune Embedding Models
	Popular Techniques for Fine-Tuning Embeddings
	c. Full Model Fine-Tuning

	Striking the Balance
	Prominent Fine-Tuning Methods
	a. Supervised Fine-Tuning
	Key Techniques in Supervised Fine-Tuning

	b. Reinforcement Learning from Human Feedback (RLHF)
	Key Techniques in RLHF

	Fine-Tuning Process and Best Practices
	a. Data Preparation
	b. Choosing the Right Pretrained Model
	c. Identifying the Right Parameters for Fine-Tuning
	d. Validation
	Evaluation Metrics and Benchmarks for Fine-Tuning LLMs
	Classification Tasks (e.g., Sentiment Analysis, Intent Detection)
	Text Generation Tasks (e.g., Summarization, Translation, Dialogue)
	Reasoning and Question Answering
	Dialogue and Chatbot Evaluation
	General Model Evaluation
	Common Benchmarks
	Language Understanding
	Summarization
	Machine Translation
	Question Answering
	Dialogue
	Retrieval and Retrieval-Augmented Generation (RAG)
	Best Practices

	e. Detect Bias, Fairness, and Groundedness of LLMs
	Groundedness
	Bias
	Fairness
	Practical Steps to Implement

	Detecting Data Drift When Fine-Tuning
	f. Model Iteration
	g. Model Deployment

	Fine-Tuning Applications
	a. Sentiment Analysis
	b. Chatbots
	c. Summarization

	Advanced Fine-Tuning Techniques for LLMs
	Low-Rank Adaptation (LoRA)
	Prompt Tuning
	Federated Fine-Tuning

	When to Not Use LLM Fine-Tuning
	Pretrained Models Are Already Sufficient
	Insufficient or Low-Quality Data
	High Computational Costs and Resource Constraints
	Regulatory, Privacy, and Ethical Constraints
	Maintaining Model Versatility
	Task Scope Is Uncertain or Evolving
	High-Risk Scenarios Requiring Predictability and Stability

	Ethics and Bias in AI and LLMs
	Understanding AI Ethics and Its Relevance to LLMs
	Core Ethical Challenges in LLMs
	Bias in Language Models
	Privacy and Data Usage
	Transparency and Accountability
	Misinformation and Manipulation
	Environmental Impact

	Promoting Fairness and Equity in LLMs
	Addressing Broader Ethical Concerns
	Responsible AI Development

	Regulation and Policy for Ethical AI
	Future Directions

	LLM Fine-Tuning Example
	Step 1: Loading Dataset
	Step 2: Tokenization
	Step 3: Training and Evaluation Sets
	Step 4: Adapting the Model
	Step 5: Fine-Tuning the Model
	Step 6: Evaluation
	What Happens Internally During Fine-Tuning

	Conclusion

	Index

