

BiteSize Python for
Absolute Beginners

While there are many books, websites, and online courses about the topic, we break down Py-
thon programming into easily digestible lessons of less than 5 minutes each, following our Bi-
teSize approach. Each lesson begins with a clear and short introduction to the topic. This gives
you a strong base to start from and gets you ready for deeper learning. Then, you will see coding
demonstrations that show the ideas discussed. These examples are simple and useful, helping
you really understand the concepts. You’ll then practice tasks at different difficulty levels, so you
can test your knowledge and increase your confidence. You’ll also play with case studies to solve
real-world problems. Tips are included to show how you can incorporate generative AI into your
learning toolkit, using it for feedback, practice exercises, code reviews, and exploring advanced
topics. Recommended AI prompts can help you identify areas for improvement, review key con-
cepts, and track your progress.

This book is designed for absolute beginners with no prior programming experience. It is ideal
for individuals with busy schedules or limited time for studying.

As an introduction to Python, this book allows readers to take a slow and steady approach
to understanding Python code, explaining concepts, connecting programming with real-life
examples, writing Python programs, and completing case studies.

Chapman & Hall/CRC

The Python Series

About the Series

Python has been ranked as the most popular programming language, and it is widely used in education and in-
dustry. This book series will offer a wide range of books on Python for students and professionals. Titles in the
series will help users learn the language at an introductory and advanced level, and explore its many applica-
tions in data science, AI, and machine learning. Series titles can also be supplemented with Jupyter notebooks.

Statistics and Data Visualisation with Python
Jesús Rogel-Salazar

Introduction to Python for Humanists
William J.B. Mattingly

Python for Scientific Computation and Artificial Intelligence
Stephen Lynch

Learning Professional Python Volume 1: The Basics
Usharani Bhimavarapu and Jude D. Hemanth

Learning Professional Python Volume 2: Advanced
Usharani Bhimavarapu and Jude D. Hemanth

Learning Advanced Python from Open Source Projects
Rongpeng Li

Foundations of Data Science with Python
John Mark Shea

Data Mining with Python: Theory, Applications, and Case Studies
Di Wu

A Simple Introduction to Python
Stephen Lynch

Introduction to Python: with Applications in Optimization, Image and Video Processing, and
Machine Learning
David Baez-Lopez and David Alfredo Báez Villegas

Tidy Finance with Python
Christoph Frey, Christoph Scheuch, Stefan Voigt and Patrick Weiss

Introduction to Quantitative Social Science with Python
Weiqi Zhang and Dmitry Zinoviev

Python Programming for Mathematics
Julien Guillod

Geocomputation with Python
Michael Dorman, Anita Graser, Jakub Nowosad and Robin Lovelace

BiteSize Python for Absolute Beginners: With Practice Labs, Real-World Examples, and
Generative AI Assistance
Di Wu

For more information about this series please visit: https://www.routledge.com/Chapman--HallCRC-The-
Python-Series/book-series/PYTH

https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH
https://www.routledge.com/Chapman--HallCRC-The-Python-Series/book-series/PYTH

BiteSize Python for
Absolute Beginners

With Practice Labs, Real-World Examples, and
Generative AI Assistance

Di Wu

https://www.crcpress.com

Designed cover image: Shutterstock

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does
not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® or Simulink®
software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular peda-
gogical approach or particular use of the MATLAB® and Simulink® software.

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 Di Wu

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-
tification and explanation without intent to infringe.

ISBN: 978-1-032-86488-4 (hbk)
ISBN: 978-1-032-86485-3 (pbk)	
ISBN: 978-1-003-52772-5 (ebk)

DOI: 10.1201/9781003527725

Typeset in Nimbus Roman
by KnowledgeWorks Global Ltd.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003527725

To my wife.

http://taylorandfrancis.com

Contents

List of Figures xvii

List of Tables xix

Foreword xxi

Preface xxiii

Author Bios xxvii

Section I Python Fundamentals

Chapter 1 ■ Introduction to Python 3
1.1 WHAT IS PYTHON? 3
1.2 WHY PYTHON? 4
1.3 SCRIPT VERSUS INTERACTIVE PYTHON 4
1.4 WHY INTERACTIVE PYTHON? 5
1.5 JUPYTER 6
1.6 LOCAL OR CLOUD 7
1.7 LEARNING PYTHON 8

Chapter 2 ■ Input and Output 10
2.1 HELLO, WORLD! 10

2.1.1 Demonstration 10
2.1.2 Practice 11

2.2 SINGLE OR DOUBLE 11
2.2.1 Explanation 11
2.2.2 Demonstration 12
2.2.3 Practice 12

2.3 TRIPLE QUOTATIONS 13
2.3.1 Explanation 13

vii

viii ■ Contents

2.3.2 Practice 14
2.4 PRINT MULTIPLE VALUES 15

2.4.1 Demonstration 15
2.4.2 Practice 15

2.5 INTERACT WITH GENAI 15
2.6 GET INPUTS 16

2.6.1 Demonstration 16
2.6.2 Practice 16

2.7 COMBINE PRINT() AND INPUT() 17
2.7.1 Explanation 17
2.7.2 Demonstration 17
2.7.3 Practice 17

2.8 INTERACT WITH GENAI 18

Chapter 3 ■ Variables 19
3.1 WHAT ARE VARIABLES 19

3.1.1 Explanation 19
3.1.2 Practice 20

3.2 NAMING RULES 20
3.2.1 Explanation 20
3.2.2 Practice 21

3.3 DATA TYPES 21
3.3.1 Explanation 21
3.3.2 Practice 22

3.4 DATA TYPES CONVERT 23
3.4.1 Explanation 23
3.4.2 Demonstration 23
3.4.3 Practice 24

3.5 INTERACT WITH GENAI 25

Chapter 4 ■ Operations 26
4.1 ASSIGNMENT OPERATIONS 26

4.1.1 Explanation 26
4.1.2 Practice 27

4.2 ARITHMETIC OPERATIONS 27
4.2.1 Explanation 27
4.2.2 Demonstration 28

Contents ■ ix

4.2.3 Practice 29
4.3 RELATIONAL OPERATIONS 30

4.3.1 Explanation 30
4.3.2 Practice 30

4.4 LOGICAL OPERATIONS 31
4.4.1 Explanation 31
4.4.2 Practice 32

4.5 INTERACT WITH GENAI 34

Chapter 5 ■ String 36
5.1 WHAT IS STR? 36

5.1.1 Explanation 36
5.1.2 Thinking 36

5.2 STRING CREATION 36
5.2.1 Demonstration 37

5.3 STRING ACCESS 37
5.3.1 Demonstraton 37
5.3.2 Practice 39

5.4 STRING SLICING 40
5.4.1 Demonstration 41
5.4.2 Practice 42

5.5 STRING CONCATENATION 42
5.5.1 Demonstration 42

5.6 STRING FORMAT 43
5.6.1 Demonstration 43
5.6.2 Practice 45

5.7 USEFUL FUNCTIONS 46
5.7.1 Demonstration 46
5.7.2 Practice 48

5.8 INTERACT WITH GENAI 51

Chapter 6 ■ Case Studies of Python Fundamentals 52
6.1 SIMPLE CHECK OUT 52
6.2 TIPS SPLIT 53
6.3 COMPOUND INTEREST 54

x ■ Contents

Section II Flow Control and Functions

Chapter 7 ■ Branching 57
7.1 OPTIONAL BRANCHING 57

7.1.1 Demonstration 58
7.1.2 Practice 59

7.2 ALTERNATIVE BRANCHING 60
7.2.1 Demonstration 60
7.2.2 Practice 61

7.3 MULTIPLE BRANCHING 62
7.3.1 Demonstration 63
7.3.2 Practice 64

7.4 CASE STUDIES OF BRANCHING 66
7.4.1 What day is today? 66
7.4.2 Tax calculator 66
7.4.3 A simple calculator 67
7.4.4 Taxi fare calculator 68

7.5 INTERACT WITH GENAI 69

Chapter 8 ■ Repetition 70
8.1 CONDITION-BASED REPETITION 70

8.1.1 Explanation 70
8.1.2 Demonstration 71
8.1.3 Practice 72

8.2 COUNT-BASED REPETITION 74
8.2.1 Explanation 74
8.2.2 Demonstration 75
8.2.3 Practice 76

8.3 MAGIC CONTROL 78
8.3.1 Demonstration 78
8.3.2 Practice 79

8.4 CASE STUDIES OF REPETITION 80
8.4.1 Prime numbers 80
8.4.2 A simple grade book 80
8.4.3 Fahrenheit to Celsius converter 81
8.4.4 How many E and e are in a sentence? 82

8.5 INTERACT WITH GENAI 82

Contents ■ xi

Chapter 9 ■ Functions 84
9.1 WHAT ARE FUNCTIONS? 84

9.1.1 Explanation 84
9.1.2 Example: Bread toaster 85
9.1.3 Practice 85

9.2 TYPES OF FUNCTIONS 86
9.2.1 Explanation 86

9.3 DEFINE A FUNCTION 86
9.3.1 Demonstration 86
9.3.2 Practice 87

9.4 PARAMETERS AND ARGUMENTS 89
9.4.1 Explanation 89
9.4.2 Demonstration 89
9.4.3 Practice 90

9.5 TWO PARAMETERS 92
9.5.1 Demonstration 93
9.5.2 Practice 93

9.6 HOW TO PASS ARGUMENTS 95
9.6.1 Demonstration 95
9.6.2 Practice 96

9.7 DEFAULT VALUE 96
9.7.1 Demonstration 96
9.7.2 Practice 97

9.8 RETURN VALUES 99
9.8.1 Explanation 99
9.8.2 Demonstration 99

9.9 RETURN NUMERIC VALUES 100
9.9.1 Demonstration 100
9.9.2 Practice 100

9.10 RETURN STR VALUES 102
9.10.1 Demonstration 102
9.10.2 Practice 102

9.11 RETURN BOOLEAN VALUES 102
9.11.1 Demonstration 103
9.11.2 Practice 103

xii ■ Contents

9.12 RETURN MULTIPLE VALUES 104
9.12.1 Demonstration 104
9.12.2 Practice 104

9.13 INTERACT WITH GENAI 106

Chapter 10 ■ Advanced Functions 107
10.1 NESTED FUNCTIONS 107

10.1.1 Explanation 107
10.1.2 Demonstration 107
10.1.3 Practice 108

10.2 HIERARCHICAL FUNCTIONS 110
10.2.1 Explanation 110
10.2.2 Demonstration 110

10.3 INTERACT WITH GENAI 112
10.4 RECURSIVE FUNCTIONS 112

10.4.1 Explanation 112
10.4.2 Demonstration 113
10.4.3 Practice 113

10.5 INTERACT WITH GENAI 115

Section III Data Structures

Chapter 11 ■ List 119
11.1 WHAT IS A LIST 119
11.2 CREATE A LIST 120

11.2.1 Demonstration 120
11.2.2 Practice 121

11.3 HETEROGENEITY 122
11.3.1 Demonstration 122
11.3.2 Practice 123
11.3.3 Test your understanding 123

11.4 ACCESS A LIST BY INDEX 124
11.4.1 Demonstration 124
11.4.2 Practice 125

11.5 ACCESS A LIST BY ITERATION 126
11.5.1 Demonstration 126
11.5.2 Practice 127

11.6 LIST MANIPULATION 128

Contents ■ xiii

11.6.1 Demonstration 128
11.6.2 Practice 129

11.7 MORE MANIPULATION OF A LIST 130
11.7.1 Demonstration 130
11.7.2 Practice 131

11.8 SLICE A LIST 133
11.8.1 Demonstration 133
11.8.2 Practice 135

11.9 LIST COMPREHENSION 136
11.9.1 Demonstration 136
11.9.2 Practice 138

11.10 ADVANCED LIST COMPREHENSION 139
11.10.1 Demonstration 139
11.10.2 Practice 140

11.11 INTERACT WITH GENAI 142
11.12 EXPLORE MORE OF LIST 142

Chapter 12 ■ Tuple 143
12.1 WHAT IS A TUPLE 143

12.1.1 Explanation 143
12.2 CREATE A TUPLE 144

12.2.1 Demonstration 144
12.2.2 Practice 145

12.3 HETEROGENEOUS TUPLE IN PYTHON 146
12.3.1 Demonstration 146
12.3.2 Practice 147

12.4 ACCESS ELEMENTS IN A TUPLE BY INDEX 147
12.4.1 Demonstration 147
12.4.2 Practice 149

12.5 ACCESS ELEMENTS IN A TUPLE BY ITERATION 150
12.5.1 Demonstration 150
12.5.2 Practice 151

12.6 SLICE A TUPLE 152
12.6.1 Demonstration 152
12.6.2 Practice 153

12.7 TUPLE COMPREHENSION 154
12.7.1 Demonstration 154

xiv ■ Contents

12.7.2 Practice 155
12.8 INTERACT WITH GENAI 157
12.9 EXPLORE MORE OF TUPLE 157

Chapter 13 ■ Set 158
13.1 WHAT IS A SET 158

13.1.1 Explanation 158
13.1.2 Practice 158

13.2 CREATE A SET 159
13.2.1 Demonstration 159
13.2.2 Practice 160

13.3 ELEMENTS IN A SET 161
13.3.1 Demonstration 161
13.3.2 Practice 161

13.4 SET OPERATIONS 162
13.4.1 Demonstration 162
13.4.2 Practice 164

13.5 SET METHODS 165
13.5.1 Demonstration 165
13.5.2 Practice 166

13.6 SET COMPREHENSION 167
13.6.1 Demonstration 167

13.7 INTERACT WITH GENAI 168
13.8 EXPLORE MORE OF SET 169

Chapter 14 ■ Dictionary 170
14.1 WHAT IS A DICTIONARY 170

14.1.1 Explanation 170
14.1.2 Practice 171

14.2 CREATE A DICTIONARY 171
14.2.1 Demonstration 171
14.2.2 Practice 172

14.3 ACCESS A DICTIONARY 173
14.3.1 Demonstration 173
14.3.2 Practice 174

14.4 DICTIONARY METHODS 176
14.4.1 Demonstration 176

Contents ■ xv

14.4.2 Practice 177
14.5 DICTIONARY COMPREHENSION 178

14.5.1 Demonstration 178
14.5.2 Practice 179

14.6 INTERACT WITH GENAI 180
14.7 EXPLORE MORE OF DICTIONARY 180

Chapter 15 ■ Case Studies of Data Structures 181
15.1 WARM-UP 181
15.2 DATA CREATION 182
15.3 USING LISTS 182
15.4 USING TUPLES 184
15.5 USING SETS 185
15.6 USING DICTIONARIES 185
15.7 FURTHERMORE 187
15.8 COMPLEXITY 187

Section IV Data Collections

Chapter 16 ■ Named Tuple 191
16.1 WHAT IS A NAMED TUPLE 191

16.1.1 Explanation 191
16.1.2 Demonstration 191

16.2 PACKAGE MANAGEMENT 192
16.3 CASE STUDY: CAR 193
16.4 INTERACT WITH GENAI 193
16.5 EXPLORE MORE OF NAMED TUPLE 194

Chapter 17 ■ Default Dictionary 195
17.1 WHAT IS A DEFAULT DICTIONARY 195
17.2 DEFAULT INT 197

17.2.1 Demonstration 197
17.2.2 Practice 197

17.3 DEFAULT LIST 198
17.3.1 Demonstration 198
17.3.2 Practice 199

17.4 DEFAULT SET 199
17.4.1 Demonstration 199

xvi ■ Contents

17.4.2 Practice 200
17.5 CASE STUDY: HACKATHON 200
17.6 INTERACT WITH GENAI 202
17.7 EXPLORE MORE OF DEFAULT DICTIONARY 202

Chapter 18 ■ Counters 203
18.1 WHAT IS A COUNTER 203
18.2 MORE ABOUT COUNTER 204

18.2.1 Explanation 204
18.2.2 Demonstration 204
18.2.3 Practice 205

18.3 CASE STUDY: ROMEO AND JULIET 206
18.4 INTERACT WITH GENAI 207
18.5 EXPLORE MORE OF COUNTER 207

What is Next? 209

Index 211

List of Figures

1.1 A script Python example. 4
1.2 An interactive Python example. 5
1.3 Jupyter notebook example. 7

3.1 Variable x refers to 5. 20

5.1 String non-negative index. 38
5.2 String negative index. 38
5.3 String slicing with step as 1. 40
5.4 String slicing with step as 2. 41

7.1 A flow chart for optional branching. 58
7.2 A flow chart for alternative branching. 60
7.3 A flow chart for multiple branching. 63

8.1 A flow chart for condition-based repetition. 71
8.2 A flow chart for count-based repetition. 74

9.1 A function as a box. 85

xvii

http://taylorandfrancis.com

List of Tables

3.1 Comparison of basic Python data types. 24

4.1 Truth table for logical operations and, or, and not. 32
4.2 Summary of Python operations. 34

5.1 Summary of Python string methods. 50

11.1 Summary of Python lists. 141

12.1 Summary of Python tuples. 156

13.1 Summary of Python sets. 168

14.1 Summary of Python dictionaries. 179

15.1 Summary of Python data structures. 181
15.2 Comparison of space and time complexities for Python data structures.

(list, tuple, set, dictionary) 187

17.1 Summary of Python defaultdict with different default values. 202

xix

http://taylorandfrancis.com

Foreword

WHY WE NEED THIS BOOK

Start your journey into the exciting world of Python programming with this book!
Designed for beginners with no prior coding experience, this book introduces Python
in a refreshingly accessible way.

Forget overwhelming textbooks and long lectures, BiteSize Python breaks down the
learning process into short, manageable lessons, each around 5–10 minutes. Whether
you’re busy or have trouble focusing for long periods, this approach makes it easy to
fit learning Python into your daily routine.

You will learn essential Python concepts effortlessly through engaging lessons, practice
labs, and real-world examples. From grasping basic syntax to writing your own
programs, this book gives you the skills and confidence to become a capable Python
programmer.

What makes BiteSize Python unique is its adaptability to your learning style. Whether
you enjoy hands-on practice, self-reflection exercises, reviewing solutions, or interacting
with generative AI, this book has something for everyone.

Discover the joy of learning Python at your own pace and unlock endless possibilities
in the programming world. With this book, start your journey toward empowerment,
efficiency, and practical skills that will quickly transform you from a beginner to a
confident Python programmer.

xxi

http://taylorandfrancis.com

Preface

WHY THIS BOOK IS DIFFERENT

While there are many books, websites, and online courses about the topic, we differ-
entiate our book in multiple ways:

• BiteSize Approach: Breaks down Python programming into easily digestible
lessons of less than 5 minutes each.

• Beginner-Friendly: Designed for absolute beginners with no prior programming
experience.

• Practical Learning: Offers hands-on practice labs and real-world examples to
reinforce learning.

• Time-Efficient: Ideal for individuals with busy schedules or limited time for
studying.

• Comprehensive Coverage: Covers essential Python concepts and skills necessary
for writing basic programs.

• Interactive Learning: Includes self-reflection exercises and solutions review to
enhance understanding and retention.

SPECIFIC AIMS

As an introduction to Python, this book allows readers to take a slow and steady
approach to understanding Python code, explaining concepts, connecting programming
with real-life examples, writing Python programs, and completing case studies. The
aims of this book are as follows:

• Give a simple and easy-to-understand introduction to Python programming for
people who are complete beginners.

• Break down the learning process into bite-sized lessons to accommodate readers’
limited time and attention spans.

• Help readers understand Python code and develop the skills to write their own
programs.

• Provide a range of learning formats, including concept overviews, practice labs,
and self-reflection exercises, to fit different learning styles.

xxiii

xxiv ■ Preface

• Showcase many interesting case studies and provide readers with a solid under-
standing of how to apply the knowledge to our real world.

HOW TO USE THIS BOOK

This book is made to give you a rich and engaging learning experience. Our method
focuses on BiteSize learning, making hard topics easy by breaking them down into
simple, understandable parts:

• Each lesson begins with a clear and short introduction to the topic. This gives
you a strong base to start from and gets you ready for deeper learning.

• After the introduction, you will see coding demonstrations that show the ideas
discussed. These examples are simple and useful, helping you really understand
the concepts.

• After the introduction and demo, it’s time to practice! The practice tasks come
in different difficulty levels, so you can test your knowledge and grow your
confidence. Make sure you try hard before checking the solutions!

• To help you learn better, we suggest using Generative AI tools like ChatGPT for
feedback, practice exercises, code reviews, and finding advanced topics. These
prompts can help you see where to improve, review main ideas, and think about
your progress. We actually adopted some of the prompts that are created by AI
in this book! Generative AI as a tool is great, but only we should use it wisely.

• Apply Python to make a difference! Case studies combine all the small ideas to
show how you can use them to solve real-world problems.

• Most coding demos, practice tasks, and case studies come with Jupyter Notebooks.
This format allows you to look at, change, and run the code, giving you a hands-
on experience that makes learning more fun.

We believe this book will guide you step by step to learn Python and use it confidently
in real life. No matter whether you are new to coding or just want to improve your
Python skills, this book will help you reach your learning goals through these little
fun Bites!

INTERACT WITH AI

To get the most out of your interaction with a generative AI tool like ChatGPT,
always begin your conversation with the following prompt:

“You are an expert in Python programming. Act as a tutor helping a
student who is learning Python programming."

This prompt sets the tone for the conversation and ensures the AI will provide helpful
and detailed guidance tailored to your learning. Here are some general suggestions
and prompts for effective interaction:

Preface ■ xxv

• Can you explain how [concept] works?
• What’s the difference between [concept 1] and [concept 2]?
• Can you provide an example of a function that does [specific task]?
• Show me how to use a [specific structure or method] to achieve [goal].
• I don’t understand why [specific method] isn’t working. Can you help me

troubleshoot it?
• My code: “[Your Python Code]” is not running. What is wrong? Can you correct

it?
• Review my code: “[Your Python Code].” Can you improve my code to make it

more professional?
• Can you explain why [specific aspect] works this way?

In each Interact with GenAI section, we prepared specific suggestions and prompts
for the specific topic as well. We hope you can utilize generative AI as a great tool to
enhance and assist your learning.

ACKNOWLEDGEMENT

The author has utilized various Generative AI models, including ChatGPT (4o-mini),
Gemini (2.0), Claude(3.5 Haiku), Gemma(1.1:7b, 2:9b), Llama (3.1:8b, 3.2:3b), and
Apple Intelligence (Beta), to improve the language, proofread code comments, and
come up with some ideas for the “Interact with GenAI” section. All the text generated
by generative AI has been carefully reviewed and revised to meet academic standards.

I would also like to acknowledge the reviewers, editors, and publishers for making the
book happen.

http://taylorandfrancis.com

Author Bios

Dr. Di Wu is an Assistant Professor of Finance, Information Systems, and Economics
department of Business School, Lehman College. He obtained a Ph.D. in Computer
Science from the Graduate Center, CUNY. Dr. Wu’s research interests are 1) Temporal
extensions to RDF and semantic web, 2) Applied Data Science, and 3) Experiential
Learning and Pedagogy in business education. Dr. Wu developed and taught courses
including Strategic Management, Databases, Business Statistics, Management Decision
Making, Programming Languages (C++, Java, and Python), Data Structures and
Algorithms, Data Mining, Big Data, and Machine Learning.

xxvii

http://taylorandfrancis.com

I
Python Fundamentals

1

S ection I: Python fundamentals introduces the essential concepts of Python,
a versatile and widely used programming language known for its simplicity and

readability. You will learn about Python’s strengths, including why it has become
the language of choice for many developers. This section will explain the difference
between script-based and interactive Python environments, highlighting the benefits of
using local and cloud-based Jupyter notebooks for coding. Key foundational elements
such as the print() and input() functions will be covered, along with variables,
operations, and string manipulation using built-in methods.

By the end of this section, you will be able to:

• Understand Python’s core principles and advantages as a programming language.

• Differentiate between script-based and interactive Python environments, and
effectively use Jupyter Notebooks.

• Use print() and input() to interact with users and display the output.

• Understand Python’s variable and dynamic typing.

• Operate with the basic data types, including int, float, str, and bool.

• Perform operations with variables and manipulate strings using Python’s built-in
methods.

C H A P T E R 1

Introduction to Python

W elcome to the world of Python! You might have heard of this magical language
before, maybe in a school assignment, a software manual, or a code snippet

your colleague sent you. You know it’s important for the ever-changing tech world.
Yes, you are absolutely right! Even if you don’t need to use it every day, learning
Python will be a unique experience and a smart investment of your time. It’ll teach
you how computers think and work, how programs and classes are designed, and how
sophisticated neutrons are built and connected to form the foundation of artificial
intelligence. This chapter will answer some basic questions about Python, like what
it is, why it’s so popular, what it looks like, where to develop and run it, what the
Jupyter Notebook is, where to write the code, etc. Let’s get started!

1.1 WHAT IS PYTHON?

Python is a high-level, interpreted programming language that’s known for being easy
to learn and use, making it a popular choice for beginners. It was created by Guido
van Rossum, a Dutch programmer, and first released in 1991. The language is named
after the British comedy group Monty Python’s Flying Circus, not after the snake,
despite the reptilian logo! Guido just thought the snake design would make for a cool
logo.

Over the years, Python has seen many updates and improvements. Python 2.0 came
out in 2000, introducing a garbage collector and a new memory management system.
For a long time, Python 2.x was widely used, but it had some drawbacks, like limited
support for Unicode. As of now, Python 2.x is no longer supported or maintained,
so we’ll focus on Python 3.x in this book. Python 3.0, released in 2008, tackled the
limitations of Python 2.x and added many new features.

The latest version, Python 3.13, was released on October 7, 2024. Python 3.x is fully
Unicode-compatible, offers better support for parallel processing, and includes a host
of new modules and libraries for tasks like data analysis, web development, and more.

DOI: 10.1201/9781003527725-1 3

https://doi.org/10.1201/9781003527725-1

4 ■ BiteSize Python for Absolute Beginners

It’s also the preferred version for many popular frameworks and libraries, including
Django, Flask, NumPy, and pandas.

1.2 WHY PYTHON?

Python’s popularity comes from its ease of use, versatility, and strong community
support.

Python is known for being simple and easy to read. It has a small set of keywords and
a clean structure, making it easy for beginners to learn and understand. The syntax
is designed to be straightforward, so developers can focus on the logic of their code
rather than getting caught up in complex syntax. Python also has many libraries and
frameworks that simplify tasks like data analysis and web development.

Python is a general-purpose language, meaning it can be used for a wide variety of
tasks, including web development, data analysis, artificial intelligence (AI), machine
learning, and automation. Its versatility makes it a popular choice for different types
of projects, and its large developer community offers many libraries and frameworks
to help with almost any task.

Python has a big, active community of developers who create libraries, frameworks, and
tools for various tasks. This strong community support provides plenty of resources for
learning and troubleshooting, making it easy to find help. Python’s community-driven
development also ensures that the language keeps evolving to meet users’ needs.

Python works on multiple operating systems, like Windows, macOS, and Linux. It is
also open-source, meaning it is free to use, share, and modify. This open-source nature
has led to a large community of developers who contribute to Python’s development,
ensuring it remains a high-quality and continually improving language.

1.3 SCRIPT VERSUS INTERACTIVE PYTHON

When working with Python, you have two main options for your environment: script
Python and interactive Python. Script Python involves writing code in a text editor or
integrated development environment (IDE) and running it as a script, while interactive
Python allows you to execute code line by line and see the results immediately.

Script Python is ideal for tasks that require automation, such as data processing,
web scraping, or system administration. You write a script, save it, and run it as
needed. Script Python is great for tasks that require repetition or need to be run in
the background (Figure 1.1).

Figure 1.1 A script Python example.

Introduction to Python ■ 5

Interactive Python, on the other hand, is perfect for data science, scientific computing,
and exploratory data analysis. With interactive Python, you can execute code line by
line, see the results, and adjust your code accordingly. This iterative process allows
you to explore data, test hypotheses, and visualize results in real time (Figure 1.2).

Figure 1.2 An interactive Python example.

1.4 WHY INTERACTIVE PYTHON?

Interactive Python is particularly well-suited for data science for the following reasons:

• It enables you to load data, manipulate it, and visualize it in real time. This
allows you to quickly understand the structure and patterns in your data,
identify missing or incorrect values, and perform exploratory data analysis.

• It allows you to write and test machine learning models iteratively. You can
try out different algorithms, fine-tune hyperparameters, and evaluate model
performance in real time, enabling you to quickly refine your models and achieve
better results.

• It provides access to a wide range of statistical libraries and tools, such as
Pandas, NumPy, and Scikit-learn. You can perform statistical analysis, data
transformation, and feature engineering in an interactive environment, making
it easier to understand and prepare your data for modeling.

• It enables you to create interactive visualizations and dashboards using libraries
like Matplotlib, Seaborn, and Plotly. This allows you to present your findings
in a clear and compelling way, enabling stakeholders to explore and understand
the insights you’ve uncovered.

• Its interactive nature allows you to write and test code quickly, enabling you
to debug your code in a fast and iterative manner. This reduces the time and
effort required to develop and refine your data science projects.

• Its environments like Jupyter Notebook enable collaboration and sharing of
code, data, and results. This facilitates teamwork and knowledge sharing among
data scientists, engineers, and other stakeholders.

6 ■ BiteSize Python for Absolute Beginners

1.5 JUPYTER

For our book, we’ll be using JupyterLab and Jupyter Notebooks as our interactive
Python environment. Jupyter Notebooks blend explanations, images and rich media,
codes, and outputs in one document. It’s an ideal platform for data science, scientific
computing, and education and is widely used in industry, academia, and research.
JupyterLab is a web-based user interface to create and play with Jupyter Notebooks.

Jupyter Notebook’s interactive cells allow you to execute code line by line, seeing the
results of each cell in real time. This enables you to explore data, test hypotheses, and
visualize results in an iterative and dynamic manner. You can write code in Python,
R, Julia, or other languages and execute it in the browser or on a remote server.

Jupyter Notebooks support a wide range of media, including images, videos, interactive
visualizations, and equations. You can embed these media elements directly into your
notebooks, making it easy to create engaging and interactive documents. This is
particularly useful for data visualization, where you can create interactive plots and
charts that allow users to explore data in real time.

Jupyter Notebooks enable real-time collaboration and sharing of documents. You can
share notebooks with others and work together on a single document in real time.
This facilitates teamwork and knowledge sharing among data scientists, engineers,
and other stakeholders. You can also use Jupyter Notebook’s built-in commenting
and discussion features to communicate with collaborators and stakeholders.

Jupyter Notebooks have access to a wide range of libraries and tools, including
popular data science libraries like Pandas, NumPy, and Scikit-learn. You can also
install additional libraries and tools, such as Matplotlib, Seaborn, and Plotly, to
extend the functionality of your notebooks. This enables you to perform a wide range
of data science tasks, from data cleaning and visualization to machine learning and
deep learning.

Jupyter Notebooks provide robust security and scalability features, making them
suitable for use in production environments. You can secure your notebooks with
passwords, tokens, or other authentication methods and scale your notebooks to
handle large datasets and high traffic. This enables you to deploy your notebooks in a
variety of environments, from local machines to cloud-based servers.

Jupyter Notebook files have a .ipynb extension and contain a JavaScript Object
Notation structure that represents the notebook’s contents. These files can be opened
and edited in Jupyter Notebook and can also be shared and collaborated on with
others. The .ipynb file format allows for a flexible and dynamic document that can
contain a mix of text, code, equations, images, and interactive visualizations.

One of the key features of Jupyter Notebooks is the ability to combine markdown
text, code cells, and output cells in a single document. This allows you to create
a narrative document that explains your code, shows the output of your code, and
provides a clear and concise explanation of your results.

Introduction to Python ■ 7

1. Markdown cells allow you to write text in a simple and readable format, using
markdown syntax to format headings, bold text, italics, and links. You can use
markdown cells to provide explanations, introductions, and summaries, as well
as to add context to your code and output.

2. Code cells allow you to write and execute code in a variety of programming
languages, including Python, R, Julia, and MATLAB. You can use code cells to
perform data analysis, machine learning, and visualization, as well as to create
interactive plots and charts.

3. Output cells display the results of your code, including text, images, and
interactive visualizations. You can use output cells to show the output of your
code and to create reports and dashboards that summarize your findings.

By combining markdown, code, and output cells, you can create a clear and concise
narrative document that explains your code, shows the output of your code, and
provides a summary of your results. This is particularly useful for data science
and scientific computing, where you need to document your methods, results, and
conclusions in a clear and transparent way (Figure 1.3).

Figure 1.3 Jupyter notebook example.

1.6 LOCAL OR CLOUD

When it comes to using Jupyter Notebooks for Python development, you have two main
options: local installation or cloud services. Local installation involves downloading
and installing Jupyter Notebooks on your own computer, giving you full control

8 ■ BiteSize Python for Absolute Beginners

over the environment and the ability to work offline. However, this requires technical
expertise and can be time-consuming to set up. On the other hand, cloud services like
Google Colaboratory (Google Colab), Anaconda Online, and others offer a hassle-free
and convenient alternative. With cloud services, you can access Jupyter Notebooks
from anywhere, without the need for installation or maintenance. You can focus
on writing code and collaborating with others, while the cloud service handles the
technical details.

Anaconda local bundle is a self-contained package that includes the Anaconda distri-
bution, Jupyter Notebooks, and other popular data science tools. By installing it on
your local machine, you have complete control over the environment and can work
offline. This is ideal for those who require a high level of customization, security, and
offline access. Additionally, local installation allows for faster performance and respon-
siveness, making it suitable for large-scale data processing and computation. However,
it requires technical expertise to set up and maintain and can be resource-intensive.

Google Colab is a popular cloud service that offers Jupyter Notebooks for free,
with no setup required. You can access it from anywhere, and it comes with many
popular libraries pre-installed, including TensorFlow and PyTorch. Additionally,
Google Colab offers features like real-time collaboration, version control, and easy
sharing of notebooks. Whether you’re a student, researcher, or professional, cloud
services offer a convenient and powerful way to use Jupyter Notebook for Python
development.

Anaconda Online is another cloud-based platform that offers a managed environment
for data science and machine learning. It provides access to the same tools and libraries
as the Anaconda local bundle but without the need for installation or maintenance.
This makes it ideal for those who want to quickly get started with data science
projects, collaborate with others, or access their work from anywhere. Anaconda
Online also offers features like real-time collaboration, version control, and easy
sharing of notebooks.

1.7 LEARNING PYTHON

We adopt the experiential learning pedagogy and Bite-Size strategy to break a
hard topic down into fun pieces. This approach enables learners to engage with
Python programming in a hands-on, iterative, and incremental manner. By using
these methods, learners can gain a better understanding of Python, improve their
problem-solving skills, and build a growth mindset.

To learn Python effectively, it is essential to understand the logic behind the syntax.
Python’s syntax is designed to be intuitive and concise, but it is crucial to grasp the
underlying principles to write efficient and readable code.

Practice is key to learning Python. Start with simple programs and gradually move on
to more complex case studies, even projects. The more you code, the more comfortable

Introduction to Python ■ 9

you’ll become with Python’s syntax, and the better you’ll understand how to apply it
to real-world problems.

To make learning Python more engaging and relevant, connect the concepts you learn
to real-world examples. Think about how Python can be used to solve problems in
your own life or in your desired field. By connecting Python to real-world scenarios,
you’ll stay motivated and see the practical value of what you are learning.

Finally, utilize the power of Generative AI to enhance your learning journey. Use
AI-powered tools to generate explanations, examples, and practice exercises specific
to your unique needs. With generative AI, you can get personalized feedback, correct
your mistakes, and reinforce your understanding of Python concepts.

C H A P T E R 2

Input and Output

Now , you have a general idea about Python. It’s time for you to write your first
Python program. In this chapter, you will learn how to display messages on the

screen using the print() function and how to obtain information from users using the
input() function. Combining print() and input() enables you to write programs
that can interact with users!

Are you ready? Let’s get started!

2.1 HELLO, WORLD!

2.1.1 Demonstration

print('Hello, world!') # display a message

Hello, world!

The print() function is a built-in Python function that outputs text to the screen.
It’s a fundamental function in Python, and you’ll use it frequently to display output,
debug your code, and provide feedback to users. We will learn functions in detail in
later chapters.

The string 'Hello, world!' is a sequence of characters enclosed in a pair of single
quotation marks ('). In Python, strings can be enclosed in either single quotation
marks or double quotation marks (""). The string 'Hello, world!' is a literal string,
meaning it’s a fixed sequence of characters that doesn’t change. We will learn the
data types and strings in detail in later chapters.

The syntax for the print() function is print(value), where value is the text or
value you want to output. In this case, the value is the string 'Hello, world!'.

The # display a message is an in-line comment. Everything to the right of the #
symbol will be ignored by the Python interpreter, allowing you to add notes and
explanations to your code without affecting its functionality. In-line comments are a

10 DOI: 10.1201/9781003527725-2

https://doi.org/10.1201/9781003527725-2

Input and Output ■ 11

great way to add quick notes and reminders to your code and can help make your
code more readable and understandable.

2.1.2 Practice

Note: Before looking at the solutions provided in this book for the practice tasks,
try your best to complete the tasks on your own. Struggling with the tasks actually
will help you understand the concepts better. Additionally, keep in mind that our
solutions are not the only correct ones. Your approach might be different but also
valid.

Task: Change the value in the print() in the demonstration to be 'Hello, Python!'
and print it out.

print('Hello, Python!')

Hello, Python!

Task: Change the value in the print() in the demonstration to be 'Hello, {your
name}!' and print it out. Note that the {your name} is a place holder and you should
replace it with your name. For example, Neo.

print('Hello, Neo!')

Hello, Neo!

2.2 SINGLE OR DOUBLE

2.2.1 Explanation

In Python, you can use either single quotation mark (') or double quotation mark
(") to define a string. This means that 'Hello, world!' and "Hello, world!" are
equivalent and will produce the same output.

Python allows both single and double quotations to make it easier to define strings
that contain quotations. For example, if you want to define a string that contains a
single quotation, you can use double quotation: "It's a beautiful day!". Similarly,
if you want to define a string that contains a double quotation, you can use single
quotation: 'He said, "Hello, world!"'.

While Python allows both single and double quotations, it’s generally recommended to
use single quotes for defining strings. This is because single quotes are more commonly
used in Python and make the code more readable. Additionally, single quotes are less
prone to errors, as they don’t require escaping when defining strings that contain
double quotes.

Escaping allows you to include special characters in your strings by prefixing them
with a backslash (\). This tells Python to treat the next character as a literal character,
rather than its special meaning.

12 ■ BiteSize Python for Absolute Beginners

2.2.2 Demonstration

Same output as single quotations
print("Hello, world!")

Hello, world!

Raise error because the string contains a single quotation
print('I'm fine.')

File "<ipython-input-1-c130f7fb8291>", line 2
print('I'm fine.')

^
SyntaxError: unterminated string literal (detected at line 2)

Escaping the quotation to avoid conflict
print('I\'m fine.')

I'm fine.

Use double quotations to avoid conflict
print("I'm fine.")

I'm fine.

Raise error because the string contains a double quotation
print("He said "No!"")

File "<ipython-input-8-d24e08d6fbf5>", line 2
print("He said "No!"")

^
SyntaxError: invalid syntax. Perhaps you forgot a comma?

Escaping the quotation to avoid conflict
print("He said \"No!\"")

He said "No!"

Use single quotations to avoid conflict
print('He said "No!"')

He said "No!"

2.2.3 Practice

Task: Print a string 'Don't worry, be happy!' using double quotations

print("Don't worry, be happy!")

Don't worry, be happy!

Task: Print a string 'Don't worry, be happy!' using escape

print('Don\'t worry, be happy!')

Don't worry, be happy!

Input and Output ■ 13

Task: Print a string '"Yes! I promise!"' using single quotations

print('"Yes! I promise!"')

"Yes! I promise!"

Task: Print a string '"Yes! I promise!"' using escape

print("\"Yes! I promise!\"")

"Yes! I promise!"

2.3 TRIPLE QUOTATIONS

2.3.1 Explanation

Python also allows triple quotations (""" or ''') to define multiline strings. Triple
quotations are used to define strings that span multiple lines, and they preserve the
newline characters. Triple quotations are useful when you need to define a long string
that contains multiple lines of text. They are also useful when you need to define a
string that contains quotes, as you don’t need to escape the quotations.

Python also uses triple quotations (""" or ''') to define multiline comments. Multiline
comments are used to document your code and explain what it does. They can span
multiple lines and are ignored by the Python interpreter. To define a multiline comment,
you simply enclose your text in triple quotations.

Same output as single and double quotations
print('''Hello, world!''')

Hello, world!

Worry-free for strings with single or double quotations
print('''She said: "We're good!"''')

She said: "We're good!"

Multi-line strings
print('''This is a
multiline
string
example''')

This is a
multiline
string
example

'''This is a
multiline
string
comments'''
print('Hello, world!')

Hello, world!

14 ■ BiteSize Python for Absolute Beginners

2.3.2 Practice

Task: print the poem below using one print()
This
is
a
poem

print('''This
is
a
poem
''')

This
is
a
poem

Task: print the paragraph below using one print()
This is a multi-line
documentary. It consists
several sentences and
might be pages long.

print('''This is a multi-line
documentary. It consists
several sentences and
might be pages long.
''')

This is a multi-line
documentary. It consists
several sentences and
might be pages long.

Task: print the dialog below using one print()
"How are you?"
"I'm fine."
"It's a great day!"

print('''"How are you?"
"I'm fine."
"It's a great day!"''')

"How are you?"
"I'm fine."
"It's a great day!"

Input and Output ■ 15

2.4 PRINT MULTIPLE VALUES

2.4.1 Demonstration

In Python, the print() function is used to output text or values to the screen. But
what if you want to print multiple values at once? That’s where the comma (,) comes
in! When you separate values with a comma inside the print() function, Python
will output each value separated by a space ' '. This makes it easy to print multiple
values in a single statement.

Observe the differences between the two commas below
print('Hello,', 'world!')

Hello, world!

In the above example, the first comma is within '' thus, it is part of the string and
the second comma is used to separate the two values.

2.4.2 Practice

Task: Use print() to print two values 'Python' and '3.12' out.

print('Python', '3.12')

Python 3.12

Task: Use print() to print four values 'What', 'a', 'wonderful', and 'world!'
out.

print('What', 'a', 'wonderful', 'world!')

What a wonderful world!

2.5 INTERACT WITH GENAI

To get the most out of your interaction with a generative AI tool like ChatGPT,
always begin your conversation with the following prompt:

“You are an expert in Python programming. Act as a tutor helping a student who is
learning Python programming.”

This prompt sets the tone for the conversation and ensures the AI will provide helpful
and detailed guidance tailored to your learning. Here are some general suggestions
and prompts for effective interaction:

• Can you explain how [concept] works?
• What’s the difference between [concept 1] and [concept 2]?
• Can you provide an example of a function that does [specific task]?
• Show me how to use a [specific structure or method] to achieve [goal].
• I don’t understand why [specific method] isn’t working. Can you help me

troubleshoot it?

16 ■ BiteSize Python for Absolute Beginners

• My code: “[Your Python Code]” is not running. What is wrong? Can you correct
it?

• Review my code: “[Your Python Code]”. Can you improve my code to make it
more professional?

• Can you explain why [specific aspect] works this way?

We also prepared specific suggestions and prompts for print as well.

• What is the purpose of the print() function in Python?
• How does the print() function display output in Python?
• What types of data can be passed to the print() function in Python?
• Show how to print a simple string using the print() function.
• Demonstrate printing multiple variables in one line with a space separator.
• What should you do if print() isn’t displaying the expected output?
• How can you fix issues with extra spaces between printed values when using

print()?

We hope you can utilize generative AI as a great tool to enhance and assist your
learning.

2.6 GET INPUTS

We can use the print() function to show a message on the screen. But what if we
want to get the message our users give us? That’s where the input() function comes
in. Let’s observe the demonstration.

2.6.1 Demonstration

input('What is your name?') # display a prompt

What is your name?Neo

{"type":"string"}

The input() function is a built-in Python function that allows your program to get
user input. Its purpose is to read input from the user and return it as a string.

The string 'What is your name?' is an argument that the input() function takes
in. The argument is displayed as a prompt to the user. This prompt helps guide the
user on what input is expected.

The syntax for the input() function is input(value), where value is the instruction
text as the prompt you want to show to the user. In this case, the value is the string
'What is your name?'.

2.6.2 Practice

Task: Display a prompt 'Where do you live?' and get it from the user

Input and Output ■ 17

input('Where do you live?')

Task: Display a prompt 'How do you feel so far? Enter 1 for Good; 2 for
very good: ' and get it from the user

input('How do you feel so far? Enter 1 for Good; 2 for very good.')

Task: Display a prompt 'Are you ready to learn more? Enter Yes or No: '
and get it from the user

input('Are you ready to learn more? Enter Yes or No.')

2.7 COMBINE PRINT() AND INPUT()

2.7.1 Explanation

You may have noticed that when you use the input() function, the value the user
enters is displayed as a string with single quotations. This is because the input()
function always returns a string. Even if the user enters a number, it will be returned
as a string.

Now, let’s combine the input() function with the print() function. Since the value
returned by the input() function is a string, we can use it as an argument to the
print() function to display the user’s input.

2.7.2 Demonstration

print('Hello,', input('What is your name? '), '!')

What is your name? Neo
Hello, Neo !

print('Today is', input('What weekday is today? '))

What weekday is today? Friday
Today is Friday

print(input('What is your first name? '),
input('What is your last name?'),
'is awesome!')

What is your first name? Thomas
What is your last name?Anderson
Thomas Anderson is awesome!

2.7.3 Practice

Task: Display a prompt 'What date is today? yyyymmdd: ' to get value from the
user, then print the value on the screen.

print(input('What date is today? yyyymmdd: '))

18 ■ BiteSize Python for Absolute Beginners

What date is today? yyyymmdd: 20240501
20240501

Task: Display a prompt 'How old are you? ' to get value from the user, then print
the value on the screen.

print(input('How old are you? '))

How old are you? 18
18

Task: Display a prompt 'Which number is your lucky number? ' to get value from
the user, then print the value and a string 'is a magic number!' on the screen.

print(input('Which number is your lucky number? '), 'is a magic number!')

Which number is your lucky number? 9
9 is a magic number!

2.8 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is the purpose of the input() function in Python?
• How does the input() function capture user input in Python?
• What data type does the input() function return by default?
• How can you use the input() function to prompt the user with a custom

message?
• What happens if the user enters an invalid value when using input()?
• Show how to capture the user’s name using the input() function.
• Demonstrate how to capture and display the user’s age using input().
• Use input() to prompt the user to enter their favorite color and print a response

based on their choice.
• What happens if the user accidentally presses Enter without entering anything

when using input()?

C H A P T E R 3

Variables

How do you feel about Python so far? You can obtain information from users
and display them on the screen! Python is not that hard, right? Let’s add some

flavors to make it more useful now. In this chapter, we are going to learn the concept
of variables, including how to define them and use them, and the dynamic typing in
Python. We will also learn data types, so we can represent data in terms of built-in
int, float, str, and bool values. Are you ready? Let’s get started!

3.1 WHAT ARE VARIABLES

3.1.1 Explanation

Variables are used to store and reference values in a program. Without variables, we
would have to repeat code or hardcode values, making our programs inflexible and
difficult to maintain. Variables allow us to store a value once and use it multiple times,
making our code more efficient and easier to read.

In Python, variables work as references, meaning they point to the location in memory
where the actual value is stored. This means that when we assign a new value to a
variable, we are updating the reference to point to the new value, rather than changing
the original value. This concept of references is key to understanding how variables
work in Python, and it allows for powerful and flexible programming. With variables,
we can write more dynamic and interactive programs that can adapt to changing
conditions and user input. For example:

x = 5

Now, we can use x in any and many places, and the value of x is 5. If we need to
update the value, just assign a new value to x, and all places x was used, will be
updated (Figure 3.1).

DOI: 10.1201/9781003527725-3 19

https://doi.org/10.1201/9781003527725-3

20 ■ BiteSize Python for Absolute Beginners

Figure 3.1 Variable x refers to 5.

3.1.2 Practice

Task: Think about in your real life, what kind of references we may use. For example:

input('Where do you live?')

Yes. When we mention a place in a conversation, we are referencing the physical
location! Do you have some other examples?

3.2 NAMING RULES

3.2.1 Explanation

There are two levels of naming rules. The minimal level has hard rules following the
syntax. You must satisfy the syntax rules of naming variables; otherwise, you’ll get
errors. The other level has soft rules following the convention. It is recommended to
satisfy the convention rules so you can write professional programs.

Syntax rules are:

• Variable names must start with a letter (a-z or A-Z) or an underscore (_).
• Variable names can only contain letters (a-z or A-Z), digits (0-9), and un-

derscores (_).
• Variable names are case-sensitive (e.g., name and Name are treated as different

variables).
• Variable names cannot be reserved keywords (e.g., if, else, while, etc.).

Convention rules are:

• Variable names should be descriptive and indicate the purpose of the variable.
• Variable names should be concise, but not so short that they are unclear.
• Variable names should use lowercase letters and underscores to separate words

(e.g., first_name instead of FirstName).
• Variable names should avoid using abbreviations or acronyms unless they are

widely recognized (e.g., id for identifier).

Variables ■ 21

• Variable names should not start with an underscore (_) (even if it’s allowed by
the syntax rules) unless you understand the special usage of this form.

By following these syntax rules and convention rules, you can write clear, readable,
and maintainable code that makes it easy for others (and yourself) to understand
what your variables represent.

3.2.2 Practice

Task: In following variable names, mark them with

1. Error (break synatx rules)
2. Not good (break convention rules)
3. Good (following all rules)

application_id: GOOD
b: NOT GOOD
Cat: NOT GOOD
4square: ERROR
five!: ERROR
six_dice: GOOD
_seven_day: NOT GOOD
eight_9:NOT ERROR -- NOT GOOD
Ten_points: NOT GOOD
lIama3: NOT GOOD
bubble_O0o: NOT GOOD
gj: NOT GOOD

3.3 DATA TYPES

3.3.1 Explanation

In Python, a variable can refer to any type of value. The built-in data types include:

• Integers int: e.g., 1, 2, 3, -3
• Floats float: e.g., 3.14, -0.5
• Strings str: e.g., "hello", 'hello')
• Booleans bool: e.g., True, False

In Python, the data type of a variable is determined by the data type of the value
it refers to. This means that the data type of a variable is not fixed or declared
beforehand, but rather is inferred from the value that the variable is referring to in
real time. For example, if you assign an integer value to a variable, the variable will
be considered an integer type; if you then assign a string value to that variable, the
variable will be considered a string type, and so on. This is known as dynamic typing,
and it allows for flexibility in programming, as a variable can change its data type
during runtime if a different type of value is assigned to it. This is different from
statically typed languages, where the data type of a variable is fixed.

22 ■ BiteSize Python for Absolute Beginners

3.3.2 Practice

For all tasks below, use print() and type() to check the value is correctly assigned
and the data type is correct. For example: print('x:', x, type(x)). Note that the
type() will return the data type of values or variables.

Task: assign x with an int 5.

Assign the value 5 to the variable x
x = 5

Print the value of x, followed by its data type
print('x:', x, type(x))

x: 5 <class 'int'>

Task: assign int_x with x.

int_x = x
print('x:', x, type(x))
print('int_x:', int_x, type(int_x))

x: 5 <class 'int'>
int_x: 5 <class 'int'>

Task: assign x with a float 5.0.

x = 5.0
print('x:', x, type(x))

x: 5.0 <class 'float'>

Task: assign float_x with x.

float_x = x
print('x:', x, type(x))
print('float_x:', float_x, type(float_x))

x: 5.0 <class 'float'>
float_x: 5.0 <class 'float'>

Task: assign x with a str '5'.

x = '5'
print('x:', x, type(x))

x: 5 <class 'str'>

Task: assign str1_x with x.

str1_x = x
print('x:', x, type(x))
print('str1_x:', str1_x, type(str1_x))

x: 5 <class 'str'>
str1_x: 5 <class 'str'>

Variables ■ 23

Task: assign x with a str '5.0'.

x = '5.0'
print('x:', x, type(x))

x: 5.0 <class 'str'>

Task: assign str2_x with x.

str2_x = x
print('x:', x, type(x))
print('str2_x:', str2_x, type(str2_x))

x: 5.0 <class 'str'>
str2_x: 5.0 <class 'str'>

Task: Use print() and type() to check all the variables you created so far, x, int_x,
float_x, str1_x, str2_x for their values and data types.

print('x:', x, type(x))
print('int_x:', int_x, type(int_x))
print('float_x:', float_x, type(float_x))
print('str1_x:', str1_x, type(str1_x))
print('str2_x:', str2_x, type(str2_x))

x: 5.0 <class 'str'>
int_x: 5 <class 'int'>
float_x: 5.0 <class 'float'>
str1_x: 5 <class 'str'>
str2_x: 5.0 <class 'str'>

3.4 DATA TYPES CONVERT

3.4.1 Explanation

In Python, you can convert a value from one data type to another using various
conversion functions. This is useful when you need to work with values of different
types or when you need to ensure a value is in a specific format.

3.4.2 Demonstration

x = 5 # x is an int
print(str(x), type(str(x)))

5 <class 'str'>

x = 5 # x is an int
print(float(x), type(float(x)))

5.0 <class 'float'>

x = 5.0 # x is a float
print(int(x), type(int(x)))

5 <class 'int'>

24 ■ BiteSize Python for Absolute Beginners

x = 5.5 # x is a float
print(int(x), type(int(x)))

5 <class 'int'>

x = '5' # x is a str
print(int(x), type(int(x)))

5 <class 'int'>

x = '5.5' # x is a str
print(float(x), type(float(x)))

5.5 <class 'float'>

Be careful if you convert values between different data types. Sometimes you may
encounter errors, for example, try to convert a string literal ('a') to a float or ('5.5')
to an integer. Sometimes you may have data loss, for example, try to convert '5.5'
to an int, which returns the floor value (5) instead of the actual value (6).

Let’s summarize the data types and compare them in Table 3.1.

Table 3.1 Comparison of basic Python data types.
int float str bool

Definition Integers Floating-point
numbers

Sequence of
characters

Boolean values

Example 42 3.14 "hello" True, False
Constructor int() float() str() bool()
Mutability Immutable Immutable Immutable Immutable
Applications Counting,

indexing
Measurements,
calculations,
scientific data

Text,
data represen-
tation

Condition,
logic control

Pros Precise for dis-
crete values,
efficient

Handles large
ranges and dec-
imals

Rich library of
string methods,
flexible

Simple and in-
tuitive for logic-
based code

Cons Cannot han-
dle decimals,
may overflow

Precision for
very large or
small numbers

Memory-
intensive
for large strings

Limited values

3.4.3 Practice

For all tasks below, use print() and type() to check the value is correctly assigned,
and the data type is correct. For example print('x:', x, type(x))

Task: convert a str '0' to int

x = int('0')
print('x:', x, type(x))

x: 0 <class 'int'>

Variables ■ 25

Task: convert a float 0.1 to int

x = int(0.1)
print('x:', x, type(x))

x: 0 <class 'int'>

Task: convert a str '0' to float

x = float('0')
print('x:', x, type(x))

x: 0.0 <class 'float'>

Task: convert an int 0 to float

x = float(0)
print('x:', x, type(x))

x: 0.0 <class 'float'>

Task: convert an int 0 to str

x = str(0)
print('x:', x, type(x))

x: 0 <class 'str'>

Task: convert a float 0.1 to str

x = str(0.1)
print('x:', x, type(x))

x: 0.1 <class 'str'>

3.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What are variables in Python, and how are they used to store data? Provide
examples with different data types like str, int, and float.

• What are the differences between str, int, and float data types in Python?
• Show how to declare variables in Python and assign values of different types.
• Create exercises to declare variables of different types (str, int, float) and

use print() to display their values.
• Design an exercise to convert a string containing a number into an integer using

int(), and perform arithmetic operations on it.
• Describe an error encountered when converting data types with str(), int(),

or float() and ask, “Why did the error occur, and how can I avoid it in the
future?”

C H A P T E R 4

Operations

W e have learned variables and data types, and now we can learn how to play
with them! In Python, operations allow us to manipulate and combine values

to perform various tasks. There are four main categories of operations: 1) Assignment
operations, which establish the references we have experienced in the previous chapter;
2) Arithmetic operations, which enable us to perform mathematical calculations with
numbers; 3) Relational operations, which enable us to make comparison and return
bool values; and lastly 4) Logical operations, which enable us to play with bool
values and get a compound condition. Let’s get started!

4.1 ASSIGNMENT OPERATIONS

4.1.1 Explanation

In Python, the assignment operation is a fundamental concept that allows us to assign
a value to a variable.

The assignment operation in Python is denoted by the equals sign (=). It is used to
assign the value of an expression to a variable. When we assign a value to a variable,
we are not copying the value itself, but rather the address of the value. This means
that the variable now refers to the location in memory where the value is stored.

x = 5 # x refers to the address of 5
print(x) # output 5

5

In this example, the value 5 is stored in memory, and the address of that value is
assigned to the variable x. So, x now refers to the location in memory where the value
5 is stored.

When we assign the value of one variable to another variable, we are assigning the
address that the first variable refers to, to the second variable.

26 DOI: 10.1201/9781003527725-4

https://doi.org/10.1201/9781003527725-4

Operations ■ 27

y = x # y refers to the address that x refers to
print(y) # output 5

5

In this example, the address that x refers to (which is the location in memory where
the value 5 is stored) is assigned to y. So, y now refers to the same location in memory
as x, which is where the value 5 is stored. This means that both x and y now refer to
the same value, which is 5.

If we change the value of x by assigning a different value to it, y will not change.
This is because x and y are two separate variables that happen to point to the same
location in memory initially. When we assign a new value to x, it will point to a new
location in memory, but y will still point to the original location in memory.

x = 6 # x refers to the address of 6
print(y) # still output 5 since y still refers to 5

5

Multiple assignments in Python allow us to assign values to multiple variables in
a single statement. This is a concise and readable way to assign values to multiple
variables at once. For example:

x, y = 5, 6

This is equivalent to:

x = 5
y = 6

Here’s how it works: The expressions on the right-hand side (5 and 6) are evaluated
first. The values are then assigned to the variables on the left-hand side (x and y) in
the order they are listed.

4.1.2 Practice

Task: Use two input() functions to get the name and age from the user, assign the
name to name, convert age to int and assign it to age. Print a string as {name} is
{age} years old.

name, age = input('What is your name: '), int(input('What is your age?'))
print(name, 'is', age, 'years old.')

What is your name: Neo
What is your age?18
Neo is 18 years old.

4.2 ARITHMETIC OPERATIONS

4.2.1 Explanation

Arithmetic operations in Python are used to perform mathematical calculations.

28 ■ BiteSize Python for Absolute Beginners

Here are the basic arithmetic operations supported by Python:

• Addition: a + b, adds two numbers a and b together.
• Subtraction: a - b, subtracts the number b from another number a.
• Multiplication: a * b, multiplies two numbers a and b together.
• Division: a / b, divides the number a by another number b and returns a float

as the result.
• Floor Division: a // b, divides the number a by another number b and returns

the largest whole number result as int.
• Modulus (remainder): a % b, returns the remainder of dividing the number a

by another number b.
• Exponentiation: a ** b, raises the number a to the power of another number b.

4.2.2 Demonstration

a = 5
b = 2

print(a + b) # Output: 7
print(a - b) # Output: 3
print(a * b) # Output: 10
print(a / b) # Output: 2.5
print(a // b) # Output: 2
print(a % b) # Output: 1
print(a ** b) # Output: 25

7
3
10
2.5
2
1
25

The precedence of arithmetic operations in Python determines the order in which
operations are evaluated when there are multiple operations in an expression. Below
is the precedence of arithmetic operations in Python, listed from highest to lowest:

• Parentheses (()): Evaluated first.
• Exponentiation (**): Evaluated next.
• Multiplication, Division, and Modulus (*, /, //, %): Evaluated next, from left

to right.
• Addition and Subtraction (+, -): Evaluated next, from left to right.

result = 2 + 3 * (4 - 1)
print(result) # Output: 11

result = (2 + 3) * 4
print(result) # Output: 20

result = 2 ** 3 * 4
print(result) # Output: 32

Operations ■ 29

result = 10 / (2 ** 2)
print(result) # Output: 2.5

result = 10 / 2 * 3
print(result) # Output: 15

result = 10 * 2 + 3 % 4
print(result) # Output: 23

result = 2 + 3 - 4
print(result) # Output: 1

result = 10 - 2 + 3
print(result) # Output: 11

11
20
32
2.5
15.0
23
1
11

4.2.3 Practice

Task: Evaluate following arithmatic operations, then code them to verify your evalua-
tion:
2 + 3 * 4
(2 + 3) * 4
10 / 2 + 3
10 + 2 / 3
3 ** 2 * 4
(3 ** 2) * 4
12 / 3 - 2
12 - 3 / 2
2 + 3 * (4 - 1)
(2 + 3) * (4 - 1)
10 / (2 + 3)
10 - (2 + 3)

print(2 + 3 * 4) # 2 + 3 * 4 = 2 + 12 = 14
print((2 + 3) * 4) # (2 + 3) * 4 = 5 * 4 = 20
print(10 / 2 + 3) # 10 / 2 + 3 = 5.0 + 3 = 8.0
print(10 + 2 / 3) # 10 + 2 / 3 = 10 + 0.67 = 10.67
print(3 ** 2 * 4) # 3 ** 2 * 4 = 9 * 4 = 36
print((3 ** 2) * 4) # (3 ** 2) * 4 = 9 * 4 = 36
print(12 / 3 - 2) # 12 / 3 - 2 = 4.0 - 2 = 2.0
print(12 - 3 / 2) # 12 - 3 / 2 = 12 - 1.5 = 10.5
print(2 + 3 * (4 - 1)) # 2 + 3 * (4 - 1) = 2 + 3 * 3 = 2 + 9 = 11
print((2 + 3) * (4 - 1)) # (2 + 3) * (4 - 1) = 5 * 3 = 15
print(10 / (2 + 3)) # 10 / (2 + 3) = 10 / 5 = 2.0
print(10 - (2 + 3)) # 10 - (2 + 3) = 10 - 5 = 5

30 ■ BiteSize Python for Absolute Beginners

14
20
8.0
10.666666666666666
36
36
2.0
10.5
11
15
2.0
5

4.3 RELATIONAL OPERATIONS

4.3.1 Explanation

Relational operations in Python are used to compare values and determine if they
meet certain conditions.

• Equal (==): a == b returns True if a is equal to b, and False otherwise. For
example: 5 == 5 returns True, while 5 == 3 returns False.

• Not Equal (!=): a != b returns True if a is not equal to b, and False otherwise.
For example: 5 != 3 returns True, while 5 != 5 returns False.

• Greater Than (>): a > b returns True if a is greater than b, and False otherwise.
For example: 5 > 3 returns True, while 3 > 5 returns False.

• Less Than (<): a < b returns True if a is less than b, and False otherwise. For
example: 3 < 5 returns True, while 5 < 3 returns False.

• Greater Than or Equal To (>=): a >= b returns True if a is greater than or
equal to b, and False otherwise. For example: 5 >= 5 returns True, while 3
>= 5 returns False.

• Less Than or Equal To (<=): a <= b returns True if a is less than or equal to
b, and False otherwise. Example: 3 <= 5 returns True, while 5 <= 3 returns
False.

4.3.2 Practice

Task: Print out the comparison output of an operator. We can:
print(x, 'operator', y, 'is', x operator y)

where x and y are operands and operator is the operator. Then, assign x with 2, y
with 3, then print out the comparison and result of

1. x > y
2. x >= y
3. x == y
4. x <= y
5. x < y
6. x != y

Operations ■ 31

x = 2
y = 3
print(x, '>', y, 'is', x > y)
print(x, '>=', y, 'is', x >= y)
print(x, '==', y, 'is', x == y)
print(x, '<=', y, 'is', x <= y)
print(x, '<', y, 'is', x < y)
print(x, '!=', y, 'is', x != y)

2 > 3 is False
2 >= 3 is False
2 == 3 is False
2 <= 3 is True
2 < 3 is True
2 != 3 is True

Task: Ask the user to enter two integers, convert them to int, and assign them to x
and y, print out the equation and result of

1. x > y
2. x >= y
3. x == y
4. x <= y
5. x < y
6. x != y

x = int(input('Enter an integer: '))
y = int(input('Enter another integer: '))
print(x, '>', y, 'is', x > y)
print(x, '>=', y, 'is', x >= y)
print(x, '==', y, 'is', x == y)
print(x, '<=', y, 'is', x <= y)
print(x, '<', y, 'is', x < y)
print(x, '!=', y, 'is', x != y)

Enter an integer: 2
Enter another integer: 3
2 > 3 is False
2 >= 3 is False
2 == 3 is False
2 <= 3 is True
2 < 3 is True
2 != 3 is True

4.4 LOGICAL OPERATIONS

4.4.1 Explanation

The results we get from relational operations, True and False, are the only two values
of a data type, bool. Logical operations in Python are used to play with Boolean
values, combine conditional statements, and evaluate the truthiness of expressions.
There are three logical operations in Python:

32 ■ BiteSize Python for Absolute Beginners

• and (logical conjunction): a and b.
• or (logical disjunction): a or b.
• not (logical negation): not a.

We can learn and get familiar with the results of logical operations by examining the
truth table shown in Table 4.1.

Table 4.1 Truth table for logical operations and, or, and not.
a b a and b a or b not a not b

True True True True False False
True False False True False True
False True False True True False
False False False False True True

4.4.2 Practice

Task: Let’s verify the truth table of logical operators. We can use the statement:
print(x, 'operator', y, 'is', x operator y)

where x and y are operands and operator is the operator. We can assign x with True,
y with False, then print out the comparison and result of

1. x and x
2. x and y
3. y and x
4. y and y
5. x or x
6. x or y
7. y or x
8. y or y
9. not x

10. not y

x = True
y = False
print(x, 'and', x, 'is', x and x)
print(x, 'and', y, 'is', x and y)
print(y, 'and', x, 'is', y and x)
print(y, 'and', y, 'is', y and y)
print(x, 'or', x, 'is', x or x)
print(x, 'or', y, 'is', x or y)
print(y, 'or', x, 'is', y or x)
print(y, 'or', y, 'is', y or y)
print('not', x, 'is', not x)
print('not', y, 'is', not y)

True and True is True
True and False is False
False and True is False

Operations ■ 33

False and False is False
True or True is True
True or False is True
False or True is True
False or False is False
not True is False
not False is True

The precedence of logical operations in Python is as follows:

• () (highest precedence).
• not.
• and.
• or (lowest precedence).

Task: Evaluate the following expressions and use code to verify your evaluation.
True and (True or False)
(True and False) or True
not (True and False)
not (False or True)
False and True or False and False or (False and True)

print(True and (True or False)) # True
print((True and False) or True) # True
print(not (True and False)) # True
print(not (False or True)) # False
print(False and True or False and False or (False and True)) # False

True
True
True
False
False

Task: A leap year, by definition, is a year that is a multiple of 4, except for years
evenly divisible by 100 but not by 400. Ask user to give you a year, and print whether
or not it is a leap year. Some test cases are:
input: 2000: True
input: 2100: False
input: 2024: True
input: 2023: False

year = int(input('Enter a year: '))
leap = year % 4 == 0 and year % 100 != 0 or year % 400 == 0
print(leap)

Enter a year: 2023
False

Let’s summarize, compare, and contrast the operations in Table 4.2.

34 ■ BiteSize Python for Absolute Beginners

Table 4.2 Summary of Python operations.
Operation Operator Operand Description
Arithmetic +, -, *, /, %,

**, //
int,
float

Perform basic arithmetic operations:
• a + b (addition)
• a - b (subtraction)
• a * b (multiplication)
• a / b (division)
• a % b (modulus)
• a ** b (exponentiation)
• a // b (floor division)

Relational ==, !=, >, <,
>=, <=

Any
comparable
values

Compare values and return True or
False:

• a == b (equal to)
• a != b (not equal to)
• a > b (greater than)
• a < b (less than)
• a >= b (greater than or equal

to)
• a <= b (less than or equal to)

Logical and, or, not bool Perform logical operations:
• a and b (both conditions true)
• a or b (either condition true)
• not a (negates the condition)

Assignment =, +=, -=,
*=, /=, %=,
//=, **=

Variables Assign values or modify and assign:
• a = b (assign)
• a += b (add and assign)
• a -= b (subtract and assign)
• a *= b (multiply and assign)
• a /= b (divide and assign)
• a %= b (modulus and assign)
• a //= b (floor divide and

assign)
• a **= b (exponentiate and

assign)

4.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

Operations ■ 35

• Demonstrate basic arithmetic operations like addition, subtraction, and division.
• Provide examples of relational operations such as >, <, and ==.
• Illustrate logical operations using and, or, and not.
• Combine different operations in a single statement to demonstrate operator

precedence.
• What is the result of 5 // 2 and how is it different from 5 / 2?
• What happens if arithmetic, relational, and logical operators are used together

in a statement?
• What are augmented assignment operators like +=, -=, and *=?
• What happens if you divide by zero in Python, and how can you handle it?
• Explain short-circuit evaluation in logical expressions with examples.
• How can you avoid confusion between = and ==?
• What issues might arise when combining relational and logical operations

incorrectly?
• How can parentheses resolve precedence problems in complex expressions?
• What error occurs if you compare incompatible types like a string and a number?

C H A P T E R 5

String

How do you feel so far? You have learned a lot and practiced a lot. Don’t stop!
Let’s learn something more interesting. Remember, we have used the data

type str in our first Python program to display a string 'Hello, world!' on the
screen. Let’s learn more about this very common data type and explore its built-in
powerful functionalities in Python. We are going to learn how to create, access, slice,
concatenate, and format strings, as well as the built-in functions of str.

Are you excited? Let’s get started!

5.1 WHAT IS STR?

5.1.1 Explanation

In Python, a str (short for string) is a sequence of characters enclosed in quotations,
such as "Hello, world!" or 'Hello, world!'. Strings are a fundamental datatype
in Python and are used to represent text, words, or phrases. They are important
because they allow us to store and manipulate text data, which is essential for a
wide range of applications, from simple text processing to complex natural language
processing tasks. Strings are also used extensively in web development, data analysis,
and machine learning, making them a crucial concept in Python.

5.1.2 Thinking

Think about in your real life, what scenarios you have to deal with strings, and what
functionalities you wish you could do with it?

5.2 STRING CREATION

There are various approaches for creating or initializing a string object in Python.

36 DOI: 10.1201/9781003527725-5

https://doi.org/10.1201/9781003527725-5

String ■ 37

5.2.1 Demonstration

You can create a string by enclosing a sequence of characters in quotations (either
single, double, or triple quotations).

Three strings below are equivalent
s1 = 'Hello, world!'
s2 = "Hello, world!"
s3 = '''Hello, world!'''
s1, s2, s3

('Hello, world!', 'Hello, world!', 'Hello, world!')

You can create a string from other data types, such as integers or floats, using the
str() function.

str() is a constructor, or initializor of strings
s4 = str(5)
s5 = str(6.0)
s6 = str(True)
s7 = str(False)
s4, s5, s6, s7

('5', '6.0', 'True', 'False')

You can use the len() function to obtain the length of a string, which is the number
of characters in it.

print(s1, len(s1))
print(s7, len(s7))

Hello, world! 13
False 5

5.3 STRING ACCESS

You can access individual characters in a string using their index. In Python, the index
always starts from 0. For a string variable text, the first character is then text[0]
and the last character is then text[len(text)-1]. If you use an index larger than
len(text)-1, you will get an error.

5.3.1 Demonstraton

For example (Figure 5.1):

text = 'Python'
first_char = text[0] # Access the first character 'P'
print('First character:', first_char)

First character: P

last_char = text[len(text)-1] # Access the last character 'n'
print('Last character:', last_char)

38 ■ BiteSize Python for Absolute Beginners

Figure 5.1 String non-negative index.

Last character: n

print(text[6]) # will result an error

IndexError Traceback (most recent call last)
<ipython-input-6-c0ccc76c7160> in <cell line: 1>()
----> 1 print(text[6]) # will result an error

IndexError: string index out of range

The pythonic way of accessing the last element, rather than using len(text)-1 as
the index, is using -1 directly as a negative index (Figure 5.2). You can think about
that: while non-negative indices represent a string from the left to the right, negative
indices represent the string from the right to the left. The rightmost character in the
string text is text[-1] and the leftmost character is then text[-len(text)]. If you
use an index smaller than -len(text), you will get an error. For example:

last_char = text[-1] # Access the last character 'n'
print('Last character:', last_char)

Last character: n

first_char = text[-len(text)] # Access the first character 'P'
print('First character:', first_char)

First character: P

print(text[-7]) # will result an error

Figure 5.2 String negative index.

String ■ 39

IndexError Traceback (most recent call last)
<ipython-input-11-8273384d22fe> in <cell line: 1>()
----> 1 print(text[-7]) # will result an error

IndexError: string index out of range

5.3.2 Practice

Given a string 'Learning is fun!', and practice the small tasks below.

Run this cell for the practices
text = 'Learning is fun!'

Task: Print the length of text

print(len(text))

16

Task: Print the first character of text using a non-negative index

print(text[0])

L

Task: Print the last character of text using a non-negative index

print(text[len(text)-1])

!

Task: Print the second character of text using a non-negative index

print(text[1])

e

Task: Print the second to last character of text using a non-negative index

print(text[len(text)-2])

n

Task: Print the last character of text using a negative index

print(text[-1])

!

Task: Print the first character of text using a negative index

print(text[-len(text)])

L

Task: Print the second to last character of text using a negative index

40 ■ BiteSize Python for Absolute Beginners

print(text[-2])

n

Task: Print the second character of text using a negative index

print(text[-len(text)+1])

e

Task: Try to get a string index out of range error using positive index

print(text[len(text)])

IndexError Traceback (most recent call last)
<ipython-input-11-94a4b90f352f> in <cell line: 1>()
----> 1 print(text[len(text)])

\enlargethispage*{40pt}

IndexError: string index out of range

Task: Try to get a string index out of range error using negative index

print(text[-len(text)-1])

IndexError Traceback (most recent call last)
<ipython-input-12-a21546afe548> in <cell line: 1>()
----> 1 print(text[-len(text)-1])

IndexError: string index out of range

5.4 STRING SLICING

If you want to obtain a portion of a string, you can use string slicing. It’s done using
the [start:stop:step] notation in place of the indices, where the start represents
the index to start slicing, the stop represents the index to stop slicing (thus, the
character of this index will be excluded from the substring), and the step represents
the step value (which is 1 by default) in the slicing (Figure 5.3, 5.4).

Figure 5.3 String slicing with step as 1.

String ■ 41

Figure 5.4 String slicing with step as 2.

5.4.1 Demonstration

text = 'Python is amazing'
print(len(text))

17

sub = text[0:6] # Extracts 'Python'
print('Substring:', sub)

Substring: Python

sub = text[10:17] # Extracts 'amazing'
print('Substring:', sub)

Substring: amazing

sub = text[:6] # Extracts 'Python'
print('Substring:', sub)

Substring: Python

sub = text[10:] # Extracts 'amazing'
print('Substring:', sub)

Substring: amazing

sub = text[:] # Extracts everthing
print('Substring:', sub)

Substring: Python is amazing

sub = text[-7:] # Extracts 'amazing'
print('Substring:', sub)

Substring: amazing

sub = text[:6:2] # Extracts 'Pto'
print('Substring:', sub)

Substring: Pto

sub = text[10::2] # Extracts 'aaig'
print('Substring:', sub)

42 ■ BiteSize Python for Absolute Beginners

Substring: aaig

sub = text[::5] # Extracts 'Pnan'
print('Substring:', sub)

Substring: Pnan

sub = text[::-1] # Extracts 'gnizama si nohtyP'
print('Substring:', sub)

Substring: gnizama si nohtyP

5.4.2 Practice

Given a string 'Learning is fun', and practice the small tasks below.

Run this cell for the practices
text = 'Learning is fun'

Task: Slice Learning from the text

print(text[:8])

Learnin

Task: Slice fun from the text

print(text[-3:])

fun

Task: Slice is from the text

print(text[9:-4])

is

Task: Slice the characters with index 0, 5, 10, ... from the text

print(text[::5])

Lis

Task: Starting from index 2, end at index 10, slice every other character from the text

print(text[2:10:2])

ann

5.5 STRING CONCATENATION

5.5.1 Demonstration

There are various ways of concatenating strings together.

String ■ 43

Using the + Operator
text = 'Hello' + ', world!'
print(text)

Hello, world!

Using the += Operator
text = 'Hello'
text += ', world!' # the same as text = text + ', world!'
print(text)

Hello, world!

String concatenations require two str objects as operands. Not like C++ and Java,
Python will not auto-convert other data types to str for concatenation. For example:

Python wont auto-convert other data types to str

text = 18 + ' years old' # will result an error
print(text)

TypeError Traceback (most recent call last)
<ipython-input-57-58e6c2aaf484> in <cell line: 3>()

1 # Python wont auto-convert other data types to str
2

----> 3 text = 18 + ' years old' # will result an error
4 print(text)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Python wont auto-convert other data types to str

text = str(18) + ' years old' # Convert int to str before concatenation
print(text)

18 years old

5.6 STRING FORMAT

If you have many substrings, concatenating them together is not easy to do and not
friendly to read. Actually, Python offers multiple ways to combine multiple substrings
together through string formatting. String formatting is a powerful feature in Python
that allows you to insert values into a string template. There are two main ways to
do this: using the .format() method and using f-strings.

5.6.1 Demonstration

You can format a string by using .format():

Assign the string 'Alice' to the variable name
name = 'Alice'

Assign the value 30 to the variable age

44 ■ BiteSize Python for Absolute Beginners

age = 30

Create a formatted string using name and age
formatted_str = 'Name: {}, Age: {}'.format(name, age)

Print the formatted string
print(formatted_str)

Name: Alice, Age: 30

You can also format a string by using f-strings (f''):

name = 'Bob'
age = 25
formatted_str = f'Name: {name}, Age: {age}'
print(formatted_str)

Name: Bob, Age: 25

It is very convenient when you combine input() for part of the output:

name = input('What is your name? ')
print(f'Hello, {name}!')

What is your name? Neo
Hello, Neo!

You can also control the details of the format of the output string:

a = 3.1415926
print(f'Zero decimal points of a float: {a:.0f}')
print(f'Two decimal points of a float: {a:.2f}')
print(f'Four decimal points of a float: {a:.4f}')

Zero decimal points of a float: 3
Two decimal points of a float: 3.14
Four decimal points of a float: 3.1416

b = 3
print(f'Make up length of 2 by adding extra zeroes: {b:02d}')
print(f'Make up length of 4 by adding extra zeroes: {b:04d}')
print(f'Make up length of 8 by adding extra zeroes: {b:08d}')

Make up length of 2 by adding extra zeroes: 03
Make up length of 4 by adding extra zeroes: 0003
Make up length of 8 by adding extra zeroes: 00000003

c = 31415926
print(f'Print scientific notation of a number: {a:e}')
print(f'Print scientific notation of a number: {b:e}')
print(f'Print scientific notation of a number: {c:e}')

Print scientific notation of a number: 3.141593e+00
Print scientific notation of a number: 3.000000e+00
Print scientific notation of a number: 3.141593e+07

String ■ 45

5.6.2 Practice

Task: Use f-strings to print the following string:
My name is John,
I am 30 years old, and
I live in New York.

where John, 30, and New York are values you get from users.

print(f'''
My name is {input('What is your name? ')},
I am {input('What is your age? ')}, and
I live in {input('Where do you live? ')}.
''')

What is your name? John
What is your age? 30
Where do you live? New York

My name is John,
I am 30, and
I live in New York.

Task: Get the price of a book from the user, and use f-strings to print the following
string: 'The price of the book is ${price}'.

price = input('Enter the price of the book: ')
print(f'The price of the book is ${price}')

Enter the price of the book: 32.30
The price of the book is $32.30

Task: Let a and b be two integers you get from the user, use f-strings to print the
result of arithmetic operations +, -, *, /, //, %, and **. For example, if the user enters
a = 1, b = 3, you’ll print:
When a = 1, b = 3:
1 + 3 = 4
1 - 3 = -2
1 * 3 = 3
1 / 3 = 0.3333333333333333
1 // 3 = 0
1 % 3 = 1
1 ** 3 = 1

a = 1
b = 3
print(f'''When a = {a}, b = {b}:
{a} + {b} = {a+b}
{a} - {b} = {a-b}
{a} * {b} = {a*b}
{a} / {b} = {a/b}
{a} // {b} = {a//b}
{a} % {b} = {a%b}

46 ■ BiteSize Python for Absolute Beginners

{a} ** {b} = {a**b}
''')

When a = 1, b = 3:
1 + 3 = 4
1 - 3 = -2
1 * 3 = 3
1 / 3 = 0.3333333333333333
1 // 3 = 0
1 % 3 = 1
1 ** 3 = 1

5.7 USEFUL FUNCTIONS

As one of the most important data types, str has many built-in functions to support
its wide usage. We are going to briefly introduce some of them here.

5.7.1 Demonstration

text = 'Python is versatile.'

Case conversion:

Uppercase, lowercase, and titlecase
upper_text = text.upper()
lower_text = text.lower()
title_text = text.title()
print('text:', text)
print('upper_text:', upper_text)
print('lower_text:', lower_text)
print('title_text:', title_text)

text: Python is versatile.
upper_text: PYTHON IS VERSATILE.
lower_text: python is versatile.
title_text: Python Is Versatile.

Checking if a string starts or ends with a specific substring:

Checking if a string starts or ends with a specific substring
starts_with = text.startswith('Python')
print(f'{text} starts_with Python? is {starts_with}')
ends_with = text.endswith('.')
print(f'{text} end with .? is {ends_with}')

Python is versatile. starts_with Python? is True
Python is versatile. end with .? is True

token = 'python'
print(f'{text} starts_with {token}? is {text.startswith(token)}')

Python is versatile. starts_with python? is False

String ■ 47

token = 'versatile'
print(f'{text} ends_with {token}? is {text.endswith(token)}')

Python is versatile. ends_with versatile? is False

Replacing a substring:

Replacing a substring
replaced_text = text.replace('versatile', 'powerful')
print('replaced_text:', replaced_text)

replaced_text: Python is powerful.

Splitting a string into a list:

Splitting a string into a list
split_text = text.split() # the default delimeter is a space
print('split_text:', split_text)

split_text: ['Python', 'is', 'versatile.']

split_text = text.split('s')
print('split_text:', split_text)

split_text: ['Python i', ' ver', 'atile.']

Finding the position of a substring:

Finding the position of a substring
position = text.find('i')
print(position)

7

position = text.find('i', 8)
print(position)

16

position = text.find('i', 17)
print(position)

-1

position = text.rfind('i')
print(position)

16

Stripping whitespace from the beginning and end:

Stripping whitespace from the beginning
stripped_text = ' whitespace '.lstrip()
print(f'Left stripped_text: ---{stripped_text}---')

Stripping whitespace from the end
stripped_text = ' whitespace '.rstrip()
print(f'Right stripped_text: ---{stripped_text}---')

48 ■ BiteSize Python for Absolute Beginners

Left stripped_text: ---whitespace ---
Right stripped_text: --- whitespace---

Stripping whitespace from the beginning and end
stripped_text = ' whitespace '.strip()
print(f'Stripped_text: ---{stripped_text}---')

Stripped_text: ---whitespace---

5.7.2 Practice

run this cell for following tasks
text = 'Everyday is a great day'

Task: Convert the string text to uppercase and print it out.

print(text.upper())

EVERYDAY IS A GREAT DAY

Task: Convert the string text to lowercase and print it out.

print(text.lower())

everyday is a great day

Task: Convert the string text to titlecase and print it out.

print(text.title())

Everyday Is A Great Day

Task: Check if the string text starts with 'Everyday'

print(text.startswith('Everyday'))

True

Task: Check if the string text starts with 'Each'

print(text.startswith('Each'))

False

Task: Check if the string text ends with 'day'

print(text.endswith('day'))

True

Task: Check if the string text ends with 'day!'

print(text.endswith('day!'))

False

String ■ 49

Task: replace 'great' in the string text with 'wonderful'

print(text.replace('great', 'wonderful'))

Everyday is a wonderful day

Task: split the string text

print(text.split())

['Everyday', 'is', 'a', 'great', 'day']

Task: split the string text by 'e'

print(text.split('e'))

['Ev', 'ryday is a gr', 'at day']

Task: Find the first occurance of 'day' in the string text

print(text.find('day'))

5

Task: Find the second occurance of 'day' in the string text

print(text.find('day', 6))

20

Task: Find the last occurance of 'day' in the string text

print(text.rfind('day'))

20

Task: Removing the leading spaces of ' Everday is a wonderful day '

print(' Everday is a wonderful day '.lstrip())

Everday is a wonderful day

Task: Removing the ending spaces of ' Everday is a wonderful day '

print(' Everday is a wonderful day '.rstrip())

Everday is a wonderful day

Task: Removing the surrounding spaces of ' Everday is a wonderful day
' from both ends

print(' Everday is a wonderful day '.strip())

Everday is a wonderful day

Let’s summarize commonly used string operations in Table 5.1.

50 ■ BiteSize Python for Absolute Beginners

Table 5.1 Summary of Python string methods.
Method Description Example
str.upper() Converts all characters

to uppercase.
"hello".upper()
→ "HELLO"

str.lower() Converts all characters
to lowercase.

"HELLO".lower()
→ "hello"

str.capitalize() Capitalizes the first
character of the
string.

"hello
world".capitalize()
→ "Hello world"

str.title() Capitalizes the first
letter of each word.

"hello world".title()
→ "Hello World"

str.strip() Removes leading and
trailing whitespaces.

" hello ".strip()
→ "hello"

str.replace
(old, new)

Replaces occurrences
of a substring with
another substring.

"hello world".replace
("world", "Python")
→ "hello Python"

str.split(sep) Splits the string
into a list based on a
delimiter.

"a,b,c".split(",")
→ ["a", "b", "c"]

str.join(iterable) Joins elements of
an iterable with
the string as the
delimiter.

",".join(["a", "b",
"c"])
→ "a,b,c"

str.find(sub) Returns the lowest
index of the substring
or -1 if not found.

"hello".find("e") → 1

str.startswith
(prefix)

Checks if the string
starts with the
specified prefix.

"hello".startswith
("he")
→ True

str.endswith
(suffix)

Checks if the string
ends with the
specified suffix.

"hello".endswith("lo")
→ True

str.isdigit() Checks if all characters
are digits.

"123".isdigit()
→ True

str.isalpha() Checks if all characters
are alphabetic.

"abc".isalpha()
→ True

str.count(sub) Counts occurrences of
a substring in the
string.

"banana".count("a")
→ 3

String ■ 51

5.8 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain how strings can be accessed using indices. What is the difference between
non-negative and negative indices?

• Explain the purpose of f-strings and their advantages for string formatting.
• Use an f-string to format a message with variables.
• How do negative indices work for slicing? For example, what does s[-3:-1]

return?
• What happens when you concatenate a string with a number without converting

the number?
• How does the replace() method work? Provide an example.
• How can you count the number of occurrences of a character in a string?
• How can you use slicing to reverse a string?
• Create a program that accepts a user’s full name and displays it in reverse order

(last name first).
• Write a script to count the number of vowels in a given string.
• Use slicing to check if a string is a palindrome.
• What causes an IndexError when accessing string elements, and how can you

avoid it?
• Why does slicing not throw an error even if the indices are out of range?
• Why does modifying a character in a string cause an error, and what is the

workaround?

C H A P T E R 6

Case Studies of Python
Fundamentals

W e have learned a lot of concepts in this section! From the general understanding
of Python, to the first Python program, from the built-in data types and to

dynamically typed variables, from the various operations to the detailed exploration
of str, you mastered the fundamentals of Python successfully! Let’s apply what
we just learned to some real-life cases and see how Python can assist us in solving
problems. These case studies are designed to test your understanding of input and
output, variables, operations, and str in Python.

For these real-life cases, you should use input() to get the user to enter the information
and use print() to print the information on the screen. At this moment, we can
assume users will follow instructions carefully – they will enter the valid inputs as
required.

Are you ready? Let’s get started!

6.1 SIMPLE CHECK OUT

Instruction: You are going to program a super simple check-out system for a store.
This store has an interesting rule that every customer can only buy one product (the
quantity of the product is not limited) in one order.

1. Ask the user to enter the price/unit of the product (it should be a float)
2. Ask the user to enter the quantity of the product (it should be an integer)
3. We have a sales tax of 6.25%
4. Calculate and display the total amount of this order (for example, 59.25)
5. Ask the user to enter the amount of bills paid (for example, 60)
6. Calculate and display the change (for example, 0.75)

52 DOI: 10.1201/9781003527725-6

https://doi.org/10.1201/9781003527725-6

Case Studies of Python Fundamentals ■ 53

Prompt the user to enter the price and convert it to a float
price = float(input('What is the price per unit of the product? '))

Prompt the user to enter the quantity and convert it to an integer
quantity = int(input('What is the quantity of the product? '))

Calculate the total amount including a 6.25% tax
total = price * quantity * (1 + 0.0625)

Print the total amount, formatted to 2 decimal places
print(f'The total amount of this order with tax is ${total:.2f}')

Prompt the user to enter the amount paid and convert it to a float
paid = float(input('What is the amount of bill paid? '))

Calculate the change to be returned
change = paid - total

Print the change amount, formatted to 2 decimal places
print(f'The change is ${change:.2f}')

What is the price per unit of the product? 25.99
What is the quantity of the product? 12
The total amount of this order with tax is $331.37
What is the amount of bill paid? 350
The change is $18.63

6.2 TIPS SPLIT

Instruction: You are going to program a super simple tip split system.

1. Ask the user to enter the total amount of meal before tax (it should be a float)
2. Ask the user to enter the number of people to split the tips (it should be an

integer)
3. We have a sales tax of 6.25%, and we tip at 18%
4. Calculate and display the total amount due (including tax and tips)
5. Calculate and display the amount each person should pay.

Prompt the user to enter the total before tax and convert it to a float
total = float(input('What is the total amount of the meal before tax? '))

Prompt the user to enter the number of people and convert it to an int
num = int(input('How many people to split the tips? '))

tax = 0.0625 # Set the tax rate as 6.25%
tip = 0.18 # Set the tip percentage as 18%

Calculate the total amount due, including tax and tip
total_due = total * (1 + tax + tip)

Calculate the amount each person owes
each_due = total_due / num

54 ■ BiteSize Python for Absolute Beginners

Print the total amount due and the amount each person owes
print(f'Total due is ${total_due:.2f}. Each due is ${each_due:.2f}')

What is the total amount of the meal before tax? 124
How many people to split the tips? 5
Total due is $154.07. Each due is $30.81

6.3 COMPOUND INTEREST

Instruction: You are going to program a super simple compound interest calculator.

1. Ask the user to enter the amount saved right now (it should be a float)
2. Ask the user to enter the number of years(it should be an integer)
3. Ask the user to enter the interest rate (it should be a float number, and 0.03

represents 3%)
4. Calculate and display the total amount after these years

Prompt the user to enter the current savings and convert it to a float
saving = float(input('What is the amount of saving right now? '))

Prompt the user to enter the years and convert it to an integer
years = int(input('What is the number of years? '))

Prompt the user to enter the interest rate and convert it to a float
rate = float(input('What is the interest rate per year? '))

Calculate the total amount over the given years
total = saving * (1 + rate) ** years

Print the total amount after the given years
print(f'The total amount after these years is: ${total:.2f}')

What is the amount of saving right now? 100000
What is the number of years? 10
What is the interest rate per year? 0.05
The total amount after these years is: $162889.46

II
Flow Control and Functions

55

S ection II: Flow Control and Functions covers how Python handles flow
control, enabling you to create dynamic and responsive programs. You’ll explore

the fundamentals of branching and repetition, the core mechanisms that allow your
code to make decisions and execute tasks repeatedly. Building on these basics, we
introduce functions, an advanced yet essential tool for managing code flow more
efficiently. You’ll learn how to define functions with no parameters, one parameter,
and multiple parameters, as well as how to use return values to retrieve results from
functions. The section also covers how functions can call other functions, including
the concept of recursion, where a function calls itself to solve problems that require
repetitive processing.

By the end of this section, you will be able to:

• Understand and apply branching and repetition for basic flow control in Python.

• Define and use functions to organize and simplify your code.

• Create functions with varying numbers of parameters to handle different input
scenarios.

• Utilize return values to obtain and use results from functions.

• Understand default values in functions and use keywords to pass arguments.

• Implement recursive functions and understand how they solve complex problems
through repetition.

C H A P T E R 7

Branching

F low control is a fundamental concept in programming that allows you to
control the order in which your code is executed. In Python, the flow control

statements are used to deviate from the sequential flow of a program. In sequential flow,
the code is executed line by line, from top to bottom, in the order it is written. Each
statement is executed in sequence, and the program follows a straightforward, linear
path. On the other hand, flow control statements allow you to alter the sequential
flow of a program. They enable you to branch to different parts of the program based
on conditions (branching), repeat certain statements or blocks of code (looping), and
even skip certain statements or blocks of code (skipping).

In Python, the main flow control statements are:

• if-elif-else statements (branching).
• for loops (repetition).
• while loops (repetition).
• break and continue statements (skipping).
• try-except statements (error handling).

We will learn branching in this chapter. Are you excited? Let’s get started!

7.1 OPTIONAL BRANCHING

Optional branching (if) allows you to execute a block of code only if a certain
condition is true (Figure 7.1).

DOI: 10.1201/9781003527725-7 57

https://doi.org/10.1201/9781003527725-7

58 ■ BiteSize Python for Absolute Beginners

Figure 7.1 A flow chart for optional branching.

7.1.1 Demonstration

The general syntax of an optional branching is:

if condition:
statements

Here, the keyword if initiates the branching clause. The condition determines the
evaluation, resulting in a Boolean value, either True or False. The : completes the
clause. In the next line, an indentation of two spaces ' ' indicates that the statements
within this line are enclosed by the if clause. Execution of the statements occurs only
when the condition evaluates to True.

x = 5

if x < 0:
print('x is negative!')

In this instance, the statement is to print a string 'x is negative!'. However, since
we know x is 5 and 5 < 0 evaluates to False, nothing will be printed.

Let’s observe more examples.

if x >10:
print('x is more than 10!')

if x % 2 == 0:
print('x is even!')

if x > 0:
print('x is positive!')

x is positive!

if x %2 != 0:
print('x is odd!')

x is odd!

Branching ■ 59

degree = 72
if degree < 60 or degree > 80:

print('Not good for hiking!')

if degree >= 60 and degree <= 80:
print('Enjoy the hiking!')

Enjoy the hiking!

7.1.2 Practice

Task: Check if a number is even. You should ask the user to enter an integer, if it
is an even number, print 'it is even'; otherwise, print nothing. Hint: to test if a
number is even, we need to use %2 and check if the reminder is 0 or not. If it is 0,
then the number is even.

n = int(input('Please enter an integer: '))
if n % 2 == 0:

print('It is even')

Please enter an integer: 3

Task: Check if a number is odd. Similar to the task above. However, this time, you
only print 'It is odd' when the number entered is odd.

n = int(input('Please enter an integer: '))
if n % 2 != 0:

print('It is odd')

Please enter an integer: 3
It is odd

Task: Check if a number is divisible by 6. You should ask the user to enter an integer,
if it is dividable by 6, print 'It can be divisible by 6'.

n = int(input('Please enter an integer: '))
if n % 6 == 0:

print('It can be dividable by 6')

Please enter an integer: 23

Task: Check if an input is 'STOP'. Ask the user to enter some words, and only when
the user entered'STOP', you print 'Bye'.

word = input('Enter some word: ')
if word == 'STOP':

print('Bye')

Enter some word: STOP
Bye

Task: Ask the user to enter some words, and only when the user entered any case
combination of 'stop', for example, 'stop', 'Stop', 'STOP', etc., you print 'Bye'.

60 ■ BiteSize Python for Absolute Beginners

word = input('Enter some word: ').upper()
if word == 'STOP':

print('Bye')

Enter some word: stop
Bye

Task: Password Setup. Ask the user to enter a password twice, if the second input
matches the first one, print 'You are all set'

password1 = input('Enter a new password:')
password2 = input('Enter the password again:')
if password1 == password2:

print('You are all set')

Enter a new password:12
Enter the password again:12
You are all set

7.2 ALTERNATIVE BRANCHING

Alternative branching allows you to execute one block of code if a condition is true,
and another block of code if the condition is false (Figure 7.2).

Figure 7.2 A flow chart for alternative branching.

7.2.1 Demonstration

The general syntax of an alternative branching is:

if condition:
statements

else:
statements

Here, the keyword if initiates the branching clause, which is exactly the same as the
optional branching. The alternative branching has the extra, which is the keyword

Branching ■ 61

else and the associated clause. The else clause doesn’t need a condition, since the
condition is by default when the condition in the if clause evaluates to False. The
statements enclosed by the else clause share the same indentation. Execution of the
statements occurs only when the condition evaluates to False.

x = 5

if x <= 0:
print('x is non-positive!')

else:
print('x is positive!')

x is positive!

if x %2 == 0:
print('x is even!')

else:
print('x is odd!')

x is odd!

if x == 2 or x == 3 or x == 5 or x == 7:
print('x is a prime number.')

else:
print('x is not a prime number.')

x is a prime number.

7.2.2 Practice

Task: Check if the weather is good for hiking. You should ask the user to enter a float
value as the temperature in Fahrenheit.

• If the temperature is within [60, 80], print 'Perfect';
• otherwise, print 'Not that good'.

temp = float(input('Please enter the temperature in Fahrenheit: '))
if temp < 60 or temp > 80:

print('Not that good')
else:

print('Perfect')

temp = float(input('Please enter the temperature in Fahrenheit: '))
if temp >= 60 and temp <= 80:

print('Perfect')
else:

print('Not that good')

Task: Check if the user feels happy. You should ask the user 'Are you happy now?'.

• If the user enters 'Yes', print “Fantastic!'’
• otherwise, print 'How can I help?'

62 ■ BiteSize Python for Absolute Beginners

happy = input('Are you happy now? Yes or No:')
if happy == 'Yes':

print('Fantastic!')
else:

print('How can I help?')

Are you happy now? Yes or No:Yes
Fantastic!

Task: Check if your plants need water. You should ask the user to enter an integer
indicating the level of moisture of the soil (from 1: super dry; to 10: super wet).

• If the level is below 3, print 'Yes, you should water your plants now'
• otherwise, print 'No. Wait for the soil to be dryer'.

level = int(input('''Enter the level of moisture of the soil
(from 1: super dry; to 10: super wet):'''))
if level < 3:

print('Yes, you should water your plants now')
else:

print('No. Wait for the soil to be dryer')

Task: Check if a student finished this lab

At first, ask the user:'Do you care about your learning outcome?'

• If yes, ask the user 'Have your finished this lab?' If yes, print 'Good
job!'. If no, print 'Get it done ASAP!!!!!!'

• If no, then print 'As long as you are happy.'

care = input('Do you care about your learning outcome? Yes or No:')
if care == 'Yes':

finish = input('Have your finished this lab? ')
if finish == 'Yes':

print('Good job!')
else:

print('Get it done ASAP!!!!!!')
else:

print('As long as you are happy.')

Do you care about your learning outcome? Yes or No:Yes
Have your finished this lab? No
Get it done ASAP!!!!!!

7.3 MULTIPLE BRANCHING

Multiple branching allows you to check multiple conditions and execute different
blocks of code based on which condition is true (Figure 7.3).

Branching ■ 63

Figure 7.3 A flow chart for multiple branching.

7.3.1 Demonstration

The general syntax of multiple branching is:

if condition1:
statements

elif condition2:
statements

else:
statements

Here, the keyword if initiates a branching clause, which is the same as an optional
branching clause. The keyword elif initiates another clause when condition1 eval-
uates to False, with another condition2. If condition2 evaluates to True, the
statements enclosed by the elif will be executed. Otherwise, the flow moves to
the next elif clause or to the else clause. It’s worth noting that the else clause
is optional, meaning you don’t always have to include an else clause in multiple
branching.

x = 10
if x > 10:

print('x is greater than 10')
elif x == 10:

print('x is equal to 10')
else:

print('x is less than 10')

x is equal to 10

if x%2 == 0:
print('x is divisible by 2')

elif x%3 == 0:
print('x is divisible by 3')

x is divisible by 2

64 ■ BiteSize Python for Absolute Beginners

if x%2 == 0:
if x%3 == 0:

print('x is divisible by 6')
elif x%5 == 0:

print('x is divisible by 10')
else:

print('x is odd')

x is divisible by 10

x = int(input('Please enter a point-based grade in 0-100:'))
if x >= 90:

print('A')
elif x >= 80:

print('B')
elif x >= 70:

print('C')
elif x >= 60:

print('D')
elif x >= 0:

print('F')

Please enter a point-based grade in 0-100:-1

7.3.2 Practice

Task: Check if a number is positive, negative, or 0. You should ask the user to enter
a number, if it is above 0, print 'It is positive'; if it is below 0, print 'It is
negative'; otherwise, print 'It is zero'.

n = float(input('Enter a number: '))
if n > 0:

print('It is positive')
elif n < 0:

print('It is negative')
else:

print('It is zero')

Enter a number: 2
It is positive

Task: Check how many days the current month has. You should ask the user to enter
the number indicating the current month, such as 1 for January; then print the days
the month has, such as print 31 if the user entered 1. Let’s assume there are 28 days
in February.

month = int(input('Enter the month: 1 - 12:'))
if (month == 1 or month == 3 or month == 5 or month == 7

or month == 8 or month == 10 or month == 12):
print(31)

elif month == 2:
print(28)

else:
print(30)

Branching ■ 65

Enter the month: 1 - 12:2
28

Task: A parking garage has following price policy:

1. first half hour: 5
2. second half hour to 2 hours: 15
3. more than 2 hours: 5 per hour

Ask the user to enter the hours of parking (it should be a float number, such as 1.6 as
1.6 hours), and calculate the parking fee. Note, if a user parks the car for 5.5 hours,
the formular will be 5 (for first half hour) + 15 (for a second half hour to 2 hours) +
5 * (5.5 - 2) (for hours more than 2)

hours = float(input('Enter the hours of parking as a float number:'))
if hours <= 0.5:

fee = 5
elif hours <= 2:

fee = 5 + 15
else:

fee = 5 + 15 + 5 * (hours - 2)
print(fee)

Enter the hours of parking as a float: 5.5
37.5

Task: Write a program that asks the user to enter a person’s age. The program should
display a message indicating whether the person is an infant, a child, a teenager, an
adult, or a senior citizen. The following are the guidelines:

1. If the person is 1 year old or less, he or she is an infant.
2. If the person is older than 1 year, but younger than 13 years, he or she is a

child.
3. If the person is at least 13 years old, but less than 20 years old, he or she is a

teenager.
4. If the person is at least 20 years old, but less than 65 years old, he or she is an

adult.
5. Otherwise, the person is a senior citizen.

age = int(input('Enter your age as an integer: '))
if age <= 1:

print('You are an infant')
elif age < 13:

print('You are a child')
elif age < 20:

print('You are a teenager')
elif age < 65:

print('You are an adult')
else:

print('You are a senior citizen')

66 ■ BiteSize Python for Absolute Beginners

7.4 CASE STUDIES OF BRANCHING

These case studies are designed to test your understanding of flow control: branching.
We are going to create some simple programs using these tools. You will find some
real-life tasks in the sections below. At this moment, we can assume users will follow
instructions carefully – they will enter the valid inputs as required.

7.4.1 What day is today?

Write a program that asks the user for a number in the range of 1 through 7. The
program should display the corresponding day of the week, where:

• 1 = Monday,
• 2 = Tuesday,
• 3 = Wednesday,
• 4 = Thursday,
• 5 = Friday,
• 6 = Saturday,
• 7 = Sunday, and
• all other values entered = ERROR

day = input('What day is today? 1 - 7:')
if day == '1':

print('Monday')
elif day == '2':

print('Tuesday')
elif day == '3':

print('Wednesday')
elif day == '4':

print('Thursday')
elif day == '5':

print('Friday')
elif day == '6':

print('Saturday')
elif day == '7':

print('Sunday')
else:

print('ERROR')

What day is today? 1 - 7:4
Thursday

7.4.2 Tax calculator

You are going to program a simple tax calculator.

Step1: Ask the user to enter the gross income of year.

Step2: Calculate the tax based on the following formula:

1. No more than $100,000, one pays just 1%
2. No more than $100,000 one pays 5%

Branching ■ 67

3. More than $500,000 then one pays 5% tax on the first 500,000 and 2 cents for
every dollar above 500,000

Step3: Print the tax amount on the screen.

Prompt the user to enter the gross income
income = float(input('What is the gross income of the year? '))

Determine the tax based on income
if income <= 100000:

Apply a 1% tax rate for income up to $100,000
tax = income * 0.01

elif income <= 500000:
Apply a 5% tax rate for income up to $500,000
tax = income * 0.05

else:
Apply a 5% tax rate for the first $500,000
and a 2% tax rate for the amount above $500,000
tax = 500000 * 0.05 + 0.02 * (income - 500000)

Print the calculated tax, formatted to 2 decimal places
print(f'The tax is {tax:.2f}')

What is the gross income of year? 600000
The tax is 27000.00

7.4.3 A simple calculator

You are going to program a super simple Calculator.

Step1: Ask the user to enter the first number, store it in x

Step2: Ask the user to enter the second number, store it in y

Step3: Ask the user to enter the operator, store it in p

Step4: Calculate the result of x p y.

For example, if the user entered 2, 3, and +, you should print 2.0 + 3.0 = 5.0 on the
screen

Prompt the user to enter the first number and convert it to a float
x = float(input('Enter the first number: '))

Prompt the user to enter the second number and convert it to a float
y = float(input('Enter the second number: '))

Prompt the user to enter an operator (+, -, *, or /)
operator = input('Please enter the operator (one of +, -, *, /): ')

Perform the operation based on the entered operator
if operator == '+':

If the operator is '+', perform addition and print the result
print(x, operator, y, '=', x + y)

elif operator == '-':

68 ■ BiteSize Python for Absolute Beginners

If the operator is '-', perform subtraction and print the result
print(x, operator, y, '=', x - y)

elif operator == '*':
If the operator is '*', perform multiplication and print the result
print(x, operator, y, '=', x * y)

elif operator == '/':
If the operator is '/', perform division and print the result
Check for division by zero
if y != 0:

print(x, operator, y, '=', x / y)
else:

print("Error: Division by zero is not allowed")

Enter the first number: 3
Enter the second number: 4
Please enter the operator (one of +, -, *, /)+
3.0 + 4.0 = 7.0

7.4.4 Taxi fare calculator

You are going to program a simple Calculator for a taxi.

Step1: Ask the driver to enter total miles, store it in miles

Step2: Calculate the fare based on the formula

• if miles < 10, fare is $5.
• if 10 <= miles < 20, fare is $5 plus $1 for every mile beyond 10.
• if miles > 20, fare is $15 plus $1.5 for every mile beyond 20.

Step3: print the fare.

Prompt the user to enter the total miles and convert it to a float
miles = float(input('Enter the total miles: '))

Determine the fare based on the number of miles
if miles < 10:

Miles are less than 10, flat rate of $5
fare = 5

elif miles < 20:
Miles are between 10 and 20, $5 + $1 per mile
fare = 5 + (miles - 10)

else:
Miles are 20 or more, $15 + $1.50 per mile
fare = 15 + 1.5 * (miles - 20)

Print the calculated fare
print('The fare is:', fare)

Enter the total miles: 25
The fare is: 22.5

Branching ■ 69

7.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is branching in Python, and why is it important for controlling program
flow?

• Explain how optional branching (if) works in Python. Provide a basic example.
• What is alternative branching (if-else), and how does it differ from optional

branching?
• Describe multiple branching using if-elif-else and its use cases.
• What is the significance of indentation in Python branching statements?
• Show how to use multiple conditions in a single if statement with logical

operators.
• Write an example that uses nested if-else statements to check multiple condi-

tions.
• How does Python decide which block to execute in an if-elif-else structure?
• Can if-else statements be used without logical operators? Provide an example.
• What are potential pitfalls of using too many nested if statements? How can

they be avoided?
• How do you handle cases where branching logic needs to evaluate complex

conditions involving multiple variables?
• Write a program to determine if a year is a leap year using if-else.
• Create a menu-driven program where the user selects an option, and the program

executes the corresponding action.
• How can you handle cases where multiple if statements conflict or overlap?
• What should you do if an if-elif-else structure does not cover all possible

cases?

C H A P T E R 8

Repetition

R epetition flow control lets us repeat a piece of code multiple times. This is done
using loops, like for loops and while loops. Repetition is important because it

saves our time and effort. Instead of writing the same code again and again, we can
use loops to automate tasks. In real life, repetition is useful for things like processing
all rows in a dataset, sending automated emails, or simulating events like rolling a
dice many times. It makes coding more efficient and helps solve problems faster.

Let’s get started!

8.1 CONDITION-BASED REPETITION

8.1.1 Explanation

In Python, condition-based repetition flow control is managed using the while loop.
The while loop repeatedly executes a block of code as long as a specified condition
remains true. This type of loop is ideal when you don’t know beforehand how many
times the loop should run, but you want the iteration to continue until a certain
condition is no longer met.

Here’s a basic structure of a while loop:

while condition:
statements

Here, the loop checks this condition before each iteration. If the condition is True,
the code block inside the loop will execute. If the condition is False, the loop
stops and the program continues with the next lines of code outside the loop. The
statements with indentation is the section of code that runs on each iteration while
the condition is True (Figure 8.1).

70 DOI: 10.1201/9781003527725-8

https://doi.org/10.1201/9781003527725-8

Repetition ■ 71

Figure 8.1 A flow chart for condition-based repetition.

8.1.2 Demonstration

Initialize a counter variable i to 0
i = 0

Start a while loop that continues as long as i is less than 5
while i < 5: # loop will run at most 5 times

Print the current value of i and a message
print(f'i is {i}, the condition {i}<5 is satisfied. Keep going!')

Increment i by 1 at the end of each loop iteration
i += 1

Print a message indicating the loop has finished executing
print('The loop has terminated.')

i is 0, the condition 0<5 is satisfied. Keep going!
i is 1, the condition 1<5 is satisfied. Keep going!
i is 2, the condition 2<5 is satisfied. Keep going!
i is 3, the condition 3<5 is satisfied. Keep going!
i is 4, the condition 4<5 is satisfied. Keep going!
The loop has terminated.

Initialize a flag variable to True, which will control the loop
flag = True

Start a while loop that continues as long as the flag is True
while flag:

Print a message indicating the current state of the flag
print(f'The condition is {flag}. Keep going!')

Ask the user to enter a number and convert it to float
Check if the entered number is greater than 10
If yes, flag becomes False, otherwise it stays True
num = float(input('Enter a number larger than 10: '))
flag = num > 10

72 ■ BiteSize Python for Absolute Beginners

If the number is not greater than 10, print an error message
if not flag:

print('Error: Number is not larger than 10.')

The condition is True. Keep going!
Enter a number larger than 10: 11
The condition is True. Keep going!
Enter a number larger than 10: 12
The condition is True. Keep going!
Enter a number larger than 10: 10.01
The condition is True. Keep going!
Enter a number larger than 10: 10
Error: Number is not larger than 10.

8.1.3 Practice

Task: Print all integers from –5 to 5.

count = -5
while count <= 5:

print(count)
count += 1

-5
-4
-3
-2
-1
0
1
2
3
4
5

Task: Print all integers of an interval given by the user. Ask the user to enter two
integers and print all integers between (including) them.

low = int(input('Enter the lower bound of interval: '))
high = int(input('Enter the upper bound of interval: '))
count = low
while count <= high:

print(count)
count += 1

Enter the lower bound of interval: 2
Enter the upper bound of interval: 5
2
3
4
5

Task: Double the Number.

1. Ask the user to enter a small positive number (0–10)
2. Double the number, print it out, and repeat, until the number beyond 1,000,000

Repetition ■ 73

n = int(input('Enter a small positive number (0-10): '))
while n <= 1000000:

print(n)
n *= 2 # n = n * 2

Enter a small positive number (0-10): 2
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288

Task: Keep asking for candy until 'Done'.

1. Ask the user to enter anything
2. Print a message 'Thanks! I got a candy'
3. Repeat Steps 1 and 2, until the user enters 'Done'
4. Print a message 'Thanks! I have enough'

msg = input('Enter anything to continue, enter "Done" to stop: ')
while msg != 'Done':

print('Thanks! I got a candy')
msg = input('Enter anything to continue, enter "Done" to stop: ')

print('Thanks! I have enough')

Enter anything to continue, enter "Done" to stop: else
Thanks! I got a candy
Enter anything to continue, enter "Done" to stop: ok
Thanks! I got a candy
Enter anything to continue, enter "Done" to stop: Done
Thanks! I have enough

Task: Password setup

1. Ask the user to enter a new password.
2. Ask the user to enter the password again.
3. If the second input matches the first one, print “You are all set”; otherwise,

repeat the process.

74 ■ BiteSize Python for Absolute Beginners

password1 = input('Enter a new password:')
password2 = input('Enter the password again:')
while password1 != password2:

password1 = input('Enter a new password:')
password2 = input('Enter the password again:')

print('You are all set')

Enter a new password:12
Enter the password again:3
Enter a new password:12
Enter the password again:12
You are all set

8.2 COUNT-BASED REPETITION

8.2.1 Explanation

In Python, count-based repetition flow control is managed using the for loop. The
for loop iterates over a sequence (like a list, tuple, or range) and executes a block of
code for each item in the sequence. It’s ideal when you know in advance how many
times you want to iterate.

Here’s a basic structure of a for loop:

for item in sequence:
statements

Here, the item represents the current element from the sequence that the loop is
iterating over. The sequence can be any iterable, such as a list, tuple, string, or range.
The loop will iterate once for each element in the sequence. The statements with
indentation is the section of code that runs on each iteration (Figure 8.2).

Figure 8.2 A flow chart for count-based repetition.

Repetition ■ 75

8.2.2 Demonstration

Iterate over a list of numbers using a for loop
for i in [0, 1, 2, 3]:

Print the current number in the list
print(i)

0
1
2
3

for i in [0, 1, 2, 3]:
print('Hello, world')

Hello, world
Hello, world
Hello, world
Hello, world

for i in range(3):
print(i, 'Hello, world!')

0 Hello, world!
1 Hello, world!
2 Hello, world!

for i in range(5):
print(i)

0
1
2
3
4

for i in range(0, 5):
print(i)

0
1
2
3
4

for i in range(2, 5):
print(i)

2
3
4

for i in range(2, 5, 1):
print(i)

2
3

76 ■ BiteSize Python for Absolute Beginners

4

for i in range(2, 5, 2):
print(i)

2
4

8.2.3 Practice

Task: Print all even numbers within 20

for i in range(21):
if i % 2 == 0:

print(i)

0
2
4
6
8
10
12
14
16
18
20

for i in range(0, 21, 2):
print(i)

0
2
4
6
8
10
12
14
16
18
20

Task: Print all numbers dividable by 5 within 100

for i in range(101):
if i % 5 == 0:

print(i)

0
5
10
15
20
25
30

Repetition ■ 77

35
40
45
50
55
60
65
70
75
80
85
90
95
100

for i in range(0, 101, 5):
print(i)

0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

Task: Print all integers from –5 to 5.

for i in range(-5, 6):
print(i)

-5
-4
-3
-2
-1
0
1
2
3
4
5

78 ■ BiteSize Python for Absolute Beginners

Task: Print all integers of an interval given by the user. Ask the user to enter two
integers and print all integers between (including) them.

low = int(input('Enter the lower bound of the interval: '))
high = int(input('Enter the higher bound of the interval: '))
for i in range(low, high+1):

print(i)

Enter the lower bound of the interval: 2
Enter the higher bound of the interval: 5
2
3
4
5

8.3 MAGIC CONTROL

In Python, break and continue are flow control statements that allow you to skip
or exit loops based on certain conditions. The break statement immediately exits
the loop, stopping further iterations, while the continue statement skips the current
iteration and moves to the next one.

In both for and while loops, break can be used to stop the loop early, and continue
can be used to skip the remaining part of the loop’s body for that iteration.

8.3.1 Demonstration

Initialize a win condition to False, which will control the loop
win = False

Start a while loop that continues as long as win is False
while not win:

Set the magic number to 5
magic = 5

Ask the user to guess an integer or quit
x = input('Guess an integer in 0-10, "exit" to leave: ')

Check if the user wants to exit
if x.upper() == 'EXIT':

Print a farewell message and break out of the loop
print(f'Sorry to see you go!')
break

Check if the user's guess is outside the valid range
if int(x) < 0 or int(x) > 10:

Print a hint and continue to the next iteration
print(f'You are still far! Do it again')
continue

Check if the user's guess is not equal to the magic number
elif int(x) != magic:

Print a hint and continue to the next iteration

Repetition ■ 79

print(f'You are close! Do it again!')
continue

Print a success message and set win to True
print(f'You got it! The magic number is {magic}!')
win = True

Guess an integer in 0-10, "exit" to leave: 12
You are still far! Do it again
Guess an integer in 0-10, "exit" to leave: 10
You are close! Do it again!
Guess an integer in 0-10, "exit" to leave: 8
You are close! Do it again!
Guess an integer in 0-10, "exit" to leave: 3
You are close! Do it again!
Guess an integer in 0-10, "exit" to leave: 5
You got it! The magic number is 5!

8.3.2 Practice

Task: Check each integer in range(1, 20), if the number is divisible by 5, skip the
iteration and turn to next one; otherwise, print it out.

for i in range(1, 20):
if i %5 == 0:

continue
print(i)

1
2
3
4
6
7
8
9
11
12
13
14
16
17
18
19

Task: Check each integer in range(1, 20), if the number is divisible by 5, stop the
iteration immediately; otherwise, print it out.

for i in range(1, 20):
if i %5 == 0:

break
print(i)

1
2
3

80 ■ BiteSize Python for Absolute Beginners

4

8.4 CASE STUDIES OF REPETITION

These case studies are designed to test your understanding of flow control: repetition.
We are going to create some simple programs using these tools. Are you ready? Let’s
get started!

You will find some real-life tasks in the sections below. You should use input() to
get the user to enter the information and use print() to print the information on
the screen. At this moment, we can assume users will follow instructions carefully –
they will enter the valid inputs as required.

8.4.1 Prime numbers

1. Ask the user to enter an integer.
2. Find and print all prime numbers up to the integer.

Ask the user to enter an integer
n = int(input('Enter an integer: '))

Start a loop that iterates from 2 to n (inclusive)
for i in range(2, n+1):

Assume i is prime
prime = True

Check if i has any divisors other than 1 and itself
for j in range(2, i):

If the i is divisible by any other number, it's not prime
if i % j == 0:

prime = False
Break out of the inner loop since i is not prime
break

If the current number is prime, print it
if prime:

print(i)

Enter an integer: 20
2
3
5
7
11
13
17
19

8.4.2 A simple grade book

1. Ask the user to enter the number of students in a class.
2. Ask the user to enter the grade (on a 0–100 scale) of each student.

Repetition ■ 81

3. Calculate and print the average, min, and max grades of the class.

Ask the user to enter the number of students
n = int(input('Enter the number of students: '))

Initialize variables
total = 0 # Initialize total as 0
min = 100 # Initialize min with a high value
max = 0 # Initialize max with a low value

Start a loop to iterate over each student
for i in range(n):

Ask the user to enter the grade of the current student
grade = int(input('Enter the grade of the student: '))

Add the current grade to the total
total += grade

Update the minimum grade if the current grade is lower
if grade < min:

min = grade

Update the maximum grade if the current grade is higher
if grade > max:

max = grade

Calculate the average grade and print the results
print(f'Average: {total/n:.2f}. Min: {min}. Max: {max}')

Enter the number of students: 3
Enter the grade of the student: 100
Enter the grade of the student: 99
Enter the grade of the student: 90
Average: 96.33. Min: 90. Max:100

8.4.3 Fahrenheit to Celsius converter

1. Ask the user to enter the number in Fahrenheit (enter stop to quit the program)
2. Calculate the Celsius based on the formular c = (f – 32) * 5 / 9
3. Print the Celsius

Ask the user to enter a temperature in Fahrenheit or quit
f = input('Enter the Fahrenheit (enter "stop" to quit): ')

Start a loop that continues until the user types "stop"
while f != 'stop':

Convert the user's input to a floating-point number
f = float(f)

Convert the Fahrenheit temperature to Celsius
c = (f - 32) * 5 / 9

Print the result, rounding to the nearest whole number
print(f'Celsius is {c:.0f}')

82 ■ BiteSize Python for Absolute Beginners

Ask the user to enter another temperature or quit
f = input('Enter the Fahrenheit (enter "stop" to quit): ')

Enter the Fahrenheit (enter "stop" to quit): 32
Celsius is 0
Enter the Fahrenheit (enter "stop" to quit): 98
Celsius is 37
Enter the Fahrenheit (enter "stop" to quit): 24
Celsius is -4
Enter the Fahrenheit (enter "stop" to quit): stop

8.4.4 How many E and e are in a sentence?

1. Ask the user to enter a sentence
2. Count the number of 'E' and the number of 'e' in the sentence
3. Print the result

Ask the user to enter a sentence
sentence = input('Enter a sentence: ')

Initialize counters for lowercase 'e' and uppercase 'E'
number_e = 0
number_E = 0

Iterate over each character in the sentence
for c in sentence:

If the character is lowercase 'e', increment the counter
if c == 'e':

number_e += 1
If the character is uppercase 'E', increment the counter
elif c == 'E':

number_E += 1

Print the total counts of 'e' and 'E'
print(f'Number of e: {number_e}. Number of E: {number_E}.')

Enter a sentence: Example Sentence with EeeeEEEEE
Number of e: 7. Number of E: 7.

8.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• How does a for loop work? What types of sequences can it iterate over?
• What is the purpose of the break statement in loops? Provide an example.
• Describe the use of the continue statement in loops.
• What are infinite loops, and how can you prevent them when using while loops?
• Can a for loop iterate over a string? If so, what will it do?
• How does the loop counter in a for loop behave when the range() is used?
• How do you implement a nested loop to process multi-dimensional data (e.g., a

list of lists)?

Repetition ■ 83

• What should you do if a loop is running indefinitely and you need to debug it?
• Why might the break statement not exit a loop as expected? How can you

resolve this?
• What are common causes of skipping iterations unintentionally in loops? How

can you fix them?
• How do you avoid nested loops becoming too complex or slow in execution?

C H A P T E R 9

Functions

L et us learn something even more powerful than branching and repetition. Imagine
you want to jump to a different place, do something, then return to the place you

started? It feels like traversing multiple universes, as depicted in the movie Everything
Everywhere All at Once! You can do it, with functions! In this chapter, we are going
to learn how to call functions and then how to define various functions, from the basic
to complex ones. You’ll unlock more power of Python.

Are you ready? Let’s get started!

9.1 WHAT ARE FUNCTIONS?

9.1.1 Explanation

Functions are the building blocks of reusable code in Python. They allow us to
group related code into logical units, making our programs more organized, read-
able, and maintainable. Think of functions as self-contained recipes that can be
executed multiple times with different inputs, resulting in consistent and efficient code
(Figure 9.1).

Functions serve several purposes: 1) Write the code once, and use it many times
throughout your program, 2) Divide your code into smaller, manageable chunks,
making it easier to maintain and debug, and 3) Organize your code into logical
sections, making it easier for others (or yourself) to understand.

Functions may hide the implementation details of a task from the rest of your
program, allowing you to focus on the interface (inputs/outputs) rather than the
internal workings. Functions reduce duplicated code and make your program more
maintainable and minimize the amount of code you need to write and execute. You
can easily modify or extend functions without affecting the rest of your program.

84 DOI: 10.1201/9781003527725-9

https://doi.org/10.1201/9781003527725-9

Functions ■ 85

Figure 9.1 A function as a box.

9.1.2 Example: Bread toaster

Imagine you want to toast some bread. You don’t need to learn how to build a toaster
from scratch; instead, you can buy a pre-built toaster that takes bread (input) as an
argument and produces toasted bread (output). The internal workings of the toaster
are abstracted away, making it easy for anyone to use.

Similarly, in Python, functions work like a black box. You pass inputs (arguments) into
the function, and it returns a specific output or result. You don’t need to know how the
function works internally; you just need to understand its interface (inputs/outputs).

Of course, you can design your own function and provide its functionality for other
people to use – that is how the community of Python is doing. Everyone contributes
and every benefits!

9.1.3 Practice

Task: Think about some examples in your real life, the function-like things, and
describe them as input-process-output (IPO) flow.

Task: Describe the following functions in the IPO style:
print(value)
input(prompt)
str(value)
int(value)
range(5)
range(2, 10, 3)

Task: Apply help(function) to get more insights into the function, for example,
help(print)

help(print)

Help on built-in function print in module builtins:

print(...)
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.

86 ■ BiteSize Python for Absolute Beginners

Optional keyword arguments:
file: a file-like object (stream); defaults to the current sys.stdout.
sep: string inserted between values, default a space.
end: string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.

9.2 TYPES OF FUNCTIONS

9.2.1 Explanation

Depending on whether or not a function has return values, we group functions into
two categories:

1. Functions with no return values: A function with no return value is simply a
procedure that performs an action and doesn’t produce any output.

2. Functions with return values: A function with return value(s) is able to pass
the value to a variable or another function for further process.

Depending on the number of parameters, we group functions into three categories:

1. Functions with no parameters
2. Functions with one parameter
3. Functions with two or more parameters

9.3 DEFINE A FUNCTION

Let’s start with simple ones: functions without parameters.

9.3.1 Demonstration

def say_hello():
print('Hello!')

say_hello() # Output: Hello!

Hello!

Here, the definition of a function starts with the keyword def, followed by the name
of the function, say_hello, with a pair of parenthesis (). The : indicates the end of
definition clause and leads to the actual definitions, the statements of the function,
which will have an indentation as we learned in branching and repetition structures.
In this instance, the statement is simply to print a string out. The say_hello()
function doesn’t require any inputs since there is no parameter in the (). When we
call it, it simply prints the greeting to the console.

def say_goodbye():
for i in range(3):

print(f'Goodbye, Py')

say_goodbye() # Output: Goodbye, Py! three times

Functions ■ 87

Goodbye, Py
Goodbye, Py
Goodbye, Py

This example defines a function say_goodbye() that prints the message 'Goodbye,
Py!' 3 times.

def empty():
pass

empty()

The example defines a function empty() that has empty content. We may use this
function as a placeholder and complete it later on.

9.3.2 Practice

Task: Define a function hello_world() that prints 'hello world'.

def hello_world():
print('Hello, world')

hello_world()

Hello, world

Task: Define a function hello_world() that prints 'hello world' three times.

def hello_world_3():
for i in range(3):

print('Hello, world')

hello_world_3()

Hello, world
Hello, world
Hello, world

Task: Define a function print1to10() that prints integer 1, 2, ..., 10 (hint: you can
use a for loop).

def print1to10():
for i in range(1, 11):

print(i)

print1to10()

1
2
3
4
5
6
7
8

88 ■ BiteSize Python for Absolute Beginners

9
10

Task: Define a function prime_in_100() that prints primary integers in 100 (hint:
you can use loops).

def prime_in_100():
for i in range(2, 100):

prime = True
for j in range(2, i):

if i % j == 0:
prime = False
break

if prime:
print(i)

prime_in_100()

2
3
5
7
11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

Task: Define a function even_in_10() that prints even number from 1 to 10.

def even_in_10():
for i in range(1, 11):

if i % 2 == 0:
print(i)

even_in_10()

2
4
6

Functions ■ 89

8
10

Task: Define a function odd_in_10() that prints odd number from 1 to 10.

def odd_in_10():
for i in range(1, 11):

if i % 2 != 0:
print(i)

odd_in_10()

1
3
5
7
9

Task: Define a function print_welcome() that prints 'Welcome, {your name}!'
where your name is received from the user.

def print_welcome():
print(f'Welcome, {input("What is your name? ")}!')

print_welcome()

What is your name? Neo
Welcome, Neo!

9.4 PARAMETERS AND ARGUMENTS

9.4.1 Explanation

Before we learn how to define functions with one parameter, let’s clarify parameters
and arguments. A parameter is a variable defined within a function that takes on a
value passed to it when the function is called. Think of it as an input slot for your
function that accepts values. An argument, on the other hand, is the actual value
provided to a function when it’s called. It’s what fills up that input slot or parameter.
A function with one parameter performs an action that may or may not use the input
value passed to it when called.

9.4.2 Demonstration

def greet(name):
print(f'Hello, {name}!')

greet('Alice') # Output: Hello, Alice!

Hello, Alice!

Here, name is a parameter defined in the greet function, and 'Alice' is an argument
passed to the function when we call it. You can imagine the step-by-step function as:
greet('Alice')
search for greet(name) function

90 ■ BiteSize Python for Absolute Beginners

found greet(name) function definition, go there
name = 'Alice'
print(f'Hello, Alice!')
return to where greet('Alice') was called

As you can see from the above step-by-step process, when you pass an argument to
a function, you’re assigning the value of argument to the parameter. This is called
passing by value.

def double(x):
x = x * 2
print(f'x is {x}.') # output: 10

a = 5
double(a)
print(f'a is {a}') # Output: 5

x is 10.
a is 5

In this example, a refers to 5. When we pass a to the function double(x), actually, 5
is passed to x, which is doubled in the function. Thus, we have x as 10 and a as 5.

9.4.3 Practice

Task: Define a function hello_name(name) that prints 'hello, {name}' where name
is a parameter.

def hello_name(name):
print('hello,', name)

hello_name('Di')

hello, Di

Task: Define a function hello_world_n(n) that prints 'hello world' n times, where
n is a parameter.

def hello_world_n(n):
for i in range(n):

print('hello world')

hello_world_n(3)

hello world
hello world
hello world

Task: Define a function print_int_1_n(n) that prints integers 1 to n (hint: you can
use a for loop), where n is a parameter.

def print_int_1_n(n):
for i in range(n):

print(i + 1)

Functions ■ 91

print_int_1_n(10)

1
2
3
4
5
6
7
8
9
10

Task: Define a function print_prime_2_n(n) that prints all prime integers in [2, n]
(hint: you can use loops), where n is a parameter.

def print_prime_2_n(n):
for i in range(2, n+1):

prime = True
for j in range(2, i):

if i % j == 0:
prime = False
break

if prime:
print(i)

print_prime_1_n(10)

2
3
5
7

Task: Define a function even(n) that prints whether or not given n is even, n is a
parameter.

def even(n):
if n % 2 == 0:

print(n,'is even')
else:

print(n,'is not even')

even(1)
even(2)

1 is not even
2 is even

Task: Define a function abs(n) that prints the absolute value of n, n is a parameter.

def abs(n):
if n < 0:

n = -n
print(n)

92 ■ BiteSize Python for Absolute Beginners

abs(-1)
abs(1)

1
1

Task: Define a function square(n) that prints the square value of n, n is a parameter.

def square(n):
print(n * n)

square(2)
square(3)

4
9

Task: Define a function divisible_by_6(n) that prints whether or not given n is
divisible by 6, n is a parameter.

def divisible_by_6(n):
if n % 6 == 0:

print(n, 'is divisible by 6')
else:

print(n, 'is not divisible by 6')

Task: Define a function prime(n) that prints whether or not given n is a prime number,
n is a parameter.

def prime(n):
prime = True
for i in range(2, n):

if n % i == 0:
prime = False
break

if prime:
print(n, 'is prime')

else:
print(n, 'is not prime')

prime(3)
prime(4)

3 is prime
4 is not prime

9.5 TWO PARAMETERS

Functions with two parameters are just as straightforward as their single-parameter
counterparts. Each parameter has its own role to play within the function, allowing
you to perform more complex operations or calculations.

A function with two parameters takes in not one, but two arguments when called.

Functions ■ 93

9.5.1 Demonstration

def rectangle_area(length, width):
return length * width

print(rectangle_area(4.5, 6)) # Output: 27.0

27.0

def sum(a, b):
return a + b

print(sum(5, 10)) # Output: 15

15

def average(a, b):
return (a + b) / 2

print(average(20, 30)) # Output: 25.0

25.0

9.5.2 Practice

Task: Define a function print_message_n(message, n) that prints message n times,
where message and n are parameters.

def print_message_n(message, n):
for i in range(n):

print(message)

print_message_n('Hello, world!', 3)

Hello, world!
Hello, world!
Hello, world!

Task: Define a function print_n_to_m(n, m) that prints integers n to m (hint: you
can use a for loop), where n and m are parameters and n < m.

Challenge: Can you write a program print_n_to_m_challenge(n, m) that doesn’t
require n < m?

def print_n_to_m(n, m):
for i in range(n, m+1):

print(i)

print_n_to_m(2, 5)

2
3
4
5

94 ■ BiteSize Python for Absolute Beginners

def print_n_to_m_challenge(n, m):
if n <= m:

for i in range(n, m+1):
print(i)

else:
for i in range(n, m-1, -1):

print(i)

print_n_to_m_challenge(2, 5)
print_n_to_m_challenge(5, 2)

2
3
4
5
5
4
3
2

Task: Define a function sum_n_to_m(n, m) that prints the total of integers n to m,
where n and m are parameters, and n < m.

def sum_n_to_m(n, m):
sum = 0
for i in range(n, m+1):

sum += i
print(sum)

sum_n_to_m(2, 5)

14

Task: Define a function and_operation(condition1, condition2) that prints
the and logical operation of condition1 and condition2, where condition1,
condition2 are parameters.

def and_operation(condition1, condition2):
print(condition1 and condition2)

and_operation(True, True)
and_operation(True, False)

True
False

Task: Define a function n_divisible_m(n, m) that prints if integer n is divisible by
integer m, where n and m are parameters.

def n_divisible_m(n, m):
if n % m == 0:

print(n, 'is divisible by', m)
else:

print(n, 'is not divisible by', m)

Functions ■ 95

n_divisible_m(3, 2)

n_divisible_m(4, 2)

3 is not divisible by 2
4 is divisible by 2

Task: Define a function min(x, y, z) that prints the minimal number among integers
x, y, and z, where x, y, and z are parameters

def min(x, y, z):
min = x
if y < min:

min = y
if z < min:

min = z
print(min)

min(1, 2, 3)
min(6, 5, 4)

1
4

Task: Define a function speed(distance, time) that takes the distance and time
as inputs and prints the speed as distance/time.

def average_speed(distance, time):
print(distance / time)

print(average_speed(10, 3))

9.6 HOW TO PASS ARGUMENTS

In Python, when defining a function with multiple parameters, there are two ways to
pass these parameters: by position and by keyword. Let’s explore the advantages and
disadvantages of each method.

9.6.1 Demonstration

def greet(name, age):
print(f'Hello, {name}! You are {age} years old.')

greet('Neo', 18) # Output: Hello, Neo! You are 18 years old.

Hello, Neo! You are 18 years old.

greet(18, 'Neo') # It will print a meaningless message.

Hello, 18! You are Neo years old.

In above-mentioned example, we passed arguments by position, so that 'Neo' was
assigned to name and 18 was assigned to age. It is easy to use. You don’t need to
remember the parameter names and you only need to provide values in the correct

96 ■ BiteSize Python for Absolute Beginners

order. However, if you accidentally swap the argument positions, it will result in
incorrect behavior. If there are many parameters, this approach can become confusing,
especially when calling the function. Let’s try passing by keywords then.

greet(age=18, name='Neo') # Output: Hello, Neo! You are 18 years old

Hello, Neo! You are 18 years old.

greet(name='Neo', age=18) # Output: Hello, Neo! You are 18 years old

Hello, Neo! You are 18 years old.

In above-mentioned two examples, we passed arguments by keywords, so that 'Neo'
was explicitly assigned to name, and 18 was explicitly assigned to age. There is no
confusion anymore. Keyword arguments make the code more readable by clearly
indicating which parameter is being set. You can pass keyword arguments in any order
because they are explicitly named. However, you need to use the exact name of the
parameter when passing a value. This approach requires more effort to understand
the code, especially for complex functions with many parameters.

In conclusion, if you’re working with a small number of well-known function arguments
and don’t mind using position-based arguments, go with positional arguments. For
larger or more complex function signatures with multiple optional arguments, use
keyword arguments. This approach can help reduce errors and improve readability.
This is the more common scenario when we use Python for data science.

9.6.2 Practice

Task: Call functions you defined in previous practice, passing arguments by keywords,
and experience the difference.

9.7 DEFAULT VALUE

In Python, you can assign a default value to a function parameter when defining it.
This allows for more flexibility and convenience when calling the function.

9.7.1 Demonstration

def greet(name, msg='Hi'):
print(f'{msg}, {name}!')

greet('Neo') # Output: Hi, Neo!

Hi, Neo!

In the greet() function definition, we provided the default values for msg parameter
as 'Hi'. This means that if we don’t pass any value for msg when calling the function,
it will take on the default values. Please note that the parameters with default values
must be after the parameters without default values; in this example, msg must be
after name since name has no default value.

Functions ■ 97

By assigning default values to some parameters, you make them optional, which is
especially useful for functions with a large number of arguments. When calling a
function, you can skip passing values for optional parameters if the defaults work.
The use of default values can clarify what these arguments are supposed to do or
how they might be used. However, it’s important to ensure that you’re not creating
overlapping functionality by having multiple possible input scenarios. Also, make sure
to document the purpose and expected behavior of optional parameters well, so others
(or yourself) understand what they do in different contexts.

greet('Neo', 'Hello') # Hello, Neo!

Hello, Neo!

def print_numbers(end, start=0, step=1):
while start < end:

print(start)
start += step

print_numbers(5)

0
1
2
3
4

print_numbers(start = 2, end = 5)

2
3
4

print_numbers(start = 2, end = 5, step = 2)

2
4

Now we can understand the print() and range() better, since they have defined
default parameters that provide optional customizations when needed.

9.7.2 Practice

Task: Define a function called sum_of_squares that takes two numbers, a and b, as
inputs and prints the sum of their squares. If no value is provided for either argument,
then a should default to 1, and b should default to 2.

Define a function to calculate the sum of squares of two numbers
def sum_of_squares(a=1, b=2):

Print the sum of squares of a and b
print(a ** 2 + b ** 2)

Call the function with default arguments (a=1, b=2)
sum_of_squares() # output: 5

98 ■ BiteSize Python for Absolute Beginners

Call the function with a=2 and default b=2
sum_of_squares(a=2) # output: 8

Call the function with default a=1 and b=3
sum_of_squares(b=3) # output: 10

Call the function with both a=3 and b=4
sum_of_squares(a=3, b=4) # output: 25

5
8
10
25

Task: Define a function welcome() that takes two arguments start_time (default
value as '17:30') and verb (default value as ’start'). The program can:

1. Convert the start_time to minutes from 0:00 of the day, and save it to start.
2. Ask the user to enter the current time in 24-hour hh:mm format, such as 17:05,

and convert it to minutes from 0:00 of the day, and save it to current.
3. Calculate how many minutes are left by comparing the minutes of current time

and the minutes of the start_time, and save it to left.
4. Print a message 'Welcome to our class! We will {verb} in {left}

minutes!'
5. Keep above steps until the left is less than 1.

Define a function to welcome students to a class
def welcome(start_time='17:30', verb='start'):

Convert the start time from 'hh:mm' format to minutes
start = 60 * int(start_time[:2]) + int(start_time[-2:])

Loop indefinitely until the break statement is reached
while True:

Ask the user to enter the current time in 'hh:mm' format
current = input('Enter current time in hh:mm format: ')

Convert the current time from 'hh:mm' format to minutes
current = 60 * int(current[:2]) + int(current[-2:])

Calculate the time left until the class starts
left = start - current

If the time left is less than 1 , break out of the loop
if left < 1:

break

Print a message with the time left until the class starts
print(f'Welcome to our class! We will {verb} in {left} minutes!')

welcome()

Enter current time in hh:mm format: 17:05
Welcome to our class! We will start in 25 minutes!
Enter current time in hh:mm format: 17:25

Functions ■ 99

Welcome to our class! We will start in 5 minutes!
Enter current time in hh:mm format: 17:30

welcome('19:00', 'resume')

Enter current time in hh:mm format: 18:55
Welcome to our class! We will resume in 5 minutes!
Enter current time in hh:mm format: 18:59
Welcome to our class! We will resume in 1 minutes!
Enter current time in hh:mm format: 19:00

9.8 RETURN VALUES

Functions with return values are an essential part of coding and understanding how
they work is crucial for writing effective code.

9.8.1 Explanation

What are return values? In Python, when a function completes its execution, it can
return a value back to the calling program. This returned value is called the function’s
return value or simply the return. Think of a return value as the answer your function
gives you after processing some input. The caller (the code that calls the function)
receives this value and can use it as needed.

Functions with return values are reusable because they encapsulate logic, making
it easy to integrate them into other parts of your program. Return values help you
structure your code more effectively by allowing functions to perform a specific task
and then share the results with other parts of your program. Using return values
enables you to write more concise code because the result of a function call can be
stored in a variable, reducing repetition.

When performing complex calculations, return values enable you to store the result
and use it further in your program. Return values can be used to manipulate data
structures, such as lists or dictionaries. Functions with return values are particularly
useful when working with conditionals (if-else statements).

9.8.2 Demonstration

To define a function that returns a value, you simply include the return statement
with the desired output. Here’s an example:

def greet(name):
return f'Hello, {name}!'

In this case, the greet() function takes a single argument (name) and returns a
greeting message.

greet('Neo')

{"type":"string"}

100 ■ BiteSize Python for Absolute Beginners

print(greet('Neo'))

Hello, Neo!

9.9 RETURN NUMERIC VALUES

Return values can be int and float.

9.9.1 Demonstration

int(5.5)

5

float(5)

5.0

def give_me_5():
return 5

give_me_5()

5

def give_me_float():
return 5.0

give_me_float()

5.0

9.9.2 Practice

Task: Define a function abs(n) that returns the absolute value of n.

def abs(n):
if n < 0:

n = -n
return n

print(abs(-1))
print(abs(1))

1
1

Task: Define a function product(n, m) that returns the product value of n and m.

def product(n, m):
return n * m

print(product(2, 5))
print(product(3, 2))

Functions ■ 101

10
6

Task: Define a function power(n, m) that returns the result of raising n to the power
of m.

def power(n, m):
return n ** m

print(power(2, 3))
print(power(3, 2))

8
9

Task: Define a function average(x, y, z) that returns the average of three numbers,
x, y, and z.

def average(x, y, z):
return (x + y + z) / 3

print(average(1, 2, 3))
print(average(6, 5, 4))

2.0
5.0

Task: Define a function min(x, y, z) that returns the minimal of three numbers x,
y, and z.

def min(x, y, z):
min = x
if y < min:

min = y
if z < min:

min = z
return min

print(min(1, 2, 3))
print(min(6, 5, 4))

1
4

Task: Define a function sum_n(n) that returns the sum of integers 1 to n (hint: you
can use a for loop).

def sum_n(n):
sum = 0
for i in range(1, n+1):

sum += i
return sum

print(sum_n(10))
print(sum_n(100))

102 ■ BiteSize Python for Absolute Beginners

55
5050

9.10 RETURN STR VALUES

Return values can be str.

9.10.1 Demonstration

str(5)

{"type":"string"}

def give_me_FIVE():
return 'FIVE'

give_me_FIVE()

{"type":"string"}

9.10.2 Practice

Task: Define a function welcome(name) that returns 'Welcome, {name}!'.

def welcome(name):
return f'Welcome, {name}!'

print(welcome('Neo'))
print(welcome('Alice'))

Welcome, Neo!
Welcome, Alice!

Task: Define a function concatenate(msg1, msg2) that concatenates msg1 and msg2
together and returns it.

def concatenate(msg1, msg2):
return msg1 + msg2

print(concatenate('hello, ','world!'))

hello, world!

9.11 RETURN BOOLEAN VALUES

Return values can be bool.

Functions ■ 103

9.11.1 Demonstration

def give_me_True():
return True

give_me_True()

True

9.11.2 Practice

Task: Define a function even(n) that returns the Boolean value for given n is even or
not.

def even(n):
if n % 2 == 0:

return True
else:

return False

print(even(1))
print(even(2))

False
True

Task: Define a function prime(n) that returns the Boolean value for given n is prime
number or not.

def prime(n):
for i in range(2, n):

if n % i == 0:
return False

return True

print(prime(3))
print(prime(4))

True
False

Task: Define a function positive(n) that returns the Boolean value for given n is
positive (>0) or not.

def positive(n):
return n > 0

print(positive(1))
print(positive(-1))

True
False

Task: Define a function divisible_6(n) that returns the Boolean value for whether
or not given n is divisible by 6.

104 ■ BiteSize Python for Absolute Beginners

def divisible_6(n):
if n % 6 == 0:

return True
return False

9.12 RETURN MULTIPLE VALUES

Return values can be multiple ones with various data types.

9.12.1 Demonstration

def get_profile():
first = input('Enter your first name: ')
last = input('Enter your last name: ')
age = int(input('Enter your age: '))
zip = input('Enter your zip code: ')
return first, last, age, zip

print(get_profile())

Enter your first name: Thomas
Enter your last name: Anderson
Enter your age: 18
Enter your zip code: 09090
('Thomas', 'Anderson', 18, '09090')

9.12.2 Practice

Task: Define a function stats(x, y, z) that returns the min, max, avg, and total of
given three numbers x, y, and z.

def stats(x, y, z):
min = x
max = x
total = 0
if y < min:

min = y
if y > max:

max = y
if z < min:

min = z
if z > max:

max = z
total = x + y + z
return min, max, total/3, total

print(stats(1, 2, 3))

(1, 3, 2.0, 6)

Challenge: Define a function stats() that:

1. Ask the user how many numbers to be entered.
2. Let the user enter the numbers.

Functions ■ 105

3. Print the statistics of the numbers entered.
4. Return the min, max, mean, and total.

A test run is as follows:
How many numbers you are going to enter? 3
Please enter the numbers you have 3 left: 2
Please enter the numbers you have 2 left: 3
Please enter the numbers you have 1 left: 4
Your entered three numbers 2.0 3.0 4.0

The min is 2.0.
The max is 4.0.
The mean is 3.0.
The total is 9.0.

def stats():
n = int(input('How many numbers you are going to enter? '))
numbers = ''
total = 0
for i in range(n):

number = float(input(f'Please enter the numbers, you have {n-i} left: '))
if i == 0:

min, max = number, number
if number < min:

min = number
if number > max:

max = number
numbers += f'{number} '
total += number

print(f'''Your entered {n} numbers: {numbers}
The min is {min:.2f}.
The max is {max:.2f}.
The mean is {total/n:.2f}.
The total is {total:.2f}.
''')
return min, max, total/n, total

print(stats())

How many numbers you are going to enter? 5
Please enter the numbers you have 5 left: 1.1
Please enter the numbers you have 4 left: 2.2
Please enter the numbers you have 3 left: 3.3
Please enter the numbers you have 2 left: -9
Please enter the numbers you have 1 left: 4.4
Your entered 5 numbers: 1.1 2.2 3.3 -9.0 4.4

The min is -9.00.
The max is 4.40.
The mean is 0.40.
The total is 2.00.

(-9.0, 4.4, 0.4, 2.0)

106 ■ BiteSize Python for Absolute Beginners

9.13 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• What is a function in Python and the role it plays in programming? Why is it
beneficial to use functions?

• Why are functions important for organizing code? How do functions help in
making code more readable and maintainable?

• How do functions contribute to code reusability? Why is it better to write a
function instead of repeating the same code multiple times?

• Provide an example of how a function can simplify a program by reducing
redundancy. Show a scenario where a block of code is used multiple times and
how converting it into a function can improve the program.

• Illustrate how functions can make complex programs easier to understand by
breaking them down into smaller, more manageable parts.

• Design an exercise where you identify parts of a program that could be improved
by using a function. Describe how a function could simplify the code.

• Explain how to define a function in Python that takes no parameters. What is
the purpose of such a function?

• Discuss scenarios where you might want to use a function without parameters.
• Show how a function with no parameters can be used to do repetitive tasks.
• Write a function with no parameters that simulates rolling a die.
• Discuss the difference between position-based arguments and keyword arguments

when calling a function. Why might you choose one over the other?
• Describe the use of default parameters in functions. How do default parameters

make your functions more flexible?
• Explain how to define a function in Python that returns a value. What is the

significance of the return statement in a function?
• Discuss how returning different data types from a function can be useful in

various programming scenarios.
• Describe how a function can return multiple values at once. Why might it be

beneficial to return multiple pieces of data from a single function?
• Generate an example of a Python function that returns a str, such as a function

that takes a name as an argument and returns a greeting message.
• Provide an example of a function that returns an int or float, such as one

that calculates and returns the square of a number.
• Create an example of a function that returns a bool, such as one that checks if

a given number is even or odd.
• Illustrate a function that returns multiple values, like a function that takes a

list of numbers and returns both the sum and the average of the list.

C H A P T E R 10

Advanced Functions

W e have learned the fundamental knowledge of functions in Python. However,
a single function, as a tiny piece of puzzle, cannot make a comprehensive

masterpiece. We need many functions, organized in a professional manner, to perform
sophisticated tasks. In this chapter, we are going to learn how to organize functions in
various ways, including nested, hierarchical, and recursive structures, to fully explore
the creative potential functions hold.

Are you ready? Let’s get started!

10.1 NESTED FUNCTIONS

10.1.1 Explanation

Nested function calls occur when the output of one function is immediately used as the
input to another function. This allows for streamlined and compact code, especially
when performing a sequence of operations. Nested function calls reduce the need for
intermediate variables by directly passing outputs to other functions. It also helps in
writing more concise and readable code, especially for operations that are logically
sequential. At last, it simplifies operations by chaining them together in a single line,
making the code easier to follow.

10.1.2 Demonstration

print(input('Enter your name: '))

Enter your name: Neo
Neo

Here, the input function prompts the user for their name and returns it. The returned
name is immediately passed to the print function, which displays it on the screen.
This is a simple example of how nested function calls can reduce the need for extra
variables.

DOI: 10.1201/9781003527725-10 107

https://doi.org/10.1201/9781003527725-10

108 ■ BiteSize Python for Absolute Beginners

result = abs(round(-4.567))
print(result) # Output: 5

5

Here, the round function rounds the number -4.567 to -5. The abs function then
takes the output of round and returns its absolute value. The nested call simplifies
the process into a single line, making the code cleaner.

msg = ' hello, World! '
cleaned_msg = msg.strip().capitalize().replace('world', 'there')
print(cleaned_msg) # Output: 'Hello, there!'

Hello, there!

Here, the strip() function removes leading and trailing whitespace, capitalize
then capitalizes the first letter of the cleaned string, and replace substitutes “world”
with “there” Each method operates on the output of the previous one, demonstrating
how nested function calls can simplify string manipulation.

print(len(str(12345))) # Output: 5

5

Here, str converts the number 12345 to a string, len then calculates the length of the
string. This is a basic yet powerful example of how built-in functions can be nested to
perform multiple operations in one go.

10.1.3 Practice

Task: Calculator.

1. Define a function get_number() that asks the user to input a number
2. Define a function sum(x, y) that computes the sum of two numbers x and y
3. Define a function subtraction(x, y) that computes the subtraction of two

numbers x and y
4. Define a function product(x, y) that computes the product of two numbers x

and y
5. Define a function divide(x, y) that computes the division of two numbers x

and y
6. Define a function arithmetic() that prints the arithmetic operation result of

two numbers by calling functions defined above

def get_number():
n = float(input('Please enter a number: '))
return n

def sum(x, y):
return x + y

def substract(x, y):
return x - y

Advanced Functions ■ 109

def product(x, y):
return x * y

def divide(x, y):
return x / y

def arithmetic():
x = get_number()
y = get_number()
print(f'x + y = {sum(x, y)}')
print(f'x - y = {substract(x, y)}')
print(f'x * y = {product(x, y)}')
print(f'x / y = {divide(x, y)}')

arithmetic()

Please enter a number: 2
Please enter a number: 3
2.0 + 3.0 = 5.0
2.0 - 3.0 = -1.0
2.0 * 3.0 = 6.0
2.0 / 3.0 = 0.6666666666666666

Task: Statistics.

1. Define a function get_number() that asks the user to input a number
2. Define a function min(x, y, z) that computes the min of three numbers x, y,

and z
3. Define a function max(x, y, z) that computes the max of three numbers x, y,

and z
4. Define a function total(x, y, z) that computes the total of three numbers x,

y, and z
5. Define a function avg(x, y, z) that computes the average of three numbers x,

y, and z
6. Define a function stats(x, y, z) that prints the statistics of the three numbers

by calling functions defined above

def get_number():
n = float(input('Please enter a number: '))
return n

def min(x, y, z):
min = x
if y < min:

min = y
if z < min:

min = z
return min

def max(x, y, z):
max = x
if y > max:

max = y

110 ■ BiteSize Python for Absolute Beginners

if z > max:
max = z

return max

def total(x, y, z):
return x + y + z

def avg(x, y, z):
return total(x, y, z) / 3

def stats():
x = get_number()
y = get_number()
z = get_number()
print(x, y, z,

'min:', min(x, y, z),
'max:', max(x, y, z),
'total:', total(x, y, z),
'average:', avg(x, y, z))

stats()

Please enter a number: 1
Please enter a number: 2
Please enter a number: 3
1.0 2.0 3.0 min: 1.0 max: 3.0 total: 6.0 average: 2.0

10.2 HIERARCHICAL FUNCTIONS

10.2.1 Explanation

In programming, hierarchical functions refer to breaking down a large task into smaller,
more manageable sub-tasks, each of which is handled by a separate function. This
approach is often used to improve code readability, maintainability, and modularity.
By dividing a complex task into a hierarchy of functions, each function can focus on
a specific part of the problem, making the overall logic clearer and easier to manage.

10.2.2 Demonstration

The following program will ask the user to enter the student’s name and the grades
for three exams. It will then calculate the average grade, assign a letter grade, display
the result, and allow for multiple students to be processed in a loop.

Define a function to calculate the average of three grades
def calculate_average(grade1, grade2, grade3):

total = grade1 + grade2 + grade3
return total / 3

Define a function to assign a letter grade based on the average
def assign_letter_grade(average):

if average >= 90:
return 'A'

elif average >= 80:

Advanced Functions ■ 111

return 'B'
elif average >= 70:

return 'C'
elif average >= 60:

return 'D'
else:

return 'F'

Define a function to print the results for a single student
def print_results(name, average, grade):

print(f'Student: {name}, Average: {average:.2f}, Grade: {grade}')

Define a function to process a single student's grades
def process_single_student():

Ask the user to enter the student's name and grades
name = input('Enter the student\'s name: ')
grade1 = float(input('Enter the grade for exam 1: '))
grade2 = float(input('Enter the grade for exam 2: '))
grade3 = float(input('Enter the grade for exam 3: '))

Calculate the average grade
average = calculate_average(grade1, grade2, grade3)

Assign a letter grade based on the average
letter_grade = assign_letter_grade(average)

Print the result
print_results(name, average, letter_grade)

Define a function to process multiple students' grades
def process_student_grades():

while True:
process_single_student()

Ask if the user wants to process another student
another = input('Enter another student? (yes/no): ')
if another != 'yes':

break

Run the program
process_student_grades()

Enter the student's name: Alice
Enter the grade for exam 1: 95
Enter the grade for exam 2: 99
Enter the grade for exam 3: 100
Student:Alice, Average:98.00, Grade:A
Enter another student? (yes/no): yes
Enter the student's name: Bob
Enter the grade for exam 1: 80
Enter the grade for exam 2: 90
Enter the grade for exam 3: 100
Student:Bob, Average:90.00, Grade:A
Enter another student? (yes/no): no

112 ■ BiteSize Python for Absolute Beginners

In this example, the calculate_average(grade1, grade2, grade3) function takes
three grades as input, calculates their total, and returns the average. The
assign_letter_grade(average) function takes the average grade as input and re-
turns a corresponding letter grade (A, B, C, D, or F). The print_results(name,
average, grade) function prints the student’s name, average grade, and final letter
grade. The process_single_student() function prompts the user to enter the stu-
dent’s name and the grades for three exams. It then calculates the average, assigns a
letter grade, and prints the result. The main function process_student_grades()
runs in a loop, calling process_single_student() to process each student. After
processing one student, it asks the user if they want to enter another student’s grades.
If the user enters anything other than 'yes', the loop exits and the program ends.

10.3 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain how to define a function that uses the returned value from another
function. Why is this approach useful in programming?

• Discuss how chaining functions together by using the return value of one function
as the input for another can make your code more modular and maintainable.

• Describe scenarios where utilizing the return value from another function can
simplify complex tasks, such as performing multiple calculations or processing
data in stages.

• Illustrate a scenario where a function returns a Boolean value (e.g., checking if
a number is prime), and another function uses this value to determine whether
to add the number to a list of primes.

• Reflect on how using return values from other functions has impacted your
coding process. How does this approach improve code organization and reduce
redundancy? Have a conversation with GenAI.

• Submit a Python code snippet where you define and use a function that relies on
the returned value from another function to AI and ask “Give me personalized
feedback on the structure and efficiency of your functions.”

• Describe a challenge you faced when working with functions that depend on
the return values of other functions to AI and ask “Explain how to resolve the
issue and improve the interaction between my functions.”

10.4 RECURSIVE FUNCTIONS

10.4.1 Explanation

Recursion is a programming technique where a function calls itself to solve a problem.
The function breaks down the problem into smaller, more manageable subproblems,
each of which is solved by the function itself. Recursion can simplify the code for
problems that naturally fit a recursive pattern, like tree traversals, sorting algorithms,

Advanced Functions ■ 113

or mathematical sequences. A recursive function should have two cases: The base case
is the condition under which the recursion stops and prevents infinite recursion; the
recursive case is the part of the function where the recursion occurs, usually involving
the function calling itself with a smaller or simpler input.

10.4.2 Demonstration

Direct recursion refers to a function that directly calls itself within its definition.

def factorial(n):
if n == 0 or n == 1:

return 1
else:

return n * factorial(n - 1)

print(factorial(5)) # Output: 120

120

Indirect recursion refers to a function that is called indirectly through another function,
creating a cycle of function calls.

def function_a(n):
if n > 0:

return function_b(n - 1)

def function_b(n):
if n > 0:

return function_a(n - 2)

print(function_a(5)) # Output: None

None

10.4.3 Practice

Task: Define a recursive function fib(n) to compute Fibonacci series that follows
fib(0) = 0, fib(1) = 1, fib(n) = fib(n−1)+fib(n−2).

def fib(n):
if n == 0 or n == 1:

return n
else:

return fib(n - 1) + fib(n - 2)

fib(4)

3

Task: Define a recursive function digits(n) to compute the number of digits of a
positive integer n.

114 ■ BiteSize Python for Absolute Beginners

def digits(n):
if n < 10:

return 1
else:

return 1 + digits(n//10)

digits(2022)

4

Task: Write a recursive function is_palindrome(s) that checks whether a given string
s is a palindrome (reads the same forward and backward).

For example:

• '', 'a', 'ada', 'adda' are palindrome;
• 'ab', 'abs' are not palindrome.

We can assume the input string contains only A to Z and a to z, no other special
characters, it might be empty, and an empty string is palindrome.

def palindrome(s):
Base case: if the string is empty or a single character
it's a palindrome
if len(s) <= 1:

return True
Recursive case: check if the first and last characters are the same
and recurse on the substring
else:

if s[0] == s[-1]:
return palindrome(s[1:-1])

else:
return False

print(palindrome('ada'))
print(palindrome('adba'))
print(palindrome('adccda'))

True
False
True

Task: Write a recursive function count_ways(n) that returns the number of ways to
climb a staircase with n steps if you can take either 1 step or 2 steps at a time.

def count_ways(n):
Base case: 0 or 1 step has 1 way to climb
if n == 0 or n == 1:

return 1
Recursive case: sum the ways to climb n-1 steps and n-2 steps
else:

return count_ways(n - 1) + count_ways(n - 2)

Test the function
print(count_ways(4)) # Output: 5

Advanced Functions ■ 115

5

10.5 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain what a recursive function is in Python. How does it differ from an
iterative function?

• Discuss the concept of base cases and recursive cases in a recursive function.
Why is the base case crucial for preventing infinite recursion?

• Describe some common scenarios where recursion is a more suitable approach
than iteration. Why might you choose to use recursion?

• Generate an example of a simple recursive function that calculates the factorial
of a number. Explain how the function works step by step.

• Provide an example of a recursive function that computes the nth Fibonacci
number. Highlight how the function calls itself with different arguments.

• Illustrate a recursive function that reverses a string. Demonstrate how the
function breaks the problem down into smaller subproblems.

• Submit a Python code snippet where you define and use a recursive function to
AI and ask “give me personalized feedback on the correctness, efficiency, and
clarity of my recursion.”

• Describe a challenge you faced when working with recursion, such as reaching
the maximum recursion depth or getting stuck in an infinite loop to AI and ask.
“suggest ways to fix or optimize my recursive function.”

http://taylorandfrancis.com

III
Data Structures

117

S ection III: Data structures introduces the concept and importance of data
structures in Python, which are crucial for efficiently storing and organizing data.

You will explore Python’s built-in data structures: lists, tuples, sets, and dictionaries.
The section covers how to create each of these structures, access their elements, and
perform various manipulations using Python’s built-in methods. Understanding these
data structures will enable you to handle and process data more effectively in your
programs.

The learning objectives for this section are as follows:

• Understand the role and significance of data structures in programming.

• Create and work with lists to store and manipulate ordered collections of items.

• Use tuples to handle immutable sequences of data.

• Implement sets to manage unordered collections of unique elements.

• Utilize dictionaries for storing key-value pairs and accessing data efficiently.

C H A P T E R 11

List

Data structures are essential for organizing and managing data effectively
in programming, and Python’s list is one of the most widely used structures.

A list allows you to store an ordered collection of items, which can be of any type,
and provides powerful tools for accessing, modifying, and iterating through data. In
this chapter, we are going to learn what a list is, how to create, access, slice, and
manipulate a list, and the Pythonic way of creating a list using list comprehension.
Are you excited? Let’s get started!

11.1 WHAT IS A LIST

In Python, a list is a versatile and dynamic data structure that allows for the storage
and manipulation of collections of elements. Unlike arrays in some other programming
languages, Python lists can hold elements of different data types and can be easily
modified and resized. Lists are ordered collections, meaning that the order in which
elements are added is preserved, and elements can be accessed and manipulated based
on their position within the list.

One of the primary advantages of Python lists is their convenience and flexibility.
Lists provide a straightforward and intuitive way to organize and work with data,
making them suitable for a wide range of applications. Additionally, Python lists
offer efficient random access to elements, allowing for quick retrieval and modification
of individual items based on their index. This efficiency makes lists well-suited for
tasks that involve accessing and modifying elements at arbitrary positions within the
collection.

Common use cases for Python lists include storing and processing sequential data,
such as lists of numbers, strings, or objects. Lists are often used in algorithms that
require dynamic resizing or rearranging of data, such as sorting, searching, or filtering
operations. They are also frequently employed in data processing tasks, where the
ability to iterate over and manipulate collections of data is essential. Overall, Python

DOI: 10.1201/9781003527725-11 119

https://doi.org/10.1201/9781003527725-11

120 ■ BiteSize Python for Absolute Beginners

lists serve as versatile and indispensable tools for managing and manipulating data in
a wide variety of programming scenarios.

11.2 CREATE A LIST

11.2.1 Demonstration

In Python, there are several methods for creating lists, providing flexibility and
convenience for different programming scenarios. One common method is to use the
list constructor, which initializes an empty list or converts another iterable object,
such as a tuple or string, into a list.

my_list_1 = list() # Create an empty list
print(my_list_1)

[]

my_list_2 = list('Hello, world') # Create a list from a string
print(my_list_2)

['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd']

Another approach to creating lists in Python is by direct assignment, where we
manually specify the elements of the list within square brackets.

my_list_3 = [1, 3, 2, 4, 6] # Create a list of integers
print(my_list_3)

[1, 3, 2, 4, 6]

my_list_4 = ['Hello', 'world'] # Create a list of Strings
print(my_list_4)

['Hello', 'world']

my_list_5 = [1.5, 1.6, 1.8, 2.0] # Create a list of floats
print(my_list_5)

[1.5, 1.6, 1.8, 2.0]

In Python, the built-in function len() is used to determine the length or the number
of elements in a list. When applied to a list, len() returns an integer representing the
total count of elements contained within the list. This count includes all individual
elements, regardless of their data type or complexity, providing a convenient way to
quickly assess the length of the list.

print(my_list_1)
print(len(my_list_1)) # output 0

[]
0

print(my_list_2)
print(len(my_list_2)) # output 12

List ■ 121

['H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd']
12

print(my_list_3)
print(len(my_list_3)) # output 5

[1, 3, 2, 4, 6]
5

print(my_list_4)
print(len(my_list_4)) # output 2

['Hello', 'world']
2

print(my_list_5)
print(len(my_list_5)) # output 4

[1.5, 1.6, 1.8, 2.0]
4

11.2.2 Practice

Task: Create a list, list1, from a string 'List Constructor'. Print the list together
with its length.

list1 = list('List Constructor')
print(list1, len(list1))

['L', 'i', 's', 't', ' ', 'C', 'o', 'n', 's', 't', 'r', 'u', 'c', 't', 'o', 'r'] 16

Task: Create a list, list2, containing some integers. Print the list together with its
length.

list2 = [2, 5, 3, 4, 1]
print(list2, len(list2))

[2, 5, 3, 4, 1] 5

Task: Create a list, list3, containing some floats. Print the list together with its
length.

list3 = [2.1, 5.2, 3.3, 4.4, 1.5]
print(list2, len(list3))

[2, 5, 3, 4, 1] 5

Task: Create a list, list4 containing strings. Print the list together with its length.

list4 = ['2', '5', '3', '4', '1']
print(list4, len(list4))

['2', '5', '3', '4', '1'] 5

122 ■ BiteSize Python for Absolute Beginners

11.3 HETEROGENEITY

11.3.1 Demonstration

Python lists are incredibly flexible data structures that can contain elements of
different data types within the same list. This flexibility stems from Python’s dynamic
typing system, which allows variables to hold values of any data type without requiring
explicit declaration. As a result, lists in Python can seamlessly accommodate a mix
of integers, floats, strings, Booleans, and even other lists or complex objects.

This capability is particularly advantageous in scenarios where heterogeneous data
needs to be stored and manipulated together. For example, a list representing a
student record might include elements such as the student’s name (a string), age (an
integer), Grade Point Average (a float), and whether they are enrolled in a particular
course (a Boolean). By storing these diverse data types within a single list, Python
simplifies data management and reduces the need for separate data structures or
complex data models.

Furthermore, the ability for Python lists to contain different types of values fosters
code simplicity and readability. Developers can organize related data elements into a
single list, making it easier to access and manipulate them as a cohesive unit. This
flexibility aligns with Python’s philosophy of readability and ease of use, allowing
programmers to express their intentions clearly and concisely without sacrificing
functionality.

my_list_6 = [1, 'Hello', 1.5, [1.5, 1.6, 1.8, 2.0], my_list_4]
print(my_list_6)

[1, 'Hello', 1.5, [1.5, 1.6, 1.8, 2.0], ['Hello', 'world']]

student = ['David Wood', 18, 3.9, True]
print(student)

['David Wood', 18, 3.9, True]

Note that len() counts the number of elements in a list. If the element is another
list, it is still counted as one. The list [1.5, 1.6, 1.8, 2.0] in my_list_6 counts
one, and the list ['Hello', 'world'] in my_list_6 counts one, too.

print(my_list_6)
print(len(my_list_6)) # output 5

[1, 'Hello', 1.5, [1.5, 1.6, 1.8, 2.0], ['Hello', 'world']]
5

print(student)
print(len(student)) # output 4

['David Wood', 18, 3.9, True]
4

List ■ 123

11.3.2 Practice

Task: Create a list list5 contains some numbers (combination of int and float). Print
the list together with its length.

list5 = [2.1, 5.2, 3, 4, 1]
print(list5, len(list5))

[2.1, 5.2, 3, 4, 1] 5

Task: Create a list list6 contains all the list you created above. Print the list together
with its length.

list6 = [list1, list2, list3, list4, list5]
print(list6, len(list6))

[['L', 'i', 's', 't', ' ', 'C', 'o', 'n', 's', 't', 'r', 'u', 'c', 't', 'o', 'r'],
[2, 5, 3, 4, 1], [2.1, 5.2, 3.3, 4.4, 1.5], ['2', '5', '3', '4', '1'],
[2.1, 5.2, 3, 4, 1]] 5

Task: Create a list, list7, containing following values:

1. Customer name (str)
2. Product name (str)
3. Product price (float)
4. Product quantity (int)
5. Paid_status (bool).

Print the list together with its length.

list7 = ['Neo', 'iPhone', 999.99, 2, True]
print(list7, len(list7))

['Neo', 'iPhone', 999.99, 2, True] 5

11.3.3 Test your understanding

Task: Why Python’s list can contain multiple data types? Explain it to yourself
(ideally, someone else).

Answer: Python’s dynamic typing system facilitates the creation of heterogeneous lists
by associating variables with references to objects rather than directly with the objects
themselves. In a Python list, elements are actually references (or addresses) pointing
to the memory locations where the objects are stored. While the references stored in
the list can be of different data types, they ultimately point to objects that can vary
in data type as well. This mechanism allows Python lists to seamlessly accommodate
a mix of integers, floats, strings, Booleans, and other data types within the same list.
Thus, the heterogeneity of Python lists arises from the flexibility of Python’s dynamic
typing system, which enables references in the list to point to objects of different data
types while maintaining consistency in how these references are stored and accessed.

124 ■ BiteSize Python for Absolute Beginners

11.4 ACCESS A LIST BY INDEX

11.4.1 Demonstration

In Python, accessing elements in a list is done using indices, which represent the
positions of the elements within the list. Similar to other programming languages
like Java and C++, Python starts indexing from 0, meaning that the first element
of the list is at index 0, the second element is at index 1, and so on. This indexing
convention may differ from other languages like R, which starts indexing from 1. It’s
important to note that the index of the last element in a list is always one less than
the length of the list. For example, if a list has five elements, the last element is at
index len(list) -1. Attempting to access an index larger than len(list) -1 will
result in an error, as it exceeds the bounds of the list.

Define a list of fruits

my_list = ['apple', 'banana', 'orange']

Accessing the first element of the list
print(my_list[0]) # Output: 'apple'

apple

Accessing the third element of the list
print(my_list[2]) # Output: 'orange'

orange

Accessing the last element of the list
print(my_list[len(my_list) - 1]) # Output: 'orange'

orange

Attempting to access an index larger than len(list) - 1
This will result in an IndexError
print(my_list[3]) # IndexError: list index out of range

IndexError Traceback (most recent call last)
<ipython-input-4-ccaedad31e7a> in <cell line: 3>()

1 # Attempting to access an index larger than len(list) - 1
2 # This will result in an IndexError

----> 3 print(my_list[3]) # IndexError: list index out of range

IndexError: list index out of range

Using the len() function, we can easily determine the index of the last element in
the list. By subtracting 1 from the length of the list, we obtain the index of the last
element, allowing us to access it directly using -1. Similarly, we can use -2 to access
the second-to-last element, -3 for the third-to-last element, and so forth. Note that
the first element has index of -len() and if we use an index less than it, we will get
an error.

List ■ 125

This negative indexing scheme simplifies the process of accessing elements from the
end of the list and enhances the readability of Python code when dealing with list
manipulation or traversal from right to left. This feature is particularly useful when
working with lists of unknown or variable length, as it provides a convenient way to
access elements relative to the end of the list without needing to calculate the exact
index.

Define a list of fruits
fruits = ['apple', 'banana', 'orange', 'grape', 'kiwi']

Accessing the last element of the list using negative index
print(fruits[-1]) # Output: 'kiwi'

kiwi

Accessing the second-to-last element of the list using negative index
print(fruits[-2]) # Output: 'grape'

grape

Accessing the third-to-last element of the list using negative index
print(fruits[-3]) # Output: 'orange'

orange

Accessing the first element of the list using negative index
print(fruits[-len(fruits)]) # Output: 'apple'

apple

Attempting to access an index beyond the range of negative indices
This will result in an IndexError
print(fruits[-6]) # IndexError: list index out of range

IndexError Traceback (most recent call last)
<ipython-input-28-d712c38661af> in <cell line: 3>()

1 # Attempting to access an index beyond the range of negative indices
2 # This will result in an IndexError

----> 3 print(fruits[-6]) # IndexError: list index out of range

IndexError: list index out of range

11.4.2 Practice

Run this cell for these practice
list_practice = [1, 3, 5, 7, 9]

Task: Print the first element in list_practice using non-negative index

list_practice[0]

1

Task: Print the 2nd element in list_practice using non-negative index

126 ■ BiteSize Python for Absolute Beginners

list_practice[1]

3

Task: Print the 3rd element in list_practice using non-negative index

list_practice[2]

5

Task: Print the last element in list_practice using non-negative index

list_practice[len(list_practice) - 1]

9

Task: Print the last element in list_practice using negative index

list_practice[-1]

9

Task: Print the first element in list_practice using negative index

list_practice[-len(list_practice)]

1

Task: Find a positive index that will result in an error

list_practice[6]

IndexError Traceback (most recent call last)
<ipython-input-15-d410d82fc72c> in <cell line: 1>()
----> 1 list_practice[6]

IndexError: list index out of range

Task: Find a negative index that will result in an error

list_practice[-6]

IndexError Traceback (most recent call last)
<ipython-input-16-7946a41bc3f5> in <cell line: 1>()
----> 1 list_practice[-6]

IndexError: list index out of range

11.5 ACCESS A LIST BY ITERATION

11.5.1 Demonstration

Iterating through a Python list allows for the sequential processing of each element
within the list. One common method of iteration involves using indices to access
elements individually, where a loop iterates over the indices of the list and accesses

List ■ 127

each element using its corresponding index. While this approach provides direct
access to individual elements, it requires explicit index management and can be more
verbose compared to directly iterating over the elements of the list. On the other
hand, iterating directly over the elements of the list eliminates the need for index
manipulation, resulting in cleaner and more concise code.

Using a for loop to iterate directly over the elements of a list simplifies the iteration
process by abstracting away the index management. This approach is often preferred
in Python for its readability and simplicity. By iterating directly over the elements,
the loop automatically accesses each element in sequence, without the need to track or
manage indices manually. This leads to more concise and expressive code, enhancing
code readability and reducing the likelihood of errors due to index mismanagement.

Define a list of numbers
numbers = [1, 2, 3, 4, 5]

Iterate using index-based iteration
for i in range(len(numbers)):

print(numbers[i]) # Accessing elements using index

Iterate using direct iteration
for num in numbers:

print(num) # Accessing elements directly

1
2
3
4
5
1
2
3
4
5

In these examples, we iterate through the list numbers using both index-based iteration
and direct iteration approaches. In the index-based iteration, we use a for loop to
iterate over the indices of the list and access each element using its corresponding
index. In contrast, the direct iteration approach simplifies the process by directly
iterating over the elements of the list, eliminating the need for index manipulation.
This results in cleaner and more concise code, enhancing readability and reducing
potential errors.

11.5.2 Practice

Run this cell for this practice
numbers = [1, 2, 2, 2, 3, 4, 4, 5]

Task: Print each element in numbers on a new line using a for loop for iteration.

for i in numbers:
print(i)

128 ■ BiteSize Python for Absolute Beginners

1
2
2
2
3
4
4
5

Task: Calculate the sum in numbers using a for loop for iteration and print the sum.

total = 0
for i in numbers:

total += i
print(total)

23

Task: Count how many 4 in numbers using a for loop for iteration and print the count.

count_4 = 0
for i in numbers:

if i == 4:
count_4 +=1

print(count_4)

2

Task: Count the number of even integers in numbers using a for loop for iteration and
print the count.

count_even = 0
for i in numbers:

if i %2 == 0:
count_even +=1

print(count_even)

5

11.6 LIST MANIPULATION

11.6.1 Demonstration

Python lists offer a variety of built-in functions for efficient manipulation and manage-
ment of list elements. One of the most commonly used functions is append(), which
adds a new element to the end of the list, expanding its size by one. This function is
useful for dynamically growing lists as new elements are generated or retrieved during
program execution. Conversely, the remove() function allows for the removal of a
specific element from the list based on its value, effectively reducing the size of the list
by one. Additionally, the insert() function enables the insertion of a new element at
a specified position within the list, allowing for targeted modification of list contents.

List ■ 129

These functions provide essential tools for adding, removing, and inserting elements
into Python lists, facilitating dynamic data management in various programming
scenarios.

Create a list of numbers
my_list = [1, 2, 3, 4, 5]

Append a new element to the list
my_list.append(6)
print(my_list) # Output: [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6]

Remove the element with value 3 from the list
my_list.remove(3)
print(my_list) # Output: [1, 2, 4, 5, 6]

[1, 2, 4, 5, 6]

Insert the value 10 at index 2
my_list.insert(2, 10)
print(my_list) # Output: [1, 2, 10, 4, 5, 6]

[1, 2, 10, 4, 5, 6]

11.6.2 Practice

Define a list of fruits and run it for this practice
fruits = ['apple', 'banana', 'orange', 'grape', 'kiwi']

Task: Add a new fruit, 'pear', to the end of the list fruits using the append()
function.

fruits.append('pear')
fruits

['apple', 'banana', 'orange', 'grape', 'kiwi', 'pear']

Task: Remove the fruit 'banana' from the list fruits using the remove() function.

fruits.remove('banana')
fruits

['apple', 'orange', 'grape', 'kiwi', 'pear']

Task: Insert the fruit 'blueberry' at index 2 in the list fruits using the insert()
function.

fruits.insert(2, 'blueberry')
fruits

['apple', 'orange', 'blueberry', 'grape', 'kiwi', 'pear']

130 ■ BiteSize Python for Absolute Beginners

11.7 MORE MANIPULATION OF A LIST

11.7.1 Demonstration

In addition to the basic list manipulation functions, Python lists offer several other
useful functions for more advanced operations. The extend() function is used to
append elements from another iterable (such as another list) to the end of the current
list, effectively extending its length. This function is particularly handy when combining
multiple lists into one. The reverse() function reverses the order of elements in the
list, providing a convenient way to rearrange list contents. Finally, the sort() function
sorts the elements of the list in ascending order by default, allowing for easy sorting
of list elements. These functions provide additional flexibility and functionality for
working with Python lists, enabling more sophisticated list manipulation operations.

Define a list of integers
my_list = [1, 2, 3, 4, 5]

Extend the list with another list
additional_list = [5, 6]
my_list.extend(additional_list)
print(my_list)

[1, 2, 3, 4, 5, 5, 6]

Reverse the order of elements in the list
my_list.reverse()
print(my_list)

[6, 5, 5, 4, 3, 2, 1]

Sort the elements of the list ascendingly
my_list.sort()
print(my_list)

[1, 2, 3, 4, 5, 5, 6]

Sort the elements of the list descendingly
my_list.sort(reverse = True)
print(my_list)

[6, 5, 5, 4, 3, 2, 1]

Furthermore, Python lists offer functions such as clear() for removing all elements
from the list, effectively resetting it to an empty state. The del statement, while not
a function, serves a similar purpose by allowing for the deletion of list elements or
slices based on their indices. These functions and statements provide flexibility in list
manipulation, allowing developers to tailor list contents to meet specific requirements
during program execution.

Delete the element at index 2
my_list = [1, 2, 3, 4, 5]
del my_list[2]
print(my_list) # Output: [1, 2, 4, 5]

List ■ 131

[1, 2, 4, 5]

Clear all elements from the list
my_list.clear()
print(my_list) # Output: []

[]

In addition to the list manipulation functions provided by Python, there are other
techniques for combining and sorting lists. Concatenating two lists involves combining
their elements to form a single list. This can be achieved using the + operator, which
concatenates the elements of one list with the elements of another. This method
is straightforward and effective for combining lists when the order of elements is
preserved.

Additionally, the sorted() function offers a versatile way to sort the elements of a
list. Unlike the sort() method, which sorts the list in place, the sorted() function
returns a new list containing the sorted elements, leaving the original list unchanged.
This provides a non-destructive way to obtain a sorted version of a list, making it
useful for scenarios where preserving the original list is important.

Concatenate two lists
list1 = [1, 2, 3]
list2 = [4, 5, 6]
concatenated_list = list1 + list2
print(concatenated_list) # Output: [1, 2, 3, 4, 5, 6]

[1, 2, 3, 4, 5, 6]

Sorted function
unsorted_list = [3, 1, 4, 2, 5]
sorted_list = sorted(unsorted_list)
print(sorted_list) # Output: [1, 2, 3, 4, 5]
print(unsorted_list) # Output: [3, 1, 4, 2, 5]

[1, 2, 3, 4, 5]
[3, 1, 4, 2, 5]

11.7.2 Practice

Task: Extend the list fruits with a new list ['pineapple', 'strawberry'] using
the extend() function.

fruits.extend(['pineapple', 'strawberry'])
fruits

['apple',
'orange',
'blueberry',
'grape',
'kiwi',
'pear',
'pineapple',
'strawberry']

132 ■ BiteSize Python for Absolute Beginners

Task: Reverse the order of elements in the list fruits using the reverse() function.

fruits.reverse()
fruits

['strawberry',
'pineapple',
'pear',
'kiwi',
'grape',
'blueberry',
'orange',
'apple']

Task: Sort the elements in the list fruits in alphabetical order using the sort()
function.

fruits.sort()
fruits

['apple',
'blueberry',
'grape',
'kiwi',
'orange',
'pear',
'pineapple',
'strawberry']

Task: Delete the fruit at index 1 from the list fruits using the del statement.

del fruits[1]
fruits

['apple', 'grape', 'kiwi', 'orange', 'pear', 'pineapple', 'strawberry']

Task: Concatenate the fruits list with itself and store the result in a new list called
doubled_fruits. Print the doubled list.

double_fruits = fruits + fruits
double_fruits

['apple',
'grape',
'kiwi',
'orange',
'pear',
'pineapple',
'strawberry',
'apple',
'grape',
'kiwi',
'orange',
'pear',
'pineapple',
'strawberry']

List ■ 133

Task: Create a new list called more_fruits containing the fruits 'blackberry' and
'melon', then concatenate it with the existing fruits list. Print the concatenated
list.

more_fruits = ['blackberry', 'melon']
fruits += more_fruits
fruits

['apple',
'grape',
'kiwi',
'orange',
'pear',
'pineapple',
'strawberry',
'blackberry',
'melon']

Task: Sort the “fruits” list in alphabetical order using the sorted() function. Print
both the sorted list and the original list.

fruits_ordered = sorted(fruits)
fruits, fruits_ordered

(['apple',
'grape',
'kiwi',
'orange',
'pear',
'pineapple',
'strawberry',
'blackberry',
'melon'],

['apple',
'blackberry',
'grape',
'kiwi',
'melon',
'orange',
'pear',
'pineapple',
'strawberry'])

11.8 SLICE A LIST

11.8.1 Demonstration

Slicing in Python allows for the extraction of a subset of elements from a list using a
specified range of indices. When using non-negative indices, slicing involves specifying
the starting index, ending index (exclusive), and an optional step size. The syntax
for slicing is list[start:end:step], where start indicates the index of the first
element to include, end indicates the index after the last element to include, and step
determines the increment between consecutive indices. If any of these parameters are

134 ■ BiteSize Python for Absolute Beginners

omitted, default values are used: start defaults to 0, end defaults to the length of
the list, and step defaults to 1. Slicing with non-negative indices provides a flexible
way to extract contiguous portions of a list, allowing for efficient data manipulation
and analysis.

Define a list of numbers
numbers = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Slicing with non-negative indices
print(numbers[2:7]) # Output: [2, 3, 4, 5, 6]

[2, 3, 4, 5, 6]

print(numbers[:5]) # Output: [0, 1, 2, 3, 4]

[0, 1, 2, 3, 4]

print(numbers[3:]) # Output: [3, 4, 5, 6, 7, 8, 9]

[3, 4, 5, 6, 7, 8, 9]

print(numbers[::2]) # Output: [0, 2, 4, 6, 8]

[0, 2, 4, 6, 8]

print(numbers[1:8:3]) # Output: [1, 4, 7]

[1, 4, 7]

On the other hand, slicing with negative indices involves specifying indices relative to
the end of the list. Negative indices count backward from the last element of the list,
with -1 representing the last element, -2 representing the second-to-last element, and so
on. When using negative indices for slicing, the same syntax (list[start:end:step])
applies, with negative indices indicating positions from the end of the list. Slicing with
negative indices enables the extraction of elements from the end of the list, providing
convenient access to elements in reverse order or other non-traditional patterns.

Slicing with negative indices
print(numbers[-5:]) # Output: [5, 6, 7, 8, 9]

[5, 6, 7, 8, 9]

print(numbers[:-3]) # Output: [0, 1, 2, 3, 4, 5, 6]

[0, 1, 2, 3, 4, 5, 6]

print(numbers[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Combining both non-negative and negative indices in slicing provides a powerful
mechanism for extracting subsets of elements from Python lists with flexibility and
precision.

List ■ 135

Define a list of letters
letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']

Slicing with a combination of non-negative and negative indices
print(letters[2:-3]) # Output: ['c', 'd', 'e', 'f', 'g']

['c', 'd', 'e', 'f', 'g']

print(letters[-5:7]) # Output: ['f', 'g']

['f', 'g']

print(letters[4:-2:2]) # Output: ['e', 'g']

['e', 'g']

print(letters[-7:3]) # Output: []

[]

print(letters[::3]) # Output: ['a', 'd', 'g', 'j']

['a', 'd', 'g', 'j']

print(letters[-3::-1]) # Output: ['h', 'g', 'f', 'e', 'd', 'c', 'b', 'a']

['h', 'g', 'f', 'e', 'd', 'c', 'b', 'a']

11.8.2 Practice

Define fruits and run it for this practice
fruits = ['apple', 'banana', 'kiwi', 'orange', 'pineapple']

Task: Extract the first three fruits from the list fruits using slicing with non-negative
indices.

fruits[:3]

['apple', 'banana', 'kiwi']

Task: Extract the last two fruits from the list fruits using slicing with negative
indices.

fruits[-2:]

['orange', 'pineapple']

Task: Extract the middle fruits after the first and before the last from the list fruits
using slicing with a combination of non-negative and negative indices.

fruits[1:-1]

['banana', 'kiwi', 'orange']

Task: Extract the sublist that contains every other fruit from the list fruits.

fruits[::2]

136 ■ BiteSize Python for Absolute Beginners

['apple', 'kiwi', 'pineapple']

Task: Extract a sublist from the list fruits containing the second, third, and fourth
fruits using slicing with non-negative indices.

fruits[1:4]

['banana', 'kiwi', 'orange']

Task: Reverse the order of elements in the list fruits using slicing with negative
indices.

fruits[::-1]

['pineapple', 'orange', 'kiwi', 'banana', 'apple']

Task: Extract a sublist from the list fruits containing every third fruit, starting from
the second fruit.

fruits[1::3]

['banana', 'pineapple']

11.9 LIST COMPREHENSION

11.9.1 Demonstration

List comprehension in Python is a concise and elegant way to create lists based on
existing lists or other iterables. It allows for the creation of lists in a single line of code,
eliminating the need for explicit loop constructs like for loops. List comprehension
follows a simple syntax that resembles mathematical notation, making it easy to read
and understand. The basic structure of list comprehension consists of an expression
followed by a for clause, which specifies the iteration over elements, optionally followed
by additional for or if clauses for nested iterations or filtering.

The general syntax is:
list_variable = [expression for item in iterable condition]

Using a for loop to generate a list of squared numbers
squared_numbers = []
for num in range(6):

squared_numbers.append(num)
print(squared_numbers) # Output: [0, 1, 2, 3, 4, 5]

Using list comprehension for the same task
squared_numbers_comprehension = [num for num in range(6)]
print(squared_numbers_comprehension)# Output: [0, 1, 2, 3, 4, 5]

[0, 1, 2, 3, 4, 5]
[0, 1, 2, 3, 4, 5]

List ■ 137

In list comprehension, the optional if clause allows for conditional filtering of elements
from the original iterable based on a specified condition. This clause enables developers
to include or exclude elements from the resulting list based on whether a given condition
evaluates to True or False. The syntax for the if clause in list comprehension follows
the expression if condition, where condition is the Boolean expression that determines
whether an element should be included in the resulting list.

Original list of numbers
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Using a for loop to filter even numbers
even_numbers = []
for num in numbers:

if num % 2 == 0:
even_numbers.append(num)

print(even_numbers) # Output: [2, 4, 6, 8, 10]

List comprehension to filter even numbers
even_numbers_comprehension = [num for num in numbers if num % 2 == 0]

print(even_numbers_comprehension) # Output: [2, 4, 6, 8, 10]

[2, 4, 6, 8, 10]
[2, 4, 6, 8, 10]

In list comprehension, the final element that we put in the list is the result of an
expression or function applied to each element of the original iterable. This allows us
to transform or manipulate the elements of the original iterable before they are added
to the resulting list. The expression or function specified as the final element can be
any valid Python expression or function that operates on the elements of the original
iterable.

Original list of numbers
numbers = [1, 2, 3, 4, 5]

squared_numbers = []
for num in numbers:

squared_numbers.append(num ** 2)
print(squared_numbers) # Output: [1, 4, 9, 16, 25]

List comprehension to square each number
squared_numbers_comprehension = [num ** 2 for num in numbers]

print(squared_numbers_comprehension) # Output: [1, 4, 9, 16, 25]

[1, 4, 9, 16, 25]
[1, 4, 9, 16, 25]

138 ■ BiteSize Python for Absolute Beginners

11.9.2 Practice

Define lists and run this cell for this practice
numbers1 = [1, 2, 3, 4, 5]
numbers2 = [6, 7, 8, 9, 10]

Task: Generate a list called power_of_2 containing the powers of 2 up to the corre-
sponding number in numbers1.

power_of_2 = [x**2 for x in numbers1]
power_of_2

[1, 4, 9, 16, 25]

Task: Create a list called negative_numbers containing the negative versions of
numbers from numbers2.

negative_numbers = [-x for x in numbers2]
negative_numbers

[-6, -7, -8, -9, -10]

Task: Generate a list called greater_than_7 containing numbers from numbers1 that
are greater than 7.

greater_than_7 = [x for x in numbers1 if x > 7]
greater_than_7

[]

Task: Create a list called even_squares containing the squares of even numbers from
numbers1.

even_squares = [x**2 for x in numbers1 if x %2 == 0]
even_squares

[4, 16]

Task: Generate a list called divisible_by_3 containing numbers from numbers2 that
are divisible by 3.

divisible_by_3 = [x for x in numbers2 if x %3 == 0]
divisible_by_3

[6, 9]

Task: Create a list called odd_multiples_of_3 containing multiples of 3 of odd
numbers from numbers2.

odd_multiples_of_3 = [x*3 for x in numbers2 if x %3 == 0]
odd_multiples_of_3

[18, 27]

List ■ 139

11.10 ADVANCED LIST COMPREHENSION

11.10.1 Demonstration

Nested iteration in list comprehension allows for the creation of lists with multiple
levels of iteration, enabling more complex data manipulation and generation. This
advanced technique involves using nested for loops within the list comprehension syntax
to iterate over multiple iterables simultaneously. Each nested for loop corresponds
to a level of iteration, with the innermost loop iterating over the elements of the
innermost iterable. Nested iteration is particularly useful when dealing with nested
data structures like lists of lists or lists of tuples, where elements are organized
hierarchically.

Original list of lists (matrix)
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Flattening the matrix using nested iteration
flattened_matrix = [num for sublist in matrix for num in sublist]

print(flattened_matrix) # Output: [1, 2, 3, 4, 5, 6, 7, 8, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

Nested iteration can also be extended to find all combinations of elements from
multiple lists. This advanced technique involves using multiple nested for loops within
the list comprehension syntax, each corresponding to an iterable representing a list. By
iterating over each element from each list simultaneously, we can generate all possible
combinations of elements across multiple lists. This approach is particularly useful
when dealing with scenarios where we need to explore all possible combinations of
elements from different sources, such as when generating permutations or combinations
of items for various tasks or analyses. Nested iteration allows for a systematic and
efficient exploration of all possible combinations, making it a powerful tool for solving
a wide range of combinatorial problems in Python programming.

Two lists of numbers
list1 = [1, 2, 3]
list2 = [3, 4, 5]

Nested iteration to get all combinations of elements from the two lists
combinations = [(i, j) for i in list1 for j in list2 if i != j]

print(combinations)

[(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)]

A list of fruits
fruits = ['apple', 'banana', 'orange']

Nested iteration to get all combinations of fruits from the same list
combinations = [(f1, f2) for f1 in fruits for f2 in fruits if f1 != f2]

print(combinations)

140 ■ BiteSize Python for Absolute Beginners

[('apple', 'banana'), ('apple', 'orange'), ('banana', 'apple'),
('banana', 'orange'), ('orange', 'apple'), ('orange', 'banana')]

The zip() function in Python is a built-in function that allows for the simultaneous
iteration over multiple lists or iterables. It takes multiple iterables as input and
returns an iterator that produces tuples containing elements from each of the input
iterables. This enables parallel processing of corresponding elements from different
iterables, making it convenient for tasks such as combining data from multiple sources
or iterating over multiple lists.

Two lists of names and ages
names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 35]

Using zip() in list comprehension to combine elements
combined = [[name, age] for name, age in zip(names, ages)]

print(combined) # Output: [['Alice', 25], ['Bob', 30], ['Charlie', 35]]

[['Alice', 25], ['Bob', 30], ['Charlie', 35]]

11.10.2 Practice

Define lists and run this cell for this practice
numbers1 = [1, 2, 3, 4, 5]
numbers2 = [6, 7, 8, 9, 10]

Task: Create a list called sum_less_than_10 containing a pair of numbers one from
numbers1 and the other one from numbers2 and their sum is less than 10.

sum_less_than_10 = [[a, b] for a in numbers1 for b in numbers2 if a+b < 10]
sum_less_than_10

[[1, 6], [1, 7], [1, 8], [2, 6], [2, 7], [3, 6]]

Task: Create a list called sums containing the sum of corresponding elements from
numbers1 and numbers2.

sum = [a + b for a, b in zip(numbers1, numbers2)]
sum

[7, 9, 11, 13, 15]

Task: Generate a list called products containing the product of corresponding elements
from numbers1 and numbers2.

products = [a * b for a, b in zip(numbers1, numbers2)]
products

[6, 14, 24, 36, 50]

Task: Create a list called differences containing the absolute differences of corre-
sponding elements from numbers1 and numbers2.

List ■ 141

def abs(x):
if x < 0:

return -x

differences = [abs(a - b) for a, b in zip(numbers1, numbers2)]
differences

[5, 5, 5, 5, 5]

Here, let’s summarize what we learned about list in Table 11.1.

Table 11.1 Summary of Python lists.
Feature Syntax Examples
Creation [] or list() my_list = [1, 2, 3]

my_list = list((1, 2, 3))
Accessing list[index] my_list[0] returns 1

my_list[-1] returns 3
Slicing list[start:stop:step] my_list = [1, 2, 3]

my_list[1:3] returns [2, 3]
my_list[::2] returns [1, 3]

Appending list.append(item) my_list = [1, 2, 3]
my_list.append(4)
my_list ⇒ [1, 2, 3, 4]

Extending list.extend(iterable) my_list = [1, 2, 3]
my_list.extend([5, 6])
my_list ⇒ [1, 2, 3, 5, 6]

Inserting list.insert(index, item) my_list = [1, 2, 3]
my_list.insert(1, "a")
my_list ⇒ [1, "a", 2, 3]

Removing list.remove(item) my_list = [1, 2, 3]
my_list.remove(2)
my_list ⇒ [1, 3]

Removing list.pop(index=-1) my_list = [1, 2, 3]
my_list.pop(1) returns 3
my_list ⇒ [1, 2]

Sorting list.sort() my_list = [3, 1, 2]
my_list.sort()
my_list ⇒ [1, 2, 3]

Reversing list.reverse() my_list.reverse()
my_list ⇒ [3, 2, 1]

Comprehension [expression for item in
iterable condition]

[x**2 for x in range(5)]
returns [0, 1, 4, 9, 16]

142 ■ BiteSize Python for Absolute Beginners

11.11 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain what a list is in Python. Why and how can a list contain different types
of values?

• Discuss the different ways to create a list in Python. What are some common
methods or functions used to generate lists?

• Describe how list slicing works in Python. How can you use slicing to access
specific parts of a list?

• Generate an example of creating a list in Python with at least five elements.
Demonstrate how to access the first, last, and a middle element using indexing.

• Provide an example of list slicing where you extract a sublist from an existing
list. Show how slicing can be used to reverse a list as well.

• Illustrate how to manipulate a list by adding, removing, and modifying elements.
• Explain the concept of list comprehension in Python. How does it provide a

more concise way to create lists?
• Provide an example of a list comprehension that generates a list of squares for

numbers 1 through 10. Explain how it works compared to using a loop.
• Create a list comprehension that filters out all vowels from a given string and

stores the remaining characters in a list. Show how this can be done in a single
line of code.

• Submit a Python code snippet where you define, slice, and manipulate a list to
AI and ask “Give me personalized feedback on the efficiency and readability of
my list operations.”

• Describe a challenge you faced when working with lists, such as accidentally
modifying the original list when creating a copy to AI and ask AI for “Give me
suggestions on how to avoid common pitfalls.”

11.12 EXPLORE MORE OF LIST

At the end, here are the official documentations of the Python list:

• Brief introduction of list: https://docs.python.org/3/library/stdtypes.html#list
• More on lists: https://docs.python.org/3/tutorial/datastructures.html#more-

on-lists

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

C H A P T E R 12

Tuple

How do you like list in Python? Is it powerful and convenient? In this chapter,
we are going to learn a similar data structure, tuple. Lists and tuples are both

used to store ordered collections of items, offering similar functionality like indexing
and iteration. However, the key difference is that lists are mutable, allowing changes
to their content, while tuples are immutable, making them safer for storing fixed data
or as keys in dictionaries. Tuples are especially useful when you need lightweight,
read-only containers that prioritize data integrity and performance.

Are you excited? Let’s get started!

12.1 WHAT IS A TUPLE

12.1.1 Explanation

Why do we need tuples? Tuples are useful when you need to store a collection of objects
that should not be modified, such as a database record or a geometric coordinate.
Tuples are also useful when you need to return multiple values from a function.

Real-life examples:

• Coordinates: A tuple can represent a geographic coordinate, like (43.6532,
-79.3832), which is the latitude and longitude of Toronto, Canada.

• Database Record: A tuple can represent a single record in a database, like (John,
Smith, 25, New York), which could be a person’s name, last name, age, and city.

• Product Information: A tuple can represent information about a product, like
(Apple, iPhone, 128GB, $799), which could be the brand, model, storage size,
and price of a phone.

• Time and Date: A tuple can represent a time and date, like (2024, 3, 15, 14, 30,
0), which could be the year, month, day, hour, minute, and second of a specific
moment.

Remember, tuples are immutable, meaning they cannot be changed once created, so
they are perfect for storing data that should not be modified.

DOI: 10.1201/9781003527725-12 143

https://doi.org/10.1201/9781003527725-12

144 ■ BiteSize Python for Absolute Beginners

12.2 CREATE A TUPLE

12.2.1 Demonstration

In Python, there are several methods for creating tuples, providing flexibility and
convenience for different programming scenarios. One common method is to use the
tuple constructor, tuple(), which initializes an empty tuple or converts another
iterable object, such as a list, into a tuple.

my_tuple_1 = tuple() # Create an empty tuple
print(my_tuple_1)

()

my_tuple_2 = tuple([1, 2, 3]) # Create a tuple from a list
print(my_tuple_2)

(1, 2, 3)

my_tuple_3 = tuple('Hello, world') # Create a tuple from a string
print(my_tuple_3)

('H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd')

Another approach to creating tuples in Python is by direct assignment, where we
manually specify the elements of the tuples within parentheses ().

my_tuple_4 = () # Create an empty tuple
print(my_tuple_4)

()

my_tuple_5 = (1,) # Note the comma
print(my_tuple_5)

(1,)

test = (1) # Note the comma
print(test, type(test))

1 <class 'int'>

my_tuple_6 = (1, 2, 3) # Create a tuple
print(my_tuple_6)

(1, 2, 3)

my_tuple_7 = tuple('Hello, world') # Create a tuple
print(my_tuple_7)

('H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd')

In Python, the built-in function len() is used to determine the length or the number of
elements in a tuple. When applied to a tuple, len() returns an integer representing the
total count of elements contained within the tuple. This count includes all individual

Tuple ■ 145

elements, regardless of their data type or complexity, providing a convenient way to
quickly assess the length of the tuple.

print(my_tuple_1)
print(len(my_tuple_1)) # output 0

()
0

print(my_tuple_2)
print(len(my_tuple_2)) # output 3

(1, 2, 3)
3

print(my_tuple_3)
print(len(my_tuple_3)) # output 12

('H', 'e', 'l', 'l', 'o', ',', ' ', 'w', 'o', 'r', 'l', 'd')
12

print(my_tuple_4)
print(len(my_tuple_4)) # output 0

()
0

print(my_tuple_5)
print(len(my_tuple_5)) # output 1

(1,)
1

print(my_tuple_6)
print(len(my_tuple_6)) # output 3

(1, 2, 3)
3

12.2.2 Practice

Task: Create a tuple tuple1 from a string 'Tuple Constructor'. Print tuple1
together with its length.

tuple1 = tuple('Tuple Constructor')
tuple1, len(tuple1)

(('T',
'u',
'p',
'l',
'e',
' ',
'C',
'o',
'n',

146 ■ BiteSize Python for Absolute Beginners

's',
't',
'r',
'u',
'c',
't',
'o',
'r'),

17)

Task: Create a tuple tuple2 contains integers 5, 7. Print tuple2 together with its
length.

tuple2 = tuple([5, 7])
tuple2, len(tuple2)

((5, 7), 2)

Task: Create a tuple tuple3 contains float 5.5, 5.2, and 5.0. Print tuple3 together
with its length.

tuple3 = tuple([5.5, 5.2, 5.0])
tuple3, len(tuple3)

((5.5, 5.2, 5.0), 3)

Task: Create a tuple tuple4 contains string 'Apple' and 'Pear'. Print tuple4
together with its length.

tuple4 = ('Apple', 'Pear')
tuple4, len(tuple4)

(('Apple', 'Pear'), 2)

12.3 HETEROGENEOUS TUPLE IN PYTHON

12.3.1 Demonstration

Similar to a list tuple in Python may contain elements of different data types. This
means that a tuple can contain a mix of strings, integers, floats, Booleans, and other
data types.

Creating a heterogeneous tuple
my_tuple_7 = ('Apple', 5, 5.5, True)

Displaying the tuple
print(my_tuple_7)

('Apple', 5, 5.5, True)

my_tuple_8 = [my_tuple_1, my_tuple_2, my_tuple_5, my_tuple_7, 4]
print(my_tuple_8)

[(), (1, 2, 3), (1,), ('Apple', 5, 5.5, True), 4]

Tuple ■ 147

Note: The len() counts the number of elements in a tuple. If the element is another
tuple, it is still counted as 1.

print(my_tuple_7)
print(len(my_tuple_7)) # output 4

('Apple', 5, 5.5, True)
4

print(my_tuple_8)
print(len(my_tuple_8)) # output 5

[(), (1, 2, 3), (1,), ('Apple', 5, 5.5, True), 4]
5

12.3.2 Practice

Task: Create a tuple tuple5 containing some numbers (combination of int and float).
Print tuple5 together with its length.

tuple5 = (2.1, 5.2, 3, 4, 1)
print(tuple5, len(tuple5))

(2.1, 5.2, 3, 4, 1) 5

Task: Create a tuple tuple6 containing the following values:

1. customer name (str)
2. product name (str)
3. product price (float)
4. product quantity (int)
5. aid_status (bool).

Print tuple6 together with its length.

tuple6 = ('Neo', 'iPhone', 999.99, 2, True)
print(tuple6, len(tuple6))

('Neo', 'iPhone', 999.99, 2, True) 5

12.4 ACCESS ELEMENTS IN A TUPLE BY INDEX

12.4.1 Demonstration

In Python, accessing elements in a tuple is similar to list by using indices, which
represent the positions of the elements within the tuple. The first element of the tuple
is at index 0, the second element is at index 1, and so on. It’s important to note that
the index of the last element in a tuple is always one less than the length of the tuple.
For example, if a tuple has 5 elements, the last element is at index len(tuple) - 1.
Attempting to access an index larger than len(tuple) - 1 will result in an error, as
it exceeds the bounds of the tuple.

148 ■ BiteSize Python for Absolute Beginners

Define a tuple of fruits

my_tuple_9 = ('apple', 'banana', 'orange')

print(my_tuple_9, len(my_tuple_9))

('apple', 'banana', 'orange') 3

Accessing the first element
print(my_tuple_9[0]) # Output: 'apple'

apple

Accessing the third element
print(my_tuple_9[2]) # Output: 'orange'

orange

Accessing the last element
print(my_tuple_9[len(my_tuple_9) - 1]) # Output: 'orange'

orange

Attempting to access an index larger than len(tuple) - 1
This will result in an IndexError
print(my_tuple_9[3]) # IndexError: tuple index out of range

IndexError Traceback (most recent call last)
<ipython-input-39-13a04768eac3> in <cell line: 3>()

1 # Attempting to access an index larger than len(tuple) - 1
2 # This will result in an IndexError

----> 3 print(my_tuple_9[3]) # IndexError: list index out of range

IndexError: tuple index out of range

Similar to lists, tuples support negative indexing as well. It provides a convenient way
to access elements relative to the end of the tuple without needing to calculate the
exact index.

Accessing the last element using negative index
print(my_tuple_9[-1]) # Output: 'orange'

orange

Accessing the second-to-last element using negative index
print(my_tuple_9[-2]) # Output: 'banana'

banana

Accessing the third-to-last element using negative index
print(my_tuple_9[-3]) # Output: 'apple'

apple

Tuple ■ 149

Attempting to access an index beyond the range of negative indices
This will result in an IndexError
print(my_tuple_9[-6]) # IndexError: tuple index out of range

IndexError Traceback (most recent call last)
<ipython-input-44-92ffb58201d5> in <cell line: 3>()

1 # Attempting to access an index beyond the range of negative indices
2 # This will result in an IndexError

----> 3 print(my_tuple_9[-6]) # IndexError: tuple index out of range

IndexError: tuple index out of range

12.4.2 Practice

Run this cell for these practice
tuple_practice = (2, 4, 6, 8, 10)

Task: Print the first element in tuple_practice using non-negative index.

tuple_practice[0]

2

Task: Print the 2nd element in tuple_practice using non-negative index.

tuple_practice[1]

4

Task: Print the 3rd element in tuple_practice using non-negative index.

tuple_practice[2]

6

Task: Print the last element in tuple_practice using non-negative index.

tuple_practice[len(tuple_practice)-1]

10

Task: Print the last element in tuple_practice using negative index.

tuple_practice[-1]

10

Task: Print the first element in tuple_practice using negative index.

tuple_practice[-len(tuple_practice)]

2

Task: Find a positive index that will result an error.

tuple_practice[5]

150 ■ BiteSize Python for Absolute Beginners

IndexError Traceback (most recent call last)
<ipython-input-16-66ec6c0b5a7f> in <cell line: 1>()
----> 1 tuple_practice[5]

IndexError: tuple index out of range

Task: find a negative index that will result an error.

tuple_practice[-6]

IndexError Traceback (most recent call last)
<ipython-input-17-b05be02acf7a> in <cell line: 1>()
----> 1 tuple_practice[-6]

IndexError: tuple index out of range

12.5 ACCESS ELEMENTS IN A TUPLE BY ITERATION

12.5.1 Demonstration

Iterating through a Python tuple allows for the sequential processing of each element
within the tuple. One common method of iteration involves using indices to access
elements individually, where a loop iterates over the indices of the tuple and accesses
each element using its corresponding index.

Using a for loop to iterate directly over the elements of a tuple simplifies the iteration
process by abstracting away the index management. This approach is often preferred
in Python for its readability and simplicity.

Define a tuple of numbers
numbers = (1, 2, 3, 4, 5)

Iterate using index-based iteration
for i in range(len(numbers)):

print(numbers[i]) # Accessing elements using index

Iterate using direct iteration
for num in numbers:

print(num) # Accessing elements directly

1
2
3
4
5
1
2
3
4
5

Tuple ■ 151

In these examples, we iterate through the tuple numbers using both index-based
iteration and direct iteration approaches. In the index-based iteration, we use a
for loop to iterate over the indices of the tuple and access each element using its
corresponding index. In contrast, the direct iteration approach simplifies the process
by directly iterating over the elements of the tuple, eliminating the need for index
manipulation. This results in cleaner and more concise code, enhancing readability
and reducing potential errors.

12.5.2 Practice

Run this cell for this practice
numbers = (1, 2, 2, 3, 5)

Task: Print each element in numbers on a new line using a for loop for iteration.

for i in numbers:
print(i)

1
2
2
3
5

Task: Calculate the sum in numbers using a for loop for iteration and print the sum.

total = 0
for i in numbers:

total += i
print(total)

13

Task: Count how many 2 in numbers using a for loop for iteration and print the count.

count_2 = 0
for i in numbers:

if i == 2:
count_2 += 1

print(count_2)

2

Task: Count the number of odd integers in numbers using a for loop for iteration and
print the count.

count_odd = 0
for i in numbers:

if i %2 != 0:
count_odd += 1

print(count_odd)

3

152 ■ BiteSize Python for Absolute Beginners

12.6 SLICE A TUPLE

12.6.1 Demonstration

Similar to list, slicing tuples in Python allows for the extraction of a subset of elements
from a tuple using a specified range of indices. When using non-negative indices,
slicing involves specifying the starting index, ending index (exclusive), and an optional
step size. The syntax for slicing is tuple[start:end:step], where start indicates
the index of the first element to include, end indicates the index after the last element
to include, and step determines the increment between consecutive indices. If any
of these parameters are omitted, default values are used: start defaults to 0, end
defaults to the length of the tuple, and step defaults to 1.

Define a tuple of numbers
numbers = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

Slicing with non-negative indices
print(numbers[0:5]) # Output: (0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

print(numbers[:5]) # Output: (0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

print(numbers[3:11]) # Output: (3, 4, 5, 6, 7, 8, 9)

(3, 4, 5, 6, 7, 8, 9)

print(numbers[3:]) # Output: (3, 4, 5, 6, 7, 8, 9)

(3, 4, 5, 6, 7, 8, 9)

print(numbers[::2]) # Output: (0, 2, 4, 6, 8)

(0, 2, 4, 6, 8)

print(numbers[3:8:3]) # Output: (3, 6)

(3, 6)

We can also utilize the negative indices as we did to lists.

Slicing with negative indices
print(numbers[-5:]) # Output: (5, 6, 7, 8, 9)

(5, 6, 7, 8, 9)

print(numbers[:-5]) # Output: (0, 1, 2, 3, 4)

(0, 1, 2, 3, 4)

print(numbers[::-1]) # Output: (9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

(9, 8, 7, 6, 5, 4, 3, 2, 1, 0)

Tuple ■ 153

Combining both non-negative and negative indices in slicing provides a powerful
mechanism for extracting subsets of elements from Python lists with flexibility and
precision.

Define a tuple of letters
letters = tuple('Python')
print(letters, len(letters))

('P', 'y', 't', 'h', 'o', 'n') 6

Slicing with a combination of non-negative and negative indices
print(letters[2:-2]) # Output: ('t', 'h')

('t', 'h')

print(letters[-2:6]) # Output: ('o', 'n')

('o', 'n')

print(letters[1:-1:2]) # Output: ('y', 'h')

('y', 'h')

print(letters[-6:3]) # Output: ('P', 'y', 't')

('P', 'y', 't')

print(letters[::2]) # Output: ('P', 't', 'o')

('P', 't', 'o')

print(letters[:1:-1]) # Output: ('n', 'o', 'h', 't')

('n', 'o', 'h', 't')

12.6.2 Practice

Define students and run it for this practice
students = ('Alice', 'Bobby', 'Cathy', 'David', 'Ethan', 'Frank')

Task: Extract the first three students from the tuple students using slicing with
non-negative indices.

students[:3]

('Alice', 'Bobby', 'Cathy')

Task: Extract the last three students from the tuple students using slicing with
non-negative indices.

students[-3:]

('David', 'Ethan', 'Frank')

Task: Extract the middle two students from the tuple students using slicing with
non-negative indices.

154 ■ BiteSize Python for Absolute Beginners

students[2:-2]

('Cathy', 'David')

Task: Create a new tuple called team1 containing every other students from the tuple
students using slicing with non-negative indices.

team1 = students[::2]
team1

('Alice', 'Cathy', 'Ethan')

Task: Create a new tuple called team2 containing every one from three students from
the tuple students using slicing with non-negative indices.

team2 = students[::3]
team2

('Alice', 'David')

Task: Reverse the order of elements in the tuple students using slicing with negative
indices.

students[::-1]

('Frank', 'Ethan', 'David', 'Cathy', 'Bobby', 'Alice')

12.7 TUPLE COMPREHENSION

12.7.1 Demonstration

Tuple comprehension, similar to list comprehension, provides a compact and readable
way to generate tuples using an expression and an optional for loop. The syntax
for tuple comprehension is enclosed within parentheses tuple() instead of square
brackets [].

The general syntax is:
tuple_variable = tuple(expression for item in iterable condition)

Using tuple comprehension to generate a tuple of squares
squares_tuple = tuple(x ** 2 for x in range(1, 6))
print('Tuple of squares:', squares_tuple)

Tuple of squares: (1, 4, 9, 16, 25)

Using tuple comprehension to filter odd numbers from a list
numbers = [1, 2, 3, 4, 5]
odd_numbers_tuple = tuple(x for x in numbers if x % 2 != 0)
print('Tuple of odd numbers:', odd_numbers_tuple)

Tuple of odd numbers: (1, 3, 5)

Using tuple comprehension to create a tuple of tuples
nested_list = [(1, 2), (3, 4), (5, 6)]

Tuple ■ 155

flattened_tuple = tuple(item for t in nested_list for item in t)
print('Tuple of tuples:', flattened_tuple)

Tuple of tuples: (1, 2, 3, 4, 5, 6)

Using tuple comprehension to create a tuple of strings
words = ['apple', 'banana', 'cherry']
uppercase_tuple = tuple(word.upper() for word in words)
print('Tuple of uppercase words:', uppercase_tuple)

Tuple of uppercase words: ('APPLE', 'BANANA', 'CHERRY')

12.7.2 Practice

Define students and run it for this practice
students = ['Alice', 'Ann', 'Anny', 'Bob', 'Bobby', 'Bubbi']

Task: Using tuple comprehension, put all names in students to a tuple line1.

line1 = tuple(s for s in students)
line1

('Alice', 'Ann', 'Anny', 'Bob', 'Bobby', 'Bubbi')

Task: Using tuple comprehension, put all names that starts 'A' in students to a
tuple line2.

line2 = tuple(s for s in students if s[0] == 'A')
line2

('Alice', 'Ann', 'Anny')

Task: Using tuple comprehension, put all names that ends with 'y' in students to a
tuple line3.

line3 = tuple(s for s in students if s[-1] == 'y')
line3

('Anny', 'Bobby')

Task: Using tuple comprehension, put all names that have less than four letters in
students to a tuple line4.

line4 = tuple(s for s in students if len(s) < 4)
line4

('Ann', 'Bob')

Task: Using tuple comprehension, put the pairs of all students in students to a tuple
pairs.

pairs = tuple((a, b) for a in students for b in students)
pairs

(('Alice', 'Alice'),
('Alice', 'Ann'),
('Alice', 'Anny'),

156 ■ BiteSize Python for Absolute Beginners

...eliminated to save space...
('Bubbi', 'Bob'),
('Bubbi', 'Bobby'),
('Bubbi', 'Bubbi'))

Task: Using tuple comprehension, put the pairs of all students in students to a tuple
pairs with the condition:

1. The student will be be paired with another student. For example, 'Ann' won't
be paired with 'Ann'

2. Students will be paired with names starting with same letter. 'Ann' will be
paired with 'Anny' but not 'Bob'.

pairs = tuple((a, b) for a in students for b in students if a != b and a[0] == b[0])
pairs

(('Alice', 'Ann'),
('Alice', 'Anny'),
('Ann', 'Alice'),

...eliminated to save space...
('Bobby', 'Bubbi'),
('Bubbi', 'Bob'),
('Bubbi', 'Bobby'))

Here, let’s summarize what we learned about tuple in Table 12.1.

Table 12.1 Summary of Python tuples.
Feature Syntax Examples
Creation () or tuple() my_tuple = (1, 2, 3)

my_tuple = tuple([1, 2, 3])
Accessing tuple[index] my_tuple[0] returns 1

my_tuple[-1] returns 3
Slicing tuple[start:stop:step] my_tuple[1:3] returns (2, 3)

my_tuple[::2] returns (1, 3)
Immutability Tuples cannot be changed

after creation.
my_tuple[0] = 5 raises TypeError.

Packing Use a sequence of values
to create a tuple without
parentheses.

my_tuple = 1, 2, 3
my_tuple is (1, 2, 3)

Unpacking Assign tuple elements to
multiple variables.

my_tuple = (1, 2, 3)
a, b, c = my_tuple
assigns a=1, b=2, c=3.

Searching tuple.index(item) my_tuple.index(2) returns 1.
Counting tuple.count(item) my_tuple.count(2)

returns 1 if 2 appears once.

Tuple ■ 157

12.8 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain what a tuple is in Python. How does it differ from a list, and why might
you choose to use a tuple instead?

• Discuss the concept of immutability in tuples. Why can’t you modify a tuple
after it has been created?

• Describe how tuples can be used for returning multiple values from a function
or for grouping related data.

• Generate an example of creating a tuple in Python with at least three elements.
Demonstrate how to access individual elements using indexing.

• Provide an example of tuple unpacking, where you assign the elements of a
tuple to separate variables in a single line of code.

• Illustrate how tuples can be used in a function that returns multiple values,
such as returning both the quotient and remainder from a division operation.

• Reflect on the situations where using a tuple is more appropriate than using a list.
How does the immutability of tuples contribute to code safety and reliability?

• Consider a project where you used tuples to store data. How did the choice of
tuples impact the structure and functionality of your code?

• Submit a Python code snippet where you define and use a tuple. Receive
personalized feedback on the tuple’s usage and any potential improvements in
your approach.

• Describe a challenge you faced when working with tuples, such as needing to
modify a tuple. Ask AI to explain how to work around tuple immutability or
when to consider using a different data structure.

12.9 EXPLORE MORE OF TUPLE

At the end, here are the official documentations of Python tuple:

• Brief introduction of tuple: https://docs.python.org/3/library/stdtypes.html#
tuples

• More on tuples: https://docs.python.org/3/tutorial/datastructures.html#tuples-
and-sequences

https://docs.python.org/3/library/stdtypes.html#tuples
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3/library/stdtypes.html#tuples

C H A P T E R 13

Set

Now we have learned list and tuple in Python. Both of them are array-like
data structures. In this chapter, we are going to learn a mapping-based data

structure, set. sets are unordered and only hold distinct elements, automatically
eliminating duplicates. Unlike lists and tuples, sets don’t support indexing or slicing
but do well in operations like union, intersection, and difference. This makes sets an
ideal choice when managing collections where uniqueness and membership tests are
priorities, such as removing duplicates or checking for common elements. Are you
excited? Let’s get started!

13.1 WHAT IS A SET

13.1.1 Explanation

A set in Python is an unordered collection of unique elements. It is defined by enclosing
its elements within curly braces {} (which is the same as the dictionary we are going
to learn later). Sets are mutable, meaning you can add or remove elements from them,
but they do not support indexing or slicing like lists or tuples.

Sets offer several advantages and use cases in Python programming. Sets ensure that
each element appears only once, making them ideal for removing duplicates from a
collection. Sets provide an efficient way to check for membership, that is, whether an
element exists in the set or not. Sets support mathematical set operations such as
union, intersection, difference, and symmetric difference, making them useful for tasks
involving comparisons between collections.

13.1.2 Practice

Task: Can you list 3 applications in your real-life that utilize the concept of sets?

158 DOI: 10.1201/9781003527725-13

https://doi.org/10.1201/9781003527725-13

Set ■ 159

13.2 CREATE A SET

13.2.1 Demonstration

You can create a set using various ways like we did for list and tuple. The first approach
is using the set() constructor and passing an iterable containing the elements of the
set. Note that if there are duplicate values in the iterable, duplicates will be removed.

Creating an empty set using the set() constructor
my_set = set()
print('Set created using set() constructor', my_set)

Set created using set() constructor set()

Creating a set using the set() constructor and a list
my_list = [1, 2, 2, 3, 3]
my_set = set(my_list)
print('Set created using set() constructor and a list:', my_set)

Set created using set() constructor and a list: {1, 2, 3}

Creating a set using the set() constructor and a tuple
my_tuple = (1, 2, 2, 3, 3)
my_set = set(my_tuple)
print('Set created using set() constructor and a tuple:', my_set)

Set created using set() constructor and a tuple: {1, 2, 3}

Another approach to creating sets in Python is by direct assignment, using curly
braces {} and elements. Note that since set and dictionary both use {}, if you are
going to create an empty set, you must use set(). Using {} without elements will
create a dictionary not a set.

{} with no elements is a dictionary
example = {}
type(example)

dict

Creating a set using curly braces and unique elements
my_set = {1, 2, 3}
print('Set created using curly braces:', my_set)

Set created using curly braces: {1, 2, 3}

Creating a set using curly braces and duplicate elements
my_set = {1, 2, 2, 3, 3}
print('Set created using curly braces:', my_set)

Set created using curly braces: {1, 2, 3}

In Python, the len() function is used to determine the number of elements in a
collection (such as list, tuple, etc.) When applied to a set, it returns the count of

160 ■ BiteSize Python for Absolute Beginners

unique elements present in the set. The len() function provides a convenient way to
obtain the size of a set, allowing you to perform various operations and checks based
on the number of elements present in the set.

Creating a set
my_set = {1, 2, 3, 4, 5}

Using the len() function to get the number of elements in the set
set_length = len(my_set)

print('Number of elements in the set:', set_length)

Number of elements in the set: 5

Creating a set
my_set = {1, 2, 3,0, 'a', 4, True}

Using the len() function to get the number of elements in the set
set_length = len(my_set)

print('Number of elements in the set:', set_length)

Number of elements in the set: 6

13.2.2 Practice

Task: Create a set set1 from a string ’set Constructor'. Print the set together with
its length.

set1 = set('Set Constructor')
print(set1, len(set1))

{'o', 'u', 'C', 'S', 'c', 'r', ' ', 't', 's', 'n', 'e'} 11

Task: Create a set set2 from a list of numbers [3, 0, 2, 1, 0, 2, 1]. Print the
set together with its length.

set2 = set([3, 0, 2, 1, 0, 2, 1])
print(set2, len(set2))

{0, 1, 2, 3} 4

Task: Create a set set3 from a list of students, ['Aaron', 'Ann', 'Aaron',
'Brian', 'Cathy', 'Ann', 'Brian'].

set3 = set(['Aaron', 'Ann', 'Aaron', 'Brian', 'Cathy', 'Ann', 'Brian'])
print(set3, len(set3))

{'Cathy', 'Brian', 'Ann', 'Aaron'} 4

Set ■ 161

13.3 ELEMENTS IN A SET

13.3.1 Demonstration

In Python, sets are unordered collections of unique elements, which means they do not
support indexing or slicing like lists or tuples. However, you can still access elements
in a set using different methods.

Creating a set
my_set = {1, 2, 3, 4, 5}

Accessing elements using a for loop
for element in my_set:

print(element)

1
2
3
4
5

Creating a set
my_set = {1, 2, 3, 4, 5}

Checking if an element exists in the set
if 3 in my_set:

print('Element 3 exists in the set')
else:

print('Element 3 does not exist in the set')

Element 3 exists in the set

Creating a set
my_set = {1, 2, 3, 4, 5}

Converting set to list and accessing elements by index
set_list = list(my_set)
print("First element:", set_list[0])
print("Second element:", set_list[1])

First element: 1
Second element: 2

13.3.2 Practice

Task: Print out all elements in set1.

for s in set1:
print(s)

o
u
C
S
c

162 ■ BiteSize Python for Absolute Beginners

r

t
s
n
e

Task: Check if 5 is in set2.

print(5 in set2)

False

Task: With attended list as ['Aaron', 'Amed', 'Ann', 'Brian', 'David'], print
out if they are in set3

for a in ['Aaron', 'Amed', 'Ann', 'Brian', 'David']:
if a in set3:

print(f'{a} is in set3.')
else:

print(f'{a} is not in set3.')

Aaron is in set3.
Amed is not in set3.
Ann is in set3.
Brian is in set3.
David is not in set3.

Task: Convert set3 to a list list3, and print the first element of list3.

list3 = list(set3)
print(list3[0])

Cathy

13.4 SET OPERATIONS

13.4.1 Demonstration

Set operations in Python involve various mathematical operations that can be per-
formed on sets. These operations include union, intersection, difference, symmetric
difference, and subset testing.

Union (| or union()): The union of two sets A and B contains all unique elements
from both sets.

Example of union operation
set1 = {1, 2, 3}
set2 = {3, 4, 5}

Using the | operator
union_result = set1 | set2
print('Union using | operator:', union_result)

Set ■ 163

Using the union() method
union_result = set1.union(set2)
print('Union using union() method:', union_result)

Union using | operator: {1, 2, 3, 4, 5}
Union using union() method: {1, 2, 3, 4, 5}

Intersection (& or ntersection()): The intersection of two sets A and B contains
only elements that are common to both sets.

Example of intersection operation
set1 = {1, 2, 3}
set2 = {3, 4, 5}

Using the & operator
intersection_result = set1 & set2
print('Intersection using & operator:', intersection_result)

Using the intersection() method
intersection_result = set1.intersection(set2)
print('Intersection using intersection() method:', intersection_result)

Intersection using & operator: {3}
Intersection using intersection() method: {3}

Difference (- or difference()): The difference between two sets A and B contains
elements that are in A but not in B. Note that the difference operation is directional,
A - B may be different than B - A.

Example of difference operation
set1 = {1, 2, 3}
set2 = {3, 4, 5}

Using the - operator
difference_result1 = set1 - set2
print('Difference using - operator from set1:', difference_result1)

Using the difference() method
difference_result1 = set1.difference(set2)
print('Difference using difference() method from set1:', difference_result1)

Using the - operator
difference_result2 = set2 - set1
print('Difference using - operator from set2:', difference_result2)

Using the difference() method
difference_result2 = set2.difference(set1)
print('Difference using difference() method from set2:', difference_result2)

Difference using - operator from set1: {1, 2}
Difference using difference() method from set1: {1, 2}
Difference using - operator from set2: {4, 5}
Difference using difference() method from set2: {4, 5}

Subset and Superset Testing (<= and >=): You can test whether one set is a subset or
superset of another using the <= and >= operators, respectively.

164 ■ BiteSize Python for Absolute Beginners

Example of subset and superset testing
set1 = {1, 2, 3, 4}
set2 = {2, 3}

Subset testing
if set2 <= set1:

print('set2 is a subset of set1')
else:

print('set2 is not a subset of set1')

Superset testing
if set1 >= set2:

print('set1 is a superset of set2')
else:

print('set1 is not a superset of set2')

set2 is a subset of set1
set1 is a superset of set2

13.4.2 Practice

run this cell for this practice
set1 = {'Apple', 'Banana', 'Cherry'}
set2 = {'Blueberry', 'Cherry', 'Raspberry', 'Blackberry'}

Task: Create the union of set1 and set2 as set_union. Print the set_union as well
as it’s length.

set_union = set1 | set2
print(set_union, len(set_union))

{'Cherry', 'Apple', 'Blackberry', 'Blueberry', 'Banana', 'Raspberry'} 6

Task: Create the intersection of set1 and set2 as set_intersect. Print the
set_intersect as well as it’s length.

set_intersect = set1 & set2
print(set_intersect, len(set_intersect))

{'Cherry'} 1

Task: Create the difference from set1 to set2 as set1_2. Print the set1_2 as well as
it’s length.

set1_2 = set1 - set2
print(set1_2, len(set1_2))

{'Banana', 'Apple'} 2

Task: Create the difference from set2 to set1 as set2_1. Print the set2_1 as well as
it’s length.

set2_1 = set2 - set1
print(set2_1, len(set2_1))

{'Blueberry', 'Blackberry', 'Raspberry'} 3

Set ■ 165

Task: Check if set_union is a superset of set1.

print(set_union >= set1)

True

Task: Check if set_intersect is a subset of set2.

print(set_intersect <= set2)

True

Task: Check if set2_1 is a subset of set_intersect.

print(set2_1 <= set_intersect)

False

Task: Check if set2_1 is a superset of set_intersect.

print(set1_2 >= set_intersect)

False

13.5 SET METHODS

13.5.1 Demonstration

Set methods provide convenient ways to manipulate sets in Python, allowing you to
add, remove, and update elements efficiently. Understanding how to use these methods
will help you effectively work with sets in your Python programs.

add(): Adds an element to the set if it is not already present.

my_set = {1, 2, 3}
my_set.add(4)
print(my_set) # Output: {1, 2, 3, 4}

{1, 2, 3, 4}

If you add an element that is in the set already, it will be ignored
my_set.add(4)
print(my_set) # Output: {1, 2, 3, 4}

{1, 2, 3, 4}

remove(): Removes the specified element from the set. Raises a KeyError if the
element is not present.

my_set = {1, 2, 3}
my_set.remove(2)
print(my_set) # Output: {1, 3}

{1, 3}

166 ■ BiteSize Python for Absolute Beginners

If you remove 2 again, a KeyError will be raised
my_set.remove(2)
print(my_set) # Output: {1, 3}

KeyError Traceback (most recent call last)
<ipython-input-27-cbfac0215b21> in <cell line: 2>()

1 # If you remove 2 again, a KeyError will be raised
----> 2 my_set.remove(2)

3 print(my_set) # Output: {1, 3}

KeyError: 2

discard(): Removes the specified element from the set if it is present. Does not raise
any error if the element is not present. It works as a safer remove().

my_set = {1, 2, 3}
my_set.discard(2)
print(my_set) # Output: {1, 3}

{1, 3}

remove 2 again won't raise KeyError
my_set.discard(2)
print(my_set) # Output: {1, 3}

{1, 3}

update(): Adds elements from another iterable (e.g., list, set) to the set.

my_set = {1, 2, 3}
my_set.update([4, 5, 6])
print(my_set) # Output: {1, 2, 3, 4, 5, 6}

{1, 2, 3, 4, 5, 6}

clear(): Removes all elements from the set.

my_set = {1, 2, 3}
my_set.clear()
print(my_set) # Output: set()

set()

13.5.2 Practice

Run this cell for this practice
set1 = {'Apple', 'Banana', 'Cherry'}
set2 = {'Blueberry', 'Cherry', 'Raspberry', 'Blackberry'}

Task: Add 'Kiwi' to set1. Print the set1 as well as it’s length.

set1.add('Kiwi')
print(set1, len(set1))

{'Cherry', 'Banana', 'Kiwi', 'Apple'} 4

Set ■ 167

Task: Remove 'Kiwi' from set1. Print the set1 as well as it’s length.

set1.remove('Kiwi')
print(set1, len(set1))

{'Cherry', 'Banana', 'Apple'} 3

Task: Remove 'Pear' to set1 using remove(). Print the set1 as well as it’s length.

set1.remove('Pear')
print(set1, len(set1))

KeyError Traceback (most recent call last)
<ipython-input-60-aef58cd0dfda> in <cell line: 1>()
----> 1 set1.remove('Pear')

2 print(set1, len(set1))

KeyError: 'Pear'

Task: Remove 'Pear' to set1 using discard(). Print the set1 as well as it’s length.

set1.discard('Pear')
print(set1, len(set1))

{'Cherry', 'Banana', 'Apple'} 3

Task: Update set1 with set2. Print both set1 and set2 after the update.

set1.update(set2)
print(set1, len(set1))
print(set2, len(set2))

{'Blackberry', 'Banana', 'Raspberry', 'Cherry', 'Apple', 'Blueberry'} 6
{'Blueberry', 'Blackberry', 'Raspberry', 'Cherry'} 4

Task: Clear set2. Print the set2 as well as it’s length.

set2.clear()
print(set2, len(set2))

set() 0

13.6 SET COMPREHENSION

13.6.1 Demonstration

Python also supports set comprehension, which allows for the creation of sets using a
concise and efficient syntax similar to list and tuple comprehensions. Set comprehension
generates sets by applying an expression to each item in an iterable, enclosed within
curly braces {}.

The general syntax is:
set_variable = {expression for item in iterable condition}

168 ■ BiteSize Python for Absolute Beginners

Using set comprehension to generate a set of squares
squares_set = {x ** 2 for x in range(1, 6)}
print('Set of squares:', squares_set)

Set of squares: {1, 4, 9, 16, 25}

Using set comprehension to filter odd numbers from a list
numbers = [1, 2, 3, 3, 4, 5, 5]
odd_numbers_set = {x for x in numbers if x % 2 != 0}
print('Set of odd numbers:', odd_numbers_set) # Duplicates will be removed

Set of odd numbers: {1, 3, 5}

Using set comprehension to create a set of first characters from words
words = ['apple', 'banana', 'cherry']
first_characters_set = {word[0] for word in words}
print('Set of first characters:', first_characters_set)

Set of first characters: {'c', 'b', 'a'}

Using set comprehension to create a set of unique intergers
import random

unique_numbers = {random.randint(0, 10) for i in range(10)}
print('Set of random integers:', unique_numbers)

Set of random integers: {0, 2, 4, 6, 7, 8, 9, 10}

Here, let’s summarize what we learned about the set in Table 13.1.

Table 13.1 Summary of Python sets.
Feature Syntax Examples
Creation {} or set() my_set = {1, 2, 3}

my_set = set([1, 2, 3])
Access Sets are unordered and

do not support indexing.
for x in my_set

Add set.add(item) my_set.add(4)
my_set ⇒ {1, 2, 3, 4}

Update set.update(iterable) my_set.update([4, 5])
my_set ⇒ {1, 2, 3, 4, 5}

Remove set.remove(item)
set.discard(item)

my_set.remove(2)
my_set ⇒ {1, 3}
my_set.discard(10) does nothing if
10 is not present.

Membership item in set 2 in my_set returns True.

13.7 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

Set ■ 169

• Explain what a set is in Python. How does it differ from other data structures
like lists and tuples?

• Discuss the properties of sets, such as uniqueness and unordered elements. Why
are these properties important?

• Describe common use cases for sets, such as removing duplicates from a list or
performing mathematical set operations.

• Generate an example of creating a set in Python with at least five elements.
Demonstrate how to add and remove elements using methods like add() and
remove().

• Provide an example of using set operations such as union, intersection, and
difference. Show how these operations can be used to compare two sets.

• Illustrate how to convert a list with duplicate elements into a set to remove
duplicates and then convert it back to a list.

• Reflect on the advantages of using sets in Python. How does the ability to store
unique elements and perform fast membership checks benefit your programs?

• Consider a situation where you used sets to handle data. How did the properties
of sets, such as immutability and uniqueness, influence your approach?

• Submit a Python code snippet where you define and manipulate a set. Receive
personalized feedback on the effectiveness and efficiency of your set operations.

• Describe a challenge you faced when working with sets, such as trying to
access elements by index or dealing with unordered elements. Ask AI to suggest
alternative approaches or ways to better utilize sets.

13.8 EXPLORE MORE OF SET

At the end, here are the official documentations of Python set:

• Brief introduction of sets: https://docs.python.org/3/library/stdtypes.html#set
• More on sets: https://docs.python.org/3/tutorial/datastructures.html#sets

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/tutorial/datastructures.html#sets

C H A P T E R 14

Dictionary

While set stores unique, unordered elements, Python dict allows you to as-
sociate each element with a unique key, creating key-value pairs. Unlike sets,

dictionaries provide a way to access values efficiently using keys, making them ideal
for situations where quick lookups or data associations are needed. This makes dictio-
naries a powerful tool for tasks such as storing configurations, counting occurrences,
or representing relationships between data. Are you ready? Let’s get started!

14.1 WHAT IS A DICTIONARY

14.1.1 Explanation

Dictionaries in Python employ a mapping mechanism that associates unique keys
with corresponding values. Unlike sequences such as lists or tuples, which use posi-
tional indexing, dictionaries utilize keys to access and retrieve values. This mapping
mechanism enables efficient storage, retrieval, and manipulation of key-value pairs
within the dictionary data structure.

Internally, dictionaries in Python utilize hash tables to implement the mapping
mechanism. Hash tables provide constant-time average-case complexity for operations
such as insertion, retrieval, and deletion, making dictionaries highly efficient for storing
and accessing data. Hashing allows Python to quickly compute the memory location
associated with a given key, facilitating fast lookups even for large dictionaries.

Dictionaries play a crucial role in Python programming due to their versatility
and efficiency. They offer a convenient way to organize and manipulate data using
meaningful key-value pairs, allowing for intuitive data representation and access.
Dictionaries are widely used in various programming tasks, including data processing,
configuration management, caching, and more.

Dictionaries find applications in numerous real-life scenarios. Dictionaries are often
used to represent database records, where each key corresponds to a field name,
and the associated value represents the field’s value. Dictionaries are used to store

170 DOI: 10.1201/9781003527725-14

https://doi.org/10.1201/9781003527725-14

Dictionary ■ 171

configuration settings for software applications, with keys representing configuration
parameters and values representing their respective values. Dictionaries serve as effi-
cient caching mechanisms, storing previously computed results with keys representing
input parameters and values representing the corresponding output. Dictionaries are
employed in language translation systems, where keys represent words or phrases in
one language, and values represent their translations in another language. Dictionaries
are used to store contact information in address books, with keys representing names
or contact IDs and values representing corresponding contact details.

14.1.2 Practice

Task: What are the real-life examples you can have for dictionaries?

14.2 CREATE A DICTIONARY

14.2.1 Demonstration

In Python, there are several methods for creating dictionaries, providing flexibility and
convenience for different programming scenarios. Let’s start with using the dict()
constructor and key-value pairs:

Creating a dictionary using the dict() constructor and key-value pairs
my_dict = dict(name='Jane', age=25, city='Los Angeles')
print('Dictionary created using dict() constructor:', my_dict)

Dictionary created using dict() constructor:
{'name': 'Jane', 'age': 25, 'city': 'Los Angeles'}

Creating a dictionary using a list of tuples
my_list = [('name', 'Alice'), ('age', 35), ('city', 'Chicago')]
my_dict = dict(my_list)
print('Dictionary created using a list of tuples:', my_dict)

Dictionary created using a list of tuples:
{'name': 'Alice', 'age': 35, 'city': 'Chicago'}

Another approach to uing curly braces {} and key-value pairs:

Creating a dictionary using curly braces and key-value pairs
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}
print("Dictionary created using curly braces:", my_dict)

Dictionary created using curly braces:
{'name': 'John', 'age': 30, 'city': 'New York'}

Creating a dictionary using curly braces and key-value pairs
my_dict = {'name': ['John', 'Alice', 'Jane'],

'age': [30, 35, 25],
'city': ['New York', 'Chicago', 'Log Angeles']}

print("Dictionary created using curly braces:", my_dict)

Dictionary created using curly braces: {
'name': ['John', 'Alice', 'Jane'],

172 ■ BiteSize Python for Absolute Beginners

'age': [30, 35, 25],
'city': ['New York', 'Chicago', 'Log Angeles']}

In Python, the built-in function len() is used to determine the length or the number
of key-value pairs in a dictionary.

print(my_dict)
print(len(my_dict)) # output 3

{'name': 'John', 'age': 30, 'city': 'New York'}
3

14.2.2 Practice

Task: Create a dictionary weekdays that contains key-value pairs that keys are the
weekdays 1, ... , 7 and values are strings 'Monday', ..., 'Sunday'. Print the
dictionary together with its length.

weekdays = {1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
7: 'Sunday'}

weekdays, len(weekdays)

({1: 'Monday',
2: 'Tuesday',
3: 'Wednesday',
4: 'Thursday',
5: 'Friday',
6: 'Saturday',
7: 'Sunday'},

7)

Task: Create a dictionary daysweek that contains key-value pairs that keys are strings
'Monday', ..., 'Sunday' and values are weekdays 1, ... , 7 and values. Print
the dictionary together with its length.

daysweek = {'Monday': 1,
'Tuesday': 2,
'Wednesday': 3,
'Thursday': 4,
'Friday': 5,
'Saturday': 6,
'Sunday': 7}

daysweek, len(weekdays)

({'Monday': 1,
'Tuesday': 2,
'Wednesday': 3,
'Thursday': 4,
'Friday': 5,
'Saturday': 6,

Dictionary ■ 173

'Sunday': 7},
7)

Task: Create a dictionary country_GDP contains top 5 countries and their GDP 2023
estimate by World Bank. The keys are the names of the contry, and the values are
their GDPs. The source is https://en.wikipedia.org/wiki/List_of_countries_
by_GDP_(nominal)

country_GDP = {'United States': 25462700,
'China': 17963171,
'Germany': 4072192,
'Japan': 4231141,
'India': 3385090}

country_GDP

{'United States': 25462700,
'China': 17963171,
'Germany': 4072192,
'Japan': 4231141,
'India': 3385090}

Task: Create a dictionary country_GDP_List contains top 5 countries and their
GDP 2023 estimate by World Bank. The keys Name has a list with the names
of the contry and the key GDP has a list of their GDPs. The source is https:
//en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)

country_GDP_List = {'Name': ['United States', 'China', 'Germany', 'Japan', 'India'],
'GDP': [25462700, 17963171, 4072192, 4231141, 3385090]}

country_GDP_List

{'Name': ['United States', 'China', 'Germany', 'Japan', 'India'],
'GDP': [25462700, 17963171, 4072192, 4231141, 3385090]}

14.3 ACCESS A DICTIONARY

14.3.1 Demonstration

You can access the keys, values, or key-value pairs in a dictionary in Python.

You can access keys in a dictionary using the keys() method or directly iterate over
the dictionary. The keys() method returns a view object containing the keys of the
dictionary.

Creating a dictionary
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Accessing keys using keys() method
keys = my_dict.keys()
print('Keys:', keys)

Accessing keys by iterating over the dictionary
for key in my_dict:

print('Key:', key)

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)

174 ■ BiteSize Python for Absolute Beginners

Keys: dict_keys(['name', 'age', 'city'])
Key: name
Key: age
Key: city

You can access values in a dictionary using the values() method or by directly
accessing values using keys. The values() method returns a view object containing
the values of the dictionary.

Accessing values using values() method
values = my_dict.values()
print('Values:', values)

Accessing values using keys
for key in my_dict:

print(f'Value for key {key}: {my_dict[key]}')

Values: dict_values(['John', 30, 'New York'])
Value for key name: John
Value for key age: 30
Value for key city: New York

You can access items (key-value pairs) in a dictionary using the items() method or
by directly iterating over the dictionary. The items() method returns a view object
containing the key-value pairs of the dictionary as tuples.

Accessing items using items() method
items = my_dict.items()
print('Items:', items)

Accessing items by iterating over the dictionary
for key, value in my_dict.items():

print(f'({key}: {value})')

Items: dict_items([('name', 'John'), ('age', 30), ('city', 'New York')])
(name: John)
(age: 30)
(city: New York)

14.3.2 Practice

Task: Iterate the dictionary weekdays and print each pair.

for item in weekdays.items():
print(item)

(1, 'Monday')
(2, 'Tuesday')
(3, 'Wednesday')
(4, 'Thursday')
(5, 'Friday')
(6, 'Saturday')
(7, 'Sunday')

Task: Check the value associated with the key 1 in weekdays.

Dictionary ■ 175

weekdays[1]

{"type":"string"}

Task: Iterate the dictionary daysweek and print each pair.

for item in daysweek.items():
print(item)

('Monday', 1)
('Tuesday', 2)
('Wednesday', 3)
('Thursday', 4)
('Friday', 5)
('Saturday', 6)
('Sunday', 7)

Task: Check the value associated with the key 'Monday' in daysweek.

daysweek['Monday']

1

Task: Iterate the dictionary country_GDP and print each pair.

for item in country_GDP.items():
print(item)

('United States', 25452700)
('China', 17963171)
('Germany', 4072192)
('Japan', 4231141)
('India', 3385090)

Task: Check the value associated with the key 'United States' in country_GDP.

country_GDP['United States']

25462700

Task: Print all countries that have GDP of more than $10 Trillion in country_GDP.
Note: The unit in the table is Million.

for k, v in country_GDP.items():
if v > 10000000:

print(f'{k}:{v}')

United States:25462700
China:17963171

Task: Print the names of all countries in country_GDP_List.

country_GDP_List['Name']

['United States', 'China', 'Germany', 'Japan', 'India']

176 ■ BiteSize Python for Absolute Beginners

14.4 DICTIONARY METHODS

14.4.1 Demonstration

In Python, dictionaries offer various methods for manipulating key-value pairs, en-
abling efficient data management and modification. These methods facilitate the
addition, deletion, and update of elements within dictionaries, ensuring flexibility and
adaptability to changing data requirements.

To add a new key:value pair to a dictionary, we just need to use a dict[key] =
value assignment.

Creating a dictionary
my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Add a new pair 'ID': '0001'
my_dict['ID'] = '0001'

my_dict

{'name': 'John', 'age': 30, 'city': 'New York', 'ID': '0001'}

Be careful if there is an existing key in the dictionary. Doing a dict[key] = value
assignment will use the new value to replace the old value associated with the key.

my_dict['name'] = 'Neo'

my_dict

{'name': 'Neo', 'age': 30, 'city': 'New York', 'ID': '0001'}

We can also use update() to add key-value pairs from another dictionary or iterable
to the current dictionary.

Creating another dictionary
another_dict = {'email':'John@example.com', 'major': 'English'}

my_dict.update(another_dict)

my_dict

{'name': 'Neo',
'age': 30,
'city': 'New York',
'ID': '0001',
'email': 'John@example.com',
'major': 'English'}

Creating a list of tuples
another_collection = [('phone', '123-456-7890'), ('fax', '098-765-4321')]

my_dict.update(another_collection)

my_dict

Dictionary ■ 177

{'name': 'Neo',
'age': 30,
'city': 'New York',
'ID': '0001',
'email': 'John@example.com',
'major': 'English',
'phone': '123-456-7890',
'fax': '098-765-4321'}

Removing a key
del my_dict['fax']
my_dict

{'name': 'Neo',
'age': 30,
'city': 'New York',
'ID': '0001',
'email': 'John@example.com',
'major': 'English',
'phone': '123-456-7890'}

14.4.2 Practice

Task: Modify weekdays and make the strings with only one or two letters, such as
'M', 'Tu', 'W', 'Th', 'F', 'Sa', 'Su'.

weekdays[1] = 'M'
weekdays[2] = 'Tu'
weekdays[3] = 'W'
weekdays[4] = 'Th'
weekdays[5] = 'F'
weekdays[6] = 'Sa'
weekdays[7] = 'Su'
weekdays

{1: 'M', 2: 'Tu', 3: 'W', 4: 'Th', 5: 'F', 6: 'Sa', 7: 'Su'}

Task: Delete the keys 'Saturday', 'Sunday' in daysweek.

del daysweek['Saturday']
del daysweek['Sunday']
daysweek

{'Monday': 1, 'Tuesday': 2, 'Wednesday': 3, 'Thursday': 4, 'Friday': 5}

Task: Update country_GDP with the countries in #6-#10. The source is https:
//en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal).

more = {'United Kingdom': 3070668,
'France': 2782905,
'Brazil': 1920096,
'Italy': 2010432,
'Canada': 2139840}

country_GDP.update(more)
country_GDP

https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)
https://en.wikipedia.org/wiki/List_of_countries_by_GDP_(nominal)

178 ■ BiteSize Python for Absolute Beginners

{'United States': 25462700,
'China': 17963171,
'Germany': 4072192,
'Japan': 4231141,
'India': 3385090,
'United Kingdom': 3070668,
'France': 2782905,
'Brazil': 1920096,
'Italy': 2010432,
'Canada': 2139840}

Task: Add another key 'Population' to country_GDP_List. The value of this key is
the population of the countries. The source is https://en.wikipedia.org/wiki/Li
st_of_countries_and_dependencies_by_population.

country_GDP_List['Population'] = [335893238, 1409670000, 84607016,
124000000, 1400744000]

country_GDP_List

{'name': ['United States', 'China', 'Germany', 'Japan', 'India'],
'GDP': [25462700, 17963171, 4072192, 4231141, 3385090],
'Population': [335893238, 1409670000, 84607016, 124000000, 1400744000]}

14.5 DICTIONARY COMPREHENSION

14.5.1 Demonstration

Dictionary comprehension, similar to list and set comprehensions, allows for the
creation of dictionaries using a concise and efficient syntax in Python. Dictionary
comprehension generates dictionaries by applying an expression to each item in an
iterable, resulting in key-value pairs enclosed within curly braces {}.

The general syntax is:
dict_variable = {key expression: value expression for item in iterable condition}

Using dictionary comprehension to generate a dictionary of squares
squares_dict = {x: x ** 2 for x in range(1, 6)}
print('Dictionary of squares:', squares_dict)

Dictionary of squares: {1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Using dictionary comprehension to create a dictionary of word lengths
words = ['apple', 'banana', 'cherry']
word_lengths_dict = {word: len(word) for word in words}
print('Dictionary of word lengths:', word_lengths_dict)

Dictionary of word lengths: {'apple': 5, 'banana': 6, 'cherry': 6}

Using dictionary comprehension to convert two lists into a dictionary
keys = ['a', 'b', 'c']
values = [1, 2, 3]
combined_dict = {keys[i]: values[i] for i in range(len(keys))}
print('Combined dictionary:', combined_dict)

https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population
https://en.wikipedia.org/wiki/List_of_countries_and_dependencies_by_population

Dictionary ■ 179

Combined dictionary: {'a': 1, 'b': 2, 'c': 3}

Create the double and square term for even numbers
even_degree = {x : [x*2, x**2] for x in range(10) if x %2 == 0}
print('Even numbers degrees:', even_degree)

Even numbers degrees: {0: [0, 0], 2: [4, 4], 4: [8, 16], 6: [12, 36], 8: [16, 64]}

14.5.2 Practice

Task: Ask user to enter a sentence, create a dictionary word_length mapping each
word in a sentence to its length.

sentence = input('Please enter a sentence: ')

word_length = {word: len(word) for word in sentence.split()}
print('Dictionary mapping each word to its length:', word_length)

Please enter a sentence: Python is a useful language
Dictionary mapping each word to its length:
{'Python': 6, 'is': 2, 'a': 1, 'useful': 6, 'language': 8}

Task: Ask user to enter a sentence, create a dictionary word_lengthy mapping each
word in a sentence to its length and ignore all words with length less than 3

sentence = input('Please enter a sentence: ')

word_lengthy = {word: len(word) for word in sentence.split() if len(word)>3}
print('Dictionary mapping each word to its length:', word_lengthy)

Please enter a sentence: Python is a useful language
Dictionary mapping each word to its length: {'Python': 6, 'useful': 6, 'language': 8}

Here, let’s summarize what we learned about set in Table 14.1.

Table 14.1 Summary of Python dictionaries.
Feature Syntax Examples
Creation {} or dict() my_dict = {"a": 1, "b": 2}

my_dict = dict(a=1, b=2)
Access dict[key] my_dict["a"] → 1

Raises KeyError if the key does not exist.
Add dict[key] =

value
my_dict["c"] = 3
my_dict ⇒ {"a": 1, "b": 2, "c": 3}

Remove dict.pop(key)
dict.popitem()
del dict[key]

my_dict.pop("a") returns 1
my_dict ⇒ {"b": 2}

Membership key in dict "a" in my_dict → True.
Elements dict.keys()

dict.values()
dict.items()

my_dict.keys() → dict_keys(["a", "b"])
my_dict.values() → dict_values([1, 2])
my_dict.items() → dict_items([("a", 1),
("b", 2)])

Merging dict.update
(other)

my_dict.update("c": 3)
my_dict ⇒ {"a": 1, "b": 2, "c": 3}

180 ■ BiteSize Python for Absolute Beginners

14.6 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT.

• Explain what a dictionary is in Python. How does it differ from other data
structures like lists and sets?

• Discuss the concept of key-value pairs in dictionaries. Why is this structure
useful for storing and accessing data?

• Describe common use cases for dictionaries, such as representing data with
unique identifiers or mapping keys to corresponding values.

• Generate an example of creating a dictionary in Python with at least three
key-value pairs. Demonstrate how to access a value using its key.

• Illustrate how to loop through a dictionary, accessing both keys and values using
a for loop.

• Design an exercise for me to create a dictionary representing a contact list,
with names as keys and phone numbers as values. Have them practice adding,
updating, and deleting contacts.

• Create a task for me to write a Python function that takes a dictionary of
student names and their grades and returns the name of the student with the
highest grade.

• Develop an exercise for me to define a dictionary representing a shopping cart,
with items as keys and quantities as values. Have them calculate the total
number of items in the cart.

14.7 EXPLORE MORE OF DICTIONARY

In the end, here are the official documentations of Python dict:

• Brief introduction of dictionary: https://docs.python.org/3/library/stdtypes.h
tml#mapping-types-dict

• More on dictionary: https://docs.python.org/3/tutorial/datastructures.html#d
ictionaries

https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/tutorial/datastructures.html#dictionaries
https://docs.python.org/3/library/stdtypes.html#mapping-types-dict
https://docs.python.org/3/tutorial/datastructures.html#dictionaries

C H A P T E R 15

Case Studies of Data
Structures

W e have learned Python’s four built-in data structures – lists, tuples, sets, and
dictionaries! Let’s apply them to a real-life scenario: managing and manipu-

lating a grade book for students. In this case study, we will use each data structure
to solve different problems, such as storing student information, organizing grades,
ensuring uniqueness in data, and efficiently looking up specific records. By comparing
and contrasting how each structure performs in this context, we can better understand
their strengths and best use cases. Are you ready? Let’s get started!

15.1 WARM-UP

Let’s first warm-up what we have learned in this section in Table 15.1.

Table 15.1 Summary of Python data structures.
Feature List Tuple Set Dictionary

Constructor list() tuple() set() dict()

Access Index, iteration Index, iteration Iteration only Key, iteration

Slicing Index Index Unordered Unordered

Immutability Mutable Immutable Mutable Mutable

Methods append(),
extend(),
pop(),
remove()

count(),
index()

add(),
remove(),
pop()

get(),
pop(),
items(),
keys(),
values()

DOI: 10.1201/9781003527725-15 181

https://doi.org/10.1201/9781003527725-15

182 ■ BiteSize Python for Absolute Beginners

15.2 DATA CREATION

You are given a dataset as below represented as a list. You should organize them in
the required data structure in the following tasks.

Run following cells for this case study
import random

SIZE = 10 # All upper case variable means it is a constant
names = ['STU' + str(i) for i in range(100,100+SIZE)]
scores1 = [random.randint(60, 100) for i in range(SIZE)]
scores2 = [random.randint(60, 100) for i in range(SIZE)]

15.3 USING LISTS

Task: Create a grade book gradebook as a list, in which each element is a list and
the first item is the name (from the names data), and second item is the score (from
the scores1 data).

gradebook = []
for i in range(len(names)):

gradebook.append([names[i], scores1[i]])
gradebook

[['STU100', 85],
['STU101', 66],
['STU102', 89],
['STU103', 87],
['STU104', 100],
['STU105', 98],
['STU106', 86],
['STU107', 93],
['STU108', 74],
['STU109', 66]]

gradebook = [[name,score] for name,score in zip(names, scores1)]
gradebook

[['STU100', 85],
['STU101', 66],
['STU102', 89],
['STU103', 87],
['STU104', 100],
['STU105', 98],
['STU106', 86],
['STU107', 93],
['STU108', 74],
['STU109', 66]]

Task: Create a subset of the gradebook as gb1, which contains first 5 elements of the
gradebook.

Case Studies of Data Structures ■ 183

gb1 = gradebook[:5]
gb1

[['STU100', 85],
['STU101', 66],
['STU102', 89],
['STU103', 87],
['STU104', 100]]

Task: Create a subset of the gradebook as gb2, in which student name always ends
with an even number.

gb2 = [v for v in gradebook if int(v[0][-1]) %2 == 0]
gb2

[['STU100', 85],
['STU102', 89],
['STU104', 100],
['STU106', 86],
['STU108', 74]]

Task: Create a subset of the gradebook as gb3, in which student score always above
80.

gb3 = [v for v in gradebook if v[1] > 80]
gb3

[['STU100', 85],
['STU102', 89],
['STU103', 87],
['STU104', 100],
['STU105', 98],
['STU106', 86],
['STU107', 93]]

Task: Create a subset of the gradebook as gb4, in which student scores are below the
average score.

total = 0
for s in scores1:

total += s
avg = total / len(scores1)
gb4 = [v for v in gradebook if v[1] < avg]
gb4

[['STU101', 66], ['STU108', 74], ['STU109', 66]]

Task: Update the gradebook so the scores are converted to letter grade: >=90 is A,
>=80 is B, etc.

def g2l(score):
letters = ['F','F','F','F','F','F','D','C','B','A','A']
return letters[score//10]

gradebook = [[v[0],g2l(v[1])] for v in gradebook]
gradebook

184 ■ BiteSize Python for Absolute Beginners

[['STU100', 'B'],
['STU101', 'D'],
['STU102', 'B'],
['STU103', 'B'],
['STU104', 'A'],
['STU105', 'A'],
['STU106', 'B'],
['STU107', 'A'],
['STU108', 'C'],
['STU109', 'D']]

15.4 USING TUPLES

Task: Create a gradebook as a list, in which each element is a tuple and the first item
is the name (from the names data), and second item is the score (from the scores1
data).

gradebook = [(name,score) for name,score in zip(names, scores1)]
gradebook

[('STU100', 85),
('STU101', 66),
('STU102', 89),
('STU103', 87),
('STU104', 100),
('STU105', 98),
('STU106', 86),
('STU107', 93),
('STU108', 74),
('STU109', 66)]

Task: Traverse the gradebook and print out student name ends with an even number.

gb2 = [v for v in gradebook if int(v[0][-1]) %2 == 0]
gb2

[('STU100', 85),
('STU102', 89),
('STU104', 100),
('STU106', 86),
('STU108', 74)]

Task: Update the gradebook so the scores are converted to letter grade: >=90 is A,
>=80 is B, etc.

def g2l(score):
letters = ['F','F','F','F','F','F','D','C','B','A', 'A']
return letters[score//10]

gradebook = [(v[0],g2l(v[1])) for v in gradebook]
gradebook

[('STU100', 'B'),
('STU101', 'D'),

Case Studies of Data Structures ■ 185

('STU102', 'B'),
('STU103', 'B'),
('STU104', 'A'),
('STU105', 'A'),
('STU106', 'B'),
('STU107', 'A'),
('STU108', 'C'),
('STU109', 'D')]

15.5 USING SETS

Task: We have scores1 and scores2. Convert them to set1 and set2.

set1 = set(scores1)
set1

{66, 74, 85, 86, 87, 89, 93, 98, 100}

set2 = set(scores2)
set2

{60, 64, 67, 72, 73, 75, 91, 92, 97}

Task: Print the unique score in scores1 and unique score in scores2 .

print(set1, set2)

{66, 98, 100, 74, 85, 86, 87, 89, 93} {64, 97, 67, 72, 73, 75, 92, 91, 60}

Task: Print the union of set1 and set2.

print(set1.union(set2)) # same as set1 | set2

{64, 97, 66, 98, 100, 67, 72, 73, 74, 75, 60, 85, 86, 87, 89, 91, 92, 93}

Task: Print the intersection of set1 and set2.

print(set1.intersection(set2)) # same as set1 & set2

set()

Task: Print the difference of set1 and set2.

print(set1.difference(set2)) # same as set1 - set2

{66, 98, 100, 74, 85, 86, 87, 89, 93}

15.6 USING DICTIONARIES

Task: Create a dictionary d1, in which names as key and scores1 as values.

d1 = {name:score1 for name, score1 in zip(names, scores1)}
d1

186 ■ BiteSize Python for Absolute Beginners

{'STU100': 85,
'STU101': 66,
'STU102': 89,
'STU103': 87,
'STU104': 100,
'STU105': 98,
'STU106': 86,
'STU107': 93,
'STU108': 74,
'STU109': 66}

Task: Print the score of the student with name 'STU103'.

print(d1['STU103'])

87

Task: Create a dictionary d2, in which names as key and scores2 as values.

d2 = {name:score2 for name, score2 in zip(names, scores2)}
d2

{'STU100': 75,
'STU101': 60,
'STU102': 72,
'STU103': 92,
'STU104': 97,
'STU105': 64,
'STU106': 73,
'STU107': 67,
'STU108': 91,
'STU109': 97}

Task: Print the names of student whose score is 88.

for name in d2:
if d2[name] == 88:

print(name)

Task: Create a dictionary d3, in which names as key, and a list of scores as value. The
list of scores has two elements: the first one is from scores1 , and the second one is
from scores2 .

d3 = {name:[score1, score2]
for name, score1, score2 in zip(names, scores1, scores2)}

d3

{'STU100': [85, 75],
'STU101': [66, 60],
'STU102': [89, 72],
'STU103': [87, 92],
'STU104': [100, 97],
'STU105': [98, 64],
'STU106': [86, 73],
'STU107': [93, 67],
'STU108': [74, 91],

Case Studies of Data Structures ■ 187

'STU109': [66, 97]}

Task: Find the cluster of students whose scores are all at least 90.

students_A = {s:[d3[s][0], d3[s][1]]
for s in d3
if d3[s][0] >=90 and d3[s][1] >=90}

students_A

{'STU104': [100, 97]}

15.7 FURTHERMORE

Task: Did you notice the constant variable SIZE we used in data creation? Now, you
can change that variable to 100, 1000, 10000, or even more, to observe the differences
of the data structures in efficiency when we scale the data up. Enjoy the exploration!

15.8 COMPLEXITY

We select a data structure for a specific scenario based on its time and space complexity,
which represents how efficiently the data structure performs in scaling. For those
interested in complexity theory, a concise summary of the complexity of typical
operations on data structures is presented in Table 15.2. While we will not cover
complexity in detail in this book, there are many excellent resources available online
for further exploration. Enjoy the learning!

Table 15.2 Comparison of space and time complexities for Python data structures. (list,
tuple, set, dictionary)

Operation List Tuple Set Dictionary
Space O(n) O(n) O(n) O(n)
Add O(1) (append) Not applicable O(1) O(1)
Remove O(n)(by value)

O(1)(by index)
Not applicable O(1) O(1)

Insert O(n)(at index) Not applicable Not applicable O(1)
Search O(n) O(n) O(1) O(1)
Iteration O(n) O(n) O(n) O(n)
Membership O(n) O(n) O(1) O(1)
Concatenate O(n) O(n) Not applicable O(n)
Copy O(n) (shallow) O(n) (shallow) O(n) (shallow) O(n) (shallow)
Equality O(n) O(n) O(n) O(n)

http://taylorandfrancis.com

IV
Data Collections

189

S ection IV: Data Collections introduces Python’s collections module,
which offers advanced data structures that extend beyond basic types, making data

manipulation easier and more efficient. In this section, we’ll explore three essential tools
from the collections module: namedtuple, which gives tuples meaningful names;
defaultdict, which simplifies handling missing keys; and Counter, which makes
counting tasks effortless. These structures enhance code readability and functionality,
helping you solve problems more effectively.

By the end of this chapter, you will be able to:

• Understand the purpose and benefits of the collections module in Python.

• Create and use named tuples to add clarity and structure to your data.

• Implement default dictionaries to handle missing keys without errors.

• Use counters to efficiently count and analyze data elements.

• Apply these data structures in practical scenarios to simplify and optimize your
code.

C H A P T E R 16

Named Tuple

W e have learned tuple in previous section and we know tuple is useful for
grouping related data, but its elements are accessed only by position, which

can make the code less readable and harder to maintain. In this chapter, we are going
to learn the extended data structure, namedtuple, which addresses this limitation
by allowing you to assign meaningful names to each element while retaining the im-
mutability and lightweight nature of regular tuples. This makes namedtuple especially
helpful for improving code clarity and reducing the risk of errors in larger projects
where readability is critical. Are you ready? Let’s get started!

16.1 WHAT IS A NAMED TUPLE

16.1.1 Explanation

Named Tuples are an extension of Python's built-in tuple data type. They allow for
creating tuple-like objects where fields can be accessed using names, instead of only
by index. This can make code more readable and easier to maintain, especially when
dealing with collections of data that have multiple attributes.

Named Tuples are part of the collections module in Python, and they're typically
used to represent simple data structures without the overhead of a full class. They're
a great tool when you want the simplicity of tuples but with named fields to provide
clarity.

16.1.2 Demonstration

Let's create a tuple to represent the position of a data point in a 2D space with x and
y coordinates.

Regular tuple example
position1_tuple = (10, 20)
position2_tuple = (-5, 30)

Accessing data using index

DOI: 10.1201/9781003527725-16 191

https://doi.org/10.1201/9781003527725-16

192 ■ BiteSize Python for Absolute Beginners

print(f'Position 1: x={position1_tuple[0]}, y={position1_tuple[1]}')
print(f'Position 2: x={position2_tuple[0]}, y={position2_tuple[1]}')

Position 1: x=10, y=20
Position 2: x=-5, y=30

In the regular tuple, you need to use the index 0 for x and 1 for y, which isn't as
intuitive and may lead to confusion in larger programs.

Let's create a named tuple to represent the data point.

from collections import namedtuple

Define the named tuple 'Position'
Position = namedtuple('Position', ['x', 'y'])

Creating instances of the named tuple
position1 = Position(x=10, y=20)
position2 = Position(x=-5, y=30)

Accessing data using named fields
print(f"Position 1: x={position1.x}, y={position1.y}")
print(f"Position 2: x={position2.x}, y={position2.y}")

Position 1: x=10, y=20
Position 2: x=-5, y=30

With the named tuple Position, you can access x and y using descriptive names
(position1.x, position1.y), making the code more readable and self-explanatory.

16.2 PACKAGE MANAGEMENT

Let's imagine a scenario where you work in a logistics company, and you manage
packages being delivered. Each package has attributes like sender, receiver, and
status. Using Named Tuples, we can clearly label each attribute, making it easy to
access information about any package.

from collections import namedtuple

Defining the named tuple 'Package'
Package = namedtuple('Package', ['sender', 'receiver', 'status'])

Creating instances of the named tuple
package1 = Package(sender="Alice", receiver="Bob", status="Delivered")
package2 = Package(sender="Eve", receiver="Chris", status="In Transit")

Accessing data by field names
print(f'Package1 sender: {package1.sender}, status: {package1.status}')
print(f'Package2 receiver: {package2.receiver}, status: {package2.status}')

Accessing data by index (just like a normal tuple)
print(f'Package1: {package1[0]} to {package1[1]}, status: {package1[2]}')
print(f'Package2: {package2[0]} to {package2[1]}, status: {package2[2]}')

Named Tuple ■ 193

Package1 sender: Alice, status: Delivered
Package2 receiver: Chris, status: In Transit
Package1: Alice to Bob, status: Delivered
Package2: Eve to Chris, status: In Transit

In this example, Package is a named tuple with fields sender, receiver, and status.
package1 and package2 are instances of Package. You can access fields either by
their name (like package1.sender) or by their index (like package1[0]).

16.3 CASE STUDY: CAR

Task: Define a named tuple to represent a Car with the fields: make, model, year, and
color. Create two instances of this named tuple and print out the details of each car.

from collections import namedtuple

Define the Car namedtuple
Car = namedtuple('Car', ['make', 'model', 'year', 'color'])

Create instances of Car
car1 = Car(make="Toyota", model="Corolla", year=2020, color="Blue")
car2 = Car(make="Honda", model="Civic", year=2019, color="Red")

Print car details
print(f'Car 1: {car1.make} {car1.model}, {car1.year}, {car1.color}')
print(f'Car 2: {car2.make} {car2.model}, {car2.year}, {car2.color}')

Car 1: Toyota Corolla, 2020, Blue
Car 2: Honda Civic, 2019, Red

16.4 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT about namedtuples:

• Why should I use namedtuple instead of a dictionary or regular tuple?
• What are the advantages and limitations of using namedtuple?
• What happens if I try to access a field in a namedtuple that doesn’t exist?
• Can I add new fields to an existing namedtuple? Why or why not?
• How does a namedtuple behave when compared using equality operators?
• How do I use _replace() to create a modified copy of a namedtuple?
• Can you explain the purpose of _fields and _asdict() in a namedtuple?
• Show how to create a namedtuple with default field values.
• Demonstrate how to unpack a namedtuple using tuple unpacking.
• How can I use namedtuple in a data analysis pipeline?
• Why am I getting an error when I try to modify a field in my namedtuple?
• What does it mean if I see an AttributeError in my namedtuple?
• What are common mistakes people make when using namedtuple?

194 ■ BiteSize Python for Absolute Beginners

16.5 EXPLORE MORE OF NAMED TUPLE

At the end, here are the official documentations of Python namedtuple:

• Brief introduction of named tuple: https://docs.python.org/3/library/collection
s.html#collections.namedtuple

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple

C H A P T E R 17

Default Dictionary

D ictionaries are excellent for storing key-value pairs, but accessing a key that
doesn’t exist raises a KeyError. Default dictionaries build on this functionality

by automatically assigning a default value to missing keys, eliminating the need for
manual checks or initialization. This makes default dictionaries especially useful when
working with dynamic or unpredictable data where keys might not always exist in
advance. In this chapter, we will explore defaultdict from the collections module
in Python. We first demonstrate the difference between a regular dictionary dict
and a default dictionary defaultdict, then explore different types of defaultdict,
including int, list, and set.

Are you ready? Let’s get started!

17.1 WHAT IS A DEFAULT DICTIONARY

When we use a key to retrieve the value, and the key is not in the dictionary, the
regular dictionary dict will raise an error.

Regular dictionary
my_dict = {'a': 1, 'b': 2}

Accessing an existing key
print(my_dict['a']) # Output: 1

Accessing a non-existing key will raise a KeyError
print(my_dict['c']) # KeyError: 'c'

1

KeyError Traceback (most recent call last)
<ipython-input-2-2e2cefa552f4> in <cell line: 8>()

6
7 # Accessing a non-existing key will raise a KeyError

----> 8 print(my_dict['c']) # KeyError: 'c'

DOI: 10.1201/9781003527725-17 195

https://doi.org/10.1201/9781003527725-17

196 ■ BiteSize Python for Absolute Beginners

KeyError: 'c'

When we want to modify the value associated with a key, and the key is not in the
dictionary, the regular dictionary dict will raise an error.

Increament the value associated with 'b' by 1
my_dict['b'] += 1
print(my_dict['b'])

Increament the value associated with 'd' by 1
my_dict['d'] += 1
print(my_dict['d'])

5

KeyError Traceback (most recent call last)
<ipython-input-5-4d2dcf7f0151> in <cell line: 6>()

4
5 # Increament the value associated with 'd' by 1

----> 6 my_dict['d'] += 1
7 print(my_dict['d'])

KeyError: 'd'

In order to avoid this, we have to first check if the key is in the dictionary or not.

Accessing values after checking keys
keys = ['a', 'c']
for key in keys:

if key in my_dict:
print(my_dict[key])

else:
print(f'{key} is not in the dictionary')

1
c is not in the dictionary

Manipulate the values after checking keys
keys = ['b', 'd']
for key in keys:

if key in my_dict:
my_dict[key] += 1

else:
my_dict[key] = 1

print(my_dict)

{'a': 1, 'b': 3, 'd': 1}

A defaultdict simplifies handling missing keys by automatically assigning a default
value when a non-existing key is accessed. You don't have to check if the key exists;
instead, the default value is returned and assigned automatically.

from collections import defaultdict

defaultdict with default type int (0 as default value for missing keys)

Default Dictionary ■ 197

my_defaultdict = defaultdict(int)
my_defaultdict['a'] = 1
my_defaultdict['b'] = 2

print(my_defaultdict['a']) # Output: 1
print(my_defaultdict['c']) # Output: 0 (default value)

1
0

my_defaultdict['b'] += 1
print(my_defaultdict['b']) # output: 3 (existing value 2 increased by 1)

my_defaultdict['d'] += 1
print(my_defaultdict['d']) # output: 1 (default value)

3
1

Key difference between dict and defaultdict are dict raises an error when a missing
key is accessed, while defaultdict returns a default value and avoids the need for
manual checking.

17.2 DEFAULT INT

17.2.1 Demonstration

Like the example we had above, when you want to have values as numbers, such as
in a situation where you need to count occurrences of items (e.g., counting words in
a text), defaultdict(int) is useful since it initializes missing keys with a default
integer value (0).

from collections import defaultdict

Define the defaultdict with int 0 as the default value
word_count = defaultdict(int)

Example text
text = 'hello world python world'

Count word occurrences
for word in text.split():

word_count[word] += 1

Display word frequencies
print(word_count)

defaultdict(<class 'int'>, {'hello': 1, 'world': 2, 'python': 1})

17.2.2 Practice

Task: Use a defaultdict to count the number of orders placed by customers in an
online store. Simulate several orders for different customers as:

198 ■ BiteSize Python for Absolute Beginners

Alice: 1 order;
Bob: 2 orders;
Charlie: 3 orders;
Alice: 1 order;
Charlie: 1 order.

Print the total order count for each customer.

from collections import defaultdict

Create a defaultdict with int 0 as the default value
order_count = defaultdict(int)

Simulating order placement
order_count['Alice'] += 1
order_count['Bob'] += 2
order_count['Charlie'] += 3
order_count['Alice'] += 1
order_count['Charlie'] += 1

Display the total order count for each customer
print('Total orders placed by each customer:')
for customer, count in order_count.items():

print(f'{customer}: {count} orders')

Total orders placed by each customer:
Alice: 2 orders
Bob: 2 orders
Charlie: 4 orders

17.3 DEFAULT LIST

17.3.1 Demonstration

If you need to collect multiple values for a single key (e.g., students enrolled in the
same course), defaultdict(list) is helpful because it initializes missing keys with
an empty list.

from collections import defaultdict

Define defaultdict with an empty list as the default value
students_by_course = defaultdict(list)

Add students to courses
students_by_course['CS'].append('Alice')
students_by_course['CS'].append('Bob')
students_by_course['Stats'].append('Charlie')

Display students grouped by course
print(students_by_course)

defaultdict(<class 'list'>, {'CS': ['Alice', 'Bob'], 'Stats': ['Charlie']})

Default Dictionary ■ 199

17.3.2 Practice

Task: Group people based on their city. Add several people and their cities as:
Alice: New York
Bob: New York
Charlie: Los Angeles
Dave: Chicago
Eve: Los Angeles

Print the grouped results based on their city.

from collections import defaultdict

Create a defaultdict with an empty list as the default value
people_by_city = defaultdict(list)

Adding people and their respective cities
people_by_city['New York'].append('Alice')
people_by_city['New York'].append('Bob')
people_by_city['Los Angeles'].append('Charlie')
people_by_city['Chicago'].append('Dave')
people_by_city['Los Angeles'].append('Eve')

Display the grouped result
print('People grouped by city:')
for city, people in people_by_city.items():

print(f'{city}: {", ".join(people)}')

People grouped by city:
New York: Alice, Bob
Los Angeles: Charlie, Eve
Chicago: Dave

17.4 DEFAULT SET

17.4.1 Demonstration

In cases where you want to store unique values for each key (e.g., tracking unique
visitors per webpage), defaultdict(set) automatically provides an empty set for
missing keys.

from collections import defaultdict

Define defaultdict with an empty set as the default value
unique_visitors = defaultdict(set)

Log unique visitors
unique_visitors['homepage'].add('User1')
unique_visitors['homepage'].add('User2')
unique_visitors['contact'].add('User1')
unique_visitors['homepage'].add('User1') # User1 won't be added again

200 ■ BiteSize Python for Absolute Beginners

Display unique visitors
print(unique_visitors)

defaultdict(<class 'set'>, {'homepage': {'User2', 'User1'}, 'contact': {'User1'}})

17.4.2 Practice

Task: A company wants to keep track of the skills that each department's employees
have. Employees may have multiple skills, and each skill should be grouped under the
department they belong to. Create a defaultdict that groups employees' skills by
department and then display the result. Employees and their skills:

• HR: Alice (Communication, Management), Ann (Recruitment, Management)
• IT: Bob (Python, Networking), Charlie (Python)
• Sales: Eve (Negotiation, Communication), Davis (Communication, Networking)

from collections import defaultdict

Define defaultdict with an empty set as the default value
department_skills = defaultdict(set)

Simulating the addition of employees and their skills by department
department_skills['HR'].add('Communication')
department_skills['HR'].add('Management')
department_skills['HR'].add('Recruitment')
department_skills['HR'].add('Management') # Duplicates
department_skills['IT'].add('Python')
department_skills['IT'].add('Networking')
department_skills['IT'].add('Python') # Duplicates
department_skills['Sales'].add('Negotiation')
department_skills['Sales'].add('Communication')
department_skills['Sales'].add('Communication') # Duplicates
department_skills['Sales'].add('Networking')

Display the skills grouped by department
print('Skills grouped by department:')
for department, skills in department_skills.items():

print(f'{department}: {", ".join(skills)}')

Skills grouped by department:
HR: Recruitment, Communication, Management
IT: Networking, Python
Sales: Negotiation, Communication, Networking

17.5 CASE STUDY: HACKATHON

Task: You are organizing a hackathon and need to manage participants, their projects,
and the prizes they win. Use a defaultdict to collect and display:

1. Participants by team (using list).
2. Total prize money won by each team (using int).

Problem Setup:

Default Dictionary ■ 201

• There are three teams: “Team A”, “Team B”, and “Team C”.
• Participants are as follows:

– Team A: Alice, Bob
– Team B: Charlie, Dave
– Team C: Eve, Frank

• Prizes won:
– Team A: $500
– Team B: $300
– Team C: $1000

Create a Python program to:

1. Display the participants in each team.
2. Calculate and display the total prize money for each team.

from collections import defaultdict

1. Participants by team (defaultdict with list)
teams = defaultdict(list)
teams['Team A'].extend(['Alice', 'Bob'])
teams['Team B'].extend(['Charlie', 'Dave'])
teams['Team C'].extend(['Eve', 'Frank'])

2. Total prize money by team (defaultdict with int)
prizes = defaultdict(int)
prizes['Team A'] += 500
prizes['Team B'] += 300
prizes['Team C'] += 1000

Display team participants
print('Participants by team:')
for team, members in teams.items():

print(f'{team}: {", ".join(members)}')

Display total prize money won by each team
print('\nTotal prize money by team:')
for team, prize in prizes.items():

print(f'{team}: ${prize}')

Participants by team:
Team A: Alice, Bob
Team B: Charlie, Dave
Team C: Eve, Frank

Total prize money by team:
Team A: $500
Team B: $300
Team C: $1000

Let’s summarize the default dictionary in Table 17.1.

202 ■ BiteSize Python for Absolute Beginners

Table 17.1 Summary of Python defaultdict with different default values.
Feature list as default int as default str as default set as default
Creation defaultdict

(list)
defaultdict

(int)
defaultdict

(str)
defaultdict

(set)
Default
Value

[] 0 "" {}

Default
Behavior

Initializes an
empty list if
a non-existing
key is accessed

Initializes to 0 if a
non-existing key is
accessed

Initializes to an
empty string if a
non-existing key is
accessed

Initializes to an
empty set if
a non-existing
key is accessed

New Key my_dict["a"]
returns []

my_dict["a"]
returns 0

my_dict["a"]
returns ""

my_dict["a"]
returns {}

Usage my_dict["a"]
.append(1)
adds 1 to the
list

my_dict["a"]
+= 1 increments
the value by 1

my_dict["a"]
+= "Hi" appends
"Hi" to the string

my_dict["a"]
.add(1) adds
1 to the set

17.6 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT about defaultdict:

• What is a defaultdict, and how is it different from a regular dictionary?
• Can you explain how missing keys are handled in a defaultdict?
• What are the limitations or drawbacks of using a defaultdict?
• Create a defaultdict to count the occurrences of elements in a list.
• Create a defaultdict to group words by the first letter from a list of strings.
• If I try to access a missing key in a defaultdict, what happens?
• What happens if I assign a value to a key that is already in the defaultdict?
• How can a defaultdict be used to process and summarize log files?
• Show how a defaultdict can implement a word frequency counter.
• Suggest a way to use defaultdict in data aggregation.
• Why do I get unexpected values when I print my defaultdict?
• How do I handle cases where I don’t want any default value for missing keys in

a defaultdict?
• What are common mistakes when using defaultdict?

17.7 EXPLORE MORE OF DEFAULT DICTIONARY

At the end, here are the official documentations of Python defaultdict:

• Brief introduction of default dictionary: https://docs.python.org/3/library/coll
ections.html#collections.defaultdict

https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/collections.html#collections.defaultdict

C H A P T E R 18

Counters

D ictionaries store key-value pairs efficiently, but managing missing keys can
be cumbersome. Default dictionaries improve this by assigning default values to

missing keys automatically. Taking this further, the Counter is a specialized type of
dictionary designed specifically for counting tasks. While default dictionaries simplify
handling missing keys, Counters streamline tasks like counting elements, making them
perfect for frequency analysis and similar operations. In this chapter, we will explore
the Counter from Python's collections module. We will start by comparing it with
a normal dictionary and defaultdict, then introduce the Counter in detail, followed
by real-life demonstrations and practice problems with solutions.

Are you ready? Let’s get started!

18.1 WHAT IS A COUNTER

Let's do a fruit count exercise first using normal dictionary.

Using a normal dictionary to count occurrences
fruit_count = {}
basket = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana']

for fruit in basket:
if fruit in fruit_count:

fruit_count[fruit] += 1
else:

fruit_count[fruit] = 1

print(fruit_count)

{'apple': 2, 'banana': 3, 'orange': 1}

We definitely can use defaultdict(int) to save some effort.

from collections import defaultdict

Using defaultdict to count occurrences

DOI: 10.1201/9781003527725-18 203

https://doi.org/10.1201/9781003527725-18

204 ■ BiteSize Python for Absolute Beginners

fruit_count = defaultdict(int)
basket = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana']

for fruit in basket:
fruit_count[fruit] += 1

print(fruit_count)

defaultdict(<class 'int'>, {'apple': 2, 'banana': 3, 'orange': 1})

Counter goes one step further by providing an easy-to-use tool for counting elements
in an iterable. It automatically counts the occurrences of elements without needing a
loop, making the code cleaner and faster to write.

from collections import Counter

Using Counter to count occurrences
basket = ['apple', 'banana', 'apple', 'orange', 'banana', 'banana']
fruit_count = Counter(basket)

print(fruit_count)

Counter({'banana': 3, 'apple': 2, 'orange': 1})

18.2 MORE ABOUT COUNTER

18.2.1 Explanation

The Counter class is a subclass of dict designed to count hashable objects. It
automatically counts how many times an element appears in an iterable. You can
create a Counter directly from an iterable or manually from a dictionary. The counts
are stored as dictionary values, with elements as keys. Counter.most_common()
returns a sorted list of the most frequent elements.

18.2.2 Demonstration

A store sells fruits, and we want to know how many of each type have been sold at
the end of the day.

from collections import Counter

Record of items sold
items_sold = ['apple', 'banana', 'apple', 'orange', 'apple',

'banana', 'banana', 'orange', 'apple']

Use Counter to count the sold items
item_count = Counter(items_sold)

Display the count of each item
print('Items sold count:', item_count)

Find the most sold item
most_sold = item_count.most_common(1)

Counters ■ 205

print('Most sold item:', most_sold)

Find the top 2 sold item
top2_sold = item_count.most_common(2)
print('Top 2 sold item:', top2_sold)

Items sold count: Counter({'apple': 4, 'banana': 3, 'orange': 2})
Most sold item: [('apple', 4)]
Top 2 sold item: [('apple', 4), ('banana', 3)]

We want to count how many times each letter appears in a given sentence.

from collections import Counter

sentence = "Python is a powerful programming language"

Use Counter to count letter frequencies
letter_count = Counter(sentence.replace(' ', '').lower())

print("Top 5 letter count:", letter_count.most_common(5))

Top 5 letter count: [('a', 4), ('g', 4), ('p', 3), ('o', 3), ('n', 3)]

18.2.3 Practice

Task: Given a list of words from a book or paragraph as below:
paragraph = '''
Python is a high-level, general-purpose programming language. Its design
philosophy emphasizes code readability with the use of indentation.

Python is dynamically typed and garbage-collected. It supports multiple
programming paradigms, including structured (particularly procedural),
object-oriented and functional programming. It is often described as a
"batteries included" language due to its comprehensive standard library.

Guido van Rossum began working on Python in the late 1980s as a successor
to the ABC programming language and first released it in 1991 as
Python 0.9.0. Python 2.0 was released in 2000. Python 3.0, released in 2008,
was a major revision not completely backward-compatible with earlier
versions. Python 2.7.18, released in 2020, was the last release of Python 2.

Python consistently ranks as one of the most popular programming languages,
and has gained widespread use in the machine learning community.
'''

count how many times each word appears (ignore cases). Print the top 10 most used
words with their frequency.

from collections import Counter
Define the paragraph
paragraph = '''
Python is a high-level, general-purpose programming language. Its design
philosophy emphasizes code readability with the use of indentation.

Python is dynamically typed and garbage-collected. It supports multiple

206 ■ BiteSize Python for Absolute Beginners

programming paradigms, including structured (particularly procedural),
object-oriented and functional programming. It is often described as a
"batteries included" language due to its comprehensive standard library.

Guido van Rossum began working on Python in the late 1980s as a successor
to the ABC programming language and first released it in 1991 as Python
0.9.0. Python 2.0 was released in 2000. Python 3.0, released in 2008, was
a major revision not completely backward-compatible with earlier versions.
Python 2.7.18, released in 2020, was the last release of Python 2.

Python consistently ranks as one of the most popular programming
languages, and has gained widespread use in the machine learning community.
'''

Use Counter to count word frequencies
word_count = Counter(paragraph.lower().split())

for word, count in word_count.most_common(10):
print(f'{word}: {count}')

python: 9
the: 6
in: 6
a: 4
programming: 4
and: 4
as: 4
released: 4
is: 3
of: 3

Task: Given a list of numbers as below:
numbers = [1, 3, 2, 2, 3, 3, 4, 5, 1, 2, 2, 4, 1]

Find and print the top 3 most frequent numbers.

from collections import Counter

List of numbers
numbers = [1, 3, 2, 2, 3, 3, 4, 5, 1, 2, 2, 4, 1]

Use Counter to find the most common numbers
number_count = Counter(numbers)

Display the top 3 most common numbers
print("Top 3 most common numbers:", number_count.most_common(3))

Top 3 most common numbers: [(2, 4), (1, 3), (3, 3)]

18.3 CASE STUDY: ROMEO AND JULIET

Task: In this exercise, you will create a counter that holds the most common words
used and the number of times they show up in the masterpiece of Shakespeare, Romeo
and Juliet. You need to find a text file that contains the full play, then feed it to a

Counters ■ 207

list with appropriate manipulation. After that, use Counter to quickly summarize the
frequency of words in it.

For example, you may find it via https://shakespeare.mit.edu/romeo_juliet/full.html

To save space, solution for this case study is not provided.

18.4 INTERACT WITH GENAI

Here are some questions and prompts you can interact with generative AI tools,
including ChatGPT about Counter:

• What is a Counter in Python, and how is it different from a dictionary?
• How does Counter count elements in an iterable?
• What are the primary use cases for Counter in Python?
• Show how to use Counter to count the frequency of elements in a list.
• Show how to create a Counter from a string to count character occurrences.
• Show how to update a Counter with additional data from another iterable.
• What happens if I access a key in a Counter that doesn’t exist?
• How does the most_common() method in Counter work?
• How does a Counter handle duplicate keys during initialization?
• How can I use Counter to merge counts from multiple data sources?
• Show how to use Counter to filter elements based on a count threshold.
• How can I use mathematical operations like addition or subtraction between

two Counter objects?
• How might Counter be applied in a social media app to track hashtags?
• Demonstrate using Counter to analyze survey results, such as the most selected

options.
• How can Counter simplify tasks like vote tallying in an election system?
• Why am I getting a TypeError when I try to use a list as a key in a Counter?
• What happens if I attempt to increment a Counter key by a non-integer value?
• How do I handle negative counts in a Counter when they don’t make sense in

my context?

18.5 EXPLORE MORE OF COUNTER

At the end, here are the official documentations of Python Counter:

• Brief introduction of counters: https://docs.python.org/3/library/collections.ht
ml#collections.Counter

https://shakespeare.mit.edu/romeo_juliet/full.html
https://docs.python.org/3/library/collections.html#collections.Counter
https://docs.python.org/3/library/collections.html#collections.Counter

http://taylorandfrancis.com

What is Next?

fundamental syntax, flow control, functions, and built-in data structures. You are not
a beginner anymore, and you can create your own Python programs to solve some
real-life problems! Is that cool?

After the celebration, you may want to learn how the built-in data types and data
structures are defined following the object-oriented programming logic. You may want
to explore advanced data structures to store data differently for specific scenarios.
You may also be interested in widely used Python packages for data manipulation,
including Random, Math, NumPy, and Pandas. At last, for a better understanding of
the data and communication of the statistics, you may want to learn data visualization
packages, such as Matplotlib, Seaborn, and Plotly. You can find these topics covered
in the second book of the series, BiteSize Python for Intermediate Learners: With
Practice Labs, Real World Examples, and ChatGPT.

I look forward to meeting you there and continuing our journey once again.

209

Congratulations! You have mastered basic Python with a full understanding of the

http://taylorandfrancis.com

Index

Anaconda, 8
Argument, 89
Arithmetic operations, 26, 27
Assignment operations, 26

Bite-size strategy, 8
bool, 19
break, 78

collections, 190
Complexity, 187
continue, 78
Counter, 190, 203

Data collections, 190
Data structure, 118, 119
Data type, 19
Data visualization, 6
Default dictionary, 190, 195
Default value, 96
defaultdict, 190, 195
Dictionary, 170
Dynamic typing, 21

Experiential learning, 8

f-strings, 43
float, 19
Flow control, 56, 57, 70
for loop, 70, 74
format(), 43
Function, 84, 86, 89, 92, 95, 96, 99
Functions, 56

Generative AI, 9
Google colaboratory, 8

Hierarchical function, 110

if, 57
if-elif-else, 62

if-else, 60
In-line comment, 10
Index, 37
input(), 16
int, 19
Interactive Python, 4
ipynb, 6

Jupyter Notebook, 2, 5–7
JupyterLab, 6

List, 119
List comprehension, 136
Logical operations, 26, 31
Loop, 70

Mapping, 170
Markdown, 7
Matplotlib, 5
Multiline comment, 13

Named tuple, 190, 191
namedtuple, 190, 191
Negative index, 38
Nested function, 107
NumPy, 5, 6

Operations, 26

Pandas, 5, 6
Parameter, 89
Plotly, 5
print(), 10
Python, 2, 3
Python 2, 3
Python 3, 3

Recursion, 112
Reference, 19
Relational operations, 26, 30
Repetition, 70

211

212 ■ Index

Return value, 99

Scikit-learn, 5, 6
Script Python, 4
Seaborn, 5
Set, 158
Space complexity, 187
Static typing, 21
str, 36

String, 2, 10, 11, 19, 36
String slicing, 40

Time complexity, 187
Truth table, 32
Tuple, 143

Variable, 19, 21

while loop, 70

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Dedication
	Contents
	List of Figures
	List of Tables
	Foreword
	Preface
	Author Bios
	SECTION I: Python Fundamentals
	CHAPTER 1: Introduction to Python
	1.1. WHAT IS PYTHON?
	1.2. WHY PYTHON?
	1.3. SCRIPT VERSUS INTERACTIVE PYTHON
	1.4. WHY INTERACTIVE PYTHON?
	1.5. JUPYTER
	1.6. LOCAL OR CLOUD
	1.7. LEARNING PYTHON

	CHAPTER 2: Input and Output
	2.1. HELLO, WORLD!
	2.1.1. Demonstration
	2.1.2. Practice

	2.2. SINGLE OR DOUBLE
	2.2.1. Explanation
	2.2.2. Demonstration
	2.2.3. Practice

	2.3. TRIPLE QUOTATIONS
	2.3.1. Explanation
	2.3.2. Practice

	2.4. PRINT MULTIPLE VALUES
	2.4.1. Demonstration
	2.4.2. Practice

	2.5. INTERACT WITH GENAI
	2.6. GET INPUTS
	2.6.1. Demonstration
	2.6.2. Practice

	2.7. COMBINE PRINT() AND INPUT()
	2.7.1. Explanation
	2.7.2. Demonstration
	2.7.3. Practice

	2.8. INTERACT WITH GENAI

	CHAPTER 3: Variables
	3.1. WHAT ARE VARIABLES
	3.1.1. Explanation
	3.1.2. Practice

	3.2. NAMING RULES
	3.2.1. Explanation
	3.2.2. Practice

	3.3. DATA TYPES
	3.3.1. Explanation
	3.3.2. Practice

	3.4. DATA TYPES CONVERT
	3.4.1. Explanation
	3.4.2. Demonstration
	3.4.3. Practice

	3.5. INTERACT WITH GENAI

	CHAPTER 4: Operations
	4.1. ASSIGNMENT OPERATIONS
	4.1.1. Explanation
	4.1.2. Practice

	4.2. ARITHMETIC OPERATIONS
	4.2.1. Explanation
	4.2.2. Demonstration
	4.2.3. Practice

	4.3. RELATIONAL OPERATIONS
	4.3.1. Explanation
	4.3.2. Practice

	4.4. LOGICAL OPERATIONS
	4.4.1. Explanation
	4.4.2. Practice

	4.5. INTERACT WITH GENAI

	CHAPTER 5: String
	5.1. WHAT IS STR?
	5.1.1. Explanation
	5.1.2. Thinking

	5.2. STRING CREATION
	5.2.1. Demonstration

	5.3. STRING ACCESS
	5.3.1. Demonstraton
	5.3.2. Practice

	5.4. STRING SLICING
	5.4.1. Demonstration
	5.4.2. Practice

	5.5. STRING CONCATENATION
	5.5.1. Demonstration

	5.6. STRING FORMAT
	5.6.1. Demonstration
	5.6.2. Practice

	5.7. USEFUL FUNCTIONS
	5.7.1. Demonstration
	5.7.2. Practice

	5.8. INTERACT WITH GENAI

	CHAPTER 6: Case Studies of Python Fundamentals
	6.1. SIMPLE CHECK OUT
	6.2. TIPS SPLIT
	6.3. COMPOUND INTEREST

	SECTION II: Flow Control and Functions
	CHAPTER 7: Branching
	7.1. OPTIONAL BRANCHING
	7.1.1. Demonstration
	7.1.2. Practice

	7.2. ALTERNATIVE BRANCHING
	7.2.1. Demonstration
	7.2.2. Practice

	7.3. MULTIPLE BRANCHING
	7.3.1. Demonstration
	7.3.2. Practice

	7.4. CASE STUDIES OF BRANCHING
	7.4.1. What day is today?
	7.4.2. Tax calculator
	7.4.3. A simple calculator
	7.4.4. Taxi fare calculator

	7.5. INTERACT WITH GENAI

	CHAPTER 8: Repetition
	8.1. CONDITION-BASED REPETITION
	8.1.1. Explanation
	8.1.2. Demonstration
	8.1.3. Practice

	8.2. COUNT-BASED REPETITION
	8.2.1. Explanation
	8.2.2. Demonstration
	8.2.3. Practice

	8.3. MAGIC CONTROL
	8.3.1. Demonstration
	8.3.2. Practice

	8.4. CASE STUDIES OF REPETITION
	8.4.1. Prime numbers
	8.4.2. A simple grade book
	8.4.3. Fahrenheit to Celsius converter
	8.4.4. How many E and e are in a sentence?

	8.5. INTERACT WITH GENAI

	CHAPTER 9: Functions
	9.1. WHAT ARE FUNCTIONS?
	9.1.1. Explanation
	9.1.2. Example: Bread toaster
	9.1.3. Practice

	9.2. TYPES OF FUNCTIONS
	9.2.1. Explanation

	9.3. DEFINE A FUNCTION
	9.3.1. Demonstration
	9.3.2. Practice

	9.4. PARAMETERS AND ARGUMENTS
	9.4.1. Explanation
	9.4.2. Demonstration
	9.4.3. Practice

	9.5. TWO PARAMETERS
	9.5.1. Demonstration
	9.5.2. Practice

	9.6. HOW TO PASS ARGUMENTS
	9.6.1. Demonstration
	9.6.2. Practice

	9.7. DEFAULT VALUE
	9.7.1. Demonstration
	9.7.2. Practice

	9.8. RETURN VALUES
	9.8.1. Explanation
	9.8.2. Demonstration

	9.9. RETURN NUMERIC VALUES
	9.9.1. Demonstration
	9.9.2. Practice

	9.10. RETURN STR VALUES
	9.10.1. Demonstration
	9.10.2. Practice

	9.11. RETURN BOOLEAN VALUES
	9.11.1. Demonstration
	9.11.2. Practice

	9.12. RETURN MULTIPLE VALUES
	9.12.1. Demonstration
	9.12.2. Practice

	9.13. INTERACT WITH GENAI

	CHAPTER 10: Advanced Functions
	10.1. NESTED FUNCTIONS
	10.1.1. Explanation
	10.1.2. Demonstration
	10.1.3. Practice

	10.2. HIERARCHICAL FUNCTIONS
	10.2.1. Explanation
	10.2.2. Demonstration

	10.3. INTERACT WITH GENAI
	10.4. RECURSIVE FUNCTIONS
	10.4.1. Explanation
	10.4.2. Demonstration
	10.4.3. Practice

	10.5. INTERACT WITH GENAI

	SECTION III: Data Structures
	CHAPTER 11: List
	11.1. WHAT IS A LIST
	11.2. CREATE A LIST
	11.2.1. Demonstration
	11.2.2. Practice

	11.3. HETEROGENEITY
	11.3.1. Demonstration
	11.3.2. Practice
	11.3.3. Test your understanding

	11.4. ACCESS A LIST BY INDEX
	11.4.1. Demonstration
	11.4.2. Practice

	11.5. ACCESS A LIST BY ITERATION
	11.5.1. Demonstration
	11.5.2. Practice

	11.6. LIST MANIPULATION
	11.6.1. Demonstration
	11.6.2. Practice

	11.7. MORE MANIPULATION OF A LIST
	11.7.1. Demonstration
	11.7.2. Practice

	11.8. SLICE A LIST
	11.8.1. Demonstration
	11.8.2. Practice

	11.9. LIST COMPREHENSION
	11.9.1. Demonstration
	11.9.2. Practice

	11.10. ADVANCED LIST COMPREHENSION
	11.10.1. Demonstration
	11.10.2. Practice

	11.11. INTERACT WITH GENAI
	11.12. EXPLORE MORE OF LIST

	CHAPTER 12: Tuple
	12.1. WHAT IS A TUPLE
	12.1.1. Explanation

	12.2. CREATE A TUPLE
	12.2.1. Demonstration
	12.2.2. Practice

	12.3. HETEROGENEOUS TUPLE IN PYTHON
	12.3.1. Demonstration
	12.3.2. Practice

	12.4. ACCESS ELEMENTS IN A TUPLE BY INDEX
	12.4.1. Demonstration
	12.4.2. Practice

	12.5. ACCESS ELEMENTS IN A TUPLE BY ITERATION
	12.5.1. Demonstration
	12.5.2. Practice

	12.6. SLICE A TUPLE
	12.6.1. Demonstration
	12.6.2. Practice

	12.7. TUPLE COMPREHENSION
	12.7.1. Demonstration
	12.7.2. Practice

	12.8. INTERACT WITH GENAI
	12.9. EXPLORE MORE OF TUPLE

	CHAPTER 13: Set
	13.1. WHAT IS A SET
	13.1.1. Explanation
	13.1.2. Practice

	13.2. CREATE A SET
	13.2.1. Demonstration
	13.2.2. Practice

	13.3. ELEMENTS IN A SET
	13.3.1. Demonstration
	13.3.2. Practice

	13.4. SET OPERATIONS
	13.4.1. Demonstration
	13.4.2. Practice

	13.5. SET METHODS
	13.5.1. Demonstration
	13.5.2. Practice

	13.6. SET COMPREHENSION
	13.6.1. Demonstration

	13.7. INTERACT WITH GENAI
	13.8. EXPLORE MORE OF SET

	CHAPTER 14: Dictionary
	14.1. WHAT IS A DICTIONARY
	14.1.1. Explanation
	14.1.2. Practice

	14.2. CREATE A DICTIONARY
	14.2.1. Demonstration
	14.2.2. Practice

	14.3. ACCESS A DICTIONARY
	14.3.1. Demonstration
	14.3.2. Practice

	14.4. DICTIONARY METHODS
	14.4.1. Demonstration
	14.4.2. Practice

	14.5. DICTIONARY COMPREHENSION
	14.5.1. Demonstration
	14.5.2. Practice

	14.6. INTERACT WITH GENAI
	14.7. EXPLORE MORE OF DICTIONARY

	CHAPTER 15: Case Studies of Data Structures
	15.1. WARM-UP
	15.2. DATA CREATION
	15.3. USING LISTS
	15.4. USING TUPLES
	15.5. USING SETS
	15.6. USING DICTIONARIES
	15.7. FURTHERMORE
	15.8. COMPLEXITY

	SECTION IV: Data Collections
	CHAPTER 16: Named Tuple
	16.1. WHAT IS A NAMED TUPLE
	16.1.1. Explanation
	16.1.2. Demonstration

	16.2. PACKAGE MANAGEMENT
	16.3. CASE STUDY: CAR
	16.4. INTERACT WITH GENAI
	16.5. EXPLORE MORE OF NAMED TUPLE

	CHAPTER 17: Default Dictionary
	17.1. WHAT IS A DEFAULT DICTIONARY
	17.2. DEFAULT INT
	17.2.1. Demonstration
	17.2.2. Practice

	17.3. DEFAULT LIST
	17.3.1. Demonstration
	17.3.2. Practice

	17.4. DEFAULT SET
	17.4.1. Demonstration
	17.4.2. Practice

	17.5. CASE STUDY: HACKATHON
	17.6. INTERACT WITH GENAI
	17.7. EXPLORE MORE OF DEFAULT DICTIONARY

	CHAPTER 18: Counters
	18.1. WHAT IS A COUNTER
	18.2. MORE ABOUT COUNTER
	18.2.1. Explanation
	18.2.2. Demonstration
	18.2.3. Practice

	18.3. CASE STUDY: ROMEO AND JULIET
	18.4. INTERACT WITH GENAI
	18.5. EXPLORE MORE OF COUNTER

	What is Next?
	Index

