

CONTENTS IN DETAIL

ACKNOWLEDGMENTS
INTRODUCTION
Who This Book Is For
What’s in the Book
This Book’s Approach
About the Code
Corrections and Comments

PART I: INTERPRETERS
1
THE SMALLEST POSSIBLE PROGRAMMING LANGUAGE
What Is Brainfuck?

What Makes a Language Turing-Complete?
How Brainfuck Works

The Structure of an Interpreter
Implementing Brainfuck in Python

Getting the Source File
Writing the Interpreter

Running the Interpreter
Testing the Interpreter
Real-World Applications
Exercises
Notes

2
WRITING A BASIC INTERPRETER
Understanding NanoBASIC

BASIC History
NanoBASIC’s Paradigm, Syntax, and Semantics

NanoBASIC Style and Minutiae
An Example NanoBASIC Program

Formalizing NanoBASIC’s Syntax
The NanoBASIC Implementation

The Tokenizer
Nodes
Errors
The Parser
The Runtime

Running a Program
Testing NanoBASIC
Real-World Applications
Exercises
Notes

PART II: COMPUTATIONAL ART
3
RETRO IMAGE PROCESSING
What Is Dithering?
Getting Started
The Dithering Algorithm
The MacPaint File Format

Translating Bytes to Bits
Implementing Run-Length Encoding
Testing Run-Length Encoding
Converting to MacBinary
Putting It All Together

The Results
Real-World Applications
Exercises
Notes

4
A STOCHASTIC PAINTING ALGORITHM
How It Works
Command Line Options
The SVG Format
The Algorithm
The Main Implementation

Setup
Utility Methods
Trials
Output

The Results

Real-World Applications
Exercises
Notes

PART III: EMULATORS
5
BUILDING A CHIP-8 VIRTUAL MACHINE
Virtual Machines
The CHIP-8 Virtual Machine

Registers and Memory
Instructions

The Implementation
The Run Loop
Command Line Arguments
VM Setup and Helper Functions
Graphics
Instruction Execution

Testing the VM
Playing Games
Real-World Applications
Exercises
Notes

6
EMULATING THE NES GAME CONSOLE
About the NES

The Hardware
The Software

Building the Emulator
Planning the Structure
Creating the Main Loop
Emulating the Cartridge
Emulating the CPU
Understanding the PPU
Implementing the PPU

Testing the Emulator
Playing Games
Real-World Applications
Exercises
Notes

PART IV: SUPER-SIMPLE MACHINE
LEARNING
7
CLASSIFICATION WITH K-NEAREST NEIGHBORS
The Rise of Machine Learning
How KNN Works
Implementing Classification with KNN

Classifying Fish
Classifying Handwritten Digits

Real-World Applications
Exercises
Notes

8
REGRESSION WITH K-NEAREST NEIGHBORS
How KNN Regression Works
Implementing Regression with KNN

Predicting Fish Weights
Predicting the Rest of a Handwritten Digit

Real-World Applications
Exercises
Notes

AFTERWORD
What We Did and What’s Next
On Learning Computer Science
Interpreters
Computational Art
Emulators
Machine Learning

APPENDIX: BITWISE OPERATIONS
A Review of Binary
Common Bitwise Operations

Left Shift (<<)
Right Shift (>>)
OR (|)
AND (&)
XOR (^)
Complement (~)

INDEX

COMPUTER SCIENCE FROM
SCRATCH

Building Interpreters, Art,
Emulators, and ML in Python

by David Kopec

San Francisco

COMPUTER SCIENCE FROM SCRATCH. Copyright © 2025 by David Kopec.All rights reserved. No part of this work may be reproduced or transmitted inany form or by any means, electronic or mechanical, including photocopying,recording, or by any information storage or retrieval system, without the priorwritten permission of the copyright owner and the publisher.First printing29 28 27 26 25    1 2 3 4 5ISBN-13: 978-1-7185-0430-1 (print)ISBN-13: 978-1-7185-0431-8 (ebook)Published by No Starch Press®, Inc.245 8th Street, San Francisco, CA 94103phone: +1.415.863.9900www.nostarch.com; info@nostarch.comPublisher: William PollockManaging Editor: Jill FranklinProduction Manager: Sabrina Plomitallo-GonzálezProduction Editor: Jennifer KeplerDevelopmental Editor: Nathan HeidelbergerCover Illustrator: Josh KembleInterior Design: Octopod StudiosTechnical Reviewer: Michael KennedyCopyeditor: Audrey DoyleProofreader: Céline ParentThe following images are reproduced with permission: Figures 6-2, 6-4, 6-5,and 6-6 were created by user Damian Yerrick of nesdev.org. Figure 6-7 wascreated by user Persune of nesdev.org. All the information on nesdev.org isreleased into the public domain.Library of Congress Control Number: 2025016217For customer service inquiries, please contact info@nostarch.com. Forinformation on distribution, bulk sales, corporate sales, or translations:sales@nostarch.com. For permission to translate this work:rights@nostarch.com. To report counterfeit copies or piracy:counterfeit@nostarch.com. The authorized representative in the EU for productsafety and compliance is EU Compliance Partner, Pärnu mnt. 139b-14, 11317Tallinn, Estonia, hello@eucompliancepartner.com, +3375690241.No Starch Press and the No Starch Press iron logo are registered trademarksof No Starch Press, Inc. Other product and company names mentioned hereinmay be the trademarks of their respective owners. Rather than use a trademarksymbol with every occurrence of a trademarked name, we are using the names

http://www.nostarch.com/
mailto:info@nostarch.com
http://nesdev.org/
mailto:info@nostarch.com
mailto:sales@nostarch.com
mailto:rights@nostarch.com
mailto:counterfeit@nostarch.com
mailto:hello@eucompliancepartner.com

only in an editorial fashion and to the benefit of the trademark owner, with nointention of infringement of the trademark.The information in this book is distributed on an “As Is” basis, withoutwarranty. While every precaution has been taken in the preparation of thiswork, neither the author nor No Starch Press, Inc. shall have any liability toany person or entity with respect to any loss or damage caused or alleged to becaused directly or indirectly by the information contained in it.

To my mother, Sylvia, who has celebrated every win withme, and helped me with every loss.

About the AuthorDavid Kopec is an associate professor of computer scienceat Albright College. He joined academia in 2016 afterworking as a software developer, with a concentration iniOS app development. He’s the author of four previoustechnical books, including Classic Computer Science
Problems in Python, which has been translated into eightlanguages and published around the world. An avid appdeveloper and podcaster, Kopec lives with his wife andthree children in Wyomissing, Pennsylvania.
About the Technical ReviewerMichael Kennedy is well known in the Python spacethrough his work at the Talk Python to Me and Python
Bytes podcasts, which have covered important topics andnews in the Python community for almost 10 years. He’sthe founder of Talk Python Training, which offers manydeveloper courses online, and is a Python SoftwareFoundation Fellow. Kennedy is based in Portland, Oregon.When he’s not programming or enjoying time with hisfamily, you might find him exploring the local mountains onhis motorcycle.

ACKNOWLEDGMENTS

Most importantly, I would like to thank you, the reader, forpurchasing this book. You probably could have found onlinetutorials for most of the topics in this book, but it’s unlikelythey would have been as vetted, as cohesive, or as well puttogether. At least I think so, and that’s why I wrote thisbook. By purchasing it, you supported not only itsdevelopment but also the continued existence of anindustry that produces other books like it.Next, I would like to thank Champlain College, whichprovided me with a sabbatical after seven years of service.There are very few remaining industries that give peopletime off for the better part of a year to pursue their ownwork-related interests and pay them to do it. Sometimessomething wonderful comes out of that time and space.Completing this book was my sabbatical project.I would like to thank my family who supported me inpursuing this project, especially my mom, Sylvia, and mywife, Rebecca. My kids, Daniel, Vera, and Lucille, are tooyoung to really understand what it means to write atechnical book, but I couldn’t have written it if Rebeccawasn’t taking care of them, so instead of thanking them, I’llthank her a second time.I would like to thank No Starch Press for believing inthis book. I came to them with a fully written draftmanuscript, which is a bit unusual for a technical book, andthey believed in its contents enough to put the resources

into refining it for your consumption. In particular, I wouldlike to thank Nathan Heidelberger, my developmentaleditor, who took the time to empathetically put himself inthe shoes of the reader and found ways both large andsmall to improve the book. And, of course, I’d like to thankthe rest of the team at No Starch Press who helped bringthe book through development and production. I would alsolike to thank my technical reviewer, Michael Kennedy, forhis good suggestions.Last but not least, I want to thank all of the folks whopublicly reviewed my prior books. If you hadn’t reactedpositively to my prior books and taken the time to recordthat, this book would never have had the fuel to take off. Ifyou’re reading this, please take the time to review this booktoo!

INTRODUCTION

How does a programminglanguage work? How is asimple computer organized? I’m the typeof person who likes to learn new subjectsfrom first principles, in a hands-on way. Iwant more than just high-level overviews.If you’re that type of learner too, thenyou’ve found the right resource. Throughthe seven Python projects in this book,you’ll build an understanding of somefundamental ideas from the realm ofcomputer science.

Who This Book Is ForThis book is for intermediate and advanced Pythonprogrammers. If you’re a beginning programmer, youshould probably come back to this book at a later point.Throughout the text, I assume the reader knows the syntaxand semantics of Python, is comfortable writing programsof moderate complexity, knows how to install Pythonlibraries, and understands basic data structures like lists,sets, and dictionaries.While I do assume readers will have some programmingexperience, I don’t assume readers’ knowledge of computerscience or advanced mathematics. This book is designed forthose who either lack a formal computer science educationor want to fill in some gaps in their knowledge. Forexample, if you have an interest in writing your ownprogramming language but you never took a course oncompilers, this book is a great starting point. If you want towrite a video game console emulator, this book will showyou how. It even has a very digestible introduction tomachine learning.The exact projects in the book may not themselves beyour end goal, but that’s not the point. Think of them as ameans to unlock deeper knowledge about algorithmicthinking and how software works, and as a jumping-offpoint for your own explorations.
What’s in the BookEach chapter constitutes one complete project, except forChapters 7 and 8, which together make up one project. Theseven projects in the book range from easy (the Brainfuckinterpreter in Chapter 1) to difficult (the NES emulator inChapter 6), but since all the source code is provided, you’llnever get stuck and be unable to proceed.

Each project begins with some theory—just enough tounderstand what we’ll be implementing, without gettingbogged down in the details—and then walks through thecode. The chapters also include stories about how Ipersonally got interested in the subject, a discussion of howthe implemented algorithms or computational techniquesare used in the real world, and challenges for the reader toextend the provided code.The book is divided into four parts. In Part I, we’llexplore the world of interpreters by creatingimplementations of two simple programming languages.
Chapter 1: The Smallest Possible Programming
Language Brainfuck is a minimal programminglanguage often used for educational purposes becauseof its simplicity—the whole language consists of justeight characters. We’ll learn how a very simpleinterpreter works by implementing one that can run anyBrainfuck program. We’ll also learn what it means for alanguage to be Turing-complete.
Chapter 2: Writing a BASIC Interpreter The BASICprogramming language and its pared-down dialect, TinyBASIC, were popular during the PC revolution of thelate 1970s. We’ll implement an interpreter for a slightlysimplified variant of Tiny BASIC called NanoBASIC.Doing so will demonstrate the constituent parts of moresophisticated interpreters, including a tokenizer,parser, and runtime environment.In Part II, we’ll get into the vibrant world ofcomputational art.
Chapter 3: Retro Image Processing When displaytechnology was simpler, dithering algorithms werenecessary to adapt images for devices that used alimited color palette. We’ll implement a ditheringalgorithm capable of displaying modern color photos on

the black-and-white screen of an original Macintosh.Then, we’ll convert the dithered images to a formatcompatible with the classic MacPaint application, usingthe run-length encoding compression algorithm in theprocess. The images we output can be displayed onactual 1980s Macintosh hardware.
Chapter 4: A Stochastic Painting Algorithm Can arelatively simple algorithm create sophisticatedabstract art? We’ll use a stochastic technique togenerate “impressions” of existing images by matchingrandom shapes to the underlying image, and we’ll seehow a hill-climbing algorithm can help optimize theresults.Part III is all about emulators—programs that allow onetype of computer to pretend to be another type ofcomputer.
Chapter 5: Building a CHIP-8 Virtual Machine CHIP-8 is a virtual machine (VM) specification that wasoriginally used for developing video games in the 1970s.Building a CHIP-8 VM is often considered the best firststep into the world of emulation: it’s relatively simplebut still involves all the steps necessary to create anemulator. Our CHIP-8 VM will be capable of playing allthe CHIP-8 games that ran on machines in the 1970s.
Chapter 6: Emulating the NES Game Console TheNES was one of the best-selling video game consoles ofall time. We’ll create an emulator that can play realNES games. It will have no sound, be rather slow, andnot be completely accurate or universally compatible,but it will still be a great way to learn not just aboutemulators but also about how computers work at a lowlevel.Finally, Part IV is a very gentle introduction to theworld of machine learning using the k-nearest neighbors

(KNN) algorithm.
Chapter 7: Classification with K-Nearest
Neighbors We’ll learn KNN, perhaps the simplestalgorithm in machine learning (ML), and use it as agateway to understand some introductory ML topics.We’ll use KNN to classify fish as well as images ofhandwritten digits. Amazingly, it will complete thelatter task with 98 percent accuracy.
Chapter 8: Regression with K-Nearest Neighbors We’ll take KNN to the next level by using it not just toclassify items into categories but also to predictunknown attributes of data points. In the chapter finale,we’ll use it to predict the missing pixels from an imageof a digit that the user draws.Beyond the main chapters, the afterword features somesuggested resources for learning more about the topics inthis book, and the appendix covers the basics of low-levelbit manipulation in Python, an essential component ofseveral projects.

This Book’s ApproachI try to keep my books as succinct as possible. I value yourtime. I use a tutorial-like, code-centric format to teach, andwhere possible, I let the code speak for itself.This is not a textbook. You’ll find some theory,especially at the beginning of each chapter, but it willnever be too long before we get to some code. There’s justenough information to help you understand how each of theprojects works, and enough pointers so that you knowwhere to look next if you want to dive deeper into any ofthe covered topics.I’m not claiming to be an expert on interpreters,computational art, emulators, or machine learning. Thatmay sound weird coming from the author of a book on

those topics, but it’s true. I’m not an expert; I’m a teacher.I’ve worked as a software developer, and I’ve worked ascomputer science faculty at a teaching college. My claim isthat I’m able to write clean code and explain that code toyou in an exceptionally comprehensible manner. And sinceI’m not an expert, I won’t be talking down to you. I’ll betreating you like my peer as we go on this journey together.This is the guide I wish I had as I tried doing projects inthese areas on my own.
About the CodeAll the source code in this book is available on thecompanion GitHub repository at https://github.com
/davecom/ComputerScienceFromScratch. The code wascreated and tested against Python versions 3.12 and 3.13.Because some type hint–related features of Python 3.12 areutilized, some of the code won’t work with earlier versionsof Python (but will likely work with any new version ofPython in the foreseeable future). However, if you removethe type hints, the vast majority of the code will work withPython version 3.10 and later.I’ve used Python type hints (or “type annotations”)throughout the source code because I believe they increasereadability by telling you a function’s parameter and returntypes without you needing to scrutinize the code or thecomments. If you don’t like them, you can ignore them;they don’t change anything about how the code works. I’vetried not to overuse type hints, as some find them to be tooverbose. For example, I rarely use them within functionbodies, but I do use them in every function signature. Itype-checked all the source code against the contemporaryversion of Pyright at the time of the book’s writing.Several of the projects in this book use externallibraries. You should have Pygame, NumPy, and Pillowinstalled in the virtual environment you create for the

https://github.com/davecom/ComputerScienceFromScratch

book’s source code or in your system Python interpreter.For most readers, installing them should be as simple asrunning pip install pygame, numpy, pillow. A requirements.txtfile that pip can use is included in the book’s source coderepository.
Corrections and CommentsThe book’s GitHub repository is a great place to open anissue if you think you found a mistake. You’re also welcometo reach out to me by email at csfromscratch@oaksnow.comor via X @davekopec. I welcome your feedback, bothpositive and negative. If you enjoy the book, please alsoconsider leaving a review on Amazon or wherever youpurchased it.

PART I
INTERPRETERS

1
THE SMALLEST POSSIBLE

PROGRAMMING LANGUAGE

What’s the smallest possibleprogramming language thatcan still be used to solve real problems?Certainly, a candidate for that prizewould be Brainfuck, an esotericprogramming language developed byUrban Müller in 1993. In this chapter,we’ll develop a Brainfuck interpreter.Brainfuck is perhaps the easiest possibleprogramming language to write aninterpreter for—you’ll be amazed at howsuccinct ours is. By the end of thechapter, you’ll have learned not only howBrainfuck works but also the core tenetsof any interpreter.

What Is Brainfuck?Brainfuck has only eight commands (+, -, ., ,, >, <, [,]), andevery command is a single character. Here’s “Hello World!”in Brainfuck:1
++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---.+++
++++..+++.>>.<-.<.
+++.------.-----\---.>>+.>++.

It may look strange, but that’s an actual program.Brainfuck’s exotic syntax and minimal feature set make itunsuitable for any practical purpose. Instead, it’s a toythat’s useful as an educational model. But it’s a Turing-complete toy!
What Makes a Language Turing-Complete?A programming language is considered Turing-complete ifit can simulate a Turing machine, an abstract model of amachine that can implement any computer algorithm.2 Topicture a Turing machine, imagine a tape of unlimitedlength, split into cells that either are blank or have acharacter on them. Then, imagine a head that can read orwrite the character in a cell, including erasing it. Imaginethat the head can move left or right one cell at a time.Finally, imagine that it can write or move based on thevalue read—that is, that it can branch. In other words, thehead follows some simple rules, which can be thought of asa program that essentially says, “If this value is read, writethis other value. If that value is read, move left one cell.”That’s it. That’s enough to be able to implement anycomputing algorithm. By extension, any programminglanguage that can simulate this functionality—even asimple language like Brainfuck—can be used to solve realproblems. Figure 1-1 illustrates a hypothetical Turingmachine.

Figure 1-1: A hypothetical Turing machine, including infinite tape, cells, and a
head that follows rules

What features does a programming language need to beTuring-complete? As Allen Tucker and Robert Noonanexplain in their book Programming Languages: Principles
and Paradigms, it doesn’t take much:A programming language is said to be Turing complete if itcontains integer variables, values, and operations and hasassignment statements and the control constructs of statementsequencing, conditionals, and branching statements. All otherstatement forms (while and for loops, case selections, proceduredeclarations and calls, etc.) and data types (strings, floatingpoint values, etc.) are provided in modern languages only toenhance the ease of programming various complex applications.3Let me reduce that description further using simplerlanguage. A programming language needs integervariables, a way to change the values associated with thosevariables, something like an if statement, and somethinglike a goto statement (a “jump”) to be Turing-complete.That’s not much. And if you think about it, you can imaginehow those simple constructs can map to the elements of aTuring machine. The integer variables are the characterson the cells, changing the variables is the head writing onthe cells, and the if and goto statements represent the headbranching.Any programming language that’s Turing-complete canimplement the same algorithms as any other programming

language that’s Turing-complete. You can implementQuicksort in C, but you can also implement Quicksort inBrainfuck. You can write a JSON parser in Python, but youcould also write a JSON parser in Brainfuck. In this sense,although Brainfuck is a “toy” programming language, it’salso a “real” programming language.
How Brainfuck WorksThe main state in a Brainfuck program is an array ofintegers. Each of the slots in the array is called a cell. Thearray of cells can be thought of as analogous to the tape ina Turing machine. Instead of characters being read orwritten on a cell, it’s integers. The commands in Brainfuckallow the programmer to move forward one cell (>), movebackward one cell (<), increment a cell’s value (+),decrement a cell’s value (-), output a cell (.), input data toa cell (,), and loop while a particular cell is nonzero([and]). Several of these operations map directly to theoperations of a Turing machine, so Brainfuck is Turing-complete.In Python, we’ll need two variables to contain the cells’states: a list of all the cells (cells) and an integerrepresenting the index of the current cell (cell_index). Inaddition, we’ll need to keep track of where we are in theBrainfuck source file. We’ll handle this with anotherinteger, called instruction_index.

C VS. PYTHON

In a C implementation of a Brainfuck interpreter, the cells can be
managed by a single pointer to an array of integers. The pointer can
be used to initialize the memory for the cells and to move from cell to
cell, and it can be dereferenced to change the value of a cell.

Some of you may not know C, but I include this point to illustrate
the differences between programming languages. In C, thanks to the
power of pointers, we have a single variable construct, whereas we
need multiple variables in our Python Brainfuck interpreter for the
same functionality.

C pointers are powerful, but they’re also dangerous and difficult to
grasp for new programmers. Of course, different programming
languages come with different trade-offs for implementing an
interpreter. A C Brainfuck interpreter will also be much faster than a
Python Brainfuck interpreter. The main interpreter for Python itself,
CPython, is written in C.

Table 1-1 is based on a table from a 2017 talk by Müllerdescribing the commands that each character represents.4I’ve translated the C descriptions to Python using thevariable names just discussed.
Table 1-1: Brainfuck Commands
Command Python equivalent Description

> cell_index += 1 Move one cell to the
right.

< cell_index -= 1 Move one cell to the
left.

+ cells[cell_index] += 1 Increment current cell.

- cells[cell_index] -= 1 Decrement current
cell.

. print(chr(cells[cell_index]), end='',
flush=True)

Print ASCII value of
current cell.

, cells[cell_index] = int(input()) Read value for current
cell.

[if cells[cell_index] == 0:
instruction_index =

self.find_bracket_match(instruction_index,
True)

If the cell is zero,
move to the
corresponding closing
bracket.

] if cells[cell_index] != 0:
instruction_index =

self.find_bracket_match(instruction_index,
False)

If the cell is nonzero,
move to the
corresponding opening
bracket.

Using Table 1-1, we have enough information to stepthrough a Brainfuck program and understand what it’sdoing. We’ll consider a simple program that outputs a user-specified single character a user-specified number of times.Here’s the whole program, with each command labeledwith an index so that we can refer to it later (you can findthis program in the book’s source code repository, in
Brainfuck/Examples/repeat.bf):

,>,[<.>-]
012345678

Let’s talk about this program one command at a time.We’ll describe how each command works and illustrate itseffect on the program state using a table. The programrequires only two cells, plus a cell index and an instructionindex. The table initially looks like this:
Cell 0 Cell 1 Cell index Instruction index

0 0 0 0

Here’s the first command (for clarity, we’ll precedeeach command with its instruction index and a colon):
0: ,

User input is retrieved and stored in cell 0 because thecell index is initially 0. For our example, imagine the userentered 88 (the ASCII character code for the capital letter
X). After the command is run, the instruction index isincremented.

Cell 0 Cell 1 Cell index Instruction index

88 0 0 1

1: >

The cell index is incremented, and then the instructionindex is incremented.
Cell 0 Cell 1 Cell index Instruction index

88 0 1 2

2: ,

User input is entered into cell 1. Let’s say the userentered 10. Then, the instruction index is incremented.
Cell 0 Cell 1 Cell index Instruction index

88 10 1 3

3: [

A loop is potentially started. Since the value at thecurrent cell index isn’t 0 (it’s 10), instead of jumping to thematching closing bracket, we simply increment theinstruction index by 1 to go to the next command.
Cell 0 Cell 1 Cell index Instruction index

88 10 1 4

4: <

The cell index is decremented. The instruction index isthen incremented.
Cell 0 Cell 1 Cell index Instruction index

88 10 0 5

5: .

The ASCII value of the cell at the current cell index isoutput to the console—in this case, an X. Then, theinstruction index is incremented.
Cell 0 Cell 1 Cell index Instruction index

88 10 0 6

6: >

The cell index is incremented. Then, the instructionindex is incremented.
Cell 0 Cell 1 Cell index Instruction index

88 10 1 7

7: -

The value at the current cell index is decremented. Theinstruction index is incremented.
Cell 0 Cell 1 Cell index Instruction index

88 9 1 8

8:]

If the value at the current cell index is nonzero, wejump to the matching opening bracket. In this case, cell 1 is9, so we jump, meaning the instruction index becomes 3.
Cell 0 Cell 1 Cell index Instruction index

88 9 1 3

Now we’re through the first iteration of a loop that willrepeat nine times to print a total of 10 Xs. Instructions 3through 8 will repeat those nine times until cell 1 is 0, inwhich case the check at the closing bracket (index 8) willend the repeats and the program will be over.To provide some closure on this program, let’s jumpahead and actually run it through our interpreter:
% python3 -m Brainfuck Brainfuck/Examples/repeat.bf
88
10
XXXXXXXXXX

Our Brainfuck interpreter accepts only integers asinput. These integers can correspond to ASCII charactercodes, and 88 is the ASCII character code for X. Therefore,the expected output is 10 Xs. After you complete thechapter, you’ll be able to run the program yourself, as wellas any other Brainfuck program.
The Structure of an InterpreterInterpreters generally have at least three parts:A tokenizer (sometimes known as a lexer) that takes theoriginal source code and divides it into the smallest

recognizable constructs allowed in the programminglanguage. These are known as tokens. For the code a +
2, the tokens may be a, +, and 2.A parser that takes tokens that are next to each otherand figures out their meaning (that is, the expressionsor statements they form). Parsers typically produce atree of nodes representing the relative relationshipsbetween expressions, statements, and literal values.This tree is called the abstract syntax tree (AST). Forexample, if a Python interpreter saw the token afollowed by the token + followed by the token 2, it mayconstruct an arithmetic expression node and connect itto nodes for the a and the 2.A runtime environment that walks through the nodes ofthe AST and runs the appropriate operations to executethe meaning inherent in them. For our a + 2 arithmeticexpression node, this would mean looking up the valuerepresented by a and adding 2 to it.The beautiful thing about Brainfuck is that everystatement is just a single symbol, so all we need to do toget a token is just read a single character from the sourcefile. And each of those tokens on its own already representsa node of meaning. That makes writing an interpreter forBrainfuck easier than writing one for almost any otherprogramming language. We can combine the tokenizer, theparser, and the runtime into a single loop that merges thethree concepts together.We’ll come back to the idea of a separate tokenizer,parser, and runtime in Chapter 2, where we will build aninterpreter for a slightly more complicated language calledNanoBASIC. It will be illustrative to see how the pieces thatare fused together in our Brainfuck interpreter get brokenapart for our NanoBASIC interpreter.Brainfuck interpreters are not only easy to write butalso very compact. Inspired by another esoteric language,

called FALSE, Müller’s goal with Brainfuck was to producea minimal language, and he certainly accomplished that.His original interpreter for his language with just eightcommands was just 240 bytes. More impressive still,there’s a Brainfuck interpreter written in x86 assemblythat’s just 69 bytes.5 We won’t get to 69 bytes, but the coreof our Python Brainfuck interpreter will be just 25 lines ofcode and a couple of helper functions. And those 25 lineswill be capable of running any Brainfuck program, andtherefore any computer algorithm.Müller’s original Brainfuck implementation had somelimitations that we’ll repeat in our interpreter. Instead ofan unlimited tape, like in a Turing machine, the originalBrainfuck was limited to 30,000 cells. And each of thosecells could hold just an 8-bit unsigned integer.
Implementing Brainfuck in PythonBefore we get into the main interpreter implementation,let’s do a bit of housekeeping. Every project we do in thisbook will be structured as a Python package. Each packagewill live in its own folder with a __main__.py file that kicksoff execution when the project is run from the commandline. You can find all the code on the book’s GitHubrepository at https://github.com/davecom
/ComputerScienceFromScratch. However, you’ll also findall the necessary code directly in this book, unlessotherwise noted. Each code listing appears with the nameof the Python file it’s associated with, so you can locate thecode in the book’s repository.
Getting the Source FileOur __main__.py file is responsible for taking in thecommand line argument that contains the path of aBrainfuck source file and passing it to the main interpreter:

https://github.com/davecom/ComputerScienceFromScratch

Brainfuck/__main__.py
from argparse import ArgumentParser
from Brainfuck.brainfuck import Brainfuck

if __name__ == "__main__":
 # Parse the file argument
 file_parser = ArgumentParser("Brainfuck")
 file_parser.add_argument("brainfuck_file",
 help="A file containing Brainfuck
source code.")
 arguments = file_parser.parse_args()
 Brainfuck(arguments.brainfuck_file).execute()

The ArgumentParser standard library class makes handlingcommand line arguments easy. We’ll use it in every projectin the book. In this snippet, we create a single commandline argument, brainfuck_file, which represents the path ofthe file we want to load the Brainfuck source from. Thedefault type of the argument is a string, so we’ll ultimatelybe passing a string of the path to our Brainfuck class, whichwill be responsible for reading its contents.
NOTE
To learn more about ArgumentParser, see the official argparse
documentation at https://docs.python.org/3/library/argparse.html
Writing the InterpreterOur interpreter is responsible for maintaining Brainfuckstate (the cells, cell_index, and instruction_index). It alsoneeds to read each valid Brainfuck command in the sourcefile and change the state or complete an input/outputoperation based on that command. Because Brainfuckcommands are just a single character, reading them istrivial. And the actual “what to do” with each character is

https://docs.python.org/3/library/argparse.html

pretty much identical to Table 1-1. That’s how we end upwith just a single function (execute()) of 25 lines of code.
Brainfuck/brainfuck.py
from pathlib import Path

class Brainfuck:
 def __init__(self, file_name: str | Path):
 # Open text file and store in instance variable
 with open(file_name, "r") as text_file:
 self.source_code: str = text_file.read()

 def execute(self):
 # Setup state
 cells: list[int] = [0] * 30000
 cell_index = 0
 instruction_index = 0
 # Keep going as long as there are potential instruct
ions left
 while instruction_index < len(self.source_code):
 instruction = self.source_code[instruction_inde
x]
 match instruction:
 case ">":
 cell_index += 1
 case "<":
 cell_index -= 1
 case "+":
 cells[cell_index] = clamp0_255_wraparoun
d(cells[cell_index] + 1)
 case "-":
 cells[cell_index] = clamp0_255_wraparoun
d(cells[cell_index] - 1)
 case ".":
 print(chr(cells[cell_index]), end='', fl
ush=True)
 case ",":
 cells[cell_index] = clamp0_255_wraparoun
d(int(input()))

 case "[":
 if cells[cell_index] == 0:
 instruction_index = self.find_bracke
t_match(instruction_index, True)
 case "]":
 if cells[cell_index] != 0:
 instruction_index = self.find_bracke
t_match(instruction_index, False)
 instruction_index += 1

The implementation of each command is straight fromTable 1-1 and consists of simple manipulations of the threestate variables. For those of you who haven’t been keepingup with the latest versions of Python, the match statementwas added in Python 3.10 and can be thought of as apowerful version of a switch statement from otherlanguages. It executes the code section (or case) thatmatches the value in the variable being matched. In ourprogram, the cases correspond to the possible values of
instruction.

TYPE HINTS

You probably noticed my use of type hints on some of the local
variables. I’ll do that in this book where I think it adds clarity, but I
won’t be religious about it. For example, I think clarifying that cells is
a list[int] makes sense because some people may not remember the
list initialization syntax I used. But it’s obvious that instruction is
going to be a str based on the context, so I didn’t provide a type hint
for it. The other thing type hints allow me to do is run a static type
checker to aid in verifying the correctness of all the code in the book. I
always find that helpful.

A quick note on the type hint syntax file_name: str | Path used in
the signature of __init__(): the syntax means that the supplied
argument is expected to be of either the str type or the Path type.
Both types are acceptable. Our ArgumentParser provides filepaths as
strings, while our unit tests will supply them as Path objects. The open()
function that uses the path in __init__() can accept either.

Missing from Table 1-1 are two helper functions:
find_bracket_match() and clamp0_255_wraparound(). First, let’slook at find_bracket_match(), which helps jump from one ifstatement–like bracket command to its partner. Thisfunction is implemented as a method on the Brainfuck classsince it needs to access self.source_code:

 # Find the location of the corresponding bracket to the
one at *start*.
 # If *forward* is true go to the right looking for a mat
ching "]".
 # Otherwise do the reverse.
 def find_bracket_match(self, start: int, forward: bool)
-> int:
 in_between_brackets = 0
 ❶ direction = 1 if forward else -1
 location = start + direction
 start_bracket = "[" if forward else "]"
 end_bracket = "]" if forward else "["
 while 0 <= location < len(self.source_code):
 ❷ if self.source_code[location] == end_bracket:
 if in_between_brackets == 0:
 return location
 in_between_brackets -= 1
 ❸ elif self.source_code[location] == start_bracke
t:
 in_between_brackets += 1
 location += direction
 # Didn't find a match
 print(f"Error: could not find match for {start_brack
et} at {start}.")
 return start

To find a matching bracket, we perform a linear searchthrough the Brainfuck source code, looking at eachsubsequent character one at a time. We search to the rightif forward is True or to the left if forward is False. The direction

variable becomes a proxy for forward, either incrementingor decrementing location to go to the right or to the left ❶.The confounding factor when searching for a matchingbracket is the in-between brackets, sets of brackets thatoccur between the starting bracket and the bracket wewant. For example, say we’re searching for the matchingbracket of the first bracket in this Brainfuck snippet (I’velabeled the characters with indices for clarity):
[++[--]<<]
0123456789

The match for the opening bracket at index 0 is theclosing bracket at index 9. If we naively accept the firstclosing bracket we find, however, our search will concludethat the match for index 0 is the closing bracket at index 6.In fact, that closing bracket matches the opening bracket atindex 3.The solution is simply to count the in-between brackets.Every time we encounter the start of an in-between pair ofbrackets, we increment the in_between_brackets counter ❸.Every time we encounter the end of an in-between pair ofbrackets, we decrement in_between_brackets, unless
in_between_brackets is 0, meaning there are no more in-between brackets and the destination bracket has beenfound ❷.

A BRACKET-FINDING ALTERNATIVE

Another way to solve the in-between brackets problem is to use a
stack. Every time a start bracket is encountered, its location is pushed
to the stack. Every time an end bracket is encountered, the stack is
popped. The two bracket locations that result (the locations of the
encountered end bracket and the popped start bracket) are a pair.

Using this method, you can run through all the source code at
once and find all the bracket pairs easily. The bracket pairs’ locations
can then be cached to improve the interpreter’s performance. Instead

of running a linear search as in find_bracket_match() every time a jump
is required, finding the other bracket (the jump-to location) just
becomes a lookup from the cache.

The other helper function, clamp0_255_wraparound(),simulates the original Brainfuck by limiting cell values to 8-bit unsigned integers. We need this function becausePython’s int type is of arbitrary precision, meaning it canaccommodate integers as large as you want withoutoverflow (instead, more bytes are grabbed as needed). Atrue 8-bit unsigned integer would wrap around to 0 once itexceeded 255 by 1, and it would wrap back to 255 if it wasat 0 and was decremented by 1. We simulate this behaviorin clamp0_255_wraparound() with some simple conditionals:
 # Simulate a 1-byte unsigned integer
 def clamp0_255_wraparound(num: int) -> int:
 if num > 255:
 return 0
 elif num < 0:
 return 255
 else:
 return num

Because Brainfuck can’t change a cell by more than 1 ata time, we don’t need to worry about cases where we addmore than 1 to a cell that’s 255 or subtract more than 1from a cell that’s 0. The num > 255 and num < 0 tests aretherefore sufficient.With these two helper functions, our implementation ofa Brainfuck interpreter is complete. It really doesn’t takemuch to implement a Turing-complete language.

Running the InterpreterLet’s try running some Brainfuck code. The Brainfuckfolder in this book’s repository has an Examples subfolderwith some sample programs to interpret, including
fibonacci.bf to generate the first several members of theFibonacci sequence and hello_world_verbose.bf containingthe “Hello World!” program shown earlier in the chapter.Here, I’m running those programs from the main directoryof the repository:

% python3 -m Brainfuck Brainfuck/Examples/fibonacci.bf
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89
% python3 -m Brainfuck Brainfuck/Examples/hello_world_verbos
e.bf
Hello World!

You must execute these commands with the -m optionindicating Brainfuck should be understood to be a module.If you don’t, you’ll receive import errors. Note also that theway Python is accessed from the shell will differ byoperating system and the kind of Python installation. On mysystem, the Python interpreter has the alias python3 andpaths use a forward slash. Your system may use python andbackslashes (Windows style).It looks like our interpreter works, but we should createsome tests to be sure.
Testing the InterpreterLet’s write some tests to ensure our interpreter workscorrectly. We could start by writing some unit tests toconfirm each individual command of the interpreterfunctions as expected. Does + work correctly? Does . workcorrectly? However, for the sake of brevity (and becausethe interpreter is so simple), we’ll instead write some
integration tests. These tests examine whether whole

Brainfuck programs run correctly through the interpreter,producing the expected output.To make continuous integration a little simpler to setup, the tests for the entire book live in their own folderwithin the main repository’s root, called tests. Our tests forBrainfuck will run entire Brainfuck programs through theinterpreter, capture their textual output, and compare thatoutput to the known expected output.
tests/test_brainfuck.py

import unittest
import sys
from pathlib import Path
from io import StringIO
from Brainfuck.brainfuck import Brainfuck

Tokenizes, parses, and interprets a Brainfuck
program; stores the output in a string and returns it
def run(file_name: str | Path) -> str:
 output_holder = StringIO()
 sys.stdout = output_holder
 Brainfuck(file_name).execute()
 return output_holder.getvalue()

The run() function initializes the Brainfuck class with afile located at file_name. It also uses output_holder to captureand return stdout, meaning that instead of output from therun program going to the console, it will be assigned to avariable. This lets us programmatically compare the actualoutput with the expected output after calling run() in eachof our tests:
class BrainfuckTestCase(unittest.TestCase):
 def setUp(self) -> None:
 self.example_folder = (Path(__file__).resolve().pare
nt.parent

 / 'Brainfuck' / 'Examples')

 def test_hello_world(self):
 program_output = run(self.example_folder / "hello_wo
rld_verbose.bf")
 expected = "Hello World!\n"
 self.assertEqual(program_output, expected)

 def test_fibonacci(self):
 program_output = run(self.example_folder / "fibonacc
i.bf")
 expected = "1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89"
 self.assertEqual(program_output, expected)

 def test_cell_size(self):
 program_output = run(self.example_folder / "cell_siz
e.bf")
 expected = "8 bit cells\n"
 self.assertEqual(program_output, expected)

 def test_beer(self):
 program_output = run(self.example_folder / "beer.b
f")
 with open(self.example_folder / "beer.out", "r") as
text_file:
 expected = text_file.read()
 self.assertEqual(program_output, expected)

if __name__ == "__main__":
 unittest.main()

Each test takes a Brainfuck program in the Examplesdirectory, uses run() to execute it, and compares the finaloutput to some expected output via assertEqual(). Let’s tryrunning all the tests from the repository’s main directory:
% python3 -m tests.test_brainfuck
....
--

Ran 4 tests in 0.689s
OK

If our Brainfuck interpreter can successfully run fourprograms that are quite different from one another, there’sa good chance it’s working. In the online repository for thisbook, I’ve set up continuous integration so that these testsautomatically run anytime the code is changed. Most of thechapters in this book have unit or integration tests that alsorun automatically.
CODE MEETS LIFE

I first heard of Brainfuck a long time ago as a curiosity, but I became
really interested in it in 2018 when preparing to teach a class called
Emerging Languages at Champlain College. It’s a programming
language theory class with a twist: we use languages that, in 2018,
were just becoming relevant in industry—namely, Go, Swift, and
Clojure—to illustrate programmatic ideas. I developed the course with
a colleague named Josh Auerbach. I created the Go and Swift portions
of the class, and Josh developed the Clojure portion.

We both liked the idea of doing a Brainfuck assignment, because
it’s such a great educational tool for understanding how a simple
interpreter works. Josh had the idea of using part of the Brainfuck
assignment to teach Clojure macros. We used a Clojure macro to
elucidate the idea of homoiconicity in a Lisp (Clojure is a dialect of
Lisp)—that is, the concept that “code is data.” In a Clojure macro, you
can manipulate code before it runs, treating it like any other data in a
Clojure program. The macro the students developed in Josh’s
assignment allows one to write Brainfuck code directly in Clojure and
have it execute like it belongs there. You can just be in the middle of
your Clojure program and write something like this:

(bf +++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.)

I still use the assignment when teaching the class (Josh has moved
on from academia), but I’ll admit that sometimes I have trouble
remembering the syntax for writing a Clojure macro. Writing the
Brainfuck interpreter is even easier than writing the macro. That’s
why Brainfuck is a great tool for educators.

Real-World ApplicationsEach chapter in the book ends with some real-worldapplications, but unfortunately there are no real-worldapplications of Brainfuck. It’s a language of curiosity,useful for learning about some fundamental ideas incomputer science. Perhaps, therefore, we could say thereal-world application of Brainfuck is in education.Interpreters more broadly are critical computinginfrastructure with many real-world applications. As you’reprobably aware, Python itself is an interpreted language.There are many ways that programming languages go fromtext files to machine code, but we can broadly categorizemost programming language implementations asinterpreted, ahead-of-time compiled, or just-in-timecompiled. Some programming languages even haveimplementations in all three categories. For example, thereare Java interpreters, ahead-of-time Java compilers, and themost popular implementations of Java are just-in-timecompiled.As a general rule, interpreted programming languageimplementations tend to be slower than compiledprogramming language implementations. You may wonder,then, why any programming languages that people use inthe real world are implemented as interpreters. TakePython, for instance: Why is it implemented using aninterpreter instead of a compiler? We all know Python is arelatively slow language, and surely it would be faster if itwere compiled.The answer is that many of Python’s runtime dynamicfeatures wouldn’t be possible, or at least would be verydifficult to implement, in anything but an interpreter. Thereare efforts to do so (PyPy, for instance), but they’re muchharder to get right.In addition, interpreters are much easier to implementthan compilers because they lack the entire backend phase

of the compiler that’s responsible for generating machinecode. Many languages therefore start out as interpretedbecause it’s simply the fastest way to get animplementation up and running. For instance, the firstversion of Java was interpreted, and it took a couple ofyears before a just-in-time compiled version came out.In short, interpreters exist because they’re easier toimplement than compilers and because they enable certainpowerful dynamic runtime features. If you’re thinking ofimplementing a new programming language, especially adynamic one, the easiest place to start is probably with aninterpreter.
Exercises  1.  Write a Brainfuck-to-Python transpiler. A transpiler islike a compiler, but instead of converting source codethat was written in a high-level language into machinecode, it converts source code from one high-levellanguage to another high-level language. You can reusea lot of the structure from the Brainfuck interpreter.Instead of executing each Brainfuck command, you canemit some equivalent Python code into a list of strings.The final output of your program should be theequivalent Python code saved to a file. The trickiest partwill be figuring out what to do with the brackets.  2.  Add a debug mode to the interpreter that lets you stepthrough a Brainfuck program one command at a time.After each command, a table is output to the consolecontaining all the Brainfuck interpreter’s state, similarto the tables at the beginning of this chapter forwalking through the “repeat” program.  3.  Write a Brainfuck program that reads two numbers,compares them, and outputs the larger number. Write atest in Python that verifies the program works correctly

with randomly generated numbers. Tip: You may needto modify sys.stdin similarly to how we modified
sys.stdout in the run() function for the tests.

Notes  1.  “Brainfuck,” Esolangs.org, accessed May 22, 2024,
https://esolangs.org/wiki/Brainfuck#Hello.2C_World.21.  2.  Terrence W. Pratt and Marvin V. Zelkowitz,
Programming Languages: Design and Implementation,3rd ed. (Prentice Hall, 1996), 409.  3.  Allen B. Tucker and Robert E. Noonan, Programming
Languages: Principles and Paradigms, 1st ed. (McGraw-Hill, 2002), 84.  4.  Urban Müller, “Brainfuck, or How I Learned to Changethe Problem,” lecture at Tamedia TX 2017, Zurich,Switzerland, June 13, 2017, accessed June 10, 2022,YouTube, 3:50:11, https://youtu.be/gjm9irBs96U?t
=8610.  5.  “bf core,” Esolangs.org, accessed May 22, 2024, https://
esolangs.org/wiki/Bf_core.

https://esolangs.org/wiki/Brainfuck#Hello.2C_World.21
https://youtu.be/gjm9irBs96U?t=8610
https://esolangs.org/wiki/Bf_core

2
WRITING A BASIC INTERPRETER

In Chapter 1, we built a simpleinterpreter for Brainfuck, aminimalist, esoteric language. ButBrainfuck is just a toy; while we couldsolve real problems in Brainfuck, wewouldn’t actually want to. There are otherprogramming languages that aren’t muchmore complex than Brainfuck yet are“real” in the sense that regularprogrammers actually use(d) them fortheir day-to-day work. In this chapter,we’ll build an interpreter for one suchlanguage, NanoBASIC, and we’ll learnmore about how interpreters work in theprocess.While Brainfuck has just eight commands, NanoBASIC,a pared-down dialect of BASIC, has just six types ofstatements. To be fair, each of those statements has more

functionality than a Brainfuck command, but it’s still notmuch. It’s just complex enough that it will enable us toexplore several aspects of an interpreter that got mashedtogether in our Brainfuck implementation. In particular,we’ll write a separate tokenizer, parser, and runtime,whereas our Brainfuck interpreter handled all three tasksat once. We’ll use a scalable approach for each component,meaning what we do here could be expanded to work withlarger languages.
Understanding NanoBASICWith its simple syntax and ubiquitous presence, BASIC(Beginner’s All-purpose Symbolic Instruction Code)democratized the computing world and became the defacto standard language of the personal computerrevolution. NanoBASIC is a version of the BASICprogramming language that’s derived from a populardialect for 1970s microcomputers known as Tiny BASIC.NanoBASIC is even simpler (or smaller, if you will) thanTiny BASIC, hence the Nano designation.NanoBASIC is almost completely the same as TinyBASIC, but I’ve made a few changes: it’s missing a couplestatements, and there are some minor differencesregarding variable names and integer widths. As wediscuss the language, you may wonder about some of itsesoteric syntax or limitations. These quirks are intentionalbecause NanoBASIC is meant to be largely compatible withTiny BASIC. At the end of the chapter, you’ll be able to takeactual Tiny BASIC programs you find online and run themin our NanoBASIC interpreter. Therefore, you’ll beimplementing a language that was used in the real world.You can learn everything you need to know aboutNanoBASIC in just a few minutes. Do you remember howlong it took you to learn Python? By the end of this section,you’ll be fully capable of writing a program in NanoBASIC.

BASIC HistoryBASIC was originally developed in 1964 by John Kemenyand Thomas Kurtz at Dartmouth College to makecomputers more accessible, including to students notpursuing science or math majors.1 In fact, it wasundergraduate students who built the first BASICimplementation alongside Kemeny and Kurtz. When thepersonal computer revolution got started in the mid-1970s,BASIC was a natural fit for the hobbyists and other“regular” people who bought the first machines. As aresult, it became the most popular high-level programminglanguage for personal computers from the mid-1970s to themid-1980s. Common computers of the era, like theCommodore 64 and the Apple II, came with built-in BASICinterpreters. BASIC was therefore the way that manypeople interacted with early personal computers. Forexample, BASIC was Linus Torvalds’s first programminglanguage on the Commodore VIC-20 in 1981.2Interestingly, Microsoft got its start in 1975 when BillGates and Paul Allen developed a BASIC interpreter for oneof the first personal computers, the Altair 8800.3 Theircompany flourished when they ported their interpreter toother machines of the late 1970s. Microsoft BASIC wasshipped with many personal computers, and it became thede facto standard dialect of BASIC. Eventually, Microsoftentered the operating system business in 1981 with DOS onthe original IBM PC, but BASIC was the company’s start.Now you’ll be developing a BASIC interpreter too!Tiny BASIC, which NanoBASIC is a form of, in turn gotits start because of Microsoft. Many of the people involvedwith the early development of Tiny BASIC were partiallymotivated by the high cost of Microsoft’s interpreters.4Some of them further believed that people should be free toshare software as they see fit. This was an early form of theFree Software Movement. Beyond skirting Microsoft’s high

fees, the developers also wanted a language that would besmall enough to fit within the extreme memory constraintsof the microcomputers of the time (often just 4 kilobytes[KB]) and portable enough that programs could be run onmultiple kinds of machines. Ultimately, Tiny BASIC wasported to a wide variety of different personal computersacross multiple different microprocessor architectures andwas widely used.
NanoBASIC’s Paradigm, Syntax, and SemanticsAs you’ve read, BASIC was intended to be easy to use fornontechnical people, and many BASICs were designed towork in memory-constrained environments. Hence, BASICstend to be stripped-down languages with relatively fewfeatures, even in comparison to other languages of thetime. The dialect we’re developing, NanoBASIC, isimperative, but we’d barely even call it procedural. Let’sreview what those terms mean.An imperative language is one in which you providedetailed instructions telling the computer how you want itto complete a task. This contrasts with declarativelanguages, which concentrate on “what” you want to doinstead of “how” you want to do it. Say I wanted you todraw a square in the center of a piece of graph paper. Theimperative way to do it would be to tell you: “Start at point(4, 4) and draw a line up five units. Then, draw a line to theright five units. Then, draw a line down five units. Then,draw a line to the left five units.” The declarative way to doit would be to say, “Draw a 5×5 square in the middle of thepaper.” In a declarative world, I declare what I want and letyou (or the computer) figure out the specifics of how toaccomplish it.Modern imperative programming languages generallyfall into two main sub-paradigms: procedural and object-oriented. Procedural programming languages use the

subroutine/procedure/function (these terms are often, butnot always, used interchangeably) as the main point ofabstraction. Code is broken into multiple functions thateach have a specific purpose and work in concert to formthe whole program. Object-oriented programming usesobjects as the main point of abstraction, and since you’rean intermediate or advanced Python programmer, I assumeyou know what that means. Of course, Python can beprogrammed in either style.
NOTE
The most popular declarative programming sub-paradigms
are functional and logic programming. Getting into the
details of those is beyond the scope of this chapter.NanoBASIC is decidedly not a declarative programminglanguage. It’s firmly in the imperative camp. It’s alsodefinitely not object-oriented. But is it procedural? While ittechnically has a way of making a call to a subroutine withits GOSUB statement, which we’ll discuss shortly, there’snothing resembling a modern function in the sense ofhaving parameters and return values. That’s why I wrotewe would “barely even call it procedural.”Some versions of BASIC, like Tiny BASIC andNanoBASIC, not only have no sense of a function, they alsohave no loops or other modern control structures. Instead,all control is handled with GOTO and GOSUB, which triggerdirect jumps to a specific line number of the program.These, coupled with if statements, are the only way tocontrol a Tiny BASIC or NanoBASIC program. Early BASICswere famous for encouraging “spaghetti code” due to theseexplicit jumps from one part of a program to another andpoor mechanisms for organization. This criticism iscompletely fair. Without functions or objects as organizingmechanisms, an imperative language invariably devolves

into spaghetti code. Don’t be surprised to see somespaghetti as we start cooking up some NanoBASIC!Now, let’s get into NanoBASIC’s syntax and how its sixstatements work.
Comments and Line NumbersComments in NanoBASIC start with the REM designation andcan finish with any string. Comments won’t be processed atall by the interpreter.Every non-comment line in NanoBASIC begins with aline number and is followed by a statement. Theprogrammer can pick any arbitrary line numbers, as longas they’re all in increasing order from the top of the sourcefile to the bottom. For example, the following line numbersare valid:

10 PRINT "Hello"
REM This is a comment
20 PRINT "Goodbye"
30 PRINT "WOW"

By contrast, these line numbers aren’t valid, and so theprogram’s behavior is undefined:
10 PRINT "Hello"
REM This is a comment
40 PRINT "Goodbye"
30 PRINT "WOW"

Programs that have GOTO or GOSUB statements and out-of-order line numbers won’t function correctly.There are only six ways to start a statement inNanoBASIC: PRINT, IF, GOTO, GOSUB, RETURN, and LET. If youknow these six statement types, you basically know thewhole language. This is why you can learn NanoBASIC in

just a few minutes if you already know anotherprogramming language.
LET, Variables, and Mathematical ExpressionsA LET statement binds a value to a variable. All variablesrepresent integers. There are no other variable types. Theoriginal Tiny BASIC was limited to just 26 single-lettervariable names (A through Z). In NanoBASIC, this isexpanded to include any arbitrary-length identifiercomposed of letters and underscores. The followingstatement sets the variable A to 5:

10 LET A = 5

The LET keyword must be followed by a variable nameand an equal sign (=). After that, any mathematicalexpression can appear. NanoBASIC mathematicalexpressions can be composed of variables; integer literals;the operators for addition (+), subtraction (-), multiplication(*), and division (/); and parentheses ((and)). In addition,you can negate any mathematical value in NanoBASIC witha negative sign (-). All math takes place in the realm ofsigned integers. From this point forward, we’ll just refer tomathematical expressions as expressions. The following areall valid uses of LET:
20 LET B = A
30 LET C = 23 - A
40 LET D = 5 * (24 + 25)
50 LET E = -(24 + 23 - (2 * (5 + 3)))

Due to machine limitations, most Tiny BASICimplementations were limited to 16-bit integers. Ourvariables are backed by Python integers behind the scenes,which are of arbitrary precision, so they aren’t limited to 16bits. This, and the arbitrary-length variable names, are

some of the few areas where NanoBASIC is superior to TinyBASIC instead of simply being a subset of it.
PRINT StatementsAny string literal or expression can be output to the consolewith PRINT. NanoBASIC string literals are any charactersthat lie between double quotation marks ("). Unfortunately,there’s no way in NanoBASIC to include actual doublequotes in your strings. In other words, there’s no escapemechanism. I’ll leave that as an exercise at the end of thechapter. Here are some valid PRINT statements with stringliterals:

10 PRINT "What a nice program"
20 PRINT "Who said sit down?"
30 PRINT "6734 spells HELP upside down sorta"

As mentioned, PRINT can also print the result of anyexpression:
REM This was the first thing Paul Allen ran on the Altair 88
00
70 PRINT 2 + 2

You can also supply a comma-separated list of items(string literals and expressions) to PRINT. All items printedwill have tab characters between them, and PRINT alwaysfinishes printing by inserting a newline character. Forexample:
30 PRINT "2 plus 2 is", 2 + 2, "and 3 times 5 is", 3 * 5

This will output text that looks as follows:
2 plus 2 is 4 and 3 times 5 is 15

Note that the spaces between expressions are causedby tab characters. Due to various console settings, theymay not look the same in your terminal.
IF Statements and Boolean ExpressionsNanoBASIC IF statements are like if statements in otherlanguages, but they are simpler and more succinct. Theycan have only a single Boolean expression (there’s no and or
or operator, for example), and they have no else clause.Finally, they can execute only a single statement if they’retrue. The statement to execute on truth is always precededby the literal THEN. For example:

500 IF N < 10 THEN PRINT "Small Number"
700 IF V >= 34 THEN GOTO 20

Boolean expressions mostly involve the comparisonsyou’d expect, but the operators differ slightly fromstandard C-style operators. For instance, not equal can beeither <> or >< in NanoBASIC, and equal is =, not ==.
GOTO, GOSUB, and RETURN StatementsA GOTO directly jumps to a line number with no way to goback. A GOSUB jumps to a line number, but a matching RETURNstatement will send the program back to the line just afterwhere the GOSUB was originally called. Here’s an example:

10 GOTO 50
20 LET A = 10
40 RETURN
50 LET A = 5
60 GOSUB 20
REM RETURN returns to here; we expect A to be 10
70 PRINT A

This program will ultimately output 10 to the console.

NanoBASIC Style and MinutiaeIt’s generally considered good style to write BASICkeywords in all capital letters. Because NanoBASIC doesn’thave great organizational facilities, it’s also a good idea toinclude comments throughout your program explainingwhat’s going on.Unfortunately, it’s normal for BASIC code to quickly fillup with GOTO statements and become “spaghetti code.” Thisis par for the course, and there’s not much you can doabout it in NanoBASIC if you want to write a program ofany moderate complexity. Eventually, people unhappy withthe GOTO style of programming created the structured
programming movement. For example, Edsger Dijkstrafamously wrote a letter called “Go To StatementConsidered Harmful.”5Here are a couple other things you should know aboutNanoBASIC:NanoBASIC is case insensitive. This means that LET A =

5 is the same as let a = 5.Behavior not described in this chapter is undefined.Ultimately, NanoBASIC is purposely damaged goodsbecause I wanted to keep the interpreter simple andprovide a real-world analog—Tiny BASIC—to make thischapter’s work feel more “real.” I also think the fact thatNanoBASIC is based on a real language and is able to runreal Tiny BASIC programs found on the internet makeswriting the interpreter more fun. However, it would havebeen fairly simple for us to make the language morepowerful. We’ll leave that for the exercises.
An Example NanoBASIC ProgramSeveral example NanoBASIC programs are included in the
NanoBASIC/Examples directory of the companionrepository. One of those programs prints all the numbers in

the Fibonacci sequence that are less than 100. TheFibonacci sequence is a progressive sequence of numberswhere each number (except the special first two) is thesum of the previous two. It starts with the numbers 0 and 1.It then follows that 0 + 1 = 1, so the next number in thesequence is 1. Then, 1 + 1 = 2, so the next number is 2. Itcontinues 3, 5, 8, 13, and so on.Here’s fib.bas, the NanoBASIC Fibonacci program:
NanoBASIC/Examples/fib.bas

REM Printing the Fibonacci numbers less than 100
REM A is the last number
10 LET A = 0
REM B is the next number
11 LET B = 1
20 PRINT A
21 PRINT B
REM C is last + next
30 LET C = A + B
31 LET A = B
32 LET B = C
40 IF B < 100 THEN GOTO 21

In Tiny BASIC fashion, we only use single capital lettersas variable names. This highlights the importance ofplentiful comments. As previously discussed, the chosenvalues for the line numbers are arbitrary as long as they’rein increasing order. On lines 10 and 11, we start thesequence with the hardcoded initial values 0 and 1. On line30, we form the next number in the sequence, C, bysumming the previous two numbers. Lines 21 through 40make up a kind of loop through the use of IF and GOTO online 40. Some later versions of Tiny BASIC had actual loopstatements like FOR, but the earliest versions did all loopsusing syntax similar to this, much like how loops work inmost assembly languages.

When you finish the chapter, you’ll be able to run thisprogram yourself with a command like the following:
% python3 -m NanoBASIC NanoBASIC/Examples/fib.bas
0
1
1
2
3
5
8
13
21
34
55
89

That looks right.We’re almost ready to write an implementation ofNanoBASIC, but before we get there, it’s important to moreformally specify the language’s syntax. We can directly usethat specification to write our implementation.
Formalizing NanoBASIC’s SyntaxA programming language’s syntax is formally defined by a
grammar. Backus–Naur form (BNF) is the typical way thegrammar of a programming language is specified. Thereare many extensions and augmentations of BNF; we’ll use aform of it that I think will be very clear to intermediateprogrammers because it includes some regular expression–like syntax.A grammar consists of a set of production rules thatdefine what’s allowable syntax in the programminglanguage. The term production rule sounds fancy, but it’sjust a way of substituting one thing for another. Let’s say Iwas creating a grammar for a language that could only

consist of the letters A and B and the numbers 1 and 2. Itsproduction rules may look like this:
<expression> ::= (<letter> | <number>)*
<letter> ::= 'A' | 'B'
<number> ::= '1' | '2'

An identifier wrapped in angle brackets, like
<expression>, is a non-terminal. This is an item in a grammarthat, when expanded, is replaced by something else. Whatit gets replaced by is specified by the right side of itsproduction rule. In a production rule, the ::= symbolseparates a non-terminal from its replacement. Thereplacement can be composed of non-terminals orterminals.A terminal is something that will appear in the languagein its literal form. It doesn’t get expanded any further. Inour syntax, a terminal is wrapped in single quotes, like 'A'.Our syntax also uses | to mean or. An or means that there’sa selection of options to choose from for that part of theproduction. We use parentheses for grouping, and *signifies zero or more repetitions of something.With this in mind, we can read the three productionrules shown earlier as indicating:1. An expression is zero or more of letters or numbers.2. A letter is A or B.3. A number is 1 or 2.We can use a grammar to check whether a particularstring of text is valid syntax for a language by simplyfollowing its production rules. For instance, our grammarspecifies that “AAA21B” is valid syntax but “AB123” is not.More than one grammar can specify the same language.The non-terminal names are largely arbitrary and should bechosen to make the most human sense. For example,

there’s no reason that letters and numbers need to beseparated in our grammar. We could simplify the grammarto be:
<expression> ::= <character>*
<character> ::= 'A' | 'B' | '1' | '2'

We could even eliminate the second production rulealtogether:
<expression> ::= ('A' | 'B' | '1' | '2')*

We generally shouldn’t use unnecessary productionrules, because they overcomplicate the grammar. However,if the additional non-terminal represents multiple possibleterminals and it will be used again somewhere else in thegrammar, it makes sense to give it its own production ruleinstead of duplicating a long list of terminals. This willbecome clearer as we work with larger grammars withricher structures. It’s analogous to programming, where itcan be better style to have many small functions that wereuse rather than just a few large ones.Let’s look at another example. Say I were specifyingproduction rules for a numbered list. It may look somethinglike this:
<list> ::= <item>*
<item> ::= <number>'.' <text>'\n'
<number> ::= <digit><digit>*
<digit> :: = '0' | '1' | ... | '8' | '9'
<text> ::= .*

We’ve introduced a couple more special forms. The ...symbol indicates a list of terminals continues in the impliedway (this isn’t super formal, but it saves space), and . justmeans any user-imaginable terminal, like in a regular

expression. Let’s again put the five rules of this grammarinto a more English-like form:1. A list is composed of zero or more items.2. An item is a number followed by a period, some text,and a newline.3. A number is one or more digits.4. A digit is one of the characters 0 through 9.5. A text is any arbitrary string.Did you notice a problem with this grammar regardinghow it handles numbers? A number with leading zeros, like0020, would be allowed, but that wouldn’t make sense in anumbered list. How can it be fixed? I’ll leave that as anexercise for the reader. If you can fix it, you probably havea decent understanding of terminals and non-terminals.The grammars described with BNF are said to be
context free, meaning that each production rule can standalone for a non-terminal that appears within a larger string.Without any context about the rest of the string, theproduction rule can still be expanded for the single non-terminal in question. In other words, in a context-freegrammar, each non-terminal isn’t dependent on other non-terminals around it to be expanded.NanoBASIC’s grammar is based on the original TinyBASIC grammar published by Dennis Allison, the creator ofthe first Tiny BASIC implementation, in 1976.6 It looks likethis:
❶ <line> ::= <number> <statement> '\n' | 'REM' .*'\n'

❷ <statement> ::= 'PRINT' <expr-list> |
 'IF' <boolean-expr> 'THEN' <statement> |
 'GOTO' <expression> |
 'LET' <var> '=' <expression> |
 'GOSUB' <expression> |

 'RETURN'

❸ <expr-list> ::= (<string> | <expression>) (',' (<string> | <
expression>))*

❹ <expression> ::= <term> (('+'|'-') <term>)*

❺ <term> ::= <factor> (('*'|'/') <factor>)*

❻ <factor> ::= ('-'|ε) <factor> | <var> | <number> | '('<expre
ssion>')'

<var> ::= ('_'|<letter>) ('_'|<letter>)*

<number> ::= <digit> <digit>*

<digit> ::= '0' | '1' | ... | '8' | '9'

<letter> ::= 'a'|'b'| ... |'y'|'z'|'A'|'B'| ... |'Y'|'Z'

<relop> ::= '<' ('>'|'='|ε) | '>' ('<'|'='|ε) | '='

❼ <boolean-expr> ::= <expression> <relop> <expression>

<string> ::= '"' .* '"'

The only new syntax in the full NanoBASIC grammar isthe epsilon character (ε). It means there could be nothing(“empty”) in the spot where it appears. It always appearsas part of an or, meaning there could be something, orthere could be nothing.The NanoBASIC grammar looks a lot moresophisticated than the previous two examples—it’s a wholeprogramming language, after all—but it’s actually prettyeasy to pick apart:1. A line is either a number (the line number) followed bya statement, or a comment (REM precedes all

comments)  ❶.2. A statement is one of the six statements we learned(PRINT, IF, GOTO, LET, GOSUB, RETURN)  ❷. This is the firstplace we see a kind of recursion: an IF statementcontains another statement in its THEN clause, so any ofthe six statements can appear after THEN.3. An expression list (expr-list) is a comma-separated listof strings or expressions  ❸. As you can see from the
PRINT section in the previous production rule, expressionlists are only used for PRINT statements. This is also theonly rule connecting to strings. Therefore, a string canonly be used as part of a PRINT statement’s expressionlist. We call it a list, but really an expression list couldhave just one expression or string in it. If there aremore, that’s when we utilize the * part of the grammar,which is attached to the comma and the followingchoice of expression or string.4. An expression is something to do with arithmetic. Itcould be adding some numbers, multiplying somenumbers, or just retrieving a value from a variable. Theexpression production rule itself only includes thepossibility of addition or subtraction  ❹.5. An expression is made up of terms. Whereas theexpression production rule handled addition andsubtraction, the term production rule handlesmultiplication and division  ❺. The reason for this has todo with precedence: the “deeper” we go down the walkof non-terminals, the higher the precedence of ouroperators when we ultimately turn this grammar into aworking language. That’s why you find multiplicationand division after addition and subtraction.6. Precedence is also why you find parentheses in theproduction rule for a factor  ❻ and not in the productionrules for expressions or terms. Parentheses have the

highest precedence of any arithmetic operator. Theother thing we may replace a factor with is a variable(which in the runtime will pull its value), a numberliteral, or a negation (the option of a leading -).7. The rules for variables, numbers, digits, letters,
relational operators (relops), and strings are largelyself-explanatory. Notice how easy it is to expand what’sallowed as a variable identifier: we permit one or moreunderscores or letters, as opposed to the original TinyBASIC’s single letters. Those early PCs really werememory constrained if they had to limit us to just 26single-letter variable names.8. A Boolean expression is just two numeric expressionswith a relational operator between them  ❼. SinceNanoBASIC doesn’t have and or or operators, there’s noneed for the * special form here as we needed forarithmetic operations like addition and multiplication.This grammar provides a blueprint for implementingour interpreter’s tokenizer and parser. If you recall fromChapter 1 what those pieces are, you may now be able tosee how the terminals in the grammar will become thetokens that our tokenizer reads. And here’s something evenmore useful: the production rules for the non-terminals willend up each mapping to a function in our recursive descentparser. We’ll return to that in a little bit. Ultimately,though, the grammar specifies the syntax for aprogramming language, but it doesn’t give each element ofthe language meaning. That will be the magic of ourinterpreter.

The NanoBASIC ImplementationNow that we’ve discussed NanoBASIC and how its syntax isspecified, it’s finally time to start writing our

implementation. You may recall from Chapter 1 that a basicinterpreter has at least three parts:A tokenizer (sometimes known as a lexer) that takes theoriginal source code and divides it into the smallestrecognizable constructs allowed in the programminglanguage. These are known as tokens. For the code a +
2, the tokens may be a, +, and 2.A parser that takes tokens that are next to each otherand figures out their meaning (that is, the expressionsor statements they form). Parsers typically produce atree of nodes representing the relative relationshipsbetween expressions, statements, and literal values.This tree is called the abstract syntax tree (AST). Forexample, if a Python interpreter saw the token afollowed by the token + followed by the token 2, it mayconstruct an arithmetic expression node and connect itto nodes for the a and the 2.A runtime environment that walks through the nodes ofthe AST and runs the appropriate operations to executethe meaning inherent in them. For our a + 2 arithmeticexpression node, this would mean looking up the valuerepresented by a and adding 2 to it.We’ll build these three parts in order, but before we caneven get to the tokenizer, we need to be able to open aNanoBASIC code file:

NanoBASIC/__main__.py

from argparse import ArgumentParser
from NanoBASIC.executioner import execute

if __name__ == "__main__":
 # Parse the file argument
 file_parser = ArgumentParser("NanoBASIC")
 file_parser.add_argument("basic_file",

 help="A text file containing Na
noBASIC code.")
 arguments = file_parser.parse_args()
 execute(arguments.basic_file)

We load a source code file based on a command lineargument, much the same as we did in our Brainfuckinterpreter, and pass it a function called execute(). Thatfunction lives in a separate file so that it’s easier to reachfor our tests. It pulls together the tokenizer, parser, andinterpreter (runtime) components. The output of one is fedas the input to another (sourcecodetokenizerparserinterpreter):
NanoBASIC/executioner.py

from pathlib import Path
from NanoBASIC.tokenizer import tokenize
from NanoBASIC.parser import Parser
from NanoBASIC.interpreter import Interpreter

def execute(file_name: str | Path):
 # Load the text file from the argument
 # Tokenize, parse, and execute it
 with open(file_name, "r") as text_file:
 tokens = tokenize(text_file)
 ast = Parser(tokens).parse()
 Interpreter(ast).run()

Each line of code in execute() passes us from one majorsection of the interpreter to the next. The result of thetokenizer goes to the parser, and the result of the parsergoes to the runtime environment. For the rest of thechapter, we’ll be building each of these components insequence.

The TokenizerThe tokenizer takes a string of source code (the contents ofa text file) and turns it into tokens. The tokens represent allof the smallest individual chunks of a program that can beprocessed. The valid tokens in NanoBASIC come directlyfrom the terminals in the NanoBASIC grammar describedin the prior section.We’ll use regular expression patterns to find tokens:we’ll associate a regular expression pattern with each typeof token and then just search for them one at a time. Thedifficulty with this setup is that we need to be careful aboutthe order in which the searches occur. If two regularexpressions could match the same token, then the orderwill matter. For instance, in our tokenizer the regularexpression for a variable name could also match the token
PRINT (or any other statement name), so the search for avariable name token purposely comes last.We’ll start our tokenizer by defining all the differenttypes of tokens as enum cases. Each case will be attachedto a regular expression for finding it. Some tokens will alsohave user-specified values associated with them, indicatedby True or False at the end of each enum case. For example,a variable token will have the actual variable nameconnected to it as an associated value. Here’s what our
TokenType enum looks like:

NanoBASIC/tokenizer.py

from enum import Enum
from typing import TextIO
import re
from dataclasses import dataclass

class TokenType(Enum):
 COMMENT = (r'rem.*', False)
 WHITESPACE = (r'[\t\n\r]', False)

 PRINT = (r'print', False)
 IF_T = (r'if', False)
 THEN = (r'then', False)
 LET = (r'let', False)
 GOTO = (r'goto', False)
 GOSUB = (r'gosub', False)
 RETURN_T = (r'return', False)
 COMMA = (r',', False)
 EQUAL = (r'=', False)
 NOT_EQUAL = (r'<>|><', False)
 LESS_EQUAL = (r'<=', False)
 GREATER_EQUAL = (r'>=', False)
 LESS = (r'<', False)
 GREATER = (r'>', False)
 PLUS = (r'\+', False)
 MINUS = (r'-', False)
 MULTIPLY = (r'*', False)
 DIVIDE = (r'/', False)
 OPEN_PAREN = (r'\(', False)
 CLOSE_PAREN = (r'\)', False)
 VARIABLE = (r'[A-Za-z_]+', True)
 NUMBER = (r'-?[0-9]+', True)
 STRING = (r'".*"', True)

 def __init__(self, pattern: str, has_associated_value: b
ool):
 self.pattern = pattern
 self.has_associated_value = has_associated_value

 def __repr__(self) -> str:
 return self.name

The TokenType enum just describes the kind of token.Beyond a token’s kind, we also want to know where itappeared in the source code file. This will be useful so thatwe can pinpoint the location of syntax errors and reportthat information back to the programmer. We’ll encompassall this information using Token, a composite type that

combines a token’s kind, location, and associated value ifapplicable:
@dataclass(frozen=True)
class Token:
 kind: TokenType
 line_num: int
 col_start: int
 col_end: int
 associated_value: str | int | None

The type of the associated_value property, str | int |
None, uses enhanced type hint syntax that was introducedwith Python 3.10 via PEP 604.7 I mentioned it briefly inChapter 1, and here we’ll discuss it a little more formally.It’s a way of creating a union type. A variable that’sdeclared to be of a union type can refer to values that areof any of the types composing the union. In versions ofPython prior to 3.10, you would need to import Union from
typing and the type hint would look like Union[str, int,
None]. This new syntax is obviously much less verbose. Inshort, it means that an associated_value can be a string, aninteger, or None.We’re ready to read a source code file and break it upinto its constituent tokens using a tokenize() function:

def tokenize(text_file: TextIO) -> list[Token]:
 tokens: list[Token] = []
 for line_num, line in enumerate(text_file.readlines(), s
tart=1):
 col_start: int = 1

The function takes in a TextIO object, a type thatrepresents an object that can act as a text stream. Weinitialize the tokens list, where we’ll collect all the tokens inthe entire file. Then, we iterate through each line of the

file. Because we want to report line and column numbersback to the user as they may expect them to appear in theirtext editor, we have both start at 1. Next, we extract all thetokens:
 while len(line) > 0:
 found: re.Match | None = None
 for possibility in TokenType:
 # Try each pattern from the beginning, case-
insensitive
 # If it's found, store the match in *found*
 ❶ found = re.match(possibility.pattern, line,
re.IGNORECASE)
 if found:
 col_end: int = col_start + found.end() -
1
 # Store tokens other than comments and w
hitespace
 ❷ if (possibility is not TokenType.WHITESP
ACE
 and possibility is not TokenTyp
e.COMMENT):
 associated_value: str | int | None =
None
 if possibility.has_associated_value:
 if possibility is TokenType.NUMB
ER:
 associated_value = int(foun
d.group(0))
 elif possibility is TokenType.VA
RIABLE:
 associated_value = found.gro
up()
 elif possibility is TokenType.ST
RING:
 # Remove quote characters
 associated_value = found.gro
up(0)[1:-1]
 ❸ tokens.append(Token(possibility, lin

e_num, col_start,
 col_end, assoc
iated_value))
 # Continue search from place in line aft
er token
 line = line[found.end():]
 col_start = col_end + 1
 break # go around again for next token
 # If we went through all the tokens and none of
them were a match
 # then this must be an invalid token
 ❹ if not found:
 print(f"Syntax error on line {line_num} colu
mn {col_start}")
 break

 ❺ return tokens

We scan through each line of the file from left to right,looking for a match of each possible token pattern in order
❶. When we find a match that isn’t whitespace or acomment (those are ignored) ❷, we check if it’s a tokentype with an associated value. If it is, we store theassociated value. We create a Token containing the matched
TokenType, where it was found, and any associated value, andwe add it to our tokens collection ❸. It really is as simple asdoing that linear process. If we find a piece of text thatdoesn’t match any known TokenType for NanoBASIC, that’s asyntax error and we alert the user ❹. Finally, tokens isreturned ❺.The tokenizer is the simplest part of our interpreter. It’sresponsible for turning the original source code file into acollection of valid tokens from the language. Those tokensnext get passed to the parser. But before we look at theparser, let’s take a look at the building blocks that theparser is going to generate for the interpreter’s runtime:nodes.

NodesOur parser is ultimately going to generate an AST thatcontains nodes representing each of the meaningful piecesof the program. For example, each IF statement will be anode, and each time a variable’s value is retrieved, that willbe a node too. Since it’s a tree, the AST links all the nodestogether into a hierarchy of relationships. To illustrate thisconcept, let’s take a look at a real potential branch (usingthe actual node names) of the AST from our interpreter.This branch will represent the IF statement IF A < 10 THEN
GOTO 40.The root node of the branch will be an IfStatement. That
IfStatement node will be linked to a BooleanExpression node (A
< 10) and a GoToStatement node (GOTO 40). The BooleanExpressionnode will have an internal variable to represent the
TokenType of its operator (<), a link to a VarRetrieve node (A),and a link to a NumberLiteral node (10). The GoToStatementnode will be linked to a single NumberLiteral node (40).Figure 2-1 illustrates this structure. Note that the labels onthe arrows represent the actual names of the links betweennodes in the code.

Figure 2-1: The nodes for IF A < 10 THEN GOTO 40

The job of our parser is to turn collections ofmeaningfully adjacent tokens into AST nodes. In the finalphase of our interpreter, the AST nodes will be walked,which involves completing whatever action each node isconnected to, in order. Every node that can appear in ourAST has its own class in nodes.py. All nodes inherit fromthe Node class. Every Node keeps track of its location in theoriginal source code file for debugging purposes:
NanoBASIC/nodes.py

from dataclasses import dataclass
from NanoBASIC.tokenizer import TokenType

For debug purposes, we'll need to know the locations of al
l Nodes
@dataclass(frozen=True)
class Node:
 line_num: int
 col_start: int
 col_end: int

Now let’s define the Statement node:
All statements in NanoBASIC have a line number identifier
that the programmer puts in before the statement (*line_id
*).
This is a little confusing because there's also the "physi
cal"
line number (*line_num*), that actual count of how many li
nes down
in the file where the statement occurs.
@dataclass(frozen=True)
class Statement(Node):
 line_id: int

Every statement in NanoBASIC appears after a user-defined line number. This is for GOTO and GOSUB calls. Weshouldn’t confuse those line numbers with each Nodeobject’s line_num, the place where the Node appeared in thesource code file. For clarity, we call the user-defined linenumber the line_id in the Statement class. For example, ifthe first line of my source code file is 23 PRINT "HELLO", thenthe line_id is 23, but the line_num is 1.A NumericExpression is a type of Node that can produce asingle integer when it’s evaluated. It could be a binaryoperation, a unary operation, a number literal, or a variablelookup, so we’ll declare all of those nodes as subclasses of
NumericExpression:

A numeric expression is something that can be computed int
o a number.
This is a superclass of literals, variables & simple arith
metic operations.
@dataclass(frozen=True)
class NumericExpression(Node):
 pass

A numeric expression with two operands like 2 + 2 or 8 / 4
@dataclass(frozen=True)
class BinaryOperation(NumericExpression):
 operator: TokenType
 left_expr: NumericExpression
 right_expr: NumericExpression

 def __repr__(self) -> str:
 return f"{self.left_expr} {self.operator} {self.righ
t_expr}"

A numeric expression with one operand, like -4
@dataclass(frozen=True)
class UnaryOperation(NumericExpression):
 operator: TokenType
 expr: NumericExpression

 def __repr__(self) -> str:
 return f"{self.operator}{self.expr}"

An integer written out in NanoBASIC code
@dataclass(frozen=True)
class NumberLiteral(NumericExpression):
 number: int

A variable *name* that will have its value retrieved
@dataclass(frozen=True)
class VarRetrieve(NumericExpression):
 name: str

In order to be evaluated, these different kinds ofnumeric expression need to hold onto some information.For example, a VarRetrieve needs to have the name of thevariable that’s having its value looked up. Likewise, a
BinaryOperation, which can also be thought of as anarithmetic operation, needs to store the actual arithmeticoperation that’s being done (addition, subtraction,multiplication, or division), so we store the operator tokenwith it.While a NumericExpression resolves to an integer, a
BooleanExpression is for producing a Boolean. It takes two
NumericExpression nodes and compares them using a Booleanoperator (stored as a token):

A Boolean expression can be computed to a true or false va
lue.
It takes two numeric expressions, *left_expr* and *right_e
xpr*, and compares
them using a Boolean *operator*.
@dataclass(frozen=True)
class BooleanExpression(Node):
 operator: TokenType
 left_expr: NumericExpression
 right_expr: NumericExpression

 def __repr__(self) -> str:
 return f"{self.left_expr} {self.operator} {self.righ
t_expr}"

The rest of the nodes are for representing the six typesof NanoBASIC statements:
Represents a LET statement, setting *name* to *expr*
@dataclass(frozen=True)
class LetStatement(Statement):
 name: str
 expr: NumericExpression

Represents a GOTO statement, transferring control to *line
_expr*
@dataclass(frozen=True)
class GoToStatement(Statement):
 line_expr: NumericExpression

Represents a GOSUB statement, transferring control to *lin
e_expr*
Return line_id is not saved here, it will be maintained by
a stack
@dataclass(frozen=True)
class GoSubStatement(Statement):
 line_expr: NumericExpression

Represents a RETURN statement, transferring control to the
line after
the last GOSUB statement
@dataclass(frozen=True)
class ReturnStatement(Statement):
 pass

A PRINT statement with all that it is meant to print (comm
a separated)
@dataclass(frozen=True)
class PrintStatement(Statement):

 printables: list[str | NumericExpression]

An IF statement
then_statement is what statement will be executed if the
boolean_expression is true
@dataclass(frozen=True)
class IfStatement(Statement):
 boolean_expr: BooleanExpression
 then_statement: Statement

The properties of these nodes reflect the pieces of datathat each type of statement requires. For example, since a
LET statement assigns a value to a variable, a LetStatementnode needs a string variable name and a NumericExpressionrepresenting the value.
ErrorsLet’s take a quick detour to discuss error handling in ourinterpreter. There’s nothing more annoying when you’reprogramming than poor error messages. When you make amistake in your code, you want to know what happened andwhere. As the creator of a programming language, youhave a responsibility to provide your user (the NanoBASICprogrammer) with good error messages.NanoBASIC is going to report two general types oferrors: parser errors and interpreter errors. Parser errorscan be thought of as syntax errors, such as when the tokensare in the wrong order. For example, there needs to be anumeric expression (representing a line number) after a
GOTO, but not after an IF statement. Interpreter errors aresemantic errors. They occur when the program tries to dosomething that doesn’t make sense, such as trying to use avariable before it’s initialized. We’ll define error classes forboth kinds of errors:

NanoBASIC/errors.py

from NanoBASIC.tokenizer import Token
from NanoBASIC.nodes import Node

class NanoBASICError(Exception):
 def __init__(self, message: str, line_num: int, column:
int):
 super().__init__(message)
 self.message = message
 self.line_num = line_num
 self.column = column

 def __str__(self):
 return (f"{self.message} Occurred at line {self.line
_num} "
 f"and column {self.column}")

class ParserError(NanoBASICError):
 def __init__(self, message: str, token: Token):
 super().__init__(message, token.line_num, token.col_
start)

class InterpreterError(NanoBASICError):
 def __init__(self, message: str, node: Node):
 super().__init__(message, node.line_num, node.col_st
art)

Both ParserError and InterpreterError are subclasses of
NanoBASICError, which in turn is a subclass of Exception, abuilt-in Python class that you can override for creatingcustom exceptions to throw in your program. The classesreport a message associated with an error and where itoccurred in the original program. For example, say we havethe following program:

10 PRINT(A)

This would lead to the following error being reported:

NanoBASIC.errors.InterpreterError: Var A used before initial
ized. Occurred at
line 1 and column 10

This error occurs because the variable A was neverinitialized using a LET statement. You’ll see many throws of
ParserError and InterpreterError in the sections that follow.
The ParserThe parser takes the tokens from the tokenizer and tries toconvert them into structures that are meaningful forinterpreting the program. Parsing is a heavily studied areaof computer science, and there are many different parsingalgorithms. There are even programs that will generate aparser for you. Not surprisingly, they’re known as parser
generators. A parser generator can take a grammar in BNFform and spit out a parser.We certainly could have used a parser generator here,but that wouldn’t be as educational as writing the parserourselves. And while there are many parsing algorithms, itturns out that one of the simplest is also one of the mosteffective, customizable, and widely used. It’s known as
recursive descent, and it underlies the C/C++ parsers inthe two most popular compilers in the world, GCC andClang.8 It was also the technique used in the originalversion of Tiny BASIC by Dennis Allison.9In recursive descent, generally each non-terminaldefined in the grammar becomes a function. That functionis responsible for checking that the sequence of tokens it’sanalyzing follows a production rule specified in thegrammar. The parser checks the tokens by looking at themsequentially. If the token being analyzed is expected to be apart of another production rule, the recursive descentparser just calls the function representing that otherproduction rule. The recursive descent functions return

respective nodes when they’re successful—successmeaning the function did indeed find the tokens itexpected.Recursive descent is a top-down parsing technique,meaning the parsing begins from the “start” of thegrammar (<line> in our case) and “descends” until reachingthe most specific point necessary. That’s the descent part,but the recursive part requires a little more visualization.Imagine we’re parsing an IF statement. An IF statement is atype of statement, and each non-terminal, including both“statement” and “IF statement,” may get a correspondingfunction in our recursive descent parser. An IF statementhas a THEN clause that’s also a statement. Therefore, whenwe’re parsing an IF statement, we may again call ourfunction to parse a statement for the THEN clause—the samefunction to parse a statement that called our function toparse the IF statement! It’s a kind of recursion. We end upcalling the function that called the function we’re currentlywithin.Both the descent and the recursion will become cleareras we dig into the code for the Parser class:
NanoBASIC/parser.py

from NanoBASIC.tokenizer import Token
from typing import cast
from NanoBASIC.nodes import *
from NanoBASIC.errors import ParserError

class Parser:
 def __init__(self, tokens: list[Token]):
 self.tokens = tokens
 self.token_index: int = 0

 @property
 def out_of_tokens(self) -> bool:
 return self.token_index >= len(self.tokens)

 @property
 def current(self) -> Token:
 if self.out_of_tokens:
 raise (ParserError(f"No tokens after "
 f"{self.previous.kind}", sel
f.previous))
 return self.tokens[self.token_index]

 @property
 def previous(self) -> Token:
 return self.tokens[self.token_index - 1]

The Parser class receives a collection of tokens from thetokenizer. As parsing proceeds, an internal token_indexkeeps track of which token we’re currently on. We alsodefine some convenience properties for retrieving thecurrent or previous token.The consume() helper method checks if the current tokenis the expected token, increments token_index, and returnsthe token that was checked. If the token is not the expectedtoken, we raise a ParserError:
 def consume(self, kind: TokenType) -> Token:
 if self.current.kind is kind:
 self.token_index += 1
 return self.previous
 raise ParserError(f"Expected {kind} after {self.prev
ious}"
 f"but got {self.current}.", self.c
urrent)

A helper function like consume(), sometimes called eat()or accept() instead, is common in parsers because checkingif a token is the expected token and moving on if it is, is avery common pattern. If we didn’t have consume(), you’d seea lot of unnecessary duplicative code.

The goal of our parser is to produce an AST that can bewalked by the runtime to execute the NanoBASIC program.The root of the AST will be a list of statements. Anotherway of thinking about it is that a NanoBASIC program isjust a list of statements, written in order, from the top tothe bottom of a source code file. Ultimately, our runtimewill execute these statements one at a time. Our recursivedescent parser therefore starts in parse(), which will“descend” through the other parser methods and finallyreturn the list of statements:
 def parse(self) -> list[Statement]:
 statements: list[Statement] = []
 while not self.out_of_tokens:
 statement = self.parse_line()
 statements.append(statement)
 return statements

Each statement must be written on its own line, next toa line identifier, so the first step in the descent is parsing aline:
 def parse_line(self) -> Statement:
 number = self.consume(TokenType.NUMBER)
 return self.parse_statement(cast(int, number.associa
ted_value))

We expect the line identifier to be at the beginning of aline. Therefore, parse_line() starts by trying to consume a
NUMBER token. If that’s successful, we continue parsing thestatement itself. The use of cast() here is for type checking.If you recall from the tokenizer’s code (go back and look, ifit’s helpful), a token’s associated_value can be either aninteger, a string, or None. We know a NUMBER will only everhave an integer as its associated_value, so it’s safe to cast to

int. A type checker like mypy or Pyright can make use ofthis cast.Notice how the parse_line() method corresponds to the
<line> non-terminal in the grammar. From this pointforward, many of our methods will be direct analogs of non-terminals in the grammar or their respective productionrules (go back and look at the grammar as a guide). Forexample, our next method, parse_statement(), corresponds tothe <statement> non-terminal:

 def parse_statement(self, line_id: int) -> Statement:
 match self.current.kind:
 case TokenType.PRINT:
 return self.parse_print(line_id)
 case TokenType.IF_T:
 return self.parse_if(line_id)
 case TokenType.LET:
 return self.parse_let(line_id)
 case TokenType.GOTO:
 return self.parse_goto(line_id)
 case TokenType.GOSUB:
 return self.parse_gosub(line_id)
 case TokenType.RETURN_T:
 return self.parse_return(line_id)
 raise ParserError("Expected to find start of stateme
nt.",
 self.current)

This method is responsible for figuring out which of thesix statements in NanoBASIC appears in the next fewtokens. Luckily, every statement in NanoBASIC can beidentified by its single starting token (PRINT, IF, LET, GOTO,
GOSUB, or RETURN), so we just need to match the current tokenagainst the six possibilities.For organizational purposes, I’ve broken up eachstatement type into its own method, even though thesedon’t directly correspond to non-terminals. Instead, you can

think of each of the production rules of <statement> asreceiving its own method. We start with the PRINTstatement, which is one of the trickier statements to parsebecause it can have multiple different comma-separatedtypes in its <expr-list>.
 # PRINT "COMMA",SEPARATED,7154
 def parse_print(self, line_id: int) -> PrintStatement:
 print_token = self.consume(TokenType.PRINT)
 printables: list[str | NumericExpression] = []
 last_col: int = print_token.col_end
 while True: # keep finding things to print
 if self.current.kind is TokenType.STRING: ❶
 string = self.consume(TokenType.STRING)
 printables.append(cast(str, string.associate
d_value))
 last_col = string.col_end
 elif (expression := self.parse_numeric_expressio
n()) is not None: ❷
 printables.append(expression)
 last_col = expression.col_end
 else: ❸
 raise ParserError("Only strings and numeric
expressions "
 "allowed in print list.",
self.current)
 # Comma means there's more to print
 if not self.out_of_tokens and self.current.kind
is TokenType.COMMA: ❹
 self.consume(TokenType.COMMA)
 continue
 break
 return PrintStatement(line_id=line_id, line_num=prin
t_token.line_num,
 col_start=print_token.col_star
t, col_end=last_col,
 printables=printables)

We hold the items to be printed in the printables Pythonlist. To gather them, we keep going forward (using a loop),token after token, checking for a string ❶ or a numericexpression ❷. As long as we find one of these, followed by acomma ❹, we keep looping. If we find something that isn’ta string or a numeric expression ❸, we throw a ParserError.As we loop, we also keep track of the last item’s columnend for debug purposes. The ultimate PrintStatement nodethat’s returned needs to know where it starts and where itends; it starts where the PRINT token starts and it ends atthe end of the last column of the last item in the expressionlist.Next, let’s look at parse_if(), which includes a niceexample of the recursive aspect of recursive descent:
 # IF BOOLEAN_EXPRESSION THEN STATEMENT
 def parse_if(self, line_id: int) -> IfStatement:
 if_token = self.consume(TokenType.IF_T)
 boolean_expression = self.parse_boolean_expression()
 self.consume(TokenType.THEN)
 statement = self.parse_statement(line_id)
 return IfStatement(line_id=line_id, line_num=if_toke
n.line_num,
 col_start=if_token.col_start, col
_end=statement.col_end,
 boolean_expr=boolean_expression,
then_statement=statement)

As we’ve discussed, the THEN clause of an IF statement isanother statement. To parse the THEN clause, we call
parse_statement(), the same method that higher up in the callchain led us to parse_if() in the first place. First, though,we parse the Boolean expression at the start of the IFstatement. We’ll look at how to do this shortly.In all of the parsing methods discussed so far, noticehow we call other parsing methods and assume they work.

It’s up to the other methods to do their own error handlingand continually move the token_index along, usually bycalling consume(). That pattern continues in the methods forthe other four kinds of statements:
 # LET VARIABLE = VALUE
 def parse_let(self, line_id: int) -> LetStatement:
 let_token = self.consume(TokenType.LET)
 variable = self.consume(TokenType.VARIABLE)
 self.consume(TokenType.EQUAL)
 expression = self.parse_numeric_expression()
 return LetStatement(line_id=line_id, line_num=let_to
ken.line_num,
 col_start=let_token.col_start, c
ol_end=expression.col_end,
 name=cast(str, variable.associat
ed_value), expr=expression)

 # GOTO NUMERIC_EXPRESSION
 def parse_goto(self, line_id: int) -> GoToStatement:
 goto_token = self.consume(TokenType.GOTO)
 expression = self.parse_numeric_expression()
 return GoToStatement(line_id=line_id, line_num=goto_
token.line_num,
 col_start=goto_token.col_start,
col_end=expression.col_end,
 line_expr=expression)

 # GOSUB NUMERIC_EXPRESSION
 def parse_gosub(self, line_id: int) -> GoSubStatement:
 gosub_token = self.consume(TokenType.GOSUB)
 expression = self.parse_numeric_expression()
 return GoSubStatement(line_id=line_id, line_num=gosu
b_token.line_num,
 col_start=gosub_token.col_star
t,
 col_end=expression.col_end,
 line_expr=expression)

 # RETURN
 def parse_return(self, line_id: int) -> ReturnStatement:
 return_token = self.consume(TokenType.RETURN_T)
 return ReturnStatement(line_id=line_id, line_num=ret
urn_token.line_num,
 col_start=return_token.col_st
art,
 col_end=return_token.col_end)

These four parse methods are fairly similar to oneanother. In each case, we expect a certain starting token(LET or GOTO, for example), and then we parse someinformation that we need to create a node for that type ofstatement. For instance, we need a variable and a numericexpression for a LET statement, and we need just a numericexpression (what line to go to) for a GOTO statement. Thesimplest statement to parse is RETURN because nothingcomes after a RETURN.As promised, here’s the parse_boolean_expression()method:
 # NUMERIC_EXPRESSION BOOLEAN_OPERATOR NUMERIC_EXPRESSION
 def parse_boolean_expression(self) -> BooleanExpression:
 left = self.parse_numeric_expression()
 if self.current.kind in {TokenType.GREATER, TokenTyp
e.GREATER_EQUAL, TokenType.EQUAL,
 TokenType.LESS, TokenType.L
ESS_EQUAL, TokenType.NOT_EQUAL}:
 operator = self.consume(self.current.kind)
 right = self.parse_numeric_expression()
 return BooleanExpression(line_num=left.line_num,
 col_start=left.col_star
t, col_end=right.col_end,
 operator=operator.kind,
left_expr=left, right_expr=right)
 raise ParserError(f"Expected boolean operator but fo
und "

 f"{self.current.kind}.", self.curr
ent)

A Boolean expression must contain two numericexpressions and one of the allowed operator tokensbetween them. We call the numeric expression before thetoken left and the numeric expression after the token right.The operator token is stored in the BooleanExpression node sothat we can do the appropriate comparison in the runtime.Parsing numeric expressions closely follows thehierarchy of non-terminals in the grammar, from
<expression> to <term> to <factor>, with a method for each. A
<factor> can include a <var> or a <number>, but these arehandled directly in parse_factor() because their neededinformation is already contained in their respective tokens:

 def parse_numeric_expression(self) -> NumericExpression:
 left = self.parse_term()
 # Keep parsing +s and -s until there are no more
 while True:
 if self.out_of_tokens: # what if expression is e
nd of file?
 return left
 if self.current.kind is TokenType.PLUS:
 self.consume(TokenType.PLUS)
 right = self.parse_term()
 left = BinaryOperation(line_num=left.line_nu
m, col_start=left.col_start,
 col_end=right.col_en
d, operator=TokenType.PLUS,
 left_expr=left, right
_expr=right)
 elif self.current.kind is TokenType.MINUS:
 self.consume(TokenType.MINUS)
 right = self.parse_term()
 left = BinaryOperation(line_num=left.line_nu
m, col_start=left.col_start,
 col_end=right.col_en

d, operator=TokenType.MINUS,
 left_expr=left, right
_expr=right)
 else:
 break # no more, must be end of expression
 return left

 def parse_term(self) -> NumericExpression:
 left = self.parse_factor()
 # Keep parsing *s and /s until there are no more
 while True:
 if self.out_of_tokens: # what if expression is e
nd of file?
 return left
 if self.current.kind is TokenType.MULTIPLY:
 self.consume(TokenType.MULTIPLY)
 right = self.parse_factor()
 left = BinaryOperation(line_num=left.line_nu
m, col_start=left.col_start,
 col_end=right.col_en
d, operator=TokenType.MULTIPLY,
 left_expr=left, right
_expr=right)
 elif self.current.kind is TokenType.DIVIDE:
 self.consume(TokenType.DIVIDE)
 right = self.parse_factor()
 left = BinaryOperation(line_num=left.line_nu
m, col_start=left.col_start,
 col_end=right.col_en
d, operator=TokenType.DIVIDE,
 left_expr=left, right
_expr=right)
 else:
 break # no more, must be end of expression
 return left

 def parse_factor(self) -> NumericExpression:
 if self.current.kind is TokenType.VARIABLE:
 variable = self.consume(TokenType.VARIABLE)
 return VarRetrieve(line_num=variable.line_num,

 col_start=variable.col_start,
col_end=variable.col_end,
 name=cast(str, variable.assoc
iated_value))
 elif self.current.kind is TokenType.NUMBER:
 number = self.consume(TokenType.NUMBER)
 return NumberLiteral(line_num=number.line_num,
 col_start=number.col_start,
col_end=number.col_end,
 number=int(cast(str, numbe
r.associated_value)))
 elif self.current.kind is TokenType.OPEN_PAREN:
 self.consume(TokenType.OPEN_PAREN)
 expression = self.parse_numeric_expression()
 if self.current.kind is not TokenType.CLOSE_PARE
N:
 raise ParserError("Expected matching close p
arenthesis.", self.current)
 self.consume(TokenType.CLOSE_PAREN)
 return expression
 elif self.current.kind is TokenType.MINUS:
 minus = self.consume(TokenType.MINUS)
 expression = self.parse_factor()
 return UnaryOperation(line_num=minus.line_num,
 col_start=minus.col_start,
col_end=expression.col_end,
 operator=TokenType.MINUS,
expr=expression)
 raise ParserError("Unexpected token in numeric expre
ssion.", self.current)

Notice the order of precedence here. In arithmetic, weexpect division to have higher precedence than subtraction,and parentheses to have higher precedence than anything.As I hinted when we first discussed the NanoBASICgrammar, this can be modeled in recursive descent by theorder in which non-terminals are parsed. The further youdescend, the higher the precedence. In this case, anything

handled in parse_term() will have higher precedence thananything in parse_numeric_expression(), and anything in
parse_factor() will have higher precedence than anything in
parse_numeric_expression() or parse_term(). This is also thereason that - and + appear in the same production rulewhile / and * appear “deeper.”Each time we need a left or right side of an expressionin parse_numeric _expression() or parse_term(), we descend.For example, parse_numeric_expression() never calls
parse_numeric_expression(). Instead, it calls parse_term(). Thismight seem counterintuitive, since you might be wonderinghow multiple additions in a row are handled. The key is that
parse_numeric_expression() and parse_term() both use loops,much like we had in parse_print() to accommodate anarbitrary amount of arithmetic (such as many additionoperations). One way of thinking about it is that wedescend and handle anything of higher precedence, andthen fall back up to continue looping in
parse_numeric_expression() if there are any more addition orsubtraction tokens.Let’s try working through an example. Say we’reparsing the expression 2 + 3 * 4 + 5. The initialization of
left in parse_numeric_expression() calls parse_term(), whichcalls parse_factor(), which returns a NumberLiteral for 2.Then, we end up returning the 2 all the way back up to
parse_numeric_expression(), which stores it in left. Next, a +token is encountered and parse_term() is called. It parses 3 *
4 using multiple calls to parse_factor(). We end up back in
parse_numeric_expression() with a BinaryOperation node for 3 *
4 referred to as right. Then, left and right are combinedinto a new BinaryOperation and associated with left (a newbinding for it). Finally, the last + token is encountered, and
5 is parsed in much the same way that 2 was (descendingall the way to parse_factor()) and associated with right.Once again, left and right are combined together into leftfor the final return value of parse_numeric_expression().

Try working through some arithmetic examples of yourown to better understand how operators at a deeper levelof descent have a higher precedence. You’ll probably wantto have the parser code open as you work. The combinationof loops and the reuse of variables for different nodes canbe hard to reason about, but once you work through acouple examples, it starts to make sense. You can also tryadding some print() calls to the various methods toillustrate a parsing progression. You can eliminate the callsto run the AST through the runtime in executioner.py if youhaven’t yet finished entering the whole program.
NOTE
There are more efficient ways to parse arithmetic
expressions. One popular method discovered by Dijkstra is
called the shunting yard algorithm. A more efficient
algorithm like shunting yard is sometimes combined with a
recursive descent parser for the arithmetic expression
parts in a kind of hybrid model.

The RuntimeThe end result of our parser will be a collection of AST
Statement nodes stored as a list that the runtime can stepthrough and execute. I’ve named the class that walks theAST Interpreter, although I realize this can be a littleconfusing since this whole chapter is about building aninterpreter. Yes, the tokenizer and the parser are parts ofthe overall interpreter, but this Interpreter class is the placewhere the language is actually interpreted in the sense thatthe tokens that became nodes are turned into somethingmeaningful—a program that executes with some output.Regardless of whether or not it’s a good name, the
Interpreter class provides a runtime environment and anunderstanding of how to modify the environment or provide

output based on the statement and expression nodes that itencounters.The Interpreter class starts off similarly to Parser:
NanoBASIC/interpreter.py

from NanoBASIC.nodes import *
from NanoBASIC.errors import InterpreterError
from collections import deque

class Interpreter:
 def __init__(self, statements: list[Statement]):
 self.statements = statements
 self.variable_table: dict[str, int] = {}
 self.statement_index: int = 0
 self.subroutine_stack: deque[int] = deque()

 @property
 def current(self) -> Statement:
 return self.statements[self.statement_index]

Instead of a list of tokens as we had in the Parser class,
Interpreter receives a list of statements. There’s also a
current property for convenience, to access the currentstatement. The runtime environment consists of thestatements, a statement_index, a variable_table to keep trackof each variable’s value, and a subroutine_stack that will helpus get to the right place after a GOSUB and RETURN pair.Next, we need a way to connect a line identifier to astatement index. Consider the following NanoBASICprogram:

27 PRINT "HELLO"
38 GOTO 50
45 PRINT "NEVER"
50 PRINT "BYE"

When GOTO 50 is executed, the interpreter will need tofind the statement associated with line identifier 50 andcontinue running from there. In NanoBASIC, theprogrammer can arbitrarily choose any line identifier forany line, as long as all of the line identifiers are integers inincreasing order, so how can we find 50? We need to searchthe list of statements for it. Since the lines have to be inorder, our find_line_index() method can perform a binarysearch:
 # Returns the index of a *line_id* using a binary searc
h,
 # or None if not found; assumes the statements list is s
orted
 def find_line_index(self, line_id: int) -> int | None:
 low: int = 0
 high: int = len(self.statements) - 1
 while low <= high:
 mid: int = (low + high) // 2
 if self.statements[mid].line_id < line_id:
 low = mid + 1
 elif self.statements[mid].line_id > line_id:
 high = mid - 1
 else:
 return mid
 return None

Next, the run() method sequentially executes thestatements in statements:
 def run(self):
 while self.statement_index < len(self.statements):
 self.interpret(self.current)

Notice that we’re using a while loop controlled by
statement_index instead of a for...in loop. This is because wemay in fact jump around and skip or repeat some

statements due to GOTO and GOSUB. In other words, as weinterpret various statements within the loop, statement_indexmay be modified.The interpret() method is the heart of the interpreter. Itinterprets Statement nodes and modifies the runtimeenvironment or creates some output depending on themeaning of each particular statement:
 def interpret(self, statement: Statement):
 match statement:
 case LetStatement(name=name, expr=expr):
 value = self.evaluate_numeric(expr)
 self.variable_table[name] = value
 self.statement_index += 1
 case GoToStatement(line_expr=line_expr):
 go_to_line_id = self.evaluate_numeric(line_e
xpr)
 if (line_index := self.find_line_index(go_to
_line_id)) is not None:
 self.statement_index = line_index
 else:
 raise InterpreterError("No GOTO line i
d.", self.current)
 case GoSubStatement(line_expr=line_expr):
 go_sub_line_id = self.evaluate_numeric(line_
expr)
 if (line_index := self.find_line_index(go_su
b_line_id)) is not None:
 self.subroutine_stack.append(self.statem
ent_index + 1) # setup for RETURN
 self.statement_index = line_index
 else:
 raise InterpreterError("No GOSUB line i
d.", self.current)
 case ReturnStatement():
 if not self.subroutine_stack: # check if the
stack is empty
 raise InterpreterError("RETURN without G
OSUB.", self.current)

 self.statement_index = self.subroutine_stac
k.pop()
 case PrintStatement(printables=printables):
 accumulated_string: str = ""
 for index, printable in enumerate(printable
s):
 if index > 0: # put tabs between items i
n the list
 accumulated_string += "\t"
 if isinstance(printable, NumericExpressi
on):
 accumulated_string += str(self.evalu
ate_numeric(printable))
 else: # otherwise, it's a string
 accumulated_string += str(printable)
 print(accumulated_string)
 self.statement_index += 1
 case IfStatement(boolean_expr=boolean_expr, then
_statement=then_statement):
 if self.evaluate_boolean(boolean_expr):
 self.interpret(then_statement)
 else:
 self.statement_index += 1
 case _:
 raise InterpreterError(f"Unexpected item {se
lf.current} "
 f"in statement list.", s
elf.current)

Walking the AST turns out to be much easier thanconstructing it, since we can make use of the structuralpattern matching that Python’s match statement provides. Ineach case (except ReturnStatement, which has no properties),we capture some of the properties of the Statement subclassthat we are matching. For example, the line case
LetStatement(name=name, expr=expr): says that, assuming
statement is a LetStatement, statement.name will be stored in a

local name variable and statement.expr will be stored in a local
expr variable.Three of the cases keep the interpreter moving along byincrementing statement_index after they do their business.The GoToStatement, GoSubStatement, and ReturnStatement casesdon’t, because they’re jumping around the code bymodifying statement_index directly. Every time a
GoSubStatement is encountered, we need to know where tocome back to when a ReturnStatement is next executed—asort of bookmark, if you will. This is the purpose of
subroutine_stack. In the GoSubStatement case, we store
statement_index + 1 on the stack to avoid an infinite loop(going back to the source of the GOSUB); then, in the
ReturnStatement case, we pop from the stack.Note how, if the IfStatement node’s boolean_expr evaluatesto True, interpret() is called recursively and the
statement_index isn’t incremented. This is because thestatement associated with the THEN clause will itself modify
statement_index.Evaluating numeric expressions is mostly just a matterof executing the right Python operator to coincide with aNanoBASIC arithmetic operator token, or retrieving avariable from the variable_table:

 def evaluate_numeric(self, numeric_expression: NumericExpr
ession) -> int:
 match numeric_expression:
 case NumberLiteral(number=number):
 return number
 case VarRetrieve(name=name):
 if name in self.variable_table:
 return self.variable_table[name]
 else:
 raise InterpreterError(f"Var {name} used
"
 f"before initiali
zed.", numeric_expression)

 case UnaryOperation(operator=operator, expr=exp
r):
 if operator is TokenType.MINUS:
 return -self.evaluate_numeric(expr)
 else:
 raise InterpreterError(f"Expected - "
 f"but got {operat
or}.", numeric_expression)
 case BinaryOperation(operator=operator, left_exp
r=left, right_expr=right):
 if operator is TokenType.PLUS:
 return self.evaluate_numeric(left) + sel
f.evaluate_numeric(right)
 elif operator is TokenType.MINUS:
 return self.evaluate_numeric(left) - sel
f.evaluate_numeric(right)
 elif operator is TokenType.MULTIPLY:
 return self.evaluate_numeric(left) * sel
f.evaluate_numeric(right)
 elif operator is TokenType.DIVIDE:
 return self.evaluate_numeric(left) // se
lf.evaluate_numeric(right)
 else:
 raise InterpreterError(f"Unexpected bina
ry operator "
 f"{operator}.", n
umeric_expression)
 case _:
 raise InterpreterError("Expected numeric exp
ression.",
 numeric_expression)

Notice all of the recursive calls in evaluate_numeric().When you’re first learning to program in an imperativelanguage like Python, recursion may seem like an esoterictopic. As you then graduate to be an intermediate oradvanced programmer, you start to see its use. This projectis a good illustration. We’ve seen in both the Parser and

Interpreter classes how useful recursion can be to expressourselves algorithmically.Believe it or not, there are whole programminglanguages (mostly in the functional paradigm) that have noloops, just recursion. That may sound extreme, and usingonly recursion would certainly be a terrible way to programPython, since it would make your code a lot less readable toother Python programmers and incur some performancepenalties. But it underscores what a powerful techniquerecursion can be. Anything you can do with loops, you canalso do recursively, but the magic is when the recursionactually helps you express yourself better, as is the case inthis project. In particular, recursion can be really helpfulwhen working with hierarchical data structures like anAST.Evaluating Boolean expressions is much the same asevaluating numeric ones. It’s a conversion fromNanoBASIC operators to Python operators:
 def evaluate_boolean(self, boolean_expression: BooleanEx
pression) -> bool:
 left = self.evaluate_numeric(boolean_expression.left
_expr)
 right = self.evaluate_numeric(boolean_expression.rig
ht_expr)
 match boolean_expression.operator:
 case TokenType.LESS:
 return left < right
 case TokenType.LESS_EQUAL:
 return left <= right
 case TokenType.GREATER:
 return left > right
 case TokenType.GREATER_EQUAL:
 return left >= right
 case TokenType.EQUAL:
 return left == right
 case TokenType.NOT_EQUAL:

 return left != right
 case _:
 raise InterpreterError(f"Unexpected boolean
operator "
 f"{boolean_expression.op
erator}.", boolean_expression)

And that’s it! Running a NanoBASIC program is mucheasier than parsing one.
NOTE
If this were a simple compiler and not a simple interpreter,
instead of walking the AST and running some action, we
would be generating machine code as we encounter each
node.

Running a ProgramNow that our NanoBASIC interpreter is complete, we canrun some NanoBASIC programs. You can find Tiny BASICprograms online that can be run in NanoBASIC (ormodified if they use INPUT or another feature thatNanoBASIC doesn’t have). You can also write your ownNanoBASIC programs, and that’s actually a great way totest your interpreter. As mentioned, I’ve also providedseveral simple NanoBASIC programs in the project’s
Examples folder. For instance, we saw fib.bas early in thechapter. Another one of the examples, gcd.bas, finds thegreatest common divisor of two numbers specified in thesource code. Here it is finding the greatest common divisorof 350 and 539:

% python3 -m NanoBASIC NanoBASIC/Examples/gcd.bas
7

Again, as in Chapter 1, the command to run theprogram assumes you’re in the main directory of therepository. Don’t forget to run the program as a moduleusing the -m option.
Testing NanoBASICLike with Brainfuck, it’s helpful to have some integrationtests that ensure our interpreter is running correctly. TheNanoBASIC tests are very similar to the Brainfuck tests.We hijack the standard output and ensure the expectedoutput is the same as the actual output for many of theprograms in the Examples folder:

tests/test_nano basic.py

import unittest
import sys
from pathlib import Path
from io import StringIO
from NanoBASIC.executioner import execute

Tokenizes, parses, and interprets a NanoBASIC
program; stores the output in a string and returns it
def run(file_name: str | Path) -> str:
 output_holder = StringIO()
 sys.stdout = output_holder
 execute(file_name)
 return output_holder.getvalue()

class NanoBASICTestCase(unittest.TestCase):
 def setUp(self) -> None:
 self.example_folder = (Path(__file__).resolve().pare
nt.parent
 / 'NanoBASIC' / 'Examples')

 def test_print1(self):
 program_output = run(self.example_folder / "print1.b

as")
 expected = "Hello World\n"
 self.assertEqual(program_output, expected)

 def test_print2(self):
 program_output = run(self.example_folder / "print2.b
as")
 expected = "4\n12\n30\n7\n100\t9\n"
 self.assertEqual(program_output, expected)

 def test_print3(self):
 program_output = run(self.example_folder / "print3.b
as")
 expected = "E is\t-31\n"
 self.assertEqual(program_output, expected)

 def test_variables(self):
 program_output = run(self.example_folder / "variable
s.bas")
 expected = "15\n"
 self.assertEqual(program_output, expected)

 def test_goto(self):
 program_output = run(self.example_folder / "goto.ba
s")
 expected = "Josh\nDave\nNanoBASIC ROCKS\n"
 self.assertEqual(program_output, expected)

 def test_gosub(self):
 program_output = run(self.example_folder / "gosub.ba
s")
 expected = "10\n"
 self.assertEqual(program_output, expected)

 def test_if1(self):
 program_output = run(self.example_folder / "if1.ba
s")
 expected = "10\n40\n50\n60\n70\n100\n"
 self.assertEqual(program_output, expected)

 def test_if2(self):
 program_output = run(self.example_folder / "if2.ba
s")
 expected = "GOOD\n"
 self.assertEqual(program_output, expected)

 def test_fib(self):
 program_output = run(self.example_folder / "fib.ba
s")
 expected = "0\n1\n1\n2\n3\n5\n8\n13\n21\n34\n55\n89
\n"
 self.assertEqual(program_output, expected)

 def test_factorial(self):
 program_output = run(self.example_folder / "factoria
l.bas")
 expected = "120\n"
 self.assertEqual(program_output, expected)

 def test_gcd(self):
 program_output = run(self.example_folder / "gcd.ba
s")
 expected = "7\n"
 self.assertEqual(program_output, expected)

if __name__ == "__main__":
 unittest.main()

One additional feature of the NanoBASIC tests is thatmany of them isolate a single statement type. For example,
print2.bas only uses PRINT statements and numericexpressions, so if GOTO isn’t working correctly, test_print2()can still pass (but hopefully GOTO errors will be caught byanother test). This isolationist methodology provides moregranular testing results, but we still need morecomprehensive integration tests like fib.bas to ensure thestatements work correctly in concert. A more robust set of

unit tests would also include tests that check the tokenizer,parser, and interpreter independently.You should find that all of the tests pass. You can alsotry adding a BASIC program of your own creation as anadditional test.
CODE MEETS LIFE

My dad, Danny Kopec,10 who was a computer science professor,
learned programming at Dartmouth College, where he took a course
in BASIC with Dartmouth president John Kemeny,11 one of the
language’s creators. When I was first learning to program at about
eight years old in the mid-1990s, he bought me a copy of True
BASIC,12 the “official” BASIC released by a company started by
Kemeny and BASIC co-creator Thomas Kurtz.13 BASIC was kind of
anachronistic by 1995, but I didn’t know it. I spent a lot of time
making games with True BASIC, though I don’t think I ever quite
learned subroutines. I guess I was writing spaghetti code.

Like my dad, I ended up going to Dartmouth for my undergraduate
studies (as an economics major), and after briefly working in a job on
Wall Street that I hated, I applied to graduate programs in computer
science. The programming thread that started with BASIC was still in
me. How can somebody without a computer science degree go to
graduate school in computer science? I took five computer science
courses as an undergrad, most of which I did well in, and published
some projects on my own time, and that was enough to get into a few
programs. I ended up back at Dartmouth for a master’s degree. For
anyone considering this route, let me say that not having a full
undergraduate degree in computer science made the transition to the
master’s program quite difficult. I wouldn’t recommend going into a
very different field for a graduate degree without a lot of self-study.

To keep doubling down on my mistakes, during the first semester
of my master’s program, I decided to take a class in the thorny
subject of compilers. It ended up being the lowest grade of my
graduate career. The class involved a big project building a C compiler
in C (with some missing features). I had a partner for the project, and
we broke the work up into phases of the compiler, similar to the
phases we went over in this chapter (tokenizer, parser, code
generator, and so on). The compiler would work only if all the phases
worked. By the time the last week of the semester rolled around, I had
written a couple thousand lines of code for my phases, while my
partner had written fewer than 100 for his part, despite my consistent
prodding. I think about that experience a lot today when I assign
group projects to students: sometimes when they blame their partner,

they’re telling the truth. No doubt my code wasn’t great either, but at
least I wrote it.

We worked in a mad dash with several all-nighters to get
something working, putting my partner’s pittance of code together
with mine and writing a lot more to fill in all of the blanks. In the end,
our compiler did some basic things correctly, but it failed the majority
of the professor’s automated tests.

How did someone who nearly flunked a compilers course end up
writing this chapter on interpreters? Eight years later, and a couple
years into my career in computer science education, I remembered
my experience with BASIC. I had also used a children’s programming
language called Logo14 when I was growing up, and together the two
languages were a really good way to learn to program as a kid. As a
challenge to myself, I decided to build my own children’s
programming language that’s a cross between BASIC and Logo. It’s
not a novel idea—many people have done similar projects—but I
wanted to make something polished and prove to myself that the
compilers class didn’t have to be the end of programming language
development for me.

The result was a product called SeaTurtle15 that sold hundreds of
copies. Hundreds, not thousands. It’s not going to make me rich, but it
proved to me that I could write a programming language that people
would actually want to buy. A real programming language. Okay, a
real “kid” programming language.

That experience with SeaTurtle led me to create NanoBASIC as a
Swift project for my Emerging Languages class (mentioned in the
“Code Meets Life” box in Chapter 1). And that experience led me to
this chapter. NanoBASIC is very simple, but it’s real, and once you’ve
built something real, you’re not that far from building something
interesting. In the end, the perspective I gained from all of these
experiences, including the painful compilers class, made me the right
person to write this chapter. Now that you’ve read it, hopefully you
don’t have to struggle the same way I did in that class.

Real-World ApplicationsAs previously discussed in “BASIC History” on page 22,BASIC was the standard language of the personalcomputing revolution. Millions of programmers got theirstart writing BASIC, and Tiny BASIC was a real and widelyused dialect of BASIC. Some of the progenitors of TinyBASIC pioneered the Free Software movement. Thanks totheir open licensing, Tiny BASIC was ported to a wide

variety of platforms where its simplicity was actually anadvantage. It ran on machines with so little memory thatthey couldn’t run languages much more sophisticated thanTiny BASIC.It may not seem like much, but for an early personalcomputer user with no other alternatives (due to cost oravailability) and limited memory, Tiny BASIC was a hugeimprovement over having to write machine code. Because itwas freely licensed and ported to so many platforms, it alsooffered a kind of portability for programs written in it. If amachine could run Tiny BASIC, then it could run yourprogram.Tiny BASIC is still in use today. Like Brainfuck, it servesas an educational tool, but it’s also being used for morethan that. As of this writing, a German company shipsmicrocontrollers running a version of Tiny BASIC.16The interpreters you’ll find running modern popularprogramming languages are much more sophisticated thanthe one we built in this chapter, yet they have the sameessential building blocks—a tokenizer, a parser, anintermediate representation like an AST, and a runtimeenvironment. The added sophistication is generally there tosupport additional features or performance, but therelatively simple techniques from this chapter are sufficientto build a working prototype of a new language or even aproduction-ready domain-specific language (DSL) for yourwork. Generally, DSLs don’t require high performance.Many successful real-world programming languagesstart out with quite simple implementations and evolveover time. For example, Ruby was originally an AST-walking interpreter like NanoBASIC. Ruby later compiledto bytecode that executes on a virtual machine (more aboutvirtual machines in Chapter 5), and more recent versions ofRuby have incorporated a just-in-time (JIT) compiler.Whether a language implementation walks an AST, usesbytecode, or has a JIT compiler, it needs the principles we

covered in this chapter.
Exercises  1.  Make it possible for escaped double-quote characters toappear in NanoBASIC strings. This will require learninga bit about regular expressions.  2.  Turn NanoBASIC into Tiny BASIC by implementing

INPUT statements, which allow the user to type a numericvalue that gets stored in a variable. This is enough toimplement the “baseline” Tiny BASIC (and to be able torun Tiny BASIC programs you find online with yourinterpreter), but many real-world versions also hadextensions, such as a way of generating randomnumbers called RND().  3.  Tiny BASIC runs in an interactive mode that supportsthe commands (seen as statements in the originalgrammar) CLEAR, LIST, RUN, and END. Lines that start with aline number are stored. That storage can be cleared,listed, or run. The program can also be terminated.Create an interactive mode (basically a REPL) forNanoBASIC with these same four commands. I saidExercise 2 would turn NanoBASIC into Tiny BASIC, butwith this interactive mode, you’ll have trulyimplemented Tiny BASIC.  4.  Add support for string interpolation to NanoBASIC.When a string contains a dollar sign before anidentifier, check if that identifier is defined in thevariable table and output its value in place of it. Forexample, "The value of X is $X" would print The value of X
is 24 if the variable X has the value 24. This will requiremodifying the tokenizer, the parser, and the runtime.  5.  Write a NanoBASIC program that does somethinginteresting and tests every statement in the interpreter.Think of this as the final integration test.

Notes  1.  “BASIC Begins at Dartmouth,” BASIC at 50, 2014,accessed May 22, 2024, https://www.dartmouth.edu
/basicfifty/basic.html.  2.  Linus Torvalds and David Diamond, Just for Fun(HarperCollins, 2001), 7–8.  3.  James Wallace and Jim Erickson, Hard Drive: Bill Gates
and the Making of the Microsoft Empire(HarperBusiness, 1993).  4.  Tom Pittman, “Itty Bitty Computers & Tiny Basic,” IttyBitty Computers, 2004, last modified July 10, 2017,accessed May 22, 2024, http://www.ittybittycomputers
.com/IttyBitty/TinyBasic.  5.  Edsger Dijkstra, “Letters to the Editor: Go ToStatement Considered Harmful,” Communications of the
ACM 11, no. 3 (1968): 147–148, https://dl.acm.org/doi
/10.1145/362929.362947.  6.  Dennis Allison, “Design Notes for Tiny BASIC,” Dr.
Dobb’s Journal of Computer Calisthenics and
Orthodontia 1 (1976): 9, https://archive.org/details/dr
_dobbs_journal_vol_01/page/n9/mode/2up.  7.  See https://peps.python.org/pep-0604.  8.  Joseph Sibony, “GCC vs. Clang: Battle of theBehemoths,” Incredibuild, May 27, 2021, https://www
.incredibuild.com/blog/gcc-vs-clang-battle-of-the-
behemoths.  9.  Tom Pittman, “Tiny Basic Experimenter’s Kit,” 1977,accessed December 4, 2024, http://www
.ittybittycomputers.com/IttyBitty/TinyBasic/TBEK.txt.10.  See https://en.wikipedia.org/wiki/Danny_Kopec.11.  See https://en.wikipedia.org/wiki/John_G._Kemeny.

https://www.dartmouth.edu/basicfifty/basic.html
http://www.ittybittycomputers.com/IttyBitty/TinyBasic
https://dl.acm.org/doi/10.1145/362929.362947
https://archive.org/details/dr_dobbs_journal_vol_01/page/n9/mode/2up
https://peps.python.org/pep-0604
https://www.incredibuild.com/blog/gcc-vs-clang-battle-of-the-behemoths
http://www.ittybittycomputers.com/IttyBitty/TinyBasic/TBEK.txt
https://en.wikipedia.org/wiki/Danny_Kopec
https://en.wikipedia.org/wiki/John_G._Kemeny

12.  See https://en.wikipedia.org/wiki/True_BASIC.13.  See https://en.wikipedia.org/wiki/Thomas_E._Kurtz.14.  See https://en.wikipedia.org/wiki/Logo_(programming
_language).15.  See https://oaksnow.com/seaturtle.16.  See https://www.tinybasic.de.

https://en.wikipedia.org/wiki/True_BASIC
https://en.wikipedia.org/wiki/Thomas_E._Kurtz
https://en.wikipedia.org/wiki/Logo_(programming_language
https://oaksnow.com/seaturtle
https://www.tinybasic.de/

PART II
COMPUTATIONAL ART

3
RETRO IMAGE PROCESSING

What do you do when you needto show an image on a displaywith fewer colors than are in the imageitself? Solving that problem is the realmof dithering algorithms, whichstrategically use a limited color palette tocreate the illusion of more colors. In thischapter, we’ll write a program that cantake any modern photo and display it on aclassic monochrome Macintosh. It willconvert the photo to a dithered 1-bitblack-and-white version of itself andexport it to a format that an earlyMacintosh can read: MacPaint. Along theway, we’ll learn a dithering algorithm, acompression algorithm, and a bit aboutfile formats.

What Is Dithering?
Dithering algorithms purposely introduce noise into animage in a specific way that makes the image appear tohave more color depth than it actually does. This trick onthe human eye has both practical and artistic applications.If you’ve ever seen full-motion graphics on an early 1990sgame console or computer, then you probably have a senseof what dithering looks like. The technique is also prevalentin animated GIFs, since GIFs can only support 256 colors.(There’s a hacky way to get more than 256 colors in a GIF,but most export programs don’t support it.)If you look at Figure 3-1, you’ll see the same image inJPEG and GIF formats. The JPEG has 45,807 colors, whilethe GIF has just 256. Thanks to dithering, it’s not as easy tosee the difference as you might expect. (If you’re readingthis book in print, see the figures directory of the book’sGitHub repository for color versions of the images.)

Figure 3-1: A 45,807-color JPEG reduced to a 256-color GIF with dithering

Another common use of dithering and techniques like itis to make a black-and-white image appear to be grayscale.Newspapers have done something similar to dithering (atechnique called halftone) for a long time to make theirpurely black-and-white printers reproduce photographs. Oncomputing devices, dithering allows for images that have

depth, even on a 1-bit screen that can only show two colors(typically black and white). It’s a technique that’s stillrelevant today. For example, the Panic Playdate, a gameconsole released in 2022, has a 1-bit black-and-whitescreen. Most Amazon Kindle devices support 16 levels ofgrayscale, so many book covers and photographs displayedon the Kindle must be approximated via dithering (albeitnot 1-bit dithering).The original 1984 Apple Macintosh had a 1-bit black-and-white screen, as did several subsequent models. Infact, Apple continued to sell 1-bit Macintoshes right upuntil the Classic II was discontinued in 1993, and thecompany only stopped providing user support for theClassic II in 2001. During those 17 years of supported life,third-party developers created plenty of cool graphics formonochrome Macintoshes, and they did this usingdithering algorithms.We’ll target those classic monochrome Macintoshes inour project, along with a beloved graphics editor that theyran, MacPaint. Figure 3-2 shows the end result: the imagefrom Figure 3-1 displayed on MacPaint running on a MacPlus emulator. (The 1986 Mac Plus was a slight evolution ofthe original 1984 Macintosh but had the same screenconstraints.) The figure was created using the programbuilt in this chapter.

Figure 3-2: The beach scene from Figure 3-1, converted by our program to
display in MacPaint

You may notice the beach scene is more “zoomed in” inFigure 3-2 than it is in Figure 3-1. For Figure 3-1, I firstscaled the scene to a lower resolution so that both versionscould fit next to each other in the same figure (I usedsoftware to count the colors of the lower-resolutionversions). I ran the original full-resolution image throughour program to convert it to MacPaint for Figure 3-2.MacPaint is limited to documents that are 576 pixels wideby 720 pixels tall, so as we’ll see, our program will alwaysfirst resize images to fit within that constraint. However,MacPaint’s display window on a Mac Plus is even smallerbecause a Mac Plus display is only 512 pixels across andsome of those pixels are taken up by the toolbar. Therefore,we’re only seeing roughly 400 of the 576 pixels across inFigure 3-2. The full height of the image is also obscured.

Getting StartedThe pipeline our project will follow is prettystraightforward:1. Read an image from disk.2. Resize it and convert it to grayscale.3. Dither it to black and white.4. Write it to disk in MacPaint format.The unique and interesting parts of the project aresteps 3 and 4, so we’ll use a library to complete steps 1 and2. Probably the most popular imaging library in the Pythonworld is Pillow. Installing it should be as easy as pip install
pillow.Pillow can read an image in any popular format in asingle line of code, and it’s just a few more lines to resizean image and convert it to grayscale. We’ll complete thissimple preparatory work right in our __main__.py file, alongwith handling command line arguments as we’ve done inthe prior two projects. Let’s start with the code for resizingand converting to grayscale, which appears in a functionaptly called prepare():

RetroDither/__main__.py
from PIL import Image
from argparse import ArgumentParser
from RetroDither.dither import dither
from RetroDither.macpaint import MAX_WIDTH, MAX_HEIGHT, writ
e_macpaint_file

def prepare(file_name: str) -> Image.Image:
 with open(file_name, "rb") as fp:
 image = Image.open(fp)
 # Size to within the bounds of the maximum for MacPa
int
 if image.width > MAX_WIDTH or image.height > MAX_HEI
GHT:

 desired_ratio = MAX_WIDTH / MAX_HEIGHT
 ratio = image.width / image.height
 if ratio >= desired_ratio:
 new_size = (MAX_WIDTH, int(image.height * (M
AX_WIDTH / image.width)))
 else:
 new_size = (int(image.width * (MAX_HEIGHT /
image.height)), MAX_HEIGHT)
 image.thumbnail(new_size, Image.Resampling.LANCZ
OS)
 # Convert to grayscale
 return image.convert("L")

As noted earlier, MacPaint images are limited to aresolution of 576 pixels wide by 720 pixels tall. We definethose values as constants in macpaint.py. In prepare(), if theimage is too large, we scale it proportionally. For that, wefigure out the ratio of the image’s width to its height andcompare it to the ratio of MacPaint’s maximum dimensions.By scaling one dimension to the maximum size allowed inMacPaint and the other dimension according to theappropriate ratio, we get a final image that’s as large aspossible in MacPaint without any part of it getting cut off.To figure out the resizing formula, I did some very simplecross-multiplication algebra on pen and paper. Irecommend you do the same if you’re curious about howthis works.Like reading an image file, doing a resize in Pillow is aneasy one-liner with the image.thumbnail() method. It offersmultiple built-in algorithms for actually calculating whatcolors each of the resized pixels will be; LANCZOS is perhapsthe highest quality (at some performance cost). Finally,
image.convert("L") converts the image to grayscale. The "L"for grayscale mode is short for luminance, which incomputer graphics is also sometimes known as luma.Now let’s handle the command line arguments:

if __name__ == "__main__":
 argument_parser = ArgumentParser("RetroDither")
 argument_parser.add_argument("image_file", help="Input i
mage file.")
 argument_parser.add_argument("output_file", help="Result
ing MacPaint file.")
 argument_parser.add_argument('-g', '--gif', default=Fals
e, action='store_true',
 help='Create an output gif
as well.')
 arguments = argument_parser.parse_args()
 original = prepare(arguments.image_file)
 dithered_data = dither(original)
 if arguments.gif:
 out_image = Image.frombytes('L', original.size, dith
ered_data.tobytes())
 out_image.save(arguments.output_file + ".gif")
 write_macpaint_file(dithered_data, arguments.output_fil
e, original.width, original.height)

At this point, on our third project, we’ve seen
ArgumentParser quite a bit. For Retro Dither, we have acouple more command line options compared to the earlierprojects. One, output_file, is for the user to specify anoutput filename and path for the results. The optional -g or
--gif parameter is for the user to specify if they want GIFoutput in addition to MacPaint output. If the user requestsGIF output, we use Pillow to write a GIF version of thedithered image.Pillow is a very full-featured and powerful library. Wewon’t use many of its features in this chapter, but if youneed to do image manipulation in Python, it’s well worththe invested time to learn it. We’ll also see it again in thenext chapter. For more information, check out the Pillowdocumentation at https://pillow.readthedocs.io.

https://pillow.readthedocs.io/

The Dithering AlgorithmThere are many different dithering algorithms, the mostpopular class of which are known as error-diffusionalgorithms. This type of algorithm takes some of thedifference between where a pixel ends up and where itbegan (the error) and spreads (diffuses) it among nearbypixels. The most popular error-diffusion dithering algorithmis known as Floyd-Steinberg dithering (invented by RobertFloyd and Louis Steinberg in 1976). In fact, Pillow hasbuilt-in support for Floyd-Steinberg dithering.Just using Pillow to do the dithering wouldn’t be anyfun, and we wouldn’t learn anything in the process.Instead, we’ll implement an algorithm that Pillow doesn’thave: the Atkinson dithering algorithm. It was created byBill Atkinson in 1984 specifically for use with software onthe original Macintosh, like MacPaint, which Atkinson wasthe author of. It’s therefore not a surprise that Atkinsondithering was a popular technique on monochrome Macs. Itwill make our results look more authentic. Like Floyd-Steinberg, Atkinson dithering is an error-diffusionalgorithm. As we’ll see, it only takes a few changes to gofrom one error-diffusion algorithm to another.Before we dive into the specifics of Atkinson dithering,let’s talk about error-diffusion dithering algorithms moregenerally. Most of these algorithms look at an image’spixels one at a time from the top left through to the bottomright. The movement is from left to right across each row,and then down one row after each row is complete. Forevery pixel processed, the following steps occur:1. Find which of the output colors it’s closest to. (Indithering, the output colors are specified in advance, forexample, black and white.)2. Find the difference between the output color and theoriginal color of the pixel.

3. Add part of the difference to some of the pixels to theright and below the current pixel.Let’s take those general steps and apply them to ourspecific scenario, where the pixels are being convertedfrom grayscale to black and white via Atkinson dithering:1. Find whether black or white is closer to the gray in thepixel. This will be based on some kind of threshold. Forinstance, if the grays are stored as 8-bit unsignedintegers, there may be 256 shades of gray numbered 0through 255, and our threshold could be 127. Any pixelgreater than 127 may be marked as white (255 in thisscheme), and any pixel less than or equal to 127 may bemarked as black (0).2. Subtract the difference between the new pixel color andits original color. Imagine the original gray was 204.The difference would be 255 – 204 = 51. This is ourerror.3. Add one-eighth of the error to six specific pixels close tothe original pixel. This is the diffusion step. In this case,51 // 8 = 6 (we need to do integer division). The pixelsadjusted are: one to the right, two to the right, onediagonally down and left, one diagonally down andright, one straight below, and one two below.Only step 3 is different between Floyd-Steinbergdithering and Atkinson dithering. You’ll note that sincewe’re distributing one-eighth of the error among six pixels,we’re only distributing a total of six-eighths or three-quarters of the total error. In Floyd-Steinberg dithering, allof the error is distributed among four nearby pixels. Thisdifference in how the error is distributed gives Atkinsondithering a look that seems to emphasize changes incontrast, whereas Floyd-Steinberg dithering can have asmoother appearance. Figure 3-3 shows an original image

(first panel), Atkinson dithering (second panel), and Floyd-Steinberg dithering (third panel).

Figure 3-3: The author’s grandmother in a portrait that shows good contrast
between various colors illustrating how edges appear in dithering

Tables 3-1 and 3-2 contain matrices representing theerror diffusion in Atkinson dithering and Floyd-Steinbergdithering, respectively. The X indicates the original pixellocation, and the column and row headers indicatemovement in columns or rows away from the original pixel.
Table 3-1: Error Diffusion in Atkinson Dithering
Δ –1 0 +1 +2
0 X 1/8 1/8
+1 1/8 1/8 1/8
+2 1/8

Table 3-2: Error Diffusion in Floyd-Steinberg Dithering
Δ –1 0 +1
0 X 7/16

Δ –1 0 +1

+1 3/16 5/16 1/16

Although we’ll be implementing Atkinson dithering,we’ll keep the matrix separated in such a way that it will beeasy for you to plug in a different matrix. For example, youcan easily change the code to Floyd-Steinberg dithering oranother error-diffusion variant, or you can try out your ownmethod. In fact, doing so is one of the exercises at the endof the chapter.Our dithering code begins by defining some constants:
RetroDither/dither.py

from PIL import Image
from array import array
from typing import NamedTuple

THRESHOLD = 127

class PatternPart(NamedTuple):
 dc: int # change in column
 dr: int # change in row
 numerator: int
 denominator: int

ATKINSON = [PatternPart(1, 0, 1, 8), PatternPart(2, 0, 1,
8),
 PatternPart(-1, 1, 1, 8), PatternPart(0, 1, 1,
8),
 PatternPart(1, 1, 1, 8), PatternPart(0, 2, 1,
8)]

We set THRESHOLD to 127 (about the middle point between0 and 255) as described in our algorithm. In ATKINSON, weflatten the Atkinson dithering matrix into six PatternPart

named tuples, each of which specifies where one of thepixels being changed is located relative to the original pixeland what fraction of the error should be added to it.Next, we’ll start defining a dither() function, where thedithering takes place:
Assumes we are working with a grayscale image (Mode "L" in
Pillow)
Returns an array of dithered pixels (255 for white, 0 for
black)
def dither(image: Image.Image) -> array:
 # Distribute error among nearby pixels
 def diffuse(c: int, r: int, error: int, pattern: list[Pa
tternPart]):
 for part in pattern:
 col = c + part.dc
 row = r + part.dr
 if col < 0 or col >= image.width or row >= imag
e.height:
 continue
 current_pixel: float = image.getpixel((col, ro
w)) # type: ignore
 # Add *error_part* to the pixel at (*col*, *row
*) in *image*
 error_part = (error * part.numerator) // part.de
nominator
 image.putpixel((col, row), current_pixel + error
_part)

The dither() function begins with a diffuse() helperfunction that takes the error and distributes it amongnearby pixels in portions specified by a pattern, which isjust a list of PatternPart tuples. We iterate through each
PatternPart in the pattern, find the pixel associated with thatpart, and add its fraction of the error to it. As discussed,the pattern is at the heart of what makes one error-diffusion algorithm differ from another. Note that all the

arithmetic here is integer arithmetic. This is because pixelvalues are stored as integers.
SOME INEFFICIENCIES

The Pillow documentation notes that the getpixel() and putpixel()
methods are quite slow. Pillow includes more direct access to pixel
data in an array as an alternative. In addition, iterating through all of
the PatternPart tuples is less efficient than storing a raw array of
locations. In fact, since every error_part is exactly one-eighth of the
total error in Atkinson dithering, we could save a lot of calculations by
just dividing error by 8 once. However, this code isn’t meant to be the
most efficient possible, but instead as readable as possible for a
chapter in a book that teaches the algorithm. We also want to be able
to plug in different diffusion dithering algorithms where error_part may
not always be the same.

Despite these inefficiencies, since we first need to scale every
image to fit within the constraints of MacPaint, the performance of the
overall program is nearly instantaneous. If we were dithering larger
images, the concessions made here may become a problem.

In the rest of dither(), we go through every pixel in theimage, change it to black or white depending on THRESHOLD,calculate the difference from the original gray, and diffusethe error among nearby pixels using the diffuse() helperfunction:
 result = array('B', [0] * (image.width * image.height))
 for y in range(image.height):
 for x in range(image.width):
 old_pixel: float = image.getpixel((x, y)) # typ
e: ignore
 # Every new pixel is either solid white or solid
black
 # since this is all that the original Macintosh
supported
 new_pixel = 255 if old_pixel > THRESHOLD else 0
 result[y * image.width + x] = new_pixel
 difference = int(old_pixel - new_pixel)

 # Disperse error among nearby upcoming pixels
 diffuse(x, y, difference, ATKINSON)

 return result

The ATKINSON pattern is currently hardcoded, but there’san easy hook here to change to a different pattern. Notethat the result variable is actually an array of pixels, notanother Pillow Image. This is because we’ll need to furtherprocess the raw pixel data of the dithered image in order tosave it in MacPaint format. In Python’s array type from thestandard library, an array defined using type code 'B' holdsunsigned bytes. Since we’ll be manipulating a lot of rawbytes, we’ll see this array type repeatedly both in thischapter and in the later chapters on emulators.Confusingly, Python provides at least three differenttypes for working with raw bytes: bytes, bytearray, and
array("B"). You could ultimately write your code using anyof them. The array type is particularly geared towardcompact representation and working with files.
The MacPaint File FormatThere were painting programs before it, but for everythingthat would come after it, MacPaint set the standard. It waswritten by Bill Atkinson and released in 1984 by Applealongside the original Macintosh. Although preceded by theXerox Star and the Apple Lisa, the Macintosh was the firstwidely available personal computer with a mouse and agraphical user interface (GUI). MacPaint was one of theshowcase pieces of software that demonstrated howpowerful a mouse and GUI could be. A reviewer in the New
York Times said, “It is better than anything else of its kindoffered on personal computers by a factor of 10.”1 Many ofthe tools and graphical manipulation techniques that first

appeared in MacPaint are still with us today in moderngraphics software.I encourage you to play around with MacPaint to get asense of it. There’s a live demo of it on the InternetArchive,2 but you may get the maximum level of fulfillmentfrom this chapter by taking the time to download anemulator so that you can load the actual images ourprogram will be outputting directly in MacPaint. You couldeven go find an old Mac on eBay! I’ve collected far toomany myself.Despite being revolutionary, MacPaint was limited bythe hardware of its pioneering platform. Like the originalMacintosh, MacPaint only supported black and white. Asmentioned earlier, its documents were also limited to afixed size of 576 pixels wide by 720 pixels tall. The originalMacintosh didn’t even have a hard drive; disk space waslimited because everything had to run off of a floppy disk.To accommodate this space constraint, MacPaint used asimple compression scheme known as run-length encoding.We’ll come back to some of these quirks shortly.The next step in our project will be to write code thattranslates the dithered pixels of an image into the MacPaintformat. My experience has been that programming againstbinary file formats is just a matter of very carefullyfollowing a specification document. Unfortunately, theMacPaint format is somewhat obscure today, so finding aspecification document requires a little bit of digging.Apple itself documented the format in Technical NotePT24.3 However, the most accessible and comprehensivedescription I’ve found was on a site called FileFormat.info.4On the surface, a MacPaint file is pretty simple. Itconsists of a 512-byte header followed by pixel data that’scompressed using run-length encoding. Before being run-length encoded, each pixel is stored as a bit, either a 1 forblack or a 0 for white. That all sounds straightforward

enough. However, there’s a peculiarity: unlike almost anyother operating system, the classic Mac operating systemstored files in two “forks.” We’ll dive into that more in a bit,but in short, MacPaint files that get transported or createdon operating systems other than the classic Mac OS shouldbe encoded in a special format called MacBinary in order tohave their metadata survive transfer. We’ll therefore needto turn our output file into a MacBinary file too, by adding aspecial additional header.We’ll tackle this esoteric file format step by step. First,we’ll handle the pixel data. Then, we’ll implement run-length encoding. And last, we’ll create the MacPaint andMacBinary headers. As we work, we’ll need to use variousbitwise operations including shifts, ORs, and ANDs. If thiskind of low-level bit manipulation is new to you, or if you’rejust a bit rusty, see the book’s appendix for an overview ofbitwise operations in Python.
Translating Bytes to BitsIn "L" mode, our Pillow Image is encoded using 1 byte perpixel. However, in a MacPaint bitmap, pixels are encodedwith 1 bit per pixel, meaning each byte represents eightpixels. This is a big savings for black and white, and itmakes total sense since we only need two values (1 and 0)to represent two colors. After we define some constants,our first function in macpaint.py is a converter that takesthe byte array we got from dither() and converts it into a“bit array”:

RetroDither/macpaint.py

from array import array
from pathlib import Path
from datetime import datetime

MAX_WIDTH = 576

MAX_HEIGHT = 720
MACBINARY_LENGTH = 128
HEADER_LENGTH = 512

Convert an array of bytes where each byte is 0 or 255
to an array of bits where each byte that is 0 becomes a 1
and each byte that is 255 becomes a 0
def bytes_to_bits(original: array) -> array:
 bits_array = array('B')

 for byte_index in range(0, len(original), 8):
 next_byte = 0
 for bit_index in range(8):
 next_bit = 1 - (original[byte_index + bit_index]
& 1)
 next_byte = next_byte | (next_bit << (7 - bit_in
dex))
 if (byte_index + bit_index + 1) >= len(origina
l):
 break
 bits_array.append(next_byte)
 return bits_array

The loops here iterate through 8 bytes at a time fromthe original array, checking whether each is a white (255)or black (0) pixel. MacPaint’s bitmap format inverts this,making a white pixel 0 and a black pixel 1. The line next_bit
= 1 - (original[byte_index + bit_index] & 1) does theinversion. Note that we don’t actually check values against255, instead preferring to only check the first bit (& 1)because it makes the code more compact and moreperformant. We know we only stored 255s and 0s in thearray before bytes_to_bits() was called, so there’s no reasonto fear we’re accidentally capturing intermediate values; ifthere’s a 1 anywhere in the byte, it must be 255. The 8 bitsare encoded in next_byte by putting each bit into theappropriate place with an OR operation: next_byte =

next_byte | (next_bit << (7 - bit_index)). We then append
next_byte to bits_array.We don’t call bytes_to_bits() on all of the pixel data atonce, because MacPaint bitmaps need to be padded withwhite pixels (0s) on every row of the bitmap where thepixel data doesn’t extend the full length. We handle thepadding with the prepare() function:

Convert the array of bytes into bits using the helper func
tion.
Pad any missing spots with white bits due to the original
image having a smaller size than 576x720.
def prepare(data: array, width: int, height: int) -> array:
 bits_array = array('B')
 for row in range(height):
 image_location = row * width
 image_bits = bytes_to_bits(data[image_location:(imag
e_location + width)])
 bits_array += image_bits
 remaining_width = MAX_WIDTH - width
 white_width_bits = array('B', [0] * (remaining_width
// 8))
 bits_array += white_width_bits
 remaining_height = MAX_HEIGHT - height
 white_height_bits = array('B', [0] * ((remaining_height
* MAX_WIDTH) // 8))
 bits_array += white_height_bits
 return bits_array

We look through the raw pixel data coming from
dither() one row at a time and convert the row to bits using
bytes_to_bits(). If the row doesn’t extend the full width of aMacPaint document, we add white pixels to the row. We dothe same for any full-length rows beneath the pixel data.

Implementing Run-Length EncodingStoring pixels as individual bits rather than bytes saves asignificant amount of space, but it’s not enough. WhenMacPaint launched in 1984, the original Macintosh hadfloppy disks that supported just 400KB of data. There wasno hard drive, and a standard configuration had just onefloppy drive. Think about how big a MacPaint file would beif it weren’t compressed. The 576 pixels in a row take up576 bits, which is 72 bytes. There are 720 rows, so 720multiplied by 72 bytes is 51,840 bytes. Adding in the 512-byte header, a MacPaint file would be 52,352 bytes with nocompression. That would mean a floppy disk couldn’t evenstore eight MacPaint files!To relieve this disk space problem, the MacPaint fileformat incorporates a simple compression scheme calledrun-length encoding. In this scheme, instead of repeatingthe same thing, you say how many times it should repeat.For example, suppose we want to store the string
AAAAAABCCCCCABBBB. If each character uses 1 byte, itwould be 17 bytes. Would it not be more efficient to sayseven As instead of repeating A seven times? Or saying five
Cs?Suppose we use up to 1 byte before a character to storeits number of repetitions. The string could then be encodedas 6AB5CA4B, which is 8 bytes. However, there’s aproblem with this scheme. Remember, in computer memorythese would be raw bytes. How do we know that B is acharacter and not a byte indicating a certain number ofrepetitions of the next character? In other words, B wouldlikely be stored in memory using its ASCII/Unicode code,66. Our program would likely interpret it as indicating 66of the next character, not a single letter B.We could instead have a scheme where every characteris preceded by a number, even single characters. Thiswould change the encoded string to 6A1B5C1A4B. That’s

10 bytes, a 7-byte savings over the original, which issignificant.This encoding scheme is a form of run-length encoding,but it breaks down pretty quickly: for many strings, it’sactually less efficient than just storing the raw characters.For example, the string ABC would be 1A1B1C. That’sdouble the size.There’s a compromise. You can have an encodingscheme where each number indicates either a repetition ora certain number of literal characters. Then, ABC becomes
3ABC. That’s still longer, but this new scheme may be agood compromise for more complex cases. For instance,the string AAAAABCBCAAAAAA would be 5A4BCBC6A.This version is close to the encoding scheme theMacPaint file format uses, but there’s still a problem: Howwould you know that the 5 means five As, but the 4 meansa literal sequence of four characters (BCBC) rather thanfour Bs? You may say, “Well, you could read ahead twocharacters and see that C isn’t a number, so the 4 couldn’tmean four Bs,” but even that doesn’t work, because (again)in computer memory, the C is stored as a number. We needanother improvement.MacPaint eliminates the ambiguity between numbersthat indicate literal runs and numbers that indicaterepetition runs by representing both using signed 1-byteintegers. A number n between 0 and 127 indicates n + 1literal bytes follow. A number n between –1 and –127indicates 1 – n repetitions of the following byte. Thenumber –128 isn’t used. This compression scheme is knownas PackBits,5 and it was used beyond just MacPaint inseveral other popular file formats.A PackBits function was actually built into classicversions of Mac OS. According to Apple’s own technicalnote on the subject, “typical MacPaint documents compress

to about 10K” with PackBits.6 Table 3-3 summarizes thePackBits encoding scheme.
Table 3-3: The PackBits Encoding Scheme (Signed)
Value of n Meaning

0 to 127 n + 1 literal bytes follow.

–1 to –127 The next byte is repeated 1 – n times.

–128 Skip.

We’ll be working with unsigned integers, so it’sconvenient to rewrite the table instead of doingconversions on every byte from signed to unsigned (orthinking about two’s complements). Table 3-4 is theencoding scheme with the bytes converted to unsignedintegers.
Table 3-4: The PackBits Encoding Scheme (Unsigned)
Value of n Meaning

0 to 127 n + 1 literal bytes follow.

129 to 255 The next byte is repeated 257 – n times.

128 Skip.

Have you thought of a limitation of this scheme? What ifthere are more than 128 bytes in a run? Thankfully, wewon’t run into this problem when encoding MacPaint files,because they’re encoded one row at a time. A row inMacPaint can only be 576 pixels, stored as 72 bytes. Since72 is less than 128, we don’t need to worry about the limit.To check your understanding, try working with anexample that Apple provides in Technical Note TN1023.I’ve converted it from hexadecimal to decimal for your

convenience in Table 3-5. One row is the unpacked data,and the other row is the packed data. Try to reformulatethe packed data from the unpacked data using Table 3-4 asa reference. Then, check your work against the packed datain Table 3-5.
Table 3-5: A PackBits Example
Type Bytes

Unpacked 170, 170, 170, 128, 0, 42, 170, 170, 170, 170, 128, 0, 42,
34, 170, 170, 170, 170, 170, 170, 170, 170, 170, 170

Packed 254, 170, 2, 128, 0, 42, 253, 170, 3, 128, 0, 42, 34, 247,
170

Let’s implement a PackBits encoder. The function
run_length_encode() takes an array of bytes and returns a runlength–encoded array of bytes using the PackBits scheme.It starts with an inner helper function, take_same(), that canfind runs of repeated values and return their length:

MacPaint expects RLE to happen on a per-line basis (MAX_WI
DTH).
In other words there are line boundaries.
def run_length_encode(original_data: array) -> array:
 # Find how many of the same bytes are in a row from *sta
rt*
 def take_same(source: array, start: int) -> int:
 count = 0
 while (start + count + 1 < len(source)
 and source[start + count] == source[start + c
ount + 1]):
 count += 1
 return count + 1 if count > 0 else 0

To find a run, take_same() just repeatedly looks atwhether the byte after the current byte is the same as it.

It’s also careful to not run off the end of the source array.We increment count every time a match is found, butbecause the first byte examined (the byte at start) isn’titself a match of a previous byte, count will always be oneless than the number of items in a run. Hence, count + 1 isreturned if any matches are found, or 0 otherwise. Thismakes it impossible to have a repeated run with just one ofthe same character: that would just be a lone character,which would be part of a literal since in PackBits there’s noway to “repeat once.” In other words, the domain of
take_same() is 0 and all integers greater than or equal to 2.The run_length_encode() function continues with a littlesetup:

 rle_data = array('B')
 # Divide data into MAX_WIDTH size boundaries by line
 for line_start in range(0, len(original_data), MAX_WIDTH
// 8):
 data = original_data[line_start:(line_start + (MAX_W
IDTH // 8))]

Output will be stored in rle_data. We iterate through the
original_data array one row at a time. The MacPaint fileformat specifies that each row is individually run-lengthencoded, instead of all the pixels being run-length encodedat once. The data variable represents a single row of pixeldata ready for run-length encoding. The next step is to lookfor repetitions and literal runs:

 index = 0
 while index < len(data):
 not_same = 0
 while (((same := take_same(data, index + not_sam
e)) == 0)
 and (index + not_same < len(data))):
 not_same += 1

We iterate through each row’s data 1 byte at a time,with index keeping track of the current byte that’s beingexamined. Two counts are gathered: same (initialized on thefly using the so-called walrus := operator) is the number ofitems in a row that are the same, and not_same is the lengthof a literal run. Here’s how they’re calculated in the whileloop:1. We attempt to find a repeated run using take_same().2. If the attempt fails (same is 0), then this must be a literalrun, so not_same is incremented.3. Steps 1 and 2 repeat until a repeated run is found (sameis not equal to 0) or the byte being looked at (index +
not_same) is beyond the end of the row.There are three possibilities after this loop:1. A repeated run is immediately found (same is then notequal to 0) and not_same is never incremented, meaningit equals 0.2. A literal run is initially found and not_same isincremented until a repeated run is found, filling in same.3. A literal run is initially found that goes all the way tothe end of the row, and the loop exits because index +
not_same < len(data) doesn’t hold.Due to the second possibility, there can be a scenariowhere both same and not_same are greater than 0. Keep thatin mind as we examine the remaining code for thisfunction:

 if not_same > 0:
 rle_data.append(not_same - 1)
 rle_data += data[index:index + not_same]
 index += not_same
 if same > 0:
 rle_data.append(257 - same)
 rle_data.append(data[index])

 index += same
 return rle_data

This is the part that writes the PackBits-encoded data tothe array. These patterns are directly from Table 3-4.Because of the possibility of finding both a not_same and a
same run in a single iteration of the loop, there are two ifstatements here instead of an else clause. Further, becauseof the way that the inner while loop is structured, not_sameruns will always be found prior to same runs. This is why the
if statement for not_same appears first. If there’s one of eachrun, then index gets incremented the right amount by
not_same to be in the right place for the encoding of the samerun.

AN ALTERNATIVE IMPLEMENTATION

Do you find the run_length_encode() function elegant or too clever? I
made several attempts to rewrite my original version in a more
compact and readable form, and the end result is what you see here. I
found centering the code on take_same() and just counting when it fails
to be more readable than simultaneously trying to establish same and
not_same runs. Yet it’s less efficient than my original version, which
uses a lot more conditionals; is a bit longer; and has no inner function.
If you don’t like this version, I left my original version as a comment at
the bottom of the source file on GitHub. You can find that file at
https://github.com/davecom/ComputerScienceFromScratch/blob/main
/RetroDither/macpaint.py.

Testing Run-Length EncodingAs I tried rewriting run_length_encoding() a few differentways to make it more readable, I realized I needed a quickway of making sure my new implementations were correct,so I wrote some unit tests. Like all tests for the book, thefile for these appears in the tests directory in the root ofthe source code repository.

https://github.com/davecom/ComputerScienceFromScratch/blob/main/RetroDither/macpaint.py

tests/test_retrodither.py
import unittest
from array import array
from RetroDither.macpaint import run_length_encode

class RetroDitherTestCase(unittest.TestCase):
 # Example from
 # web.archive.org/web/20080705155158/http://developer.ap
ple.com/technotes/tn/tn1023.html
 def test_apple_rle_example(self):
 unpacked = array("B", [0xAA, 0xAA, 0xAA, 0x80, 0x00,
0x2A, 0xAA, 0xAA, 0xAA, 0xAA,
 0x80, 0x00, 0x2A, 0x22, 0xAA,
0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
 0xAA, 0xAA, 0xAA, 0xAA])
 packed = run_length_encode(unpacked)
 expected = array("B", [0xFE, 0xAA, 0x02, 0x80, 0x00,
0x2A, 0xFD, 0xAA, 0x03, 0x80,
 0x00, 0x2A, 0x22, 0xF7, 0xA
A])
 self.assertEqual(expected, packed)

 # Example where packed data is longer than unpacked data
 def test_longer_rle(self):
 unpacked = array("B", [0x55, 0x55, 0xBB, 0xBB, 0x55,
0xBB, 0xBB, 0x55])
 packed = run_length_encode(unpacked)
 expected = array("B", [0xFF, 0x55, 0xFF, 0xBB, 0x00,
0x55, 0xFF, 0xBB, 0x00, 0x55])
 self.assertEqual(expected, packed)

 def test_simple_literal(self):
 unpacked = array("B", [0x00, 0x01, 0x02, 0x03, 0x0
4])
 packed = run_length_encode(unpacked)
 expected = array("B", [0x04, 0x00, 0x01, 0x02, 0x03,
0x04])
 self.assertEqual(expected, packed)

 def test_simple_literal2(self):
 unpacked = array("B", [0x00])
 packed = run_length_encode(unpacked)
 expected = array("B", [0x00, 0x00])
 self.assertEqual(expected, packed)

 def test_simple_same(self):
 unpacked = array("B", [0x11, 0x11, 0x11, 0x11])
 packed = run_length_encode(unpacked)
 expected = array("B", [0xFD, 0x11])
 self.assertEqual(expected, packed)

 def test_simple_same2(self):
 unpacked = array("B", [0x11, 0x11, 0x11, 0x11, 0x22,
0x22, 0x22, 0x22])
 packed = run_length_encode(unpacked)
 expected = array("B", [0xFD, 0x11, 0xFD, 0x22])
 self.assertEqual(expected, packed)

if __name__ == "__main__":
 unittest.main()

These tests ensure run-length encoding is workingcorrectly and conclude our implementation of the MacPaintfile format. There’s just one more step to get our ditheredpictures ready to be usable on a retro Mac.
Converting to MacBinaryOn most operating systems, a file is just a single blob ofdata. The filesystem or the operating system may hold ontosome metadata about each file, but the file itself standsalone. That wasn’t the case on the classic Mac OS, wheremany files had two forks. The data fork would hold theprimary data of the file, while a resource fork may holdancillary data like bitmaps, sounds, or even executablecode. The resource fork could hold many different kinds ofdata in one place, so it was kind of like a resource

database. This is one of the features of the operatingsystem that allowed many applications to be completelyself-contained—a single executable that could be draggedand dropped as a single icon, with no additional files.Unfortunately, since resource forks don’t exist on otheroperating systems, classic Mac files often get messed upwhen transferred to or from them. Care needs to be taken.This was a problem from the beginning, so “bundling” fileformats were quickly developed. One of the most popularand well standardized is known as MacBinary. In aMacBinary file, a special header is followed by the data forkand resource fork together.We need to bundle our MacPaint files as MacBinaryfiles in order for them to work properly on the classic MacOS and open by default in MacPaint. Ironically, a MacPaintfile doesn’t actually have a resource fork, it just has a datafork. But MacBinary files also bundle metadata that wasstored in the filesystem (MFS/HFS/HFS+) of the classicMac OS. The important bits are type and creator codes.The classic Mac OS doesn’t use file extensions to associatea file with the program that should open it. Instead, it usestype and creator codes, which are largely transparent tothe user. This allows the user to name their files anythingthey want and still have the files be “double-clickable.”After the MacBinary file our program creates is unbundledby MacBinary (or another program like Stuffit) on theclassic Mac OS, the resulting MacPaint file should openMacPaint when it’s double-clicked.Luckily, the MacBinary file format is fairly simple. Tocomply with the MacBinary specification, our programneeds to:1. Add the 128-byte MacBinary header before the rest ofthe file (which is just the data fork since we have noresource fork).

2. Fill in the MacBinary header with the right values inseveral indicated places.3. Ensure the file ends in a multiple of 128 bytes bypadding the end of it if necessary.MacBinary has an official specification that wasapproved by a committee of interested parties.7 However,we only need to fill out a few fields for our MacBinary fileto be properly recognized. (The rest of the header shouldbe 0s.) Table 3-6 lists these values, their lengths, and theirrespective offsets within the 128-byte header.
Table 3-6: Required MacBinary Header Fields
Offset Length Type Value

1 1 Integer Filename length (up to 63)

2 1 to 63 MacRoman Filename

65 4 MacRoman File type (should be “PNTG”)

69 4 MacRoman File creator (should be “MPNT”)

83 4 Integer Data fork length

91 4 Integer Creation time as seconds since 1/1/1904

95 4 Integer Modification time as seconds since 1/1/1904

Note that values are stored big-endian, since the classicMac OS ran on big-endian microprocessors. (If that doesn’tmean anything to you, see the “Big-Endian vs. Little-Endian” box.) MacRoman is a character encoding used onthe classic Mac OS.8The macbinary_header() function is a codification of Table3-6:
def macbinary_header(outfile: str, data_size: int) -> array:
 macbinary = array('B', [0] * MACBINARY_LENGTH)

 filename = Path(outfile).stem
 filename = filename[:63] if len(filename) > 63 else file
name # limit to 63 characters max
 macbinary[1] = len(filename) # filename length
 macbinary[2:(2 + len(filename))] = array("B", filename.e
ncode("mac_roman")) # filename
 macbinary[65:69] = array("B", "PNTG".encode("mac_roma
n")) # file type
 macbinary[69:73] = array("B", "MPNT".encode("mac_roma
n")) # file creator
 macbinary[83:87] = array("B", data_size.to_bytes(4, byte
order='big')) # size of data fork
 timestamp = int((datetime.now() - datetime(1904, 1, 1)).
total_seconds()) # Mac timestamp
 macbinary[91:95] = array("B", timestamp.to_bytes(4, byte
order='big')) # creation stamp
 macbinary[95:99] = array("B", timestamp.to_bytes(4, byte
order='big')) # modification stamp
 return macbinary

Any filenames that are more than 63 characters simplyhave their ends chopped off.
BIG-ENDIAN VS. LITTLE-ENDIAN

What order should the bytes representing a piece of data, such as a
number, be stored in? This is a much-debated question, with the
computer science world split between two camps: big-endian and
little-endian.

Think for a moment about how we represent numbers in everyday
life. If you come from a culture that uses the Arabic numeral system,
like the English-speaking world, you’re probably used to writing
numbers from left to right starting with the digit representing the
largest part of the number and decreasing from there. For example,
the number 450 starts with the 4 representing the hundreds place,
then the 5 representing the tens place, and then the 0 representing
the ones place. The 4 represents the largest part of the number (400)
and comes first. The decision to put the 4 first was made a long time
ago and is largely arbitrary. In theory, we could have a numeral
system that writes 450 from smallest to largest as 054, but obviously
we don’t.

The number 450 requires 2 bytes to represent in binary: 00000001
and 11000010. If you know binary, you know that each 1 represents a
single power of 2 that, added with the other “on” powers of 2, gives us
the final number. The first byte, 00000001, puts its lone 1 in the 28
place and represents 256. The second byte, 11000010, represents the
number 194 because the 1s for 21 (2), 26 (64), and 27 (128) are
turned on, and 128 + 64 + 2 = 194. We have bytes for 256 and 194,
and 256 + 194 = 450.

Since we write 450 from largest to smallest, you might assume
that your computer would similarly store the byte representing the
larger portion of 450 first, yielding 0000000111000010 when the
bytes are put together. This is known as big-endian order, but it’s not
how most computers actually work nowadays. The typical modern
computer is built with a microprocessor that uses one of two
architectures: x86-64 (Intel, AMD) or ARM64 (Apple, Qualcomm, and
so on). For technical and historical reasons, those architectures store
numbers in little-endian order, where the byte representing the
smallest end of the number comes first. In a little-endian system, the
2-byte number 450 is stored as 1100001000000001. It’s important to
know which system is at play, since interpreting the little-endian
1100001000000001 as if it were in big-endian order would result in a
completely different value.

While little-endian order dominates today’s computer
architectures, certain systems, such as those that run on the 68K
microprocessor architecture (originally by Motorola)—including the
original Macintosh—store their numbers in big-endian order. Yes, on
the original Macintosh, 450 was stored “the right way” as
0000000111000010, but on the computer in front of you it’s probably
stored as 1100001000000001. Further complicating matters, most
data transmitted over the internet is sent in big-endian order. When
you’re browsing the web on your x86-64 or ARM64 microprocessor,
there’s endian conversion going on in the background.

Putting It All TogetherTo write our MacPaint file bundled as a MacBinary file, weneed to take our pixel array from dither() and:1. Call prepare() to convert it from bytes to bits and pad itwith 0s.2. Call run_length_encode() to run-length encode the bitarray.3. Call macbinary_header() to combine the result with aMacBinary header.

4. Add a 512-byte MacPaint header as well.5. Pad the end result with 0s up to a multiple of 128 bytesto follow the MacBinary specification requiring this.This is mostly just a matter of calling functions we alreadyhave:
Writes array *data* to *out_file*
def write_macpaint_file(data: array, out_file: str, width: i
nt, height: int):
 bits_array = prepare(data, width, height)
 rle = run_length_encode(bits_array)
 data_size = len(rle) + HEADER_LENGTH # header requires t
his
 output = macbinary_header(out_file, data_size) + array
('B', [0] * HEADER_LENGTH) + rle
 output[MACBINARY_LENGTH + 3] = 2 # Data Fork Header Sign
ature ❶
 # MacBinary format requires that there be padding of 0s
up to a
 # multiple of 128 bytes for the data fork
 padding = 128 - (data_size % 128)
 if padding > 0:
 output += array('B', [0] * padding)
 with open(out_file + ".bin", "wb") as fp:
 output.tofile(fp)

The only part of this code we haven’t yet discussed isthe 512-byte MacPaint header. MacPaint mostly used thisheader to store user-defined pattern data. Programs thatexport to MacPaint don’t generally have any user-definedpatterns since they’re artifacts created by a user inMacPaint. We can therefore leave the vast majority of theMacPaint header as 0s. The only thing we must do is put alittle signature into the MacPaint header at byte 3, which isalways set to 2 ❶.

The ResultsTo run the program, you need to specify both an input fileand an output file. For example:
% python3 -m RetroDither -g /Users/dave/Downloads/IMG_0892.j
peg
/Users/dave/Downloads/AmericanFlag

The program adds the .bin extension for the output fileautomatically.Figure 3-4 shows an image created using our programthat I think has a nice artistic quality to it.

Figure 3-4: The space shuttle taking off

But how can you view your own results? On a vintageMac, of course! MacPaint runs on machines with System 1all the way through Mac OS 9. You should be able to find areal-life classic Mac running one of these OSes to displayyour photos on. You’ll also need a program for unbundling

the MacBinary file. There’s a program aptly calledMacBinary that you can download. Stuffit Expander, a verypopular decompression app for the classic Mac OS, canalso open MacBinary files. Both are distributed asfreeware. Most Macs you find out in the wild from the1990s will have Stuffit Expander already installed.I realize that not everybody is going to be committedenough to this project to go out and find an actual retrocomputer. No problem—you can still experience the fruitsof your labor through emulation. Apple started freelydistributing early versions of the Mac OS as well asMacPaint (by releasing the full MacPaint source code)many years ago. It’s possible to obtain all of the softwareyou need, legally and at no charge, to create a true retroMacintosh experience in an emulator.There are several emulators available, but probably themost retro of all is Mini vMac,9 which I used to create someof the screenshots in this chapter. Setting up Mini vMac orone of the several other popular classic Mac emulators(Basilisk II, SheepShaver, and the like) is beyond the scopeof this book, but I think that, as a programmer, you’ll find itpretty easy to do. Each emulator has a different mechanismfor transferring files from your machine to the emulatedenvironment. Regardless of the specifics, it will probably beless of a hassle than getting an old Mac and getting thatMac online or finding a floppy disk drive for your modernmachine. That said, old Macs are fun! Or maybe that fun isjust my nostalgia from growing up with them.
CODE MEETS LIFE

I’ve been using MacPaint since my dad brought home a Macintosh LC
in 1990. I was just three years old, but apparently I became adept
enough at using it that he brought me in to give a demonstration at a
class he was teaching at the University of Maine. It was probably
partially for the novelty factor, or maybe the idea was, “This is so

easy, a three-year-old can do it!” Whatever the case, he always
believed in me.

I still have some of my childhood drawings saved to disk, which is
what got me interested in the file format more recently. Amazingly, I
couldn’t find any programs on my modern Mac that could open the
classic MacPaint format. I had to turn to LibreOffice or transfer the
files to old Macs to view them.

Then, I found some mysterious MacPaint files that further piqued
my interest on a floppy disk that had belonged to my brother 30 years
ago. They contained strange artwork, quite sophisticated for the late
1980s or early 1990s, mixing digitized (a 1980s word for scanned and
dithered) real-world objects with purely digital drawings. I eventually
concluded that they were likely either the work of a well-known
American artist named Robert W. Fichter10 or the work of someone
who admired him. They had some of the same motifs and the same
exact words as some of Fichter’s published pieces.

Was I in possession of a valuable digital art relict lost to time? How
did my brother get ahold of these MacPaint files? I called him up. He
hadn’t thought about them in decades, but he said he got them from
some student at the University of Maine while he was still in high
school. He didn’t know their exact provenance, but the student had
told him they were very important and had a hidden meaning to
them. It made sense that the disk came from a university. Perhaps
Fichter had lectured there, or perhaps they were copied around the
sneakernet (this was in an era before networking was widespread). I
tried contacting Fichter himself, but to no avail. Unfortunately, he died
in 2023. I still, at the time of writing, don’t know if those files are the
original digital artwork of Robert W. Fichter. If you’re an expert on his
work or knew him, please get in touch with me!

Around the same time, I was thinking about doing a dithering
project for this book after coming across an article by John Earnest on
Atkinson dithering on Hacker News.11 I decided that the dithering
algorithm on its own was too simple for a book chapter, but then I had
an idea: the MacPaint format that I had recently become so interested
in was also a product of Bill Atkinson, and it includes another
interesting algorithm, run-length encoding. Why don’t I combine the
two into a single project?

I didn’t stop there. After writing the code for this chapter, I decided
I should make MacPaint more accessible to modern Mac users. I
ported the code, plus some additional dithering algorithms, to Swift
and created a nice AppKit-based user interface around it. I sell the
software as Retro Dither on the Mac App Store.12 As a technical
author, usually things you do as professional or hobby projects turn
into material for a book; it’s not that usual that things go the other
way.

Real-World ApplicationsAtkinson dithering and MacPaint were just a couple of thetechnologies that Bill Atkinson used to make graphics onthe original Macintosh come alive. He was also the creatorof QuickDraw, which provided the graphics primitives onall Lisa and classic Macintosh computers. His immensecontributions go far beyond graphics too. He made severalrefinements to elements that we now consider as standardwidgets in a GUI. Atkinson was also the creator ofHyperCard, one of the first widely distributed hypertextplatforms. You can think about it as a non-networkedversion of the web from the late 1980s. It was veryinfluential.You might be curious to know what Bill Atkinsonoriginally developed Atkinson dithering for. I was too, so Iobtained a copy of a rare book called Inside MacPaint byJeffrey S. Young and published by Microsoft Press in 1985.I didn’t exactly find my answer, but I found a probableanswer. It turns out Atkinson had worked on a digitizer forthe early Macintosh. It’s basically a kind of scanner thatallowed you to work with real-world images in MacPaint.While the book doesn’t explicitly say it used Atkinsondithering, I can’t imagine that it’s a coincidence. It’s likelythat the first real-world application of Atkinson ditheringwas a digitizer.Dithering was a widely used technique on 1980s and1990s game consoles and computers, which were powerfulenough to support digital images but often had a limitedcolor palette. And limited-palette devices like the AmazonKindle and the Panic Playdate continue to be ditheringstrongholds. As mentioned earlier, dithering is also howanimated GIFs appear to show many more colors than theynaturally support. Without hacks, a GIF is limited to 256colors.

Run-length encoding isn’t limited to MacPaint, ofcourse. It’s a widely used compression technique. Any kindof data format that has a lot of repeated characters is acandidate for run-length encoding. Beyond MacPaint, itwas used as the main compression technique in severalother bitmap image formats of the 1980s. It’s alsosometimes combined with other compression techniques toformulate more sophisticated meta-algorithms. Forexample, one component of DEFLATE, the algorithm usedin ZIP files, utilizes run-length encoding.I’ll leave you with a quote from Bill Atkinson, from aninterview he did in Inside MacPaint. He was asked byJeffrey Young, “What do you consider essential for creatinga great program?”The whole trick to designing a good program is deciding whatthings to kick out. I had some powerful features that I kicked outto make MacPaint cleaner, simpler, more approachable, and lessfrightening. I probably threw away more code than I left in. Mygoal was a lean, mean, and clean design. The typicalprogramming process is 95 percent debugging and only 5percent real creation. A lot of the bugs are simple typos, or justthings that a compiler program can really help you with. I like tokeep my sights focused more on the overall algorithm, becausethat’s where I get the big wins.I compare programming to modeling with clay. When you’rethrowing a pot on the wheel, you want to keep it soft and flexibleas long as you can before you fire it. Because after you fire it, thepot is a lot harder to scrape into shape.13
Exercises  1.  Add a command line option that changes our programto use Floyd-Steinberg dithering.  2.  Try creating an error-diffusion dithering pattern of yourown.  3.  Write a program that can go the other way, convertinga MacPaint file into a GIF or PNG.

  4.  If you completed Exercise 3, write integration tests thatcheck that a MacPaint file converted to a GIF or PNGretains the same pixel data as the original.
Notes  1.  Erik Sandberg-Diment, “Software for the Macintosh:Plenty on the Way,” New York Times, January 31, 1984.  2.  See https://archive.org/details/mac_Paint_2.  3.  “Technical Note PT24: MacPaint Document Format,”Apple, October 1, 1988, accessed August 5, 2022,

https://web.archive.org/web/20040626093131/http:/
/developer.apple.com/technotes/pt/pt_24.html.  4.  See https://www.fileformat.info/format/macpaint/egff
.htm.  5.  See https://en.wikipedia.org/wiki/PackBits.  6.  “Technical Note TN1023: Understanding PackBits,”Apple, November 1, 1987, accessed August 4, 2022,
https://web.archive.org/web/20030218001420/http:/
/developer.apple.com/technotes/tn/tn1023.html.  7.  “MacBinary II Standard,” Stairways.com, July 24, 1987,accessed May 27, 2024, https://files.stairways.com/other
/macbinaryii-standard-info.txt.  8.  See https://en.wikipedia.org/wiki/Mac_OS_Roman.  9.  See https://www.gryphel.com/c/minivmac/index.html.10.  See https://en.wikipedia.org/wiki/Robert_W._Fichter.11.  John Earnest, “Atkinson Dithering,” Beyond Loom,March 29, 2020, https://beyondloom.com/blog/dither
.html.12.  See https://oaksnow.com/retrodither/.13.  Jeffrey S. Young, Inside MacPaint: Sailing Through the
Sea of FatBits on a Single-Pixel Raft (Microsoft Press,

https://archive.org/details/mac_Paint_2
https://web.archive.org/web/20040626093131/http://developer.apple.com/technotes/pt/pt_24.html
https://www.fileformat.info/format/macpaint/egff.htm
https://en.wikipedia.org/wiki/PackBits
https://web.archive.org/web/20030218001420/http://developer.apple.com/technotes/tn/tn1023.html
https://files.stairways.com/other/macbinaryii-standard-info.txt
https://en.wikipedia.org/wiki/Mac_OS_Roman
https://www.gryphel.com/c/minivmac/index.html
https://en.wikipedia.org/wiki/Robert_W._Fichter
https://beyondloom.com/blog/dither.html
https://oaksnow.com/retrodither/

1985), 320.

4
A STOCHASTIC PAINTING ALGORITHM

All the other chapters in thisbook follow a specificationsuch as a programming languagegrammar, a file format, or a machinearchitecture. This chapter is different. Inthis chapter, we’re going to create art.And it’s going to be subjective. Can asimple stochastic algorithm use randomlygenerated shapes to create drawings thatresemble human works of art? I think theanswer is yes, but you’ll have to judge foryourself after you see some of theprogram’s output.
How It WorksThis chapter’s program works by trying to redraw aphotograph from scratch. We begin with a blank canvas.We try drawing a single randomly sized and placed colored

shape. If the shape brings the canvas to look more similarto the photograph, then we keep it. Otherwise, we try adifferent shape. We repeat this process for some specifiednumber of iterations. That’s the whole algorithm.If it sounds simple, that’s because it is. Of course, thereare many more complex details to fill in, but they don’tchange the overarching thrust of the program. How is“looking similar” measured? Should a shape be modified totry to improve its fit? How is the color of the shapeselected? What kinds of shapes should be used?That last question will lead to many different abstractlooks for our “paintings.” For example, Figure 4-1 utilizesellipses to approximate a photograph of a hot air balloon.(For print readers, see the figures directory of thecompanion repository for color versions of the chapter’simages.)

Figure 4-1: A hot air balloon with 540 ellipses

The figure shows both the original photograph and an“impression” created by our program using 540 ellipsesover 100,000 iterations, which took 104 seconds tocomplete on my laptop. I think it looks pretty good. Almostimpressionistic.In my opinion, ellipses give a kind of stained-glass look.It helps if the shape used somewhat resembles the contoursof the subject in the original photograph, like ellipses forthe hot air balloon. Figure 4-2 shows the same photograph

painted using 307 triangles over 100,000 iterations, taking109 seconds on my laptop. In my subjective opinion, itdoesn’t look as good.

Figure 4-2: A hot air balloon with 307 triangles

While the hot air balloon’s curvaceous exterior doesn’tget filled well by triangles, a butterfly does much better.Figure 4-3 is an impression of a photo of a butterfly, using573 triangles generated with 1 million iterations over 4,512seconds.

Figure 4-3: A butterfly with 573 triangles

The butterfly image took a bit longer to generate thanthe average million-iteration image because I used the“most common color” method instead of the “averagecolor” method—more on that in a bit. The result is that thecolors in each shape are sharper and blend together less.The output can often be improved by utilizing moreshapes placed over more iterations, and hence more time.However, since this is based on a stochastic (randomlydetermined) process, the results will vary greatly—evenwith the same settings for the same picture. The examplesI’m presenting here are cherry-picked.Photographs with a lot of detail take the most time topaint with a reasonable degree of accuracy. With a tool likethis, you have to strike a balance between abstraction andrecognizability. If an image is too abstract, it won’t berecognizable. But if an image has so much detail that it’salmost a perfect replica of the original, then it will lose itsappeal as a “work of art.” This balance is particularly hard

to achieve with images of people. For example, Figure 4-4is an image of two of my friends on a beach in SantaMonica, California. It’s composed of 4,212 ellipsesgenerated with 10 million iterations over 8,262 seconds.My friends look only okay as abstract impressions, but thebeach looks great!

Figure 4-4: A Santa Monica scene with 4,212 ellipses

I’ve found that using a line shape works really well forcreating paintings of people. Because lines are so thin,many more of them are needed to draw an image. Figure 4-5 shows a tiny public domain image of John F. Kennedygiving his famous speech in Berlin, along with a paintedversion using 16,633 lines generated with 10 millioniterations over 6,957 seconds.

Figure 4-5: JFK’s Berlin speech with 16,633 lines

An interesting aspect of the JFK example is that theprogram-produced abstract version actually has a higherresolution than the original. This is possible because theprogram is working in the world of vector graphics, wheremath determines the output, not pixels. The algorithm isn’tassiduously copying every pixel—it’s providing an“impression” of the original with vector shapes.Lines produce some of the most stunning abstractresults. Figure 4-6 is a New York City skyline with theManhattan Bridge in front via 12,303 lines generated with1 million iterations over 909 seconds.

Figure 4-6: The New York City skyline with 12,303 lines

The program developed in this chapter will take a longtime to run if you want it to utilize a high number ofshapes. For example, the JFK image took almost two hoursto run for me on my Apple M1–based laptop. Your mileagewill vary depending on your machine’s particularmicroprocessor. You can generally leave the programrunning in the background while you do your other work.
Command Line OptionsThis is a very configurable program with many differentfeatures and tweakable parameters. In addition to inputand output filepaths, our ArgumentParser needs to handle allthe command line options in Table 4-1.
Table 4-1: Command Line Options for Impressionist
Option Extended Possibilities Default Description

Option Extended Possibilities Default Description

-t --trials Integer 10000 The number of trials to run

-m --method 'random',
'average',
'common'

'average' The method for
determining shape colors

-s --shape 'ellipse',
'triangle',
'quadrilateral',
'line'

'ellipse' The shape type to use

-l --length Integer 256 The length (height) of the
final image in pixels

-v --vector Boolean False Create vector output?

-a --animate Integer 0 If a number greater than 0
is provided, will create an
animated GIF with the
provided number of
milliseconds per frame,
showing the image being
built up one shape at a
time

Our main file is just a codification of Table 4-1. All theoptions are passed to the constructor of the Impressionistclass, which we’ll come back to in a bit.
Impressionist/__main__.py
from argparse import ArgumentParser
from Impressionist.impressionist import Impressionist, Color
Method, ShapeType

if __name__ == "__main__":
 # Parse the file argument
 argument_parser = ArgumentParser("Impressionist")
 argument_parser.add_argument("image_file", help="The inp
ut image")
 argument_parser.add_argument("output_file", help="The re

sulting abstract art")
 argument_parser.add_argument('-t', '--trials', type=int,
default=10000,
 help='The number of trials
to run (default 10000).')
 argument_parser.add_argument('-m', '--method',
 choices=['random', 'averag
e', 'common'], default='average',
 help='Shape color determina
tion method (default average).')
 argument_parser.add_argument('-s', '--shape', choices=
['ellipse', 'triangle',

'quadrilateral', 'line'],
 default='ellipse', help='Th
e shape type (default ellipse).')
 argument_parser.add_argument('-l', '--length', type=int,
default=256,
 help='The length of the fin
al image in pixels (default 256).')
 argument_parser.add_argument('-v', '--vector', default=F
alse, action='store_true',
 help='Create vector output.
A SVG file will also be output.')
 argument_parser.add_argument('-a', '--animate', type=in
t, default=0,
 help='If greater than 0, wi
ll create an animated GIF '
 'with the number of mil
liseconds per frame provided.')
 arguments = argument_parser.parse_args()
 method = ColorMethod[arguments.method.upper()]
 shape_type = ShapeType[arguments.shape.upper()]
 Impressionist(arguments.image_file, arguments.output_fil
e, arguments.trials, method,
 shape_type, arguments.length, arguments.vecto
r, arguments.animate)

The -v option instructs the program to output the resultin a vector format. In our implementation, we’ll target anSVG file. Before we get into the main algorithm of theapplication, let’s take a little detour to see how we cansupport this feature.
The SVG FormatSVG stands for Scalable Vector Graphics. It’s an XML-based format for specifying vector images. All modernmainstream web browsers and vector drawing programssupport it. Instead of using a third-party library to write toSVG, we’ll write our own short class to do it. The SVGspecification is large, but we only need a small subset of itto support the shapes that our program will output, so thetask will be relatively easy.XML is a text-based format, and since we’re outputtingit, not parsing it, we don’t even need our program to reallyunderstand XML’s structure. We just need to amalgamate astring out of other strings representing the constituentXML elements. While this approach limits the testabilityand modularity of our SVG writer, the amount of the SVGstandard we’re implementing is so small that it’s almosttrivial to hand check for correctness. That said, thisapproach isn’t production suitable.Before we get into the code, here’s an example of asimple SVG file that our program can output. This one hasjust one triangle built using the polygon element, plus thebackground rectangle (I’ve slightly improved theformatting with a couple of indentations for readability):

<?xml version="1.0" encoding="utf-8"?>
<svg version="1.1" baseProfile="full" width="342" height="25
6"
xmlns="http://www.w3.org/2000/svg">
 <rect width="100%" height="100%" fill="rgb(108, 98, 91)"
/>

 <polygon points="201,3 24,9 162,182 " fill="rgb(128, 12
0, 112)" />
</svg>

If you save this code in a text file with the .svgextension, you can open it using a web browser or vectorimage editor to see the resulting triangle. As we walkthrough creating our SVG class, keep this example in mind tovisualize how the different elements come together to forma complete SVG file.An SVG file starts with a declaration that it’s an XMLfile, and then the first element is an svg element thatdescribes the version of the SVG specification and thewidth and height of the image. In addition, every image ourprogram generates is backed by a big rectangle containingthe average color of the image. This helps the algorithmblend better. Our SVG file therefore also starts with a big
rect element:

Impressionist/svg.py
class SVG:
 def __init__(self, width: int, height: int, background_c
olor: tuple[int, int, int]):
 self.content = '<?xml version="1.0" encoding="utf-
8"?>\n' \
 f'<svg version="1.1" baseProfile="ful
l" width="{width}" ' \
 f'height="{height}" xmlns="http://ww
w.w3.org/2000/svg”>\n' \
 f'<rect width="100%" height="100%" fi
ll="rgb{background_color}" />'

As the background_color property in the constructorindicates, colors are being represented using a tuple ofthree integers. These are RGB color codes. Each element isan integer between 0 and 255 representing the amount ofthe respective primary color (red, green, or blue) in the

output. For example, a “pure” red color would be (255, 0,
0), and a purple would be something like (128, 0, 128),being a blend of red and blue.Drawing the three types of shapes that our programsupports (ellipses, lines, and polygons) is just a matter ofputting the respective ellipse, line, or polygon SVG elementsinto the output text file:

 def draw_ellipse(self, x1: int, y1: int, x2: int, y2: in
t, color: tuple[int, int, int]):
 self.content += f'<ellipse cx="{(x1 + x2) // 2}" cy
="{(y1 + y2) // 2}" ' \
 f'rx="{abs(x1 - x2) // 2}" ry="{abs
(y1 - y2) // 2}" ' \
 f'fill="rgb{color}" />\n'

 def draw_line(self, x1: int, y1: int, x2: int, y2: int,
color: tuple[int, int, int]):
 self.content += f'<line x1="{x1}" y1="{y1}" x2="{x
2}" y2="{y2}" stroke="rgb{color}" ' \
 'stroke-width="1px" shape-rendering
="crispEdges" />\n'

 def draw_polygon(self, coordinates: list[int], color: tu
ple[int, int, int]):
 points = ""
 for index in range(0, len(coordinates), 2):
 points += f"{coordinates[index]},{coordinates[in
dex + 1]} "
 self.content += f'<polygon points="{points}" fill="r
gb{color}" />\n'

Finally, to output the SVG file, we close the svg elementbegun in the constructor and write the amalgamated stringto disk:
 def write(self, path: str):
 self.content += '</svg>\n'

 with open(path, 'w') as f:
 f.write(self.content)

If you take a look at the official SVG specification, youmay find it overwhelming, but there’s no need to beintimidated. As this section hopefully shows, it doesn’tnecessarily take much to get value out of a big standardlike SVG. In just 20 lines of code, we’ve written a verylimited, but useful, SVG creator.
The AlgorithmThe algorithm that produces these (sometimes) beautifulabstract impressions of photographs is remarkably simple.In short, it tries drawing randomly sized and placed shapes,one shape at a time. If an added shape makes the abstractimage look more like the original photo, it’s kept. Theimprovement is potentially further refined by resizing theshape, which is a matter of moving each of its points. If theadded shape makes the image look less like the originalphoto, then it’s thrown away and a new shape is tried.Here’s a more detailed explanation of the algorithm insteps:1. Create a blank canvas with the same size as the originalphotograph and a background color that’s the same asthe original photograph’s average color.2. Try drawing a shape on the canvas in a random locationand of a random size. Color the shape using the averagecolor of the corresponding region of the originalphotograph, the most common color of that region, orrandomly.3. Compare the colors of the pixels of the canvas (with theadded shape) to the original photograph. If the addedshape has made the whole canvas’s pixels more similar

to the original photograph’s pixels, then keep the addedshape.4. Try modifying the shape at each point (expanding orcontracting) one pixel at a time. Keep moving the pointsin directions that further reduce the difference betweenthe whole canvas’s pixels and the original photograph’spixels. Stop when the movement no longer improves thedifference.5. Repeat steps 2, 3, and 4 trials number of times.6. Output the final image created on the canvas after
trials number of experiments.There are many configurable parameters of thisalgorithm. What kind of shape should be used? How manytrials should be run? How should the color for each shapebe picked? And there are several subproblems to solve.How is the difference between two images calculated? Howdo you find the pixels in a region that encompasses ashape?

The Main ImplementationExcluding comments, the main implementation of ourpainting algorithm is less than 150 lines of Python. A lot ofthat succinctness is thanks to the powerful Pillow library,which was already discussed in Chapter 3. Pillow handlesreading and writing various bitmap image formats. It alsohas facilities for drawing simple primitives like the shapeswe need. Finally, Pillow has functions for computingdifferences between images and computing the averagecolor in a region of an image. These will be critical helperfunctions for our program, allowing us to concentrate onthe core algorithm while leaving the busywork to Pillow.That’s what a great library enables.

SetupWe begin with some basic imports, the definition of someneeded types, a constant, and a helper function:
Impressionist/impressionist.py

from enum import Enum
from PIL import Image, ImageDraw
from PIL import ImageChops, ImageStat
import random
from math import trunc
from timeit import default_timer as timer
from Impressionist.svg import SVG

ColorMethod = Enum("ColorMethod", "RANDOM AVERAGE COMMON")
ShapeType = Enum("ShapeType", "ELLIPSE TRIANGLE QUADRILATERA
L LINE")
CoordList = list[int]
MAX_HEIGHT = 256

def get_most_common_color(image: Image.Image) -> tuple[int,
int, int]:
 colors = image.getcolors(image.width * image.height)
 return max(colors, key=lambda item: item[0])[1]

The ColorMethod enum controls how we’ll calculate thecolor in a region—that is, what color a shape will be filledwith. The ShapeType enum sets the shape we’ll be drawing.The current version of the program only draws one type ofshape in each painting, but it would be easy to modify thecode to enable more than one type of shape. I’ve left thatfor an exercise. The CoordList type applies to thecoordinates that define one shape.When running the algorithm, for performance, we needto work with a limited number of total pixels. The easiestway to accomplish this is to scale the input image if it’staller than MAX_HEIGHT. In other words, MAX_HEIGHT is the

maximum height of the scaled image. Note that,technically, we should also define a maximum width, but inpractice, it’s very rare for an image’s aspect ratio to besuch that only capping one dimension will be insufficient(there aren’t many images that are super wide but havevery little height). For simplicity, we just defined the onemaximum dimension.The get_most_common_color() method figures out the mostfrequently occurring color in an image. It uses a Pillowmethod, getcolors(), which returns all of the colors in animage along with their counts. Then, it uses Python’s built-in max() function to extract the most frequent.The Impressionist class’s constructor is responsible forsetting up the unique parameters of a particular run of thealgorithm, opening the input image file, scaling it, creatingthe initial background of the output image, calling methodsto run the actual iterations of the algorithm, and calling amethod to output the final file. That may sound like a lot,but the heart of the algorithm is in other methods. Theconstructor is just a launching point that calls methodsfrom the Pillow library and other methods we’ll get toshortly to do the actual work. Here’s the start of theconstructor:
class Impressionist:
 def __init__(self, file_name: str, output_file: str, tri
als: int, method: ColorMethod,
 shape_type: ShapeType, length: int, vector:
bool, animation_length: int):
 self.method = method
 self.shape_type = shape_type
 self.shapes = []
 # Open image file and store in instance variable, ex
ecute algorithm
 with open(file_name, "rb") as fp:
 self.original = Image.open(fp).convert('RGB')
 # Scale down image so processing is faster, 256

max height pixel dimension
 width, height = self.original.size
 aspect_ratio = width / height
 new_size = (int(MAX_HEIGHT * aspect_ratio), MAX_
HEIGHT)
 self.original.thumbnail(new_size, Image.Resampli
ng.LANCZOS)

The constructor starts by setting up some parametersand scaling the input image. The resulting painting shouldhave the same aspect ratio as the original image, so theaspect ratio is preserved. Pillow’s thumbnail() method is aconvenient way to do scaling.Here’s the next part of the constructor:
 # Start the generated image with a background th
at is the
 # average of all the original's pixels in color
 average_color = tuple((round(n) for n in ImageSt
at.Stat(self.original).mean))
 self.glass = Image.new("RGB", new_size, average_
color)

The Pillow ImageStat module can be used for finding theaverage color in an image. It looks at the RGB values ofevery pixel in the image and averages the red, green, andblue components separately. We take the resulting averagecolor and set it as the background of our algorithm’sworking image (self.glass). In other words, the averagecolor of the original image will be the starting color ofevery pixel in the working image.
NOTE
The variable for the working image is named glass because
I originally called this program Stained Glass. After
retitling it, I still feel that the name glass for the variable

explains that this is a surface that’s providing a filtered
impression of the original.The constructor continues:

 # Keep track of how far along we are, our best r
esult so far, and
 # how much time elapses as the processing takes
place
 self.best_difference = self.difference(self.glas
s)
 last_percent = 0
 start = timer()
 for test in range(trials):
 self.trial()
 percent = trunc(test / trials * 100)
 if percent > last_percent:
 last_percent = percent
 print(f"{percent}% Done, Best Difference
{self.best_difference}")
 end = timer()
 print(f"{end-start} seconds elapsed. {len(self.s
hapes)} shapes created.")
 self.create_output(output_file, length, vector,
animation_length)

The heart of the algorithm is in the trial() method,which tries drawing a shape to see if the shape improves onthe similarity score between the working image and theoriginal image. Here, trial() is called trials number oftimes. As the trials are executed, we keep track of howclose to done we are and how much time the program istaking. Finally, the completed working image is output withthe help of create_output().
Utility MethodsBefore we get to trial(), we need some helper methods. Akey part of the painting algorithm is verifying that each

additional shape is bringing the working image closer tothe original image. The difference() method calculates asimilarity score for two images, measuring how similar theyare to each other:
 def difference(self, other_image: Image.Image) -> float:
 diff = ImageChops.difference(self.original, other_im
age)
 stat = ImageStat.Stat(diff)
 diff_ratio = sum(stat.mean) / (len(stat.mean) * 255)
 return diff_ratio

The ImageChops module from Pillow has a built-in
difference() method. It finds the difference on a pixel-by-pixel level between two images. In other words, how aretwo pixels in the same locations in the two images differentfrom each other? The difference is just the absolute valuesof the subtraction of each of the color channels in eachpixel. For example, the difference between an RGB pixelthat’s colored (10, 100, 50) and another that’s (10, 40, 20)would be (0, 60, 30). However, this isn’t enough for ouralgorithm. We need a single number, a score, thatexpresses how similar two images are. After finding thedifference pixel by pixel, we can compress this into a singlenumber by averaging across all of the differences. We dothis using the same ImageStat module that did the averagingfor us to find the average color in the constructor. Finally,although not strictly necessary (pixel averages would workas scores), we divide by the maximum difference possibleto get the score as a ratio.Each time we generate a new shape it’s placed in arandom location on the screen. We calculate these randomcoordinates using random_coordinates():

 def random_coordinates(self) -> CoordList:
 num_coordinates = 4 # ellipse or line

 if self.shape_type == ShapeType.TRIANGLE:
 num_coordinates = 6
 elif self.shape_type == ShapeType.QUADRILATERAL:
 num_coordinates = 8
 coordinates = []
 for d in range(num_coordinates):
 if d % 2 == 0: # x coordinates
 coordinates.append(random.randint(0, self.or
iginal.width))
 else: # y coordinates
 coordinates.append(random.randint(0, self.or
iginal.height))
 return coordinates

Different kinds of shapes need different numbers ofcoordinates. For example, a triangle has six coordinatesbecause it has three points, and each point has one x-coordinate and one y-coordinate. The coordinates must bevalid—that is, they must be somewhere on the surface ofthe image. The method enforces this by ensuring that therandom coordinates can’t be below 0 or above the width orheight of the image.We also need a way to look at a “region” of the originalphotograph corresponding to a shape in the working image,so we can analyze the color of that region. It would becomputationally expensive to find the exact pixels below anarbitrary shape. Instead, we’ll use a bounding_box() staticmethod to identify a rectangular region that encompassesthe shape:
 @staticmethod
 def bounding_box(coordinates: CoordList) -> tuple[int, i
nt, int, int]:
 xcoords = coordinates[::2]
 ycoords = coordinates[1::2]
 x1 = min(xcoords)
 y1 = min(ycoords)

 x2 = max(xcoords)
 y2 = max(ycoords)
 return x1, y1, x2, y2

A bounding box is an axis-aligned rectangle (meaningits edges are parallel to the edges of the image) around agiven shape, determined based on that shape’s minimumand maximum x- and y-coordinates. We’ll pass thatrectangle to Pillow’s built-in crop() method to crop theoriginal image down to just the desired region. We’ll leavealternative techniques for extracting a more narrowlydefined region of the original image for the exercises.
TrialsThe heart of the algorithm is the trial() method. Each trialis an attempt to place one shape in the working image. Ifthe new shape brings the working image closer to theoriginal, it’s kept. If the difference score can be furtherimproved by nudging its coordinates, the coordinates of theshape are nudged. The method begins by finding a placefor the new shape using random_coordinates() and finding thebacking region of those coordinates:

 def trial(self):
 while True:
 coordinates = self.random_coordinates()
 region = self.original.crop(self.bounding_box(co
ordinates))
 if region.width > 0 and region.height > 0:
 break

There’s an ugly while loop here to account for theunlikely scenario where the random coordinates are allaligned along either axis. In that case, we need toregenerate the coordinates. There’s an exercise at the end

of the chapter to excise this loop. The next part of themethod chooses a color for the shape:
 if self.method == ColorMethod.AVERAGE:
 color = tuple((round(n) for n in ImageStat.Stat
(region).mean))
 elif self.method == ColorMethod.COMMON:
 color = get_most_common_color(region)
 else: # must be random
 color = tuple(random.choices(range(256), k=3))
 original = self.glass

Depending on the ColorMethod, we select the averagecolor in the backing region (once again using ImageStat),select the most common color in the backing region, orsimply choose a random color. Then, we preserve thecurrent state of the working image (self.glass) in a localvariable, original, to be reused in the case that coordinatenudges are tried (we try redrawing the shape a little biggeror a little smaller in various directions, so we need theoriginal canvas it was drawn on). Now we’re ready to trydrawing a shape:
 def experiment() -> bool:
 new_image = original.copy()
 glass_draw = ImageDraw.Draw(new_image)
 if self.shape_type == ShapeType.ELLIPSE:
 glass_draw.ellipse(self.bounding_box(coordin
ates), fill=color)
 else: # must be triangle or quadrilateral or lin
e
 glass_draw.polygon(coordinates, fill=color)
 new_difference = self.difference(new_image)
 if new_difference < self.best_difference:
 self.best_difference = new_difference
 self.glass = new_image

 return True
 return False

An inner function, experiment(), returns True if anattempt to draw a new shape is successful in terms oflowering the difference between the working image and theoriginal image. The ImageDraw module in Pillow takes care ofthe actual drawing. The difference is calculated using thepreviously defined difference() method and comparedagainst the best difference found so far. If the shape hasimproved the image, the working image is replaced withthe image including the new shape.The last part of trial() tries to make incrementalimprovements to each shape by nudging its coordinates. Ifa nudge improves the difference score compared to theversion of the working image with the shape’s originalcoordinates, then the nudge is kept and another nudge isattempted in the same direction:
 if experiment():
 # Try expanding every direction, keep going in b
etter directions
 for index in range(len(coordinates)):
 for amount in (-1, 1):
 while True:
 old_coordinates = coordinates.copy()
 coordinates[index] = coordinates[ind
ex] + amount
 if not experiment():
 coordinates = old_coordinates
 break
 self.shapes.append((coordinates, color))

This code is a kind of hill climbing algorithm, where wekeep going in the same direction to solve a problem (in thiscase, optimizing for difference) as long as the solutioncontinues to improve. We stop when it stops improving.

This may lead to a local maximum, but it’s a simple andeffective way to improve on an existing solution. In thisinstance, we have an existing solution because we onlykeep shapes that improved on the difference to begin with(indicated by experiment() returning True). See the “HillClimbing” box for more on how this type of algorithmworks.The overall algorithm would work without the nudgingprocess, but the nudging improves the fit of each shape.This, in turn, improves the overall look of the final paintingand reduces the number of shapes necessary to get to areasonable result.Once the final shape is set after any nudging, we add itscoordinates and color to the shapes list. Maintaining this list,separate from drawing the shapes in the working image, isnecessary for generating the final output.
HILL CLIMBING

Hill climbing is a simple optimization technique that aims to find the
maximum or minimum of a function by continually going in the same
direction while the search seems to be “improving.” In the classic
explanation of this technique, you’re asked to imagine that you’re
wearing a blindfold and standing at the bottom of a hill that you want
to climb. You can feel with your feet the gradient of the ground around
you. With each step, whatever direction seems to yield the steepest
upward slope will feel like the way that you should go if you want to
get up the hill the fastest. You can keep choosing to go up in this
direction as long as you can feel with your feet that you’re climbing.
Eventually you’ll reach a point where you’re no longer climbing no
matter the direction of your next step, and then you can stop.

Will you have reached the top of the hill? It’s certainly possible,
especially if the hill has a single peak. But it’s also possible the hill has
multiple peaks and you just reached one of the smaller ones. That’s
called getting caught in a local maximum. Hill climbing will always
find a local maximum, but it may not find a global maximum.

Hill climbing is a popular technique in artificial intelligence
because it is so simple. It’s a good starting point for many problems.
In our program, we keep nudging coordinates in the same direction
until the difference with the starting image is no longer improving.
This is a type of hill climbing: we just keep going in the same direction

until things aren’t getting better. Of course, it’s possible the
placement of the shape was a mistake to begin with compared to
some other alternative placement, and our nudging is just leading us
down a rabbit hole toward a local maximum. With such a simple
algorithm, there’s no way to know for sure.

OutputThe working image was scaled to MAX_HEIGHT, but the finaloutput image should have the user-specified height (again,for simplification, we let the user just set the height and notthe width). We can’t simply “stretch” a bitmap withoutpixelation. Instead, we redraw the working image using thedata in the shapes list, with each shape scaled appropriately.The method for outputting the image also incorporatesoptions for outputting a vector file (making use of the SVGclass from earlier) and outputting an animated GIF viaPillow. This adds significantly to its length. Here’s the startof create_output():
 def create_output(self, out_file: str, height: int, vect
or: bool, animation_length: int):
 average_color = tuple((round(n) for n in ImageStat.S
tat(self.original).mean))
 original_width, original_height = self.original.size
 ratio = height / original_height
 output_size = (int(original_width * ratio), int(orig
inal_height * ratio))
 output_image = Image.new("RGB", output_size, average
_color)
 output_draw = ImageDraw.Draw(output_image)

We begin by creating a new image of the appropriatesize based on the user-specified height parameter. We fillthe initial output image with the average color of theoriginal image as was done for the working image. Themethod continues:

 svg = SVG(*output_size, average_color) if vector els
e None
 animation_frames = [] if animation_length > 0 else N
one
 for coordinate_list, color in self.shapes:
 ❶ coordinates = [int(x * ratio) for x in coordinat
e_list]

The output image will be generated by iterativelyreproducing each shape in the shapes list at the right scale
❶. To also create SVG or animated GIF output, as theoutput image is generated, each step will be repeated onthe svg object or copied as a picture to a list of
animation_frames that make up the animated GIF “movie”:

 if self.shape_type == ShapeType.ELLIPSE:
 output_draw.ellipse(self.bounding_box(coordi
nates), fill=color)
 if svg:
 svg.draw_ellipse(*coordinates, color) #
type: ignore
 else: # must be triangle or quadrilateral or lin
e
 output_draw.polygon(coordinates, fill=color)
 if svg:
 if self.shape_type == ShapeType.LINE:
 svg.draw_line(*coordinates, color) #
type: ignore
 else:
 svg.draw_polygon(coordinates, color)
 if animation_frames is not None:
 animation_frames.append(output_image.copy())
 output_image.save(out_file)
 if svg:
 svg.write(out_file + ".svg")
 if animation_frames is not None:
 animation_frames[0].save(out_file + ".gif", save
_all=True,

 append_images=animation
_frames[1:], optimize=False,
 duration=animation_leng
th, loop=0,
 transparency=0, disposa
l=2)

The rest of the method is just drawing the shapes on theoutput image(s) and writing the file(s) to disk.
The ResultsThere’s a lot packed into those 150 lines of code. Theprogram features stochastic trials, a couple insights intohow to make an educated guess about the color of eachshape, a little bit of hill climbing, and the use of a goodlibrary. Cool results in computer science are so much moreabout the algorithm and the technique than the number oflines of code. But this algorithm is also surprisingly simple—yet extremely effective. No, the output isn’t quite asimpressive as the latest neural network, but it’s amazinghow far a simple technique can take a program.The main downside of this algorithm is that it’s slowand random. You can try the same image multiple timeswith the same parameters and get different results. Andyou might wait a long time to get those varying, sometimesbad results.However, I have some impressive, although admittedlycherry-picked, results to share with you. The first are acouple scenes from Touro Park in Newport, Rhode Island. Ilike how the line shape gives almost an oil painting– likefeel to each of them. Figure 4-7 is a broad view of the parkwith the famous Newport Tower on the right.

Figure 4-7: Touro Park with 19,578 lines

Figure 4-8 is a closer view of Newport Tower.

Figure 4-8: Newport Tower with 11,409 lines

Figure 4-9 shows a cat that I found rolling on thepavement. The ellipse shape gives the cat a nice abstractlook. Could this be the work of an impressionist painter?

Figure 4-9: A cat rolling on pavement with ellipses

Finally, I present a scene from Halloween in Figure 4-10.

Figure 4-10: A Halloween scene with ellipses

My son and I were running through a public display ofpumpkins. I like how the gourds and people in thebackground came out using ellipses.
CODE MEETS LIFE

In the mid-2010s, I first thought about creating a program like the one
in this chapter using a genetic algorithm. I did a little research and
found that multiple people had already beaten me to the punch.
However, in doing that research, I also came across Michael
Fogleman’s Primitive project.1 He had created a program that
produced abstract art, like the older programs that used genetic
algorithms, but using a simpler technique called simulated annealing.

I want to take a moment to thank Michael for how influential he’s
been on my programming career. Michael is a very talented
programmer, but beyond being talented, he also writes incredibly
readable code. And he happens to create projects in many areas that
interest me. You’ll hear more about another of Michael’s projects in
the emulation section of this book.

While this project shares no code with Michael’s Primitive, the fact
that he could turn photos into abstract art using such a simple
algorithm spurred me to believe that I could do the same using my
own, even simpler technique. I went about trying to implement my
algorithm as an iOS app. I was mostly successful, but unfortunately,
2017-era iPhones weren’t fast enough to run my program in a
reasonable amount of time. I tried optimizing it, but the issue was my
algorithm, not the implementation. At the same time, interesting
machine learning–based apps for artistic photo transformation were

starting to come out for iOS, and I realized my slower, simpler
technique just couldn’t compete. It still made for a cool demo,
however, and when I was coming up with the projects for this book, I
remembered it. I think it’s a great illustration of the power of random
algorithms and hill climbing.

After I ported my Swift code to Python for this book, I decided to
test it out on my friends by posting on Facebook a picture of my one-
year-old son, Daniel, on a swing.

My aunt, who has quite a trained artistic eye, thought I had taken
up painting. That was when I knew the program was pretty good.

Real-World ApplicationsBeyond looking kind of cool, the output of this programdoesn’t have a lot of practical applications. However, thetechniques that were used to build it certainly do. They fallunder an umbrella term known as stochastic optimization.Suppose you have an optimization problem you want tosolve, but you don’t know of a deterministic algorithm (analgorithm that gives the same result every time byfollowing the same steps every time) to solve it. In thatcase, a technique that involves random (stochastic) trialsmay be warranted.It may not be abundantly clear, but the challenge in thischapter is an example of an optimization problem. Ourprogram tries to optimize for a drawing that’s as close tothe original photograph as possible. The objective function(the thing that checks if we’re going in the right direction)is the difference() method. The lower the difference, themore optimal the potential solution to the problem that aparticular image represents.One famous practical area where stochasticoptimization algorithms are useful is the classic travelingsalesperson problem. The problem calls for a traveler tovisit every specified location on a map exactly once andreturn to their starting point using the shortest routepossible. It’s what delivery trucks (think FedEx or UPS) doevery day, so it has a very practical application.

Unfortunately, there’s no known deterministic algorithmfor solving the traveling salesperson problem optimally fora large number of locations in a reasonable amount of time.Instead, stochastic optimization techniques such as geneticalgorithms provide a useful way to solve the problem, buttheir solutions may be suboptimal. A genetic algorithm maynot always yield a perfect solution to the travelingsalesperson problem, but it will almost always yield asolution that’s good enough.Our program also utilized hill climbing. Although this isone of the simplest local search procedures (just keepgoing in the same direction if that direction is working), it’sa very common technique, and it performs as well as moreadvanced techniques in many scenarios. Hill climbing alsoforms the basis for other, more sophisticated algorithms.For example, the simplex algorithm for solving linearprogramming problems utilizes hill climbing.2
Exercises  1.  Modify the program to draw more than one type ofshape in the same painting. For example, it could createa drawing with both ellipses and triangles in the finaloutput.  2.  Since the pixels used to calculate the color for a newshape are based on a bounding box and not the exactarea underneath the shape, the results are inaccurate.Modify trial() to experiment with not only coordinatenudges but also color nudges. This may lead to a better-matching color.  3.  Modify trial() to use the exact pixels underneath ashape to determine that shape’s color. This ischallenging. One way to do it would be to use somegeometric calculations to determine the right pixels foreach type of shape. This will likely be much lesscomputationally efficient than simply cropping the

bounding box as the original program does. Considerinstead using the mask facilities in Pillow.  4.  The while True loop at the beginning of trial() feels likea code smell. Rewrite the beginning of trial() withoutit.
Notes  1.  Michael Fogleman, “Primitive,” accessed January 9,2023, https://www.michaelfogleman.com/#primitive.  2.  Steven S. Skiena, “Combinatorial Search and HeuristicMethods,” in Algorithm Design Manual, 2nd ed.(Springer, 2008), 252–253.

https://www.michaelfogleman.com/#primitive

PART III
EMULATORS

5
BUILDING A CHIP-8 VIRTUAL MACHINE

In this chapter, we’re going todevelop a version of a virtualmachine known as CHIP-8, a platformfrom the early days of personal computingthat was primarily used for playinggames. Although our program will be ableto play CHIP-8 games, it’s not the gamesthemselves that interest us—it’s whatbuilding a CHIP-8 virtual machine canteach us about low-level programmingand how a computer works at the registerand instruction levels. These insightsmake building a CHIP-8 virtual machine apopular first step into the world ofprogramming emulators.

Virtual MachinesThink of a virtual machine (VM) as a computer that’sdefined wholly in software. Programs that are designed torun in a VM can run on any platform that has animplementation of that VM. In this way, VMs enable trulyportable software.VMs are closely related to emulators. An emulator is apiece of software that’s pretending to be a piece ofhardware. This enables programs that were written for thathardware to run on other machines that lack the hardware.An emulator must follow the specification for the originalhardware carefully so that it re-creates all the functionalitythat the unknowing programs running on the emulatorexpect. I say unknowing because the software running onan emulator has no idea it isn’t running on the realhardware; the emulator had better work exactly like theoriginal hardware if the program is going to functioncorrectly.A VM is also a piece of software that closely follows aspecification of an environment that software runs on topof. The difference is that while an emulator follows ahardware specification, a VM follows a specification thatmay be wholly defined as an abstraction in software terms.Although one is a hardware specification and one is asoftware specification, implementing a simple emulator isquite similar to implementing a simple VM. In fact, they’reso similar that while the project completed in this chapteris technically a VM project, it’s very commonly suggestedas a first emulation project. If you’re a newcomer to theemulator development community asking where you shouldstart, CHIP-8 is almost always the answer.Perhaps the most famous VM is the Java VirtualMachine (JVM). When Java first came out in the mid-1990s,its “write once, run anywhere” philosophy was touted.JVMs were developed for all major operating systems

(Windows, Linux, Mac OS, and so on), and the same Javaprogram could be compiled into the JVM’s native bytecodeformat and run on any computer with a JVM unchanged,regardless of the underlying platform. That’s still truetoday, but Java’s original write-once-run-anywhere nichehas largely been supplanted by web applications.The CHIP-8 VM comes from a much earlier era. In the1970s, Joseph Weisbecker was a pioneering engineer whodeveloped one of the first 8-bit microprocessors, the RCA1802. He and RCA built an early personal computer usinghis invention.1 He wanted to have a way to program gamesfor the machine in a higher-level language than machinecode, so he developed CHIP-8 (and its accompanyingopcode language). His daughter, Joyce Weisbecker, wouldgo on to use CHIP-8 to become the first published femalevideo game developer.2 In the 1980s, CHIP-8 was ported tomany other platforms, including many graphingcalculators. It therefore became a truly portable VM,analogous to an early form of how we think about VMstoday.
The CHIP-8 Virtual MachineThe CHIP-8 VM was originally designed for the incrediblyresource-constrained personal computers of the late 1970s,like the COSMAC VIP. Released in 1977, the COSMAC VIPhad an RCA 1802 8-bit microprocessor running at less than2 megahertz (MHz), 2KB of RAM (expandable to 4KB), anda 512-byte ROM. It also had specialized chips for displaying1-bit graphics at a resolution of up to 64×128, reading andwriting cassette tapes, and playing a beep.3It’s amazing by today’s standards that anything of valuecould have been programmed on a machine like theCOSMAC VIP, yet it was designed for video games. In fact,those games even ran through another layer of abstraction,the CHIP-8 VM. The most popular video game console of

the era, the Atari 2600, was also released in 1977 and hadspecifications that were in the same ballpark. Theselimitations were simply par for the course.When programming a VM or an emulator, theperformance of the tools you’re using is a paramountconcern. The VM or emulator adds another layer ofabstraction between the program and the hardware, andeach layer of abstraction generally comes with someperformance cost. To achieve the intended speed of theoriginal system, overhead has to be kept to a minimum, andsome programming languages (or rather, someprogramming languages’ primary runtimeimplementations) get in the way. This is why it’s common tosee VMs and emulators programmed in low-level languageslike C, C++, and Rust. That said, considering how limitedCHIP-8’s original target hardware was, it’s not difficult tocreate a performant CHIP-8 VM today on any modernsystem. Even a relatively slow programming languageruntime like CPython is sufficient. You wouldn’t want toprogram a cutting-edge game console emulator in Python,or a JVM. But CHIP-8? Python is more than fine for that.To understand CHIP-8, let’s start by discussing itsregisters and memory layout. Then, I’ll provide a generaloverview of the instructions that the VM can execute,before getting into the nitty-gritty details of animplementation.
Registers and MemoryOn a physical microprocessor, registers are the absolutefastest memory available. They sit directly within themicroprocessor and don’t require the latency of accessinganother chip. Putting data in registers is often the only wayto manipulate it, since most data manipulation instructions(for example, arithmetic) that a microprocessor supportsoperate on data within the registers. Separate load/store

instructions transfer data between the registers andexternal RAM.When it comes to registers, there’s a classic time-versus-space trade-off: the registers are the fastest storagelocations to hold data, but they’re extremely limited in size.For example, a typical 8-bit microprocessor of the late1970s may only have had a few 8-bit registers (yes, eachcan only hold a single byte), but it could address dozens ofkilobytes of external RAM.Most VMs, like the CHIP-8, also have registers, butthose registers don’t always map directly to physicalhardware registers on the microprocessor. As such, they’renot necessarily any faster than RAM. That may seem odd,but the registers provide a substrate that the instructionscan operate on. There’s also nothing stopping a particularimplementation of the VM from mapping the virtualregisters to real hardware registers for a performance gain—as long as the number of virtual registers doesn’t exceedthe number of physical registers.
NOTE
In the following discussion, the same names are used to
refer to the CHIP-8 registers as will be used in the Python
code for the implementation.The CHIP-8 VM has 16 general-purpose 8-bit registers,referred to as v[0] through v[15]. They can be used for anykind of data, and all the main arithmetic and logicinstructions operate on these registers. Of these general-purpose registers, v[15] (or v[0xF] in hexadecimal) is specialin that it’s used for holding a flag. The index register, i, isfor manipulations across multiple memory locations at onceand for indicating where data that needs to be drawn to thescreen exists in memory. The program counter, pc, is a

special register that keeps track of the memory address ofthe next instruction to be executed.The vs, i, and pc constitute the main registers, butthey’re backed up by a couple pseudo-registers for timing.These two bytes, delay_timer and sound_timer, are used forimplementing a pause in the game or indicating how longthe sound of a beep should be played. There are specializedinstructions for modifying these timers. All the registersare listed in Table 5-1. The registers were originallydescribed in the RCA COSMAC VIP CDP18S711 InstructionManual.4

Table 5-1: CHIP-8 Registers and Pseudo-Registers
Register Name Description

v[0] to
v[14]

General-
purpose
registers

Each can hold any kind of 8-bit data.

v[15] Flag register Stores a flag (1 or 0) after certain operations, like
a carry flag after addition.

pc Program
counter

Keeps track of the 16-bit address in memory of
the current instruction being executed.

i Memory
index
register

Stores a 16-bit address used for completing
instructions that span multiple contiguous places
in memory.

delay_timer Delay timer Stores an 8-bit value that’s decremented 60 times
per second until it reaches 0.

sound_timer Sound timer Stores an 8-bit value that’s decremented 60 times
per second until it reaches 0; while it’s above 0, a
beep is played by the computer speaker.

A typical CHIP-8 VM has 4KB of general-purpose RAM.This is in line with the COSMAC VIP when loaded withexpansion memory. However, there’s a catch: on the VIP,the first 512 bytes of memory had to contain the code for

the actual CHIP-8 VM itself (yes, the whole VM fit into just512 bytes of machine code—think about that as we writeour version). That left only 3.5KB of usable RAM. To bebackward compatible today, our VM must also reserve thefirst 512 bytes of RAM.
InstructionsThe CHIP-8 VM was largely used to program games, so itincludes specialized instructions for actions like movingsprites and playing a beep. Those sit alongside all themundane, utilitarian instructions you’d find in anymicroprocessor instruction set or low-level programminglanguage—instructions for manipulating memory, doingarithmetic, overseeing control flow, handling timers, andmanaging the display. In total, there are 35 instructionsthat we’ll be implementing. All the instructions arespecified in hexadecimal— see the “Hexadecimal” box formore on that numbering system.

HEXADECIMAL

Hexadecimal, or base-16, is the number system typically used for
working with low-level bytes on computing systems (RAM addresses,
CPU instructions, and the like). It can more compactly and consistently
refer to values in bytes than binary or standard decimal (base-10, the
number system we’re used to). For instance, you can represent any 8-
bit number using two hexadecimal digits, and helpfully, each of those
two digits corresponds to exactly half of the byte when written out in
binary (half of a byte is known as a nibble). If you were a programmer
in the 1970s or 1980s, you would work with hexadecimal often, but
today the average Python developer seldom uses it outside of low-
level programming.

In hexadecimal, in addition to the 10 symbols 0–9, six further
symbols are provided, A–F, corresponding to the decimal values 10–
15. In Python, hexadecimal literals start with the 0x prefix. For
example, 0xFF is the same as the decimal number 255, or the binary
number 0b11111111. One F in the hexadecimal version refers to the first
half of the ones in the binary version (1111), and the other F refers to
the second set of ones (1111). This is the maximum value of 1 byte.
To illustrate the conversion more clearly, the hexadecimal number

0xF0 can be written in binary as 0b11110000, with the F for the 1111 and
the 0 for the 0000.

To convert from hexadecimal to decimal, multiply each hex digit
from right to left by a power of 16, starting with 160. For example, 0xFF
can be rewritten as (15 × 160) + (15 × 161). The right digit (F)
becomes 15 × 1 = 15, the left digit becomes 15 × 16 = 240, and 240
+ 15 = 255. Here’s another example: 0xA5B is (11 × 160) + (5 × 161)
+ (10 × 162). This is equivalent to 2,651 in decimal.

The instructions are here as a quick reference and togive you a sense of the “lay of the land.” We’ll get into thedetails of how each instruction works in the code, but thereality is that most of the code is pretty self-explanatorybased on the instruction descriptions. The vast majority ofinstructions can be implemented in just a couple lines ofPython.I spent a lot of time thinking about how to group theinstructions for this discussion. Ultimately, I decided toorder them numerically so that they appear in the sameorder here as they do in the code. Every instruction inCHIP-8 is 16 bits, or in other words, 2 bytes or 4 nibbles, soit translates to four hexadecimal digits. Any uppercasehexadecimal digit 0–F in an instruction is a literal. Anylowercase letter indicates a value that will be used as partof the implementation of the instruction. An underscore (_)indicates the nibble is arbitrary. The instructions wereoriginally described in the RCA COSMAC VIP CDP18S711Instruction Manual.5
NOTE
A few instructions listed here weren’t present in the
original CHIP-8 specification (for example, 8x_6 and 8x_E).
Their functionality sometimes differs across varying CHIP-8
implementations.

Screen Clearing and Basic JumpsThe first set of instructions are used for cleaning up theentire screen all at once and for moving from one part ofthe program to another part of the program.
00E0   Clear the screen.
00EE   Return from a subroutine.
0nnn   Call the program at nnn, reset the timers andregisters, and clear the screen.
1nnn   Jump to address nnn without resetting.
2nnn   Call the subroutine at nnn.

Conditional SkipsThe next set of instructions are for jumps to another part ofthe program if a particular condition is true.
3xnn   Skip the next instruction if v[x] equals nn.
4xnn   Skip the next instruction if v[x] doesn’t equal nn.
5xy_   Skip the next instruction if v[x] equals v[y].

General-Purpose Register Adjustments, Arithmetic,
and Bit ManipulationNext come standard instructions that you would find in anyCPU or VM for actions like doing math, setting registers,and shifting bits.

6xnn   Set v[x] to nn.
7xnn   Add nn to v[x].
8xy0   Set v[x] to v[y].
8xy1   Set v[x] to v[x] | v[y] (bitwise OR).
8xy2   Set v[x] to v[x] & v[y] (bitwise AND).
8xy3   Set v[x] to v[x] ^ v[y] (bitwise XOR).
8xy4   Add v[y] to v[x] and set the carry flag.

8xy5   Subtract v[y] from v[x] and set the borrow flag.
8x_6   Shift v[x] right one bit and set the flag to theleast-significant bit.
8xy7   Subtract v[x] from v[y] and store the result in v[x];set the borrow flag.
8x_E   Shift v[x] left one bit and set the flag to the most-significant bit.

Miscellaneous InstructionsThese instructions don’t quite have a unified subject area,but their opcodes are close to one another numerically.
9xy0   Skip the next instruction if v[x] doesn’t equal v[y].
Annn   Set i to nnn.
Bnnn   Jump to nnn + v[0].
Cxnn   Set v[x] to a random integer (0–255) & nn (bitwiseAND).
Dxyn   Draw a sprite that’s n high at (v[x], v[y]); set theflag on a collision.

Key and Timer InstructionsThe next batch of instructions are for manipulating theVM’s timers and checking on the status of various keys orwaiting for a particular key to be pressed.
Ex9E   Skip the next instruction if key v[x] is set(pressed).
ExA1   Skip the next instruction if key v[x] is not set (notpressed).
Fx07   Set v[x] to the delay timer.
Fx0A   Wait until the next key press, then store the key in
v[x].
Fx15   Set the delay timer to v[x].

Fx18   Set the sound timer to v[x].
Register i InstructionsAll the instructions in this last set are related to thememory index register (i).

Fx1E   Add v[x] to i.
Fx29   Set i to the location of character v[x] in the fontset.
Fx33   Store the binary-coded decimal (BCD) value in
v[x] at memory locations i, i + 1, and i + 2. (See the“Binary-Coded Decimal” box on page 122 for more onthis.)
Fx55   Dump registers v[0] through v[x] in memory,starting at i.
Fx65   Store memory from i through i + x in registers
v[0] through v[x].Consider for a moment how mundane these instructionssound. You really don’t need any sophisticated mechanismsto have a working “computer.” Contrast the 35 CHIP-8instructions described here with the 8 instructions in ourimplementation of Brainfuck from Chapter 1. Both arememory-constrained Turing machines, and they aren’t asdifferent from each other as their superficial instructionsyntax may make it appear.

BINARY-CODED DECIMAL

Binary-coded decimal (BCD) is a way of storing decimal numbers in
binary. It’s not widely used today, but it was common in early
computers. For example, several microprocessors from the 1970s
included explicit instructions for BCD arithmetic, which offered more
precision when dealing with decimal rounding and to some extent
made machine code more readable. For the average modern
programmer, there isn’t much value in learning BCD except as a
curiosity. There were multiple different BCD schemes, and frankly I

don’t think that learning the particular scheme used in the CHIP-8 VM
is a valuable use of our space in this book.

The ImplementationNow that we know the CHIP-8 architecture, we’re ready toimplement our VM. The file __main__.py will contain themain run loop that handles user input, updates the display,manages timers, and most importantly, tells the VM to stepthrough the next instruction. This file is also where thecommand line argument that specifies the ROM file isparsed. Meanwhile, vm.py is the actual VM.
ROMS

Did you ever wonder why the files that hold games used in emulators
are called ROMs? ROM stands for read-only memory. Most early video
game systems used plastic cartridges that were glorified holders for
ROM chips that directly plugged into the consoles. When the games
were converted into files for emulators, someone would have to go
and plug the ROM chip into a specialized device connected to their
computer and “rip” the data from the ROM chip to store it in a file. The
file would have an exact copy of the data on the ROM chip, perhaps
with some extra header information depending on the emulation
ecosystem.

While the original ROM chips couldn’t have their data modified,
these “ROM files” are just like any other files and can be modified to
change the games. Hence, the subculture of ROM hacking, in which
developers change the graphics or gameplay of games meant to be
run in emulators.

We’ll utilize two external libraries in ourimplementation. Pygame, a Python library designed forgame development, provides an easy way to get a windowon the screen, fill that window with the pixels from ourVM’s display, and handle keyboard input. NumPy, anumerical computing library, can help create the two-dimensional array used as the backing buffer for thePygame window’s pixels. This array will serve as the

“graphics RAM” of our VM. Pygame natively works withNumPy arrays, and NumPy arrays are more performantthan anything in the Python standard library forrepresenting this buffer. Make sure you’ve installedPygame and NumPy before running the program.Like replicating a file format in Chapter 3,implementing a VM or emulator requires a fair amount oflow-level bit manipulation. See the appendix to read up onPython’s bitwise operators.
The Run LoopThe run loop is responsible for advancing the VM by oneinstruction, redrawing the screen, handling any events (keypresses to be passed to the VM), playing the beep sound,and updating CHIP-8’s two timers. Pygame makes drawing,playing sounds, and reading keyboard input almost trivial;it’s a very easy-to-use library. Let’s start with someinitialization code and continue through to the beginning ofthe run loop:

Chip8/__main__.py

import sys
from argparse import ArgumentParser
from Chip8.vm import VM, SCREEN_WIDTH, SCREEN_HEIGHT
from Chip8.vm import TIMER_DELAY, FRAME_TIME_EXPECTED, ALLOW
ED_KEYS
import pygame
from timeit import default_timer as timer
import os

def run(program_data: bytes, name: str):
 # Startup Pygame, create the window, and load the sound
 pygame.init()
 screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_H
EIGHT),
 pygame.SCALED)

 pygame.display.set_caption(f"Chip8 - {os.path.basename(n
ame)}")
 bee_sound = pygame.mixer.Sound(os.path.dirname(os.path.r
ealpath(__file__))
 + "/bee.wav")
 currently_playing_sound = False
 vm = VM(program_data) # load the virtual machine with th
e program data
 timer_accumulator = 0.0 # used to limit the timer to 60
Hz
 # Main virtual machine loop
 while True:
 frame_start = timer()
 vm.step()
 if vm.needs_redraw:
 pygame.surfarray.blit_array(screen, vm.display_b
uffer)
 pygame.display.flip()

At the beginning of the run loop, the time is recordedwith frame_start = timer() to measure the duration of eachiteration of the loop. This is because CHIP-8’s timers needto be decremented 60 times per second (if they’re abovezero). The VM is then told to execute an instruction (andtherefore to move to the next instruction) via vm.step(). Ifindicated by vm.needs_redraw, the display is then redrawn viatwo simple calls to Pygame. One copies the VM’s displaybuffer to the screen, and the other shows it.Note that the code uses the term frame a littledifferently than is typical. In most programs, a frame is onefull refresh of the entirety of the program’s graphicaloutput, but in this context, our run loop won’t necessarilyredraw the graphics every iteration, since vm.needs_redrawmay not always be True.What definitely will happen every “frame” is that oneinstruction will be executed as a result of the call to
vm.step(). As such, I thought about using the word

instruction rather than frame in this section of the code, forexample, instruction_start rather than frame_start. However,more than just the execution of an instruction is happeningin the run loop—there’s also graphical output, keyboardhandling, and sound output—so instruction sounded toolimited. But again, frame isn’t quite accurate either. It’strue what they say: one of the hardest problems incomputer science is naming.The run loop finishes by handling keyboard events,playing a sound when the VM’s Boolean vm.play_soundindicates, and handling timing:
 # Handle keyboard events
 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 key_name = pygame.key.name(event.key)
 if key_name in ALLOWED_KEYS:
 vm.keys[ALLOWED_KEYS.index(key_name)] =
True
 elif event.type == pygame.KEYUP:
 key_name = pygame.key.name(event.key)
 if key_name in ALLOWED_KEYS:
 vm.keys[ALLOWED_KEYS.index(key_name)] =
False
 elif event.type == pygame.QUIT:
 sys.exit()

 # Sound
 if vm.play_sound:
 if not currently_playing_sound:
 bee_sound.play(-1)
 currently_playing_sound = True
 else:
 currently_playing_sound = False
 bee_sound.stop()

 # Handle timing
 frame_end = timer()

 frame_time = frame_end - frame_start # time it took
in seconds
 timer_accumulator += frame_time
 # Every 1/60 of a second decrement the timers
 if timer_accumulator > TIMER_DELAY:
 ❶ vm.decrement_timers()
 timer_accumulator = 0
 # Limit the speed of the entire machine to 500 "fram
es" per second
 if frame_time < FRAME_TIME_EXPECTED:
 difference = FRAME_TIME_EXPECTED - frame_time
 ❷ pygame.time.delay(int(difference * 1000))
 timer_accumulator += difference

Even though we aren’t using frames to measuretraditional frames per second (FPS), as you may be familiarwith from gaming, the timing of each iteration is stillimportant. We need to keep track of timing to ensure theVM’s countdown timers are ticked every 1/60 of a secondas required by the CHIP-8 specification ❶, and to limit theoverall speed of the VM ❷. If the VM runs too fast, gameswill be unplayable since they were designed for the slowcomputers of the 1970s. You can adjust the speed of theVM, and therefore any software running on it, by changingthe FRAME_TIME_EXPECTED constant in vm.py. In testing, I foundthat 500 “frames” per second, or in other words, each“frame” being approximately 1/500 of a second, to be asolid speed for most games.
Command Line ArgumentsAs in previous programs, we use ArgumentParser to handlecommand line arguments:

if __name__ == "__main__":
 # Parse the file argument
 file_parser = ArgumentParser("Chip8")
 file_parser.add_argument("rom_file",

 help="A file containing a Chip-
8 game.")
 arguments = file_parser.parse_args()
 with open(arguments.rom_file, "rb") as fp:
 file_data = fp.read()
 run(file_data, arguments.rom_file)

In this case, we have just a single command lineargument—the name of the file containing the programdata for the CHIP-8 VM. The file’s raw bytes are read andpassed to run(), where they in turn are passed to theconstructor of the VM.
VM Setup and Helper FunctionsWe’re ready for the actual VM implementation. We start, aswe so often do, with some constants:

Chip8/vm.py

from array import array
from random import randint
import numpy as np
import pygame
import sys

RAM_SIZE = 4096 # in bytes, aka 4 kilobytes
SCREEN_WIDTH = 64
SCREEN_HEIGHT = 32
SPRITE_WIDTH = 8
WHITE = 0xFFFFFFFF
BLACK = 0
TIMER_DELAY = 1/60 # in seconds... about 60 Hz
FRAME_TIME_EXPECTED = 1/500 # for limiting VM speed
ALLOWED_KEYS = ["0", "1", "2", "3", "4", "5", "6", "7", "8",
"9",
 "a", "b", "c", "d", "e", "f"]

The font set, hardcoded

FONT_SET = [
 0xF0, 0x90, 0x90, 0x90, 0xF0, # 0
 0x20, 0x60, 0x20, 0x20, 0x70, # 1
 0xF0, 0x10, 0xF0, 0x80, 0xF0, # 2
 0xF0, 0x10, 0xF0, 0x10, 0xF0, # 3
 0x90, 0x90, 0xF0, 0x10, 0x10, # 4
 0xF0, 0x80, 0xF0, 0x10, 0xF0, # 5
 0xF0, 0x80, 0xF0, 0x90, 0xF0, # 6
 0xF0, 0x10, 0x20, 0x40, 0x40, # 7
 0xF0, 0x90, 0xF0, 0x90, 0xF0, # 8
 0xF0, 0x90, 0xF0, 0x10, 0xF0, # 9
 0xF0, 0x90, 0xF0, 0x90, 0x90, # A
 0xE0, 0x90, 0xE0, 0x90, 0xE0, # B
 0xF0, 0x80, 0x80, 0x80, 0xF0, # C
 0xE0, 0x90, 0x90, 0x90, 0xE0, # D
 0xF0, 0x80, 0xF0, 0x80, 0xF0, # E
 0xF0, 0x80, 0xF0, 0x80, 0x80 # F
]

Most of these constants are self-explanatory and in linewith the original CHIP-8 specifications. The VM has 4KB ofmain memory. It specifies graphics in the form of a black-and-white output picture with a 64×32 resolution. Thetimers update 60 times per second. The original CHIP-8systems had 16 keys you could press on the controller. Wecould probably arrange them in a more ergonomic way forgaming by mapping them to other keys, but in ourimplementation, we’ll just leave the keys where they lie onthe keyboard.Probably the most unusual constant here is FONT_SET.This is 80 bytes of graphical data for displaying the digits0–9 and the letters A–F. Each character is specified by bitsrepresenting the pixels of the character should it be shownon the screen. Think of it as a primitive font that only has16 characters. Several games expect this data to live in thefirst 80 bytes of memory so that they can write messageson the screen to the user.

Next, we have a helper function unrelated to the stateof the VM:
def concat_nibbles(*args: int) -> int:
 result = 0
 for arg in args:
 result = (result << 4) | arg
 return result

The concat_nibbles() function takes an arbitrary numberof integers and concatenates one after another by shiftingeach 4 bits to the left and bitwise OR-ing it with the nextone. This will only be useful if the integers themselves are 4bits. Suppose we have the integer 0111. Shifting it 4 bits tothe left will cause four zeros to follow the original 4 bits, asin 01110000. Now suppose we have another 4-bit integer,
1010. If we OR it with 01110000, we obtain the result 01111010,the concatenation of the original two 4-bit integers. We cankeep doing this for an arbitrary number of 4-bit integers toconcatenate them together.Recall that a 4-bit integer is known as a nibble. The 16-bit instructions in CHIP-8 are divided into four nibbles, andeach nibble often has a separate meaning. By default, we’lldivide each instruction into its four constituent nibbles, butfor a few instructions, we’ll need to use the value of a fewcombined nibbles. Hence, the utility of the concat_nibbles()helper function.The VM class starts with a constructor that initializes allof its mutable state including registers, RAM, the stack, thedisplay buffer (what today we would call VRAM or videoRAM), the timers, and a couple other helper variables:

class VM:
 def __init__(self, program_data: bytes):
 # Initialized registers and memory constructs
 # General Purpose Registers - CHIP-8 has 16 of these

registers
 self.v = array('B', [0] * 16)
 # Index Register
 self.i = 0
 # Program Counter
 # Starts at 0x200 because addresses below that were
 # used for the VM itself in the original CHIP-8 mach
ines
 self.pc = 0x200
 # Memory - the standard 4k on the original CHIP-8 ma
chines
 self.ram = array('B', [0] * RAM_SIZE)
 # Load the font set into the first 80 bytes
 self.ram[0:len(FONT_SET)] = array('B', FONT_SET)
 # Copy program into RAM starting at byte 512 by conv
ention
 self.ram[512:(512 + len(program_data))] = array('B',
program_data)
 # Stack - in real hardware this is typically limited
to
 # 12 or 16 PC addresses for jumps, but since we're o
n modern hardware,
 # ours can just be unlimited and expand/contract as
needed
 self.stack = []
 # Graphics buffer for the screen - 64 x 32 pixels
 self.display_buffer = np.zeros((SCREEN_WIDTH, SCREEN
_HEIGHT),
 dtype=np.uint32)
 self.needs_redraw = False
 # Timers - really simple registers that count down t
o 0 at 60 hertz
 self.delay_timer = 0
 self.sound_timer = 0
 # These hold the status of whether the keys are down
 # CHIP-8 has 16 keys
 self.keys = [False] * 16

A few of these state variables have important defaultvalues. For example, the program counter (pc) shouldalways be set to location 0x200 (512 in decimal) since thefirst 512 bytes of memory in CHIP-8 machines wereoriginally used for storing the CHIP-8 VM itself. This meansCHIP-8 programs couldn’t use that memory and had tostart at byte 512. I’ve extensively commented theconstructor to explain each variable as it’s declared. Noticethat the vast majority of our VM just uses the Pythonstandard library for its implementation, except for
display_buffer, which is a NumPy array. This is the formatthat Pygame expects.Next, we have a trivial helper method,
decrement_timers(), and a simple dynamic property,
play_sound:

 def decrement_timers(self):
 if self.delay_timer > 0:
 self.delay_timer -= 1
 if self.sound_timer > 0:
 self.sound_timer -= 1

 @property
 def play_sound(self) -> bool:
 return self.sound_timer > 0

Both decrement_timers() and play_sound were used in therun loop we looked at earlier in __main__.py.
GraphicsCHIP-8 sees the screen as a 64×32 pixel plane with acartesian coordinate system having the origin, location(0,0), in the top left, and the y-axis oriented downward. Inother words, the x-coordinate increases as we travel fromleft to right and the y-coordinate increases as we travelfrom top to bottom. The bottom-right pixel is therefore at

location (63,31). There are no negative coordinates, and itisn’t possible to access pixel locations beyond the screen.Each pixel is represented in memory as a single bit. Inour implementation, a 1 represents a white pixel and a 0represents a black pixel. The graphics memory (or “buffer”)is separate from the main program memory and can only bemanipulated indirectly using CHIP-8 instructions. Pygameuses 32-bit integers to represent pixels on the screen inRGBA format (the A is for alpha, or transparency), so eachof our 1-bit pixel values must become a 32-bit integer whenwe store it in the display_buffer.CHIP-8 draws using sprites, which are little bitmaps (orimages, if you like) that can move around the screen. Everysprite in CHIP-8 is 8 pixels wide and can be anywherebetween 1 and 15 pixels high. Figure 5-1 illustrates an 8×3sprite representing the word HI being drawn on the screenat location (28,15).

Figure 5-1: The word HI as an 8×3 sprite

Since each row in a CHIP-8 sprite is exactly 8 pixels, it’srepresented using 8 bits. Since 8 bits is 1 byte, each row ofa sprite can therefore be represented by a single byte.

Since the HI sprite is three rows high, it can berepresented by 3 bytes. In binary, those 3 bytes would looklike this:
10100111
11100010
10100111

Notice how each 1 maps to a white pixel and each 0maps to a black pixel. With this information, hopefully thefont set we defined earlier also makes more sense now:each character in the font set is just an 8×5 sprite.Drawing sprites is the only way to modify the displaybuffer, other than clearing it, so the CHIP-8 VM has asingle draw instruction, Dxyn. It draws a sprite of a specifiedheight residing at the memory location specified by the iregister. The D in the instruction is a constant nibble, andthe x and y nibbles represent the indices into the v registerswhere the x- and y-coordinates for the top left of the spriteshould be located. In other words, the x-coordinate isretrieved from register v[x] and the y-coordinate fromregister v[y]. The n nibble represents the height of thesprite. This is why sprites can’t be taller than 15 pixels: anibble is 4 bits, and 4 bits can maximally represent thenumber 15.The nibbles of Dxyn correspond to the parameters of the
draw_sprite() helper method:

 # Draw a sprite at *x*, *y* using data at *i* with a hei
ght of *height*
 def draw_sprite(self, x: int, y: int, height: int):
 flipped_black = False # did drawing this flip any pi
xels?
 for row in range(0, height):
 row_bits = self.ram[self.i + row]
 for col in range(0, SPRITE_WIDTH):

 px = x + col
 py = y + row
 if px >= SCREEN_WIDTH or py >= SCREEN_HEIGH
T:
 continue # ignore off-screen pixels
 new_bit = (row_bits >> (7 - col)) & 1
 old_bit = self.display_buffer[px, py] & 1
 if new_bit & old_bit: # if both set, flip wh
ite -> black
 flipped_black = True
 # CHIP-8 draws by XORing
 new_pixel = new_bit ^ old_bit
 self.display_buffer[px, py] = WHITE if new_p
ixel else BLACK
 # Set flipped flag for collision detection
 self.v[0xF] = 1 if flipped_black else 0

CHIP-8 draws sprites using XOR operations. XOR, or
exclusive or, is a bitwise operation that returns a 1 if twobits are different and a 0 if they’re the same. Python usesthe ^ operator for XOR. Table 5-2 shows a truth table forXOR.
Table 5-2: XOR Truth Table
0 ^ 0 0 ^ 1 1 ^ 0 1 ^ 1

0 1 1 0

The CHIP-8 draw instruction takes a sprite and XORs itspixels with the pixels already on the screen at the locationspecified. If this screen location is all black pixels, this willeffectively just draw the sprite. However, if the screenlocation contains some white pixels (1s), black pixels willbe drawn where the white pixels of the sprite overlap withthe white pixels of the screen. This is because 1 XOR 1 is 0.The CHIP-8 draw instruction tracks whether any of theseoverlaps occur (a screen white pixel was turned to a black

pixel by drawing the sprite). If they do, it sets the flagregister (v[0xF]).The draw_sprite() method is a codification of thisprocess. We iterate through all of the rows and columns ofa sprite that begins at the memory location specified byregister i, pulling out each pixel of the sprite using a rightshift operation and storing it in new_bit. The & operation onthe data going into new_bit ensures that only the single lastbit of the shift operation is stored in new_bit. We compareeach new_bit to the bit already on the screen, old_bit, and ifan old_bit will be flipped from white to black, we set theflag register. We change the display buffer by taking theXOR of new_bit and old_bit.Why do we need a flag to track whether drawing asprite causes a previously lit screen pixel to be turned off?It’s effectively a form of collision detection. If a sprite hitssomething that was already on the screen, that’sparticularly helpful to know in a game. For example, if youare programming a tennis game, you would want to knowwhen the ball moves and hits a racket already on thescreen.
Instruction ExecutionNow it’s time for the heart of the VM. We have one methodleft, but it’s a big one: we need to implement all of the VM’sinstructions. This isn’t dissimilar to executing thestatements in our interpreters in Chapters 1 and   2.Whether executing interpreter statements, VMinstructions, or microprocessor opcodes in an emulator, weneed to do something pretty simple: recognize what thenext instruction is and then execute a different few lines ofcode that manipulate the state of the VM based on itsintended operation.For example, if we see an add instruction, we shouldadd the two specified numbers together and store theresult in a specified location. If we see a jump instruction,

we should move execution to a specified location inmemory. It’s literally about recognizing what instruction isbeing executed and changing a few state variablesrepresenting memory, registers, and the like based on thatinstruction. The simplest way to do this would be with alarge number of if statements. The pseudocode may looklike this:
if instruction == ADD:
 add some numbers together and store the sum
elif instruction == JUMP:
 jump to a location by changing the program counter
elif instruction == DRAW:
 draw the sprite where specified by changing the display
buffer
etc.

Beyond using a bunch of if statements, there are threecommon patterns for writing the code that executes theinstructions. The first is a giant switch statement, aconstruct present in many languages but not quite inPython in the same form. I assume most readers have seena switch statement before in a language like C or Java. Ifyou haven’t, you can think of it as a primitive form ofPython’s match statement like we used in Chapters 1 and   2.The case of the switch statement that executes is dependenton the instruction. This is somewhat similar to thepseudocode just shown. In fact, prior to the introduction ofthe match statement in Python 3.10, the way you wouldimplement this pattern in Python was indeed with a ton of
if and elif clauses. This is the simplest way to implementinstruction execution, but it can become unwieldy for alarge instruction set.The next pattern is to use a jump table, which consistsof an array of function pointers. We index into the arraydepending on the instruction and then execute the

appropriate function that’s returned. Instructions are justintegers, which is why they can be used as array indices. Ifthe instructions were strings for some reason, we couldinstead use a dictionary where the keys are instructionsand the values are function pointers, although this is a bitless efficient. Because this pattern divides the work acrossmany helper functions, it generally results in cleaner codethan a giant switch statement and may be preferred for alarger instruction set.The third pattern is to use dynamic recompilation,where we translate each instruction into an instruction thatthe underlying hardware understands (or something thatcan further be translated into such). For example, if wehave an addition instruction in the VM running on an x86microprocessor, we may translate the VM’s additioninstruction into the machine code for an equivalent x86addition instruction. This is the most complicated patternto implement because it requires intimate knowledge of notjust the original instruction set but also the instruction setbeing translated into. It will, however, result in the fastestperformance.In this program, we’ll use a giant match statement sinceCHIP-8’s instruction set is relatively small. When we createan NES emulator in the next chapter, we’ll use a jump tablebecause the 6502 microprocessor has an instruction setthat’s roughly double the size (although still much smallerthan almost any other microprocessor). Dynamicrecompilation is a significantly more complicated techniqueand beyond the scope of this book.The step() method is responsible for executinginstructions, but first the method needs to retrieve the nextinstruction to execute:
 def step(self):
 # We look at the opcode in terms of its nibbles (4 b
it pieces)

 # Opcode is 16 bits made up of next two bytes in mem
ory
 first2 = self.ram[self.pc]
 last2 = self.ram[self.pc + 1]
 first = (first2 & 0xF0) >> 4
 second = first2 & 0xF
 third = (last2 & 0xF0) >> 4
 fourth = last2 & 0xF

 self.needs_redraw = False
 jumped = False

The next instruction is located at the memory addressstored in the program counter (pc). Since instructionsconsist of 16 bits, we retrieve the next 2 bytes at pc andstore them in first2 and last2. As discussed earlier, it’sconvenient to think about each CHIP-8 instruction as acombination of four nibbles, since each individual nibble ismeaningful for many of the instructions. We store thenibbles in first, second, third, and fourth. All of the pattern-matching around our instructions will be in terms ofnibbles.As we execute the instruction, we’ll also be keepingtrack of whether it requires any redrawing through
needs_redraw and whether it modified pc through jumped. Therun loop uses needs_redraw as an optimization. Why do anydrawing when nothing changed? Keeping track of jumpedallows for some common code to be at the bottom of step(),reducing a little bit of code duplication.Now we arrive at the actual instructions. The giant matchstatement is upon us. Our implementation utilizes Python’selegant match syntax to capture the nibbles that arenecessary for the execution of an instruction in temporaryvariables. The details of each instruction’s execution followdirectly from its description earlier in the chapter. Many ofthe instructions are able to be implemented in just a singleline of code. It would be exceedingly dry to write about

each of them in turn. Instead, what follows is areproduction of the rest of step(), with comments providinga bit of additional context.Before you look at the code, though, this is a good placeto stop and try to implement the instructions yourself. Youdon’t have to use a match statement. You could use a seriesof if...elif statements as I did in Python 3.9 before the
match statement existed. (I tested and there was virtually noperformance difference between the two.) You already haveall the setup you need to be able to concentrate only onwhat each instruction is supposed to do instead ofconfiguring the system’s memory or registerrepresentation. You don’t need to think about loading theROM file or what some constants should be. Just thinkabout logic and how each operation would modify the VM’sstate.Some of the descriptions of the instructions earlier inthis chapter were fairly brief, but you can find moredetailed instructions in any of a myriad of CHIP-8references online. Don’t spend too much time on a singleinstruction, though. You can always look at theimplementation here if you get stuck. After you try writingyour own instruction implementations, you can return tothis book’s code to double-check your work. Doing thiswork yourself first will give you a good idea of what goesinto writing a simple VM or emulator. Don’t be afraid: you’llbe amazed at how simple it is to implement many of theinstructions. Remember, the original CHIP-8 VM fit in just512 bytes of memory!

 match (first, second, third, fourth):
 case (0x0, 0x0, 0xE, 0x0): # display clear
 self.display_buffer.fill(0)
 self.needs_redraw = True
 case (0x0, 0x0, 0xE, 0xE): # return from subrout
ine

 self.pc = self.stack.pop()
 jumped = True
 case (0x0, n1, n2, n3): # call program
 self.pc = concat_nibbles(n1, n2, n3) # go to
start
 # Clear registers
 self.delay_timer = 0
 self.sound_timer = 0
 self.v = array('B', [0] * 16)
 self.i = 0
 # Clear screen
 self.display_buffer.fill(0)
 self.needs_redraw = True
 jumped = True
 case (0x1, n1, n2, n3): # jump to address
 self.pc = concat_nibbles(n1, n2, n3)
 jumped = True
 case (0x2, n1, n2, n3): # call subroutine
 self.stack.append(self.pc + 2) # put return
place on stack
 self.pc = concat_nibbles(n1, n2, n3) # goto
subroutine
 jumped = True
 case (0x3, x, _, _): # conditional skip v[x] equ
al last2
 if self.v[x] == last2:
 self.pc += 4
 jumped = True
 case (0x4, x, _, _): # conditional skip v[x] not
equal last2
 if self.v[x] != last2:
 self.pc += 4
 jumped = True
 case (0x5, x, y, _): # conditional skip v[x] equ
al v[y]
 if self.v[x] == self.v[y]:
 self.pc += 4
 jumped = True
 case (0x6, x, _, _): # set v[x] to last2
 self.v[x] = last2

 case (0x7, x, _, _): # add last2 to v[x]
 self.v[x] = (self.v[x] + last2) % 256
 case (0x8, x, y, 0x0): # set v[x] to v[y]
 self.v[x] = self.v[y]
 case (0x8, x, y, 0x1): # set v[x] to v[x] | v[y]
 self.v[x] |= self.v[y]
 case (0x8, x, y, 0x2): # set v[x] to v[x] & v[y]
 self.v[x] &= self.v[y]
 case (0x8, x, y, 0x3): # set v[x] to v[x] ^ v[y]
 self.v[x] ^= self.v[y]
 case (0x8, x, y, 0x4): # add with carry flag
 try:
 self.v[x] += self.v[y]
 self.v[0xF] = 0 # indicate no carry flag
 except OverflowError:
 self.v[x] = (self.v[x] + self.v[y]) % 25
6
 self.v[0xF] = 1 # set carry flag
 case (0x8, x, y, 0x5): # subtract with borrow fl
ag
 try:
 self.v[x] -= self.v[y]
 self.v[0xF] = 1 # indicate no borrow (ye
s, weird it's 1)
 except OverflowError:
 self.v[x] = (self.v[x] - self.v[y]) % 25
6
 self.v[0xF] = 0 # indicates there was a
borrow
 case (0x8, x, _, 0x6): # v[x] >> 1 v[f] = least
significant bit
 self.v[0xF] = self.v[x] & 0x1
 self.v[x] >>= 1
 case (0x8, x, y, 0x7): # subtract with borrow fl
ag (y - x in x)
 try:
 self.v[x] = self.v[y] - self.v[x]
 self.v[0xF] = 1 # indicate no borrow (ye
s, weird it's 1)
 except OverflowError:

 self.v[x] = (self.v[y] - self.v[x]) % 25
6
 self.v[0xF] = 0 # indicates there was a
borrow
 case (0x8, x, _, 0xE): # v[x] << 1 v[f] = most s
ignificant bit
 self.v[0xF] = (self.v[x] & 0b10000000) >> 7
 self.v[x] = (self.v[x] << 1) & 0xFF
 case (0x9, x, y, 0x0): # conditional skip if v
[x] != v[y]
 if self.v[x] != self.v[y]:
 self.pc += 4
 jumped = True
 case (0xA, n1, n2, n3): # set i to address n1n2n
3
 self.i = concat_nibbles(n1, n2, n3)
 case (0xB, n1, n2, n3): # jump to n1n2n3 + v[0]
 self.pc = concat_nibbles(n1, n2, n3) + self.
v[0]
 jumped = True
 case (0xC, x, _, _): # v[x] = random number (0-2
55) & last2
 self.v[x] = last2 & randint(0, 255)
 case (0xD, x, y, n): # draw sprite at (vx, vy) t
hat's n high
 self.draw_sprite(self.v[x], self.v[y], n)
 self.needs_redraw = True
 case (0xE, x, 0x9, 0xE): # conditional skip if k
eys(v[x])
 if self.keys[self.v[x]]:
 self.pc += 4
 jumped = True
 case (0xE, x, 0xA, 0x1): # conditional skip if n
ot keys(v[x])
 if not self.keys[self.v[x]]:
 self.pc += 4
 jumped = True
 case (0xF, x, 0x0, 0x7): # set v[x] to delay_tim
er
 self.v[x] = self.delay_timer

 case (0xF, x, 0x0, 0xA): # wait until next key t
hen store in v[x]
 # Wait here for the next key then continue
 while True:
 event = pygame.event.wait()
 if event.type == pygame.QUIT:
 sys.exit()
 if event.type == pygame.KEYDOWN:
 key_name = pygame.key.name(event.ke
y)
 if key_name in ALLOWED_KEYS:
 self.v[x] = ALLOWED_KEYS.index(k
ey_name)
 break
 case (0xF, x, 0x1, 0x5): # set delay_timer to v
[x]
 self.delay_timer = self.v[x]
 case (0xF, x, 0x1, 0x8): # set sound_timer to v
[x]
 self.sound_timer = self.v[x]
 case (0xF, x, 0x1, 0xE): # add vx to i
 self.i += self.v[x]
 case (0xF, x, 0x2, 0x9): # set i to location of
character v[x]
 self.i = self.v[x] * 5 # built-in font set i
s 5 bytes apart
 case (0xF, x, 0x3, 0x3): # store BCD at v[x] in
i, i+1, i+2
 self.ram[self.i] = self.v[x] // 100 # 100s d
igit
 self.ram[self.i + 1] = (self.v[x] % 100) //
10 # 10s digit
 self.ram[self.i + 2] = (self.v[x] % 100) % 1
0 # 1s digit
 case (0xF, x, 0x5, 0x5): # reg dump v0 to vx sta
rting at i
 for r in range(0, x + 1):
 self.ram[self.i + r] = self.v[r]
 case (0xF, x, 0x6, 0x5): # store i through i+r i
n v0 through vr

 for r in range(0, x + 1):
 self.v[r] = self.ram[self.i + r]
 case _:
 print(f"Unknown opcode {(hex(first), hex(sec
ond),
 hex(third), hex(fou
rth))}!")

 if not jumped:
 self.pc += 2 # increment program counter

At the end of step(), we increment the program counterif we didn’t jump. This ensures that we’ll have moved on tothe next instruction the next time step() is called. Sinceeach CHIP-8 instruction is 2 bytes long, the programcounter is incremented by 2. If there was a jump, thenexecution was directly moved to a specific differentinstruction somewhere else in memory.
Testing the VMThe most granular way to test the VM would be to write ourown unit tests for each of the instructions. For each test,we would try running an instruction and then verify thatthe subsequent internal state of the VM was correct. Whilethis would be ideal, in the interests of time and space we’llinstead do something more akin to integration tests: we’llsee how our VM performs running real CHIP-8 programs.Do they run correctly?As it happens, there are even test ROMs that offer akind of one-stop shop for testing a CHIP-8 VM. Two suchtest ROMs are included in the Chip8/Tests subdirectory ofthe book’s source code repository. Both test ROMs werereleased under open licenses by their developers, and thoselicenses are included in the subdirectories. Let’s run thefirst test ROM from the repository’s home directory:

% python3 -m Chip8 Chip8/Tests/chip8-test-rom/test_opcode.ch
8

If the VM is working correctly, you should see a screenof OKs, as shown in Figure 5-2.

Figure 5-2: Running the first test ROM

Now let’s check our work with the second test ROM:
% python3 -m Chip8 Chip8/Tests/chip8-test-rom-2/chip8-test-r
om.ch8

This one just displays OK a single time in the upper-leftcorner (see Figure 5-3).

Figure 5-3: Running the second test ROM

These tests aren’t comprehensive, but they’re a goodstarting point. Now it’s time for the ultimate integrationtests: Can our VM accurately play games?

Playing GamesThe Chip8/Games subdirectory of the book’s repositorycontains a selection of CHIP-8 ROMs that have been placedinto the public domain. If you find the control schemes ofsome of them a bit unwieldy, consider changing the defaultkey bindings. Right now, ALLOWED_KEYS are read directly fromtheir respective keys, so an A in the VM is the A key on thekeyboard. The systems these were played on could havequite different key layouts, though, so a different schememight be better for some of the games.Most of the games are quite simple, which makes sensegiven the constraints of the hardware the VM wasoriginally meant to run on. There are clones of populargames for more capable systems. First we have BLINKY, akind of Pac-Man clone (Figure 5-4).

Figure 5-4: The BLINKY game running on the VM

INVADERS is a clone of Space Invaders (Figure 5-5).

Figure 5-5: The INVADERS game running on the VM

VBRIX is a vertical form of Breakout (Figure 5-6).

Figure 5-6: The VBRIX game running on the VM

And then there’s PONG (Figure 5-7).

Figure 5-7: The PONG game running on the VM

There are several more games for you to check outbundled with the source code repository. Note the filesizes: most of these games are 500 bytes or less! Thelargest, BLINKY, is just 2KB.
CODE MEETS LIFE

I was always interested in developing my own emulator, but I didn’t
feel confident enough to build one until well into my programming life.
When I started researching how to write an emulator, the standard
advice I found was to first try writing a CHIP-8 VM since doing so is
easier than writing almost any emulator but requires all the same
elements (handling opcodes, simulating memory and registers,
graphics, and so on).

I found an online tutorial that was reasonably good. I decided that
I wanted to make it a little more challenging, though, so I developed

my initial CHIP-8 VM in the then-new language Swift, which I was
doing a lot of my professional work in at the time. It was a weekend
project, the launching point that I needed to get started developing
emulators.

Real-World ApplicationsVMs are ubiquitous in both historical and modern softwaredevelopment. Their chief advantage is portability. Aprogram written for a VM will run on any platform that hasan implementation of that VM. VMs also provideinfrastructure that reduces the burden on a languageauthor by eliminating the need to implement commonlanguage runtime features like garbage collection.An early example was the compilation of Pascal by somecompilers in the 1970s and 1980s to so-called p-code (atype of bytecode) that would run on a p-code VM. Twoprominent modern VM environments are the JVM,mentioned earlier in this chapter, and Microsoft’scompeting Common Language Runtime (CLR), which ispart of its .NET platform. Both the JVM and CLR aretargeted by multiple popular programming languages. Forexample, C#, F#, and Visual Basic are languages thatcommonly target the CLR, but there are alsoimplementations of popular languages like Python andSwift for the CLR.Why do these language implementations compile intobytecode for the CLR instead of machine code? Oncecompiled, that bytecode can run on any platform that hasan installed CLR. That’s a kind of instant portability post-compilation. In addition, a sophisticated VM like the CLRwill provide language services like garbage collection,multithreading, and security mechanisms. Finally, when aVM like the CLR just-in-time (JIT) compiles intermediatecode into machine code, it will apply optimizations that thelanguage author doesn’t need to think about.

Beyond abstract machines utilized as languageruntimes, the term virtual machine is also confusingly usedto refer to a whole hardware implementation in software—in other words, an emulator. Building an emulator is thesubject of the next chapter.
Exercises  1.  Try measuring the performance of the main opcodeinterpreter code using three different methodologies:the already implemented match statement, a series of

if...elif statements, and a jump table. Determinewhich method is fastest using either a profiler or asimple timer. You may need to turn off the timing codein the main run loop in order to do this, or you may dothis using a set of unit tests.  2.  There’s a slightly extended version of CHIP-8, known asSCHIP (Super-Chip). It requires implementing a fewmore opcodes and changing a few elements of theoriginal CHIP-8 VM, such as its resolution. Look updocumentation for SCHIP and try turning our CHIP-8VM into an SCHIP VM. Then, try playing some SCHIPgames!  3.  Try writing a very simple game that just displays acouple letters on the screen using CHIP-8’s machinecode instructions. You’ll need a hex editor to do this. It’sgratifying to see binary code you wrote running in a VMyou understand.
Notes  1.  Joe Weisbecker, “A Practical, Low-Cost, Home/SchoolMicroprocessor System,” Computer 7, no. 08 (August1974): 20–31.  2.  Katianne Williams, “Joyce Weisbecker: The First IndieGame Developer,” IEEE Women in Engineering

Magazine 16, no. 2 (December 2022): 15–20,doi:10.1109/MWIE.2022.3203181.  3.  RCA COSMAC VIP CDP18S711 Instruction Manual(RCA Corporation, 1978).  4.  RCA COSMAC VIP CDP18S711 Instruction Manual(RCA Corporation, 1978).  5.  RCA COSMAC VIP CDP18S711 Instruction Manual(RCA Corporation, 1978).

6
EMULATING THE NES GAME CONSOLE

In this chapter, we’ll build alimited emulator for a beloved1980s video game console, the NintendoEntertainment System (NES). In otherwords, we’ll create a piece of softwarethat pretends to be NES hardware so thatsoftware written for the NES can be“fooled” into running on a modernplatform. Building this project providesexperience with emulating a fullcomputer system. While the NES is arelatively simple computer, it features allthe same basic components(microprocessor, memory, graphics, andso on) that more complex emulationprojects do. And unlike CHIP-8 in Chapter5, we’ll be emulating more than just a

software specification—we’ll besimulating real hardware!Our emulator won’t be a 100 percent accuratereimplementation of the original hardware. We’ll makeseveral simplifications to make building the emulatormanageable in one book chapter. Despite thesesimplifications, our emulator will still be capable of playingsome basic NES games, including a few hobbyist free andopen source games that are included in the book’s sourcecode repository. We won’t be testing our emulator with anycommercial games, although it will be capable of playingsome simple ones. Our motivation is to learn aboutemulators, not to achieve full game compatibility. I’ll leaveit as an exercise for the reader to further enhance theemulator’s game compatibility.We’ll build the emulator in pure Python, which at thetime of writing isn’t fast enough on a modern PC to emulatethe NES at full speed. The code we produce can beenhanced with Cython, C extensions, or other kinds ofnative-code layers to run at full speed. This, too, will be leftas an exercise for the reader.This is the most challenging project in the book. Iassume in this chapter that you already have theexperience of completing the projects in Chapters 1, 2, andespecially 5. You should at least complete the CHIP-8project from Chapter 5 before beginning this chapter, butconcepts explained in almost all the prior chapters show upin this project.
WARNING
If you have legal concerns about completing this project,
research the laws where you live or consult a lawyer. Note
that the information used to develop the NES emulator in
this chapter isn’t based on any proprietary Nintendo

documents. Keep in mind that most ROM files for
commercial games are protected by copyright law. There’s
no need to download any protected ROM files to test your
emulator, as the book’s source code repository includes
several noncommercial ROMs that are under open source
licenses or released into the public domain.

About the NESThe NES was one of the best-selling video game consoles ofall time. First released in Japan in 1983 as the Famicom,the NES captivated a global generation of gamers with its1985 international release.1 At the time of its debut, thevideo game industry was only about a decade old. Themicroprocessors and other hardware in video gameconsoles were still quite primitive. Despite this, the NESmanaged 60 FPS of colorful sprites and backgrounds,played catchy chip tune music, and was the host platformfor some of the most iconic games of all time.
NOTE
Many of the hardware specifications for the NES and much
of the information about its functionality that I present in
this chapter come from NesDev, a community of NES
homebrew developers and emulator writers that exists athttps://www.nesdev.org. While I think this chapter is the
best overview and tutorial about how to write an NES
emulator, I strongly recommend checking out the NesDev
website for the details. In lieu of a large corpus of citations
of the site, I’m presenting you with this prominent note. In
addition, several of the images in this chapter also came
from NesDev and were released into the public domain, as
noted on the copyright page of this book. Thank you to the
folks at NesDev for being such a fantastic resource and

https://www.nesdev.org/

releasing so much reference material into the public
domain.

The HardwareThe central processing unit (CPU) in the NES was a cloneof the MOS Technology 6502 microprocessor,manufactured by Ricoh, running at just below 2 MHz. The6502 is the same microprocessor that was in popular homecomputers of the time, such as the Apple II and theCommodore 64. Built out of around 3,500 transistors, the6502 was a particularly simple microprocessor; forexample, it lacked instructions for multiplication anddivision.2 Those arithmetic operations had to beimplemented in software out of many simpler instructionslike addition, subtraction, and bit shifts. When you thinkabout just how slow and simple the 6502 was compared toa modern microprocessor, it’s incredible what wasaccomplished with it.The 6502 on the NES was combined with an audio chipin the same package. In NES development parlance, thischip is known as the audio processing unit (APU). The APUsupported five different channels of sound. To keep thingssimple, we won’t implement the APU in our emulator. Whenimplementing audio, timing is critical, and our emulatorwon’t be timing accurate.The NES’s CPU could access 2KB of built-in RAM in themachine. Yes, you read that correctly. The working memoryof the NES’s CPU was just 2KB, not even enough memoryto store the text of this section of this chapter. It’s also lessRAM than CHIP-8 systems typically had, which came out inthe prior decade. Some cartridges included additionalRAM.The key to the NES’s performance was the picture
processing unit (PPU), manufactured by Ricoh as the 2C02,based on an earlier design by Texas Instruments. The PPU

not only could output tiled background graphics, but alsohad built-in support for sprites. It featured 2KB of memoryfor background tile information, 256 bytes of memory forkeeping track of up to 64 sprites, and 28 bytes to hold colorpalette information. The NES supported 54 different colors,but only 25 could be used at the same time. The PPU evenhad some primitive support for collision detection.The CPU communicated with the APU and PPU via
memory-mapped hardware registers. These are particularmemory addresses that, when written to, may modify theoperation of the other hardware chip or, when read, willprovide an update on the other chip’s current flags orstatus. For instance, the CPU may write data to a PPUregister to change the location of a sprite. Later, it mayread from a different PPU register to see if the spritecollided with anything. The CPU also has memory-mappedregisters for reading from the game controllers.Let me make this concept of a memory-mapped registerconcrete with an example. When a game needs to check thestatus of the first joypad (player 1’s controller), it uses amemory-mapped register. That register is at memoryaddress 0x4016. If the game reads from 0x4016, it getsback 1 byte that indicates if a particular button on thejoypad is pressed. Memory address 0x4016 can’t be usedfor anything else; it’s hooked up in hardware to linescoming from the joypad. To work properly, our emulatorwill need to do the right thing when several of these specialmemory addresses are either read or written to. Some areread-only, some are write-only, and some can be read orwritten. These are the memory-mapped hardware registers.The other key piece of NES hardware was the gamecartridges. Game cartridges, especially the early ones,mainly consisted of a large ROM chip containing thegraphics and program code for a game. Game cartridgescould also have RAM (sometimes backed by a battery so

that game states could be saved), simple logic chips, andeven so-called bank switching to allow for more totalmemory (RAM + ROM) than the 6502 could address in itsdefault configuration. That 2KB of RAM figure is thereforeslightly misleading because the program’s code wouldreside on the ROM cartridge rather than in the gameconsole’s limited memory. Instead, that 2KB of memorycould be used almost exclusively for holding onto state.Early game cartridges typically consisted of 24KB to 40KBof ROM, while later game cartridges may have hadsomething like 128KB of ROM and 8KB of RAM. The largestmainstream cartridge for the NES featured 768KB ofmemory.3
The SoftwareThe NES had no BIOS or operating system. The bare NEShardware had no software that came with it. All softwarewas provided by the game cartridges. The programs on thegame cartridges would directly control the CPU, PPU, andAPU, with no layers of abstraction between them and thehardware.NES games were typically written in 6502 assemblylanguage. That may sound hardcore, but it was typical forthe era; most programs that needed to be highperformance on personal computers or gaming consoleswere programmed in assembly language through to theearly 1990s. Beyond an assembler, development tools wereoften built in-house. There was no NES Game Maker thatone could download.In fact, this was an era before downloads were a thingat all. The NES was a couple of console generations beforeany kind of internet connectivity existed. The firstmainstream console with a built-in modem was the SegaDreamcast, which came out in the late 1990s. Whatshipped on an NES cartridge was the final version of thegame; there would be no updates. If there was a bug, then

there was a bug, so games had to be near perfect forversion 1.0. Contrast that with the typical game youpurchase today, where developers are often working on thefirst major patch before the game has even been released.Back then, a whole other level of attention to detail wasrequired, but on the other hand, the games were much lesscomplex than they are today.It’s amazing to think that in this primitive environment,some of the most influential and genre-defining games ofall time were developed. The technical aptitude required ofthe programmers on the teams was in a very different nichethan what game developers occupy today. Most gamestoday are built using prepacked frameworks or engines likeUnreal or Unity. Developers can spend most of their timewriting game-specific mechanics. NES developers had towrite their own engines in assembly. They had to directlymanage the APU to play every sound and the PPU to showevery graphic, and they had to squeeze every cycle out ofthe CPU to get anything done. Larger companies built theirown internal frameworks and tooling that could be reusedfrom title to title, but programmers were still working at arelatively low level.
Building the EmulatorIt’s time to write some code. Before we do, though, a noteabout direction and managing expectations: the emulatorwe’re writing has been simplified at every corner. Asmentioned earlier, it won’t be compatible with manygames, due to a very simplified PPU. It also won’t have anysound, since we aren’t implementing the APU. And it won’trun fast enough to play games at their intended speed. Itwill, however, run real games, and they’ll be playable. Ourwork here will also provide a firm foundation for makingimprovements and adding more features if you so choose.

Planning the StructureThe general plan for the emulator’s execution isn’tdissimilar to that of the CHIP-8 VM from Chapter 5. Likewith CHIP-8, we’ll read each instruction one at a time fromthe ROM file and interpret it. Like with CHIP-8, we’ll usePygame to display graphics and handle user input. Likewith CHIP-8, we’ll have one big loop that fetches eachinstruction and responds to each event. However, thestructure of the code will be more sophisticated. Inparticular, we’ll divide the emulator into three classes,each representing one physical component of thehardware. We’ll have classes for the CPU, the PPU, and thecartridge. Here’s a breakdown of each file we’ll write andits purpose:
__main__.py   Handles command line arguments andimplements the main emulator loop, which dispatchesinstructions, displays graphics, and responds to userinput.
rom.py   Reads a ROM file and pretends to be acartridge.
cpu.py   Maintains CPU state, interprets instructions,and handles main memory accesses.
ppu.py   Manages PPU state and draws backgroundsand sprites.We’ll tackle these files in the order listed here.

Creating the Main LoopOur main file (__main__.py) is where the variouscomponents of the system (CPU, PPU, cartridge) cometogether. Its “run loop” gives the emulator life by keepingeverything moving forward and coordinating between thedifferent components, delegating to Pygame as needed todisplay graphics and read user input. The run() function

receives a ROM object and the name of the ROM file asarguments. In our first snippet, we initialize Pygame, get awindow on the screen, and create CPU and PPU objects:
NESEmulator/__main__.py

import sys
from argparse import ArgumentParser
from NESEmulator.rom import ROM
from NESEmulator.ppu import PPU, NES_WIDTH, NES_HEIGHT
from NESEmulator.cpu import CPU
import pygame
from timeit import default_timer as timer
import os

def run(rom: ROM, name: str):
 pygame.init()
 screen = pygame.display.set_mode((NES_WIDTH, NES_HEIGH
T), 0, 24)
 pygame.display.set_caption(f"NES Emulator - {os.path.bas
ename(name)}")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 ticks = 0
 start = None

As the calls to their constructors indicate, both the PPUand the CPU need to access the ROM. The CPU needs toread program instructions, and the PPU needs to readgraphical data. The CPU also needs to access the PPUbecause when certain memory addresses are read orwritten, they’re really proxies for PPU registers.The ticks variable keeps track of how many cycles theCPU has run. For every CPU cycle, the PPU runs exactlythree. In other words, the PPU is clocked three times fasterthan the CPU, so while the CPU is about 1.8 MHz, the PPUis about 5.4 MHz. Our code will need to simulate this, so inthe next snippet, which is the main game loop, we keep

track of how many cycles (or ticks) each CPU instructiontakes (different instructions require different numbers ofcycles) and then run the PPU for three times that numberof cycles:
 while True:
 cpu.step()
 new_ticks = cpu.cpu_ticks - ticks
 # 3 PPU cycles for every CPU tick
 for _ in range(new_ticks * 3):
 ppu.step()
 # Draw, once per frame, everything onto the screen
 if (ppu.scanline == 240) and (ppu.cycle == 257): ❶
 pygame.surfarray.blit_array(screen, ppu.display_
buffer)
 pygame.display.flip()
 end = timer()
 if start is not None:
 print(end - start)
 start = timer()
 if (ppu.scanline == 241) and (ppu.cycle == 2) and pp
u.generate_nmi:
 cpu.trigger_NMI() ❷
 ticks += new_ticks

At the end of every frame, the graphics that the usersees are updated via the same Pygame methods that weused in Chapter 5. But how do we know a frame is over?The NES had a resolution of 256 pixels wide by 240 pixelshigh. Each row of pixels is known as a scanline, a term thatcomes from the cathode ray tube (CRT) televisions that theNES would be hooked up to. On the real NES, a single pixelwould be updated with each PPU cycle. Because the PPUruns at three times the speed of the CPU (5.4 MHz versus1.8 MHz), for every CPU cycle, the PPU draws three dots.When we get to the 257th dot on the 240th scanline, weshould therefore be done with one frame ❶.

Highly accurate NES emulators simulate the realhardware’s behavior by doing what the PPU is supposed todo every cycle: figuring out the color of the next dot. Weuse a much simpler technique of just drawing all thecorrect tiles and sprites in the right places once per frame.In other words, instead of thinking about one dot everycycle, we just think about what the whole screen issupposed to look like once per frame. While this techniqueis faster and doesn’t require us to emulate as many detailsabout the PPU’s internal workings, it won’t work with everygame. More advanced NES games will make changes to thegraphics even while a frame is being drawn to the screen(that is, between scanlines or even between dots).Note that the PPU actually does additional processingbetween scanlines. This period is known as hblank. Moreimportant, the PPU has additional off-screen scanlines (itgoes all the way up to scanline 261, counting the first asscanline 0). The time during the processing of theseadditional not-rendered scanlines is known as vblank.During vblank, it’s safe for the CPU to modify any of thePPU’s memory, since the PPU’s memory isn’t actively beingaccessed to render visible scanlines. The PPU sends asignal to the CPU when vblank begins (after it’s done withall the visible scanlines) for this purpose ❷. The signal is atype of non-maskable interrupt (NMI).Think of an NMI as an interruption to a program thatcan’t be stopped. In other words, it’s a signal that says tothe microprocessor, “Stop what you’re doing immediately,because we’re doing this other thing now.” In the case ofthe NES, the other thing is updating the game’s graphicaldisplay. Every NES game has an NMI handler that updatesthe game’s graphics during vblank.The rest of the loop just handles events:

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 sys.exit()
 # Handle keyboard events as joypad changes
 if event.type not in {pygame.KEYDOWN, pygame.KEYUP}:
 continue
 is_keydown = event.type == pygame.KEYDOWN
 match event.key:
 case pygame.K_LEFT:
 cpu.joypad1.left = is_keydown
 case pygame.K_RIGHT:
 cpu.joypad1.right = is_keydown
 case pygame.K_UP:
 cpu.joypad1.up = is_keydown
 case pygame.K_DOWN:
 cpu.joypad1.down = is_keydown
 case pygame.K_x:
 cpu.joypad1.a = is_keydown
 case pygame.K_z:
 cpu.joypad1.b = is_keydown
 case pygame.K_s:
 cpu.joypad1.start = is_keydown
 case pygame.K_a:
 cpu.joypad1.select = is_keydown

if __name__ == "__main__":
 # Parse the file argument
 file_parser = ArgumentParser("NESEmulator")
 file_parser.add_argument("rom_file",
 help="An NES game file in iNES
format.")
 arguments = file_parser.parse_args()
 game = ROM(arguments.rom_file)
 run(game, arguments.rom_file)

We recognize certain keys being pressed as equivalentsof buttons on an NES joypad. We mark the buttons that arepressed so that the CPU can read them. Our main file

finishes by handling a command line argument to read aROM file. The actual reading is done by the ROM class, whichwe’ll come to next.
Emulating the CartridgeNES game cartridges were mainly composed of ROM chipsin a plastic shell. Those ROM chips held the game’s codeand graphical assets. The code was in a ROM chip knownas the PRG ROM, and the graphics were in a ROM chipknown as the CHR ROM. While cartridges were mainlycomposed of ROM chips, they could also have quite a bitmore. As hinted earlier, one of the most commonenhancements were logic chips that enabled bank
switching, a technique for having more ROM than the NEScould typically address, but switched in a scheme so thatthe program could access a particular memory-mappedaddress and say, “I’m done with the first 8KB of CHR ROM,please switch my memory reads to be from the next 8KB.”Some cartridges went even further by providingadditional RAM to supplement the main CPU’s measly 2KB.This is known as PRG RAM. Some cartridges even hadbatteries so that the RAM’s content wouldn’t get erasedwhen the console was turned off. There was no other wayto permanently store user data on the NES, since there wasno disk. Battery-backed RAM enabled longer games.Nobody wants to play a 40-hour game if their progress isgoing to be erased after they shut down their console.The longer the NES was on the market, the moresophisticated the cartridges got. The same advancedcartridge designs would be manufactured for reuse acrossmany games. As an emulator author, to support all gamesyou need to support all of the different chipsets thatcartridges could contain. However, there were a fewparticularly popular chipset designs that account for themajority of all games.

Each of these cartridge chipset designs is known in theNES emulator world as a mapper because the main use ofcartridge chipsets was for switching between differentmemory banks, which in programming parlance can bethought of as mapping an address to a bank. One of thefirst NES emulators developed, iNES by Marat Fayzullin,4defined a numbering scheme for the many mappers. Inaddition, iNES defined a ROM file format that’s used byalmost all NES emulators today.Unlike CHIP-8, which has ROM files that just consist ofthe raw game’s memory, the NES requires a moresophisticated file format due to the variability of its gamecartridges. In particular, the iNES format defines a headerthat we must pay attention to when reading a ROM file.Luckily, we have past experience with headers thanks toour work with the MacBinary header in Chapter 3. Theheader of the iNES file format is defined in Table 6-1.5

Table 6-1: iNES File Format Header
Bytes Description

0–3 Constant 0x4E45531A (ASCII “NES” followed by MS-DOS end-of-file)

4 Size of PRG ROM in 16KB units

5 Size of CHR ROM in 8KB units (value 0 means the board uses CHR
RAM)

6 Flags 6: mapper, mirroring, battery, trainer

7 Flags 7: mapper, VS/Playchoice, NES 2.0

8 Flags 8: PRG RAM size (rarely used extension)

9 Flags 9: TV system (rarely used extension)

10 Flags 10: TV system, PRG RAM presence (unofficial, rarely used
extension)

Bytes Description

11–15 Unused padding (should be filled with zeros, but some rippers put
their name here)

As you can see, part of the header defines the mappernumber of the game. Each flags byte can contain multipleindividual flag bits, which is why some of the descriptionslist multiple things. Our emulator won’t make use of any ofthe information in flags 8, 9, or 10.
NOTE
The iNES file format has been extended by a newer format
known as NES 2.0. Much of the iNES header fields are still
valid in NES 2.0, with additional information in bytes 11
through 15 and some changes to the flags bytes.The emulator we build in this chapter is only capable ofplaying games using the simplest mapper, mapper 0,known as NROM. NROM cartridges feature no bankswitching, so they’re the easiest to emulate. An NROMcartridge will always have either 16KB or 32KB of PRGROM and 8KB of CHR ROM. It can optionally have PRGRAM.In our code, we define a namedtuple called Header to holdthe contents of the ROM file’s header, as well as declaringsome standard constants:

NESEmulator/rom.py

from pathlib import Path
from struct import unpack
from collections import namedtuple
from array import array

Header = namedtuple("Header", "signature prg_rom_size chr_ro
m_size "

 "flags6 flags7 flags8 flags9 f
lags10 unused")
HEADER_SIZE = 16
TRAINER_SIZE = 512
PRG_ROM_BASE_UNIT_SIZE = 16384
CHR_ROM_BASE_UNIT_SIZE = 8192
PRG_RAM_SIZE = 8192

The constructor of the ROM class first utilizes the unpack()function from the struct standard library module to readthe header from the ROM file and distribute it intoappropriately sized fields, specified by a format string:
class ROM:
 def __init__(self, file_name: str | Path):
 with open(file_name, "rb") as file:
 # Read header and check signature "NES"
 self.header = Header._make(unpack("!LBBBBBBB5s",
 file.read(HEADER_S
IZE)))

The ._make() class method on namedtuple can be used toconstruct an instance of that namedtuple out of an iterable,like the one we get back from unpack(). The specific itemtypes in the unpack() format string are listed in Table 6-2.Each item in the format string corresponds to a headerelement from Table 6-1. For more details on the formatstring, see the struct module’s documentation at https://
docs.python.org/3/library/struct.html#struct-format-
strings.
Table 6-2: Format String Characters for the struct Module

Item
of
bytes C type

Python
type

! N/A Indicates what follows is in big-endian
format

N/A

https://docs.python.org/3/library/struct.html#struct-format-strings

Item
of
bytes C type

Python
type

L 4 unsigned long int

B 1 unsigned char int

5s 5 char[] bytes

After this wrangling, self.header contains the properpieces of the iNES header in nicely labeled segments. Next,we check a couple pieces of information from the header:
 if self.header.signature != 0x4E45531A:
 print("Invalid ROM Header Signature")
 else:
 print("Valid ROM Header Signature")
 # Untangle Mapper - one nibble in flags6 and one nib
ble in flags7
 self.mapper = (self.header.flags7 & 0xF0) | (
 (self.header.flags6 & 0xF0) >> 4)
 print(f"Mapper {self.mapper}")
 if self.mapper != 0:
 print("Invalid Mapper: Only Mapper 0 is Implemen
ted")

Every iNES header is supposed to begin with the same4-byte signature. Meanwhile, the mapper number isconstructed from part of flags 7 and 8. Our emulator onlyworks with games that use mapper 0.Here’s the rest of the constructor:
 self.read_cartridge = self.read_mapper0
 self.write_cartridge = self.write_mapper0
 # Check if there's a trainer (4th bit flags6) and re
ad it
 self.has_trainer = bool(self.header.flags6 & 4)
 if self.has_trainer:

 self.trainer_data = file.read(TRAINER_SIZE)
 # Check mirroring from flags6 bit 0
 self.vertical_mirroring = bool(self.header.flags6 &
1)
 print(f"Has vertical mirroring {self.vertical_mirror
ing}")
 # Read PRG_ROM & CHR_ROM, in multiples of 16K and 8
K, respectively
 self.prg_rom = file.read(PRG_ROM_BASE_UNIT_SIZE *
 self.header.prg_rom_size)
 self.chr_rom = file.read(CHR_ROM_BASE_UNIT_SIZE *
 self.header.chr_rom_size)
 self.prg_ram = array('B', [0] * PRG_RAM_SIZE) # RAM

This code is concerned with setting up other propertiesof the game cartridge. How do we read and write from it(this can differ by the mapper, although we only supportmapper 0)? Does it have a trainer (an esoteric feature thatwe’ll ignore)? Does it utilize a particular type of mirroringfor the graphics? Finally, based on sizes indicated by theheader, the appropriate amount of data for the PRG ROM,CHR ROM, and (optionally) PRG RAM is read.Notice how read_cartridge and write_cartridge areassigned as aliases for the read_mapper0() and write_mapper0()methods. If we supported more than one mapper, we wouldhandle this differently. As it stands, here are the definitionsfor the mapper 0 methods:
 def read_mapper0(self, address: int) -> int:
 if address < 0x2000:
 return self.chr_rom[address]
 elif 0x6000 <= address < 0x8000:
 return self.prg_ram[address % PRG_RAM_SIZE]
 elif address >= 0x8000:
 if self.header.prg_rom_size > 1:
 return self.prg_rom[address - 0x8000]
 else:
 return self.prg_rom[(address - 0x8000) % PRG

_ROM_BASE_UNIT_SIZE]
 else:
 raise LookupError(f"Tried to read at invalid add
ress {address:X}")

 def write_mapper0(self, address: int, value: int):
 if address >= 0x6000:
 self.prg_ram[address % PRG_RAM_SIZE] = value

Looking at read_mapper0() you’ll note three distinct areasof memory on the cartridge. Addresses below 0x2000 aremapped to CHR ROM, which is directly accessed by thePPU. The CPU accesses PRG ROM with addresses greaterthan or equal to 0x8000, and it can read or write to PRGRAM (if the cartridge has any) with addresses greater thanor equal to 0x6000 but below 0x8000.That wraps up the cartridge portion of our code. Inshort, a ROM file is converted into areas of CHR ROM andPRG ROM that our PPU and CPU, respectively, can access.This is why both the PPU and CPU classes within our emulatorneed to be able to access the ROM class.
Emulating the CPUCPUs can ultimately be thought of as sophisticated finitestate machines. They maintain state in their registers andthe finite amount of memory they have access to. Theymake state transitions via the instructions they can handle.This insight accounts for the key work our CPU emulatorneeds to do: maintain registers, access memory, and modifyregisters and memory correctly based on instructions.The 6502 is one of the simplest CPU cores that everfound wide industry acceptance, and the version of the6502 in the NES is even simpler than a standard 6502. Itlacks instructions for BCD that most 6502s had. There areonly 56 different types of instructions that we need toimplement in order to have a working NES CPU, and many

of them can be implemented in just a couple lines of code.In addition, the 6502 has just three main registers (A, X, and
Y) along with a few specialized registers (SP, PC, and variousflags). The only real complexity in the 6502 comes from themultiple different memory access methods that the variousinstructions can utilize, but we’ll abstract them away in ahelper function.
The SetupThe code for our 6502 implementation begins by setting upsome helper constructs and constants:

NESEmulator/cpu.py

from __future__ import annotations
from enum import Enum
from dataclasses import dataclass
from array import array
from typing import Callable
from NESEmulator.ppu import PPU, SPR_RAM_SIZE
from NESEmulator.rom import ROM

MemMode = Enum("MemMode", "DUMMY ABSOLUTE ABSOLUTE_X ABSOLUT
E_Y ACCUMULATOR "
 "IMMEDIATE IMPLIED INDEXED_INDIREC
T INDIRECT "
 "INDIRECT_INDEXED RELATIVE ZEROPAG
E ZEROPAGE_X "
 "ZEROPAGE_Y")

InstructionType = Enum("InstructionType", "ADC AHX ALR ANC A
ND ARR ASL AXS "
 "BCC BCS BEQ BIT B
MI BNE BPL BRK "
 "BVC BVS CLC CLD C
LI CLV CMP CPX "
 "CPY DCP DEC DEX D
EY EOR INC INX "

 "INY ISC JMP JSR K
IL LAS LAX LDA "
 "LDX LDY LSR NOP O
RA PHA PHP PLA "
 "PLP RLA ROL ROR R
RA RTI RTS SAX "
 "SBC SEC SED SEI S
HX SHY SLO SRE "
 "STA STX STY TAS T
AX TAY TSX TXA "
 "TXS TYA XAA")

@dataclass(frozen=True)
class Instruction:
 type: InstructionType
 method: Callable[[Instruction, int], None]
 mode: MemMode
 length: int
 ticks: int
 page_ticks: int

@dataclass
class Joypad:
 strobe: bool = False
 read_count: int = 0
 a: bool = False
 b: bool = False
 select: bool = False
 start: bool = False
 up: bool = False
 down: bool = False
 left: bool = False
 right: bool = False

STACK_POINTER_RESET = 0xFD
STACK_START = 0x100
RESET_VECTOR = 0xFFFC
NMI_VECTOR = 0xFFFA

IRQ_BRK_VECTOR = 0xFFFE
MEM_SIZE = 2048

The MemMode enum lists all the various different memoryaccess schemes in the 6502. On some basicmicroprocessors, retrieving a byte from memory is assimple as specifying an address and getting back the bytestored there. For example, if I say “read 0x1940,” I getback whatever byte is stored in memory at address 0x1940.The 6502 can do this with its ABSOLUTE memory mode, but ithas other memory modes that are helpful in certainsituations. Some of these modes access memory addressesthat are calculated on the fly instead of being specifiedliterally. For example, mode ABSOLUTE_X adds the value in the
X register to the provided address and accesses theresulting memory location. In this mode, if we were toexecute the same instruction again after incrementing X,we’d automatically read the next byte in memory. Whenprogramming at a low level, this can be a real convenienceand even improve performance if the hardware is optimizedfor certain modes of access. We’ll discuss the NES memorymodes in more detail later in the chapter—thankfully, manyof them are quite similar to one another.The InstructionType enum lists all the different kinds ofinstructions that the 6502 can handle. Some of theseinstruction types are for BCD operations that, as mentionedearlier, the NES version of the 6502 didn’t have. Some ofthem are “unofficial” instruction types that weren’t actuallydocumented as part of the 6502 but were found to existthrough trial and error. Very few games use them. Theremaining 56 are the instruction types that we’ll actuallyimplement. We list all of the possible instruction types inthis enum—even the unimplemented ones—because we’llbe using an auto-generated table of all 256 possible 6502opcodes, and we want every entry in the table to have avalid instruction type value.

An Instruction refers to one of the 256 possible opcodesthat the 6502 could understand. Every instruction hasinformation about its type (type), its associated function inour program that handles it (method), its memory accessmode (mode), its expected number of bytes (length), thenumber of CPU cycles it takes to run (ticks), and theadditional number of cycles it takes to run if a memorypage is crossed while it executes (page_ticks). A memory
page is a portion of RAM that the memory controller canaccess any part of in quick succession to another part. Inthe 6502, memory pages are 256 bytes. If an instructioncrosses those 256-byte boundaries, it may take longer toexecute.The fact that every instruction has an associatedfunction to handle it is a hint that we’ll be using quite adifferent design than in the CHIP-8 project. For the CHIP-8VM, we used a giant match statement to process eachinstruction, but for the 6502 and its slightly more complexset of instructions, we’ll utilize a cleaner design. Instead ofswitching on every instruction, we’ll look it up in an arraybased on its opcode and then execute the associatedfunction. This kind of design is a variation on a commonpattern known as a jump table. In essence, we index into aninstructions array by opcode to find what function to jumpto. The Joypad class represents the state of a joypad duringprogram execution. The CPU can directly poll the joypadthrough a couple memory-mapped registers, so it seemedappropriate to put Joypad here in the cpu module. Recall thatour main loop sets the joypad’s state based on eventsdetected by Pygame.Here’s a breakdown of the remaining helper constantsin the previous code listing:

STACK_POINTER_RESET   The memory address that the CPU’sstack pointer initially points to.

STACK_START   Where the stack starts in memory, which isinterestingly a different address from
STACK_POINTER_RESET.
RESET_VECTOR   An address in memory that containsanother address in memory where program executionstarts. The PRG ROM of every NES game has some kindof kickoff code to get things going at the address listedat RESET_VECTOR.
NMI_VECTOR   The same thing as RESET_VECTOR but for NMIsand vblank. When a vblank hits, control will be movedto the address in memory listed at NMI_VECTOR.
IRQ_BRK_VECTOR   An address for a less commonly usedtype of interrupt that won’t factor into the games wetest with our program. It’s included here forcompleteness.
MEM_SIZE   The size, in bytes, of the main RAM that theNES CPU has access to.Next, let’s look at the beginning of our CPU class’sconstructor, which sets up its memory, registers, andconfigurable state variables:

class CPU:
 def __init__(self, ppu: PPU, rom: ROM):
 # Connections to Other Parts of the Console
 self.ppu: PPU = ppu
 self.rom: ROM = rom
 # Memory on the CPU
 self.ram = array('B', [0] * MEM_SIZE)
 # Registers
 self.A: int = 0
 self.X: int = 0
 self.Y: int = 0
 self.SP: int = STACK_POINTER_RESET
 self.PC: int = self.read_memory(RESET_VECTOR, MemMode.AB
SOLUTE) | \
 (self.read_memory(RESET_VECTOR + 1,

 MemMode.ABSOLUTE) <<
8)
 # Flags
 self.C: bool = False # Carry
 self.Z: bool = False # Zero
 self.I: bool = True # Interrupt disable
 self.D: bool = False # Decimal mode
 self.B: bool = False # Break command
 self.V: bool = False # oVerflow
 self.N: bool = False # Negative
 # Miscellaneous State
 self.jumped: bool = False
 self.page_crossed: bool = False
 self.cpu_ticks: int = 0
 self.stall: int = 0 # number of cycles to stall
 self.joypad1 = Joypad()

To better understand this setup code, let’s do a deepdive on the 6502’s registers. Table 6-3 lists all of them.
Table 6-3: 6502 Registers

Name
Size (in
bytes) Purpose

A 1 The main register used for arithmetic operations.
Sometimes known as the accumulator.

X 1 An index register, often used as a loop counter. It can also
be used as a general-purpose register, although not all
instructions work with it as they do with A.

Y 1 The same as X.

PC 2 The program counter, which keeps track of where in
memory the next instruction to execute resides. It’s 2 bytes
because the 6502 can address up to 64KB of memory
(without bank switching).

SP 1 The stack pointer, which keeps track of where on the stack
the program currently is. Since it’s only 1 byte, the stack
can hold a maximum of 256 bytes.

Name
Size (in
bytes) Purpose

P 1 The status or flags register. Its individual bits indicate
different things, such as something about an arithmetic
operation (is the result zero, for example?) or whether a
break happened or the interrupt is enabled (IRQ).

Since Python has only a single type for all integersregardless of size, we represent all of these registersexcept the flags with the int type. Instead of fiddling withthe individual bits for each of the flags in the statusregister, we divide them into separate Booleans using thelettered nomenclature common in 6502 documentation.These are the C, Z, I, D, B, V, and N member variables. Mostof them are set as a result of arithmetic operations, I is setwhen a program wants to not be interrupted by an IRQsignal, and B is set when flags are pushed to the stack aftera break instruction. The D flag, used for BCD code, isn’trelevant to the NES, since the NES doesn’t have BCDinstructions.The jumped variable keeps track of whether a jumpinstruction altered the PC register, and page_crossed is forbookkeeping when accessing memory across a memorypage, which, as discussed, can be more expensive thanaccessing memory close by. The NES CPU may need towait a certain number of cycles for some tasks to complete.This is the purpose of stall. In our emulator, it’s only usedwhen a direct memory access (DMA) transfer occurs tosend a bunch of data from main memory to object attributememory (OAM), where the PPU stores information aboutsprites.
The Jump TableNext, we’ll declare the jump table, the list containing all ofthe potential instructions that the 6502 can process. Sincethe 6502 uses 1-byte opcodes, and there are 256 possible

values for a byte, there are potentially 256 differentinstructions. Later, in our step() method, we’ll index intothis list to get the specific instruction and its correspondingfunction for a given opcode that we decode. We won’tactually implement every instruction (some are BCD orunofficial), so some are attached to a self.unimplemented()method.All 256 lines of the jump table are included here forcompleteness:
self.instructions = [
 Instruction(InstructionType.BRK, self.BRK, MemMode.IMPLI
ED, 1, 7, 0), # 00
 Instruction(InstructionType.ORA, self.ORA, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE, 2, 3, 0), # 04
 Instruction(InstructionType.ORA, self.ORA, MemMode.ZEROP
AGE, 2, 3, 0), # 05
 Instruction(InstructionType.ASL, self.ASL, MemMode.ZEROP
AGE, 2, 5, 0), # 06
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.PHP, self.PHP, MemMode.IMPLI
ED, 1, 3, 0), # 08
 Instruction(InstructionType.ORA, self.ORA, MemMode.IMMED
IATE, 2, 2, 0), # 09
 Instruction(InstructionType.ASL, self.ASL, MemMode.ACCUM
ULATOR, 1, 2, 0), # 0a
 Instruction(InstructionType.ANC, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE, 3, 4, 0), # 0c
 Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL

UTE, 3, 4, 0), # 0d
 Instruction(InstructionType.ASL, self.ASL, MemMode.ABSOL
UTE, 3, 6, 0), # 0e
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BPL, self.BPL, MemMode.RELAT
IVE, 2, 2, 1), # 10
 Instruction(InstructionType.ORA, self.ORA, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # 14
 Instruction(InstructionType.ORA, self.ORA, MemMode.ZEROP
AGE_X, 2, 4, 0), # 15
 Instruction(InstructionType.ASL, self.ASL, MemMode.ZEROP
AGE_X, 2, 6, 0), # 16
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.CLC, self.CLC, MemMode.IMPLI
ED, 1, 2, 0), # 18
 Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL
UTE_Y, 3, 4, 1), # 19
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # 1a
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # 1c
 Instruction(InstructionType.ORA, self.ORA, MemMode.ABSOL
UTE_X, 3, 4, 1), # 1d
 Instruction(InstructionType.ASL, self.ASL, MemMode.ABSOL
UTE_X, 3, 7, 0), # 1e
 Instruction(InstructionType.SLO, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
 Instruction(InstructionType.JSR, self.JSR, MemMode.ABSOL
UTE, 3, 6, 0), # 20
 Instruction(InstructionType.AND, self.AND, MemMode.INDEX

ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.BIT, self.BIT, MemMode.ZEROP
AGE, 2, 3, 0), # 24
 Instruction(InstructionType.AND, self.AND, MemMode.ZEROP
AGE, 2, 3, 0), # 25
 Instruction(InstructionType.ROL, self.ROL, MemMode.ZEROP
AGE, 2, 5, 0), # 26
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.PLP, self.PLP, MemMode.IMPLI
ED, 1, 4, 0), # 28
 Instruction(InstructionType.AND, self.AND, MemMode.IMMED
IATE, 2, 2, 0), # 29
 Instruction(InstructionType.ROL, self.ROL, MemMode.ACCUM
ULATOR, 1, 2, 0), # 2a
 Instruction(InstructionType.ANC, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.BIT, self.BIT, MemMode.ABSOL
UTE, 3, 4, 0), # 2c
 Instruction(InstructionType.AND, self.AND, MemMode.ABSOL
UTE, 3, 4, 0), # 2d
 Instruction(InstructionType.ROL, self.ROL, MemMode.ABSOL
UTE, 3, 6, 0), # 2e
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BMI, self.BMI, MemMode.RELAT
IVE, 2, 2, 1), # 30
 Instruction(InstructionType.AND, self.AND, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # 34
 Instruction(InstructionType.AND, self.AND, MemMode.ZEROP

AGE_X, 2, 4, 0), # 35
 Instruction(InstructionType.ROL, self.ROL, MemMode.ZEROP
AGE_X, 2, 6, 0), # 36
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.SEC, self.SEC, MemMode.IMPLI
ED, 1, 2, 0), # 38
 Instruction(InstructionType.AND, self.AND, MemMode.ABSOL
UTE_Y, 3, 4, 1), # 39
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # 3a
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # 3c
 Instruction(InstructionType.AND, self.AND, MemMode.ABSOL
UTE_X, 3, 4, 1), # 3d
 Instruction(InstructionType.ROL, self.ROL, MemMode.ABSOL
UTE_X, 3, 7, 0), # 3e
 Instruction(InstructionType.RLA, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
 Instruction(InstructionType.RTI, self.RTI, MemMode.IMPLI
ED, 1, 6, 0), # 40
 Instruction(InstructionType.EOR, self.EOR, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE, 2, 3, 0), # 44
 Instruction(InstructionType.EOR, self.EOR, MemMode.ZEROP
AGE, 2, 3, 0), # 45
 Instruction(InstructionType.LSR, self.LSR, MemMode.ZEROP
AGE, 2, 5, 0), # 46
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.PHA, self.PHA, MemMode.IMPLI
ED, 1, 3, 0), # 48
 Instruction(InstructionType.EOR, self.EOR, MemMode.IMMED

IATE, 2, 2, 0), # 49
 Instruction(InstructionType.LSR, self.LSR, MemMode.ACCUM
ULATOR, 1, 2, 0),
 Instruction(InstructionType.ALR, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.JMP, self.JMP, MemMode.ABSOL
UTE, 3, 3, 0), # 4c
 Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL
UTE, 3, 4, 0), # 4d
 Instruction(InstructionType.LSR, self.LSR, MemMode.ABSOL
UTE, 3, 6, 0), # 4e
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BVC, self.BVC, MemMode.RELAT
IVE, 2, 2, 1), # 50
 Instruction(InstructionType.EOR, self.EOR, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # 54
 Instruction(InstructionType.EOR, self.EOR, MemMode.ZEROP
AGE_X, 2, 4, 0), # 55
 Instruction(InstructionType.LSR, self.LSR, MemMode.ZEROP
AGE_X, 2, 6, 0), # 56
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.CLI, self.CLI, MemMode.IMPLI
ED, 1, 2, 0), # 58
 Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL
UTE_Y, 3, 4, 1), # 59
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # 5a
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # 5c
 Instruction(InstructionType.EOR, self.EOR, MemMode.ABSOL

UTE_X, 3, 4, 1), # 5d
 Instruction(InstructionType.LSR, self.LSR, MemMode.ABSOL
UTE_X, 3, 7, 0), # 5e
 Instruction(InstructionType.SRE, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
 Instruction(InstructionType.RTS, self.RTS, MemMode.IMPLI
ED, 1, 6, 0), # 60
 Instruction(InstructionType.ADC, self.ADC, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE, 2, 3, 0), # 64
 Instruction(InstructionType.ADC, self.ADC, MemMode.ZEROP
AGE, 2, 3, 0), # 65
 Instruction(InstructionType.ROR, self.ROR, MemMode.ZEROP
AGE, 2, 5, 0), # 66
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.PLA, self.PLA, MemMode.IMPLI
ED, 1, 4, 0), # 68
 Instruction(InstructionType.ADC, self.ADC, MemMode.IMMED
IATE, 2, 2, 0), # 69
 Instruction(InstructionType.ROR, self.ROR, MemMode.ACCUM
ULATOR, 1, 2, 0), # 6a
 Instruction(InstructionType.ARR, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.JMP, self.JMP, MemMode.INDIR
ECT, 3, 5, 0), # 6c
 Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL
UTE, 3, 4, 0), # 6d
 Instruction(InstructionType.ROR, self.ROR, MemMode.ABSOL
UTE, 3, 6, 0), # 6e
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BVS, self.BVS, MemMode.RELAT
IVE, 2, 2, 1), # 70
 Instruction(InstructionType.ADC, self.ADC, MemMode.INDIR

ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # 74
 Instruction(InstructionType.ADC, self.ADC, MemMode.ZEROP
AGE_X, 2, 4, 0), # 75
 Instruction(InstructionType.ROR, self.ROR, MemMode.ZEROP
AGE_X, 2, 6, 0), # 76
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.SEI, self.SEI, MemMode.IMPLI
ED, 1, 2, 0), # 78
 Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL
UTE_Y, 3, 4, 1), # 79
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # 7a
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # 7c
 Instruction(InstructionType.ADC, self.ADC, MemMode.ABSOL
UTE_X, 3, 4, 1), # 7d
 Instruction(InstructionType.ROR, self.ROR, MemMode.ABSOL
UTE_X, 3, 7, 0), # 7e
 Instruction(InstructionType.RRA, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED
IATE, 2, 2, 0), # 80
 Instruction(InstructionType.STA, self.STA, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED
IATE, 0, 2, 0), # 82
 Instruction(InstructionType.SAX, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 6, 0),
 Instruction(InstructionType.STY, self.STY, MemMode.ZEROP
AGE, 2, 3, 0), # 84
 Instruction(InstructionType.STA, self.STA, MemMode.ZEROP

AGE, 2, 3, 0), # 85
 Instruction(InstructionType.STX, self.STX, MemMode.ZEROP
AGE, 2, 3, 0), # 86
 Instruction(InstructionType.SAX, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 3, 0),
 Instruction(InstructionType.DEY, self.DEY, MemMode.IMPLI
ED, 1, 2, 0), # 88
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED
IATE, 0, 2, 0), # 89
 Instruction(InstructionType.TXA, self.TXA, MemMode.IMPLI
ED, 1, 2, 0), # 8a
 Instruction(InstructionType.XAA, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.STY, self.STY, MemMode.ABSOL
UTE, 3, 4, 0), # 8c
 Instruction(InstructionType.STA, self.STA, MemMode.ABSOL
UTE, 3, 4, 0), # 8d
 Instruction(InstructionType.STX, self.STX, MemMode.ABSOL
UTE, 3, 4, 0), # 8e
 Instruction(InstructionType.SAX, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 4, 0),
 Instruction(InstructionType.BCC, self.BCC, MemMode.RELAT
IVE, 2, 2, 1), # 90
 Instruction(InstructionType.STA, self.STA, MemMode.INDIR
ECT_INDEXED, 2, 6, 0),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.AHX, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 6, 0),
 Instruction(InstructionType.STY, self.STY, MemMode.ZEROP
AGE_X, 2, 4, 0), # 94
 Instruction(InstructionType.STA, self.STA, MemMode.ZEROP
AGE_X, 2, 4, 0), # 95
 Instruction(InstructionType.STX, self.STX, MemMode.ZEROP
AGE_Y, 2, 4, 0), # 96
 Instruction(InstructionType.SAX, self.unimplemented, Mem
Mode.ZEROPAGE_Y, 0, 4, 0),
 Instruction(InstructionType.TYA, self.TYA, MemMode.IMPLI
ED, 1, 2, 0), # 98
 Instruction(InstructionType.STA, self.STA, MemMode.ABSOL

UTE_Y, 3, 5, 0), # 99
 Instruction(InstructionType.TXS, self.TXS, MemMode.IMPLI
ED, 1, 2, 0), # 9a
 Instruction(InstructionType.TAS, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 5, 0),
 Instruction(InstructionType.SHY, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 5, 0),
 Instruction(InstructionType.STA, self.STA, MemMode.ABSOL
UTE_X, 3, 5, 0), # 9d
 Instruction(InstructionType.SHX, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 5, 0),
 Instruction(InstructionType.AHX, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 5, 0),
 Instruction(InstructionType.LDY, self.LDY, MemMode.IMMED
IATE, 2, 2, 0), # a0
 Instruction(InstructionType.LDA, self.LDA, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.LDX, self.LDX, MemMode.IMMED
IATE, 2, 2, 0), # a2
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 6, 0),
 Instruction(InstructionType.LDY, self.LDY, MemMode.ZEROP
AGE, 2, 3, 0), # a4
 Instruction(InstructionType.LDA, self.LDA, MemMode.ZEROP
AGE, 2, 3, 0), # a5
 Instruction(InstructionType.LDX, self.LDX, MemMode.ZEROP
AGE, 2, 3, 0), # a6
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 3, 0),
 Instruction(InstructionType.TAY, self.TAY, MemMode.IMPLI
ED, 1, 2, 0), # a8
 Instruction(InstructionType.LDA, self.LDA, MemMode.IMMED
IATE, 2, 2, 0), # a9
 Instruction(InstructionType.TAX, self.TAX, MemMode.IMPLI
ED, 1, 2, 0), # aa
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.LDY, self.LDY, MemMode.ABSOL
UTE, 3, 4, 0), # ac
 Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL

UTE, 3, 4, 0), # ad
 Instruction(InstructionType.LDX, self.LDX, MemMode.ABSOL
UTE, 3, 4, 0), # ae
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 4, 0),
 Instruction(InstructionType.BCS, self.BCS, MemMode.RELAT
IVE, 2, 2, 1), # b0
 Instruction(InstructionType.LDA, self.LDA, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 5, 1),
 Instruction(InstructionType.LDY, self.LDY, MemMode.ZEROP
AGE_X, 2, 4, 0), # b4
 Instruction(InstructionType.LDA, self.LDA, MemMode.ZEROP
AGE_X, 2, 4, 0), # b5
 Instruction(InstructionType.LDX, self.LDX, MemMode.ZEROP
AGE_Y, 2, 4, 0), # b6
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.ZEROPAGE_Y, 0, 4, 0),
 Instruction(InstructionType.CLV, self.CLV, MemMode.IMPLI
ED, 1, 2, 0), # b8
 Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL
UTE_Y, 3, 4, 1), # b9
 Instruction(InstructionType.TSX, self.TSX, MemMode.IMPLI
ED, 1, 2, 0), # ba
 Instruction(InstructionType.LAS, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 4, 1),
 Instruction(InstructionType.LDY, self.LDY, MemMode.ABSOL
UTE_X, 3, 4, 1), # bc
 Instruction(InstructionType.LDA, self.LDA, MemMode.ABSOL
UTE_X, 3, 4, 1), # bd
 Instruction(InstructionType.LDX, self.LDX, MemMode.ABSOL
UTE_Y, 3, 4, 1), # be
 Instruction(InstructionType.LAX, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 4, 1),
 Instruction(InstructionType.CPY, self.CPY, MemMode.IMMED
IATE, 2, 2, 0), # c0
 Instruction(InstructionType.CMP, self.CMP, MemMode.INDEX

ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED
IATE, 0, 2, 0), # c2
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.CPY, self.CPY, MemMode.ZEROP
AGE, 2, 3, 0), # c4
 Instruction(InstructionType.CMP, self.CMP, MemMode.ZEROP
AGE, 2, 3, 0), # c5
 Instruction(InstructionType.DEC, self.DEC, MemMode.ZEROP
AGE, 2, 5, 0), # c6
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.INY, self.INY, MemMode.IMPLI
ED, 1, 2, 0), # c8
 Instruction(InstructionType.CMP, self.CMP, MemMode.IMMED
IATE, 2, 2, 0), # c9
 Instruction(InstructionType.DEX, self.DEX, MemMode.IMPLI
ED, 1, 2, 0), # ca
 Instruction(InstructionType.AXS, self.unimplemented, Mem
Mode.IMMEDIATE, 0, 2, 0),
 Instruction(InstructionType.CPY, self.CPY, MemMode.ABSOL
UTE, 3, 4, 0), # cc
 Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL
UTE, 3, 4, 0), # cd
 Instruction(InstructionType.DEC, self.DEC, MemMode.ABSOL
UTE, 3, 6, 0), # ce
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BNE, self.BNE, MemMode.RELAT
IVE, 2, 2, 1), # d0
 Instruction(InstructionType.CMP, self.CMP, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # d4
 Instruction(InstructionType.CMP, self.CMP, MemMode.ZEROP

AGE_X, 2, 4, 0), # d5
 Instruction(InstructionType.DEC, self.DEC, MemMode.ZEROP
AGE_X, 2, 6, 0), # d6
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.CLD, self.CLD, MemMode.IMPLI
ED, 1, 2, 0), # d8
 Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL
UTE_Y, 3, 4, 1), # d9
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # da
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # dc
 Instruction(InstructionType.CMP, self.CMP, MemMode.ABSOL
UTE_X, 3, 4, 1), # dd
 Instruction(InstructionType.DEC, self.DEC, MemMode.ABSOL
UTE_X, 3, 7, 0), # de
 Instruction(InstructionType.DCP, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
 Instruction(InstructionType.CPX, self.CPX, MemMode.IMMED
IATE, 2, 2, 0), # e0
 Instruction(InstructionType.SBC, self.SBC, MemMode.INDEX
ED_INDIRECT, 2, 6, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMMED
IATE, 0, 2, 0), # e2
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.INDEXED_INDIRECT, 0, 8, 0),
 Instruction(InstructionType.CPX, self.CPX, MemMode.ZEROP
AGE, 2, 3, 0), # e4
 Instruction(InstructionType.SBC, self.SBC, MemMode.ZEROP
AGE, 2, 3, 0), # e5
 Instruction(InstructionType.INC, self.INC, MemMode.ZEROP
AGE, 2, 5, 0), # e6
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.ZEROPAGE, 0, 5, 0),
 Instruction(InstructionType.INX, self.INX, MemMode.IMPLI
ED, 1, 2, 0), # e8
 Instruction(InstructionType.SBC, self.SBC, MemMode.IMMED

IATE, 2, 2, 0), # e9
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # ea
 Instruction(InstructionType.SBC, self.SBC, MemMode.IMMED
IATE, 0, 2, 0), # eb
 Instruction(InstructionType.CPX, self.CPX, MemMode.ABSOL
UTE, 3, 4, 0), # ec
 Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL
UTE, 3, 4, 0), # ed
 Instruction(InstructionType.INC, self.INC, MemMode.ABSOL
UTE, 3, 6, 0), # ee
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.ABSOLUTE, 0, 6, 0),
 Instruction(InstructionType.BEQ, self.BEQ, MemMode.RELAT
IVE, 2, 2, 1), # f0
 Instruction(InstructionType.SBC, self.SBC, MemMode.INDIR
ECT_INDEXED, 2, 5, 1),
 Instruction(InstructionType.KIL, self.unimplemented, Mem
Mode.IMPLIED, 0, 2, 0),
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.INDIRECT_INDEXED, 0, 8, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ZEROP
AGE_X, 2, 4, 0), # f4
 Instruction(InstructionType.SBC, self.SBC, MemMode.ZEROP
AGE_X, 2, 4, 0), # f5
 Instruction(InstructionType.INC, self.INC, MemMode.ZEROP
AGE_X, 2, 6, 0), # f6
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.ZEROPAGE_X, 0, 6, 0),
 Instruction(InstructionType.SED, self.SED, MemMode.IMPLI
ED, 1, 2, 0), # f8
 Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL
UTE_Y, 3, 4, 1), # f9
 Instruction(InstructionType.NOP, self.NOP, MemMode.IMPLI
ED, 1, 2, 0), # fa
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.ABSOLUTE_Y, 0, 7, 0),
 Instruction(InstructionType.NOP, self.NOP, MemMode.ABSOL
UTE_X, 3, 4, 1), # fc
 Instruction(InstructionType.SBC, self.SBC, MemMode.ABSOL

UTE_X, 3, 4, 1), # fd
 Instruction(InstructionType.INC, self.INC, MemMode.ABSOL
UTE_X, 3, 7, 0), # fe
 Instruction(InstructionType.ISC, self.unimplemented, Mem
Mode.ABSOLUTE_X, 0, 7, 0),
]

Hand-coding this jump table would have been incrediblytedious. Instead, I wrote an external script to automaticallycreate the table from public sources. The script was a hackI threw together to generate the table, so I didn’t include itin the repository. Sometimes those quick and dirty scriptssave you a lot of typing, though!
The InstructionsNext, we need to declare all the methods that bring the6502 instructions to life. As discussed, we have 56 uniquemethods to implement, ranging alphabetically from ADC to
TYA, handling tasks such as arithmetic, control flow, and thelike.As with the CHIP-8 project, this is a good place for youto stop and try to write some of the methods on your ownbefore looking at the implementations here. In order to dothat, you’ll need a good 6502 instruction reference. Thereare many available online, and the aforementioned https://
nesdev.org links to several. A good reference shouldinclude the following:The name of the instruction, including its commonmnemonicThe opcode for various forms of the instructionThe memory modes it supportsWhat flags, if any, the instruction affectsHow many cycles it takesWhat register(s) it operates on

https://nesdev.org/

An example of what it doesIf you choose to implement the instructions yourself,you’ll first want to look through the rest of the CPU class tosee what helper methods are available to you. There aremethods for modifying the stack, reading from memory,and writing to memory, and there are a couple other utilitymethods as well. See “Memory Access” on page 170 and“Helper Methods” on page 175 for these methods.You’ll find that many of the instructions are quitesimple. For example, AND is exactly the logical ANDoperation you’d expect. We take the accumulator (self.A),do a bitwise AND operation between it and whatever weread from memory, and then store the result back in theaccumulator:
def AND(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.A = self.A & src
 self.setZN(self.A)

Note how two things have been abstracted away.Reading from memory is done by another method,
self.read_memory(), which is passed the instruction’s memorymode. We’ll come back to that method’s implementationlater. Second, many different instructions affect flags, sowe have methods like self.setZN() to handle flag changes.This is the classic don’t repeat yourself (DRY) principle.What follows are implementations for all 56 neededmethods. We’re writing in Python what the 6502 would bedoing in hardware, and it’s really not rocket science.Python has operators for completing most tasks. The otherskill set that helps most with this sort of work is a strongunderstanding of bitwise operators, as there are severalplaces where the instruction explicitly asks for them or weneed to cut off a result to make sure it’s still 8 bits so that it

fits in the register. We cover how these bitwise operatorswork in the appendix.
Add memory to accumulator with carry
def ADC(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 signed_result = src + self.A + self.C
 self.V = bool(~(self.A ^ src) & (self.A ^ signed_result)
& 0x80)
 self.A = (self.A + src + self.C) % 256
 self.C = signed_result > 0xFF
 self.setZN(self.A)

Bitwise AND with accumulator
def AND(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.A = self.A & src
 self.setZN(self.A)

Arithmetic shift left
def ASL(self, instruction: Instruction, data: int):
 src = self.A if instruction.mode == MemMode.ACCUMULATOR
else (
 self.read_memory(data, instruction.mode))
 self.C = bool(src >> 7) # carry is set to 7th bit
 src = (src << 1) & 0xFF
 self.setZN(src)
 if instruction.mode == MemMode.ACCUMULATOR:
 self.A = src
 else:
 self.write_memory(data, instruction.mode, src)

Branch if carry clear
def BCC(self, instruction: Instruction, data: int):
 if not self.C:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Branch if carry set
def BCS(self, instruction: Instruction, data: int):
 if self.C:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Branch on result zero
def BEQ(self, instruction: Instruction, data: int):
 if self.Z:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Bit test bits in memory with accumulator
def BIT(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.V = bool((src >> 6) & 1)
 self.Z = ((src & self.A) == 0)
 self.N = ((src >> 7) == 1)

Branch on result minus
def BMI(self, instruction: Instruction, data: int):
 if self.N:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Branch on result not zero
def BNE(self, instruction: Instruction, data: int):
 if not self.Z:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Branch on result plus
def BPL(self, instruction: Instruction, data: int):
 if not self.N:
 self.PC = self.address_for_mode(data, instruction.mo
de)

 self.jumped = True

Force break
def BRK(self, instruction: Instruction, data: int):
 self.PC += 2
 # Push PC to stack
 self.stack_push((self.PC >> 8) & 0xFF)
 self.stack_push(self.PC & 0xFF)
 # Push status to stack
 self.B = True
 self.stack_push(self.status)
 self.B = False
 self.I = True
 # Set PC to reset vector
 self.PC = (self.read_memory(IRQ_BRK_VECTOR, MemMode.ABSO
LUTE)) | \
 (self.read_memory(IRQ_BRK_VECTOR + 1, MemMode.
ABSOLUTE) << 8)
 self.jumped = True

Branch on overflow clear
def BVC(self, instruction: Instruction, data: int):
 if not self.V:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Branch on overflow set
def BVS(self, instruction: Instruction, data: int):
 if self.V:
 self.PC = self.address_for_mode(data, instruction.mo
de)
 self.jumped = True

Clear carry
def CLC(self, instruction: Instruction, data: int):
 self.C = False

Clear decimal
def CLD(self, instruction: Instruction, data: int):

 self.D = False

Clear interrupt
def CLI(self, instruction: Instruction, data: int):
 self.I = False

Clear overflow
def CLV(self, instruction: Instruction, data: int):
 self.V = False

Compare accumulator
def CMP(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.C = self.A >= src
 self.setZN(self.A - src)

Compare X register
def CPX(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.C = self.X >= src
 self.setZN(self.X - src)

Compare Y register
def CPY(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 self.C = self.Y >= src
 self.setZN(self.Y - src)

Decrement memory
def DEC(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 src = (src - 1) & 0xFF
 self.write_memory(data, instruction.mode, src)
 self.setZN(src)

Decrement X
def DEX(self, instruction: Instruction, data: int):
 self.X = (self.X - 1) & 0xFF
 self.setZN(self.X)

Decrement Y
def DEY(self, instruction: Instruction, data: int):
 self.Y = (self.Y - 1) & 0xFF
 self.setZN(self.Y)

Exclusive or memory with accumulator
def EOR(self, instruction: Instruction, data: int):
 self.A ^= self.read_memory(data, instruction.mode)
 self.setZN(self.A)

Increment memory
def INC(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 src = (src + 1) & 0xFF
 self.write_memory(data, instruction.mode, src)
 self.setZN(src)

Increment X
def INX(self, instruction: Instruction, data: int):
 self.X = (self.X + 1) & 0xFF
 self.setZN(self.X)

Increment Y
def INY(self, instruction: Instruction, data: int):
 self.Y = (self.Y + 1) & 0xFF
 self.setZN(self.Y)

Jump
def JMP(self, instruction: Instruction, data: int):
 self.PC = self.address_for_mode(data, instruction.mode)
 self.jumped = True

Jump to subroutine
def JSR(self, instruction: Instruction, data: int):
 self.PC += 2
 # Push PC to stack
 self.stack_push((self.PC >> 8) & 0xFF)
 self.stack_push(self.PC & 0xFF)
 # Jump to subroutine
 self.PC = self.address_for_mode(data, instruction.mode)

 self.jumped = True

Load accumulator with memory
def LDA(self, instruction: Instruction, data: int):
 self.A = self.read_memory(data, instruction.mode)
 self.setZN(self.A)

Load X with memory
def LDX(self, instruction: Instruction, data: int):
 self.X = self.read_memory(data, instruction.mode)
 self.setZN(self.X)

Load Y with memory
def LDY(self, instruction: Instruction, data: int):
 self.Y = self.read_memory(data, instruction.mode)
 self.setZN(self.Y)

Logical shift right
def LSR(self, instruction: Instruction, data: int):
 src = self.A if instruction.mode == MemMode.ACCUMULATOR
else (
 self.read_memory(data, instruction.mode))
 self.C = bool(src & 1) # carry is set to 0th bit
 src >>= 1
 self.setZN(src)
 if instruction.mode == MemMode.ACCUMULATOR:
 self.A = src
 else:
 self.write_memory(data, instruction.mode, src)

No op
def NOP(self, instruction: Instruction, data: int):
 pass

Or memory with accumulator
def ORA(self, instruction: Instruction, data: int):
 self.A |= self.read_memory(data, instruction.mode)
 self.setZN(self.A)

Push accumulator

def PHA(self, instruction: Instruction, data: int):
 self.stack_push(self.A)

Push status
def PHP(self, instruction: Instruction, data: int):
 # https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru
ction.txt
 self.B = True
 self.stack_push(self.status)
 self.B = False

Pull accumulator
def PLA(self, instruction: Instruction, data: int):
 self.A = self.stack_pop()
 self.setZN(self.A)

Pull status
def PLP(self, instruction: Instruction, data: int):
 self.set_status(self.stack_pop())

Rotate one bit left
def ROL(self, instruction: Instruction, data: int):
 src = self.A if instruction.mode == MemMode.ACCUMULATOR
else (
 self.read_memory(data, instruction.mode))
 old_c = self.C
 self.C = bool((src >> 7) & 1) # carry is set to 7th bit
 src = ((src << 1) | old_c) & 0xFF
 self.setZN(src)
 if instruction.mode == MemMode.ACCUMULATOR:
 self.A = src
 else:
 self.write_memory(data, instruction.mode, src)

Rotate one bit right
def ROR(self, instruction: Instruction, data: int):
 src = self.A if instruction.mode == MemMode.ACCUMULATOR
else (
 self.read_memory(data, instruction.mode))
 old_c = self.C

 self.C = bool(src & 1) # carry is set to 0th bit
 src = ((src >> 1) | (old_c << 7)) & 0xFF
 self.setZN(src)
 if instruction.mode == MemMode.ACCUMULATOR:
 self.A = src
 else:
 self.write_memory(data, instruction.mode, src)

Return from interrupt
def RTI(self, instruction: Instruction, data: int):
 # Pull status out
 self.set_status(self.stack_pop())
 # Pull PC out
 lb = self.stack_pop()
 hb = self.stack_pop()
 self.PC = ((hb << 8) | lb)
 self.jumped = True

Return from subroutine
def RTS(self, instruction: Instruction, data: int):
 # Pull PC out
 lb = self.stack_pop()
 hb = self.stack_pop()
 self.PC = ((hb << 8) | lb) + 1 # 1 past last instruction
 self.jumped = True

Subtract with carry
def SBC(self, instruction: Instruction, data: int):
 src = self.read_memory(data, instruction.mode)
 signed_result = self.A - src - (1 - self.C)
 # Set overflow
 self.V = bool((self.A ^ src) & (self.A ^ signed_result)
& 0x80)
 self.A = (self.A - src - (1 - self.C)) % 256
 self.C = not (signed_result < 0) # set carry
 self.setZN(self.A)

Set carry
def SEC(self, instruction: Instruction, data: int):
 self.C = True

Set decimal
def SED(self, instruction: Instruction, data: int):
 self.D = True

Set interrupt
def SEI(self, instruction: Instruction, data: int):
 self.I = True

Store accumulator
def STA(self, instruction: Instruction, data: int):
 self.write_memory(data, instruction.mode, self.A)

Store X register
def STX(self, instruction: Instruction, data: int):
 self.write_memory(data, instruction.mode, self.X)

Store Y register
def STY(self, instruction: Instruction, data: int):
 self.write_memory(data, instruction.mode, self.Y)

Transfer A to X
def TAX(self, instruction: Instruction, data: int):
 self.X = self.A
 self.setZN(self.X)

Transfer A to Y
def TAY(self, instruction: Instruction, data: int):
 self.Y = self.A
 self.setZN(self.Y)

Transfer stack pointer to X
def TSX(self, instruction: Instruction, data: int):
 self.X = self.SP
 self.setZN(self.X)

Transfer X to A
def TXA(self, instruction: Instruction, data: int):
 self.A = self.X
 self.setZN(self.A)

Transfer X to SP
def TXS(self, instruction: Instruction, data: int):
 self.SP = self.X

Transfer Y to A
def TYA(self, instruction: Instruction, data: int):
 self.A = self.Y
 self.setZN(self.A)

def unimplemented(self, instruction: Instruction, data: in
t):
 print(f"{instruction.type.name} is unimplemented.")

While most instructions are fairly simple, I foundhandling add with carry (ADC) and subtract with carry (SBC)a little tricky. The 6502’s main registers are just 8 bits, socarries are going to happen a lot and you need to get theflags right. But we have a trick: the Python int type isn’tlimited to 8 bits. We can therefore do the arithmetic as ifwe’re working with normal int values and then just mod offanything above 255.
The step() MethodWith implementations for all of the instructions in place,we’re ready to step through executing actual 6502 machinecode. The step() method reads the next opcode at PC andpulls the instruction from the jump table. Here’s the startof the method:

def step(self):
 if self.stall > 0:
 self.stall -= 1
 self.cpu_ticks += 1
 return

 opcode = self.read_memory(self.PC, MemMode.ABSOLUTE)
 self.page_crossed = False

 self.jumped = False
 instruction = self.instructions[opcode]
 data = 0
 for i in range(1, instruction.length):
 data |= (self.read_memory(self.PC + i,
 MemMode.ABSOLUTE) << ((i - 1)
* 8))

Most 6502 instructions also have some data that comeswith them, and the number of bytes can vary. For example,the TAY instruction (transfer A to Y) takes no data, so it’s just1 byte, but any instruction that reads from memory willneed additional data to specify the memory address. Theamount of data to be read is specified by instruction.length.The step() method continues as follows:
 instruction.method(instruction, data)

 if not self.jumped:
 self.PC += instruction.length
 elif instruction.type in {InstructionType.BCC, Instructi
onType.BCS,
 InstructionType.BEQ, Instructi
onType.BMI,
 InstructionType.BNE, Instructi
onType.BPL,
 InstructionType.BVC, Instructi
onType.BVS}:
 # Branch instructions are +1 ticks if they succeeded
 self.cpu_ticks += 1
 self.cpu_ticks += instruction.ticks
 if self.page_crossed:
 self.cpu_ticks += instruction.page_ticks

We call the instruction’s actual method to execute theinstruction, then increment the program counter asneeded. We finish with some bookkeeping regarding ticks(CPU cycles).

Memory AccessThe next few methods we’ll write help with reading andwriting to memory. Memory access is one of the morecomplicated areas of the 6502 because it has a dozendifferent memory access modes. The method
address_for_mode() is responsible for translating the dataassociated with an instruction into a specific memoryaddress based on the instruction’s mode (MemMode):

def address_for_mode(self, data: int, mode: MemMode) -> int:
 def different_pages(address1: int, address2: int) -> boo
l:
 return (address1 & 0xFF00) != (address2 & 0xFF00)

 address = 0
 match mode:
 case MemMode.ABSOLUTE:
 address = data
 case MemMode.ABSOLUTE_X:
 address = (data + self.X) & 0xFFFF
 self.page_crossed = different_pages(address, address
- self.X)
 case MemMode.ABSOLUTE_Y:
 address = (data + self.Y) & 0xFFFF
 self.page_crossed = different_pages(address, address
- self.Y)
 case MemMode.INDEXED_INDIRECT:
 # 0xFF for zero-page wrapping in next two lines
 ls = self.ram[(data + self.X) & 0xFF]
 ms = self.ram[(data + self.X + 1) & 0xFF]
 address = (ms << 8) | ls
 case MemMode.INDIRECT:
 ls = self.ram[data]
 ms = self.ram[data + 1]
 if (data & 0xFF) == 0xFF:
 ms = self.ram[data & 0xFF00]
 address = (ms << 8) | ls
 case MemMode.INDIRECT_INDEXED:

 # 0xFF for zero-page wrapping in next two lines
 ls = self.ram[data & 0xFF]
 ms = self.ram[(data + 1) & 0xFF]
 address = (ms << 8) | ls
 address = (address + self.Y) & 0xFFFF
 self.page_crossed = different_pages(address, address
- self.Y)
 case MemMode.RELATIVE:
 address = (self.PC + 2 + data) & 0xFFFF if (data < 0
x80) \
 else (self.PC + 2 + (data - 256)) & 0xFFFF # sig
ned
 case MemMode.ZEROPAGE:
 address = data
 case MemMode.ZEROPAGE_X:
 address = (data + self.X) & 0xFF
 case MemMode.ZEROPAGE_Y:
 address = (data + self.Y) & 0xFF
 return address

To understand this code, here’s a breakdown of the6502’s memory access modes and their relationship to thedata associated with the instruction:
ABSOLUTE   The address is data.
ABSOLUTE_X   The X register is added to data to form theaddress.
ABSOLUTE_Y   The Y register is added to data to form theaddress.
ACCUMULATOR   The A register is being used, not memory.We handle this mode directly in the individualinstruction methods, so it doesn’t appear in
address_for_mode().
IMMEDIATE   data is the final item; we’re not actuallyaccessing memory. We handle this mode directly in themethods for reading and writing to memory.

INDEXED_INDIRECT   The 2-byte address is in RAM at data +
X.
INDIRECT   The 2-byte address is in RAM at data.
INDIRECT_INDEXED   The address at data in RAM is added tothe Y register to form the final address.
RELATIVE   data is added to PC to form the address.
ZEROPAGE   This is like ABSOLUTE, but within the first 256bytes of memory (the zero page).
ZEROPAGE_X   This is like ABSOLUTE_X, but within the first256 bytes of memory.
ZEROPAGE_Y   This is like ABSOLUTE_Y, but within the first256 bytes of memory.The ZEROPAGE modes may seem redundant to the ABSOLUTEmodes, but there’s a nice optimization here: since the zeropage in memory is only 256 bytes, it requires only a singledata byte to specify an address within it. This saves a cycleof CPU time (a second address byte doesn’t need to befetched) when executing an instruction that utilizes thezero page. Instructions in ZEROPAGE mode are thereforefaster than other instructions that access memory. In fact,6502 programmers sometimes treat the 256 memory slotsin the zero page like additional registers since they’re sofast to read and write. This helps make up for how fewactual registers the 6502 has.Now that we can form memory addresses, we’re closerto reading and writing memory, but we also need someknowledge of the NES’s different memory regions—whichaddresses map to RAM, which to the PPU, and so on. It’simportant to note that many NES memory regions containextensive mirroring. For example, the first 2KB in thememory map, or addresses up to 0x800 in hexadecimal, aremapped to the CPU’s RAM, but any address accessed below0x2000 maps to that same RAM because the 2KB repeats

four times up until 0x2000. In other words, address 0x801is the same as address 0x001, and so are addresses 0x1001and 0x1801 (2 × 0x800 in hexadecimal is 0x1000, and 3 ×0x800 is 0x1800).This mirroring was a result of hardware peculiarities ofthe NES in order to cut costs. For example, not all of the6502’s memory hardware lines, which you can think of aswires, were needed to address that measly 2KB of RAM, sosome of the hardware lines were simply ignored. Toillustrate, 0x800 is 2,048 in decimal and 100000000000 inbinary. Each digit in the binary can be thought of as asignal carried by a hardware line. To address the first2,048 addresses, you only need 11 hardware lines, whichcorrespond to the 11 trailing 0s in our number. Those 11hardware lines are enough for 2,048 different values,decimal values 0 through 2,047. The 12th hardware line,represented by the 1 in the binary, can just be ignored. Inother words, 0x800 maps to 12 hardware lines, but only 11of those hardware lines actually existed, so 0x800 wasessentially the same as 0x0.Table 6-4 shows the NES CPU’s memory map, as seenby our emulator. It includes both regions and individualmemory-mapped addresses. Regions and addresses thatour emulator ignores or doesn’t implement aren’t shown.The table also indicates whether a region or address isreadable, writable, or both. Finally, it mentions if there’sany mirroring.There are many addresses and details missing fromTable 6-4. For example, our simple emulator doesn’t havean APU, but a real NES has memory-mapped addresses inthe 0x4000 range for the APU and other I/O devices (like asecond joypad). We also don’t specify the individual PPUregisters between 0x2000 and 0x2007, which we’ll comeback to when we implement the PPU. The cartridgememory space can vary quite a bit depending on themapper. That’s beyond the scope of this section; we

discussed some of the specifics of cartridge memory in“Emulating the Cartridge” on page 148. Finally, the CPU’smeasly 2KB of RAM actually has two important subregions:the fast zero page region from 0x0000 to 0x00FF alreadydiscussed, and the space typically used for the stack from0x0100 to 0x01FF.
Table 6-4: A Simplified NES Memory Map
Address
or region Length Description Read/write Mirroring?

0x0000–
0x1FFF

0x800 Main 2KB of
CPU memory

RW Yes, first 0x800 is
mirrored up to
0x2000

0x2000–
0x3FFF

0x8 8 PPU registers Varies 0x2000 through
0x2007 are mirrored
every 8 bytes

0x4014 0x1 DMA transfer of
sprite data

W No

0x4016 0x1 Joypad 1 status RW No

0x6000–
0xFFFF

Varies by
cartridge

Cartridge
memory

Varies Varies

Now that we have some understanding of how thememory is divided, we can look at our methods for readingand writing it. We’ll start with the read_memory() method. Ittakes a location to read and a memory mode, and returns abyte (represented as an int in Python) from that location:
def read_memory(self, location: int, mode: MemMode) -> int:
 if mode == MemMode.IMMEDIATE:
 return location # location is actually data in this
case
 address = self.address_for_mode(location, mode)

 # Memory map at https://wiki.nesdev.org/w/index.php/CPU_
memory_map
 if address < 0x2000: # main RAM 2KB goes up to 0x800
 return self.ram[address % 0x800] # mirrors for next
6KB
 elif address < 0x4000: # 2000-2007 is PPU, mirrors every
8 bytes
 temp = ((address % 8) | 0x2000) # get data from PPU
register
 return self.ppu.read_register(temp)
 elif address == 0x4016: # joypad 1 status
 if self.joypad1.strobe:
 return self.joypad1.a
 self.joypad1.read_count += 1
 match self.joypad1.read_count:
 case 1:
 return 0x40 | self.joypad1.a
 case 2:
 return 0x40 | self.joypad1.b
 case 3:
 return 0x40 | self.joypad1.select
 case 4:
 return 0x40 | self.joypad1.start
 case 5:
 return 0x40 | self.joypad1.up
 case 6:
 return 0x40 | self.joypad1.down
 case 7:
 return 0x40 | self.joypad1.left
 case 8:
 return 0x40 | self.joypad1.right
 case _:
 return 0x41
 elif address < 0x6000:
 return 0 # unimplemented other kinds of IO
 else: # addresses from 0x6000 to 0xFFFF are from the car
tridge
 return self.rom.read_cartridge(address)

If the memory mode is IMMEDIATE, that means the actualdata associated with the instruction is what’s meant to be“read.” Remember, our code is abstracted to the pointwhere a method for a single instruction is supposed to workwith any memory mode. In the case of IMMEDIATE mode, wedon’t need to do any actual lookups, so we just return thedata associated with the instruction. (The name location is alittle weird here, but it’s a good name for everything but
IMMEDIATE mode.) Otherwise, the location associated with theinstruction is converted to a memory address using
address_for_mode().After obtaining the memory address, we use a series of
if statements to determine where the memory shouldactually be read from, as per Table 6-4. We account formirroring by using a modulus. Depending on the region,the CPU, the PPU, the joypad, or the cartridge may beaccessed. The NES had a peculiar way of reading thejoypad. Every time address 0x4016 is read, the status of adifferent button of the joypad is returned. You thereforeneed to complete eight reads to know the status of everybutton.Next, let’s look at writing to memory:

def write_memory(self, location: int, mode: MemMode, value:
int):
 if mode == MemMode.IMMEDIATE:
 self.ram[location] = value
 return

 address = self.address_for_mode(location, mode)
 # Memory map at https://wiki.nesdev.org/w/index.php/CPU_
memory_map
 if address < 0x2000: # main RAM 2KB goes up to 0x800
 self.ram[address % 0x800] = value # mirrors for next
6KB
 elif address < 0x3FFF: # 2000-2007 is PPU, mirrors every
8 bytes

 temp = ((address % 8) | 0x2000) # write data to PPU
register
 self.ppu.write_register(temp, value)
 elif address == 0x4014: # DMA transfer of sprite data
 from_address = value * 0x100 # address to start copy
ing from
 for i in range(SPR_RAM_SIZE): # copy all 256 bytes t
o sprite RAM
 self.ppu.spr[i] = self.read_memory((from_address
+ i),
 MemMode.ABSO
LUTE)
 # Stall for 512 cycles while this completes
 self.stall = 512
 elif address == 0x4016: # joypad 1
 if self.joypad1.strobe and (not bool(value & 1)):
 self.joypad1.read_count = 0
 self.joypad1.strobe = bool(value & 1)
 return
 elif address < 0x6000:
 return # unimplemented other kinds of IO
 else: # addresses from 0x6000 to 0xFFFF are from the car
tridge
 # We haven't implemented support for cartridge RAM
 return self.rom.write_cartridge(address, value)

The write_memory() method is quite similar to
read_memory(). It handles IMMEDIATE mode, then exchanges a
location for an address for the other modes and writes to theappropriate location.
Helper MethodsWe’ll round out the CPU class with a series of helpermethods, starting with these three:

def setZN(self, value: int):
 self.Z = (value == 0)
 self.N = bool(value & 0x80) or (value < 0)

def stack_push(self, value: int):
 self.ram[(0x100 | self.SP)] = value
 self.SP = (self.SP - 1) & 0xFF

def stack_pop(self) -> int:
 self.SP = (self.SP + 1) & 0xFF
 return self.ram[(0x100 | self.SP)]

Many instructions need to set the zero (Z) and negative(N) flags. Instead of repeating those couple of lines in theinstruction methods, we have setZN(). The stack_push()method puts a new value on the stack. This involves puttingthe value on the stack at the write address and moving thestack pointer. Similarly, stack_pop() gets a value back fromthe stack pointer, moves the stack pointer, and returns thevalue.For convenience, our CPU class stores the various statusflags in seven separate Boolean variables, but a real 6502has one 8-bit status register where each flag is a single bit.The BRK, PHP, PLP, and RTI instructions need to work with thestatus register in its bit-centric format, so the methods thatfollow, status() and set_status(), use bitwise operations totranslate between the two formats:
@property
def status(self) -> int:
 return (self.C | self.Z << 1 | self.I << 2 | self.D << 3
|
 self.B << 4 | 1 << 5 | self.V << 6 | self.N <<
7)

def set_status(self, temp: int):
 self.C = bool(temp & 0b00000001)
 self.Z = bool(temp & 0b00000010)
 self.I = bool(temp & 0b00000100)
 self.D = bool(temp & 0b00001000)

 # https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru
ction.txt
 self.B = False
 self.V = bool(temp & 0b01000000)
 self.N = bool(temp & 0b10000000)

Finally, we have a method to handle what happenswhen an NMI is triggered, and a log() method fordebugging:
def trigger_NMI(self):
 self.stack_push((self.PC >> 8) & 0xFF)
 self.stack_push(self.PC & 0xFF)
 # https://nesdev.org/the%20’B’%20flag%20&%20BRK%20instru
ction.txt
 self.B = True
 self.stack_push(self.status)
 self.B = False
 self.I = True
 # Set PC to NMI vector
 self.PC = (self.read_memory(NMI_VECTOR, MemMode.ABSOLUT
E)) | \
 (self.read_memory(NMI_VECTOR + 1, MemMode.ABSO
LUTE) << 8)

def log(self) -> str:
 opcode = self.read_memory(self.PC, MemMode.ABSOLUTE)
 instruction = self.instructions[opcode]
 data1 = " " if instruction.length < 2 else f"{self.read_
memory(self.PC + 1,

MemMode.ABSOLUTE):02X}"
 data2 = " " if instruction.length < 3 else f"{self.read_
memory(self.PC + 2,

MemMode.ABSOLUTE):02X}"
 return f"{self.PC:04X} {opcode:02X} {data1} {data2} {ins
truction.type.name}{29 * ' '}" \

 f"A:{self.A:02X} X:{self.X:02X} Y:{self.Y:02X} P:
{self.status:02X} SP:{self.SP:02X}"

An NMI sends execution to a code block at the addressspecified in NMI_VECTOR. When an NMI is triggered, similar to
BRK and JSR instructions, we need to put a bookmark downso that we can come back to where we were before theNMI took us away. That’s the purpose of pushing PC and
status to the stack.Implementing the CPU involved writing a lot of code toa specification— a specification that’s long but made ofmany small, relatively easy-to-digest pieces. The last part ofthe emulator that we need to implement is the PPU, and itwill feel quite different. There’s still a specification with alot of details, but those details come together to essentiallydo just two big things: draw background tiles and drawsprites.
Understanding the PPUImplementing the PPU is the most complex part of an NESemulation project. The PPU is responsible for drawing thegraphics on the screen. For the purposes of our simpleemulator, we can think about the graphics as having twoaspects: the background and the sprites.The background is the back layer of the graphics wherethe individual pieces typically either don’t move at all oronly scroll together as a group. The NES hardware drawsthe background using tiles. In a platform game, forexample, a tile might be a part of a platform, a part of anartistic background (a mountain, perhaps), a ladder, or adoor. These elements typically can’t move on their own.By contrast, sprites are individual game objects that canmove anywhere on the screen independently. Think of theplayer and enemies in a platform game. The NES hasspecialized hardware for handling up to 64 8×8 or 8×16 (inpixels) sprites on the screen at a time.

There are many different ways to implement the PPU.The most accurate is to simulate what the real PPU does:generate each pixel of the screen, one at a time. If thisimplementation is done properly, any game written for theNES should work correctly. This approach is also the mostperformance intensive. A popular alternative is toimplement graphics one scanline at a time. Instead of doingupdates for every pixel, the updates occur when eachscanline’s processing is complete.We won’t be doing either of these. As discussed earlier,we’ll implement the PPU using the even simpler approachof updating the entire screen one frame at a time. This isthe least accurate technique, because if the game somehowchanges the graphics between pixels or between scanlines,those updates won’t appear. Compatibility will still begood, but it won’t extend to all games.While our method is the furthest away from how thereal PPU works, it’s the most performant technique, since itrequires the fewest updates per frame (just one big updateinstead of many small updates). It’s also the leastconceptually difficult, since it doesn’t requireunderstanding all the details of how the real PPU works.Because our emulator is being written in a relatively slowprogramming language, Python, and is intended to be assimple as possible for demonstration purposes, per-framerendering is arguably the best choice.While we don’t need to understand every detail of thePPU to implement our frame-by-frame approach, we stillneed to understand some fundamentals about where thedata for the backgrounds and the sprites comes from. We’lldive into that in the coming sections. Some of theinformation was already scattered throughout earlier partsof the chapter, but here it’s all woven together with manynew ideas and details to cohesively explain how the PPUoperates.

CHR ROMThe data for both the background tiles and the sprites isinitially located on the cartridge in a region of memoryknown as CHR ROM. The size of this memory could rangequite a bit. Early games typically had just 8KB of CHRROM, but later games with mappers could have hundredsof kilobytes, with the ability to swap in any other 8KBregion for the first so as to be compatible with theexpectations of the PPU hardware (which can only address8KB of CHR ROM directly).Some games replaced CHR ROM with CHR RAM, whichis modifiable during game operation. However, most gameshad fixed CHR ROM. If a game had CHR RAM, the gamehad to load the graphics into the CHR RAM as needed fromthe PRG ROM, instead of it just always being there. Somerare games had both CHR ROM and CHR RAM in differentbanks.
Pattern Tables and TilesAt any given time the PPU can be “hooked up” to either oftwo 4KB portions of the CHR ROM on the cartridge. Theseportions are known as pattern tables. The NES pulls all ofits graphics data for a given frame from the selectedpattern table. Note that some documentation refers to all8KB of addressable CHR ROM as a single overall patterntable rather than calling each 4KB section a separatepattern table.Each pattern table is divided into 256 16-byte tiles, andeach tile defines potential graphics for an 8×8 pixel regionof the screen. Together, the predefined tiles in the patterntables represent all the different things you might see inthe game. For example, Figure 6-1 shows the pattern tablesfor the open source game BrickBreaker by Aleff Correa,which we’ll run in our emulator later in the chapter.

Figure 6-1: The pattern tables of BrickBreaker, as displayed by the FCEUX
emulator’s PPU Viewer

You can see how some of the tiles in the pattern tablesrepresent sprites, some represent text, and some representbackground patterns. Many of the tiles in the pattern tablesare blank because BrickBreaker doesn’t have the need touse them (it has more space in CHR ROM for graphicalassets than it actually needs).
NOTE
Figure 6-1 was generated using the PPU Viewer feature of
the FCEUX emulator, which allows you to see the contents
of CHR ROM, separate from actual gameplay. Adding
debug features like a pattern table viewer can be very
helpful when writing an emulator. For example, you could
compare the output of your PPU to that of an established
emulator like FCEUX.As mentioned, each tile in a pattern table is 16 bytes.With 16 bytes defining 8 × 8 = 64 pixels, that leaves just 2bits per pixel, and 2 bits can only represent four differentvalues (00, 01, 10, 11). The PPU therefore only supports

four colors within a given tile. In fact, one of those isalways a preset background color or transparent (00), sothere are essentially only three programmer-selected colorsthat can appear in a specific tile. This palette of colors isset for regions of four tiles at a time and is controlled in aseparate part of memory from the pattern tablesthemselves. This is why all of the tiles appear in grayscalein Figure 6-1; the color palette of each tile isn’t determinedby the pattern table. We’ll come back to how colors areselected shortly.Unfortunately, the tiles get a little bit morecomplicated: the 2-bit values that define each pixel aren’tlaid out sequentially. Instead, the zeroth bit of each pixel islaid out in the first 8 bytes of the tile, and the first bit ofeach pixel is laid out in the second 8 bytes of the tile. Each8 bytes forms a bit plane, and the two planes combine, twobits at a time, to determine each pixel’s color.Let me phrase that another way. The first 8 bytes (firstbit plane) of a tile can be thought of as 64 halves of thecolor values for the 64 pixels in the 8×8 tile. They’re laidout sequentially. The second 8-byte bit plane definesanother 64 halves of the color values for the same 64pixels. They’re also laid out sequentially. The two planesneed to be combined to get the 64 final color values. As anexample, consider the following 16 bytes of tile data:6
 Bit Plane 1
Byte 1 01000001
Byte 2 11000010
Byte 3 01000100
Byte 4 01001000 Pixel Pattern
Byte 5 00010000
Byte 6 00100000 01000003
Byte 7 01000000 11000030
Byte 8 10000000 ===== 01000300
 Bit Plane 2 01003000

Byte 9 00000001 ===== 00030220
Byte 10 00000010 00300002
Byte 11 00000100 03000020
Byte 12 00001000 30000222
Byte 13 00010110
Byte 14 00100001
Byte 15 01000010
Byte 16 10000111

The matching bits from the two bit planes cometogether to form the pixel pattern shown in the listing andillustrated in Figure 6-2: an image of the fraction 1/2.

Figure 6-2: How a tile comes together from two bit planes

Where there’s a 1 in the first bit plane and a 0 in thesecond, the bits combine to form 01, or color 1 in the colorscheme. Likewise, a 0 from the first bit plane and a 1 fromthe second form 10, or color 2, and a 1 in both bit planesyields 11, or color 3.
Nametables
Nametables are where the actual tiles for the backgroundof the screen are laid out. What does the background of thescreen look like right now? What tiles is it composed of,and what colors are used in each? That’s the job of anametable and its accompanying attribute table (discussednext).Each nametable, representing a single screen of thegame, is 32 tiles wide and 30 tiles high. Each tile in the

nametable is specified by a single byte—the index of a tilein the current pattern table. In this way, the pattern tabletiles are directly mapped to the nametable, so you can thinkof a nametable as just a specific ordering of tiles from apattern table.How big is a nametable? Well, 32 × 30 = 960, so thereare 960 locations in a nametable. And each location in thetable is occupied by a 1-byte index, so a nametable is 960bytes.We now have enough information to understand whythe NES had a 256×240 resolution. Each tile is 8 pixelswide and 8 pixels tall. If the nametable represents thebackground of the screen and is 32 tiles wide, it followsthat 8 × 32 = 256. And the height of the screen in pixels isfound with 8 × 30 = 240.The PPU only has 2KB of memory, which is only enoughfor two nametables (and their attribute tables). Those twonametables can be mirrored, so there are a total of fourlogical nametables. Figure 6-3 shows the nametables forthe title screen of BrickBreaker laid out.

Figure 6-3: The nametables of the BrickBreaker title screen

Only one nametable is set with meaningful data inFigure 6-3. You can observe horizontal mirroring in the waythe right half of the image is a copy of the left half.
Color Palettes and Attribute TablesThe PPU has palette memory for four different backgroundcolor palettes. Recall from “Pattern Tables and Tiles” onpage 178 that each tile is composed of pixels in one of fourcolors, with one of those being the background color ortransparent. That means that only three colors are actuallyspecific to a tile. Each palette in the PPU’s palette memorytherefore defines a set of three colors. (We’ll discusspalette memory further in the next section.)To specify which color palette applies to which tile,each nametable is followed by an attribute table. Theattribute table is 8×8, and each entry in it is just 1 byte.

How can there be 960 tiles and just 64 1-byte attributetable entries? Each entry actually defines the colors for a2×2 set of areas, and each of those areas represents a 2×2grid of tiles. Therefore, each 1-byte entry in the attributetable actually covers 16 tiles. How does that work out?Every 2 bits of that 1-byte entry is for one area, and 2bits can represent up to four values. Each 2-bit value is aselector between one of the four different background colorpalettes. Every 2×2 region of tiles on the screen cantherefore have a single palette out of the four possiblebackground palettes. That means all four of the tiles ineach area must use the same three colors (andbackground/transparent).That’s no easy feat. Artists working on graphics for theNES had to paint significant areas of the screen (four-tileareas) using just three non-background colors. And theneach of those areas using just three non- background colorshad to blend in with the adjacent areas that may be usingdifferent three-color palettes.Figures 6-4, 6-5, and 6-6, created for https://nesdev.org,showcase attribute tables in action. (If you’re reading thisin print, see the figures directory of the companionrepository for color versions of the images.) First, Figure 6-4 shows the background of a game (Thwaite by DamianYerrick) broken up into the areas the attribute table canselect colors for.

https://nesdev.org/

Figure 6-4: The attribute table layout across the screen in Thwaite

Figure 6-5 shows the actual palette selection (whichbackground palette, 0–3) for each area from Figure 6-4.

Figure 6-5: The attribute table color palette mapping in Thwaite

Finally, Figure 6-6 shows the four background palettesthat can be selected. There’s some color overlap betweenthe palettes, which allows the different areas of the screento blend with each other.

Figure 6-6: The background color palettes in Thwaite

Each attribute table is 64 bytes, and each nametable is960 bytes. One nametable and its corresponding attributetable therefore take up 960 + 64 = 1,024 bytes, or 1KB.This is how the 2KB of RAM on the PPU fill up with twopattern table/attribute table combinations.
Palette MemoryThe PPU’s palette memory has room for four backgroundpalettes and four sprite palettes. As we’ve discussed, apalette consists of three colors (along with thebackground/transparent color). It can be used to paint afour-tile background area of the screen (see the priorsection on attribute tables) or a sprite. In other words, eachfour-tile area of the background can be colored using oneout of four palettes, and each sprite can be colored usingone out of four palettes.A palette is defined using 3 bytes. Each byte specifiesone of the three colors of the palette, although only 6 bitsof each byte are actually used for selecting a color. Since 6bits can select from among 64 values, this tells us that NESartists only had 64 colors to work with. In practice, 10 ofthese 64 possible colors amounted to essentially black, soreally the NES had 54 colors. Figure 6-7 shows these colorsfor an NTSC NES. The colors differed a bit for PAL NESmachines. (Different countries used different video

standards—NTSC in North America versus PAL in much ofEurope and Asia, for instance—which would affect how thePPU of the NES operated.)

Figure 6-7: The colors available on an NTSC NES

As an example, say your background area is paintedusing background palette 1, and background palette 1specifies the colors 0x11, 0x0A, and 0x3D. That means youcan paint that area using shades of blue, green, and gray,as well as the background color.
Object Attribute MemoryOAM stores information about the sprites on the screen.Sprites are essentially the moving objects in a game—forexample, the player, the enemies, and the projectiles. TheNES supports 64 sprites at a time and uses 4 bytes todescribe each one, so there are 256 bytes of OAM.The images for sprites come from the same CHR ROMon the cartridge as the background tiles—that is, thepattern tables. Unlike the background, however, spritesaren’t constrained to tile locations; they can be drawn atany position on the screen. Each sprite can also be flippedhorizontally or vertically, placed in front of or behind thebackground, and colored using any of four differentpalettes. The 4 bytes for each sprite and what they do arebriefly described in Table 6-5.

Table 6-5: Sprite Specification in OAM
Byte
Description

0 The y-axis position of the sprite

1 The index into the pattern table where the sprite’s graphical data is
located

2 Sprite attributes including palette (bits 0–1), front or back (bit 5),
horizontal flip (bit 6), and vertical flip (bit 7)

3 The x-axis position of the sprite

Why the bytes for the y-axis position and the x-axisposition aren’t next to each other is a question I have forthe NES’s creators. Perhaps it has to do with the physicalwiring order of the lines in the PPU.
Frame Creation and TimingThe PPU in a real NES draws the screen from the top left tothe bottom right, one pixel at a time. This reflected the“gun” in the CRT televisions that the NES would be hookedup to. Its electron beam “shot” behind the screen from leftto right, one scanline at a time from top to bottom. TheNTSC NES draws the entire screen 60 times per second(60 frames per second, or 60 FPS). A PAL NES draws at aslower 50 FPS. A frame is the gun completing its journeyacross the entire screen. As mentioned earlier in thechapter, the gun would also sometimes be temporarily off-screen during hblank (between scanlines) and vblank(between frames) periods. These were therefore the safesttimes for an NES program to change the memory that thepixels were being read from.Since the NES resolution is 256×240, we know thatthere must be at least 256 dots drawn per scanline and 240scanlines in total. There’s a prerender scanline, which we’ll

call scanline 0. Then, scanlines 1 through 240 are the“visible” scanlines that represent what the programactually displays on the screen. Scanlines 241 through 261are during the vblank phase. The NMI, mentioned earlier inthe chapter, is therefore triggered at the start of scanline241 to tell the program it’s safe to change PPU memory.Dots 0 through 255 represent the 256 visible dots on eachscanline. Dots 256 through 340 are “silent” dots duringwhich the hblank phase between scanlines occurs.Each dot represents one PPU cycle. If you do the math,341 dots per scanline times 262 scanlines means it takes89,342 PPU cycles to draw each frame. Recall that thereare 3 PPU cycles for every 1 CPU cycle. If we divide thePPU cycles by 3 and round, we get 29,781 CPU cycles perframe. The CPU in the NES runs at about 1.79 MHz, or1,790,000 cycles per second. If you divide 1,790,000 by29,781, you get a number close to 60. That’s the 60 framesper second!To create a cycle-accurate NES emulator, it’s importantto understand the details of how the PPU figures out whatcolor to draw for each pixel, one pixel at a time. Sincewe’re using the simpler but less accurate approach ofdrawing one frame at a time, we can leave those details outas beyond the scope of our project. What we do know basedon the timing just discussed is that at some point duringevery 89,342 PPU cycles we need to draw the whole frame.To me, the logical time to do that is when the visiblescanlines are done. In the code we’ll look at shortly, you’lltherefore see all of the background and all of the spritesbeing drawn at once at the timing of scanline 240, dot 256(the last visible dot in the last visible scanline). Oursimplified renderer does no drawing except during thatPPU cycle, once per frame.

Implementing the PPUImplementing our PPU starts with some importantconstants, including various memory sizes, the screenresolution, and the full palette of available colors:
NESEmulator/ppu.py

from array import array
from NESEmulator.rom import ROM
import numpy as np

SPR_RAM_SIZE = 256
NAMETABLE_SIZE = 2048
PALETTE_SIZE = 32
NES_WIDTH = 256
NES_HEIGHT = 240
NES_PALETTE = [0x7C7C7C, 0x0000FC, 0x0000BC, 0x4428BC, 0x940
084, 0xA80020,
 0xA81000, 0x881400, 0x503000, 0x007800, 0x006
800, 0x005800,
 0x004058, 0x000000, 0x000000, 0x000000, 0xBCB
CBC, 0x0078F8,
 0x0058F8, 0x6844FC, 0xD800CC, 0xE40058, 0xF83
800, 0xE45C10,
 0xAC7C00, 0x00B800, 0x00A800, 0x00A844, 0x008
888, 0x000000,
 0x000000, 0x000000, 0xF8F8F8, 0x3CBCFC, 0x688
8FC, 0x9878F8,
 0xF878F8, 0xF85898, 0xF87858, 0xFCA044, 0xF8B
800, 0xB8F818,
 0x58D854, 0x58F898, 0x00E8D8, 0x787878, 0x000
000, 0x000000,
 0xFCFCFC, 0xA4E4FC, 0xB8B8F8, 0xD8B8F8, 0xF8B
8F8, 0xF8A4C0,
 0xF0D0B0, 0xFCE0A8, 0xF8D878, 0xD8F878, 0xB8F
8B8, 0xB8F8D8,
 0x00FCFC, 0xF8D8F8, 0x000000, 0x000000]

The colors are specified in hexadecimal RGB values.Different websites have slight variations on what the exactcolor values should be, and there were real differences inthese colors between the different variations of the NEShardware (NTSC versus PAL, for example). The same gamemay therefore have slightly different colors when played ondifferent NES hardware or different emulators.The PPU class has instance variables for its spritememory (OAM), nametable memory, and palette memory:
class PPU:
 def __init__(self, rom: ROM):
 self.rom = rom
 # PPU memory
 self.spr = array('B', [0] * SPR_RAM_SIZE) # sprite R
AM
 self.nametables = array('B', [0] * NAMETABLE_SIZE) #
nametable RAM
 self.palette = array('B', [0] * PALETTE_SIZE) # pale
tte RAM

The rest of the PPU class’s constructor sets up defaultvalues for its various program-settable PPU registers andmany helper variables (we’ll go into more detail about whatsome of these are for as our implementation progresses):
 # Registers
 self.addr = 0 # main PPU address register
 self.addr_write_latch = False
 self.status = 0
 self.spr_address = 0
 # Variables controlled by PPU control registers
 self.nametable_address = 0
 self.address_increment = 1
 self.spr_pattern_table_address = 0
 self.background_pattern_table_address = 0
 self.generate_nmi = False

 self.show_background = False
 self.show_sprites = False
 self.left_8_sprite_show = False
 self.left_8_background_show = False
 # Internal helper variables
 self.buffer2007 = 0
 self.scanline = 0
 self.cycle = 0
 # Pixels for screen
 self.display_buffer = np.zeros((NES_WIDTH, NES_HEIGHT),
dtype=np.uint32)

Next, we have the rendering method, step():
def step(self):
 # Our simplified PPU draws just once per frame
 if (self.scanline == 240) and (self.cycle == 256):
 if self.show_background:
 self.draw_background()
 if self.show_sprites:
 self.draw_sprites(False)
 if (self.scanline == 241) and (self.cycle == 1):
 self.status |= 0b10000000 # set vblank
 if (self.scanline == 261) and (self.cycle == 1):
 # Vblank off, clear sprite zero, clear sprite overfl
ow
 self.status |= 0b00011111

 self.cycle += 1
 if self.cycle > 340:
 self.cycle = 0
 self.scanline += 1
 if self.scanline > 261:
 self.scanline = 0

Each call to step() from the emulator’s main looprepresents one PPU cycle. Because our strategy is to draweverything once per frame, and not to be pixel or scanline

accurate, step() is remarkably simple. It just draws thebackground and sprites all at once at the end of eachvisible portion of a frame. It also sets the status registerwhen vblank starts and ends so that the CPU cancoordinate with the PPU. Finally, it does some bookkeepingto keep track of the current scanline and current cycle oneach scanline.The heavy lifting is done by the draw_background() and
draw_sprites() methods, which are called by step(). We’lllook at these methods next.
Drawing the BackgroundWe begin the draw_background() background method bycalculating the address of the attribute table:

def draw_background(self):
 attribute_table_address = self.nametable_address + 960

The attribute table is always right after the nametable,and recall from earlier in the chapter that the nametable is960 bytes. I also mentioned earlier in the chapter that thenametable is composed of 960 bytes because it uses 1 byteto represent the index of each of 960 tiles. The screen is 32tiles wide and 30 tiles tall, with each tile representing an8×8 pixel area. We draw these tiles from the top left to thebottom right of the screen, one row at a time, going fromleft to right:
 for y in range(30):
 for x in range(32):
 tile_address = self.nametable_address + y * 32 + x
 nametable_entry = self.read_memory(tile_address)

Each tile_address is calculated by adding the base
nametable_address to the current tile’s offset. Since each rowis 32 tiles long, we multiple the row (y) by 32 and add the x

component, which can be thought of as the column. To getthe actual index byte (nametable_entry) we read a byte ofmemory at the tile_address. Later in the method we’ll use
nametable_entry to retrieve the tile’s pixel content from thepattern table.Next, we get the attribute table entry corresponding tothe current nametable entry:

 attrx = x // 4
 attry = y // 4
 attribute_address = attribute_table_address + attry
* 8 + attrx
 attribute_entry = self.read_memory(attribute_addres
s)

Because each entry in the 8×8 attribute table is for 16tiles, we divide both x and y by 4 to get the attribute entryconnected to the tile in question. (See “Color Palettes andAttribute Tables” on page 181 to better make sense of thiscode.) Since each attribute_entry is for four 2×2 tile areas(hence 16 tiles in total), we need to drill down to thespecific tile area:
 block = (y & 0x02) | ((x & 0x02) >> 1)
 attribute_bits = 0
 if block == 0:
 attribute_bits = (attribute_entry & 0b00000011)
<< 2
 elif block == 1:
 attribute_bits = (attribute_entry & 0b00001100)
 elif block == 2:
 attribute_bits = (attribute_entry & 0b00110000)
>> 2
 elif block == 3:
 attribute_bits = (attribute_entry & 0b11000000)
>> 4

 else:
 print("Invalid block")

The attribute_entry is 1 byte, and every 2 bits of thatbyte correspond to a different tile area. The variable blockrepresents the tile area for the current tile; it can be 0, 1, 2,or 3. Depending on the value of block, we use theappropriate bitwise operations to retrieve the two specificbits for that tile area from attribute_entry and store them in
attribute_bits.Now we need to retrieve the individual pixels of eachtile from the pattern table:

 for fine_y in range(8):
 low_order = self.read_memory(self.background_pat
tern_table_address +
 nametable_entry * 1
6 + fine_y)
 high_order = self.read_memory(self.background_pa
ttern_table_address +
 nametable_entry *
16 + 8 + fine_y)
 for fine_x in range(8):
 pixel = ((low_order >> (7 - fine_x)) & 1) |
(
 ((high_order >> (7 - fine_x)) &
1) << 1) | attribute_bits

Recall from “Pattern Tables and Tiles” on page 178 thateach pattern table is composed of 16-byte tiles. Therefore,to calculate the address of a tile, we need to multiply itsindex (nametable_entry) by 16 and add it to the
background_pattern_table_address. In addition, the patterntable tiles are divided into two bit planes, with each colorbeing 2 bits and each of those 2 bits being 8 bytes apart inthe separate planes (see Figure 6-2).

Our strategy is to read 2 bytes, one for the low_orderplane and one for the high_order plane. Each byte holds halfof the pixel entries for one row of the tile. We use fine_y torepresent each row of the tile, then zero in on theindividual bits using fine_x, which represents each column.The combination of the bits from each plane with the
attribute_bits produces an address in palette memorywhere the color of the current pixel is stored.Finally, we draw each pixel from the tile one at a time inthe appropriate screen location using the predefined colorsin NES_PALETTE:

 x_screen_loc = x * 8 + fine_x
 y_screen_loc = y * 8 + fine_y
 transparent = ((pixel & 3) == 0)
 # If the background is transparent, use the first color
in the palette
 color = self.palette[0] if transparent else self.palette
[pixel]
 self.display_buffer[x_screen_loc, y_screen_loc] = NES_PA
LETTE[color]

Setting pixels for the screen means setting values in
display_buffer, which is a NumPy array because that’s whatPygame accepts.
Drawing SpritesDrawing sprites has some similarity to drawing backgroundtiles. However, instead of reading from a nametable, weread from OAM (self.spr). Each sprite’s entry in memory is4 bytes, representing the sprite’s y position, pattern tableindex, attributes, and x position (see Table 6-5). There’sroom for up to 64 sprite entries in OAM. If the y position is0xFF, then the entry isn’t being used. We start
draw_sprites() by moving 4 bytes at a time through OAM tofind all of the valid entries:

def draw_sprites(self, background_transparent: bool):
 for i in range(SPR_RAM_SIZE - 4, -4, -4):
 y_position = self.spr[i]
 if y_position == 0xFF: # 0xFF is a marker for no sprite
data
 continue
 background_sprite = bool((self.spr[i + 2] >> 5) & 1)
 x_position = self.spr[i + 3]

We retrieve each valid sprite’s y position and x position.We also look at bit 5 of its attributes to see if it’s abackground sprite. Background sprites are drawn only ifthe background is transparent. Note that we are traversingsprite memory backward because, as we’ll see at the end ofthis section, the zeroth sprite has special significance.Just as we drew background tiles one pixel at a time, wedo the same for sprites:
 for x in range(x_position, x_position + 8):
 if x >= NES_WIDTH:
 break
 for y in range(y_position, y_position + 8):
 if y >= NES_HEIGHT:
 break

Here, x and y are analogous to fine_x and fine_y in
draw_background(). We’re careful not to draw any pixels thatare off-screen.Another attribute a sprite can have is the ability to beflipped vertically (flip_y), which is determined by theseventh bit in the sprite’s attribute byte:

 flip_y = bool((self.spr[i + 2] >> 7) & 1)
 sprite_line = y - y_position
 if flip_y:
 sprite_line = 7 - sprite_line

If a sprite is flipped vertically, we read its pixels inreverse vertical order. We use the magic number 7 becauseevery sprite is 8×8 pixels.Reading the actual pixel bits from the pattern table,based on the pattern table index, is very similar to the workdone in draw_background():
 index = self.spr[i + 1]
 bit0s_address = self.spr_pattern_table_address +
(index * 16) + sprite_line
 bit1s_address = self.spr_pattern_table_address +
(index * 16) + sprite_line + 8
 bit0s = self.read_memory(bit0s_address)
 bit1s = self.read_memory(bit1s_address)
 bit3and2 = ((self.spr[i + 2]) & 3) << 2

I used some different terminology here (bit0s_addressand bit1s_address instead of low_order and high_order)because I thought different naming might resonate withdifferent readers. The attribute color bits are bits 0 and 1in the sprite’s attribute byte, and they’re stored in bit3and2for the final color.Sprites can also be flipped horizontally based on bit 6 inthe attribute byte:
 flip_x = bool((self.spr[i + 2] >> 6) & 1)
 x_loc = x - x_position # position within sprite
 if not flip_x:
 x_loc = 7 - x_loc

We put the two bit planes together and skip overdrawing pixels that are transparent:
 bit1and0 = (((bit1s >> x_loc) & 1) << 1) | (
 ((bit0s >> x_loc) & 1) << 0)

 if bit1and0 == 0: # transparent pixel... skip
 continue

The PPU keeps track of whether the zeroth sprite (thefirst entry in OAM) is colliding with any non-transparentbackground pixels. This is called a sprite-zero hit. Weimplement this simple form of collision detection here:
 # This is not transparent. Is it a sprite-zero hit there
fore?
 # Check that left 8 pixel clipping is not off.
 if (i == 0) and (not background_transparent) and (not (x
< 8 and (
 not self.left_8_sprite_show or not self.left_8_b
ackground_show))
 and self.show_background and self.show_sprit
es):
 self.status |= 0b01000000
 # Need to do this after sprite-zero checking so we still
count background
 # sprites for sprite-zero checks
 if background_sprite and not background_transparent:
 continue # background sprite shouldn't draw over opa
que pixels

When a sprite-zero hit occurs, we mark it in the statusregister. In this chunk of code, we also skip drawingbackground sprites if the background isn’t transparent.There are flags that can be set in the PPU to clip the left 8pixels of a background tile or sprite. That flag is alsochecked in this section to ensure if it’s on that there aren’terroneous sprite-zero hits.Finally, we retrieve the color of the individual pixel:
 color = bit3and2 | bit1and0
 color = self.read_memory(0x3F10 + color) # from

palette
 self.display_buffer[x, y] = NES_PALETTE[color]

To retrieve the color, we combine bit3and2 with bit1and0and read from the appropriate location in palette memory.Then, we put this pixel on the screen. Instead of readingfrom palette directly, we use read_memory() here because ofthe need to incorporate address mirroring.
Accessing RegistersThe PPU has several memory-mapped registers, and thereare some technicalities and peculiarities when reading orwriting them. We’ll tackle these through the read_register()and write_register() methods. In read_register(), we firsthandle address 0x2002, which is for reading the statusregister:

def read_register(self, address: int) -> int:
 if address == 0x2002:
 self.addr_write_latch = False
 current = self.status
 self.status &= 0b01111111 # clear vblank on read to
0x2002
 return current

When the status register is read, self.addr_write_latch isset to False, which modifies how addresses are written to0x2006 (coming up later). Also, vblank is cleared on readsto the status register. Next, the current self.spr_address inOAM can be read through 0x2004:
 elif address == 0x2004:
 return self.spr[self.spr_address]

The PPU memory at self.addr can be read and writtenthrough register 0x2007. But it’s read through a buffer

(self.buffer2007), with the details varying depending onwhat address is being read:
elif address == 0x2007:
 if (self.addr % 0x4000) < 0x3F00:
 value = self.buffer2007
 self.buffer2007 = self.read_memory(self.addr)
 else:
 value = self.read_memory(self.addr)
 self.buffer2007 = self.read_memory(self.addr - 0x100
0)
 # Every read to 0x2007 there is an increment
 self.addr += self.address_increment
 return value
else:
 raise LookupError(f"Error: Unrecognized PPU read {addres
s:X}")

Notice how self.address_increment is added to self.addrafter every read. This allows for subsequent reads toautomatically get the next entry, either 1 byte or 32 bytesfurther.In write_register(), we change the operation of the PPUby writing to its various memory-mapped registers. First,registers 0x2000 and 0x2001 are called control registers.They’re used for changing various internal values thatwe’ve already seen in use throughout the rest of the PPU’simplementation:
def write_register(self, address: int, value: int):
 if address == 0x2000: # Control1
 self.nametable_address = (0x2000 + (value & 0b000000
11) * 0x400)
 self.address_increment = 32 if (value & 0b00000100)
else 1
 self.spr_pattern_table_address = (((value & 0b000010
00) >> 3) * 0x1000)

 self.background_pattern_table_address = (((value & 0
b00010000) >> 4) * 0x1000)
 self.generate_nmi = bool(value & 0b10000000)
 elif address == 0x2001: # Control2
 self.show_background = bool(value & 0b00001000)
 self.show_sprites = bool(value & 0b00010000)
 self.left_8_background_show = bool(value & 0b0000001
0)
 self.left_8_sprite_show = bool(value & 0b00000100)

Next, we handle registers 0x2003 through 0x2007:
 elif address == 0x2003:
 self.spr_address = value
 elif address == 0x2004:
 self.spr[self.spr_address] = value
 self.spr_address += 1
 elif address == 0x2005: # scroll
 pass
 elif address == 0x2006:
 # Based on https://wiki.nesdev.org/w/index.php/PPU_s
crolling
 if not self.addr_write_latch: # first write
 self.addr = (self.addr & 0x00FF) | ((value & 0xF
F) << 8)
 else: # second write
 self.addr = (self.addr & 0xFF00) | (value & 0xF
F)
 self.addr_write_latch = not self.addr_write_latch
 elif address == 0x2007:
 self.write_memory(self.addr, value)
 self.addr += self.address_increment
 else:
 raise LookupError(f"Error: Unrecognized PPU write {a
ddress:X}")

Register 0x2003 sets self.spr_address. Register 0x2004sets the value at self.spr_address and then increments

self.spr_address by 1. Register 0x2005 is a scroll register;we haven’t implemented it in our simple PPU, but a fullimplementation would require it. As it stands, our emulatorwon’t work with games that require scrolling. Register0x2006 is for modifying self.addr. This is where
self.addr_write_latch comes in: we need the latch because
self .addr is 16 bits (2 bytes) but can only be written to 1byte at a time. Finally, 0x2007 is for writing to self.addr.
Accessing MemoryOur PPU implementation is basically done, but we needhelper methods for reading and writing to PPU memory.These read_memory() and write_memory() methods are quitesimilar to their analogs in the CPU:

def read_memory(self, address: int) -> int:
 address = address % 0x4000 # mirror >0x4000
 if address < 0x2000: # pattern tables
 return self.rom.read_cartridge(address)
 elif address < 0x3F00: # nametables
 address = (address - 0x2000) % 0x1000 # 3000-3EFF is
a mirror
 if self.rom.vertical_mirroring:
 address = address % 0x0800
 else: # horizontal mirroring
 if (address >= 0x400) and (address < 0xC00):
 address = address - 0x400
 elif address >= 0xC00:
 address = address - 0x800
 return self.nametables[address]
 elif address < 0x4000: # palette memory
 address = (address - 0x3F00) % 0x20
 if (address > 0x0F) and ((address % 0x04) == 0):
 address = address - 0x10
 return self.palette[address]
 else:
 raise LookupError(f"Error: Unrecognized PPU read at
{address:X}")

def write_memory(self, address: int, value: int):
 address = address % 0x4000 # mirror >0x4000
 if address < 0x2000: # pattern tables
 return self.rom.write_cartridge(address, value)
 elif address < 0x3F00: # nametables
 address = (address - 0x2000) % 0x1000 # 3000-3EFF is
a mirror
 if self.rom.vertical_mirroring:
 address = address % 0x0800
 else: # horizontal mirroring
 if (address >= 0x400) and (address < 0xC00):
 address = address - 0x400
 elif address >= 0xC00:
 address = address - 0x800
 self.nametables[address] = value
 elif address < 0x4000: # palette memory
 address = (address - 0x3F00) % 0x20
 if (address > 0x0F) and ((address % 0x04) == 0):
 address = address - 0x10
 self.palette[address] = value
 else:
 raise LookupError(f"Error: Unrecognized PPU write at
{address:X}")

In these methods, different memory regions are mappedto their respective areas—the pattern tables (which areactually on the cartridge), nametables, and the like. Theonly complication is that the nametables and palettememory can be mirrored. We handle this using the modoperator (%), as we did in the CPU.
Testing the EmulatorMany test ROMs have been created for folks developingNES emulators. Some are included in the repository for thisbook. These can test the 6502 CPU as well as the PPU.

Thank you to Shay Green and Kevin Horton for developingthese tests.Our 10 unit tests run these ROMs and then check thatcertain values in the virtual NES’s memory are setcorrectly, as specified by the test ROMs’ creators. Like alltests for the book, the file for these unit tests appears inthe tests directory in the root of the source code repository:
tests/test_nesemulator.py
import unittest
from pathlib import Path
from NESEmulator.cpu import CPU
from NESEmulator.ppu import PPU
from NESEmulator.rom import ROM

class CPUTestCase(unittest.TestCase):
 def setUp(self) -> None:
 self.test_folder = (Path(__file__).resolve().parent.
parent
 / 'NESEmulator' / 'Tests')

 def test_nes_test(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "nestest" / "nestest.ne
s")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Set up tests
 cpu.PC = 0xC000 # special starting location for test
s
 with open(self.test_folder / "nestest" / "nestest.lo
g") as f:
 correct_lines = f.readlines()
 log_line = 1
 # Check every line of the log against our own produc
ed logs
 while log_line < 5260: # go until first unofficial o
pcode test

 our_line = cpu.log()
 correct_line = correct_lines[log_line - 1]
 self.assertEqual(correct_line[0:14], our_line[0:
14],
 f"PC/Opcode doesn't match at li
ne {log_line}")
 self.assertEqual(correct_line[48:73], our_line[4
8:73],
 f"Registers don't match at line
{log_line}")
 cpu.step()
 log_line += 1

 def test_blargg_instr_test_v5_basics(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "01-basics.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of basics test is {ro
m.prg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_implied(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "02-implied.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success

 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of implied test is {r
om.prg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_branches(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "10-branches.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of branches test is
{rom.prg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_stack(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "11-stack.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff

icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of stack test is {ro
m.prg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_jmp_jsr(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "12-jmp_jsr.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of jmp_jsr test is {r
om.prg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_rts(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "13-rts.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()

 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of rts test is {rom.p
rg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_rti(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "14-rti.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of rti test is {rom.p
rg_ram[0]} not 0")
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator

 def test_blargg_instr_test_v5_brk(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "15-brk.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends

with null terminator
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of brk test is {rom.p
rg_ram[0]} not 0")

 def test_blargg_instr_test_v5_special(self):
 # Create machinery that we are testing
 rom = ROM(self.test_folder / "instr_test-v5" / "rom_
singles" / "16-special.nes")
 ppu = PPU(rom)
 cpu = CPU(ppu, rom)
 # Tests run as long as 0x6000 is 80, and then 0x6000
is result code; 0 means success
 rom.prg_ram[0] = 0x80
 while rom.prg_ram[0] == 0x80: # go until first unoff
icial opcode test
 cpu.step()
 message = bytes(rom.prg_ram[4:]).decode("utf-8")
 print(message[0:message.index("\0")]) # message ends
with null terminator
 self.assertEqual(0, rom.prg_ram[0],
 f"Result code of special test is {r
om.prg_ram[0]} not 0")

if __name__ == "__main__":
 unittest.main()

It’s important to have automated tests like this whendeveloping an emulator. Even when you think your CPU isperfect, you may have missed a small bug that throwswhole programs off. You also need to know that changingone part of your emulator doesn’t break another part of it.
Playing GamesUnit tests are one thing, but the real test of our emulator iswhether it can play actual NES software. For legal reasons,we won’t be testing any commercial software in our NESemulator. Due to its simplicity, our emulator wouldn’t be

capable of playing most of the NES library anyway. Instead,the book’s source code repository includes several opensource or public domain games that our emulator iscapable of running. These are real games in the sense thatthey can run on a real NES console.Let’s start with BrickBreaker, a Breakout-like game byAleff Correa that I mentioned earlier. Assuming you havePygame and NumPy installed, you can play this game byjust running this command from the repository’s homedirectory:
% python3 -m NESEmulator NESEmulator/Games/brix.nes

It looks pretty good (see Figure 6-8).

Figure 6-8: BrickBreaker by Aleff Correa

Next, let’s try Chase by Shiru:
% python3 -m NESEmulator NESEmulator/Games/Chase.nes

Figure 6-9 shows the game.

Figure 6-9: Chase by Shiru

Finally, let’s try Lan Master by Shiru:
% python3 -m NESEmulator NESEmulator/Games/LanMaster.nes

This one’s a puzzle game, shown in Figure 6-10.

Figure 6-10: Lan Master by Shiru

Lan Master is very playable on our emulator, but theother two are not. Why? Well, you may have noticed all ofthem run pretty slowly. On my M1 MacBook Air runningCPython 3.13, for example, they run at approximately 14FPS. That’s about one-quarter the speed of a real NES. Ouremulator is correctly running these games, just very slowly.What’s the lesson? Python, and in particular themainline version of Python, CPython, is slow. In recentyears there have been efforts to improve the performanceof CPython, but it’s still very slow compared to most otherprogramming language implementations and isn’t tunedout of the box for writing low-level programs likeemulators. To write more performant programs, you needto jump through some hoops: you can use particularlibraries that are implemented in a lower-level language,use Cython, write a C extension, or use an alternativePython interpreter like PyPy.I’ll leave speeding up the emulator using something likeCython as an exercise for the reader. I’m confident that

with the right solution you can get this NES emulator up toa real NES’s 60 FPS.
CODE MEETS LIFE

When I started my emulator-programming journey by writing a CHIP-8
VM in Swift, my real dream was to write an emulator for the first game
console I owned as a child, the NES. Two years later I got there,
writing a basic NES emulator with no sound in C. While the CHIP-8 VM
took me a day or two, the NES emulator took me about 30 days,
spread over a year of off-and-on research and programming time. I
found writing the CPU portion quite straightforward, but writing a
pixel-perfect background renderer was much more challenging. I
ended up porting the background renderer of the PPU of Michael
Fogleman’s excellent NES emulator7 from Go to C and combining it
with my own sprite-rendering code.

If the NES emulator took me about 30 days to write and the CHIP-8
VM took about two days, was the project 15 times harder? I don’t
think so. My challenge in writing the PPU was keeping all of the
technical details in my mind at once. I was too focused on writing a
pixel-perfect renderer when I should have started with a per-frame
renderer as we did in this chapter. At the time there were also no
great tutorials, although the documentation at NesDev was
invaluable. I had first wanted to write an NES emulator as a teenager,
so completing it was a dream come true, even if it was pretty basic
and lacked sound. (I later added sound, as well as more mappers than
just NROM.)

In this chapter, I tried to provide the tutorial that I wish I had when
I was developing my NES emulator. I knew pixel-perfect rendering
would be too complicated and too full of esoteric internal-register
minutiae for a first-time emulator writer, so I went back and rewrote
the PPU of my C NES emulator as simply as possible. That’s the
renderer I ported to Python for this chapter.

After finishing the NES emulator, I went on to write an emulator for
the original IBM PC. That was a significantly more complicated project,
largely because the Intel 8088/8086 is much more complicated than
the MOS 6502. In that project, not writing automated tests very early
on bit me. Eventually I got it working at a basic level, but I should
have written the tests much earlier. The more complicated the
microprocessor you’re emulating, the more you need automated tests
as early as possible.

Real-World ApplicationsEmulators are probably most commonly used to play videogames for systems that are no longer in production, butthey’ve also long been used at critical junctures incomputing history. For example, when Bill Gates and PaulAllen started Microsoft in 1975 by writing a BASICinterpreter for the Altair 8800, as was discussed in Chapter2, they didn’t actually have an Altair 8800 available tothem. Instead, they wrote an emulator for the Altair’s Intel8080 microprocessor on one of the minicomputers atHarvard, where Gates was going to college.8Apple has transitioned the microprocessor family usedin its Macintosh line of computers three times: from theMotorola 68K to the Motorola/IBM PowerPC, from thePowerPC to the Intel x86, and finally from the Intel x86 toApple’s own ARM-derived Apple Silicon. Does that meanApple had to have developers recompile or rewrite all oftheir software several times? In the long run, yes, but in theshort term during the transitions, Apple providedemulators. PowerPC Macs could run 68K Mac software,Intel Macs (at the beginning) could run PowerPC Macsoftware, and Apple Silicon Macs can run Intel Macsoftware too. Apple is an amazing emulator developer. Infact, PowerPC Macs would run 68K software faster than68K Macs. The same was sometimes true of Apple SiliconMacs running Intel software.Emulators are also important for the preservation ofsoftware. What happens when it’s very hard to obtain theoriginal hardware that a piece of software was written for?In those cases an emulator may be the only option. On theother end of the spectrum, emulators are sometimes usedin the design phase of a new computing platform. Beforethe platform exists, the designers may utilize an emulatorto simulate what it will be like and help flesh out itsfeatures in a realistic environment.

Finally, emulator writing is very educational. It’s one ofthe best ways to teach how computers work at a low level,as I hope you discovered in this chapter.
Exercises  1.  Try to get the performance of our emulator up to that ofa real NES—in other words, 60 FPS. You’ll likely needto use something like Cython, or Python in combinationwith a low-level language like C or Rust through anextension. It will be nearly impossible to get purePython to run at 60 FPS as of CPython 3.13 and 2025era microprocessors.  2.  Add support for scrolling to our emulator using thedocumentation at https://nesdev.org.  3.  Implement another mapper. Right now our emulatoronly implements NROM, the most basic mapper. Twoother popular mappers are MMC1 and UxROM.  4.  And now for the largest challenge of all: try writing anAPU for our emulator so that you can play games withsound.
Notes  1.  David Sheff, Game Over: How Nintendo Conquered the

World (GamePress, 1999).  2.  Russ Cox, “The MOS 6502 and the Best Layout Guy inthe World,” research!rsc, January 3, 2011, https://
research.swtch.com/6502.  3.  Steven Collier, “What Was the Biggest NES Game EverMade?,” DKoldies, March 24, 2016, https://www
.dkoldies.com/blog/what-was-the-biggest-nes-game-ever-
made/.  4.  Marat Fayzullin, “iNES,” accessed April 19, 2024,
http://fms.komkon.org/iNES.

https://nesdev.org/
https://research.swtch.com/6502
https://www.dkoldies.com/blog/what-was-the-biggest-nes-game-ever-made/
http://fms.komkon.org/iNES

  5.  Table 6-1 is based on information from NesDev.orgreleased into the public domain. See https://www
.nesdev.org/wiki/INES.  6.  The example is borrowed from user Damian Yerrick ofNesDev.org. All the information on NesDev.org isreleased into the public domain. See https://www
.nesdev.org/wiki/PPU_pattern_tables.  7.  See https://github.com/fogleman/nes.  8.  James Wallace and Jim Erickson, Hard Drive: Bill Gates
and the Making of the Microsoft Empire(HarperBusiness, 1993).

https://www.nesdev.org/wiki/INES
https://www.nesdev.org/wiki/PPU_pattern_tables
https://github.com/fogleman/nes

PART IV
SUPER-SIMPLE MACHINE LEARNING

7
CLASSIFICATION WITH K-NEAREST

NEIGHBORS

This chapter will introduce k-
nearest neighbors (KNN), anextraordinarily simple machine learningalgorithm that can be highly effective forsome applications. First developed in the1950s and 1960s,1 KNN can be used forboth classification (deciding whatcategory something belongs to) and

regression (predicting a value). Forreaders daunted by the complexities ofmachine learning, KNN provides anaccessible yet real-world entry point intothe field. In this chapter, we’ll use KNN tosolve two classification problems with ahigh degree of accuracy: distinguishingbetween different types of fish and

recognizing handwritten digits. Then, inChapter 8, we’ll extend KNN to somerelated regression problems.
The Rise of Machine LearningGoing back to the 1950s, traditional artificial intelligence(AI) research was chiefly concerned with utilizingalgorithms to model human intelligence. Starting in the1990s, however, and especially since the advent of neuralnetworks backed by GPU computing in the 2000s, much ofthe focus of AI research and productization has turned tothe subfield of machine learning, which uses large datasetsto train models that can make decisions without needing toreference the human method of problem solving. Tounderstand this shift, think of the difference between achess program that evaluates a position based on well-understood heuristics from grandmasters and a chessprogram that evaluates a position based on auto-tunedweights assimilated from statistically analyzing millions ofgames. Indeed, machine learning is heavily based onstatistics.All the exciting machine learning applications we’refamiliar with, including LLMs, image recognition, anddigital assistants, are built using sophisticated multilayerneural networks trained on GPUs or specialized neuralprocessors. This is known as deep learning. To program adeep learning framework from scratch you would need asignificant understanding of both calculus and statistics.Even if you dodge some of that by using a library, you stilltypically need a huge dataset, which is often hard to obtain,and powerful hardware.Because of these barriers, programmers interested ingetting started with machine learning are sometimesintimidated. They’re afraid the math will be too hard or

they’ll lack the resources needed to develop the applicationthey’re interested in. What’s more, some learningprogrammers like to build their projects from the groundup; they don’t want to just pip install their way to asolution that offers them no understanding about how theunderlying process actually works.As you’ll see in this chapter, however, machine learningcan have a very approachable starting point if you don’tjump right into the deep learning deep end. You canprogram the KNN algorithm from scratch and use it tosolve real problems, and you don’t need a background inmathematics beyond the middle school level to understandwhat you’re doing. The only statistical concept required toimplement KNN is the idea of a mean (average), and theonly other formula you’ll need is the Pythagorean theoremto find the Euclidean distance between two points. That’snot asking much, right?
NOTE
If you want to learn more about neural networks, you can
check out Chapter 7, “Fairly Simple Neural Networks,” of
my prior book Classic Computer Science Problems inPython (Manning, 2019).

How KNN WorksThe KNN algorithm makes a simple assumption: theneighbors of a data point are likely to be the other datapoints that have the most in common with it. For example,if I’m trying to figure out the disease that a patient has,perhaps other patients with the same symptoms and samevital signs are the best clues. Incidentally, this is why youprobably don’t want a doctor straight out of medical school.More experienced doctors can use the obvious heuristic of

“I’ve seen other patients like this before” to offer you betterinitial guidance.Another way of putting it is that the data points that areclosest to an unknown value are the likeliest ones to tell uswhat that unknown value is. Perhaps you’re a car dealer,and you want to know if you should spend more marketingdollars trying to attract a potential repeat customer bysending her further mailers. The customer has filled in acustomer satisfaction survey rating various aspects of yourbusiness. You have a lot of data from prior customers fillingin the same survey, and you know whether or not theyended up buying another car with you. You can comparethis potential repeat customer’s survey ratings to theratings of prior customers to find the customers that arethe most similar to her in disposition. If those priorcustomers with similar ratings ended up buying anothercar, you know it’s probably worthwhile to spend the moneyon sending her more marketing material. That’s essentiallythe analysis that KNN does: it lets prior data “vote” on alikely value associated with some new data.Let’s look at the last example visually along twodimensions. Figure 7-1 is a fictionalized dataset ofrespondents’ ratings on the dealer survey for “CarHappiness” and “Dealer Happiness.” Crosses are surveyrespondents who purchased another car from the dealer,triangles are survey respondents who did not, and theround dot is the new survey respondent.

Figure 7-1: Car dealership survey respondents’ data

How would we classify our new survey respondent? Isshe likely to buy another car or not? Using KNN, we needto first choose a value for k, the meta-heuristic. This issimply the number of neighbors we’ll look at. If we set k to1, then we look at just the data point that’s closest to ourunknown value. In Figure 7-1, with our survey respondentat (6, 8), our next closest data point to compare is at (7, 8),and that’s someone who did buy another car. With k set to1, we would therefore conclude that it’s worth spending the

money to send our new respondent some more marketingmaterial.But what if k is set to a number greater than 1? Thetypical solution in the KNN algorithm is to “vote.” Forexample, if k is 3 in our scenario, you can see that the threeclosest data points would be two that bought a new car andone that didn’t. Since the majority bought another car, wewould still conclude it’s worth spending the money onmarketing to the new survey respondent. If k is set to 2, wewould have a problem since one decided to buy another carand one didn’t. Then, we would have to have some kind oftie-breaking criterion.And that’s it. That’s the whole KNN algorithm forclassification. We look at k data points close to the datapoint in question, and we let them vote on what ourunknown should be. We can thus summarize the KNNalgorithm for classification as follows:1. Choose k, the number of neighbors to compare to anunclassified data point.2. Find the k-nearest neighbors to the data point.3. Vote on the classification of the data point based on theclasses of the k-nearest neighbors.This simple algorithm requires three clarifications:What does it mean to be a “nearest” neighbor? How is thewinner of the vote determined? And what is the right valuefor k? All these questions may have different answers fordifferent applications of KNN.“Nearest” is most commonly determined usingEuclidean distance. In other words, if we drew straightlines on Figure 7-1 between our unclassified point (theround dot) and all the other data points on the graph, theshortest lines would determine the neighbors. However, forsome applications that don’t have numerical data points,something like Hamming distance (counting the

differences) may apply. Distance functions other thanEuclidean distance are beyond the scope of this chapter.Voting usually means determining what class a pluralityof the nearest neighbors belongs to. You need some kind oftie-breaking criterion, though, even if you stick to oddnumbers for k. This is because many applications havemore than two classes. For instance, what if you have threeclasses and k is set to 5? You may end up with two of thenearest neighbors belonging to class A, two belonging toclass B, and one belonging to class C. Should the data pointin question be classified as A or B?Determining the right value for k is actually quitestraightforward. Unless we have some specific domainknowledge to tell us otherwise, we should use the valuethat has been found to be the most accurate in testing. Wecan test KNN with several different values for k with aparticular dataset and set of test points and see whichvalue is the most useful.Those are the basics of classification with KNN.Obviously, there are a lot of options and enhancements thatcan be made beyond this simple outline, but you alreadyknow enough to implement KNN!
Implementing Classification with KNNLike the algorithm itself, our code to implement KNN willbe quite simple. But before we can get to the algorithm, weneed a generic type for representing a data point. We’llcreate a DataPoint class that’s a protocol, meaning there willbe no instances of this type itself, but only of its subclasses.It’s an abstract template outlining the functionality that amore concrete data point type must have:

KNN/knn.py

from pathlib import Path
import csv
from typing import Protocol, Self
from collections import Counter
import numpy as np

class DataPoint(Protocol):
 kind: str

 @classmethod
 def from_string_data(cls, data: list[str]) -> Self: ...

 def distance(self, other: Self) -> float: ...

Our protocol specifies that a data point should have a
kind attribute (or a class in the words of classification), a
from_string_data() method for converting a line from a CSV(comma-separated values) file to an instance of the class,and distance() to find the distance between two of the samekind of data points. We’ll create DataPoint subclasses for thetwo concrete datasets we work with in this chapter.Our main KNN implementation is via a class notsurprisingly called KNN:

class KNN[DP: DataPoint]:
 def __init__(self, data_point_type: type[DP], file_path:
str | Path,
 has_header: bool = True) -> None:
 self.data_point_type = data_point_type
 self.data_points = []
 self._read_csv(file_path, has_header)

 # Read a CSV file and return a list of data points
 def _read_csv(self, file_path: str | Path, has_header: b
ool) -> None:
 with open(file_path, 'r') as f:
 reader = csv.reader(f)
 if has_header:

 _ = next(reader)
 for row in reader:
 self.data_points.append(
 self.data_point_type.from_string_data(ro
w))

The type hint syntax class KNN[DP: DataPoint]: says that ageneric type, DP, is associated with KNN and that a DP must bea subclass of DataPoint. We’ll be loading all our datasetsfrom CSV files. Our KNN class’s _read_csv() method utilizesthe built-in Python csv module to load these files. Each linein the CSV file is used to initialize one of our DataPointsubclasses via its from_string_data() class method. We’llcome back to the specifics of CSV files in a bit when welook at our first dataset.Now that we have a dataset loaded in the KNN class,we’re ready to implement the actual KNN algorithm. Wheredo we start? Given a point that we want to classify, the firstthing we need is to identify its k-nearest neighbors. All ourdata points have built-in distance() methods, so we can justcalculate the distance from our unclassified data point toevery data point in the dataset and find the k nearest:
 def nearest(self, k: int, data_point: DP) -> list[DP]:
 return sorted(self.data_points, key=data_point.dista
nce)[:k]

Yup, it is a one-liner. We just use the distance()method’s results to sort all of the data points, and then wekeep the k lowest values (the points with the least distancefrom data_point). The core of the KNN algorithm really isthat simple.Is this the most efficient way to find the nearestneighbors? No. Sorting is an O(n log n) operation, where nis the number of data points in the dataset. If the dataset isvery large, this would be a significant bottleneck. We could

improve this a bit by writing code to manually evaluate thedistances of all the data points utilizing an ancillary datastructure to only keep the k smallest. To take performanceeven further, we may need a more sophisticated datastructure than an unsorted list for storing the dataset. Inshort, there’s a trade-off here between algorithmicperformance and data structure complexity.Another alternative would be to not actually search theentire dataset for neighbors each time. There are variousapproaches to limit the search either throughprecomputation of a more limited subset of data points thatare representative of the whole or sampling the datasetduring the search through a so-called approximate search.2That said, our simple sorting technique is fast enough forour applications and is true to the title of this part of thebook, “Super-Simple Machine Learning.”Next, we need to do the “voting.” That involvescounting how many of each class (or kind) there are in thenearest neighbors and returning the class that there arethe most of:
 def classify(self, k: int, data_point: DP) -> str:
 neighbors = self.nearest(k, data_point)
 return Counter(neighbor.kind for neighbor in neighbo
rs).most_common(1)[0][0]

First, we find the neighbors. Then, we use Python’s built-in Counter collection type to find the most common kindamong the neighbors. The most_common(1) call returns thesingle most common item in the Counter, and the [0][0] saysretrieve that first item from the collection and take its kindlabel. The Counter will internally be structured as key-valuepairs that look something like [("amphibian", 3), ("reptile",
4), ("mammal", 1)]. In that example, the line would find thekey-value pair with the highest value, ("reptile", 4), andreturn just its key, "reptile". We don’t handle tie-breakers

in any systematic way here—we just leave it up to the whimof Counter. Again, remember the part title.That’s it. Thanks to some nice Python standard libraryroutines, the actual algorithmic work behind KNN iseffectively just three lines of code between nearest() and
classify(). I told you it would be “super simple.” With thealgorithm in place, let’s now apply KNN to twoclassification problems.
Classifying FishSuppose you work as a programmer for a company thatmakes a fish-finding device for anglers. It consists of acamera on the end of a pole that travels underneath a boat.It has image recognition built in, so when a fish passes bythe underwater camera, it can automatically take a pictureof it and recognize the rectangle within the photo thatcontains the fish. It can also estimate the dimensions of thefish in the photo. Your task is to write a layer of software ontop of this image recognition system that tells the anglerwhat type of fish it is. After all, not all fish are legal tocatch.Luckily, we have a dataset in the public domain that willhelp us with this fish classification task. It’s originally froma 1917 Finnish paper by Pekka Brofeldt that in English wascalled “Contribution to the Knowledge of Fish Stocks inDangerous Lakes.”3 It contains the dimensions and weightsof 159 fish from a lake, classified by species (so ourprogram may only work in that one lake). Figure 7-2 showsthe fish in our dataset along just two dimensions, heightand width.

Figure 7-2: Fish categorized by species and plotted along the height and width
dimensions

As you may expect, fish of a similar species tend to beclose together when viewed in terms of height and width.That’s a good indicator that KNN may be a useful algorithmfor this problem.Let’s look at what the raw data looks like. Here’s asample of the first few lines of fish.csv:
Species,Weight,Length1,Length2,Length3,Height,Width
Bream,242,23.2,25.4,30,11.52,4.02
Bream,290,24,26.3,31.2,12.48,4.3056
Bream,340,23.9,26.5,31.1,12.3778,4.6961
Bream,363,26.3,29,33.5,12.73,4.4555

The first row is a header that describes each column.The three length dimensions, which represent the distances

from the nose of each fish to various different body parts,are in centimeters, and the weight is in grams. There’ssome ambiguity in sources about the units of the height andwidth. As long as the units are consistent between samples,however, the data is still useful, even if we don’t know if it’scentimeters, some kind of percentage, or otherwise.
The Fish ClassTo implement our fish classifier, we need to build asubclass of DataPoint to represent a fish:

KNN/fish.py
from dataclasses import dataclass
from KNN.knn import DataPoint
from typing import Self

@dataclass
class Fish(DataPoint):
 kind: str
 weight: float
 length1: float
 length2: float
 length3: float
 height: float
 width: float

 @classmethod
 def from_string_data(cls, data: list[str]) -> Self:
 return cls(kind=data[0], weight=float(data[1]), leng
th1=float(data[2]),
 length2=float(data[3]), length3=float(dat
a[4]),
 height=float(data[5]), width=float(data
[6]))

 def distance(self, other: Self) -> float:
 return ((self.length1 - other.length1) ** 2 +
 (self.length2 - other.length2) ** 2 +

 (self.length3 - other.length3) ** 2 +
 (self.height - other.height) ** 2 +
 (self.width - other.width) ** 2) ** 0.5

Technically, we don’t need to explicitly make Fish asubclass of DataPoint for protocol conformance in Pythontype hints. By fulfilling all the requirements of the DataPointprotocol, a Fish can substitute for a DataPoint without evensubclassing it thanks to the concept of implicit subtypes.4Still, we declare Fish as a subclass of DataPoint explicitlybecause it provides clarity to the reader of our code andaids in type checking.Each line of a CSV is provided from the KNN class as alist of strings for the Fish class to convert into a Fishinstance. The from_string_data() method does thisconversion. The distance() calculates the Euclidean distancebetween the current instance and another Fish. We find thedifferences between each dimension in the dataset, squarethose differences, and sum them. Then, we return thesquare root (** 0.5) of that sum. Note that we don’tconsider the weight attribute from the dataset as part of thecomparison. This is because we’ll be using the dimensionsof a fish to predict its weight in the next chapter, so theweight will be unknown for the fish in question.
The Unit TestsWe have unit tests to make sure we’re getting the expectedresults from our fish detector. We start with a test thatchecks whether the fish nearest to a sample fish are theexpected ones:

tests/test_knn.py
import unittest
from pathlib import Path
import csv
from KNN.knn import KNN

from KNN.fish import Fish
from KNN.digit import Digit

class FishTestCase(unittest.TestCase):
 def setUp(self) -> None:
 self.data_file = (Path(__file__).resolve().parent.pa
rent
 / "KNN" / "datasets" / "fish" / "f
ish.csv")

 def test_nearest(self):
 k: int = 3
 fish_knn = KNN(Fish, self.data_file)
 test_fish: Fish = Fish("", 0.0, 30.0, 32.5, 38.0, 1
2.0, 5.0)
 nearest_fish: list[Fish] = fish_knn.nearest(k, test_
fish)
 self.assertEqual(len(nearest_fish), k)
 expected_fish = [Fish('Bream', 340.0, 29.5, 32.0, 3
7.3, 13.9129, 5.0728),
 Fish('Bream', 500.0, 29.1, 31.5, 3
6.4, 13.7592, 4.368),
 Fish('Bream', 700.0, 30.4, 33.0, 3
8.3, 14.8604, 5.2854)]
 self.assertEqual(nearest_fish, expected_fish)

Next, we try classifying a sample fish:
 def test_classify(self):
 k: int = 5
 fish_knn = KNN(Fish, self.data_file)
 test_fish: Fish = Fish("", 0.0, 20.0, 23.5, 24.0, 1
0.0, 4.0)
 classify_fish: str = fish_knn.classify(k, test_fish)
 self.assertEqual(classify_fish, "Parkki")
--snip--

To run these unit tests we have our standard test-running code:

if __name__ == "__main__":
 unittest.main()

Note that we’ve skipped over about 40 lines in the
test_knn.py file containing further tests that will appearlater in this chapter and the next.
Classifying Handwritten Digits
Optical character recognition (OCR) is concerned withusing computers to recognize the characters in images oftyped or handwritten text. For example, the post office hassorting machines that use OCR to automatically read theaddresses written on envelopes. A wide variety oftechniques have been successfully deployed to performOCR, KNN among them. In this section, we’ll use KNN todevelop a handwritten digit recognizer that will achieve 98percent accuracy on the samples in a significant test set.The dataset we’ll use was developed by Cenk Kaynakand Ethem Alpaydin in 1998 at Bogazici University inIstanbul, Turkey, and was later submitted to the UC IrvineMachine Learning Repository under a Creative CommonsAttribution 4.0 International license. It consists of 5,620bitmaps of handwritten digits (0–9) created by 43 differentpeople.5 The digit images are downscaled to 8×8 pixels,with each pixel represented in a CSV file as an integerbetween 0 and 16 indicating its grayscale level. Each line inthe CSV consists of the 64 integers representing the 64pixels in the handwritten digit image, plus a 65th integerrepresenting which digit (0–9) the image should beclassified as. Figure 7-3 shows a sampling of these digits.
Figure 7-3: Some 8×8 handwritten digit images from the OCR dataset

The digits are artificially enlarged a bit in the figure,but you can see that the downscaling to 8×8 results in someloss of detail. That lower level of detail, and therefore alower dimensionality in the dataset, makes our programfaster to execute. Comparing 64 pixels between images isobviously much faster than comparing 1,024 pixelsbetween images (they were originally 32×32 before beingdownscaled).
The Digit ClassTo represent each digit, we define another subclass of
DataPoint:

KNN/digit.py

from dataclasses import dataclass
from KNN.knn import DataPoint
from typing import Self
import numpy as np

@dataclass
class Digit(DataPoint):
 kind: str
 pixels: np.ndarray

 @classmethod
 def from_string_data(cls, data: list[str]) -> Self:
 return cls(kind=data[64],
 pixels=np.array(data[:64], dtype=np.uint3
2))

 def distance(self, other: Self) -> float:
 tmp = self.pixels - other.pixels
 return np.sqrt(np.dot(tmp.T, tmp))

We store the pixel data as a NumPy array. This isconvenient because in the next chapter, we’ll use Pygameto work with our own handwritten digit scrawls, and

Pygame can interface directly with NumPy arrays. Sincethe distance() method is calculating across NumPy arrays,we use built-in NumPy functions to implement a form ofEuclidean distance.
The Unit TestThe dataset is divided between 3,823 digit images in atraining set and 1,797 digit images in a test set. We’ll usethe training set as the dataset that our KNNimplementation makes predictions based on, and we’ll testhow many digits in the test set can be correctly identifiedagainst it. Let’s define another test case in test_knn.py forthis, after the Fish test case but before the if __name__ ==
"__main__" line:

tests/test_knn.py

class DigitsTestCase(unittest.TestCase):
 def setUp(self) -> None:
 self.data_file = (Path(__file__).resolve().parent.pa
rent
 / "KNN" / "datasets" / "digits" /
"digits.csv")
 self.test_file = (Path(__file__).resolve().parent.pa
rent
 / "KNN" / "datasets" / "digits" /
"digits_test.csv")

 def test_digits_test_set(self):
 k: int = 1
 digits_knn = KNN(Digit, self.data_file, has_header=F
alse)
 test_data_points: list[Digit] = []
 with open(self.test_file, 'r') as f:
 reader = csv.reader(f)
 for row in reader:
 test_data_points.append(Digit.from_string_da
ta(row))

 correct_classifications = 0
 for test_data_point in test_data_points:
 predicted_digit: str = digits_knn.classify(k, te
st_data_point)
 if predicted_digit == test_data_point.kind:
 correct_classifications += 1
 correct_percentage = (correct_classifications
 / len(test_data_points) * 100)
 print(f"Correct Classifications: "
 f"{correct_classifications} of {len(test_data_
points)} "
 f"or {correct_percentage}%")
 self.assertGreater(correct_percentage, 97.0)

This test loads the training dataset (digits.csv) into aninstance of the KNN class. It then opens the test set(digits_test.csv) and turns the CSV data into a list of datapoints, test_data_points. Then, it tries classifying each of thedata points one at a time and records how manyclassifications it got right. Finally, it reports thatpercentage and fails if the accuracy is below 97 percent.Let’s run all the tests to see how we did. With the fishand OCR tests combined, this will take a little while.Classifying those 1,797 digit images takes about 11seconds on my laptop:
% python3 -m tests.test_knn
Correct Classifications: 1761 out of 1797 or 97.996661101836
4%
....
--

Ran 4 tests in 10.826s

OK

From the documentation that came with the OCRdataset (see the bottom of KNN/datasets/digits/readme.txt),we know that the authors tested the accuracy of thedataset themselves using KNN with various different valuesof k. They found the highest accuracy, 98 percent, with kset to 1. The test output of our classifier matches that. Thatmeans it works!
CODE MEETS LIFE

A couple years ago I found myself teaching an introductory course on
artificial intelligence to a group of senior undergraduates. I split the
course into two halves. The first half covered what we termed at the
beginning of this chapter “traditional AI,” including algorithms like A*
and MiniMax (both of which you can find in my prior book Classic
Computer Science Problems in Python) and concepts like expert
systems. The second half was dedicated to machine learning. I used
KNN as the first example of a machine learning algorithm thanks to its
extreme simplicity. It served as a great transition into the world of
machine learning, which is why I came to believe it could do the same
for the readers of this book.

Since then, my department has used KNN as a teaching demo
presentation topic for candidates coming to campus to interview to
become new computer science faculty. They’re told the presentation
topic at least a week before they come to campus and have a chance
to prepare. KNN works well as a topic for this purpose because, while
there are many possible extensions and improvements to the core
algorithm, the core algorithm itself shouldn’t take very long to
explain, and even an audience of unfamiliar faculty or first-year
students should be able to comprehend it. It’s a great gauge of
whether someone is ready to be a good instructor.

As an aside, you’d be amazed how many PhDs with a background
in machine learning aren’t able to give a good introductory lecture on
a topic like KNN. It’s worth remembering that a PhD is a research
degree, not a teaching degree. This is why, when you’re advising your
child on where to go to college, you should consider a teaching
college. At a large research university, the student may be taught by
research faculty who don’t care about teaching, an adjunct for whom
teaching is a part-time job, or in the worst case, a very inexperienced
graduate student. Having a faculty full of PhDs doesn’t mean much for
an undergraduate student’s experience in an introductory course
when those faculty care more about research grants than teaching. By
contrast, at a teaching college, you have an entire full-time faculty
(most with PhDs anyway) who were hired because they’re fully

dedicated to the art of teaching and often actually like being in an
introductory classroom. What you lose is a connection to cutting-edge
research, but for an undergraduate, that connection generally isn’t
what will make the biggest impact on their trajectory anyway. But take
what I’m saying with a grain of salt, since I’ve worked at a teaching
college for the past nine years.

Real-World ApplicationsKNN has been widely used in the real world for everythingfrom optical character recognition to recommendationsystems and from text classification to financial modeling.Its simplicity and wide applicability make it universallytaught in machine learning.However, when utilizing KNN in practice, several issuesthat have already been alluded to in this chapter must beovercome. The first is finding the right value for k. This istypically done via cross validation using a test dataset.What’s the value for k that worked best with the test data?Using too small a value can lead to overfitting, where themodel is too close to one specific dataset. Meanwhile, toolarge a value can lead to under-fitting, where the model istoo far away from being guided by the test data.6The next challenge is the performance implications ofthe basic algorithm with large datasets of highdimensionality. As mentioned earlier in the chapter, twoways of approaching this problem are designing a betterdata structure for storing the dataset or using approximatesearching. One of the most popular data structures forspeeding up the finding of nearest neighbors is a k-d tree.7However, this is a fairly complex data structure and is onlyworth the headache if performance is critical.Choosing the right distance function is also critical.Euclidean distance works for many applications, butHamming distance is appropriate for boolean dimensions,and other distance functions are well studied in theresearch literature. The right distance function is

application specific; there’s no one-size-fits-all solution.Often, you also have to normalize the data to eliminate thepossibility of different units or magnitudes, influencingresults. We didn’t normalize the data in the fish example inthis chapter, and the data in the OCR example was all inthe same units and scales and thus didn’t requirenormalization.While we saw that it’s borderline trivial to implementKNN from scratch, many popular Python machine learninglibraries have highly optimized built-in KNN functionsanyway. For example, scikit-learn’s implementation iswidely used.
Exercises  1.  Find another dataset of your own interest that our KNNimplementation can accurately classify.  2.  Try to speed up the unit tests by improving theperformance of the Digit class’s distance() method whileretaining the 98 percent accuracy of the test. Feel freeto move away from using NumPy arrays if you’d like.You can even move away from using pure Euclideandistance. Perhaps you don’t even need to compare everypixel?  3.  Reimplement our classifier using the scikit-learnlibrary. Compare the performance of our classifier tothe KNN classifier built into scikit-learn.
Notes  1.  Thomas Cover and Peter E. Hart, “Nearest NeighborPattern Classification,” IEEE Transactions on

Information Theory 13, no. 1 (January 1967): 21–27.  2.  Shichao Zhang, “Challenges in KNN Classification,”
IEEE Transactions on Knowledge and Data Engineering

34, no. 10 (October 2022): 4663–4675, https://doi.org/10
.1109/tkde.2021.3049250.  3.  Pekka Brofeldt, “Bidrag till kaennedom onfiskbestondet i vaara sjoear Laengelmaevesi,”T.H.Jaervi: Finlands Fiskeriet Band 4, Meddelandenutgivna av fiskerifoereningen i Finland, Helsingfors,1917.  4.  “Protocols,” typing Documentation, accessed May 8,2024, https://typing.readthedocs.io/en/latest/spec
/protocol.html#explicitlydeclaring-implementation.  5.  Ethem Alpaydin and Cenk Kaynak, “Optical Recognitionof Handwritten Digits,” UCI Machine LearningRepository, accessed December 10, 2024, https://doi.org
/10.24432/C50P49.  6.  Stuart Russell and Peter Norvig, Artificial Intelligence:
A Modern Approach, 4th ed. (Pearson, 2021), 688.  7.  Russell and Norvig, Artificial Intelligence.

https://doi.org/10.1109/tkde.2021.3049250
https://typing.readthedocs.io/en/latest/spec/protocol.html#explicitlydeclaring-implementation
https://doi.org/10.24432/C50P49

8
REGRESSION WITH K-NEAREST

NEIGHBORS

In this chapter, we’ll extendour KNN implementation toperform regression. For our purposes,
regression simply means predicting anumeric value. With some small additionsto our code from Chapter 7, we can useour same KNN class to not only classify butalso make predictions about any numericattribute value in our datasets.We’ll apply regression to the two KNN examples fromthe preceding chapter. First, we’ll revisit the fish datasetand use regression to predict the weight of a fish based onits dimensions. Then, we’ll write a program that allows theuser to draw part of a digit and then predicts what the restof the drawing could look like.Unlike the other chapters in this book, this chapterdoesn’t stand alone. It builds off the prior chapter. Pleasebe sure you’ve worked through Chapter 7 before diving intothis one.

How KNN Regression WorksIn KNN classification, we tried to predict the class orcategory that a data point belongs to, selecting theappropriate class from a limited set of options. In KNNregression, instead of predicting a class, we’re trying topredict an attribute value. These attribute values willtypically be numeric, meaning there’s potentially an infiniterange of values that could be assigned. Of course, it wouldmake sense for the attribute value to be missing if it’ssomething we want to predict.As an example, say we’re a hospital assigning patientsto rooms. We may want to know how many days the patientwill likely need to stay. We could look at past data frompatients with similar diagnoses, symptoms, and vital signsto make the prediction. Let’s look at this example visuallywith a scatterplot along two dimensions (Figure 8-1).

Figure 8-1: Hospital stay length for flu based on body temperature and illness
severity

Suppose the diamonds in Figure 8-1 represent pastpatients who were admitted to the hospital with flu. Theirillness was rated by a doctor on a severity scale from 1 to10, and their temperature was noted at the time ofadmission. We also have data about how long they endedup staying at the hospital.The round dot represents a patient who was justadmitted. We have their severity rating and their bodytemperature, and we’d like to predict how long they willend up staying in the hospital so that we can put them in

the appropriate room. If we use KNN with Euclideandistance and set k to 3, then we’ll look at the three patientsin the past data that are closest on the scatterplot to thenew patient’s dot. The figure notes their stays as three,four, and five days, respectively. Estimating the newpatient’s hospital stay length using this method can be assimple as averaging the three nearest neighbors. Thataverage (whether mean or median) would be four, so wewould predict that the new patient will stay in the hospitalfor four days.More broadly, here are the steps for performingregression with KNN:1. Choose k, the number of neighbors to compare to a datapoint with a missing attribute.2. Find the k-nearest neighbors to the data point.3. Average the corresponding attribute value across the k-nearest neighbors to predict what that missing attributevalue should be for the data point in question.As you can see, using KNN for regression is very similarto using KNN for classification. It’s really just the last stepthat differs. We have some of the same questions andanswers about this algorithm as we had in the prior chaptertoo: What’s the right value for k? How do we calculatedistance? See Chapter 7 for a discussion of those questions.We also have a new question: What does it mean to takethe average? Typically this is either the mean or themedian. Like with the question of the right distancefunction, the best way to take the average can beapplication specific. It generally requires some domainknowledge to make the best determination.
Implementing Regression with KNNTo perform regression, we’ll need to add just two methodsto our KNN class from Chapter 7. One predicts a scalar

numeric attribute, and one predicts an attribute that’s anarray of numbers. We’ll use the latter for the handwritingexample so that we can predict pixels. Here are theupdates:
KNN/knn.py
Predict a numeric property of a data point based on the k-
nearest neighbors.
Find the average of that property from the neighbors and r
eturn it.
def predict(self, k: int, data_point: DP, property_name: st
r) -> float:
 neighbors = self.nearest(k, data_point)
 return (sum([getattr(neighbor, property_name) for neighb
or in neighbors])
 / len(neighbors))

Predict a NumPy array property of a data point based on th
e k-nearest neighbors.
Find the average of that property from the neighbors and r
eturn it.
def predict_array(self, k: int, data_point: DP, property_nam
e: str) -> np.ndarray:
 neighbors = self.nearest(k, data_point)
 return (np.sum([getattr(neighbor, property_name) for nei
ghbor in neighbors], axis=0)
 / len(neighbors))

Like classify() from the preceding chapter, thesemethods start by finding the k nearest neighbors. Then,they calculate and return the mean of some propertyamong those neighbors. We take advantage of the dynamicnature of Python here by allowing the caller to specify theproperty as a string and then using getattr() to retrievethat specified property (or attribute) by name.The only real difference here between predict() and
predict_array() is that the latter uses the NumPy sum()

function instead of Python’s built-in sum() function. NumPyarrays will actually work with the built-in sum() function toosince they implement the plus operator, but NumPy’sversion is a bit faster.That’s it. Essentially it takes just two more lines of code(both functions are about the same) and we’re makingpredictions.
Predicting Fish WeightsLet’s add a unit test to FishTestCase to make sure our new
predict() method is working. We want to answer thequestion, “If we know the dimensions of a fish, can wemake an educated guess about what its weight could be?”The answer, of course, is yes:

tests/test_knn.py

 def test_predict(self):
 k: int = 5
 fish_knn = KNN(Fish, self.data_file)
 test_fish: Fish = Fish("", 0.0, 20.0, 23.5, 24.0, 1
0.0, 4.0)
 predict_fish: float = fish_knn.predict(k, test_fish,
"weight")
 self.assertEqual(predict_fish, 165.0)

In this method, we create a test_fish with no weightspecified (0.0), and we compare it to the five closest fish toit in terms of their anatomical dimensions—length1, length2,
length3, width, and height. (Recall from the precedingchapter that we don’t compare fish by weight in the
distance() method.) We then predict its weight by averagingthe weights of these five nearest neighbors. Run the unittests again, and you should find that the fish’s weight iscorrectly predicted. To test if this prediction method isaccurate more generally, we could try running it across the

entire fish dataset. Since the dataset includes the knownweights of each sample, we could measure how accurateour KNN results are compared to the actual fish weights.
Predicting the Rest of a Handwritten DigitIn the preceding chapter, we correctly classified 98 percentof a test set of images of handwritten digits against atraining set of the same kind of 8×8 pixel images usingKNN. In this final KNN example, we’ll classify an 8×8 digitthat the user draws and even predict what the rest of thepixels of the image could look like. Instead of implementingthis as another set of unit tests, we’ll create a funinteractive program using Pygame that allows the user todraw in a window housing an 8×8 grid.Here’s a preview of what we’re building. Figure 8-2shows the drawing window with a squiggly 7 that I tried todraw. I pressed the C key and the program correctlyclassified it as a 7 (that shows in the terminal, notpictured).

Figure 8-2: Drawing a 7 in the digit recognizer program

Figure 8-3 shows the window after pressing the P key,which triggers a prediction of what the rest of the digit’spixels may look like based on the average of the pixels ofthe nine nearest neighbors.

Figure 8-3: The predicted digit’s pixels based on the nearest neighbors’ pixels

In our simple program, we can only draw with white.The prediction yields a better-looking 7 since it can usemore levels of gray. We start our program with someimports and constants:
KNN/__main__.py

from KNN.knn import KNN
from KNN.digit import Digit
from pathlib import Path
import sys
import pygame
import numpy as np

PIXEL_WIDTH = 8
PIXEL_HEIGHT = 8

P_TO_D = 16 / 255 # pixel to digit scale factor
D_TO_P = 255 / 16 # digit to pixel scale factor
K = 9
WHITE = (255, 255, 255)

The PIXEL_WIDTH and PIXEL_HEIGHT constants are the size ofone image. The P_TO_D constant converts between the 255shades of gray in the pixel representation we’ll work withand the 16 shades of gray in the source dataset; D_TO_P is itsinverse. We set K, the number of neighbors KNN willconsider, to 9, and WHITE is a constant for the white color inthe RGB pixel format.This is a short program. We have just one central run()function that spends as much time handling the userinterface as it does running KNN. Here’s the start of thefunction:
def run():
 # Create a 2D array of pixels to represent the digit
 digit_pixels = np.zeros((PIXEL_HEIGHT, PIXEL_WIDTH, 3),
 dtype=np.uint32)
 # Load the training data
 digits_file = (Path(__file__).resolve().parent
 / "datasets" / "digits" / "digits.csv")
 digits_knn = KNN(Digit, digits_file, has_header=False)
 # Start up Pygame, create the window
 pygame.init()
 screen = pygame.display.set_mode(size=(PIXEL_WIDTH, PIXE
L_HEIGHT),
 flags=pygame.SCALED | p
ygame.RESIZABLE)
 pygame.display.set_caption("Digit Recognizer")

In these first few lines, we create the pixel array, loadthe dataset, and initialize Pygame. The main window isinitialized to be a “stretched out” 8×8 pixels. You can resizethe window and it will maintain its 8×8 dimensions. This is

set via the set_mode() flags (flags=pygame.SCALED | pygame
.RESIZABLE).Next, we need to set up the main loop:

 while True:
 pygame.surfarray.blit_array(screen, digit_pixels)
 pygame.display.flip()

Since this a GUI program using Pygame, we effectivelyhave an event loop. It listens for some action by the userand then responds. This action could be a keyboard ormouse event. To keep the screen in sync, we constantly blit
digit_pixels to the screen at the beginning of the loop.Then, we handle keyboard events:

 for event in pygame.event.get():
 if event.type == pygame.KEYDOWN:
 key_name = pygame.key.name(event.key)
 if key_name == "c": # classify the digit
 pixels = digit_pixels.transpose((1, 0,
2))[:, :, 0].flatten() * P_TO_D
 classified_digit = digits_knn.classify
(K, Digit("", pixels))
 print(f"Classified as {classified_digi
t}")

We start with the C key used for classification. This issimilar to the classification we did in the precedingchapter. The result is printed to the console. The only trickybit is the transformation of the pixels representing thepicture to a form that our classifier can use. In essence,we’re moving from a pixel format of 255 grays and multipledimensions to a flat array of 16 grays. The keyboardhandler continues:
 elif key_name == "e": # erase the digit
 digit_pixels.fill(0)

 elif key_name == "p": # predict what the dig
it should look like
 pixels = digit_pixels.transpose((1, 0,
2))[:, :, 0].flatten() * P_TO_D
 predicted_pixels = digits_knn.predict_ar
ray(K, Digit("", pixels), "pixels")
 predicted_pixels = predicted_pixels.resh
ape((
 PIXEL_HEIGHT, PIXEL_WIDTH)).transpos
e((1, 0)) * D_TO_P
 digit_pixels = np.stack((predicted_pixel
s, predicted_pixels,
 predicted_pixel
s), axis=2)

The E key just erases the pixel array. The P key is theprediction part. First, we again convert the pixel array to aform the KNN class can use, as before. Next, we use the
predict_array() method to get the predicted _pixels, whichare the average of the pixels from the nine closest entriesin our training set. We then convert those results back to aform that can be displayed in Pygame. This involves notonly reshaping to a two-dimensional array but alsochanging to RGB format, where the same gray level isrepeated in each of the three color channels. The reshape()and transpose() chains go from one to two dimensions, andthe stack() call creates a third dimension that’s all the samevalue—for example, a gray level of 128 becomes (128, 128,128) for RGB.The rest of the code draws white pixels anywhere theuser clicks, exits when the user closes the window, andcalls the run() function when __main__.py is executed:

 elif ((event.type == pygame.MOUSEBUTTONDOWN) or
 (event.type == pygame.MOUSEMOTION and pyga
me.mouse.get_pressed()[0])):
 x, y = event.pos

 if x < PIXEL_WIDTH and y < PIXEL_HEIGHT:
 digit_pixels[x][y] = WHITE
 elif event.type == pygame.QUIT:
 sys.exit()

if __name__ == "__main__":
 run()

It only takes about 50 lines of actual code to create aGUI-based handwritten digit recognizer using our existing
KNN class. Python is so succinct! Try it out: it’s not perfect,but it correctly recognizes the majority of my scrawls.

CODE MEETS LIFE

In 2016 I worked on a simple educational project called
SwiftSimpleNeuralNetwork1 as preparation for a chapter about
building neural networks from scratch in Swift for my second book,
Classic Computer Science Problems in Swift. I implemented
handwritten digit recognition using that framework, and it was
extremely slow. To be fair, there were no optimizations at all, and the
application was completely single threaded and CPU bound.
Amazingly, the also unoptimized, but much simpler, KNN algorithm
implementation in this chapter outperforms it in both speed and
accuracy.

This anecdote speaks to two important lessons: the more complex
algorithm isn’t always the better algorithm for a particular application,
and it’s important to do some research to be well informed about
what algorithms are used for what applications. That’s why I’ve
included a “Real-World Applications” section at the end of every
chapter in this book.

Knowing your algorithmic options is important across many
domains. To that end, one of the benefits of reading a survey book like
this is that it introduces you to new algorithms and techniques that
you may not have known about before. That way, when you
encounter a problem that they’re applicable to, you’ll be ready.

Real-World ApplicationsKNN can be a great tool to start with when attempting todo regression, because it’s so easy to use. There’s very

little tuning necessary, unlike with a neural network, andbecause there’s effectively no training involved, a KNN-based application is trivial to stand up.Researchers have really used KNN to predict hospitalstay lengths, as described in the beginning of the chapter.Pei, Lin, and Chen found that KNN was approximately asaccurate as more sophisticated techniques like logisticregression or random forest for predicting COVID-19patients’ hospital stay length.2 I was able to find multipleother studies in the same domain that used KNN. KNNregression has also been used for applications in textmining, agriculture, and financial markets.3 It makesintuitive sense—events or data points from the past that aremost similar to what’s currently happening are likely to bethe most helpful in making predictions.Due to performance issues, KNN doesn’t work wellwhen the data is noisy or the dataset is too large in termsof number of points and dimensionality. For mostapplications, however, it’s a reasonable starting point toconsider.
Exercises  1.  Prove (or disprove) that KNN is effective for fish weightprediction by running it against the entire fish datasetand comparing the KNN results to the known weightsfrom the dataset. On average, how accurate are theKNN predictions?  2.  Change our digit recognizer program to use a largergrid, say 64×64 instead of 8×8. This will allow the userto draw more fluid digits. You’ll need to find a way toaccurately downscale the 64×64 drawings to 8×8 toutilize them with the training dataset.  3.  Use either our implementation of KNN regression orthat from a library like scikit-learn to try to makepredictions using a dataset of your own interest.

Notes  1.  See https://github.com/davecom
/SwiftSimpleNeuralNetwork.  2.  Jianing Pei, Xin Lin, and Qixuan Chen, “Prediction ofPatients’ Length of Stay at Hospital During COVID-19Pandemic,” Journal of Physics: Conference Series 1802(March 2021): https://doi.org/10.1088/1742-6596/1802
/3/032038.  3.  Sadegh Bafandeh Imandoust and MohammadBolandraftar, “Application of K-Nearest Neighbor (KNN)Approach for Predicting Economic Events: TheoreticalBackground,” Journal of Engineering Research and
Applications 3, no. 5 (2013): 605–610, https://www.ijera
.com/papers/Vol3_issue5/DI35605610.pdf.

https://github.com/davecom/SwiftSimpleNeuralNetwork
https://doi.org/10.1088/1742-6596/1802/3/032038
https://www.ijera.com/papers/Vol3_issue5/DI35605610.pdf

AFTERWORD

Thank you for reading
Computer Science from

Scratch. This afterword provides moreresources for you based on the fourthemes of the book (interpreters,computational art, emulators, andmachine learning). I’ve chosen tohighlight nonacademic but highlyregarded resources that I’ve personallyfound to be useful—there’s no ivory towerhere. But before we get to that, I have afew thoughts I’d like to share with you onwhat we’ve accomplished.
What We Did and What’s NextBy working through the projects in this book, you wereexposed to a broad survey of several different areas incomputer science. Are you an expert on them now? Ofcourse not. But you know enough to get started on aproject of your own design in any of these four areas. More

importantly, you’re in a good position to learn more aboutthese topics.The interpreters we completed in Part I were simple,but NanoBASIC had the constituent parts of any real-worldinterpreter (tokenizer, parser, runtime environment). Youcould go build an interpreter for a more sophisticatedlanguage now without any further study. Where it getstricky is when you want to make that language moreperformant. This may require more advanced techniqueslike implementing a VM or a compiler, or adding built-inruntime optimizations.I’ll share some more in-depth resources on interpreterslater in this afterword, but the point is you can get startedimmediately. Have you ever wanted to create your ownprogramming language? Now you can. I’m not necessarilysaying that you should, but you can.The computer art programs we developed in Part IIintroduced a hodgepodge of interesting algorithmictechniques, yet there wasn’t really a unifying theme otherthan pixels. You know enough now to manipulate pixels. Ifyou have an idea about how you want to make pixelschange, you can probably do that. Computer graphics moregenerally is filled with much broader ideas and would beyour next stop if you want to further explore manipulatingpixels.The NES emulator in Part III was by far the largest andmost complex project in the book. A great next step wouldbe to either add more compatibility to the emulator (asdescribed in the Chapter 6 exercises) or try emulatinganother system. The Game Boy is of similar complexity, asis the Sega Master System. As discussed in the chapter,writing emulators in Python is challenging from aperformance perspective. If you don’t know C or C++,writing your next emulator may be a great opportunity tolearn them.

In Part IV we took baby steps into the world of machinelearning. KNN is perhaps the simplest algorithm in all ofartificial intelligence. It works well for the rightapplications, but you’ll want to learn several othertechniques to know which ones to reach for in a givensituation. Hopefully the super simple nature of Part IVmade this area, which can often seem intimidating, feelmore approachable to you. You don’t need to be an experton machine learning to use machine learning techniques.Today, everything is a library call away. You do, however,need to know which library call to make.I hope you feel like you got a great start in all four ofthese areas by completing the projects in this book. Nowit’s up to you if you want to dive into your own projects orcomplete more training. In the rest of this afterword, I’vesuggested some more resources in each of these areas thatI think will follow this book well. All of them have beenvetted by me. I actually read the books that I’mrecommending to you.
On Learning Computer ScienceYou don’t need a formal university education to learncomputer science. This book was a great start. Like almostall subjects, everything you need is available for free in alibrary and on the internet. It just requires perseverance(study time, project time).I’m the type of person who likes to understand howthings work at a fundamental level as much as possible.I’ve met other people like this, and it may just be apersonality trait. Even if that’s not you, let me try toconvince you why there’s a real benefit to learning somemore computer science so that you can understand howthings work “under the hood.”First, as programmers, computer science isfundamental to understanding the techniques we can use to

solve the problems that our programs need to solve. Sure,if we’re just building generic CRUD apps, it might notprove very useful, but if you want to do something novel ortricky, computer science really comes in handy.Second, even if we can think of a way to solve aproblem, is it the most efficient way? Does it createperformance problems? Understanding some computerscience fundamentals can really help you improve theperformance of your code.And finally, understanding computer science will helpyou in your career. You’ll understand what your colleaguesare talking about. You’ll “get” software technology on amuch more fundamental level. You’ll become a bettertechnical communicator. And it will help you with technicalinterviews. Unfortunately, far too many companies stillrequire candidates to solve data structure and algorithmproblems on a whiteboard. I don’t agree with this practice,but there’s no doubt that those who have studied computerscience have a leg up in these interviews.Computer science is a big subject. Don’t be intimidated.Here are a couple friendly books that I think complementthis book well if you’re interested in furthering a generalcomputer science education.
Grokking Algorithms, 2nd Edition, by Aditya Y.
BhargavaThis is an eminently readable book on algorithms. It’smuch easier to consume than your average algorithmstextbook. It’s less math heavy and includes examples inPython to illustrate each concept. I use it myself insteadof a traditional textbook when I teach a college-leveldata structures and algorithms class.
Classic Computer Science Problems in Python by
David Kopec

I wrote Classic Computer Science Problems as ageneral overview of interesting algorithmic topicstaught in a code-first, tutorial-like fashion. It coverseverything from search algorithms to graph algorithmsto even some introductory AI material. It’s the perfectaccompaniment to this book and there is zero contentoverlap between the two since they cover differentareas of computer science. Whereas this book iscomposed of larger, entertaining projects, Classic
Computer Science Problems is more about thealgorithms themselves and the particular problems thatare appropriate for them.

InterpretersTen years ago, there were very few nonacademic booksthat could be recommended on writing interpreters for ageneral programmer audience. Today, we’re fortunate tohave several great titles in this space, including two that Ihighly recommend:
Crafting Interpreters by Robert NystromThis is an absolutely wonderful book, in terms of bothits pedagogy and its code. The older classic books oninterpreters and compilers are extremely academic andeven somewhat stuffy (like the so-called “DragonBook”). Crafting Interpreters is a must-read book in thisspace if you want to write larger practical interpretersafter having your interest piqued by the Brainfuck andNanoBASIC projects in this book.
Writing an Interpreter in Go by Thorsten BallI read this book myself in preparation for writing aninterpreted programming language called SeaTurtle tohelp kids learn to code (see the “Code Meets Life” boxin Chapter 2). It’s less comprehensive than Crafting

Interpreters and a little more niche, being written in

Go. If you’re interested in something more succinct or ifyou’re a Go programmer, however, it’s a great choice.It’s well written, and the accompanying code is great.
Computational ArtI mostly learned about the techniques in the book’s twocomputational art chapters from short online articles, sounfortunately I don’t have any comprehensive resources toshare, but I do want to mention Michael Fogleman’sPrimitive project. It was the inspiration for theImpressionist chapter (Chapter 4), although that programuses a different algorithm. The GitHub repository forPrimitive (https://github.com/fogleman/primitive) has someeasy-to-read Go source code, and Michael has a website forthe project as well (https://www.michaelfogleman.com
/#primitive).
EmulatorsThere may be good texts out there on writing emulators,but I’m personally not aware of them. Instead, I’m sharinga couple online resources that I’ve found to be helpful:
EmuDevThis subreddit (https://www.reddit.com/r/EmuDev) isone of the most vibrant communities that I’ve comeacross on emulator development, where folks buildingevery kind of emulator you can imagine go to sharetheir insights. There’s also an accompanying Discordthat can be useful for getting questions answered live.
NesDevThe wiki documentation and forums at https://www

.nesdev.org were invaluable to me both whendeveloping my first NES emulator and when writing theemulator for this book. Unfortunately, despite NES

https://github.com/fogleman/primitive
https://www.michaelfogleman.com/#primitive
https://www.reddit.com/r/EmuDev
https://www.nesdev.org/

emulation being a popular project, there are very fewgood tutorials or resources about it (which is part ofhow I got the idea to write this book). NesDev is thebest resource that’s out there, and if you want tofurther your NES development beyond what we did inChapter 6 (like adding more mappers or a moreaccurate PPU), this site will be your go-to resource.
Machine LearningThere are so many resources on machine learning that itcan be overwhelming to even decide which one to startwith. That said, if you liked the simple algorithm presentedin Chapters 7 and   8 and you liked the way that wedeveloped it from scratch, then I have two particularlystraightforward resources for learning about other machinelearning algorithms that you can implement:
The Hundred-Page Machine Learning Book by Andriy
BurkovThis book is straight to the point. You learn thealgorithm with just enough theory and otherinformation to implement it without any of the flowerytrappings of some technical books. While it doesn’tfeature a lot of code, it’s a great explainer that can befurthered by good online courses or YouTube channels.
Classic Computer Science Problems in Python by
David KopecYes, I’m recommending my own book a second time.That’s a bit self-serving, but I wouldn’t have written it ifI didn’t think it was truly a great resource. In fact, fiveof the nine chapters in the book could be said to beabout artificial intelligence, and two of the chapters arespecifically about machine learning. Do you want tolearn how to write a neural network from scratch inPython (with no libraries)? Check out Chapter 7 of

Classic Computer Science Problems in Python. Youlearned how to write a simple classifier and regressorusing KNN in this book. In Chapter 6 of Classic
Computer Science Problems in Python, you’ll also learnhow to build a clustering program using another simplealgorithm, k-means.

FOLLOW ME ON SOCIAL MEDIA

X: https://x.com/davekopec
GitHub: https://github.com/davecom
LinkedIn: https://www.linkedin.com/in/dkopec
YouTube: https://www.youtube.com/c/DavidKopec09
My website: https://davekopec.com
Kopec Explains Software, a podcast: http://kopec.live

https://x.com/davekopec
https://github.com/davecom
https://www.linkedin.com/in/dkopec
https://www.youtube.com/c/DavidKopec09
https://davekopec.com/
http://kopec.live/

APPENDIX
BITWISE OPERATIONS

Low-level manipulation of bitsis essential for half of theprojects in this book. If you have nobackground in bitwise operations, thisappendix provides an overview, includingwhat the most essential bitwiseoperations do, how to use them in Python,and some examples of what they’re usedfor.
A Review of BinaryI assume that most readers, as intermediate or advancedprogrammers, are familiar with binary. If that’s you andyou just want a quick refresher on bitwise operations, youcan skip this section. However, if you’re not familiar withbinary, this section will get you started, although it’s notcomprehensive.All information in computers is stored as 1s and 0s. Thisis convenient because the type of hardware used to buildcomputers can physically represent 1s and 0s quite readily.

For instance, if electricity (or a “signal”) is present, we maysay that represents a 1, while the absence of an electricalsignal represents a 0. Binary also manifests itself physicallyin the now outdated technology of CDs and DVDs. Theirreaders have a laser that runs over the surface of the disc.When the laser doesn’t reflect back because the disc has amicroscopic pit, that represents a 0. If the laser does reflectback because there isn’t a pit, that represents a 1. One finalphysical example is QR codes. The presence of a black dotcan be a 1, and the absence can be a 0. There are manyconvenient physical manifestations of binary.How are all those 1s and 0s converted into information?A sequence of 1s and 0s represents a number in binary.And once we have numbers, we can represent any otherkind of information. A specific number can represent aspecific letter in an electronic document. Or it canrepresent a specific color. Another number can representwhere on the screen to place that color. Pretty soon wehave pixels.How does a sequence of 1s and 0s represent a numberbeyond 1 or 0, though? That’s where the binary numbersystem, also called base 2, comes into play.Typical numbers in everyday use are in base 10, knownas decimal. That means each digit in the number can have10 different values (0–9), and each digit itself represents apower of 10. For instance, the number 427 is actually (4 ×102) + (2 × 101) + (7 × 100). Likewise, each digit in a binarynumber can have two different values (0 or 1), and eachdigit itself represents a power of 2. The number 427 is110101011 in binary, which is (1 × 28) + (1 × 27) + (0 × 26)+ (1 × 25) + (0 × 24) + (1 × 23) + (0 × 22) + (1 × 21) + (1 ×20). The 1s are powers of 2 that are “on” and the 0s arepowers of 2 that are “off.”To test your understanding, try converting a fewnumbers from decimal to binary and vice versa. What’s 73

in binary? What’s 11000 in decimal? Try a few more thatyou pick. You can check your work with Python, wherebinary numbers are represented as literals by using the 0bprefix, as in 0b11 for the decimal number 3:
>>> value = 0b11
>>> value
3

Meanwhile, Python’s bin() function takes an integer andreturns a string formatted as the binary equivalent:
>>> bin(3)
'0b11'

Each stored binary 1 or 0 is known in computing as a
bit. And a standard byte is 8 bits. All modern computers usethe 8-bit byte as their standard unit of storage. Themaximum value a byte can hold (when representing anunsigned integer) is 255 because eight 1s, or 11111111 inbinary, is 255 in decimal. That also means a byte can hold256 different possible values (all the values from 0 to 255).When a byte is written out, the least-significant bit—that is, the bit representing the smallest power of 2—istypically written all the way on the right (bit 0,representing 20). The most-significant bit—the onerepresenting the largest power of 2—is typically written allthe way to the left (bit 7 representing 27). In 10000000, forexample, the 1 represents 27 being turned on, so the bytehas a decimal value of 128. This assumes we’re workingwith unsigned integers—integers that can’t be negative.Signs are beyond the scope of this basic introduction tobinary.Some data types are represented using more than onebyte. For instance, on a 64-bit microprocessor like the one

probably powering your computer, integers are oftenstored using 64 bits (8 bytes). The maximum value of a 64-bit number in binary is:11That translates to 18,446,744,073,709,551,615 in decimal.For several projects in this book, we need to manipulatebytes at the bit level. The rest of this appendix covers somecommon operations for doing so.
Common Bitwise Operations
Bitwise operations manipulate a value at the level ofindividual binary digits. This means working with 1s and0s. All microprocessors include instructions for performingbitwise operations, and Python has operators for tappinginto these microprocessor instructions. Truth tables, whichshow the true/false outcome of logic functions based ondifferent combinations of inputs, can be helpful inunderstanding bitwise operations. To make this morepractical and applicable to our Python use of theseoperations, the tables accompanying each operation willshow binary values instead of true and false.
Left Shift (<<)Instead of thinking about our binary data as a number, fora minute just think about it as a collection of 1s and 0s.Imagine the 0s are empty spaces and the 1s are filledspaces. What if we want to move all the 1s to the left byone space? That’s the job of a left shift, which in Python isrepresented with the << operator.A left shift leaves a gap in the least-significant bit (bitposition 0). With left shifts in Python, we fill that gap with a0. Because Python integers are of arbitrary length (there’sno maximum length), we can’t move 1s off the end by

moving them to the left. The number just grows by a digit.For example, 1010 shifted left by 1 becomes 10100, not 0100.We can also left shift by more than one place, so 1010shifted to the left by three becomes 1010000. Table A-1shows the results of some left shifts.
Table A-1: Left-Shift Examples
A A << 1 A << 3

0 0 0

1 10 1000

1010 10100 1010000

In the first row of the table, where 0 is being shifted,you may think that it would become 00 and 0000, but inreality those are the same as 0. Instead, you can think ofleft shift as just moving the 1s. If there are no 1s, then theshift is essentially not doing anything.Python’s left-shift operator is preceded by the thingbeing shifted and followed by an integer indicating howmany places to shift. Here’s a quick example of using it:
>>> bin(0b1010 << 3)
'0b1010000'

Shift operators are typically used to move a bit or bitsinto alignment with another binary value in combinationwith other bitwise operators that we’ll learn shortly.
Right Shift (>>)A right shift is much like a left shift, except the 1s move tothe right rather than the left. If a 1 moves off the end (pastthe 0-bit position), then it’s “lost.” There’s no wrappingaround. For example, 1001 shifted right by one becomes 100,

not 1100. We can also right shift by more than one place, so
1001 shifted right by three becomes 1.Python has the >> operator for performing right shifts.Table A-2 shows some example right shifts.
Table A-2: Right-Shift Examples
A A >> 1 A >> 3

0 0 0

1 0 0

1010 101 1

In the second row of the table, the 1 is shifted “off theend” and there are no 1s left, so the result is 0.
OR (|)With a bitwise OR operation between two values, if eithervalue is a 1, then the result will be a 1. If neither value is a1, then the result will be a 0. The operation is performed onthe binary digits that are in the same digit places betweenthe two values, one digit place at a time. Imagine thenumbers are lined up, one below the other. Then, the ORoperation is performed in each column, one column at atime, like this:

1010
0110

1110

Try calculating the final line on the bottom yourself byfollowing the rules in the preceding paragraph. Those rulesare also summarized in Table A-3.

Table A-3: OR Examples
A B A | B

0 0 0

0 1 1

1 0 1

1 1 1

1010 0110 1110

Python has the | operator for performing bitwise OR.Here’s a quick example of using it on a couple binarynumbers in Python:
>>> bin(0b1010 | 0b0110)
'0b1110'

One common use of the bitwise OR operation in low-level programming is to merge two values together incombination with the shift operators. For example, say wehave one nibble (a nibble is 4 bits) that represents one-halfof a byte and another nibble that represents the other halfof the byte. We want to merge them together to producethe full byte. Perhaps nibble A is 1001 and nibble B is 0110,and we want nibble A to be the first half and nibble B thesecond half of the resulting byte. The code to merge themmay look like this:
>>> a = 0b1001
>>> b = 0b0110
>>> c = (a << 4) | b
>>> bin(c)
'0b10010110'

With (a << 4) | b we shift a to the left 4 places and thenOR its values with b. Remember that when we shift to theleft, 0s fill in from the right, so a shifted to the left by 4becomes 10010000. Then, if we line a and b up and OR them,we get:
10010000
 0110

10010110

The resulting byte, 10010110, has the original a in the leftfour digits and the original b in the right four digits.If you’re seeing this for the first time, it may seem alittle abstract. For instance, you may wonder why thenumbers are being stored in just 4 bits to begin with. Togive just one of several reasons, in the projects of this bookwe see several scenarios where we want to save space bycombining values that need fewer than 8 bits into the samebyte. For example, 8-bit microprocessors often had a 1-byteflags register where each individual bit represented adifferent flag that could be on or off. That’s much moreeconomical than using a separate byte for each flag.Likewise, some file formats store values that need less than1 byte on the same byte to save disk space.
AND (&)A bitwise AND returns a 1 if both operands are 1s;otherwise, it returns a 0. Here’s an example using the sameoperands we looked at with bitwise OR:

1010
0110

0010

Only the bit that was lined up with two 1s resulted in a1. Table A-4 summarizes how bitwise AND works.
Table A-4: AND Examples
A B A & B

0 0 0

0 1 0

1 0 0

1 1 1

1010 0110 0010

Python has the & operator for performing bitwise AND.Here’s a quick example of using it on a couple binarynumbers:
>>> bin(0b1010 & 0b0110)
'0b10'

Note that the output cuts off the leading 0s since theyaren’t needed to represent the resulting number (2 indecimal). In other words, 0010 in binary is 2 in decimal justas 10 in binary is 2 in decimal.One common use of the bitwise AND operation in low-level programming is to ensure a final result only includessome of the bits from a prior result. For instance, supposewe only care about the rightmost 4 bits in the byte 10011110.We can AND the byte with 1111 to ensure only the rightmost4 bits are in the final result. The code may look like this:
>>> a = 0b10011110
>>> b = 0b1111
>>> c = a & b

>>> bin(c)
'0b1110'

Let’s see this operation with the bits lined up:
10011110
 1111

 1110

We often use this technique with a single bit in ouremulator projects when working with flags. We just need toknow the single flag and whether it’s 1 or 0 (true or false).
XOR (^)A bitwise XOR (“exclusive or”) returns a 1 if the operandsare different (one 1 and one 0); otherwise, it returns a 0.Here’s an example using the same operands we looked atwith bitwise OR and AND:

1010
0110

1100

Table A-5 summarizes how XOR works.
Table A-5: XOR Examples
A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

A B A ^ B

1010 0110 1100

Python has the ^ operator for performing bitwise XOR.Here’s a quick example of using it on a couple binarynumbers in Python:
>>> bin(0b1010 ^ 0b0110)
'0b1100'

XOR is a surprisingly powerful operation. It underliesthe unbreakable encryption scheme known as a one-time
pad. You can also flip bits by XOR-ing with 1: if you XOR a 1with a 1, it becomes a 0, but if you XOR a 0 with a 1, itbecomes a 1. Any bit you XOR with a 1 becomes theopposite of what it was before. This is how drawing on thescreen works in the CHIP-8 project in Chapter 5.
Complement (~)
Complement is the simplest of all bitwise operations: itswitches all 1s with 0s and all 0s with 1s, as shown in TableA-6.
Table A-6: Complement Examples
A ~A

1 0

0 1

1010 0101

011010 100101

Python has the ~ operator for taking a binarycomplement. We don’t use complements much in this book,except for one small place in the NES emulator in Chapter6.

INDEX

Symbols
& (AND operator), 242–243
~ (complement operator), 244
<< (left-shift operator), 239–240
- (minus sign), 79
| (OR operator), 240–242
>> (right-shift operator), 240
:= (walrus operator), 77
^ (XOR operator), 130, 243–244
Aabstraction, 23abstract syntax tree, 9, 32–33, 39, 42–48layers of, 117
ADC instruction (6502), 163addressing modes (6502), 153–154, 170–172ahead-of-time compilation, 17algorithmsdithering, 67–72hill climbing, 105KNN, 207–218, 222–224accuracy, 218machine learning, 206–218performance of, 211stochastic optimization, 111stochastic painting, 89–95Allen, Paul, 22–23, 201Allison, Dennis, 30, 42AND operator (&), 242–243animated GIFs, 64, 86APU (audio processing unit), 143, 145
ArgumentParser, 11–12, 33, 66, 95–96, 146artificial intelligence (AI), 206
ASL instruction (6502), 163

AST (abstract syntax tree), 9, 32–33, 39, 42–48Atkinson, Bill, 67, 86Atkinson dithering, 67–72, 86attribute tables (NES), 180–183audio on NES, 143
Bbackground (NES), 177, 187–189Backus–Naur form (BNF), 28–32bank switching (NES), 144, 148–149BASIC, 21–59dialects of, 22–23history of, 22–23variables in, 25
BCC instruction (6502), 163
BCS instruction (6502), 163
BEQ instruction (6502), 163big-endian order, 81–82binaryoperations, 239–244review of, 237–239binary-coded decimal (BCD), 121
BIT instruction (6502), 163bit planes, 179–180bits, 179, 238per pixel, 181bitwise operations, 237–244
BMI instruction (6502), 164
BNE instruction (6502), 164BNF (Backus–Naur form), 28–32Boolean expressions in BASIC, 26, 31parsing in NanoBASIC, 46
boolean_expr production rule, 32
BPL instruction (6502), 164Brainfuck, 3–19description of, 4example programs, 6–9history of, 3–4implementation of, 10–14testing the interpreter, 15–16
BRK instruction (6502), 164Brofeldt, Pekka, 212buffer overflow protection, 112bytecode, 17, 116, 139bytes, 238–239
C

C (programming language), 6cartridges (NES), 144, 148–152characters in terminals and non-terminals, 29CHIP-8, 115–140description of, 115–117history of, 116–117implementation of, 122–136instructions, 119–122memory and registers, 117–119playing games on, 137–138testing the virtual machine, 136–137CHR RAM (NES), 149, 177–178CHR ROM (NES), 149, 177–178classificationof digits, 215–217of fish, 212–214with KNN, 205–219
CLC instruction (6502), 164
CLD instruction (6502), 164
CLI instruction (6502), 165CLR (Common Language Runtime), 139–140
CLV instruction (6502), 165
CMP instruction (6502), 165collision detection (NES), 191color dithering algorithms 63–72in MacPaint, 180–182in NES, 183–184in stochastic painting algorithm, 90–95Common Language Runtime (CLR), 139–140compilation, 17, 57compilers, 17complement (~) operator, 244computational art, 63–112creating abstract impressions, 89–112
consume() function, 42COSMAC VIP, 117
Counter (Python), 211
CPM instruction (6502), 165CPU (central processing unit) in NES, 143, 152–176
CPX instruction (6502), 165
CPY instruction (6502), 165cross validation, 218CRT televisions, 147, 185CSV files, 210, 212–213, 215
Ddata fork, 80

DataPoint class, 209–211data points, 209–211
DEC instruction (6502), 165declaration vs. imperative languages, 23DEFLATE algorithm, 86
DEX instruction (6502), 165
DEY instruction (6502), 165digital art, 85
Digit class, 215–216digits classification of, 215–217handwritten, 215–217, 224–228regression on, 224–228Dijkstra, Edsger, 27, 48dithering, 63–87algorithms for, 67–72Atkinson dithering, 67–72, 86explanation of, 64–65Floyd-Steinberg dithering, 67–69, 86DMA (direct memory access), 156, 174domain-specific languages (DSLs), 57drawingbackgrounds (NES), 187–189using CHIP-8, 128–130using Pygame, 224–228dynamic recompilation, 132
E
EOR instruction (6502), 165error-diffusion dithering, 67–69error handlingin BASIC interpreter, 40–41in CHIP-8 VM, 126esoteric programming languages, 3, 10Euclidean distance, 206, 209, 211, 218
FFayzullin, Marat, 149Fibonacci sequence, 27–28, 135file formatsiNES, 149MacBinary, 80–83MacPaint, 72–87finite state machine, 152
Fish class, 213–214fish classification, 212–214fish weight prediction, 224flags register (6502), 155–176

flipping sprites (NES), 190–191Floyd-Steinberg dithering, 67–69, 86font set (CHIP-8), 126–127forks (Mac OS), 80–82FPS (frames per second), 185, 199–200frames (NES), 185functional programming, 23–24, 52
Ggames

BrickBreaker, 178, 181, 198
Chase, 198
Lan Master, 199
Thwaite, 182Gates, Bill, 22–23, 201

getattr() function, 224
getcolors() method (Pillow), 100
getpixel() method (Pillow), 71GIFs, 64, 86, 96, 107, 227–228
GOSUB statement (BASIC), 24, 26
GOTO statement (BASIC), 24, 26–27grammarfor BASIC, 28–32context-free, 30formal definition of, 28–32graphicson CHIP-8, 128–130on NES, 176–185in retro image processing, 63–87in stochastic painting algorithm, 89–112grayscale, 64–66, 215
Hhalftone, 64Hamming distance, 209, 218hblank (NES), 147, 185hill climbing, 105–106homebrew games, 143
IIBM PC, 23, 200
IF statement (BASIC), 26parsing in NanoBASIC, 43–44
IfStatement node, 36–37
IF...THEN statements, 26image processing, 63–87

imperative vs. declarative languages, 23impressionism, 90
INC instruction (6502), 165index register, 118iNES file format, 149inheritance, 37–39
InterpreterError class, 40–41interpreters, 3–59Brainfuck, 3–19components of, 9, 32–33implementing, 10–14NanoBASIC, 21–59overview of, 17–18parser, 9, 41–48structure of, 9runtime, 9, 49–53tokenizer, 9, 33–36
INX instruction (6502), 166
INY instruction (6502), 166
JJava, 17, 18, 116, 117, 139JIT (just-in-time) compilation, 17, 140
JMP instruction (6502), 166
Joypad class, 154, 173–174
JSR instruction (6502), 166jump tables, 131–132, 157–161just-in-time (JIT) compilation, 17, 140
Kk-d tree, 218Kemeny, John, 22, 55k-means clustering, 235KNN (k-nearest neighbors), 205–229algorithm explanation, 207–209classification with, 205–219history of, 205implementing, 209–212regression with, 221–229Kopec, Danny, 55Kurtz, Thomas, 22, 55
L
LDA instruction (6502), 166
LDX instruction (6502), 166
LDY instruction (6502), 166

left-shift (<<) operator, 239–240
LET statement (BASIC), 25, 45parsing in NanoBASIC, 45
LetStatement node, 39librariesPillow, 66–67, 71–72, 82–84, 99–102Pygame, 123–124, 126, 146–147, 216, 224–228line numbering (BASIC), 24lines (stochastic painting), 93–95
LineStatement node, 39Lisp, 17little-endian order, 82LLMs (large language models), 206logic programming, 23Logo (programming language), 56
LSR instruction (6502), 166
MMacBinary, 80–83machine learning, 205–229history of, 206KNN algorithm, 207–218regression with KNN, 221–229Macintosh, 63–65, 80–82, 201Mac OS, 80–82MacPaint, 63–87file format, 72–87run-length encoding, 73–79mappers (NES), 149, 201
match statement, 12, 48, 132, 151
MemMode enum, 153–154, 170–172memory access modes (6502), 153–154, 170–172memory in CHIP-8, 117–119memory-mapped registers, 143, 172–173memory page, 154microprocessor, 143, 152–153Microsoft, 22–23, 140, 201minus sign (-), 79mirroring (NES), 172–174, 180–181MOS 6502, 200Müller, Urban, 3–4, 6, 10
Nnametables (NES), 180–181NanoBASIC, 21–59description of, 22–24example programs, 27–28

formal grammar, 28–32implementation of, 32–53parser, 41–48running a program, 53style and syntax, 24–27testing, 53–57tokenizer, 33–36
nearest() method, 211NES (Nintendo Entertainment System), 141–201background drawing, 187–189cartridges, 148–152colors, 183–184CPU emulation, 152–176description of, 142–144emulator structure, 145frames and timing, 185hardware, 143–144history of, 142–143instruction execution, 130–136main loop, 145–148memory access, 170–175PPU emulation, 176–195software, 144–145sprite drawing, 189–191testing the emulator, 194–197NesDev, 142–143, 183, 234–235neural networks, 206, 228, 235nibble, 119non-terminal, 28
NOP instruction (6502), 166NROM mapper, 149NumPy, 123, 146, 189, 216, 223–224Nystrom, Robert, 234
Oobject-oriented programming (OOP), 23OCR (optical character recognition), 215one-time pad, 244opcodesCHIP-8, 119–1226502, 152–169OR (|) operator, 240–242
ORA instruction (6502), 166overfitting, 218
PPackBits algorithm, 75–77

palettes (NES), 180–184Panic Playdate, 64, 86
ParserError class, 40–41parsers, 9, 41–48recursive descent, 41–48pattern tables (NES), 178–180
PHA instruction (6502), 167
PHP instruction (6502), 167picture processing unit. See PPUPillow library, 66–67, 71–72, 82–84, 99–102pixelsin CHIP-8, 128–130in dithering, 63–87in NES, 176–195in stochastic painting, 89–112
PLA instruction (6502), 167
play_sound property, 125
PLP instruction (6502), 167PPU (picture processing unit), 143, 145, 176–195accessing memory, 193–194accessing registers, 191–193description of, 176–185drawing backgrounds, 187–189drawing sprites, 189–191implementation of, 185–194PRG RAM (NES), 148–149, 151PRG ROM (NES), 148–149, 151
PRINT statement (BASIC), 25–26parsing in NanoBASIC, 44
PrintStatement node, 39production rules, 28–32program counter, 118programming languagesBASIC, 21–59Brainfuck, 3–19C, 6creating your own, 234Logo, 56NanoBASIC, 21–59paradigms of, 23–24Turing-complete, 4–5
putpixel() method (Pillow), 71Pygame, 123–124, 126, 146–147, 216, 224–228Python

Counter, 211
match statement, 12, 48, 132, 151performance, 199–200

Protocol, 209–210
struct module, 150type hints, 12, 35walrus operator, 77

QQR codes, 238
RRAMin CHIP-8, 117–119in NES, 143, 148–149, 151RAM size, 143, 151
random() function, 103recursion, 52recursive descent parsing, 41–48registersin CHIP-8, 117–119in 6502, 155–156regressionof digits, 224–228with KNN, 221–229predicting fish weights, 224resolutionof CHIP-8 games, 128of MacPaint, 72of NES, 180resource fork, 80retro computing, 63–87Retro Dither, 85
RETURN statement (BASIC), 26
ReturnStatement node, 39
RETURN_T token, 45right-shift (>>) operator, 240RLE (run-length encoding), 73–79
ROL instruction (6502), 167ROM files, 122, 144–145, 149–152
ROR instruction (6502), 167
RTI instruction (6502), 167–168
RTS instruction (6502), 168run-length encoding (RLE), 73–79
S
SBC instruction (6502), 168scanlines, 147, 185scrolling (NES), 201

SeaTurtle, 56, 234
SEC instruction (6502), 168
SED instruction (6502), 168
SEI instruction (6502), 168
setZN() method, 175shunting yard algorithm, 486502 microprocessor, 143, 152–176addressing modes, 153–154, 170–172CPU emulation, 152–176registers, 155–156soundon CHIP-8, 125on NES, 143, 201speedof NES emulator, 199–200of stochastic painting, 95spriteson CHIP-8, 129–130on NES, 177, 189–191stack, 155, 175stack pointer, 156
STA instruction (6502), 168standard library, 11, 71
Statement node, 37static type checking, 12status register (6502), 156, 175–176
step() method, 132, 169, 187stochastic optimization, 111stochastic painting, 89–112algorithm explanation, 98–99implementation of, 99–107results of, 107–110strings, escaping, 58
struct module, 150
STX instruction (6502), 168
STY instruction (6502), 168SVG (Scalable Vector Graphics), 97–98
switch statement, 131System 1 (Mac OS), 84
T
take_same() function, 76–77
TAX instruction (6502), 168
TAY instruction (6502), 169terminal, 29testingBrainfuck interpreter, 15–16

CHIP-8 VM, 136–137dithering, 78–79NanoBASIC interpreter, 53–57NES emulator, 194–197OCR with KNN, 216–217text processing, 229
Thwaite (game), 182tiles (NES), 178–180timersin CHIP-8, 118, 125in NES, 185tokenizer, 9, 33–36Torvalds, Linus, 22transpiler, 18
TSX instruction (6502), 169
TXA instruction (6502), 169
TXS instruction (6502), 169
TYA instruction (6502), 169type hints, 12, 35
Uunder-fitting, 218unit tests, 15–16, 78–79, 194–197, 213–217, 224
unpack() function, 150
Vvariables in BASIC, 25variable table, 49–51vblank (NES), 147, 185vector graphics, 94, 97–98virtual machines (VMs), 115–140CHIP-8, 115–140emulators, compared to, 116history of, 116–117Java, 116runtime environments, 139–140
Wwalrus operator (:=), 77Weisbecker, Joseph, 116
write_memory() method, 174–175
XXML, 97XOR (^) operator, 130, 243–244

	Title Page
	Copyright
	Dedication
	About the Author and the Technical Reviewers
	Acknowledgments
	Introduction
	Who This Book Is For
	What’s in the Book
	This Book’s Approach
	About the Code
	Corrections and Comments

	Part I: Interpreters
	1. The Smallest Possible Programming Language
	What Is Brainfuck?
	What Makes a Language Turing-Complete?
	How Brainfuck Works

	The Structure of an Interpreter
	Implementing Brainfuck in Python
	Getting the Source File
	Writing the Interpreter

	Running the Interpreter
	Testing the Interpreter
	Real-World Applications
	Exercises
	Notes

	2. Writing a Basic Interpreter
	Understanding NanoBASIC
	BASIC History
	NanoBASIC’s Paradigm, Syntax, and Semantics
	NanoBASIC Style and Minutiae
	An Example NanoBASIC Program

	Formalizing NanoBASIC’s Syntax
	The NanoBASIC Implementation
	The Tokenizer
	Nodes
	Errors
	The Parser
	The Runtime

	Running a Program
	Testing NanoBASIC
	Real-World Applications
	Exercises
	Notes

	Part II: Computational Art
	3. Retro Image Processing
	What Is Dithering?
	Getting Started
	The Dithering Algorithm
	The MacPaint File Format
	Translating Bytes to Bits
	Implementing Run-Length Encoding
	Testing Run-Length Encoding
	Converting to MacBinary
	Putting It All Together

	The Results
	Real-World Applications
	Exercises
	Notes

	4. A Stochastic Painting Algorithm
	How It Works
	Command Line Options
	The SVG Format
	The Algorithm
	The Main Implementation
	Setup
	Utility Methods
	Trials
	Output

	The Results
	Real-World Applications
	Exercises
	Notes

	Part III: Emulators
	5. Building a Chip-8 Virtual Machine
	Virtual Machines
	The CHIP-8 Virtual Machine
	Registers and Memory
	Instructions

	The Implementation
	The Run Loop
	Command Line Arguments
	VM Setup and Helper Functions
	Graphics
	Instruction Execution

	Testing the VM
	Playing Games
	Real-World Applications
	Exercises
	Notes

	6. Emulating the NES Game Console
	About the NES
	The Hardware
	The Software

	Building the Emulator
	Planning the Structure
	Creating the Main Loop
	Emulating the Cartridge
	Emulating the CPU
	Understanding the PPU
	Implementing the PPU

	Testing the Emulator
	Playing Games
	Real-World Applications
	Exercises
	Notes

	Part IV: Super-Simple Machine Learning
	7. Classification with K-Nearest Neighbors
	The Rise of Machine Learning
	How KNN Works
	Implementing Classification with KNN
	Classifying Fish
	Classifying Handwritten Digits

	Real-World Applications
	Exercises
	Notes

	8. Regression with K-Nearest Neighbors
	How KNN Regression Works
	Implementing Regression with KNN
	Predicting Fish Weights
	Predicting the Rest of a Handwritten Digit

	Real-World Applications
	Exercises
	Notes

	Afterword
	What We Did and What’s Next
	On Learning Computer Science
	Interpreters
	Computational Art
	Emulators
	Machine Learning

	Appendix: Bitwise Operations
	A Review of Binary
	Common Bitwise Operations
	Left Shift (<<)
	Right Shift (>>)
	OR (|)
	AND (&)
	XOR (^)
	Complement (~)

	Index

