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Introduction

The evolution of artificial intelligence (AI) has ushered in a new era of possibilities, 

transforming the way we interact with technology, automate tasks, and solve complex 

problems. At the heart of this revolution are large language models (LLMs), which power 

applications ranging from conversational agents to content generation, data retrieval, 

and beyond. This book serves as an advanced comprehensive guide to understanding, 

developing, and deploying LLM-powered applications, with an advanced focus on 

Python and LangChain. It is designed for AI enthusiasts, data scientists, machine 

learning engineers, developers, and researchers who are looking to deepen their 

understanding of LLMs and their real-world applications.

The book bridges the gap between theory and practice, providing a road map for 

building advanced intelligent systems that leverage the power of language models. 

Throughout the chapters, I emphasize hands-on learning, providing code examples, 

best practices, and troubleshooting strategies to help you build efficient and effective 

AI-driven applications. By the end of your journey, you will have a strong foundation in 

LLMs and the ability to apply them to a wide range of real-world challenges. 

The book is divided into several key chapters, each focusing on a critical aspect of 

working with LLMs and LangChain.

•	 Chapter 1—LangChain and Python: Basics: This chapter 

introduces the fundamentals of LangChain, a powerful framework 

for integrating LLMs into applications. It covers the core advanced 

concepts, including chains, memory, tools, and agents, along with 

how to structure prompts effectively for different tasks.

•	 Chapter 2—LangChain and Python: Advanced Components: 
Building on the basics, this chapter explores LangChain’s advanced 

features, such as memory management, multiagent systems, and 

external data integrations. Readers will learn to create applications 

with contextual awareness and adaptability.

https://doi.org/10.1007/979-8-8688-1475-4_1
https://doi.org/10.1007/979-8-8688-1475-4_2
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•	 Chapter 3—Building Advanced Applications Powered by 
LLMs with LangChain and Python: This chapter delves into the 

development of practical applications using LangChain and Python. 

It includes real-world examples like YouTube video summarizers and 

document retrieval tools, demonstrating how to implement advanced 

workflows and optimize model performance.

•	 Chapter 4—Deploying LLM-Powered Applications: Once an LLM 

application is built, deploying it effectively is crucial. This chapter 

covers cloud deployment strategies, model-serving solutions, 

optimization techniques, and best practices for ensuring scalability, 

security, and performance in production environments.

•	 Chapter 5—Building and Fine-Tuning LLMs: For those looking to 

take customization further, this chapter explains the principles of 

training and fine-tuning LLMs. It discusses transformer architectures, 

pretraining paradigms, fine-tuning strategies, and ethical 

considerations in deploying AI responsibly.

Happy reading and coding!

Introduction

https://doi.org/10.1007/979-8-8688-1475-4_3
https://doi.org/10.1007/979-8-8688-1475-4_4
https://doi.org/10.1007/979-8-8688-1475-4_5
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CHAPTER 1

LangChain and Python: 
Basics
LangChain is a powerful new framework in Python that simplifies building intelligent 

applications using natural language processing (NLP) and large language models (LLMs).  

It reduces complexity, making AI-powered solutions more accessible to developers. At 

its core, LangChain provides a set of abstractions and utilities that make it easier to build, 

customize, and deploy NLP-based workflows, such as chatbots, automated data analysis, 

summarization tools, and much more. Given Python’s status as the go-to language for 

AI and data science, integrating LangChain with Python creates a powerful toolset for 

developers and data practitioners looking to enhance their NLP projects.

LangChain’s primary goal is to simplify how developers interact with language 

models and manage their outputs in context-rich applications. Typically, when 

using a language model like OpenAI’s GPT, there’s a need to set up workflows for 

input, processing, context handling, and response generation. LangChain provides 

a framework to define and chain these elements, known as “chains,” enabling more 

complex and sophisticated NLP applications without needing to manually handle all 

aspects of the process.

Python has a rich set of libraries for machine learning (e.g., TensorFlow, PyTorch) 

and NLP (e.g., spaCy, NLTK). LangChain seamlessly fits into this ecosystem by offering 

high-level abstractions that allow developers to quickly integrate language models into 

their applications. Key benefits include

•	 Ease of Integration: LangChain abstracts much of the complexity 

involved in setting up prompts, model calls, and response handling, 

making it easier to build and deploy applications.

https://doi.org/10.1007/979-8-8688-1475-4_1#DOI
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•	 Modularity and Flexibility: LangChain enables chaining multiple 

LLM calls together, combining different models, and adding context 

to create more advanced applications, such as multistep question-

answering systems or conversational agents.

•	 Handling Context and Memory: One of LangChain’s strengths is its 

ability to manage context and memory effectively. For conversational 

AI or tasks that require understanding of a sequence of interactions, 

LangChain provides utilities to track and store context throughout 

the conversation or workflow.

•	 Scalability and Deployment: By working within the Python 

ecosystem, LangChain can be easily integrated into larger projects, 

data pipelines, or cloud-deployed applications, making it a practical 

choice for both experimentation and production-level applications.

With Python and LangChain, developers can build a wide range of NLP 

applications:

•	 Chatbots and Conversational Agents: Implement agents that can 

handle context-aware conversations, manage user intents, and 

respond dynamically to user queries

•	 Data Extraction and Summarization: Create pipelines that 

process large amounts of text, extract key information, and produce 

summaries or insights

•	 Automated Content Generation: Use language models to generate 

content for blogs, reports, or documentation based on given prompts 

or templates

•	 Question-Answering Systems: Build tools that allow users to ask 

questions about specific documents or datasets, where the system 

can pull and present relevant information

In this first chapter, we will explore how to use LangChain with Python to create 

advanced language model applications, discussing its key components and providing 

practical examples to get you started.

Chapter 1  LangChain and Python: Basics
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This chapter also

•	 Introduces LangChain as a Python framework for building LLM-

powered apps like chatbots and summarizers, with a focus on 

modularity, memory, and context handling

•	 Covers core concepts: chains, prompts, memory, tools, agents, RAG, 

data loaders, and integrations

•	 Explains installation of LangChain and related packages (e.g., 

langchain-core, langchain-openai, langgraph)

•	 Provides prompt engineering techniques: role prompting, few-shot, 

chain prompting, chain-of-thought, alternating messages, and 

refinement tips

•	 Describes various chain types: simple, sequential, conversational, 

multi-input/output, router, control flow, retrieval-aware, and agent 

chains—with code examples

�LangChain Basics and Basic Components
As I mentioned, LangChain is a powerful framework designed for developing 

applications that integrate large language models (LLMs) like OpenAI’s GPT-4 into 

workflows or pipelines that can perform a variety of complex tasks. It is particularly 

helpful for creating applications that require language model capabilities, whether for 

natural language understanding, processing, or generation.

Here are the fundamental components and concepts of LangChain.

�Chains
Chains are sequences of operations (or steps) designed to process and transform data. 

In LangChain, chains can be created to link together multiple steps that involve LLMs, 

transforming the input through a sequence of transformations or tasks. A simple chain 

might involve querying an LLM with a prompt, whereas more complex chains can 

combine multiple actions, like API calls, data retrieval, or conditional logic.

Chapter 1  LangChain and Python: Basics
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�Prompts
Prompts are the input that LLMs use to generate responses. LangChain allows users to 

design prompts dynamically, enabling the creation of tailored queries based on different 

scenarios or contexts. You can create prompt templates that include variables to be filled 

in based on user inputs or other data.

�Memory
Memory allows a chain to retain state throughout a conversation or across multiple 

interactions. This feature is particularly useful for applications that require context over 

time, such as chatbots or assistants, where responses need to be informed by the history 

of the conversation.

�Tools and Agents
LangChain provides tools that interact with external systems or APIs, such as databases, 

search engines, or custom APIs. Agents are advanced chains that can decide which tool 

to use based on the input they receive. For example, an agent could determine whether 

to perform a search, fetch data from a database, or generate a response directly.

�Retrieval-Augmented Generation (RAG)
RAG is a method where LLMs are combined with external data sources to enhance 

their outputs. Unlike standard LLM queries that rely on pretrained knowledge, RAG 

dynamically retrieves up-to-date information from external sources before responding, 

ensuring better accuracy and contextual awareness. For example, an LLM may query 

a knowledge base or a search engine to find relevant information before generating a 

response. LangChain supports RAG through its retrieval tools and agents, making it 

suitable for applications that require updated or domain-specific information.

�Data Loaders
LangChain includes data loaders for various types of data sources, like local files, APIs, 

and databases. These loaders help convert raw data into a format that can be processed 

or queried by an LLM.

Chapter 1  LangChain and Python: Basics
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�Integrations and Extensibility
LangChain is designed to integrate easily with other tools and libraries. It supports 

various LLM back ends (such as OpenAI, Hugging Face, and others) and can be 

extended with custom chains, agents, or tools. This makes it flexible for creating custom 

applications across different domains.

�LLM Outputs and Postprocessing
LangChain provides ways to interpret and process the outputs from LLMs. Since LLMs 

may produce complex or unstructured data, LangChain includes components for 

parsing, formatting, and further transforming these outputs to be more usable for the 

application.

By leveraging these concepts, LangChain allows for building powerful, customizable 

LLM-powered applications efficiently.

�LangChain Installation
The LangChain ecosystem is divided into multiple packages, allowing you to selectively 

install only the specific features or functionality you need.

To install the main langchain package, run on Python 3.11:

pip install langchain==0.3.20

Although this package serves as a good starting point for using LangChain, its real 

value lies in integrating with various model providers and datastores. The necessary 

dependencies for these integrations are not included by default and must be installed 

separately. The steps to do so are provided below.

The LangChain ecosystem consists of different packages designed for modular 

functionality, most of which rely on “langchain-core.” This package includes base  

classes and abstractions, providing a foundation for the rest of the ecosystem. When 

installing any package, you don’t need to explicitly install its dependencies like 

“langchain-core.” However, if you need features from a specific version, you may do so, 

ensuring compatibility with other integrations.

Chapter 1  LangChain and Python: Basics
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�Packages Overview

•	 LangChain Core: Contains essential abstractions and LangChain 

Expression Language (LCEL). Automatically installed with 

“langchain” or separately with

pip install langchain-core==0.3.41

•	 Integration Packages: Packages like “langchain-openai” or 

“langchain-anthropic” offer support for specific integrations. The 

complete list of these integrations can be found under the “Partner 

libs” section in the API reference of the LangChain documentation. 

To install any of them, use

pip install langchain-openai==0.3.7

Integrations that haven’t been split into their own packages are 

part of “langchain-community,” installed via

pip install langchain-community==0.3.19

•	 Experimental Package: “langchain-experimental” hosts research 

and experimental code. You can install it with

pip install langchain-experimental==0.3.4

•	 LangGraph: A library designed for building stateful, multiactor 

applications with LLMs, which integrates seamlessly with LangChain 

but can be used independently:

pip install langgraph==0.3.5

•	 LangServe: A tool to deploy LangChain runnables and chains as 

REST APIs. It is included with the LangChain CLI. If you need both 

client and server functionalities, install using

pip install "langserve[all]"

For just the client or server, use "langserve[client]" or 

"langserve[server]".

Chapter 1  LangChain and Python: Basics
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•	 LangChain CLI: Useful for managing LangChain templates and 

LangServe projects:

pip install langchain-cli==0.0.35

•	 LangSmith SDK: Installed automatically with “langchain” but does 

not depend on “langchain-core.” It can be used separately if you’re 

not using LangChain:

pip install langsmith==0.3.12

�Installing from Source
To install any package from the source, clone the LangChain repository, navigate to the 

specific package’s directory (e.g., “PATH/TO/REPO/langchain/libs/{package}”), and run

pip install -e .

This allows for flexible and targeted functionality, letting you selectively integrate or 

develop with specific packages in the ecosystem.

�How to Prompt?
When working with large language models (LLMs), prompt engineering becomes an 

essential skill. A well-crafted prompt can significantly enhance the quality of a model’s 

output, even when using less powerful or open source models. By understanding how to 

shape inputs effectively, you can guide LLMs to produce accurate, context-appropriate 

responses. Throughout this module, we’ll explore the art and science of prompt creation, 

enabling you to fully harness the power of your models and achieve the best results 

possible.

One of the primary focuses will be on writing tailored prompts to achieve specific 

tasks, such as generating responses in a certain format or adhering to stylistic guidelines. 

We’ll also examine how few-shot prompts can allow a model to quickly learn new tasks 

and generalize to unseen scenarios. This technique is especially useful when you need 

customization with minimal data, as it provides an efficient way to adapt model behavior 

on the fly.

Chapter 1  LangChain and Python: Basics
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�Prompt Engineering
Prompt engineering is an emerging field focused on developing and refining prompts 

for effective use of large language models (LLMs) across a variety of applications. The 

goal is to enhance how LLMs process, understand, and generate text, making prompt 

engineering essential for numerous NLP tasks. Crafting high-quality prompts can reveal 

both the potential and the boundaries of what LLMs can achieve, and a well-designed 

prompt can significantly improve the accuracy and relevance of the model’s responses.

Throughout this lesson, you’ll gain hands-on experience with practical examples, 

helping you understand the nuances of prompt quality. We’ll explore how different 

prompts can lead to significantly different results, highlighting what makes a prompt 

“good” or “bad.” By the end, you’ll be equipped with techniques to create powerful 

prompts that enhance model performance, enabling it to provide contextually relevant, 

accurate, and insightful responses to any given task.

�Role Prompting
Role prompting is a technique that asks an LLM to take on a specific role or persona, 

helping guide its response in line with a certain tone, style, or perspective. For example, 

you might prompt the model to act as a "copywriter," "teacher," or "data analyst." This 

provides the LLM with a frame of reference, shaping how it interprets and answers 

the prompt.

To work effectively with role prompting, follow these steps:

•	 Define the Role Clearly: Clearly specify the role in your prompt to 

set the context for the model. For example, you might write: “As a 

copywriter, craft catchy taglines for AWS services that grab attention.” 

The model will interpret the role and respond accordingly, adopting 

the language and style of a copywriter.

•	 Generate Output from the LLM: Once the role is defined, use 

your prompt to produce an output. The model will use the role as 

guidance to tailor its response appropriately, focusing on the style, 

language, or structure that aligns with the defined role.

•	 Iterative Refinement: Analyze the output to see if it meets the 

desired criteria. If the results are not as expected, refine the prompt 

by being more specific about the role or the style of the response.  

Chapter 1  LangChain and Python: Basics
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This iterative process is crucial for achieving high-quality outputs. 

For example, if the response as a “copywriter” lacks creativity, you 

might adjust the prompt to include specific instructions like “use a 

playful tone and focus on benefits.”

By guiding the model’s behavior through role prompting, you can influence how it 

understands the task and the perspective it adopts, making it a versatile technique for a 

wide range of applications. This strategy not only improves the quality of the responses 

but also enables you to adapt the model’s outputs to fit the context of different tasks 

more effectively.

Note  For the following example, please get your OpenAI API key here: https://
platform.openai.com/api-keys.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

# Initialize the LLM with OpenAI's model

llm = ChatOpenAI(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4", 
temperature=0.5)
template = """
As a futuristic poet, I want to write a poem that captures the essence of 
{emotion}.
Can you suggest a title for a poem about {emotion} set in the year {year}?
"""
prompt = PromptTemplate(
    input_variables=["emotion", "year"],
    template=template,
)

# Input data for the prompt
input_data = {"emotion": "solitude", "year": "2500"}

chain = prompt | llm

response = chain.invoke(input_data)

Chapter 1  LangChain and Python: Basics
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print("Emotion: solitude")
print("Year: 2500")
print("AI-generated poem title:", response)

Output:

Emotion: solitude
Year: 2500
AI-generated poem title: content='"Echoes in the Void: Solitude in the 26th 
Century"' additional_kwargs={'refusal': None} response_metadata={'token_
usage': {'completion_tokens': 16, 'prompt_tokens': 44, 'total_tokens': 60, 
'completion_tokens_details': {'audio_tokens': None, 'reasoning_tokens': 
0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens': 0}}, 
'model_name': 'gpt-4-0613', 'system_fingerprint': None, 'finish_reason': 
'stop', 'logprobs': None} id='run-c41b514e-f8f5-43a9-96c3-f0ab35fdaad6-0' 
usage_metadata={'input_tokens': 44, 'output_tokens': 16, 'total_tokens': 
60, 'input_token_details': {'cache_read': 0}, 'output_token_details': 
{'reasoning': 0}}

The prompt in this code is effective for several reasons:

	 1.	 Clear and Contextual Role Setting

By stating, “As a futuristic poet,” the prompt establishes a role and 

context. This framing helps guide the model to think creatively 

like a poet, shaping its response to reflect a poetic tone and 

futuristic theme. Such context allows the LLM to adopt the right 

style, making the output more imaginative and relevant.

	 2.	 Specificity of Emotion and Time Frame

The prompt specifically asks for a poem title that captures the 

emotion of “{emotion}” set in the year “{year}.” This precision 

helps the model generate contextually rich and emotionally 

relevant titles, directly related to the emotion and future scenario. 

The use of variables makes it adaptable for different contexts, 

creating versatility.

Chapter 1  LangChain and Python: Basics
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	 3.	 Open-Ended Creativity

The prompt is open-ended, allowing the LLM to generate 

diverse, creative titles without being overly restrictive. By not 

setting limitations on how the title should sound, the model can 

explore artistic and evocative language, enhancing the quality of 

the output.

	 4.	 Task-Focused Guidance

The primary task is to create a poem title that evokes a specific 

emotion in a futuristic context. This direct focus helps the LLM 

avoid unrelated content, concentrating only on creating a unique 

title that matches the theme and style outlined in the prompt.

	 5.	 Encouragement of Thematic Coherence

By guiding the LLM to align its output with an emotional and 

futuristic time frame, the prompt ensures the response will have 

both thematic and temporal coherence. This makes the resulting 

poem title not just relevant but also compelling and imaginative, 

showcasing how prompts can evoke specific styles and tones 

effectively.

�Few-Shot Prompting
Few-shot prompting is a technique used in the context of large-scale language models 

to guide the model’s output by providing a small number of task-specific examples 

within the input prompt. Unlike traditional machine learning approaches, which require 

extensive datasets and iterative training, few-shot prompting leverages a model’s pre-

existing knowledge to perform tasks with minimal supervision.

In few-shot prompting, the model is presented with a limited number of input/

output pairs—usually between one and five—that illustrate the desired task. These 

examples serve as a form of implicit training within the prompt itself. The model uses 

these pairs to infer the relationship between inputs and outputs, allowing it to generalize 

and respond appropriately to new, unseen queries that follow the same pattern.

This technique builds on the premise that large language models, trained on vast 

amounts of diverse text data, can generalize across different domains. By presenting 

a few examples, the model can adjust its behavior dynamically without the need for 

Chapter 1  LangChain and Python: Basics



12

explicit retraining or fine-tuning. Few-shot prompting thus demonstrates the flexibility 

and contextual reasoning ability of such models, allowing them to perform a wide range 

of tasks from a minimal set of instructions.

The effectiveness of few-shot prompting depends largely on the model’s capacity to 

understand and generalize from the examples provided. It is a powerful approach for 

tasks where extensive labeled data is not readily available, offering an efficient method 

for leveraging pretrained models in a variety of applications.

�Key Benefits
•	 No Additional Training: You don’t need to fine-tune the model; it 

can perform tasks based on the few examples given.

•	 Adaptability: It can handle multiple tasks by simply providing 

examples for different tasks.

•	 Efficiency: Fewer examples are needed compared to traditional 

training methods, making it a practical approach for many 

applications.

Few-shot prompting is especially effective with very large pretrained models like 

GPT-3, which have enough capacity to learn from minimal examples.

Example:

from langchain_core.prompts.few_shot import FewShotPromptTemplate
from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

# Initialize the language model with specific settings
language_model = ChatOpenAI(
    �api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D2HWBxJgCW 

rjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_rPSrC 
fXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",

    model_name="gpt-4o-mini",
    temperature=0
)

Chapter 1  LangChain and Python: Basics
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# Sample color-to-emotion associations
color_emotion_pairs = [
    {"color": "red", "emotion": "energy"},
    {"color": "blue", "emotion": "peace"},
    {"color": "green", "emotion": "growth"},
]

# Template for formatting examples in a structured way
example_structure = """
Color: {color}
Associated Emotion: {emotion}\n
"""

# Create the example prompt template
color_prompt_template = PromptTemplate(
    input_variables=["color", "emotion"],
    template=example_structure,
)

# Construct a few-shot prompt template using the color-emotion pairs
few_shot_color_prompt = FewShotPromptTemplate(
    examples=color_emotion_pairs,
    example_prompt=color_prompt_template,
    �prefix="Here are a few examples demonstrating the emotions linked with 

colors:\n\n",
    �suffix="\n\nNow, considering the new color, predict the associated 

emotion:\n\nColor: {input}\nEmotion:",
    input_variables=["input"],
    example_separator="\n",
)

# Generate the final prompt for a new color input
final_prompt_text = few_shot_color_prompt.format(input="purple")

# Use the generated prompt and run it through the language model
final_prompt = PromptTemplate(template=final_prompt_text, input_
variables=[])
prompt_chain = final_prompt | language_model
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# Get the AI-generated response for the input color
model_output = prompt_chain.invoke({})

# Print the input color and its corresponding predicted emotion
print("Color: purple")
print("Predicted Emotion:", model_output.content)

Output:

Color: purple
Predicted Emotion: Color: purple
Associated Emotion: creativity

�Alternating Human/AI Messages
This strategy involves using few-shot prompting with alternating human and AI 

responses. It’s particularly useful for chat-based applications, as it helps the language 

model grasp the flow of conversation and generate contextually relevant replies.

Though this method excels in handling conversational dynamics and is simple to 

implement for chat applications, it is less adaptable for other types of use cases and 

works best with chat-specific models. However, alternating human and AI messages can 

be applied creatively, such as building a prompt to translate English into pirate language 

in a chat format.

�Chain Prompting
Chain prompting is a technique where multiple prompts are linked together in a 

sequence, with the output of one prompt being used as the input for the next. This 

method allows for progressively refining or expanding the context of the interaction, 

enabling the model to handle more complex tasks or multistep reasoning.

�Key Characteristics
	 1.	 Sequential Flow: The process involves feeding the output from 

one step directly into the next, enabling the model to “remember” 

and build upon previous information.
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	 2.	 Dynamic Adjustments: At each step, new information can be 

introduced based on the model’s prior responses, allowing for 

iterative improvements in the result.

�Steps for Chain Prompting
	 1.	 Initial Prompt: Start by providing an initial prompt to generate a 

base response.

	 2.	 Extract Information: Identify relevant details or key elements 

from the generated output.

	 3.	 New Prompt Construction: Create a subsequent prompt using 

the extracted information, adding new context or instructions to 

refine the output further.

	 4.	 Repeat Process: Continue chaining prompts as necessary, each 

building on the last, until the desired final output is obtained.

�Using Chain Prompting in LangChain
To implement chain prompting in LangChain, you can leverage its PromptTemplate 

class. This class simplifies the construction of prompts by allowing for dynamic input 

values, making it ideal for situations where prompts need to evolve based on previous 

answers.

•	 PromptTemplate enables you to

•	 Build prompts that adapt dynamically to changing inputs, 

ensuring flexibility in prompt chains

•	 Simplify the process of passing outputs from one step to the next 

by easily substituting variables or new context into each prompt
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�Additional Benefits
•	 Complex Workflows: Chain prompting allows for handling more 

advanced tasks that require multiple steps, such as multiturn 

conversations, solving multipart problems, or conducting research 

in stages.

•	 Error Handling: If an intermediate step yields an incomplete or 

ambiguous response, chain prompting enables you to adjust the 

following prompts to clarify or correct the issue.

•	 Interactive Exploration: This approach allows for a more 

exploratory dialogue, where each prompt can refine the context, 

helping to uncover deeper insights.

In LangChain, combining chain prompting with other techniques like few-shot 
prompting or memory-based approaches allows you to build complex, multistep 

systems that leverage the power of large language models effectively.

Example:

from langchain_core.prompts.prompt import PromptTemplate
from langchain_openai import ChatOpenAI

# Initialize the language model
llm = ChatOpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQ 
yi3D2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZx 
iOA_rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
                 model_name="gpt-4o-mini",
                 temperature=0)

# Prompt 1: Ask for the scientist who developed the theory of general 
relativity
question_template = """Who is the scientist that formulated the theory of 
general relativity?
Answer: """
prompt_for_scientist = PromptTemplate(template=question_template, input_
variables=[])
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# Prompt 2: Ask for a brief explanation of the scientist's theory of 
general relativity
fact_template = """Give a brief explanation of {scientist}'s theory of 
general relativity.
Answer: """
prompt_for_fact = PromptTemplate(input_variables=["scientist"], 
template=fact_template)

# Create a runnable chain for the first prompt to retrieve the 
scientist's name
chain_for_question = prompt_for_scientist | llm

# Get the response for the first question
response_to_question = chain_for_question.invoke({})

# Extract the scientist's name from the response
scientist_name = response_to_question.content.strip()

# Create a runnable chain for the second prompt using the extracted 
scientist's name
chain_for_fact = prompt_for_fact | llm

# Input data for the second prompt
fact_input = {"scientist": scientist_name}

# Get the response for the second question about the theory
response_to_fact = chain_for_fact.invoke(fact_input)

# Output the scientist's name and the explanation of their theory
print("Scientist:", scientist_name)
print("Theory Description:", response_to_fact)

Output:

Scientist: The scientist who formulated the theory of general relativity is 
Albert Einstein.
Theory Description: content="Albert Einstein's theory of general 
relativity, formulated in 1915, is a fundamental theory of gravitation 
that describes gravity not as a force, but as a curvature of spacetime 
caused by mass. According to this theory, massive objects like planets and 
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stars warp the fabric of spacetime around them, and this curvature affects 
the motion of other objects, causing them to follow curved paths. General 
relativity has profound implications for our understanding of the universe, 
including the behavior of black holes, the expansion of the universe, and 
the bending of light around massive objects. It has been confirmed through 
numerous experiments and observations, making it a cornerstone of modern 
physics." additional_kwargs={'refusal': None} response_metadata={'token_
usage': {'completion_tokens': 131, 'prompt_tokens': 36, 'total_tokens': 
167, 'completion_tokens_details': {'audio_tokens': None, 'reasoning_
tokens': 0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_
tokens': 0}}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 
'fp_e2bde53e6e', 'finish_reason': 'stop', 'logprobs': None} id='run-
d16897c9-54a3-4feb-9a7c-fe481798c984-0' usage_metadata={'input_tokens': 36, 
'output_tokens': 131, 'total_tokens': 167, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}

�Chain-of-Thought Prompting
Chain-of-thought prompting (CoT) is a technique designed to encourage large language 

models (LLMs) to explain their reasoning process, leading to more accurate outcomes. 

By presenting few-shot examples that showcase step-by-step reasoning, CoT helps 

guide the model to articulate its thought process when responding to prompts. This 

method has proven effective for tasks such as arithmetic, common sense reasoning, and 

symbolic logic.

In the context of LangChain, CoT offers several advantages. First, it helps deconstruct 

complex problems by guiding the model to break them into smaller, more manageable 

steps, which makes the problem easier to solve. This is especially useful for tasks 

involving calculations, logic, or multistep reasoning. Second, CoT can help the model 

generate more coherent and contextually relevant outputs by leading it through related 

prompts. This results in more accurate and meaningful responses, particularly for tasks 

that require deep comprehension of a problem or domain.

However, there are some limitations to CoT. One significant drawback is that it 

generally improves performance only when applied to models with approximately 100 

billion parameters or more. Smaller models often generate illogical reasoning chains, 

which can result in lower accuracy compared to standard prompting. Additionally, 
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CoT’s effectiveness varies across different types of tasks. While it excels in tasks involving 

arithmetic, common sense, and symbolic reasoning, it may offer fewer benefits or even 

hinder performance in other task categories.

�Advanced Tips for Effective Prompt Engineering
	 1.	 Be Specific with Your Prompt: Provide clear and detailed 

instructions in your prompt. The more context, background, and 

specifics you give, the better the LLM can interpret and generate 

a relevant response. Vague prompts lead to generalized or 

incomplete answers.

	 2.	 Encourage Conciseness: If the response needs to be short and 

to the point, be explicit about it. You can request responses to be 

limited to a specific number of words or sentences, which forces 

the model to focus on delivering the essential information.

	 3.	 Ask for Reasoning or Explanations: When dealing with complex 

tasks, encourage the model to explain its reasoning or show the 

steps it took to arrive at its answer. This improves the quality of 

results, particularly for problem-solving, logic, and reasoning 

tasks, ensuring transparency in the process.

	 4.	 Iterate and Refine Prompts: Prompt engineering is rarely a one-

time activity. Iteration is key—test and tweak your prompts to 

see how different phrasing or added details change the model’s 

response. Refine until the output aligns with your expectations.

	 5.	 Use Examples to Guide Responses: One of the most powerful 

ways to guide LLMs is by using few-shot learning. By showing the 

model a few examples of what you’re looking for, you significantly 

increase the chance of receiving an answer that mirrors your 

expectations in tone, format, or reasoning.

	 6.	 Apply Constraints: If you’re looking for specific formats or a 

particular structure (e.g., bulleted lists, headings, step-by-step 

processes), be clear about these constraints in your prompt. This 

helps the model organize its output according to your needs.
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	 7.	 Task-Specific Prompting: Tailor your prompts to the specific task 

at hand. For example, creative writing prompts should encourage 

open-ended responses, while technical prompts should focus on 

precision, structure, and accuracy. Each type of task may require a 

different approach to prompt engineering.

	 8.	 Leverage Clarifying Questions: If the initial response isn’t what 

you expected, ask the model to elaborate or clarify specific points. 

This helps guide the conversation in a more meaningful direction 

and ensures the model understands and focuses on what’s 

important.

	 9.	 Balance Open-Endedness and Constraints: For tasks where 

creativity is needed, such as brainstorming, use more open-ended 

prompts to allow the model to explore a variety of ideas. For tasks 

requiring accuracy, use tighter constraints to keep the model 

focused on relevant and correct answers.

	 10.	 Adjust Prompt Length: The length of your prompt can influence 

the quality of the response. For some tasks, a simple, concise 

prompt works best, while more complex tasks might require 

detailed, multipart instructions. Experiment with prompt length 

to see what works for different types of questions.

	 11.	 Include Key Terms: If your task requires specific technical 

language, jargon, or domain-specific terms, include those 

directly in the prompt. This helps guide the model toward more 

specialized and accurate outputs, especially in fields like science, 

technology, or law.

	 12.	 Specify the Role of the LLM: Sometimes, framing the model’s 

role in the prompt can improve the result. For instance, start your 

prompt with phrases like “As a teacher,” or “You are an expert in…” 

to influence the model’s tone and style of response, aligning it 

with the required task.

	 13.	 Set an Output Persona: In certain tasks, you can request the 

model to assume a specific persona or tone. For example, ask the 

model to respond like a teacher, researcher, or customer service 

agent to tailor the responses to different contexts or audiences.
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	 14.	 Utilize Multiturn Dialogue: For tasks that require deeper 

exploration, consider breaking the problem down into a series of 

smaller questions. This approach not only helps the model focus 

on individual components of a complex task but also provides 

you with an opportunity to guide the conversation progressively 

toward a complete answer.

	 15.	 Test Edge Cases: For robustness, test how your prompt performs 

with edge cases or atypical inputs. This helps ensure that the LLM 

performs well across a variety of scenarios and doesn’t generate 

inaccurate or nonsensical results in unusual situations.

	 16.	 Account for Model Limitations: Remember that LLMs have 

limitations in their knowledge and reasoning capabilities. Not all 

prompts will yield perfect responses, and some answers might 

lack depth or accuracy in certain specialized domains. Recognize 

when an LLM has reached its limit, and avoid overrelying on it for 

highly specialized or sensitive tasks.

	 17.	 Keep Bias in Check: Be mindful of the potential for biases in 

LLM-generated outputs. Craft prompts that minimize the chances 

of generating biased, harmful, or inappropriate content. Avoid 

phrasing that could steer the model toward biased or harmful 

assumptions.

	 18.	 Incorporate Multiple Prompt Variations: Instead of relying 

on one version of a prompt, try asking the same question or 

requesting the same task using several different prompt phrasings. 

This technique helps in uncovering new insights or variations in 

response quality.

By applying these strategies, you can enhance your ability to interact effectively 

with large language models, improving the quality and relevance of their outputs. As 

AI tools continue to evolve, mastery of prompt engineering will remain a critical skill 

for developers, researchers, and professionals who rely on LLMs to optimize their 

workflows.
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�What Are Chains?
A LangChain chain is a structured sequence of operations in the LangChain framework, 

where various components like language models, tools, and external APIs are connected 

to perform complex tasks. The primary purpose of a chain is to manage and coordinate 

interactions between different modules, allowing for multistep reasoning and advanced 

workflows when working with large language models (LLMs).

Key characteristics of a LangChain chain:

•	 Modular Design: Chains are designed to be modular, meaning 

individual components can be easily added, removed, or replaced. 

This allows for flexibility in constructing workflows depending on the 

use case, from simple to highly sophisticated tasks. Each module or 

component typically has a clearly defined input/output structure.

•	 Multistep Processing: Chains facilitate multistep operations by 

passing the output of one component as the input to another. This 

enables more advanced reasoning, decision-making, or actions that 

require several stages of processing, such as combining language 

understanding with tool execution or validation.

•	 Control Flow: Chains can incorporate control flow mechanisms, 

such as conditional logic or loops, enabling the workflow to branch 

or iterate based on the intermediate results. This allows for dynamic 

behavior, adjusting the sequence of actions depending on the inputs 

or outputs at each step.

•	 Handling Intermediate Outputs: A chain can retain intermediate 

outputs, either for logging purposes, debugging, or as part of a larger 

workflow. This allows for transparency in the process, making it 

easier to inspect how each step contributes to the final result.

•	 Interaction with External Systems: Chains are not limited to just 

working with language models. They can interact with external 

systems, such as databases, APIs, search engines, or knowledge 

bases, to fetch relevant information or execute tasks that go beyond 

natural language processing. This is particularly useful for retrieving 

real-time data, performing calculations, or executing functions that 

require interaction with other platforms.
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•	 Memory Management: Some chains integrate memory, allowing 

them to store and recall past interactions, decisions, or context. This 

feature is particularly valuable for applications like conversational 

agents, where maintaining context over multiple interactions is 

critical for coherent and contextually aware responses.

•	 Scalability: Chains can be constructed in a scalable manner, 

allowing developers to design workflows that handle both simple 

tasks (such as a single prompt) or more intricate, multistep processes 

involving numerous components and external services.

•	 Reusability: LangChain encourages reusability by enabling the 

creation of reusable chains that can be applied to different tasks 

without reconfiguring the entire workflow. Developers can design a 

chain once and use it for various applications or modify it for similar 

tasks with minimal changes.

LangChain chains are an essential mechanism for building sophisticated 

applications that go beyond simple LLM queries, orchestrating complex interactions in a 

seamless, structured, and highly configurable way.

�Chain Components
A LangChain chain consists of several key components that work together to create 

multistep workflows.

First, prompt templates are used to guide LLM outputs by filling in placeholders 

with dynamic values, helping customize the responses. The core of the system, 

language models (LLMs), generate responses based on the input prompts. Chains can 

also integrate with external tools, such as APIs or databases, to fetch data or perform 

additional tasks beyond text generation.

Memory is another crucial component, allowing the chain to store and recall 

information across interactions, ensuring continuity, especially in conversational 

contexts. Input variables provide dynamic data that personalize the chain’s behavior, 

while output parsers process and format model outputs for further steps or final 

responses.
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More complex tasks can be handled by nested chains (subchains), which break 

down workflows into smaller, manageable steps. Decision logic introduces conditional 

branching, enabling the chain to adapt based on input or intermediate results. Chains 

can also include retrieval components to fetch relevant information from external 

sources, enhancing context and accuracy.

Control flow governs the sequence and timing of operations, ensuring tasks are 

performed in the right order. To ensure robustness, error handling mechanisms are 

built in, managing failures and triggering retries or alternative steps when needed. API 
connectors allow chains to interact with external services, expanding functionality, 

while logs and debugging tools track execution, helping with monitoring and 

troubleshooting.

These components enable LangChain chains to integrate LLMs with tools, logic, and 

external data sources, allowing for flexible and complex workflows tailored to various 

applications.

�Chain Types
In LangChain, there are several types of chains that can be used to construct workflows 

depending on the complexity, purpose, and specific requirements of the task. Each 

chain type serves a different function and can be adapted or combined to create versatile 

applications. Here are the most common types of LangChain chains.

�1. Simple Chain
A simple chain consists of a single operation or a straightforward sequence of 

operations. This type of chain takes an input, processes it through one or more steps, 

and generates a single output. It’s often used for basic tasks, such as filling in a prompt 

template and calling an LLM to generate a response.

•	 Usage: Direct question-answering tasks, summarization, or text 

transformation

•	 Components: Usually involves a single prompt template, one LLM 

call, and an output
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Example:

from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAI

# Step 1: Define the language model (in this case, OpenAI's GPT)
llm = OpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D 
2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_ 
rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
            �temperature=0.7)  # Set the desired temperature for response 

variability

# Step 2: Define the prompt template
prompt_template = """
Summarize the following question briefly:
{user_question}
"""

# Step 3: Create the PromptTemplate object
prompt = PromptTemplate(
   input_variables=["user_question"],
   template=prompt_template,
)

# Step 4: Create the LLMChain using the language model and prompt template
 chain = prompt | llm

# Step 5: Input the user's question and run the chain
user_question = "Can you explain how photosynthesis works in simple terms?"

output = chain.invoke(user_question)

# Print the summarized question
print("Summarized Question:", output)

Output:

Summarized Question:
Explaining photosynthesis in simple terms.
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�2. Sequential Chain
A sequential chain involves multiple steps arranged in a strict linear sequence. Each 

step’s output becomes the input for the next step. These chains are useful when tasks 

need to be completed in a particular order.

•	 Usage: When multistep reasoning or progressive tasks are needed 

(e.g., generating an outline, followed by writing content based on that 

outline)

•	 Components: Multiple operations, such as LLM calls, external API 

interactions, or data transformations that occur in sequence

Example:

from langchain.chains import LLMChain, SimpleSequentialChain
from langchain.prompts import PromptTemplate

from langchain_openai import OpenAI

# Step 1: Define the language model
llm = OpenAI(api_key="sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6erQJ4dQyi3D 
2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHIR3FMCDZxiOA_ 
rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA",
             temperature=0.7)

# Step 2: Create the first prompt template to summarize the question
summary_prompt_template = """
Summarize the following question briefly:
{user_question}
"""

# Step 3: Create the second prompt template to generate a short answer
answer_prompt_template = """
Provide a brief answer to the following question:
{summarized_question}
"""

# Step 4: Create PromptTemplate objects for both prompts
summary_prompt = PromptTemplate(
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    input_variables=["user_question"],
    template=summary_prompt_template,
)
answer_prompt = PromptTemplate(
    input_variables=["summarized_question"],
    template=answer_prompt_template,
)

# Step 5: Create LLMChain objects for both steps
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
answer_chain = LLMChain(llm=llm, prompt=answer_prompt)

# Step 6: Create a SimpleSequentialChain that links both chains together
sequential_chain = SimpleSequentialChain(
    chains=[summary_chain, answer_chain]
)

# Step 7: Input the user's question and run the sequential chain
user_question = "Can you explain how photosynthesis works in simple terms?"
output = sequential_chain.run(user_question)
# Print the output of the sequential chain
print("Final Output:", output)

Output:

Photosynthesis is the process by which plants and some other organisms use 
sunlight to turn water and carbon dioxide into oxygen and sugar. This sugar 
is then used as a source of energy for the plant's growth and development. 
The process takes place in the chloroplasts of plant cells and requires 
the presence of chlorophyll, a green pigment that absorbs sunlight. During 
photosynthesis, carbon dioxide is taken in through small openings on the 
leaves called stomata, and water is absorbed through the roots. Sunlight 
is then used to convert these substances into energy in the form of sugar, 
while oxygen is released as a byproduct. This process is vital for the 
survival of plants, as well as for maintaining oxygen levels in the Earth's 
atmosphere.
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�3. Conversational Chain
This chain is used in conversational agents where maintaining context is critical. It 

leverages memory to store and recall previous interactions, enabling the model to 

respond in a way that reflects the ongoing conversation.

•	 Usage: Chatbots, virtual assistants, customer support applications, or 

any system requiring multiturn conversations

•	 Components: LLMs for generating responses, memory for storing 

context, and potentially external tools for more complex interactions

Note I n the latest version of LangChain, you don’t need to add the openai_api_
key parameter anymore, but you need to define it as an environmental variable.

Example:

import os
# Set your OpenAI API key
os.environ["OPENAI_API_KEY"] = "sk-proj-056py5goMfqp8_g2gOgfhefr1HLriyWyP6 
erQJ4dQyi3D2HWBxJgCWrjWMbvMTJdvxHlzaWm11T3BlbkFJss1mhhNZJ7YREWFugP2wKQoMHI 
R3FMCDZxiOA_rPSrCfXZK6ZJbcGJ85dpMGV4adCt7R_zrUkA"
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import LLMChain
# Step 1: Define a prompt template for conversation, using a variable for 
user input
prompt = ChatPromptTemplate.from_messages(
    [("user", "{user_input}")]
)
# Step 2: Set up the ChatOpenAI model (gpt-3.5-turbo in this case) with 
temperature control
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
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# Step 3: Create memory to store conversation history
memory = ConversationBufferMemory()

# Step 4: Create the chain combining prompt, model, and output parser

chain = LLMChain(prompt=prompt, llm=llm, memory=memory, output_
parser=StrOutputParser())
# Simulate a conversation by invoking the chain with memory
# First user input
response_1 = chain.invoke({"user_input": "Can you explain what 
photosynthesis is?"})
print("AI Response 1:", response_1)
# Second user input
response_2 = chain.invoke({"user_input": "What happens during the light-
dependent reactions?"})
print("AI Response 2:", response_2)
# Third user input
response_3 = chain.invoke({"user_input": "Can you summarize both for me?"})
print("AI Response 3:", response_3)
print(memory)

Output:

AI Response 1: {'user_input': 'Can you explain what photosynthesis is?', 
'history': '', 'text': 'Sure! Photosynthesis is the process by which green 
plants, algae, and some bacteria convert light energy, usually from the 
sun, into chemical energy in the form of glucose (sugar). This process 
takes place in the chloroplasts of plant cells and involves the absorption 
of carbon dioxide and water, which are converted into glucose and oxygen 
through a series of complex chemical reactions. The glucose produced 
through photosynthesis is used by the plant for energy and growth, while 
the oxygen is released into the atmosphere as a byproduct. Photosynthesis 
is essential for the survival of plants and other photosynthetic organisms, 
as well as for the overall health of ecosystems.'}
AI Response 2: {'user_input': 'What happens during the light-dependent 
reactions?', 'history': 'Human: Can you explain what photosynthesis is?\
nAI: Sure! Photosynthesis is the process by which green plants, algae, and 
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some bacteria convert light energy, usually from the sun, into chemical 
energy in the form of glucose (sugar). This process takes place in the 
chloroplasts of plant cells and involves the absorption of carbon dioxide 
and water, which are converted into glucose and oxygen through a series of 
complex chemical reactions. The glucose produced through photosynthesis is 
used by the plant for energy and growth, while the oxygen is released into 
the atmosphere as a byproduct. Photosynthesis is essential for the survival 
of plants and other photosynthetic organisms, as well as for the overall 
health of ecosystems.', 'text': 'During the light-dependent reactions, 
also known as the light reactions, several key processes take place in the 
thylakoid membranes of the chloroplast:\n\n1. Absorption of light: Light 
energy is absorbed by chlorophyll and other pigments in the photosystems, 
specifically Photosystem II and Photosystem I.\n\n2. Water splitting: The 
absorbed light energy is used to split water molecules into oxygen, protons 
(H+ ions), and electrons. This process releases oxygen as a byproduct.\n\
n3. Electron transport chain: The energized electrons from Photosystem II 
are passed along a series of proteins in the electron transport chain, 
generating ATP through the process of chemiosmosis.\n\n4. Production 
of ATP and NADPH: The flow of electrons through the electron transport 
chain ultimately leads to the production of ATP and NADPH, which are both 
energy carriers used in the Calvin cycle.\n\nOverall, the light-dependent 
reactions convert light energy into chemical energy in the form of ATP and 
NADPH, which are then used in the Calvin cycle to produce glucose and other 
organic compounds.'}
AI Response 3: {'user_input': 'Can you summarize both for me?', 'history': 
'Human: Can you explain what photosynthesis is?\nAI: Sure! Photosynthesis 
is the process by which green plants, algae, and some bacteria convert 
light energy, usually from the sun, into chemical energy in the form of 
glucose (sugar). This process takes place in the chloroplasts of plant 
cells and involves the absorption of carbon dioxide and water, which are 
converted into glucose and oxygen through a series of complex chemical 
reactions. The glucose produced through photosynthesis is used by the plant 
for energy and growth, while the oxygen is released into the atmosphere 
as a byproduct. Photosynthesis is essential for the survival of plants 
and other photosynthetic organisms, as well as for the overall health of 
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ecosystems.\nHuman: What happens during the light-dependent reactions?\
nAI: During the light-dependent reactions, also known as the light 
reactions, several key processes take place in the thylakoid membranes 
of the chloroplast:\n\n1. Absorption of light: Light energy is absorbed 
by chlorophyll and other pigments in the photosystems, specifically 
Photosystem II and Photosystem I.\n\n2. Water splitting: The absorbed light 
energy is used to split water molecules into oxygen, protons (H+ ions), 
and electrons. This process releases oxygen as a byproduct.\n\n3. Electron 
transport chain: The energized electrons from Photosystem II are passed 
along a series of proteins in the electron transport chain, generating ATP 
through the process of chemiosmosis.\n\n4. Production of ATP and NADPH: The 
flow of electrons through the electron transport chain ultimately leads 
to the production of ATP and NADPH, which are both energy carriers used 
in the Calvin cycle.\n\nOverall, the light-dependent reactions convert 
light energy into chemical energy in the form of ATP and NADPH, which 
are then used in the Calvin cycle to produce glucose and other organic 
compounds.', 'text': 'Sure! The first passage discusses the importance of 
self-care and setting boundaries to prevent burnout. It emphasizes the 
need to prioritize mental and physical well-being in order to maintain a 
healthy work-life balance.\n\nThe second passage highlights the benefits 
of meditation for reducing stress and anxiety. It suggests incorporating 
mindfulness practices into daily routines to improve overall mental health 
and emotional well-being.'}
chat_memory=InMemoryChatMessageHistory(messages=[HumanMessage(conte
nt='Can you explain what photosynthesis is?', additional_kwargs={}, 
response_metadata={}), AIMessage(content='Sure! Photosynthesis is the 
process by which green plants, algae, and some bacteria convert light 
energy, usually from the sun, into chemical energy in the form of glucose 
(sugar). This process takes place in the chloroplasts of plant cells 
and involves the absorption of carbon dioxide and water, which are 
converted into glucose and oxygen through a series of complex chemical 
reactions. The glucose produced through photosynthesis is used by the 
plant for energy and growth, while the oxygen is released into the 
atmosphere as a byproduct. Photosynthesis is essential for the survival 
of plants and other photosynthetic organisms, as well as for the overall 
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health of ecosystems.', additional_kwargs={}, response_metadata={}), 
HumanMessage(content='What happens during the light-dependent reactions?', 
additional_kwargs={}, response_metadata={}), AIMessage(content='During the 
light-dependent reactions, also known as the light reactions, several key 
processes take place in the thylakoid membranes of the chloroplast:\n\
n1. Absorption of light: Light energy is absorbed by chlorophyll and other 
pigments in the photosystems, specifically Photosystem II and Photosystem 
I.\n\n2. Water splitting: The absorbed light energy is used to split 
water molecules into oxygen, protons (H+ ions), and electrons. This 
process releases oxygen as a byproduct.\n\n3. Electron transport chain: 
The energized electrons from Photosystem II are passed along a series 
of proteins in the electron transport chain, generating ATP through the 
process of chemiosmosis.\n\n4. Production of ATP and NADPH: The flow of 
electrons through the electron transport chain ultimately leads to the 
production of ATP and NADPH, which are both energy carriers used in the 
Calvin cycle.\n\nOverall, the light-dependent reactions convert light 
energy into chemical energy in the form of ATP and NADPH, which are then 
used in the Calvin cycle to produce glucose and other organic compounds.', 
additional_kwargs={}, response_metadata={}), HumanMessage(content='Can 
you summarize both for me?', additional_kwargs={}, response_metadata={}), 
AIMessage(content='Sure! The first passage discusses the importance of 
self-care and setting boundaries to prevent burnout. It emphasizes the 
need to prioritize mental and physical well-being in order to maintain a 
healthy work-life balance.\n\nThe second passage highlights the benefits 
of meditation for reducing stress and anxiety. It suggests incorporating 
mindfulness practices into daily routines to improve overall mental health 
and emotional well-being.', additional_kwargs={}, response_metadata={})])

�4. Multi-input Chain
This type of chain accepts multiple inputs, which are processed either in parallel or 

in sequence depending on the workflow. It allows for more complex scenarios where 

various types of data or inputs must be handled together.
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•	 Usage: When a task requires different sources of information, 

such as combining data from a user input and an external API or 

multiple models

•	 Components: Several input sources (e.g., a prompt and a knowledge 

base), multiple models, and tools to combine and process the inputs

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import SimpleSequentialChain

# Step 1: Define the first prompt to accept a question and context
question_prompt = ChatPromptTemplate.from_messages(
    �[("user", "Given the context: '{context}', answer the question: 

'{question}'")]
)
# Step 2: Define the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Step 3: Create the output parser
output_parser = StrOutputParser()

# Step 4: Combine the prompt and model into a chain
# This is a simple chain that handles multiple inputs (question and 
context)
chain = question_prompt | llm | output_parser

# Step 5: Define the inputs for the multi-input chain
inputs = {
    "question": "How does photosynthesis work?",
    �"context": "Photosynthesis is the process used by plants to convert 

light energy into chemical energy."
}
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# Step 6: Run the chain with both inputs
response = chain.invoke(inputs)
# Output the response
print("Response:", response)

Output:

Response: Photosynthesis works by plants using sunlight to convert carbon 
dioxide and water into glucose (sugar) and oxygen. This process takes place 
in the chloroplasts of plant cells, where the green pigment chlorophyll 
absorbs sunlight and initiates the chemical reactions that produce glucose. 
The oxygen produced is released into the atmosphere as a byproduct.

�Why Multi-input?

	 1.	 Multi-input Prompt: The ChatPromptTemplate defines a template 

that accepts two inputs: context and question. This prompt will 

insert both into the message for the language model.

	 2.	 Model: The ChatOpenAI model (gpt-3.5-turbo) is used to process 

the input and generate a response.

	 3.	 Output Parser: The StrOutputParser is used to parse the model’s 

response into a string format. We will discuss the output parsers a 

bit later in the book.

	 4.	 Chain Construction: The chain combines the prompt, model, 

and output parser, handling both the question and context 

together as inputs.

	 5.	 Invoke: The .invoke() method is used to pass the inputs (both 

the question and the context) to the chain for processing.

�5. Multi-output Chain
A multi-output chain takes an input and produces multiple outputs. This type of chain is 

useful when you want to generate different types of results based on a single input, such 

as extracting multiple pieces of information or generating multiple response options.
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•	 Usage: Use cases where the same input must be processed in 

different ways, such as generating summaries, key takeaways, and 

action items from a single document

•	 Components: One input, multiple steps or LLM calls, and a set 

of outputs

from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain_core.output_parsers import StrOutputParser
from langchain.chains import LLMChain
from langchain.chains import SequentialChain

# Step 1: Define the prompt for generating a summary
summary_prompt = ChatPromptTemplate.from_messages(
    [("user", "Please summarize the following text: {input_text}")]
)

# Step 2: Define the prompt for extracting key points
key_points_prompt = ChatPromptTemplate.from_messages(
    �[("user", "Extract the key points from the following text: {input_

text}")]
)

# Step 3: Set up the ChatOpenAI model (same model for both tasks)
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
# Step 4: Create the output parser
output_parser = StrOutputParser()

# Step 5: Create LLMChain for summarization and key point extraction
summary_chain = LLMChain(prompt=summary_prompt, llm=llm, output_
key="summary")  # Changed output key to "summary"
key_points_chain = LLMChain(prompt=key_points_prompt, llm=llm, output_
key="key_points")  # Changed output key to "key_points"

# Step 6: Create a SequentialChain that runs both chains (true 
multi-output)
multi_output_chain = SequentialChain(
    chains=[summary_chain, key_points_chain],

Chapter 1  LangChain and Python: Basics



36

    input_variables=["input_text"],  # single input passed to both chains
    output_variables=["summary", "key_points"]  # two outputs
)

# Step 7: Define the input text
input_text = """
Photosynthesis is a process used by plants to convert light energy into 
chemical energy. During photosynthesis,
plants take in carbon dioxide (CO2) and water (H2O) from the air and soil. 
Within the plant cell, the water is oxidized,
meaning it loses electrons, while the carbon dioxide is reduced, meaning it 
gains electrons. This process converts
the water into oxygen and the carbon dioxide into glucose. The plant then 
releases the oxygen back into the air,
and stores energy in the form of glucose molecules.
"""

# Step 8: Run the multi-output chain using apply() for multiple outputs
outputs = multi_output_chain.apply([{"input_text": input_text}])[0]

# Step 9: Output the responses
print("Summary:", outputs['summary'])
print("Key Points:", outputs['key_points'])

Output:

Summary: Photosynthesis is a process where plants convert light energy into 
chemical energy by taking in carbon dioxide and water to produce oxygen and 
glucose. The plant releases the oxygen and stores the glucose for energy.
Key Points: - Photosynthesis is a process used by plants to convert light 
energy into chemical energy.
- Plants take in carbon dioxide and water from the air and soil.
- Water is oxidized and carbon dioxide is reduced during photosynthesis.
- The result is oxygen and glucose production.
- �Oxygen is released back into the air, while glucose is stored as energy 
in the plant.
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�Why It’s a Multi-output Chain

	 1.	 Single Input: The input (input_text) is passed once and processed 

through multiple chains.

	 2.	 Multiple Outputs: The input is processed in two different ways 

(summary and key points), and the outputs are stored in distinct 

keys (summary, key_points).

	 3.	 Sequential Execution: The SequentialChain ensures that both 

chains run in sequence, with the same input generating multiple 

outputs in a single invocation.

Handling Multiple Outputs with apply():

•	 Since SequentialChain supports multiple output variables, we use 

apply() instead of run() to handle cases where more than one output 

is generated. This is essential for returning a dictionary with multiple 

output keys.

�6. Router Chain
The router chain acts as a decision-making hub that directs the input to different 

subchains based on predefined conditions or classifications. It’s useful when you have 

various workflows that depend on the type of input.

•	 Usage: For tasks requiring conditional logic, such as routing 

customer queries to the right department (billing, technical support, 

etc.) or choosing the right model based on input complexity

•	 Components: A router module that decides which subchain to 

invoke, along with those subchains themselves

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI

# Step 1: Define the prompts for summarization and key points extraction

Chapter 1  LangChain and Python: Basics



38

# Summarization prompt
summary_prompt = ChatPromptTemplate.from_messages(
    [("user", "Please summarize the following text: {input_text}")]
)

# Key points extraction prompt
key_points_prompt = ChatPromptTemplate.from_messages(
    �[("user", "Extract the key points from the following text: {input_

text}")]
)
# Classifier prompt to determine if the input is asking for a "summary" or 
"key points extraction"
classifier_prompt = ChatPromptTemplate.from_messages(
    �[("user", "Classify this request as 'summarization' or 'key points 

extraction': {input_text}")]
)
# Step 2: Define the language model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Step 3: Define chains using the pipe operator
# Chain for classifying input
classifier_chain = classifier_prompt | llm | StrOutputParser()

# Chain for summarization
summary_chain = summary_prompt | llm | StrOutputParser()
# Chain for key points extraction
key_points_chain = key_points_prompt | llm | StrOutputParser()
# Step 4: Define a function to handle the routing based on classification
def router_chain(input_text):
    # Classify the input (is it a request for summarization or key points?)
    classification = classifier_chain.invoke({"input_text": input_text})
    # Route to the appropriate chain based on the classification result
    if "summarization" in classification.lower():
        return summary_chain.invoke({"input_text": input_text})
    elif "key points extraction" in classification.lower():
        return key_points_chain.invoke({"input_text": input_text})
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    else:
        # Fallback to the summary chain if the classification is unclear
        return summary_chain.invoke({"input_text": input_text})

# Step 5: Define input texts
input_text_1 = "Summarize this text: Photosynthesis is a process used by 
plants to convert light energy into chemical energy."
input_text_2 = "Give me the key points of the following text: 
Photosynthesis is a process used by plants to convert light energy into 
chemical energy."

# Step 6: Run the router chain on different inputs
output_1 = router_chain(input_text_1)
output_2 = router_chain(input_text_2)

# Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)

Output:

Output 1: Photosynthesis is the process that plants use to convert light 
energy into chemical energy.
Output 2: - Photosynthesis is a process used by plants
- Plants convert light energy into chemical energy through photosynthesis

�Why Router Chain?

•	 Prompt Definition: Each prompt is defined using 

ChatPromptTemplate.from_messages(). This includes the summary_

prompt, key_points_prompt, and classifier_prompt for routing.

•	 Chained Operations: The chains (classifier_chain, summary_chain, 

and key_points_chain) are created using the pipe (|) operator to 

chain together the prompt, model (ChatOpenAI), and output parser 

(StrOutputParser).

•	 Router Function: The router_chain function first invokes the 

classifier_chain to classify the input as either a “summarization” or 

“key points extraction” task.
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•	 Based on the classification result, it dynamically routes the input to 

the appropriate chain (summary_chain or key_points_chain). If the 

classification is unclear, it defaults to the summarization chain.

•	 Running the Chain: The router_chain function is run on two 

different inputs, input_text_1 and input_text_2, and the outputs are 

printed.

�7. Control Flow Chain
A control flow chain allows branching and conditional execution based on the results of 

intermediate steps. The workflow can change dynamically depending on the decisions 

made at each stage, enabling complex reasoning processes.

•	 Usage: Scenarios where certain actions are taken only if specific 

conditions are met, such as checking the confidence level of a 

model’s output or validating an API response

•	 Components: Logic that governs branching (e.g., if-else statements), 

conditional steps, and error handling mechanisms

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
# Step 1: Define prompts for different tasks
# Prompt to answer a definition-related question
definition_prompt = ChatPromptTemplate.from_messages(
    [("user", "Define the following concept: {concept}")]
)

# Prompt to perform a calculation
calculation_prompt = ChatPromptTemplate.from_messages(
    [("user", "Calculate the following: {calculation}")]
)

# Classifier prompt to determine if the input is asking for a "definition" 
or a "calculation"
classifier_prompt = ChatPromptTemplate.from_messages(
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    �[("user", "Classify this request as 'definition' or 'calculation': 
{input_text}")]

)

# Step 2: Set up the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
# Step 3: Define chains using the pipe operator

# Chain for classifying input
classifier_chain = classifier_prompt | llm | StrOutputParser()

# Chain for definition tasks
definition_chain = definition_prompt | llm | StrOutputParser()

# Chain for calculation tasks
calculation_chain = calculation_prompt | llm | StrOutputParser()

# Step 4: Define a function to handle control flow based on classification
def control_flow_chain(input_text):
    # �Classify the input (is it a request for a definition or a 

calculation?)
    classification = classifier_chain.invoke({"input_text": input_text})
    # Route to the appropriate chain based on the classification result
    if "definition" in classification.lower():
        concept = input_text.replace("Define", "").strip()
        return definition_chain.invoke({"concept": concept})
    elif "calculation" in classification.lower():
        calculation = input_text.replace("Calculate", "").strip()
        return calculation_chain.invoke({"calculation": calculation})
    else:
        # Default response if classification is unclear
        return "Sorry, I didn't understand your request."

# Step 5: Define input texts
input_text_1 = "Define photosynthesis"
input_text_2 = "Calculate 5 + 3"
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# Step 6: Run the control flow chain on different inputs
output_1 = control_flow_chain(input_text_1)
output_2 = control_flow_chain(input_text_2)

# Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)

Output:

Output 1: Photosynthesis is the process by which green plants, algae, and 
some bacteria convert light energy, usually from the sun, into chemical 
energy in the form of glucose. This process involves the absorption of 
carbon dioxide and water, which are then converted into oxygen and glucose 
through a series of chemical reactions. Oxygen is released as a byproduct 
of this process, making photosynthesis essential for the survival of most 
living organisms on Earth.
Output 2: 5 + 3 = 8

�Key Features of the Control Flow Chain

	 1.	 Conditional Logic: The input is processed using conditional 

logic to determine which chain (definition or calculation) should 

handle the request.

	 2.	 Dynamic Routing: Based on the classification result, the input is 

dynamically routed to the appropriate chain.

	 3.	 Flexible Task Handling: This control flow chain can easily be 

extended to handle more types of inputs, making it a versatile way 

to manage tasks based on user requests.

�8. Retrieval-Aware Chain
This chain is integrated with a retrieval mechanism, such as a vector database or a 

search engine, to retrieve relevant information before making decisions or generating 

responses. It’s typically used in situations where context or additional data is needed to 

complete the task.
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•	 Usage: Question-answering systems that need to pull information 

from knowledge bases or document repositories to provide 

accurate answers

•	 Components: A retrieval component (e.g., vector search or 

document retrieval) combined with LLM calls to process the 

retrieved information

Note  For the next example, you need to run the command pip install 
faiss-gpu as we use faiss.

Example:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
# Step 1: Set up the FAISS vector store with embeddings
# This example assumes the OpenAI API is configured and available
# Define some documents (texts) related to quantum computing
documents = [
    �"Quantum computing is a type of computation that harnesses the 

collective properties of quantum states.",
    �"Quantum computers use quantum bits, or qubits, which can represent and 

store more information than classical bits.",
    �"The fundamental principle of quantum computing is superposition, which 

allows qubits to be in multiple states at once.",
    �"Entanglement is another key property of quantum computing, allowing 

qubits to be interconnected no matter the distance."
]

# Step 2: Embed the documents using OpenAI embeddings
embeddings = OpenAIEmbeddings()  # �Ensure you have OpenAI API keys 

configured
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# Step 3: Create a FAISS vector store from the documents and their 
embeddings
vector_store = FAISS.from_texts(documents, embeddings)

# Step 4: Define the prompt that will use the retrieved context
retrieval_prompt = ChatPromptTemplate.from_messages(
    �[("user", "Given the following context, answer the question: 

{context}")]
)

# Step 5: Define the ChatOpenAI model
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
# Step 6: Define the retrieval-aware chain using FAISS
def retrieval_aware_chain(input_query):
    # Step 6.1: Retrieve relevant documents based on the query
    �retrieved_documents = vector_store.similarity_search(input_query)   

# FAISS similarity search
    �context = " ".join([doc.page_content for doc in retrieved_

documents])  # Combine documents into a single context
    # Step 6.2: Run the LLM chain with the retrieved context
    �response = (retrieval_prompt | llm | StrOutputParser()).

invoke({"context": context})
    return response

# Step 7: Define an input query
input_query = "What is quantum entanglement?"

# Step 8: Run the retrieval-aware chain
output = retrieval_aware_chain(input_query)

# Step 9: Print the output
print("Output:", output)

Output:

Output: What is entanglement in quantum computing?
Entanglement is a key property of quantum computing that allows qubits to 
be interconnected no matter the distance.
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�9. Agent Chain
An agent chain is designed to allow a language model to interact with multiple tools or 

APIs autonomously. The LLM acts as an agent, deciding which tool to use and when, 

allowing for highly dynamic workflows where the model selects the appropriate actions.

•	 Usage: Complex applications where the model must autonomously 

decide which action to take, such as querying an API, searching a 

database, or executing a code snippet

•	 Components: The agent (LLM) interacts with external tools, APIs, or 

modules and follows predefined logic or dynamically generated plans

Example:

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from langchain.tools import Tool, BaseTool
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
import math

# Step 1: Define the tools (calculator and retrieval tool)

# Define a calculator tool to perform basic math operations
class CalculatorTool(BaseTool):
    def _run(self, input_query: str) -> str:
        """Run the calculator tool to perform basic arithmetic."""
        try:
            # �Extract the mathematical expression by removing "calculate" 

or "Calculate"
            �expression = input_query.lower().replace("calculate", ""). 

strip()
            �return str(eval(expression))  # Use eval safely for basic 

calculations
        except Exception:
            return "Invalid calculation."
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    def name(self):
        return "calculator"

    def description(self):
        �return "A simple calculator tool for performing basic arithmetic 

operations."

# Create an instance of CalculatorTool
calculator_tool = CalculatorTool()

# Define the FAISS-based retrieval tool for information retrieval
documents = [
    �"Quantum computing is a type of computation that harnesses the 

collective properties of quantum states.",
    �"Quantum computers use quantum bits, or qubits, which can represent and 

store more information than classical bits.",
    �"The fundamental principle of quantum computing is superposition, which 

allows qubits to be in multiple states at once.",
    �"Entanglement is another key property of quantum computing, allowing 

qubits to be interconnected no matter the distance."
]

embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_texts(documents, embeddings)

class RetrievalTool(BaseTool):
    def _run(self, input_query: str) -> str:
        �"""Run the retrieval tool to search the vector store for relevant 

information."""
        retrieved_documents = vector_store.similarity_search(input_query)
        return " ".join([doc.page_content for doc in retrieved_documents])

    def name(self):
        return "retrieval"

    def description(self):
        return "A tool for retrieving information about quantum computing."
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# Create an instance of RetrievalTool
retrieval_tool = RetrievalTool()

# Step 2: Define the agent prompt with explicit instructions
agent_prompt = ChatPromptTemplate.from_messages(
    �[("user", "If the query asks to perform a calculation (e.g., 'calculate 

5 + 7'), respond with 'calculate'. "
              �"If the query asks for information (e.g., 'What is quantum 

computing?'), respond with 'retrieve'. "
              "Input: {input_query}")]
)

# Step 3: Define the ChatOpenAI model (the agent)
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Step 4: Define the agent chain function
def agent_chain(input_query):
    # Ask the agent to classify the task (calculation or retrieval)
    �agent_decision = (agent_prompt | llm | StrOutputParser()).

invoke({"input_query": input_query})

    # Based on the agent's decision, invoke the appropriate tool
    if "calculate" in agent_decision.lower():
        return calculator_tool._run(input_query)
    else:
        return retrieval_tool._run(input_query)

# Step 5: Define the input queries
input_query_1 = "Calculate 5 + 7"
input_query_2 = "Explain quantum superposition"

# Step 6: Run the agent chain on different inputs
output_1 = agent_chain(input_query_1)  # Expecting a calculation result
output_2 = agent_chain(input_query_2)  # Expecting information 
retrieval result

# Step 7: Print the outputs
print("Output 1:", output_1)
print("Output 2:", output_2)
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Output:

Output 1: 12
Output 2: The fundamental principle of quantum computing is superposition, 
which allows qubits to be in multiple states at once. Quantum computing is 
a type of computation that harnesses the collective properties of quantum 
states. Entanglement is another key property of quantum computing, allowing 
qubits to be interconnected no matter the distance. Quantum computers use 
quantum bits, or qubits, which can represent and store more information 
than classical bits.

�Breakdown of Key Steps of This More Complicated Code

•	 CalculatorTool Definition: A class CalculatorTool is defined, 

inheriting from BaseTool.

•	 The _run() method is implemented, which

•	 Strips the word “calculate” from the input query.

•	 Evaluates the remaining mathematical expression (e.g., “5 + 7”) 

using eval().

•	 Returns the result of the calculation.

•	 If the evaluation fails (e.g., for invalid expressions), it returns 

“Invalid calculation.”

•	 RetrievalTool Definition

•	 A class RetrievalTool is defined, inheriting from BaseTool.

•	 The _run() method is implemented, which

•	 Uses FAISS to perform a similarity search based on the input 

query (e.g., “Explain quantum superposition”).

•	 Retrieves relevant documents from the vector store.

•	 Concatenates the content of the retrieved documents into a 

single response.
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•	 Embedding and Vector Store Setup

•	 A list of documents related to quantum computing is created.

•	 OpenAIEmbeddings are used to embed these documents into 

vectors.

•	 The document embeddings are stored in a FAISS vector store, 

which allows for similarity-based document retrieval.

•	 Agent Prompt Setup

•	 The agent prompt is defined, providing explicit instructions to 
the language model:

•	 If the input asks for a calculation (e.g., “Calculate 5 + 7”), the 

model should respond with “calculate.”

•	 If the input asks for information (e.g., “What is quantum 

superposition?”), the model should respond with “retrieve.”

•	 Agent Chain Function

•	 The function agent_chain(input_query) performs the 
following steps:

•	 Passes the input query to the agent prompt (via the 

language model).

•	 The agent responds with either “calculate” or “retrieve,” 

based on the task.

•	 Depending on the agent's decision:

•	 If “calculate” is returned, it calls the CalculatorTool to 

perform the calculation.

•	 If “retrieve” is returned, it calls the RetrievalTool to fetch 

relevant information from the FAISS vector store.
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�10. Parallel Chain
A parallel chain allows multiple processes to run simultaneously, with their results 

combined at the end. This can improve efficiency when independent tasks can be 

processed at the same time.

•	 Usage: Situations where different tasks or models can be executed 

in parallel, such as generating multiple drafts of a text or performing 

several independent API calls

•	 Components: Multiple parallel operations that feed into a final 

aggregation or decision step

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import RunnableParallel
from langchain_openai import ChatOpenAI

# Step 1: Set up the OpenAI model
model = ChatOpenAI()

# Step 2: Define the chains for independent tasks

# Chain to summarize a concept
summarize_chain = ChatPromptTemplate.from_template("Summarize the concept 
of {concept}") | model

# Chain to provide detailed information about the concept
information_chain = ChatPromptTemplate.from_template("Provide detailed 
information about {concept}") | model

# Step 3: Set up the parallel chain to run both tasks concurrently
parallel_chain = RunnableParallel(summary=summarize_chain, 
information=information_chain)

# Step 4: Define the input concept
input_concept = {"concept": "Quantum computing"}

# Step 5: Run the parallel chain with the input concept
outputs = parallel_chain.invoke(input_concept)
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# Step 6: Print the outputs
print("Summary Output:", outputs["summary"])
print("Information Output:", outputs["information"])

Output:

Summary Output: content='Quantum computing is a type of computing that 
utilizes the principles of quantum mechanics to perform operations on 
data. Unlike classical computing, which uses bits as the fundamental unit 
of information, quantum computing uses quantum bits, or qubits, which can 
exist in multiple states simultaneously. This allows quantum computers to 
perform complex calculations much faster than classical computers, making 
them potentially capable of solving problems that are currently infeasible 
with traditional computing methods.' additional_kwargs={'refusal': None} 
response_metadata={'token_usage': {'completion_tokens': 85, 'prompt_
tokens': 15, 'total_tokens': 100, 'completion_tokens_details': {'audio_
tokens': None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_
tokens': None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 
'system_fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} 
id='run-748514c4-35eb-4ccc-a3a8-68dee2c3fa74-0' usage_metadata={'input_
tokens': 15, 'output_tokens': 85, 'total_tokens': 100, 'input_token_
details': {'cache_read': 0}, 'output_token_details': {'reasoning': 0}}
Information Output: content='Quantum computing is a type of computing 
that uses quantum-mechanical phenomena, such as superposition and 
entanglement, to perform operations on data. Unlike classical computing, 
which uses bits to represent data as either 0 or 1, quantum computing 
uses quantum bits, or qubits, which can exist in multiple states 
simultaneously due to superposition.\n\nOne of the key principles of 
quantum computing is superposition, which allows qubits to exist in 
a state that is a combination of both 0 and 1 at the same time. This 
enables quantum computers to perform multiple calculations simultaneously, 
making them potentially much faster than classical computers for certain 
types of problems.\n\nAnother important concept in quantum computing is 
entanglement, which allows qubits to be correlated with each other in 
such a way that the state of one qubit can instantly affect the state of 
another, regardless of the distance between them. This property enables 

Chapter 1  LangChain and Python: Basics



52

quantum computers to perform certain types of operations more efficiently 
than classical computers.\n\nQuantum computing has the potential to 
revolutionize fields such as cryptography, drug discovery, optimization, 
and machine learning by solving complex problems that are currently 
infeasible for classical computers. However, quantum computers are 
still in the early stages of development and face significant technical 
challenges, such as maintaining the coherence of qubits and scaling up 
to larger systems.\n\nCompanies such as IBM, Google, and Microsoft are 
investing heavily in quantum computing research and development, and there 
are also startups and research institutions around the world working on 
advancing the field. As quantum computing continues to progress, it holds 
the promise of enabling breakthroughs in a wide range of scientific and 
technological applications.' additional_kwargs={'refusal': None} response_
metadata={'token_usage': {'completion_tokens': 326, 'prompt_tokens': 
13, 'total_tokens': 339, 'completion_tokens_details': {'audio_tokens': 
None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 
None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-
e5913f67-0055-4117-8d86-a5ba913e2dc3-0' usage_metadata={'input_tokens': 13, 
'output_tokens': 326, 'total_tokens': 339, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}

�What Does the Code Do?

	 1.	 Model Setup

•	 ChatOpenAI() is instantiated to serve as the language model for 

both tasks (summarization and detailed information retrieval).

	 2.	 Chain Definitions

•	 summarize_chain: A prompt asks the model to summarize the 

given concept (e.g., “Quantum computing”).

•	 information_chain: A prompt asks the model to provide detailed 

information about the same concept.
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	 3.	 Parallel Execution with RunnableParallel

•	 RunnableParallel is used to execute both chains concurrently.

•	 Two chains are passed as arguments (summary for the 

summarization chain and information for the detailed 

information chain), which will run in parallel.

	 4.	 Input Concept

•	 The input concept is a dictionary containing the key “concept” 

with the value “Quantum computing.”

•	 This input is passed to both chains.

	 5.	 Running the Chains in Parallel

•	 The invoke() method is called on parallel_chain to execute both 

chains concurrently.

•	 The outputs are returned as a dictionary with keys “summary” 

and “information.”

	 6.	 Outputs

•	 The outputs from both chains (summary and detailed 

information) are printed.

�Key Features of RunnableParallel

•	 Concurrent Execution: Both chains are executed concurrently, 

reducing the overall time required for execution.

•	 Flexible Input Handling: The same input (“Quantum computing”) 

is passed to both chains, but you can modify it to handle different 

inputs for each chain if needed.

•	 Combined Outputs: The results from both chains are combined 

into a single output dictionary, where each key corresponds to the 

respective chain’s output.
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�11. Custom Chain
Custom chains are tailored to the specific needs of an application, combining various 

components in novel ways. Developers can create a custom sequence of operations 

that fit their unique use case, combining steps from different chain types into a bespoke 

workflow.

•	 Usage: When none of the prebuilt chain types meet the specific 

requirements of the task, and custom logic, steps, or external 

integrations are needed

•	 Components: A combination of modules, tools, logic, and LLMs to 

suit the custom requirements of the application

These LangChain chain types provide a flexible framework for building diverse 

and sophisticated workflows tailored to the specific needs of different applications. 

By combining or modifying these chain types, developers can orchestrate complex 

interactions and achieve nuanced, multistep tasks when working with large 

language models.

Example:

from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables import Runnable
from langchain_openai import ChatOpenAI

# Step 1: Set up the OpenAI model
model = ChatOpenAI()

# Step 2: Define the chain for summarizing the concept
summarize_chain = ChatPromptTemplate.from_template("Summarize the concept 
of {concept}") | model

# Step 3: Define the chain for generating a quiz question based on 
the summary
quiz_chain = ChatPromptTemplate.from_template("Create a quiz question based 
on the summary: {summary}") | model

# Step 4: Create a custom chain that first summarizes, then 
generates a quiz
class CustomChain(Runnable):
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    def invoke(self, input_data):
        # First, get the summary of the concept
        �summary = summarize_chain.invoke({"concept": input_

data["concept"]})

        # Then, use the summary to generate a quiz question
        quiz_question = quiz_chain.invoke({"summary": summary})

        # Return both the summary and the quiz question
        return {"summary": summary, "quiz_question": quiz_question}

# Step 5: Create an instance of the custom chain
custom_chain = CustomChain()

# Step 6: Define the input concept
input_concept = {"concept": "Quantum computing"}

# Step 7: Run the custom chain with the input concept
output = custom_chain.invoke(input_concept)

# Step 8: Print the outputs
print("Summary Output:", output["summary"])
print("Quiz Question Output:", output["quiz_question"])

Output:

Summary Output: content='Quantum computing is a type of computing that 
uses quantum-mechanical phenomena, such as superposition and entanglement, 
to perform operations on data. This allows quantum computers to process 
information much faster than classical computers. Quantum computing has the 
potential to revolutionize fields such as cryptography, optimization, and 
drug discovery by solving complex problems that are currently intractable 
for classical computers.' additional_kwargs={'refusal': None} response_
metadata={'token_usage': {'completion_tokens': 76, 'prompt_tokens': 
15, 'total_tokens': 91, 'completion_tokens_details': {'audio_tokens': 
None, 'reasoning_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 
None, 'cached_tokens': 0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_
fingerprint': None, 'finish_reason': 'stop', 'logprobs': None} id='run-7
bc1450c-9826-4b69-8677-7d76f6cba1f7-0' usage_metadata={'input_tokens': 15, 
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'output_tokens': 76, 'total_tokens': 91, 'input_token_details': {'cache_
read': 0}, 'output_token_details': {'reasoning': 0}}
Quiz Question Output: content='How does quantum computing utilize 
superposition and entanglement to perform operations on data, and 
what advantages does this offer over classical computing methods?' 
additional_kwargs={'refusal': None} response_metadata={'token_usage': 
{'completion_tokens': 28, 'prompt_tokens': 284, 'total_tokens': 312, 
'completion_tokens_details': {'audio_tokens': None, 'reasoning_tokens': 
0}, 'prompt_tokens_details': {'audio_tokens': None, 'cached_tokens': 
0}}, 'model_name': 'gpt-3.5-turbo-0125', 'system_fingerprint': None, 
'finish_reason': 'stop', 'logprobs': None} id='run-9cf17c37-ac7c-48ab-b468-
c6ef3b7389f5-0' usage_metadata={'input_tokens': 284, 'output_tokens': 28, 
'total_tokens': 312, 'input_token_details': {'cache_read': 0}, 'output_
token_details': {'reasoning': 0}}

�Key Features of a Custom Chain

•	 Custom Processing Logic: The CustomChain class defines a two-

step process: first generating a summary and then creating a quiz 

question based on the summary.

•	 Sequential Execution: The chain runs each step in sequence, 

passing the result of one step (summary) into the next step (quiz 

question generation).

•	 Combined Outputs: The chain returns both outputs (summary and 

quiz question) in a single response.

�What Does This Code Do?

•	 Model Setup: Initializes a ChatOpenAI model to handle both 

summarization and quiz generation tasks

•	 Summarization Chain: Defines a chain (summarize_chain) that 

generates a summary of a concept based on a given input (e.g., 

“Quantum computing”)

•	 Quiz Generation Chain: Defines a chain (quiz_chain) that creates a 

quiz question based on the summary of the concept
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•	 CustomChain Class

•	 Step 1: Generates a summary of the concept using the 

summarize_chain

•	 Step 2: Uses the summary to generate a quiz question with the 

quiz_chain

•	 Combined Output: Returns both the summary and the quiz 

question as output

•	 Execution: Runs the custom chain by passing the concept 

(“Quantum computing”), and the chain outputs both a summary and 

a quiz question

•	 Outputs: Prints the generated summary and the quiz question based 

on the input concept

�Conclusion
In this chapter, we covered the basics of LangChain and its integration with Python 

for building advanced NLP applications. We explored key components such as chains, 

prompts, memory, and tools, which enable developers to create flexible and scalable 

workflows. LangChain simplifies the process of working with large language models, 

allowing for efficient management of context and multistep processing.

By mastering these fundamental concepts, you are now equipped to build a variety 

of language model-based applications, from simple chatbots to more complex data 

retrieval systems.

In the next chapter, we’ll dive deeper into more advanced components and 

conceptions like LangChain Memory, which enables models to retain information 

across interactions. We’ll also explore agents and tools in LangChain, which allow 

dynamic decision-making, and discuss indexes and retrievers, essential for handling 

large datasets efficiently. These advanced features will help you build even more 

powerful and context-aware NLP applications.
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CHAPTER 2

LangChain and Python: 
Advanced Components
As the fields of machine learning and natural language processing continue to 

advance, Python remains at the heart of innovation, providing a robust ecosystem of 

tools, libraries, and frameworks. Among these, LangChain has emerged as a powerful 

framework tailored specifically to streamline and enhance workflows around large 

language models (LLMs). While foundational components of LangChain simplify 

common tasks such as chaining models, querying, and prompt management, there 

exists an extensive suite of advanced components that significantly expands LangChain’s 

utility. This chapter delves into these advanced features, guiding readers through their 

purpose, application, and implementation in Python to tackle complex LLM workflows 

effectively.

LangChain’s advanced components, including tools for memory management, 

custom agent creation, tools, indexes, and retrievers, provide practitioners with a 

sophisticated toolkit that caters to varied and challenging use cases. These components 

allow developers to push beyond basic model interactions, enabling functionalities 

such as real-time memory recall, multiagent systems, and seamless integration of 

external data sources, each enhancing the adaptability and intelligence of LLM-based 

applications.

In this chapter, we will explore these advanced components in-depth, breaking 

down their architecture, discussing best practices, and showcasing practical applications 

with Python. By the end of this chapter, readers will be equipped with the knowledge to 

leverage LangChain’s full potential in developing customized, resilient, and intelligent 

language model applications.
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We begin by highlighting the evolving role of Python in AI and introducing 

LangChain as a powerful framework for building sophisticated LLM-based applications. 

The introduction sets the stage for exploring the advanced tools and capabilities that 

LangChain offers.

•	 Python’s Role in AI and NLP

	 Python remains the foundational language driving innovation in 

machine learning and natural language processing.

•	 Introduction to LangChain

	 LangChain is presented as a framework designed to streamline 

the development of applications powered by large language 

models (LLMs).

•	 Beyond the Basics

While LangChain simplifies core tasks like chaining and prompt 

management, this chapter focuses on its advanced components, 

including

•	 Memory systems

•	 Custom agents

•	 External tools

•	 Indexes and retrievers

•	 Capabilities of Advanced Components

These tools enable

•	 Real-time memory recall

•	 Multiagent systems

•	 Contextual and personalized interactions

•	 Integration with diverse external data sources
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�LangChain Memory
In developing applications that harness large language models (LLMs), a common 

challenge is enabling these models to “remember” past interactions, mimicking 

conversational context and continuity. LangChain Memory addresses this by providing 

mechanisms to store, retrieve, and utilize conversation history within LangChain 

workflows. Unlike traditional stateless models, memory-enabled systems can reference 

past exchanges, allowing them to maintain a consistent narrative, track user preferences, 

and dynamically adapt responses over time.

This subtopic covers LangChain’s memory capabilities, exploring different memory 

types (short-term, long-term, and specialized memory modules) and demonstrating 

how each can enhance interactive applications. From personalizing user interactions to 

facilitating complex dialogues in customer service or education, LangChain Memory is 

a transformative tool for developing applications that feel more intuitive and responsive 

to users.

�Understanding LangChain’s Memory Module
In LangChain, the Memory module plays a foundational role in enabling large language 

models (LLMs) to retain information between calls of a chain or agent. This persistence 

of state is essential in scenarios where the language model benefits from remembering 

past interactions, allowing it to make more contextually relevant and informed decisions.

By offering a standard interface for storing and retrieving information across 

interactions, LangChain’s Memory module allows developers to equip language models 

with memory and continuity. This ability to remember is invaluable for applications such 

as personal assistants, autonomous agents, and agent-based simulations, where the model 

needs to retain user preferences, previous queries, or other critical details over time.

�Key Capabilities of the Memory Module
The Memory module enables an LLM to maintain a running context by storing user 

inputs, system responses, and any other relevant information from past interactions. 

This stored data can then be accessed in future interactions, giving the model a sense of 

continuity and memory, which results in more accurate, contextually aware responses 

and decisions.
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�Why Memory Matters
The Memory module transforms a language model from a reactive agent into one that 

can adapt and respond based on past interactions. This continuity is crucial for creating 

interactive and personalized applications. With memory, the language model can 

provide richer responses by leveraging prior knowledge, which is particularly valuable in 

applications like personal assistants, customer support agents, and educational tutors.

�When to Use the Memory Module
Use the Memory module whenever you want to build applications requiring context 

and continuity across interactions. For instance, a personal assistant application would 

benefit from memory as it allows the model to retain user preferences, recall previous 

questions, and track ongoing issues. Similarly, in autonomous agents and simulations, 

memory allows the model to make decisions that reflect accumulated knowledge, 

making interactions feel more coherent and informed.

�Core Processes in the Memory System: Reading 
and Writing
Each memory system within LangChain performs two essential tasks: reading from 

memory and writing to memory. During any run, the model accesses its memory system 

at two key points:

•	 Reading from Memory: Before executing its main logic, the model 

reads stored information to augment user inputs, allowing it to make 

more informed decisions during processing.

•	 Writing to Memory: After generating a response, the model records 

the details of the current interaction to memory, ensuring that this 

information is available for future reference.

These read and write operations make it possible for the model to maintain context 

across interactions, giving it the ability to build on prior knowledge.
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�Structuring a Memory System
When designing a memory system, two core considerations come into play:

•	 State Storage Method: At the heart of the memory system is a 

record of all chat interactions. LangChain’s memory module 

provides flexibility in how these interactions are stored, ranging from 

temporary in-memory lists for quick access to persistent database 

solutions for long-term storage.

•	 State Querying Approach: Storing chat logs is straightforward; 

the challenge lies in developing algorithms to interpret these logs 

meaningfully. A basic memory system might simply display recent 

messages, while a more sophisticated system might summarize the 

last “K” interactions. The most advanced systems can even identify 

entities from stored chats and retrieve relevant details about those 

entities when needed in the current session. This adaptability allows 

developers to tailor the memory query method to the specific needs 

of the application.

LangChain’s Memory module offers a straightforward setup for initiating basic 

memory systems while supporting the creation of more advanced and customized 

systems as necessary.

By incorporating LangChain’s Memory module, developers can create language 

model-driven applications that are not only responsive and adaptive but also capable 

of continuous learning and refinement. This module equips LLMs with memory and 

context, making them more capable, personalized, and effective in delivering consistent, 

user-centric experiences.

Note  LangChain Memory is a powerful feature designed initially to enhance 
chatbots’ functionality, by enabling them to retain context and significantly improve 
their conversational capabilities. Traditionally, chatbots process each user prompt 
independently, without considering the history of interactions. This isolated 
approach often results in responses that lack continuity, leading to disjointed and 
sometimes unsatisfying user experiences. LangChain addresses this challenge 
by offering dedicated memory components that manage and utilize previous 
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chat messages, seamlessly integrating them into conversational chains. This 
functionality is vital for creating chatbots that need to remember prior interactions, 
allowing them to provide coherent and contextually relevant responses that feel 
more natural and engaging to users.

�LangChain Memory Types
LangChain offers a rich suite of memory types that equip language models with the 

ability to remember, recall, and integrate contextual information from prior interactions. 

Each memory type is uniquely suited for different use cases, ranging from simple chat 

histories to complex knowledge-based and entity-driven contexts. These options allow 

developers to build applications with varying levels of depth, persistence, and relational 

awareness, creating personalized, coherent, and dynamic user experiences.

Here’s an in-depth look at each type of memory offered by LangChain.

�ConversationBufferMemory
ConversationBufferMemory is a straightforward memory type that stores a verbatim 

transcript of all interactions within a session. This approach maintains a full 

conversation history, allowing the language model to reference any part of the ongoing 

exchange and to provide contextually aware responses.

•	 Use Case: Applications where a complete record of interactions 

is valuable, such as detailed customer support systems, coaching 

applications, and collaborative brainstorming tools.

•	 Advantages: By keeping all interactions in memory, the model 

can access comprehensive context, which helps ensure consistent 

responses.

•	 Limitations: For long or continuous interactions, storing a full 

transcript can become resource-intensive, potentially leading to 

performance issues if not managed correctly. One drawback is that it 

retains the complete interaction history (up to the maximum token 

limit supported by the specific LLM), which means that for each new 
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question, the entire prior discussion is sent to the LLM API as tokens. 

This can lead to significant costs, as API usage fees are based on the 

total number of tokens processed per interaction. Additionally, as 

the conversation grows, this can introduce latency, impacting the 

model’s response time due to the increasing amount of data being 

processed with each API call.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the memory
memory = ConversationBufferMemory(return_messages=True)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)
# Example interaction 1
user_input_1 = "Hello, can you help me with some Python code?"
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response_1 = conversation_chain.run(input=user_input_1)
print(response_1)
# Example interaction 2
user_input_2 = "I need help with writing a loop."
response_2 = conversation_chain.run(input=user_input_2)
print(response_2)
# Example interaction 3
user_input_3 = "Thanks! How do I make it run faster?"
response_3 = conversation_chain.run(input=user_input_3)
print(response_3)

Output:

Of course! I'd be happy to help. What do you need assistance with 
in Python?
Of course! What kind of loop are you trying to write in Python? Do you have 
a specific task or problem that you need help with? Let me know the details 
so I can assist you better.
There are several ways you can optimize your Python code to make it run 
faster. Here are some tips:
1. **Use appropriate data structures**: Choose the right data structure for 
your task. For example, if you need to perform a lot of lookups, consider 
using a dictionary instead of a list.
2. **Avoid unnecessary operations**: Make sure your code is not performing 
redundant calculations or operations that can be eliminated. Review your 
code to see if there are any unnecessary loops or computations.
............

�ConversationBufferWindowMemory
ConversationBufferWindowMemory stores only the last “N” interactions, 

essentially creating a rolling window of recent conversation context. Unlike 

ConversationBufferMemory, this approach retains only the most recent exchanges, 

thereby reducing the storage burden.
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•	 Use Case: Ideal for scenarios where only the latest context is relevant, 

such as chat-based Q&A or short-session customer support. It’s also 

well-suited for lightweight applications where continuity is needed 

but only over recent exchanges.

•	 Advantages: It conserves resources by limiting the memory scope, 

which is useful for applications handling high volumes of user 

interactions.

•	 Limitations: Since it only keeps a limited number of exchanges, this 

memory type may lose earlier parts of the conversation, which could 

affect continuity in applications where longer context is essential.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationBufferWindowMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the memory with a window of 3 messages
memory = ConversationBufferWindowMemory(k=3, return_messages=True)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,

Chapter 2  LangChain and Python: Advanced Components



68

    prompt=chat_prompt,
    memory=memory
)

# Example interactions
interactions = [
    "Hello, can you help me with some Python code?",
    "I need help with writing a loop.",
    "What are some best practices for functions?",
    "How do I make my code run faster?",
    "What should I know about error handling?",
]

# Running each interaction and printing the results, focusing on 
memory usage
for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")

    # Print the current state of memory (only the last k interactions)
    current_memory = memory.load_memory_variables({})['history']
    memory_contents = [msg.content for msg in current_memory]
    print(f"Current Memory State: {memory_contents}\n")

Output:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Of course! I'd be happy to help. What do you need 
assistance with in Python?
Current Memory State: ['Hello, can you help me with some Python code?', "Of 
course! I'd be happy to help. What do you need assistance with in Python?"]

Interaction 2: User Input: I need help with writing a loop.
Assistant Response: Sure! I can help with that. What specific task or 
purpose would you like the loop to achieve?
Current Memory State: ['Hello, can you help me with some Python code?', "Of 
course! I'd be happy to help. What do you need assistance with in Python?", 
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'I need help with writing a loop.', 'Sure! I can help with that. What 
specific task or purpose would you like the loop to achieve?']

Interaction 3: User Input: What are some best practices for functions?
Assistant Response: When writing functions in Python, here are some best 
practices to keep in mind:
1. **Function Naming**: Choose descriptive and meaningful names for your 
functions that reflect their purpose or behavior. Use lowercase letters and 
underscores to separate words (snake_case).
2. **Function Length**: Keep your functions concise and focused on a single 
task. If a function becomes too long or complex, consider refactoring it 
into smaller, more manageable functions….............
Current Memory State: ['Hello, can you help me with some Python code?', 
"Of course! I'd be happy to help. What do you need assistance with in 
Python?", 'I need help with writing a loop.', 'Sure! I can help with 
that. What specific task or purpose would you like the loop to achieve?', 
'What are some best practices for functions?', "When writing functions in 
Python, here are some best practices to keep in mind:\n\n1. **Function 
Naming**: Choose descriptive and meaningful names for your functions that 
reflect their purpose or behavior. Use lowercase letters and underscores 
to separate words (snake_case).\n\n2. **Function Length**: Keep your 
functions concise and focused on a single task. If a function becomes too 
long or complex, consider refactoring it into smaller, more manageable 
functions.\n\n3. **Function Documentation**: Always include a docstring 
at the beginning of your function to describe its purpose, parameters, 
and return value. This helps other developers (and your future self) 
understand the function's functionality.\n\n4. **Parameter Passing**: Avoid 
using global variables inside functions. Instead, pass necessary data as 
parameters to make your functions more modular and reusable.\n\n5. **Return 
Values**: Clearly define what your function should return, even if it's 
None. This makes it easier to understand how the function interacts with 
the rest of your code.\n\n6. **Error Handling**: Implement appropriate 
error handling within your functions to gracefully handle unexpected 
situations and provide meaningful error messages to the user.\n\n7. **Code 
Readability**: Write clean and readable code by following Python's style 
guide (PEP 8). Use proper indentation, spacing, and naming conventions 
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to enhance code clarity.\n\n8. **Testing**: Write unit tests for your 
functions to ensure they work as expected under different scenarios. This 
helps catch bugs early and maintain the reliability of your code.\n\nBy 
following these best practices, you can write more maintainable, reusable, 
and understandable functions in your Python code."]

Interaction 4: User Input: How do I make my code run faster?
Assistant Response: Improving the performance of your code can involve 
various strategies. Here are some general tips to help make your Python 
code run faster:
1. **Use Efficient Data Structures**: Choose the appropriate data 
structures for your tasks. For example, use dictionaries for fast lookups, 
sets for membership tests, and lists for sequential data.
2. **Avoid Unnecessary Loops**: Minimize the number of loops and iterations 
in your code. Consider using list comprehensions or built-in functions like 
`map()`, `filter()`, and `reduce()`.........
Current Memory State: ['I need help with writing a loop.', 'Sure! I can 
help with that. What specific task or purpose would you like the loop to 
achieve?', 'What are some best practices for functions?', "When writing 
functions in Python, here are some best practices to keep in mind:\n\
n1. **Function Naming**: Choose descriptive and meaningful names for your 
functions that reflect their purpose or behavior. Use lowercase letters 
and underscores to separate words (snake_case).\n\n2. **Function Length**: 
Keep your functions concise and focused on a single task. If a function 
becomes too long or complex, consider refactoring it into smaller, more 
manageable functions.\n\n3. **Function Documentation**: Always include 
a docstring at the beginning of your function to describe its purpose, 
parameters, and return value. This helps other developers (and your future 
self) understand the function's functionality.\n\n4. **Parameter Passing**: 
Avoid using global variables inside functions. Instead, pass necessary 
data as parameters to make your functions more modular and reusable.\n\
n5. **Return Values**: Clearly define what your function should return, 
even if it's None. This makes it easier to understand how the function 
interacts with the rest of your code.\n\n6. **Error Handling**: Implement 
appropriate error handling within your functions to gracefully handle 
unexpected situations and provide meaningful error messages to the user.\n\
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n7. **Code Readability**: Write clean and readable code by following 
Python's style guide (PEP 8). Use proper indentation, spacing, and naming 
conventions to enhance code clarity.\n\n8. **Testing**: Write unit tests 
for your functions to ensure they work as expected under different 
scenarios. This helps catch bugs early and maintain the reliability of 
your code.\n\nBy following these best practices, you can write more 
maintainable, reusable, and understandable functions in your Python code.", 
'How do I make my code run faster?', "Improving the performance of your 
code can involve various strategies. Here are some general tips to help 
make your Python code run faster:\n\n1. **Use Efficient Data Structures**: 
Choose the appropriate data structures for your tasks. For example, use 
dictionaries for fast lookups, sets for membership tests, and lists for 
sequential data.\n\n2. **Avoid Unnecessary Loops**: Minimize the number 
of loops and iterations in your code. Consider using list comprehensions 
or built-in functions like `map()`, `filter()`, and `reduce()`.\n\n3. 
**Optimize Algorithm Complexity**: Analyze the algorithmic complexity 
of your code and try to optimize it. Use efficient algorithms and data 
structures to reduce time complexity.\n\n4. **Cache Results**: If certain 
calculations or operations are repeated, consider caching the results 
to avoid redundant computations.\n\n5. **Use Built-in Functions**: Take 
advantage of Python's built-in functions and libraries, as they are often 
optimized for performance.\n\n6. **Avoid Global Variables**: Minimize the 
use of global variables, as accessing them can be slower compared to local 
variables.\n\n7. **Profile Your Code**: Use Python's built-in profiling 
tools like cProfile to identify bottlenecks in your code and optimize 
the performance-critical sections.\n\n8. **Consider Cython or Numba**: 
For computationally intensive tasks, consider using Cython or Numba to 
compile Python code to C or machine code for improved performance.\n\
n9. **Optimize I/O Operations**: If your code involves reading or writing 
large amounts of data, optimize I/O operations by using buffered I/O or 
asynchronous programming.\n\n10. **Parallelize Tasks**: For tasks that 
can be parallelized, consider using libraries like `multiprocessing` 
or `concurrent.futures` to leverage multiple CPU cores for faster 
execution.\n\nBy applying these strategies and considering the specific 
requirements of your code, you can optimize its performance and make it run 
faster."]
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Interaction 5: User Input: What should I know about error handling?
Assistant Response: When it comes to error handling in Python, here are 
some key points to keep in mind:

1. **Types of Errors**: Understand the different types of errors that can 
occur in your code, such as syntax errors, runtime errors, and logical 
errors. Python provides built-in exception classes to handle these errors.
2. **try-except Block**: Use a `try-except` block to catch and handle 
exceptions in your code. The `try` block contains the code that might 
raise an exception, while the `except` block handles the exception if it 
occurs.............
Current Memory State: ['What are some best practices for functions?', 
"When writing functions in Python, here are some best practices to keep in 
mind:\n\n1. **Function Naming**....."]

�ConversationSummaryMemory
ConversationSummaryMemory creates a running summary of the conversation, 

synthesizing essential points while filtering out less relevant details. This summarized 

memory offers a condensed view of the interaction, capturing the conversation’s main 

ideas, key decisions, and any important details that need continuity.

•	 Use Case: Suitable for applications requiring ongoing context 

without an exhaustive log, such as personal assistants, tutoring 

systems, or patient tracking in healthcare, where high-level 

summaries of conversations provide value.

•	 Advantages: Reduces memory load by storing only summarized 

data while retaining crucial context. This balance between detail and 

memory efficiency helps create responses that maintain coherence 

without overwhelming resources.

•	 Limitations: Summarization may overlook nuances or less 

prominent details, which could be essential for some applications. 

Developing an effective summarization approach is critical for 

making this memory type work well.
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Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the summary memory
memory = ConversationSummaryMemory(llm=chat_model)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)

# Example interactions
interactions = [
    "Hello, can you help me with some Python code?",
    "I need help with writing a loop."
]

# Running each interaction and printing the results, focusing on 
memory usage
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for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")

    # Print the current summarized state of memory
    current_summary = memory.load_memory_variables({})['history']
    print(f"Current Memory Summary: {current_summary}\n")

Output:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Sure, I'd be happy to help! What specifically do you 
need assistance with in your Python code?
Current Memory Summary: The human asks the AI for help with some Python 
code. The AI is willing to assist and asks for specifics about the code 
that needs help.
Interaction 2: User Input: I need help with writing a loop.
Assistant Response: Of course! I'd be happy to help. Could you please 
provide more details about what you are trying to achieve with the loop in 
your Python code?
Current Memory Summary: The human asks the AI for help with some Python 
code. The AI is willing to assist and asks for specifics about the code 
that needs help, such as details about the loop the human is trying 
to write.

�Conversation Summary Buffer Memory
Conversation Summary Buffer Memory combines conversation summarization with 

a recent message buffer, offering a memory that captures both high-level context and 

recent details. This approach is useful for applications that need to retain the essence of 

previous exchanges while keeping immediate context close at hand.

•	 How It Works: Conversation Summary Buffer Memory continuously 

updates a summary of the conversation’s main ideas, storing 

the most essential points from past interactions. Alongside this 
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summary, it maintains a small, recent buffer containing the last “N” 

messages in full, providing immediate context without overloading 

the memory with the entire conversation history.

•	 Use Case: Ideal for applications requiring a mix of long-term 

continuity and immediate context, such as personal assistants, 

coaching applications, or educational tools. For example, a 

therapeutic chatbot might retain a summary of past sessions while 

also keeping recent exchanges to stay relevant in ongoing dialogues.

•	 Advantages: This memory type balances memory usage and 

contextual richness, keeping a distilled summary to capture key 

points over time while retaining recent details. This design ensures 

the model can respond with continuity and relevance, even across 

extended conversations.

•	 Limitations: Summarization may miss minor details or nuances 

not captured in the main summary, which could affect applications 

needing precise recall of historical interactions. Additionally, 

the limited buffer size means that only a small portion of recent 

exchanges is retained verbatim, which may not suit applications that 

need a longer-term message history.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationSummaryBufferMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")
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# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the summary buffer memory with a window of 3 messages
memory = ConversationSummaryBufferMemory(llm=chat_model, max_token_
limit=100)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)

# Example interactions
interactions = [
    "Hello, can you help me with some Python code?",
    "I need help with writing a loop."
]

# Running each interaction and printing the results, focusing on 
memory usage
for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")

    # Print the current summarized state of memory
    current_summary = memory.load_memory_variables({})['history']
    print(f"Current Memory Summary and Recent Buffer: {current_summary}\n")

Example:

Interaction 1: User Input: Hello, can you help me with some Python code?
Assistant Response: Of course! I'll do my best to help you with your Python 
code. What do you need assistance with?
Current Memory Summary and Recent Buffer: Human: Hello, can you help me 
with some Python code?
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AI: Of course! I'll do my best to help you with your Python code. What do 
you need assistance with?

Interaction 2: User Input: I need help with writing a loop.
Assistant Response: AI: Sure, I'd be happy to help you with writing a 
loop in Python. What specific task or goal would you like to achieve with 
the loop?
Current Memory Summary and Recent Buffer: Human: Hello, can you help me 
with some Python code?
AI: Of course! I'll do my best to help you with your Python code. What do 
you need assistance with?
Human: I need help with writing a loop.
AI: AI: Sure, I'd be happy to help you with writing a loop in Python. What 
specific task or goal would you like to achieve with the loop?

�Conversation Token Buffer Memory
Conversation Token Buffer Memory manages conversation memory based on a 

defined token limit, maintaining recent exchanges within a specified token capacity 

rather than message count. This memory type ensures efficient context retention by 

storing interactions until a preset token threshold is reached.

•	 How It Works: Conversation Token Buffer Memory tracks the 

number of tokens used in each message and trims older interactions 

as new ones are added once the token count exceeds the set limit. 

By using tokens as the metric, this memory type accommodates 

messages of varying lengths without exceeding model 

processing limits.

•	 Use Case: Well-suited for applications needing to stay within strict 

token constraints, such as chatbots with token-based memory limits 

or customer service agents operating within resource constraints. For 

instance, a support chatbot could retain recent exchanges within a 

token cap, ensuring the model remains within processing capacity 

while preserving relevant context.
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•	 Advantages: The token-based approach offers flexibility and 

efficiency, especially for applications with limited memory resources. 

This memory type adapts easily to conversations with variable 

message lengths, ensuring that the most recent context is preserved 

within a fixed token boundary.

•	 Limitations: Important context may be lost when older messages 

are removed due to token limits, which could affect continuity in 

longer conversations. Additionally, shorter messages may result in 

more frequent trimming if the token cap is low, potentially impacting 

continuity in extensive sessions.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationTokenBufferMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the token buffer memory with a small max token limit
memory = ConversationTokenBufferMemory(llm=chat_model, max_token_limit=30)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
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    memory=memory
)

# Example interactions
interactions = [
    "Hi, I need help with Python.",
    "How do I create a list?"
]

# Run each interaction and print the memory state
for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")

    # Print the current state of the token-limited memory buffer
    current_buffer = memory.load_memory_variables({})['history']
    print(f"Current Memory Buffer (Token-Limited): {current_buffer}\n")

Output:

Interaction 1: User Input: Hi, I need help with Python.
Assistant Response: Sure, I'd be happy to help you with Python. What 
specifically do you need assistance with?
Current Memory Buffer (Token-Limited): AI: Sure, I'd be happy to help you 
with Python. What specifically do you need assistance with?

Interaction 2: User Input: How do I create a list?
Assistant Response: To create a list in Python, you can use square brackets 
`[ ]` and separate the elements with commas. Here's an example:

```python
my_list = [1, 2, 3, 4, 5]
```
In this example, `my_list` is a list containing the numbers 1, 2, 3, 4, and 
5. You can create lists with different types of elements, such as strings, 
numbers, or even other lists. Let me know if you need further assistance 
with lists or any other Python topics!
Current Memory Buffer (Token-Limited):
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�KnowledgeGraphMemory
KnowledgeGraphMemory organizes information into a knowledge graph structure, 

representing interactions in terms of entities and their relationships. By storing and 

linking entities, KnowledgeGraphMemory allows the model to reference and reason 

about relationships, creating a structured representation of the conversation history.

•	 Use Case: This memory type excels in applications where 

complex relationships or structured knowledge is critical, such 

as recommendation engines, expert systems, or domain-specific 

assistants (e.g., legal or medical applications). It’s also useful for 

situations requiring relational understanding.

•	 Advantages: Provides a structured and rich contextual layer, allowing 

the model to perform entity-based reasoning and relational analysis. 

It enables advanced interactions where understanding relationships 

is crucial.

•	 Limitations: Implementing a knowledge graph structure can be 

more complex and computationally intensive than simpler memory 

types, especially as the number of entities and relationships grows.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationKGMemory  # Ensure this class is 
available in your version

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant that keeps track of information in a knowledge graph.")
human_prompt = HumanMessagePromptTemplate.from_template("User: {input}")
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# Wrap prompts in a ChatPromptTemplate with an expected input variable
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the Knowledge Graph memory
memory = ConversationKGMemory(llm=chat_model)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)

# Example interactions
interactions = [
    "Alice is a software engineer.",
    "Alice works at OpenAI.",
    "Bob is Alice's manager.",
]

# Run each interaction and print the knowledge graph state
for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    �response = conversation_chain.run(input=user_input)   

# Passing the user input
    print(f"Assistant Response: {response}")

    # �Retrieve and print all memory variables to check for the 
knowledge graph

    try:
        �memory_variables = memory.load_memory_variables({"input": "who is 

bob"})  # Provide a dummy input
        print("Memory Variables:", memory_variables)

    except ValueError as e:
        print(f"Error retrieving memory variables: {e}")
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Output:

Interaction 1: User Input: Alice is a software engineer.
Assistant Response: Statement added: Alice is a software engineer.
Memory Variables: {'history': 'On Alice: Alice is a software engineer.'}
Interaction 2: User Input: Alice works at OpenAI.
Assistant Response: Got it! Alice works at OpenAI.
Memory Variables: {'history': ''}
Interaction 3: User Input: Bob is Alice's manager.
Assistant Response: Statement recorded: Bob is Alice's manager.
Memory Variables: {'history': 'On Bob: Bob is manager. Bob manages Alice.'}

�EntityMemory
EntityMemory focuses specifically on tracking entities and their relevant details across 

interactions. Rather than storing the full transcript, EntityMemory captures only specific 

attributes or facts associated with key entities, such as a user’s name, preferences, or 

recurring topics.

•	 Use Case: This memory type is particularly valuable for applications 

centered around user profiles or personalization, such as customer 

service chatbots, ecommerce recommendation systems, and user- 

focused applications where remembering specific details about users 

enhances the experience.

•	 Advantages: By honing in on relevant entities, EntityMemory helps 

the model recall user-specific details efficiently, without the overhead 

of full conversations. It’s an effective way to provide a personalized 

experience without excessive memory usage.

•	 Limitations: Since only targeted entity information is stored, this 

memory type might miss broader context outside of the entity- 

specific data, which could affect applications needing holistic 

continuity across sessions.
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Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import ConversationEntityMemory

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are 
a helpful assistant that keeps track of entities mentioned in the 
conversation.")
human_prompt = HumanMessagePromptTemplate.from_template("User: {input}\n")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up the Entity Memory
memory = ConversationEntityMemory(llm=chat_model)

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)

# Example interactions
interactions = [
    "Alice is a software engineer.",
    "Alice works at OpenAI.",
    "Bob is Alice's manager.",
]

# Run each interaction and print the entity memory state
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for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")

    # Retrieve and print the current state of entity memory
    �entity_memory = memory.load_memory_variables({"input": "Show me 

names?"}).get("entities", "No entities tracked.")
    print(f"Current Entity Memory: {entity_memory}\n")

Output:

Interaction 1: User Input: Alice is a software engineer.
Assistant Response: Got it! Alice is a software engineer.
Current Entity Memory: {'Alice': 'Alice is a software engineer.'}

Interaction 2: User Input: Alice works at OpenAI.
Assistant Response: Got it! Alice works at OpenAI.
Current Entity Memory: {'Alice': 'Alice is a software engineer who works at 
OpenAI.', 'OpenAI': 'OpenAI is the workplace of Alice.'}

Interaction 3: User Input: Bob is Alice's manager.
Assistant Response: Got it! Bob is Alice's manager.
Current Entity Memory: {'Alice': 'Alice is a software engineer who works at 
OpenAI, and Bob is her manager.', 'OpenAI': 'OpenAI is where Alice works, 
and Bob is her manager.', 'Bob': "Bob is Alice's manager."}

�VectorStoreMemory
VectorStoreMemory employs vector embeddings to store conversation elements based 

on semantic similarity, rather than literal text. By encoding past interactions into vector 

space, this memory type enables retrieval based on conceptual similarity, allowing the 

model to identify relevant topics or contexts from previous conversations.

•	 Use Case: This approach is ideal for applications needing rapid 

access to related information, such as personalized content 

recommendations, topic-based knowledge retrieval, and advanced 

conversational systems that require nuanced understanding of user 

context over time.
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•	 Advantages: Vector-based memory enables flexible and rapid 

retrieval, allowing the model to match current queries with 

semantically similar past interactions. This enhances contextual 

relevance, especially in applications where users revisit similar topics 

or inquiries.

•	 Limitations: Vector-based memory requires computational 

resources to compute and store embeddings. Additionally, the 

retrieval may sometimes favor conceptually similar information over 

exact conversational details, which could affect applications where 

exact recall is needed.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate, 
SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain.chains import LLMChain
from langchain.memory import VectorStoreRetrieverMemory
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
from langchain.docstore import InMemoryDocstore
import faiss
import numpy as np

# Initialize the chat model
chat_model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)

# Initialize the embedding model for vector storage
embedding_model = OpenAIEmbeddings()

# Set up FAISS index with the correct embedding dimension
embedding_dim = 1536  # Ensure this matches the dimension of embeddings
index = faiss.IndexFlatL2(embedding_dim)

# Set up FAISS vector store with additional required components
vector_store = FAISS(
    embedding_function=embedding_model.embed_query,
    index=index,
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    docstore=InMemoryDocstore({}),  # Initialize an empty docstore
    index_to_docstore_id={}          # Start with an empty ID mapping
)

# Define the prompt templates
system_prompt = SystemMessagePromptTemplate.from_template("You are a 
helpful assistant with memory capabilities.")
human_prompt = HumanMessagePromptTemplate.from_template("{history}\n\nUser: 
{input}")

# Wrap prompts in a ChatPromptTemplate
chat_prompt = ChatPromptTemplate.from_messages([system_prompt, human_
prompt])

# Set up VectorStoreRetrieverMemory with the FAISS vector store
memory = VectorStoreRetrieverMemory(retriever=vector_store.as_retriever())

# Create the chain with memory
conversation_chain = LLMChain(
    llm=chat_model,
    prompt=chat_prompt,
    memory=memory
)

# Example interactions to store in memory
interactions = [
    "I'm planning a trip to Italy.",
    "Can you suggest some historic sites to visit?"
    ]

# Run each interaction, store it in the vector memory, and display 
retrievals
for i, user_input in enumerate(interactions, 1):
    print(f"Interaction {i}: User Input: {user_input}")
    response = conversation_chain.run(input=user_input)
    print(f"Assistant Response: {response}")
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    # Retrieve similar memory entries based on the latest user input
    related_memory = memory.retriever.get_relevant_documents(user_input)
    print("\nRelated Memory Entries (from VectorStore):")
    for entry in related_memory:
        print(f"- {entry.page_content}")
    print("\n" + "="*50 + "\n")

Output:

Interaction 1: User Input: I'm planning a trip to Italy.
Assistant Response: That's great! Italy is a beautiful country with so 
much to see and do. Do you need any help with planning your trip or 
recommendations on places to visit?
Related Memory Entries (from VectorStore):
- input: I'm planning a trip to Italy.
text: That's great! Italy is a beautiful country with so much to see and 
do. Do you need any help with planning your trip or recommendations on 
places to visit?
==================================================
Interaction 2: User Input: Can you suggest some historic sites to visit?
Assistant Response: Sure! Italy is full of historic sites that are 
definitely worth visiting. Here are some popular historic sites in Italy:
1. The Colosseum in Rome: A iconic symbol of ancient Rome, this 
amphitheater is one of the most well-preserved Roman structures in 
the world.
2. The Roman Forum in Rome: Once the center of Roman public life, the Roman 
Forum is a sprawling archaeological site with ruins of ancient government 
buildings, temples, and monuments.
3. Pompeii: This ancient Roman city was buried by the eruption of Mount 
Vesuvius in 79 AD, preserving it in remarkable detail. You can explore the 
well-preserved ruins of homes, temples, and public buildings.
4. The Leaning Tower of Pisa: Located in the city of Pisa, this iconic 
tower is known for its distinctive lean and is part of the Cathedral Square 
complex, a UNESCO World Heritage Site.
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5. The Vatican City: A city-state within Rome, the Vatican is home to St. 
Peter's Basilica, the Sistine Chapel, and the Vatican Museums, which house 
an incredible collection of art and artifacts.
These are just a few of the many historic sites you can visit in Italy. Let 
me know if you need more information or recommendations!

Related Memory Entries (from VectorStore):
- input: Can you suggest some historic sites to visit?
text: Sure! Italy is full of historic sites that are definitely worth 
visiting. Here are some popular historic sites in Italy:
1. The Colosseum in Rome: A iconic symbol of ancient Rome, this 
amphitheater is one of the most well-preserved Roman structures in 
the world.
2. The Roman Forum in Rome: Once the center of Roman public life, the Roman 
Forum is a sprawling archaeological site with ruins of ancient government 
buildings, temples, and monuments.
3. Pompeii: This ancient Roman city was buried by the eruption of Mount 
Vesuvius in 79 AD, preserving it in remarkable detail. You can explore the 
well-preserved ruins of homes, temples, and public buildings.
4. The Leaning Tower of Pisa: Located in the city of Pisa, this iconic 
tower is known for its distinctive lean and is part of the Cathedral Square 
complex, a UNESCO World Heritage Site.
5. The Vatican City: A city-state within Rome, the Vatican is home to St. 
Peter's Basilica, the Sistine Chapel, and the Vatican Museums, which house 
an incredible collection of art and artifacts.
These are just a few of the many historic sites you can visit in Italy. Let 
me know if you need more information or recommendations!
- input: I'm planning a trip to Italy.
text: That's great! Italy is a beautiful country with so much to see and 
do. Do you need any help with planning your trip or recommendations on 
places to visit?
==========================================================================
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�Selecting the Appropriate Memory Type
Each LangChain Memory type has unique strengths, tailored to specific 

application needs:

•	 Full Conversation Memory (ConversationBufferMemory): For 

applications needing complete historical context

•	 Recent Context Memory (ConversationBufferWindowMemory): For 

lightweight interactions focused on immediate past exchanges

•	 Summarized Context Memory (ConversationSummaryMemory): 

For condensed, high-level overviews that retain key points without 

storing details

•	 Relational Memory (KnowledgeGraphMemory): For structured 

applications needing entity-based reasoning and complex 

relationship tracking

•	 Entity-Focused Memory (EntityMemory): For personalized user 

experiences based on key details about entities

•	 Semantic Memory (VectorStoreMemory): For flexible, concept- 

driven applications that benefit from semantic similarity retrieval

�Implementing Memory in LangChain
To utilize memory effectively within LangChain, developers need to configure the 

appropriate memory type based on the application’s requirements. Each type can be 

initialized with specific settings that determine how data is stored, retrieved, and utilized 

within a conversational chain. Implementing memory in LangChain typically involves

•	 Setting Up the Memory Type: Initialize the selected memory type 

and configure its storage limits, retrieval logic, and any other relevant 

parameters.

•	 Integrating with the LLMChain: Embed the memory module into 

the LLMChain to ensure the model reads from memory during each 

call, supplements user inputs with contextual information, and writes 

new data back to memory.
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•	 Managing Memory Life Cycle: Depending on the application, 

developers may need to define how long information persists in 

memory and establish any clearing or summarizing protocols as 

interactions grow.

LangChain’s memory options provide both flexibility and precision, empowering 

developers to create conversational AI systems that adapt seamlessly to user needs, 

preserve relevant context, and enhance the coherence of interactions. By selecting the 

memory type that best aligns with the application’s goals, developers can build more 

responsive, personalized, and efficient conversational agents.

When deploying a LangChain-powered RAG (retrieval-augmented generation) 

server in production—especially in environments where multiple replicas or pods are 

used, such as in Kubernetes—it is crucial to architect the memory system in a way that 

ensures scalability, consistency, and persistence across instances. LangChain’s memory 

features are powerful for enabling continuity in conversational AI, but in a stateless 

deployment model, developers must externalize memory storage to avoid context loss or 

inconsistency between user sessions.

To persist memory across replicas, it is recommended to use an external memory 

store. Options include Redis (e.g., via RedisChatMessageHistory); vector databases 

like FAISS, Pinecone, Weaviate, or Qdrant for semantic memory; or even traditional 

databases such as PostgreSQL or MongoDB for storing structured conversation logs. 

These solutions allow all replicas to read from and write to a centralized memory source, 

ensuring that user sessions remain consistent regardless of which pod processes the 

request.

Each user or conversation should be associated with a unique session identifier—

such as a user_id, session_id, or conversation_id—which should be passed with every 

request. This allows the server to correctly retrieve the corresponding memory from 

the centralized store. Middleware in your API layer can be used to manage session 

resolution and memory access, ensuring the right context is injected into each 

interaction with the language model.

While sticky sessions can be used temporarily to route users to the same pod, this 

approach is not recommended for long-term scalability or reliability. Centralized 

memory storage is a more robust solution, especially in distributed environments that 

may auto-scale or experience pod restarts.
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Memory management also involves defining life cycle rules. Developers should use 

TTL (Time-To-Live) settings or similar expiration mechanisms to automatically clean 

up unused or stale memory entries. LangChain also supports summarization strategies 

that help reduce memory size over time while retaining core contextual information. 

Applications should implement logic to determine when memory should be reset or 

archived, such as after a defined period of inactivity or at the end of a conversation 

session.

From an operational perspective, logging and monitoring memory access is 

essential. Developers should track memory reads, writes, and retrieval times and 

set up alerts for failures or inconsistencies. Tools such as Prometheus, Grafana, and 

OpenTelemetry can provide visibility into memory performance and help detect 

anomalies.

For multitenant applications, memory should be logically partitioned by tenant_id to 

ensure data isolation and compliance. Role-based access control should be enforced on 

the memory back end to prevent unauthorized access across tenants or sessions.

Prior to production rollout, load testing should be conducted to evaluate memory 

pressure under concurrent sessions and long conversations. Testing should verify 

that memory retrieval is performant and that API token usage remains within budget, 

especially if memory content is included in each prompt sent to the LLM.

In summary, production deployment of memory-enabled RAG servers using 

LangChain requires careful planning and infrastructure. By externalizing memory 

storage, implementing robust session management, and monitoring life cycle and 

performance, developers can build scalable, reliable, and context-aware conversational 

systems that maintain coherence across distributed workloads.

�LangChain Document Loaders
LangChain’s Document Loaders simplify data ingestion by offering flexible, modular 

ways to load and preprocess data from a wide array of file types and online sources. With 

document loaders, users can retrieve structured and unstructured data from formats 

such as PDFs, Word documents, web pages, and even APIs, making it easier to analyze, 

summarize, or use the content within machine learning applications. This versatility in 

data sourcing is crucial for applications involving document search, question answering, 

or content generation, where the quality of data input directly impacts results.
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Here is an expanded list of some of the popular and specialized document loaders 

supported by LangChain, as noted in the LangChain documentation.

�Common Document Loaders

•	 PDF Loaders: Extracts text from PDF files and supports different 

parsing methods, making it suitable for documents that include 

images, tables, or specific layouts.

•	 Word Document Loader: This loader extracts text from .doc 

and .docx formats, making it ideal for processing Microsoft Word 

documents.

•	 CSV and Excel Loaders: These loaders bring in data from CSV 

and Excel files, organizing tabular data that can be beneficial for 

structured datasets, reports, and analytics workflows.

•	 Notion Loader: Enables direct integration with Notion, allowing 

users to pull data from Notion pages and databases for teams that 

work collaboratively in this platform.

•	 Web Page Loader: A versatile loader that fetches content from 

URLs, transforming raw web pages into structured text suitable for 

processing in NLP applications.

•	 Google Drive Loader: This loader retrieves documents from Google 

Drive, making it easy to process cloud-stored files shared within 

organizations or teams.

�Specialized Document Loaders

•	 HTML Loader: Imports data from HTML files, allowing users to 

capture structured web content in its native format, often useful for 

scraping and processing online content.

•	 Markdown Loader: Processes Markdown files, commonly used for 

documentation and technical content, to ensure compatibility in 

documentation-heavy workflows.
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•	 S3 and Azure Blob Storage Loaders: Connect to cloud storage 

solutions like Amazon S3 and Azure Blob Storage, ideal for 

organizations with large datasets stored in these services.

•	 Gmail Loader: Retrieves emails from a Gmail account, parsing email 

threads for analysis, insights, or summarization.

•	 YouTube Loader: Allows loading transcripts and captions from 

YouTube videos, providing an easy way to turn video content into text 

for analysis or summarization.

•	 API Loader: A flexible loader that integrates with APIs, allowing users 

to bring in real-time data from external services or databases.

•	 Slack Loader: Loads message data from Slack, useful for teams 

needing to analyze conversations, gather feedback, or synthesize 

team communications.

•	 Dropbox Loader: Connects to Dropbox, enabling access to files 

stored in this platform and allowing data analysis for collaborative or 

cloud-based environments.

•	 Confluence Loader: Retrieves content from Confluence, 

useful for teams using it as their documentation or knowledge 

management tool.

•	 GitHub Repository Loader: Pulls text from GitHub repositories, 

useful for software documentation, code analysis, or processing 

README files and other documentation stored in GitHub.

•	 RSS Feed Loader: Loads data from RSS feeds, making it convenient 

for applications needing to stay updated with live information from 

news sites, blogs, or other sources.

•	 JSON and XML Loaders: These loaders are used for structured 

data in JSON and XML formats, common in APIs, data interchange 

formats, and various structured data applications.

By leveraging these document loaders, LangChain allows users to build sophisticated 

data pipelines tailored to the specific data needs of their NLP and machine learning 

workflows. The wide range of loaders supports various content sources, allowing teams 

to seamlessly integrate data from multiple platforms and formats into their applications.
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Example:

from langchain.document_loaders import TextLoader
# Initialize the TextLoader with the path to the text file
file_path = "example.txt"  # Replace with your text file path
loader = TextLoader(file_path)

# Load the document
documents = loader.load()

# Display the loaded document
for doc in documents:
    print("Document Content:")
    print(doc.page_content)
    print("\nMetadata:")
    print(doc.metadata)

Output:
Depending on your txt file content.

If you don’t have a document feel free to download one with dummy data by using 

this command: curl https://sample-files.com/downloads/documents/txt/long-
doc.txt> ./example.txt

�LangChain Embedding Models
An embedding model is a type of machine learning model that converts data, such as 

words, sentences, or images, into dense vector representations, often called embeddings. 

These embeddings are typically high-dimensional numeric arrays that capture the 

semantic or structural characteristics of the input data, allowing similar items to 

have similar vector representations. In natural language processing, embedding 

models enable computers to understand relationships and meanings between 

words or sentences by placing them in a continuous, multidimensional space where 

related concepts are closer together. This transformation facilitates tasks like search, 

classification, and similarity measurement by making comparisons between items more 

efficient and intuitive.
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The field of embedding models has undergone substantial development over the 

years. A key turning point arrived in 2018 when Google launched BERT (Bidirectional 

Encoder Representations from Transformers), a model that transformed text into vector 

representations, achieving remarkable performance across numerous NLP tasks. Despite 

its advancements, BERT was not optimized for creating sentence embeddings efficiently, 

leading to the development of SBERT (Sentence-BERT).

SBERT adapted BERT’s architecture to produce semantically rich sentence 

embeddings, which could be quickly compared using similarity metrics like cosine 

similarity, significantly reducing the computational demands for tasks such as sentence 

similarity searches. Today, the ecosystem of embedding models is varied, with many 

providers offering unique implementations. Researchers and practitioners frequently 

consult benchmarks like the Massive Text Embedding Benchmark (MTEB) for objective 

performance comparisons.

Unified Interface for Embedding Models
LangChain offers a standardized interface to interact with various embedding 

models, streamlining the process through two core methods:

•	 embed_documents: Embeds multiple texts (documents)

•	 embed_query: Embeds a single text (query)

This differentiation is essential, as some providers implement distinct embedding 

approaches for documents, which are used as searchable content, and for queries, which 

serve as the search input. For instance, LangChain’s .embed_documents method can 

efficiently embed a list of text strings.

Measuring Similarity in Embedding Space
Each embedding acts as a coordinate in a high-dimensional space, where the 

position of each point reflects the meaning of its text. In this space, texts with similar 

meanings are located close to one another, akin to synonyms in a thesaurus. Converting 

text into numerical representations allows for swift similarity comparisons between text 

pairs, independent of their original form or length. Common similarity metrics include

•	 Cosine Similarity: Measures the cosine of the angle between 

two vectors

•	 Euclidean Distance: Calculates the straight-line distance between 

two points

•	 Dot Product: Determines the projection of one vector onto another
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This approach enables meaningful and efficient comparisons, making it a 

foundational technique in modern NLP applications.

from langchain_openai import OpenAIEmbeddings
embeddings_model = OpenAIEmbeddings()
embeddings = embeddings_model.embed_documents(
    [
        "Hi there!",
        "Oh, hello!",
        "What's your name?",
        "My friends call me World",
        "Hello World!"
    ]
)
len(embeddings), len(embeddings[0])

Output:

(5, 1536)

LangChain integrates with a diverse array of embedding models, enabling users 

to generate vector representations of text for various applications. Here are 20 notable 

embedding models available within LangChain:

	 1.	 OpenAI Embeddings: Provides robust embeddings suitable for a 

wide range of natural language processing tasks

	 2.	 Cohere Embeddings: Offers versatile embeddings designed for 

tasks such as semantic search and text classification

	 3.	 Hugging Face Transformers: Features a collection of 

transformer-based models capable of producing high-quality 

embeddings for different languages and domains

	 4.	 Google Vertex AI: Delivers embeddings through Google’s 

managed machine learning platform, facilitating seamless 

integration with other Google Cloud services

	 5.	 Nomic Embeddings: Specializes in embeddings tailored for  

large-scale data visualization and analysis
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	 6.	 IBM watsonx.ai: Provides embeddings as part of IBM’s suite of AI 

tools, suitable for enterprise applications

	 7.	 Amazon Bedrock: Offers embeddings through Amazon’s fully 

managed service, supporting various AI applications

	 8.	 DeepInfra Embeddings: Utilizes serverless inference to provide 

access to a variety of LLMs and embedding models

	 9.	 Jina AI: Provides high-performance embeddings optimized for 

search and retrieval tasks

	 10.	 GigaChat Embeddings: Offers embeddings designed for 

conversational AI applications

	 11.	 GPT4All: A free-to-use, locally running chatbot that provides 

embeddings without requiring Internet access

	 12.	 Gradient AI: Allows creation of embeddings and fine-tuning of 

LLMs through a simple web API

	 13.	 Fireworks Embeddings: Provides embeddings included in the 

langchain_fireworks package for text embedding tasks

	 14.	 Elasticsearch: Generates embeddings using a hosted embedding 

model within the Elasticsearch platform

	 15.	 ERNIE: A text representation model based on Baidu Wenxin large-

scale model technology

	 16.	 FastEmbed by Qdrant: A lightweight, fast Python library built for 

embedding generation

	 17.	 LASER: Language-Agnostic SEntence Representations by Meta AI, 

supporting multiple languages

	 18.	 Llama-cpp: Provides embeddings using the Llama-cpp library

	 19.	 MiniMax: Offers an embeddings service suitable for various 

NLP tasks

	 20.	 MistralAI: Provides embeddings through MistralAI’s models, 

suitable for diverse applications
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These integrations allow users to select the most appropriate embedding model for 

their specific needs, leveraging LangChain’s unified interface to streamline the process.

�LangChain Indexes and Retrievers
In LangChain, indexes and retrievers are essential tools that manage large datasets 

for applications using large language models (LLMs). These components are critical 

in efficiently storing and retrieving relevant information, powering applications like 

question-answering (QA) systems, chatbots, document search, and retrieval-augmented 

generation (RAG). Here’s an in-depth look at how each of these components works.

�Indexes in LangChain: Structure and Types
Indexes are data structures that organize and store datasets, making them accessible for 

quick retrieval. This process typically involves loading documents, breaking them into 

manageable chunks, embedding these chunks into vector representations, and creating 

indexes. Indexes in LangChain can be of various types, each designed to suit different 

application needs.

•	 Document Loading and Chunking: In the indexing process, 

documents are first loaded and divided into smaller chunks. Text 

splitters are used to create chunks that are small enough for efficient 

processing while retaining context. This chunking process is 

especially useful for handling large documents that exceed typical 

processing limits.

•	 Embedding: Each chunk of text is embedded into a high- 

dimensional vector space, where similar content resides near each 

other. This embedding step is crucial for vector indexes, which 

rely on semantic similarities between vectors to identify relevant 

information.

•	 Index Creation: LangChain’s API offers a flexible approach to 

creating indexes, allowing developers to build different types of 

indexes based on their application needs. By utilizing embedding 

models, these indexes capture the nuances of each document, 

enabling advanced search capabilities across the dataset.
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�Types of Indexes
•	 Vector Indexes: Vector indexes convert document chunks into 

vectors that capture their semantic meaning. When a user query 

is converted into a vector, the vector index can perform similarity 

searches to retrieve documents close to the query in vector space. 

This approach is particularly useful for RAG applications, where 

contextual relevance is essential.

•	 Keyword Indexes: For applications focused on specific keywords, 

keyword indexes use sparse retrieval methods, such as term 

frequency-inverse document frequency (TF-IDF) or BM25, to match 

exact keywords in the documents. Though quicker than vector 

indexes, they are less capable of capturing the deeper semantic 

relationships between words.

•	 Hybrid and Custom Indexes: LangChain also supports hybrid 

indexes, which combine vector and keyword matching for 

applications requiring both semantic and exact keyword relevance. 

Custom indexes enable developers to define specialized retrieval 

logic, making them adaptable for domain-specific needs.

LangChain’s indexing API is designed to be efficient, tracking document versions 

through hashing to ensure that only modified content is reindexed. This setup minimizes 

redundant data processing and maintains an up-to-date index.

�Retrievers in LangChain: Querying and Optimization
Retrievers are components that query indexes to extract relevant document chunks 

based on a user query. They manage how indexes are searched, with various retrieval 

strategies tailored to different types of queries and datasets.

•	 Similarity Search Retriever: Often paired with vector indexes, 

similarity search retrievers identify documents whose vector 

representations closely match the query vector. This type of retriever 

excels at semantic search, where conceptually similar content is 

prioritized over exact keyword matches, and is commonly used in 

RAG systems, conversational agents, and QA applications.
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•	 Sparsity-Based Retriever: This retriever relies on exact keyword 

matching and is typically used with keyword indexes. By leveraging 

TF-IDF or BM25, sparsity-based retrievers prioritize documents 

containing specific terms, making them ideal for applications that 

focus on term-specific searches, such as document or product 

searches.

•	 Hybrid Retriever: Combining the strengths of vector and sparse 

retrieval methods, hybrid retrievers allow for a more flexible 

search experience by capturing both conceptual similarity and 

exact keyword matches. This versatility is valuable for complex 

applications where both semantic relevance and keyword accuracy 

are important.

•	 Memory-Based Retriever: Used primarily in conversational 

applications, memory-based retrievers retain the context of previous 

interactions, enabling continuous dialogue. This continuity is 

essential in applications that require long-term engagement, such as 

customer service chatbots and virtual assistants.

LangChain’s extensive suite of retrievers provides flexible options for retrieving 

documents, data, and context from a wide variety of sources. Each retriever is optimized 

for specific types of data, ensuring that users can select a solution tailored to their needs, 

whether for research, enterprise knowledge management, or specialized application 

domains. Here is more detail on some of the popular retrievers in LangChain:

•	 AmazonKnowledgeBasesRetriever: This retriever interfaces 

with Amazon’s knowledge bases, making it suitable for enterprise 

environments with a vast knowledge repository in AWS. It enables 

streamlined access to structured corporate data and FAQs.

•	 AzureAISearchRetriever: Powered by Microsoft Azure’s AI Search, 

this retriever offers advanced capabilities for searching through 

large datasets hosted on Azure. It is especially effective in enterprise 

settings that rely on the Azure ecosystem for data storage.

•	 ElasticsearchRetriever: Integrating directly with Elasticsearch, this 

retriever is highly efficient for indexing and retrieving documents 

based on keywords and relevance scoring, ideal for scalable search 

applications in both public and private databases.
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•	 MilvusCollectionHybridSearchRetriever: This retriever combines 

vector-based and scalar searches through Milvus, an open source 

vector database. It is optimal for applications requiring both 

semantic and traditional keyword matching.

•	 VertexAISearchRetriever: Utilizing Google’s Vertex AI, this retriever 

allows developers to perform high-quality searches across datasets 

managed within Google Cloud, offering seamless integration with 

other Google services and tools.

•	 ArxivRetriever: This retriever accesses scholarly papers directly from 

arXiv.org, making it perfect for academic research, literature reviews, 

and scientific inquiry.

•	 TavilySearchAPIRetriever: Designed for Internet-wide searches, this 

retriever leverages the Tavily API to bring back relevant web results, 

useful for general web-based information retrieval.

•	 WikipediaRetriever: Accesses content from Wikipedia, allowing 

users to retrieve well-organized information on a wide range of 

topics. It’s ideal for summarizing general knowledge and historical 

information.

•	 BM25Retriever: BM25 is a classic algorithm in information retrieval, 

and this retriever brings it to LangChain without needing an 

external search platform. It is useful for applications requiring local, 

traditional keyword-based retrieval.

•	 SelfQueryRetriever: Unique in its capability, this retriever processes 

and interprets its own queries, offering high flexibility in search tasks 

where query understanding is essential.

•	 MergerRetriever: This retriever combines results from multiple 

retrievers, aggregating various sources to improve recall and 

coverage. It is highly suitable for applications needing diverse data 

retrieval.

•	 DeepLakeRetriever: With Deep Lake’s multimodal database, this 

retriever accesses complex datasets, including structured and 

unstructured data, useful for multimedia or cross-domain projects.
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•	 AstraDBRetriever: Leveraging DataStax Astra, this retriever is ideal 

for organizations using Cassandra-based databases, combining 

scalability with vector capabilities for advanced search functionality.

•	 ActiveloopDeepMemoryRetriever: By utilizing Activeloop’s Deep 

Memory system, this retriever can store and retrieve data efficiently, 

making it a valuable option for high-performance applications 

needing rapid access to historical data.

•	 AmazonKendraRetriever: This retriever integrates with Amazon 

Kendra, Amazon’s intelligent search service, allowing for precise and 

context-aware search, particularly useful in enterprise environments.

•	 ArceeRetriever: Designed for specialized and secure NLP 

applications, this retriever can be adapted to smaller, purpose- 

specific language models and secure environments.

•	 BreebsRetriever: As a retriever specifically created for the Breebs 

system, it provides an efficient, targeted search for users leveraging 

Breebs for NLP tasks.

•	 AzureCognitiveSearchRetriever: This retriever works with Azure 

Cognitive Search, which is well-suited for organizations in the 

Microsoft ecosystem, offering customizable search options and 

robust scalability.

•	 BedrockRetriever: By integrating with Amazon Bedrock, this 

retriever provides seamless retrieval capabilities within Amazon’s AI 

suite, suitable for AWS-centric machine learning applications.

�End-to-End Workflow: From Indexing to Retrieval
In LangChain’s workflow, indexes and retrievers interact in a streamlined sequence:

•	 Indexing Process: Initially, the document corpus is loaded, divided 

into chunks, embedded, and stored within a vector or keyword index. 

This indexing step captures each chunk’s semantic meaning and 

stores it in a database, like a vector database, which can be used for 

quick similarity searches.
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•	 Retrieval Process: When a query is made, the retriever 

communicates with the relevant index to retrieve the most relevant 

chunks. Whether using similarity search, keyword matching, or both, 

the retriever pulls information aligned with the query. This retrieved 

content is then passed to the LLM, which generates a response by 

reasoning over the retrieved data.

�Real-World Applications of LangChain Indexes 
and Retrievers
Retrieval-augmented generation (RAG) applications utilize LangChain’s retrievers to 

bring in external information in real time, effectively augmenting a model’s knowledge 

with up-to-date data. In the RAG framework, the retriever’s role is to select documents 

relevant to a user’s query, enabling the LLM to reference specific information during 

response generation. This process significantly enhances the quality and accuracy of 

generated answers by grounding them in reliable, external sources.

For instance, when the model needs to answer a question about recent scientific 

findings or news, RAG ensures that the most relevant and current information is 

retrieved and considered. This dynamic integration of external knowledge is particularly 

valuable in domains where accuracy and context are crucial, such as medical research, 

financial analysis, and technical support, as it allows the model to produce responses 

informed by the latest data.

In question-answering (QA) and search systems, LangChain’s retrieval 

mechanisms are employed to sift through large datasets, pinpointing the specific 

information needed to answer direct queries. This capability is indispensable in 

customer support, where users frequently seek answers to targeted questions about 

products, services, or policies. Similarly, educational platforms leverage QA systems 

to help students and researchers retrieve information from vast databases or digital 

libraries.

Here, the retriever works by filtering through indexed content and extracting the 

passages most relevant to the query. By presenting the most pertinent information first, QA 

applications powered by LangChain’s retrievers improve user satisfaction, reduce search 

time, and increase the precision of answers. Research assistants and document-heavy 

industries, such as law and academia, can also benefit from QA systems, as they streamline 

the retrieval of highly specific knowledge from expansive collections of information.
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Conversational agents leverage LangChain’s memory-based retrievers to 

create engaging and personalized dialogue experiences. Unlike typical retrieval 

tasks, conversational applications require continuity, as users expect the system to 

“remember” prior exchanges and respond contextually. Memory-based retrievers 

enable these systems to track and recall relevant information from previous interactions, 

allowing the agent to build upon past conversations. This is particularly advantageous in 

customer service, where understanding a user’s past queries can help address ongoing 

issues more effectively, and in personal assistant applications, where maintaining 

familiarity with a user’s preferences and history enhances personalization.

For example, in virtual health assistants, memory retention enables the agent to 

remember past symptoms or medical advice, providing users with a consistent and 

coherent experience across multiple interactions.

Overall, LangChain’s indexes and retrievers are foundational in building robust, 

adaptable applications that deliver real-time, accurate, and contextually aware 

responses. From dynamically pulling the latest information for RAG to improving 

efficiency in QA systems and fostering continuity in conversational agents, these tools 

support a wide range of real-world use cases that require precise, responsive, and 

intelligent information retrieval.

Example:

from langchain.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.docstore import InMemoryDocstore
from langchain.schema import Document
import faiss

# Step 1: Prepare Sample Documents
documents = [
    �Document(page_content="Italy is a beautiful country in Europe, known 

for its rich history and culture. It has famous landmarks like the 
Colosseum and Leaning Tower of Pisa.", metadata={"title": "About 
Italy"}),
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    �Document(page_content="Italian cuisine is popular worldwide, with 
dishes like pasta, pizza, and gelato. Each region in Italy has its own 
unique culinary specialties.", metadata={"title": "Italian Cuisine"}),

    �Document(page_content="Rome is the capital city of Italy, known for its 
ancient history and architecture, including the Vatican City and the 
Pantheon.", metadata={"title": "Rome - The Capital"})

]

# Step 2: Initialize Embeddings and Vector Store
embedding_model = OpenAIEmbeddings()
embedding_dim = 1536  # Ensure this matches the embedding model
index = faiss.IndexFlatL2(embedding_dim)

# Set up FAISS vector store
vector_store = FAISS(
    embedding_function=embedding_model.embed_query,
    index=index,
    docstore=InMemoryDocstore({}),  # Empty docstore to start
    index_to_docstore_id={}          # Start with an empty mapping
)

# Add documents to the vector store
vector_store.add_documents(documents)

# Step 3: Set Up the Retrieval-Enhanced Generation (RAG) Chain
retriever = vector_store.as_retriever()
llm = ChatOpenAI(model="gpt-3.5-turbo")

# Create the RAG chain
rag_chain = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=retriever
)

# Step 4: Ask Questions and Get Answers
questions = [
    "Tell me about Italy.",
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    "What food is Italy famous for?",
    "What are some historical sites in Rome?"
]

for question in questions:
    answer = rag_chain.run(question)
    print(f"Question: {question}")
    print(f"Answer: {answer}\n")

Output:

Question: Tell me about Italy.
Answer: Italy is a beautiful country in Europe, known for its rich history, 
culture, and stunning landscapes. It has famous landmarks like the 
Colosseum in Rome and the Leaning Tower of Pisa. Rome is the capital city 
of Italy, famous for its ancient history and architecture, including the 
Vatican City and the Pantheon. Italian cuisine is popular worldwide, with 
dishes like pasta, pizza, and gelato being well-loved. Each region in Italy 
has its own unique culinary specialties, making it a food lover's paradise.
Question: What food is Italy famous for?
Answer: Italy is famous for dishes like pasta, pizza, gelato, risotto, and 
tiramisu. Each region in Italy has its own unique culinary specialties, 
making Italian cuisine diverse and beloved worldwide.
Question: What are some historical sites in Rome?
Answer: Some historical sites in Rome include the Colosseum, Roman Forum, 
Pantheon, and the Vatican City.

�Using LangChain Indexing API
In this chapter, we explore a foundational workflow for indexing documents 

using LangChain’s indexing API. This API allows you to import and synchronize 

documents from various sources into a vector store, offering a systematic approach to 

managing document data for efficient retrieval. The indexing API supports a range of 

optimizations, ensuring that documents are indexed only when necessary, thus saving 

both time and computational resources.
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One of the primary advantages of the indexing API is its ability to prevent redundant 

content in the vector store. By avoiding the reindexing of unchanged documents 

and skipping duplicate content, this tool significantly enhances retrieval speed and 

efficiency. Furthermore, the API avoids recalculating embeddings for previously indexed 

documents unless they have been altered, ensuring that the vector store is always up-to- 

date without wasting resources. This workflow aligns particularly well with vector search 

applications, where precision and efficiency in document retrieval are paramount.

�Technical Structure of the Indexing API
LangChain’s indexing process relies on a robust mechanism managed by a component 

called the RecordManager. This manager serves as a tracker, logging each document 

addition to the vector store with essential metadata.

Each document receives a unique hash—a digital signature that represents the 

content of both the text and its metadata. This hash, alongside the time of writing and 

the document’s source identifier, enables the system to maintain efficient, organized 

indexing, even when documents undergo several stages of transformation, such as text 

chunking, which divides lengthy texts into smaller, manageable sections for indexing.

�Deletion Modes and Content Maintenance
To maintain an efficient vector store, LangChain offers several deletion modes to handle 

outdated or redundant documents. Three main modes—None, Incremental, and Full—
each provide different levels of automation for clearing old or modified data.

•	 The None mode requires manual cleanup, allowing developers to 

directly manage obsolete content.

•	 Incremental mode continuously clears out old data as it processes 

new content, efficiently minimizing outdated entries.

•	 Full mode, in contrast, performs a complete cleanup after each batch 

of documents is indexed, ensuring that no old or duplicate data 

remains.
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For example, if the content of a document changes, both Incremental and Full 
modes will delete the previous version from the vector store. However, if a source 

document is removed entirely, Full mode will erase it automatically, while Incremental 
will not. This staged approach to deletion ensures the accuracy and efficiency of the 

indexing process while maintaining data integrity.

In cases where documents are modified, there may be a brief interval in which both 

the old and new versions coexist in the store. Incremental mode minimizes this overlap, 

as it cleans up continuously. Full mode, however, clears outdated data only after all new 

data has been processed, which may lead to a slightly longer overlap period.

�Requirements and Compatibility
For optimal functionality, it’s recommended to use LangChain’s indexing API with vector 

stores that support document management by ID, as this enables precise addition and 

deletion operations. Notably, the indexing API is compatible with a wide range of vector 

stores, including popular options like Pinecone, Redis, FAISS, and Weaviate. Each of 

these stores supports key features such as add_documents and delete methods with ID 

arguments, which allow for accurate document management.

Compatible Vector Stores:

•	 Aerospike: High-performance, scalable database for real-time data 

storage and retrieval

•	 AstraDB: Distributed, cloud-native database built on Apache 

Cassandra for scalable applications

•	 Azure Cosmos DB NoSQL/Vector Search: Microsoft’s scalable 

NoSQL database with vector search capabilities

•	 Cassandra: Open source, distributed database designed for 

scalability and reliability

•	 Chroma: Vector database optimized for handling  

high-dimensional data

•	 Databricks Vector Search: Integrated vector search within 

Databricks for enhanced data processing

•	 DeepLake: Vector database for machine learning datasets, optimized 

for deep learning workflows
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•	 Elastic Vector Search: Vector-based search support within 

Elasticsearch for relevant data insights

•	 FAISS: Open source library for fast, approximate nearest neighbor 

search, commonly used for vector search

•	 Milvus: Open source, cloud-native vector database optimized for 

high-performance similarity search

•	 MongoDB Atlas Vector Search: MongoDB’s vector search 

capabilities for enhanced data retrieval

•	 Pinecone: Fully managed vector database for real-time search and 

machine learning applications

•	 Qdrant: High-performance vector database supporting semantic 

search and similarity matching

•	 Redis: In-memory datastore with modules supporting vector search 

for low-latency applications

•	 SingleStoreDB: Distributed SQL database optimized for real-time 

analytics and vector search

•	 Supabase Vector Store: Open source alternative to Firebase with 

vector storage capabilities

•	 Vespa Store: Open source platform for real-time indexing and 

serving of large datasets

•	 Weaviate: Open source vector search engine with built-in NLP 

support for semantic search

•	 Tencent VectorDB: Vector database by Tencent for fast, efficient data 

retrieval in AI applications

�Important Considerations
LangChain’s RecordManager uses a timestamp-based mechanism for determining 

when content should be cleaned. However, in rare situations where two tasks execute 

consecutively within a very short time interval, this mechanism may experience 

limitations, potentially leaving some content temporarily unprocessed. This issue 
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is unlikely in practical applications, as the RecordManager uses high-resolution 

timestamps, and indexing tasks typically take more than a few milliseconds to complete. 

This time-based approach helps ensure accuracy while preserving system performance 

and responsiveness.

�Agents in LangChain
In the evolving landscape of artificial intelligence, language models (LLMs) and 

frameworks like LangChain have redefined our approaches to data analysis, information 

synthesis, and content generation. At the heart of these capabilities lies the concept 

of agents—intelligent systems that employ LLMs to orchestrate complex tasks and 

make informed decisions. In this chapter, we’ll delve into the dual roles agents play in 

harnessing LLMs: as content generators and as reasoning engines.

Leveraging their extensive pretrained knowledge, LLMs can function as content 

generators, producing unique, engaging content from scratch. Alternatively, when 

deployed as reasoning engines, they synthesize and manage information from multiple 

sources, analyzing data and planning actionable steps. Both approaches bring distinct 

advantages and challenges, with the optimal use case determined by the task’s 

specific needs.

�Defining Agents
In the context of LLMs, agents facilitate the decision-making process by determining 

what actions to take and in what sequence. These actions can include using a tool, 

observing the results, or generating a response for the user. Effective use of agents allows 

AI systems to operate with precision and adaptability.

Agents in LangChain, for instance, employ a high-level API to streamline complex 

interactions and decision-making processes. Before diving into practical applications, 

understanding key terms is essential:

•	 Tool: A designated function for performing a specific task, such as 

conducting a Google Search, querying a database, or executing code 

in a Python environment. A tool’s interface typically consists of a 

function that accepts a string input and returns a string output.

•	 Language Model (LLM): The core language model that powers the 

agent, responsible for understanding and generating text.
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•	 Agent: The orchestrating system that integrates LLMs and tools, 

executing commands based on user input and contextual cues. 

LangChain supports several standard agents accessible through the 

high-level API, and customized agents can also be implemented 

as needed.

�Types of Agents in LangChain
Currently, most agents in LangChain fall into two primary categories:

	 1.	 Action Agents: Designed for direct, single-action tasks, Action 

Agents execute straightforward commands and are ideal for brief, 

specific interactions.

	 2.	 Plan-and-Execute Agents: These agents take a broader approach, 

planning a sequence of actions to achieve a goal and executing 

each action step-by-step. This type is suited for complex, long-

term tasks that require sustained focus. However, the extended 

planning process may result in increased latency. A practical 

approach is to employ an Action Agent within a Plan-and-Execute 

Agent’s workflow, allowing for efficiency without sacrificing depth.

In a typical Action Agent workflow

	 1.	 The agent receives user input and selects the appropriate tool 

or action.

	 2.	 The chosen tool is activated, and its output (or “observation”) is 

recorded.

	 3.	 The observation, along with the history of actions, is passed back 

to the agent to guide the next step.

	 4.	 The agent iterates through this process until it determines no 

further actions are required, at which point it provides a direct 

response to the user.
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�Tools As Extensions of Language Models
Agents gain flexibility and relevance through the use of tools, which extend the 

capabilities of LLMs by interfacing with external data sources, APIs, and computational 

resources. Tools enable agents to access up-to-date information, run code, and interact 

with files—crucial functions given that LLMs are often limited to static, pretrained data. 

By incorporating tools, agents can enrich the LLM’s understanding with real-time data 

and more precise context, thereby enhancing its decision-making ability.

�Content Generation vs. Reasoning Engines
When employing an LLM through agents, two primary modes of operation emerge: 

content generation and reasoning.

	 1.	 Content Generators: In this role, an LLM produces content purely 

from its internal knowledge, drawing upon a rich reservoir of 

pretrained data to create unique and creative outputs. However, 

this can also result in unverified or speculative information, often 

referred to as “hallucinations.”

	 2.	 Reasoning Engines: When acting as a reasoning engine, the 

agent functions more as an information manager than a creator. 

In this mode, it seeks to gather, verify, and synthesize relevant 

information, frequently with the aid of external tools. The LLM 

draws on data sources related to the topic and constructs new, 

accurate content by summarizing and integrating critical insights.

By understanding these dual modes—content generation and reasoning—users 

can better tailor LLM-powered agents to meet diverse task requirements, from creative 

writing to intricate data analysis, thus maximizing the model’s potential in each unique 

application.

Example:

from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.agents import initialize_agent, AgentType
from langchain.tools import Tool
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from langchain.text_splitter import CharacterTextSplitter
from langchain.docstore.document import Document
import os

# Define document contents
document1_content = "The capital of France is Paris. Paris is known for its 
art, fashion, and culture."
document2_content = "The capital of Japan is Tokyo. Tokyo is famous for its 
technology and vibrant city life."

# Create Document objects
documents = [
    Document(page_content=document1_content),
    Document(page_content=document2_content)
]

# Split text into chunks for vector indexing
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
docs = text_splitter.split_documents(documents)

# Create an embedding model for indexing
embedding = OpenAIEmbeddings()

# Create a FAISS vector store with the documents and embeddings
vector_store = FAISS.from_documents(docs, embedding)

# Initialize OpenAI model using Chat API with gpt-3.5-turbo
llm = ChatOpenAI(model="gpt-3.5-turbo")

# Define a tool to query the vector store
def query_vector_store(query: str) -> str:
    results = vector_store.similarity_search(query, k=1)
    �return results[0].page_content if results else "No relevant 

information found."

tools = [
    Tool(
        name="Document Index",
        func=query_vector_store,

Chapter 2  LangChain and Python: Advanced Components



114

        �description="Use this tool to answer questions about the capital 
cities in the documents."

    )
]

# Set up the agent
agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# Ask a question
question = "What is the capital of Japan?"
response = agent({"input": question})
print(response["output"])

How it works:

•	 The agent receives a natural language query ("What is the 
capital of Japan?").

•	 It analyzes the input and sees that there’s a tool 
available called "Document Index" with a description 
suggesting it's useful for capital city questions.

•	 Using the ReAct reasoning, it decides to call the tool 
(query_vector_store(...)) with the input.

•	 The tool queries the FAISS vector store for relevant info 
and returns the most relevant chunk.

•	 The agent then returns the final answer.

AgentType.ZERO_SHOT_REACT_DESCRIPTION ells LangChain to use an 
agent that:

•	 Uses reasoning and tools in a step-by-step fashion (ReAct),
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•	 Figures everything out without seeing examples (zero-shot),

•	 Relies on tool names and descriptions to choose the 
right action.

Output:

> Entering new AgentExecutor chain...
I should use the Document Index tool to search for the capital of Japan in 
the documents.
Action: Document Index
Action Input: "capital of Japan"
Observation: The capital of Japan is Tokyo. Tokyo is famous for its 
technology and vibrant city life.
Thought:I now know the final answer
Final Answer: The capital of Japan is Tokyo.

> Finished chain.
The capital of Japan is Tokyo.

�Exploring Autonomous Agents: AutoGPT and BabyAGI
AutoGPT and BabyAGI represent groundbreaking advancements in the realm of 

autonomous agents—AI systems designed to accomplish tasks with minimal human 

supervision. Their unique ability to independently work toward specific objectives has 

garnered significant attention, with AutoGPT amassing over 100,000 stars on GitHub 

and sparking global curiosity. These agents offer a glimpse into the future of AI-driven 

autonomy and promise transformative applications across various domains.

AutoGPT, an open source platform, utilizes GPT-4 to systematically explore the 

Internet, decompose complex tasks into manageable subtasks, and even initiate new 

agents to help achieve its goals. BabyAGI operates similarly, integrating GPT-4, a vector 

store, and LangChain to create tasks based on prior outcomes and a primary objective. 

Although still in development, both systems highlight the immense potential of 

autonomous agents and underscore their rapid progress and broad applicability.
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Autonomous agents like AutoGPT and BabyAGI appeal to the AI community for 

three main reasons:

•	 Minimal Human Involvement: Unlike traditional models that rely 

on human input (e.g., ChatGPT), these agents require little guidance 

to operate.

•	 Diverse Applications: From personal assistance to task automation, 

their potential use cases are expansive.

•	 Rapid Development: The swift evolution of these technologies 

signals their potential to revolutionize various industries.

To optimize the performance of autonomous agents, it is essential to set well-defined 

goals, which might include generating natural language content, providing accurate 

responses, or refining actions based on user feedback.

�What Is AutoGPT?

AutoGPT is an autonomous agent capable of operating independently until it reaches a 

specified goal. This agent leverages three core features:

	 1.	 Internet Connectivity: AutoGPT accesses the web in real time, 

allowing for ongoing research and information gathering.

	 2.	 Self-Prompting: It generates and organizes subtasks 

autonomously to tackle larger goals.

	 3.	 Task Execution: AutoGPT executes tasks, including activating 

additional AI agents. However, this feature sometimes encounters 

challenges, such as task loops or misinterpretations.

Initially conceived as a general-purpose agent capable of handling virtually any task, 

AutoGPT’s broad scope revealed limitations in efficiency. Consequently, the trend has 

shifted toward developing specialized agents tailored for specific tasks, thus enhancing 

their practical utility.
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�How Does AutoGPT Work?

AutoGPT’s design allows it to go beyond simple text generation, transforming it into a 

task-oriented agent capable of creating, prioritizing, and executing complex sequences 

of actions. This operational model allows AutoGPT to

	 1.	 Understand overarching goals

	 2.	 Break goals into subtasks

	 3.	 Execute tasks

	 4.	 Adjust actions based on contextual information

AutoGPT relies on plug-ins for Internet browsing and other external access. Its 

memory module stores context, enabling it to evaluate situations, self-correct, and 

reprioritize as necessary. This dynamic feedback loop allows AutoGPT to perform as a 

proactive, goal-oriented agent rather than a passive language model.

This independence opens new possibilities in AI-driven productivity but introduces 

challenges around control, unintended consequences, and ethical considerations.

�What Is BabyAGI?

Like AutoGPT, BabyAGI is an autonomous agent designed to operate continuously, 

drawing from a task list, executing actions, and creating new tasks based on previous 

outcomes. However, BabyAGI employs a distinct approach, integrating four specialized 

sub-agents to manage its operations:

	 1.	 Execution Agent: Executes tasks by constructing prompts 

based on the objective and feeding them to a language model 

(e.g., GPT-4)

	 2.	 Task Creation Agent: Generates new tasks from prior task results 

and objectives, creating a list of new tasks

	 3.	 Prioritization Agent: Orders tasks based on urgency or 

importance

	 4.	 Context Agent: Merges results from previous executions to 

maintain continuity across tasks
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�Key Features of BabyAGI

BabyAGI exemplifies the potential for autonomous agents to manage and adapt to 

complex workflows:

•	 Autonomous Task Management: BabyAGI dynamically generates 

new tasks and reprioritizes its task list in response to updated goals or 

information.

•	 Efficient Storage and Search: BabyAGI uses GPT-4 for task 

execution, a vector database for efficient data storage, and LangChain 

for decision-making.

•	 Adaptability: BabyAGI not only completes tasks but also enriches 

and stores results in a database, enabling it to learn and evolve based 

on new data.

This integration of GPT-4 and LangChain capabilities allows BabyAGI to interact 

with its environment and perform efficiently within defined constraints.

�A Practical Implementation of BabyAGI

BabyAGI’s implementation with LangChain provides flexibility; while it currently uses 

a FAISS vector store, users can adapt it to other storage solutions. In a recent update (as 

of August 2023), LangChain reorganized some experimental features, moving them to a 

new library called langchain_experimental. To implement BabyAGI with the updated 

LangChain library, install the experimental package and modify code references 

accordingly.

AutoGPT and BabyAGI offer a fascinating look into the potential of autonomous 

AI. Through continuous innovation, these agents are setting the stage for future AI 

systems capable of independent operation, complex decision-making, and task 

execution across diverse environments. Whether streamlining workflows, managing 

data, or providing real-time assistance, autonomous agents promise to transform AI 

from a reactive tool into a proactive, learning system poised to reshape the boundaries of 

human–AI collaboration.
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�LLM Models in LangChain
�Chat Models
�AI21 Labs

AI21 Labs offers models designed for natural language understanding and generation, 

tailored to enhance interaction in various applications.

�Alibaba Cloud PAI EAS

A lightweight, cost-effective AI solution from Alibaba Cloud, PAI EAS facilitates scalable 

deployments and high-performance machine learning, suitable for a range of business 

applications and data-driven insights.

�Anthropic

Anthropic’s conversational models prioritize safe and interpretable AI interactions, 

offering reliable tools and guidance for integration into projects requiring advanced 

language understanding.

�Anyscale

Anyscale’s integration with LangChain allows seamless access to scalable chat models, 

suitable for enhancing complex AI applications and workflows in diverse environments.

�Azure OpenAI

Microsoft Azure’s OpenAI integration enables developers to deploy and scale OpenAI’s 

advanced language models, optimized for a range of applications from customer service 

to sophisticated content generation.

�Azure ML Endpoint

A comprehensive platform by Azure for building, training, and deploying machine 

learning models, Azure ML Endpoint allows for streamlined deployment of 

conversational AI with enterprise-grade scalability.
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�Baidu Qianfan

A unified platform from Baidu AI Cloud, Qianfan offers end-to-end solutions for large 

model development, from training and deployment to performance tuning and scaling.

�AWS Bedrock

Amazon’s AWS Bedrock provides a foundation for deploying conversational AI models at 

scale, backed by robust infrastructure for handling various use cases, including customer 

service, virtual assistants, and more.

�Cohere

With a focus on accessible language models, Cohere provides tools for natural language 

understanding, enabling quick deployment of conversational AI into customer-facing or 

internal applications.

�Databricks

The Databricks Lakehouse Platform unifies data, analytics, and AI, providing an 

integrated solution that allows organizations to develop, train, and deploy chat models 

efficiently on a single platform.

�DeepInfra

DeepInfra’s serverless AI inference service provides easy access to conversational 

models, offering a cost-effective, scalable way to deploy natural language applications 

without extensive infrastructure.

�Eden AI

Eden AI aggregates top-tier AI models, uniting various providers under one platform, 

enabling developers to seamlessly integrate and compare multiple chat solutions in their 

applications.

�EverlyAI

EverlyAI allows users to scale machine learning models in the cloud, providing robust 

solutions for integrating conversational AI into applications that need to handle high- 

volume interactions.
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�Fireworks

Fireworks AI chat models offer powerful language capabilities tailored for customer 

service, education, and content generation, designed to help businesses implement 

responsive, intuitive AI.

�GigaChat

Integrated with LangChain, GigaChat enables the development of conversational AI 

with a focus on providing adaptive, context-sensitive responses, ideal for interactive 

applications.

�Google AI

Google AI offers a comprehensive suite of chat models designed for seamless interaction, 

optimized to support complex, multiturn conversations in various application scenarios.

�Google Cloud Vertex AI

Vertex AI on Google Cloud delivers advanced chat model solutions, allowing developers 

to train, optimize, and deploy large language models that drive enhanced user 

interactions.

�GPTRouter

GPTRouter serves as an open source API gateway, enabling easy access and routing 

across various large language models, simplifying the deployment of conversational AI 

in diverse projects.

�Groq

Groq’s chat models provide a high-speed solution for conversational AI, helping 

businesses implement responsive, scalable models that perform well in interactive, real- 

time environments.

Chapter 2  LangChain and Python: Advanced Components



122

�ChatHuggingFace

Hugging Face offers an extensive library of chat models that can be easily integrated 

with LangChain, allowing developers to experiment with and deploy a variety of 

conversational AI solutions.

�IBM watsonx.ai

IBM’s watsonx.ai foundation models are designed for enterprise-grade conversational 

AI, providing reliable and secure solutions for handling complex customer interactions 

and data management.

�JinaChat

JinaChat’s models bring efficient natural language processing capabilities to a range of 

applications, making it easy to integrate responsive AI into both customer-facing and 

internal platforms.

�Kinetica

Kinetica’s AI tools support transforming natural language into actionable data insights, 

making it a valuable platform for conversational AI that interacts with and analyzes real- 

time data.

�LiteLLM

LiteLLM provides simplified access to major language models like Anthropic, Azure, and 

Hugging Face, streamlining the deployment of conversational AI in diverse applications.

�LiteLLM Router

LiteLLM’s Router enables seamless integration and routing among various chat model 

providers, offering flexibility and ease of management across different AI platforms.

�Llama 2 Chat

Llama 2 Chat integrates Llama-2 large language models with additional chat capabilities, 

creating a robust tool for applications requiring natural language understanding and 

conversation.
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�Llama API

LlamaAPI offers hosted language models through LangChain, allowing developers to 

deploy and manage interactive conversational applications efficiently.

�LlamaEdge

LlamaEdge enables local and cloud-based deployment of LLMs in GGUF format, 

providing flexible, efficient options for integrating chat capabilities.

�Llama.cpp

The Llama.cpp Python library provides simple bindings for lightweight Llama models, 

making it easier to integrate and experiment with conversational AI solutions.

�maritalk

Maritalk introduces its conversational models with a focus on responsive, user-friendly 

dialogue capabilities suitable for various customer-facing applications.

�MiniMax

MiniMax offers large language models geared toward enterprise applications, providing 

reliable, scalable solutions for complex conversational tasks.

�MistralAI

MistralAI offers robust tools and guidance for deploying conversational models that can 

handle multiturn interactions in diverse applications.

�MLX

MLX’s chat models facilitate conversational AI use, helping developers integrate intuitive 

and responsive dialogue systems into their projects.

�Moonshot

Moonshot, a Chinese startup, provides enterprise-focused large language models, 

offering scalable AI solutions for businesses across various industries.
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�Naver

Naver provides an intuitive platform for conversational AI, enabling users to deploy and 

customize chat models for interactive applications.

�NVIDIA AI Endpoints

NVIDIA’s AI Endpoints deliver high-performance chat models that cater to complex 

interactions, making it suitable for applications requiring advanced conversational 

capabilities.

�ChatOCIModelDeployment

Oracle’s OCIModelDeployment chat models offer seamless integration within Oracle’s 

ecosystem, facilitating enterprise-grade conversational AI.

�OCIGenAI

Oracle’s GenAI models allow users to leverage AI capabilities with a focus on reliability, 

scalability, and seamless deployment across diverse environments.

�ChatOctoAI

OctoAI provides access to efficient compute resources, enabling developers to integrate 

fast and responsive conversational AI models into their projects.

�Ollama

Ollama allows users to run open source models like LLaMA either locally or in the cloud, 

providing a flexible solution for deploying conversational AI.

�OpenAI

OpenAI’s chat models offer advanced language capabilities, making it easy to implement 

responsive and accurate conversational AI for various use cases.
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�Perplexity

Perplexity AI models offer tools for natural language processing and conversational AI, 

supporting accurate and dynamic user interactions.

�PremAI

PremAI is an all-in-one platform simplifying the development of robust chat 

applications, helping users create, train, and deploy conversational AI quickly.

�PromptLayer ChatOpenAI

PromptLayer connects with OpenAI models to log and track interactions, making it 

easier to monitor and improve conversational performance.

�SambaNovaCloud

SambaNovaCloud’s chat models provide scalable conversational AI options, ideal for 

applications with high volumes of complex interactions.

�SambaStudio

SambaStudio facilitates the deployment and management of chat models, offering a 

comprehensive solution for organizations looking to integrate conversational AI.

�Snowflake Cortex

Snowflake Cortex integrates large language models directly within the Snowflake 

platform, enabling seamless access to chat models alongside analytics.

�solar

Solar-powered AI solutions for sustainable applications in natural language processing 

and conversational AI.

�SparkLLM Chat

iFlyTek’s SparkLLM offers a powerful conversational AI model, providing high-quality 

language understanding and interaction capabilities.
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�Nebula (Symbl.ai)

Nebula from Symbl.ai specializes in conversation analytics, supporting businesses with 

models designed for complex conversational analysis and interaction.

�Tongyi Qwen

Alibaba’s DAMO Academy developed Tongyi Qwen, a large language model offering 

advanced conversational capabilities suitable for various applications.

�Upstage

Upstage’s chat models are designed for quick integration, providing a flexible solution 

for conversational AI in customer service and engagement applications.

�vLLM Chat

vLLM can be deployed to mimic the OpenAI API, offering users a flexible, compatible 

chat model that integrates easily into existing workflows.

�Volc Enging Maas

Volc Enging Maas chat models offer a scalable AI platform for businesses looking to 

integrate conversational AI solutions.

�YandexGPT

YandexGPT’s models are available via LangChain, enabling integration with Yandex’s 

conversational AI for localized and global applications.

�Supported LLMs
•	 AI21 Labs: Juristic models for legal and technical language in natural 

interactions

•	 Aleph Alpha: Luminous models for text understanding and 

generation, ideal for content creation and support

•	 Alibaba Cloud PAI EAS: Comprehensive platform for scalable AI 

model training, deployment, and management

Chapter 2  LangChain and Python: Advanced Components



127

•	 Amazon API Gateway: Managed API service for easy deployment 

and management of back-end services

•	 Anyscale: Fully managed Ray platform for distributed AI applications

•	 Azure ML: End-to-end platform for building, training, and deploying 

machine learning models

•	 Azure OpenAI: Deployment of OpenAI models through Azure for 

advanced NLP

•	 Baichuan LLM: Large language model focused on conversational AI 

for health and well-being

•	 Baidu Qianfan: Platform for training, deploying, and optimizing 

large language models on Baidu AI Cloud

•	 Baseten: Simplifies model deployment and operation within the 

LangChain ecosystem

•	 Beam: API wrapper for deploying large language models with 

scalable resources

•	 Bedrock (Amazon): Documentation for integrating NLP models 

within Amazon’s infrastructure

•	 Clarifai: AI platform for managing the full AI life cycle, from data 

preparation to deployment

•	 Cloudflare Workers AI: Edge-deployed generative models for low- 

latency language AI

•	 Cohere: Models for natural language processing, enhancing 

language understanding and interaction

•	 Databricks: Lakehouse platform for unified data, analytics, and AI 

model management

•	 DeepInfra: Serverless AI service for easy deployment of 

language models

•	 Eden AI: Aggregated API access to top AI models, supporting diverse 

AI integrations
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•	 ExLlamaV2: Optimized library for running large models on local 

hardware

•	 ForefrontAI: Platform for fine-tuning and deploying open source 

language models

•	 GigaChat: Tools for interactive conversational AI in dynamic 

environments via LangChain

•	 Google Vertex AI: Model deployment and scaling tools for machine 

learning workflows

•	 GPT4All: Open source ecosystem for robust conversational agents

•	 Gradient: Supports model fine-tuning and deployment, integrated 

with LangChain

•	 Hugging Face: Extensive model repository for deploying and 

managing NLP models

•	 IBM watsonx.ai: Enterprise-grade tools for managing large 

language models

•	 Intel IPEX-LLM: PyTorch library optimized for running models on 

Intel CPUs/GPUs

•	 Llama.cpp: Lightweight bindings for Llama models in Python 

applications

•	 Minimax: Chinese startup providing NLP services and 

conversational AI

•	 Modal: Serverless compute platform for easy AI deployment

•	 MosaicML: Managed inference for NLP applications, supporting 

model customization

•	 NLP Cloud: Scalable NLP models for companies via API

•	 NVIDIA: High-performance model deployment on NVIDIA hardware

•	 Oracle Generative AI: Oracle’s scalable infrastructure for AI model 

training and deployment
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•	 OpenAI: Guidance for integrating OpenAI’s models in various 

applications

•	 OpenLLM: Open platform compatible with OpenAI’s API for model 

management

•	 OpenVINO: Toolkit for running AI models on Intel hardware

•	 Replicate: Cloud platform for easy access and deployment of 

AI models

•	 SageMaker: Amazon’s platform for building and deploying machine 

learning models

•	 SambaNova: Tools for running and managing open source models in 

enterprise applications

•	 SparkLLM: iFlyTek’s large language model for complex NLP tasks

•	 StochasticAI: Platform for AI model life cycle management

•	 TextGen: Gradio-based web UI for interactive content generation

•	 Titan Takeoff: Tools for small, efficient language models in business

•	 Together AI: Collaborative language models for distributed 

environments

•	 Tongyi Qwen: Alibaba’s model for broad NLP applications

•	 Writer: AI-driven platform for generating multilingual content for 

marketing and writing

•	 Xorbits Inference (Xinference): Scalable library for large language 

model serving

•	 YandexGPT: Integration support for multilingual capabilities with 

YandexGPT
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�LLMs vs. Chat Models
�Large Language Models (LLMs)
Large language models are AI systems trained on vast amounts of text data to perform a 

broad range of language tasks, such as summarization, text generation, translation, and 

sentiment analysis. LLMs, like OpenAI’s GPT, are primarily designed for general- 

purpose language processing and can be adapted to various applications by using 

prompt engineering, fine-tuning, or transfer learning. They generate responses based on 

context without specific training for conversational flows, making them versatile but less 

specialized for natural, interactive dialogue.

�Key Characteristics of LLMs

•	 General Purpose: Capable of handling a broad spectrum of 

language tasks

•	 Few-Shot and Zero-Shot Learning: Can handle tasks with minimal 

examples or prompts

•	 Less Interactive: Not optimized specifically for dynamic 

conversation or managing turns in a dialogue

�Chat Models
Chat models are specialized derivatives or adaptations of LLMs fine-tuned specifically 

for conversational AI, making them better suited to applications like customer service 

bots, virtual assistants, or real-time chat interactions. These models have been trained 

on conversational data, allowing them to understand and manage conversational 

nuances such as tone, context retention, multiturn dialogue, and even empathy. They 

are optimized to handle back-and-forth interactions with users and manage context over 

extended exchanges.

�Key Characteristics of Chat Models

Here are the key characteristics of chat models (Table 2-1):
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•	 Dialogue-Focused: Trained on conversational data for a more 

interactive, turn-based flow

•	 Context Management: Maintains context across multiple dialogue 

turns, supporting natural back-and-forth interactions

•	 User Alignment: Often refined for specific use cases like customer 

support, virtual assistants, and real-time conversation

•	 AI21: High-quality embeddings in LangChain for tasks like 

information retrieval, recommendations, and text similarity

•	 Aleph Alpha: Semantic embeddings with Luminous models for 

document comparison and search

•	 Anyscale: Embeddings optimized for distributed AI applications, 

supporting large-scale deployments

•	 AwaDB: AI-native database focused on scalable embedding storage 

and retrieval for AI insights

•	 AzureOpenAI: Scalable embedding models for intelligent search and 

text applications

•	 Baidu Qianfan: Unified platform for embedding and model 

management on Baidu AI Cloud

•	 Bedrock (Amazon): Managed embedding service with diverse 

models for NLP applications

Table 2-1.  Key Characteristics of Chat Models

Feature LLMs Chat Models

Purpose Broad language tasks Optimized for conversation

Training Data General Internet or document data Conversational data

Context 
Management

Limited in longer interactions Manages context across exchanges

Interaction Style One-off responses Multiturn, interactive

Use Cases Content creation, summarization, 

analysis, image analysis and generation

Chatbots, customer service, virtual 

assistants
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•	 BGE on Hugging Face: High-quality vector embeddings for search 

and retrieval

•	 Clarifai: End-to-end AI platform with embedding generation and 

data management tools

•	 Cloudflare Workers AI: Distributed embeddings with reduced 

latency for global data access

•	 Cohere: Embeddings in LangChain for natural language 

understanding and data-centric applications

•	 Databricks: Lakehouse platform integrating embeddings with large- 

scale data processing

•	 DeepInfra: Serverless embeddings for real-time applications

•	 EDEN AI: Platform with diverse embedding options for search, 

categorization, and similarity scoring

•	 Elasticsearch: Embedding support for enhanced search relevance 

and data-driven insights

•	 FastEmbed by Qdrant: Lightweight, high-speed embedding library 

for real-time applications

•	 Fireworks: Flexible embeddings for search and clustering in 

LangChain

•	 GigaChat: Efficient embeddings for AI-driven applications and high- 

interaction tasks

•	 Google Vertex AI: Enterprise embeddings optimized for large-scale 

data management

•	 GPT4All: Local embeddings focused on privacy for offline 

applications

•	 Gradient: Platform for embedding generation and fine-tuning for 

specific data needs

•	 Hugging Face: Versatile embeddings accessible through LangChain 

for NLP workflows
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•	 IBM Watsonx.ai: Enterprise-grade semantic embeddings for data 

processing and analytics

•	 Intel Transformers: Optimized, quantized embeddings for efficient 

data representation

•	 Jina: Embedding support for search, recommendation, and indexing

•	 John Snow Labs: Healthcare-focused embeddings for scientific text

•	 LASER by Meta AI: Multilingual embeddings for cross-lingual 

applications

•	 Llama.cpp: Efficient bindings for Llama embeddings in constrained 

environments

•	 LocalAI: Local, cloud-free embeddings for secure data processing

•	 MiniMax: Robust embeddings supporting complex NLP tasks

•	 ModelScope: Repository with multilingual embedding options

•	 MosaicML: Managed embeddings for scalable, customizable data 

representation

•	 Naver: High-performance embeddings for search, translation, and 

indexing

•	 NLP Cloud: Secure, fast embeddings for reliable semantic tasks

•	 NVIDIA NIMs: NVIDIA-optimized embeddings for high- 

performance AI

•	 Oracle Generative AI: Scalable, managed embeddings for enterprise 

applications

•	 OpenAI: High-quality embeddings for similarity matching and 

clustering

•	 OpenClip: Open source multimodal embeddings linking text 

and images

•	 OpenVINO: Intel-optimized embeddings for efficient language 

model deployment
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•	 Oracle AI Vector Search: Embeddings for AI-driven database 

applications

•	 Pinecone: Vectorized storage and retrieval powering search and 

recommendation

•	 SageMaker (Amazon): Large-scale embedding generation for 

managed AI infrastructure

•	 SambaNova: Scalable embeddings for complex data needs in AI 

applications

•	 Sentence Transformers on Hugging Face: High-quality embeddings 

for search and clustering

•	 SpaCy: Embeddings for text classification and similarity tasks

•	 TensorFlow Hub: Pretrained models for NLP embedding 

deployment

•	 TextEmbed: REST API for scalable, low-latency embedding 

generation

•	 Titan Takeoff: Lightweight embeddings for cost-effective AI in 

business

•	 Together AI: Collaborative embeddings for distributed applications

•	 Voyage AI: Advanced embeddings for analytics and 

recommendations

•	 YandexGPT: Multilingual embeddings for diverse language tasks

�Instruct Models
Instruct models are a specialized class of language models fine-tuned to follow natural 

language instructions, making them highly effective for task-oriented and interactive 

applications. Unlike base models—which are primarily trained to predict the next word 

in a sequence—instruct models are designed to interpret user input as a directive and 

respond with relevant, goal-focused outputs. This makes them especially useful in 

frameworks like LangChain, where agents are expected to make decisions, use tools, and 

complete multistep reasoning tasks based on a single user prompt.
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In LangChain, instruct models are crucial for agent types, which require the model to 

understand tool descriptions, choose the right tools, and execute tasks in a step-by- 

step manner using the ReAct (Reasoning and Acting) paradigm. For example, when a 

user asks, “What is the capital of Japan?”, an instruct model can identify that a knowledge 

lookup is needed, select a vector search tool, retrieve the relevant information, and 

present a concise answer—all without requiring hard-coded logic or examples.

These models work exceptionally well in scenarios where clarity, precision, 

and contextual relevance are important. They reduce the need for complex prompt 

engineering and support a wide range of applications such as question answering, 

summarization, data extraction, content generation, and conversational agents.

�Key Benefits of Instruct Models

•	 Follow natural language instructions without needing detailed 

prompt formatting

•	 Understand and use external tools when paired with agent 

frameworks

•	 Perform multistep reasoning and planning

•	 Ideal for applications requiring structured output or task completion

�A Comprehensive List of Popular Instruct Models

•	 OpenAI

•	 text-davinci-003

•	 gpt-3.5-turbo

•	 gpt-4

•	 Anthropic

•	 Claude 1, Claude 2, Claude 3

•	 Google DeepMind

•	 Gemini Pro

•	 Gemini Ultra
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•	 Meta

•	 LLaMA 2 Chat

•	 LLaMA 3 Chat

•	 Mistral

•	 Mistral Instruct v0.2

•	 Mixtral (Mixture of Experts) Instruct

•	 Cohere

•	 Command R

•	 Command R+

•	 Command Light

•	 Amazon

•	 Titan Text Lite

•	 Titan Text Express

•	 TII (Technology Innovation Institute)

•	 Falcon-7B-Instruct

•	 Falcon-40B-Instruct

•	 MosaicML

•	 MPT-7B-Instruct

•	 Databricks

•	 Dolly v2

•	 Open Source Community

•	 Alpaca

•	 Vicuna

•	 OpenChat

•	 Nous-Hermes
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•	 Zephyr

•	 Orca

•	 Baize

These instruct models are foundational for building intelligent agents and 

chat systems that can understand tasks, interact with tools, and produce reliable, 

context-aware responses. Selecting the right instruct model depends on the use case, 

performance requirements, and whether the deployment is cloud-based or local.

�Summary
LangChain’s advanced components—like memory modules, embedding models, 

document loaders, retrievers, and agents—offer powerful building blocks for creating 

intelligent, context-aware applications. These tools allow developers to go beyond 

simple prompt chaining, enabling capabilities such as conversational memory, dynamic 

reasoning, document search, and seamless integration with external tools and data 

sources. With these components, LangChain empowers developers to build robust, 

adaptive systems tailored to real-world needs.

In the next chapter, we’ll explore how to apply these features by developing a variety 

of advanced, practical applications. From personal assistants and customer support bots 

to document Q&A systems and multiagent workflows, we’ll walk through real use cases 

that demonstrate LangChain’s full potential in action.
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CHAPTER 3

Building Advanced 
Applications Powered 
by LLMs with LangChain 
and Python
In the rapidly evolving world of artificial intelligence, large language models (LLMs) have 

emerged as powerful engines that drive innovative applications, transforming the way 

we interact with technology. This chapter is a deep dive into the sophisticated strategies 

and techniques that harness the full potential of these models. Here, we explore how to 

go beyond basic implementations and craft complex, robust systems that leverage LLMs 

to address real-world challenges.

At the core of our discussion is LangChain—a versatile framework designed to 

streamline the integration of LLMs into advanced application architectures. LangChain 

provides a modular and extensible environment that simplifies the orchestration of 

language model tasks, allowing developers to build applications that can manage 

multistep reasoning, handle dynamic interactions, and maintain contextual continuity 

across extended dialogues. Coupled with the power and flexibility of Python, LangChain 

equips you with the tools to push the boundaries of what is possible in modern software 

development.

In this chapter, we begin by revisiting the foundational concepts behind LLMs, 

setting the stage for a more nuanced understanding of their capabilities and limitations. 

We then transition into an exploration of LangChain’s architecture, examining its key 

components and how they work together to facilitate advanced workflows. Through 
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detailed examples and hands-on exercises, you will learn how to implement complex 

pipelines that integrate external data sources, manage iterative processing, and optimize 

performance under demanding conditions.

As we progress, the focus shifts to the practical challenges encountered when 

building advanced LLM-powered applications. We will discuss strategies for fine-tuning 

model behavior, mitigating errors, and ensuring scalability in production environments. 

Special emphasis is placed on designing systems that not only perform efficiently but 

also maintain high levels of reliability and security. This chapter provides insights into 

best practices for monitoring, debugging, and continuously improving your applications, 

ensuring that they remain robust in the face of evolving requirements and emerging 

threats.

Moreover, we will highlight cutting-edge use cases that demonstrate the 

transformative impact of advanced LLM applications. From intelligent virtual assistants 

that seamlessly manage complex conversations to automated content generation 

systems capable of nuanced analysis and synthesis, you will see how the principles 

discussed can be applied to a diverse array of challenges. By dissecting these real-world 

examples, you will gain a deeper appreciation of the potential for innovation when 

combining LangChain’s orchestration capabilities with Python’s rich ecosystem.

Whether you are an experienced developer looking to elevate your skill set or a 

curious practitioner eager to explore the next frontier in AI application development, 

this chapter is designed to equip you with the knowledge and tools necessary to 

build advanced, production-grade systems. By the end of our journey, you will have 

a comprehensive understanding of how to harness LLMs effectively, enabling you to 

create applications that are not only intelligent but also adaptive, scalable, and ready for 

the challenges of tomorrow.

In the next pages, we will

•	 Build a YouTube Video Summarizer

•	 Automatically transcribe and summarize long YouTube videos for 

quick content digestion

•	 Create a GitHub repository chatbot

•	 Interact with code bases conversationally by indexing and 

querying repository files
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•	 Develop a financial report analysis tool

•	 Analyze and extract insights from financial documents  

using AI-driven retrieval and Q&A

•	 Enhance blog content with Google Search

•	 Use LLMs and live web data to intelligently expand and enrich 

blog posts

•	 Automate YouTube scriptwriting

•	 Generate structured, engaging scripts from video transcripts with 

GPT models

•	 Design an AI-powered email generator

•	 Instantly craft professional, personalized email responses using a 

customizable prompt

•	 Analyze CSV data with AI assistance

•	 Load, summarize, and visualize datasets with natural language 

commands and visual tools

Each app is presented with

•	 Step-by-step implementation instructions

•	 Clear explanations of LangChain and OpenAI integrations

•	 Tips for optimizing performance, usability, and scalability

By the end of this chapter, you’ll be equipped to build your own intelligent, 

production-ready applications with Python and LLMs.

�App 1: YouTube Video Summarizer
In the digital age, YouTube has become a vast repository of knowledge, offering millions 

of videos on various topics, from educational lectures to industry insights. However, 

watching long videos to extract key information can be time-consuming. This is where a 

YouTube Video Summarizer with LangChain comes into play.
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A YouTube Video Summarizer is an AI-powered tool that automatically transcribes 

and summarizes YouTube videos, providing users with a concise and structured 

overview of the content. By leveraging LangChain, a framework designed for building 

applications with large language models (LLMs), the summarizer efficiently processes 

video transcripts and distills essential insights.

This tool utilizes natural language processing (NLP) to extract meaningful 

information, making it easier for users to grasp the key points of a video in seconds 

rather than minutes or hours. Whether you are a researcher, student, or content creator, 

a YouTube Video Summarizer with LangChain enhances productivity by offering 

quick and accurate video summaries, helping you stay informed without watching 

entire videos.

�How to Build the App

�Step 1: Get Your OpenAI API Key
You need to get your OpenAI API key here: https://platform.openai.com/settings/
organization/api-keys.

�Step 2: Run the Following Commands
Run the following commands in your environment—in our case, this is Google  

Colab—to install libraries needed:

!pip install langchain==0.3.23 activeloop-deeplake==3.9.5 openai==1.3.12 
tiktoken==0.7.0 langchain-openai==0.3.12

!pip install -q yt_dlp
!pip install -q git+https://github.com/openai/whisper.git
Also install ffmpeg:
conda install ffmpeg

For Google Colab:

!apt-get update -qq && apt-get install -y ffmpeg
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Note D ue to the security precautions taken by YouTube, you need to download 
a browser extension to download the cookies from your browser for your 
desired video.

For example, for Chrome you can use: https://chromewebstore.google.com/
detail/get-cookiestxt-locally/cclelndahbckbenkjhflpdbgdldlbecc. Then, upload 

the cookie file to your Google Colab files.

�Step 3: Execute the Following Command
Execute the following command to download your video with your desired file name:

!yt-dlp --cookies cookies.txt -f "bestvideo[ext=mp4]+bestaudio[ex
t=m4a]/best[ext=mp4]" -o "my_video.mp4" "https://www.youtube.com/
watch?v=Gx5qb1uHss4"

Explanation of the command:

•	 -f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]"

•	 This ensures that yt-dlp downloads the best quality MP4 video 

and best M4A audio and then merges them.

•	 If a single MP4 format video with audio is available, it 

downloads that.

•	 -o "my_video.mp4"

•	 This sets the output filename as my_video.mp4.

•	 --cookies cookies.txt

•	 This allows yt-dlp to use authentication for downloading 

restricted videos.
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�Step 4: Import the Whisper Model and Process the Video
import whisper

model = whisper.load_model("base")
result = model.transcribe("my_video.mp4")
print(result['text'])

This Python script utilizes OpenAI’s Whisper model for automatic speech 

recognition (ASR) to transcribe the audio from a given video file. It begins by importing 

the Whisper library, which is responsible for handling the transcription process. Next, it 

loads a pretrained Whisper model, specifically the “base” version, which is a lightweight 

model compared to larger variants like “medium” or “large.” If the model is not already 

available locally, it will be automatically downloaded from OpenAI’s servers.

Once the model is loaded, the script processes the specified video file by extracting 

its audio and converting the spoken content into text. Finally, the transcribed text is 

extracted from the result and printed to the console.

�Step 5: Read the Written Content in a File
with open ('text.txt', 'w') as file:
   file.write(result['text'])

�Step 6: Use LangChain to Split a Text File into 
Smaller Chunks
Let’s use LangChain to split a text file into smaller chunks for further processing, such as 

feeding into a language model.

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=1000, chunk_overlap=0, separators=[" ", ",", "\n"]

)
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with open('text.txt') as f:
    text = f.read()

texts = text_splitter.split_text(text)
docs = [Document(page_content=t) for t in texts[:4]]

Step-by-Step Explanation

	 1.	 Import necessary modules from LangChain

•	 RecursiveCharacterTextSplitter: A utility for breaking long texts 

into smaller pieces while trying to maintain meaning

•	 Document: A simple wrapper around text content, useful when 

dealing with large documents

	 2.	 Initialize the text splitter

•	 The RecursiveCharacterTextSplitter is configured with

•	 chunk_size=1000: Each chunk will have a maximum of 1000 
characters.

•	 chunk_overlap=0: No overlap between chunks.

•	 separators=[“ ”, “,”, “\n”]: The text will be split preferentially at 

spaces, then commas, then newlines.

	 3.	 Read text from a file (text.txt)

•	 The text content is loaded into memory as a single string.

	 4.	 Split the text into smaller chunks

•	 split_text(text): The loaded text is split into multiple chunks of up 

to 1000 characters each.

•	 The splitting occurs recursively, prioritizing the given separators.

	 5.	 Convert the first four chunks into Document objects

•	 The first four chunks (texts[:4]) are wrapped in Document 

objects.

•	 Each Document stores its corresponding chunk as page_content.
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�Step 7: Summarize the Preprocessed Content
from langchain.chains.summarize import load_summarize_chain
import textwrap
from langchain_openai import OpenAI
from langchain.chains import LLMChain
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate

# Initialize OpenAI LLM
llm = OpenAI(api_key="sk-proj-Mi0xm6IEXSZ8ULyof8caT3BlbkFJNHaISzb3nz3hsau8t
qyn", model="gpt-3.5-turbo-instruct", temperature=0)
chain = load_summarize_chain(llm, chain_type="map_reduce")

output_summary = chain.invoke(docs)
wrapped_text = textwrap.fill(output_summary["output_text"], width=100)

Step-by-step execution:

	 1.	 Import necessary libraries

•	 load_summarize_chain: A utility to create a summarization 

pipeline

•	 textwrap: Used to format the output text

•	 OpenAI: Initializes OpenAI’s GPT model for text processing

•	 LLMChain: A generic LangChain wrapper for using LLMs

•	 PromptTemplate: Allows customization of prompts for the LLM

	 2.	 Initialize OpenAI language model

•	 The OpenAI LLM is initialized with

•	 The GPT-3.5 Turbo Instruct model

•	 Temperature = 0, ensuring deterministic (consistent) 

responses

•	 The API key (which should be kept secret)
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	 3.	 Load a summarization chain

•	 The load_summarize_chain(llm, chain_type="map_reduce") 

initializes a two-step summarization pipeline:

•	 Map Stage: Each document is summarized individually.

•	 Reduce Stage: The individual summaries are combined into 

a final, coherent summary.

	 4.	 Invoke the summarization chain

•	 chain.invoke(docs): The chain takes docs (a list of Document 

objects) and processes them.

•	 output_summary["output_text"]: Extracts the final 

summarized text.

	 5.	 Format the summary output

•	 textwrap.fill(output_summary["output_text"], width=100) 

wraps the summary text so that lines do not exceed 100 
characters in width.

�Step 8: Define a Prompt Template Using LangChain's 
PromptTemplate
The following code defines a prompt template using LangChain’s PromptTemplate to 

structure input for an LLM (large language model), such as OpenAI’s GPT models:

prompt_template = """Write a concise bullet point summary of the following:

{text}

CONSCISE SUMMARY IN BULLET POINTS:"""

BULLET_POINT_PROMPT = PromptTemplate(template=prompt_template,
                        input_variables=["text"])
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�Step 9: Summarization Pipeline
chain = load_summarize_chain(llm,
                             chain_type="stuff",
                             prompt=BULLET_POINT_PROMPT)

output_summary = chain.run(docs)

wrapped_text = textwrap.fill(output_summary,
                             width=1000,
                             break_long_words=False,
                             replace_whitespace=False)
print(wrapped_text)

This code sets up a summarization pipeline using LangChain and an LLM, such 

as OpenAI’s GPT-3.5 Turbo. The process begins by initializing a summarization chain 

with a specific configuration. The chain type is set to process all text at once, rather than 

breaking it into smaller sections. A custom prompt template is used to instruct the model 

to generate a structured bullet-point summary.

Once the summarization chain is created, it is executed using a list of documents 

as input. The chain processes the text and generates a concise summary. The resulting 

summary is then formatted for better readability by ensuring that lines do not exceed a 

certain width, words are not split across lines, and whitespace formatting is preserved. 

Finally, the formatted summary is displayed as output.

�App 2: Chat with a GitHub Repository
This Python application enables users to interact with a GitHub repository using natural 

language. It utilizes LangChain, OpenAI embeddings, and FAISS vector storage to 

process and retrieve relevant code snippets, documentation, and README contents 

from a repository.
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�How It Works
	 1.	 Fetches Repository Data: Uses the GitHub API to retrieve all files 

in the repository

	 2.	 Embeds and Indexes Content: Converts text into embeddings for 

efficient search

	 3.	 Conversational Retrieval: Allows users to ask questions and get 

relevant information

	 4.	 Memory Support: Maintains context in ongoing conversations for 

a better chat experience

�Step 1: Select a GitHub Repository and Download It As Zip
For example, https://github.com/milaan9/07_Python_Advanced_Topics, and get 

its username and repo name—in this case, its milaan9, and the name of the repo is 

07_Python_Advanced_Topics. Or in other words, you can find it in the form https://
github.com/{user_name}/{repo_name}.

�Step 2: Install All Libraries Required
!pip install langchain==0.3.23 openai==1.3.12 faiss-cpu==1.8.0 
tiktoken==0.7.0 requests==2.31.0 python-dotenv==1.0.1

!pip install langchain-community==0.3.23

�Step 3: Import the Libraries and Obtain the Needed 
API Keys
For OpenAI: https://platform.openai.com/api-keys

For GitHub: https://github.com/settings/tokens

import os
import requests
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
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from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import OpenAI
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI

load_dotenv()

GITHUB_TOKEN = os.getenv("GITHUB_TOKEN")
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")

headers = {"Authorization": f"token {GITHUB_TOKEN}"}

�Step 4: Get Repository Content
The function is designed to retrieve the contents of a GitHub repository using the 

GitHub API. It allows you to access files and directories within a repository.

	 1.	 It accepts three inputs

•	 The owner of the repository (a username or organization name).

•	 The repository name to fetch data from.

•	 An optional path specifying a file or folder within the repository. 

If no path is provided, it retrieves the root directory.

	 2.	 It builds a URL

•	 The function constructs a web address following GitHub’s API 

format. This URL points to the requested repository and its 

contents.

	 3.	 It sends a request to GitHub

•	 A request is made to GitHub’s servers to fetch the contents of the 

specified file or folder.

	 4.	 It checks for a successful response

•	 If GitHub responds successfully, the function extracts and returns 

the content in a structured format (as data).
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•	 If the request fails (e.g., due to incorrect repository details, 

permission issues, or rate limits), an error message is displayed, 

and an empty response is returned.

	 5.	 It handles different repository structures

•	 If the request targets a directory, the function retrieves a list of its 

files and subdirectories.

•	 If it targets a file, it fetches the file’s content and relevant 

metadata.

def get_repo_contents(owner, repo, path=""):
    url = f"https://api.github.com/repos/{owner}/{repo}/contents/{path}"
    response = requests.get(url, headers=headers)
    if response.status_code == 200:
        return response.json()
    else:
        print("Error fetching repo contents:", response.json())
        return []

�Step 5: Fetch All Files
def fetch_all_files(owner, repo, path="", collected_files=None):
    if collected_files is None:
        collected_files = {}

    contents = get_repo_contents(owner, repo, path)

    for item in contents:
        if item["type"] == "file":
            �file_content = requests.get(item["download_url"], 

headers=headers).text
            collected_files[item["path"]] = file_content
        elif item["type"] == "dir":
            fetch_all_files(owner, repo, item["path"], collected_files)

    return collected_files
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In this function, we retrieve all files from a GitHub repository, including those 

inside subdirectories. It works by recursively navigating through the repository’s 

structure and collecting file contents.

�Step-by-Step Explanation

	 1.	 It initializes a dictionary to store files

•	 If no dictionary is provided, an empty one is created to store file 

paths and their contents.

	 2.	 It retrieves repository contents

•	 The function calls another function to fetch the list of files and 

folders at a given location in the repository.

•	 If no specific path is provided, it starts from the root directory.

	 3.	 It loops through each item in the retrieved list

•	 If the item is a file, the function

•	 Downloads its content from GitHub

•	 Stores the file’s path as a key and its content as a value in the 

dictionary

•	 If the item is a directory, the function

•	 Calls itself again (recursion), using the directory’s path as the 

new starting point

•	 This ensures all nested files and folders are processed

	 4.	 It returns a dictionary containing all files

•	 After processing all files and directories, the function returns a 

dictionary where

•	 Each key represents a file’s path within the repository

•	 Each value contains the corresponding file’s content
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�Step 6: Creating a Searchable Database
def create_vector_db(files):
    texts = []
    for path, content in files.items():
        texts.append(f"### {path}\n{content}")

    �text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_
overlap=100)

    docs = text_splitter.create_documents(texts)

    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(docs, embeddings)
    return vectorstore

In this function, we create a searchable database from a collection of files by 

converting their contents into numerical representations (embeddings) that allow 

efficient retrieval.

�Step-by-Step Explanation

	 1.	 It prepares the text data

•	 The function starts with an empty list to store text data.

•	 It loops through each file in the input dictionary, which contains 

file paths as keys and their contents as values.

•	 Each file’s content is formatted with a header that includes the 

file path, ensuring that file names remain associated with their 

contents.

	 2.	 It splits the text into chunks

•	 Since some files may be large, the function breaks them into 

smaller chunks.

•	 A text-splitting tool is used to divide the text while maintaining 

some overlap between chunks to preserve context.
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•	 This ensures that each chunk is not too large for processing while 

still making sense when analyzed.

	 3.	 It converts text into embeddings

•	 The function uses an embedding model to transform the text 

chunks into numerical vectors.

•	 These embeddings capture the semantic meaning of the 

text, making it possible to search for similar content based on 

meaning rather than exact words.

	 4.	 It stores the embeddings in a searchable database

•	 A specialized database (FAISS) is used to store these embeddings 

efficiently.

•	 FAISS allows quick searching and retrieval of relevant text based 

on similarity to a given query.

	 5.	 It returns the searchable database

•	 The final result is a structured vector database that enables quick 

searches for relevant file contents.

�Step 7: Creating the Actual Chatting Feature Function
def chat_with_repo(owner, repo):
    files = fetch_all_files(owner, repo)
    vectorstore = create_vector_db(files)
    retriever = vectorstore.as_retriever()

    �memory = ConversationBufferMemory(memory_key="chat_history", return_
messages=True)

    chat = ConversationalRetrievalChain.from_llm(
        llm=ChatOpenAI(model_name="gpt-4", temperature=0.5),
        retriever=retriever,
        memory=memory
    )

    print("Chat with the GitHub repository! Type 'exit' to quit.")
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    while True:
        query = input("You: ")
        if query.lower() == "exit":
            break
        response = chat.run(query)
        print("Bot:", response)

It allows a user to interactively chat with a GitHub repository by retrieving relevant 

information from its contents.

�Step-by-Step Explanation

	 1.	 It fetches all files from the repository

•	 The function retrieves the entire repository’s contents, including 

files in subdirectories.

•	 This ensures that all text-based content is available for 

processing.

	 2.	 It creates a searchable vector database

•	 The fetched files are processed and converted into a vector 
database.

•	 This allows the chatbot to search for relevant information 

efficiently.

	 3.	 It sets up a retriever

•	 A retriever is initialized from the vector database.

•	 The retriever helps the chatbot find relevant file contents when 

answering questions.

	 4.	 It initializes memory for conversations

•	 A memory module is added to keep track of past interactions.

•	 This allows the chatbot to maintain context throughout the 

conversation.
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	 5.	 It creates a conversational AI model

•	 A GPT-4 language model is loaded to generate responses.

•	 The model uses the retriever to find relevant repository content 

when answering questions.

	 6.	 It starts an interactive chat

•	 The function displays a message prompting the user to start 

chatting.

•	 It continuously takes user input, processes it, and provides 

responses.

•	 If the user types "exit", the chat ends.

Output:

Enter GitHub owner/org: milaan9
Enter repository name: 07_Python_Advanced_Topics
Chat with the GitHub repository! Type 'exit' to quit.
You: What are the advanced topics in the repo?
Bot: The advanced topics in the repository are:

1. Python Iterators
2. Python Generators
3. Python Closure
4. Python Decorators
   - Python args and kwargs
5. Python Property
6. Python RegEx

�App 3: Financial Report Analysis App
This app is designed to streamline financial data analysis by leveraging AI-powered 
document retrieval and natural language processing. Built with LangChain, FAISS, 
and OpenAI models, it allows users to efficiently search and analyze financial reports, 

specifically those from Amazon, but it can be adapted for any financial documents.
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�Key Features
•	 Automated PDF Parsing: Extracts financial data from multiple PDF 

reports.

•	 AI-Driven Search: Uses advanced embeddings and retrieval 

mechanisms to provide quick answers to financial queries.

•	 Efficient Data Management: Utilizes FAISS for fast and scalable 

vector-based document retrieval.

•	 Conversational Querying: Enables users to ask specific questions 

(e.g., “What was Amazon’s revenue in Q3 2021?”) and get direct 

answers.

This tool is ideal for financial analysts, researchers, and business professionals 

who need instant insights from large datasets without manually scanning through 

reports. Whether you’re tracking revenue trends, identifying financial performance, or 

analyzing key business metrics, this app provides a seamless and intelligent solution to 

financial document analysis.

�Step 1: Install All Required Libraries
!pip3 install langchain faiss-cpu pypdf openai tiktoken langchain-openai 
langchain-community

�Step 2: Set Up OpenAI API Key and Add It to the Code
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = “Your OpenAI Key”

�Step 3: Import All Required Libraries
from langchain_openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import CharacterTextSplitter
from langchain_openai import OpenAI
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from langchain.chains import RetrievalQA
from langchain_openai import ChatOpenAI
from langchain.document_loaders import PyPDFLoader

import requests
import tqdm
from typing import List

�Step 4: Process Financial Reports
import requests
import tqdm
from typing import List

# financial reports of amamzon, but can be replaced by any URLs of pdfs
urls = ['https://s2.q4cdn.com/299287126/files/doc_financials/Q1_2018_-_8-K_
Press_Release_FILED.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_financials/Q2_2018_

Earnings_Release.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Q318-Amazon-

Earnings-Press-Release.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_news/archive/AMAZON.COM- 

ANNOUNCES-FOURTH-QUARTER-SALES-UP-20-TO-$72.4-BILLION.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_financials/Q119_Amazon_

Earnings_Press_Release_FINAL.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Amazon-

Q2-2019-Earnings-Release.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Q3-2019-

Amazon-Financial-Results.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_news/archive/Amazon-

Q4-2019-Earnings-Release.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/Q1/AMZN-

Q1-2020-Earnings-Release.pdf',
        �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/q2/

Q2-2020-Amazon-�Earnings-Release.pdf',
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        �'https://s2.q4cdn.com/299287126/files/doc_financials/2020/q4/
Amazon-Q4-2020-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q1/
Amazon-Q1-2021-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q2/AMZN-
Q2-2021-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q3/
Q3-2021-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2021/q4/
business_and_financial_update.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q1/
Q1-2022-Amazon-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q2/
Q2-2022-Amazon-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q3/
Q3-2022-Amazon-Earnings-Release.pdf',

        �'https://s2.q4cdn.com/299287126/files/doc_financials/2022/q4/
Q4-2022-Amazon-Earnings-Release.pdf'

        ]

def load_reports(urls: List[str]) -> List[str]:
    """ Load pages from a list of urls"""
    pages = []

    for url in tqdm.tqdm(urls):
        r = requests.get(url)
        path = url.split('/')[-1]
        with open(path, 'wb') as f:
            f.write(r.content)
        loader = PyPDFLoader(path)
        local_pages = loader.load_and_split()
        pages.extend(local_pages)
    return pages

pages = load_reports(urls)
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The code downloads Amazon’s financial reports in PDF format, extracts their text, 

and stores the content in a list. It starts by iterating through a predefined list of URLs, 

downloading each PDF using the requests library, and saving the files locally. Then, it 

processes each file with PyPDFLoader to extract and split the text into pages, which are 

appended to a list. The tqdm library provides a progress bar to track the downloading 

process. Finally, the extracted text from all PDFs is stored in the pages list for further 

analysis. However, the script is missing an import for PyPDFLoader, which would cause an 

error unless added manually. Additionally, the saved PDFs are not deleted after extraction.

�Step 5: Preparing and Indexing Text Data for Efficient  
Retrieval Using AI-Powered Search and Question 
Answering (QA)

�1. Splitting the Extracted Text into Smaller Chunks

text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(pages)

•	 What it does:

•	 The extracted text from financial reports (stored in pages) is often 

long and unstructured.

•	 The CharacterTextSplitter takes these texts and breaks them 
into smaller chunks of 1000 characters each (chunk_size=1000).

•	 There is no overlap between chunks (chunk_overlap=0), 

meaning each piece of text is distinct.

•	 Why it’s needed:

•	 Splitting text into smaller sections allows for better indexing and 

faster retrieval when querying later.
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�2. Generating Text Embeddings
embeddings = OpenAIEmbeddings()

•	 What it does:

•	 Uses OpenAI’s embedding model to convert text chunks into 

numerical vectors.

•	 These vectors capture the meaning of the text so they can be 

efficiently searched.

•	 Why it’s needed:

•	 A numerical representation (embedding) allows us to perform 

semantic search—meaning we can find relevant information 

even if the search query does not exactly match the words in 
the document.

�3. Storing and Indexing the Text Chunks 
in a FAISS Database
db = FAISS.from_documents(texts, embeddings)

•	 What it does:

•	 Uses FAISS (Facebook AI Similarity Search), a powerful vector 
database, to store the generated embeddings.

•	 FAISS allows for efficient and fast searching of similar text 

embeddings.

•	 Why it’s needed:

•	 Instead of searching through raw text, we search through 
embeddings, making retrieval faster and more accurate.

�4. Setting Up the AI-Powered Retrieval and QA System
qa = RetrievalQA.from_chain_type(llm=ChatOpenAI(model='gpt-3.5-turbo'), 
chain_type='stuff', retriever=db.as_retriever())
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•	 What it does:

•	 Uses ChatGPT (gpt-3.5-turbo) to answer user queries based on 

the indexed documents.

•	 The retriever=db.as_retriever() ensures that relevant 
text chunks are retrieved from FAISS before being processed 

by the AI.

•	 The chain_type='stuff' method combines the retrieved text 

into a single response.

•	 Why it’s needed:

•	 This setup allows the app to answer questions like “What 

was Amazon’s revenue in Q3 2021?” based on financial reports 

without needing a human to manually search the documents.

�Step 6: Ask a Question
qa.invoke("What is the revenue in 2021 Q3?")

Output:

{'query': 'What is the revenue in 2021 Q3?',
 'result': 'The revenue for Amazon in 2021 Q3 was $110.8 billion.'}

�App 4: Automate and Enhance Your Blog Posts 
with LangChain and Google Search
Artificial intelligence is transforming the field of copywriting by acting as a powerful 

writing assistant. Modern language models can detect grammar and spelling errors, 

adjust tone, summarize content, and even expand text. However, these models 

sometimes lack the deep domain expertise needed to provide high-quality extensions 

for specific topics.

In this lesson, we’ll guide you through building an application that seamlessly 

enhances text sections. The process starts by prompting a language model (such as 

ChatGPT) to generate relevant search queries based on the existing content. These 

queries are then used with the Google Search API to retrieve authoritative information 
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from the Web. Finally, the most relevant results are provided as context to the model, 

allowing it to generate more accurate and well-informed content suggestions.

�Step 1: Install All Required Libraries
!pip install langchain==0.0.208 deeplake==3.9.27 openai==0.27.8 tiktoken
!pip install -q newspaper3k==0.2.8 python-dotenv
!pip install lxml_html_clean

�Step 2: Define Three Variables—Title, Text All, and Text 
to Change
Here, we have three variables that store an article’s title and content (text_all) from 

Artificial Intelligence News. Additionally, the text_to_change variable identifies the 

specific section of the text that we want to expand. These constants serve as reference 

points and will remain unchanged throughout the lesson.

title = "OpenAI Chief: AI Oversight 'Crucial' for Future Innovation"

text_all = """ Altman underscored the immense potential of AI advancements 
such as ChatGPT and DALL-E 2 in tackling global challenges like climate 
change and disease research. However, he also cautioned against the 
unchecked proliferation of increasingly capable AI models. To address 
these concerns, he suggested that governments explore regulatory measures, 
including licensing frameworks and stringent testing protocols for high-
capability AI systems. Altman reaffirmed OpenAI's dedication to responsible 
AI development, ensuring rigorous evaluations before deploying new 
technologies. Senators Josh Hawley and Richard Blumenthal acknowledged AI's 
disruptive impact and the necessity of understanding its ramifications on 
elections, employment, and national security. To illustrate AI's power, 
Blumenthal played an audio clip generated by an AI voice cloning system 
trained on his past speeches. He raised alarms over AI-related threats such 
as misinformation, manipulated media, discrimination, cyber harassment, and 
identity fraud. Additionally, he warned about the displacement of human 
workers amid an AI-driven economic transformation."""

text_to_change = """ Senators Josh Hawley and Richard Blumenthal 
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acknowledged AI's disruptive impact and the necessity of understanding 
its ramifications on elections, employment, and national security. To 
illustrate AI's power, Blumenthal played an audio clip generated by an AI 
voice cloning system trained on his past speeches."""

We start by generating potential search queries from the paragraph we want to 

expand. These queries are then used to retrieve relevant documents from a search 

engine (such as Bing or Google Search), which are subsequently broken down into 

smaller chunks. Next, we compute embeddings for these chunks and store both the 

chunks and their embeddings in a Deep Lake dataset. Finally, the most relevant chunks 

are retrieved from Deep Lake based on their similarity to the original paragraph. These 

retrieved chunks are then incorporated into a prompt to enhance the paragraph with 

additional context and information.

�Step 3: Define Your API Keys
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = "Your API Key"
os.environ["GOOGLE_API_KEY"] = "Your API Key"
os.environ["GOOGLE_CSE_ID"] = "Your ID"

�How to Get Your API Keys and ID

To use the Google Search API, we first need to set up an API key and a custom search 

engine. Start by navigating to the Google Cloud Console and creating a project, and 

then, enable the Custom Search API under Enable APIs and Services (Google will 

provide instructions if necessary). After that, generate an API key by clicking CREATE 
CREDENTIALS at the top and selecting API KEY.

Once these steps are complete, configure the environment variables “GOOGLE_
CSE_ID” and “GOOGLE_API_KEY”, allowing the Langchain Google wrapper to connect 

seamlessly with the API.

Next, go to the Programmable Search Engine dashboard: https://
programmablesearchengine.google.com/controlpanel/create, create a custom search 

engine, and ensure that the “Search the entire web” option is selected. The search engine 

ID will be displayed in the Details section.
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Go to the page with all search engines: https://programmablesearchengine.
google.com/controlpanel/all, and click the one you have just created. Then, copy the 

Search engine ID.

�Step 4: Generate Search Results
The following code leverages OpenAI’s ChatGPT model to analyze an article and 

generate three relevant search queries. It begins by defining a prompt that instructs 

the model to suggest Google search queries for gathering more information on the 

topic. The “LLMChain” component connects the “ChatOpenAI” model with the 

“ChatPromptTemplate”, forming a structured pipeline for interacting with the model.

Once the response is received, the code splits it by newline and removes the initial 

characters to extract the search queries. This approach works because the API was 

instructed to format each query as a new line starting with “-”. (Alternatively, the same 

result can be achieved using the “OutputParser” class.)

Before executing the code, ensure that your OpenAI API key is stored in the 

“OPENAI_API_KEY” environment variable.

from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
)

template = """ You are an exceptional copywriter and content creator.

You're reading an article with the following title:
----------------
{title}
----------------

You've just read the following piece of text from that article.
----------------
{text_all}
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----------------

Inside that text, there's the following TEXT TO CONSIDER that you want to 
enrich with new details.
----------------
{text_to_change}
----------------

What are some simple and high-level Google queries that you'd do to search 
for more info to add to that paragraph?
Write 3 queries as a bullet point list, prepending each line with -.
"""

human_message_prompt = HumanMessagePromptTemplate(
    prompt=PromptTemplate(
        template=template,
        input_variables=["text_to_change", "text_all", "title"],
    )
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_prompt])

# Before executing the following code, make sure to have
# your OpenAI key saved in the “OPENAI_API_KEY” environment variable.
chat = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.5)
chain = LLMChain(llm=chat, prompt=chat_prompt_template)

response = chain.run({
    "text_to_change": text_to_change,
    "text_all": text_all,
    "title": title
})

response_queries = [line[2:] for line in response.split("\n")]
queries = [item.replace('"', "") for item in response_queries]
print(queries)

Output: ['impact of AI on elections and democracy 2023  ', 'AI voice 
cloning technology examples and implications  ', 'AI effects on employment 
and workforce displacement 2023  ']
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�Step 5: Get Search Results
To use the Google Search API, we first need to set up an API key and a custom search 

engine. Start by navigating to the Google Cloud Console, and then, generate an API key 

by clicking CREATE CREDENTIALS at the top and selecting API KEY. Next, go to the 

Programmable Search Engine dashboard, and ensure that the “Search the entire web” 

option is enabled. The search engine ID will be displayed in the Details section.

Additionally, you may need to enable the “Custom Search API” under Enable APIs 
and Services (Google will provide further instructions if required). Once these steps are 

complete, configure the environment variables GOOGLE_CSE_ID and GOOGLE_API_

KEY, enabling the Google wrapper to interact with the API.

The next step is to use the generated search queries from the previous section 

to retrieve relevant sources from Google. The LangChain library offers the 

GoogleSearchAPIWrapper, which handles search queries and retrieves results. To 

process the results efficiently, we define a function using the top_n_results parameter.

Then, the Tool class creates a wrapper around this function, making it compatible 

with AI agents so they can interact with external data sources. We request only the 

top five search results and then concatenate them for each query into the all_results 

variable for further processing.

from langchain.tools import Tool
from langchain.utilities import GoogleSearchAPIWrapper

# Initialize the Google Search API Wrapper
search = GoogleSearchAPIWrapper()
TOP_N_RESULTS = 5

def top_n_results(query):
    """Fetch top N search results for a given query."""
    results = search.results(query, TOP_N_RESULTS)
    if not results:
        return [{"Result": "No good Google Search Result was found"}]
    return results

# Define the search tool
search_tool = Tool(
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    name="Google Search",
    description="Search Google for recent results.",
    func=top_n_results
)

# Sample queries list
queries = ['Senators Josh Hawley Richard Blumenthal AI regulation 
statements', 'impact of AI on elections jobs security 2023', 'AI voice 
cloning technology examples implications']
all_results = []

# Run search for each query
for query in queries:
    try:
        results = search_tool.run(query)
        all_results.extend(results)
    except Exception as e:
        all_results.append({"Error": str(e)})

# Print all collected search results
print(all_results)

The “all_results” variable may contain a different number of web addresses—derived 

from three search queries generated by ChatGPT, each returning the top five Google 

search results. However, using all retrieved content as context in our application is not an 

optimal approach due to technical, financial, and contextual constraints.

First, language models (LLMs) have input length limitations, typically ranging 

from 2K to 4K tokens, depending on the model. While alternative chain types can help 

bypass this constraint, staying within the model’s token window is often more efficient 

and produces better results.

Second, cost considerations come into play. The more text we send to the API, the higher 

the cost. Although splitting prompts into multiple chains is an option, we must be mindful 

that API pricing is based on token usage, making excessive input size financially inefficient.

Finally, contextual relevance matters. The retrieved search results will likely 

contain overlapping or similar information. Instead of using all results indiscriminately, 

selecting the most relevant ones ensures a more focused and meaningful expansion of 

the content.
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Output: [{'title': '[2023-09-08] Blumenthal & Hawley Announce Bipartisan 
Framework ...', 'link': 'https://www.blumenthal.senate.gov/newsroom/press/
release/blumenthal-and-hawley-announce-bipartisan-framework-on-artificial-
intelligence-legislation', 'snippet': 'Sep 8, 2023 ... [WASHINGTON, D.C.] – 
U.S. Senators Richard Blumenthal (D-CT) and Josh Hawley (R-MO), Chair and 
Ranking Member of the Senate Judiciary\xa0...'}, {'title': 'U.S. Artificial 
Intelligence Policy: Legislative and Regulatory ...', 'link': 'https://www.
cov.com/en/news-and-insights/insights/2023/10/us-artificial-intelligence-
policy-legislative-and-regulatory-developments', 'snippet': "Oct 20, 2023 
... Separate from Leader Schumer's effort, Senators Richard Blumenthal 
(D ... This proposal follows legislation Senators Blumenthal and Hawley\
xa0..."}, {'title': "The Future is Here: Senate Judiciary Committee's 
Oversight of AI ...", 'link': 'https://www.crowell.com/en/insights/client-
alerts/the-future-is-here-senate-judiciary-committees-oversight-of-ai-and-
principles-for-regulation', 'snippet': 'Jul 25, 2023 ... ... AI systems. 
Ranking Member Josh Hawley (R-MO) gave a shorter statement, identifying his 
main priorities as workers, children, consumers, and\xa0...'}, {'title': 
'THE PHILOSOPHY OF AI: LEARNING FROM HISTORY, SHAPING ...', 'link': 
'https://www.congress.gov/118/chrg/CHRG-118shrg53996/CHRG-118shrg53996.
pdf', 'snippet': 'Nov 8, 2023 ... Present: Senators Peters [presiding], 
Hassan, Rosen, Blumenthal,. Ossoff, Butler, Johnson, and Hawley. OPENING 
STATEMENT OF SENATOR PETERS1.'}, {'title': 'Hawley, Blumenthal Introduce 
Bipartisan Legislation to Protect ...', 'link': 'https://www.hawley.senate.
gov/hawley-blumenthal-introduce-bipartisan-legislation-protect-consumers-
and-deny-ai-companies-section/', 'snippet': 'Jun 14, 2023 ... Today 
U.S. Senators Josh Hawley (R-Mo.) ... Last week, Senator Hawley announced 
five guiding principles for the future of AI legislation.'}, {'title': 'CED 
Issues Statement on Ensuring Safe, Accessible, Credible', 'link': 'https://
www.conference-board.org/press/CED-statement-safe-accessible-credible-
elections', 'snippet': 'CED Issues Statement on Ensuring Safe, Accessible, 
Credible Elections. 2022-11-04. Dr. Lori Esposito Murray, President 
of the ... Explore the Impact of AI on Your Business. Members receive 
complimentary registration - Learn more >>'}, {'title': 'Pew Research 
Center | Numbers, Facts and Trends Shaping Your ...', 'link': 'https://
www.pewresearch.org/', 'snippet': 'Pew Research Center is a nonpartisan, 
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nonadvocacy fact tank that informs the public about the issues, attitudes 
and trends shaping the world.'}, {'title': 'Why Not A.I.? Insights from HR 
Teams on Worker Financial Security', 'link': 'https://www.aspendigital.
org/blog/ai-for-worker-financial-security/', 'snippet': 'Oct 26, 2023 ... 
In recent years, headlines have been rife with horror stories about the 
impact of artificial intelligence (AI) on human resources (HR) work.'}, 
{'title': 'emerging technology – Alliance For Securing Democracy', 'link': 
'https://securingdemocracy.gmfus.org/tag/emerging-technology/', 'snippet': 
'... artificial intelligence will impact democratic institutions and 
elections moving forward. ... The ASD AI Election Security Handbook. 
Introduction The typical\xa0...'}, {'title': 'Election Officials Under 
Attack', 'link': 'https://documents.ncsl.org/wwwncsl/Summit/2023/Session-
Resources/Election-Officials-Under-Attack-Brennan-Center-for-Justice.pdf', 
'snippet': 'Jun 16, 2021 ... associations) to improve working conditions 
and to better empower election officials to impact election policy. ... 
How AI Puts Elections at Risk.'}, {'title': 'Preventing the Harms of AI-
enabled Voice Cloning | Federal Trade ...', 'link': 'https://www.ftc.
gov/policy/advocacy-research/tech-at-ftc/2023/11/preventing-harms-ai-
enabled-voice-cloning', 'snippet': 'Nov 16, 2023 ... ... voices in a way 
that is hard to detect by ear. This progress in voice cloning technology 
offers promise for Americans in, for example\xa0...'}, {'title': 'Federal 
Communications Commission FCC 24-17 Before the ...', 'link': 'https://docs.
fcc.gov/public/attachments/FCC-24-17A1.pdf', 'snippet': 'Feb 8, 2024 ... 
understand the implications of emerging AI technologies ... Bad actors are 
using voice cloning – a generative AI technology that uses a recording\
xa0...'}, {'title': 'Voice Cloning Technology and its Legal Implications: 
An IP Law ...', 'link': 'https://iplawusa.com/voice-cloning-technology-and-
its-legal-implications-an-ip-law-perspective/', 'snippet': "Aug 26, 2023 
... Voice cloning technology is a cutting-edge development in the domain 
of artificial intelligence (AI) that involves creating a digital replica 
of a person's\xa0..."}, {'title': "AI Voice Cloning – and Its Misuse – Has 
Opened a Pandora's Box of ...", 'link': 'https://ipwatchdog.com/2023/08/09/
ai-voice-cloning-misuse-opened-pandoras-box-legal-issues-heres-know/
id=163859/', 'snippet': 'Aug 9, 2023 ... Voice cloning, a technology 
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that enables the replication of human voices from large language models 
using artificial intelligence (AI),\xa0...'}, {'title': 'Top 5 Frequently 
Asked Questions About Voice Cloning Technology', 'link': 'https://www.
respeecher.com/blog/top-5-frequently-asked-questions-about-voice-cloning-
technology', 'snippet': 'Jun 4, 2024 ... Technology Used: The complexity 
and sophistication of the AI and machine learning algorithms employed can 
significantly impact the cost.'}]

�Step 6: Find the Most Relevant Results
As previously noted, Google Search provides URLs for each source, but we still need to 

extract the actual content from these pages. This is where the newspaper package comes 

in handy—it allows us to retrieve webpage content using the .parse() method. The 

following code iterates through the search results and attempts to extract the text from 

each linked page.

import newspaper

pages_content = []

for result in all_results:
  try:
    article = newspaper.Article(result["link"])
    article.download()
    article.parse()

    if len(article.text) > 0:
      pages_content.append({ "url": result["link"], "text": article.text })
  except:
    continue

print("Number of pages: ", len(pages_content))

Output: Number of pages:  11
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�Step 7: Split into Chunks
The output above indicates that only 11 pages were processed instead of the expected 15.  

This discrepancy can occur because the newspaper library may struggle to extract 

content in certain cases, such as when search results lead to PDF files or when websites 

impose restrictions on web scraping.

Next, it’s essential to split the extracted content into smaller chunks to prevent 

exceeding the model’s input length. The code below achieves this by segmenting the text 

based on either newlines or spaces, depending on the structure of the content. It ensures 

that each chunk contains 3000 characters with an overlap of 100 characters between 

consecutive chunks to maintain context.

from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document

text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_
overlap=100)

docs = []
for d in pages_content:
    chunks = text_splitter.split_text(d["text"])
    for chunk in chunks:
        �new_doc = Document(page_content=chunk, metadata={ "source": 

d["url"] })
        docs.append(new_doc)

print("Number of chunks: ", len(docs))

Output: Number of chunks:  26

�Step 7: Create Embeddings
As shown, the docs variable now contains 26 chunks of data. The next step is to identify 

the most relevant chunks to use as context for the large language model. To achieve this, 

we leverage the OpenAIEmbeddings class, which utilizes OpenAI to convert text into a 

vector space that captures semantic meaning.

We then proceed to embed both the document chunks and the target sentence from 

the main article that we want to expand. This sentence, which was selected at the start of 
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the lesson, is stored in the text_to_change variable. By comparing embeddings, we can 

retrieve the most relevant chunks to enrich the expanded content.

from langchain.embeddings import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")

docs_embeddings = embeddings.embed_documents([doc.page_content for doc 
in docs])
query_embedding = embeddings.embed_query(text_to_change)

To measure the relevance of document chunks, we use the **cosine similarity** 

metric, which calculates the distance between high-dimensional embedding vectors. 

This metric helps determine how closely two points are positioned within the vector 

space. Since embeddings capture contextual meaning, **closer vectors indicate stronger 

semantic similarity**, making high-scoring documents ideal sources for expansion.

We utilize the “cosine_similarity” function from the **sklearn** library to compute 

the similarity between each document chunk and the target sentence. This function 

returns the **indices of the top three most relevant chunks**, ensuring that the model 

receives the most meaningful context for generating expanded content.

import numpy as np
from sklearn.metrics.pairwise import cosine_similarity

def get_top_k_indices(list_of_doc_vectors, query_vector, top_k):
    # convert the lists of vectors to numpy arrays
    list_of_doc_vectors = np.array(list_of_doc_vectors)
    query_vector = np.array(query_vector)

    # compute cosine similarities
    �similarities = cosine_similarity(query_vector.reshape(1, -1), list_of_

doc_vectors).flatten()

    # sort the vectors based on cosine similarity
    sorted_indices = np.argsort(similarities)[::-1]

    # retrieve the top K indices from the sorted list
    top_k_indices = sorted_indices[:top_k]

    return top_k_indices
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top_k = 3
best_indexes = get_top_k_indices(docs_embeddings, query_embedding, top_k)
best_k_documents = [doc for i, doc in enumerate(docs) if i in best_indexes]

�Step 8: Extend the Sentence
Now, we can define the prompt using additional information retrieved from Google 

Search. The template includes six input variables:

•	 title: Holds the main article’s title

•	 text_all: Represents the full article being processed

•	 text_to_change: The specific section of the article that requires 

expansion

•	 doc_1, doc_2, doc_3: The top three most relevant Google search 

results, used as contextual references

The rest of the code follows the same structure as the Google query generation 
process. It defines a HumanMessage template, ensuring compatibility with the ChatGPT 

API. The model is set with a high temperature to promote creative output. Finally, the 

LLMChain class constructs a processing chain that integrates the model and the prompt, 

executing the expansion task using the .run() method.

template = """You are an exceptional copywriter and content creator.

You're reading an article with the following title:
----------------
{title}
----------------

You've just read the following piece of text from that article.
----------------
{text_all}
----------------

Inside that text, there's the following TEXT TO CONSIDER that you want to 
enrich with new details.
----------------
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{text_to_change}
----------------

Searching around the web, you've found this ADDITIONAL INFORMATION from 
distinct articles.
----------------
{doc_1}
----------------
{doc_2}
----------------
{doc_3}
----------------

Modify the previous TEXT TO CONSIDER by enriching it with information from 
the previous ADDITIONAL INFORMATION.
"""

human_message_prompt = HumanMessagePromptTemplate(
    prompt=PromptTemplate(
        template=template,
        �input_variables=["text_to_change", "text_all", "title", "doc_1", 

"doc_2", "doc_3"],
    )
)
chat_prompt_template = ChatPromptTemplate.from_messages([human_message_
prompt])

chat = ChatOpenAI(model_name="gpt-4o-mini", temperature=0.9)
chain = LLMChain(llm=chat, prompt=chat_prompt_template)

response = chain.run({
    "text_to_change": text_to_change,
    "text_all": text_all,
    "title": title,
    "doc_1": best_k_documents[0].page_content,
    "doc_2": best_k_documents[1].page_content,
    "doc_3": best_k_documents[2].page_content
})
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print("Text to Change: ", text_to_change)
print("Expanded Variation:", response)

Output: Text to Change:   Senators Josh Hawley and Richard Blumenthal 
acknowledged AI's disruptive impact and the necessity of understanding 
its ramifications on elections, employment, and national security. To 
illustrate AI's power, Blumenthal played an audio clip generated by an AI 
voice cloning system trained on his past speeches.
Expanded Variation: Certainly! Here's an enriched version of the previously 
specified text, incorporating relevant details from the additional information:
---

Senators Josh Hawley (R-MO) and Richard Blumenthal (D-CT), Chair and 
Ranking Member of the Senate Judiciary Subcommittee on Privacy, Technology, 
and the Law, acknowledged AI's disruptive impact and the necessity of 
understanding its ramifications on elections, employment, and national 
security. To illustrate AI's power, Blumenthal played an audio clip 
generated by an AI voice cloning system trained on his past speeches, 
showcasing the technology's potential for misuse. In light of these 
concerns, both senators announced a bipartisan legislative framework aimed 
at establishing guardrails for artificial intelligence..............

�App 6: YouTube Scriptwriting Tool
The YouTube Scriptwriting Tool is an AI-driven assistant designed to help content 

creators craft engaging, well-structured scripts for their videos. By leveraging GPT- 

powered AI, this tool streamlines the scriptwriting process, ensuring compelling 

storytelling, clear messaging, and audience engagement.

�Step 1: Install All Required Libraries and Import Them
These dependencies are essential for building a YouTube Scriptwriting Tool with  

AI-powered transcription, content generation, and automation. Here’s why each package 

is used:

•	 openai: Provides access to GPT models for generating YouTube video 

scripts, improving structure, and enhancing content
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•	 langchain: A framework that integrates LLMs, text processing, and 

retrieval-based AI for better script structuring

•	 google-colab: Ensures compatibility with Google Colab, allowing the 

tool to run smoothly in a cloud environment

•	 yt_dlp: A powerful tool for downloading YouTube videos, enabling 

AI-based script generation by transcribing existing content

•	 langchain-community: Extends LangChain’s capabilities with 

community-maintained integrations for improved AI workflows

•	 openai-whisper: A state-of-the-art AI model for speech-to-text 

transcription, used to convert YouTube videos into text-based scripts

•	 torch: A deep learning framework required for Whisper’s AI model, 

enabling fast and efficient transcription

!pip install openai langchain google-colab yt_dlp langchain-community
!pip install -U openai-whisper torch

import openai
import os
import re
import subprocess
from langchain.chat_models import ChatOpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from google.colab import auth
import whisper

�Step 2: Authenticate in Google Drive As We Use Google 
Colab and Insert Your OpenAI API Key
auth.authenticate_user()
os.environ['OPENAI_API_KEY'] = input("Enter your OpenAI API Key: ")
gpt = ChatOpenAI(temperature=0.7, model_name="gpt-4")
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�Step 3: Download Your Desired YouTube Video, Extract 
the Audio, and Convert It to MP3
### Step 2: Download YouTube Audio
def download_audio(video_url):
    �video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11}).*", 

video_url)
    if not video_id_match:
        return None

    video_id = video_id_match.group(1)
    audio_filename = f"{video_id}.mp3"

    �command = f"yt-dlp -x --audio-format mp3 -o '{audio_filename}' 
{video_url}"

    os.system(command)

    return audio_filename if os.path.exists(audio_filename) else None

�Step 4: Transcribe Audio
### Step 3: Transcribe Audio
def transcribe_audio(audio_filename):
    model = whisper.load_model("small")
    result = model.transcribe(audio_filename)
    return result["text"]

This function transcribes audio into text using OpenAI’s Whisper model.

	 1.	 Loads Whisper’s “small” model (whisper.load_
model("small"))

	 2.	 Transcribes the given audio file (model.transcribe(audio_
filename))

	 3.	 Returns the extracted text (result["text"])
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�Step 5: Generate Outline
### Step 4: Generate an Outline
def generate_outline(transcript_text):
    outline_prompt = PromptTemplate(
        input_variables=["transcript_text"],
        template="""
        �You are a professional YouTube scriptwriter. Analyze the following 

transcribed YouTube video:
        "{transcript_text}"

        �Create an engaging script outline, including an introduction, key 
sections, and a conclusion.

        """
    )

    outline_chain = LLMChain(llm=gpt, prompt=outline_prompt)
    return outline_chain.run(transcript_text)

This function above generates a structured outline for a YouTube script from a 

transcribed video.

	 1.	 Defines a prompt template (PromptTemplate) that instructs 

the AI to analyze the transcript and create an outline with an 

introduction, key sections, and a conclusion

	 2.	 Creates an AI processing chain (LLMChain) using gpt (a 
GPT model)

	 3.	 Runs the AI model to generate an engaging script outline from the 

given transcript

�Step 6: Expand the Script
### Step 5: Expand Script
def expand_script(outline):
    script_prompt = PromptTemplate(
        input_variables=["outline"],
        template="""
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        Given the following YouTube script outline:
        {outline}

        �Expand each section into a complete, engaging script with natural 
dialogue and a strong narrative flow.

        Include timestamps and suggested visuals where relevant.
        """
    )

    script_chain = LLMChain(llm=gpt, prompt=script_prompt)
    return script_chain.run(outline)

This function expands a script outline into a full YouTube script using AI.

	 1.	 Defines a prompt template (PromptTemplate) that instructs the 

AI to convert the outline into a detailed script, ensuring natural 

dialogue and strong narrative flow

	 2.	 Creates an AI processing chain (LLMChain) using gpt (a 

GPT model)

	 3.	 Runs the AI model to generate a fully developed script, including 

timestamps and suggested visuals for better content structuring

�Step 7: Combine All and Run the Tool
### Step 6: Run the Tool
if __name__ == "__main__":
    video_url = input("Enter the YouTube video URL: ")

    print("\nDownloading audio from video...\n")
    audio_filename = download_audio(video_url)
    if not audio_filename:
        print("Audio download failed! Exiting.")
    else:
        print("Audio downloaded successfully!")

        print("\nTranscribing audio...\n")
        transcript_text = transcribe_audio(audio_filename)
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        print("Transcript generated successfully!\n")
        print(transcript_text)

        print("\nGenerating script outline from transcript...\n")
        outline = generate_outline(transcript_text)
        print(outline)

        input("Press Enter to generate the full script...")
        print("\nExpanding into full script...\n")
        full_script = expand_script(outline)
        print(full_script)

Output:

Enter the YouTube video URL: https://www.youtube.com/shorts/9YFT5HqL5m8

Downloading audio from video...

Audio downloaded successfully!

Transcribing audio...

Transcript generated successfully!

 �While loop in Python. Firstly write out the following lines of code, 
making sure you remember the colons and the indents. Save it, then run it. 
It works.

Generating script outline from transcript...

Title: Mastering the While Loop in Python

Introduction:
- Welcoming viewers to the channel and the video
- �Briefly discussing the importance of understanding Python loops, 
especially the "while loop"

- Outlining the objectives for the video

Section 1: Understanding the While Loop
- Explaining what a while loop is in the context of Python
- Discussing the use cases and benefits of using while loops
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Section 2: Structuring the While Loop
- �Explaining the syntax of the while loop, emphasizing the importance of 
colons and indents

- Showing on screen an example of the structure of a basic while loop

Section 3: Writing the Code
- Taking viewers through the process of writing a simple while loop code
- �Highlighting key points such as the use of colons and indents, how to 
structure the loop, and what each line of code does

Section 4: Saving and Running the Code
- Demonstrating how to save and run the code
- Discussing potential errors that could occur and how to troubleshoot

Conclusion:
- Recapping the importance and structure of while loops in Python
- Encouraging viewers to practice writing their own while loops
- Reminding viewers to like, share, and subscribe for more Python tutorials
- �Teasing the topic of the next video and bidding viewers farewell until 
next time.

Press Enter to generate the full script...

Expanding into full script...

Title: Mastering the While Loop in Python

[Introduction 00:00]

(Visual: Channel logo animation)

HOST: "Hey there coding enthusiasts, welcome back to our channel, your 
trusted guide to everything Python! We all know how crucial loops are 
in Python, don't we? And today, we're diving deep into the fascinating 
world of 'While Loops' in Python. We'll be exploring what they are, how to 
structure them, and finally, we'll write some code together. So, let's get 
started!"

(Visual: Text Animation - "Mastering the While Loop in Python")
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[Section 1: Understanding the While Loop 00:30]

(Visual: Video Animation - "While Loop Concept")

HOST: "So what exactly is a while loop? In Python, a while loop is used 
for iterative tasks, which simply means, it helps you execute the same 
code over and over again until a certain condition is met. It's like 
telling your computer, 'Hey, keep doing this task while this condition is 
true!'. And the benefits? It's a massive time-saver and a powerful tool for 
handling repetitive tasks."

[Section 2: Structuring the While Loop 01:15]

(Visual: Screen recording - Python IDE with blank code file)

HOST: "Now, let's talk about how we structure a while loop in Python. The 
syntax is straightforward. We start with the keyword 'while', followed 
by the condition, and then a colon. The code you want to repeat goes 
underneath, indented for clarity. Let's look at a basic example."

(Visual: Coding example on Python IDE)

[Section 3: Writing the Code 02:30]

(Visual: Screen Recording - Python IDE with code example)

HOST: "Let's write a simple while loop code together, shall we? Remember, 
our indents and colons are key here. We'll structure our loop, line by 
line, and I'll explain each part as we go along."

(Visual: Host typing and explaining the code)

[Section 4: Saving and Running the Code 04:50]

(Visual: Screen Recording - Python IDE)

HOST: "Once we've written our code, it's time to save and run it. But 
remember, errors can occur. Maybe we've missed a colon or misstructured our 
loop. Don't worry, I'll show you common errors and how to troubleshoot them."

(Visual: Demonstration of saving, running, and troubleshooting the code)

[Conclusion 06:40]
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(Visual: Host on screen)

HOST: "And that, my friends, is the while loop in Python! Remember, 
practice is key, so try writing your own while loops. Don't forget to hit 
the like button if you found this tutorial helpful, and share it with your 
fellow coders. Subscribe for more Python tutorials, and stay tuned for our 
next video where we'll be delving into another exciting Python topic. Until 
then, keep coding!"

(Visual: End screen with like, share, and subscribe animation)

�App 7: Email Generator
The AI Email Generator is a powerful tool designed to automate and enhance email 

writing using AI. By leveraging GPT-powered language models, this tool helps users craft 

professional, personalized, and context-aware emails in seconds.

�Key Features

•	 Automated Email Drafting: Generate emails based on prompts or 

key points.

•	 Personalization: Adjust tone, style, and recipient details for a 

tailored approach.

•	 Quick Edits and Refinements: Modify content instantly with AI 

suggestions.

•	 Template-Based Generation: Create emails for business, customer 

support, marketing, and more.

•	 Grammar and Tone Enhancement: Ensure clarity, professionalism, 

and engagement.

Ideal for professionals, businesses, and individuals, the AI Email Generator 

streamlines communication, saves time, and improves email effectiveness with AI-

driven precision.
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�Step 1: Install All Required Libraries and Import Them
!pip install langchain openai langchain_community

from langchain_openai import ChatOpenAI
from langchain.prompts import PromptTemplate
from langchain.chains import LLMChain
import os

These dependencies are essential for building an AI-powered Email Generator using 

LangChain and OpenAI. Here’s why each package is needed:

•	 langchain: The core framework for integrating LLMs (like GPT-4) to 

generate, refine, and personalize email content

•	 openai: Provides access to GPT-powered AI for drafting professional, 

context-aware emails

•	 langchain_community: Enhances LangChain with community- 

supported integrations for better performance and extended 

capabilities

This setup enables smart, AI-driven email generation, making the process faster, 

more efficient, and highly personalized.

�Step 2: Generate Response with OpenAI
def generate_email_response(api_key, original_email, sender_name, 
recipient_name, response_tone="professional"):

    os.environ["OPENAI_API_KEY"] = api_key

    template = PromptTemplate(
        �input_variables=["original_email", "sender_name", "recipient_name", 

"response_tone"],
        template="""
        �Read the following email from {sender_name} and generate a well-

structured, contextually relevant response for {recipient_name}.
        �Ensure the tone of the response is {response_tone} and 

appropriately addresses the content of the original email.
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        Original Email:
        {original_email}

        �Keep the response concise yet informative, maintaining politeness 
and clarity.

        """,
    )

    llm = OpenAI(model="gpt-3.5-turbo")
    chain = LLMChain(llm=llm, prompt=template)

    response_email = chain.run({
        "original_email": original_email,
        "sender_name": sender_name,
        "recipient_name": recipient_name,
        "response_tone": response_tone
    })

    return response_email

In this code, the generate_email_response() function takes an API key, an original 

email, the sender and recipient names, and an optional response tone (defaulting to 

“professional”).

It first sets the OpenAI API key as an environment variable (os.environ["OPENAI_
API_KEY"] = api_key) to authenticate requests to OpenAI’s API.

A PromptTemplate is then defined, guiding the AI to read the original email and 

generate a contextually relevant, well-structured response. The AI

•	 Adapts the tone (e.g., professional, friendly)

•	 Addresses the recipient appropriately

•	 Keeps the response concise, polite, and informative

An LLM model (OpenAI()) is initialized, and an LLMChain (chain) is created to 

process the prompt dynamically.

The function executes the chain with the given email details, generating an AI- 

written email response, which is then returned.

This setup saves time, enhances professionalism, and ensures clarity, making it 

useful for customer support, business communication, and automated email responses.
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�Step 3: Combine All Together and Generate Email
if __name__ == "__main__":
    api_key = input("Enter your OpenAI API key: ")
    original_email = input("Enter the original email content: ")
    sender_name = input("Enter the sender's name: ")
    recipient_name = input("Enter the recipient's name: ")
    �response_tone = input("Enter the response tone (e.g., professional, 

friendly, casual): ")

    �response = generate_email_response(api_key, original_email, sender_
name, recipient_name, response_tone)

    print("\nGenerated Email Response:\n")
    print(response)

Note D on’t forget to generate your OpenAI API key.

Output:

Enter your OpenAI API key:
Enter the original email content: Let's have a meeting together?
Enter the sender's name: Anthony
Enter the recipient's name: James
Enter the response tone (e.g., professional, friendly, casual): 
Professional
<ipython-input-5-279420fd8784>:30: LangChainDeprecationWarning: The 
class `OpenAI` was deprecated in LangChain 0.0.10 and will be removed in 
1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U 
:class:`~langchain-openai` and import as `from :class:`~langchain_openai 
import OpenAI``.
  llm = OpenAI()
<ipython-input-5-279420fd8784>:31: LangChainDeprecationWarning: The class 
`LLMChain` was deprecated in LangChain 0.1.17 and will be removed in 1.0. 
Use :meth:`~RunnableSequence, e.g., `prompt | llm`` instead.
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  chain = LLMChain(llm=llm, prompt=template)
<ipython-input-5-279420fd8784>:33: LangChainDeprecationWarning: The method 
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0. 
Use :meth:`~invoke` instead.
  response_email = chain.run({
Generated Email Response:

Dear Anthony,

Thank you for reaching out to me about having a meeting together. I am 
always open to discussing and collaborating on any important matters.

Could you please provide more details about the meeting? This will help 
me prepare and make the most of our time together. Additionally, please 
suggest a few dates and times that work for you so we can schedule the 
meeting accordingly.

I look forward to meeting with you and discussing further.

Best regards,
James

�App 8: CSV Data Analysis App
The CSV Data Analysis App is a powerful tool designed to help users efficiently analyze, 

visualize, and extract insights from structured datasets. By leveraging AI, data processing 

libraries, and interactive visualizations, this app makes it easy to explore large CSV files, 

perform statistical analysis, and generate meaningful reports.

�Step 1: Install All Required Libraries and Import Them
!pip install pandas langchain openai matplotlib seaborn langchain_community 
langchain_experimental

import pandas as pd
import langchain
from langchain.llms import OpenAI
from langchain_experimental.agents import create_pandas_dataframe_agent
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import matplotlib.pyplot as plt
import seaborn as sns
import os

These dependencies enable a CSV Data Analysis App by integrating AI, data 

processing, and visualization:

•	 pandas: Loads and manipulates CSV files.

•	 langchain and openai: Uses GPT-4 for AI-powered insights 

and queries

•	 matplotlib and seaborn: Creates professional data visualizations

•	 langchain_community and langchain_experimental: Enhances AI 

integration with modern tools

This setup allows users to analyze, visualize, and gain AI-driven insights from CSV 

datasets, making data exploration faster and smarter.

�Step 2: Generate and Add Your OpenAI API Key
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Load Your CSV File
This code below loads, previews, and analyzes a CSV file using pandas.

The load_csv(file_path) function takes a file path as input and loads the CSV file 

into a pandas DataFrame using pd.read_csv().

It then prompts the user to enter the CSV file path, loads the data into df, and 

displays key insights:

	 1.	 Data Preview: Prints the first five rows of the dataset using df.
head(), providing a quick look at the data structure

	 2.	 Basic Statistics: Prints summary statistics with df.describe(), 

showing key metrics like mean, min, max, and standard deviation 

for numerical columns
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# Function to load CSV
def load_csv(file_path):
    return pd.read_csv(file_path)

# Load CSV
file_path = input("Enter the path to your CSV file: ")
df = load_csv(file_path)

# Display data preview
print("\n### Data Preview")
print(df.head())

# Display basic statistics
print("\n### Basic Statistics")
print(df.describe())

Note T o get the path of a file in Google Colab, upload the file, right-click with 
your cursor, and select “Copy path.”

Output:

Enter the path to your CSV file: /content/langchain_broad-match_
us_2025-02-19.csv

### Data Preview
                    Keyword         Intent  Volume  \
0              langchain js   Navigational    1000
1          langchain openai  Informational    1000
2           langchain tools  Informational    1000
3        langchain tutorial   Navigational    1000
4  langchain_community.llms  Informational    1000

                                               Trend  Keyword Difficulty  \
0  1.00,0.38,1.00,0.68,0.46,0.68,0.38,0.52,0.52,0...                  44
1  0.62,1.00,0.81,0.62,0.36,0.62,0.45,0.55,0.45,0...                  35
2  0.37,0.52,0.08,1.00,0.68,0.52,0.68,0.52,0.52,0...                  41
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3  0.44,0.44,0.81,0.81,0.62,0.62,0.55,0.55,1.00,0...                  54
4  0.13,0.36,1.00,0.54,0.36,0.02,0.04,0.03,0.00,0...                  18

   CPC (USD)  Competitive Density  \
0       0.00                 0.01
1       3.63                 0.01
2       2.48                 0.00
3       2.98                 0.11
4       0.00                 0.00

                                       SERP Features  Number of Results
0  Sitelinks, Video, People also ask, Related sea...            6260000
1           Video, People also ask, Related searches           11600000
2                 Sitelinks, Video, Related searches           16400000
3  Sitelinks, Video, People also ask, Related sea...            8510000
4                                  Image pack, Video                 42

### Basic Statistics
            Volume  Keyword Difficulty   CPC (USD)  Competitive Density  \
count   284.000000          284.000000  284.000000           284.000000
mean    288.204225           28.419014    0.878275             0.019014
std     200.324685           12.485063    2.212721             0.069697
min     110.000000            0.000000    0.000000             0.000000
25%     140.000000           20.000000    0.000000             0.000000
50%     210.000000           27.000000    0.000000             0.000000
75%     320.000000           36.000000    0.000000             0.010000
max    1000.000000           83.000000   17.340000             0.830000

       Number of Results
count       2.840000e+02
mean        3.444161e+06
std         5.098099e+06
min         0.000000e+00
25%         9.700000e+01
50%         5.330000e+05
75%         5.745000e+06
max         3.630000e+07
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�Step 4: Create a LangChain Agent
# LangChain Agent for querying data
OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
# LangChain Agent for querying data
if OPENAI_API_KEY:
    llm = OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
    �agent = create_pandas_dataframe_agent(llm, df, verbose=True, allow_

dangerous_code=True)

    query = input("\nAsk a question about the data: ")
    if query:
        print("\nAnalyzing...")
        response = agent.run(query)
        print("\n**Response:**", response)
else:
    �print("\nWarning: OpenAI API Key not found. Please set it as an 

environment variable.")

The code above sets up a LangChain agent to interact with a CSV dataset using GPT- 

powered AI queries.

First, it retrieves the OpenAI API key from the environment (os.environ["OPENAI_
API_KEY"]). If the key exists, it initializes an LLM instance (OpenAI) with temperature=0 

for deterministic responses.

It then creates a Pandas DataFrame agent using create_pandas_dataframe_
agent(llm, df, verbose=True, allow_dangerous_code=True). This agent allows 

users to ask natural language questions about the dataset, and the AI will analyze and 

generate insights based on the data.

The program then prompts the user for a query. If a question is provided, the agent 

processes the request, runs the query on the DataFrame, and returns an AI-generated 

response.

If the API key is missing, it prints a warning message, instructing the user to set up 

the key.

This setup enables AI-powered data analysis, allowing users to interact with CSV 

datasets using natural language instead of manual coding.
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Output:

Ask a question about the data: What's the data about?

Analyzing...

> Entering new AgentExecutor chain...
<ipython-input-16-9aca66b979d8>:11: LangChainDeprecationWarning: The method 
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0. 
Use :meth:`~invoke` instead.
  response = agent.run(query)
Thought: The data is about keywords and their corresponding attributes.
Action: python_repl_ast
Action Input: df.info()<class 'pandas.core.frame.DataFrame'>
RangeIndex: 284 entries, 0 to 283
Data columns (total 9 columns):
 #   Column               Non-Null Count  Dtype
---  ------               --------------  -----
 0   Keyword              284 non-null    object
 1   Intent               284 non-null    object
 2   Volume               284 non-null    int64
 3   Trend                284 non-null    object
 4   Keyword Difficulty   284 non-null    int64
 5   CPC (USD)            284 non-null    float64
 6   Competitive Density  284 non-null    float64
 7   SERP Features        284 non-null    object
 8   Number of Results    284 non-null    int64
dtypes: float64(2), int64(3), object(4)
memory usage: 20.1+ KB
 The data has 284 rows and 9 columns.
Action: python_repl_ast
Action Input: df.shape(284, 9)I now know the final answer
Final Answer: The data has 284 rows and 9 columns. It contains information 
about keywords, their intent, volume, trend, keyword difficulty, CPC, 
competitive density, SERP features, and number of results.

> Finished chain.
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�App 9: Knowledge Base Voice Assistant
The Knowledge Base Voice Assistant is an AI-driven system that enables users to 

interact with a knowledge base using natural voice commands. By integrating speech 

recognition, large language models (LLMs), and vector search, this assistant allows for 

seamless and intelligent access to vast amounts of information.

Designed for businesses, research teams, and customer support, this voice-enabled 

assistant can retrieve answers, summarize documents, and provide real-time insights 

from structured and unstructured data sources. By leveraging LangChain, OpenAI’s 

GPT models, and vector databases, the assistant delivers accurate and context-aware 

responses in a conversational format.

�Step 1: Install the Required Libraries and Import Them
# Install dependencies
!pip install SpeechRecognition gtts langchain faiss-cpu openai

import speech_recognition as sr
from gtts import gTTS
import os
import IPython.display as ipd
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQA
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from google.colab import files

These dependencies enable a voice-controlled AI assistant by integrating speech 
recognition, retrieval, and AI-powered responses:

•	 SpeechRecognition: Converts speech to text for voice input

•	 gTTS: Converts AI-generated text to speech for voice output

•	 LangChain: Manages LLM interactions and knowledge retrieval
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•	 FAISS: Enables fast, semantic search in the knowledge base

•	 OpenAI: Uses GPT-4 to generate intelligent responses

Together, these tools allow users to speak queries, retrieve relevant information, 
and hear AI-generated answers, making knowledge access seamless and intuitive.

�Step 2: Generate and Add Your OpenAI API Key
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Develop Voice Interaction
def speak(text):
    """Convert text to speech using gTTS and play it."""
    tts = gTTS(text=text, lang='en')
    tts.save("response.mp3")
    ipd.display(ipd.Audio("response.mp3"))

def listen():
    """Process uploaded audio file and convert to text."""
    recognizer = sr.Recognizer()
    print("Please upload an audio file (wav format).")
    uploaded = files.upload()

    for filename in uploaded.keys():
        with sr.AudioFile(filename) as source:
            audio = recognizer.record(source)
        try:
            return recognizer.recognize_google(audio)
        except sr.UnknownValueError:
            return "Sorry, I could not understand."
        except sr.RequestError:
            return "Could not request results."
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This code enables voice interaction for an AI assistant by handling both text-to- 

speech (TTS) output and speech-to-text (STT) input using gTTS and SpeechRecognition.

The speak(text) function takes a text input, converts it into speech using gTTS 

(Google Text-to-Speech), and saves the generated audio as "response.mp3". It then plays 

the audio using IPython’s audio player (ipd.Audio), allowing users to hear the assistant’s 

response.

The listen() function processes an uploaded audio file (in .wav format) 

and converts speech into text. It uses SpeechRecognition’s Recognizer to handle 

transcription. The user is prompted to upload an audio file, which is then processed:

	 1.	 Loads the uploaded file

	 2.	 Extracts audio data using sr.AudioFile()

	 3.	 Recognizes speech using Google’s speech-to-text API 

(recognize_google)

	 4.	 Returns the transcribed text or an error message if speech 

is unclear (UnknownValueError) or if the API request fails 

(RequestError)

This setup allows the assistant to listen to user queries, process them as text, and 

respond with AI-generated speech, enabling a full voice-based knowledge assistant 

experience.

Note S ince we develop this app in Google Colab, this platform doesn’t provide us 
with microphone access, so all audio interaction has to be recorded as .wav files 
and uploaded to Google Colab.

�Step 4: Load Knowledge Base from the Web and Create 
the QA Chain
# Load knowledge base from the web
def load_knowledge_base():
    """Load and process online resources for retrieval."""
    urls = [
        "https://en.wikipedia.org/wiki/Artificial_intelligence",
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        "https://en.wikipedia.org/wiki/Natural_language_processing"
    ]

    loader = WebBaseLoader(urls)
    documents = loader.load()
    �text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_

overlap=200)
    texts = text_splitter.split_documents(documents)

    embeddings = OpenAIEmbeddings()
    vectorstore = FAISS.from_documents(texts, embeddings)
    return vectorstore

def create_qa_chain(vectorstore):
    """Set up LangChain's RetrievalQA model."""
    llm = ChatOpenAI()
    retriever = vectorstore.as_retriever()
    return RetrievalQA.from_chain_type(llm=llm, retriever=retriever)

The code above fetches knowledge from the Web, processes it into a retrievable 

format, and sets up an AI-powered Q&A system using LangChain.

The load_knowledge_base() function

	 1.	 Defines a list of URLs containing knowledge (Wikipedia pages on 

AI and NLP)

	 2.	 Uses WebBaseLoader to fetch and extract the content from these 

web pages

	 3.	 Splits the extracted text into chunks of 1000 characters, ensuring 

200-character overlap for better context retention using 

CharacterTextSplitter

	 4.	 Converts these text chunks into vector embeddings using 

OpenAIEmbeddings, allowing semantic search

	 5.	 Stores the processed embeddings in a FAISS vector database, 

which enables efficient retrieval of relevant knowledge
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The create_qa_chain(vectorstore) function

	 1.	 Initializes an LLM-powered chatbot using ChatOpenAI()

	 2.	 Converts the FAISS vector store into a retriever, allowing the AI to 

find relevant information from stored knowledge

	 3.	 Creates a retrieval-based question-answering (QA) system using 

RetrievalQA.from_chain_type(), enabling users to ask natural 

language questions and get context-aware answers

This setup allows an AI assistant to retrieve and answer questions based on web- 

sourced knowledge, making it useful for automated research assistants, chatbots, and 

real-time information retrieval systems.

�Step 5: Combine Them All Together
def main():
    """Main loop for voice interaction."""
    vectorstore = load_knowledge_base()
    qa_chain = create_qa_chain(vectorstore)

    speak("Hello! Please upload an audio file with your query.")
    while True:
        query = listen()
        if query.lower() in ["exit", "quit", "stop"]:
            speak("Goodbye!")
            break

        print(f"User: {query}")
        response = qa_chain.run(query)
        print(f"Assistant: {response}")
        speak(response)

This code creates a voice-interactive AI assistant that retrieves information from a 

web-based knowledge base and responds using speech.
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The main() function

	 1.	 Loads the knowledge base by calling load_knowledge_
base(), which fetches and processes online content into a 

retrievable format

	 2.	 Creates a Q&A system using create_qa_chain(vectorstore), 

allowing AI-driven responses based on stored knowledge

	 3.	 Welcomes the user with speech using speak("Hello! Please 
upload an audio file with your query."), prompting them to 

submit a voice query

	 4.	 Enters a loop where

•	 It listens for user input via listen(), which converts speech 

into text

•	 If the user says "exit", "quit", or "stop", the assistant ends the 

conversation with a goodbye message

•	 Otherwise, it retrieves and generates an AI-powered response 

using qa_chain.run(query), prints it, and speaks the response 

aloud using speak(response)

Output—if all works correctly:

Figure 3-1.  Voice Assistant Output
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�App 10: Analyzing Codebase with LangChain
The Analyzing Codebase with LangChain app is an AI-powered tool designed to help 

developers, engineers, and teams efficiently explore and understand complex code 

bases. By leveraging LangChain’s advanced language processing capabilities, the app 

can extract insights, answer questions, and provide recommendations based on the 

structure and logic of a given code repository.

Using large language models (LLMs) like GPT-4, along with vector search and 

semantic retrieval, this app enables users to quickly navigate source code, identify 

dependencies, summarize functions, and even detect potential issues—all without 

manually scanning through thousands of lines of code.

�Step 1: Install All Required Libraries
!pip install langchain openai chromadb tiktoken
!pip install -U langchain-community
!pip install unstructured

These installation commands ensure that all necessary dependencies are available 

for building an AI-powered code base analysis tool using LangChain. Here’s why each 

package is needed:

•	 langchain: The core framework that enables interaction with large 

language models (LLMs), vector databases, and advanced AI tools for 

processing and analyzing code.

•	 openai: Provides access to OpenAI’s models (like GPT-4), which 

can generate insights, summarize code, and answer questions 

intelligently.

•	 chromadb: A vector database used for efficient storage and retrieval 

of embeddings. This is crucial for semantic search, allowing the AI to 

find relevant code snippets quickly.

•	 tiktoken: A tokenizer for OpenAI models that helps efficiently count 

and manage tokens, ensuring that the AI processes code efficiently 

while staying within model constraints.
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•	 langchain-community: The updated package containing community- 

supported integrations for third-party tools like ChromaDB, OpenAI, 

FAISS, and more. Keeping this updated ensures compatibility with 

the latest LangChain features.

•	 unstructured: A powerful library for extracting and processing text 

from complex files and documents, including code files, PDFs, and 

markdowns. This helps in parsing, cleaning, and structuring raw 

code data before embedding it into a vector database.

•	 As an alternative, you can use Docling. It is an innovative document 

processing tool developed by xAI, designed to streamline the 

extraction and analysis of information from various file formats 

like PDFs, images, and text documents. It leverages advanced AI 

techniques to enable users to quickly interpret and interact with 

complex documents, making it a valuable asset for research, data 

analysis, and knowledge management.

�Step 2: Generate and Add Your OpenAI API Key
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Upload and Load the Files
The next lines of code scan a directory for Python (.py) files, reads their content, and 

stores them in a structured format for further processing, such as embedding or AI- 

powered analysis.

The load_code_files function does the following:

	 1.	 Uses the glob module to find all Python files (.py) within the 

specified directory ("./my_codebase") and its subdirectories 

(recursive=True)

	 2.	 Initializes an empty list called documents to store the 

extracted code
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	 3.	 Iterates over each Python file found:

•	 Opens the file in read mode with UTF-8 encoding

•	 Reads the entire content of the file

•	 Appends a dictionary containing the file’s path and content to 

the documents list

	 4.	 Returns the documents list, which now contains the path and 
source code of each Python file

The example usage calls load_code_files(), storing the result in documents. It then 

prints the total number of Python files loaded.

import glob

def load_code_files(directory="./my_codebase"):
    code_files = glob.glob(f"{directory}/**/*.py", recursive=True)
    documents = []
    for file_path in code_files:
        with open(file_path, "r", encoding="utf-8") as file:
            documents.append({"path": file_path, "content": file.read()})
    return documents

# Example Usage
documents = load_code_files()
print(f"Loaded {len(documents)} code files.")

�Step 4: Create and Store Code Embeddings
This code automates the process of loading, processing, and embedding a code base 

for efficient search and retrieval using LangChain and OpenAI embeddings.

First, it uses DirectoryLoader to scan the ./my_codebase directory (feel free to 

change it according to your needs) for all Python files (**/*.py) (you can look for the file 

extension according to your programming language). It loads these files into memory as 

documents, displaying a progress indicator during the process.

Next, the RecursiveCharacterTextSplitter is used to split the loaded code into 
smaller chunks of 500 characters, with a 50-character overlap between chunks. This 

ensures that when the AI retrieves and processes code, it maintains context across split 

sections.
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After splitting the code, embeddings are generated using OpenAI’s 

OpenAIEmbeddings, which converts each chunk into a vector representation. These 

embeddings allow for semantic search, meaning the AI can find relevant code snippets 

based on meaning rather than just exact keyword matches.

Finally, these embeddings are stored in a Chroma vector database using Chroma.
from_documents(docs, embedding_model), making the code searchable and retrievable 

based on AI-powered similarity searches.

This setup enables AI-powered code search, understanding, and analysis, making 

it useful for automated documentation, intelligent code retrieval, and AI-assisted 
debugging.

from langchain.document_loaders import DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import Chroma

# Load code files
loader = DirectoryLoader("./my_codebase", glob="**/*.py", show_
progress=True)
documents = loader.load()

# Split code into chunks
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.split_documents(documents)

# Generate embeddings
embedding_model = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(docs, embedding_model)

print("Code embeddings stored successfully!")

�Step 5: Create Retriever and Retrieval Chain
from langchain.chains import create_retrieval_chain
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.prompts import ChatPromptTemplate
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# Setup LLM
llm = ChatOpenAI(model="gpt-4", temperature=0)

# Create retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})

# Define the prompt template
prompt = ChatPromptTemplate.from_template(
    �"You are an AI code assistant. Explain the following query based on the 

code context:\n\nQuery: {input}\n\nContext: {context}"
)

# Create retrieval chain
qa_chain = create_retrieval_chain(retriever, prompt | llm | 
RunnablePassthrough())

# Function to Query the Codebase
def query_codebase(query):
    result = qa_chain.invoke({"input": query})  # Run the query
    print("\n Full Response:", result)  # Debug: print full output
    return result['answer']

# Example Usage
query = "How does the class Tomorrow work?"
response = query_codebase(query)
print("\n Search Result:\n", response)

This code sets up an AI-powered code retrieval and explanation system using 

LangChain, allowing users to ask questions about a code base and receive intelligent, 

context-aware responses.

First, it initializes a GPT-4 model using ChatOpenAI with temperature=0, ensuring 

deterministic responses for accurate code explanations.

Next, a retriever is created from the vectorstore, configured to return the top 
five most relevant code snippets (k=5) when queried. This ensures that only the most 

relevant parts of the code base are retrieved for explanation.
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A prompt template is then defined using ChatPromptTemplate.from_template(), 

instructing the AI to act as a code assistant. It dynamically inserts

•	 The user query ({input})

•	 The retrieved code context ({context})

This ensures that responses are directly based on the actual code base.

The retrieval chain (qa_chain) is then created using create_retrieval_chain(). It 

follows a structured pipeline:

	 1.	 Retrieve relevant code snippets (retriever)

	 2.	 Format the query and retrieved context into the prompt 

(prompt)

	 3.	 Generate an AI-powered explanation using GPT-4 (llm)

	 4.	 Pass through the final response (RunnablePassthrough())

The query_codebase function allows users to input a natural language question 
about the code base. It runs the qa_chain, processes the query, and returns an AI- 

generated response. For debugging, it also prints the full response object.

Finally, an example query is run:

•	 The user asks “How does the class Tomorrow work?” (replace it 
with your own query).

•	 The system searches the vectorized code base for relevant code 

snippets.

•	 GPT-4 generates an explanation based on the retrieved context.

•	 The response is printed, providing a clear AI-generated answer about 

the code.

This setup enables AI-powered code analysis, making it useful for developer 
assistance, code documentation, debugging, and understanding large code bases.

Output:

Search Result:
 content="The `Tomorrow` class is designed to handle asynchronous tasks 
in Python. It uses the `concurrent.futures.ThreadPoolExecutor` to manage 
a pool of worker threads that can execute tasks in parallel.\n\nHere's a 
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breakdown of how the `Tomorrow` class works:\n\n- The `__init__` method 
initializes an instance of the `Tomorrow` class with a `future` object 
and a `timeout` value. The `future` object represents a computation or 
I/O bound task that hasn't completed yet.\n\n- The `__getattr__` method 
waits for the result of the `future` object and then returns the attribute 
with the specified name from the result.\n\n- The `result` property is a 
shortcut for getting the result of the `future` object.\n\n- The `__iter__` 
method allows an instance of the `Tomorrow` class to be iterable. It waits 
for the result of the `future` object and then returns an iterator for the 
result.\n\n- The `_wait` method waits for the result of the `future` object 
with the specified timeout and then returns the result.\n\nThe `async_` 
function is a decorator that makes a function run asynchronously. It takes 
a number of threads `n`, a `base_type` which should be a type of executor, 
and an optional `timeout`. It returns a `Tomorrow` object that represents 
the asynchronous execution of the function.\n\nThe `threads` function is 
a shortcut for using the `async_` decorator with `ThreadPoolExecutor` 
as the `base_type`. It takes a number of threads `n` and an optional 
`timeout`, and returns a decorator that makes a function run asynchronously 
using a thread pool." additional_kwargs={} response_metadata={'token_
usage': {'completion_tokens': 338, 'prompt_tokens': 887, 'total_tokens': 
1225, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 
'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 
0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 
'model_name': 'gpt-4', 'system_fingerprint': None, 'finish_reason': 'stop', 
'logprobs': None} id='run-8368c60d-3758-41b5-ad9f-6f000b64c48d-0'

�App 11: Recommender System with LangChain
A Recommender System with LangChain is an AI-powered system that suggests 

relevant content, products, or information by leveraging LangChain’s capabilities in 

natural language processing, vector databases, and large language models (LLMs). It 

integrates retrieval-augmented generation (RAG) techniques, semantic search, and 

embeddings to provide intelligent and personalized recommendations.
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�How It Works

	 1.	 Data Ingestion and Processing: The system processes and 

structures input data, which could be product descriptions, 

research papers, articles, or user preferences.

	 2.	 Text Embedding and Vector Storage: Text data is converted 

into embeddings using models like OpenAIEmbeddings. The 

embeddings are stored in a vector database like FAISS, Pinecone, 

or ChromaDB.

	 3.	 Retrieval Based on Similarity: When a user queries the system, 

their input is also converted into an embedding and compared 

against stored embeddings to find the most relevant matches.

	 4.	 LLM-Enhanced Recommendations: A language model (such 

as GPT-4) can refine and explain the recommendations by 

generating context-aware suggestions based on retrieved results.

	 5.	 Personalization and Context Memory: By integrating memory 
mechanisms like ConversationBufferMemory(), the system can 

refine recommendations based on user preferences and past 

interactions.

�Step 1: Install and Import the Required Libraries
!pip install langchain openai==0.28 faiss-cpu tiktoken
!pip install -U langchain-community

These installation commands ensure that all necessary dependencies are available 

for building a LangChain-based AI system, such as a PDF chatbot or a recommender 
system. Here’s why each package is used:

•	 langchain: The core framework for integrating large language models 

(LLMs), vector databases, and retrieval-based AI applications.

•	 openai==0.28: Installs version 0.28 of the OpenAI Python package, 

which allows interaction with GPT-4, GPT-3.5, and embeddings 

models. Using a specific version ensures compatibility with 

LangChain.
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•	 faiss-cpu: A vector database optimized for fast similarity search, 

used to store and retrieve text embeddings efficiently.

•	 tiktoken: A tokenizer for OpenAI models that helps optimize token 

usage and ensures the chatbot stays within token limits.

•	 langchain-community: The updated package for community- 

supported integrations, replacing older LangChain modules for 

better maintenance and compatibility with third-party tools like 

FAISS, Pinecone, and OpenAI.

�Step 2: Generate and Add Your OpenAI API Key and Then 
Import All Libraries Required
from langchain.schema import Document
from langchain.vectorstores import FAISS
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferMemory
from langchain.embeddings import OpenAIEmbeddings
from langchain.chat_models import ChatOpenAI
from langchain.tools import Tool
from langchain.agents import initialize_agent

# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Load Up Some Sample Data
# Sample data (list of items to recommend)
data = [
    "The Lord of the Rings - A fantasy novel by J.R.R. Tolkien.",
    "Harry Potter - A young wizard's journey by J.K. Rowling.",
    "The Matrix - A sci-fi movie about a simulated reality.",
    "Inception - A movie about dreams within dreams.",
    "The Witcher - A fantasy book and TV series about a monster hunter.",
    "Game of Thrones - A TV series based on A Song of Ice and Fire.",
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    "Interstellar - A sci-fi movie about space exploration.",
    "Dune - A sci-fi novel by Frank Herbert about interstellar politics.",
    �"Blade Runner - A dystopian sci-fi movie exploring artificial 

intelligence.",
    �"Neuromancer - A cyberpunk novel by William Gibson about hackers 

and AI."
]

�Step 4: Convert Data into LangChain Document Format 
and Generate Embeddings
# Convert data into LangChain Document format
documents = [Document(page_content=item) for item in data]

# Generate Embeddings
embeddings = OpenAIEmbeddings()
vector_store = FAISS.from_documents(documents, embeddings)

The code above processes raw text data, converts it into LangChain’s Document 

format, and then generates vector embeddings to store in a FAISS database for efficient 

retrieval.

The first line transforms each item in the data list into a LangChain Document 

object, which is a standardized format for handling text in LangChain-based 

applications. This is necessary because LangChain’s retrieval mechanisms expect data to 

be in this structured format.

Next, an instance of OpenAIEmbeddings is created. This model converts text into 

numerical vector representations (embeddings), which enable semantic search—

meaning the system can find similar documents based on meaning rather than just 

keywords.

Finally, a FAISS vector store is created from the processed documents using their 

embeddings. FAISS (Facebook AI Similarity Search) is a vector database optimized for 

fast and efficient similarity search, allowing quick retrieval of relevant information from 

large datasets.
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�Step 5: Define an Advanced Retrieval Function
In the following, we define an advanced retrieval function that finds the most relevant 

documents based on a user’s query using vector similarity search.

The function get_advanced_recommendations takes three parameters:

	 1.	 query: The user’s input or search phrase

	 2.	 k: The number of top matching results to return (default is 3)

	 3.	 return_scores: A boolean flag indicating whether to return 

similarity scores alongside the recommendations

The function calls vector_store.similarity_search_with_score(query, k=k), 

which searches the FAISS vector store for the k most similar documents based on 

their embeddings. The results include both the retrieved document objects and their 

similarity scores.

If return_scores is True, the function returns a list of tuples containing both the 

document content and its similarity score. Otherwise, it returns only the document 

content without scores.

This approach enables semantic search and recommendation generation, making 

it useful for applications like chatbots, document retrieval systems, and AI-powered 
recommendation engines that need to find the most contextually relevant information.

# Define an advanced retrieval function
def get_advanced_recommendations(query, k=3, return_scores=False):
    �"""Returns the top-k most similar items based on user query, optionally 

with similarity scores."""
    �results_with_scores = vector_store.similarity_search_with_

score(query, k=k)
    if return_scores:
        �return [(doc.page_content, score) for doc, score in results_

with_scores]
    else:
        return [doc.page_content for doc, _ in results_with_scores]
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�Step 6: Integrate a QA System Using LangChain
Then, it’s time to set up a question-answering (QA) system using LangChain by 

integrating a retrieval-based approach with an LLM (GPT-4).

The RetrievalQA.from_chain_type function creates a QA pipeline that retrieves 

relevant information from a vector store before generating answers. It takes three key 

parameters:

	 1.	 llm=ChatOpenAI(model="gpt-4"): Uses OpenAI’s GPT-4 model to 

process and generate responses.

	 2.	 retriever=vector_store.as_retriever(): Converts the FAISS 
vector store into a retriever that can find the most relevant 

documents based on user queries.

	 3.	 chain_type="stuff": Specifies the document processing method. 

The "stuff" method takes the retrieved documents, combines 

their content, and passes them directly to the LLM for response 

generation.

This setup enables semantic search-based question answering, where the system 

retrieves the most relevant documents from the vector store and leverages GPT-4 to 

generate accurate, context-aware answers. It’s useful for chatbots, document search 
engines, and AI assistants that need to provide precise responses based on stored 

knowledge.

# Integrate a QA system using LangChain
qa_chain = RetrievalQA.from_chain_type(
    llm=ChatOpenAI(model="gpt-4"),
    retriever=vector_store.as_retriever(),
    chain_type="stuff"
)

�Step 7: Set Up an AI Conversational Agent
The code below continues by setting up an AI-powered conversational agent 

using LangChain, integrating both a question-answering (QA) system and a 

recommendation system with conversational memory.
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The answer_query function takes a user’s input and retrieves an AI-generated 

answer using the qa_chain.run(query) method. This ensures responses are based on 

relevant retrieved information.

A conversational memory is implemented using ConversationBufferMemory(mem
ory_key="chat_history"). This allows the chatbot to remember previous interactions, 

improving the coherence of multiturn conversations.

Two tools are defined using the Tool class:

	 1.	 recommendation_tool: Calls get_advanced_recommendations() 

to retrieve the top five most relevant recommendations based 

on a query, including similarity scores

	 2.	 qa_tool: Calls answer_query() to generate AI-powered answers 

based on retrieved documents

The LangChain Agent is then initialized using initialize_agent():

•	 It includes the QA and recommendation tools.

•	 Uses GPT-4 as the language model 

(llm=ChatOpenAI(model="gpt-4")).

•	 Implements a zero-shot-react-description agent, meaning the AI 

can reason and select the best tool dynamically.

•	 Maintains a conversation history using memory.

•	 Runs in verbose mode, providing detailed execution logs for 

debugging.

This setup enables the AI agent to act as an intelligent assistant, capable of both 

answering questions and providing recommendations in an interactive and memory- 

enhanced conversation.

# Function to answer user queries intelligently
def answer_query(query):
    """Returns an AI-generated answer based on retrieved information."""
    return qa_chain.run(query)

# Implement Conversational Memory
memory = ConversationBufferMemory(memory_key="chat_history")
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# Define tools for the LangChain agent
recommendation_tool = Tool(
    name="Recommendation System",
    �func=lambda query: get_advanced_recommendations(query, k=5, return_

scores=True),
    description="Provides top recommendations based on a user query."
)

qa_tool = Tool(
    name="QA System",
    func=answer_query,
    description="Answers questions using an AI-powered retrieval system."
)

# Initialize LangChain Agent
agent = initialize_agent(
    tools=[recommendation_tool, qa_tool],
    llm=ChatOpenAI(model="gpt-4"),
    agent="zero-shot-react-description",
    memory=memory,
    verbose=True
)

�Step 8: Test the System
# Example Queries
query = "I love sci-fi movies about space."
recommendations = get_advanced_recommendations(query, k=5, return_
scores=True)
print("Top Recommendations with Scores:")
for rec, score in recommendations:
    print(f"- {rec} (Score: {score:.4f})")

# Intelligent QA System Example
query_qa = "What are some movies about AI?"
answer = answer_query(query_qa)
print("\nAI-Powered Answer:")
print(answer)
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# Interactive Agent Example
user_input = "Give me a recommendation for fantasy books."
agent_response = agent.run(user_input)
print("\nAgent Response:")
print(agent_response)

op Recommendations with Scores:
- Interstellar - A sci-fi movie about space exploration. (Score: 0.2047)
- The Matrix - A sci-fi movie about a simulated reality. (Score: 0.3131)
- �Blade Runner - A dystopian sci-fi movie exploring artificial 
intelligence. (Score: 0.3341)

- �Dune - A sci-fi novel by Frank Herbert about interstellar politics. 
(Score: 0.3552)

- �Inception - A movie about dreams within dreams. (Score: 0.3911)
AI-Powered Answer:
Some movies about artificial intelligence include "Blade Runner" and "The 
Matrix".
> Entering new AgentExecutor chain...
The user is asking for a recommendation, not a factual answer.
Action: Recommendation System
Action Input: Fantasy books
Observation: [('The Lord of the Rings - A fantasy novel by 
J.R.R. Tolkien.', 0.2408208), ('The Witcher - A fantasy book and TV series 
about a monster hunter.', 0.27408585), ("Harry Potter - A young wizard's 
journey by J.K. Rowling.", 0.29327092), ('Dune - A sci-fi novel by Frank 
Herbert about interstellar politics.', 0.35180575), ('Game of Thrones - A 
TV series based on A Song of Ice and Fire.', 0.37026554)]
Thought:The recommendation system has provided a list of fantasy books. 
There's no need to go further.
Final Answer: Here are some fantasy books you might enjoy: 'The Lord of 
the Rings' by J.R.R. Tolkien, 'The Witcher' series, 'Harry Potter' series 
by J.K. Rowling, 'Dune' by Frank Herbert, and the 'Game of Thrones' series 
based on 'A Song of Ice and Fire'.
> Finished chain.
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Agent Response:
Here are some fantasy books you might enjoy: 'The Lord of the Rings' 
by J.R.R. Tolkien, 'The Witcher' series, 'Harry Potter' series by 
J.K. Rowling, 'Dune' by Frank Herbert, and the 'Game of Thrones' series 
based on 'A Song of Ice and Fire'.

�App 12: PDF Files Chatbot
A PDF Chatbot with LangChain is an AI-powered assistant designed to interact with 

and extract insights from PDF documents. Using LangChain, a framework for building 

applications with large language models (LLMs), the chatbot can read, process, and 

answer questions based on the content of uploaded PDFs. This enables users to 

efficiently search for specific information, summarize sections, or analyze documents 

without manually going through large amounts of text.

Typically, a PDF chatbot integrates text extraction tools (like PyMuPDF or 

PDFMiner), vector databases for semantic search, and LLM-powered reasoning to 

provide accurate responses. This makes it useful for legal documents, research papers, 

contracts, and reports, improving workflow automation and knowledge retrieval.

�Step 1: Install All Required Libraries
!pip install langchain pypdf faiss-cpu openai tiktoken
!pip install -U langchain-community

•	 langchain: The core framework that enables interaction with large 

language models (LLMs), document loading, vector databases, and 

reasoning capabilities.

•	 pypdf: A Python library for extracting text from PDF files, allowing the 

chatbot to read and process document content.

•	 faiss-cpu: A vector database library developed by Facebook AI for 

fast and efficient similarity search, crucial for storing and retrieving 

document embeddings.

•	 openai: Provides access to OpenAI’s LLMs (like GPT-4) for natural 

language understanding and generating responses.
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•	 tiktoken: A tokenizer used for counting tokens efficiently when 

working with OpenAI models, helping in cost estimation and 

ensuring token limits are managed properly.

•	 langchain-community: An updated version of LangChain’s 

community-supported integrations. It includes various third-party 

tool integrations (like OpenAI, FAISS, Pinecone, and more) for better 

support and maintenance.

Then, import them:

import os
import faiss
import pickle
import time
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory

�Step 2: Generate and Add Your OpenAI API Key
# Set API keys (Use environment variables for security)
import os
os.environ["OPENAI_API_KEY"] = <Your API Key>

�Step 3: Upload Your PDF Files, Access Them, and Create 
a Vector Store Database
The following code sets up a system to process PDFs, extract text, split it into chunks, and 

store the processed data in a FAISS vector database for efficient retrieval. It first defines a 

directory named “vector_store” where the FAISS database will be stored.
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The “load_pdfs” function takes a list of PDF file paths, extracts text from each 

file using “PyPDFLoader”, and compiles all extracted text into a list. It then uses 

“RecursiveCharacterTextSplitter” to break the text into smaller chunks of 500 

characters, ensuring a 100-character overlap between chunks for context preservation.

The “create_or_load_vector_store” function checks if a FAISS vector store 

already exists in the specified directory. If it does, it loads the stored embeddings using 

“FAISS.load_local”. If not, it processes the PDFs by calling “load_pdfs”, generates text 

embeddings using “OpenAIEmbeddings”, and creates a new FAISS vector store. This 

new vector store is then saved locally for future use. The function returns the vector 

store, enabling efficient document search and retrieval using vector similarity.

# Directory to store vector database
DB_FAISS_PATH = "vector_store"

# Load and Process PDFs
def load_pdfs(pdf_paths):
    all_documents = []
    for pdf in pdf_paths:
        loader = PyPDFLoader(pdf)
        documents = loader.load()
        all_documents.extend(documents)

    # Split text into chunks
    �text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_

overlap=100)
    chunks = text_splitter.split_documents(all_documents)
    return chunks

# Create or Load FAISS Vector Store
def create_or_load_vector_store(pdf_paths):
    if os.path.exists(DB_FAISS_PATH):
        print("[INFO] Loading existing vector store...")
        vectorstore = FAISS.load_local(DB_FAISS_PATH, OpenAIEmbeddings())
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    else:
        print("[INFO] Creating new vector store...")
        chunks = load_pdfs(pdf_paths)
        vectorstore = FAISS.from_documents(chunks, OpenAIEmbeddings())
        vectorstore.save_local(DB_FAISS_PATH)
    return vectorstore

�Step 4: Create a Chatbot with Memory
Then, we initialize a chatbot that can retrieve information from a vector store and 

engage in a conversation while maintaining memory. The get_chatbot function 

sets up a chatbot using the GPT-4 model through ChatOpenAI. It also initializes a 

ConversationBufferMemory to store the chat history, allowing the bot to remember 

previous exchanges within a session. The ConversationalRetrievalChain is then 

created, which enables the chatbot to retrieve relevant information from the vector store 

while keeping track of the conversation context.

The chat_with_bot function provides an interactive chat interface. It prints a 

message indicating that the chatbot is ready and waits for user input in a loop. If 

the user types “exit” or “quit,” the loop breaks, and the program terminates the chat 

session. Otherwise, the user’s query is passed to the qa_chain, which retrieves relevant 

information from the vector store and generates a response. The chatbot’s reply is then 

printed, allowing for a continuous back-and-forth interaction.

# Initialize Chatbot with Memory
def get_chatbot(vectorstore):
    llm = ChatOpenAI(model_name="gpt-4")
    �memory = ConversationBufferMemory(memory_key="chat_history", return_

messages=True)
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm, retriever=vectorstore.as_retriever(), memory=memory
    )
    return qa_chain

# Chat with the bot
def chat_with_bot(qa_chain):
    print("\n[INFO] Chatbot is ready! Type 'exit' to quit.")
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    while True:
        query = input("\nYou: ")
        if query.lower() in ["exit", "quit"]:
            print("\n[INFO] Exiting chat...\n")
            break
        response = qa_chain.run(query)
        print(f"Bot: {response}")

�Step 5: Ask the Chatbot and Receive an Answer
# Main function
if __name__ == "__main__":
    �pdf_files = ["Jira_Software.pdf", "ML+Cheat+Sheet_2.pdf"]  # Replace 

with your PDFs
    vectorstore = create_or_load_vector_store(pdf_files)
    chatbot = get_chatbot(vectorstore)
    chat_with_bot(chatbot)

Output:

[INFO] Creating new vector store...
<ipython-input-6-5c12dafc1a0e>:25: LangChainDeprecationWarning: The class 
`OpenAIEmbeddings` was deprecated in LangChain 0.0.9 and will be removed 
in 1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U 
:class:`~langchain-openai` and import as `from :class:`~langchain_openai 
import OpenAIEmbeddings``.
  vectorstore = FAISS.from_documents(chunks, OpenAIEmbeddings())
<ipython-input-7-ec9b7022866c>:3: LangChainDeprecationWarning: The class 
`ChatOpenAI` was deprecated in LangChain 0.0.10 and will be removed in 
1.0. An updated version of the class exists in the :class:`~langchain-
openai package and should be used instead. To use it run `pip install -U 
:class:`~langchain-openai` and import as `from :class:`~langchain_openai 
import ChatOpenAI``.
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  llm = ChatOpenAI(model_name="gpt-4")
<ipython-input-7-ec9b7022866c>:4: LangChainDeprecationWarning: Please 
see the migration guide at: https://python.langchain.com/docs/versions/
migrating_memory/
  �memory = ConversationBufferMemory(memory_key="chat_history", return_
messages=True)

[INFO] Chatbot is ready! Type 'exit' to quit.

You: What is the model in the Jira software pdf?
<ipython-input-7-ec9b7022866c>:18: LangChainDeprecationWarning: The method 
`Chain.run` was deprecated in langchain 0.1.0 and will be removed in 1.0. 
Use :meth:`~invoke` instead.
  response = qa_chain.run(query)
Bot: The model in the JIRA software PDF is a deep learning system designed 
to automate the categorization and prioritization of JIRA tickets. It aims 
to accurately extract relevant insights from ambiguous text, classify 
tickets based on urgency and relevance, and eliminate the manual triaging 
effort. The input to the model consists of a sequence of discrete tokens, 
represented as an integer vector. The study compares different approaches 
to address the complexity of JIRA ticket classification.

You: exit

[INFO] Exiting chat...

�Summary
In Chapter 3, we explored the development of advanced applications powered by large 

language models (LLMs) using LangChain and Python. We examined how LangChain 

provides a modular approach to building AI-driven solutions, enabling capabilities like 

multistep reasoning, dynamic interactions, and seamless data integration. Through 

practical implementations, such as YouTube video summarization and intelligent 

document analysis, we demonstrated how LLMs can be applied to real-world problems. 

Additionally, we addressed key challenges, including optimizing model behavior, 

handling errors, and ensuring application scalability in production environments.
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With a strong foundation in application development, we now shift our focus to 

deployment strategies in Chapter 4. Building LLM-powered applications is just the 

beginning—successfully deploying them at scale requires careful consideration of 

infrastructure, optimization, and performance management. This chapter explores 

cloud deployment strategies, memory and computational efficiency techniques, and 

best practices for ensuring security and scalability. By understanding the complexities 

of deploying LLM applications, you will be equipped to transition from development 

to real-world implementation, making AI-powered solutions accessible and efficient in 

production environments.
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CHAPTER 4

Deploying LLM-Powered 
Applications
The deployment of large language models (LLMs) marks a pivotal step in transforming 

cutting-edge AI research into impactful real-world applications. Whether enabling 

conversational agents, automating content creation, or driving decision-making tools, 

LLMs unlock opportunities for innovation across industries. However, deploying 

these powerful models is far from straightforward. It requires navigating a landscape 

of technical challenges, architectural choices, and optimization techniques to ensure 

performance, scalability, and efficiency in production environments.

This chapter focuses on the critical aspects of deploying LLM-powered applications, 

equipping you with the knowledge to tackle this complex process effectively. We will 

begin with an exploration of cloud deployment strategies and scalability considerations, 

essential for ensuring that your application can handle varying loads and user demands. 

Building on this foundation, we’ll delve into best practices for deploying LLMs in 

production, highlighting strategies that balance speed, cost, and reliability.

Next, we’ll explore the tools available for deploying LLMs, from infrastructure 

frameworks to model-serving solutions, providing a comprehensive toolkit to simplify 

and streamline the process. As with any cutting-edge technology, deploying LLMs 

comes with its challenges. From inference latency and memory constraints to managing 

large-scale infrastructure, we will identify the hurdles you may encounter and propose 

solutions to address them.

Optimization plays a central role in deploying LLMs effectively. We’ll examine 

memory optimization techniques and compression strategies that can reduce resource 

usage without compromising model performance. Additionally, we’ll investigate 

advanced techniques for optimizing attention layers, a critical component of LLMs, and 

explore scheduling optimizations at various levels—request, batch, and iteration—to 

enhance throughput and responsiveness.
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This chapter outlines the core strategies, tools, and challenges involved in deploying 

large language models at scale:

•	 Overview: Why LLM deployment matters and key challenges

•	 Deployment: Cloud setup, scalability, performance, and cost

•	 Integration: Hosted, prepackaged, and open source models

•	 Tools: Frameworks, platforms, and example workflows

•	 Optimization: Compression, attention, memory, and scheduling

•	 Challenges: Latency, scaling, reliability, and efficiency

•	 Takeaways: Best practices for scalable, ethical deployment

By the end of this chapter, you’ll gain a clear understanding of the strategies and 

tools necessary to deploy LLMs at scale, overcoming technical barriers while ensuring 

your applications meet the demands of users and stakeholders. Deploying LLM-powered 

applications is a multifaceted challenge, but with the right knowledge and approach, you 

can turn these models into practical, high-performing solutions that deliver real value. 

Let’s dive in.

Note  While this chapter includes examples and tools, its purpose is not to 
provide a definitive framework for deploying your LLM application. Each use case 
is unique and requires a tailored approach.

�Integrating LLMs into Web and Mobile Applications
Large language models (LLMs) have revolutionized how applications handle language 

understanding and generation, opening up possibilities for automating complex 

tasks, improving efficiency, and enhancing user experiences. From content creation 

and sentiment analysis to answering queries and driving conversational AI, LLMs 

can transform a variety of industries. However, integrating LLMs into your workflow 

requires thoughtful planning, as the method you choose will impact costs, scalability, 

customization, and privacy. Below, we explore three primary approaches to integrating 

LLMs: hosted models, prepackaged solutions, and deploying open source models.
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�Hosted Models
Hosted models offer the quickest and easiest way to access the capabilities of LLMs. 

Companies like OpenAI, Google Cloud Platform (GCP), and Azure provide hosted 

services, allowing users to interact with pretrained models like GPT or Gemini through 

APIs. This option eliminates the need for infrastructure setup or maintenance and allows 

even nontechnical teams to implement advanced AI features.

�How Hosted Models Work

Hosted models operate via API interfaces. Developers send requests (or “prompts”) to 

the service provider’s server and receive the model’s response. These APIs are typically 

well-documented and designed to be user-friendly, enabling seamless integration with 

existing systems.

Advantages of Hosted Models

•	 No Setup Required: Hosted models require no installation, 

infrastructure configuration, or optimization. This makes them ideal 

for teams with limited technical resources or those needing quick 

deployment.

•	 Scalability Managed by Providers: Cloud providers automatically 

scale resources to meet usage demands, ensuring smooth operation 

during peak loads.

•	 Simplified Interfaces: APIs abstract away technical complexities, 

making it easy to send text prompts and receive model responses.

•	 Rich Tooling Ecosystem: Hosted model providers offer a wide range 

of tools that streamline development, orchestration, and integration. 

For example:

•	 Anthropic’s Model Context Protocol (MCP): Enables advanced 

context management when using Claude in multiagent or tool-

augmented setups.

•	 OpenAI Function Calling and Assistant API: Allows developers 

to define tools/functions the model can invoke, making it easier 

to build agents and tool-using workflows.
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•	 LangChain and LlamaIndex Integrations: Many providers 

support or offer integrations with popular frameworks for 

chaining model calls, retrieval-augmented generation (RAG), and 

memory handling.

•	 Azure OpenAI Studio and Playground: Provides a GUI 

for model testing, prompt engineering, and deployment 

configuration directly from the cloud console.

•	 Google Vertex AI Extensions for Gemini: Supports building 

multimodal workflows, tool integration, and connecting to 

enterprise data sources.

Challenges of Hosted Models

•	 Cost: Usage fees are based on API calls or data processed, and costs 

can escalate with high-volume applications.

•	 Limited Customization: Hosted models are “as-is,” meaning 

users cannot fine-tune them for niche applications or domain-

specific needs.

•	 Data Privacy Concerns: Sending sensitive or proprietary data to a 

third-party server—such as through a hosted model or an external 

API like OpenAI’s—can be risky, particularly in sensitive industries 

like finance, healthcare, or legal services. However, if you self-host an 

LLM on a VPN-enabled server, many of these data privacy concerns 

can be significantly mitigated, since the data remains within your 

controlled environment.

Hosted models are best suited for projects with minimal customization needs, 

moderate budgets, and tight timelines. They are also a great choice for prototyping and 

proof-of-concept work, allowing teams to experiment with LLM capabilities before 

committing to more complex implementations.
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�Prepackaged Models
Prepackaged models provide a balance between ease of use and control. These are 

pretrained language models offered by platforms like Hugging Face, optimized and 

bundled with essential tools for deployment. Designed to simplify the deployment 

process, prepackaged models allow users to leverage advanced AI while retaining more 

control over their infrastructure.

Components of Prepackaged Models

•	 Model Selection: Models are pretrained on large datasets and 

fine-tuned for specific domains, enabling applications in areas like 

customer support, healthcare, or finance.

•	 Optimization: To enhance performance and efficiency, prepackaged 

models are optimized using techniques such as

•	 Quantization: Reduces memory usage and speeds up inference 

by converting model parameters to lower precision formats

•	 Pruning: Removes redundant parameters, reducing model size 

without significantly affecting accuracy

•	 Distillation: Creates a smaller “student” model trained to mimic 

the larger model’s behavior, improving efficiency for deployment

•	 Bundled Software: These models come with preintegrated software 

components such as

•	 Inference Engines: Optimize the execution of model 

computations

•	 APIs or SDKs: Provide user-friendly interfaces for developers to 

interact with the model

•	 Deployment Scripts: Facilitate the installation and configuration 

of models on different platforms.

•	 Documentation: Includes detailed guides on setup, usage, and 

troubleshooting
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Advantages of Prepackaged Models

•	 Better Control: Compared to hosted models, prepackaged models 

allow users to fine-tune and optimize for specific use cases.

•	 Data Privacy: Models can be deployed on private infrastructure, 

ensuring sensitive data never leaves the organization’s systems.

•	 Streamlined Setup: Prepackaged solutions simplify what could 

otherwise be a highly complex deployment process.

Challenges of Prepackaged Models

•	 Technical Expertise Needed: While more accessible than open 

source models, prepackaged solutions still require some familiarity 

with infrastructure setup and maintenance.

•	 Upfront Investment: Infrastructure and initial deployment may 

require financial and resource investment.

Prepackaged models are ideal for organizations looking to maintain some control 

over data and customization while leveraging ready-made tools to simplify deployment.

�Deploying Open Source Models

Open source models provide the highest level of control and flexibility. Developers 

download model weights (parameters) and adapt the models to their unique 

requirements. Open source solutions are often shared through repositories like 

Hugging Face, providing a wide range of options from lightweight models to highly 

advanced LLMs.

�Steps to Deploy Open Source Models

•	 Model Selection: Choose a model that aligns with your application’s 

goals, such as accuracy, efficiency, or resource constraints.

•	 Download the Model: Use repositories like Hugging Face’s 

Transformers library to access and load the model.
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•	 Environment Setup: Configure hardware (GPUs, TPUs) and software 

environments. Popular frameworks include

•	 Text Generation Inference (TGI): Optimized for large-scale text 

generation

•	 Transformer Agents: For specific applications requiring complex 

workflows

Model Deployment

•	 Local Deployment: For testing or small-scale applications, a local 

environment is sufficient.

•	 Cloud Deployment: For large-scale use, containerization (e.g., 

Docker) is often employed to manage dependencies and streamline 

deployment.

Advantages of Open Source Deployment

•	 Maximum Control: Users can customize, fine-tune, and modify 

models to suit specific needs.

•	 Data Privacy: By deploying models on local or private infrastructure, 

organizations maintain complete control over sensitive data.

•	 Cost Efficiency: While initial setup costs may be high, eliminating 

API usage fees can lead to significant long-term savings.

Challenges of Open Source Deployment

•	 High Technical Expertise Required: Teams must have a strong 

background in machine learning, model optimization, and 

infrastructure management.

•	 Complex Setup: Deployment requires significant time and effort, 

especially for large models that demand high computational 

resources.

•	 Maintenance: Ongoing updates and optimizations are necessary to 

ensure the model remains performant and efficient.

Open source deployment is best suited for organizations with advanced technical 

capabilities and a need for tailored solutions.
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�Factors to Consider When Choosing a Method
When deciding how to integrate LLMs into your applications, consider these key factors:

Technical Expertise

•	 Hosted models are ideal for beginners or teams with limited 

technical skills.

•	 Prepackaged models require moderate technical expertise.

•	 Open source models demand advanced skills in machine learning 

and infrastructure management.

Data Privacy

•	 If handling sensitive or proprietary data, avoid hosted models where 

data is transmitted to third-party servers.

•	 Prepackaged and open source models deployed on private 

infrastructure offer greater privacy.

Cost

•	 Hosted models involve ongoing operational costs tied to usage.

•	 Prepackaged models balance initial setup costs with manageable 

long-term expenses.

•	 Open source models require significant upfront investment in 

infrastructure but eliminate recurring API fees.

Scalability

•	 Hosted models handle scaling automatically.

•	 Prepackaged solutions often include tools for scaling in cloud 

environments.

•	 Open source models require custom scaling solutions, increasing 

complexity.

Customization Needs

•	 Hosted models provide limited customization.

•	 Prepackaged and open source models enable significant 

customization for domain-specific tasks.
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Integrating large language models into your applications can unlock powerful 

capabilities, but the method you choose depends on your specific needs, resources, and 

constraints. Hosted models offer unparalleled simplicity and scalability but come with 

ongoing costs and privacy trade-offs. Prepackaged models provide a middle ground, 

offering ease of deployment with more control over customization. Open source models 

give full flexibility and privacy but require significant technical expertise and effort.

By carefully evaluating your project’s goals, budget, and technical capacity, you can 

select the method that aligns best with your objectives. Whether you prioritize speed 

to market, control over data, or long-term cost savings, there is an approach to fit your 

needs, enabling you to leverage the transformative power of LLMs.

�LLM Cloud Deployment and 
Scalability Considerations
Deploying and scaling a large language model (LLM) in the cloud is a multifaceted 

process that requires thorough planning, precise execution, and ongoing management. 

To ensure efficient performance, high availability, and cost-effectiveness, several aspects 

must be carefully considered. Below is an in-depth exploration of these considerations.

�Deployment Architecture
The architecture of an LLM deployment forms the foundation of its performance 

and scalability. Key architectural considerations include the use of load balancers to 

distribute incoming requests evenly across model instances. This ensures that no single 

instance becomes a bottleneck and enhances system reliability. Cloud-native load 

balancers, such as those provided by AWS, Google Cloud, and Microsoft Azure, are well-

suited for this purpose.

Auto-scaling is another essential feature, enabling the infrastructure to 

dynamically adjust the number of model instances based on request volume and latency 

metrics. This ensures optimal resource utilization and cost-effectiveness during periods 

of fluctuating demand. Advanced auto-scaling setups might involve predictive scaling, 

where machine learning models forecast demand based on historical data, allowing for 

preemptive scaling to avoid latency spikes.
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Caching frequently requested responses can significantly reduce computational 

load and improve response times. For example, implementing a cache layer for common 

queries ensures that these can be served without invoking the full inference pipeline. 

Leveraging distributed cache systems such as Redis or Memcached can add scalability 

and reliability to the caching layer.

Queue systems for asynchronous processing are valuable for handling 

workloads where immediate responses are not required. These systems decouple 

request submission from processing, allowing for better resource management during 

peak traffic periods. For example, tasks like batch translations or large document 

summarizations can be offloaded to a message queue system like RabbitMQ or AWS 

SQS, ensuring seamless operation even during high-demand periods.

�Infrastructure
The infrastructure supporting LLM deployments must be optimized for high-

performance inference. GPU clusters are essential for handling the computational 

demands of LLMs, particularly during inference. Monitoring GPU utilization ensures 

that resources are effectively used and identifies underutilized instances for cost savings. 

Advanced GPU resource management might involve GPU pooling or dynamic resource 

reallocation to ensure maximum efficiency.

Memory and storage optimization is critical for managing large model weights. 

Techniques such as model sharding, where weights are distributed across multiple 

devices, can help accommodate larger models. Additionally, ensuring sufficient storage 

bandwidth and capacity minimizes bottlenecks during inference. Employing high-speed 

NVMe storage or direct-attached storage (DAS) can provide the necessary throughput 

for data-intensive operations.

Network capacity planning is another vital consideration. High-throughput 

inference requires robust networking to minimize latency and ensure smooth data flow 

between components. Using software-defined networking (SDN) or high-bandwidth 

interconnects can further enhance network performance. Employing container 

orchestration tools like Kubernetes streamlines the deployment process, providing 

scalability, fault tolerance, and simplified management. Kubernetes operators designed 

for AI workloads, such as Kubeflow, can further enhance the efficiency of managing LLM 

deployments.
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�Performance
Optimizing the performance of LLM systems involves several strategies. Model 

quantization reduces the precision of weights and activations (e.g., from FP32 to INT8), 

lowering computational requirements and speeding up inference without significantly 

affecting accuracy. Similarly, model distillation creates smaller, efficient models that 

replicate the performance of larger ones. These methods not only improve performance 

but also reduce infrastructure costs.

Batching requests is an effective way to maximize GPU utilization. By processing 

multiple requests simultaneously, batching reduces overhead and increases throughput. 

This approach is especially effective in high-demand environments, such as customer 

support systems or real-time recommendation engines.

Response streaming allows the system to deliver initial tokens of a response while 

generating subsequent tokens. This approach improves perceived latency and is 

particularly useful for conversational applications, such as chatbots or virtual assistants. 

Integrating response streaming with adaptive pacing algorithms can further refine user 

experience by dynamically adjusting token delivery based on network conditions and 

user interaction.

Load testing is critical for identifying performance bottlenecks and ensuring that the 

system can handle expected traffic volumes. Tools like Locust or JMeter can simulate 

workloads and provide actionable insights. More advanced testing setups might involve 

chaos engineering techniques, where intentional disruptions are introduced to test the 

system’s resilience under failure scenarios.

�Cost Management
Effective cost management ensures the sustainability of LLM deployments. Instance 

right-sizing involves selecting hardware configurations that align with workload patterns. 

Overprovisioning resources can lead to unnecessary expenses, while underprovisioning 

can impact performance. Regular audits of resource utilization can identify 

opportunities to optimize costs.

Spot instances, which offer spare cloud capacity at reduced prices, are ideal for 

noncritical workloads or batch processing. However, these instances can be preempted, 

so they should be used with failover mechanisms. Employing checkpointing techniques 

allows for intermediate progress to be saved, minimizing the impact of instance 

termination.
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Multiregion deployments reduce latency by bringing resources closer to end users. 

This approach also enhances availability by providing redundancy in case of regional 

outages. Utilizing cost-efficient regions for noncritical workloads can further optimize 

expenses without compromising service quality.

Resource allocation based on priority tiers ensures that critical workloads receive the 

necessary resources, while lower-priority tasks are executed with cost-saving measures. 

Implementing tiered resource allocation policies can streamline budgeting and 

operational efficiency.

�Monitoring
Robust monitoring practices are essential for maintaining the health and performance 

of LLM systems. Key metrics to monitor include inference latency, throughput, error 

rates, and resource utilization across the stack. Tools like Prometheus, Grafana, and 

cloud-native monitoring services can provide real-time visibility into these metrics. For 

more granular monitoring, integrating AI-focused observability tools like MLFlow or 

SageMaker Monitor can track model-specific performance indicators.

Monitoring model performance is crucial for detecting degradation over time. 

Regular evaluations can identify when retraining or fine-tuning is needed. Drift 

detection mechanisms can flag changes in input data distribution that may affect model 

accuracy, prompting timely intervention.

Cost per inference tracking provides insights into the economic efficiency of the 

deployment, helping teams identify opportunities for optimization. Establishing 

alerts for anomalies in resource utilization or costs ensures proactive issue resolution. 

Additionally, employing predictive analytics can forecast resource requirements, aiding 

in more strategic planning.

�High Availability and Fault Tolerance
To ensure reliability, LLM deployments must be designed for high availability and 

fault tolerance. Deploying resources across multiple regions provides redundancy 

and ensures that services remain available even during regional outages. Advanced 

configurations might involve active-active setups, where multiple regions actively serve 

requests, further enhancing reliability and reducing latency.
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Regular backups of model weights, configurations, and data are essential for disaster 

recovery. Automated recovery mechanisms should be in place to restore services 

quickly in case of failures. Implementing retry logic in the communication between 

components can address transient errors and enhance overall reliability. For critical 

workloads, employing consensus protocols like Raft or Paxos can ensure consistent state 

management across distributed systems.

�Compliance and Ethics
Compliance with data privacy regulations, such as GDPR or CCPA, is essential when 

deploying LLMs. This involves securing user data, obtaining necessary consents, 

and implementing robust data governance policies. Leveraging privacy-preserving 

techniques such as differential privacy or federated learning can further enhance 

compliance.

Bias mitigation is another critical consideration. Regular audits of the model’s 

behavior can help detect and reduce biases, ensuring fair and ethical outcomes. 

Incorporating fairness metrics into the development pipeline can provide ongoing 

insights into model behavior. Transparency about the model’s limitations and behavior 

builds trust with users and stakeholders. Creating detailed documentation and user 

guides about model use cases and potential risks enhances accountability.

Deploying and scaling LLMs in the cloud is a complex but rewarding endeavor. 

By carefully considering deployment architecture, infrastructure, performance, cost 

management, monitoring, high availability, and compliance, organizations can create 

reliable, efficient, and ethical solutions. Continuous improvement and adaptation to 

emerging technologies and challenges will ensure long-term success in leveraging the 

power of LLMs. In this rapidly evolving field, staying informed and proactive will be key 

to maintaining competitive advantage and delivering value to users.

�Tools for Deploying LLMs
�Model Hosting Frameworks
Frameworks and libraries provide the foundation for hosting and serving machine 

learning models, enabling developers to create robust APIs and interfaces.
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•	 Hugging Face Transformers: One of the most popular libraries for 

working with LLMs. It supports pretrained models for tasks like text 

generation, summarization, and more. The library includes extensive 

integration with other tools for fine-tuning and deployment.

•	 Hugging Face Accelerate: Simplifies the deployment of models on 

distributed systems and multi-GPU setups. It integrates seamlessly 

with Hugging Face Transformers, making it ideal for scaling up 

training or inference.

•	 FastAPI: A modern, high-performance web framework for Python 

that allows developers to quickly create APIs for exposing LLM 

functionalities. Its asynchronous capabilities make it highly suitable 

for LLM inference.

•	 Flask: Lightweight and simple, Flask is often used for prototyping 

and building small-scale APIs to serve models.

•	 TorchServe: Specifically designed for PyTorch models, 

TorchServe offers features like batch inference, metrics tracking, 

and customizable handlers for complex preprocessing or 

postprocessing tasks.

•	 TensorFlow Serving: A powerful system for serving TensorFlow 

models at scale, with built-in support for versioning and A/B testing 

of deployed models.

•	 Gradio: A low-code framework to create user interfaces for LLMs. 

It’s perfect for building demos or interactive applications for text 

generation, question answering, or other LLM tasks.

•	 Streamlit: Similar to Gradio, but more focused on building 

dashboards and interactive data-driven applications for LLM 

outputs.

•	 BentoML: Offers an end-to-end workflow for deploying and serving 

machine learning models. It supports multiple back ends and 

provides a unified interface for deployment.

•	 TRITON Inference Server: Developed by NVIDIA, Triton supports 

multiple machine learning frameworks (e.g., PyTorch, TensorFlow, 

ONNX) and offers GPU-optimized inference pipelines.
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�Example: Saving a Model Locally, Uploading It to Hugging 
Face, and Calling It

	 1.	 Install transformers and huggingface_hub: type: pip install 
transformers==4.50.3 huggingface_hub==0.30.1

	 2.	 Log in to Hugging Face: type: huggingface-cli login

	 3.	 Save your model locally. For this example, let’s save a pretrained 

distilbert-base-uncased model.

from transformers import AutoModelForSequenceClassification, 
AutoTokenizer
# Load the model and tokenizer
model_name = "distilbert-base-uncased"
model = AutoModelForSequenceClassification.from_
pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Save the model and tokenizer locally
model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")

	 4.	 Upload the model to Hugging Face

from huggingface_hub import upload_folder

from huggingface_hub import create_repo
create_repo(repo_name)
# Define your repository name
repo_name = "your-username/my-first-model"

# Upload the model directory
upload_folder(
    folder_path="./my_model",
    repo_id=repo_name,
    commit_message="Initial model upload"
)
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print(f"Model uploaded to https://huggingface.co/{repo_name}")

Your model will now be available at https://huggingface.co/your-
username/my-first-model.

	 5.	 Calling the model

from transformers import AutoModelForSequenceClassification, 
AutoTokenizer

# Load the model from Hugging Face
model_name = "your-username/my-first-model"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_
pretrained(model_name)

# Example text
input_text = "Hugging Face makes working with AI easy and fun!"
inputs = tokenizer(input_text, return_tensors="pt")

# Get predictions
outputs = model(**inputs)
print(outputs.logits)  # Logits for classification

Output:

It depends on the specific task your model is designed to solve.

�Optimization Tools
Optimization tools are essential for reducing inference latency and memory usage, 

especially when deploying large models.

•	 ONNX (Open Neural Network Exchange): Converts models to an 

open format that can run on optimized runtimes across various 

hardware architectures. ONNX is a critical step for deploying LLMs 

on diverse platforms.

•	 ONNX Runtime: An execution engine for ONNX models that 

accelerates inference through hardware-specific optimizations.
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•	 DeepSpeed: Designed for both training and inference, DeepSpeed 

offers features like ZeRO optimization to handle memory-intensive 

LLMs, making it possible to train and deploy models with limited 

resources.

•	 NVIDIA TensorRT: Provides GPU-accelerated inference by 

optimizing neural networks, particularly effective for transformer-

based architectures.

•	 Hugging Face Optimum: A library that bridges Hugging Face 

Transformers with optimized inference techniques using ONNX, 

TensorRT, and other acceleration technologies.

•	 Intel Neural Compressor: Specializes in quantizing models to lower 

precision (e.g., INT8) for faster inference on Intel processors.

•	 BitsAndBytes: A tool for quantizing large models down to as low 

as 4-bit precision, ideal for reducing resource demands without 

significant performance loss.

•	 OpenVINO: An Intel toolkit that optimizes and deploys models for 

CPUs, GPUs, and edge devices, suitable for use cases where LLMs 

need to run in constrained environments.

•	 TVM/Apache TVM: A deep learning compiler stack that automates 

optimization and deployment across a wide range of hardware 

platforms.

•	 vLLM is a high-performance inference and serving engine designed 

to optimize the deployment of large language models (LLMs). It 

addresses common performance bottlenecks such as inefficient 

memory usage, high latency, and limited throughput under 

concurrent workloads.

vLLM stands for virtualized LLM. It is an open source project 

developed to support fast, efficient, and scalable LLM inference, 

particularly in production environments or applications with high 

traffic and real-time demands.
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•	 Key Optimizations and Features

•	 PagedAttention Mechanism: Traditional inference systems 

allocate fixed memory blocks for each request, often leading 

to fragmentation and underutilization. vLLM introduces 

PagedAttention, a dynamic memory management scheme 

that allocates attention key/value caches more efficiently. 

This allows for better memory utilization, the ability to serve 

many concurrent requests, and improved performance in 

real-time scenarios.

•	 High Throughput and Low Latency: vLLM is designed to 

minimize token-level processing overhead, enabling fast 

generation and response times even with large models. This 

makes it particularly well-suited for applications that rely 

on streaming outputs, such as chat interfaces or interactive 

assistants.

•	 Multitenancy and Session Management: vLLM supports 

multiple simultaneous sessions by virtualizing GPU memory 

usage. This enables multiple users or model endpoints to 

share GPU resources without the need for duplicating model 

weights or running separate processes.

•	 OpenAI-Compatible API: vLLM provides an OpenAI-

compatible API interface, making it easy to integrate with 

existing services and tools that rely on OpenAI’s format. 

This allows for quick migration or testing without significant 

changes to the frontend or client infrastructure.

•	 Integration and Ecosystem: vLLM is compatible with 

Hugging Face Transformers and can leverage additional 

performance enhancements through integrations with 

FlashAttention, DeepSpeed, and Triton kernels. This 

flexibility makes it a strong choice for both research and 

production use.
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�ONNX Example

	 1.	 Install required libraries

pip install torch transformers onnx onnxruntime

	 2.	 Export a PyTorch model to ONNX. We will use a Hugging Face 

transformer model (e.g., distilbert-base-uncased) and save it in 

ONNX format.

import torch
from transformers import AutoTokenizer, 
AutoModelForSequenceClassification

# Load model and tokenizer
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_
pretrained(model_name)

# Example input
text = "Hugging Face makes AI accessible."
inputs = tokenizer(text, return_tensors="pt")

# Export the model to ONNX
torch.onnx.export(
    model,                                      # Model
    �(inputs["input_ids"], inputs["attention_mask"]),  # �Input 

arguments
    "model.onnx",                               # Output file
    input_names=["input_ids", "attention_mask"], # Input names
    output_names=["logits"],                    # Output name
    �dynamic_axes={"input_ids": {0: "batch_size"}, "attention_

mask": {0: "batch_size"}},  # Dynamic batch
    �opset_version=11                            # ONNX 

opset version
)

print("Model exported to ONNX format as 'model.onnx'")
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	 3.	 Run the ONNX model using ONNX Runtime. Load the ONNX 
model, and perform inference using the ONNX Runtime 
library:

import onnxruntime as ort
import numpy as np

# Load the ONNX model
onnx_model_path = "model.onnx"
ort_session = ort.InferenceSession(onnx_model_path)

# Tokenize the input text
inputs = tokenizer(text, return_tensors="np")  �# Use NumPy format 

for ONNX Runtime

# Prepare inputs
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]

# Run inference
outputs = ort_session.run(
    None,  # Output names (None means all outputs)
    �{"input_ids": input_ids, "attention_mask": attention_mask},  # 

Input dictionary
)

# Extract logits
logits = outputs[0]
print("Logits:", logits)

Output:

It depends on the specific task your model is designed to solve.

�Cloud Services
Cloud platforms provide the necessary compute resources and infrastructure to host 

LLMs at scale.
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•	 AWS SageMaker: An end-to-end machine learning platform with 

tools for training, tuning, and deploying LLMs. SageMaker endpoints 

allow for seamless integration with other AWS services.

•	 Google Cloud Vertex AI: A managed service that supports 

training and deploying large models with TPU integration for high 

performance.

•	 Microsoft Azure: Offers the OpenAI Service, allowing users to 

leverage GPT models like GPT-4 and Codex directly within their 

applications.

•	 IBM Watson Studio: Focuses on enterprise-grade AI, providing tools 

for building, deploying, and managing large-scale AI applications.

•	 Lambda Labs: Specializes in high-performance GPUs for 

training and serving LLMs, ideal for teams requiring raw 

computational power.

•	 Paperspace Gradient: Simplifies LLM workflows with preconfigured 

infrastructure and tools for collaborative model development.

•	 Replicate: Provides hosted APIs for deploying pretrained models 

with minimal configuration.

•	 Modal: Allows seamless deployment of machine learning pipelines 

to the cloud with support for GPUs and scalable infrastructure.

�AWS SageMaker Example

	 1.	 Install the required libraries: pip install boto3 sagemaker 
transformers.

Ensure you have an AWS account and the AWS CLI configured 

with appropriate permissions to use SageMaker.

	 2.	 Upload a pretrained model to S3.

import boto3
from transformers import AutoModelForSequenceClassification, 
AutoTokenizer
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# AWS setup
bucket_name = "your-s3-bucket-name"  �# Replace with your S3 

bucket name
prefix = "models/bert"              �# Folder path in the bucket
s3 = boto3.client("s3")

# Load pre-trained model
model_name = "distilbert-base-uncased"
model = AutoModelForSequenceClassification.from_
pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Save model locally
model.save_pretrained("./model")
tokenizer.save_pretrained("./model")

# Upload to S3
s3.upload_file("./model/config.json", bucket_name, f"{prefix}/
config.json")
s3.upload_file("./model/pytorch_model.bin", bucket_name, 
f"{prefix}/pytorch_model.bin")
s3.upload_file("./model/tokenizer_config.json", bucket_name, 
f"{prefix}/tokenizer_config.json")
s3.upload_file("./model/vocab.txt", bucket_name, f"{prefix}/
vocab.txt")
print(f"Model uploaded to S3: s3://{bucket_name}/{prefix}")

	 3.	 Deploy the model on SageMaker. Use SageMaker to deploy the 
model as an endpoint.

import sagemaker
from sagemaker.huggingface import HuggingFaceModel

# Specify the model's S3 location
model_data = f"s3://{bucket_name}/{prefix}"

# Define the Hugging Face model parameters
huggingface_model = HuggingFaceModel(
    model_data=model_data,

Chapter 4  Deploying LLM-Powered Applications



245

    role="your-sagemaker-execution-role",  �# Replace with your IAM 
role for SageMaker

    transformers_version="4.17",          �# Adjust based on the 
model's version

    pytorch_version="1.10",
    py_version="py38",
)

# Deploy the model as a SageMaker endpoint
predictor = huggingface_model.deploy(
    initial_instance_count=1,
    instance_type="ml.m5.large",  # Instance type for hosting
)
print("Model deployed to SageMaker!")

	 4.	 After deploying the model, you can send data to the endpoint 
for inference.

# Example text
input_text = "SageMaker makes deploying ML models easy!"

# Prepare the input for the model
data = {"inputs": input_text}

# Send the data to the deployed endpoint
response = predictor.predict(data)

# Print the model's prediction
print("Model Prediction:", response)

�Orchestration and Scaling
As deployments grow, orchestration and scaling tools help manage complexity and 

ensure reliability.

•	 Kubernetes: A container orchestration system for managing 

distributed applications. It’s widely used for scaling LLM 

deployments in production.
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•	 Ray Serve: A scalable model serving library built on the Ray 

framework, suitable for distributed inference workloads.

•	 Kubeflow: A Kubernetes-native platform for building and deploying 

end-to-end machine learning workflows.

•	 MLflow: A tool for tracking experiments, packaging models, and 

managing deployments. MLflow simplifies version control and 

collaborative workflows.

•	 Airflow: Workflow orchestration tool to automate the deployment 

and monitoring of LLM pipelines.

•	 Argo Workflows: Provides Kubernetes-native workflows for 

automating complex multistep processes.

�Edge and Mobile Deployment
Deploying LLMs to edge devices ensures low-latency inference and privacy preservation.

•	 TensorFlow Lite: Optimizes TensorFlow models for mobile and 

embedded systems, with support for hardware acceleration

•	 PyTorch Mobile: Enables PyTorch models to run on mobile devices, 

supporting custom optimizations

•	 NVIDIA Jetson Platform: Combines hardware and software for 

deploying LLMs on edge devices with GPU acceleration

•	 CoreML: Apple’s framework for running machine learning models on 

iOS/macOS devices

•	 Edge Impulse: Simplifies deploying LLMs to constrained edge 

hardware for industrial applications

�APIs for Hosted Models
For developers who prefer using hosted solutions, APIs offer a quick way to access 

powerful LLMs.

•	 OpenAI API: Provides access to GPT models for a wide range of 

applications, from chatbots to text summarization
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•	 Cohere API: Focused on NLP tasks like embeddings, classification, 

and generation

•	 Anthropic Claude API: Offers conversational models with an 

emphasis on safety and alignment

•	 AI21 Labs API: Provides robust LLMs like Jurassic for various text-

processing tasks

�Distributed Inference and Fine-Tuning
Handling large models across multiple nodes or GPUs requires specialized tools.

•	 DeepSpeed-Inference: Optimized for scaling LLM inference across 

distributed systems

•	 Alpa: Automates parallelization strategies for large-scale models

•	 FlexGen: Enables efficient inference of large models on limited 

hardware

•	 FasterTransformer: NVIDIA’s library for high-speed transformer 

model inference

�Monitoring and Observability
To ensure models perform well in production, monitoring tools are essential.

•	 Prometheus: Collects real-time metrics for system and model 

monitoring

•	 Grafana: Visualizes performance metrics in interactive dashboards

•	 Datadog: Offers observability tools for tracking model and 

system health

•	 Weights & Biases (W&B): Tracks experiments and monitors 

deployed models
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�LLM Inference Challenges: A Comprehensive Exploration
Deploying large language models (LLMs) for inference has become one of the most 

pressing challenges in modern AI systems. As these models grow in size and complexity, 

their potential for high-quality natural language understanding and generation is 

matched by the technical difficulties of serving them in production environments. Below 

is a deeper exploration of the key challenges and emerging solutions.

�Latency in Inference

Latency remains one of the most critical challenges in LLM inference, especially for 

real-time applications. Unlike traditional models, which can often process entire inputs 

in parallel, LLMs use autoregressive decoding during text generation. This means they 

generate outputs token by token, where the computation of each token depends on the 

previous one. This sequential nature introduces inherent delays, particularly noticeable 

in tasks requiring long-form outputs, such as content generation or summarization.

Further exacerbating latency issues is the variability in request complexity. Some 

inputs may require only a few steps of computation, while others—due to higher token 

counts or more complex prompts—demand significantly longer processing times. 

Balancing these requirements while maintaining consistent response times is an 

ongoing area of optimization.

�Computational Demands and Resource Constraints

LLMs are computationally intensive. A single inference operation can require trillions 

of floating-point operations (FLOPs), even for moderately sized inputs. These demands 

necessitate the use of high-performance hardware, such as GPUs or TPUs. However, 

such hardware is expensive and limited in availability, making large-scale deployment a 

costly endeavor.

Moreover, memory requirements for LLM inference are immense. For instance, 

storing model weights for a 175-billion-parameter model like GPT-3 requires over 

700 GB of memory in its full-precision form. This memory requirement grows when 

considering additional overhead for processing large batch sizes, caching intermediate 

computations, or handling multiple concurrent requests. Techniques like model 

quantization, weight sharing, and offloading parts of the computation to disk or slower 

memory are frequently used to mitigate this challenge but often at the expense of 

throughput or accuracy.
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�Scalability and Multitenancy

Scalability is essential for deploying LLMs in environments with high and variable traffic. 

Inference systems must handle thousands or even millions of concurrent requests while 

ensuring consistent quality and low latency. This challenge becomes more pronounced 

in multitenant systems, where multiple users or applications share the same underlying 

infrastructure. Resource allocation in such environments must be dynamic and efficient 

to avoid resource contention or overprovisioning.

Load balancing is a critical component of scalability. Requests must be distributed 

intelligently across available hardware to ensure that no single device becomes 

a bottleneck. Strategies such as request-level load balancing, horizontal scaling 

(replicating the model across devices), and vertical scaling (improving individual device 

performance) are common solutions, though they introduce their own complexities in 

deployment and maintenance.

�The Trade-Off Between Batching and Responsiveness

Batching multiple inference requests is a widely used technique to improve hardware 

utilization and throughput. By grouping requests, the system can process them in 

parallel, leveraging the full computational capabilities of GPUs or TPUs. However, 

batching comes with a trade-off: as batch sizes increase, the time individual requests 

spend waiting for others to join the batch grows, leading to higher latency.

Dynamic batching algorithms aim to strike a balance between these competing 

goals. By adaptively adjusting batch sizes based on workload and latency requirements, 

these systems can optimize for both throughput and responsiveness. Nonetheless, fine-

tuning these algorithms is complex and often requires a deep understanding of both 

hardware and application-specific requirements.

�Model Parallelism and Distributed Systems

For extremely large models, it is often impossible to fit the entire model into the memory 

of a single device. Model parallelism, where the model is split across multiple devices, 

is a common solution. However, this approach introduces communication overhead, 

as devices need to exchange data during inference. Latency and bandwidth constraints 

in distributed systems can become bottlenecks, particularly when deploying across 

geographically distributed data centers.
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Pipeline parallelism, which segments the model into stages processed in a 

pipeline fashion, can alleviate some of these issues but requires careful scheduling 

and synchronization to avoid idle devices. Combining pipeline parallelism with other 

techniques, such as tensor parallelism (splitting computations across devices), can yield 

further optimizations but adds to the complexity of implementation.

�Cost Efficiency

The financial cost of LLM inference is another major concern. Deploying a single 

large model at scale can lead to significant expenses in hardware acquisition, energy 

consumption, and operational maintenance. For businesses, these costs can quickly 

become prohibitive, especially if the model is used in applications with low profit 

margins.

One emerging approach to cost efficiency is using smaller, distilled versions of 

large models for inference. Knowledge distillation transfers the knowledge from a large 

“teacher” model to a smaller “student” model, which can approximate the teacher’s 

performance while being faster and cheaper to run. Similarly, serverless architectures 

and spot instances are being explored to dynamically scale infrastructure costs based 

on demand.

�Reliability and Robustness

Inference systems must be not only fast and scalable but also reliable and robust. 

Ensuring that an LLM produces consistent and accurate results under varying conditions 

is a persistent challenge. For example, minor variations in input phrasing can sometimes 

lead to drastically different outputs. Furthermore, system failures, such as hardware 

outages or network delays, can disrupt service quality.

Robust monitoring and failover mechanisms are essential to mitigate these risks. 

Techniques like request retries, checkpointing, and fallback models (smaller models 

that can serve as a backup) are often employed to ensure reliability. Additionally, fine-

tuning models for specific tasks or domains can enhance robustness by reducing output 

variability and improving contextual understanding.
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�Ethical and Security Considerations

Inference systems for LLMs are not immune to ethical and security challenges. 

Outputs must be monitored to avoid generating harmful or biased content. Real-time 

filtering mechanisms or safety layers can help mitigate these risks but add additional 

computational overhead.

Moreover, deploying LLMs as APIs or services exposes them to potential abuse, such 

as adversarial inputs designed to exploit the model or denial-of-service (DoS) attacks 

targeting the infrastructure. Security measures, including input validation, rate limiting, 

and anomaly detection, are critical to maintaining the integrity and reliability of these 

systems.

�LLM Memory Optimization
Memory optimization is an essential focus in the deployment and training of large 

language models (LLMs). These models, with their immense parameter sizes and 

resource requirements, often push the limits of modern hardware. To make them 

practical and scalable for real-world applications, researchers and engineers have 

developed sophisticated techniques to optimize memory usage. These optimizations 

span hardware, software, and algorithmic domains, addressing challenges that arise in 

both training and inference contexts.

�The Memory Challenges of LLMs

At the heart of LLM memory usage are three main components: model weights, 

activations, and gradients. Model weights are the parameters learned during training 

and used during inference, while activations are the intermediate results generated 

during computation. Gradients, relevant during training and fine-tuning, represent the 

derivatives used to update the weights.

Each of these components requires significant memory, and their combined 

requirements can exceed the capabilities of even high-end GPUs or TPUs. For instance:

•	 A single layer in a transformer model might have billions of 

parameters, and models with hundreds of layers are now common.

•	 Activations scale with both the number of parameters and the input 

sequence length, particularly in attention mechanisms, where the 

memory scales quadratically with the sequence length.
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•	 Gradients require storage of additional memory copies of weights 

and activations during backpropagation.

Given these demands, optimizing memory usage is a critical step in ensuring the 

viability of LLMs across various applications.

�Key Memory Optimization Techniques

	 1.	 Precision Reduction (Quantization)

One of the most effective methods for memory optimization 

is reducing the numerical precision of model weights and 

activations. Models typically operate in 32-bit floating-point 

(FP32) precision during training. Reducing this to FP16 (half-

precision) or INT8 (integer precision) can halve or even quarter 

the memory footprint. Advances in quantization-aware training 

allow models to retain nearly the same performance even 

at reduced precision. Some techniques dynamically adjust 

precision during computation to maintain critical details while 

optimizing memory.

	 2.	 Gradient Checkpointing (Activation Recomputation)

In a standard training process, activations from the forward 

pass are stored for use during backpropagation. For very large 

models, this storage becomes a memory bottleneck. Gradient 

checkpointing addresses this by saving only a subset of activations 

during the forward pass and recomputing them as needed during 

backpropagation. While this approach increases computation 

time, it drastically reduces memory usage, enabling larger models 

to be trained on the same hardware.

	 3.	 Model Offloading

Offloading involves moving parts of the model or activations 

from GPU memory to CPU memory or even disk storage. This 

technique takes advantage of the larger capacity of slower storage 

mediums to hold less frequently accessed data. For example, 

weights of layers that are not currently being used can be 
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temporarily offloaded and loaded back when needed. Advances 

in memory management algorithms ensure minimal latency in 

retrieving offloaded data, making this approach viable for both 

training and inference.

	 4.	 Optimized Attention Mechanisms

The attention mechanism, a cornerstone of transformer-based 

LLMs, is one of the largest consumers of memory, scaling 

quadratically with the input sequence length. Techniques such 

as sparse attention, sliding window attention, and low-rank 

approximations have been developed to reduce the memory 

requirements of attention computations. These methods 

approximate the full attention mechanism while maintaining high 

accuracy, significantly cutting memory usage for long sequences.

	 5.	 Model Parallelism

When a model is too large to fit into a single device, model 

parallelism splits the model across multiple devices. In tensor 

parallelism, individual layers are divided across devices, with 

computations performed in parallel. Pipeline parallelism further 

splits the model into stages that run in sequence but across 

different devices. Both approaches distribute memory usage 

but introduce challenges such as communication overhead and 

synchronization, which must be carefully managed to avoid 

bottlenecks.

	 6.	 Memory-Efficient Architectures

Designing architectures with memory efficiency in mind is 

another approach. Techniques such as reversible layers, where 

intermediate activations can be reconstructed instead of stored, 

reduce memory requirements during both training and inference. 

Some emerging architectures are explicitly designed to minimize 

memory usage while maintaining the expressive power of 

traditional transformers.
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	 7.	 Compression Techniques (Pruning and Distillation)

Pruning removes redundant parameters from the model, reducing 

the size of the model without significantly impacting performance. 

For example, sparsity can be introduced by identifying weights 

that contribute minimally to outputs and setting them to zero.

Knowledge distillation takes this a step further by training a 

smaller “student” model to replicate the behavior of a larger 

“teacher” model. The result is a more compact model with 

lower memory requirements, ideal for inference on resource-

constrained devices.

	 8.	 Dynamic and Adaptive Batching

During inference, batching multiple requests together improves 

efficiency but increases memory usage. Dynamic batching 

algorithms analyze the available memory and workload in 

real time, adjusting batch sizes accordingly. Micro-batching, 

where a large batch is split into smaller sub-batches processed 

sequentially, ensures that memory constraints are respected 

without sacrificing throughput.

	 9.	 Unified Memory Architectures

Modern hardware advancements, such as unified memory 

architectures, allow models to utilize both high-speed GPU 

memory and larger, slower system memory seamlessly. This 

hierarchical memory management ensures frequently accessed 

data remains in faster memory, reducing bottlenecks caused by 

offloading.

�Trade-Offs in Memory Optimization

While these techniques can significantly reduce memory requirements, they often come 

with trade-offs:

•	 Computation Time: Techniques like gradient checkpointing and 

offloading save memory but increase computational overhead, 

leading to longer training or inference times.
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•	 Accuracy: Quantization and pruning, while reducing memory, may 

lead to small losses in model performance, requiring careful tuning.

•	 Complexity: Implementing advanced memory optimization 

techniques, such as model parallelism or custom attention 

mechanisms, adds complexity to system design and maintenance.

�Future Directions

As LLMs continue to grow in size and importance, memory optimization will remain a 

critical area of research and innovation. Some emerging trends include

•	 Hardware-Specific Optimizations: New hardware, such as custom 

AI accelerators (e.g., NVIDIA’s Hopper GPUs or Google’s TPUv5), 

is being designed with memory optimization in mind, providing 

native support for techniques like quantization and memory-efficient 

attention.

•	 Neurosymbolic Systems: Combining neural models with symbolic 

reasoning systems can reduce memory usage by offloading some 

tasks to more efficient symbolic systems.

•	 Federated and Decentralized Models: Splitting computations 

across distributed devices or edge systems can alleviate memory 

bottlenecks, particularly for real-time applications.

Memory optimization is a cornerstone of making LLMs scalable, accessible, and 

efficient. By addressing memory constraints through a combination of hardware 

advances, algorithmic innovations, and architectural adjustments, the transformative 

potential of LLMs can be realized in a wide array of applications, from consumer devices 

to enterprise systems.

�LLM Compression
Compression techniques for large language models (LLMs) are essential to address 

the challenges posed by their massive size and computational demands. These models 

often contain hundreds of billions of parameters, resulting in substantial memory 

requirements and high inference costs. Compression aims to reduce the model’s size 

and computational complexity while preserving its performance, making it feasible to 

deploy LLMs in resource-constrained environments or at scale.
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The need for compression arises because the size of LLMs directly impacts their 

latency, energy consumption, and cost of deployment. Without compression, the 

operational requirements of LLMs are prohibitive for many real-world applications, 

especially for edge devices or real-time systems. Effective compression strikes a balance 

between model size and performance, ensuring that accuracy and generalization are 

retained even as the model is scaled down.

�Quantization

Quantization is one of the most widely used compression techniques for LLMs. It 

involves reducing the numerical precision of the model’s weights and activations. For 

example, full-precision 32-bit floating-point (FP32) representations can be converted to 

16-bit (FP16) or 8-bit integers (INT8). This reduction significantly decreases the memory 

footprint and computational overhead of the model.

Quantization can be applied in different stages of model deployment. During 

training, quantization-aware training ensures that the model learns to operate effectively 

at lower precisions. Post-training quantization, applied after the model is trained, is 

simpler to implement but may result in minor accuracy degradation. Advances in this 

area, such as mixed-precision quantization and adaptive quantization, allow further 

optimization by using lower precision for less critical parts of the model while retaining 

higher precision for sensitive components.

�Pruning

Pruning reduces a model’s size by identifying and removing parameters that contribute 

minimally to its performance. This approach assumes that many of the parameters 

in LLMs are redundant and can be safely eliminated without significantly affecting 

accuracy.

There are several methods for pruning, including structured pruning, which removes 

entire layers, filters, or attention heads, and unstructured pruning, which targets 

individual weights. Pruning is often iterative: the model is pruned and then fine-tuned to 

recover any lost performance. While structured pruning results in models that are easier 

to implement on hardware, unstructured pruning often achieves higher compression 

ratios at the cost of increased deployment complexity.
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�Knowledge Distillation

Knowledge distillation trains a smaller “student” model to mimic the behavior of a larger 

“teacher” model. The student model learns not only from the teacher’s outputs but 

also from the intermediate representations and logits generated by the teacher during 

training. This process transfers knowledge from the larger model to the smaller one, 

enabling the student model to achieve similar performance with significantly fewer 

parameters.

Distillation is particularly effective for compressing LLMs while retaining their 

accuracy. It is widely used in scenarios where the smaller model must operate in latency-

sensitive environments, such as mobile devices or edge computing. The resulting 

student models are faster and more memory-efficient, making them suitable for 

deployment without significant hardware investments.

�Low-Rank Factorization

Low-rank factorization is a mathematical approach that approximates the large weight 

matrices of LLMs with smaller, low-rank matrices. Since many of the learned parameters 

in neural networks are redundant, this technique leverages the inherent structure of 

these matrices to reduce their size.

By decomposing weight matrices into smaller components, low-rank factorization 

can reduce memory requirements and computational complexity. This method is 

particularly effective for compressing fully connected layers and attention mechanisms, 

which often dominate the size of LLMs.

�Sparsity-Inducing Techniques

Sparsity-inducing techniques aim to make LLMs more efficient by introducing sparsity 

into their parameters or activations. Sparse models only activate or utilize a subset of 

their weights for any given input, significantly reducing computation and memory usage.

Techniques like sparse attention mechanisms focus on reducing the quadratic 

complexity of traditional attention by limiting computations to relevant portions of 

the input. Similarly, sparsity in weight matrices can be achieved through training with 

regularization techniques like L1 or L2 penalties or by applying threshold-based pruning 

during or after training.
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�Compression Challenges and Trade-Offs

While compression significantly reduces the size and computational demands of LLMs, 

it comes with trade-offs. Reducing precision or pruning weights may lead to slight 

degradation in model accuracy, particularly for tasks requiring nuanced understanding 

or generation. Knowledge distillation, while effective, requires additional training cycles, 

increasing the computational cost during the compression phase.

Another challenge lies in the implementation of compressed models on hardware. 

Techniques like pruning or sparsity require specialized software and hardware 

optimizations to fully realize their benefits. For example, unstructured sparsity may lead 

to irregular memory access patterns, reducing efficiency on standard GPUs or CPUs. As 

a result, the choice of compression techniques often depends on the target deployment 

environment and available hardware capabilities.

�Future Directions in LLM Compression

Advances in LLM compression continue to evolve as researchers aim to balance 

performance, size, and efficiency. Techniques such as dynamic pruning, which adjusts 

model size based on input complexity, and hybrid methods that combine quantization 

with pruning or distillation are gaining attention. Additionally, hardware innovations, 

such as custom accelerators designed to handle compressed models, are making it easier 

to deploy LLMs in resource-constrained settings.

Another emerging trend is task-specific compression, where a general-purpose 

LLM is fine-tuned and compressed for specific applications. This approach allows the 

model to retain high performance on targeted tasks while reducing its size and resource 

requirements.

In conclusion, LLM compression is a critical area of research and practice that 

enables the deployment of these powerful models in diverse environments. By 

employing techniques like quantization, pruning, knowledge distillation, and low-rank 

factorization, organizations can make LLMs more efficient and accessible, unlocking 

their potential in a wider range of applications. As the demand for scalable and efficient 

AI systems grows, innovations in compression will play a central role in shaping the 

future of LLM deployment.
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�Attention Layer Optimization
The attention mechanism, particularly in transformer-based architectures, is a 

foundational component of large language models (LLMs). It enables models to 

identify and focus on relevant parts of the input sequence, capturing dependencies 

between tokens regardless of their distance from one another. However, the attention 

mechanism is also one of the most resource-intensive components of these models, 

with its memory and computational costs scaling quadratically with the input sequence 

length. This presents significant challenges in both training and inference, especially for 

tasks involving long documents or real-time processing. Attention layer optimization 

seeks to address these challenges by improving the efficiency of this mechanism while 

maintaining or enhancing its performance.

The quadratic complexity of standard self-attention arises from the need to compute 

attention scores for all pairs of tokens in the input sequence. For an input sequence of 

length nnn, this requires O(n2)O(n^2)O(n2) operations and memory, which becomes 

impractical for large nnn. This limitation drives the need for optimizations that reduce 

the computational and memory overhead of attention layers without sacrificing the 

quality of the model’s outputs.

One approach to optimization is the use of sparse attention mechanisms. Unlike 

dense attention, which calculates scores for every pair of tokens, sparse attention 

restricts the computation to a subset of token pairs based on predefined patterns or 

learned relevance. For example, sliding window attention only considers a fixed number 

of neighboring tokens for each position, significantly reducing the computational 

burden. Similarly, global–local attention mechanisms combine local attention for 

nearby tokens with global attention for a few critical tokens, striking a balance between 

efficiency and expressiveness.

Another method involves low-rank approximations, which approximate the 

attention matrix using techniques like singular value decomposition (SVD) or low-

rank factorization. These methods exploit the observation that attention matrices 

often have low intrinsic rank, meaning much of the information can be captured 

using a smaller number of components. By reducing the dimensionality of the 

attention computation, low-rank approximations reduce both memory usage and 

computational requirements.
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For applications involving very long sequences, hierarchical attention mechanisms 

have proven effective. In this approach, the model processes the input in chunks, 

computing attention within each chunk before aggregating information across chunks. 

This hierarchical structure reduces the number of pairwise comparisons required, 

enabling the processing of much longer sequences without incurring prohibitive costs.

Efficient attention kernels have also been developed to leverage hardware-specific 

optimizations. These kernels are tailored for parallel computation on GPUs and TPUs, 

minimizing memory access bottlenecks and maximizing throughput. For instance, some 

implementations use fused operations that combine multiple computation steps into a 

single kernel call, reducing overhead and improving efficiency.

Another avenue for optimization is the incorporation of approximate algorithms 

that simplify the attention computation. For example, random feature methods 

approximate the softmax function used in attention calculations, enabling linear rather 

than quadratic scaling. These methods introduce minor approximations to the final 

results but significantly accelerate computation, making them suitable for latency-

sensitive applications.

Optimizing attention layers also involves modifying the model’s architecture to 

be more efficient. Techniques like reformer models and performers replace standard 

attention mechanisms with alternative formulations that are inherently more scalable. 

These models achieve linear or near-linear complexity in terms of sequence length, 

making them practical for processing very large inputs.

Despite these advancements, attention layer optimization is not without trade-offs. 

Reducing the computational and memory requirements often involves approximations 

or simplifications that can degrade model performance, especially for tasks requiring 

fine-grained or global contextual understanding. Therefore, the choice of optimization 

technique depends on the specific application and its requirements for accuracy, 

latency, and resource availability.

Looking forward, the development of hybrid approaches that combine multiple 

optimization techniques is a promising area of research. For instance, combining sparse 

attention with low-rank approximations or hierarchical attention with efficient kernels 

can yield even greater efficiency gains. Furthermore, advances in hardware design, 

such as specialized AI accelerators, are expected to further enhance the practicality of 

optimized attention mechanisms.

In summary, attention layer optimization is critical for making LLMs scalable 

and efficient. By reducing the computational and memory demands of the attention 

mechanism, these optimizations enable the deployment of LLMs in a broader range 
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of applications, from real-time systems to tasks involving extremely long documents. 

As the complexity and utility of LLMs continue to grow, innovations in attention layer 

optimization will remain a central focus in the evolution of AI architectures.

�Scheduling Optimization in LLM Deployment
Scheduling optimization is a vital aspect of deploying large language models (LLMs), 

ensuring efficient allocation of computational resources to meet the diverse demands 

of real-world applications. LLM inference is a resource-intensive process, requiring 

significant compute and memory, often under stringent latency constraints. Scheduling 

optimization involves orchestrating tasks, allocating hardware resources, and managing 

workloads to maximize throughput, minimize latency, and balance system utilization.

The complexity of scheduling arises from the variability in LLM workloads. Input 

sizes, model architectures, and user demands can differ significantly, making static 

scheduling strategies inefficient. Effective scheduling optimization dynamically adjusts 

to these variations, enabling the deployment of LLMs in environments ranging from 

high-throughput server clusters to latency-critical edge devices.

One of the foundational challenges in scheduling optimization is balancing batching 

and responsiveness. Batching groups multiple requests into a single computation to 

maximize hardware utilization, as modern accelerators like GPUs and TPUs perform 

more efficiently with larger workloads. However, batching can introduce delays for 

individual requests, particularly in latency-sensitive applications such as chatbots or 

virtual assistants. Dynamic batching algorithms address this trade-off by adaptively 

adjusting batch sizes based on current workloads and system conditions, ensuring a 

balance between efficiency and responsiveness.

•	 Request-level scheduling focuses on managing individual inference 

requests in a way that meets application-specific requirements. For 

instance, in a multitenant environment, different applications may 

have varying latency and accuracy priorities. Scheduling strategies 

must allocate resources accordingly, ensuring that high-priority 

tasks are not delayed by lower-priority workloads. This often involves 

implementing sophisticated priority queues, resource allocation 

policies, and preemption mechanisms.
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•	 Batch-level scheduling expands this concept to aggregate 

workloads. It determines how requests are grouped into batches and 

assigns these batches to available hardware. The goal is to maximize 

hardware utilization without exceeding memory limits or causing 

contention among processes. Efficient batch-level scheduling often 

relies on predictive algorithms that anticipate workloads based on 

historical patterns or incoming request rates, allowing the system to 

preemptively allocate resources and adjust batch sizes.

•	 Iteration-level scheduling comes into play during training or 

iterative inference processes, such as fine-tuning or beam search. 

These processes involve multiple steps, each with varying resource 

requirements and dependencies. Effective scheduling ensures 

that the necessary resources are available at each step, minimizing 

idle time and synchronization delays. For distributed training 

setups, iteration-level scheduling must also account for interdevice 

communication, ensuring that data transfers are efficiently managed 

to prevent bottlenecks.

•	 Continuous batching is a dynamic approach that handles incoming 

requests on a rolling basis, rather than waiting for a fixed batch size 

or time window. This technique is particularly useful for real-time 

systems where input patterns are unpredictable. By continuously 

adjusting the batch size and processing intervals based on the 

current system state, continuous batching minimizes latency while 

maintaining high throughput.

The underlying hardware architecture plays a significant role in scheduling 

optimization. Modern accelerators offer features like multistream processing and 

hardware virtualization, enabling concurrent execution of multiple tasks. Scheduling 

algorithms must leverage these capabilities effectively, distributing workloads to 

maximize parallelism and minimize contention. Additionally, heterogeneity in 

hardware resources, such as a mix of CPUs, GPUs, and TPUs, introduces another layer 

of complexity, requiring intelligent scheduling strategies that assign tasks to the most 

suitable device based on task characteristics and hardware capabilities.
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Communication and synchronization in distributed systems also affect scheduling 

optimization. In scenarios where models are split across multiple devices (e.g., model 

parallelism or pipeline parallelism), scheduling must account for data dependencies 

and interdevice communication overhead. Techniques like overlapping computation 

with communication, scheduling communication-intensive tasks during idle 

periods, and optimizing data transfer paths are crucial for maintaining efficiency in 

distributed setups.

Scheduling optimization must also consider energy efficiency and cost constraints, 

especially in cloud environments. Dynamically scaling resources based on demand, 

leveraging spot instances, and utilizing energy-aware scheduling algorithms can reduce 

operational costs while maintaining service quality. For edge deployments, where energy 

and compute resources are limited, scheduling strategies must minimize resource usage 

without compromising performance.

Finally, scheduling optimization is increasingly incorporating machine learning-
driven approaches. Predictive models trained on historical data can forecast workload 

patterns, enabling proactive resource allocation and batch adjustments. Reinforcement 

learning algorithms can dynamically adapt scheduling policies based on real-time 

feedback, continuously improving efficiency over time.

In summary, scheduling optimization in LLM deployment is a multifaceted 

challenge that balances efficiency, responsiveness, and cost. By orchestrating tasks and 

resources effectively across various levels—request, batch, and iteration—scheduling 

ensures that LLMs can meet the demands of diverse applications. As LLMs continue to 

grow in size and complexity, advances in scheduling strategies will play a critical role in 

enabling scalable, cost-effective, and high-performance deployments.

�Summary
This chapter offers a comprehensive and practical guide to deploying LLM-powered 

applications, bridging the gap between cutting-edge AI models and real-world usability. 

It excels in explaining the technical complexities of deployment, covering everything 

from cloud infrastructure and optimization strategies to scheduling and memory 

management.
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By clearly outlining three integration pathways—hosted, prepackaged, and open 

source—the chapter empowers readers to choose an approach aligned with their 

technical expertise, privacy needs, and cost considerations. It also dives deep into 

advanced topics like attention layer optimization, model compression, and scalability 

techniques, providing an invaluable toolkit for practitioners.

Overall, this chapter is an essential resource for anyone looking to operationalize 

LLMs efficiently and responsibly, balancing performance, scalability, and ethics.
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CHAPTER 5

Building and Fine-Tuning 
LLMs
The transformative power of large language models (LLMs) has reshaped industries, 

redefined human–computer interaction, and expanded the boundaries of artificial 

intelligence. As these models grow in size and sophistication, so too does the complexity 

of building and fine-tuning them. This chapter delves into the art and science of 

developing LLMs, providing a road map for practitioners seeking to navigate the 

intricacies of this fascinating domain.

LLMs, such as GPT, BERT, and their derivatives, are pretrained on a vast corpora, 

enabling them to perform a range of tasks, from text generation to sentiment analysis 

and beyond. However, harnessing the full potential of these models often requires 

customizing them for specific applications. This is where fine-tuning comes into 
play. Fine-tuning not only optimizes the model for domain-specific use cases but 

also enhances its efficiency and effectiveness by tailoring it to unique datasets and 

requirements.

In this chapter, we explore both the foundational principles and practical techniques 

of building and fine-tuning LLMs. Whether you are an AI researcher, a data scientist, or 

a developer, understanding these principles is key to unlocking the potential of LLMs for 

your projects.

Key Themes of This Chapter

•	 Understanding the Foundations of LLMs: We begin by examining 

the architectural components that make LLMs so powerful. From 

transformers to attention mechanisms, we unravel the building 

blocks that enable these models to achieve remarkable feats in 

natural language understanding and generation.
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•	 The Pretraining Paradigm: Pretraining is the backbone of LLMs. 

By training on diverse and extensive datasets, these models learn 

generalizable patterns and relationships within language. We’ll 

discuss how pretraining is conducted and its impact on downstream 

applications.

•	 Fine-Tuning Strategies: Fine-tuning transforms a general-purpose 

LLM into a task-specific powerhouse. We’ll walk through different 

fine-tuning methodologies, including supervised fine-tuning, 

instruction tuning, and reinforcement learning from human 

feedback (RLHF).

•	 Practical Considerations and Challenges: Building and fine- 

tuning LLMs come with unique challenges, from computational 

requirements to ethical considerations. We provide insights into 

overcoming these hurdles and ensuring responsible AI deployment.

The rapid evolution of LLMs means that staying current with techniques for building 

and fine-tuning them is more critical than ever. The ability to adapt these models to 

meet specific needs is what distinguishes a good implementation from a transformative 

one. Moreover, as ethical concerns and biases in AI take center stage, it is imperative to 

approach the fine-tuning process with responsibility and care.

By the end of this chapter, you will have a comprehensive understanding of how to 

build and fine-tune LLMs, equipping you with the knowledge to bring cutting-edge AI 

solutions to life. Whether you aim to improve customer experiences, automate complex 

workflows, or pioneer new frontiers in AI, the principles outlined here will serve as 

your guide.

Embark on this journey to unravel the intricacies of LLMs and discover how to 

harness their immense potential for innovation and impact.

�Architecture of Large Language Models (LLMs)
Large language models (LLMs), such as GPT-4 and BERT, are intricate systems designed 

to process, comprehend, and generate humanlike text. These models are powered by 

the Transformer architecture, a revolutionary framework that enables them to capture 
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the complexities of language and context. Through multiple interconnected layers and 

components, LLMs achieve their remarkable capabilities in tasks ranging from text 

generation to translation and beyond.

�At the Foundation of Any LLM Lies the Process 
of Tokenization
This is where the input text is divided into smaller units called tokens, which could be 

entire words, subwords, or even individual characters. Tokenization helps the model 

handle text efficiently, particularly in cases involving rare or compound words. After this 

step, each token is transformed into a numerical representation or embedding that the 

model can process.

Figure 5-1.  Large Language Models Common Architecture
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The embedding layer plays a critical role in translating tokens into dense vectors in a 

high-dimensional space. These vectors capture the semantic and syntactic meanings of 

the tokens, enabling the model to understand their relationships. Word embeddings can 

either be pretrained, as in techniques like Word2Vec and GloVe, or learned dynamically 

during training, as seen in modern contextual embeddings like those in BERT. However, 

since Transformers lack an inherent sense of sequence, positional embeddings are 

added to these vectors to encode the order of tokens in the text. This ensures the model 

can differentiate between similar phrases with varying word arrangements.

�Self-Attention Mechanism
Central to the Transformer architecture is the self-attention mechanism, which allows 

the model to focus on relevant parts of the input sequence while processing each 

token. This mechanism relies on three components: Query, Key, and Value vectors. 
By calculating the dot product of Query and Key vectors, the model determines the 

relevance of one token to another. The resulting scores are normalized to produce 

attention weights, which are then used to weight the Value vectors. This process ensures 

that each token’s representation is enriched by its relationship with other tokens in the 

sequence.

Moreover, the Transformer employs multihead attention, where multiple attention 

heads analyze different aspects of the input simultaneously. This parallel approach 

enables the model to capture a wide range of linguistic relationships, from syntax to 

semantics.

Once the self-attention mechanism completes its operation, the output is passed 

through a feedforward neural network. This component consists of fully connected 

layers with nonlinear activation functions, such as ReLU, which allow the model to learn 

complex transformations. The output of the feedforward network refines the token 
representations, enabling the model to discern intricate patterns in the data.

�Layer Normalization and Residual Connections
To stabilize the training process and improve gradient flow, the architecture incorporates 

layer normalization and residual connections.
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•	 Layer normalization ensures consistent input scaling across layers, 

reducing the risk of vanishing or exploding gradients.

•	 Residual connections, on the other hand, add the input of a layer 

directly to its output, preserving critical information and allowing for 

the successful training of deeper networks.

�Transformer Blocks
The architecture stacks multiple Transformer blocks, each containing self-attention and 

feedforward layers, to learn hierarchical representations of the input. Early layers in the 

stack capture surface-level features like word boundaries, while deeper layers focus on 

abstract, semantic relationships. This hierarchical approach enables LLMs to process 

text at various levels of complexity, from syntax to context and meaning.

�At the Output Layer, LLMs Operate Differently Depending 
on Their Design
In autoregressive models like GPT, the objective is to predict the next token in a 

sequence based on the tokens that precede it. In masked language models like BERT, 

the model is trained to predict missing or masked tokens, leveraging the context on both 

sides of the sequence.

Regardless of the objective, the final step involves passing the output through a 

softmax layer, which converts the model’s predictions into probabilities over the 

vocabulary. The most probable token is then selected, completing the model’s task of 

generating or understanding text.

This sophisticated architecture enables LLMs to perform a wide range of natural 

language processing tasks with exceptional accuracy and fluency. By combining 

innovations like self-attention, hierarchical representations, and efficient embedding 

techniques, these models have transformed how we interact with and leverage language 

in technology. From powering chatbots to advancing scientific research, LLMs continue 

to redefine the possibilities of artificial intelligence.
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�Variations in LLM Architectures
LLMs built on the Transformer architecture have evolved into three main categories, 

each optimized for specific tasks. Below is a detailed look at these categories:

	 1.	 Autoencoders

•	 Definition: Use only the encoder part of the Transformer 

architecture while omitting the decoder after pretraining.

•	 Examples: Models like BERT (Bidirectional Encoder 

Representations from Transformers) and RoBERTa.

•	 Use Cases: Ideal for tasks requiring understanding of context, 

such as sentiment analysis, text classification, and named entity 

recognition.

•	 Training Methodology: Trained using Masked Language 

Modeling (MLM), where specific words or tokens in a sequence 

are masked, and the model learns to predict them. This approach 

enhances the model’s contextual understanding.

	 2.	 Auto-Regressors

•	 Definition: Use the decoder part of the Transformer while 

discarding the encoder after pretraining.

•	 Examples: GPT series (Generative Pretrained Transformer) 

and BLOOM.

•	 Use Cases: Designed for text generation, story writing, question 

answering, and summarization. These models excel in generating 

coherent and contextually relevant text.

•	 Training Methodology: Employ Causal Language Modeling, 

where the model predicts the next token in a sequence based on 

preceding tokens, allowing it to generate sequential outputs.

	 3.	 Sequence-to-Sequence Models

•	 Definition: Incorporate both the encoder and decoder 

components of the Transformer.
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•	 Examples: Models like T5 (Text-to-Text Transfer Transformer) 

and BART (Bidirectional and Auto-Regressive Transformers).

•	 Use Cases: Versatile models suited for translation, 

summarization, and question-answering tasks.

•	 Training Methodology: Often trained with techniques like span 

corruption, where parts of the input are deliberately distorted, 

and the model learns to reconstruct the original.

�Fine-Tuning Strategies and Considerations
�What Is LLM Fine-Tuning?
Fine-tuning involves adjusting the parameters of a pretrained large language model 

to better suit a specific task or domain. While models like GPT are equipped with 

extensive general language knowledge, they lack the specialized expertise required for 

certain areas. Fine-tuning overcomes this limitation by enabling the model to learn 

from domain-specific data, enhancing its accuracy and effectiveness for particular 

applications.

Through fine-tuning, the model is exposed to task-specific examples, allowing it to 

grasp the subtleties and nuances of the domain. This process transforms a general- 

purpose language model into a specialized tool, maximizing the potential of LLMs for 

targeted use cases.

Fine-tuning is particularly useful in scenarios where you need the following:
Customization
Every domain or task comes with its own distinct language patterns, terminologies, 

and contextual intricacies. Fine-tuning a pretrained LLM enables customization, 

allowing the model to better understand these unique characteristics and generate 

domain-specific content. This tailoring ensures that the model’s outputs align with your 

specific requirements, delivering accurate and contextually relevant results.

Whether you are working with legal documents, medical records, business reports, 

or proprietary company data, fine-tuning empowers LLMs to provide specialized 

expertise. By training the model on domain-specific datasets, you can harness the 

capabilities of LLMs while ensuring they meet the precision and relevance demanded by 

your use case.

Chapter 5  Building and Fine-Tuning LLMs



272

Data Compliance
Industries like healthcare, finance, and law operate under stringent regulations 

governing the use and protection of sensitive information. Fine-tuning LLMs on 

proprietary or regulated data allows organizations to develop models that comply with 

data privacy and security standards.

This approach minimizes the risks of exposing sensitive information to external 

systems while creating models that are securely trained on in-house or industry-specific 

data. Fine-tuning enhances the privacy, security, and regulatory compliance of LLM 

applications.

Limited Labeled Data
In many practical scenarios, acquiring large volumes of labeled data for specific 

tasks or domains is both challenging and costly. Fine-tuning addresses this issue by 

making the most of existing labeled data, enabling a pretrained LLM to adapt effectively 

to smaller datasets.

This method allows organizations to overcome data scarcity while still achieving 

notable improvements in the model’s performance and relevance. Even with limited 

labeled data, fine-tuning ensures the model delivers accurate and reliable results 

tailored to the task or domain.

�Data Requirements for Fine-Tuning
To fine-tune a large language model (LLM) effectively, it’s critical to understand the 

data requirements necessary to support both training and validation. Below are key 

guidelines to ensure a successful fine-tuning process:

	 1.	 Use a Large Dataset

The size of the training and validation dataset should align with 

the complexity of the task and the model being fine-tuned. 

Typically, thousands or tens of thousands of examples are 

recommended. While larger models can learn more effectively 

from smaller datasets, having sufficient data is still essential to 

prevent overfitting or eroding the knowledge gained during the 

pretraining phase.
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	 2.	 Ensure High Data Quality

The dataset should be clean, consistent, and free from incomplete 

or incorrect examples. High-quality data helps the model learn 

effectively and reduces the risk of introducing errors or biases 

during fine-tuning.

	 3.	 Use a Representative Dataset

The fine-tuning dataset should accurately reflect the types of 

data the model will encounter in its intended use. For example, if 

fine-tuning for sentiment analysis, the dataset should include data 

from diverse sources, genres, and domains, capturing the range 

of human emotions. Balanced distribution across categories (e.g., 

positive, negative, neutral sentiments) is also important to prevent 

skewed predictions.

	 4.	 Provide Sufficiently Specified Inputs

The dataset should contain clear and detailed input information 

to guide the desired output. For instance, when fine-tuning 

a model for email generation, inputs should include specific 

prompts that direct the model’s creativity and relevance. 

Additionally, the dataset should define expectations for length, 

style, and tone, ensuring that the model generates outputs aligned 

with your requirements.

�LLM Fine-Tuning Techniques
�Primary Approaches to Fine-Tuning
Fine-tuning large language models (LLMs) is the process of adjusting their parameters 

to meet specific task requirements. The extent of these adjustments depends on the 

complexity of the task and the desired outcome. Broadly, two primary approaches to 

fine-tuning have emerged: feature extraction and full fine-tuning. Each method offers 

unique strengths and trade-offs. Let’s explore them.
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�a. Feature Extraction (Repurposing)

Feature extraction, often referred to as repurposing, treats the pretrained LLM as a fixed 

feature extractor. This approach capitalizes on the model’s vast knowledge, which has 

been developed by training on expansive datasets covering a variety of language features 

and patterns.

In this method, the majority of the model remains frozen, while only the final layers 

are trained on task-specific data. By focusing adjustments on these layers, the model 

adapts its rich, pre-existing representations to the specific requirements of the task. 

This approach is particularly efficient, as it minimizes computational costs and training 

time while still delivering reliable, domain-specific results. Feature extraction is ideal for 

tasks where the pretrained model’s foundational understanding suffices and only minor 

refinements are needed.

�b. Fine-Tuning Embedding Models

Fine-tuning embedding models for large language models (LLMs) is a powerful 

technique to adapt pretrained models to specific tasks or domains, improving their 

performance on downstream applications like text classification, semantic search, 

question answering, or clustering. Embedding models, which convert text into dense 

vector representations, are a core component of LLMs, capturing semantic and syntactic 

relationships between words, phrases, or entire documents.

Embedding models in LLMs (e.g., BERT, RoBERTa, or sentence-transformers) map 

input text into a high-dimensional vector space where similar meanings are positioned 

closer together. Pretrained LLMs come with embeddings learned from vast, general- 

purpose datasets, but these embeddings may not be optimal for specialized tasks or 

domains (e.g., medical texts, legal documents, or informal social media language). Fine- 

tuning adjusts these embeddings to better align with the target task or data.

�Why Fine-Tune Embedding Models?

•	 Domain Adaptation: Pretrained embeddings may not capture 

domain-specific nuances.

•	 Task-Specific Optimization: Fine-tuning tailors embeddings to 

prioritize features relevant to a specific task, like sentiment analysis 

or entity recognition.
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•	 Improved Performance: Adjusted embeddings often lead to better 

accuracy, precision, or recall in downstream applications.

•	 Efficiency: Fine-tuning an embedding model can be less resource- 

intensive than retraining an entire LLM from scratch.

�How to Fine-Tune Embedding Models
Fine-tuning typically involves adjusting the pretrained weights of the embedding 

layer (and sometimes the entire model) using a task-specific dataset. Here’s a general 

workflow:

	 1.	 Select a Pretrained Model

	 a.	 Start with a model like BERT, DistilBERT, or a sentence-transformer  

(e.g., all-MiniLM-L6-v2) suited to your task.

	 b.	 Choose based on size, speed, and whether it’s designed for  

sentence-level or token-level embeddings.

	 2.	 Prepare a Task-Specific Dataset

	 a.	 Collect labeled data relevant to your task (e.g., positive/negative  

reviews for sentiment analysis).

	 b.	 For unsupervised fine-tuning, use unlabeled domain-specific  

text (e.g., scientific papers) and a self-supervised objective like  

contrastive learning.

	 3.	 Choose a Fine-Tuning Strategy

	 a.	 Full Fine-Tuning: Update all model parameters, including the  

embedding layer and subsequent layers. This is computationally  

expensive but often yields the best results.

	 b.	 Embedding-Only Fine-Tuning: Adjust only the embedding layer  

while freezing the rest of the model. This is faster and useful when 

computational resources are limited.

	 c.	 Adapter-Based Fine-Tuning: Add small, task-specific layers (adapters) 

to the model while keeping the original embeddings mostly frozen. This 

balances efficiency and performance.
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	 4.	 Define a Loss Function

	 a.	 For supervised tasks: Use cross-entropy loss (classification),  

mean squared error (regression), etc.

	 b.	 For unsupervised tasks: Use contrastive loss (e.g., InfoNCE)  

or triplet loss to bring similar embeddings closer and push  

dissimilar ones apart.

	 5.	 Train the Model

	 a.	 Use a framework like PyTorch or Hugging Face’s Transformers library.

	 b.	 Set hyperparameters: learning rate (e.g., 2e–5), batch size, and epochs.  

A smaller learning rate is often preferred to avoid catastrophic  

forgetting of pretrained knowledge.

	 c.	 Monitor performance on a validation set to prevent overfitting.

	 6.	 Evaluate and Iterate

	 a.	 Test the fine-tuned embeddings on your task (e.g., cosine  

similarity for semantic search, accuracy for classification).

	 b.	 Adjust the dataset, loss function, or strategy if results are suboptimal.

�Popular Techniques for Fine-Tuning Embeddings

•	 Masked Language Modeling (MLM): Continue pretraining on 

domain-specific data by masking words and predicting them, 

refining the embeddings for that domain.

•	 Contrastive Learning: Train embeddings to distinguish positive 

pairs (similar texts) from negative pairs (dissimilar texts), common in 

sentence-transformers.

•	 Prompt-Based Fine-Tuning: Use task-specific prompts to guide 

the model, indirectly influencing embeddings without extensive 

retraining.

•	 Knowledge Distillation: Fine-tune a smaller embedding model 

by learning from a larger, pretrained LLM, preserving quality while 

reducing size.
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�c. Full Model Fine-Tuning

Full fine-tuning, on the other hand, takes a more comprehensive approach. Instead of 

freezing parts of the model, this method trains the entire model on task-specific data. 

Each layer of the model is updated, allowing it to adapt fully to the nuances of the new 

dataset.

This approach is especially advantageous when the task-specific dataset is large 

or significantly differs from the data used in pretraining. By enabling all layers to 

learn from the new data, full fine-tuning fosters a deeper and more precise alignment 

between the model and the task, often leading to superior performance. However, this 

process demands greater computational resources, more training time, and meticulous 

management to avoid overfitting or destabilizing the model.

�Striking the Balance
Both approaches carry immense potential, and the choice between them depends on 

the complexity of the task, the availability of data, and the computational resources at 

hand. Whether repurposing the model’s pretrained strengths through feature extraction 

or deeply reconfiguring it with full fine-tuning, these methods highlight the incredible 

adaptability of LLMs—bringing us closer to uncovering new possibilities and solutions 

in a world full of linguistic complexity.

�Prominent Fine-Tuning Methods
Fine-tuning large language models (LLMs) involves adjusting their parameters to meet 

specific requirements. These methods are broadly categorized into supervised fine- 
tuning and reinforcement learning from human feedback (RLHF), each offering 

distinct techniques to adapt models effectively to targeted applications. Below is an in- 

depth exploration of these methods.

�a. Supervised Fine-Tuning

Supervised fine-tuning uses labeled datasets where each input is paired with a correct 

label or output. The model learns by adjusting its parameters to predict these labels 

accurately. This method builds on the model’s pre-existing knowledge from pretraining, 

adapting it to specific tasks. It is widely used for customizing LLMs and improving task- 

specific performance.
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�Key Techniques in Supervised Fine-Tuning

	 1.	 Basic Hyperparameter Tuning: This straightforward approach 

involves manually adjusting hyperparameters like learning rate, 

batch size, and the number of epochs to optimize the model’s 

performance. The goal is to balance learning efficiency with 

the risk of overfitting. Well-chosen hyperparameters enhance 

the model’s ability to generalize and improve its accuracy on 

specific tasks.

	 2.	 Transfer Learning is ideal when task-specific data is limited. The 

model, pretrained on a large general dataset, is fine-tuned with a 

smaller, task-specific dataset. This method significantly reduces 

the training time and data requirements while often delivering 

superior results compared to training from scratch. It effectively 

repurposes the knowledge embedded in the model for new 

applications.

	 3.	 Multitask Learning: In this technique, the model is fine-tuned 

on multiple related tasks simultaneously. The shared learning 

process helps the model generalize better across tasks, leveraging 

common patterns and relationships. It is particularly beneficial 

when individual tasks have limited labeled data, as the combined 

dataset provides richer training signals. Multitask learning 

requires labeled datasets for each task and improves performance 

for closely related tasks.

	 4.	 Few-Shot Learning enables the model to perform a task with 

minimal labeled data. The model relies on its pre-existing 

knowledge from pretraining, using a few examples to adapt to the 

new task. During inference, prompts include examples or “shots” 

to guide the model’s responses. This technique is highly effective 

when labeled data is scarce or expensive to obtain and can 

complement RLHF when human feedback is incorporated.

	 5.	 Task-Specific Fine-Tuning focuses entirely on optimizing the 

model for a particular task. This approach involves refining 

the model’s parameters to suit the domain’s unique nuances, 

Chapter 5  Building and Fine-Tuning LLMs



279

improving accuracy and relevance. While related to transfer 

learning, task-specific fine-tuning hones in on the exact 

requirements of a single task rather than broadly adapting 

pretrained features.

�b. Reinforcement Learning from Human Feedback (RLHF)

RLHF is an innovative approach where human feedback is integrated into the model’s 

training process. This method trains models to produce outputs that align with human 

expectations, leveraging human evaluators’ expertise and judgment to improve 

contextual and practical accuracy.

�Key Techniques in RLHF

	 1.	 Reward Modeling uses human evaluations to guide the model’s 

learning. The model generates multiple outputs, which are ranked 

or scored by human evaluators. Based on these rankings, the model 

predicts the human-provided rewards and adjusts its behavior to 

maximize these rewards. This technique allows the model to learn 

complex tasks defined by nuanced human preferences.

	 2.	 Proximal Policy Optimization (PPO) is a reinforcement 

learning algorithm designed to optimize the model’s policy 

while maintaining stability. The model updates its parameters 

iteratively to maximize the expected reward. A constraint ensures 

that updates are incremental, avoiding drastic changes that 

could destabilize the model. This balance between exploration 

and stability makes PPO an efficient and reliable reinforcement 

learning method.

	 3.	 Comparative Ranking focuses on relative quality rather than 

absolute evaluation.

Human evaluators rank multiple outputs, allowing the model to 

learn from these comparative judgments. By analyzing ranked 

outputs, the model improves its ability to generate higher-quality 

responses. This method provides nuanced feedback, helping the 

model understand subtle differences in output quality.

Chapter 5  Building and Fine-Tuning LLMs



280

	 4.	 Preference Learning is a specialized form of RLHF where human 

evaluators provide preferences between pairs of outputs. The 

model learns to align its behavior with human preferences, even 

when explicit numerical rewards are difficult to define. This 

approach captures complex, subjective judgments, enabling the 

model to perform tasks requiring humanlike decision-making.

	 5.	 Parameter-Efficient Fine-Tuning (PEFT)

PEFT focuses on updating only a subset of the model’s 

parameters. By modifying specific layers or adding task-specific 

components, this method reduces computational and storage 

demands. PEFT maintains performance comparable to full fine-

tuning while being resource-efficient, making it a practical choice 

for many applications.

Choosing the Right Method
The choice between supervised fine-tuning and RLHF—and the techniques within 

each—depends on the task’s complexity, data availability, and desired outcomes. 

Supervised fine-tuning is ideal for well-defined tasks with labeled datasets, while 

RLHF excels in scenarios requiring nuanced, context-driven outputs guided by human 

judgment. Together, these methods highlight the adaptability and potential of fine- 

tuning in harnessing the full power of LLMs.

�Fine-Tuning Process and Best Practices
Fine-tuning a pretrained language model to meet specific use case requirements 

involves following a structured process. This ensures that the model is optimized to 

deliver accurate and effective results. Below are the key steps and best practices for fine- 

tuning, along with examples of its applications.

�a. Data Preparation
Data preparation is a foundational step in the fine-tuning process. It involves curating 

and preprocessing the dataset to ensure relevance and quality for the target task. This 

step typically includes the following:
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•	 Cleaning the Data: Removing duplicates, incomplete entries, or 

irrelevant information

•	 Handling Missing Values: Addressing gaps in the dataset to maintain 

consistency

•	 Formatting the Text: Aligning the data structure with the model’s 

input requirements

Data augmentation techniques, such as paraphrasing or synonym replacement, can 

also expand the dataset and improve the model’s robustness. Proper data preparation 

directly impacts the model’s ability to learn and generalize effectively, leading to 

enhanced task-specific performance and accurate outputs.

�b. Choosing the Right Pretrained Model
Selecting a pretrained model that aligns with the specific requirements of your task is 

crucial for successful fine-tuning. Key considerations include

•	 Model Architecture: Understanding the layers and configurations of 

the model

•	 Input/Output Specifications: Ensuring compatibility with the task

•	 Model Size and Training Data: Balancing computational resources 

and task requirements

•	 Performance Benchmarks: Reviewing how well the model performs 

on tasks similar to yours

Choosing a pretrained model that closely matches the target task helps streamline 

the fine-tuning process and maximize its adaptability and effectiveness in your 

application.

�c. Identifying the Right Parameters for Fine-Tuning
Configuring fine-tuning parameters ensures optimal learning and adaptation to task- 

specific data. Key parameters include

•	 Learning Rate: Determines how quickly the model updates during 

training
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•	 Batch Size: Influences the efficiency of gradient calculations

•	 Number of Epochs: Controls the training duration to avoid 

underfitting or overfitting

Freezing certain layers (typically the earlier ones) while training the later layers is a 

common practice. This helps retain general knowledge from pretraining while allowing 

the model to adapt to task-specific requirements. Striking a balance between leveraging 

pretrained knowledge and learning new features is key to effective fine-tuning.

�d. Validation
Validation ensures the fine-tuned model performs as expected on unseen data. This step 

involves

•	 Using a validation dataset to evaluate performance

•	 Monitoring metrics such as accuracy, loss, precision, and recall to 

assess the model’s generalization capabilities

Validation highlights areas where the model may need further improvement, 

enabling adjustments to parameters or data to optimize performance. Regular validation 

throughout the fine-tuning process ensures consistent alignment with task goals.

�Evaluation Metrics and Benchmarks for Fine-Tuning LLMs

When fine-tuning large language models (LLMs), it’s important to apply the right 

evaluation metrics and benchmarks to assess performance accurately. The choice of 

metric depends heavily on the task (e.g., classification, generation, reasoning, etc.).

�Classification Tasks (e.g., Sentiment Analysis, Intent Detection)

•	 Accuracy: Measures the proportion of correct predictions

•	 Precision/Recall/F1 Score: Especially useful for imbalanced 

datasets

•	 ROC-AUC: Captures the model’s ability to distinguish 

between classes

•	 Confusion Matrix: Offers insights into types of classification errors
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�Text Generation Tasks (e.g., Summarization, 
Translation, Dialogue)

•	 BLEU: Based on n-gram overlap; commonly used in translation

•	 ROUGE: Measures recall; widely used in summarization tasks

•	 METEOR: Accounts for synonymy and stemming

•	 BERTScore: Uses contextual embeddings to assess semantic 

similarity

•	 GLEU/chrF: Variants of BLEU that better capture fluency in 

certain cases

�Reasoning and Question Answering

•	 Exact Match (EM): Measures strict correctness of answers

•	 F1 Score: Based on token overlap between the predicted and 

reference answers

•	 Accuracy@k/Hits@k: Common in retrieval and multiple-choice 

settings

•	 Faithfulness/Consistency: Often assessed through human 

evaluation

�Dialogue and Chatbot Evaluation

•	 BLEU/METEOR/ROUGE: Evaluate fluency and relevance

•	 DialogRPT/USR: Model-based metrics that approximate human 

judgments

•	 Human Evaluation: Often necessary to assess coherence, 

appropriateness, and personality
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�General Model Evaluation

•	 Perplexity: Reflects how well the model predicts text (lower is better)

•	 Log-Likelihood: Useful for comparing model variants

•	 Toxicity/Bias Scores: Measured with external tools or datasets, such 

as Perspective API or RealToxicityPrompts

�Common Benchmarks

�Language Understanding

•	 GLUE/SuperGLUE: A suite of diverse tasks including sentiment, 

entailment, and coreference

•	 MMLU (Massive Multitask Language Understanding): Tests 

knowledge across a wide range of academic subjects

•	 BBH (Big-Bench Hard): A challenging benchmark for reasoning

•	 HellaSwag/WinoGrande: Focused on commonsense and pronoun 

resolution

�Summarization

•	 CNN/DailyMail, XSum, Gigaword: Used to evaluate abstractive 

summarization performance

�Machine Translation

•	 WMT: A standard benchmark for translation tasks with yearly 

competitions

�Question Answering

•	 SQuAD, NaturalQuestions, TriviaQA, HotpotQA: Range from fact- 

based to reasoning-heavy question answering
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�Dialogue

•	 PersonaChat, DSTC, MultiWOZ: Datasets for evaluating both open- 

domain and task-oriented dialogue systems

�Retrieval and Retrieval-Augmented Generation (RAG)

•	 BEIR: A diverse benchmark suite for retrieval-based tasks

•	 MS MARCO: Commonly used for passage ranking and open- 

domain QA

�Best Practices

•	 Use a combination of metrics for a more comprehensive evaluation.

•	 Include both automated and human evaluations, especially for 

subjective tasks.

•	 Track metric changes before and after fine-tuning to measure 

improvements.

•	 Consider using LLM-as-a-judge or prompt-based evaluation for 

complex outputs.

�e. Detect Bias, Fairness, and Groundedness of LLMs
Detecting bias, fairness, and groundedness in large language models (LLMs) is a critical 

task, especially when evaluating retrieval-augmented generation (RAG) systems. 

Frameworks like RAGAS and TruLens provide structured approaches to assess these 

qualities using specific metrics and methodologies.

�Groundedness

Groundedness measures how well an LLM’s response is supported by the retrieved 

context or source material, ensuring it doesn’t hallucinate or deviate from the provided 

information. Both RAGAS and TruLens offer ways to evaluate this.
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•	 RAGAS Framework

•	 Metric: Faithfulness is the primary metric for groundedness 

in RAGAS. It assesses whether the LLM’s response aligns with 

the retrieved context by breaking the response into individual 

statements and verifying each against the source material.

•	 How It Works: RAGAS uses an LLM to evaluate the response. For 

each statement in the output, it checks if the retrieved context 

supports it, often employing a chain-of-thought reasoning 

process to provide a score (e.g., 0 to 1) and explanations. A 

low faithfulness score indicates potential hallucinations or 

unsupported claims.

•	 Implementation: You provide the query, retrieved context, and 

LLM-generated response. RAGAS then computes the faithfulness 

score by analyzing factual consistency.

•	 TruLens Framework

•	 Metric: Groundedness is explicitly measured in TruLens as part 

of the RAG Triad (context relevance, groundedness, answer 

relevance). It evaluates how well each part of the response is 

anchored in the retrieved context.

•	 How It Works: TruLens uses a feedback function powered by an 

LLM (e.g., GPT-3.5) to score groundedness. It parses the response 

into segments and checks their alignment with the context, 

providing a score and reasoning for transparency.

•	 Implementation: Using TruLens, you set up an evaluator with a 

Tru object and a recorder to log the query, context, and response. 

The framework then runs the groundedness evaluation, allowing 

you to tweak parameters like chunk size or retrieval strategy 

based on results.
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�Bias

Bias in LLMs refers to unfair or skewed outputs that reflect prejudices in training data 

or model behavior, often related to demographics, ideologies, or social groups. While 

RAGAS and TruLens don’t directly target bias as a standalone metric, their evaluation 

techniques can be adapted to detect it.

•	 RAGAS Framework

•	 Approach: Bias isn’t a predefined metric in RAGAS, but you can 

detect it indirectly through faithfulness and answer relevance. 

For example, if an LLM consistently generates responses that 

misrepresent certain groups (e.g., gender or race) despite 

accurate context, this could indicate bias.

•	 How to Detect: Create a diverse set of queries and contexts 

targeting sensitive attributes (e.g., “Describe a typical software 

engineer” with contexts mentioning different genders). Compare 

the faithfulness scores across these responses. Disparities in 

how the LLM interprets or uses context for different groups may 

suggest bias.

•	 Limitations: RAGAS focuses on factual alignment, so subtle 

biases (e.g., tone or omission) might require additional 

qualitative analysis or custom metrics.

•	 TruLens Framework

•	 Approach: TruLens also lacks a direct bias metric but can be 

extended to assess bias through groundedness and answer 

relevance evaluations across varied inputs.

•	 How to Detect: Test the LLM with prompts designed to probe for 

bias (e.g., “Provide a job recommendation for a male vs. female 

candidate” with identical contexts). Analyze the groundedness 

scores to see if the LLM deviates from the context differently 

based on demographic factors. Low groundedness for specific 

groups might indicate biased interpretation.
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•	 Customization: TruLens allows custom feedback functions. 

You could define a bias-specific metric by comparing response 

patterns across demographic variations, leveraging its systematic 

experiment tracking to establish baselines.

�Fairness

Fairness evaluates whether an LLM treats different groups equitably, avoiding 

discrimination or unequal performance. Neither RAGAS nor TruLens has an explicit 

fairness metric, but their evaluation pipelines can be adapted to assess fairness 

indirectly.

•	 RAGAS Framework

•	 Approach: Use context recall and answer relevance to check if the 

LLM retrieves and uses context equitably across groups. Context 

recall measures how much of the relevant context is included, 

while answer relevance ensures the response addresses the query 

appropriately.

•	 How to Detect: Design evaluation datasets with balanced 

representation (e.g., equal mentions of different ethnicities 

or genders in contexts). Run RAGAS to compute recall and 

relevance scores for each group. Significant score variations (e.g., 

higher relevance for one gender) could indicate unfairness in 

retrieval or generation.

•	 Practical Steps: Generate synthetic datasets with counterfactuals 

(e.g., swapping gender in prompts), and analyze if the LLM’s 

performance remains consistent.

•	 TruLens Framework

•	 Approach: Leverage the RAG Triad to assess fairness by ensuring 

context relevance, groundedness, and answer relevance are 

consistent across diverse inputs.

•	 How to Detect: Test the LLM with a dataset covering multiple 

demographic groups (e.g., FairFace or Bias in Bios). Evaluate the 

triad metrics for each group. For instance, if context relevance 
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is lower for underrepresented groups, it might suggest biased 

retrieval; if answer relevance varies, it could point to unfair 

generation.

•	 Experimentation: TruLens supports iterative testing. Adjust 

retrieval parameters (e.g., sentence window size) and observe 

their impact on fairness metrics, aiming for uniform performance 

across groups.

�Practical Steps to Implement

	 1.	 Dataset Preparation

	 a.	 Curate a diverse evaluation set with queries and contexts spanning 

demographics, ideologies, or other bias-prone areas.

	 b.	 Include counterfactual examples (e.g., changing “he” to “she” in prompts) 

to test consistency.

	 2.	 RAGAS Setup

	 a.	 Install RAGAS (pip install ragas), and input your query, context, and 

response.

	 b.	 Run faithfulness and relevance evaluations, and then analyze scores for 

patterns indicating bias or unfairness.

	 3.	 TruLens Setup

	 a.	 Install TruLens (pip install trulens-eval), and initialize a Tru object.

	 b.	 Define a recorder with your RAG pipeline, and run evaluations using the 

RAG Triad. Compare results across groups.

RAGAS Example:

from ragas import evaluate
from datasets import Dataset

data = Dataset.from_dict({
    "question": ["What’s France’s capital?"],
    "context": ["France’s capital is Paris."],
    "answer": ["Paris"]
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})
result = evaluate(data, metrics=["faithfulness"])
print(result["faithfulness"])
Output: 1.0 (grounded)

If answer were “London,” score would be ~0.0 (ungrounded).

TruLens Example:

from trulens_eval import Tru, Feedback from trulens_eval.feedback import 
Groundedness
tru = Tru()
groundedness = Groundedness()
feedback = Feedback(groundedness.groundedness_measure)
result = tru.run_feedback_functions( record={"query": "2020 election 
winner?", "context": "Joe Biden won.", "response": "Joe Biden"} )
print(result)
Output: ~0.9 (grounded)

�Detecting Data Drift When Fine-Tuning
Detecting data drift when fine-tuning a large language model (LLM) is crucial to ensure 

the model remains effective and generalizes well to new data. Data drift occurs when the 

distribution of the incoming data (e.g., the fine-tuning dataset or real-world inference 

data) diverges from the distribution of the original training dataset. Here’s a step-by-step 

approach to detect data drift during fine-tuning:

	 1.	 Define Key Metrics and Features

•	 Text Features: Extract relevant features from your dataset, such 

as token frequency, sentence length, vocabulary size, n-gram 

distributions, or embeddings (e.g., from a pretrained model 

like BERT).

•	 Task-Specific Metrics: If fine-tuning for a specific task (e.g., 

classification), monitor label distributions, class balance, or other 

task-relevant statistics.

•	 Baseline: Use the original training dataset (or a representative 

subset) as a reference for comparison.
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	 2.	 Statistical Tests

•	 Distribution Comparison: Apply statistical tests to compare the 

original training data and the fine-tuning data:

•	 Kolmogorov-Smirnov (KS) Test: For continuous features 

like sentence length or embedding distances

•	 Chi-Square Test: For categorical data like label distributions 

or token frequencies

•	 Wasserstein Distance: Measures the “distance” between two 

distributions, useful for embeddings or numerical features

•	 Thresholds: Set significance thresholds (e.g., p-value < 0.05) to 

flag significant drift.

	 3.	 Embedding-Based Drift Detection

•	 Generate Embeddings: Use the pretrained LLM (before fine-

tuning) to encode both the original training data and the fine-

tuning data into a latent space (e.g., mean-pooled embeddings).

•	 Compare Distributions: Calculate drift using metrics like

•	 Cosine Similarity: Between average embeddings of the two 

datasets

•	 Maximum Mean Discrepancy (MMD): A kernel-based 

method to measure divergence between distributions

•	 KL Divergence: If you can estimate probability densities (e.g., 

via histograms or kernel density estimation)

•	 Visualization: Use t-SNE or PCA to visualize embeddings and 

spot clusters or shifts

	 4.	 Monitor Model Performance

•	 Validation Set: Maintain a held-out validation set from the 

original training distribution. Track performance metrics (e.g., 

accuracy, perplexity, F1 score) during fine-tuning.
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•	 Performance Drop: A significant drop might indicate the fine-

tuning data is drifting too far from the original distribution, 

causing the model to overfit or lose generalization.

•	 Cross-Dataset Evaluation: Periodically evaluate the fine-tuned 

model on both the original validation set and a sample of the 

fine-tuning data to detect discrepancies.

	 5.	 Concept Drift in Task-Specific Fine-Tuning

•	 Label Shift: Check if the label distribution changes (e.g., a 

sentiment model seeing more negative samples in fine-tuning 

than in training).

•	 Covariate Shift: Compare input feature distributions (e.g., topics, 

vocabulary) while assuming the task remains the same.

•	 Semantic Shift: Use topic modeling (e.g., LDA) or keyword 

analysis to detect changes in the underlying themes or concepts.

	 6.	 Practical Example

•	 Suppose you’re fine-tuning an LLM for customer support 

classification:

•	 Extract token frequencies and embeddings from the original 

training data (e.g., product reviews) and the fine-tuning data 

(e.g., live chat logs).

•	 Run a KS test on sentence lengths and a Wasserstein distance 

on embeddings.

•	 If p-values indicate significant drift or distances exceed a 

threshold, investigate further (e.g., new slang in chats not 

present in reviews).

	 7.	 Mitigation

If drift is detected, consider

•	 Reweighting: Adjust the fine-tuning data to align with the 

original distribution.
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•	 Regularization: Use techniques like weight decay or domain- 

adversarial training to reduce overfitting to drifted data.

•	 Data Augmentation: Blend original and fine-tuning data to 

smooth the transition.

�f. Model Iteration
Iteration involves refining the model based on evaluation results. This step includes

•	 Adjusting fine-tuning parameters, such as learning rate or the extent 

of layer freezing

•	 Implementing regularization techniques to prevent overfitting

•	 Exploring alternative architectures or training strategies

Iterative improvements allow engineers to progressively enhance the model’s 

capabilities, ensuring it meets the desired performance levels before deployment.

�g. Model Deployment
Deployment transitions the fine-tuned model from development to real-world 

application. Key considerations during this phase include

•	 Ensuring hardware and software compatibility with the 

deployment environment

•	 Integrating the model into existing systems or workflows

•	 Addressing scalability, real-time performance, and security measures

Successful deployment ensures the model operates seamlessly in its intended 

environment, delivering the enhanced capabilities achieved through fine-tuning.

�Fine-Tuning Applications
Fine-tuning pretrained models is a powerful way to adapt general-purpose LLMs for 

specific tasks. Below are some of the most prominent use cases where fine-tuning offers 

significant benefits.
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�a. Sentiment Analysis
Fine-tuned models enable accurate sentiment analysis, providing insights from 

customer feedback, social media posts, and product reviews. Businesses can use these 

insights to

•	 Identify trends and gauge customer satisfaction

•	 Inform marketing strategies and product development

•	 Track public sentiment for proactive reputation management

For example, a company might fine-tune a model on its specific customer data 

to better understand feedback nuances, helping drive targeted improvements and 

customer engagement.

�b. Chatbots
Fine-tuning enhances chatbot performance, enabling more engaging and contextually 

relevant conversations. Applications include

•	 Customer Service: Providing personalized assistance and 

resolving queries

•	 Healthcare: Answering medical questions and offering 

patient support

•	 Ecommerce: Assisting with product recommendations and 

transactions

•	 Finance: Offering personalized financial advice and account 

management

By adapting language models to specific industries, fine-tuned chatbots become 

valuable tools for improving user interactions and customer satisfaction.

�c. Summarization
Fine-tuned models can generate concise, informative summaries of lengthy documents, 

articles, or conversations, streamlining information retrieval. Applications include
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•	 Academic Research: Condensing research papers for quick 

understanding

•	 Corporate Environments: Summarizing reports and emails to aid 

decision-making

•	 Legal and Medical Fields: Providing summaries of case files or 

patient histories for efficient review

Fine-tuned summarization models enable professionals to process vast amounts of 

information more effectively, improving productivity and knowledge management.

Fine-tuning pretrained language models unlocks their potential to deliver optimized, 

task-specific outcomes. By following a structured process and adhering to best practices 

in data preparation, parameter configuration, validation, iteration, and deployment, 

organizations can harness the power of LLMs to address unique challenges. From 

sentiment analysis and chatbots to summarization, fine-tuned models demonstrate 

versatility and effectiveness, offering significant benefits across industries and 

applications.

�Advanced Fine-Tuning Techniques for LLMs
As large language models (LLMs) grow in size and complexity, traditional fine-tuning 

approaches can become computationally expensive, resource-intensive, or insufficient 

for specialized needs. Advanced fine-tuning techniques have emerged to address these 

limitations, offering innovative ways to adapt LLMs efficiently and effectively. This 

section explores four prominent methods—Low-Rank Adaptation (LoRA), Prompt 

Tuning, Continual Learning, and Federated Fine-Tuning—each pushing the boundaries 

of how LLMs can be customized for diverse applications.

�Low-Rank Adaptation (LoRA)
Low-Rank Adaptation (LoRA) is a parameter-efficient fine-tuning technique that 

updates only a small subset of a model’s weights, reducing the computational and 

memory burden of full fine-tuning. Instead of modifying all parameters, LoRA 

introduces low-rank updates to specific weight matrices (e.g., in the attention layers), 

allowing the model to adapt to new tasks while keeping the original pretrained 

weights frozen.
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Mechanics

•	 LoRA assumes that the changes needed for task-specific adaptation 

lie in a low-dimensional subspace of the full weight matrix.

•	 For a weight matrix W W W in the model, LoRA adds a low-rank 

decomposition ΔW=A·B \Delta W = A \cdot B ΔW=A·B, where A A A 

and B B B are smaller matrices with rank r r r (much smaller than the 

original dimensions).

•	 During fine-tuning, only A A A and B B B are trained, while W W 

W remains unchanged. The updated weights are computed as 

W′=W+ΔW W' = W + \Delta W W′=W+ΔW during inference.

Advantages

•	 Efficiency: Reduces memory usage and training time significantly 

(e.g., fine-tuning a billion-parameter model might require updating 

only 0.1% of parameters).

•	 Modularity: Task-specific updates can be stored separately and 

swapped in or out without altering the base model.

•	 Scalability: Ideal for fine-tuning massive models like GPT-3 or 

LLaMA on resource-constrained hardware.

Challenges

•	 May underperform full fine-tuning on highly specialized tasks 

requiring extensive adaptation

•	 Requires careful selection of the rank r r r to balance efficiency and 

expressiveness

Use Cases

•	 Fine-tuning LLMs for multiple domain-specific chatbots (e.g., legal, 

medical) with minimal storage overhead

•	 Adapting large models on edge devices where memory and compute 

are limited
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Example: A company fine-tunes a 175-billion-parameter LLM for customer support 

using LoRA, reducing the trainable parameters from 175 billion to a few million, 

achieving comparable performance to full fine-tuning with a fraction of the GPU hours.

�Prompt Tuning
Prompt Tuning shifts the focus from modifying model weights to optimizing task-specific 

prompts, leveraging the pretrained LLM’s inherent capabilities without altering its 

parameters. This method is particularly useful for extremely large models where full 

fine-tuning is impractical.

Mechanics

•	 Instead of updating the model, a set of trainable prompt embeddings 

(virtual tokens) is prepended to the input sequence.

•	 These embeddings are optimized during training to guide the model 

toward desired outputs for a specific task.

•	 The pretrained weights remain frozen, and only the prompt 

embeddings (a tiny fraction of parameters) are adjusted.

Advantages

•	 Ultraefficient: Requires updating far fewer parameters than even 

PEFT methods like LoRA (e.g., tens of thousands vs. millions).

•	 Preserves Model Integrity: Avoids risks of overfitting or catastrophic 

forgetting since the core model is unchanged.

•	 Flexibility: Prompts can be easily swapped for different tasks, making 

it ideal for multitask scenarios.

Challenges

•	 Performance may lag behind full fine-tuning for complex tasks 

requiring deep adaptation.

•	 Designing effective initial prompts can be nontrivial and task- 

dependent.
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Use Cases

•	 Rapid prototyping of task-specific applications (e.g., sentiment 

analysis, summarization) without retraining the model

•	 Deploying a single LLM to handle multiple tasks by switching 

prompts dynamically (e.g., a virtual assistant toggling between 

scheduling and translation)

Example: An ecommerce platform uses prompt tuning to adapt a pretrained LLM 

for product description generation, training a 100-token prompt to produce concise, 

brand-aligned outputs without touching the model’s 70B parameters.

�Federated Fine-Tuning
Federated Fine-Tuning takes fine-tuning into decentralized territory, training LLMs 

across multiple devices or institutions without centralizing sensitive data, a critical 

feature for privacy-sensitive fields like healthcare or finance. In this setup, local models 

are fine-tuned on individual datasets—say, patient records at different hospitals—and 

their updates are aggregated into a global model without ever sharing the raw data. This 

aggregation typically uses techniques like federated averaging, where weight updates are 

combined to refine the shared model.

The result is a collaboratively trained LLM that respects data privacy and complies 

with regulations like GDPR or HIPAA, all while leveraging diverse datasets. However, 

this approach faces hurdles: coordinating training across heterogeneous devices can be 

complex, and differences in data distribution may lead to suboptimal performance. A 

consortium of hospitals might employ Federated Fine-Tuning to develop a diagnostic 

chatbot, each contributing local insights to a shared model without compromising 

patient confidentiality.

Together, these advanced techniques highlight the evolving landscape of LLM fine- 

tuning, offering solutions to the practical and ethical challenges of adapting massive 

models. LoRA and Prompt Tuning excel in efficiency, making fine-tuning accessible 

even for resource-constrained settings, while Continual Learning ensures models 

remain versatile over time. Federated Fine-Tuning, meanwhile, bridges the gap between 

customization and privacy, opening doors to collaborative AI development.
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Each method carries unique strengths and trade-offs, and their application depends 

on the task, resources, and constraints at hand. By mastering these approaches, 

practitioners can unlock the full potential of LLMs, tailoring them to an ever-widening 

array of real-world challenges with precision and responsibility.

�When to Not Use LLM Fine-Tuning
Fine-tuning large language models (LLMs) has revolutionized how AI can be tailored to 

specific tasks and domains, but it is not always the best or most appropriate approach. In 

some situations, fine-tuning might not provide a clear advantage, and in others, it may 

even introduce risks or inefficiencies. Understanding the limitations and trade- 

offs of fine-tuning is crucial for making informed decisions about whether it is the right 

approach for your use case. Below is an in-depth exploration of when and why fine- 

tuning may not be suitable.

�Pretrained Models Are Already Sufficient
Pretrained LLMs, like GPT and similar models, are designed to handle a broad range of 

language tasks effectively. They have been trained on massive datasets covering diverse 

topics, allowing them to perform well in many general-purpose scenarios without 

additional fine-tuning. For instance, tasks like summarization, basic question answering, 

and translation often yield satisfactory results using pretrained models. By leveraging 

prompt engineering, users can guide the model to perform specific tasks by simply 

designing inputs that include instructions or examples.

For example, a customer service application might ask the model to generate polite 

responses to common questions. By crafting a few-shot prompt with sample questions 

and answers, the pretrained model can adapt its output to align with the desired tone 

and style. This avoids the need for fine-tuning, which would involve additional costs and 

complexity. Fine-tuning in such cases may only yield marginal improvements, making it 

an inefficient use of resources.
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�Insufficient or Low-Quality Data
Fine-tuning requires access to task-specific data that is not only sufficient in quantity but 

also high in quality. The dataset should be clean, well-labeled, and representative of the 

domain the model will be applied to. When these criteria are not met, fine-tuning can 

introduce significant challenges.

If the dataset is too small, the model risks overfitting to the limited examples, which 

could lead to poor generalization to new inputs. For example, if a legal document 

analysis model is fine-tuned on only a handful of annotated cases, it might perform 

well on similar examples but fail when presented with novel or slightly different legal 

contexts. Moreover, if the dataset contains errors, inconsistencies, or biases, the model 

might incorporate these issues into its outputs, amplifying them in unintended ways.

In cases where high-quality data is unavailable or difficult to curate, other 

approaches, such as few-shot learning, transfer learning, or prompt engineering, may 

be more practical. These methods allow the model to perform tasks effectively without 

relying heavily on extensive task-specific datasets.

�High Computational Costs and Resource Constraints
Fine-tuning LLMs can be resource-intensive, requiring significant computational power, 

time, and storage. Training a large model, especially those with billions of parameters, 

involves running complex computations across high-performance hardware like GPUs 

or TPUs. This can result in prohibitive costs, particularly for organizations with limited 

budgets or infrastructure.

The fine-tuned model may also demand additional storage and memory for 

deployment, especially if the updated parameters increase the overall size of the model. 

For lightweight applications or environments with strict resource constraints, such as 

mobile devices or edge computing, deploying a fine-tuned model may be impractical. 

Instead, relying on pretrained models as-is, or applying techniques like parameter- 

efficient fine-tuning (PEFT), can help achieve acceptable performance without the 

overhead of full fine-tuning.
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�Regulatory, Privacy, and Ethical Constraints
Certain industries, such as healthcare, finance, and government, are subject to stringent 

regulations around data privacy, security, and usage. Fine-tuning often involves training 

a model on proprietary or sensitive data, which can raise significant legal and ethical 

concerns. For example, fine-tuning a medical diagnostic model using patient records 

might violate data privacy regulations like HIPAA (Health Insurance Portability and 

Accountability Act) or GDPR (General Data Protection Regulation).

Even if data anonymization techniques are employed, there is always a risk that 

sensitive information could be inadvertently encoded in the model’s parameters. This 

could lead to unintended exposure of confidential information, especially in scenarios 

where the model is accessed by third parties. In such cases, organizations might consider 

using techniques like reinforcement learning from human feedback (RLHF) or synthetic 

data generation to achieve their goals without compromising privacy.

Ethical concerns also arise when fine-tuning is performed without careful 

consideration of biases in the training data. If the dataset reflects societal biases or 

discriminatory practices, the fine-tuned model may perpetuate or amplify these biases, 

leading to harmful or unfair outcomes. Organizations must weigh these risks carefully 

and explore alternative methods that minimize ethical liabilities.

�Maintaining Model Versatility
Fine-tuning customizes a model for a specific task, often at the expense of its general- 

purpose capabilities. For applications that require flexibility across multiple tasks or 

domains, this specialization can become a limitation. For instance, a model fine- 

tuned for legal text summarization might lose its ability to perform other tasks, such as 

conversational AI or financial analysis, as effectively as it did in its pretrained state.

This loss of versatility is particularly concerning in use cases where the model needs 

to operate in diverse contexts or adapt to evolving requirements. In such situations, 

techniques like adapter layers, which allow task-specific customization without altering 

the core model, or dynamic prompt engineering, which leverages the model’s pretrained 

knowledge, can offer better solutions. These approaches preserve the model’s general- 

purpose utility while enabling targeted improvements.
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�Task Scope Is Uncertain or Evolving
When the exact requirements of a task are unclear or likely to change over time, fine- 

tuning can become a costly and time-consuming iterative process. For example, an 

organization exploring AI applications in customer service might initially require a 

model to answer basic inquiries but later expand its scope to include complex problem- 

solving or multilingual support. Fine-tuning the model for each incremental change 

would be inefficient, requiring repeated adjustments to data, training processes, and 

deployment strategies.

In such exploratory contexts, pretrained models with flexible prompting capabilities 

are often a better choice. They allow for rapid prototyping and experimentation without 

the need for extensive fine-tuning. Once the requirements stabilize, organizations can 

evaluate whether fine-tuning or another optimization method is necessary.

�High-Risk Scenarios Requiring Predictability and Stability
In high-stakes applications, such as legal decision-making, medical diagnoses, or 

financial forecasting, the predictability and stability of the model’s behavior are 

paramount. Fine-tuned models, especially those trained on narrowly defined datasets, 

can exhibit unpredictable performance when encountering out-of-distribution inputs. 

This variability poses significant risks in scenarios where incorrect or unreliable outputs 

could have serious consequences.

For these applications, it may be better to rely on the more generalized capabilities 

of pretrained models, which are often more robust across a wider range of inputs. 

Additionally, employing methods like human-in-the-loop systems, where model outputs 

are reviewed and verified by domain experts, can enhance reliability without the need 

for fine-tuning.

While fine-tuning offers powerful customization options for large language models, 

it is not always the most appropriate or effective approach. Scenarios where the 

pretrained model already performs well, where data quality or quantity is insufficient, 

or where computational resources are limited make fine-tuning less viable. Similarly, 

regulatory and ethical concerns, the need for model versatility, uncertain task 

requirements, or high-risk applications may favor alternative strategies.

Organizations should carefully assess their goals, constraints, and the specific needs 

of their applications before deciding to fine-tune an LLM. By leveraging pretrained 

models through prompt engineering, few-shot learning, or lightweight customization 
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techniques, many of the advantages of LLMs can be realized without the added 

complexities and risks associated with full fine-tuning. This thoughtful approach ensures 

efficient use of resources while maximizing the impact and effectiveness of AI solutions.

�Ethics and Bias in AI and LLMs
The ethics of artificial intelligence (AI), particularly in the context of large language 

models (LLMs), is a cornerstone of responsible development and deployment. As LLMs 

become increasingly integrated into everyday applications, addressing their ethical 

dimensions is essential to ensure alignment with human values, societal well-being, 

and fundamental rights. This discussion explores the multifaceted nature of AI ethics, 

highlights specific challenges associated with LLMs, and examines actionable solutions 

to foster responsible AI development.

�Understanding AI Ethics and Its Relevance to LLMs
AI ethics encompasses a set of principles, values, and guidelines aimed at ensuring that 

AI systems are designed and utilized responsibly. The ethical landscape for LLMs is 

particularly complex due to their linguistic nature and widespread applicability. These 

models influence communication, information dissemination, decision-making, and 

even creative processes, making their ethical alignment a critical priority.

Ethical considerations for LLMs include transparency, fairness, accountability, 

privacy, human agency, and societal impact. Unlike conventional AI systems, LLMs 

directly interface with human language, amplifying their potential to shape opinions, 

reinforce biases, and impact decision-making processes. The ethical challenges 

they present demand proactive engagement from researchers, developers, ethicists, 

policymakers, and society.

�Core Ethical Challenges in LLMs
�Bias in Language Models

Bias is one of the most pressing ethical concerns in LLMs. These models learn from vast 

datasets, which often reflect societal prejudices and inequalities. Consequently, LLMs 

can perpetuate or amplify biases in their outputs.
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•	 Types of Bias

Bias in LLMs manifests in various forms:

•	 Stereotypical Bias: Reinforcing societal stereotypes related to 

race, gender, or ethnicity

•	 Gender Bias: Unequal representation or treatment of genders in 

generated content

•	 Cultural Bias: Misrepresentation or oversimplification of 

cultural nuances

•	 Political Bias: Favoring certain political ideologies, potentially 

compromising neutrality

•	 Sources of Bias

The primary sources of bias include

•	 Training Data: The datasets used to train LLMs often contain 

historical inequalities and unbalanced representation.

•	 Algorithmic Bias: The mathematical frameworks and 

optimization techniques can inadvertently introduce or 

amplify biases.

•	 Impact of Bias

	 Bias in LLMs can result in discriminatory outputs, spread 

misinformation, and reinforce systemic inequalities. For instance, 

biased hiring systems or legal decision-making tools can perpetuate 

unfair practices, while misinformation in media amplifies distorted 

narratives.

�Privacy and Data Usage

The datasets used to train LLMs often include text scraped from publicly available 

sources, raising concerns about privacy and data ownership. Training data may 

inadvertently contain sensitive personal information, leading to potential privacy 

breaches.
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LLMs can also generate outputs that inadvertently reveal private or sensitive 

information. This challenge underscores the need for robust anonymization techniques, 

responsible data collection practices, and adherence to privacy laws such as GDPR 

and HIPAA.

�Transparency and Accountability

LLMs operate as “black boxes,” making it difficult to trace how specific outputs are 

generated. This lack of transparency poses challenges in understanding and auditing 

decision-making processes, particularly in high-stakes applications like healthcare, law, 

or finance. When errors or biased outputs occur, it becomes challenging to attribute 

responsibility, complicating accountability.

�Misinformation and Manipulation

The ability of LLMs to generate realistic and humanlike text raises significant risks of 

misuse. They can be exploited to create fake news, spam, phishing content, or deep 

fakes, undermining trust in digital information ecosystems. Their role in amplifying 

misinformation makes it imperative to develop safeguards against malicious use.

�Environmental Impact

The computational demands of training and running LLMs contribute to substantial 

energy consumption and carbon emissions. The environmental footprint of large-scale 

AI systems raises concerns about sustainability and aligns with broader societal goals to 

combat climate change.

�Promoting Fairness and Equity in LLMs
Ensuring fairness and equity in LLMs involves addressing biases while fostering 

inclusivity. Achieving these goals requires targeted strategies:

	 1.	 Diverse Training Data

Curating balanced and representative datasets reduces bias and 

ensures equitable representation of all groups.
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	 2.	 Fairness Metrics

Defining measurable fairness criteria provides benchmarks to 

assess and mitigate bias.

	 3.	 Bias Auditing and Mitigation

Regular audits of LLM outputs help identify biased patterns. 

Techniques such as adversarial training and debiasing algorithms 

can mitigate identified biases.

	 4.	 Human-Centered Design

Involving diverse stakeholders, including ethicists and domain 

experts, ensures the inclusion of varied perspectives in AI design 

and deployment.

�Addressing Broader Ethical Concerns
�Responsible AI Development

Responsible AI development demands a commitment to ethical principles:

•	 Beneficence: AI systems should prioritize societal well-being and 

avoid harm.

•	 Transparency: Clear documentation of training data, 

methodologies, and limitations is essential.

•	 Accountability: Developers must take responsibility for their 

systems’ outputs and impacts.

•	 Privacy: Respecting individual privacy rights is nonnegotiable.

Embedding these principles into every stage of LLM development helps align their 

capabilities with ethical standards.
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�Regulation and Policy for Ethical AI
Effective governance frameworks are essential to address the ethical challenges posed by 

LLMs. Current efforts include

•	 Transparency Reporting: Mandating disclosure of data sources, 

methodologies, and known limitations

•	 Ethics Review Boards: Establishing independent review bodies to 

assess the societal implications of AI systems

•	 Regulatory Compliance: Enforcing adherence to data protection 

laws and ethical guidelines

Policy recommendations should focus on fostering collaboration between 

governments, industry leaders, and ethicists to establish standards for ethical AI 

development.

�Future Directions
Advancing ethical practices in LLMs requires ongoing research and innovation. Key 

areas of focus include

•	 Interpretable AI: Enhancing the transparency of LLM decision- 

making processes

•	 Energy Efficiency: Developing greener algorithms and hardware to 

reduce environmental impact

•	 Holistic AI Design: Encouraging interdisciplinary collaboration to 

create culturally sensitive and ethical AI systems

Ethical considerations are integral to the responsible development and deployment 

of LLMs. By addressing issues such as bias, privacy, transparency, and environmental 

impact, the AI community can ensure that these technologies serve as tools for 

societal progress rather than harm. Through collaboration, regulation, and continuous 

innovation, LLMs can be aligned with human values, fostering trust, fairness, and 

accountability in their applications.
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�LLM Fine-Tuning Example
This example demonstrates fine-tuning GPT-2 for sentiment classification using the 

“mteb/tweet_sentiment_extraction” dataset. The process includes preparing the dataset, 

tokenizing the text, modifying GPT-2 with a classification head, and training the model 

to predict sentiment labels (positive, negative, neutral). By leveraging the pretrained 

capabilities of GPT-2, fine-tuning ensures efficient training, requiring less labeled data 

while achieving task-specific accuracy.

First, install the following libraries:

pip install datasets
pip install transformers
pip install evaluate

�Step 1: Loading Dataset
dataset = load_dataset("mteb/tweet_sentiment_extraction")

This dataset is specifically designed for sentiment classification and contains

•	 Text Data: The tweets themselves, stored in the “text” column

•	 Labels: Sentiment annotations (e.g., positive, negative, neutral), 

stored in the “label” column

Fine-tuning requires a labeled dataset because the model learns to map inputs 

(tweets) to outputs (sentiment labels). The dataset is already split into training and 

testing subsets:

•	 Training Set: Used to adjust the model’s weights during learning

•	 Testing Set: Used to evaluate the model’s performance on 

unseen data

�Step 2: Tokenization
Before the text can be fed into the model, it must be tokenized. Tokenization converts 

raw text into numerical representations (tokens) that the model can process:

tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
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The GPT-2 tokenizer maps each word, subword, or character in the text to an 

index in the model’s vocabulary. For example, “Hello world!” might become [15496, 

995, 0]. GPT-2 doesn’t have a predefined padding token because it was designed for 

text generation tasks. For classification tasks, where inputs are batched together, all 

sequences must be the same length.

Padding ensures that shorter sequences are extended to match the longest sequence 

in a batch. Since GPT-2 lacks a specific padding token, its End-of-Sequence (EOS) token 

(<|endoftext|>) is used as a placeholder.

The tokenization function is defined as follows:

def tokenize_function(examples):
    �return tokenizer(examples["text"], padding="max_length", 

truncation=True)

This function tokenizes the “text” column in the dataset while

•	 Padding: Ensuring all sequences in a batch have the same length by 

adding the padding token where necessary

•	 Truncation: Cutting off longer sequences that exceed the model’s 

maximum input size (1024 tokens for GPT-2)

The dataset is tokenized using

tokenized_datasets = dataset.map(tokenize_function, batched=True)

This prepares the data for fine-tuning, converting raw text into numerical inputs 

compatible with GPT-2.

�Step 3: Training and Evaluation Sets
To speed up training and experimentation, the code creates smaller subsets of the 

training and testing datasets:

small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).
select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).
select(range(1000))

Chapter 5  Building and Fine-Tuning LLMs



310

Note  Only 1000 examples are selected from each split. This reduces 
computational load during development while retaining enough data to 
meaningfully fine-tune and evaluate the model.

�Step 4: Adapting the Model
GPT-2, by default, is a generative model. To make it suitable for classification, it is 

adapted as follows:

model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=3)
model.config.pad_token_id = tokenizer.pad_token_id

•	 GPT2ForSequenceClassification: This class extends GPT-2 by 

adding a classification head—a linear layer that maps the model’s 

outputs to a fixed number of labels (in this case, three sentiment 

classes: positive, negative, and neutral).

•	 Retaining Pretrained Weights: The pretrained weights in GPT-2’s 

transformer layers are retained. These layers encode general 

language understanding, such as syntax and semantics. Fine-tuning 

updates these weights slightly to make the model focus on the 

nuances of sentiment analysis.

•	 Padding Token ID: The model is configured to recognize the 

padding token added during tokenization. This ensures the model 

ignores padding tokens during training and evaluation.

�Step 5: Fine-Tuning the Model
The Trainer class simplifies the fine-tuning process by managing the training loop, 

including batching, gradient updates, and evaluation. Training is configured as follows:

training_args = TrainingArguments(
    output_dir="test_trainer",
    evaluation_strategy="epoch",
    per_device_train_batch_size=4,
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    per_device_eval_batch_size=4,
    gradient_accumulation_steps=4,
    num_train_epochs=3,
    save_steps=1000,
    logging_dir="./logs",
    logging_steps=500,
)

•	 Batch Size: Determines how many examples are processed 

simultaneously. A smaller batch size reduces memory usage.

•	 Gradient Accumulation: Combines gradients over multiple batches 

before updating model weights. This effectively increases the batch 

size without exceeding memory limits.

•	 Evaluation Strategy: The model is evaluated at the end of 

each epoch.

•	 Number of Epochs: The training loop runs three times through the 

entire training set.

The Trainer is initialized with the following:

trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    tokenizer=tokenizer,
    compute_metrics=compute_metrics,
)

The Trainer

•	 Processes the training data in batches

•	 Computes the loss for each batch by comparing the model’s 

predictions to the true labels
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•	 Propagates the loss backward to compute gradients

•	 Updates the model’s weights using an optimizer, gradually improving 

its ability to classify sentiment

�Step 6: Evaluation
Once training is complete, the model’s performance is evaluated on the test set:

results = trainer.evaluate()
print("Evaluation Results:", results)

During evaluation:

•	 The model processes unseen examples from the test set and predicts 

sentiment labels.

•	 Predictions are compared to the true labels, and the accuracy metric 

is computed to measure performance.

The compute_metrics function is defined to calculate accuracy:

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)

This function converts the model’s raw predictions (logits) into class probabilities 

and calculates how many predictions match the true labels.

�What Happens Internally During Fine-Tuning

	 1.	 Forward Pass

•	 The input (tokenized tweets) passes through GPT-2’s transformer 

layers. These layers process the input to produce contextualized 

representations for each token.
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	 2.	 Classification Head

•	 The classification head processes the output of the transformer 

layers, mapping the contextualized representations to the three 

sentiment classes (positive, negative, neutral).

	 3.	 Loss Calculation

•	 The predicted sentiment logits are compared to the true labels 

using a loss function (e.g., cross-entropy loss). This quantifies 

how far off the predictions are.

	 4.	 Backward Pass

•	 Gradients are computed by propagating the loss backward 

through the model. These gradients indicate how much to adjust 

each weight to reduce the loss.

	 5.	 Weight Updates

•	 The optimizer updates the model’s weights, gradually improving 

its ability to classify sentiment accurately.

By the end of fine-tuning:
The model becomes specialized for sentiment classification while retaining its 

general language understanding capabilities. The pretrained layers are slightly adjusted 

to focus on sentiment-related patterns in text. The classification head learns to map 

GPT-2’s outputs to the sentiment labels effectively.

The whole code:

# Importing required libraries
from datasets import load_dataset
import pandas as pd
import numpy as np
from transformers import GPT2Tokenizer, GPT2ForSequenceClassification, 
TrainingArguments, Trainer
import evaluate

# Loading the dataset
dataset = load_dataset("mteb/tweet_sentiment_extraction")
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# Loading the tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")

# Setting the padding token
tokenizer.pad_token = tokenizer.eos_token

# Tokenization function
def tokenize_function(examples):
    �return tokenizer(examples["text"], padding="max_length", 

truncation=True)

# Tokenizing the dataset
tokenized_datasets = dataset.map(tokenize_function, batched=True)

# Splitting the dataset into a smaller train and evaluation set
small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).
select(range(1000))
small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).
select(range(1000))

# Loading the model
model = GPT2ForSequenceClassification.from_pretrained("gpt2", num_labels=3)

# Ensuring the model uses the same padding token
model.config.pad_token_id = tokenizer.pad_token_id

# Defining the evaluation metric
metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return metric.compute(predictions=predictions, references=labels)

# Defining training arguments
training_args = TrainingArguments(
    output_dir="test_trainer",
    evaluation_strategy="epoch",
    �per_device_train_batch_size=4,  # Adjust batch size for your  

GPU/CPU memory
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    per_device_eval_batch_size=4,
    gradient_accumulation_steps=4,  # For gradient accumulation
    num_train_epochs=3,
    save_steps=1000,
    logging_dir="./logs",
    logging_steps=500,
)

# Initializing the Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    tokenizer=tokenizer,  # Ensure tokenizer is passed to Trainer
    compute_metrics=compute_metrics,
)

# Training the model
trainer.train()

# Evaluating the model
results = trainer.evaluate()
print("Evaluation Results:", results)

Output:

Evaluation Results: {'eval_loss': 0.8756747841835022, 'eval_accuracy': 
0.724, 'eval_runtime': 104.1054, 'eval_samples_per_second': 14.408, 'eval_
steps_per_second': 3.602, 'epoch': 4.949333333333334}

�Conclusion
Fine-tuning large language models represents a pivotal step in adapting general-purpose 

AI systems to meet the nuanced demands of real-world applications. This chapter 

has provided a comprehensive overview of the architectural foundations of LLMs, the 

strategies for customizing them through fine-tuning, and the evaluation frameworks 
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necessary to ensure their effectiveness and reliability. From selecting the appropriate 

model architecture to implementing advanced techniques like LoRA, prompt tuning, 

and federated learning, practitioners are equipped with a diverse toolkit to enhance LLM 

performance across domains.

As the AI landscape continues to evolve, fine-tuning is not only a means of 

optimization—it is a practice that must be approached with rigor, responsibility, and 

adaptability. Ethical considerations, data quality, regulatory compliance, and resource 

constraints all play a critical role in determining whether fine-tuning is appropriate 

and how it should be executed. Evaluation metrics and benchmarks, including both 

automated and human-in-the-loop methods, further ensure that fine-tuned models 

align with intended goals while minimizing risk.

Ultimately, the ability to tailor LLMs for specific tasks, industries, or user needs is 

what transforms these models from powerful generalists into specialized, high-impact 

tools. Whether improving sentiment analysis, powering intelligent chatbots, or enabling 

domain-specific summarization, fine-tuning unlocks the full potential of large language 

models. The knowledge and strategies explored in this chapter lay the foundation for 

responsible and effective deployment of LLMs in today’s data-driven world.
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