Intermediate
Python and Large
Language Models

Dilyan Grigorov

APICSS®

Intermediate Python and
Large Language Models

Dilyan Grigorov

Apress-

Intermediate Python and Large Language Models

Dilyan Grigorov
Varna, Varna, Bulgaria

ISBN-13 (pbk): 979-8-8688-1474-7 ISBN-13 (electronic): 979-8-8688-1475-4
https://doi.org/10.1007/979-8-8688-1475-4

Copyright © 2025 by Dilyan Grigorov

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson

Coordinating Editor: Gryffin Winkler

Cover image by Trevor M@Pixabay.com

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a Delaware LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit https://www.
apress.com/gp/services/source-code.

If disposing of this product, please recycle the paper

https://doi.org/10.1007/979-8-8688-1475-4

To my son, my family, and the entire Python Software
Foundation and Al community around the world.

Table of Contents

About the AUROFccccmiiimsmnsmsnsss s s s nnnnannnnnns XV
About the Technical REVIEWETcccccussssmmmsssnnsssssnsssssnsmsssnsssssnsssssnsssssnsssssnssnssnnsnss Xvii
Acknowledgments........ccccuiiisssnmmmmmmmmmmsssssssssssssmmmsssssssssssssnsseesssssssssssnnnnssssssssssnnnnnns XiX
L1 T LT (1 Xxi
Chapter 1: LangChain and Python: BasiCS.....c.uucceumumsssennsssssssnssmsssssssssssssssssssssssnnssssss 1
LangChain Basics and Basic COMPONENTSccvcveerererrerrerseresessessesesssssssessesssssssessessessssessessees 3
3 T 3

o0 (0] 11 0] S 4

11 T340 S 4
00 SR U o 70T | S 4
Retrieval-Augmented Generation (RAG)ccevevrerererrerserersessrsessessessssessessesssssssessessessssensessens 4

DY 0 (L] O 4
Integrations and EXteNSiDilityccoevceririeninirsr e 5

LLM Outputs and POSIPrOCESSINGccevererrererrerrererssserserersessssessessesssssssessessessssessessesssssssessesaes 5
LangChain INSTallation...........coevrcrincc s 5
PACKAJES OVEIVIBWccueiueiriieiresies s s s s s s s s st s s e s saenr s nne s 6
INSTAlliNgG frOM SOUICEcveviirere et e e 7

HOW 10 PrOMIPE? ..ottt s e e e s e e 7
Prompt ENQINEEIING......cccceiiiiiirirer st sn s e s e s s st 8

ROIE Prompling ..ot e e e 8
Few-Shot Prompling......ccccoivninisn s 11

KBY BENETILSceueiiiiecrine et e e e e e e 12
Alternating HUMaN/Al MESSAQGESccvvererrerirrmrseriesesessesse e ssssesse e ssssesses e sssssssessesssssssessesses 14
Chain Prompling ..o s ss s st stssesaesae s s s snens 14

Key CharaCteriStiCs. ..o s s e e e s 14

https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec20

TABLE OF CONTENTS

Steps for Chain PrOMPLING ...ccoccvevereriererssersese s sessesessessesessessessessssessessesssssssessessesssssnsessens 15
Using Chain Prompting in LANGCRAINcecviviererenreriere s sessense s sesessesssssssessessessssensessens 15
Additional BENETILScccveeriiirircercse s 16
Chain-of-Thought Prompling........ccccccvvrinnininiereressessese e ssessssessessesssssssessessessssessessens 18
Advanced Tips for Effective Prompt ENgiNeering.........cccevvvnrinvninnininsinsesessessesssesesnens 19
What Are CRAINS?....cvovieccccreres s e 22
Chain COMPONENTSccuecerirerirc ettt a e e e e e e b e e se e e 23
CRAIN TYPES ..ttt e e e e e e e e e s e e e e ae e b et et eas 24
11010 4 1 -] o OO 24

2. Sequential Chain ...t e e e e 26

3. Conversational Chain.............cccereruneeneseseressesese e sesessns 28
1Ny o 03 T O 32

5. MUHi-OUPUL CRAIN......covieiccccce e et 34

(ST 0T T g 01 1 o OSSR 37

7. CONErol FIOW CRAINccoveeeccccrerise e se s se s se s nensnns 40

8. Retrieval-Aware Chain...........cccovrrenenenereressesese s se s sesessans 42

Lo TR Vo T 03 T OO 45
10. Parallel Chaincccovrieencreressesese e sessnsssnnes 50
11, CUSTOM CRAIN ... s 54

{0 0 e 11 0 o SRR 57
Chapter 2: LangChain and Python: Advanced Components.........ccccunmmmmennnneenssnes 59
LangChain MEMOTYccoverrrineresesesesessese s e srs e e sss e sessssesssssssssessnssenns 61
Understanding LangChain’s Memory MOAUIEccoecervcenneninnsenrssesssesesss s sssse s ssssesens 61
Key Capabilities of the Memory MOUIEccvvrreriversnsene s sre s e saeenes 61
Why MemOry MAtLers.........cccvirienniirrinne s ss e s sa e s a e s s e nesae s 62
When to Use the Memory MOAUIE...........ccocrincnirerc e snens 62
Core Processes in the Memory System: Reading and Writingcccccveernnennneneriencnsscnenenens 62
Structuring @ Memory SYSTEMccccvveernrererese s 63
LangChain MemOry TYPESccveeerrererrresrsseessesesrssessssesesss s ssssesssss e ssssssssssssssssessssessssessssasessssesnns 64
ConversationBUfferMEMOTY........cccuiierirernesineserse e sr e 64
ConversationBufferWindoOWMEMOTYccccvrerrisernesrnese s s sessesens 66

https://doi.org/10.1007/979-8-8688-1475-4_1#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec40
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec41
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec43
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_1#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_2
https://doi.org/10.1007/979-8-8688-1475-4_2
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec10

TABLE OF CONTENTS

ConversationSUMMArYMEMOTYcccvverererensersereressessessessesessessessessssessessesssssssessessesssssssessens 72
Conversation Summary BUffer MEMOTYccccvverererremserensesensesessesessessessesssssssessessessssessessens 74
Conversation ToKen BUffer MEMOIYccccvvvervrierenensensesessessssessessessssessessesssssssessessessssensessens 77
KnowledgeGraphMIEIMONYccveevereesersersersssessessessessssessessesssssssessessessssessessesssssssessessessssesseres 80
04T T S 82
LT (0] 5 (0] =11 1= T 7 84
Selecting the Appropriate MemOry TYPEccverrrieririerire s se s st sessenens 89
Implementing Memory in LangChain...........ccccoorrcrnienniesnssc e ses e 89
LangChain DOCUMENT LOAUESccovruerereeereeererese e ses e se s s esenns 91
CommOoN DOCUMENT LOAUEYSccceueereecrercerneereeesesesessese e sessese s e ses e sessssessssesessesenns 92
Specialized DocUmMENt LOAUEIScccceeriiirinicresn e snes 92
LangChain Embedding MOTEIS.........c.cueceererernsmrnesrnesessse s sesse s ssssssessssssssssssssesenns 94
LangChain Indexes and REtHEVENS........cccuucerirernesnesessse s sens 98
Indexes in LangChain: Structure and TYPES........coucrnrermneserssesnsessse e sessesenns 98
TYPES O INABXEScvrverrrierree st r e b np e nnnae e 99
Retrievers in LangChain: Querying and Optimizationccuveevnsennnennesennsesssesessesessnnes 99
End-to-End Workflow: From Indexing to Retrieval............cccorvvrnsennncnnssenssessesessesenenne 102
Real-World Applications of LangChain Indexes and Retrievers..........ccccuvvvvnvnierenenseniennes 103
Using LangChain INAEXING APL..........covvrerierenierirenessesessesesesessessessessssessessesssssssessessesssssssessens 106
Technical Structure of the INdeXiNg APL..........coov v 107
Deletion Modes and Content MaintenancCe...........ccovrrinenmnnennnsnssse s 107
Requirements and Compatibilityccccvrevvrnreriennnnire e saesnes 108
Important ConSIdEratioNnSccovvervriereninrirrere e s sr e e sae s 109
A0 1< g =T 0T 1 T R 110
DEfiNiNg AGENEScueiiirie e e 110
Types of Agents in LangCNaiN.......ccccvevvrenienieresensersese s sessesessessssessessessssssessessesssssssessesees 111
Tools As Extensions of Language MOodelS........cccovrrinvnnnnininsinne e sessessesssessesesns 112
Content Generation vs. Reasoning ENQINES........ccovvrrrierenensenseressssessessessessssessessesssssssessenes 112
Exploring Autonomous Agents: AutoGPT and BabyAGI............ccveereverrerierenensensensersesessensenees 115
LLM Models in LaNgCN@INcccceeerueierinierireserese s sesese e e s ses e sesss s ss e sesessssssessssessssesens 119
Chat MOGEIS........coceeereresieeee e se s e s ne s 119
ST o010 o J I O 126

https://doi.org/10.1007/979-8-8688-1475-4_2#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec33
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec35
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec39
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec45
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec102

TABLE OF CONTENTS

LLMS VS. Chat MOGEIScocvurriiiiririnissesise s se s s se s sesss s 130
Large Language Models (LLIVIS).........ccuvrreinenimniensin s sessessessse s ssessssssessessssssssaessensens 130
Chat MOGEIS.......cocceereresieeee i 130

INSTFUCT MOTEIS ... e 134
Key Benefits of INStruct Models..........ccoccveininnnnnnsne s snes 135
A Comprehensive List of Popular Instruct Models.........ccccovverrenerncenniennesers e sesesesseens 135

£ 0T T 137

Chapter 3: Building Advanced Applications Powered by LLMs with
LangChain and Python..........ccccuiemmmnnnsemnmmmssssmmmmssssnmmssssssmsssssssnssssssssssssssssnns 139

App 1: YouTube Video SUMMANIZEN........ccceveierrererierinsinsesessesessesessessssessessessessssessessessessssessessens 141
g (o (0B ST o L= Yo o 142
Step 1: Get YOUr OPENAT AP KBYccvcerreriereriereriesessesesessssesessesaesassessessessssessessesssssssessessens 142
Step 2: Run the Following COMMANS..........ccccervrerrerierennnenienese s sesessessssessessessssessessessens 142
Step 3: Execute the Following COmMMand...........ccccvvvveriennnnienienesensessesessesessessessessssesessens 143
Step 4: Import the Whisper Model and Process the Video.........c.ccocvcvvrvennnensnienenensensennens 144
Step 5: Read the Written Content in @ File........covvvvviriinnnnine s ses e sessennens 144
Step 6: Use LangChain to Split a Text File into Smaller Chunksc.ccocvvvnvnirevnseniennens 144
Step 7: Summarize the Preprocessed Content.........c.cccvvvrvnieninnnsniennens s ses s 146
Step 8: Define a Prompt Template Using LangChain's PromptTemplateccccoevvvvercennens 147
Step 9: Summarization PIPEliNec.ccovvevrvrienn s snens 148

App 2: Chat with @ GitHUD REPOSITOrYcovvervrererrrserere s sessere e s sressssessessessesessessessens 148
HOW [EWOTKS ... s s 149
Step 1: Select a GitHub Repository and Download It AS Zipccccevververrernrensenserenessensensens 149
Step 2: Install All Libraries REQUIFEA..........ccvverrerererrerieriessssessessesesessessessesssssssessesssssssessessens 149
Step 3: Import the Libraries and Obtain the Needed APl KEYS..........ccveererrrersersererensensensens 149
Step 4: Get RepoSitory CONENT........cocveverrierierererrere e ses e sse e s s saessssessessens 150
StEP 5: FEICH All FIlES ...eveerereerterereresesessese s seeses e sse s sse e ssessesaesassessesnesassessessesasssssensessens 151
Step-by-Step EXPIanation..........ccccvevierernienseriesesesseresessssessessessesessessessessssessessesssssssessessens 152
Step 6: Creating a Searchable Databasecccvvvvvvereneseniersere s ses e ssessssessessens 153
Step-by-Step EXPIanation..........ccccvevierernienseriesesesseresessssessessessesessessessessssessessesssssssessessens 153
Step 7: Creating the Actual Chatting Feature FUNCLION..........cccevvvrrnienenn s 154
Step-by-Step EXPIanation..........ccccvevierernienseriesesesseresessssessessessesessessessessssessessesssssssessessens 155

viii

https://doi.org/10.1007/979-8-8688-1475-4_2#Sec103
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec104
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec106
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec108
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec109
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec110
https://doi.org/10.1007/979-8-8688-1475-4_2#Sec111
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec23

TABLE OF CONTENTS

App 3: Financial Report ANAIYSIS APcovvrireririnniernesessessee s sses s s ssesssssssssessessesssesaesaesnes
KBY FEALUIES.....cecueierierie sttt rer i s st r e e s s s s e e b b e e e n e aenan e
Step 1: Install All Required LiDrari€s........cucvvriererensersesienssessessesesessessesessssessessesssssssessessens
Step 2: Set Up OpenAl APl Key and Add It to the COdecccvverererrerieresnsensenseresessenensens
Step 3: Import All ReqUIred LIDrarieScucvvvrerererserserensssessesesessssessessessssessessessessssessessens
Step 4: Process FINanCial REPOITS......ccovvvrerverierrnersersesessssessessesssssssessessesssssssessessessssessessens

Step 5: Preparing and Indexing Text Data for Efficient Retrieval Using Al-Powered
Search and Question AnSWering (QA).......ccocuerrinrinnnenre e

1. Splitting the Extracted Text into Smaller ChURNKS.........ccccccvvvrerernrenienens e sessessennes
2. Generating Text EMDeddings........ccvvevevrrrieniennnenseresessssessesesssssssessessessssessessesssssssessees
3. Storing and Indexing the Text Chunks in a FAISS Databasecccceeevvververiererensensenaens
4. Setting Up the Al-Powered Retrieval and QA System.........cocvvvevnnsrinnnnnenennesessnsenene
Step 6: ASK @ QUESTION........coierircrir e
App 4: Automate and Enhance Your Blog Posts with LangChain and Google Search................
Step 1: Install All Required LIDFaries........cccovevererernseneneseneserssesese s sessssesessesessesesessesenns
Step 2: Define Three Variables—Title, Text All, and Text to Change...........ccocvverrererersersereens
Step 3: Define YOUr APL KEYS.....coccccreccrircrire et se et e s s sesss et ses e sessesesesssseas
Step 4: Generate Search RESUILS...........cccccvreverecrrce e
Step 5: Get Search RESUILS ...t
Step 6: Find the Most Relevant RESUILS............cccoccrrvennenncccrnccrre e
Step 7: SPlitinto CHUNKSc..oeoeeceeece ettt
Step 7: Create EMDEAUINGScoccueeerereriricrirc st se s sas e se s
Step 8: Extend the SENLENCEc.ccveeerrerresr e
App 6: YouTube Scriptwriting TOOL........ccoeviininnr e snens
Step 1: Install All Required Libraries and Import Themcccovvrvnininnnnsnienesnsensennens

Step 2: Authenticate in Google Drive As We Use Google Colab and Insert Your
OPENAIAPLKBYeceeeereecrereeese e se s e ses e s sse e e s e s e sse e s e e nnsnenenns

Step 3: Download Your Desired YouTube Video, Extract the Audio, and
ConVErt L0 MP3........c e e

Step 4: TranSCriDE AUIOccereeiriere e e s s r s e nne s
Step 5: Generate QULIINE.........ccov v ———
Step 6: Expand the SCHPL ...
Step 7: Combine All and Run the TOOL.........cccciriinnninien s sessesnens

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec30
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec31
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec32
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec33
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec34
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec35
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec36
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec38
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec39
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec41
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec42
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec43
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec44
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec45
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec46
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec47
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec48
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec53
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec54

TABLE OF CONTENTS

Do A =11 VL G 1T = (o] 184
KBY FEALUIES.....cecveieririe sttt re e s e e b b e e e n e ae e e 184
Step 1: Install All Required Libraries and Import TREMccvcevivvnrnierienssensesseresessessensens 185
Step 2: Generate Response With OPENALL.........ccovvvvvierienesnseniere s ses e ssessssessessens 185
Step 3: Combine All Together and Generate EMail..........ccccovvviernnnsnienennsensensesesessenseneens 187

App 8: CSV Data ANAIYSIS APP ..ccveerererereerrererisesersesessesesessesessesessesesessessssesessesessssessssssessenessenes 188
Step 1: Install All Required Libraries and Import Themccocccvrvevrircrnccnnneseseserescenenne 188
Step 2: Generate and Add Your OpenAl APL K@Ycccoveeerererinrerenenesssersssesessesessesesessesenns 189
Step 3: Load YOUr CSV Fil@......cccoreoereccrircrireser et se s se e s e se s 189
Step 4: Create a LangChain AgeNt........c.cccoreirnrrnierre st sas s 192

App 9: Knowledge Base Voice ASSISTaANt ..o sennens 194
Step 1: Install the Required Libraries and Import Themcccvrvncninnnnsnseniesnsensennens 194
Step 2: Generate and Add Your OpenAl APLKEYcccvevnnnvniennnnsinse s ses s sessessens 195
Step 3: Develop Voice INteraction..........ccoucvvririnnnniniesn s sesessens 195
Step 4: Load Knowledge Base from the Web and Create the QA Chain...........cccocevviniennns 196
Step 5: Combine Them All TOGETNENccoveeerereree e 198

App 10: Analyzing Codebase with LangChainccovernsernnenenssesnsesessesesese e sessesesennes 200
Step 1: Install All Required LIDraries..........ccccuvrirnnnnnininnnsne s sessessessssessesse s 200
Step 2: Generate and Add Your OpenAl APl KEYccrierrinnnennnnsenese s sessesse s 201
Step 3: Upload and Load the FileScccovvrvrernnnnninn e sss e s 201
Step 4: Create and Store Code EMbeddings.........coccoverernnnnesessnesnsesesssesesesesesessssesennes 202
Step 5: Create Retriever and Retrieval Chainccccvivnininnnsnsn e 203

App 11: Recommender System with LangChain...........cccovvvnennisnnsennesenese s 206
HOW IEWOIKS ...t s s e e 207
Step 1: Install and Import the Required Librariesccovvvnrennssennsesnnesessse s 207
Step 2: Generate and Add Your OpenAl API Key and Then Import All Libraries Required..... 208
Step 3: Load Up Some Sample Data.........ccccvvverrnennnnnennsesssesessse s sssssssssssessnnes 208
Step 4: Convert Data into LangChain Document Format and Generate Embeddings........... 209
Step 5: Define an Advanced Retrieval FUNCLION............cccvvvvncinic e 210
Step 6: Integrate a QA System Using LangChain............cooueevnennnnennsessnnessnssesessesessssesennes 211
Step 7: Set Up an Al Conversational Agentcoccovecrnnennennsse s ssssesessnnes 211
Step 8: Test the SYSTEM ... s 213

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec55
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec56
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec57
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec58
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec59
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec60
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec61
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec62
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec63
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec64
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec65
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec66
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec67
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec68
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec69
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec70
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec71
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec72
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec73
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec74
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec75
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec76
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec77
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec78
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec79
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec80
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec81
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec82
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec83
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec84
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec85
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec86

TABLE OF CONTENTS

App 12: PDF Files Chathot.......c.ccoovvririenernnirsere s s ssessessessssesessessessssessessesssssssensessens 215
Step 1: Install All Required LiDrari€s........cucvvriererensersesienssessessesesessessesessssessessesssssssessessens 215
Step 2: Generate and Add Your OpenAl APLKEBYcccreverersemsernsessessesessssessessessessssessessens 216
Step 3: Upload Your PDF Files, Access Them, and Create a Vector Store Database 216
Step 4: Create a Chathbot With MEMOIY.......cccvvvrvrrriere s ssessens 218
Step 5: Ask the Chatbot and ReCEIVE an ANSWEc.cvevererrerereesessensessessssessessessessssessessens 219

£ 1111117 OO 220

Chapter 4: Deploying LLM-Powered Applications........ccccuussensmmsssssnssssssssssssssssnnnss 223

Integrating LLMs into Web and Mobile Applicationsccocoveerrncnernenereseressesese e 224
g 0153 (=0 T oo 225
Prepackaged MOGEIS........ccco et 227
Factors to Consider When Choosing @ Method..........c.ccccorererercrnrcnenenesese e 230

LLM Cloud Deployment and Scalability ConSiderations..........c.covsreresreserssmrensesessesesssesensesenns 231
Deployment ArChItECIUNE ... s 231
INFrASTIPUCTUTE.....veeeeeee e nn e nr s 232
LT (0] 11 T TS 233
LS =T T T T | 233
L0 T (0T TS 234
High Availability and Fault TOIEraNCe...........c.ccorererenernnesesesese s sesse s ssssesenses 234
Compliance and EthiCS ..o 235

ToOlS fOr DeplOYiNg LLIMScccceiiiriserrierinessssesesssse s e ses s ssssessssess s e ssssesssssssssssessssessnsenees 235
Model Hosting FramewoOrkKs..........cccuviernienneninsse s se e ssssesssssssssssessnses 235
Example: Saving a Model Locally, Uploading It to Hugging Face, and Calling It 237
OPtiMIZALION TOOIS ...vcerveerirerrre e e ne e nr s 238
ONNX EXAMPIE...riuiririerieerisissssese s e sr s sr s ss s s se e s e s sr s snsns e nsans 241
ClOUA SEIVICES.....ueeerreerrierrsseserre s s e s sr s sr s e b e e e b e n e nnnne e nr s 242
AWS SageMaker EXAMPIEcccccvverenenenenesisessssesssesesssssssssessssssesssssssssesssssssssssesssssssssenens 243
Orchestration and SCAlNGcccucevvrerieserise s 245
Edge and Mobile Deployment...........cccvicernieninenernse s srass 246
APIS for HOSTEA MOGEIScveerveeriresirieenre e 246
Distributed Inference and FiNE-TUNINGccoverernsesnsesssese s sennes 247

https://doi.org/10.1007/979-8-8688-1475-4_3#Sec87
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec88
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec89
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec90
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec91
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec92
https://doi.org/10.1007/979-8-8688-1475-4_3#Sec93
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec13
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec14
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec18
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec21
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec22
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec23
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec24
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec26

TABLE OF CONTENTS

Monitoring and ODSErVability.........ccccvvvreriernnenrerrerr e s se e saesaes 247
LLM Inference Challenges: A Comprehensive EXpIoration...........cooevvvvvevenensenseresessensensenns 248
LLM Memory Optimization.........ccovvreevierenssenseresesessessessessssessessesssssssessessesssssssessesssssssessees 251
LLIM COMPIESSIONevuerrerteerersersesessersessessssessessesssssssessessesssssssessesssssssessesaesssssssessesssssssessenes 255
Attention Layer Optimizationcccvvevvrniniennnnsensese s sesse s ses e ssesssse e ssesssssssessesees 259
Scheduling Optimization in LLM Deployment.........cccvievnrniniennnnsensesessssessesesssssssessessens 261

£ 1111117 OO 263
Chapter 5: Building and Fine-Tuning LLMScccccussssmnmmsssssnsssssssssssssssssssssssssnnnss 265
Architecture of Large Language MOodelS (LLIMS)coeeerrreererererenerensesesesesesesessesessesessesesennes 266
At the Foundation of Any LLM Lies the Process of Tokenization............c.ccoveererercrenccnenenens 267
Self-Attention MeCh@niSIm............ccoceeeerrerrerre e e 268
Layer Normalization and Residual COnNECtioNScccovererenerencresscsesese e 268
TranSfOrmMEer BIOCKScccoveeiereecrercreree e seses s s esnenens 269

At the Output Layer, LLMs Operate Differently Depending on Their Design..........cccccceevuenene 269
Variations in LLM ArcChiteCIUIES........coveeerecrrererese e rese s e snenens 270
Fine-Tuning Strategies and CoNSIAerationsccuevrrereresernsmsssesessssesnsse s s sessesenns 27
What IS LLM Fine-TUNING?cceeerrrerrreseresesessesessssessssessssssesssssssssessssssessssssssssssssesssssssnsenens 271
Data Requirements for Fine-TUNING.........ccovrermrnnernnesnsesesssess s sennes 272
LLM Fine-Tuning TECANIQUES.......ccceeerrererinerrnsesesrese s se e ss s sn s sessesenns 273
Primary Approaches t0 Fine-TUNINGccocvverrinernnsnesrsesess e ssnss 273
Why Fine-Tune Embedding MOAEIS?ccvvvernenninernsessesessse e ssssesessessssenens 274
How to Fine-Tune Embedding MOdels...........ccverernvrnenncsensse s sennes 275
Popular Techniques for Fine-Tuning EMbeddingsccocvverrnnnnesnesenssesssesesesessesesennes 276
Striking the BalanCec.cccceevererniesne e 277
Prominent Fine-Tuning Methodsc.cccvviermninernnsnesinesens s sennes 277
Fine-Tuning Process and Best PractiCes..........cuvvrirrnnirrnienesnsensesessssessessessesessessessessssessessens 280
Q. Data Preparation..........cccvcvevennsnie e e nne 280

b. Choosing the Right Pretrained Modelcccoivvrvririennnninenr e sesesae s 281

c. Identifying the Right Parameters for Fine-TuNING.......c.ccocvvvierennsnienienssen s sessenenaens 281

0. ValALON ... ———————————— 282

e. Detect Bias, Fairness, and Groundedness of LLMS............ccovvrnnnnnennnssssssenessssens 285

xii

https://doi.org/10.1007/979-8-8688-1475-4_4#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec37
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec42
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_4#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_5
https://doi.org/10.1007/979-8-8688-1475-4_5
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec1
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec2
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec3
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec4
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec5
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec6
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec7
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec8
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec9
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec10
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec11
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec12
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec15
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec16
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec17
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec19
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec20
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec25
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec26
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec27
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec28
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec29
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec44

TABLE OF CONTENTS

Detecting Data Drift When Fine-TUNING......c.ccoerririnn e sssssessessenns 290
f. MOodel HErAtioNcccvviieiiici e e 293
0. Model DEPIOYMENL........ccciririire e n e e e 293
Fine-Tuning ApPPliCALIONS.......c.cvcvcriiirnsirere e e s s 293
A. SeNtiMent ANAIYSISc.ccvrerrecire e e 294
D. CRALDOTSvvecccrerir e 294
C. SUMMANZALION.c.eieeereeereecrerese e e r e ne s 294
Advanced Fine-Tuning Techniques for LLIMS..........cccoveerrnrnererese e sssseseenes 295
Low-Rank Adaptation (LORA).........ccvrerrererrscseresesre e s s ssenes 295
(0] 0] 01 T3 T 297
Federated FiNe-TUNING........coovecererereere st 298
When to Not Use LLM FiNe-TUNING........ccourererenmrreserrnsesesesessssssessssssssessssesssssssssssssssssssssssssssnens 299
Pretrained Models Are Already SUffiCient...........cccorvernnennnenmnes s 299
Insufficient or Low-Quality Data........c.cocorenernnesnenenssesssesese s s ssens 300
High Computational Costs and Resource Constraintscccevnrvnenenenesnsesnsesesssesenns 300
Regulatory, Privacy, and Ethical ConStraints...........c.ccovrerrrenerensnsenessesesssesessesesesessssesenses 301
Maintaining Model VErsatilityccovveermsesenenernssssesessssess s s ssssesessssessssesenss 301
Task Scope Is Uncertain or EVOIVING........c.ccovveernenenenerssesessesesssesssse s ssssesesssssssenens 302
High-Risk Scenarios Requiring Predictability and Stability.........cccocvrerrivnrnsnnscnenssennnne 302
Ethics and Bias in Al @nd LLMSc.ccvienneniniesnsesssess e s ssssssssssssssssssesens 303
Understanding Al Ethics and Its Relevance 10 LLMS...........ccovvvnnnennnesnessnnse e 303
Core Ethical Challenges in LLMSccccorinernnenrnessnese s sessssssssssssssesssssssssssssases 303
Promoting Fairness and Equity in LLMScccocucrinnnennesensse s sese s sessnnes 305
Addressing Broader Ethical CONCEINSccooueevnennenersse s ssssesessessssenens 306
Regulation and Policy for Ethical Al..........cccucecrinrnnnncsrnesess s sennes 307
FULUIE DIrECHIONScuvveerrccssesir e 307
LLM Fine-Tuning EXAMPIE........cccveriererinreriereressersessessssessessessesessessessesssssssessesssssssessessesssssssessens 308
Step 1: Loading Dataset.........ccocevvvrrriereninsirsere s s s s se s s sse s e s sne s 308
R3] 02 (01101 T2 11T RS 308
Step 3: Training and Evaluation Setscccvvvierrrrinirn s s e ssssessesae s 309
Step 4: Adapting the MOlcovvvierennrrrr e e 310

xiii

https://doi.org/10.1007/979-8-8688-1475-4_5#Sec49
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec50
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec51
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec52
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec53
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec54
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec55
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec56
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec57
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec58
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec59
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec60
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec61
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec62
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec63
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec64
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec65
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec66
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec67
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec68
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec69
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec70
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec76
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec77
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec79
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec80
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec81
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec82
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec83
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec84
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec85

TABLE OF CONTENTS

Step 5: Fine-Tuning the MOEL..........ccvveverrierierene s sese e sss e ssessessssessesnees 310

STEP B: EVAIUALION......cccerverrecerere v serrere s s e s a e e saesae e e ae s ne s n e ne e nne s 312
What Happens Internally During Fine-TUuning.........ccccvvrnenininnnnnninsensnssesessessesseessesesns 312

0] 1 0 11T U 315
1T L 317

Xiv

https://doi.org/10.1007/979-8-8688-1475-4_5#Sec86
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec87
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec88
https://doi.org/10.1007/979-8-8688-1475-4_5#Sec89

About the Author

Dilyan Grigorov is a software developer with a passion for
Python software development, generative deep learning
and machine learning, data structures, and algorithms.
He was a Stanford student in the Graduate Program on
Artificial Intelligence in the classes of people like Andrew
Ng, Fei-Fei Li, and Christopher Manning. He has been
mentored by software engineers and Al experts from
Google and NVIDIA. Dilyan is an advocate for open

source and the Python language itself. He has 16 years

of industry experience programming in Python and

has spent 5 of those years researching and testing generative Al solutions. His passion
for them stems from his background as an SEO specialist dealing with search engine
algorithms daily. He enjoys engaging with the software community, often giving talks at
local meetups and larger conferences. In his spare time, he enjoys reading books, hiking
in the mountains, taking long walks, playing with his son, and playing the piano.

About the Technical Reviewer

Tuhin Sharma is Sr. Principal Data Scientist at Red Hat in
the Data & Al group. Prior to that, he worked at Hypersonix
as an Al architect. He also cofounded and has been CEO

of Binaize, a website conversion intelligence product for
ecommerce SMBs. Previously, he was part of IBM Watson
where he worked on NLP and ML projects, a few of which
were featured on Star Sports and CNN-IBN. He received a
master’s degree from IIT Roorkee and a bachelor’s degree
from IIEST Shibpur in Computer Science. He loves to code
and collaborate on open source projects. He is one of the top
25 contributors of pandas. He has four research papers and

five patents in the fields of Al and NLP. He is a reviewer of
the IEEE MASS conference, Springer Nature, and Packt publications in the Al track. He
writes deep learning articles for O'Reilly in collaboration with the AWS MXNET team. He
is a regular speaker at prominent AI conferences like O’Reilly’s Strata Data & Al, PyCon,
PyData, ODSC, GIDS, DevContf, etc.

xvii

Acknowledgments

I give a big thanks to the entire team at my publisher, Apress, and heartfelt thanks to two
people who supported me throughout this book’s writing process—Alexandre Blanchet
(a software engineer with more than ten years of professional experience) and Haiguang
Li. Alexandre’s words about the book deeply moved me, and I'd love to share them

with you:

I grew up in a small French city where speaking multiple languages was
rare. From an early age, I loved computers and creativity, but wasn’t sure
about my career path. Everything changed in high school when I discovered
coding—I had found my place.

Back then, Python wasn't as popular, but I saw its potential. Despite lim-
ited job opportunities in my area, I committed to mastering it, believing in
its future. Over the past decade, working at companies big and small has
deepened my skills beyond what I learned in school.

Today, I use that experience to guide students in accelerating their Python
learning. That's how I met Dilyan. From the start, his curiosity and drive
stood out. He dedicates himself fully to mastering his craft, and it has been
a pleasure to support his journey.

Dilyan quickly grasped Python and machine learning, leading to this
book’s creation. Beyond technical skills, he brings rare qualities—attention
to detail, excellent time management, and versatility in marketing, SEQ,
business, and writing.

Some people drain your energy; others inspire you. Dilyan is the latter. Our
weekly coding sessions are always energizing, pushing us both to grow. I'm
proud of this book—a testament to Dilyan’s hard work, passion, and dedi-
cation. I'm confident it will inspire and empower your learning journey.

Xix

Introduction

The evolution of artificial intelligence (AI) has ushered in a new era of possibilities,
transforming the way we interact with technology, automate tasks, and solve complex
problems. At the heart of this revolution are large language models (LLMs), which power
applications ranging from conversational agents to content generation, data retrieval,
and beyond. This book serves as an advanced comprehensive guide to understanding,
developing, and deploying LLM-powered applications, with an advanced focus on
Python and LangChain. It is designed for Al enthusiasts, data scientists, machine
learning engineers, developers, and researchers who are looking to deepen their
understanding of LLMs and their real-world applications.

The book bridges the gap between theory and practice, providing a road map for
building advanced intelligent systems that leverage the power of language models.
Throughout the chapters, I emphasize hands-on learning, providing code examples,
best practices, and troubleshooting strategies to help you build efficient and effective
Al-driven applications. By the end of your journey, you will have a strong foundation in
LLMs and the ability to apply them to a wide range of real-world challenges.

The book is divided into several key chapters, each focusing on a critical aspect of
working with LLMs and LangChain.

e Chapter 1—LangChain and Python: Basics: This chapter
introduces the fundamentals of LangChain, a powerful framework
for integrating LLMs into applications. It covers the core advanced
concepts, including chains, memory, tools, and agents, along with
how to structure prompts effectively for different tasks.

e Chapter 2—LangChain and Python: Advanced Components:
Building on the basics, this chapter explores LangChain’s advanced
features, such as memory management, multiagent systems, and
external data integrations. Readers will learn to create applications
with contextual awareness and adaptability.

xxi

https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_2

INTRODUCTION

xxii

Chapter 3—Building Advanced Applications Powered by

LLMs with LangChain and Python: This chapter delves into the
development of practical applications using LangChain and Python.
It includes real-world examples like YouTube video summarizers and
document retrieval tools, demonstrating how to implement advanced
workflows and optimize model performance.

Chapter 4—Deploying LLM-Powered Applications: Once an LLM
application is built, deploying it effectively is crucial. This chapter
covers cloud deployment strategies, model-serving solutions,
optimization techniques, and best practices for ensuring scalability,
security, and performance in production environments.

Chapter 5—Building and Fine-Tuning LLMs: For those looking to
take customization further, this chapter explains the principles of
training and fine-tuning LLMs. It discusses transformer architectures,
pretraining paradigms, fine-tuning strategies, and ethical
considerations in deploying Al responsibly.

Happy reading and coding!

https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_5

CHAPTER 1

LangChain and Python:
Basics

LangChain is a powerful new framework in Python that simplifies building intelligent
applications using natural language processing (NLP) and large language models (LLMs).
It reduces complexity, making Al-powered solutions more accessible to developers. At
its core, LangChain provides a set of abstractions and utilities that make it easier to build,
customize, and deploy NLP-based workflows, such as chatbots, automated data analysis,
summarization tools, and much more. Given Python’s status as the go-to language for

Al and data science, integrating LangChain with Python creates a powerful toolset for
developers and data practitioners looking to enhance their NLP projects.

LangChain’s primary goal is to simplify how developers interact with language
models and manage their outputs in context-rich applications. Typically, when
using a language model like OpenAlI’s GPT, there’s a need to set up workflows for
input, processing, context handling, and response generation. LangChain provides
a framework to define and chain these elements, known as “chains,” enabling more
complex and sophisticated NLP applications without needing to manually handle all
aspects of the process.

Python has a rich set of libraries for machine learning (e.g., TensorFlow, PyTorch)
and NLP (e.g., spaCy, NLTK). LangChain seamlessly fits into this ecosystem by offering
high-level abstractions that allow developers to quickly integrate language models into
their applications. Key benefits include

o Ease of Integration: LangChain abstracts much of the complexity
involved in setting up prompts, model calls, and response handling,
making it easier to build and deploy applications.

© Dilyan Grigorov 2025
D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_1

https://doi.org/10.1007/979-8-8688-1475-4_1#DOI

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

e Modularity and Flexibility: LangChain enables chaining multiple
LLM calls together, combining different models, and adding context
to create more advanced applications, such as multistep question-

answering systems or conversational agents.

o Handling Context and Memory: One of LangChain’s strengths is its
ability to manage context and memory effectively. For conversational
Al or tasks that require understanding of a sequence of interactions,
LangChain provides utilities to track and store context throughout
the conversation or workflow.

e Scalability and Deployment: By working within the Python
ecosystem, LangChain can be easily integrated into larger projects,
data pipelines, or cloud-deployed applications, making it a practical
choice for both experimentation and production-level applications.

With Python and LangChain, developers can build a wide range of NLP
applications:

o Chatbots and Conversational Agents: Implement agents that can
handle context-aware conversations, manage user intents, and
respond dynamically to user queries

o Data Extraction and Summarization: Create pipelines that
process large amounts of text, extract key information, and produce
summaries or insights

e Automated Content Generation: Use language models to generate
content for blogs, reports, or documentation based on given prompts
or templates

¢ Question-Answering Systems: Build tools that allow users to ask
questions about specific documents or datasets, where the system
can pull and present relevant information

In this first chapter, we will explore how to use LangChain with Python to create
advanced language model applications, discussing its key components and providing
practical examples to get you started.

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

This chapter also

e Introduces LangChain as a Python framework for building LLM-
powered apps like chatbots and summarizers, with a focus on
modularity, memory, and context handling

o Covers core concepts: chains, prompts, memory, tools, agents, RAG,
data loaders, and integrations

o Explains installation of LangChain and related packages (e.g.,
langchain-core, langchain-openai, langgraph)

e Provides prompt engineering techniques: role prompting, few-shot,
chain prompting, chain-of-thought, alternating messages, and
refinement tips

e Describes various chain types: simple, sequential, conversational,
multi-input/output, router, control flow, retrieval-aware, and agent
chains—with code examples

LangChain Basics and Basic Components

As I mentioned, LangChain is a powerful framework designed for developing
applications that integrate large language models (LLMs) like OpenAl’s GPT-4 into
workflows or pipelines that can perform a variety of complex tasks. It is particularly
helpful for creating applications that require language model capabilities, whether for
natural language understanding, processing, or generation.

Here are the fundamental components and concepts of LangChain.

Chains

Chains are sequences of operations (or steps) designed to process and transform data.
In LangChain, chains can be created to link together multiple steps that involve LLMs,
transforming the input through a sequence of transformations or tasks. A simple chain
might involve querying an LLM with a prompt, whereas more complex chains can
combine multiple actions, like API calls, data retrieval, or conditional logic.

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Prompts

Prompts are the input that LLMs use to generate responses. LangChain allows users to
design prompts dynamically, enabling the creation of tailored queries based on different
scenarios or contexts. You can create prompt templates that include variables to be filled
in based on user inputs or other data.

Memory

Memory allows a chain to retain state throughout a conversation or across multiple
interactions. This feature is particularly useful for applications that require context over
time, such as chatbots or assistants, where responses need to be informed by the history
of the conversation.

Tools and Agents

LangChain provides tools that interact with external systems or APIs, such as databases,
search engines, or custom APIs. Agents are advanced chains that can decide which tool
to use based on the input they receive. For example, an agent could determine whether
to perform a search, fetch data from a database, or generate a response directly.

Retrieval-Augmented Generation (RAG)

RAG is a method where LLMs are combined with external data sources to enhance
their outputs. Unlike standard LLM queries that rely on pretrained knowledge, RAG
dynamically retrieves up-to-date information from external sources before responding,
ensuring better accuracy and contextual awareness. For example, an LLM may query

a knowledge base or a search engine to find relevant information before generating a
response. LangChain supports RAG through its retrieval tools and agents, making it
suitable for applications that require updated or domain-specific information.

Data Loaders

LangChain includes data loaders for various types of data sources, like local files, APIs,
and databases. These loaders help convert raw data into a format that can be processed
or queried by an LLM.

4

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Integrations and Extensibility

LangChain is designed to integrate easily with other tools and libraries. It supports
various LLM back ends (such as OpenAl, Hugging Face, and others) and can be
extended with custom chains, agents, or tools. This makes it flexible for creating custom
applications across different domains.

LLM Outputs and Postprocessing

LangChain provides ways to interpret and process the outputs from LLMs. Since LLMs
may produce complex or unstructured data, LangChain includes components for
parsing, formatting, and further transforming these outputs to be more usable for the
application.

By leveraging these concepts, LangChain allows for building powerful, customizable
LLM-powered applications efficiently.

LangChain Installation

The LangChain ecosystem is divided into multiple packages, allowing you to selectively
install only the specific features or functionality you need.
To install the main langchain package, run on Python 3.11:

pip install langchain==0.3.20

Although this package serves as a good starting point for using LangChain, its real
value lies in integrating with various model providers and datastores. The necessary
dependencies for these integrations are not included by default and must be installed
separately. The steps to do so are provided below.

The LangChain ecosystem consists of different packages designed for modular
functionality, most of which rely on “langchain-core.” This package includes base
classes and abstractions, providing a foundation for the rest of the ecosystem. When
installing any package, you don’t need to explicitly install its dependencies like
“langchain-core.” However, if you need features from a specific version, you may do so,
ensuring compatibility with other integrations.

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Packages Overview

o LangChain Core: Contains essential abstractions and LangChain
Expression Language (LCEL). Automatically installed with
“langchain” or separately with

pip install langchain-core==0.3.41

o Integration Packages: Packages like “langchain-openai” or
“langchain-anthropic” offer support for specific integrations. The
complete list of these integrations can be found under the “Partner
libs” section in the API reference of the LangChain documentation.
To install any of them, use

pip install langchain-openai==0.3.7

Integrations that haven’t been split into their own packages are
part of “langchain-community,” installed via

pip install langchain-community==0.3.19

o Experimental Package: “langchain-experimental” hosts research
and experimental code. You can install it with

pip install langchain-experimental==0.3.4

o LangGraph: A library designed for building stateful, multiactor
applications with LLMs, which integrates seamlessly with LangChain
but can be used independently:

pip install langgraph==0.3.5

e LangServe: A tool to deploy LangChain runnables and chains as
REST APIs. It is included with the LangChain CLI. If you need both
client and server functionalities, install using

pip install "langserve[all]"

For just the client or server, use "langserve[client]" or
"langserve[server]".

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

o LangChain CLI: Useful for managing LangChain templates and
LangServe projects:

pip install langchain-cli==0.0.35

o LangSmith SDK: Installed automatically with “langchain” but does
not depend on “langchain-core.” It can be used separately if you're
not using LangChain:

pip install langsmith==0.3.12

Installing from Source

To install any package from the source, clone the LangChain repository, navigate to the
specific package’s directory (e.g., “PATH/TO/REPO/langchain/libs/{package}”), and run

pip install -e .

This allows for flexible and targeted functionality, letting you selectively integrate or
develop with specific packages in the ecosystem.

How to Prompt?

When working with large language models (LLMs), prompt engineering becomes an
essential skill. A well-crafted prompt can significantly enhance the quality of a model’s
output, even when using less powerful or open source models. By understanding how to
shape inputs effectively, you can guide LLMs to produce accurate, context-appropriate
responses. Throughout this module, we’ll explore the art and science of prompt creation,
enabling you to fully harness the power of your models and achieve the best results
possible.

One of the primary focuses will be on writing tailored prompts to achieve specific
tasks, such as generating responses in a certain format or adhering to stylistic guidelines.
We'll also examine how few-shot prompts can allow a model to quickly learn new tasks
and generalize to unseen scenarios. This technique is especially useful when you need
customization with minimal data, as it provides an efficient way to adapt model behavior
on the fly.

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Prompt Engineering

Prompt engineering is an emerging field focused on developing and refining prompts
for effective use of large language models (LLMs) across a variety of applications. The
goal is to enhance how LLMs process, understand, and generate text, making prompt
engineering essential for numerous NLP tasks. Crafting high-quality prompts can reveal
both the potential and the boundaries of what LLMs can achieve, and a well-designed
prompt can significantly improve the accuracy and relevance of the model’s responses.

Throughout this lesson, you'll gain hands-on experience with practical examples,
helping you understand the nuances of prompt quality. We’ll explore how different
prompts can lead to significantly different results, highlighting what makes a prompt
“good” or “bad.” By the end, you'll be equipped with techniques to create powerful
prompts that enhance model performance, enabling it to provide contextually relevant,
accurate, and insightful responses to any given task.

Role Prompting

Role prompting is a technique that asks an LLM to take on a specific role or persona,
helping guide its response in line with a certain tone, style, or perspective. For example,

nn

you might prompt the model to act as a "copywriter,” "teacher,” or "data analyst.” This
provides the LLM with a frame of reference, shaping how it interprets and answers
the prompt.

To work effectively with role prompting, follow these steps:

o Define the Role Clearly: Clearly specify the role in your prompt to
set the context for the model. For example, you might write: “As a
copywriter, craft catchy taglines for AWS services that grab attention.”
The model will interpret the role and respond accordingly, adopting
the language and style of a copywriter.

¢ Generate Output from the LLM: Once the role is defined, use
your prompt to produce an output. The model will use the role as
guidance to tailor its response appropriately, focusing on the style,
language, or structure that aligns with the defined role.

o Iterative Refinement: Analyze the output to see if it meets the
desired criteria. If the results are not as expected, refine the prompt
by being more specific about the role or the style of the response.

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

This iterative process is crucial for achieving high-quality outputs.
For example, if the response as a “copywriter” lacks creativity, you
might adjust the prompt to include specific instructions like “use a
playful tone and focus on benefits.”

By guiding the model’s behavior through role prompting, you can influence how it
understands the task and the perspective it adopts, making it a versatile technique for a
wide range of applications. This strategy not only improves the quality of the responses
but also enables you to adapt the model’s outputs to fit the context of different tasks
more effectively.

Note For the following example, please get your OpenAl APl key here: https://
platform.openai.com/api-keys.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain openai import ChatOpenAI

Initialize the LLM with OpenAI's model

1Im = ChatOpenAI(api key=o0s.getenv("OPENAI API KEY"), model name="gpt-4",
temperature=0.5)
template = """
As a futuristic poet, I want to write a poem that captures the essence of
{emotion}.
Can you suggest a title for a poem about {emotion} set in the year {year}?
prompt = PromptTemplate(

input_variables=["emotion", "year"],

template=template,
)

Input data for the prompt
input _data = {"emotion": "solitude", "year": "2500"}

chain = prompt | 11lm

response = chain.invoke(input_data)

https://platform.openai.com/api-keys
https://platform.openai.com/api-keys

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

print("Emotion: solitude")
print("Year: 2500")
print("AI-generated poem title:", response)

Output:

Emotion: solitude

Year: 2500

AI-generated poem title: content='"Echoes in the Void: Solitude in the 26th
Century"' additional kwargs={'refusal': None} response metadata={'token_
usage': {'completion tokens': 16, 'prompt tokens': 44, 'total tokens': 60,
‘completion tokens details': {'audio tokens': None, 'reasoning tokens':
0}, 'prompt tokens details': {'audio tokens': None, 'cached tokens': 0}},
‘model name': 'gpt-4-0613', 'system fingerprint': None, 'finish reason':
'stop', 'logprobs': None} id='run-c41b514e-f8f5-43a9-96c3-f0ab35fdaad6-0'
usage metadata={'input_tokens': 44, 'output tokens': 16, 'total tokens':
60, 'input token details': {'cache read': 0}, 'output token details':
{'reasoning': 0}}

The prompt in this code is effective for several reasons:
1. Clear and Contextual Role Setting

By stating, “As a futuristic poet,” the prompt establishes a role and
context. This framing helps guide the model to think creatively
like a poet, shaping its response to reflect a poetic tone and
futuristic theme. Such context allows the LLM to adopt the right
style, making the output more imaginative and relevant.

2. Specificity of Emotion and Time Frame

The prompt specifically asks for a poem title that captures the
emotion of “{femotion}” set in the year “{year}.” This precision
helps the model generate contextually rich and emotionally
relevant titles, directly related to the emotion and future scenario.
The use of variables makes it adaptable for different contexts,
creating versatility.

10

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

3. Open-Ended Creativity

The prompt is open-ended, allowing the LLM to generate
diverse, creative titles without being overly restrictive. By not
setting limitations on how the title should sound, the model can
explore artistic and evocative language, enhancing the quality of
the output.

4. Task-Focused Guidance

The primary task is to create a poem title that evokes a specific
emotion in a futuristic context. This direct focus helps the LLM
avoid unrelated content, concentrating only on creating a unique
title that matches the theme and style outlined in the prompt.

5. Encouragement of Thematic Coherence

By guiding the LLM to align its output with an emotional and
futuristic time frame, the prompt ensures the response will have
both thematic and temporal coherence. This makes the resulting
poem title not just relevant but also compelling and imaginative,
showcasing how prompts can evoke specific styles and tones
effectively.

Few-Shot Prompting

Few-shot prompting is a technique used in the context of large-scale language models

to guide the model’s output by providing a small number of task-specific examples
within the input prompt. Unlike traditional machine learning approaches, which require
extensive datasets and iterative training, few-shot prompting leverages a model’s pre-
existing knowledge to perform tasks with minimal supervision.

In few-shot prompting, the model is presented with a limited number of input/
output pairs—usually between one and five—that illustrate the desired task. These
examples serve as a form of implicit training within the prompt itself. The model uses
these pairs to infer the relationship between inputs and outputs, allowing it to generalize
and respond appropriately to new, unseen queries that follow the same pattern.

This technique builds on the premise that large language models, trained on vast
amounts of diverse text data, can generalize across different domains. By presenting
a few examples, the model can adjust its behavior dynamically without the need for

11

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

explicit retraining or fine-tuning. Few-shot prompting thus demonstrates the flexibility
and contextual reasoning ability of such models, allowing them to perform a wide range
of tasks from a minimal set of instructions.

The effectiveness of few-shot prompting depends largely on the model’s capacity to
understand and generalize from the examples provided. It is a powerful approach for
tasks where extensive labeled data is not readily available, offering an efficient method
for leveraging pretrained models in a variety of applications.

Key Benefits

o No Additional Training: You don’t need to fine-tune the model; it
can perform tasks based on the few examples given.

e Adaptability: It can handle multiple tasks by simply providing
examples for different tasks.

o Efficiency: Fewer examples are needed compared to traditional
training methods, making it a practical approach for many
applications.

Few-shot prompting is especially effective with very large pretrained models like
GPT-3, which have enough capacity to learn from minimal examples.
Example:

from langchain_core.prompts.few shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain openai import ChatOpenAl

Initialize the language model with specific settings

language model = ChatOpenAI(
api_key="sk-proj-056py5goMfqp8 g2g0OgfhefriHLriyWyP6erQJ4dQyi3D2HWBxIgCW
rjWMbvMTIdvxH1zaWm11T3B1lbkFJssimhhNZI7YREWFugP2wKQoMHIR3FMCDZxi0A rPSrC
XZK6Z31bcGI85dpMGV4adCt7R_zrUKA",
model name="gpt-40-mini",
temperature=0

12

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Sample color-to-emotion associations
color emotion pairs = [
{"color": "red", "emotion": "energy"},
{"color": "blue", "emotion": "peace"},
{"color": "green", "emotion": "growth"},

]

Template for formatting examples in a structured way
example structure = """
Color: {color}

Associated Emotion: {emotion}\n

Create the example prompt template

color prompt template = PromptTemplate(
input_variables=["color", "emotion"],
template=example_ structure,

)

Construct a few-shot prompt template using the color-emotion pairs

few _shot color prompt = FewShotPromptTemplate(
examples=color emotion pairs,
example_prompt=color prompt template,
prefix="Here are a few examples demonstrating the emotions linked with
colors:\n\n",
suffix="\n\nNow, considering the new color, predict the associated
emotion:\n\nColor: {input}\nEmotion:",
input_variables=["input"],
example separator="\n",

)

Generate the final prompt for a new color input
final prompt text = few shot color prompt.format(input="purple")

Use the generated prompt and run it through the language model
final prompt = PromptTemplate(template=final prompt text, input_
variables=[])

prompt_chain = final prompt | language model

13

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Get the AI-generated response for the input color
model output = prompt chain.invoke({})

Print the input color and its corresponding predicted emotion
print("Color: purple")
print("Predicted Emotion:", model output.content)

Output:

Color: purple
Predicted Emotion: Color: purple
Associated Emotion: creativity

Alternating Human/Al Messages

This strategy involves using few-shot prompting with alternating human and Al
responses. It’s particularly useful for chat-based applications, as it helps the language
model grasp the flow of conversation and generate contextually relevant replies.

Though this method excels in handling conversational dynamics and is simple to
implement for chat applications, it is less adaptable for other types of use cases and
works best with chat-specific models. However, alternating human and Al messages can
be applied creatively, such as building a prompt to translate English into pirate language
in a chat format.

Chain Prompting

Chain prompting is a technique where multiple prompts are linked together in a
sequence, with the output of one prompt being used as the input for the next. This
method allows for progressively refining or expanding the context of the interaction,
enabling the model to handle more complex tasks or multistep reasoning.

Key Characteristics

1. Sequential Flow: The process involves feeding the output from
one step directly into the next, enabling the model to “remember”

and build upon previous information.

14

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

2. Dynamic Adjustments: At each step, new information can be
introduced based on the model’s prior responses, allowing for
iterative improvements in the result.

Steps for Chain Prompting

1. Initial Prompt: Start by providing an initial prompt to generate a
base response.

2. Extract Information: Identify relevant details or key elements

from the generated output.

3. New Prompt Construction: Create a subsequent prompt using
the extracted information, adding new context or instructions to
refine the output further.

4. Repeat Process: Continue chaining prompts as necessary, each
building on the last, until the desired final output is obtained.

Using Chain Prompting in LangChain

To implement chain prompting in LangChain, you can leverage its PromptTemplate
class. This class simplifies the construction of prompts by allowing for dynamic input
values, making it ideal for situations where prompts need to evolve based on previous

answers.
e PromptTemplate enables you to

e Build prompts that adapt dynamically to changing inputs,
ensuring flexibility in prompt chains

o Simplify the process of passing outputs from one step to the next
by easily substituting variables or new context into each prompt

15

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Additional Benefits

e Complex Workflows: Chain prompting allows for handling more
advanced tasks that require multiple steps, such as multiturn
conversations, solving multipart problems, or conducting research
in stages.

e Error Handling: If an intermediate step yields an incomplete or
ambiguous response, chain prompting enables you to adjust the
following prompts to clarify or correct the issue.

o Interactive Exploration: This approach allows for a more
exploratory dialogue, where each prompt can refine the context,
helping to uncover deeper insights.

In LangChain, combining chain prompting with other techniques like few-shot
prompting or memory-based approaches allows you to build complex, multistep
systems that leverage the power of large language models effectively.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

Initialize the language model
1Im = ChatOpenAI(api_key="sk-proj-056py5goMfqp8 g2gOgfhefriHLriyWyP6erQl4dQ
yi3D2HWBxJgCWr jWMbvMTIdvxH1zaWm11T3B1lbkFJssimhhNZJ7YREWFugP2wKQoMHIR3FMCDZx
i0A_rPSrCfXZK6ZJbcGI85dpMGV4adCt7R_zrUkA",

model name="gpt-40-mini",

temperature=0)

Prompt 1: Ask for the scientist who developed the theory of general
relativity

question template = """Who is the scientist that formulated the theory of
general relativity?

Answer: """

prompt for scientist = PromptTemplate(template=question template, input_
variables=[])

16

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Prompt 2: Ask for a brief explanation of the scientist's theory of
general relativity

fact template = """Give a brief explanation of {scientist}'s theory of
general relativity.

Answer: """

prompt _for fact = PromptTemplate(input variables=["scientist"],
template=fact template)

Create a runnable chain for the first prompt to retrieve the
scientist's name
chain_for question = prompt for scientist | 11lm

Get the response for the first question
response_to question = chain for question.invoke({})

Extract the scientist's name from the response
scientist name = response to question.content.strip()

Create a runnable chain for the second prompt using the extracted
scientist's name
chain_for fact = prompt for fact | 1llm

Input data for the second prompt
fact_input = {"scientist": scientist name}

Get the response for the second question about the theory
response_to fact = chain_for fact.invoke(fact input)

Output the scientist's name and the explanation of their theory
print("Scientist:", scientist name)
print("Theory Description:", response to fact)

Output:

Scientist: The scientist who formulated the theory of general relativity is
Albert Einstein.

Theory Description: content="Albert Einstein's theory of general
relativity, formulated in 1915, is a fundamental theory of gravitation

that describes gravity not as a force, but as a curvature of spacetime
caused by mass. According to this theory, massive objects like planets and

17

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

stars warp the fabric of spacetime around them, and this curvature affects
the motion of other objects, causing them to follow curved paths. General
relativity has profound implications for our understanding of the universe,
including the behavior of black holes, the expansion of the universe, and
the bending of light around massive objects. It has been confirmed through
numerous experiments and observations, making it a cornerstone of modern
physics." additional kwargs={'refusal': None} response metadata={'token
usage': {'completion tokens': 131, 'prompt tokens': 36, 'total tokens':
167, 'completion tokens details': {'audio tokens': None, 'reasoning
tokens': 0}, 'prompt tokens details': {'audio tokens': None, 'cached_
tokens': 0}}, 'model name': 'gpt-40-mini-2024-07-18', 'system fingerprint':
"fp_e2bde53e6e’, 'finish reason': 'stop', 'logprobs': None} id='run-
d16897c9-54a3-4feb-9a7c-fe481798c984-0" usage metadata={'input_tokens': 36,
‘output_tokens': 131, "total tokens': 167, 'input token details': {'cache_
read': 0}, 'output token details': {'reasoning': 0}}

Chain-of-Thought Prompting

Chain-of-thought prompting (CoT) is a technique designed to encourage large language
models (LLMs) to explain their reasoning process, leading to more accurate outcomes.
By presenting few-shot examples that showcase step-by-step reasoning, CoT helps
guide the model to articulate its thought process when responding to prompts. This
method has proven effective for tasks such as arithmetic, common sense reasoning, and
symbolic logic.

In the context of LangChain, CoT offers several advantages. First, it helps deconstruct
complex problems by guiding the model to break them into smaller, more manageable
steps, which makes the problem easier to solve. This is especially useful for tasks
involving calculations, logic, or multistep reasoning. Second, CoT can help the model
generate more coherent and contextually relevant outputs by leading it through related
prompts. This results in more accurate and meaningful responses, particularly for tasks
that require deep comprehension of a problem or domain.

However, there are some limitations to CoT. One significant drawback is that it
generally improves performance only when applied to models with approximately 100
billion parameters or more. Smaller models often generate illogical reasoning chains,
which can result in lower accuracy compared to standard prompting. Additionally,

18

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

CoT'’s effectiveness varies across different types of tasks. While it excels in tasks involving

arithmetic, common sense, and symbolic reasoning, it may offer fewer benefits or even

hinder performance in other task categories.

Advanced Tips for Effective Prompt Engineering

1.

Be Specific with Your Prompt: Provide clear and detailed
instructions in your prompt. The more context, background, and
specifics you give, the better the LLM can interpret and generate
arelevant response. Vague prompts lead to generalized or
incomplete answers.

Encourage Conciseness: If the response needs to be short and
to the point, be explicit about it. You can request responses to be
limited to a specific number of words or sentences, which forces
the model to focus on delivering the essential information.

Ask for Reasoning or Explanations: When dealing with complex
tasks, encourage the model to explain its reasoning or show the
steps it took to arrive at its answer. This improves the quality of
results, particularly for problem-solving, logic, and reasoning
tasks, ensuring transparency in the process.

Iterate and Refine Prompts: Prompt engineering is rarely a one-
time activity. Iteration is key—test and tweak your prompts to
see how different phrasing or added details change the model’s
response. Refine until the output aligns with your expectations.

Use Examples to Guide Responses: One of the most powerful
ways to guide LLMs is by using few-shot learning. By showing the
model a few examples of what you're looking for, you significantly
increase the chance of receiving an answer that mirrors your

expectations in tone, format, or reasoning.

Apply Constraints: If you're looking for specific formats or a
particular structure (e.g., bulleted lists, headings, step-by-step
processes), be clear about these constraints in your prompt. This
helps the model organize its output according to your needs.

19

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

7. Task-Specific Prompting: Tailor your prompts to the specific task
at hand. For example, creative writing prompts should encourage
open-ended responses, while technical prompts should focus on
precision, structure, and accuracy. Each type of task may require a
different approach to prompt engineering.

8. Leverage Clarifying Questions: If the initial response isn’t what
you expected, ask the model to elaborate or clarify specific points.
This helps guide the conversation in a more meaningful direction
and ensures the model understands and focuses on what’s

important.

9. Balance Open-Endedness and Constraints: For tasks where
creativity is needed, such as brainstorming, use more open-ended
prompts to allow the model to explore a variety of ideas. For tasks
requiring accuracy, use tighter constraints to keep the model
focused on relevant and correct answers.

10. Adjust Prompt Length: The length of your prompt can influence
the quality of the response. For some tasks, a simple, concise
prompt works best, while more complex tasks might require
detailed, multipart instructions. Experiment with prompt length
to see what works for different types of questions.

11. Include Key Terms: If your task requires specific technical
language, jargon, or domain-specific terms, include those
directly in the prompt. This helps guide the model toward more
specialized and accurate outputs, especially in fields like science,
technology, or law.

12. Specify the Role of the LLM: Sometimes, framing the model’s
role in the prompt can improve the result. For instance, start your
prompt with phrases like “As a teacher,” or “You are an expert in...”
to influence the model’s tone and style of response, aligning it
with the required task.

13. Set an Qutput Persona: In certain tasks, you can request the
model to assume a specific persona or tone. For example, ask the
model to respond like a teacher, researcher, or customer service
agent to tailor the responses to different contexts or audiences.

20

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

14. Utilize Multiturn Dialogue: For tasks that require deeper
exploration, consider breaking the problem down into a series of
smaller questions. This approach not only helps the model focus
on individual components of a complex task but also provides
you with an opportunity to guide the conversation progressively
toward a complete answer.

15. Test Edge Cases: For robustness, test how your prompt performs
with edge cases or atypical inputs. This helps ensure that the LLM
performs well across a variety of scenarios and doesn’t generate

inaccurate or nonsensical results in unusual situations.

16. Account for Model Limitations: Remember that LLMs have
limitations in their knowledge and reasoning capabilities. Not all
prompts will yield perfect responses, and some answers might
lack depth or accuracy in certain specialized domains. Recognize
when an LLM has reached its limit, and avoid overrelying on it for
highly specialized or sensitive tasks.

17. Keep Bias in Check: Be mindful of the potential for biases in
LLM-generated outputs. Craft prompts that minimize the chances
of generating biased, harmful, or inappropriate content. Avoid
phrasing that could steer the model toward biased or harmful
assumptions.

18. Incorporate Multiple Prompt Variations: Instead of relying
on one version of a prompt, try asking the same question or
requesting the same task using several different prompt phrasings.
This technique helps in uncovering new insights or variations in

response quality.

By applying these strategies, you can enhance your ability to interact effectively
with large language models, improving the quality and relevance of their outputs. As
Al tools continue to evolve, mastery of prompt engineering will remain a critical skill
for developers, researchers, and professionals who rely on LLMs to optimize their

workflows.

21

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

What Are Chains?

A LangChain chain is a structured sequence of operations in the LangChain framework,
where various components like language models, tools, and external APIs are connected
to perform complex tasks. The primary purpose of a chain is to manage and coordinate
interactions between different modules, allowing for multistep reasoning and advanced
workflows when working with large language models (LLMs).

Key characteristics of a LangChain chain:

e Modular Design: Chains are designed to be modular, meaning
individual components can be easily added, removed, or replaced.
This allows for flexibility in constructing workflows depending on the
use case, from simple to highly sophisticated tasks. Each module or
component typically has a clearly defined input/output structure.

e Multistep Processing: Chains facilitate multistep operations by
passing the output of one component as the input to another. This
enables more advanced reasoning, decision-making, or actions that
require several stages of processing, such as combining language
understanding with tool execution or validation.

e Control Flow: Chains can incorporate control flow mechanisms,
such as conditional logic or loops, enabling the workflow to branch
or iterate based on the intermediate results. This allows for dynamic
behavior, adjusting the sequence of actions depending on the inputs
or outputs at each step.

e Handling Intermediate Qutputs: A chain can retain intermediate
outputs, either for logging purposes, debugging, or as part of a larger
workflow. This allows for transparency in the process, making it
easier to inspect how each step contributes to the final result.

o Interaction with External Systems: Chains are not limited to just
working with language models. They can interact with external
systems, such as databases, APIs, search engines, or knowledge
bases, to fetch relevant information or execute tasks that go beyond
natural language processing. This is particularly useful for retrieving
real-time data, performing calculations, or executing functions that
require interaction with other platforms.

22

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

e Memory Management: Some chains integrate memory, allowing
them to store and recall past interactions, decisions, or context. This
feature is particularly valuable for applications like conversational
agents, where maintaining context over multiple interactions is

critical for coherent and contextually aware responses.

e Scalability: Chains can be constructed in a scalable manner,
allowing developers to design workflows that handle both simple
tasks (such as a single prompt) or more intricate, multistep processes
involving numerous components and external services.

o Reusability: LangChain encourages reusability by enabling the
creation of reusable chains that can be applied to different tasks
without reconfiguring the entire workflow. Developers can design a
chain once and use it for various applications or modify it for similar

tasks with minimal changes.

LangChain chains are an essential mechanism for building sophisticated
applications that go beyond simple LLM queries, orchestrating complex interactions in a
seamless, structured, and highly configurable way.

Chain Components

A LangChain chain consists of several key components that work together to create
multistep workflows.

First, prompt templates are used to guide LLM outputs by filling in placeholders
with dynamic values, helping customize the responses. The core of the system,
language models (LLMs), generate responses based on the input prompts. Chains can
also integrate with external tools, such as APIs or databases, to fetch data or perform
additional tasks beyond text generation.

Memory is another crucial component, allowing the chain to store and recall
information across interactions, ensuring continuity, especially in conversational
contexts. Input variables provide dynamic data that personalize the chain’s behavior,
while output parsers process and format model outputs for further steps or final
responses.

23

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

More complex tasks can be handled by nested chains (subchains), which break
down workflows into smaller, manageable steps. Decision logic introduces conditional
branching, enabling the chain to adapt based on input or intermediate results. Chains
can also include retrieval components to fetch relevant information from external
sources, enhancing context and accuracy.

Control flow governs the sequence and timing of operations, ensuring tasks are
performed in the right order. To ensure robustness, error handling mechanisms are
built in, managing failures and triggering retries or alternative steps when needed. API
connectors allow chains to interact with external services, expanding functionality,
while logs and debugging tools track execution, helping with monitoring and
troubleshooting.

These components enable LangChain chains to integrate LLMs with tools, logic, and
external data sources, allowing for flexible and complex workflows tailored to various
applications.

Chain Types

In LangChain, there are several types of chains that can be used to construct workflows
depending on the complexity, purpose, and specific requirements of the task. Each
chain type serves a different function and can be adapted or combined to create versatile
applications. Here are the most common types of LangChain chains.

1. Simple Chain

A simple chain consists of a single operation or a straightforward sequence of
operations. This type of chain takes an input, processes it through one or more steps,
and generates a single output. It’s often used for basic tasks, such as filling in a prompt
template and calling an LLM to generate a response.

o Usage: Direct question-answering tasks, summarization, or text
transformation

o Components: Usually involves a single prompt template, one LLM
call, and an output

24

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS
Example:

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAl

Step 1: Define the language model (in this case, OpenAI's GPT)
11m = OpenAI(api_key="sk-proj-056py5goMfqp8 g2gOgfhefriHLriyWyP6erQI4dQyi3D
2HWBxJgCWr jWMbvMTJdvxH1zaWm11T3B1bkFJssimhhNZJ7YREWFugP2wKQoMHIR3FMCDZx10A
rPSrCfXZK6Z1bcGI85dpMGV4adCt7R_zrUKA",
temperature=0.7) # Set the desired temperature for response
variability

Step 2: Define the prompt template
prompt template = """

Summarize the following question briefly:
{user question}

Step 3: Create the PromptTemplate object

prompt = PromptTemplate(
input_variables=["user question"],
template=prompt template,

)

Step 4: Create the LLMChain using the language model and prompt template
chain = prompt | 1lm

Step 5: Input the user's question and run the chain
user_question = "Can you explain how photosynthesis works in simple terms?"

output = chain.invoke(user_ question)

Print the summarized question
print("Summarized Question:", output)

Output:

Summarized Question:
Explaining photosynthesis in simple terms.

25

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

2. Sequential Chain

A sequential chain involves multiple steps arranged in a strict linear sequence. Each
step’s output becomes the input for the next step. These chains are useful when tasks
need to be completed in a particular order.

o Usage: When multistep reasoning or progressive tasks are needed
(e.g., generating an outline, followed by writing content based on that
outline)

o Components: Multiple operations, such as LLM calls, external API
interactions, or data transformations that occur in sequence

Example:

from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAl

Step 1: Define the language model
11m = OpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefriHLriyWyP6erQl4dQyi3D
2HWBxJgCWr jWMbvMTJdvxH1zaWm11T3B1bkFJssimhhNZJ7YREWFugP2wKQoMHIR3FMCDZx1i0A
rPSrCfXZK6ZJbcGI85dpMGV4adCt7R_zrUKA",

temperature=0.7)

Step 2: Create the first prompt template to summarize the question
summary prompt template = """

Summarize the following question briefly:

{user question}

Step 3: Create the second prompt template to generate a short answer
answer_prompt_template =
Provide a brief answer to the following question:

{summarized question}

Step 4: Create PromptTemplate objects for both prompts
summary prompt = PromptTemplate(

26

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

input_variables=["user question"],
template=summary prompt template,

)

answer_prompt = PromptTemplate(
input variables=["summarized question"],
template=answer prompt template,

)

Step 5: Create LLMChain objects for both steps
summary chain = LLMChain(1lm=11m, prompt=summary prompt)
answer _chain = LLMChain(1lm=11m, prompt=answer prompt)

Step 6: Create a SimpleSequentialChain that links both chains together
sequential chain = SimpleSequentialChain(
chains=[summary chain, answer chain]

)

Step 7: Input the user's question and run the sequential chain
user_question = "Can you explain how photosynthesis works in simple terms?"
output = sequential chain.run(user question)

Print the output of the sequential chain

print("Final Output:", output)

Output:

Photosynthesis is the process by which plants and some other organisms use
sunlight to turn water and carbon dioxide into oxygen and sugar. This sugar
is then used as a source of energy for the plant's growth and development.
The process takes place in the chloroplasts of plant cells and requires

the presence of chlorophyll, a green pigment that absorbs sunlight. During
photosynthesis, carbon dioxide is taken in through small openings on the
leaves called stomata, and water is absorbed through the roots. Sunlight

is then used to convert these substances into energy in the form of sugar,
while oxygen is released as a byproduct. This process is vital for the
survival of plants, as well as for maintaining oxygen levels in the Earth's
atmosphere.

27

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

3. Conversational Chain

This chain is used in conversational agents where maintaining context is critical. It
leverages memory to store and recall previous interactions, enabling the model to
respond in a way that reflects the ongoing conversation.

o Usage: Chatbots, virtual assistants, customer support applications, or
any system requiring multiturn conversations

o Components: LLMs for generating responses, memory for storing
context, and potentially external tools for more complex interactions

Note In the latest version of LangChain, you don’t need to add the openai _api
key parameter anymore, but you need to define it as an environmental variable.

Example:

import os
Set your OpenAI API key
os.environ["OPENAI API KEY"] = "sk-proj-056py5goMfqp8 g2gOgfhefriHLriyWyP6
erQJ4dQyi3D2HWBxJgCWr jWMbvMTIdvxH1zaWm11T3B1bkFJssimhhNZJ7YREWFugP2wKQoMHI
R3FMCDZx1i0A rPSrCfXZK6ZJbcGI85dpMGV4adCt7R_zrUKA"
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
Step 1: Define a prompt template for conversation, using a variable for
user input
prompt = ChatPromptTemplate.from messages(
[("user", "{user_ input}")]
)
Step 2: Set up the ChatOpenAI model (gpt-3.5-turbo in this case) with
temperature control
11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

28

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Step 3: Create memory to store conversation history
ConversationBufferMemory()

memory
Step 4: Create the chain combining prompt, model, and output parser

chain = LLMChain(prompt=prompt, 1lm=11m, memory=memory, output
parser=StrOutputParser())

Simulate a conversation by invoking the chain with memory

First user input

response_1 = chain.invoke({"user_input": "Can you explain what
photosynthesis is?"})

print("AI Response 1:", response 1)

Second user input

response 2 = chain.invoke({"user input": "What happens during the light-
dependent reactions?"})

print("AI Response 2:", response 2)

Third user input

response 3 = chain.invoke({"user input": "Can you summarize both for me?"})
print("AI Response 3:", response 3)

print(memory)

Output:

AI Response 1: {'user input': 'Can you explain what photosynthesis is?',
"history': "', 'text': 'Sure! Photosynthesis is the process by which green
plants, algae, and some bacteria convert light energy, usually from the

sun, into chemical energy in the form of glucose (sugar). This process
takes place in the chloroplasts of plant cells and involves the absorption
of carbon dioxide and water, which are converted into glucose and oxygen
through a series of complex chemical reactions. The glucose produced
through photosynthesis is used by the plant for energy and growth, while
the oxygen is released into the atmosphere as a byproduct. Photosynthesis
is essential for the survival of plants and other photosynthetic organisms,
as well as for the overall health of ecosystems.'}

AL Response 2: {'user input': 'What happens during the light-dependent
reactions?', 'history': 'Human: Can you explain what photosynthesis is?\
nAl: Sure! Photosynthesis is the process by which green plants, algae, and

29

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

some bacteria convert light energy, usually from the sun, into chemical
energy in the form of glucose (sugar). This process takes place in the
chloroplasts of plant cells and involves the absorption of carbon dioxide
and water, which are converted into glucose and oxygen through a series of
complex chemical reactions. The glucose produced through photosynthesis is
used by the plant for energy and growth, while the oxygen is released into
the atmosphere as a byproduct. Photosynthesis is essential for the survival
of plants and other photosynthetic organisms, as well as for the overall
health of ecosystems.', 'text': 'During the light-dependent reactions,

also known as the light reactions, several key processes take place in the
thylakoid membranes of the chloroplast:\n\ni. Absorption of light: Light
energy is absorbed by chlorophyll and other pigments in the photosystems,
specifically Photosystem II and Photosystem I.\n\n2. Water splitting: The
absorbed light energy is used to split water molecules into oxygen, protons
(H+ ions), and electrons. This process releases oxygen as a byproduct.\n\
n3. Electron transport chain: The energized electrons from Photosystem II
are passed along a series of proteins in the electron transport chain,
generating ATP through the process of chemiosmosis.\n\n4. Production

of ATP and NADPH: The flow of electrons through the electron transport
chain ultimately leads to the production of ATP and NADPH, which are both
energy carriers used in the Calvin cycle.\n\nOverall, the light-dependent
reactions convert light energy into chemical energy in the form of ATP and
NADPH, which are then used in the Calvin cycle to produce glucose and other
organic compounds.'}

AI Response 3: {'user input': 'Can you summarize both for me?', 'history':
"Human: Can you explain what photosynthesis is?\nAI: Sure! Photosynthesis
is the process by which green plants, algae, and some bacteria convert
light energy, usually from the sun, into chemical energy in the form of
glucose (sugar). This process takes place in the chloroplasts of plant
cells and involves the absorption of carbon dioxide and water, which are
converted into glucose and oxygen through a series of complex chemical
reactions. The glucose produced through photosynthesis is used by the plant
for energy and growth, while the oxygen is released into the atmosphere

as a byproduct. Photosynthesis is essential for the survival of plants

and other photosynthetic organisms, as well as for the overall health of

30

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

ecosystems.\nHuman: What happens during the light-dependent reactions?\
nAl: During the light-dependent reactions, also known as the light
reactions, several key processes take place in the thylakoid membranes

of the chloroplast:\n\ni1. Absorption of light: Light energy is absorbed

by chlorophyll and other pigments in the photosystems, specifically
Photosystem II and Photosystem I.\n\n2. Water splitting: The absorbed light
energy is used to split water molecules into oxygen, protons (H+ ions),
and electrons. This process releases oxygen as a byproduct.\n\n3. Electron
transport chain: The energized electrons from Photosystem II are passed
along a series of proteins in the electron transport chain, generating ATP
through the process of chemiosmosis.\n\n4. Production of ATP and NADPH: The
flow of electrons through the electron transport chain ultimately leads

to the production of ATP and NADPH, which are both energy carriers used

in the Calvin cycle.\n\nOverall, the light-dependent reactions convert
light energy into chemical energy in the form of ATP and NADPH, which

are then used in the Calvin cycle to produce glucose and other organic
compounds.', 'text': 'Sure! The first passage discusses the importance of
self-care and setting boundaries to prevent burnout. It emphasizes the
need to prioritize mental and physical well-being in order to maintain a
healthy work-life balance.\n\nThe second passage highlights the benefits
of meditation for reducing stress and anxiety. It suggests incorporating
mindfulness practices into daily routines to improve overall mental health
and emotional well-being.'}
chat_memory=InMemoryChatMessageHistory(messages=[HumanMessage(conte
nt="Can you explain what photosynthesis is?', additional kwargs={},
response_metadata={}), AIMessage(content='Sure! Photosynthesis is the
process by which green plants, algae, and some bacteria convert light
energy, usually from the sun, into chemical energy in the form of glucose
(sugar). This process takes place in the chloroplasts of plant cells

and involves the absorption of carbon dioxide and water, which are
converted into glucose and oxygen through a series of complex chemical
reactions. The glucose produced through photosynthesis is used by the
plant for energy and growth, while the oxygen is released into the
atmosphere as a byproduct. Photosynthesis is essential for the survival

of plants and other photosynthetic organisms, as well as for the overall

31

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

health of ecosystems.', additional kwargs={}, response metadata={}),
HumanMessage(content="What happens during the light-dependent reactions?’,
additional kwargs={}, response metadata={}), AIMessage(content='During the
light-dependent reactions, also known as the light reactions, several key
processes take place in the thylakoid membranes of the chloroplast:\n\

ni. Absorption of light: Light energy is absorbed by chlorophyll and other
pigments in the photosystems, specifically Photosystem II and Photosystem
I.\n\n2. Water splitting: The absorbed light energy is used to split

water molecules into oxygen, protons (H+ ions), and electrons. This
process releases oxygen as a byproduct.\n\n3. Electron transport chain:
The energized electrons from Photosystem II are passed along a series

of proteins in the electron transport chain, generating ATP through the
process of chemiosmosis.\n\n4. Production of ATP and NADPH: The flow of
electrons through the electron transport chain ultimately leads to the
production of ATP and NADPH, which are both energy carriers used in the
Calvin cycle.\n\nOverall, the light-dependent reactions convert light
energy into chemical energy in the form of ATP and NADPH, which are then
used in the Calvin cycle to produce glucose and other organic compounds.',
additional kwargs={}, response metadata={}), HumanMessage(content="'Can

you summarize both for me?', additional kwargs={}, response metadata={}),
AIMessage(content="Sure! The first passage discusses the importance of
self-care and setting boundaries to prevent burnout. It emphasizes the
need to prioritize mental and physical well-being in order to maintain a
healthy work-life balance.\n\nThe second passage highlights the benefits
of meditation for reducing stress and anxiety. It suggests incorporating
mindfulness practices into daily routines to improve overall mental health
and emotional well-being.', additional kwargs={}, response metadata={})])

4. Multi-input Chain

This type of chain accepts multiple inputs, which are processed either in parallel or
in sequence depending on the workflow. It allows for more complex scenarios where
various types of data or inputs must be handled together.

32

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

o Usage: When a task requires different sources of information,
such as combining data from a user input and an external API or
multiple models

« Components: Several input sources (e.g., a prompt and a knowledge
base), multiple models, and tools to combine and process the inputs

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain openai import ChatOpenAl

from langchain core.output parsers import StrOutputParser
from langchain.chains import SimpleSequentialChain

Step 1: Define the first prompt to accept a question and context
question prompt = ChatPromptTemplate.from messages(
[("user", "Given the context: '{context}', answer the question:
"{question}'")]
)
Step 2: Define the ChatOpenAI model
11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 3: Create the output parser
output_parser = StrOutputParser()

Step 4: Combine the prompt and model into a chain

This is a simple chain that handles multiple inputs (question and
context)

chain = question prompt | 1lm | output parser

Step 5: Define the inputs for the multi-input chain

inputs = {
"question": "How does photosynthesis work?",
"context": "Photosynthesis is the process used by plants to convert
light energy into chemical energy."

33

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Step 6: Run the chain with both inputs
response = chain.invoke(inputs)

Output the response

print("Response:", response)

Output:

Response: Photosynthesis works by plants using sunlight to convert carbon
dioxide and water into glucose (sugar) and oxygen. This process takes place
in the chloroplasts of plant cells, where the green pigment chlorophyll
absorbs sunlight and initiates the chemical reactions that produce glucose.
The oxygen produced is released into the atmosphere as a byproduct.

Why Multi-input?

1. Multi-input Prompt: The ChatPromptTemplate defines a template
that accepts two inputs: context and question. This prompt will
insert both into the message for the language model.

2. Model: The ChatOpenAI model (gpt-3.5-turbo) is used to process
the input and generate a response.

3. Output Parser: The StrOutputParser is used to parse the model’s
response into a string format. We will discuss the output parsers a
bit later in the book.

4. Chain Construction: The chain combines the prompt, model,
and output parser, handling both the question and context
together as inputs.

5. Invoke: The .invoke() method is used to pass the inputs (both
the question and the context) to the chain for processing.

5. Multi-output Chain

A multi-output chain takes an input and produces multiple outputs. This type of chain is
useful when you want to generate different types of results based on a single input, such
as extracting multiple pieces of information or generating multiple response options.

34

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

o Usage: Use cases where the same input must be processed in
different ways, such as generating summaries, key takeaways, and
action items from a single document

e Components: One input, multiple steps or LLM calls, and a set
of outputs

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

from langchain core.output parsers import StrOutputParser
from langchain.chains import LLMChain

from langchain.chains import SequentialChain

Step 1: Define the prompt for generating a summary
summary prompt = ChatPromptTemplate.from messages(
[("user", "Please summarize the following text: {input text}")]

)

Step 2: Define the prompt for extracting key points
key points prompt = ChatPromptTemplate.from messages(

[("user", "Extract the key points from the following text: {input_

text}")]
)

Step 3: Set up the ChatOpenAI model (same model for both tasks)
11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 4: Create the output parser

output_parser = StrOutputParser()

Step 5: Create LLMChain for summarization and key point extraction
summary_chain = LLMChain(prompt=summary prompt, llm=11m, output_
key="summary") # Changed output key to "summary"

key points chain = LLMChain(prompt=key points prompt, 1lm=11m, output_

key="key points") # Changed output key to "key points"

Step 6: Create a SequentialChain that runs both chains (true
multi-output)
multi output chain = SequentialChain(

chains=[summary chain, key points chain],

35

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

input_variables=["input text"], # single input passed to both chains
output_variables=["summary", "key points"] # two outputs

)
Step 7: Define the input text
input_text = """

Photosynthesis is a process used by plants to convert light energy into
chemical energy. During photosynthesis,

plants take in carbon dioxide (C02) and water (H20) from the air and soil.
Within the plant cell, the water is oxidized,

meaning it loses electrons, while the carbon dioxide is reduced, meaning it
gains electrons. This process converts

the water into oxygen and the carbon dioxide into glucose. The plant then
releases the oxygen back into the air,

and stores energy in the form of glucose molecules.

Step 8: Run the multi-output chain using apply() for multiple outputs
outputs = multi output chain.apply([{"input text": input text}])[0]

Step 9: Output the responses
print("Summary:", outputs['summary'])
print("Key Points:", outputs['key points'])

Output:

Summary: Photosynthesis is a process where plants convert light energy into

chemical energy by taking in carbon dioxide and water to produce oxygen and

glucose. The plant releases the oxygen and stores the glucose for energy.

Key Points: - Photosynthesis is a process used by plants to convert light

energy into chemical energy.

- Plants take in carbon dioxide and water from the air and soil.

- Water is oxidized and carbon dioxide is reduced during photosynthesis.

- The result is oxygen and glucose production.

- Oxygen is released back into the air, while glucose is stored as energy
in the plant.

36

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Why It’s a Multi-output Chain

1. Single Input: The input (input_text) is passed once and processed
through multiple chains.

2. Multiple Outputs: The input is processed in two different ways
(summary and key points), and the outputs are stored in distinct
keys (summary, key_points).

3. Sequential Execution: The SequentialChain ensures that both
chains run in sequence, with the same input generating multiple

outputs in a single invocation.
Handling Multiple Outputs with apply():

e Since SequentialChain supports multiple output variables, we use
apply() instead of run() to handle cases where more than one output
is generated. This is essential for returning a dictionary with multiple
output keys.

6. Router Chain

The router chain acts as a decision-making hub that directs the input to different
subchains based on predefined conditions or classifications. It's useful when you have
various workflows that depend on the type of input.

o Usage: For tasks requiring conditional logic, such as routing
customer queries to the right department (billing, technical support,
etc.) or choosing the right model based on input complexity

e Components: A router module that decides which subchain to
invoke, along with those subchains themselves

from langchain core.output parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain openai import ChatOpenAI

Step 1: Define the prompts for summarization and key points extraction

37

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Summarization prompt
summary prompt = ChatPromptTemplate.from messages(
[("user", "Please summarize the following text: {input text}")]

)

Key points extraction prompt

key points prompt = ChatPromptTemplate.from messages(
[("user", "Extract the key points from the following text: {input_
text}")]

)

Classifier prompt to determine if the input is asking for a "summary" or

"key points extraction”

classifier prompt = ChatPromptTemplate.from messages(
[("user", "Classify this request as 'summarization' or 'key points
extraction': {input text}")]

)

Step 2: Define the language model

11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 3: Define chains using the pipe operator
Chain for classifying input
classifier chain = classifier prompt | 1lm | StrOutputParser()

Chain for summarization
summary chain = summary prompt | 1lm | StrOutputParser()
Chain for key points extraction
key points chain = key points prompt | 1lm | StrOutputParser()
Step 4: Define a function to handle the routing based on classification
def router chain(input text):
Classify the input (is it a request for summarization or key points?)
classification = classifier chain.invoke({"input text": input text})
Route to the appropriate chain based on the classification result
if "summarization" in classification.lower():
return summary chain.invoke({"input text": input text})
elif "key points extraction" in classification.lower():
return key points chain.invoke({"input text": input text})

38

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

else:
Fallback to the summary chain if the classification is unclear
return summary chain.invoke({"input text": input text})

Step 5: Define input texts

input_text 1 = "Summarize this text: Photosynthesis is a process used by
plants to convert light energy into chemical energy."

input_text 2 = "Give me the key points of the following text:
Photosynthesis is a process used by plants to convert light energy into
chemical energy."

Step 6: Run the router chain on different inputs
output_1 = router chain(input_text 1)
output 2 = router chain(input_ text 2)

Step 7: Print the outputs
print("Output 1:", output 1)
print("Output 2:", output 2)

Output:

Output 1: Photosynthesis is the process that plants use to convert light
energy into chemical energy.

Output 2: - Photosynthesis is a process used by plants

- Plants convert light energy into chemical energy through photosynthesis

Why Router Chain?

e Prompt Definition: Each prompt is defined using
ChatPromptTemplate.from_messages(). This includes the summary_
prompt, key_points_prompt, and classifier_prompt for routing.

o Chained Operations: The chains (classifier_chain, summary_chain,
and key_points_chain) are created using the pipe (I) operator to
chain together the prompt, model (ChatOpenAl), and output parser
(StrOutputParser).

e Router Function: The router_chain function first invokes the
classifier_chain to classify the input as either a “summarization” or
“key points extraction” task.

39

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

e Based on the classification result, it dynamically routes the input to
the appropriate chain (summary_chain or key_points_chain). If the
classification is unclear, it defaults to the summarization chain.

¢ Running the Chain: The router_chain function is run on two
different inputs, input_text_1 and input_text_2, and the outputs are
printed.

7. Gontrol Flow Chain

A control flow chain allows branching and conditional execution based on the results of
intermediate steps. The workflow can change dynamically depending on the decisions
made at each stage, enabling complex reasoning processes.

o Usage: Scenarios where certain actions are taken only if specific
conditions are met, such as checking the confidence level of a
model’s output or validating an API response

o Components: Logic that governs branching (e.g., if-else statements),
conditional steps, and error handling mechanisms

from langchain core.output parsers import StrOutputParser

from langchain_core.prompts import ChatPromptTemplate

from langchain openai import ChatOpenAl

Step 1: Define prompts for different tasks

Prompt to answer a definition-related question

definition prompt = ChatPromptTemplate.from messages(
[("user", "Define the following concept: {concept}")]

)

Prompt to perform a calculation
calculation prompt = ChatPromptTemplate.from messages(
[("user", "Calculate the following: {calculation}")]

)

Classifier prompt to determine if the input is asking for a "definition"
or a "calculation"
classifier prompt = ChatPromptTemplate.from messages(

40

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

[("user", "Classify this request as 'definition' or 'calculation':
{input_text}")]

)

Step 2: Set up the ChatOpenAI model

11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
Step 3: Define chains using the pipe operator

Chain for classifying input
classifier chain = classifier prompt | 1lm | StrOutputParser()

Chain for definition tasks
definition _chain = definition prompt | 11m | StrOutputParser()

Chain for calculation tasks
calculation chain = calculation prompt | 1lm | StrOutputParser()

Step 4: Define a function to handle control flow based on classification

def control flow_chain(input_text):
Classify the input (is it a request for a definition or a
calculation?)

classification = classifier chain.invoke({"input text": input text})
Route to the appropriate chain based on the classification result

if "definition" in classification.lower():
concept = input_text.replace("Define", "").strip()
return definition chain.invoke({"concept": concept})
elif "calculation" in classification.lower():
calculation = input text.replace("Calculate", "").strip()
return calculation chain.invoke({"calculation": calculation})
else:
Default response if classification is unclear
return "Sorry, I didn't understand your request."

Step 5: Define input texts
input_text 1
input_text 2

"Define photosynthesis"
"Calculate 5 + 3"

41

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Step 6: Run the control flow chain on different inputs
output 1 = control flow chain(input_text 1)
output_2 = control flow chain(input_text 2)

Step 7: Print the outputs
print("Output 1:", output 1)
print("Output 2:", output 2)

Output:

Output 1: Photosynthesis is the process by which green plants, algae, and
some bacteria convert light energy, usually from the sun, into chemical
energy in the form of glucose. This process involves the absorption of
carbon dioxide and water, which are then converted into oxygen and glucose
through a series of chemical reactions. Oxygen is released as a byproduct
of this process, making photosynthesis essential for the survival of most
living organisms on Earth.

Output 2: 5 +3 =38

Key Features of the Control Flow Chain

1. Conditional Logic: The input is processed using conditional
logic to determine which chain (definition or calculation) should
handle the request.

2. Dynamic Routing: Based on the classification result, the input is
dynamically routed to the appropriate chain.

3. Flexible Task Handling: This control flow chain can easily be
extended to handle more types of inputs, making it a versatile way
to manage tasks based on user requests.

8. Retrieval-Aware Chain

This chain is integrated with a retrieval mechanism, such as a vector database or a
search engine, to retrieve relevant information before making decisions or generating
responses. It’s typically used in situations where context or additional data is needed to
complete the task.

42

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

o Usage: Question-answering systems that need to pull information
from knowledge bases or document repositories to provide

accurate answers

o Components: A retrieval component (e.g., vector search or
document retrieval) combined with LLM calls to process the
retrieved information

Note For the next example, you need to run the command pip install
faiss-gpu as we use faiss.

Example:

from langchain_core.output_parsers import StrOutputParser

from langchain_core.prompts import ChatPromptTemplate

from langchain_openai import ChatOpenAI

from langchain.vectorstores import FAISS

from langchain.embeddings.openai import OpenAIEmbeddings

Step 1: Set up the FAISS vector store with embeddings

This example assumes the OpenAI API is configured and available

Define some documents (texts) related to quantum computing

documents = [
"Quantum computing is a type of computation that harnesses the
collective properties of quantum states.”,
"Quantum computers use quantum bits, or qubits, which can represent and
store more information than classical bits.",
"The fundamental principle of quantum computing is superposition, which
allows qubits to be in multiple states at once.",
"Entanglement is another key property of quantum computing, allowing
qubits to be interconnected no matter the distance."

]

Step 2: Embed the documents using OpenAI embeddings
embeddings = OpenAIEmbeddings() # Ensure you have OpenAI API keys
configured

43

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Step 3: Create a FAISS vector store from the documents and their
embeddings
vector store = FAISS.from texts(documents, embeddings)

Step 4: Define the prompt that will use the retrieved context
retrieval prompt = ChatPromptTemplate.from messages(
[("user", "Given the following context, answer the question:
{context}")]

)

Step 5: Define the ChatOpenAI model

11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 6: Define the retrieval-aware chain using FAISS

def retrieval aware chain(input query):
Step 6.1: Retrieve relevant documents based on the query
retrieved documents = vector store.similarity search(input_query)
FAISS similarity search
context = " ".join([doc.page content for doc in retrieved
documents]) # Combine documents into a single context
Step 6.2: Run the LLM chain with the retrieved context
response = (retrieval prompt | 1lm | StrOutputParser()).
invoke({"context": context})
return response

Step 7: Define an input query
input_query = "What is quantum entanglement?"

Step 8: Run the retrieval-aware chain
output

retrieval aware chain(input_query)

Step 9: Print the output
print("Output:", output)

Output:

Output: What is entanglement in quantum computing?
Entanglement is a key property of quantum computing that allows qubits to
be interconnected no matter the distance.

44

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

9. Agent Chain

An agent chain is designed to allow a language model to interact with multiple tools or

APIs autonomously. The LLM acts as an agent, deciding which tool to use and when,

allowing for highly dynamic workflows where the model selects the appropriate actions.

Usage: Complex applications where the model must autonomously
decide which action to take, such as querying an API, searching a
database, or executing a code snippet

Components: The agent (LLM) interacts with external tools, APIs, or
modules and follows predefined logic or dynamically generated plans

Example:

from langchain_core.output parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain openai import ChatOpenAI

from langchain.tools import Tool, BaseTool

from langchain.vectorstores import FAISS

from langchain.embeddings.openai import OpenAIEmbeddings
import math

Step 1: Define the tools (calculator and retrieval tool)

Define a calculator tool to perform basic math operations
class CalculatorTool(BaseTool):
def run(self, input query: str) -> str:

Run the calculator tool to perform basic arithmetic.
try:
Extract the mathematical expression by removing "calculate"
or "Calculate"
expression = input_query.lower().replace("calculate", "").
strip()
return str(eval(expression)) # Use eval safely for basic
calculations
except Exception:
return "Invalid calculation.”

45

CHAPTER 1

LANGCHAIN AND PYTHON: BASICS

def name(self):

return "calculator"

def description(self):

return "A simple calculator tool for performing basic arithmetic

operations."

Create an instance of CalculatorTool
calculator tool = CalculatorTool()

Define the FAISS-based retrieval tool for information retrieval

documents = [

"Quantum computing is a type of computation that harnesses the
collective properties of quantum states.”,

"Quantum computers use quantum bits, or qubits, which can represent and
store more information than classical bits.",

"The fundamental principle of quantum computing is superposition, which
allows qubits to be in multiple states at once.",

"Entanglement is another key property of quantum computing, allowing
qubits to be interconnected no matter the distance.”

]

embeddings = OpenAIEmbeddings()
vector store = FAISS.from texts(documents, embeddings)

class RetrievalTool(BaseTool):

46

def

def

def

_run(self, input query: str) -> str:

"""Run the retrieval tool to search the vector store for relevant
information."""
retrieved documents = vector store.similarity search(input_query)

return " ".join([doc.page content for doc in retrieved documents])

name(self):
return "retrieval"

description(self):
return "A tool for retrieving information about quantum computing."

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Create an instance of RetrievalTool
retrieval tool = RetrievalTool()

Step 2: Define the agent prompt with explicit instructions
agent_prompt = ChatPromptTemplate.from messages(
[("user", "If the query asks to perform a calculation (e.g., 'calculate
5+ 7'), respond with 'calculate'. "
"If the query asks for information (e.g., 'What is quantum
computing?'), respond with 'retrieve'. "
"Input: {input_query}")]
)

Step 3: Define the ChatOpenAI model (the agent)
11m = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Step 4: Define the agent chain function

def agent _chain(input_query):
Ask the agent to classify the task (calculation or retrieval)
agent_decision = (agent_prompt | 1lm | StrOutputParser()).
invoke({"input_query": input query})

Based on the agent's decision, invoke the appropriate tool
if "calculate" in agent decision.lower():

return calculator tool. run(input query)
else:

return retrieval tool. run(input_query)

Step 5: Define the input queries
"Calculate 5 + 7"
"Explain quantum superposition”

input_query 1
input_query 2

Step 6: Run the agent chain on different inputs

output 1 = agent chain(input query 1) # Expecting a calculation result
output 2 = agent chain(input_query 2) # Expecting information
retrieval result

Step 7: Print the outputs
print("Output 1:", output 1)
print("Output 2:", output 2)

47

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS
Output:

Output 1: 12

Output 2: The fundamental principle of quantum computing is superposition,
which allows qubits to be in multiple states at once. Quantum computing is
a type of computation that harnesses the collective properties of quantum
states. Entanglement is another key property of quantum computing, allowing
qubits to be interconnected no matter the distance. Quantum computers use
quantum bits, or qubits, which can represent and store more information
than classical bits.

Breakdown of Key Steps of This More Complicated Code

¢ CalculatorTool Definition: A class CalculatorTool is defined,
inheriting from BaseTool.

¢ The _run() method is implemented, which
o Strips the word “calculate” from the input query.

e Evaluates the remaining mathematical expression (e.g., “5 + 7”)
using eval().

o Returns the result of the calculation.

o Ifthe evaluation fails (e.g., for invalid expressions), it returns
“Invalid calculation.”

¢ RetrievalTool Definition
e Aclass RetrievalTool is defined, inheriting from BaseTool.
e The _run() method is implemented, which

o Uses FAISS to perform a similarity search based on the input
query (e.g., “Explain quantum superposition”).

¢ Retrieves relevant documents from the vector store.

« Concatenates the content of the retrieved documents into a
single response.

48

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Embedding and Vector Store Setup
o Alist of documents related to quantum computing is created.

e OpenAlEmbeddings are used to embed these documents into

vectors.

¢ The document embeddings are stored in a FAISS vector store,
which allows for similarity-based document retrieval.

Agent Prompt Setup

o The agent prompt is defined, providing explicit instructions to
the language model:

o Ifthe input asks for a calculation (e.g., “Calculate 5 + 7”), the
model should respond with “calculate.”

o Ifthe input asks for information (e.g., “What is quantum
superposition?”), the model should respond with “retrieve.”

Agent Chain Function
o The function agent_chain(input_query) performs the
following steps:

o Passes the input query to the agent prompt (via the
language model).

e The agent responds with either “calculate” or “retrieve,’
based on the task.

e Depending on the agent's decision:

o If “calculate” is returned, it calls the CalculatorTool to
perform the calculation.

o If “retrieve” is returned, it calls the RetrievalTool to fetch
relevant information from the FAISS vector store.

49

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

10. Parallel Chain

A parallel chain allows multiple processes to run simultaneously, with their results
combined at the end. This can improve efficiency when independent tasks can be
processed at the same time.

o Usage: Situations where different tasks or models can be executed
in parallel, such as generating multiple drafts of a text or performing
several independent API calls

o Components: Multiple parallel operations that feed into a final
aggregation or decision step

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain openai import ChatOpenAI

Step 1: Set up the OpenAl model
model = ChatOpenAI()

Step 2: Define the chains for independent tasks

Chain to summarize a concept
summarize chain = ChatPromptTemplate.from template("Summarize the concept
of {concept}") | model

Chain to provide detailed information about the concept
information chain = ChatPromptTemplate.from template("Provide detailed
information about {concept}") | model

Step 3: Set up the parallel chain to run both tasks concurrently
parallel chain = RunnableParallel(summary=summarize chain,
information=information chain)

Step 4: Define the input concept
input_concept = {"concept": "Quantum computing"}

Step 5: Run the parallel chain with the input concept
outputs = parallel chain.invoke(input concept)

50

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

Step 6: Print the outputs
print("Summary Output:", outputs["summary"])
print("Information Output:", outputs["information"])

Output:

Summary Output: content='Quantum computing is a type of computing that
utilizes the principles of quantum mechanics to perform operations on
data. Unlike classical computing, which uses bits as the fundamental unit
of information, quantum computing uses quantum bits, or qubits, which can
exist in multiple states simultaneously. This allows quantum computers to
perform complex calculations much faster than classical computers, making
them potentially capable of solving problems that are currently infeasible
with traditional computing methods.' additional kwargs={'refusal': None}
response_metadata={'token usage': {'completion tokens': 85, 'prompt_
tokens': 15, 'total tokens': 100, 'completion tokens details': {'audio_
tokens': None, 'reasoning tokens': 0}, 'prompt tokens details': {'audio_
tokens': None, 'cached tokens': 0}}, 'model name': 'gpt-3.5-turbo-0125",
'system_fingerprint': None, 'finish reason': 'stop', 'logprobs': None}
id="run-748514c4-35eb-4ccc-a3a8-68dee2c3fa74-0" usage metadata={'input_
tokens': 15, 'output tokens': 85, 'total tokens': 100, 'input_token_
details': {'cache read': 0}, 'output token details': {'reasoning': 0}}
Information Output: content='Quantum computing is a type of computing
that uses quantum-mechanical phenomena, such as superposition and
entanglement, to perform operations on data. Unlike classical computing,
which uses bits to represent data as either 0 or 1, quantum computing
uses quantum bits, or qubits, which can exist in multiple states
simultaneously due to superposition.\n\nOne of the key principles of
quantum computing is superposition, which allows qubits to exist in

a state that is a combination of both 0 and 1 at the same time. This
enables quantum computers to perform multiple calculations simultaneously,
making them potentially much faster than classical computers for certain
types of problems.\n\nAnother important concept in quantum computing is
entanglement, which allows qubits to be correlated with each other in
such a way that the state of one qubit can instantly affect the state of
another, regardless of the distance between them. This property enables

51

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

quantum computers to perform certain types of operations more efficiently
than classical computers.\n\nQuantum computing has the potential to
revolutionize fields such as cryptography, drug discovery, optimization,
and machine learning by solving complex problems that are currently
infeasible for classical computers. However, quantum computers are

still in the early stages of development and face significant technical
challenges, such as maintaining the coherence of qubits and scaling up

to larger systems.\n\nCompanies such as IBM, Google, and Microsoft are
investing heavily in quantum computing research and development, and there
are also startups and research institutions around the world working on
advancing the field. As quantum computing continues to progress, it holds
the promise of enabling breakthroughs in a wide range of scientific and
technological applications.' additional kwargs={'refusal': None} response_
metadata={'token usage': {'completion tokens': 326, 'prompt tokens':

13, 'total tokens': 339, 'completion tokens details': {'audio tokens':
None, 'reasoning tokens': 0}, 'prompt tokens details': {'audio tokens':
None, 'cached tokens': 0}}, 'model name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish reason': 'stop', 'logprobs': None} id='run-
€5913167-0055-4117-8d86-a5bag13e2dc3-0" usage metadata={'input_tokens': 13,
‘output_tokens': 326, 'total tokens': 339, 'input token details': {'cache_
read': 0}, 'output token details': {'reasoning': 0}}

What Does the Code Do?

1. Model Setup

¢ ChatOpenAlI() is instantiated to serve as the language model for
both tasks (summarization and detailed information retrieval).

2. Chain Definitions

o summarize_chain: A prompt asks the model to summarize the

given concept (e.g., “Quantum computing”).

o information_chain: A prompt asks the model to provide detailed
information about the same concept.

52

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

3. Parallel Execution with RunnableParallel
* RunnableParallel is used to execute both chains concurrently.

e Two chains are passed as arguments (summary for the
summarization chain and information for the detailed

information chain), which will run in parallel.
4. Input Concept

¢ The input concept is a dictionary containing the key “concept”
with the value “Quantum computing.”

e This inputis passed to both chains.
5. Running the Chains in Parallel

¢ The invoke() method is called on parallel_chain to execute both
chains concurrently.

o The outputs are returned as a dictionary with keys “summary”
and “information.”

6. Outputs

o The outputs from both chains (summary and detailed
information) are printed.

Key Features of RunnableParallel

e Concurrent Execution: Both chains are executed concurrently,
reducing the overall time required for execution.

e Flexible Input Handling: The same input (“Quantum computing”)
is passed to both chains, but you can moditfy it to handle different
inputs for each chain if needed.

¢ Combined Outputs: The results from both chains are combined
into a single output dictionary, where each key corresponds to the
respective chain’s output.

53

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

11. Custom Chain

Custom chains are tailored to the specific needs of an application, combining various
components in novel ways. Developers can create a custom sequence of operations
that fit their unique use case, combining steps from different chain types into a bespoke
workflow.

o Usage: When none of the prebuilt chain types meet the specific
requirements of the task, and custom logic, steps, or external
integrations are needed

e Components: A combination of modules, tools, logic, and LLMs to
suit the custom requirements of the application

These LangChain chain types provide a flexible framework for building diverse
and sophisticated workflows tailored to the specific needs of different applications.
By combining or modifying these chain types, developers can orchestrate complex
interactions and achieve nuanced, multistep tasks when working with large
language models.

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from langchain openai import ChatOpenAI

Step 1: Set up the OpenAl model
model = ChatOpenAI()

Step 2: Define the chain for summarizing the concept
summarize chain = ChatPromptTemplate.from template("Summarize the concept
of {concept}") | model

Step 3: Define the chain for generating a quiz question based on

the summary

quiz_chain = ChatPromptTemplate.from template("Create a quiz question based
on the summary: {summary}") | model

Step 4: Create a custom chain that first summarizes, then
generates a quiz
class CustomChain(Runnable):

54

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

def invoke(self, input data):
First, get the summary of the concept
summary = summarize chain.invoke({"concept": input_
data["concept"]})

Then, use the summary to generate a quiz question
quiz_question = quiz_chain.invoke({"summary": summary})

Return both the summary and the quiz question
return {"summary": summary, "quiz_question": quiz_question}

Step 5: Create an instance of the custom chain
custom chain = CustomChain()

Step 6: Define the input concept
input_concept = {"concept": "Quantum computing"}

Step 7: Run the custom chain with the input concept
output = custom chain.invoke(input concept)

Step 8: Print the outputs
print("Summary Output:", output["summary"])
print("Quiz Question Output:", output["quiz_question"])

Output:

Summary Output: content='Quantum computing is a type of computing that
uses quantum-mechanical phenomena, such as superposition and entanglement,
to perform operations on data. This allows quantum computers to process
information much faster than classical computers. Quantum computing has the
potential to revolutionize fields such as cryptography, optimization, and
drug discovery by solving complex problems that are currently intractable
for classical computers.' additional kwargs={'refusal': None} response_
metadata={'token usage': {'completion tokens': 76, 'prompt tokens':

15, 'total tokens': 91, 'completion tokens details': {'audio tokens':
None, 'reasoning tokens': 0}, 'prompt tokens details': {'audio tokens':
None, 'cached tokens': 0}}, 'model name': 'gpt-3.5-turbo-0125', 'system
fingerprint': None, 'finish reason': 'stop', 'logprobs': None} id='run-7
bc1450c-9826-4b69-8677-7d76f6cbalf7-0" usage metadata={'input_tokens': 15,

55

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

"output_tokens': 76, 'total tokens': 91, 'input token details': {'cache_
read': 0}, 'output token details': {'reasoning': 0}}

Quiz Question Output: content='How does quantum computing utilize
superposition and entanglement to perform operations on data, and

what advantages does this offer over classical computing methods?'
additional kwargs={'refusal': None} response metadata={'token usage':
{'completion tokens': 28, 'prompt tokens': 284, 'total tokens': 312,
‘completion tokens details': {'audio tokens': None, 'reasoning tokens':
0}, 'prompt tokens details': {'audio tokens': None, 'cached tokens':

0}}, 'model name': 'gpt-3.5-turbo-0125', 'system fingerprint': None,
‘finish reason': 'stop', 'logprobs': None} id='run-9cf17c37-ac7c-48ab-b468-
c6ef3b7389f5-0"' usage metadata={'input tokens': 284, 'output tokens': 28,
"total tokens': 312, 'input_token details': {'cache read': 0}, 'output_
token details': {'reasoning': 0}}

Key Features of a Custom Chain

o Custom Processing Logic: The CustomChain class defines a two-
step process: first generating a summary and then creating a quiz
question based on the summary.

¢ Sequential Execution: The chain runs each step in sequence,
passing the result of one step (summary) into the next step (quiz
question generation).

e Combined Outputs: The chain returns both outputs (summary and
quiz question) in a single response.

What Does This Code Do?

e Model Setup: Initializes a ChatOpenAl model to handle both
summarization and quiz generation tasks

e Summarization Chain: Defines a chain (summarize_chain) that
generates a summary of a concept based on a given input (e.g.,
“Quantum computing”)

e Quiz Generation Chain: Defines a chain (quiz_chain) that creates a
quiz question based on the summary of the concept

56

CHAPTER 1 LANGCHAIN AND PYTHON: BASICS

¢ CustomChain Class

o Step 1: Generates a summary of the concept using the
summarize_chain

e Step 2: Uses the summary to generate a quiz question with the
quiz_chain

e Combined Output: Returns both the summary and the quiz
question as output

e Execution: Runs the custom chain by passing the concept
(“Quantum computing”), and the chain outputs both a summary and
a quiz question

e Outputs: Prints the generated summary and the quiz question based
on the input concept

Conclusion

In this chapter, we covered the basics of LangChain and its integration with Python
for building advanced NLP applications. We explored key components such as chains,
prompts, memory, and tools, which enable developers to create flexible and scalable
workflows. LangChain simplifies the process of working with large language models,
allowing for efficient management of context and multistep processing.

By mastering these fundamental concepts, you are now equipped to build a variety
of language model-based applications, from simple chatbots to more complex data
retrieval systems.

In the next chapter, we’ll dive deeper into more advanced components and
conceptions like LangChain Memory, which enables models to retain information
across interactions. We'll also explore agents and tools in LangChain, which allow
dynamic decision-making, and discuss indexes and retrievers, essential for handling
large datasets efficiently. These advanced features will help you build even more
powerful and context-aware NLP applications.

57

CHAPTER 2

LangChain and Python:
Advanced Components

As the fields of machine learning and natural language processing continue to

advance, Python remains at the heart of innovation, providing a robust ecosystem of
tools, libraries, and frameworks. Among these, LangChain has emerged as a powerful
framework tailored specifically to streamline and enhance workflows around large
language models (LLMs). While foundational components of LangChain simplify
common tasks such as chaining models, querying, and prompt management, there
exists an extensive suite of advanced components that significantly expands LangChain’s
utility. This chapter delves into these advanced features, guiding readers through their
purpose, application, and implementation in Python to tackle complex LLM workflows
effectively.

LangChain’s advanced components, including tools for memory management,
custom agent creation, tools, indexes, and retrievers, provide practitioners with a
sophisticated toolkit that caters to varied and challenging use cases. These components
allow developers to push beyond basic model interactions, enabling functionalities
such as real-time memory recall, multiagent systems, and seamless integration of
external data sources, each enhancing the adaptability and intelligence of LLM-based
applications.

In this chapter, we will explore these advanced components in-depth, breaking
down their architecture, discussing best practices, and showcasing practical applications
with Python. By the end of this chapter, readers will be equipped with the knowledge to
leverage LangChain’s full potential in developing customized, resilient, and intelligent
language model applications.

59
© Dilyan Grigorov 2025

D. Grigorov, Intermediate Python and Large Language Models, https://doi.org/10.1007/979-8-8688-1475-4_2

https://doi.org/10.1007/979-8-8688-1475-4_2#DOI

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

We begin by highlighting the evolving role of Python in Al and introducing
LangChain as a powerful framework for building sophisticated LLM-based applications.
The introduction sets the stage for exploring the advanced tools and capabilities that
LangChain offers.

o Python’s Role in AT and NLP

Python remains the foundational language driving innovation in

machine learning and natural language processing.
e Introduction to LangChain

LangChain is presented as a framework designed to streamline
the development of applications powered by large language
models (LLMs).

¢ Beyond the Basics

While LangChain simplifies core tasks like chaining and prompt
management, this chapter focuses on its advanced components,
including

¢ Memory systems

Custom agents

External tools

o Indexes and retrievers
o Capabilities of Advanced Components
These tools enable

e Real-time memory recall

Multiagent systems

Contextual and personalized interactions

Integration with diverse external data sources

60

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

LangChain Memory

In developing applications that harness large language models (LLMs), a common
challenge is enabling these models to “remember” past interactions, mimicking
conversational context and continuity. LangChain Memory addresses this by providing
mechanisms to store, retrieve, and utilize conversation history within LangChain
workflows. Unlike traditional stateless models, memory-enabled systems can reference
past exchanges, allowing them to maintain a consistent narrative, track user preferences,
and dynamically adapt responses over time.

This subtopic covers LangChain’s memory capabilities, exploring different memory
types (short-term, long-term, and specialized memory modules) and demonstrating
how each can enhance interactive applications. From personalizing user interactions to
facilitating complex dialogues in customer service or education, LangChain Memory is
a transformative tool for developing applications that feel more intuitive and responsive
to users.

Understanding LangChain’s Memory Module

In LangChain, the Memory module plays a foundational role in enabling large language
models (LLMs) to retain information between calls of a chain or agent. This persistence
of state is essential in scenarios where the language model benefits from remembering
past interactions, allowing it to make more contextually relevant and informed decisions.

By offering a standard interface for storing and retrieving information across
interactions, LangChain’s Memory module allows developers to equip language models
with memory and continuity. This ability to remember is invaluable for applications such
as personal assistants, autonomous agents, and agent-based simulations, where the model
needs to retain user preferences, previous queries, or other critical details over time.

Key Capabilities of the Memory Module

The Memory module enables an LLM to maintain a running context by storing user
inputs, system responses, and any other relevant information from past interactions.
This stored data can then be accessed in future interactions, giving the model a sense of
continuity and memory, which results in more accurate, contextually aware responses
and decisions.

61

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

Why Memory Matters

The Memory module transforms a language model from a reactive agent into one that
can adapt and respond based on past interactions. This continuity is crucial for creating
interactive and personalized applications. With memory, the language model can
provide richer responses by leveraging prior knowledge, which is particularly valuable in
applications like personal assistants, customer support agents, and educational tutors.

When to Use the Memory Module

Use the Memory module whenever you want to build applications requiring context
and continuity across interactions. For instance, a personal assistant application would
benefit from memory as it allows the model to retain user preferences, recall previous
questions, and track ongoing issues. Similarly, in autonomous agents and simulations,
memory allows the model to make decisions that reflect accumulated knowledge,
making interactions feel more coherent and informed.

Core Processes in the Memory System: Reading
and Writing

Each memory system within LangChain performs two essential tasks: reading from
memory and writing to memory. During any run, the model accesses its memory system
at two key points:

* Reading from Memory: Before executing its main logic, the model
reads stored information to augment user inputs, allowing it to make
more informed decisions during processing.

* Writing to Memory: After generating a response, the model records
the details of the current interaction to memory, ensuring that this
information is available for future reference.

These read and write operations make it possible for the model to maintain context
across interactions, giving it the ability to build on prior knowledge.

62

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

Structuring a Memory System

When designing a memory system, two core considerations come into play:

State Storage Method: At the heart of the memory system is a
record of all chat interactions. LangChain’s memory module
provides flexibility in how these interactions are stored, ranging from
temporary in-memory lists for quick access to persistent database
solutions for long-term storage.

State Querying Approach: Storing chat logs is straightforward;

the challenge lies in developing algorithms to interpret these logs
meaningfully. A basic memory system might simply display recent
messages, while a more sophisticated system might summarize the
last “K” interactions. The most advanced systems can even identify
entities from stored chats and retrieve relevant details about those
entities when needed in the current session. This adaptability allows
developers to tailor the memory query method to the specific needs
of the application.

LangChain’s Memory module offers a straightforward setup for initiating basic

memory systems while supporting the creation of more advanced and customized

systems as necessary.

By incorporating LangChain’s Memory module, developers can create language

model-driven applications that are not only responsive and adaptive but also capable

of continuous learning and refinement. This module equips LLMs with memory and

context, making them more capable, personalized, and effective in delivering consistent,

user-centric experiences.

Note LangChain Memory is a powerful feature designed initially to enhance
chatbots’ functionality, by enabling them to retain context and significantly improve
their conversational capabilities. Traditionally, chatbots process each user prompt
independently, without considering the history of interactions. This isolated
approach often results in responses that lack continuity, leading to disjointed and
sometimes unsatisfying user experiences. LangChain addresses this challenge

by offering dedicated memory components that manage and utilize previous

63

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

chat messages, seamlessly integrating them into conversational chains. This
functionality is vital for creating chatbots that need to remember prior interactions,
allowing them to provide coherent and contextually relevant responses that feel
more natural and engaging to users.

LangChain Memory Types

LangChain offers a rich suite of memory types that equip language models with the
ability to remember, recall, and integrate contextual information from prior interactions.
Each memory type is uniquely suited for different use cases, ranging from simple chat
histories to complex knowledge-based and entity-driven contexts. These options allow
developers to build applications with varying levels of depth, persistence, and relational
awareness, creating personalized, coherent, and dynamic user experiences.

Here’s an in-depth look at each type of memory offered by LangChain.

ConversationBufferMemory

ConversationBufferMemory is a straightforward memory type that stores a verbatim
transcript of all interactions within a session. This approach maintains a full
conversation history, allowing the language model to reference any part of the ongoing
exchange and to provide contextually aware responses.

o Use Case: Applications where a complete record of interactions
is valuable, such as detailed customer support systems, coaching
applications, and collaborative brainstorming tools.

o Advantages: By keeping all interactions in memory, the model
can access comprehensive context, which helps ensure consistent
responses.

o Limitations: For long or continuous interactions, storing a full
transcript can become resource-intensive, potentially leading to
performance issues if not managed correctly. One drawback is that it
retains the complete interaction history (up to the maximum token
limit supported by the specific LLM), which means that for each new

64

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

question, the entire prior discussion is sent to the LLM API as tokens.
This can lead to significant costs, as API usage fees are based on the
total number of tokens processed per interaction. Additionally, as
the conversation grows, this can introduce latency, impacting the
model’s response time due to the increasing amount of data being
processed with each API call.

Example:

from langchain.chat_models import ChatOpenAI

from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain

from langchain.memory import ConversationBufferMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates

system prompt = SystemMessagePromptTemplate.from template("You are a
helpful assistant.")

human_prompt = HumanMessagePromptTemplate.from template("{history}\n\nUser:

{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from messages([system prompt, human_

prompt])

Set up the memory
memory = ConversationBufferMemory(return messages=True)

Create the chain with memory
conversation_chain = LLMChain(
11m=chat_model,
prompt=chat_prompt,
memory=memory
)
Example interaction 1
user_input 1 = "Hello, can you help me with some Python code?"

65

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

response 1 = conversation chain.run(input=user input 1)
print(response 1)

Example interaction 2

user_input 2 = "I need help with writing a loop."
response 2 = conversation chain.run(input=user input 2)
print(response 2)

Example interaction 3

user_input 3 = "Thanks! How do I make it run faster?"
response 3 = conversation chain.run(input=user input 3)
print(response 3)

Output:

Of course! I'd be happy to help. What do you need assistance with

in Python?

Of course! What kind of loop are you trying to write in Python? Do you have
a specific task or problem that you need help with? Let me know the details
so I can assist you better.

There are several ways you can optimize your Python code to make it run
faster. Here are some tips:

1. **Use appropriate data structures**: Choose the right data structure for
your task. For example, if you need to perform a lot of lookups, consider
using a dictionary instead of a list.

2. **Avoid unnecessary operations**: Make sure your code is not performing
redundant calculations or operations that can be eliminated. Review your
code to see if there are any unnecessary loops or computations.

ConversationBufferWindowMemory

ConversationBufferWindowMemory stores only the last “N” interactions,
essentially creating a rolling window of recent conversation context. Unlike
ConversationBufferMemory, this approach retains only the most recent exchanges,
thereby reducing the storage burden.

66

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

o Use Case: Ideal for scenarios where only the latest context is relevant,
such as chat-based Q&A or short-session customer support. It’s also
well-suited for lightweight applications where continuity is needed
but only over recent exchanges.

o Advantages: It conserves resources by limiting the memory scope,
which is useful for applications handling high volumes of user

interactions.

o Limitations: Since it only keeps a limited number of exchanges, this
memory type may lose earlier parts of the conversation, which could
affect continuity in applications where longer context is essential.

Example:

from langchain.chat_models import ChatOpenAI

from langchain.prompts import ChatPromptTemplate,
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain

from langchain.memory import ConversationBufferWindowMemory

Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

Define the prompt templates

system prompt = SystemMessagePromptTemplate.from template("You are a
helpful assistant.")

human_prompt = HumanMessagePromptTemplate.from template("{history}\n\nUser:
{input}")

Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from messages([system prompt, human_

prompt])

Set up the memory with a window of 3 messages
memory = ConversationBufferWindowMemory(k=3, return_messages=True)

Create the chain with memory
conversation chain = LLMChain(
1lm=chat_model,

67

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

prompt=chat_prompt,
memory=memory

)

Example interactions

interactions = [
"Hello, can you help me with some Python code?",
"I need help with writing a loop.",
"What are some best practices for functions?",
"How do I make my code run faster?”,
"What should I know about error handling?",

]

Running each interaction and printing the results, focusing on

memory usage

for i, user input in enumerate(interactions, 1):
print(f"Interaction {i}: User Input: {user input}")
response = conversation chain.run(input=user input)
print(f"Assistant Response: {response}")

Print the current state of memory (only the last k interactions)
current_memory = memory.load memory variables({})['history']
memory contents = [msg.content for msg in current memory]
print(f"Current Memory State: {memory contents}\n")

Output:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Of course! I'd be happy to help. What do you need
assistance with in Python?

Current Memory State: ['Hello, can you help me with some Python code?', "Of
course! I'd be happy to help. What do you need assistance with in Python?"]

Interaction 2: User Input: I need help with writing a loop.

Assistant Response: Sure! I can help with that. What specific task or
purpose would you like the loop to achieve?

Current Memory State: ['Hello, can you help me with some Python code?', "Of
course! I'd be happy to help. What do you need assistance with in Python?",

68

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

'I need help with writing a loop.’', 'Sure! I can help with that. What
specific task or purpose would you like the loop to achieve?']

Interaction 3: User Input: What are some best practices for functions?
Assistant Response: When writing functions in Python, here are some best
practices to keep in mind:

1. **Function Naming**: Choose descriptive and meaningful names for your
functions that reflect their purpose or behavior. Use lowercase letters and
underscores to separate words (snake case).

2. **Function Length**: Keep your functions concise and focused on a single
task. If a function becomes too long or complex, consider refactoring it
into smaller, more manageable functions...............

Current Memory State: ['Hello, can you help me with some Python code?’,

"0f course! I'd be happy to help. What do you need assistance with in
Python?", 'I need help with writing a loop.', 'Sure! I can help with

that. What specific task or purpose would you like the loop to achieve?',
'What are some best practices for functions?', "When writing functions in
Python, here are some best practices to keep in mind:\n\ni. **Function
Naming**: Choose descriptive and meaningful names for your functions that
reflect their purpose or behavior. Use lowercase letters and underscores
to separate words (snake_case).\n\n2. **Function Length**: Keep your
functions concise and focused on a single task. If a function becomes too
long or complex, consider refactoring it into smaller, more manageable
functions.\n\n3. **Function Documentation**: Always include a docstring

at the beginning of your function to describe its purpose, parameters,

and return value. This helps other developers (and your future self)
understand the function's functionality.\n\n4. **Parameter Passing**: Avoid
using global variables inside functions. Instead, pass necessary data as
parameters to make your functions more modular and reusable.\n\n5. **Return
Values**: Clearly define what your function should return, even if it's
None. This makes it easier to understand how the function interacts with
the rest of your code.\n\n6. **Error Handling**: Implement appropriate
error handling within your functions to gracefully handle unexpected
situations and provide meaningful error messages to the user.\n\n7. **Code
Readability**: Write clean and readable code by following Python's style
guide (PEP 8). Use proper indentation, spacing, and naming conventions

69

CHAPTER 2 LANGCHAIN AND PYTHON: ADVANCED COMPONENTS

to enhance code clarity.\n\n8. **Testing**: Write unit tests for your
functions to ensure they work as expected under different scenarios. This
helps catch bugs early and maintain the reliability of your code.\n\nBy
following these best practices, you can write more maintainable, reusable,
and understandable functions in your Python code."]

Interaction 4: User Input: How do I make my code run faster?

Assistant Response: Improving the performance of your code can involve
various strategies. Here are some general tips to help make your Python
code run faster:

1. **Use Efficient Data Structures**: Choose the appropriate data
structures for your tasks. For example, use dictionaries for fast looku