

A Common-Sense Guide to
Data Structures and

Algorithms in Python,
Volume 2

Level Up Your Core Programming
Skills

by Jay Wengrow

Version: P1.0 (September 2025)

Copyright © 2025 The Pragmatic Programmers, LLC. This book is licensed to the individual who
purchased it. We don't copy-protect it because that would limit your ability to use it for your own
purposes. Please don't break this trust—you can use this across all of your devices but please do not
share this copy with other members of your team, with friends, or via file sharing services. Thanks.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and The Pragmatic Programmers, LLC was
aware of a trademark claim, the designations have been printed in initial capital letters or in all capitals.
The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf
and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no
responsibility for errors or omissions, or for damages that may result from the use of information
(including program listings) contained herein.

About the Pragmatic Bookshelf
The Pragmatic Bookshelf is an agile publishing company. We’re here because we want to improve the
lives of developers. We do this by creating timely, practical titles, written by programmers for
programmers.

Our Pragmatic courses, workshops, and other products can help you and your team create better
software and have more fun. For more information, as well as the latest Pragmatic titles, please visit us
at http://pragprog.com.

Our ebooks do not contain any Digital Restrictions Management, and have always been DRM-free. We
pioneered the beta book concept, where you can purchase and read a book while it’s still being written,
and provide feedback to the author to help make a better book for everyone. Free resources for all
purchasers include source code downloads (if applicable), errata and discussion forums, all available on
the book's home page at pragprog.com. We’re here to make your life easier.

New Book Announcements
Want to keep up on our latest titles and announcements, and occasional special offers? Just create an
account on pragprog.com (an email address and a password is all it takes) and select the checkbox to
receive newsletters. You can also follow us on twitter as @pragprog.

About Ebook Formats
If you buy directly from pragprog.com, you get ebooks in all available formats for one price. You can
synch your ebooks amongst all your devices (including iPhone/iPad, Android, laptops, etc.) via
Dropbox. You get free updates for the life of the edition. And, of course, you can always come back and
re-download your books when needed. Ebooks bought from the Amazon Kindle store are subject to
Amazon's polices. Limitations in Amazon's file format may cause ebooks to display differently on
different devices. For more information, please see our FAQ at pragprog.com/#about-ebooks. To learn
more about this book and access the free resources, go to https://pragprog.com/book/jwpython2, the
book's homepage.

Thanks for your continued support,

The Pragmatic Bookshelf

The team that produced this book includes: Dave Thomas (Publisher), Janet Furlow (COO),
Susannah Davidson (Executive Editor), Katharine Dvorak (Development Editor),
Karen Galle (Copy Editor), Potomac Indexing, LLC (Indexing), Gilson Graphics (Layout)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

http://pragprog.com/
https://pragprog.com/
https://pragprog.com/
https://pragprog.com/support/#about-ebooks
https://pragprog.com/book/jwpython2
mailto:support@pragprog.com
mailto:rights@pragprog.com

Table of Contents

 Acknowledgments

 Preface
 Who Is This Book For?
 What’s in This Book?
 How to Read This Book
 A Note About the Code
 Online Resources
 Connecting

1. Getting Things in Order with Mergesort
 Merging Arrays
 Merging in Action
 The Efficiency of Merging
 Mergesort
 Mergesort in Action
 The Efficiency of Mergesort
 Comparing Mergesort and Quicksort: Lessons Learned
 Wrapping Up
 Exercises

2. Benchmarking Code
 Benchmarking
 Using the timeit Module
 Benchmarking Gotchas
 Benchmarking Sorting Algorithms
 Mergesort vs. Insertion Sort
 Mergesort vs. Quicksort
 Using Python’s Built-In Sorting Algorithm
 Quicksorting a Sorted Array

 Wrapping Up
 Exercises

3. How Random Is That?
 Randomized Quicksort
 Randomized Algorithms
 Generating Random Numbers
 TRNGs vs. PRNGs
 The Fisher-Yates Shuffle
 The Fisher-Yates Shuffle in Action
 The Efficiency of the Fisher-Yates Shuffle
 Shuffling the Wrong Way
 Binary Search Tree Randomization
 Randomization for Distribution
 Load Balancing
 Wrapping Up
 Exercises

4. Cache Is King
 Caching
 Eviction Policies
 LRU Cache
 The LRU Cache Data Structure
 Fixing the LRU Worst-Case Scenario with Randomization
 The Memory Hierarchy
 Writing Cache-Friendly Code
 Spatial Locality
 Wrapping Up
 Exercises

5. The Great Balancing Act of Red-Black Trees
 Online Algorithms and Self-Balancing Trees
 Red-Black Trees
 The Red-Black Rules
 Red-Black Tree Insertion
 The Efficiency of Red-Black Trees
 Red-Black Tree Deletion

 Wrapping Up
 Exercises

6. Randomized Treaps: Haphazardly Achieving Equilibrium
 Treaps
 Treap Insertion
 Self-Balancing Treaps in Action
 The Power of Random Priorities
 Treap Deletion
 Wrapping Up
 Exercises

7. To B-Tree or Not to B-Tree: External-Memory Algorithms
 External Memory
 Count I/Os, Not Steps
 External Binary Search
 Optimizing External-Memory Algorithms
 Binary Search Trees in External Memory
 B-Trees
 Implementing B-Trees
 B-Tree Insertion
 B-Tree Deletion
 The Balance of B-Trees
 B-Trees as Database Indexes
 Wrapping Up
 Exercises

8. Wrangling Big Data with M/B-Way Mergesort
 External-Memory Sorting
 A First Attempt: Two-Way External Mergesort
 M = Main Memory Size
 A Second Attempt at External Mergesort
 Merging K Sorted Lists
 M/B-Way Mergesort
 Wrapping Up
 Exercises

9. Counting on Monte Carlo Algorithms
 Monte Carlo Algorithms
 Monte Carlo Algorithms vs. Las Vegas Algorithms
 Obtaining Averages Through Random Sampling
 Primality Testing
 Monte Carlo Primality Testing
 Fermat’s Little Theorem
 Fermat’s Primality Test
 Wrapping Up
 Exercises

10. Designing Great Hash Tables with Randomization
 Hash Functions: A Quick Review
 Scalable Hash Functions
 The Division Method
 Randomized Hashing
 Wrapping Up
 Exercises

11. Keeping Your Text Search Sharp with a Little Rabin-Karp
 Substring Search
 Brute-Force Substring Search
 The Sliding Window Technique
 Rabin-Karp Substring Search
 Covering All Our Bases
 Perfecting Rabin-Karp with Base 26
 Handling Long Needles
 Monte-Carlo Rabin-Karp
 Converting Monte Carlo to Las Vegas
 Wrapping Up
 Exercises

12. Saving Space: Every Bit Helps
 Sets
 Boolean Arrays
 Bit Vectors
 Bit Manipulation

 Bit Masks: The Key to Zeroing in on a Bit
 Benchmarking Space
 The Space Complexity of Sets
 Classic Set Operations
 Wrapping Up
 Exercises

13. Cultivating Efficiency with Bloom Filters
 Finding Duplicates Revisited
 Bloom Filters
 Use Multiple Hash Functions
 Using Bloom Filters for Detecting Duplicates
 Bloom Filters in the Wild
 Wrapping Up
 Parting Thoughts
 Exercises

A1. Solutions
 Chapter 1
 Chapter 2
 Chapter 3
 Chapter 4
 Chapter 5
 Chapter 6
 Chapter 7
 Chapter 8
 Chapter 9
 Chapter 10
 Chapter 11
 Chapter 12
 Chapter 13

Copyright © 2025, The Pragmatic Bookshelf.

Early Praise for A Common-Sense
Guide to Data Structures and
Algorithms in Python, Volume 2
Volume 2 in this series is a comprehensive extension to the exciting
common-sense approach that this notorious topic needed. If you’re eager to
learn more and dig deeper into how the algorithms and data structures we
use daily actually work, this is the book for you!

→ Michael Pabon
Software Engineer, Discord

Jay has done it again. The second volume of A Common-Sense Guide to
Data Structures and Algorithms in Python is every bit as good as the first
(which was awesome). These are, without a doubt, the two books on the
topic everyone should own.

→ Lyndon Purcell
Software Developer, OK200 Software & Apps

Authors often lose their readers by overwhelming them from the outset with
details and mathematical proofs. In contrast, this book adopts an alternative
pedagogical approach. Readers are first introduced to the gist of an
algorithm or data structure using cleverly designed illustrations, a hallmark
of Jay’s work. Once the reader is adequately prepared, Jay discloses the
intricate details and edge cases, laying the grounds for code
implementation. This approach shines throughout the book, particularly in
the chapter on red-black trees, which is a masterpiece, demonstrating how a
complex subject can be taught with clarity and effectiveness.

→ Ahmad Shahba

Lead Software Engineer, Science Systems and Applications, Inc.

I am such a huge fan of this book as a self-taught developer. It takes a very
tricky topic and makes it easy to understand and fun to learn.

→ Fiohann Shanahan-Dover
Software Developer

Jay sets himself apart as an excellent teacher and author by making a rather
complex and obtuse subject (one that is very much needed in a software
creation professional’s arsenal) very approachable and enjoyable to study
while still going deep.

→ Paa JAKE
Test Engineer, tech11

This book explains complex data structure concepts in a very simple and
approachable way. You’ll experience many "aha!" moments when you read
this book.

→ Praween Kumar
Software Engineer, Cigna

Acknowledgments

Putting together a book like this is truly a team effort. I may have written
the words, but it was the team who edited, reviewed, illustrated, designed,
and marketed the book—plus all those who supported me throughout the
entire process.

To my wife, Rena, you already knew what was involved with writing a
book like this, and you still supported me in writing another one. Your job
was much harder than mine; thank you for everything.

Thank you to my precious children: Tuvi, Leah, Shaya, Rami, Yechiel, and
Kayla; thank you for just being the best kids ever. However, I still can’t
understand why you don’t want me to read my book to you at bedtime.

To my parents, Mr. and Mrs. Howard and Debbie Wengrow, thank you for
your constant support and cheerleading, as well as for having sparked my
interest in computer programming in the first place. You’ve always been
there for me every step of the way.

To my wife’s parents, Mr. and Mrs. Paul and Kreindel Pinkus, thank you for
your encouragement and wisdom. It always meant so much that you had my
book on display in your home for such a long time.

The staff at the Pragmatic Bookshelf has always been fantastic to work
with, and I can’t imagine why anyone would write a book for another
publishing company.

Thank you to my amazing editor, Katharine Dvorak, for taking this book to
the next level. Your insightful suggestions and ideas have given this book
the structure and flow that make it easy to read. I appreciate your patience
and dedication in carefully reviewing each and every line of a very large,
technical book.

This book wouldn’t be much without its illustrations. Thank you to Chaya
Donninger and Jeff Stienstra for taking my pencil sketches and turning
them into beautiful visuals. Your graphic art skill and expertise really shine
through. You’ve also been very patient with me as I’ve asked for multiple
revisions of images as I change my mind about how they should look.

Thank you to the tech reviewers who have helped perfect this volume. I’m
so appreciative of your help and have incorporated many of your
suggestions into the manuscript: Connor Baskin, Chinmaya Bhondwe, Felix
Bossio, Gail Eddy, Tzvi Friedman, Tamanna Grover, Sruli Herbst, Paa
JAKE, Praween Kumar, Avraham Meyers, Michael Pabon, Nathan Pena,
Lyndon Purcell, Cody Rutt, Abraham Sangha, Brian Schau, Ahmad Shahba,
Fiohann Shanahan-Dover, Zach Siglin, Marcelo Juan Surco Salas, and
Mihai Visan.

Finally, a special thank you is due to all the readers of my previous books.
Because of your positive feedback, I felt confident that a sequel would be
well received.

Thank you, everyone, for making this sequel a reality!

Copyright © 2025, The Pragmatic Bookshelf.

Preface

The days of slow software are long gone. People expect their technology to
be fast, and I mean really fast. According to one study, more than half of
mobile website users will abandon a site if it takes more than three seconds
to load. Another study reports that for every second a web page takes to
load, user satisfaction goes down by 16 percent.

At the same time, people also want their technology to fit on even the
smallest of devices. Whether it’s a smartphone that fits easily into your
pocket or a smartwatch that fits on your wrist, people want to bring their
computers wherever they go. And they don’t want these devices to be any
less capable than a full-fledged desktop computer. However, to get apps to
work on such small devices, those apps must consume the least memory
possible.

The key to writing software that’s both fast and memory-efficient is the
mastery of data structures and algorithms. Designing the “right” algorithm
usually involves a combination of knowledge, ingenuity, and persistence.
This book is where you’ll gain the knowledge.

As you may have gathered from the title, this volume is the second in a
series. In A Common-Sense Guide to Data Structures and Algorithms in
Python, Volume 1, I covered the foundational concepts. If you’ve read that
volume or already know the concepts therein, you already know a lot! But
now it’s time to level up. Not only will you learn a wide variety of new

algorithms and data structures, but you’ll also become more sophisticated in
algorithmic analysis and design.

There are already books written on these subjects. However, if you’ve read
any of them, you may have encountered the same problem I did: they’re
hard to understand! It’s not just you—I can find myself reading and
rereading the same paragraph in such a book many times before I get an
inkling of what’s going on. Many a developer has given up trying to learn
these concepts, feeling incapable of grasping such complex ideas.

But here’s the thing. Yes, these concepts are complex. But every complex
concept is made up of a combination of simple concepts. It’s not beyond
anyone to master data structures and algorithms. The subject just needs to
be taught correctly.

That’s the entire point of this book. I’ve pulled every thread from the
tapestry of each complex concept and laid them all out for you. By
presenting each thread individually and in the correct sequence, I’ll teach
you these ideas so that you’ll grasp them easily and clearly. Critically, there
are literally hundreds of diagrams, all clear and beautiful, which will help
clarify each concept for the visual learner. Finally, you’ll have a lot of fun
along the way. I write in an informal style and crack jokes whenever my
editor lets me. Sometimes, the jokes are even funny.

Who Is This Book For?
You may be a professional software engineer of any experience level, a
budding computer science student, or a code hobbyist. No matter what box
you fit into, if you already know the basics of data structures and algorithms
and want to level up, this is the book you’re looking for.

If you’ve already read Volume 1 of this book, you’re ready to dive into this
book. (And, welcome back!)

If you haven’t read Volume 1, I won’t take it personally. However, you do
need to be pretty familiar with certain topics to comprehend this volume.
The topics, in alphabetical order, are these:

Arrays
Big O notation for time and space complexity
Binary search
Binary search trees
Hash tables
Heaps
Recursion
Sorting algorithms (the gist of Selection Sort and Quicksort)

In any case, I make many direct references to Volume 1 throughout this
volume, so you can always gain more context if you need to.

What’s in This Book?
In this volume, I don’t simply cover a laundry list of additional data
structures and algorithms. Yes, I cover those too, but the main focus of this
book is to help you become more proficient in the analysis and design of
algorithms.

Specifically, you’ll find that there are three main themes that are threaded
throughout this volume:

1. Going beyond Big O. While Big O notation is a useful and even crucial
tool for algorithmic analysis, it has some significant limitations when
applied to the real world. I’ll show you where Big O notation falls
short and how to use benchmarking and other forms of analysis to
ensure that your code will truly be efficient in real life.

2. Randomization. There are many components you can integrate into an
algorithm you’re designing. One of the most useful but perhaps
surprising of these components is randomness. We begin with the
basics of randomization algorithms and then see how they can make
your code more efficient in a wide variety of scenarios.

3. Hardware. An all-too-often overlooked factor in algorithm design is
how your computer’s hardware setup can impact the efficiency of your
code. Sure, in an academic vacuum, how much memory your computer
has shouldn’t affect the Big O classification of an algorithm. However,
in truth, a computer’s hardware can have a significant impact on how
fast your code will perform when you run it.

With regard to specific data structures and algorithms, here’s a list of some
of them that you’ll encounter. I’ve listed them in the order in which they’re
presented in the book:

Mergesort
Fisher-Yates Shuffle
Load balancing with the power of two choices
LRU caches
Red-black trees
Randomized treaps
External-memory algorithms
B-trees
Merging K sorted lists
M/B-Way Mergesort
Monte Carlo algorithms
Random sampling
Fermat’s Primality Test
Randomized hashing
Hash function families
Rabin-Karp substring search
Sliding-window technique
Boolean arrays
Bit vectors
Bit manipulation
Bloom filters

In addition, each chapter contains exercises that will help you practice
everything you’ve learned. Solutions to each exercise can be found at the
back of the book.

A handful of exercises are special. You’ll see that I marked some as being a
“Puzzle” or “Exploration” or the like. You aren’t expected to know the
answer even if you’ve mastered the chapter. Instead, they ask you to apply
ingenuity and see if you can stretch yourself even further. Occasionally, I’ll
also mark an exercise as a “New Concept” if I’ll be teaching a brand-new
idea in the associated solution.

How to Read This Book
In short, this book was designed to be read in order.

This isn’t a book containing a hodgepodge of topics. I’ve painstakingly
built up the concepts so that each chapter builds upon the previous one, and
there’s a kind of storyline arc that carries you through the book.

You might be able to skip to a chapter of interest, but you run the risk of not
catching every bit of nuance since I’ll have assumed that you read the
previous chapters. Of course, after you’ve read the book once, you should
be able to reread any chapter you wish for reference.

The exceptions are Chapters 7 and 8, which serve as a bit of a side quest.
You could technically skip those and come back to them later if you’d like.

A Note About the Code
I strived to follow PEP 8 standards (for the most part) and write the code in
such a way that it runs on Python Version 3.

That being said, I want to emphasize that the concepts in this book apply to
virtually all coding languages, and I expect that some people who are not as
familiar with Python will be reading this book. Because of this, I’ve
sometimes avoided certain Python idioms that I thought would utterly
confuse people coming from other languages. It’s a tricky balance to keep
the code Pythonic while also being welcoming to non-Python coders, but I
hope that I’ve maintained an equilibrium that satisfies most readers.

Virtually all the code in this book can be downloaded online from the
book’s web page. This code repository contains automated tests, too! I
encourage you to check out the tests, as they are not included in the actual
book and can help clarify how to run the main modules.

You’ll find some longer code snippets under the headings that read “Code
Implementation.” I certainly encourage you to study these code samples,
but you don’t necessarily need to understand every line to proceed to the
next section of the book. If these long pieces of code are bogging you
down, just skim (or skip) them for now.

Finally, it’s important to note that the code in this book is not production-
ready. My greatest focus has been to clarify the concept at hand, and while I
did also try to make the code generally complete, I have not accounted for
every edge case and optimization. There’s certainly room for you to
optimize the code further—so feel free to go crazy with that.

Online Resources
You can find more information about the book, download the source code
for the code examples, and help improve the book by reporting errata,
typos, and content suggestions on the book’s web page.[1]

Additionally, I post updates about my writing at my website.[2] There, you
can find more information about my books as well as video tutorials made
by my colleagues and me in which we use the “common-sense” approach to
explain all sorts of technologies and concepts. In particular, you might
enjoy my Jay vs. Leetcode[3] video series, where I solve programming
puzzles using many of the techniques discussed in this book.

[1]

[2]

[3]

[4]

Connecting
I enjoy connecting with my readers and invite you to find me on LinkedIn.
[4] I’d gladly accept your connection request—just send a message that
you’re a reader of this book. I look forward to hearing from you!

Footnotes

https://pragprog.com/titles/jwpython2

https://commonsensedev.com

https://www.commonsensedev.com/jay-vs-leetcode

https://www.linkedin.com/in/jaywengrow

Copyright © 2025, The Pragmatic Bookshelf.

https://pragprog.com/titles/jwpython2
https://commonsensedev.com/
https://www.commonsensedev.com/jay-vs-leetcode
https://www.linkedin.com/in/jaywengrow

Chapter 1

Getting Things in Order with
Mergesort

One of the most fundamental concepts central to understanding data
structures and algorithms is understanding time complexity. A Common-
Sense Guide to Data Structures and Algorithms in Python, Volume 1
discussed this at great length, placing heavy emphasis on the use of Big O
notation as a tool for articulating the speed of algorithms. Volume 2 takes
things to the next level and adds more nuance to the conversation of time
complexity. You’ll learn that while counting an algorithm’s steps and Big O
serve as an important model for measuring time complexity, that’s not the
full story. This is because there are additional factors that can affect an
algorithm’s “true” speed. In this chapter, we’ll take a look at one of those
factors.

We’ll also contrast two of the most famous “fast” sorting algorithms—
Quicksort and Mergesort—and use the contrast to tease out the limits of the
Big O model. Quicksort was covered in Volume 1, Chapter 13, and
Mergesort is the main focus of this chapter. We’ll look at basic array merges
and then discover how they form the backbone of Mergesort. From there,
we’ll have an important conversation about algorithmic trade-offs. Finally,
you’ll discover how the counting-steps model is not the end-all of
determining an algorithm’s true speed.

Ready? Let’s dive in.

Merging Arrays
Mergesort sorts arrays by relying on another more basic algorithm known
as merging arrays, or simply merging, for short. In this context, to merge
arrays means to take two arrays that are already sorted, copy all of their
values into a third array, and end up with the third array also completely
sorted. Let’s look at a basic example.

Let’s say we have the arrays [3, 4, 7, 8] and [1, 2, 5, 6]. Note that each array is
already sorted. I can’t emphasize this enough: merging arrays only works if
the arrays are already sorted.

The goal of merging is to take all of the values from both arrays and copy
them into a third array, which will contain all the values in sorted order. The
result of merging these two arrays will be: [1, 2, 3, 4, 5, 6, 7, 8].

The following diagram shows the finished product of a merge:

The merging algorithm follows these steps:

1. Initialize a “left pointer” and have it point to the first index of the left
array.

2. Initialize a “right pointer” and have it point at the first index of the
right array.

3. Create a third, empty array. This will be the “merged” array. By the
end, the merged array will contain all the values from the left and right

arrays in sorted order.

4. Run a loop until either the left pointer or the right pointer reaches the
end of its array. Within the loop, do the following:

1. Compare the value of the left pointer with the value of the right
pointer and determine which value is lower;

2. Take the lower value and append it to the merged array;

3. Whichever pointer was pointing to the lower value gets
incremented so that it points to the next index of its array. (If at
any point the two values we’re comparing are equal, we can
arbitrarily append the value of the left array and move its pointer
along.)

5. Once the loop is complete, either the left or right array will be
“unfinished” in that it will still have values that were not yet copied to
the merged array. This triggers the “final phase” of the algorithm.

6. Final phase: take all the remaining values of the “unfinished” array and
append them, in order, to the merged array.

Let’s now take a look at the merge algorithm in action, using an example.

Merging in Action
The following diagram represents the arrays we want to merge. Note that
the left and right pointers point to the beginning of each of their respective
arrays. The merged array starts out as empty:

Now, let’s walk through the process of merging them. Each of our “steps”
will consist of two parts. Part A appends a value to the merged array, while
Part B consists of moving either the left or right pointer.

Step 1A: First, we compare the left pointer’s value to the right pointer’s
value. We take whichever value is lower and append it to the array. In this
case, the 1 is lower, so we append the 1:

Step 1B: Because we appended a value of the right pointer, we now
increment the right pointer so that it points to the next value of the right
array:

Step 2A: We compare the left pointer’s 3 with the right pointer’s 2. Because
2 is lower than 3, we append the 2 to the merged array:

Step 2B: Since we once again appended a value belonging to the right
pointer, we move the right pointer another notch rightward:

To expedite the remainder of this walkthrough, I’m only going to show
visuals for the appends, that is, Part A of each step. I’ll still mention the
pointer movements (Part B), but won’t show them in a dedicated diagram.

Step 3: We compare the values of the two pointers. The 3 is lower, so we
append it to the merged array:

Accordingly, we’ll move the left pointer along.

Step 4: We compare the 4 with the 5. We append the 4 to the merged array
because it’s lower:

This means we’ll also increment the left pointer again.

Step 5: We now compare the 7 with the 5. The right pointer’s 5 is lower, so
that’s the value we add to the merged array:

At this point, we’ll move the right pointer one notch rightward.

Step 6: Next, we compare the 7 with the 6. We copy the 6 to the merged
array:

The 6 came from the right pointer, so we move that pointer another notch to
the right.

Step 7: This is a noteworthy step because the right pointer has now moved
beyond the end of the right array. This means we no longer need to perform
any comparisons since we’ve exhausted all the values from the right array.

This triggers the final phase of the merge algorithm, in which we simply
take all the values of the remaining array (in this case, the left array) and
append each one to the merged array. So let’s go ahead and append the 7 to
the merged array:

Step 8: Similarly, we append the 8 to the merged array:

The merge algorithm is now complete! The merged array contains all the
values from the left and right arrays, and is also sorted.

The Efficiency of Merging
Let’s analyze how many steps merging takes. If we consider N to be the
total number of values of both the left and right arrays combined, then there
are at most about 2N steps. Here’s why.

In the previous example, N is 8 because between the left and right arrays,
there was a combined total of 8 values. Now, we take N steps to copy each
of the N values into the merged array. In addition to the copy steps, we also
perform comparison steps when we compare the values at the left and right
pointers. In the previous example, we ended up making 6 comparisons.
(The final two values of the left array didn’t require a comparison since no
comparisons take place during the final phase.) In a worst-case scenario,
though, we’d have to make a comparison for all N values save for the last
one.

When we add up our N copies and N-1 comparisons, we end up with 2N-1
steps. In terms of Big O notation, this reduces to O(N). As algorithms go,
merging is very fast.

Now, here’s a little spoiler regarding Mergesort, the algorithm we’re leading
up to. Mergesort itself is considered a very fast sorting algorithm. The
reason is that the primary operation that Mergesort performs is merging,
and merging itself is a super-fast algorithm, as you’ve seen.

Returning to our analysis of merging, it’s worth noting that merging takes
O(N) space. This is because we created a brand-new array and copied all
the values into it. We’ll look at the ramifications of this in a little bit.

Merging a Single Array
Imagine you want to sort the following array: [3, 4, 7, 8, 1, 2, 5, 6]. Are there
any shortcuts we can take to sort this array?

While contemplating this, do you also notice anything familiar about this
array?

If you look closely, you’ll see that while the array as a whole is unsorted,
each half of the array on its own is sorted. In fact, this array contains the
same values as our prior merging example. We can take incredible
advantage of this unique situation to sort the entire array in just O(N) time.

To accomplish this, all we need to do is treat each half of the array as if they
were separate arrays, and merge them together! And this will take O(N)
time since, as we’ve seen, merging has a time complexity of O(N).

I call this process “single-array merging” (not an official term), and it is the
guts of Mergesort, as you’ll soon see. I won’t demonstrate single-array
merging since it’s essentially the same process we’ve already walked
through.

I refer to this as single-array merging because typically, merging involves
two arrays. Here, however, we start with a single array. The merge happens
when we split this array into halves and then merge all the data back
together again. As we’ve seen, this effectively sorts the array. And again,
this only works if the two individual halves already happen to be sorted
beforehand.

Tweaking Single-Array Merging
You’ve now seen that single-array merging is a fast way to sort a specific
kind of array, namely, one whose two halves are already sorted.

However, we’re now going to make a subtle tweak to single-array merging.
In truth, we don’t have to make this tweak, but we’ll do so since the
computer science literature does so, for a reason that I’ll explain.

Generally, any given algorithm can come in a number of variants, and
Mergesort is no exception. Each algorithm typically has a “classic” version

and a number of variants that optimize the algorithm in different ways.

One way to divide a sorting algorithm into two variants is as follows: a
sorting algorithm can either sort the original input array, or it can produce a
brand-new array that contains all the data in sorted order. Usually, the
“classic” version of a sorting algorithm does the former; it sorts the original
input array itself.

In this chapter, our focus will be on “classic” Mergesort, which sorts the
original array. Because of this, classic Mergesort makes the following
tweak to single-array merging.

Instead of dividing the single array and merging the two halves into a
brand-new merged array, we’re going to merge the data so that the original
array itself gets sorted. As you’ll see momentarily, we’ll accomplish this by
first copying the data elsewhere and then merging the data back into the
original array.

First, we make copies of each half of the single array, creating two brand-
new smaller subarrays:

Then, we merge these two “copies” and put the merged data back into the
original array by overwriting all the original values:

In other words, our first version of single-array merging didn’t copy any
data before performing the actual merge. We simply merged the two halves
of the array into a brand-new array. With this new tweak, however, we first
make copies of the two halves and only then merge the data. And in this
tweaked version, when we do merge the data, we merge it back into the
original array, overwriting its old values.

It’s striking that we have to perform an extra N steps for this “tweaked”
merge. That is, in our original version of merging, we spent N steps
appending the merged data to a brand-new merged array. However, with our
tweak, we first spend N steps copying the data and then another N steps
overwriting the original array with the merged data.

So, because our original version takes, at most, 2N-1 steps, this tweaked
version takes 3N-1 steps. Luckily, this is still considered fast and is also
considered O(N).

Again, the reason for this tweak is somewhat arbitrary; we did it to look at
Mergesort in its most classical form before moving on to any of its variants.
As I’ve said, the reason why the classical Mergesort algorithm does this is
because it can thereby sort the original array, which is what classical sorting
algorithms tend to do. The variant of Mergesort that uses our original
version of merging, on the other hand, doesn’t sort the original array but
instead produces a brand-new array that’s sorted.

Code Implementation: Single-Array Merging
In any case, we’re going to run with this tweaked version of merging.
Before we look at all of the code, let’s first focus on the method signature:

 def merge (copy_of_left_half, copy_of_right_half, original_array):

We call merge on a single array like the one we had before, namely, [3, 4, 7, 8,

1, 2, 5, 6]. That is, this method is designed to work on an array that has two
sorted halves, even though the array as a whole is unsorted. If you’re

wondering why such a method is useful, given that such an array is pretty
rare, the answer will become clear when I reveal the entire Mergesort
algorithm.

To use our method, we’ll pass in the original array, which is the method’s
third argument. But, we’ll also first make a copy of each half of the array,
and pass those in as the copy_of_left_half and copy_of_right_half arguments.
Here’s an example of how we’ll call this method:

 array = [0, 2, 5, 6, -1, 6, 7, 9]

 midpoint = len(array) // 2

 copy_of_left_half = array[:midpoint]

 copy_of_right_half = array[midpoint:]

 mergesort.merge(copy_of_left_half, copy_of_right_half, array)

It might seem strange that we have to make copies of the left and right
halves before calling the merge method. After all, can’t the merge method do
that itself? Once it receives the original_array, it should be able to make
copies of the two halves. Again, the answer to this will become clear when
we reveal the entire Mergesort algorithm. (Don’t worry—we’ll get there
soon!)

Now, let’s get to the meat of the merge method. Here’s the complete code:

 def merge (copy_of_left_half, copy_of_right_half, original_array):

 left_pointer = 0

 right_pointer = 0

 array_pointer = 0

 while left_pointer < len(copy_of_left_half) \

 and right_pointer < len(copy_of_right_half):

 if copy_of_left_half[left_pointer] <=
copy_of_right_half[right_pointer]:

 original_array[array_pointer] = copy_of_left_half[left_pointer]

 left_pointer += 1

 else : # the value at right pointer is greater than the left
pointer

 original_array[array_pointer] =
copy_of_right_half[right_pointer]

 right_pointer += 1

 array_pointer += 1

 # Append any remaining elements from the left half

 if left_pointer < len(copy_of_left_half):

 original_array[array_pointer:] = copy_of_left_half[left_pointer:]

 # Append any remaining elements from the right half

 if right_pointer < len(copy_of_right_half):

 original_array[array_pointer:] = copy_of_right_half[right_pointer:]

Let’s walk through this code one piece at a time.

First, we set up our left and right pointers to start at index 0. We also
initialize an array_pointer which points to index 0 of the original_array. We’ll
need this since we’re going to be overwriting the values of the original_array,
and this pointer will point to the index that we’re going to overwrite.

The next bit of code then begins a loop that lasts as long as neither the
left_pointer nor the right_pointer has reached the end of their respective
arrays.

 while left_pointer < len(copy_of_left_half) \

 and right_pointer < len(copy_of_right_half):

So, as soon as either pointer reaches the end of its array, this loop will
terminate.

We then compare the value at the left_pointer with the value at the
right_pointer. If the left_pointer’s value is the lower one (or the two values are
equal), the left_pointer’s value gets copied to the original_array at whatever
index the array_pointer is at. We also increment the left_pointer by 1:

 if copy_of_left_half[left_pointer] <= copy_of_right_half[right_pointer]:

 original_array[array_pointer] = copy_of_left_half[left_pointer]

 left_pointer += 1

Note that this overwrites a value from the original_array.

If, on the other hand, the right_pointer’s value is lower, we copy it to the
original_array and increment the right_pointer:

 else :

 original_array[array_pointer] = copy_of_right_half[right_pointer]

 right_pointer += 1

In either case, we then increment the array_pointer so it’s ready to overwrite
the original_array’s next value:

 array_pointer += 1

Once the loop is done, either the copy_of_left_half or copy_of_right_half has at
least one value in it that we didn’t yet process. So, we begin the final phase.
In the following code, we append the remaining values from the
“unfinished” array:

 if left_pointer < len(copy_of_left_half):

 original_array[array_pointer:] = copy_of_left_half[left_pointer:]

 if right_pointer < len(copy_of_right_half):

 original_array[array_pointer:] = copy_of_right_half[right_pointer:]

Note that only one of these two conditional statements will be triggered
since only one pointer will be past its array.

And that’s all there is to single-array merging!

In a vacuum, sorting a single array using merging seems to be pretty moot.
After all, it only works in a very specific case where an array happens to
have its two halves perfectly sorted. How often would we encounter such an
array? And how would our program even know that it’s dealing with such
an array? If only we could somehow ensure that the array we’re sorting is
such an array.

Well, reader, we can.

Mergesort
With Mergesort, you can make sure that your array contains two sorted
halves before it performs a single-array merge, thereby sorting the array.

First, we’ll look at the steps of the Mergesort algorithm, and then we’ll
walk through an example. The recursion may seem intimidating at first, but
I assure you that the diagrams will clarify everything.

Let’s do it!

Here are the steps:

1. Create two new arrays. One is a copy of the array’s left half, and the
other is a copy of the array’s right half.

2. Recursively perform Mergesort on the left copy. (Indeed, we’re
already in the middle of Mergesort right now; that’s recursion for you.)
The base case is when the array we perform Mergesort on contains one
element or fewer.

3. Recursively perform Mergesort on the right copy. (The base case is the
same as the previous step.)

4. Merge the left and right copies back into the original array.

That’s pretty much it! Let’s now visualize this algorithm.

Mergesort in Action
Assume that we want to sort the array [8, 4, 3, 7, 6, 1, 2, 5]. Note that this is not
the type of array whose two halves are already sorted. In fact, it’s a
complete mess.

Step 1: First, we make copies of the two halves of the array:

Step 2: We recursively perform Mergesort on the left copy. In code, this
would be written as mergesort([8, 4, 3, 7]). This, in turn, will make copies of
the two halves of [8, 4, 3, 7]:

Step 3: We recursively perform Mergesort on the left copy (which I’ll call
left half going forward). This means we call mergesort([8, 4]), and thereby
create two new subarrays, [8] and [4]:

Step 4: We recursively Mergesort (yes, I’m making it a verb now) the [8].
Since it’s the base case of an array of size 1, we don’t do anything else
within this call, and mergesort([8]) is completed.

The reason why a single-element array is the base case is because a single
element is, by definition, sorted! (After all, it’s certainly not unsorted,
right?) As such, we mark the [8] as sorted:

Step 5: We now Mergesort the right half of [8, 4] by calling mergesort([4]).
The [4], too, is an array of size 1, so it is considered sorted:

Step 6: With mergesort([8]) and mergesort([4]) complete, we now proceed to
the next step of the mergesort([8, 4]) call, which is to merge the two halves:

Note that the 4 and 8 are now sorted relative to each other.

Step 7: We’ve completed mergesort([8, 4]), which brings us back to call
mergesort([8, 4, 3, 7]). We’ve already Mergesorted the left half, so now we
Mergesort the right half and call mergesort([3, 7]):

Now, you and I both know that [3, 7] is already sorted, but the computer
doesn’t know that yet since it doesn’t have eyeballs.

Step 8: We Mergesort the left half of [3, 7] by calling mergesort([3]). This is a
base case, so the [3] is now sorted:

Step 9: We then Mergesort the right half of [3, 7] by calling mergesort([7]).
This, too, is a base case, so mergesort([7]) is complete:

Step 10: Now that mergesort([3, 7]) has Mergesorted both its left and right
halves, we now merge the halves together:

Step 11: This is where things get exciting. We’re back within the call of
mergesort([8, 4, 3, 7]). We’ve already Mergesorted its left half. And we’ve
already Mergesorted its right half. This means we get to merge the two
halves together. Boom!

The [3, 4, 7, 8] is now sorted.

Step 12: We’ve completed Mergesorting the left half of our original array [8,

4, 3, 7, 6, 1, 2, 5]. Now, it’s time to Mergesort the right half, [6, 1, 2, 5]:

Step 13: We Mergesort the left half of [6, 1, 2, 5] by calling mergesort([6, 1]):

Step 14: We Mergesort the left half of [6, 1], calling mergesort([6]). This is a
base case, so the call ends abruptly:

Step 15: We Mergesort the right half of [6, 1] by calling mergesort([1]):

Step 16: We’re done sorting the two halves of [6, 1], so we now merge them:

Step 17: We’re back to mergesort([6, 1, 2, 5]). Since we completed
Mergesorting its left half, we now proceed to Mergesort its right half with
mergesort([2, 5]):

Step 18: We Mergesort [2]:

Step 19: We Mergesort [5]:

Step 20: We merge the two halves together:

Step 21: We’re back at mergesort([6, 1, 2, 5]). We’ve Mergesorted both halves,
so we now merge the two halves together. Boom!

Step 22: Okay, we’re at the climax now. We’re back at our original call of
mergesort([8, 4, 3, 7, 6, 1, 2, 5]). We’ve Mergesorted both halves of the array.
You know what this means, right?

BOOM! Our original array is now completely sorted.

Code Implementation: Mergesort
Here’s the code for Mergesort. It’s surprisingly concise:

 def mergesort (array):

 if len(array) <= 1: return

 midpoint = len(array) // 2

 copy_of_left_half = array[:midpoint]

 copy_of_right_half = array[midpoint:]

 mergesort(copy_of_left_half)

 mergesort(copy_of_right_half)

 merge(copy_of_left_half, copy_of_right_half, array)

First, the call simply ends abruptly if the size of the array is 1 or lower.
Again, this is the base case.

Next, we make copies of the left and right halves. After that, we Mergesort
the left half, and after that, we Mergesort the right half. Finally, we merge
the two halves using our merge function from earlier in this chapter.

And that’s it!

The Efficiency of Mergesort
Let’s figure out the efficiency of Mergesort. To help with this, we’ll first
look at Mergesort from a bird’s-eye view, as this will put everything in
perspective.

Here’s a visual that shows the entire Mergesort process in one fell swoop. I
removed all of the array data since it’s not relevant to our analysis.

Looking at the diagram, notice that the original array is repeatedly broken
down into halves until we’re eventually left with single-element arrays.
Note that there are 3 “levels”; that is, for this array of size 8, it takes 3
halvings until we break up the array into single-element subarrays.

In more general terms, when you have an array that is size N, it takes log N
halvings until the array is completely broken down into single-element
subarrays. This may be more intuitive if you recall our unique definition of
log N from Volume 1, Chapter 3. That is, log N is the number of times it
takes to halve N until we arrive at 1. In our example, where N is 8, log N is
3, and that’s why we end up with 3 levels in the diagram.

Next, let’s take a look at the order in which the mergesort function is called
on each of these subarrays.

There are 15 such calls:

Also of interest is the order in which the merges take place:

When we contrast the two previous diagrams, we see that the order of
merges is different than the order of mergesort function calls.

All in all, there are 7 merges. Merges 1, 2, 4, and 5 all take place at Level
#3. Merges 3 and 6 operate on all four subarrays at Level #2, and Merge 7

merges the two subarrays of Level #1.

The Time Complexity of Mergesort
Let’s get down to brass tacks. How fast is Mergesort?

To break this down, let’s analyze how many steps take place relative to the
N elements of the original array that we’re sorting. Using the “levels”
concept we demonstrated in the previous visuals, we find that each level
contains N elements, and that we perform merges on all N elements at each
level.

The following diagram highlights this point:

So, in our example, where the original array was of size 8, we end up
merging 8 elements 3 times. That is, there are 3 levels, and on each level,
we merge 8 elements. While it’s true that we perform a different number of
merges at each level, it doesn’t change the fact that the number of elements
being merged remains the same at each level. That is, we may perform 4
merges at Level #3 and only 2 merges at Level #2, but at both levels, we
merge 8 elements.

To generalize this in terms of N, we’d say that we perform merges on N
elements multiplied by the number of levels. Given that for N elements there
are log N levels, we can conclude that we merge a total of N log N elements
since:

N elements * log N levels = N log N merged elements.

Now, Mergesort’s primary operation is to perform merges; it doesn’t do
much else. And we’ve already established that merging N elements takes N
steps. In other words, a merge takes one step per element being merged.
Therefore, since Mergesort merges a total of N log N elements, this means
that Mergesort takes N log N steps. In Big O, we’d say that Mergesort takes
O(N log N) time.

In truth, I noted earlier that a single-array merge can take about 3N steps
when we factor in the extra copying of data (plus the first copying and the
comparisons). Accordingly, Mergesort may take 3N log N steps. However,
this still reduces down to O(N log N).

Next up, let’s analyze how much memory Mergesort consumes.

The Space Complexity of Mergesort
Mergesort’s memory consumption occurs when the mergesort function
makes copies of the array it’s sorting:

 copy_of_left_half = array[:midpoint]

 copy_of_right_half = array[midpoint:]

Again, the code makes a copy of the array’s left and right halves, which in
total takes up the same amount of space as the array itself. Essentially, in
addition to the array itself, we have a copy of it as well. Furthermore, these
copies aren’t made just once. Each call of mergesort copies whatever array
it’s acting upon.

To figure out how much extra space Mergesort takes in total, recall that
each call of Mergesort recursively calls itself on the left and right copies
after creating them:

 mergesort(copy_of_left_half)

 mergesort(copy_of_right_half)

Let’s walk through some of the Mergesort steps again and keep track of
how many array copies are kept in memory at a given time.

When we first call mergesort on the original array, we create copies of the
original array’s left and right halves. The copies are highlighted in the
following image:

These copies store an extra N elements in memory, which, in our example,
is an additional 8 elements.

We then call mergesort on the left copy, which makes copies of itself:

This means we have to store yet another N/2 elements. That is, N is 8, and
we’ve created another 4 elements.

Then, we call mergesort yet again, this time on a copy of a copy:

We create another N/4 elements.

When we unwind the recursion call stack, some of these copies start to
disappear, but then new ones are made. For example, if you jump ahead a
few steps in the Mergesort algorithm, you’ll see that we have the following
set of copies:

So, in this example, we have at most N+(N/2)+(N/4) copied elements at a
given time. If we try plugging in different examples of N, we’ll find that
this always comes out to be 2N-2 extra elements.

Here are a few examples.

In our example, N is 8, so 2N is 16, and we store an extra 14 elements. This
is 2N-2.

If N is 16, we end up with 4 levels of halvings. At a given time, we’ll have
N+(N/2)+(N/4)+(N/8) extra elements, which totals 30 elements, which is
also 2N-2 (since 2N is 32).

Similarly, if the original array contains 64 values, the total number of extra
elements comes out to be 126. Again, this ends up being 2N-2.

Beyond the extra copies, recursion itself takes up additional space since the
computer has to keep the call stack in memory. This was discussed in
Volume 1, Chapter 19. In our case, this amounts to log N units of memory
since we have to keep track of up to log N levels at most. Relative to 2N-2,
or even N alone, log N is pretty negligible.

Rounding things off, it emerges that Mergesort takes about 2N extra units of
space beyond the original array. When it comes to Big O notation, though,
this reduces to O(N).

Comparing Mergesort and Quicksort: Lessons
Learned
We now arrive at a pivotal question. Which sorting algorithm is better,
Mergesort or Quicksort? Quicksort was the fastest sorting algorithm we
covered in Volume 1, but let’s look at how Mergesort measures up to it. (To
follow this discussion, you don’t need to remember all the nitty-gritty
details of Quicksort; I’ll remind you of the pertinent facts.)

As discussed in Volume 1, Quicksort has an average speed of O(N log N).
Now, given that Mergesort also runs, on average, in O(N log N) time, it
would seem at first glance that the two algorithms are equally fast. In
reality, though, Quicksort is faster than Mergesort in what I call actual time.

I use the term actual time to refer to time as measured in minutes and
seconds, and not Big O Notation. A major theme of this volume is that
although time complexity can be measured in terms of Big O and counting
steps, we shouldn’t ignore the classic definition of time completely.

So, Quicksort and Mergesort have the same time complexity in terms of Big
O. However, in actual time, the reality is that for the same N elements,
Quicksort takes fewer seconds to run than Mergesort does.

Why is this so?

Not All Steps Are Created Equal
One potential explanation for why Quicksort is faster than Mergesort in
actual time is that while Mergesort is O(N log N) in terms of Big O
notation, we saw earlier that it takes about 3N log N steps. If we look back
at our analysis of Quicksort in Volume 1, we find that Quicksort takes
closer to N log N steps.

However, this answer isn’t so simple. First, while our implementation of
Mergesort earlier took 3N log N steps, there are other variants that take
closer to 2N log N steps.

On the flip side, while Quicksort seems to take just N log N steps, that’s
only limited to a best-case scenario where the pivot value keeps ending up
smack in the middle of the array. However, in more typical cases, computer
scientists have found that Quicksort generally takes closer to 2N log N
steps.

So, now we have a real puzzle. If the fastest variants of Mergesort and
Quicksort both take around 2N log N steps in average scenarios, why is
Quicksort faster? To make things even more puzzling, computer scientists
report that the most efficient variants of Quicksort are from two to three
times faster than the most efficient variants of Mergesort!

This brings us to our first major lesson, which is going to stir things up.

We see that even when two algorithms take the same number of steps, one
algorithm can still be significantly faster than the other in actual time.

In other words, not only can two algorithms have the same Big O but
different speeds in actual time, but even if the two algorithms have the same
number of steps, one algorithm may still get the job done more quickly.

This can be true for a variety of reasons. One reason has something to do
with a concept called spatial locality. We’ll explore this idea further in
Chapter 4.

However, let’s focus on another particular reason for now.

What we consider a single “step” in a high-level language like Python may
consist of numerous steps in the lower-level processes of the computer. A
computer breaks high-level code down into low-level code, generally called

machine code, and one step in Python might involve 10 steps of machine
code.

Because of this, different types of Python steps can have varying speeds.
For example, it’s possible that a Python step that compares two values will
create three machine-code commands, while a step of swapping two values
may involve 10 machine-code commands.

Exploring Bytecode
To give you a taste of what I’m talking about, let’s take a look at how a
simple Python step breaks down into multiple steps closer to the machine
level.

In truth, Python doesn’t translate directly into machine code. Rather, the
Python code first gets converted to something called bytecode. Bytecode is
code that is lower-level than Python, but higher-level than machine code.
What’s cool is that it’s super easy to see the bytecode created by our Python
code.

Let’s create a file called byte_code_example.py and insert the following
Python code:

 x = 1

 x += 3

It’s pretty reasonable to say that this code represents two Python steps.

You can see the bytecode generated by the Python code by running the
following command in your console:

 python -m dis byte_code_example.py

This spits out bytecode, which for me looks something like this:

 1 0 LOAD_CONST 0 (1)

 3 STORE_NAME 0 (x)

 2 6 LOAD_NAME 0 (x)

 9 LOAD_CONST 1 (3)

 12 INPLACE_ADD

 13 STORE_NAME 0 (x)

 16 LOAD_CONST 2 (None)

 19 RETURN_VALUE

Each line here represents a bytecode step. It shows that our two Python
steps trigger eight bytecode steps. Intriguing! (It can be fun to go a little
crazy and explore the bytecode of all the Python code we write.)

So, this is one plausible reason as to why Quicksort is faster than Mergesort
despite the fact that they involve a similar number of steps. Quicksort might
break down into fewer bytecode or machine-code steps than Mergesort
does.

Note that even if Algorithm A translates to 10 bytecode steps and
Algorithm B translates to 20 bytecode steps, this is no guarantee that
Algorithm A will run faster than Algorithm B. It may give us a hint as to
the speed of our code, but it will not give us definitive results. However, it’s
one factor to consider.

The Limits of Big O Notation
Well, isn’t that a monkey wrench? We already knew that Big O notation had
some limitations. For example, we know from Volume 1, Chapter 5, that
two algorithms can be classified as O(N) even though Algorithm A takes N
steps and Algorithm B takes 10N steps. But now you’ve learned that even
when two algorithms take the same number of Python steps, one algorithm
can still be significantly faster than the other!

This being the case, how are we supposed to ever truly know which
algorithms are the most efficient? In truth, even if we were experts in
machine code and spatial locality, it’s still hard to predict the effects of
these factors.

The surprising answer to these questions is that, indeed, Big O notation is
limited! It’s a framework that allows us to approximate relative speeds of
competing algorithms, but it’s far from foolproof. The closer that two
algorithms are in terms of the number of steps, the harder it becomes to
know which algorithm is faster in actual time.

But there’s good news.

There are more precise tools than Big O out there. One such tool, called
benchmarking, is the subject of the next chapter. If Big O is a butter knife,
then benchmarking is a scalpel.

This isn’t to say that we’ll be throwing out Big O. Far from it! Big O
notation still remains a fundamental tool for conceptualizing algorithm
efficiency and grouping algorithms into different general categories. So,
we’ll still be using Big O throughout this book extensively. After all, you
wouldn’t use a scalpel to butter your bagel.

Trade-Offs
Let’s get back to the issue at hand. Which algorithm is better: Quicksort or
Mergesort?

We’ve seen that Quicksort is indeed faster than Mergesort in actual time.

Now, not only is Quicksort faster than Mergesort, but Quicksort also
consumes less space than Mergesort. This is because Quicksort doesn’t
make any copies of the original array, and the only extra space consumed is
the recursion call stack, which is all of O(log N). Mergesort, on the other
hand, takes up O(N) extra space, as I explained earlier.

However, it could be argued that Mergesort has one advantage over
Quicksort: Mergesort is faster than Quicksort in a worst-case scenario. (In
Chapter 3, we’re going to pull the rug out from under this advantage, but
we’ll run with it for now.)

So, here’s the deal. In average scenarios, both Quicksort and Mergesort run
in O(N log N) time. However, Quicksort has a potential Achilles’ heel:
there are cases where it slows down to O(N2) time. Specifically, if an array
is already completely or mostly sorted, Quicksort will take about N2 steps.
You can look back at Volume 1, Chapter 13, where we discussed the reason
for this, but for now, you can take my word for it.

On the other hand, Mergesort always runs in O(N log N) time. Essentially,
there is no worst-case scenario for Mergesort, as all scenarios get processed
at the same speed. If you walk through the steps of Mergesort for any array,
you can see for yourself that it will always break down the array in log N
levels and will always merge N elements at each level.

So, when choosing whether to use Quicksort or Mergesort, there are pros
and cons on each side. On one hand, it may be worth using Quicksort
because of its average-case efficiency, even though you may risk
encountering a presorted array and having a slowdown. Alternatively, it
may be worth it to choose Mergesort and guarantee that your speed is never
slower than O(N log N), even though, on average, Mergesort will be slower
and consume more memory.

Ultimately, there is no right choice. Only you can decide, based on your
software requirements, which choice is better for you. And this is the idea
of a trade-off.

We’re certainly no strangers to trade-offs, as we’ve encountered this a
number of times throughout Volume 1. One example is the trade-off
between time and space discussed in Volume 1, Chapter 19. If Algorithm
“A” is faster but consumes more memory, and Algorithm “B” is slower but
consumes less memory, which do we choose? Again, it’s a trade-off, and
only you can decide which is best for your particular situation.

In truth, almost every technology decision involves a question of trade-offs,
and this is certainly so when it comes to data structures and algorithms. I’m

placing a special emphasis on trade-offs here because trade-offs will be
another major theme of this volume.

We’re not done analyzing the trade-offs of Mergesort and Quicksort yet.
We’ve certainly discussed some of the major factors at play, but there’s
more analysis to come in the following chapters.

Wrapping Up
You’re only getting started, but you’ve already learned a few things. First,
you learned how Mergesort works. Mergesort is one of the classic
algorithms of computer science, so it’s good to have that under your belt.

In addition, you learned there is no one perfect algorithm. Weighing two
competing algorithms is about trade-offs. There are benefits and drawbacks
to each algorithm, and it’s up to you to decide which set of pros and cons
will fit your application best. This will be a running theme throughout this
book.

Finally, you discovered how two algorithms can have the same number of
Python steps and yet have significantly different speeds in actual time. In
the next chapter, you’ll learn how to grapple with this reality.

Exercises
The following exercises provide you with the opportunity to practice with
Mergesort and bytecode. The solutions to these exercises are found in the
section Chapter 1.

1. Say that we want to Mergesort the array [1, 5, 2, 7, 4, 3, 6, 8]. Fill in the
chart to demonstrate how Mergesort recursively breaks down the
array:

2. Let’s continue with the example from the previous exercise. Fill in the
next chart to show how Mergesort merges all the values to produce a
completely sorted array:

3. New Concept: Each data element that follows consists of two pieces:
the first (top) piece is the primary data itself—an integer—and the
second (bottom) piece is a timestamp of when that integer was created.
Currently, the array is sorted in terms of the timestamp, but now we
want to use Mergesort to sort the array by the integers themselves:

Use pencil and paper (or whatever) to walk through all the steps of
Mergesort. What do you notice about the sorted array once you’re
done?

4. Write a Python loop that prints out the integers 1 through 10. Then,
produce the bytecode for your Python code. What do you get?

Now, write a second version of the same program using a different
type of loop (such as a while loop instead of a for loop, for example).
Produce the bytecode for this version as well and compare the two sets
of bytecode. What aspects of the two sets of bytecode seem similar,
and what aspects seem different?

There’s no right or wrong answer to this exercise. It’s just to give you
practice with generating bytecode and (lightly) analyzing it.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 2

Benchmarking Code

Throughout Volume 1, we’d worked with the idea that an algorithm’s speed
is measured by counting its steps. However, you saw in the previous chapter
that sometimes simply counting steps isn’t enough to determine which
algorithms are faster than others. For example, both Quicksort and
Mergesort take roughly the same number of steps, yet computer scientists
report that Quicksort is significantly faster in actual time. Again, by actual
time I mean time measured in minutes and seconds rather than in steps.

How do the computer scientists know this? More importantly, how can you
know which algorithms are truly the fastest?

Here enters a technique known as benchmarking. In this chapter, you’ll
learn what benchmarking is and how to benchmark Python code. Along the
way, you’ll also learn about nefarious benchmarking traps and how to avoid
them.

Benchmarking
In theory, you can compare the actual-time speeds of two algorithms by
running the code on your computer and using a stopwatch to see how long
each algorithm takes. This is the essence of what benchmarking is, except
that benchmarking is a lot more practical. Besides being tedious, using a
stopwatch to measure the speed of code is error-prone. Also, what if the two
algorithms both run in less than one second? You’d better have fast thumbs.

Thankfully, you can use benchmarking software to measure the time for
you. The software tracks the precise time your code starts running and when
it finishes. The benchmarking tool then tells you exactly how much time
your code took to run.

So, there’s nothing fancy about benchmarking; it’s basically the computer
running a stopwatch for you. However, it does come with a big bonus: it
measures time very precisely, down to the microsecond. (A microsecond is
one-millionth of a second.)

Before we move on, I can’t emphasize enough that for the duration of this
chapter, we will not be measuring speed in terms of the number of steps at
all. When it comes to benchmarking, we’ll always be measuring the actual
time of an algorithm.

Using the timeit Module
One of the easiest ways to benchmark Python code is with Python’s timeit

module. In the words of Python’s documentation: “This module provides a
simple way to time small bits of Python code.”

Usually, the timeit module is used from the command line to measure small
snippets of code, but since we’re going to use it to measure more complex
algorithms, we’re going to call the module from within an actual code file.

Let’s start with a basic example to see how timeit works. In Python, you can
create an array containing one million integers (0 through 999999) with the
following code:

 array = []

 for i in range(1_000_000):

 array.append(i)

(Note that Python allows us to use underscores to make long numbers more
readable.)

Let’s use timeit to see how quickly this code runs. Here’s the code that does
this:

 import timeit

 test_code = '''

 array = []

 for i in range(1_000_000):

 array.append(i)

 '''

 print (timeit.timeit(stmt=test_code, number=1))

I’ll explain what the code means shortly, but first, let’s run it.

I’ve saved this code inside a file called bench_first_example.py. If I now run
python bench_first_example.py from the command line, I get the following
output:

 0.121737003326

This is the number of seconds that it took my computer to run my array-
generating code. Wow, it ran in a fraction of a second! Specifically, it ran in
0.121737003326 seconds, which is roughly one-eighth of a second.

When I change my code to generate an array that contains only 100
integers, timeit spits out this result:

 1.50203704834e-05

If you don’t look too carefully, this may seem to be saying that my code
took about 1.5 seconds to run. But this would make no sense. Why would
creating an array of 100 elements be much slower than creating an array
containing 1,000,000 elements?

However, notice the e-05 at the end of this output. This is scientific notation,
and is a shorthand way of expressing this number:

 0.0000150203704834

This is about 10,000 times faster than the 0.121737003326 seconds it took to
generate 1,000,000 integers.

As a quick tip, if you want to convert scientific notation into “regular”
notation, there’s an easy way to do so. Here’s an example:

 print ('%.08f' % 1.50203704834e-05)

The .08 represents how many digits you want to see, which in this case is 8
digits. The previous code outputs this result:

 0.00001502

If you want to see, say, 10 digits, you’d run this:

 print ('%.10f' % 1.50203704834e-05)

This outputs a result:

 0.0000150204

Breaking Down the Code
Let’s break down how the timeit-based code works.

First, we import the timeit module:

 import timeit

The next part may seem a little wonky, but timeit demands that we pass in
all of the code we’re benchmarking as a string. Here, we store the string in
a variable called test_code:

 test_code = '''

 array = []

 for i in range(1_000_000):

 array.append(i)

 '''

For readability, I used the triple-quote Python syntax for creating a
multiline string. I also named the variable test_code, but it could be named
anything you want.

We then pass our test_code into the timeit function and print the results:

 print (timeit.timeit(stmt=test_code, number=1))

The timeit function can accept numerous options as parameters. The main
argument is stmt, and that’s where we pass in our test_code.

The number argument represents how many times we want to run the
test_code. For this example, we’ll run our test_code one time. Soon, I’ll
explain why you may want to run your code multiple times, but for now,
we’re going to keep number as 1. However, I will point out now that if you
don’t pass in any number argument, the default is 1,000,000! So, I always
recommend passing in the number function. Otherwise, you may be waiting
a long time.

Using timeit to Compare Two Algorithms
Measuring the speed of a single algorithm alone has limited value.
Knowing that one algorithm takes, say, two seconds is somewhat
meaningless since the same algorithm may run significantly faster or slower
on other computers. So, no algorithm can ever be labeled a “two-second”
algorithm. This is one of the reasons we’ve always counted steps as a more
reliable way to express an algorithm’s speed. After all, the number of steps
that an algorithm takes remains consistent no matter which computer it’s
run on.

That being said, benchmarking shines when you are trying to compare two
or more competing algorithms against each other. This is indeed a useful
measurement since as long as you do all of the benchmarking on the same
computer, you can find out which algorithm is the fastest in actual time.

Let’s try this out for testing two of Python’s built-in functions. In the
previous example, we benchmarked using the append method to create an
array of one million ascending integers.

Python has another method for adding values to an array, namely, the insert

method. If we want to generate an array of one million integers with this
method, we’d run the following code:

 array = []

 for i in range(1_000_000):

 array.insert(len(array), i)

With benchmarking, we can determine whether append or insert is a faster
method for populating an array.

Here’s my benchmarking code. It’s virtually the same as our code for
benchmarking append, except that I’m using the insert approach:

 import timeit

 test_code = '''

 array = []

 for i in range(1_000_000):

 array.insert(len(array), i)

 '''

 print (timeit.timeit(stmt=test_code, number=1))

When I benchmark the insert code, I get a result of:

 0.353770017624

This is almost three times slower than our append benchmarking result,
which was 0.121737003326. Based on this benchmarking experiment, it
would seem that append is notably faster than insert.

It can be super fun to conduct benchmarking experiments. We assume the
role of scientists and measure real, tangible results. It’s so … scientific!

Benchmarking Gotchas
While benchmarking at its core is a simple idea, a surprising number of
gotchas can completely derail your experiments. These gotchas are
particularly sneaky since timeit will always spit out a number even if your
experiment isn’t set up correctly. Everything may seem to be in order, but
your results may be totally meaningless. We’ll look at these gotchas
throughout the remainder of this chapter.

Gotcha: Using Two Different Sets of Numbers
One of the most important things to keep in mind when benchmarking, or
when conducting any scientific experiment for that matter, is to ensure that
your experiment is controlled. This means that if you’re comparing two
different algorithms, all other factors besides the algorithms themselves
should be identical.

Take our append vs. insert experiment, for example. Our experiment is only
valid if both snippets of code are creating arrays of the same size. If,
however, our append code created 1,000,000 elements while our insert code
created only 100 elements, our benchmarking results would be skewed. The
fact that our append code ran more slowly wouldn’t prove that append is
slower than insert; perhaps it ran more slowly only because it was busy
generating so many more elements.

Indeed, when I run the insert code with just 100 elements, I get the
supersonic result of 3.69548797607e-05. This is way faster than the results of
my append benchmark of one million elements, and if I wasn’t paying
attention, I might mistakenly conclude that insert is much faster than append.

Because of this, when benchmarking two competing code snippets, you
always want to double-check that both algorithms are working with the
same data.

Gotcha: Only Benchmarking One Time
Obviously, a benchmarking experiment would not be controlled if you
tested Algorithm A on one computer and Algorithm B on another. Perhaps
the only reason why one algorithm runs faster than the other is that it was
executed on the more powerful computer!

Similarly, it’s possible that even when you benchmark two algorithms on
the same computer, the computer happens to be more powerful when
executing one algorithm than when executing the other. This is very
common since a computer is always running multiple processes at any
given time. The benchmarking code you run is never executed in a vacuum.
You may have other applications running, including that Internet browser
with 85 tabs open. (You should probably do something about that.)

Based on this, it would be unwise to benchmark Algorithm A and then
decide to play a massive multiplayer video game while benchmarking
Algorithm B. Perhaps the results of Algorithm B are slower because the
game is running in the background.

However, even if you don’t turn on that game, you can’t know for certain
that your computer isn’t secretly downloading some security update while
you happen to be benchmarking Algorithm B. Basically, your computer is
always running all sorts of processes in the background, and there’s not
much you can do about it.

One way to help with this is to run your benchmarking experiments
multiple times. It’s less likely that the same background process will keep
occurring each time you run your experiment.

timeit’s Repeat Method
The timeit module provides a method called repeat that will conveniently
run your benchmark multiple times so you don’t have to do it manually. The
repeat method is essentially identical to the timeit method, except that repeat

also accepts a repeat argument where you set the number of times that your
code should execute:

 print (timeit.repeat(stmt=test_code, repeat=5, number=1))

I’ll explain the difference between the repeat argument and the number

argument soon, but for now, we’ll focus on repeat.

With this code, our benchmark will run 5 times. This will return an array of
results like these:

 [0.3296499252319336, 0.2981288433074951, 0.3133430480957031,

 0.3073868751525879, 0.3087730407714844]

These are the results of running my insert benchmark on 1,000,000
elements. The results are all similar, but the fastest among these results is
0.2981288433074951.

Now, here’s an important point. In theory, a piece of code should take the
same amount of time each time we execute it. So why aren’t the results all
exactly the same? Again, this is because the computer’s background
processes will always skew the results somewhat.

Because of this, the truest of the results is, in fact, 0.2981288433074951. The
only reason why the other results were slightly slower than this is that the
computer’s background processes got in the way. So instead of using the
average of our results to get the most accurate speed, professional
benchmarkers use the fastest result.

However, this assumes that our code has no randomness involved. If our
data is randomized each time we run it, the varying speeds may be a result
of the fact that the data is different each time we run our benchmark. This
will come into play when we benchmark sorting algorithms, as you’ll soon
see.

Repeat vs. Number
Both the repeat argument and the number argument allow you to execute
your code numerous times in a row. However, there are two key differences
between the two arguments.

One key difference is with regard to how the results are displayed. The
repeat argument spits out an array of different results, as you saw earlier in
this chapter. However, if we keep repeat at 1 and instead change number to 5,
we get one result that is the amount of time that it took for all five rounds to
execute in total. So, if I get the result of 1.56467604637146, this means I
would have to divide that number by 5 to see how fast each individual
round took on average.

Whether you use repeat or number, you’ll always want to benchmark
Algorithm A and Algorithm B the same number of times to keep your
experiment controlled.

In any case, I’ll be using the repeat approach going forward, generally
setting the repeat argument to 5.

There’s another key difference between repeat and number, but before we
look at that, let me address another gotcha.

Gotcha: Not Making Sure Your Code Works
I once read an online tutorial on benchmarking that used this example code:

 import timeit

 test_code = '''

 def create_massive_array():

 array = []

 for i in range(1_000_000):

 array.append(i)

 '''

 print (timeit.repeat(stmt=test_code, repeat=5, number=1))

It’s basically the same append experiment we used earlier, except that all the
code is wrapped inside a function called creative_massive_array.

When I benchmark this code, I get very strange results:

 [1.1920928955078125e-06, 0.0, 0.0, 9.5367431640625e-07, 0.0]

What on Earth? What’s with all the zeroes? And why are all of these
numbers so different from each other?

Before I reveal the solution, I want to highlight that this should be your
most important takeaway from this chapter: always keep your brain on. If
you see surprising results, you shouldn’t blindly accept them. Instead,
investigate why you’re getting those results. If something smells fishy, it
probably is.

One of the first steps to take when discovering fishy results is to make sure
your code does what you think it should do. For this, printing to the console
is your friend. Let’s go ahead and add a print(array) command at the end of
our test_code:

 test_code = '''

 def creative_massive_array():

 array = []

 for i in range(1_000_000):

 array.append(i)

 print(array)

 '''

When I benchmark this revised code, no array gets outputted to the console.
I still get wonky benchmark numbers, but I should have also seen a massive
array displayed in the console. What’s going on? Wait … facepalm emoji.
(Is that a phrase?) The code for generating the array never gets executed!
Sure, my test_code defines a function that will generate an array, but this
function never gets called anywhere. No wonder this code ran so fast.

As to why we got those strange benchmarking numbers, that has to do with
Python internals. If you benchmark any code that hardly does anything,
you’ll get similar wonky results.

To avoid this gotcha, it’s worthwhile to always use print or a similar
technique to ensure that your code is doing what it should.

To fix this particular problem, we need to call the function within our
test_code itself:

 test_code = '''

 def create_massive_array():

 array = []

 for i in range(1_000_000):

 array.append(i)

 print(array)

 create_massive_array()

 '''

After we’ve verified that our code works, we can then eliminate the print
statement and benchmark our code properly. In fact, we should indeed make
a point of removing the print statement. This is because printing to the
console consumes considerable time in its own right, and we only want to
benchmark the actual algorithm, not the printing.

Benchmarking Sorting Algorithms
This is the fun part—benchmarking our sorting algorithms! I saved our
Mergesort code from Code Implementation: Mergesort inside a file called
mergesort_1.py. The strategy we’ll follow to benchmark our code is to first
generate an array of integers in random order and then benchmark how
quickly Mergesort can sort the array. (The following code contains some
new elements we haven’t encountered yet, but I’ll walk through them
shortly.)

 import timeit

 setup_code = '''

 import random

 import mergesort_1

 array = []

 for i in range(10):

 n = random.randint(1, 1000)

 array.append(n)

 '''

 test_code = '''

 mergesort_1.mergesort(array)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

As usual, we begin by importing the timeit module. However, the code is
divided into two sections. In addition to our test_code, we now also have
setup_code. Let’s take a look at what the setup_code is all about.

To test out Mergesort, we first generate an array containing integers in
random order and then perform Mergesort on that array. Technically, we
could have put all of our code inside our test_code string. However, our true
goal is to benchmark the Mergesort algorithm alone. Generating the random

array is setting things up for Mergesort to do its work. As such, we don’t
care to measure how long it takes to generate the array; it’s just setup code.

This is why timeit allows us to put our “setup code” inside a separate string,
which we brilliantly named setup_code. This is excluded from the
benchmark itself. That is, timeit will only measure the running time of the
test_code, and not the setup_code.

As you can see, we pass the setup_code into an argument setup inside the
repeat method:

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

However, there’s a sneaky gotcha with setup code that’ll bite you if you’re
not careful.

Gotcha: Accidentally Running the Setup Code Just Once
I mentioned earlier that there are two major differences between the repeat

and number. We already looked at the first difference, and now we’ll look at
the second, which is hugely important.

If you pass in the arguments repeat=5, number=1, the timeit method will run
both the setup code and the test code 5 times. However, if you did the
opposite and passed in repeat=1, number=5, the setup code is executed only
once, followed by the test_code running 5 times in a row.

This may not matter in some cases, but it can certainly matter when
benchmarking sorting algorithms. That is, if the setup code is executed only
once, the array is completely sorted after the first run. When the computer
executes the sorting algorithm the next 4 times, we’re sorting an array that’s
already completely sorted!

Mergesort takes the same amount of time whether the array is already
sorted or not, but other sorting algorithms like Insertion Sort run way faster

when the array is already sorted. On the flip side, as you saw in the previous
chapter, Quicksort runs much slower when the array is already sorted. So, if
we only run our setup code once, our benchmarking results are going to be
skewed. We need to make sure that on each run, we regenerate a randomly
sorted array.

Mergesort vs. Insertion Sort
When I benchmark Mergesort using the code in Benchmarking Sorting
Algorithms for an array of 10 elements, I get these results:

 [2.6941299438476562e-05, 2.2172927856445312e-05, 2.193450927734375e-05,

 2.193450927734375e-05, 2.193450927734375e-05]

As I’ve said, these numbers aren’t very meaningful until we contrast them
with the benchmarking results of a competing algorithm. So, let’s go ahead
and benchmark Insertion Sort and compare the two sets of results.

Before we do so, it’s always good to hypothesize as to what the results
might be. This way, if we get totally different results, we can more easily
notice if something fishy is going on and decide if our experiment isn’t
engineered correctly.

You learned in the previous chapter that Mergesort runs in O(N log N) time.
And as discussed in Volume 1, Chapter 6, Insertion Sort on average takes
O(N2) time. It’s reasonable to hypothesize that Mergesort should be the
faster of the two algorithms. With this guesstimate in mind, let’s benchmark
Insertion Sort.

Here’s the Insertion Sort code from Volume 1, which I saved in a file called
insertion_sort.py:

 def sort (array):

 for i in range(1, len(array)):

 key_item = array[i]

 j = i - 1

 while j >= 0 and array[j] > key_item:

 array[j + 1] = array[j]

 j -= 1

 array[j + 1] = key_item

 return array

And here’s the benchmarking code for Insertion Sort:

 import timeit

 setup_code = '''

 import random

 import insertion_sort

 array = []

 for i in range(10):

 n = random.randint(1, 1000)

 array.append(n)

 '''

 test_code = '''

 insertion_sort.sort(array)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

When I run this code, I get the following results:

 [1.811981201171875e-05, 1.4781951904296875e-05, 1.4066696166992188e-05,

 1.5974044799804688e-05, 1.5020370483398438e-05]

Whoa! These results are faster than our Mergesort results. That’s not what I
expected at all.

Now, I did run the Mergesort benchmark several minutes ago, and who
knows what background processes were running then compared to now. So,
I’m going to run both benchmarks again to keep this experiment as
controlled as possible. We’ve benchmarked Insertion Sort, so let’s
benchmark Mergesort again.

My Mergesort results now are these:

 [2.3971296527821164e-05, 2.2451671856349302e-05, 2.190422274014396e-05,

 2.195827825732071e-05, 2.193578247516832e-05]

Hmmm, I’m getting similar results as before. So, what’s wrong with my
experiment? Why does it seem that Insertion Sort is faster than Mergesort?

Gotcha: Only Using One Data Size
As discussed in Volume 1, Chapter 3, we use Big O notation to measure the
trajectory of an algorithm as the data grows. The difference between each
category of Big O is, in fact, much more noticeable as the size of the data
grows. Take the following diagram:

Here, for example, we compare the trajectories of O(N2) vs. O(N). It’s true
that as the data increases, O(N) becomes faster compared with O(N2).
However, when we have a small amount of data, as shown on the left side
of the graph, the speeds of the two algorithms aren’t all that far apart.

Because of this, when benchmarking two competing algorithms, you also
want to run the benchmarks on larger amounts of data. The larger the
amount of data, the greater the discrepancy between the two sets of results
will be, generally speaking.

When I change the benchmarking code to have both Mergesort and
Insertion Sort operate on an array of size 10_000 (instead of 10 as before), I
get these results:

 Mergesort:

 [0.05725693702697754, 0.055114030838012695, 0.06000399589538574,

 0.057826995849609375, 0.056210994720458984]

 Insertion Sort:

 [4.285884141921997, 4.154591083526611, 4.248677015304565,

 4.378739833831787, 4.4347240924835205]

That’s a huge difference, and much more in line with our hypothesis.
However, a question may still be tugging at your brain.

Benchmarks for the Large and Small
When the array was of size 10, it’s understandable that both Mergesort and
Insertion Sort had similar speeds, but why was Insertion Sort faster than
Mergesort? Insertion Sort runs at O(N2), which means that it should take
about 100 steps. Mergesort, on the other hand, is O(N log N). N is 10, and
log N is about 3, so we’re talking about roughly 30 steps.

This gets back to the reason we began benchmarking in the first place.
Counting the number of steps is certainly important, but it’s not the only
factor that determines an algorithm’s actual-time speed. On the machine-
code level, Mergesort’s 30 Python steps have more “overhead” than
Insertion Sort’s 100 Python steps.

While I won’t get into the details of how our two sorting algorithms operate
on a machine-code level, the following analogy should suffice:

If we asked both an experienced weightlifter and a couch potato to perform
100 pushups, the weightlifter would likely complete them much more
quickly than the couch potato. However, knowing the importance of
warming up before a workout, the weightlifter might take a few minutes to
stretch and do some jumping jacks. Now, even if the couch potato doesn’t
do a warmup, the weightlifter will still likely complete all 100 pushups
before the couch potato.

However, if we asked each person to do 10 pushups, the couch potato might
complete them first since the weightlifter may still insist on warming up
before doing any physical activity. By the time the weightlifter finished
warming up, the couch potato might already be done (if he’s lucky).

Here as well, Mergesort uses tools such as recursion and copying arrays to
perform its powerful work. However, these tools carry a certain amount of
overhead that takes some time. Of course, it’s certainly worth using these
tools so that Mergesort can sort an array of size 10,000 in O(N log N) time.
But when it comes to small arrays, Insertion Sort, which doesn’t have all
this overhead, can complete the job quicker than Mergesort despite
Insertion Sort being the “slower” algorithm.

Optimizing Mergesort with Insertion Sort
You’ve seen that it’s a mistake not to use large data when benchmarking.
However, it’s also a mistake not to use small data when benchmarking.

We learn this lesson from Insertion Sort. Had we never benchmarked
Insertion Sort for an array of size 10, we may never have discovered that
Insertion Sort is faster than Mergesort for small arrays.

At first glance, this novelty may seem unimportant. After all, we don’t
generally care how fast a sorting algorithm works on a small array since
even the notoriously slow Bubble Sort algorithm (discussed in Volume 1,
Chapter 4) sorts a small array quickly in actual time. However, computer
scientists have discovered that we can utilize this attribute of Insertion Sort
for the sake of optimizing Mergesort.

To do this, we employ a brilliant little trick: we modify the Mergesort
algorithm so that when it encounters an array that has 10 elements or fewer,
it switches to Insertion Sort for that array. We’ve never seen one sorting
algorithm switch to another midstream, but I assure you that it’s not illegal.

To implement this in our code, we only have to make the tiniest change to
our mergesort function. I placed the insertion_sort function inside the same
file as my merge and mergesort functions and then swapped out the base
case:

 def mergesort (array):

 if len(array) <= 10:

 insertion_sort(array)

 return

 midpoint = len(array) // 2

 copy_of_left_half = array[:midpoint]

 copy_of_right_half = array[midpoint:]

 mergesort(copy_of_left_half)

 mergesort(copy_of_right_half)

 merge(copy_of_left_half, copy_of_right_half, array)

Instead of the base case being an array of size 1, the base case is now an
array of size less than or equal to 10. When this new base case is
encountered, we call insertion_sort on that base-case array.

Let’s now benchmark regular Mergesort against this optimized Insertion
Sort-infused version of Mergesort. For an array of size 1_000_000, I get these
results:

 Regular Mergesort:

 [8.321918964385986, 8.336308002471924, 9.427529096603394,

 9.48000192642212, 9.64377498626709]

 Optimized Mergesort:

 [6.830552101135254, 6.836566925048828, 7.844353914260864,

 7.90967321395874, 7.877916097640991]

The optimized version shaves off about one to two seconds from
Mergesort’s runtime. With larger amounts of data, this optimization would
be even more significant.

In our implementation, we used the number 10 as the tipping point for when
Mergesort switches over to Insertion Sort. However, 10 isn’t necessarily the
magic number. To determine what the number should be, you could keep
benchmarking different numbers until you find the one where Mergesort
and Insertion Sort are roughly the same speed. In truth, though, the number
may depend on the particular computer you’re using, so there may not be a
definitive number.

Another interesting thing to note is that when it comes to small arrays,
Insertion Sort isn’t only faster than Mergesort; it’s faster than Quicksort,
too. That’s why many finely tuned implementations of Quicksort also
switch over to Insertion Sort when it encounters a small array.

Mergesort vs. Quicksort
This entire discussion of benchmarking came about as a result of
contrasting Mergesort with Quicksort in the previous chapter, so let’s use
benchmarking to see for ourselves whether Quicksort is truly the faster
algorithm.

Following is the Quicksort code from Volume 1, Chapter 13:

 class SortableArray:

 def __init__ (self, array):

 self.array = array

 def partition (self, left_pointer, right_pointer):

 pivot_index = right_pointer

 pivot = self.array[pivot_index]

 right_pointer -= 1

 while True:

 while self.array[left_pointer] < pivot:

 left_pointer += 1

 while self.array[right_pointer] > pivot:

 right_pointer -= 1

 if left_pointer >= right_pointer:

 break

 else :

 self.array[left_pointer], self.array[right_pointer] = \

 self.array[right_pointer], self.array[left_pointer]

 left_pointer += 1

 self.array[left_pointer], self.array[pivot_index] = \

 self.array[pivot_index], self.array[left_pointer]

 return left_pointer

 def quicksort (self, left_index, right_index):

 if right_index - left_index <= 0:

 return

 pivot_index = self.partition(left_index, right_index)

 self.quicksort(left_index, pivot_index - 1)

 self.quicksort(pivot_index + 1, right_index)

Here is my Quicksort benchmarking code. For this experiment, I’ll time
how long it takes to sort one million random integers:

 import timeit

 setup_code = '''

 import random

 import quicksort

 array = []

 for i in range(1_000_000):

 n = random.randint(1, 1_000_000)

 array.append(n)

 sortable_array = quicksort.SortableArray(array)

 '''

 test_code = '''

 sortable_array.quicksort(0, len(array) - 1)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

Since it’s been a few minutes since benchmarking Mergesort, it’s best to run
that again, too. Note that I’m benchmarking our “regular” Mergesort, not
the one we optimized using Insertion Sort. Here are my side-by-side results:

 Mergesort:

 [9.667517900466919, 9.65391206741333, 11.16753602027893,

 10.575589895248413, 10.170050144195557]

 Quicksort:

 [5.473771095275879, 5.405587196350098, 5.787222862243652,

 5.61734414100647, 6.785470008850098]

Wow, Quicksort is almost twice as fast. That’s pretty impressive, and pretty
much in line with what computer scientists have been telling us. Go
computer scientists!

The moral of the story is that although two algorithms may take the same
number of Python steps, one can be significantly faster than the other in
actual time. Again, this is due to factors under the hood of the computer,
such as the number of machine-code steps and spatial locality. These under-
the-hood factors may be difficult to predict, and that’s exactly why we use
benchmarking to determine the actual-time speed of an algorithm.

Using Python’s Built-In Sorting Algorithm
Out of curiosity, let’s benchmark Python’s built-in sort() method for arrays.
Here’s my benchmarking code for timing the sorting of one million random
integers:

 import timeit

 setup_code = '''

 import random

 array = []

 for i in range(1_000_000):

 n = random.randint(1, 1_000_000)

 array.append(n)

 '''

 test_code = '''

 array.sort()

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

Here are my results:

 [0.7919449806213379, 0.7905678749084473, 1.1442229747772217,

 1.0725150108337402, 1.0439801216125488]

Pondering the meaning of this as I climb back into my chair, it appears that
it almost always pays to use the sorting algorithm built into the language
you’re using. This is way faster than our Mergesort and Quicksort
implementations, and even that’s an understatement.

As of this writing, Python uses a sorting algorithm called Timsort, named
after Tim Peters, who first implemented it. Timsort uses both merging and
Insertion Sort together with some other techniques. I encourage you to
check it out.

Now, the reason why a language’s built-in sorting algorithm is so fast isn’t
only because it uses Timsort. Whenever any language’s built-in methods are
implemented, every optimization trick in the book is used to ensure that the
method is as fast as possible. As such, even if a language uses Quicksort
under the hood of its built-in sorting algorithm, it’s likely to be faster than a
textbook implementation.

Quicksorting a Sorted Array
In the previous chapter, it appeared that possibly the most significant
advantage of Mergesort over Quicksort is that Mergesort runs at O(N log N)
in all scenarios, while Quicksort is O(N2) in the worst case. Again, for
Quicksort, the worst case is an array that’s already sorted.

It would be nice to see how this plays out in actual time, so let’s benchmark
it. Here’s our code for benchmarking Quicksort on a sorted array of size
10,000:

 import timeit

 setup_code = '''

 import quicksort

 array = []

 for i in range(10000):

 array.insert(0, i)

 sortable_array = quicksort.SortableArray(array)

 '''

 test_code = '''

 sortable_array.quicksort(0, len(array) - 1)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5, number=1))

Welp, I don’t get any results at all. Instead, I receive this error message:

 RuntimeError: maximum recursion depth exceeded

This makes sense, come to think of it, since Quicksort calls itself
recursively and the call stack doesn’t unwind until we reach the base case of
the left and right pointers meeting. And when the array is sorted, this won’t
happen until we’re thousands of calls deep.

To get the code to complete on my computer, I have to change the array size
to a paltry 900. When I benchmark both Mergesort and Quicksort on a
sorted array of this size, I get the following results:

 Mergesort:

 [0.0037310123443603516, 0.0049169063568115234, 0.003873109817504883,

 0.0034210681915283203, 0.0033721923828125]

 Quicksort:

 [0.04238104820251465, 0.04095888137817383, 0.06446003913879395,

 0.087677001953125, 0.06192493438720703]

Indeed, Mergesort in this scenario is at least 10 times faster.

This confirms what we saw earlier: while Quicksort is faster than Mergesort
in the average case, Mergesort is faster than Quicksort in a worst-case
scenario. This would seem to be Mergesort’s redeeming quality.

But there’s bad news for Team Mergesort. There’s an optimization for
Quicksort that will ensure that it, too, will not slow down in a worst-case
scenario, which thereby eliminates Mergesort’s signature advantage. In the
next chapter, we’ll explore this optimization, which in turn will unlock an
entire class of algorithms and data structures that will become the
foundation for the rest of this book.

Wrapping Up
Benchmarking is a powerful technique that measures code execution speed
in a fine-grained way, allowing you to know the true, actual-time difference
between competing algorithms. This is especially useful when you want to
compare two algorithms that fall within the same category of Big O.
However, benchmarking can even reveal surprises about algorithms that
aren’t in the same category. As you discovered in this chapter, in some
cases, the O(N2) Insertion Sort algorithm can be faster than O(N log N)
Mergesort!

On the other hand, you also learned that benchmarking is only useful when
used correctly. There are numerous gotchas that can derail your
experiments without you even realizing it. Therefore, it’s worthwhile to
periodically look back at the gotchas in this chapter to make sure you’re
setting up your benchmarking code properly.

In the next chapter, we’ll continue with our analysis of Mergesort vs.
Quicksort. And in doing so, we’ll stir things up once again, this time with
the concept of randomization algorithms.

Exercises
The following exercises provide you with the opportunity to practice with
benchmarking Python code. The solutions to these exercises are found in
the section Chapter 2.

1. Following are two different Python functions that accept an unsorted
array of integers and return the smallest number from the array. Here’s
the first version:

 def minimum (array):

 smallest_item_so_far = float('inf')

 for item in array:

 if item < smallest_item_so_far:

 smallest_item_so_far = item

 return smallest_item_so_far

This first version performs a linear search on the array while keeping
track of the smallest number throughout the search.

Here’s the second version:

 def minimum (array):

 array.sort()

 return array[0]

This second version accomplishes the same task of returning the
smallest number using another approach. It first sorts the array by
ascending order and then returns whichever item is at the beginning of
the array. Naturally, this item will be the smallest value.

Hypothesize which version you think will run faster. Then, write and
run benchmarking code to confirm whether your hypothesis is correct.

2. Following are two functions that both sum up all integers from 1 up
until (but not including) 1_000_000.

The first version uses a for..range loop:

 def sum_up_to_one_million ():

 sum = 0

 for i in range(1_000_000):

 sum += i

 return sum

The second version uses a while loop:

 def sum_up_to_one_million ():

 sum = 0

 i = 1

 while i < 1_000_000:

 sum += i

 i += 1

 return sum

Hypothesize which function you think will run faster. Then, write and
run benchmarking code to confirm your hypothesis.

3. Following is code that benchmarks an awesome new sorting algorithm
that I’ve just invented. I call it awesome_sort, and it’s too awesome for
me to even show you how it works. However, I will show you my
benchmarking code that I’m using to test it.

But there’s a problem, as my benchmarking code is not set up
correctly. Can you spot the mistake?

 import timeit

 import awesome_sort

 setup_code = '''

 array = []

 for i in range(100_000):

 array.append(i)

 '''

 test_code = '''

 awesome_sort.sort(array)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5,
number=1))

4. I’ve always wanted to use benchmarking to discover the actual-time
performance difference between linear search and binary search.
However, this time I’ve made two mistakes in my benchmarking code.
Can you find them?

Here’s my code for benchmarking linear search:

 import timeit

 setup_code = '''

 def linear_search(array, search_value):

 for index, element in enumerate(array):

 if element == search_value:

 return index

 elif element > search_value:

 break

 return None

 array = []

 for i in range(100_000):

 array.append(i)

 '''

 test_code = '''

 print(linear_search(array, 89124))

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5,
number=1))

And here’s my code for benchmarking binary search:

 import timeit

 setup_code = '''

 def binary_search(array, search_value):

 lower_bound = 0

 upper_bound = len(array) - 1

 while lower_bound <= upper_bound:

 midpoint = (upper_bound + lower_bound) // 2

 value_at_midpoint = array[midpoint]

 if search_value == value_at_midpoint:

 return midpoint

 elif search_value < value_at_midpoint:

 upper_bound = midpoint - 1

 elif search_value > value_at_midpoint:

 lower_bound = midpoint + 1

 return None

 array = []

 for i in range(1_000_000):

 array.append(i)

 '''

 test_code = '''

 binary_search(array, 89124)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5,
number=1))

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 3

How Random Is That?

In the previous two chapters, we encountered a notable trade-off between
Mergesort and Quicksort. On the one hand, Quicksort is the faster algorithm
in average-case scenarios. On the other hand, Mergesort guarantees speedy
sorting in all scenarios, while Quicksort slows down for arrays that already
happen to be sorted. The trade-off is this: would you rather use an algorithm
that is super fast in most scenarios but sometimes slow or an algorithm that
is only moderately fast but guarantees that it’ll never be slow?

In this chapter, you’ll discover that this is a false dichotomy. We can use a
technique called randomization to perform Quicksort so that it’s faster than
Mergesort in all scenarios. You’ll likewise learn how randomization can
play an important role in optimizing data structures and algorithms by
greatly improving an algorithm’s speed. And perhaps most fun of all, you’ll
get insight into how a computer performs randomization in the first place,
from generating random numbers to shuffling arrays.

Randomized Quicksort
As mentioned in Trade-Offs, the worst-case scenario for Quicksort is an
array that’s already sorted. But there’s an easy way to fix this with a concept
that is both ridiculously simple and yet counterintuitive at the same time:
before executing Quicksort, you can first shuffle the array.

To shuffle an array means to put its values in random order, similar to
shuffling a deck of cards. In Python, you can shuffle an array using the
built-in random module:

 import random

 array = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 random.shuffle(array)

This modifies array by randomizing the order of its values.

I mentioned that this technique is both simple and counterintuitive at the
same time. It’s simple because it attacks the problem head-on. Quicksort is
slow when processing a sorted array, so we simply unsort the array before
running the rest of the algorithm.

Yet, it’s also counterintuitive since who would have thought to speed up a
sorting algorithm by first shuffling the values?

In truth, though, the real counterintuitive idea here is that Quicksort is slow
for an array that’s already sorted. One would have thought that we’d have to
less work to sort such an array, not more work. However, this is the reality,
so shuffling the array does the trick of ensuring that Quicksort will never be
slow for any scenario.

I should point out that even shuffling an array isn’t a 100 percent guarantee
that Quicksort won’t be slow. It is theoretically possible that shuffling an

array will produce the same array again! However, the odds that this might
happen are low, and the odds sink further as we deal with larger and larger
arrays. The more data there is, the less chance there is that shuffling an
array ends up producing the same array again.

Now, shuffling the array does take some time. We’ll analyze how many
steps it takes, but take my word for it that preshuffling an array before
Quicksort is a lot faster than Quicksorting a presorted array.

If you’re always going to preshuffle the array before performing Quicksort,
you can view that as a new step within the Quicksort algorithm. You’re
essentially creating a variant of the classic Quicksort algorithm, which
doesn’t necessarily preshuffle the array.

As a matter of fact, preshuffling isn’t the only way to use randomization
within Quicksort. Another approach is to always choose a random element
to serve as the pivot rather than the left- or right-most element. I’m not
going to explain this in depth since I don’t want to get back into the weeds
of Quicksort right now. However, if you’re interested, the gist of this
approach is as follows:

The reason why Quicksort performs badly on a sorted array is that when the
array is sorted, the left- or right-most pivot will always end up at the array’s
end rather than the center. But by choosing a random pivot, the pivot has a
similar chance of landing toward the center whether the array is sorted or
not. Again, this explanation will make sense if you recall the details of
Quicksort, which you can find in Volume 1, Chapter 13.

In any case, we now have variants of Quicksort to ensure that the sorting
will take place in O(N log N) time for all scenarios. Computer scientists
refer to these variants as Randomized Quicksort. (It’s nice when computer
scientists give an algorithm a name that makes sense.)

When we now compare Mergesort against Randomized Quicksort, it
appears that Mergesort no longer has any advantage. The one potential
advantage was that Mergesort doesn’t slow down in worst-case scenarios,
but now Randomized Quicksort doesn’t either.

We’re still not done pitting these two sorting algorithms against each other,
but let’s first spend some time exploring the concept of randomization. In
fact, randomization is going to emerge as one of the main themes of the rest
of this volume.

Randomized Algorithms
Randomization has broader ramifications than being cleverly used to speed
up Quicksort. Randomized Quicksort is one example of an entire class of
algorithms known as randomization algorithms (or randomized
algorithms).

The term randomization algorithm is a fancy name for an algorithm that
uses randomization somewhere as part of its instructions. Randomized
Quicksort is such an algorithm since its first step is to use randomization to
shuffle the array. Randomized algorithms serve as a major theme
throughout this book since they have so many applications.

As you’ll discover throughout our journey, randomization can be used to
perform all sorts of optimizations. With Randomized Quicksort, you saw
how randomization improved the speed for worst-case scenarios. Some
other randomization algorithms, though, use randomization to increase
speed in all scenarios. There are algorithms that use randomization to save
memory, while others use randomization to increase accuracy. (You’ll see
what that means in Chapter 9, Counting on Monte Carlo Algorithms.) And
sometimes, randomization is at the core of the algorithm itself, and without
randomization, the algorithm wouldn’t work at all.

Before we explore other types of randomization algorithms, we should first
answer some fundamental questions about randomization in general. For
example, how does a computer shuffle an array? And what is the time
complexity of shuffling an array?

For that matter, let’s start with an even more basic question: how does a
computer choose a random number?

Generating Random Numbers
If you’ve used Python, or any high-level programming language for that
matter, it’s easy to take for granted that you can use it to generate random
numbers. For example, you can print a random integer from 1 through 10
with the following snippet:

 import random

 print (random.randint(1, 10))

But here’s a fundamental, almost philosophical, question: how can a
computer choose a random number? Here’s what I mean.

Let’s talk about randomness as it appears in the world. If I ask my friend to
choose a random number between 1 and 10, is the number they choose truly
random? Perhaps there’s some psychology involved in the number they
choose. In fact, some studies show that people choose 7 more often than
any other number. While there’s debate as to why that’s so, it indicates that
a human choosing a random number is not as random as we might think.
After all, if the process was truly random, 7 should be as common a choice
as any other number.

Let’s consider possibly the most “classic” of all random activities: flipping
a coin. Is it truly random to flip a coin to see whether it lands on heads or
tails? In theory, physicists should be able to predict the result by measuring
the strength one used to flip the coin, plus the weight of the coin, plus the
air pressure, plus the hardness of the surface on which the coin lands, plus a
few other factors. Indeed, if we want to get really philosophical, we can
wonder whether anything in the world is truly random.

Despite these arguments, we can still define randomness in a way that is
good enough for our purposes.

Here’s the deal. Sure, it might be technically possible to predict the
outcome of a coin toss. However, it’s really difficult to measure all the
relevant factors—and you and I certainly aren’t going to do so. Therefore,
we can consider flipping a coin to be unpredictable enough to be called
random. And so, we can say that an event is random if it’s difficult to
predict the outcome.

But now let’s get back to computers. A computer doesn’t flip coins and
certainly doesn’t use original thinking to generate a random number “off the
top of its head.” A computer is what’s called deterministic, meaning that it’s
only capable of receiving and executing instructions we give it. So, if we
give the computer an algorithm to generate a random number, say, using
mathematical calculations, we’ll still be able to predict exactly what number
the computer will choose if we know the algorithm. It won’t be random at
all.

This is a real head-scratcher. Is it even possible for a computer to choose a
random number?

It turns out that there are two different ways in which a computer generates
random numbers: with a True Random Number Generator (TRNG) or a
Pseudorandom Number Generator (PRNG). We’ll take a look at both,
starting with TRNG.

True Random Number Generators
A TRNG uses a highly unpredictable external source rather than an
algorithm to provide a random number. That is, since a computer is
completely deterministic and cannot come up with a random number on its
own, the computer relies on this outside source to do so.

This outside source could be anything in nature or the environment that is
so hard to predict that we consider it random. For example, we could
connect the computer to a secret office in a basement in South Dakota (the

epicenter of secret basement offices). Each time the computer needs a
random number, it sends a signal to that office, and someone there will roll
a die, which we’d consider a random event. The number that the die lands
on is then sent back to the computer.

Of course, this is completely impractical. However, here are some TRNGs
that are used in real life. In truth, some of them may sound almost as
ridiculous as our South Dakota example, yet they are truly used in the real
world.

You know how if you set a radio to the wrong channel, you hear
nothing but static noise? This static is generated by lightning strikes
and other natural processes. One TRNG technique is to connect the
computer to a radio that’s set to a channel that picks up this static. The
computer then picks out the frequency of sound at a precise moment in
time and uses that frequency to generate the random number. As crazy
as this sounds, this is currently one of the more popular TRNGs out
there.

Another real-life TRNG approach is to hook a computer up to a
camera that takes a snapshot of a lava lamp, and generates a random
number based on the exact formation of the “lava” at that given
moment. I kid you not.

Yet another TRNG connects the computer to decaying radioactive
material. It’s hard to predict the exact way in which an atomic nucleus
decays, so why not use that for generating random numbers? (Don’t try
this at home.)

These are considered true random number generators because the random
numbers are based on processes that are too difficult to predict. They’re the
best source for generating the “randomest” numbers.

However, there are two major disadvantages to TRNGs. First, they’re not
always practical, as you can imagine. Second, it can be relatively slow to
generate a random number based on an external process, at least compared
with PRNGs, which we’ll look at soon.

Interestingly, there exist online TRNG services that allow you to connect
your code to their TRNG devices via a web API. That is, they have
computers hooked up to lava lamps or radioactive material or whatever, and
all you have to do is connect to their servers and grab a truly random
number that they generate. While this may help with the practicality issue,
making a web request is way slower than having your computer generate a
random number internally.

Because of these issues of practicality and speed, Python uses a PRNG
rather than a TRNG. On that note, let’s look at how PRNGs work.

Pseudorandom Number Generators
My dictionary tells me that the prefix pseudo means “false, not genuine, a
sham.” Indeed, pseudorandom numbers are just that—a total sham. They’re
not random at all; they only seem random. Yet, this is exactly the approach
that Python and most other programming languages use to generate
“random” numbers. Let’s see how this works.

Prepared Sequence
The main idea behind PRNGs is that they have a prepared sequence of
numbers that, at first glance, seem random. For example:

 [5, 9, 1, 0, 2, 3, 4, 8, 0, 7, 2, 0, 0, 4, 9, 7, 0, 5, 0, 2]

When looking at these numbers at a glance, they do look kind of random.
At least, there’s no predictable pattern.

With a PRNG, each time we ask the computer to generate a “random”
number, it will use this sequence. The first time we execute code that

generates a random number, the computer will return the first number from
the sequence. In our example, this would be the number 5. The next time we
ask the computer to generate a random number, it will return 9 since it’s the
next integer in the sequence. And the third time we ask for a random
number, the computer will return 1. You get the idea.

When the computer reaches the end of the sequence (the final 2 in our
example), it will then start all over again at the beginning of the sequence.
There are 20 integers in the example sequence, so when we generate a
random number for the 21st time, we’ll get back a 5 since it’s the first
number in the sequence.

If you’re horrified at this algorithm for generating random numbers, you
should be. This isn’t random at all! This approach is entirely deterministic;
we know exactly what the computer will “randomly” choose next. Even
worse, there are major problems with this sequence of numbers. For one
thing, there are significantly more instances of 0 than any other number.
And did you notice that there are no 6s at all?

Now, we can improve things a bit if we create a better sequence. Here are a
few ideas that are crucial for a decent sequence:

One integer shouldn’t be considerably more prevalent than the other
integers. Each integer should appear the same number of times or at
least close to it. This attribute is known as uniformity.

The numbers should be “mixed up.” If the sequence were 1, 2, 3, 4, and
so on, it wouldn’t even seem random. Even though pseudorandom
numbers are, by definition, not truly random, we could at least try to
make them look random. We call this attribute lacking pattern. That is,
the sequence should lack any discernible pattern.

The sequence should have a lot more integers. The previous example
has only 20 integers. Even if there’s no pattern within the 20 numbers

themselves, there still ends up being a pattern in that the same 20
sequence numbers keep repeating themselves! After a while, a user of
our software may begin to notice this pattern. But what if we had 100
integers? That would be a more difficult pattern to detect. The number
of integers in the sequence before it begins again is called the period.
A sequence with a long period is one that has many numbers in it, so
it’ll take a while until the sequence starts over from the beginning
again.

With this in mind, here’s a better-looking sequence:

 [4, 7, 2, 0, 0, 1, 8, 5, 1, 8, 3, 0, 7, 4, 7, 0, 3, 9, 2, 6,

 9, 1, 3, 3, 8, 9, 5, 4, 3, 1, 6, 8, 2, 9, 2, 0, 6, 5, 5, 9,

 6, 8, 5, 2, 2, 9, 7, 9, 8, 7, 6, 6, 0, 8, 5, 5, 7, 7, 4, 4,

 9, 8, 1, 7, 0, 3, 6, 1, 1, 4, 1, 9, 0, 9, 4, 2, 1, 5, 6, 4,

 2, 7, 3, 3, 6, 0, 6, 7, 2, 5, 4, 5, 3, 1, 8, 4, 8, 2, 3, 0]

This pattern contains 100 numbers, lacks pattern, and is uniform. Is it
perfect? Far from it. But it’s a lot better than our first sequence.

As contrived as this all seems, this is pretty much how PRNGs work. Since a
computer can’t generate a true random number, it fakes it. But it fakes it
well enough to make the numbers seem random to the user.

Linear Congruential Generators
The concept of pseudorandom number generation is starting to take shape.
But here’s a new monkey wrench: so far, we’ve only been dealing with
random numbers from 0 through 9. But what if we want to generate a
number that was, say, 7 digits long?

Indeed, Python’s random() method typically produces a number with a whole
bunch of digits. Interestingly, the number generated is a float between 0 and
1. However, it has many digits beyond the decimal point. For example:

 >>> random.random()

 0.5339767180649452

And herein lies the problem. If we want uniformity to the point where every
possible float occurs at least once within our sequence, we’d need to
prepopulate a sequence containing trillions of numbers. That’s a lot of
memory to take up to enable a programming language to generate a random
number.

Because of this, PRNGs don’t prepopulate a long sequence of numbers for
the computer to cycle through. Instead, they use a clever trick to achieve a
similar result. That is, the PRNG only has to remember the pseudorandom
number it generated previously, and then it calculates the next number
based on the previous number.

In other words, there is indeed a prepopulated sequence. But we don’t have
to tell the computer the entire sequence up front. Instead, the computer
figures out the next number based on the previous number.

Here’s a simplified example to demonstrate the basic concept.

Let’s make up a formula for generating random numbers between 0 and 210.
It’ll go something like this:

1. Add 12549 to the previously generated random number.
2. Divide the result by 211.
3. Grab the remainder. This remainder will be the next number in our

sequence.

Yes, this sounds like a calculation that I pulled out of a hat, and that’s
because I did. But let’s see what happens.

If the previous number generated by the computer was 73, we’ll apply our
calculation:

 (73 + 12549) % 211 = 173

Therefore, 173 will be the next pseudorandom number.

Now, the next time the computer generates a number after this, the
computer will grab the previous number (173) and apply the same
calculation to generate a new pseudorandom number:

 (173 + 12549) % 211 = 62

And so on.

This type of PRNG is called a Linear Congruential Generator, or LCG.
The name isn’t terribly important, but you can impress your family and
friends by saying that you spent your day creating your own Linear
Congruential Generator.

There are a couple of other items I need to point out. You can’t pull any old
LCG formula out of your hat, like I admittedly did, as it takes mathematical
expertise to choose the “best” formula. For example, the number we’re
dividing by (which in our example is 211) must be a prime number. You’ll
read more about this soon.

There’s also another loose end to tie up. We now have a method to generate
the next random number in our sequence. But how do we determine the first
number?

For this, the programming language provides a starting value, which is
called the seed. The seed can be any arbitrary number hardcoded straight
into the programming language and used the first time the computer is
asked to generate a random number. From then on, the sequence continues
based on the LCG’s math formula. Many languages, including Python, use
the current time to determine the seed.

A First Attempt at LCG
I whipped up the following code to serve as a basic LCG so that we can see
what an LCG implementation looks like:

 def generate_random_sequence (seed):

 sequence = []

 previous_number = seed

 while True:

 next_number_in_sequence = (previous_number + 12549) % 211

 if next_number_in_sequence in sequence:

 break

 else :

 sequence.append(next_number_in_sequence)

 previous_number = next_number_in_sequence

 return sequence

To run this code, I’ll call the generate_random_sequence function and pass in
an arbitrary seed of 999:

 print (generate_random_sequence(999))

This produces the following sequence:

 [44, 144, 33, 133, 22, 122, 11, 111, 0, 100, 200, 89,

 189, 78, 178, 67, 167, 56, 156, 45, 145, 34, 134, 23,

 123, 12, 112, 1, 101, 201, 90, 190, 79, 179, 68, 168,

 57, 157, 46, 146, 35, 135, 24, 124, 13, 113, 2, 102,

 202, 91, 191, 80, 180, 69, 169, 58, 158, 47, 147, 36,

 136, 25, 125, 14, 114, 3, 103, 203, 92, 192, 81, 181,

 70, 170, 59, 159, 48, 148, 37, 137, 26, 126, 15, 115,

 4, 104, 204, 93, 193, 82, 182, 71, 171, 60, 160, 49,

 149, 38, 138, 27, 127, 16, 116, 5, 105, 205, 94, 194,

 83, 183, 72, 172, 61, 161, 50, 150, 39, 139, 28, 128,

 17, 117, 6, 106, 206, 95, 195, 84, 184, 73, 173, 62,

 162, 51, 151, 40, 140, 29, 129, 18, 118, 7, 107, 207,

 96, 196, 85, 185, 74, 174, 63, 163, 52, 152, 41, 141,

 30, 130, 19, 119, 8, 108, 208, 97, 197, 86, 186, 75,

 175, 64, 164, 53, 153, 42, 142, 31, 131, 20, 120, 9,

 109, 209, 98, 198, 87, 187, 76, 176, 65, 165, 54, 154,

 43, 143, 32, 132, 21, 121, 10, 110, 210, 99, 199, 88,

 188, 77, 177, 66, 166, 55, 155]

Conveniently, this sequence contains all the numbers from 0 to 210 with
each number occurring once. It turns out that this sequence has great

uniformity and a period of 210.

However, this sequence is not so great when it comes to lacking pattern.
Look at every pair of consecutive numbers: 44 and 144, 33 and 133, 22 and
122. That’s a pattern if I’ve ever seen one.

Short Circuit
Even without mathematical expertise, we can at least play with the numbers
of the LCG formula to see if we can get a better pattern. If I change the
formula to divide by 111, which is not a prime number, we get this result:

 [6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, 78, 84,

 90, 96, 102, 108, 3, 9, 15, 21, 27, 33, 39, 45, 51, 57,

 63, 69, 75, 81, 87, 93, 99, 105, 0]

The first thing that jumps out at me is that this sequence has a short period.

In truth, this happens because when we get to the final number, 0, and apply
the formula to it, we get:

 (0 + 12549) % 111 = 6

We get 6, but you’ll notice that 6 is the first number in the sequence, so the
sequence starts over from the beginning. That is, once the “current”
generated number is 6, the next number must be 12 since that’s what our
LCG formula dictates. We’re forced to return to the beginning of our
sequence.

So, for an LCG to uniformly generate every number in a range of, say, 0
through 101, the LCG must generate each of those numbers once and only
once before beginning the sequence all over again. The sequence will “short
circuit” as soon as we generate a number we’ve already generated before,
and we are forced to jump back to that point in the sequence.

Now, if you were to ask Python to generate an integer between 0 and 9
using random.randint(0, 9), it’s possible to get the same result twice in a row.
But then the sequence would get locked into generating that same number
over and over again. If, for example, the LCG formula says that the
previous result of 4 produces another 4, then there’s no way to ever stop
generating a 4!

The answer, though, is that when you execute random.randint(0, 9), under the
hood, Python is generating a much longer number using random.random(),
such as 0.5339767180649452, like you saw earlier. Python then does
something along the lines of returning the final digit, like the 2 in our
example.

However, when the computer generates the next number, it’s performing the
LCG formula on 0.5339767180649452. This could produce a number like
0.11364654704325492, whose final digit also happens to be a 2. So it may
appear as if you received the same number twice, but in truth, Python has
generated a completely different number with many more digits. It’s just
that both numbers happen to end with a 2.

This explanation might make sense for generating numbers between 0 and
9, but what about generating numbers between, say, 116 and 865? Indeed, the
math that Python uses is slightly more complex than simply grabbing a final
digit, but in any case, Python first generates a longer number and then
converts it into a number in the range you’re looking for.

A Better LCG Formula
You saw that our previous LCG formula of (x + 12549) % 211 produced a
sequence with a distinct pattern, which is problematic. Let’s tweak our
formula again, this time using the numbers: (previous_number + 1223) % 227.

This time, we get:

 [179, 40, 128, 216, 77, 165, 26, 114, 202, 63, 151,

 12, 100, 188, 49, 137, 225, 86, 174, 35, 123, 211, 72, 160,

 21, 109, 197, 58, 146, 7, 95, 183, 44, 132, 220, 81, 169,

 30, 118, 206, 67, 155, 16, 104, 192, 53, 141, 2,

 90, 178, 39, 127, 215, 76, 164, 25, 113, 201, 62, 150,

 11, 99, 187, 48, 136, 224, 85, 173, 34, 122, 210, 71, 159,

 20, 108, 196, 57, 145, 6, 94, 182, 43, 131, 219, 80, 168,

 29, 117, 205, 66, 154, 15, 103, 191, 52, 140, 1, 89, 177,

 38, 126, 214, 75, 163, 24, 112, 200, 61, 149, 10, 98, 186,

 47, 135, 223, 84, 172, 33, 121, 209, 70, 158, 19, 107, 195,

 56, 144, 5, 93, 181, 42, 130, 218, 79, 167, 28, 116, 204,

 65, 153, 14, 102, 190, 51, 139, 0, 88, 176, 37, 125, 213,

 74, 162, 23, 111, 199, 60, 148, 9, 97, 185, 46, 134, 222,

 83, 171, 32, 120, 208, 69, 157, 18, 106, 194, 55, 143, 4,

 92, 180, 41, 129, 217, 78, 166, 27, 115, 203, 64, 152, 13,

 101, 189, 50, 138, 226, 87, 175, 36, 124, 212, 73, 161, 22,

 110, 198, 59, 147, 8, 96, 184, 45, 133, 221, 82, 170, 31,

 119, 207, 68, 156, 17, 105, 193, 54, 142, 3, 91]

This has all numbers from 0 through 226. We have good uniformity, a
longish period, and a pattern that is more difficult to detect. Now, there is a
pattern (can you find it?), but since it’s harder to see, our sequence has a
greater appearance of randomness than before.

In the end, we managed to create a sequence of seemingly mixed-up
numbers without having to store the entire sequence. Instead, we simply
allow the LCG to do the work of computing the next number. The trick is to
find the right formula, which takes mathematical expertise.

Luckily, mathematicians and computer scientists have developed a whole
slew of PRNGs, some of which are LCGs and some that use other types of
math. These PRNGs do the heavy lifting for us, and some have awesome
names like Threefish, Philox, Mersenne Twister, and Blum Blum Shub. As
of this writing, Python uses the Mersenne (pronounced mer-SEN) Twister,
which is a type of LCG.

The Mersenne Twister is impressive, as it uniformly generates long
numbers and also has a super-long period of about (219937). That’s a

massive load of numbers before the sequence wraps around to the
beginning again.

Another important attribute of the Mersenne Twister is that a computer can
execute its calculations quickly. Some LCGs are so involved that it may
take the computer a stretch of time to compute the next number. While the
Mersenne Twister is itself a complex formula, it’s one that a computer can
execute with great speed. This is important, as you’ll see in the next section
that an operation like shuffling an array has to generate many random
numbers in succession. If generating a single random number is not fast,
shuffling an entire array can become way too slow.

TRNGs vs. PRNGs
Technology decisions are all about trade-offs, as I’ve mentioned, and both
TRNGs and PRNGs have their pros and cons. The major advantage of
TRNGs is that their numbers are much closer to being truly random; that is,
the numbers are way less predictable. (Can you predict what the next lava
lamp formation is going to look like?) PRNG numbers, on the other hand,
are completely predictable once you know which formula is being used to
fuel the PRNG.

Sometimes this difference is critical, as there are numerous applications
where only truly random numbers will do. One of the most prominent
examples is cryptography, which relies on the random generation of
passwords and secret keys. For example, when we sign up for a new online
service, our Internet browser asks us if it should generate a random
password for us. If these passwords were only pseudorandom and generated
using a predictable pattern, hackers would have a heyday breaking into
people’s accounts.

Another example is casino software. If a smart person could predict the
combination of cards that the electronic poker machine will deal out next,
the casino would go out of business fast. Even if something like Mersenne
Twister is being used under the hood, a hacker may be able to find out the
precise random number previously generated, and thereby be able to predict
the next one.

For applications like these, PRNGs like Mersenne Twister aren’t up to
snuff. In the words of Python’s documentation of the random module, “The
Mersenne Twister is one of the most extensively tested random number
generators in existence. However, being completely deterministic, it is not
suitable for all purposes, and is completely unsuitable for cryptographic
purposes.”

On the other hand, for applications that don’t absolutely need “true” random
numbers, PRNGs have distinct advantages. First, PRNGs are practical; no
radioactive material is needed. Secondly, PRNGs are generally faster, as a
computer only needs to make an internal mathematical computation.

CSPRNG
It should be noted that there’s also a type of random number generator called a
Cryptographically Secure Pseudorandom Number Generator, or CSPRNG, which attempts to
grab all the advantages of both PRNG and TRNG. That is, the computation is practical, fast,
and cryptographically secure all at the same time. However, while CSPRNGs are indeed
faster than TRNGs, they’re generally not as fast as PRNGs. On the flip side, while CSPRNGs
are much more secure than PRNGs, they’re not as secure as TRNGs. So, it’s a compromise
that is appropriate for certain scenarios. A competent cybersecurity professional should be
consulted if you’re not sure whether you should be using a CSPRNG or a TRNG.

So much more can be said regarding generating random numbers, but it’s
time to get back to the topic of randomized algorithms. In particular, let’s
look at how to figure out the time complexity of shuffling an array.

The Fisher-Yates Shuffle
We’ve looked at several different sorting algorithms, but now let’s turn our
focus to an unsorting algorithm. While sorting makes order out of chaos,
shuffling makes chaos out of order.

To shuffle an array, Python uses a variant of an algorithm known as the
Fisher-Yates Shuffle, which was named after Ronald Fisher and Frank
Yates, who first described it in 1938. This was before computers, so their
original description involved using pencil and paper. Here’s how it works as
a computerized algorithm:

1. We point to the first index of the array. We’ll eventually point to the
others, too, but we start at the beginning. We’ll call this the “current
index.”

2. We generate a random (or pseudorandom) number to choose a random
index that is either the current index or higher.

At the beginning of our algorithm, we can choose from all indexes.
But if, say, our current index is 2, and the last index is 4, we’ll choose
a random index from 2 to 4, inclusive.

3. We swap the value at our current index with the value at our random
index.

4. We move our pointer to the next index of the array.

5. We repeat Steps #1 through #4 until we reach the final value. Since
there are no values to the right of the final value, swapping the final
value with itself would be pointless, so the algorithm ends.

The Fisher-Yates Shuffle in Action
Let’s visually walk through the Fisher-Yates Shuffle algorithm for the array
[1, 2, 3, 4, 5].

Step 1: We point to the first index in the array:

Step 2: We randomly choose one of the indexes from our pointer and
rightward. For now, this can be any index of our array.

We’ll indicate the random index with a die. Say that our randomly chosen
number is a 3:

The number the die lands on represents the index that we’re going to swap
with. In this case, the index is 3 (and that slot happens to contain the value
4). In the diagram, I’ve placed the die under its corresponding index.

Step 3: We then swap the values of the current index (the arrow) and the
random index (the die):

Step 4: We point to the next index of the array:

Step 5: We randomly choose a number between 1 and 4 inclusive since
we’re choosing an index from the current pointer and to the right. Say we
roll a 4:

Step 6: We swap the values:

Step 7: We point to the next value:

Step 8: We pick a random value from 2 to 4. Let’s say that our computer
chooses a 2:

Step 9: In this case, we “swap” the value at index 2 with itself, leaving us
with the same array as before.

Step 10: We point to the next value:

Step 11: We choose a random index. At this point, there are only two to
choose from, 3 and 4. Let’s say we roll a 4:

Step 12: We swap the current index’s value with the random index’s value:

There’s no point in moving our pointer to the final index. Remember,
according to this algorithm, we only swap a value with either itself or any
value to its right. Since the final value can’t be swapped with anything other
than itself, we end our shuffle here:

Code Implementation: The Fisher-Yates Shuffle
Here’s a Python implementation of the Fisher-Yates Shuffle:

 import random

 def fisher_yates (array):

 for i in range(0, len(array) - 1):

 j = random.randint(i, len(array) - 1)

 array[i], array[j] = array[j], array[i]

 # Testing out our code:

 array = [1, 2, 3, 4, 5, 6, 7, 8]

 fisher_yates(array)

 print (array)

Note that our loop stops before len(array) - 1 since we aren’t going to perform
a swap for the final index.

The Efficiency of the Fisher-Yates Shuffle
Let’s analyze the efficiency of the Fisher-Yates Shuffle. The steps of this
algorithm consist of generating random numbers and performing swaps. For
each of the N values in the array (besides the last one), we generate a
random number and then perform a swap. All in all, this is N-1 number
generations, and N-1 swaps, yielding 2N-2 steps, which boils down to
O(N). This is way faster than any known sorting algorithm, and kind of
makes sense since it’s a lot easier to make chaos out of order than it is to
make order out of chaos.

In terms of space, the Fisher-Yates Shuffle jumbles all the values in place
and doesn’t consume any extra memory.

Now that we’ve determined that shuffling takes O(N) time, we understand
why shuffling an array before Quicksort is worth our while. As we’ve seen,
if we suspect that we’re dealing with a sorted array, Quicksort will have a
speed of O(N2). But if we spend O(N) time preshuffling the array, we can
reduce Quicksort’s time to O(N log N), which makes preshuffling a
potentially great move. That is, even with preshuffling, Quicksort’s total
time is still, from a Big O notation standpoint, O(N log N). This is because
we have:

 N log N Quicksort steps

 + N preshuffling steps

which yields (N log N) + N, which is still O(N log N) since we drop the
lower factor of “+ N”.

So, preshuffling the array doesn’t slow Quicksort down at all from a Big O
perspective.

Shuffling the Wrong Way
You may be wondering why we need a special algorithm for shuffling.
What’s wrong with, say, the following alternative approach that I’ve
invented off the top of my head? Here’s my proposed algorithm:

Similar to the Fisher-Yates Shuffle, let’s point to each of the array’s values
and swap them with other values. However, we won’t constrain ourselves
and only choose a value to the right of the pointer. Rather, we can swap
each value with any other value—even those to the left of the pointer.

Here would be the code for this approach, which I’ll call “naïve shuffling”:

 import random

 def naive_shuffle (array):

 for i in range(0, len(array) - 1):

 j = random.randint(0, len(array) - 1)

 array[i], array[j] = array[j], array[i]

 array = [1, 2, 3, 4, 5, 6, 7, 8]

 naive_shuffle(array)

 print (array)

Indeed, when I run the code, I get an array that looks shuffled. So, what
exactly is wrong with naïve shuffling?

In truth, the problem is so subtle that it’s terribly easy to overlook. But
here’s the thing: if we want an algorithm to be truly random, we must
ensure that every possible result of shuffling is equally likely to occur.

For example, imagine that we have a six-sided die. But instead of having
sides marked from 1 to 6, we have five sides marked 1, 2, 3, 4, and 5, and
the sixth side is an extra 5. While the result of the die roll will certainly be
random, it won’t be perfectly random since the die is more likely to land on

a 5 than any other number. This hurts the uniformity of the possible results,
thereby hampering the die’s randomness.

We have to apply the same analysis to shuffling. If we’re shuffling the array
[1, 2, 3], there are six possible permutations we can end up with:

 [1, 2, 3] [1, 3, 2]

 [2, 1, 3] [2, 3, 1]

 [3, 1, 2] [3, 2, 1]

Just like the die, we want to make sure that each of these six possibilities is
equally likely to result from our shuffling algorithm. We don’t want a
situation where one of these permutations is more likely to occur than the
others.

With that in mind, let’s now analyze our proposed naïve shuffling algorithm
using the same example array of [1, 2, 3].

With naïve shuffling, we point to each value in the array and “roll a die” by
choosing a random index from anywhere in the array to swap it with. In our
example, this is like rolling a three-sided die and getting the possible results
of 0, 1, or 2. This will result in combinations such as 1, 2, 0 or 2, 2, 1 or 0, 0, 0.
There are, in fact, 27 possible sets of random numbers that may be chosen.
Here goes:

 0, 0, 0 --- 1, 1, 1 --- 2, 2, 2

 1, 0, 0 --- 0, 1, 0 --- 0, 0, 1

 2, 0, 0 --- 0, 2, 0 --- 0, 0, 2

 1, 1, 0 --- 1, 0, 1 --- 0, 1, 1

 1, 1, 2 --- 1, 2, 1 --- 2, 1, 1

 2, 2, 0 --- 2, 0, 2 --- 0, 2, 2

 2, 2, 1 --- 2, 1, 2 --- 1, 2, 2

 0, 1, 2 --- 0, 2, 1 --- 1, 0, 2

 1, 2, 0 --- 2, 1, 0 --- 2, 0, 1

To be clear, these aren’t the permutations of the results of the shuffle itself.
These are the possible combinations of random indexes (die rolls) that we’ll

generate throughout our shuffle.

Now, if we take each of these permutations and compute the result of the
shuffle for each permutation, we get:

 [3, 1, 2] --- [2, 3, 1] --- [3, 1, 2]

 [3, 2, 1] --- [3, 2, 1] --- [2, 3, 1]

 [1, 3, 2] --- [2, 3, 1] --- [2, 1, 3]

 [3, 1, 2] --- [1, 3, 2] --- [1, 3, 2]

 [2, 1, 3] --- [2, 1, 3] --- [3, 1, 2]

 [2, 1, 3] --- [2, 3, 1] --- [1, 3, 2]

 [3, 2, 1] --- [3, 2, 1] --- [2, 3, 1]

 [1, 2, 3] --- [1, 2, 3] --- [1, 2, 3]

 [1, 3, 2] --- [1, 2, 3] --- [2, 1, 3]

If we take a tally of how many times each of the shuffling results occurs, we
get:

 [1, 2, 3] -> 4 times

 [1, 3, 2] -> 5 times

 [2, 1, 3] -> 5 times

 [2, 3, 1] -> 5 times

 [3, 1, 2] -> 4 times

 [3, 2, 1] -> 4 times

Aha! It turns out that our naïve shuffling algorithm will produce three of the
permutations more often than the other three permutations. This means that
our algorithm doesn’t produce uniformly random results.

The Fisher-Yates Shuffle, on the other hand, does, and here’s why.

For an array of size 3, with Fisher-Yates, we only generate two random
numbers. Again, this is because we don’t bother to generate a random
number when we’re up to the final value in the array. As we tally all the
possible permutations of random numbers, we should also keep in mind that
the range of random numbers decreases as we progress through the array.
For example, when we’re at the first value, we’ll generate a random number

between 0 and 2. But when we’re pointing to the second value, the
algorithm will only generate a number between 1 and 2.

Based on this, here are all the permutations of die rolls we might get in our
example of shuffling an array of size 3:

 0, 1

 0, 2

 1, 1

 1, 2

 2, 1

 2, 2

We have only six permutations. When we compute the results of shuffling
based on the die rolls, we get:

 [1, 2, 3] -> 1 time

 [1, 3, 2] -> 1 time

 [2, 1, 3] -> 1 time

 [2, 3, 1] -> 1 time

 [3, 2, 1] -> 1 time

 [3, 1, 2] -> 1 time

We end up getting exactly one instance of each possible permutation of the
shuffled array, which means that Fisher-Yates produces random results with
perfect uniformity. And that’s why Fisher-Yates is the gold standard when it
comes to shuffling. It’s not so intuitive at first, but once we analyze all the
possible permutations, it’s easier to see the difference between Fisher-Yates
and our proposed naïve shuffling.

Binary Search Tree Randomization
So far, we’ve looked at various types of randomized algorithms. Generating
a random number is perhaps the “ultimate” randomized algorithm, as it is
what powers all of the other randomized algorithms. Shuffling an array is
also a randomized algorithm since it uses randomization to jumble the order
of the array’s values.

Randomized Quicksort, another randomized algorithm we’ve seen, uses
randomization for the sake of creating order efficiently. Although the
algorithm’s goal is to create order rather than randomness, it is still
considered a randomized algorithm since it utilizes randomization
somewhere within the algorithm’s steps. In fact, this utilization of
randomization can be useful in any scenario where having sorted data
would be to our disadvantage. Another example of this pops up with regard
to the building of binary search trees.

I noted back in Volume 1, Chapter 15, that the order of our data could
significantly affect the formation of our tree. For example, if we want to
build a tree out of the data [3, 2, 4, 1, 5] by pulling out each value from left to
right and inserting them into the tree, we get this nicely balanced tree:

However, if those same values were in the order [1, 2, 3, 4, 5], our tree would
come out like this:

This tree is essentially nothing more than a linked list and loses all the
efficiency advantages that a binary search tree has over a linked list. So, this
is another instance where sorted data works to our disadvantage.

However, if we have reason to suspect that our data might be in sorted
order, we can do our little trick of preshuffling the array before building the
tree! The shuffling of an array will greatly reduce the odds that the array is
in sorted order.

Randomization for Distribution
Another interesting use of randomization is for distributing items evenly.
This is another example of where randomization is counterintuitively used
for the sake of creating order.

Probability theorists like to discuss the concept of putting “balls into bins.”
That is, say we have 10 bins (or boxes, if you like) and want to distribute a
whole bunch of balls into them evenly. This is easy to do if we know how
many balls we have. If we have 1,000 balls, we place 100 balls in each bin.
But what if we don’t know how many balls we have? How can we ensure
that we distribute them evenly?

In such cases, we can still fill the bins evenly if we use a “round-robin”
approach. That is, we rotate through the bins, putting a single ball in each
bin. As long as we follow this pattern consistently, the bins will be filled
practically evenly.

Now, here’s a question to ponder: what happens if we take each ball, one at
a time, and place it in a random bin?

Here’s some code that does this. Here, we treat arrays as “bins” and integers
as “balls.” That is, we throw 1,000 integers into 10 different arrays,
choosing a random array for each integer:

 import random

 bins = [[], [], [], [], [], [], [], [], [], []]

 for ball in range(1000):

 bin = bins[random.randint(0, 9)]

 bin.append(ball)

 for bin in bins:

 print (len(bin))

Because we choose the bins randomly, each time I run this code, I get a
slightly different result. However, all the results are similar. Here’s one
outcome of how many balls each bin contains:

 103

 95

 101

 105

 88

 91

 105

 113

 106

 93

Whoa. While the balls haven’t been distributed perfectly evenly, it’s
surprisingly close.

Because each bin is chosen at random, and each bin is as likely to be chosen
as every other bin, the laws of probability dictate that the bins are likely to
contain roughly the same number of balls. Probability theorists use math to
define how likely this is, but for our purposes, it’s likely enough. This may
not be true with a small number of balls relative to the bins, but when we
have many more balls than bins, the distribution is pretty uniform. Feel free
to play with the code and change the number of “balls”—it’s interesting to
see the results.

Load Balancing
Now, you didn’t buy this book to learn about throwing balls into bins.
However, this concept is used in various distribution algorithms. One
common use case is load balancing. Load balancing is a concept commonly
used for Internet servers and similar networks. If you’re not familiar with
load balancing, here’s the gist of it, using Internet usage as a basic example.

When you open your Internet browser and visit a website, your browser
makes a request to a server to receive the web page content, as illustrated in
the following figure:

A server is simply a computer dedicated to delivering content to your
computer; it “serves” the content to you.

Now, a server can only handle a finite amount of traffic at a given moment.
If a website is so popular that thousands of people visit it each second, a
single server may not be enough to deliver content to everyone in a timely
manner. Because of this, many websites are delivered using a system made
up of multiple servers. Each server is capable of delivering the same
content, so no matter which server your laptop talks to, it will receive the
same web page.

However, a laptop doesn’t choose which server it wants to make a request
from. If it did, and one million users of the website decided to all make
requests from the same server, we haven’t accomplished anything by adding
multiple servers.

To make this setup work, a device known as a load balancer is used to
direct all traffic. That is, each laptop makes a request of the load balancer,
and the load balancer routes the request to one of the servers, like so:

Even though this example system has a bottleneck of having only one load
balancer, it’s still a win. This is because a load balancer can generally act
much faster than a server since all it does is route requests, as opposed to
the server that interacts with databases and performs more time-intensive
tasks. So, even though all the traffic may be flowing to that one load
balancer, the load balancer may still be able to direct all the requests
quickly enough.

Now, here’s the crucial thing. For this setup to be effective, the load
balancer needs to distribute the traffic uniformly among all the available
servers. Certainly, if the load balancer sends all the traffic to one server,
we’ve truly accomplished nothing. We want all the servers to take on an
equal share of the load.

And this is where the balls-in-bins analogy becomes relevant because
directing requests to servers is essentially the same concept.

Fortunately, there are numerous algorithms that load balancers can use to
ensure that the traffic is distributed evenly.

Round-Robin Load Balancing
One of the simplest and most common load balancing algorithms is called
round-robin load balancing. We rotate between all the servers and send each
request to the next server as illustrated in the figure.

In this image, we send the first request to the first server, the second request
to the next server, and the third request to the next server.

With subsequent requests, we repeat the same pattern as shown here:

And so on. As with balls-in-bins, round-robin load balancing distributes the
requests perfectly evenly, and the algorithm is as easy as pie.

However, the round-robin approach isn’t always the best one. This is
because servers don’t always deliver responses at the same speed. This can
happen for a variety of reasons, among them that one user made a request
that is complex and requires that request’s server to do a lot more work.

Least-Time Load Balancing
A potentially “smarter” load balancing algorithm, called least-time load
balancing, is one in which the load balancer detects how quickly each
server is currently taking to process requests. Once the load balancer is

aware of how speedy each server is in the moment, the load balancer sends
the next request to the fastest server.

However, this works best when we’re only dealing with a single load
balancer. Some setups, though, include multiple load balancers, which can
be necessary when we have a lot of traffic, as shown in the figure.

But here’s the gotcha when dealing with multiple load balancers. In that
diagram, we have two load balancers, but imagine we have 10.

Let’s also say that the 10 load balancers all receive requests at the same
time. With the least-time load balancing scheme, the load balancers will all
find the fastest server, and send all 10 requests to it. What a moment ago
was the fastest server may now become the slowest by far, as we’ve
clogged it with a slew of 10 requests simultaneously!

So, least-time balancing can fall apart when dealing with multiple load
balancers. Luckily, there’s yet another load balancing algorithm that works
well even under these conditions, and it involves randomization.

Randomized Load Balancing with the Power of Two Choices
Indeed, we can use randomization as the basis of a load-balancing
algorithm. The simplest way to do this is to have the load balancer send
each request to a random server. As you saw with balls in bins, distributing

balls into random buckets is an effective way to distribute the balls pretty
evenly. This distribution won’t be as uniform as round-robin load balancing,
but it’ll be uniform enough. We’ll call this approach the “purely random”
load-balancing algorithm. However, purely randomized load balancing runs
into the same pitfalls as the round-robin approach: if there’s one slow
server, we’re going to keep sending requests to it even though we should be
avoiding it until it speeds up again.

However, a randomization algorithm known as the power of two choices
works astonishingly well. This approach is almost as simple as the purely
random algorithm, but with a twist: each load balancer chooses two random
servers, checks which one is faster in the moment, and sends the request to
that faster server.

Again, the problem with the purely random approach was that we may end
up sending requests to the slowest server. But with the power of two
choices, this is impossible to do. Even if our randomly chosen servers
happen to be the slowest server and the second-slowest server, we still
avoid sending the request to the slowest server.

The power of two choices is beneficial even if we randomly pick the fastest
and second-fastest servers. After all, we’ll shave off some extra time by
sending the request to the fastest server instead of the second-to-fastest one.

In theory, we could also have a power of three choices algorithm, which
randomly chooses three servers and sends the request to the fastest one.
However, the more servers we choose from, the more likely it is that we
have multiple load balancers sending requests to the same server at once.
Ultimately, these numbers may vary depending on the number of load
balancers and servers our system has. However, as a general rule, the power
of two choices algorithm has held up in many cases and has been shown to
be effective.

Power of Two Choices for Balls in Bins

To see the power of two choices in action, let’s go back to our balls-in-bins
code. Let’s change it up so that instead of throwing each ball into a random
bin, we choose two random bins, and throw the ball into the emptier bin.
This is analogous to a load balancer sending a request to the faster of two
servers. Just as we want each server to have an equal load of web requests,
we want each bin to contain the same number of balls. Here’s our updated
code:

 import random

 bins = [[], [], [], [], [], [], [], [], [], []]

 for ball in range(1000):

 bin_1 = bins[random.randint(0, 9)]

 bin_2 = bins[random.randint(0, 9)]

 if len(bin_1) < len(bin_2):

 bin_1.append(ball)

 else :

 bin_2.append(ball)

 for bin in bins:

 print (len(bin))

No matter how many times I run this code, I get results along these lines:

 100

 99

 100

 100

 100

 101

 100

 99

 100

 101

Wow! That’s pretty close to perfect distribution. And that, my friends, is the
power of two choices—and randomization.

The Probability Theory Caveat
Some of the randomization concepts we’ve looked at are intuitive, while
others are less so. It’s important to remember that probability and statistics
are an entire subject, nay, an entire field, and I can’t do justice to it in these
pages.

With that in mind, if you are developing your own randomization algorithm,
you’ll often need to check its effectiveness using established probability
theory. Sometimes it may seem that randomization will produce fantastic
results, but when you run your idea through statistical formulas, you may
discover that it’s not so hot after all. Remember when I thought that naïve
shuffling was a good idea?

That being said, benchmarking is also your friend, and you may be able to
demonstrate the power of your algorithm using the techniques outlined in
the previous chapter.

Wrapping Up
In this chapter, you learned what randomization algorithms are and how
they can optimize various algorithms, such as Quicksort and building binary
search trees. You looked at the fundamentals of how computers generate
random numbers and the right way to use random numbers to shuffle an
array. You also discovered how the power of two choices uses
randomization to achieve an ideal load-balancing algorithm.

But even with all this, we’ve only begun to scratch the surface of
randomization algorithms. In fact, randomization algorithms will play an
important role throughout many of the remaining chapters of this book.

In the next chapter, we’re going to explore a fundamental set of data
structures and algorithms surrounding the idea of caching, which can
drastically improve the speed of your code. And we’ll extend the ideas of
this chapter to explore how randomization can be used to optimize caching.

Exercises
The following exercises provide you with the opportunity to practice with
randomization algorithms. The solutions to these exercises are found in the
section Chapter 3.

1. Write a function that randomly chooses 3 different values from an
array, and returns a brand-new array that contains those 3 values.
Ensure that the values appear in the same order as they appeared in the
original array.

For example, if the original array is [7, 1, 5, 2, 9, 0, 3, 6, 4], and the
computer selects the 9, 6, and 5 (in that order), we should return [5, 9, 6]

since that’s the order in which those three integers appear in the
original array.

2. Write a function that randomly chooses a single key from a hash table
(in other words, a dictionary, if you’re using Python).

3. Puzzle: There are several simple ways to randomly select a single item
from an array, such as using Python’s built-in random.choice method, for
example. Another basic approach is to use random.randint to randomly
select one index from the array, and return the value at that index.

However, there’s a clever but more involved approach that can be
handy in certain scenarios. I’m only going to describe part of the
algorithm, and your challenge is to fill in the rest. The algorithm goes
like this:

We run a loop that iterates over each value in the array. Within each
iteration of the loop, we perform a certain computation (which I will
not reveal here) to decide whether the value we’re currently pointing to
should be the value we’re selecting. If the computation decides to

select the current value, we return that value and we’re done. If the
computation decides to not select the current value, we simply
continue with the next iteration of the loop. If the loop reaches the
final item of the array, then that final item becomes the value we’re
choosing.

Your job is to figure out what this certain computation is. The tricky
(but tantalizing!) part is to figure out how to ensure that each item has
an equal chance of being selected.

4. Puzzle: Devise an algorithm that chooses a random node from a binary
search tree. You can assume that the tree is complete (that is, a tree
whose levels are entirely full), like this one:

To make this exercise more challenging, make sure that the function
runs in O(log N) time and doesn’t consume any extra space.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 4

Cache Is King

In the previous chapter, I introduced randomized algorithms and explained
how randomization can boost the efficiency of all sorts of applications. In
this chapter, you’ll discover how randomization can also boost the speed of
a process known as caching.

Caching is built into the hardware of virtually all computers and affects the
speed of the code you write. At the same time, you can create software that
performs additional layers of caching as well.

But whether you write your own caching code or leverage the caching built
into your computer, understanding caching—and how randomization can
play a role in it—will allow you to take your code’s speed to the next level.

In addition, caching is another key piece of the puzzle of why two
algorithms can have different actual-time speeds even though they execute
the same number of steps. Understanding the related concept of spatial
locality can help you design faster algorithms even when Big O analysis
tells you that you can’t beat the speed of the algorithm you already have.

So, without further ado, let’s dig into caching.

Caching
A fundamental rule about computers is that the farther the data is from your
computer, the longer it takes for your computer to retrieve it. For example,
you can open a file that’s local to your computer more quickly than you can
download information from the Internet. This is because the Internet
consists of servers that are outside your computer, and it takes more time
for your computer to obtain those servers’ data.

Let’s take a look at an example of how this can be a major deal for the
software we write.

Imagine that we’re building an app that searches the web for the cheapest
price available for various physical products. The user enters something like
“Vroom-Master Vacuum Cleaner 3000,” and our app scours the Internet to
find whichever online retailer is selling it for the cheapest price. Note that
we’re not building a massive database that stores a gazillion products and
their prices. Instead, our software is searching the web each time the user
searches for a particular product. In a sense, the web is our “database.”

Now, say that the Vroom-Master’s latest model is becoming a hot fad;
everyone you know is buying one. Suddenly, our app finds itself repeatedly
searching the web for the best bargain for the Vroom-Master 3000.
Assuming that stores are not constantly changing their prices at a rapid clip,
it’s kind of a shame that our software has to search the web each and every
time someone asks for the Vroom-Master 3000. Searching the web takes
time! Wouldn’t it be nice if the app could remember information the first
time it finds it and then not have to search the web again and again for the
same information?

Luckily for us, that’s exactly what a cache does.

What Is a Cache?

A cache (pronounced “cash”) is simply a data container that takes data that
was retrieved from a faraway source and stores it locally. (The word
“cache” can also be used as a verb. That is, our computer can cache data it
gets from the web.) Because the data is more local, we’ll be able to retrieve
it more quickly in the future. The definition of “local” can change based on
context, but for now, let’s say that data that lives on our computer is
considered local, while data retrieved from the Internet is “far away.”

In theory, we can create our own code-based cache for the app we’re
building. That is, our app will take data it gets from the web and store it on
the computer, tablet, or smartphone that the software is operating on. We
may, for example, have our code initialize some data structure and store the
data in it.

So, the first time someone searches for the Vroom-Master 3000, our app
will search the web for it and then save the desired information in the user’s
local data structure, which serves as our cache. This way, the next time
someone asks for this information, our app doesn’t have to search the web
again; it can instead retrieve the data from the cache.

Now, this behavior may not be desirable for websites that are constantly
changing. In this case, the cache can become what is known as stale. That
is, the website may have been updated with new information, but the app is
pulling up the outdated info saved in the cache. But for websites that don’t
update often, the local cache can save us a lot of time.

Code Implementation: A Hash-Table Cache
We have a variety of options as to which data structure we might choose to
serve as our cache. However, a hash table is a natural fit for housing a cache
since data can be stored and retrieved from a hash table in O(1) time. The
following sample code demonstrates how we might use a hash table to
serve as a cache:

 import time

 cache = {}

 def lowest_price (product):

 if product in cache:

 return cache.get(product)

 else :

 return search_web_for(product)

 def search_web_for (product):

 # Actual web-searching code goes here. Since we're not

 # actually going to search the web, we'll just use mock

 # data about the price and online shop:

 data_from_web = [799, "Jupiter Electronics"]

 # To mimic the time it takes to search the web, we'll pause for

 # one quarter of a second:

 time.sleep(0.25)

 # Cache the retrieved data:

 cache[product] = data_from_web

 return data_from_web

Here, the main function is lowest_price, which tells the app to first check the
cache to see if it already contains data for that product. Only if the cache does
not contain that data does the app fetch the data from the web.

In the search_web_for function, the app mimics searching the Internet by
sleeping for a quarter of a second. In addition, the code uses the mock data
[799, "Jupiter Electronics"] to indicate the product’s lowest price and the online
shop where the product is sold for that price. In this example, the product
costs $799 and can be found at that price at a store called Jupiter
Electronics.

Now, suppose that our software searches for products using the following
commands:

 print (lowest_price("Vroom-Master 3000"))

 print (lowest_price("Dustpan Deluxe"))

 print (lowest_price("Vroom-Master 3000"))

 print (lowest_price("Vroom-Master 3000"))

 print (lowest_price("Dustpan Deluxe"))

 print (lowest_price("Vroom-Master 3000"))

The first time we search for "Vroom-Master 3000" and "Dustpan Deluxe", it’ll
take a quarter of a second to obtain the data for each. However, in all
subsequent requests, we’ll pull the data from the cache, enabling these
requests to occur much more quickly.

Out of Space
Now that you know how awesome caching is, I could end the chapter here.
However, there’s one itty-bitty teeny-tiny little problem. If our cache keeps
saving more and more information from the outside world, our computer
(or tablet or smartphone) is going to run out of space quickly. After all, we
can’t expect our cache to store the entire Internet!

To manage these space constraints, we need to ensure that our cache is not
storing all data we’ve retrieved from the web. To do this, at some point
we’ll have to remove some data from our cache—or at least prevent new
data from entering. This, then, is the tricky part of caching. Somehow, we
need to figure out what information we want to keep and what information
to get rid of.

Eviction Policies
Here’s a bit of cache jargon I’m going to use going forward. The common
term for deleting something from the cache is to evict it. (It sounds harsh, I
know.) Similarly, an eviction policy is an algorithm that decides what data
we should evict from the cache.

Computer scientists have proposed a whole slew of different eviction
policies over the years. However, the trick is to find the most efficient
eviction policy for our cache. To define what it means for an eviction policy
to be efficient, let me first introduce a few more caching terms.

Recall that each time an application makes a request for data, it first checks
to see if the data is in the cache. If it is, this is called a cache hit. Cache hits
are good since it means that the app can grab the data from the cache rather
than fetch the data from an external source. On the other hand, if an app
makes a request and the data is not in the cache, this is known as a cache
miss. Whenever there is a cache miss, the app has no choice but to look for
the data on the Internet or wherever the external data source is.

We can use these terms to help define what it means to have an efficient
eviction policy. That is, an efficient eviction policy works to increase cache
hits and decrease cache misses. (We’ll soon see that we accomplish this by
trying to only store data that we’ll need again in the future.) The more
requests that our app can fulfill by getting data from the cache, the less time
our app needs to spend searching the web.

In sum, the more efficient our cache is, the faster our software will run.

Farthest-in-Future Eviction Policy
Let’s think about how we might design an efficient eviction policy.

Ideally, we’d evict data that will never be requested ever again. After all,
the whole point of caching is to quickly deliver data on the second and third
time it’s requested. So, if there will never be another future request for a
particular item, we can safely evict its data. This enables us to save room
for data that we will request again at some point. (How will we know what
data will or won’t be requested again? Good question, but hold onto it for
now.)

Now, even if all the products in our sample app will be requested again at
some point, we can still make our eviction policy more efficient by evicting
data that will be requested farthest into the future. Let’s see an example of
what I mean.

Here’s a cache that stores up to four items:

Right now, the cache is empty, which, incidentally, is called a cold cache. (I
like calling it a cold hard cache, but no one else calls it that.)

To keep the diagrams nice and small, instead of requesting items such as a
“Vroom-Master,” we’ll be requesting integers. So, imagine in your mind’s
eye that each integer represents some particular physical product.

Here’s an example sequence of requests we’ll be making, from left to right:

Let’s begin to make our requests. First, we request the 3. There’s plenty of
room in the cache, so we cache the 3:

We do the same for the next three requests, filling up the cache:

Next, we request the 6. The 6 is not currently in the cache, so this is a cache
miss. The previous requests were also cache misses, but this is the first
cache miss we encounter where the cache is full.

Because our cache is full, we need to evict one of the cache’s current items
if we’re going to cache the 6. And so, we look to our eviction policy to
decide which item we’ll evict.

If we look ahead to our future requests (those to the right of the 6), we’ll see
that of all the items currently in our cache, the 1 is the one we’ll be
requesting farthest into the future. That is, the 3, 5, and 2 will all be
requested sooner than the 1. This is what I mean by the term farthest-in-
future eviction policy; we evict whichever item will be requested later than
all other items in the cache.

In this case, we’ll evict the 1 and replace it with the 6:

Next up, a 5 is requested. We happen to have a 5 in the cache, so we have
our first cache hit!

We saved time from having to request the 5 from the web. Also, we don’t
have to evict anything since we’re not inserting any new data into the
cache.

Next, a 4 is requested. This is a cache miss, but what item to evict?

The 3, 2, and 6 will all be requested again soon, but there won’t be a request
for 5 again in the near future. Perhaps there will be in a future batch of
requests, but there aren’t any 5’s in the current list of requests. So let’s evict
the 5 and cache the 4:

Next, we request a 3. That’s a cache hit:

We also have cache hits with the next three requests:

The final request in this sequence is a 1. That’s a cache miss. As to which
item to evict, it’s hard to say since we’re not yet privy to whatever requests
may come next.

In any case, the walk-through shows what it means to evict items that will
be requested farthest into the future. But now let me explain why this
eviction policy is ideal. To some, this may already be intuitive, but I’ll spell
it out anyway.

If we evict items that are about to be requested again soon, we’ll certainly
cause cache misses that could have been avoided. Now, one might argue
that perhaps there might be a case where it’s worthwhile keeping a farthest-
in-future item if that item will be requested many times down the line.
However, this is not a valid concern, as the next time that item is requested,
it’ll be cached at that point and available for all those subsequent requests.
By keeping it around in the meantime, we’re taking away space from items
that are being requested sooner and causing cache misses.

Clairvoyance Is the Best Policy
The entire premise of our proposed eviction policy assumes that we can
predict what requests will be made in the future. But this raises the
question: are we able to see into the future?

Indeed, some computer scientists refer to farthest-in-future policy as the
clairvoyant eviction policy. That is, we can only evict farthest-in-future
items if the computer can, somehow, see the future and know what requests
will occur down the road and when. But again, this isn’t practical in most
cases because computers cannot see into the future (yet).

That being said, there are some applications where we can, in fact,
realistically implement a farthest-in-future policy. That is, there can be an
application where we receive a predetermined set of requests, so we know
exactly what requests are coming down the pike.

But when we’re leaving it up to human users to decide on the spot what
their requests will be, the computer would have to be clairvoyant to take
advantage of the farthest-in-future eviction policy. Therefore, in such cases,
the clairvoyant eviction policy is only theoretical rather than something we
can practically implement.

So, it seems that we’re back to the drawing board. How can we design an
eviction policy that is efficient even without knowing what requests will be
made in the future?

LRU Cache
Although the computer cannot see into the future and know for certain what
a user’s next request will be, there are applications that enable the computer
to make an educated guess as to what requests are upcoming. A number of
cache eviction policies attempt to predict future requests based on looking
at past requests. One such strategy is the least-recently-used eviction policy.
In fact, least-recently-used, or LRU for short, is one of the most popular
eviction policies in use today.

The term “LRU” describes which item we’ll be evicting. That is, we will
evict whichever item was least recently used; in other words, which item
was least recently requested. For instance, if we have a cache containing the
items [1, 2, 3, 4], and our app keeps receiving additional requests for 1, 2, and
3, but hasn’t received a request for 4 in some time, it’s the 4 that will be
evicted from our cache next.

The idea behind LRU is that we’re guesstimating that if we haven’t
received a request for item 4 in a while, it’s likely because item 4 is
becoming increasingly unpopular. And if item 4 is no longer popular, we’re
probably not going to receive a request for it in a long time, if at all.

Note that LRU is based on the farthest-in-future eviction policy in that our
goal is to evict the item that will be requested farthest into the future. It’s
just that we use the idea of LRU to predict which item that’ll be. In other
words, if an item is least recently used, it’s probably not in vogue right now
and won’t be requested again soon.

A cache that uses the LRU eviction policy is called an LRU cache.
However, note that this name can be a bit misleading. It kind of sounds as if
we’ll be caching LRU items, while in fact the opposite is true; it’s a cache
with an LRU eviction policy. So LRU describes which items we evict from

the cache, not the ones we keep. And indeed, we keep the items that were
most recently used.

LRU may not make sense in every application, but it’s reasonable for many
of them. This is because there are many contexts in which we can determine
a request’s popularity by how recently someone made that request.

LRU in Action
To see LRU in action, let’s walk through an LRU cache example using the
same request sequence we did when looking at the clairvoyant eviction
policy. To speed things up, we’ll jump to the step where we first filled the
cache:

Okay, let’s LRU!

Our next request is a 6. This is a cache miss, so we must evict something
from the cache to make space for the 6. With LRU, we look leftward to see
which of the past items was least recently “used”—that is, least recently
requested.

Of the items in the cache, the 3 was used least recently, so we evict it and
replace it with the 6:

Note that I’m no longer displaying the complete list of requests to come, in
line with the fact that we’re not clairvoyant.

The next request is for the 5. We have a cache hit, which is gratifying:

We now request a 4, which is a cache miss. Of the items in the cache, the 2
was least recently used, so we replace the 2 with the 4:

Next up, we have a 3. Ugh, we had the 3 in our cache a few steps ago, but
we evicted it. Whatever, it’s okay.

With this cache miss, we look at the items in the cache and determine which
of them was least recently requested. Looking back at our previous request
sequence, note that the 1 was used less recently than any of the other items
in the cache. As such, we replace the 1 with the 3:

The next request is 6, and that’s a cache hit. Sweet.

The 2 is up next. It’s been some time since we’ve seen a request for a 2, so
unfortunately, it’s not in the cache. With this cache miss, we evict the 5, as
it was least recently used:

Next up, we have a 4. Cache hit!

The last request is a 1, which is a cache miss. We evict the 3 since the 6, 2,
and 4 were all more recently used:

If we count the cache misses here, including the initial requests used to fill
the cache, we have a tally of 9. This isn’t as good as the clairvoyant policy
that yielded only 7 cache misses, but because the clairvoyant policy is only
theoretical anyway, our more practical policy of LRU isn’t half bad.

Now, the truth is that this example wasn’t the ideal scenario for an LRU
policy since LRU is essentially looking for trends, and no particular value
was trending. The requests were kind of all over the place.

But the LRU policy is good for scenarios where requests trend and fade
with time. In our cheapest-product search app example, we’d hope that if
one person is searching for a particular product, this is a signal that the item
is becoming popular, and other people will search for that same item.

Another practical example of this is a web browser. When one uses their
browser to search the web, we might assume that the same user will revisit
some of those same pages again in the near future. For this particular user,
those pages are currently interesting and therefore “trendy.”

So, that’s the whole idea of LRU; we’re taking a bet that current requests
are trending, and because they’re trending, we’ll probably see those same
requests made again soon.

Take the following sequence:

 1, 1, 2, 1, 2, 1, 2, 3, 4, 3, 3, 4, 4, 3, 4, 3, 5, 5, 4, 4, 4,

 4, 6, 4, 5, 6, 5, 5, 5, 6, 4, 5, 5, 6, 6, 5, 5, 7, 6, 5, 7, 7,

 6, 7, 5, 6, 6, 7, 5, 5, 7, 7, 7, 8, 7, 8, 5, 8, 8, 7, 8, 8, 8

If you examine these numbers carefully, you might notice that items trend a
little bit before the next “hot” number becomes popular. This is the ideal
scenario that an LRU policy is designed for.

Care to take a guess at how many cache misses occur here if we use an
LRU policy and our cache can hold up to 4 items? You could also take a
pencil and paper and figure it out.

There are a whopping 63 requests here, but only 8 cache misses, and that
includes the 4 cache misses that initially fill the cache. This sequence was
practically made for LRU.

The LRU Cache Data Structure
This whole LRU thing sounds great in theory. But now we have to grapple
with another issue: how do we track which items were least recently used?

In the previous walk-through of LRU, we looked back at past requests to
see which ones were made recently and which ones hadn’t been made in a
while. Now, that would mean that we’d have to somehow save our past
requests somewhere. But if we save all our requests, we defeat the entire
purpose of an eviction policy, which is to free up memory! It doesn’t help to
evict items from the cache if we end up saving the same items somewhere
else. A better approach is to somehow indicate within the cache itself which
items were recently requested and which weren’t.

There are several ways this can be done, but one clever tactic is to keep the
cached items sorted in the order of how recently used they were. For
example, if we have the cache [1, 6, 4, 5], and we then have a cache hit with a
request for the 4, we take the 4 and move it to the front (that is, the left end)
of the cache. The cache would then be sorted as [4, 1, 6, 5].

And if the next request was for the 5, which is also a cache hit, the cache
would become [5, 4, 1, 6]. With this approach, the order of the items tells us
how recently each item was used. That is, the item at the front of the list
was used most recently, while the item at the back (that is, the right end) of
the list is the LRU item.

Okay, so now we’re getting somewhere. The question now is what data
structure to use to implement this strategy. At the beginning of this chapter,
we used a hash table to serve as our cache, and this was a sensible choice at
the time. After all, with a hash table, we can read, write, and even evict in
O(1) time. However, as discussed in Volume 1, Chapter 8, hash tables

cannot store values in sorted order. So, if we want to keep the cache values
sorted by their recent use, a hash table comes up short.

An array, on the other hand, is great for keeping items sorted. But an array
isn’t a perfect solution either. This is because reading from the cache can
take up to O(N) time because we’ll have to perform a linear search on the
array to find any value. That’s way too slow for a cache; we ideally want to
be able to read from the cache instantaneously. It turns out that no single
classic data structure makes for a great LRU cache.

However, if we combine two data structures together, we can create an
LRU cache whose time complexity is O(1) for all operations. Prepare to be
amazed.

Data Structure Dynamic Duo
As I mentioned, a hash table is not capable of keeping values in any sorted
order. However, we could consider using an array in conjunction with a
hash table to keep track of the cache order. That is, we can store data in a
hash table so we can access the data quickly, but we can also store a copy of
that data in an array so we can track how recently it was used. Yes, we
consume extra space by storing the same data twice over, but perhaps it’s
worth it. Let’s see.

To analyze the efficiency of using an array and a hash table together, let’s
be absolutely clear on what operations we want our data structures to
perform. At a high level, there are three major operations:

Reading from the cache. Upon each and every request for data, we
check whether the data already exists in the cache before bothering to
fetch the data from an external source.

Managing a cache miss. We have to evict data to make room for the
new data.

Managing a cache hit. We potentially have to update the order of the
cache to indicate that the requested item is the most recently used.

Let’s analyze how we’d perform these operations with a hash-table-and-
array combo cache, starting with reading from the cache.

Read Efficiency
Again, we’ll be performing our reads from the hash table since such reads
happen in constant time. In fact, we don’t need to touch the array at all
when executing our reads. And so, here’s the performance of our read
operation:

 Read
Hash Table O(1)

Cache Miss Efficiency
As we’ve seen, each time we read from the cache, we’ll encounter either a
cache miss or a cache hit. When we have a cache miss, we need to perform
two cache operations. That is, we first evict the LRU item from the cache.
Second, we insert the new data into the cache.

Now, here’s the thing. Because we’re modifying cache data, we need to
update both of our data structures, namely, the array and the hash table.
Specifically, we’ll have to insert and delete data from each data structure.
Fortunately, inserting and deleting from a hash table are each O(1)
operations, so they’ll run at breakneck speed. However, let’s see how fast
the array operations are.

First, we evict the last item of the array from the cache since we’re sorting
items so that the last element is the LRU item. Second, we insert the data
we receive from the external source at the front of the cache. Being that the
current request is, by definition, the most recent one, we put its data at the
front to indicate that it is the most recently used item.

Here’s a visual of these two cache operations:

Evicting the last item from an array takes O(1) time, but inserting at the
front of the array takes O(N) time because we have to shift all the
remaining values rightward. (This idea is covered in Volume 1, Chapter 1.)

Let’s jot down the time complexity of all the cache operations we’ve looked
at so far:

 Read Insert Evict
Hash Table O(1) O(1) O(1)
Array O(N) O(1)

Incidentally, the fact that we decided that the most-recently-used item goes
in the front of the array is arbitrary; we could have set things up in reverse.
That is, we could alternatively put the most-recently-used item at the end
while keeping the LRU item at the front. However, this doesn’t help us in
any way because although inserting at the end will now take O(1) time,
evicting from the front will now take O(N) time. That is, when we delete an
item from the front of an array, we then have to shift all the remaining
values leftward.

Cache Hit Efficiency
The final operation we need to analyze is managing a cache hit. With a
cache hit, we don’t need to update the hash table in any way since we’re not
evicting anything, nor are we inserting any new data.

However, we do have to update the array. That is, we need to make sure that
the data we just accessed gets moved to the front of the array to indicate
that it’s the most-recently-used data. This data might currently be anywhere
in the array. It could be somewhere in the middle, or at the front, or at the
end. If it’s anywhere but the front, we need to pluck it from its current spot
and move it to the front:

Here’s how this breaks down in terms of time complexity. First, we have to
find the requested data within the array before we can move it. This search
can take up to O(N) steps. Second, we have to move this item to the front of
the array, causing the other elements to shift positions. If, for example, we
move the last element to the front, this causes N-1 shifts, making this move
another O(N) operation.

In our analysis going forward, we’ll keep these “Find” and “Move to Front”
operations separate as shown in the following table:

 Find Move to Front
Array O(N) O(N)

Each operation has the potential to take O(N) time.

Complete Efficiency Analysis
Okay, we’ve completed our efficiency analysis. Here’s the complete table of
the speed of our proposed hash-table-and-array-combo cache:

 Read Insert Evict Find Move to Front
Hash Table O(1) O(1) O(1)
Array O(N) O(1) O(N) O(N)

It’s hard to say whether this is “good” or “bad” since we don’t have any
other solutions currently on the table. However, if we want to improve upon
this approach, we need to find ways to reduce the time of one or more of
these operations.

Currently, the room for improvement lies within most of the array-based
operations. As mentioned, one issue is that we’re inserting and deleting
from both ends of the array, but an array can only act fast on one end; the
other end takes O(N) time. Is there another data structure that maintains
order but can also quickly insert and delete data on either end?

Linked Lists to the Rescue
As discussed in Volume 1, Chapter 14, a classic linked list allows us to
insert and delete data from the list’s head in O(1) time. While this seems
promising, recall that linked lists insert and delete data from the tail in O(N)
time. Ultimately, a classic linked list won’t serve us better than an array
since we’re looking for a way to insert and delete quickly from both ends of
the cache.

However, a doubly linked list can insert and delete data from both ends in
constant time. Again, this is because we track both the head and tail of the
list at all times and can thereby access both ends instantaneously.

Here’s a simple depiction of a doubly linked list serving as a cache:

Again, we’ll continue to read from the hash table rather than the doubly
linked list since reading from a hash table is just O(1). Reading from the
doubly linked list would take up to O(N) since we’d have to perform a
linear search to find anything.

Let’s now take a look at the doubly linked list’s operations and their
efficiency.

Linked List Cache Miss
When we encounter a cache miss, we can evict the tail in a single step
because doubly linked lists always track the tail. We can now also insert a
new item at the head of the list in one step because linked lists also track the
head.

In the following diagram, we insert item 1 at the head and also evict item 6.
To evict the 6, we set the 2’s “next” link to None (rather than the 6) and
declare the 2 to be the list’s tail going forward.

Linked List Cache Hit
When we chance upon a cache hit, we still have to spend N steps to find the
item we’re looking for, but when we do, moving it to the front can be done
in O(1) time. Specifically, we remove the desired node by having its two
adjacent nodes link to each other, which effectively disconnects the desired
node from the list:

We then take that node and make it the head of the list:

Linked List Advantages

It turns out that using a linked list instead of an array significantly boosts
the speed of our cache! (From here on, I’ll sometimes refer to the doubly
linked list as simply the “linked list.”)

Here’s a summary of the time complexity of our current linked-list solution:

 Read Insert Evict Find Move to Front
Hash Table O(1) O(1) O(1)
Doubly Linked List O(1) O(1) O(N) O(1)

All of our cache operations occur in constant time except for finding cache
data in the linked list when we have a cache hit, which takes up to N steps.
However, with a clever trick, we can even get the “Find” operation down to
constant time.

Point to the Node
Following is a high-level visual of what our cache system currently looks
like, using products and their prices as sample data:

As you can see, we store the data in duplicate: one set in the hash table, and
the other inside the linked list. Note that we don’t need to store the prices
themselves in the linked list; we just need the list to tell us the recency of
when each product was requested.

In the diagram, we listed the hash keys in the same order as the linked list to
make the visualization easier to grasp. However, keep in mind that hash

tables have no inherent order; we’re relying solely on the linked list to keep
the cache data sorted.

Currently, finding data in the linked list during a cache hit takes O(N) time.
But with one small but arguably mind-blowing adjustment, we can get this
“Find” operation to run in constant time. And that is, instead of storing the
raw data inside the hash table, we store the nodes of the linked list in the
hash table instead. In other words, the keys of the hash table remain the
same, but the values will no longer be integers; the values will be the very
nodes of the linked list:

What an interesting data structure! Although the nodes are contained as
values within the hash table, there’s no reason why the nodes cannot still
link to each other and thereby form a linked list. Note that for convenience,
we’re now also placing the price data inside the nodes themselves.

As with our previous cache implementations, we still begin every request
by reading the hash table to check whether the requested data is currently in
the cache. But now, each time we have a cache hit, we don’t have to search
the linked list for that data. Instead, the hash table itself points the way
directly to the appropriate node of the linked list since the node is the actual
value in the hash table. And once we have that node in hand, we’ll move it
to the head of the linked list.

With this modification, our LRU cache achieves O(1) speed for all of its
operations:

 Read Insert Evict Find Move to Front
Hash Table O(1) O(1) O(1)

 Read Insert Evict Find Move to Front
Doubly Linked List O(1) O(1) O(1) O(1)

I’ll highlight more of the nitty-gritty details of each of these operations in
the code walk-through that follows.

Code Implementation: LRU Cache
To code up our LRU cache, we’ll need a doubly linked list, so let’s take a
look at a doubly linked list implementation. This implementation differs
slightly from the one demonstrated in Volume 1, Chapter 14 since now
we’re focusing on the functionality needed to serve our cache.

We’ll start by looking at the code for the nodes themselves:

 class Node:

 def __init__ (self, data):

 self.data = data

 self.next_node = None

 self.previous_node = None

 if isinstance(data, dict):

 self.product = data.get("key")

 self.price = data.get("data")

This node is a double-ended node, having links to both the next_node and
previous_node. Additionally, I’ve added some custom product and price

attributes for the sake of our product price-searching app.

I’ve saved this code in a file called double_ended_node.py, and now import it
into the implementation of the doubly linked list. Here’s the doubly linked
list code:

 import double_ended_node

 class DoublyLinkedList:

 def __init__ (self, first_node=None, last_node=None):

 self.first_node = first_node

 self.last_node = last_node

 def append (self, data):

 new_node = double_ended_node.Node(data)

 if not self.first_node:

 self.first_node = new_node

 self.last_node = new_node

 else :

 new_node.previous_node = self.last_node

 self.last_node.next_node = new_node

 self.last_node = new_node

 return new_node

 def insert_head (self, data):

 new_node = double_ended_node.Node(data)

 if not self.first_node:

 self.first_node = new_node

 self.last_node = new_node

 else :

 new_node.next_node = self.first_node

 self.first_node.previous_node = new_node

 self.first_node = new_node

 return new_node

 def pop_head (self):

 popped_node = self.first_node

 self.first_node = self.first_node.next_node

 self.first_node.previous_node = None

 return popped_node

 def pop_tail (self):

 popped_node = self.last_node

 self.last_node = self.last_node.previous_node

 self.last_node.next_node = None

 return popped_node

 def move_to_head (self, node):

 if node == self.first_node:

 return

 if node.next_node:

 node.previous_node.next_node = node.next_node

 node.next_node.previous_node = node.previous_node

 else : # node is the tail

 node.previous_node.next_node = None

 self.last_node = node.previous_node

 node.next_node = self.first_node

 node.next_node.previous_node = node

 node.previous_node = None

 self.first_node = node

The append and pop_head methods were already present in the Volume 1
implementation, but we’ve added a few new methods to ensure that the
linked list can function as part of an LRU cache.

The insert_head method is similar to the append method, except that
insert_head inserts a new node at the beginning of the list, whereas append

inserts at the end of the list. Similarly, the pop_tail method is similar to
pop_head, except that pop_tail removes and returns the list’s tail rather than
its head.

The move_to_head method, which moves a given node to the head of the list,
contains a number of steps and may feel a bit like performing a surgical
operation. The following image highlights the various links we need to add
and remove if the node we’re moving is currently somewhere in the middle
of the list.

Say that we have a list in which the nodes are A, B, C, and D. If we want to
move C to the front of the list, we make the following moves:

1. Change B’s next_node to point to D.

2. Change D’s previous_node to point to B.

3. Change C’s next_node to point to A.

4. Change A’s previous_node to point to C. (Previously, A was the head
and so its previous_node pointed to None.)

5. Set C’s previous_node to None since C will be the head.

6. Mark C as the official head of the linked list.

At the end of the day, our list will appear like this:

With our linked list in place, we can now introduce our LruCache

implementation:

 import doubly_linked_list

 import time

 class LruCache:

 def __init__ (self):

 self.hash_table = {}

 self.linked_list = doubly_linked_list.DoublyLinkedList()

 self.max_size = 4

 def read (self, key):

 if key in self.hash_table: # Cache hit

 return self.freshen(key)

 else : # Cache miss

 return None

 def freshen (self, key):

 node = self.hash_table.get(key)

 self.linked_list.move_to_head(node)

 return node

 def cache (self, key, data):

 # If cache is full:

 if len(self.hash_table) >= self.max_size:

 self.evict()

 # Save new data in both linked list and hash table:

 new_node = self.linked_list.insert_head({ "key" : key, "data" : data})

 self.hash_table[key] = new_node

 def evict (self):

 # LRU eviction policy:

 evicted_node = self.linked_list.pop_tail()

 del self.hash_table[evicted_node.data["key"]]

 class PriceRequester:

 def __init__ (self):

 self.cache = LruCache()

 def request_price_for (self, product):

 data = self.cache.read(product)

 if data: # Cache hit

 price = data.price

 else : # Cache miss

 price = self.search_web_for(product)

 self.cache.cache(product, price)

 return price

 def search_web_for (self, product):

 # Mock data:

 price = 1

 # Mimic time it takes to search web:

 time.sleep(0.25)

 return price

Two classes are at play here. The more important class is the LruCache,
which serves as a generic LRU cache. But we’ve also included a
PriceRequester class as an example of an application that uses the cache.
While I recommend that you glance at the PriceRequester code, for now,
we’re going to only walk through the LruCache class itself. Let’s take it from
the top.

We’ve saved our doubly linked list code in a file called doubly_linked_list.py,
so our code imports that module. We also import the time module to mock a
web request within the PriceRequester code as we did earlier in the chapter.

Let’s take a look at the constructor of the LruCache:

 def __init__ (self):

 self.hash_table = {}

 self.linked_list = doubly_linked_list.DoublyLinkedList()

 self.max_size = 4

Here, we create the cache’s hash table and doubly linked list. We also set
the maximum number of cache items to be 4, but this can easily be changed
to any other number.

The read method attempts to find an item from the cache by looking up the
item in the hash table:

 def read (self, key):

 if key in self.hash_table:

 return self.freshen(key)

 else :

 return None

Reading from the cache yields either a cache hit or a cache miss.

Upon a cache hit, we call the freshen method, whose details I’ll walk
through shortly. The primary purpose of the freshen method is to move the
item’s corresponding linked-list node to the front of the list to indicate that
this item is the most recently used item.

If we have a cache miss, though, we return None to indicate that the item is
not presently in the cache. This means that our app will have to find the
data from an external source like the web, after which it can cache that data.

Next up, we have the freshen method, which moves a given node to the head
of the linked list and ends by returning that node:

 def freshen (self, key):

 node = self.hash_table.get(key)

 self.linked_list.move_to_head(node)

 return node

The next method in this class is the cache method, which stores data inside
the cache:

 def cache (self, key, data):

 if len(self.hash_table) >= self.max_size:

 self.evict()

 new_node = self.linked_list.insert_head({ "key" : key, "data" : data})

 self.hash_table[key] = new_node

Before caching any new data, the cache method first checks to see if the
cache is already full. This is determined based on the max_size attribute
defined in the class’s constructor. If the cache is full, we evict an item from
the cache. (I’ll cover the evict method shortly.)

To cache new data, we first create a new node and place it at the head of the
linked list to indicate that it’s the most recently used item. Then, we add the

item’s key to the hash table and set the value to be the node we created for
the linked list.

The final method, evict, removes data from the cache according to the LRU
eviction policy:

 def evict (self):

 evicted_node = self.linked_list.pop_tail()

 del self.hash_table[evicted_node.data["key"]]

We need to evict the data from both the linked list and the hash table. Since
the LRU node is the tail of the list, that’s the node we delete.

To remove the corresponding key from the hash table, we take a look at
what item our deleted node contains and look for that item’s key in our hash
table. We then delete that key-value pair from the hash table.

Fixing the LRU Worst-Case Scenario with
Randomization
We’ve encountered many algorithms that perform differently based on best,
average, and worst-case scenarios. Sometimes, the worst-case scenarios are
pretty bad. But other times, worst-case scenarios can be really bad. The
worst-case scenario for an LRU cache is, in fact, a nightmare.

This worst-case scenario can occur when performing a nested loop in which
the inner loop iterates over a list of items where the number of items is ever
so slightly greater than the number of items that the cache can store. Let me
explain what I mean.

Continuing with our product price-searching app example, say that on the
app’s homepage, we want to display some great deals from the web. Also,
say that we want to show one deal at a time in a carousel widget, cycling
through a list of deals.

One way to do this is to have an array of product names and have an infinite
loop that iterates over the array again and again. For each product, the app
will look up that product’s best price, pause for a few seconds, and then
move on to the next product from the list.

Here’s a simplified implementation of what I’m talking about:

 import time

 products = ["broom" , "mop" , "vacuum" , "dustpan" , "sponge"]

 while True:

 for product in products:

 price = search_web_for(product)

 print ("Great Deal!!! Get a " + product + " for just " + str(price))

 time.sleep(5)

Because we’re cycling through the same list of products over and over
again, we don’t need or want to perform a web search each time we display
a deal. Instead, it would be smarter to look up the price once and cache it.
This way, we can pull the price from the cache the next time we display that
product again.

There’s nothing wrong with this approach unless we encounter the
nightmare scenario. This is when the product list’s length is slightly greater
than the size of the cache. Let’s see what happens when we continuously
iterate over five items, and our cache can contain only a maximum of four
items. To make the diagrams simple, we’re going to call the products A, B,
C, D, and E.

After we fetch data for the first four items in the order A, B, C, and D, our
cache is full:

If our next step fetches E, which is not in the cache, we insert E and evict
the LRU item A:

We’ve completed our first cycle through the products, so our loop restarts
and fetches the same items again. This means that next up, we’re going to
fetch the A. However, we just evicted the A in the previous step, which is
pretty unfortunate. As such, we’ll have to fetch the A from the web again.
Oh, and when we do, we’ll also have to evict B, which is the LRU item:

Our next request is the B.

Wait, what? It’s not in the cache? We had the B in the cache a second ago!
Okay, whatever.

Next in line is to fetch the C. But … we evicted the C from the cache the
moment before we needed it.

This pattern, of course, continues forever, rendering the cache utterly
useless. We consistently evict each item from the cache the step before we
need it! And so, we never—and I mean never—get to pull data from the
cache. It’s not official jargon, but I call this the “LRU trap.”

Of course, our product-searching example is somewhat contrived, but the
LRU trap can and does happen to unwitting software developers every day.
The question is how we can have efficient caching while also avoiding the
LRU trap, which is a cache’s worst nightmare.

LRU + Randomization = Sweet Dreams
Fortunately, there is a solution. If we throw some randomization into the
mix, we may be able to achieve the balance of fast caching while also
avoiding the LRU trap.

I mentioned earlier that LRU is one of many eviction policies that have
been described over the years. Some alternative eviction policies, for
example, use randomization as part of the eviction algorithm. One such
policy is known as random replacement and is completely different than
LRU. Instead of tracking the cache data in any way, we evict data at
random.

This approach absolutely avoids the LRU trap since we’re not evicting data
according to any pattern, let alone the LRU trap pattern. However, random
replacement turns out to be a pretty inefficient eviction policy. The whole
point of a clever eviction policy is to predict what data might be requested
next, and random replacement doesn’t bother to predict anything
whatsoever.

Power of Two Choices Strikes Again
However, we may be able to blend randomization with LRU to create an
eviction policy that is predictive and also avoids the LRU trap at the same
time.

One such blend utilizes the same power of two choices discussed earlier in
Randomized Load Balancing with the Power of Two Choices. That is, we
randomly select two items from the cache and evict whichever item is less
recently used. So, we’re not necessarily evicting the cache’s least-recently
used item, but we’re evicting the least-recently used item from among two
random choices.

Again, let’s refer back to our sample cache:

If our next request is for item E, we randomly choose two cache items.
Let’s say our “dice” land on C and B.

Between C and B, B is less recently used, so that’s the one we evict, as
shown in the figure.

Although we’re using some randomization, we still leverage some of LRU’s
ability to predict the future. That is, between the choices of C and B, C is
more likely to be requested again, so we keep it in the cache.

Next up, we request the A. This time, the A is inside the cache. Cache hit!
Phew, we avoided the LRU trap.

Indeed, this eviction policy may not be as good at predicting future requests
as full-fledged LRU, but its predictions may be good enough and also avoid
the LRU trap.

Evicting a Random Node
The power-of-two-choices approach has another drawback: evicting a
random node from a linked list is slower than evicting the tail node, which
is what we were doing with the classic LRU cache.

Again, because our linked list is a doubly linked list, we are able to evict the
tail in O(1) time since a doubly linked list always has immediate access to
the tail in addition to the head. Evicting a random node, though, can take up
to O(N) time. Although there’s more than one way to delete a random node,
they all require traversal of the list.

In any case, let’s implement this power-of-two-choices LRU cache.

Code Implementation: Power-of-Two-Choices LRU Cache
Here’s the strategy we’ll use to evict a node: we’ll randomly pick two
numbers from 0 up to the length of the list and use these numbers to
represent the indexes of nodes. We’ll then select whichever of the two
numbers is greater since this will represent the node closer to the tail and
therefore less recently used. We’ll then traverse the list up to the index
we’ve selected and remove that node.

To make this all work, we’ll add the following pop_index method to the
DoublyLinkedList class:

 def pop_index (self, index):

 if index == 0:

 return self.pop_head()

 current_node = self.first_node

 # Traverse the list while counting up to the desired index:

 for _ in range(index):

 current_node = current_node.next_node

 # If the index corresponds to the tail, simply pop the tail:

 if current_node == self.last_node:

 return self.pop_tail()

 # If the index corresponds to a node that is not the tail, delete

 # the node by updating the links of the node's neighbors:

 current_node.previous_node.next_node = current_node.next_node

 current_node.next_node.previous_node = current_node.previous_node

 return current_node

This method accepts a given index and pops the corresponding node. For
example, if the index is 0, we pop the first node. If the index is 2, we pop
the third node.

We then modify the evict method from our cache as follows:

 def evict (self):

 # Randomized LRU eviction policy:

 random_1 = random.randint(0, self.max_size - 1)

 random_2 = random.randint(0, self.max_size - 1)

 node_index_to_evict = max(random_1, random_2)

 evicted_node = self.linked_list.pop_index(node_index_to_evict)

 del self.hash_table[evicted_node.data["key"]]

This selects the greater of two random indexes and pops the node at the
greater index, just as we said we’d do.

The Memory Hierarchy
Throughout this chapter, I’ve discussed caches that are used to store data
that is pulled from an external source such as the Internet. However, caches
are used in many other contexts as well, including in the hardware of our
computers. In fact, understanding how this hardware works can enable us to
write more efficient day-to-day code. So, let’s talk hardware.

It’s generally understood that a computer has memory. A computer’s
memory is where a computer stores all its data, from entire files to the tiny
variables we create with our code. However, our computer doesn’t simply
store all data in one huge container. Instead, a computer’s memory is
partitioned into a number of different levels. And here’s the interesting
thing: each level has a different speed at which it offers up data. Some
levels of memory provide data at blazing speeds, while other levels are
relatively slower at letting the computer access data.

In a digital utopia, all levels of memory would be as fast as possible. One
major reason why this is not the case is that the fastest memory costs a lot
of money. That is, the fastest memory technology available at any given
moment in time is relatively expensive. If the computer’s entire memory
was made up of that technology, the computer’s cost would be prohibitive.
So, in the real world, computers are built so that they have some levels of
memory that are, indeed, extremely fast, but other levels that are slower.

Now, the trick here is this: any piece of software only needs a limited
amount of data at any given time. For example, most software doesn’t
usually interact with every single file on your computer and certainly not all
at the same time.

Along these lines, think about the code you write day-to-day. Often, your
code works with a mere handful of variables at a given point in time. Now,
we want our software to run quickly, so the computer stores these variables

in the fastest levels of memory. While these fast levels of memory are made
of expensive technology, the costs are kept down by making these levels
small. That is, they only store a relatively small amount of data. But that’s
fine since that’s all the data your software currently needs access to.

All the other files on our computer—which our software doesn’t need to
access at the moment—can live in cheaper, slower memory levels. Because
these slow levels are cheaper, we can afford to make them large and capable
of storing large amounts of data.

This system, in which our computer contains a combination of small-but-
fast memory levels in addition to large-but-slow memory levels, is known
as the memory hierarchy. The memory hierarchy is often visualized as a
pyramid, like this:

The top levels of the pyramid contain only a small amount of data, but are
made of expensive technology that offers up data at blazing speeds. As you
move down the pyramid, each level has increased storage capacity but is
also somewhat slower since the slower levels are made of cheaper
hardware.

Let’s briefly walk through each level, starting from the bottom.

The Memory Hierarchy Levels
The bottommost level isn’t truly a level of memory inside the computer. It
refers to data that is external to your computer, such as the web. However,

it’s often included in the description of the memory hierarchy, so I threw it
in there as well.

The Filesystem
The next level up is the filesystem on your computer, which is where all
those files like photos, music, and book reports live. Those files can all live
in this slow memory level until you access them with an app like a photo
viewer, music player, or word processor. For the record, the filesystem is
also sometimes called the hard drive, or the hard disk, or simply the disk.

Main Memory
Here’s where things get interesting. When you do open, say, your photo-
viewer app, this app will load a photo from the filesystem into the next level
up of the memory hierarchy. This level is sometimes called main memory or
random access memory or simply RAM for short. I’ll use each of these
terms interchangeably.

The key thing to understand here is this: generally, most code doesn’t
interact directly with files in the file system. Instead, the software first loads
data from the filesystem into main memory and then interacts with the data
in main memory. Indeed, if the data is being modified, at some point these
changes will be written back to the filesystem. But in the short term, a
computer processes data that is within main memory (or the higher levels of
the memory hierarchy, which I’ll get to soon).

Now, when you close your app, all this data gets cleared from RAM.
Hopefully, you saved your changes! If you did, this data will live on in the
filesystem until you need to access it again. It’s important to be cognizant of
the size of your RAM. Even if you have a large hard drive, the amount of
data your code can process at once can be no larger than your main
memory.

If you see an ad for a computer with, say, 32GB memory and 1TB storage,
this means that the main memory can store up to 32 gigabytes of data, and

that the filesystem can store up to 1 terabyte of data. A terabyte is 1,000
gigabytes, which is way larger than the 32GB of main memory, but that
terabyte is only going to store your filesystem. Your code, on the other
hand, won’t be able to process more than 32GB at once. And if you have
other software running at the same time, some of that 32GB is already
being utilized by those other applications, so your code has even less than
32GB to work with.

In short, don’t create a variable that tries to hold a massive amount of data
unless you know that the computer has enough RAM to handle it. Later, in
Chapter 7, I’ll discuss how to handle situations where you do have to work
with massive data like that.

Cache Levels
Software doesn’t only interact with the main memory level; the computer
has a few levels that are even faster than RAM. These levels, which are the
top four levels of the memory hierarchy pyramid, act as caches, albeit in a
slightly different way than how I’ve described caches until now. Let me
explain.

Say that your code loads an array of one million integers from a file (in the
file system) and stores the array in a variable. Once this happens, this array
will live somewhere inside main memory.

Now, suppose that your code iterates over the array to perform some
computation, such as getting the total sum of the integers. At this point,
your computer may take, for example, the first 1000 integers and copy them
from RAM to the L3 cache. The reason it does this is that the L3 cache is
made of faster technology than RAM. So, when the computer iterates over
these integers, it can do so more quickly.

The only reason the computer doesn’t load the entire array into the L3
cache is that the L3 cache is too small to hold them all. So, what the
computer does is load the first 1000 integers into the L3 cache and then,

after iterating over them, it evicts them and loads the next 1000 integers
from RAM into L3. The computer then iterates over them and then evicts
them to load the next 1000 integers. The computer repeats this process until
it’s iterated over all the array’s integers.

Note that the numbers I’m using, such as one million and 1000, are
examples; every computer model stores different amounts of data in their
various cache levels.

Previously, I described a web cache as being a location for holding data
from an external and slower source, such as the Internet, so that we can
access the data more quickly in the future. In the current context, the L3
cache is holding data from an internal but slower source—in this case,
RAM—so that it can process the data more quickly. The goal of both
caches, though, is the same: to move data from a slower location to a faster
location. Like all caches, your computer’s cache levels all have eviction
policies. The policy may be LRU or something else; it all depends on the
computer model.

Much of the time, the computer does all this caching without you being
aware of it. The computer figures out what data your code is processing
right now and moves it into the appropriate cache levels.

Not every type of computer is exactly the same, but most computers have
multiple cache levels, such as L1, L2, and L3. Each of these caches serves
as a cache for the level below it. So, for example, the computer might copy
1000 integers into L3, and of those, 100 integers into L2, and of those, 10
integers into L1. Again, these numbers are all just examples.

CPU Registers
The CPU registers act as a cache as well. In fact, it’s the fastest of all caches
because it’s made of the most expensive technology. Accordingly, it’s also
the smallest of all the caches. You can think of the CPU registers as being
the “L0” cache.

It turns out that understanding these concepts can allow you to write faster
code. Let’s see how.

Writing Cache-Friendly Code
Let’s get to the fun stuff. While it seems that we’ve merely had a leisurely
tour through some of our computer’s hardware, these concepts can directly
impact the way we should write code.

Following is some code that computes the sum of integers contained within
a two-dimensional array. For simplicity, let’s assume that the array is
square, meaning that the rows and columns have equal lengths. I’m going to
present two versions. Here’s Version One:

 def compute_sum (array):

 size = len(array)

 sum = 0

 for row_index in range(size):

 for column_index in range(size):

 sum += array[row_index][column_index]

 return sum

It’s pretty straightforward. We iterate over each row, and within each row,
we iterate over each column, adding up the numbers as we go.

Now, here’s Version Two, which is only subtly different:

 def compute_sum (array):

 size = len(array)

 sum = 0

 for column_index in range(size):

 for row_index in range(size):

 sum += array[row_index][column_index]

 return sum

It’s almost identical to Version One except that now we’re going in column
order first, meaning that our outer loop iterates over the column indexes and

the inner loop iterates over the row indexes.

Both versions get the job done, but let’s visualize the difference between
these two versions.

In Version One, the following diagram depicts the order we’d process, say,
an array of size 3. In the diagram, I placed little numbers in circles to
indicate the order in which we iterate over each integer. (I also made all of
the array integers 9 so we don’t get distracted with all the different numbers
floating around.)

And here’s the order of Version Two:

Believe it or not, there’s a significant efficiency difference between these
two versions since iterating by row first is faster than iterating by column
first. The reason for this is the caching concepts we’ve just discussed.

We saw that if code sets or accesses a variable, that variable will be cached
inside the CPU register or the like. But here’s something important: if you
access an item from an array such as array[0], the computer doesn’t only
cache array[0]. Depending on the array’s size, the computer may cache the
entire array, or at least a good chunk of it.

This makes sense because we often iterate over arrays. And if we start a
loop by accessing array[0], it’s clear that we’re about to also access array[1]
and array[2] soon. So the computer, smartly, caches a large chunk of the
array so that we can access those later indexes super quickly.

So in Version One, our inner loop first accesses array[row_index]
[column_index], which initially is array[0][0]. Because the computer accessed
the first inner array, the computer “smartly” caches that entire array. In the
following diagram, I used rectangles to indicate what is currently cached:

Now, this is great since next we’ll be accessing array[0][1] and array[0][2].
Because the entire array[0] is cached, the computer can grab all of these
values almost instantaneously:

However, in Version Two, where we go in column order first, here’s what
happens. In this version, we also start at array[0][0], so the entire array[0] is
cached like before:

But here’s the snag. We next access array[1][0], which is not inside the cache:

As such, the computer doesn’t benefit from the cache speed when reading
array[1][0]. Once we do access array[1][0], though, the computer now caches
the entire array[1]:

Next, the computer looks up array[2][0]. Man, this isn’t in the cache either!

As “smart” as the computer is, it can’t always predict your next move. Its
array-caching system is ideal if we follow the rows first, but backfires when

we go by columns first.

Spatial Locality
Computer scientists like to refer to this idea as either spatial locality or
locality of reference. That is, code is faster if it keeps accessing data that is
near other data that was accessed recently. So, if our code accessed array[0],
it’s great if the next data the computer grabs is array[1] or array[2]. Because
array[1] and array[2] are near array[0], they’re likely already in the cache.

Understanding the computer’s caching hardware allows us to avoid these
pitfalls and write faster code. In this case, the difference is significant.
When I benchmark summing a two-dimensional array of size 10,000,
Version One takes about 9 seconds, while Version Two takes roughly 18
seconds. Leveraging spatial locality, in this case, makes our software twice
as fast!

Arrays vs. Linked Lists
Another practical application of memory caching comes into play when
iterating over arrays and linked lists. Although iterating over each data
structure takes O(N) time, it’s way faster to iterate over an array than a
linked list. This, again, is because of spatial locality. Specifically, when we
access array[0], the next chunk of the array is loaded into the cache for quick
access.

With a linked list, though, the nodes are not necessarily near each other in
memory. Therefore, when we access the list’s first node, the other nodes do
not get cached. The computer has to laboriously jump around from memory
cell to memory cell to access each node. Accordingly, iterating over a
linked list is generally slower than iterating over an array.

Mergesort vs. Quicksort

Ah, you thought we were done talking about Mergesort, weren’t you?
Surprise! Back in Comparing Mergesort and Quicksort: Lessons Learned, I
explained that even though both Mergesort and Quicksort, in the world of
Big O notation, are O(N log N), Quicksort is usually faster than Mergesort
in the real world.

Back then, we offered up one potential reason for why this might be so. But
now we have another possible reason: Quicksort is better than Mergesort in
terms of spatial locality.

As different computers utilize caches in different ways, it’s not always easy
to definitively explain why one algorithm works better with a cache than
another. However, here’s a general idea: because Quicksort sorts an array in
place, the algorithm repeatedly accesses the same array. So, once this array
is in the cache, Quicksort can always access each element of the array
extremely quickly. Mergesort, on the other hand, is always creating new
arrays. Because Mergesort has to juggle data from a number of different
arrays, not all the data that we need at the moment is in the cache.

Wrapping Up
Caching is truly a pivotal concept in computing. Whether you’ll be
implementing your own caches or taking advantage of the memory caches
within the memory hierarchy, knowing how caches work enables you to
push the envelope of your code’s speed.

In the chapters that follow, we’re going to continue to explore the theme of
randomization and specifically the concept of randomized data structures.
Randomized data structures are data structures whose whole power stems
from random numbers. The first such data structure we’ll discuss is the
treap. But before we dive into the world of treaps, in the next chapter we’ll
first contrast treaps with their nonrandomized counterparts—red-black
trees, a classic must-know data structure.

Exercises
The following exercises provide you with the opportunity to practice with
caching. The solutions to these exercises are found in the section Chapter 4.

1. Say that we have a cache that holds up to 5 values. How many cache
misses occur for this sequence if our cache uses the clairvoyant
eviction policy?

 "c", "t", "h", "o", "p", "t", "h", "z", "o", "a", "p", "t", "b", "z",
"h"

2. How many cache misses will occur if our cache uses the LRU eviction
policy for the prior sequence?

3. Following is a Python class representing a rather contrived concept
that I call a “Bit Box”:

 class BitBox:

 def __init__ (self):

 self.red_bits = [1] * 10000

 self.blue_bits = [1] * 10000

 self.green_bits = [1] * 10000

Basically, each Bit Box is a storage container for the integers 0 and 1.
Each Bit Box contains an array of 10,000 “red” bits, 10,000 “blue”
bits, and 10,000 “green” bits. When each Bit Box is created, all the bits
are set to 1.

The next bit of code creates a single Bit Box:

 bit_box = BitBox()

Following are two different methods that count all the 1 bits in a Bit
Box. Which of these methods has better spatial locality?

 def count_bits_1 (bit_box):

 sum = 0

 for i in range(10000000):

 sum += bit_box.red_bits[i]

 sum += bit_box.blue_bits[i]

 sum += bit_box.green_bits[i]

 return sum

 def count_bits_2 (bit_box):

 sum = 0

 for i in range(10000000):

 sum += bit_box.red_bits[i]

 for i in range(10000000):

 sum += bit_box.blue_bits[i]

 for i in range(10000000):

 sum += bit_box.green_bits[i]

 return sum

4. Puzzle: Here’s an exercise where it might help to combine two data
structures together to produce an efficient solution. (Yes, that was a
hint.)

Create a data structure that allows for O(1) searches, O(1) insertions,
but also allows for O(1) random samples. In this context, a random
sample means that we pick at random a single value from the data set.
As always, each value must have an equal chance of being chosen. The
trick here is how to achieve O(1) for reads, insertions, and random
samples.

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 5

The Great Balancing Act of Red-
Black Trees

One of the most fundamental and useful data structures out there is the
binary search tree, or BST for short. (I covered BSTs at length in Volume 1,
Chapter 15.) However, as I pointed out in Binary Search Tree
Randomization, BSTs lose their special powers if they become imbalanced.

In this chapter, I’ll introduce you to self-balancing BSTs. These are BSTs
that use clever algorithms to ensure that the tree never becomes too
imbalanced. The main focus of this chapter is the red-black tree, a widely
used self-balancing BST that is also one of the classic data structures of
computer science. You’ll discover how red-black trees work, why they
work, and how to create your own basic red-black tree from scratch.

Red-black trees have a certain notoriety for being complicated, and while
this chapter is indeed on the long side, I’ll lay everything out for you in a
way that makes it all easier to digest. So, let’s jump right in.

Online Algorithms and Self-Balancing Trees
In Volume 1, Chapter 15, I noted that the primary benefit of BSTs is that
they maintain data in order while also providing fast searching, insertion,
and deletion. While hash tables are faster than BSTs when it comes to
searching, insertion, and deletion, hash tables do not maintain any order. So,
if you want ordered data that is also decently fast when it comes to the other
operations, BSTs are a fantastic solution.

However, as I mentioned, BSTs have a worst-case scenario to contend with.
When we insert values into a BST in order, the BST becomes imbalanced.
Here’s a quick refresher.

If we build a tree by inserting data in the order of 3, 2, 4, 1, 5, we get this
BST:

Beautiful. It’s as balanced as my dad’s checkbook. However, if we insert the
data in perfect order, namely, 1, 2, 3, 4, 5, we get:

This BST is imbalanced and is as slow as a linked list for searching,
insertion, and deletion. In fact, it pretty much is a linked list.

Earlier, in Chapter 3, How Random Is That?, we developed a simple
solution for this problem—we randomized the data! That is, before building
the BST, we shuffled all the data, making it highly unlikely that the data
will be inserted in order. But here’s the thing: this is a great solution for
some applications, but it doesn’t satisfy all applications.

The randomized solution only works if we have all the data upfront before
we begin building our BST. That is, say that we have an array of integers
ready to be converted into a BST. Indeed, all we have to do is shuffle the
data beforehand and, the BST is likely to be balanced when we build it.

But now say that we don’t have all the data in front of us. For example,
perhaps we’re building and maintaining our BST over a long period of time.
Suppose that our app receives its first integer at 1:00 and creates the initial
BST. Then, at 2:00, we receive another integer and add it to the BST. At
3:00, we receive another integer and insert it into our tree.

In such a scenario, we don’t have the ability to randomize the data before
we insert it into the tree because we don’t have all the data before creating
the tree. The tree has already been built, and if we now receive a new
integer, there’s no way to shuffle that integer together with the data already
in the tree. In such a case, if our application receives ordered data, our BST
will be imbalanced.

Online Algorithms
This is an example of an online algorithm, which is an algorithm that deals
with data that is received in bits and pieces over an extended (and possibly
infinite) period of time. The term “online” here can be a bit misleading, as it
sounds like it has something to do with the Internet. It does not. In this
context, “online” simply means that the data is still arriving, and we have to
run an algorithm now, even though we don’t have all the data yet. In other
words, an online algorithm is an algorithm that has to process data that is
continually arriving.

You saw an example of an online algorithm in the previous chapter. Caches
and their associated algorithms often process data that’s received over a
period of time.

Conversely, an offline algorithm is one that only begins working once it has
all the data in hand. Most of the algorithms we’ve dealt with before fall
under this category.

So, with regard to BSTs, if they need to be “online” and process data
continually as it comes in, randomization is not a solution. However, there’s
another solution. It’s called the self-balancing tree.

Self-Balancing Trees
A self-balancing tree is one that, well, balances itself! As data is inserted or
deleted, the tree rearranges its nodes so that the tree remains balanced or at
least reasonably so.

Here’s a straightforward example of a self-balancing tree that you should
never, ever use. I’m making it up off the top of my head to make a point. I
call it The Phoenix Tree.

The Phoenix Tree is a BST that executes the following steps any time we
insert or delete data:

1. The tree copies all of its own data into an array.
2. It shuffles the array.
3. It (figuratively) burns the original tree down to the ground and rebuilds

the entire tree from scratch using the randomly ordered data.

Out of the ashes of the old tree emerges a new one. Because we’ve
randomized the data before building the tree anew, there are good odds that
the tree will be decently balanced. So, it’s fairly easy to make a self-
balancing tree. The tricky part, though, is to make a self-balancing tree that
is efficient.

The Phoenix Tree is—with no offense to phoenixes—an efficiency disaster.
After all, we’re constantly rebuilding the entire tree from scratch. To put it
in Big O terms: inserting into The Phoenix Tree takes at least O(N) time
since we process all N elements each time we insert a single item. Compare
this with a regular BST, where insertion is a speedy O(log N).

What we need to do is develop a self-balancing tree that doesn’t just work,
but is also efficient.

Red-Black Trees
The need for an efficient self-balancing tree is precisely why computer
scientists developed the red-black tree. The tree bears this name because its
nodes are colored either red or black, for reasons we’ll look at shortly.
Using brilliant algorithms, red-black trees keep themselves balanced and do
so without taking too much extra time.

While these trees are clever and fast, they’re complex and involve many
details. Most presentations of red-black trees plow straight into these
details, getting into the weeds right away. This usually leaves people
terribly confused.

As such, I’d like to start not with the what, but rather with the why and the
how. Like peeling an onion, we’ll unpack this topic one layer at a time. This
should make red-black trees considerably easier to grasp.

Rotations—Part 1
Let’s start with a visual example of how red-black trees maintain balance.
Look at this terribly imbalanced tree:

In the following diagram, I highlight one particular segment of the tree:

Now, watch what happens when I bend that segment ever so delicately:

The 2 becomes the root instead of the 1:

The tree is now a little more balanced than before.

That was fun! Let’s do it again. Here, I highlight another tree segment:

And watch what happens when I bend that segment:

The 3 becomes the new root, and voila! The tree is now perfectly balanced:

This bending technique is known as performing a rotation. That is, we
rotate segments of the tree. In this example, I happened to rotate two
different tree segments. And if you look carefully, you’ll see that I rotated
them in a counterclockwise direction.

This is a general idea of how rotations work (as rotations have a whole
bunch of additional details to them). The gist is that as we insert and delete
values from the tree, we perform these rotations when necessary to maintain
the tree’s balance.

However, it’s not so easy to tell the computer when and how it should
perform these rotations. This is especially true when dealing with a large,
complex tree. We need a set of algorithms that list the cases for when a
rotation is necessary and provide instructions on how to perform the
rotation in each case. On top of this, we need to do this quickly.
Accordingly, the computer shouldn’t have to analyze the entire tree to
calculate how the rotation is to be executed.

To make this task less daunting, clever computer scientists found a way to
make it so that these algorithms can work in bite-sized chunks. That is,
upon each insertion and deletion, only a small subset of the tree needs to be
analyzed, and a minimum number of rotations need to be performed. To
accomplish this, they proposed a self-balancing tree that contains two types

of nodes: one red and one black. Over time, you’ll see how this setup helps
our situation, but let’s first look at the nature of this tree.

A Tale of Two Nodes
As mentioned, red-black trees get their name from the fact that they have
two types of nodes that we treat as being either “red” or “black.” Let me
explain what that means.

Here’s some basic code representing a node:

 class Node:

 def __init__ (self, value):

 self.value = value

We can turn this node into either a “red” node or a “black” node by adding a
new attribute to it:

 class Node:

 def __init__ (self, value, color):

 self.value = value

 self.color = color

We can now assign to the node’s self.color a string value of either "red" or
"black".

The idea behind assigning a color to a node is simply so that we have a
mechanism for designating two different types of nodes. (We’ll see soon
why this is important.)

Now, to create two different types of nodes, we could have used any type of
attribute. For instance, we could have assigned nodes different shapes, or
different sizes, or different letters. We could even assign nodes different
characters from The Lord of the Rings if we were feeling so inclined.
Whatever attribute we use, the main goal is to have two different types of
nodes. True, nodes are already different in that they contain different values,
but we’re looking to also put all nodes into two different general categories.

And so, we have color. The colors didn’t have to be red and black; they
could have been anything. I’m pretty sure, though, that they chose red and
black instead of white and black to annoy authors who publish books with
images that are only black and white.

And that brings me to my next point. In this book, the diagrams represent
red nodes using white-colored nodes like this:

Here’s a pro tip: if you wear red-tinted glasses while reading this book, the
images will look perfect.

The thing to address, now, is what we gain by having different types of
nodes. When a tree has different types of nodes, we can construct
algorithms that only have to analyze and deal with small sections of the tree
rather than having to analyze the entire tree, which naturally would take
time. Instead, the algorithm can analyze the section of the tree where it
inserted or deleted a node, and by examining the pattern of surrounding
nodes and their colors, it can perform appropriate rotations on that section
of the tree.

As you’ll see later in this chapter, a tree segment may have various patterns,
such as a black node with two red child nodes, or vice versa. The algorithm
will know what to do with each pattern, including whether a rotation is in
order, and if so, how to execute the rotation. As you may imagine, there are
a number of possible patterns, and that’s exactly what makes a red-black
tree complex; we need our algorithm to handle all of these patterns. And,
sometimes, performing a rotation may form a new pattern that will require
yet another rotation.

But truly, these concepts aren’t difficult in themselves. It’s just that there are
a lot of details. Luckily for you, I spell them all out right here.

The Red-Black Rules
As mentioned, a red-black tree consists of nodes that are either red or black.
There’s no way around this; each node must choose a side. You can’t have a
node that has no color at all, or a node that is both red and black, or a node
that prefers to be mustard yellow. Each node is either red or black, period.

However, not every tree that consists of red and black nodes is deemed a
valid red-black tree. There are two major rules, which I call “The Red-
Black Rules,” that a tree must adhere to for it to be admitted into the official
red-black tree club:

The Black Height Rule: Each path from the root node to the bottom of
the tree must contain the same number of black nodes.

The Red Enemies Rule: A parent and child cannot both be red. Think
of red nodes as being angry enemies; you can’t put them next to each
other!

The Black Height Rule takes its name from a concept known as black
height. Take a look at the following red-black tree:

If you follow the path from the root node down to each leaf (a node that has
no children, and is the final node of a path), you’ll see that each path has
three black nodes. The number by each node in this illustration shows how
many black nodes there are from the root to that node. This means that each
path in our tree has a black height of 3.

The following tree is an invalid red-black tree since different paths have
varying numbers of black nodes:

In this tree, some paths contain two black nodes, while others contain three
black nodes, and yet others contain four black nodes. This violates the
Black Height Rule, and the tree is, therefore, invalid. It may be red and
black, and it may be a tree, but it’s not a red-black tree.

The Black Height Rule is the driving force behind ensuring the tree’s
balance, and here’s why.

Imagine for a moment that there was no such thing as red nodes, and
instead, our tree could only contain black nodes. The Black Height Rule
enforces that a tree can never be imbalanced. Take this imbalanced tree:

This tree is imbalanced because its two paths have different black heights.
The Black Height Rule would never allow this to happen. By definition, a
tree with only black nodes where all its paths have the same black height is
going to be balanced.

However, if we continue in this imaginary world where our tree can only
contain black nodes, we quickly run into a major problem. Take a look at
this perfectly balanced tree:

If we want to insert a new black node, where can we put it? We can’t put it
anywhere since the insertion will cause one path to have a greater black
height than the other paths! And this is why red-black trees also contain red
nodes. Inserting a red node into a tree will never directly cause a violation
the Black Height Rule, and it will allow us to grow the tree.

On the other hand, it would seem that the existence of red nodes can pull
the rug from under the feet of the Black Height Rule. That is, while the
Black Height Rule is trying to ensure that each path of the tree has the same
black height, we can still make a tree highly imbalanced, like this:

This, my friends, is why the Red Enemies Rule exists. Again, the Red
Enemies Rule states that we can’t have a parent and its child both be red, so
this tree is invalid.

So, the Black Height Rule and Red Enemies Rule work in tandem to create
a balanced but flexible tree. The Black Height Rule enforces balance, while
the existence of red nodes provides some flexibility for tree growth. At the
same time, the Red Enemies Rule prevents an abundance of red nodes from
making the tree imbalanced.

Balanced Enough
A red-black tree does not always maintain perfect balance, however. Let’s
see how imbalanced we can make a red-black tree, even while adhering to
our two rules. Here, again, is a perfectly balanced tree:

Let’s try to add red nodes to make this tree as imbalanced as possible. What
I came up with is shown in the tree.

Here, I extended the left branch of the tree by inserting red nodes between
all the black nodes. And I didn’t violate any rules! Each path has the same
black height, and we don’t have any red nodes connected to each other.

Indeed, a red-black tree is not designed to be perfectly balanced. Rather, it
is designed to be balanced enough. While “balanced enough” sounds like
some sort of subjective term, we can give it a firm and objective definition.
That is, the goal of a red-black tree is to guarantee that it’s impossible to
make one path more than twice as long as another path.

Here’s why this is so. If, with any red-black tree, I were to try to make one
path longer than the others, I can’t add more black nodes without violating
the Black Height Rule. And I also can’t string a bunch of red nodes together
without creating red enemies. Instead, my only option is to insert a red
node between every other black node. At most, then, I can double the length
of one path over the others, but I can’t push it any further.

Ultimately, the combined push and pull of the Red-Black Rules make it so
that a red-black tree remains pretty well-balanced and yet flexible enough to
insert and delete nodes.

Phantom Nodes
Okay, pop quiz time! Is the following tree a valid red-black tree?

It seems hard to call this a red-black tree when it doesn’t contain any red
nodes. Yet, it does not violate any of our rules. All paths have the same
black height, and there certainly aren’t any two adjacent red nodes. So it is,
indeed, valid. How about this one?

If you answered that it’s invalid, you’re correct since it has a pair of red
enemies:

And now, I’m going to throw a monkey wrench into everything with a trick
question. (Sorry!) Is the next tree a valid red-black tree?

It certainly has no adjacent red enemies, that’s for sure. And we don’t seem
to have different paths with different black heights because apparently there
is only one path. So the tree seems valid. However, this is pretty disturbing.
We learned that the Red-Black Rules try to ensure balance, but this tree is
the ultimate imbalanced tree! What has the world come to?

The answer to this is based on a concept known as phantom nodes.
(Spooky!) When analyzing a red-black tree, we have to fill the tree in with
imaginary, phantom nodes. Here’s what I mean.

Each node in a BST has the ability to hold two children: a left child and a
right child. However, in a typical BST, some nodes have two children, some

have one, and the leaves have none. In a red-black tree, in each spot where
a node could potentially have a child but does not, we fill that spot in with
an imaginary node. Let me demonstrate with an example.

In the tree from the previous diagram, the top four nodes each only have a
left child, and the leaf has no children at all. This means that there are a
number of empty spots in the tree where a child could exist but does not.
Specifically, the top four nodes have empty spots for a right child, and the
bottom node has two empty spots for both of its potential children.
Therefore, we populate all the missing spots with phantom nodes. In the
following image, a phantom node is represented with the letter N,
representing None:

In your code, you don’t need to implement phantom nodes (although some
people do). However, the reason why these phantom nodes are important is
that they totally change the way we look at black height. That is, without
phantom nodes, this tree has only one path and doesn’t violate the Black
Height Rule. But with the phantom nodes, the tree now has multiple paths
since each path from the root to a phantom node is considered a viable
path. With this in mind, here are the black heights of the tree’s paths:

Note that the phantom nodes themselves do not increase a path’s black
height. However, each phantom node represents a path’s destination.

Now we can see that this tree violates the Black Height Rule many times
over. There are six paths, and almost all of them have different black
heights. We can now breathe a sigh of relief since the Black Height Rule
indeed will prevent such an imbalanced red-black tree from ever existing.

Technically, then, the Black Height Rule should be restated to accommodate
phantom nodes. Here goes:

The Black Height Rule: Each path from the root node to any phantom
node must contain the same number of black nodes.

Let’s look at one more example to solidify all of this. Is the following tree a
valid red-black tree?

It is not. When the phantom nodes are revealed, we’ll see that while most
paths from the root to each phantom node have a black height of 2, there’s
one path that has a black height of 1:

I omit these phantom nodes in most of the diagrams that follow. However,
they’re important to keep in mind when calculating the black height of a
tree’s path. Again, some people do implement phantom nodes in their code,
but it’s not necessary. Our implementation—which we’ll get to eventually
—will leave them out so as to keep the code more concise. We can get away
with this because the red-black tree insertion and deletion algorithms don’t
bother to count a path’s black height. Instead, the algorithms follow a
different set of patterns, as we’ll soon see.

On that note, some of the literature states that there’s a convention to
always make sure that the root of a red-black tree remains black. That is, it
should start out as black, and if it somehow becomes red (you’ll see later in
this chapter how this can happen), we should color it black again. However,
this is only a convention, and not necessary. Once again, we’ll ignore it to
simplify our code. But it’s good for you to know that it exists.

Rotations—Part 2
So far, I’ve mentioned two general ideas regarding how a red-black tree
maintains its balance. One is the technique of rotation, in which we bend
the tree in advantageous spots. The other is the Red-Black Rules. These two
concepts work together, and here’s how.

Each time we insert or delete a node from the tree, we often cause a
violation of the Red-Black Rules. (You’ll see examples of this shortly.) To
get the tree back in compliance with the rules, we rotate sections of the tree.

In other words, a tree that follows the Red-Black Rules will always be
reasonably balanced. But to get our tree to comply with these rules, we
often have to perform rotations. And that’s how the Red-Black Rules and
rotations relate to each other.

I described rotations in a general way in Rotations—Part 1. Here, though, I
delve into precisely how rotations work.

Whenever we perform a rotation, we focus on two nodes: a parent and a
child. These nodes can be anywhere in the tree, but the diagrams that follow
zoom in on these two nodes. Take the following example, with a parent
node called B and a left child node called A:

Let’s rotate this tree segment clockwise:

This leaves us with:

As you can see, a rotation does two major things:

1. What was the parent now becomes the child, and what was the child
now becomes the parent.

2. The left-right orientation of the parent-child relationship switches. In
this example, the child was originally a left child, but what is currently
the child is now a right child of its parent.

Rotations can also go counterclockwise. As you’re about to see, they’re a
mirror opposite of a clockwise rotation. Here’s an example in which B is
the right child of A:

Whenever we rotate a parent and child, the determination as to whether it
should be clockwise or counterclockwise depends on whether the child is
the left or right child. When it’s the left child, as in the previous example,
we perform a clockwise rotation. When we have a right child, as in the
present scenario, we perform a counterclockwise rotation:

This gives us:

Note that after we rotate the nodes counterclockwise, they end up in the
state that the nodes looked like before a clockwise rotation. Similarly, after
we rotate the nodes clockwise, they end up in the state that the nodes looked
like before a counterclockwise rotation. In theory, we could take the same
two nodes and rotate them back and forth forever, but of course, that would
be completely pointless.

Let’s see what this all looks like in the context of a larger tree such as this
one:

Although most of the nodes hold integer values, I snuck A and B nodes into
the tree as well. Let’s focus on those two nodes since those are the ones
we’re going to rotate.

Because A is B’s left child, we execute a clockwise rotation:

A is now B’s parent, and B has become the right child of A. Note that the 6,
which was A’s left child, is still A’s left child even after the rotation.
Similarly, the 8 has never changed from being B’s right child.

Also, note how we’ve “pulled” the 6 closer to the top of the tree, while
“pushing” the 8 down. In this case, the tree isn’t any more balanced than
before. However, if the 8 didn’t exist, this rotation would have transformed
the tree from being a four-level tree into a three-level tree, and also made
the tree perfectly balanced.

Keep in mind that since a red-black tree is a type of BST, not only does the
tree have to adhere to the Red-Black Rules, but it also has to follow the
rules of any BST. The main rule regarding a BST is that for each node of
the tree, the node’s left descendants must all have smaller values than it, and
the node’s right descendants must all have greater values than it.

One of the key things to know about rotations is that they never interfere
with this BST rule. No matter how many segments you rotate clockwise or
counterclockwise, the tree will always remain a valid BST. As such, we can
perform rotations to fix Red-Black Rule violations without ever having to
worry that we may inadvertently introduce a new BST rule violation.

Crossover Nodes
There’s one more detail about rotations that’s important to know. To help
illustrate the concept, I’ll pose a conundrum: how would you rotate the A
and B nodes in the following tree? Grab a pencil and paper and try to do
this yourself before moving on.

You’ve learned that we need to rotate these nodes in a clockwise fashion
because the parent, B, has a left child. But here’s the thing: with a clockwise
rotation, B will become A’s right child. However, A already has a right
child—the star! So, the problem is what we’re supposed to do with the star
node.

In such cases, rotations perform one more switcheroo: specifically, we
designate the star to be a crossover node. That is, the star crosses over by
completely detaching itself from the A, and becoming a left child of B:

Now, there’s no reason to worry about what happens if B already has a left
child because A was B’s left child! So, by definition, when we make it so
that A is no longer B’s child, that automatically opens up a spot for B to

have a new left child. The same applies to a counterclockwise rotation, but
in reverse. Take the following tree, for example:

We run into a problem when trying to turn the A into the B’s left child since
B already has the star left child. So, we pull off the same crossover node
trick as before by making the star become A’s right child:

To sum it all up, a rotation involves either two or three changes to the tree:

1. The child and parent switch places.

2. We switch the orientation of the parent-child relationship. If we had a
left child, we now have a right child, and vice versa.

3. If the new parent (say, A) already has a child (say, the star), where the
new child (say, B) is supposed to go, we turn the offending node (the
star) into a crossover node and make it a child of B, with the opposite
orientation. That is, if the crossover node was a right child of A, it now
becomes a left child of B, and vice versa.

Let’s put this all together in the context of a realistic tree where there are no
letters or stars, but only integers. In the following diagram, we’re going to
rotate the 5 and the 8:

The 8 is the 5’s right child, so we’re going to rotate counterclockwise.
However, the 6 is an offending node because it’s blocking us from turning
the 5 into the 8’s left child. So we have the 6 cross over and become the 5’s
right child:

Note that the crossover node’s children come along with it. In this example,
the 7 remains the right child of the crossover node just as before.

Okay, we’re almost ready to tackle inserting new values into a red-black
tree. But because rotations play a crucial role in these algorithms, let’s
implement the rotations first.

Code Implementation: Nodes and Rotations
Here’s an implementation of a red-black tree node:

 class Node:

 def __init__ (self, value, color):

 self.value = value

 self.color = color

 self.left_child = None

 self.right_child = None

 self.parent = None

As with a regular BST node, we’ve established attributes for the node’s
value, left_child, and right_child. And because we’re dealing with a red-black
tree, we’ve also added the critical color attribute that we’ve previously
described.

However, you’ll also note that this code includes a parent attribute as well.
While this wasn’t necessary for the regular operations of the classic BST, it
makes the implementation of a red-black tree’s operations more
straightforward, as you’ll see soon.

The parent attribute allows each child node to point to its parent. This is
akin to a doubly linked list, where each node links not just to its next node,
but also to its previous node. Here as well, each node links both to its
children and to its parent. Each node will have a parent except for the root
node, whose parent will remain None.

Let’s begin implementing the actual RedBlackTree. This class will contain a
lot of code by the time we’re done, but here’s the basic class plus its
rotation operations:

 import rbt_node

 class RedBlackTree:

 def __init__ (self, root=None):

 self.root = root

 def rotate_counterclockwise (self, a, b):

 # "a" is the parent, and "b" is the right child

 a.right_child = b.left_child

 if b.left_child:

 a.right_child.parent = a

 b.parent = a.parent

 if not b.parent:

 self.root = b

 elif b.parent.left_child == a:

 b.parent.left_child = b

 else : # "a" was a right child

 b.parent.right_child = b

 b.left_child = a

 a.parent = b

 def rotate_clockwise (self, b, a):

 # "b" is the parent, and "a" is the left child

 b.left_child = a.right_child

 if a.right_child:

 b.left_child.parent = b

 a.parent = b.parent

 if not a.parent:

 self.root = a

 elif a.parent.right_child == b:

 a.parent.right_child = a

 else : # "b" was a left child

 a.parent.left_child = a

 a.right_child = b

 b.parent = a

The class constructor initializes the tree’s root, which represents the root
node of the tree. Like a classic BST, we’ll need to keep track of this at all
times.

We then have the rotation methods, rotate_counterclockwise and
rotate_clockwise. The good news is that the logic behind one method is the
symmetrical inverse of the other, so we only need to analyze one method in
depth. We’ll do this with the rotate_counterclockwise method.

We pass the arguments a and b into the rotate_counterclockwise method,
representing the A and B nodes from this diagram:

Alternatively, we could have passed one of the nodes in, such as A, and
deduce that B is the right child of A since that is always the case when we
perform a counterclockwise rotation. However, I prefer setting up the
method signature in such a way that makes it clear which two nodes we’ll
be rotating.

For a moment, let’s skip to the end of the method, where the essence of the
rotation takes place:

 b.left_child = a

 a.parent = b

Before the rotation, B was the right child of A. With this snippet, we
transform A into the left child of B, which yields:

The rest of our method deals with the crossover node and a couple of other
details. So let’s jump back to the top of the code, which handles all of that:

 a.right_child = b.left_child

 if b.left_child:

 a.right_child.parent = a

First, we update A’s right child. Previously, A’s right child was B. However,
now that A no longer has B as a child, we need to update this.

Now, if B has a left child, this child will be the crossover node.
Accordingly, we turn the crossover node into A’s right child. On the other
hand, if B does not have a left child, this means that its child is None, so
now A’s right child will also be None.

We then check to see if B actually did have a left child, which again is the
crossover node. If this is the case, we make sure to set the crossover node’s
parent to now be A.

Next up, we redefine who B’s parent is. Again, B’s parent used to be A, but
our rotation is going to turn B into A’s parent. That leaves us hanging with
the issue of who B’s parent will be. Here’s the code that deals with this:

 b.parent = a.parent

 if not b.parent:

 self.root = b

 elif b.parent.left_child == a:

 b.parent.left_child = b

 else : # Node A was a right child

 b.parent.right_child = b

Because B is taking over A’s spot, we need to explicitly turn B into the
child of the node that was A’s parent. Whenever you do something like this,
you need to perform two distinct steps:

1. Declare B’s parent to be what was A’s parent
2. Declare within A’s parent node that it now has a child B

If A was its parent’s left child, then we need to make B its new parent’s left
child. And if A was its parent right child, then we need to make B its new
parent’s right child.

If it turns out that B’s new parent is None, that means that B is in the root
position and we need to declare that the tree’s self.root is now B.

The rotate_clockwise method, as mentioned, has the exact same logic as
rotate_counterclockwise, except that everything is the mirror opposite.

We’re finally ready to explore a red-black tree’s most important operation:
insertions.

Red-Black Tree Insertion
Inserting a new node into a red-black tree is considerably more complicated
than inserting a node into a classic BST. We can’t just plop the node into its
correct spot; we also need to ensure that the tree follows the Red-Black
Rules.

The first thing to know about red-black tree insertion is that the node we
insert always starts out colored red. The reason for this will become
apparent soon.

The second thing to know is that we insert a new node into a red-black tree
in up to two phases. The first phase is virtually identical to a classic BST
insertion. That is, we start at the root and move down through the tree
searching for the correct spot to insert the new node based on its value. This
follows the BST rule previously mentioned: namely, that a node’s left
descendants must have smaller values and a node’s right descendants must
all have greater values. I covered this process back in Volume 1, Chapter
15, but we’ll see code for this again shortly.

Once we find the correct spot, we attach the node to the tree by making it a
child of another node. Once this first phase is complete, the inserted node
will be a leaf node.

Now, if the newly inserted red node ends up having a black parent, we’re
done, and there’s no need to move on to a second phase. Let’s look at a
quick example of this. Say that we have a red-black tree like the following:

If we want to insert a node with the value of 60, we start by comparing 60
to the root value. In this case, the root is 50.

Because 60 is greater than 50, we look to the root’s right child, which in this
case is 75. Because our new node, 60, is less than 75, we look to the 75’s
left child. However, the 75 has no left child. As such, we insert our new
node as the 75’s left child:

As with all newly inserted nodes, we’ve colored the 60 node red. Currently,
there are no violations of the Red-Black Rules, so our insertion is complete.
If, however, our new red node ends up with a parent that is also red, we will
have violated the Red Enemies Rule, so we need to move on to a second
phase, in which we “fix” the tree. This “fixing phase” modifies the tree in
all sorts of ways, including changing nodes’ colors and performing
rotations.

Before we move on to the fixing phase, though, let’s implement the first
phase of insertion.

Code Implementation: Red-Black Tree Insertion (First Phase)
The following is our insert method:

 def insert (self, value):

 new_node = rbt_node.Node(value, "red")

 if not self.root:

 self.root = new_node

 return

 current_node = self.root

 while current_node:

 if value < current_node.value:

 if not current_node.left_child:

 current_node.left_child = new_node

 new_node.parent = current_node

 current_node = current_node.left_child

 elif value > current_node.value:

 if not current_node.right_child:

 current_node.right_child = new_node

 new_node.parent = current_node

 current_node = current_node.right_child

 else : # value is already inside tree

 break

 self.fix_insert(new_node)

We call the method and pass a value into it. The first thing the method does
is create a red node to encapsulate this value:

 new_node = rbt_node.Node(value, "red")

All the remaining code, save for the final line, is a classic BST insertion.
Now, in Volume 1, we implemented this using recursion, which led to some
concise and elegant code. Here, however, we’ve implemented BST
insertion using iteration rather than recursion.

While we could have used recursion here as well, much of the code that is
to come is more easily understood using iteration. To keep a consistent code
style throughout this chapter, I’ve used iteration for this method as well,
even though the code ends up being a little longer.

Let’s briefly walk through the method’s remaining code.

After creating the new red node, we declare it to be the tree’s root if the tree
doesn’t yet have any nodes other than this one. We then set a variable
current_node to point at the root. Next, with a while loop, we compare our
new node’s value to the value of the current_node and keep moving down
through the tree via left or right children until we hit the spot where the new
node should live. Once we’ve identified that spot, we insert the new node
by making it a child of some existing leaf node.

In this implementation, we (arbitrarily) do not allow for duplicate values in
our tree and break from the loop if we find that the value is already present
in the tree.

This brings us to the method’s final line of code:

 self.fix_insert(new_node)

This method, to be implemented soon, will check whether our new node
violates the Red Enemies Rule, and if it does, modify the tree so that the
tree becomes valid again. The fix_insert method is the core of how red-black
trees work, and performs the fascinating magic of keeping the tree
balanced. Let’s see how it works.

The Main Balancing Act: Fixing the Red-Black Tree
The fixing phase has lots of details, many of which will at first seem
arbitrary and needlessly complex. To make things easier to comprehend, I
begin with a high-level overview of how the fixing phase works. I’ll first
focus on what the steps are and later return to explain why the steps do what
they do.

First, remember that a node can have a left child and a right child and that a
node is considered a parent to its children. Keeping with the familial jargon,
a node can have a grandparent, which is the node’s parent’s parent. In the
following image, the 100 node’s parent is the 75, and its grandparent is the
50:

Nodes are considered siblings if they share the same parent. In the
following image, the 25 and 75 are siblings since they are both children of
the 50:

Finally, a node can also have an uncle or, if you prefer, an aunt. These terms
can be used synonymously, but we’ll use the term “uncle” only because
most of the literature does. A node’s uncle is its parent’s sibling. For
example, in the image that follows, the 25 is the 100’s uncle since the 25 is
a sibling to the 75, which in turn is the 100’s parent:

With these definitions in place, let’s dig into the entire insertion algorithm,
including its fixing phase. We’ll first describe this piece by piece, and then
afterwards make a clean list of all the algorithm’s steps.

Remember, each time we insert a new node, we color it red. The color may
eventually change, but when we first insert it, it’s red. Then, we use the
rules of a BST to move down the tree and determine where this shiny new
red node should go. Once we find the right spot, we plug it in.

If the new node’s parent is black, we’re done. This is because we know that
we could not have possibly broken any of the Red-Black Rules by inserting
this node. We couldn’t have broken the Black Height Rule because inserting
a red node will not change the number of black nodes in a path. And we
couldn’t have broken the Red Enemies Rule because our new red node has
a black parent; we didn’t create a situation where a parent and child are both
red.

If, however, our new node’s parent is red, we’ve broken the Red Enemies
Rule, and the fun begins. It’s time for the fixing phase!

We set a variable called current_node to point to our newly inserted red node.
Eventually, current_node will point to other nodes further up the tree, but at
first, it points to our new node.

We then begin a loop which I’ll refer to as the “fixing phase loop.” The
fixing phase loop lasts as long as the current_node and its parent are both red.

Within this loop, we look for one of three possible cases:

1. The current_node’s parent is the tree’s root. We’ll call this the “Root-
Parent Case.”

2. The current_node’s uncle is red. We’ll dub this the “Red-Uncle Case.”
3. The current_node doesn’t have an uncle or its uncle is black. Even

though these are technically two different scenarios, we’ll consider
them a single case since we perform the same actions for both. I’ll call
this the “Missing-Or-Black-Uncle Case.”

Depending on what our case is, we’ll perform a different series of actions
that will help fix the tree. Some of these actions may seem arbitrary, but I’ll
try to uncover at least some of the rationale for each one.

The Root-Parent Case

Imagine that we only have a single node in our tree. By definition, this node
is the tree’s root. It will also be red since at the time that we inserted it, we
colored it red, as we do with all insertions:

Isn’t it cute? Okay, let’s now insert a 2 into this tree:

Wow, we’re only two nodes in, and we’ve already managed to break the
Red Enemies Rule. This triggers our loop, which analyzes the current_node
to see which of the three cases it falls under.

This case is the Root-Parent Case since the current_node, which is the 2, has
the root as its parent. In truth, it should also qualify as the Missing-Uncle
Case since the current_node has no uncle, but the fact that its parent is the
root takes precedence.

Luckily, there’s only one action we need to take in the Root-Parent Case.
And that is, we color the root black:

This single action solves the red enemies problem since we no longer have
a parent and child who are both red. At the same time, the fact that we
colored a node black didn’t violate the Black Height Rule either. This is
because when we color the root black, all the paths in the tree increase their
black height by one. Even in large trees, coloring the root black can’t
possibly add a black node to only one path and not another. After all, the
root belongs to all paths!

That was simple enough. Let’s move on to the Red-Uncle Case.

The Red-Uncle Case
Take a look at the following tree:

If we insert a 6, our tree will initially look like this:

Our newly inserted node and its parent, the 8, are both red and are therefore
in violation of the Red Enemies Rule. This triggers the fixing phase loop.

This scenario represents a Red-Uncle Case since the current_node’s uncle,
the 2, is red. Here is the set of actions we take in a Red-Uncle Case:

1. We color the current_node’s parent black.
2. We color the current_node’s uncle black.
3. We color the current_node’s grandparent red.
4. We set the current_node variable to point to the current_node’s

grandparent, and go back to the beginning of the fixing phase loop.
(The loop will proceed again if the new current_node and its parent
form a new red enemies violation.)

An image of what our tree looks like after the first three steps is shown.

We can see that the Red Enemies Rule has been resolved, for there are no
longer any red nodes touching each other. At the same time, we also didn’t
mess up the Black Height Rule; each path has the same black height of 1.

This set of color flips seems random and arbitrary at first. Yes, flipping the
parent and uncle black while flipping the grandparent red seems to do the
job, but why?

To make more sense of this, I like to think about the grandparent as
bequeathing its black color to its two children as an inheritance. That is, the
grandparent turns red and gives up its black color to its children.

Now, this immediately resolves the red enemies violation because one of
these children that inherited black color is the parent of our current_node. In
our example, this was the 8. This 8 was a red enemy, but because it turned
black, it can happily be a parent to its red child (the current_node 6).

At the same time, when the grandparent bequeaths its black color to its two
children, it automatically maintains the Black Height Rule. In our example,
the grandparent, the 5, has two paths descending from it. Because it gives
up its black color to both paths, these paths will both increase their black
height equally.

Therefore, this set of color flips solves the Red Enemies Rule while also
maintaining the Black Height Rule.

Repeating the Fixing Phase Loop
Now, after we perform all the color flips, we update the variable
current_node to point to the grandparent of the newly inserted node. In our

example, this is the 5. We then jump back to the top of our fixing phase
loop, which will continue again if the current_node and its parent have
become red enemies as a result of our color flips.

However, in our previous example, the loop terminates without repeating.
This is because the current_node happens to be the root node, which, by
definition, doesn’t have a parent in the first place, so it can’t have a parent
who is also red. And so, we’re done with our entire fixing phase, and the
tree is once again in compliance with the Red-Black Rules.

Let’s look at an example of where the fixing phase loop would run more
than once.

Say that we have this tree:

If we insert a 77, we get:

The 77 is red enemies with the 80, so our fixing phase loop begins.

This is the Red-Uncle Case since the 77’s uncle, 95, is red. And so, we
begin with the color flips. That is, we flip the grandparent red, and the
grandparent’s children (the current_node’s parent and uncle) black:

Before beginning the next round of the loop, we update the current_node to
point to the grandparent, which in this case is the 90:

We check to see if the current_node and its parent are both red, and lo and
behold, they are! It turns out that by resolving the red enemies violation of
the 77 and the 80, we introduced a new red enemies violation with the 90
and 100.

Now, this is also a Red-Uncle Case since the 90’s uncle, 50, is red. This
means that we need to perform our color flips again, namely, turning the
grandparent red and the parent and uncle black:

We gear up for the loop’s next round by turning the 90’s grandparent into
the current_node. In this case, the current_node is now the root. And because
the root and its parent aren’t both red (since the root doesn’t even have a
parent), we’re done.

We’ve successfully covered the first two cases of the fixing phase: the
Root-Parent Case and the Red-Uncle Case. This brings us to our final case.

The Missing-Or-Black-Uncle Case
Take a look at the section of a red-black tree shown.

If we insert a 25, we get a red enemies violation:

To resolve this violation, we begin our loop. Now, this is a Missing-Uncle
Case since our current_node 25 has no uncle. (That is, its parent, 20, has no
sibling.)

The Wrong Solution
Let’s first explore why we can’t use the same solution from the Red-Uncle
Case. Again, the technique in the Red-Uncle Case is to flip the grandparent
red and have the grandparent bequeath its black color to its children. This
potentially fixes things because one of the grandparent’s children is the
current_node’s parent. And so, if the current_node’s parent becomes black, we
resolve the red enemies violation between the current_node and its parent. In
this case, the grandparent has only one child, so our tree will become this:

This tree appears to stick to all the Red-Black Rules, as there are no red
enemies and each path seems to have the same black height. But, alas, this
is not true. Remember the phantom nodes? We need to measure the black
height of each path, keeping the phantom nodes in mind, as shown in the
image.

While most of the paths have a black height of 2, the path coming off the
phantom left child of the 15 has a black height of 1, so our tree would be in
violation of the Black Height Rule.

So, the trick of having a grandparent bequeath its black color to its children
only works when it can turn both of its children black. If it turns only one of
its children black, it causes its descendant paths to have differing black
heights.

This is also true in a Black-Uncle Case. Let’s look at such a case:

We’re only focusing on a piece of a larger tree since a Black-Uncle Case
happens to never occur at the bottom of a tree. It can only happen during
our loop as we work our way up through the tree.

In any case, the 25’s “Uncle 11” is black. If we were to try to resolve this by
having “Grandma 15” bequeath her black color to both of her children,
we’d be increasing the black height of her right-child path by one, while the

black height of her left-child path would remain the same because the left
child, 11, is already black. So we’re increasing the black height of the right
path by one, while we’re not at all increasing the black height of the left
path. This, in turn, results in a black height violation.

The Right Solution
It turns out that the technique used to resolve the Red-Uncle Case will not
help for our case. Instead, for a Missing-Or-Black-Uncle Case, we actually
do perform the aforementioned color flips. However, we also need to
perform a rotation. We will perform either one or two rotations depending
on the formation of the current_node and its parent and grandparent. Brace
yourself, as the Missing-Or-Black-Uncle Case is subdivided into two
further subcases. (Evil laugh. Just kidding; it’ll be fine.)

One subcase is where the current_node and its parent have the same
orientation. That is, they are either both a right child or both a left child of
their respective parents. For example:

Both the 25 (which is the current_node) and the 20 are right children of their
respective parents. However, the other subcase is when the current_node and
its parent have opposite orientations, like this:

The 17 (which is the current_node) is its parent’s left child, while the 20 is its
parent’s right child.

Let’s take a look at how to deal with both subcases.

Subcase 1: Same Orientation
If the current_node and its parent have the same orientation, we only need to
perform a single rotation plus a couple of color flips. Here’s the precise
algorithm:

1. Flip the current_node’s parent black.
2. Flip the current_node’s grandparent red.
3. Perform a rotation between the current_node’s parent and grandparent.

(Whether it’s a clockwise or counterclockwise rotation depends on
whether the parent is a left or right child of the grandparent.) And then
you’re done.

Let’s take a look at this in action. Here’s our current Missing-Uncle Case:

We flip the current_node’s parent black and grandparent red:

We then perform a rotation of the parent and grandparent, that is, the 20 and
the 15. In this case, because the parent is the grandparent’s right child, we
perform a counterclockwise rotation:

And we’re done! Our tree is now completely fixed.

Subcase 2: Opposite Orientations
When you encounter the other subcase, in which the current_node and its
parent have opposite orientations, you need to perform one extra rotation
before moving on to the same set of steps from the previous subcase. Take
the following example:

If we insert a 2, we get:

The 2 and 1 form a red enemies violation. The current_node (the 2) has no
uncle, so this is a Missing-Uncle Case. In particular, it’s the subcase in
which the current_node and its parent don’t have the same orientation. That
is, the 2 is a right child, but the 1 is a left child. This means we’re going to
perform two rotations.

We’ll see in the next section exactly why we need two rotations, but let’s
proceed with the algorithm details:

1. Perform a rotation between the current_node and its parent. Pay special
attention to the fact that this rotation will transform the current_node’s
parent into the current_node’s child.

2. Make this new child the current_node.

3. Flip the current_node’s parent black.

4. Flip the current_node’s grandparent red.

5. Perform a rotation between the current_node’s parent and grandparent,
and then you’re done.

Note that steps 3, 4, and 5 for this subcase are identical to the final three
steps of the first subcase. But in this second subcase, we perform a couple

of extra steps first.

Returning to our example, we’ve inserted the 2 and created a red enemies
violation with its parent. Our next step is to perform our first rotation,
which rotates the current_node and its parent.

In our case, the 2 is the 1’s right child, so we perform a counterclockwise
rotation:

Next, we update the 1 to be the new current_node:

Updating the current_node in this way isn’t a critical step, but doing so
makes it so that the remaining steps of our algorithm can be described in
exactly the same way as the steps of the algorithm for the previous subcase.

Again, Steps 3–5 of this algorithm are the same as Steps 1–3 of the first
subcase’s algorithm.

Next up, we flip the current_node’s parent black, and grandparent red:

We now perform the second (and final) rotation. Specifically, we rotate
current_node’s parent and grandparent. This will be a clockwise rotation
because the parent is the grandparent’s left child:

And our red-black tree is completely fixed!

Why the Double Rotation
To see why we needed two rotations for this last subcase, let’s return to the
moment where we first inserted the new node:

If we tried to jump right away to the final rotation, where we rotate the
current_node’s parent and grandparent (the 1 and the 3), we get this:

This step doesn’t get us any closer to balancing the tree. Before this
rotation, our tree was five levels deep, and after the rotation, it’s still five
levels deep.

What this boils down to is this: when we have a node, parent, and
grandparent that are all in the same orientation, rotating the parent and
grandparent will balance that tree segment. For example, take this three-
level tree segment:

When we rotate the parent and grandparent, we turn it into the following
perfectly balanced two-level segment:

But, say we have this tree segment where the A and the B do not have the
same orientation:

Rotating the parent and grandparent merely turns it into a mirror of itself
without doing anything to balance it:

So instead, we do a double rotation. That is, if we have a segment like this:

We first rotate the bottom node and its parent (in this case, the B and A):

And then we rotate the new parent with the grandparent (the B and the C):

And so the tree becomes balanced.

With a double rotation, I like to think of the first rotation as being the
segment straightener—it straightens out the segment so that both the
bottom node and its parent are now of the same orientation. Once the
segment is straightened, we perform the second rotation, which perfectly
balances that segment.

Wow. We’ve gone through a lot of details. If your head isn’t spinning a little
bit, that makes one of us. Ready to put it all together?

The Grand Finale: The Complete Insertion Fixing Algorithm

I now present to you The Complete Insertion Fixing Algorithm. It may not
be fun to read, but it’s a great reference. Here goes:

1. Insert the new node in the correct spot in the tree (according to BST
rules) and color the new node red. This new node is dubbed the
current_node.

2. Begin a loop that lasts while the current_node and its parent are both
red. (If they’re not both red, skip to Step 17—you’re done!)

3. If the parent is the root, color the root black and skip to Step 17—
you’re done.

4. Inspect the current_node’s uncle to see if it exists and what color it is.

5. If the uncle is not red, break out of the loop and skip to Step 11; this is
the Missing-Or-Black-Uncle Case.

6. If the uncle is red, this is the Red-Uncle Case and proceed with the
steps 7–11.

7. Color the current_node’s parent black.

8. Color the current_node’s uncle black.

9. Color the current_node’s grandparent red.

10. Make the grandparent of the current_node the new current_node and
repeat the loop from Step 2.

11. Check if the current_node and its parent have the same orientation. If
they do, skip to Step 14. If they do not have the same orientation,
proceed with steps 12–17.

12. Perform a rotation between the current_node and its parent.

13. This rotation transformed the current_node’s parent into the
current_node’s child. We make this new child the current_node.

14. Flip the current_node’s parent black.

15. Flip the current_node’s grandparent red.

16. Perform a rotation between the current_node’s parent and grandparent.

17. Top with lemon or your favorite garnish. Serves 6.

If you’re a flowchart person, look—I made something for you. The
flowchart shown depicts these steps in visual form.

Let’s walk through one final example. The step numbers that follow
correspond to the step numbers in our list of steps. Take the following tree:

Step 1: We insert a 77, as shown in the tree.

The 77 is the current_node. Both it and its parent, the 75, are red.

Step 2: We begin a loop that will last as long as the current_node and its
parent are both red.

Step 3: The parent is not the root, so we’ll move on to the next step.

Step 4: Inspect the current_node’s uncle to see its color:

Steps 5 and 6: “Uncle 85” happens to be red. This is a Red-Uncle Case, and
we therefore proceed through the loop.

Steps 7, 8, and 9: We flip the current_node’s parent and uncle black, and flip
the grandparent red:

Step 10: We turn “Grandpa 80” into the current_node:

We go back to Step 2 to begin the loop again. The current_node and its
parent are both red, so we continue to Step 3, which inspects the uncle.
“Uncle 25” is black, which brings us to Step 5, which tells us to break out
of the loop and skip to Step 11.

Step 11: We check whether the current_node and its parent have the same
orientation. They do not, so we continue to Step 12.

Step 12: We rotate clockwise the current_node, 80, and its parent:

Step 13: The 100, which is now a child of the 80, becomes the new
current_node:

Steps 14 and 15: Flip the current_node’s parent black, and grandparent red:

Step 16: Rotate the current_node’s parent and grandparent counterclockwise:

And WE. ARE. DONE.

Ready for some code?

Code Implementation: Red-Black Tree Insertion (Fixing Phase)
For this code implementation, I added comments within the code to connect
each line to its corresponding step from The Grand Finale: The Complete
Insertion Fixing Algorithm. Instead of boring you with a long-winded code
walk-through, I’ll let you match up each line of code to our list of steps.

Note that the main method is the fix_insert method, but it does rely on a
series of helper methods:

 def fix_insert (self, current_node):

 # Step 1 was accomplished by the `insert` method

 # which calls this fix_insert method

 while self.has_red_parent(current_node): # Step 2

 if current_node.parent == self.root: # Step 3

 self.root.color = "black"

 return

 uncle = self.find_uncle(current_node) # Step 4

 if uncle and uncle.color == "red" : # Step 6

 current_node.parent.color = "black" # Step 7

 uncle.color = "black" # Step 8

 current_node.parent.parent.color = "red" # Step 9

 current_node = current_node.parent.parent # Step 10

 else : # uncle is None or black Step 5

 break

 if self.has_red_parent(current_node):

 # The next line calls the straighten_segment method

 # which accomplishes Steps 11, 12, and 13

 current_node = self.straighten_segment(current_node,

 current_node.parent)

 current_node.parent.color = "black" # Step 14

 current_node.parent.parent.color = "red" # Step 15

 self.perform_final_rotation(current_node.parent) # Step 16

 def has_red_parent (self, node):

 return node.parent and node.parent.color == "red"

 def parent_is_root (self, node):

 return node.parent == self.root

 def is_a_left_child (self, node):

 return node == node.parent.left_child

 def is_a_right_child (self, node):

 return node == node.parent.right_child

 def find_uncle (self, node):

 if self.is_a_left_child(node.parent):

 return node.parent.parent.right_child

 else : # parent is a right child

 return node.parent.parent.left_child

 def straighten_segment (self, node, parent):

 former_parent = parent

 if self.is_a_left_child(parent) and self.is_a_right_child(node):

 self.rotate_counterclockwise(parent, node)

 return former_parent

 elif self.is_a_right_child(parent) and self.is_a_left_child(node):

 self.rotate_clockwise(parent, node)

 return former_parent

 else : # no need to straighten the segment

 return node

 def perform_final_rotation (self, node):

 # If the node's parent is a left child of its OWN parent:

 if self.is_a_left_child(node):

 self.rotate_clockwise(node.parent, node)

 else : # if the parent is instead a right child:

 self.rotate_counterclockwise(node.parent, node)

The Efficiency of Red-Black Trees
Because a red-black tree is a type of binary search tree, the search operation
is O(log N), as is true for all BSTs. As I discussed in Volume 1, Chapter 15,
this is because there are log N levels in a BST, and at most, we will search
one node from each level in the BST until we find the value we’re
searching for. I also discussed there that insertion for a regular BST is O(log
N), as we must first perform a search to find the appropriate spot to insert
the new node, and the actual insertion is one step.

It turns out that insertion in a red-black tree is also O(log N). Now, there are
certainly more steps involved with insertion into a red-black tree than there
are with a regular BST. However, it’ll add up to roughly 2*log N steps at
most. Here’s why.

You learned that there are two phases for insertion into a red-black tree:
insertion and fixing. The insertion phase is identical to insertion in a BST,
which takes log N steps. The fixing phase starts with the newly inserted
node and works its way up the tree, performing color flips and rotations.
Just as we took log N steps to get from the top of the tree to the bottom of
the tree, it takes at most another log N steps to move from the bottom of the
tree back up to the top of the tree.

In total, this is 2*log N steps, which boils down to O(log N).

It turns out that red-black trees are a win-win. They maintain the tree’s
balance while keeping its operations swift and efficient.

Red-Black Tree Deletion
After a lot of hard work, you’ve seen how a red-black tree’s insertion
operation works. But wait, there’s more! Don’t forget that there’s also an
algorithm for deleting a node from a red-black tree. As complex as insertion
was, deletion involves even more steps and more subcases. However, this
chapter is already too long, so you’ve been saved by the bell.

For completeness, you can find a description of the deletion algorithm on
the book’s web page.[5] So, the choice is yours. If you’re ready to move on
from red-black trees, no problem. But if you need to learn this stuff for a
college exam, the material is right there for you. (And good luck!)

In any case, I do recommend glancing through the deletion algorithm if
only to appreciate its complexity because in the next chapter, we are going
to contrast the complexity of red-black trees with the simplicity of another
self-balancing tree called a treap.

Wrapping Up
A red-black tree, while complex, is a dependable data structure that ensures
that search, insertion, and deletion remain speedy while also maintaining
the order of its values. The key word here is “ensure.” While a regular, good
ol’ BST aims to have a speedy efficiency, it can’t absolutely ensure that
speeds don’t degrade, which can happen when values are inserted into the
tree in order. A red-black tree, on the other hand, does ensure that its
operations remain fast since the tree is guaranteed to be pretty well-
balanced.

In fact, red-black trees are found under the hood of many applications,
some of which we use every day. Some operating systems use them for
various functions, including process scheduling, in which scheduled events
need to be easily found but also kept in order of time. Some databases use
red-black trees for database indexing, a concept we’ll explore more fully in
B-Trees as Database Indexes.

Also, I explained in Volume 1, Chapter 8, how collisions can occur within
hash tables. There, I showed that one approach for handling this is to place
all colliding values within an array or list using separate chaining. The
disadvantage to this is that if we’ve encountered a value that collides with
other values, we need to linearly search through all the colliding values
until we find the one we want. As an alternative, some programming
languages use red-black trees to store colliding values. This way, we can
find any such value within O(log N) time, where N is the number of
colliding values.

One of the biggest drawbacks of red-black trees, though, is their
complexity. Sure, once they’re implemented properly, they’ll work as
intended. But if you ever have to maintain them or improve them in some
way, it could be a doozy to get it right.

In the next chapter, we’re going to look at another type of self-balancing
tree that works as well as a red-black tree, but is much, much simpler. And
to achieve its performance and simplicity, it uses randomization. Once
again, you’ll see how the power of randomization can be used to achieve
great things.

Exercises
The following exercises provide you with the opportunity to practice with
red-black trees. The solutions to these exercises are found in the section
Chapter 5.

1. Here’s a simple tree:

It’s not supposed to be a red-black tree, don’t worry. However, we can
still perform a rotation on it. Show what the tree will look like after
you rotate the A and the B.

2. Here’s a red-black tree:

Rotate the 80 and the 100. Don’t worry about violating the Red-Black
Rules and having to fix up the tree after the rotation. Simply show
what would happen if that one rotation happened to be made.

3. Here’s another red-black tree:

[5]

What will the red-black tree look like if you insert a 30? This time, you
must follow the entire red-black tree insertion algorithm.

4. This exercise is a continuation of the previous one. Say that after you
insert the 30, you then also insert a 20. What will the red-black tree
look like when all is said and done?

Footnotes

https://pragprog.com/titles/jwpython2

Copyright © 2025, The Pragmatic Bookshelf.

https://pragprog.com/titles/jwpython2

Chapter 6

Randomized Treaps: Haphazardly
Achieving Equilibrium

In the previous chapter, we looked at red-black trees and how they keep
themselves balanced using a set of complex algorithms. We’re now going to
take a look at another type of self-balancing tree known as a treap. Treaps
can maintain balance as effectively as a red-black tree, but with algorithms
that are way simpler. And as you’ll see, this simplicity is achieved through
the power of … randomization.

Treaps
Like a red-black tree, a treap is a type of binary search tree (BST), but a
treap follows a unique set of rules beyond the behavior of a traditional BST.
The name “treap” is a combination of the words “tree” and “heap,” and
you’ll see shortly what heaps have to do with treaps, other than the fact that
they rhyme.

Treaps themselves come in various flavors, not all of which are self-
balancing. Our focus in this chapter is on the randomized treap since this is
the kind of treap that serves as a self-balancing tree. To save ink, though,
I’ll refer to randomized treaps simply as treaps since that’s the only type of
treap we’ll be dealing with here.

Treaps vs. Red-Black Trees
Treaps and red-black trees share certain things in common:

1. They are both variants of BSTs. As a reminder, to be considered a
BST, (1) a tree must have nodes with 0, 1, or 2 children; and (2) a
node’s left descendants must all have lower values than it, and a node’s
right descendants must all have greater values than it. For ease of
reference, I’ll call this the “BST Rule” throughout this chapter.

2. Red-black trees and treaps are both self-balancing trees. This means
that even if we insert values in ascending order, the tree will not
become a linked list, but instead will have a height along the lines of
log N.

3. Treaps maintain balance using the same types of rotations red-black
trees use. In Rotations—Part 2, I discussed the details of how
clockwise and counterclockwise rotations work; treaps use these very
same rotations.

However, this is where the similarities between treaps and red-black trees
end. While red-black trees maintain balance using the Red-Black Rules
outlined in The Red-Black Rules, these rules do not exist in the world of
treaps. In fact, treap nodes have no concept of color at all. Instead, treaps
follow a simpler set of rules. And thank goodness for that.

Treap Nodes
Treap nodes are different than classic BST nodes in that, in addition to
containing a value, each treap node also contains an extra piece of data.
This extra data is called the priority, and comes in the form of a number.
We’ll see shortly what the purpose of the priority is.

A node’s priority is not at all correlated to the node’s value. In fact, in a
randomized treap, a node’s priority is generated randomly.

Throughout this chapter, all of the treap diagrams will have nodes that
contain a value that is a letter from the alphabet, and a priority that is a
number between 1 and 100. (It’s common to choose a priority that is a float
that lies between 0 and 1, but I’m using the range of 1 to 100 to keep the
diagrams simple.) Here’s an example treap node:

Although in past chapters I used numerical values in tree examples, to
easily distinguish between the value and the priority, I’m making values
alphabetical characters in this chapter. Really, though, treap node values can
be numbers (or any data type) as with any tree.

An example of a treap is shown.

Note that because a treap is a type of BST, it must follow the BST Rule,
which is that the left descendants’ values must be smaller than their
ancestor, and the right descendants’ values must be greater than their
ancestor. Because we’re using alphabet letters as values, whether a letter is
smaller or greater than another letter depends on its placement within the
alphabet. For example, the letter Q is considered “greater” than the letter H
because Q appears later in the alphabet. The letter A is the “smallest” value
in the entire alphabet, and the letter Z is the “greatest” value.

The Heap Rule
So far, we’ve seen that a special attribute of a treap is that its nodes contain
priorities in addition to values. However, treaps have one other important
attribute: a treap must adhere to what I call the “Heap Rule.” Fortunately,
the Heap Rule is pretty straightforward:

The Heap Rule: Each node’s priority must be greater than (or
equal to) its parent’s priority.

Take a look at the diagram of our example treap. Note that the treap follows
the Heap Rule, as the root node contains the smallest priority, and as we
descend downward through the tree, the nodes’ priorities become
increasingly greater. There isn’t a single node that has a smaller priority
than its parent.

The Heap Rule is derived from the concept of the heap data structure,
which I covered in Volume 1, Chapter 16. There, I explained that in a min-
heap, the value of each node must be greater than its parent’s value.

However, with a heap, it was the value that needed to follow the Heap Rule.
With treaps, on the other hand, it’s not the value, but the priority that must
follow the Heap Rule.

Recall from Volume 1 that a heap can either be a min-heap or a max-heap.
The two types of heaps are virtually the same, except that a min-heap
makes the arbitrary decision that each node’s value must be greater than its
parent, and a max-heap makes the decision that each node’s value must be
smaller than its parent.

A similar arbitrary decision can be made with treaps. That is, a treap can
also be either a “min-treap” or a “max-treap.” In this chapter, we’ll
arbitrarily go with the “min-treap” flavor, simply because much of the treap
documentation out there does as well.

The Heap Rule and BST Rule
I noted at the beginning of this chapter that the name “treap” comes from
combining the terms “tree” and “heap.” This, indeed, is because treaps
follow the Heap Rule, much in the way that heaps do. However, I must
point out a critical distinction between treaps and heaps.

Heaps only follow the Heap Rule, and cannot be a BST. Take a min-heap,
for example. The heap is only valid if each node has a smaller value than
either of its children. However, in a BST, a node is required to have a
greater value than its left child.

Treaps, though, follow both the Heap Rule and the BST Rule. While that
might sound impossible at first, here’s how this works: treaps follow the
BST Rule with regard to the nodes’ values, but follow the Heap Rule with
regard to the nodes’ priorities.

In other words, treaps must ensure that the values of each node act like a
BST—namely, that a node’s left descendants have smaller values, and a
node’s right descendants must have greater values. At the same time, treaps

have to be careful that each node’s priority is greater than the priority of its
parent.

Let’s take one more look at our example treap. If you look carefully, you’ll
see that both the BST Rule and Heap Rule are adhered to by all the nodes in
the treap:

Treap Insertion
We’re now ready to see how treap insertions work. Like a red-black tree,
treap insertion goes through two phases (as discussed in Red-Black Tree
Insertion). In the first phase, the new node is inserted in the same way a
node is inserted into a regular BST, and in the second phase, the tree is
“fixed” so that it doesn’t violate any of the rules.

Let’s insert the letter V into the treap shown at the end of the previous
section. I mentioned earlier that with randomized treaps, a node’s priority is
randomly generated. So, let’s say that the randomly generated priority is 22.

The First Phase
To begin the first phase of insertion, we first compare the V against the
root’s value of M:

Because the value V is “greater” than the value M, it means that the V will
be inserted somewhere among the V’s right descendants. So we focus on
the M’s right child:

We compare the V to the Q. V is greater than Q, so we focus on the Q’s
right child:

We compare the V to the Z. Because V is less than Z, we focus on the Z’s
left child. However, the Z doesn’t have a left child, so we insert the V into
the tree as the Z’s left child:

This concludes the first phase of insertion, and you’ll notice that it’s
identical to regular BST insertion. However, you can also see that the Heap
Rule has now been violated since the V’s priority of 22 is less than its
parent’s priority of 80. We now need to fix this violation, so the second
phase—which I call the “fixing phase”—begins.

The Fixing Phase
At the moment, the V’s priority is in conflict with the Z’s priority. To fix
this, we rotate the V and the Z.

Treap rotations are completely identical to red-black tree rotations, and as
you saw in the previous chapter, there are two types of rotations: clockwise
and counterclockwise. When rotating two nodes (a child and parent), we
perform a clockwise rotation when the child node is the left child of its
parent, and a counterclockwise rotation when the child node is the right
child of its parent. In this case, the V is the left child of the Z, so we
perform a clockwise rotation:

By performing this rotation, we “fixed” the Heap Rule violation between
the V and the Z since the V (whose priority is less than the Z) is now above
the Z.

At the same time, we can be assured that our fix will not create a violation
of the BST Rule since rotations never do. (We covered this in the last
chapter, in Rotations—Part 2).

It turns out that rotations are a great tool for fixing Heap Rule violations
since we can easily “bubble up” a node to its proper place in terms of
priority, and not worry that we’ll accidentally violate the BST Rule.

Now, while we’ve fixed the Heap Rule violation between the V and Z, the
V still violates the Heap Rule with regard to the Q. That is, the V’s priority

of 22 is less than its parent’s priority of 54. As such, we now need to
perform a rotation between the V and the Q. Because the V is the Q’s right
child, we perform a counterclockwise rotation:

The V’s priority of 22 is greater than its parent’s priority of 16, so the Heap
Rule has been restored. Our treap is now fixed, and our insertion is
complete!

Self-Balancing Treaps in Action
Because a node’s priority is randomly generated, the number of rotations
that occur upon treap insertion is determined by randomization. For
instance, if our V node from the previous example happened to have been
randomly assigned the priority of 100, we wouldn’t have performed any
rotations at all. This is because a node with a priority of 100 indeed belongs
at the bottom of the treap. And if the V received the priority of 1, we would
have rotated the V until it became the root of the treap.

The crazy thing is that this randomization allows treaps to achieve a level of
balance that is similar to red-black trees. While red-black trees have a
rotation scheme that is complex and follows a precise set of rules, a treap’s
random rotations achieve a similar result!

Let’s look at an example of a treap performing this balancing act. Let’s say
that we’re going to insert values into a treap in order. We know that for a
regular BST, inserting values in order is a death knell, as the tree becomes a
super-long linked list. But let’s see what happens with a treap when we
insert the values A through G in perfectly ascending order.

We’ll begin by inserting an A. Let’s say that this node’s randomly generated
priority is 75:

Next, we’ll insert B. The computer spins its internal die and decides that the
B’s priority should be 41.

In a regular BST, the B would become the A’s right child. However, in a
treap, this violates the Heap Rule since the child’s priority 41 is less than
the parent’s priority of 75. And so, we rotate the A and B:

Next up, we have a C, and its randomized priority happens to be 52. As
such, we get to make C the B’s right child, and no rotations are necessary:

We then insert a D, and the computer decides to assign it a priority of 16.
This is the minimum priority of the entire treap so far, so we rotate the D
upward until it becomes the treap’s root:

Our next node has the value of E and a priority of 80. No rotations are
necessary:

The letter F is up next, and its priority is 50. A single rotation is in order:

Lastly, we insert the G. The computer grants it a priority of 89, so we can
simply insert it like this:

Amazingly, although we inserted values in perfect order, the treap rotations
arranged them so that our treap is fully balanced.

Of course, this example was completely contrived since I had the liberty to
choose the computer’s “random” priorities. However, it does turn out that
treaps in general have a high probability of being well-balanced.

Let’s dig a little further to see why.

The Power of Random Priorities
As I noted earlier, when we insert values in random order into a BST, the
BST will likely be well-balanced. I’ll call this data structure a randomized
BST.

I’ll now demonstrate intuitively why randomized treaps should be as well-
balanced as randomized BSTs. The key is that the two data structures share
an attribute, which is that all the values have equal odds of landing at any
particular spot within the tree. Here’s what I mean.

Say that we’re inserting the values 1 through 100 into a regular BST. When
we insert the values in perfectly ascending order, we are dictating that the 1
becomes the root of the tree. This already causes a severe imbalance since
the root can now only have right descendants because it’s impossible for the
1, the smallest of our values, to have a left child.

But with a randomized BST, each and every value has an equal chance of
becoming the tree’s root. That is, each value has an equal chance of being
picked first, and whichever value is picked first becomes the root.

This alone already helps achieve balance because even though having a 1 as
the root is a terrible outcome, there’s only a 1 in 100 chance that this will
happen. There are greater odds that a more reasonable number will be
chosen as the root.

The same goes for randomization at every level of the tree. Regarding the
tree’s second level, for example, there are some bad numbers that could be
chosen, but odds are that this won’t happen.

So, the balance of a randomized BST is based on the fact that each and
every value has an equal chance of landing at any particular level within the
tree.

The same goes for randomized treaps: the level where any node lands is
completely based on its priority. And because the priorities are random, any
value can land at any level.

For example, whichever node has the smallest priority will become the
treap’s root since otherwise we’d be violating the Heap Rule. And with a
randomized treap, each value has an equal shot at being assigned the
smallest priority. It might be a bad thing if our smallest value (such as the
letter A) also happens to get assigned the smallest priority, but the odds are
that this won’t happen.

It emerges that both a BST and a randomized treap share the characteristic
that all values have the same odds of landing at any particular level within
the tree. Because of this, the two data structures have the same level of
balance.

The Expected Height of a Treap
Speaking of treap balance, how well-balanced can we expect a treap to be?
You discovered in the previous chapter that if a red-black tree has N values,
it will have a height of O(log N) if we express the height using Big O
notation. Furthermore, it’s guaranteed that a red-black tree’s height will not
exceed 2 log N. The Red-Black Rules ensure that a greater height is simply
not possible.

Believe it or not, a randomized treap also has an expected height of O(log
N), making a treap a great competitor to a red-black tree.

However, a treap does not have the same O(log N) guarantee that a red-
black tree does. It is possible, albeit highly unlikely, for a treap to have a
much greater height. Imagine that we inserted values in perfect order, and
the computer happened to randomly choose priorities that were also in
perfect order. We’d end up with the dreaded linked list! The good news,
though, is that this scenario is extremely rare.

I’ve run many tests building treaps of various sizes (from 50 up to
5,000,000 nodes), and have found that the height of each treap has always
come out to be between 2 log N and 3 log N. Again, it’s theoretically
possible to have a taller treap, but such a likelihood is very small.

It turns out that by using a simple randomized algorithm, treaps perform
virtually as well as red-black trees. And not only that, treaps achieve this
performance with so much less complexity than the byzantine set of
algorithms that power red-black trees.

Yes, red-black trees are never taller than 2 log N, and treaps’ heights are
usually around 2.5 log N. However, it may be a worthwhile trade-off to
have slightly higher trees and thereby gain a considerable amount of code
simplicity. More simplicity generally means fewer bugs. And the difference
between 2.5 log N and 2 log N may be considered negligible for many
applications.

However, if you need a guarantee that your tree doesn’t exceed a height of 2
log N, then you may opt for the red-black tree rather than the treap. Again,
it’s all about trade-offs.

In any case, treaps are a great example of how randomization can achieve
simplicity. It’s also a perfect example of a data structure that is powered by
randomization, or what some call a randomized data structure.

Code Implementation: Treap Insertion
Let’s look at the Python code for treaps. To start, here’s the code for a treap
node:

 import random

 class Node:

 def __init__ (self, value, priority=None):

 self.value = value

 self.priority = priority or random.random()

 self.left_child = None

 self.right_child = None

 self.parent = None

Like other tree nodes we’ve worked with, this Node has value, left_child,
right_child, and parent attributes. However, what makes treap nodes unique is
that they also have a priority attribute.

In a randomized treap, this priority will simply be a random number. In our
implementation, we use the random() method to generate this number, which
will be a random float between 0 and 1. That is, it’ll be something like
0.2677900713452904 or 0.9337348703962393.

Mainly for testing purposes, I built in the ability for the creator of a node to
assign a priority to that node. A random priority will only be generated if no
other priority has been explicitly assigned. This also allows our treap to be
used in its classical variant, where the priorities are not random. And so, our
code can be used to serve either as a randomized treap or a classic treap.

Now that we have our treap Node in place, here is the first section of code
for our actual Treap class:

 import treap_node

 class Treap:

 def __init__ (self, root=None):

 self.root = root

 def rotate_counterclockwise (self, a, b):

 a.right_child = b.left_child

 if b.left_child:

 a.right_child.parent = a

 b.parent = a.parent

 if not b.parent:

 self.root = b

 elif b.parent.left_child == a:

 b.parent.left_child = b

 else : # Node B is a right child

 b.parent.right_child = b

 b.left_child = a

 a.parent = b

 def rotate_clockwise (self, b, a):

 b.left_child = a.right_child

 if a.right_child:

 b.left_child.parent = b

 a.parent = b.parent

 if not a.parent:

 self.root = a

 elif a.parent.right_child == b:

 a.parent.right_child = a

 else : # Node A is a left child

 a.parent.left_child = a

 a.right_child = b

 b.parent = a

 def is_a_left_child (self, node):

 return node == node.parent.left_child

 def is_a_right_child (self, node):

 return node == node.parent.right_child

 def insert (self, value, priority=None):

 new_node = treap_node.Node(value, priority)

 if not self.root:

 self.root = new_node

 return

 current_node = self.root

 while current_node:

 if value < current_node.value:

 if not current_node.left_child:

 current_node.left_child = new_node

 new_node.parent = current_node

 current_node = current_node.left_child

 elif value > current_node.value:

 if not current_node.right_child:

 current_node.right_child = new_node

 new_node.parent = current_node

 current_node = current_node.right_child

 else : # value is already inside tree

 break

 self.insert_fix(new_node)

 def insert_fix (self, node):

 while node.parent and node.priority < node.parent.priority:

 if self.is_a_left_child(node):

 self.rotate_clockwise(node.parent, node)

 else :

 self.rotate_counterclockwise(node.parent, node)

This is a lot of code, but much of it is code we’ve encountered before. Let’s
walk through all of the code in order.

The Treap’s constructor creates the self.root variable, which is used to keep
track of the treap’s root at all times.

The bulk of the remaining code consists of several methods that I copied
from our red-black tree implementation in the previous chapter in Code
Implementation: Nodes and Rotations. These include rotate_counterclockwise,
rotate_clockwise, insert, and smaller helper methods is_a_left_child and
is_a_right_child.

The main difference compared to our red-black tree code is the
implementation of the insert_fix method. The insert_fix algorithm here is:

 while node.parent and node.priority < node.parent.priority:

 if self.is_a_left_child(node):

 self.rotate_clockwise(node.parent, node)

 else :

 self.rotate_counterclockwise(node.parent, node)

We run a loop as long as the inserted node’s priority is less than its parent’s
priority. In the loop, we continue to rotate the inserted node with its parent.
The rotation will be clockwise if the inserted node is a left child and
counterclockwise if the inserted node is a right child. Once the inserted
node is situated so that its priority is greater than (or equal to) its parent’s
priority, we’re done.

It’s worth taking a peek back at the red-black tree’s insert_fix code in Code
Implementation: Red-Black Tree Insertion (Fixing Phase) to appreciate how
much simpler the treap algorithm is. It’s pretty incredible what
randomization can do.

Treap Deletion
Deleting a node from a treap is also much simpler than it is with a red-black
tree. The trick is that we can use rotations to move the node we’re deleting
downward through the treap until it becomes a leaf node (that is, it has no
children). Once this node becomes a leaf, we simply detach it from the
treap.

Here’s the specific algorithm:

1. First, we search the tree for the node with the value that we intend to
delete. We’ll call this node the node_to_delete.

2. If we find this node, we run a loop that lasts as long as the
node_to_delete has children.

3. Within this loop, we rotate the node_to_delete with its child. If the
node_to_delete happens to have two children, we rotate it with the child
that has the smaller priority. (I’ll explain the reason for this shortly.)
We continue to rotate the node_to_delete downward until it has no
children, after which our loop ends.

4. We remove the node_to_delete from the treap. That is, if the
node_to_delete is a left child, we declare that its parent’s left child is
henceforth None, and if the node_to_delete is a right child, its parent’s
right child will now be None. By doing this, we can no longer access
the node_to_delete from the treap.

Treap Deletion in Action
Let’s get a visual of treap deletion so that the algorithm is abundantly clear.
Say we want to delete the D node from the following treap:

Note that in this diagram, the priority of the D node is obscured. This was
done because the D’s priority is completely irrelevant in the deletion
algorithm. That is, you don’t ever need to look at the D’s priority to perform
deletion.

To delete the node from the treap, first, we conduct a search to find the
node. The search algorithm is the same algorithm for searching for a node
within a classic BST. In this example, we find the D immediately since it
happens to be the root node.

We then begin a loop that rotates the D downward through the treap. The D
currently has two children. The B has a priority of 41, while the F has a
priority of 50. As stated earlier, we choose to rotate the node_to_delete with
the child with the smaller priority. This would be the B since 41 is less than
50. So, we rotate the D and the B in a clockwise fashion:

Let me pause here to explain why we chose to rotate the node_to_delete with
the child with the smaller priority.

If we do the alternative, and rotate the node_to_delete with the child with the
greater priority, we’d end up moving the F upward, like so:

This would put us in a position where the F is an ancestor of B. However,
because F has a greater priority than B, this violates the Heap Rule!

When we rotate a node downward, we end up turning one of its children
into the ancestor of the other child. By rotating the node with the child with
the smaller priority, we ensure that the child with the smaller priority
becomes the ancestor of the child with the greater priority.

Let’s go back to where we were when we did things correctly. Currently, the
D has two children, C and F. Between the two children, F has the smaller
priority, so we rotate the D with the F in good ol’ counterclockwise fashion:

The D’s two children are now C and E. The C’s priority is smaller than the
E’s, so we rotate D and C clockwise, as shown in the treap.

The D now only has one child, E, so we rotate D and E:

The D is now a leaf node, so we can now safely remove it from the treap:

Poof! It’s gone.

Treap Deletion vs. BST Deletion
In Volume 1, Chapter 15, I covered how BST deletion works. I won’t
rehash all the details here, but the algorithm is arguably more complex than
the algorithm for treap deletion. In particular, the BST deletion algorithm
performs different actions in different scenarios, such as when the
node_to_delete has no children, one child, or two children. It also deals with
moving around a “successor node” and managing the successor node’s child
if it has one.

Treap deletion, on the other hand, can pretty much be summed up in one
sentence: Continuously rotate the node_to_delete downward with the child
with the lesser priority until the node_to_delete becomes a leaf node, and then
remove it from the treap.

Now, here’s the interesting thing. The treap deletion algorithm would work
as well on a classic BST, too. Although BSTs don’t have priorities, we
could simply rotate the node_to_delete downward through the tree, choosing
any child at random, until the node_to_delete becomes a leaf node, after
which we can remove it from the tree. Again, rotations never cause a

violation of the BST Rule, so there’s no reason we can’t perform this
deletion algorithm on a BST.

It seems that the only reason this algorithm is not typically used on classic
BSTs is that it involves rotations, which are not themselves the simplest of
all algorithms. Essentially, then, it’s a complexity trade-off. The BST
deletion algorithm has complexity in dealing with multiple scenarios but
avoids having to implement rotations.

Treaps, on the other hand, already have to implement rotations to power
insertions. Once the ability to perform rotations is in place, we may as well
use them to implement a simple deletion algorithm.

On a similar note, we could also technically use the classic BST deletion
algorithm on treaps, but this would, in many cases, trigger a Heap Rule
violation since we often plug a “successor node” into a higher spot within
the tree. We’d then have to fix the treap by rotating the successor node
down through the treap. But this is all considerably more complicated than
simply rotating the node_to_delete down through the treap in the first place,
so why go through all that trouble?

Code Implementation: Treap Deletion
Here, we implement a delete method, which in turn depends on a search
method:

 def search (self, value):

 if not self.root:

 return None

 current_node = self.root

 while current_node:

 if value < current_node.value:

 current_node = current_node.left_child

 elif value > current_node.value:

 current_node = current_node.right_child

 else : # value found!

 return current_node

 def delete (self, value):

 node_to_delete = self.search(value)

 if not node_to_delete:

 return False

 if node_to_delete == self.root \

 and not node_to_delete.left_child \

 and not node_to_delete.right_child:

 self.root = None

 return node_to_delete

 while (node_to_delete.left_child or node_to_delete.right_child):

 if (not node_to_delete.right_child) \

 or (node_to_delete.left_child.priority <

 node_to_delete.right_child.priority):

 self.rotate_clockwise(node_to_delete, node_to_delete.left_child)

 else :

 # this else clause occurs if either there is only a right child

 # or the right child has smaller priority than left child

 self.rotate_counterclockwise(node_to_delete,

 node_to_delete.right_child)

 if self.is_a_left_child(node_to_delete):

 node_to_delete.parent.left_child = None

 else :

 node_to_delete.parent.right_child = None

 return node_to_delete

The search method is identical to classic BST search, so let’s focus on the
delete method.

We begin by searching for a node with the value we’re trying to delete. If
we find that node, it’s assigned to the variable node_to_delete. If it’s not
found, we terminate the method early by returning False:

 node_to_delete = self.search(value)

 if not node_to_delete:

 return False

Next, we handle the unique case where the node_to_delete is the only node
inside the treap, in which case we simply remove it from the treap by
resetting the root to None:

 if node_to_delete == self.root \

 and not node_to_delete.left_child \

 and not node_to_delete.right_child:

 self.root = None

 return node_to_delete

Next, we begin our loop that runs as long as the node_to_delete has at least
one child:

 while (node_to_delete.left_child or node_to_delete.right_child):

We then perform a clockwise rotation with the node_to_delete and its left
child if either there’s no right child or if the left child has a smaller priority
than the right child:

 if (not node_to_delete.right_child) \

 or (node_to_delete.left_child.priority <
node_to_delete.right_child.priority):

 self.rotate_clockwise(node_to_delete, node_to_delete.left_child)

On the other hand, if only a right child exists or if the right child’s priority
is smaller than the left child, we rotate the node_to_delete with its right child:

 else :

 self.rotate_counterclockwise(node_to_delete,
node_to_delete.right_child)

Finally, we cut off the node_to_delete from the treap:

 if self.is_a_left_child(node_to_delete):

 node_to_delete.parent.left_child = None

 else :

 node_to_delete.parent.right_child = None

We finally conclude the method by returning the node_to_delete to confirm
that the deletion was successful.

And that’s it!

Wrapping Up
Randomized treaps are a great example of a randomized data structure and,
more importantly, a great example of how effective randomization is in
simplifying algorithms. Red-black trees are notorious for making people’s
heads spin, and yet treaps achieve similar results with insertion and deletion
algorithms that require considerably fewer steps and conditions. We looked
at some practical applications of red-black trees in the previous chapter, and
randomized treaps can be used wherever red-black trees can.

In the next chapter, we’re going to take a slight detour from the theme of
randomization. Because we’re already dealing with self-balancing trees, I
want to introduce you to another such tree known as the B-tree. Besides
being extremely prevalent in all sorts of applications, this topic will open up
an entirely new class of problems and algorithms—and disrupt the way we
think about time complexity in general.

I’ll see you there.

Exercises
The following exercises provide you with the opportunity to practice with
treaps. The solutions to these exercises are found in the section Chapter 6.

1. Look at this shiny randomized treap:

What will the treap look like after inserting a node with the value "L"
and the priority 100?

2. What will the previous treap look like if the "L" node we’re inserting
has a priority of 5 (rather than the 100 from the previous exercise)?

3. What will the previous treap (had you not done the insertion of the
previous exercises) look like if we delete the "Q" node?

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 7

To B-Tree or Not to B-Tree:
External-Memory Algorithms

Throughout our journey so far, we’ve been operating under the assumption
that our algorithms are dealing with data that is contained completely within
the computer’s main memory (otherwise known as RAM) or caches. In
other words, our computer has all the data loaded in memory and ready to
go, and the computer then performs an algorithm on that data.

However, this isn’t always the case. Let’s say we want to calculate the sum
of a list of integers that is so long that it takes up 50GB of space. If we’re
working with a computer that has only 8GB of main memory, we
immediately encounter a problem. How is our computer supposed to
process such a list if the list can’t even fit inside the computer’s active
memory? It’s not even possible to declare the statement:

 array = [6, 2, 0, 1, 8... super long list that is 50GB long]

While our computer probably wouldn’t explode if we attempted this, the
computer would reject the statement, whining that it can’t hold so many
numbers.

In this chapter, you’ll learn how to properly analyze the efficiency issues
surrounding “big data” problems such as this one and write effective

external-memory algorithms to process such data quickly and with minimal
space consumption.

Another important problem we’ll deal with in this chapter is how to manage
tree data structures when dealing with massive amounts of data. As you’ve
seen throughout our discussions of trees, a tree such as a BST (be it a
classic one, a red-black tree, or a treap) is important for being able to search
for data quickly while also keeping the data sorted. But what if our data is
so large that our tree can’t fit inside main memory? To deal with this not-
uncommon conundrum, you’ll learn about the important and ubiquitous B-
tree, which is a tree specialized for storing lots of information.

In this as well as the next chapter, we’ll embark on a “side quest” in which
we explore the fascinating, vast, and important world of external-memory
algorithms. This chapter is indeed connected to the previous ones, as here
we’ll feature another self-balancing tree as we did in the previous two
chapters. However, we won’t return to our main theme of randomization
again until Chapter 9. If you so choose, you could skip ahead at this point to
Chapter 9 and return to Chapters 7 and 8 at some later time.

External Memory
Let’s get back to our 50GB list of integers. To store such a list, we need to
store the integers somewhere outside main memory since the list certainly
won’t fit inside main memory. Typically, we’d do this in the filesystem,
assuming that our filesystem is larger than 50GB.

More specifically, we’d create a file that stores all the integers. Given that
such a file would itself be massive, we might also decide to break up the
data into several smaller files.

In any case, though, this approach alone doesn’t fully solve our problem.
This is because when we run code, the computer works directly with data in
main memory, and doesn’t deal directly with data from the filesystem. We
touched on this earlier in The Memory Hierarchy, but let me review these
details and elaborate on them a bit further since these concepts are the
foundation of this chapter.

You can think about a computer’s filesystem as a storage center, similar to
those walk-in storage centers where you keep physical stuff you don’t use
on a regular basis. If I store a sofa in such a storage center, I will never go
to the storage center to sit on that sofa. Similarly, when code performs an
algorithm, the software doesn’t act directly on data in the filesystem
“storage center.” Instead, the code copies data from the filesystem into main
memory and only then does our code do something with that data.

Using the memory hierarchy diagram you first saw here, we’re essentially
referring to the transfer of data as shown in the figure.

In truth, some of the data may also be copied into the various cache levels.
When I refer to either “main memory,” “RAM,” or even simply “memory”
in this chapter, I mean to include the cache levels as well.

So, we return to our million-dollar question: how can our code work with
data if the data is too large to fit inside RAM?

Memory Blocks
Fortunately, computers have a built-in technique for handling this kind of
thing. When a computer loads data from the filesystem, it does so one block
at a time. The term block refers simply to a section of data. Taking our
example of a 50GB list of integers, the computer might view it as a
collection of fifty 1GB blocks.

The exact size of a block depends largely on your particular computer’s
hardware and operating system. Because of this, the computer, by default,
generally uses the same block size across all pieces of software.

Now, let’s say that we’re working with a computer that has 8GB of RAM
and a block size of 1GB. (The filesystem can be infinitely large for the
purposes of our discussion.) Here’s the gist of how the computer may
compute the sum of integers contained in a 50GB file:

Because our computer has 8GB RAM, the computer will start out by
loading the first 8 blocks of data from our 50GB file, with each block
containing 1GB of data. This will fill the capacity of our RAM since our
RAM is 8GB, and the 8 blocks contain a combined total of 8GB of data.
Our algorithm will then compute the sum of those integers and keep that
sum in a variable. This variable, essentially, tracks the “total sum so far.”

Next, the computer will eject those first 8 blocks from memory, freeing up
our RAM, and then load the next 8 blocks from the file. We’ll compute the
sum of those freshly loaded integers and add the result to the “total sum so
far.” We repeat this process until we’ve processed all 50GB worth of
integers. Once we’ve completed this process, our “total sum so far” variable
will actually contain the total sum of the entire 50GB list of integers. And
so, we’ve succeeded at our goal of summing up the entire massive list.

Let’s look at a high-level visual of the algorithm I’ve just described.
However, to keep the diagrams small enough to fit on the page, I’m going
to change the size of our main memory and blocks. Imagine that our
computer is so tiny that its RAM can store only 3 integers. At the same
time, let’s also say that the block size, too, is 3 integers.

Here’s a depiction of our computer’s main memory and a file in the
filesystem containing integers that we want to sum up:

Currently, the main memory is empty.

Our computer can’t calculate the sum in the classic way, since it can only
work with 3 integers in main memory at once. Again, this is because our
example computer’s RAM has a maximum capacity of 3 integers.

So, we first have to load a block of 3 integers from the file and compute the
sum of those 3 integers:

We then load the second block from the file, sum those integers, and add
that to our total sum so far, as shown in the first diagram.

Finally, we do the same with the last block as shown in the second diagram.

And the algorithm is complete.

We can refer to an algorithm like this as an external-memory algorithm
since it’s an algorithm that processes data from an external source, such as
the filesystem.

What’s sweet is that for many of Python’s built-in tools for loading data
from files, the computer manages all of this block maneuvering
automatically, and we don’t have to write explicit code to move blocks of
data.

It might seem that we can continue to write our code the same way we’ve
always done and remain completely oblivious to the way our computer
transfers data blocks from the filesystem to main memory. However, you’ll
soon see that for many applications, this couldn’t be further from the truth.

Slow I/Os
It’s a bit of a mouthful to keep saying the phrase “transfer data from the
filesystem to main memory.” So, let’s use a shorthand term. An I/O, which
stands for “input/output,” is an operation that transfers computer data. It can
refer to various types of data transfers in different contexts, but in this
chapter, I’ll use it to refer to transferring data from the filesystem to main
memory.

Now, while I’d love for you to remember everything I ever write (including
the jokes), if there’s only one thing you can remember from this chapter, it
should be this: I/Os are extremely slow!

A major theme of this book has been that we measure an algorithm’s time
complexity in terms of the number of “steps” the algorithm takes to
complete a task. However, if our algorithm involves I/Os, our perspective
needs to change. This is because an I/O can be thousands of times slower
than a typical “step” that takes place in main memory.

This has major ramifications. If we have an algorithm that involves 49
main-memory steps plus one I/O step, we might have thought to say that
this algorithm takes 50 steps. But this would be a poor reflection of the
algorithm’s true speed. For if the I/O has the equivalent speed of 1,000
main-memory steps, our algorithm is much slower than 50 steps. It’s more
like 1,049 steps! There are the 49 main-memory steps, but there’s also the
single I/O that is as slow as 1,000 main-memory steps.

And so, when we have an algorithm that loads data from the computer’s
filesystem, our long-standing Big O approach to measure time complexity
is no longer as useful as it once was.

However, fear not, for we’ll set everything right again. We need to modify
the way we use Big O notation to accommodate external-memory
algorithms.

Count I/Os, Not Steps
Because of the slowness of I/Os, when it comes to algorithms that involve
I/Os, computer scientists like to measure time complexity differently than
they do with “regular” non-I/O algorithms. Specifically, instead of counting
how many steps the algorithm takes, we count the number of I/Os the
algorithm performs.

This line of thinking is driven by how much slower I/Os are when
compared with main-memory steps. If an algorithm has 5 I/Os plus 300
main-memory steps, the 5 I/Os are so much slower than the 300 main-
memory steps. Therefore, we simply ignore the main-memory steps
altogether.

This is a bit similar to what I discussed back in Volume 1, Chapter 6,
namely, that when we have an algorithm with N4+N3+N2+N steps, we only
keep the highest order and simply say that the algorithm is O(N4). I
explained that this is because when compared with N4, all the lower orders
of N are insignificant.

The same basic idea holds true here as well. When our algorithm includes
both I/Os plus main-memory steps together, we only count how many I/Os
there are since the main-memory steps are insignificant by comparison.

Big O of I/O
In Volume 1, Chapter 3, I explained that Big O notation is valuable because
it effectively describes the time complexity of any algorithm, irrespective of
how much data the algorithm is processing. Instead of saying that a
particular algorithm takes 10 steps for 10 data elements and 1,000 steps for
1,000 data elements, we simply say that the algorithm has a speed of O(N),
with N signifying how much data we’re dealing with.

But to adapt Big O Notation to external-memory algorithms, we need to
switch what it is that Big O measures. Specifically, we will adapt Big O
Notation so it tells us how many I/Os the algorithm performs when there are
N elements.

Let me break this down.

As mentioned, for “regular” algorithms, the term O(N) says that for N data
elements, the algorithm takes N steps. But for external-memory algorithms,
we’d want O(N) to mean that for N data elements, the algorithm performs
N I/Os.

But here’s the thing. Let’s return to our earlier algorithm in which we
compute the sum of all the integers in a list. If all the integers were in
RAM, the algorithm would indeed be O(N) since for the N integers, the
algorithm takes N steps.

But is this true for the external-memory version of summing integers? Is it
accurate to say that for N integers, the algorithm performs N I/Os?

Indeed, this is not the case. We saw in our visual example that when there
are 9 integers, our algorithm performed only 3 I/Os. So how do we use Big
O to tell us how many I/Os the algorithm performs when there are N
elements?

If you can resist the temptation to read further immediately, I recommend
you first take a moment to ponder this and try to come up with your own
answer.

Okay, let’s analyze this thing.

The key to everything lies in the computer’s block size. I mentioned earlier
that each computer, based on its own particular hardware specs, has a
particular block size. If there are 10 pieces of data, and the block size is 2,
we know that it will take 5 I/Os to process all the data. In other words,

because each I/O transfers a single block from the filesystem to main
memory, it’ll take 5 I/Os to transfer all the blocks of size 2 until all 10
pieces of data are transferred.

If we want to express this using math, we’d say:

 10 pieces of data / 2 block size = 5 I/Os

To express this same idea in terms of N pieces of data, we’d say that:

 N / block size = total number of I/Os

To make this notation a bit more concise, computer scientists like to use the
variable “B” to refer to the block size. So, to express the previous formula
using this shiny new variable, we’d say:

 N / B = total number of I/Os

There’s potential to get confused regarding B, so let me make this
abundantly clear: B stands for block size, and not the number of blocks. It’s
easy to mix that up, so go ahead and repeat this factoid 10 times before
moving on.

With this, we’ve now unlocked the ability to express the number of I/Os
relative to N. That is, for N data elements, an algorithm will perform N/B
I/Os.

We can now answer our original question of how we can use Big O to
describe the time complexity of summing all the integers in a file. We’d say
that it takes:

O(N/B) I/Os.

This is the Big O way to express that for N data elements, the algorithm
will execute N/B I/Os.

Finding Duplicates

Let’s look at another instance where we can apply Big O notation to I/Os.

Say that we have an array of strings, and we want to see if we can find any
duplicate strings. Throughout Volume 1 (and especially in Chapter 19), I
laid out both fast and slow ways of doing this.

The slowest approach is to apply brute force: for each string, check all the
other strings to see if we get a match. In a “regular” case, where our array
of strings is small enough to fit inside main memory, the speed of this
approach would be described as O(N2). This is because for each of the N
strings, we have to check N strings.

But now imagine that our list of strings is so large that it cannot fit in RAM
and can only be stored as a humongous file in the filesystem. How would
we describe the speed of our brute-force algorithm now? To figure this out,
the first thing we need to do is determine what I/Os the algorithm would
need to perform. After doing that, we can then count how many I/Os the
algorithm performs in total.

We know that the computer will virtually divide the data into blocks and
perform an I/O each time to load a block into main memory. To access even
the first string in our file, the computer will need to transfer the first block
into memory.

Let’s say that the first string in our file is "apple". This means that we want
to search the rest of our list to see if there’s another instance of "apple".
Now, because we happen to have the first block in memory, we may as well
search that block for another "apple". If there is no such matching string in
the first block, the computer must now go to the filesystem again and
perform a second I/O to load the next block into memory.

Eventually, the computer will load the entire file one block at a time,
assuming it doesn’t find a duplicate before getting to the end of the file.
Because there are N strings in the file, we’d say that the computer performs

N/B I/Os to perform a search for the duplicate "apple". Now, keep in mind
that we’ve only so far dealt with the search for "apple"! In a worst-case
scenario, where the list doesn’t contain any duplicates, we need to repeat
the same approach for each and every string in our file.

And so, the algorithm must ultimately perform N/B I/Os for each of the N
strings. This is N/B * N, which is equivalent to N2/B. As such, Big O
notation would describe this as O(N2/B).

The main takeaway from this section is that we’ve discovered the preferred
approach for measuring the time complexity of external-memory
algorithms. In a nutshell, it all boils down to counting I/Os rather than
counting main-memory steps.

It’s certainly great to be armed with this knowledge, but you haven’t yet
seen how it might dictate the way you should write our code. But that’s all
about to change now. In the next section, you’ll see that some external-
memory algorithms can be written in multiple ways and that we’ll need Big
O to help us determine which approach is fastest.

External Binary Search
Ah, binary search—one of the classic algorithms of computer science lore.
(I covered it way back in Volume 1, Chapter 2.) It’s a super-fast algorithm,
clocking in at a blazing O(log N).

The typical binary search deals with data that is small enough to fit inside
main memory. But what would binary search look like when applied to
external memory? That is, say we had an ordered list stored in the
filesystem, but the list is too large for RAM. How might we perform binary
search?

Perhaps the most straightforward approach would be to perform binary
search on blocks of data. Let’s visualize this.

Say that we have an ordered file that contains 20 values, and our computer’s
block size is 4. This means that we have 5 distinct blocks, each containing 4
values:

In the previous diagram, I am not yet revealing the identity of these
integers. I’ll reveal them when we load them into main memory.

Now, suppose we want to find the integer 11 within our data. With binary
search, we always start by inspecting the value that’s at the center of our
list. To do this, we’ll have to load the center block into main memory:

Once we have this block in main memory, we can now search the current
block. We can do this, naturally, with binary search on the elements of the
current block.

(A nice little trick, though, is to initially inspect the first and last values of
the block. For example, if we’re looking for 11, and the first and last values
of the block are 15 and 33, respectively, we know right off the bat that the
11 could only lie in a block that is earlier than the current block. However,
this trick may only serve to reduce the number of main memory steps, and
doesn’t reduce the number of I/Os we have to perform. So let’s move on.)

In any case, the 11 we’re seeking is less than any of the elements in the
current block. As such, we know that the value must live inside a block
earlier in the list, and we can eliminate all other blocks:

We repeat this process by choosing the center block of what remains. In this
case, where we have an even number of remaining blocks, we can just
arbitrarily choose either of them.

With this process, we end up performing log N/B I/Os. That is, we start with
N/B blocks, and with each I/O we perform, we reduce the number of
remaining blocks by half. So, since in-memory binary search takes log N

steps, external-memory binary search takes log N/B I/Os. In Big O notation,
we’d call this O(log N/B).

In the end, external binary search isn’t much different than good ol’ regular
binary search. It’s practically the same algorithm, and has the same
logarithmic kind of performance. However, we’re going to look at how we
can optimize this external memory algorithm and make it much faster. I’m
going to start with a theoretical approach and then move on to practical
techniques we can take to the bank.

Optimizing External-Memory Algorithms
I’ve demonstrated how binary search works in the context of external
memory. Now I’m going to present another example of this, but this time
with a larger data set, as shown in the following illustration.

Say that we have a file containing a list of 110 elements, and that our
computer’s block size is 10. This means we have 11 blocks of data in total.
Each rectangle in the diagram that follows represents 10 items of the list; I
simply can’t fit 110 values into this image:

Now, here’s a pop quiz for you (since I know you like them): what is the
greatest number of I/Os we’d have to perform by executing binary search
on this data set?

The answer is that we’d have to incur at most 4 I/Os. There are 11 blocks,
and log2 11 is about 4.

This isn’t bad, but we can do better.

Let’s look at an optimization technique that will enable us to search our
example file using no more than 2 I/Os. As you’ll see, the first iteration of
this approach is only theoretical, but you’ll see later how it can be used
practically. This approach, as well as everything I’ll discuss for the
remainder of this chapter, will be based on what I call the key to optimizing
external-memory algorithms.

The Key to Optimizing External-Memory Algorithms

Without further ado, the key to speeding up external-memory algorithms is
to pack as much useful information as we can inside each block. Let’s take
a look at what this means, first, in the context of binary search.

When we execute binary search on external memory and perform an I/O to
transfer a block into main memory, how much of that block’s information is
useful to us?

Well, it depends.

If the value we’re searching for is inside that block, we only care about that
value. All the other data is simply the haystack that hides our needle.

But, if the value we’re searching for is not inside that block, then we only
care about the first and last values of that block. By knowing those two
values alone, we can determine whether the value we’re searching for is
somewhere to the left of this block, or if it’s somewhere to the right of this
block. So if our block size is 10, there are 8 elements of data that we don’t
need, as we only need the first and last elements. In real life, a block may
hold hundreds of pieces of data, so we’ve kind of wasted an I/O to transfer
a whole lot of useless data.

To optimize this algorithm, we need to consider whether we can pack the
block with more useful information—and the more, the better. It’s kind of
like hiring a moving truck; we want to fill every cubic inch of that truck
with as much stuff as we can. We don’t want to have to make extra trips if
we can avoid it.

Indeed, in our case of searching data from an ordered list, there’s a
theoretical way to pack a block of data with much more useful information.
Here’s how.

Packing Blocks

Instead of performing binary search and using up an I/O to transfer the
centermost block of our list into main memory, we can transfer a block that
is made up of information drawn from across our list. Specifically, we’ll
place into the block every 10th element from the list (except for the final
value), like so:

Here, we’ve created a block of 10 elements from data evenly interspersed
across the original list.

In other words, instead of using an I/O to transfer a block of contiguous
data from the file, we use that I/O to transfer a block of data made up of
every 10th value in the list.

Now, here’s the clincher. We’ve used just one I/O so far, but we only need
one more I/O to find our desired value.

For example, let’s say that we’re searching for the integer 68. We’d look at
the block we’ve loaded into main memory, and see that 68 would lie
between the fourth value (the 60) and the fifth value (the 73). With this
information, we’d know for certain that the 68 must be contained within the
fifth block of the list as shown in the figure.

At this point, we only need to perform one more I/O to obtain the block
where the 68 lives! We’ve successfully devised an algorithm that searches
the ordered list in a maximum of 2 I/Os.

Now, the difference between 2 I/Os vs. the 4 I/Os may not seem like much.
But in real life, when dealing with big data, our optimization can make a
big difference.

For example, suppose we have a computer with a block size of 1,000. If we
had a list of one billion elements and we make it so that our first I/O is a
block comprised of every 1,000th element from the original list, we
effectively break down the original list into about 1,000 sections, each of
which contains one million elements. (Technically, it’s 1,001 sections.)

Note that in this case, unlike the previous example, these 1,000 sections
aren’t equivalent to 1,000 blocks. For when we break up one billion
elements into 1,000 sections, each section contains one million elements.
And our block size is only 1,000.

That being said, after this first I/O, we can already pinpoint in which section
our value lives. Again, this section contains one million elements, and our
block size is 1,000, so we need to dig deeper.

We then take that section of one million values and create a second I/O
comprising every 1,000th element, breaking up this section into 1,000
smaller sections, each of which contains 1,000 elements. At this point, each
section is indeed the same size as a block.

By analyzing the block currently loaded into memory, we can now locate in
which 1,000-element section (out of the one million elements that are in our
search space) our desired value lives.

We can then use a third and final I/O to load that 1,000-element block into
RAM and locate the desired value.

So, we only need 3 I/Os to find a value in a list of one billion elements!
With our first approach of unoptimized external-memory binary search, this
would have taken up to 20 I/Os.

For now, I’ll refer to this clever new algorithm as “Optimized Search.” In
truth, it doesn’t have a name because it’s not used in real life for reasons
you’ll see soon, but let’s run with it for now.

Back to Big O
We’ve seen that the speed of unoptimized external-memory binary search is
O(logN/B) I/Os. As we’ll see soon, the Big O of Optimized Search is also,
technically, O(logN/B) I/Os. But because both algorithms have the same
Big O speed, it turns out that Big O doesn’t capture the performance gains
of Optimized Search over its unoptimized counterpart.

If we want to articulate the speed of Optimized Search to show to what
extent it’s faster than unoptimized external-memory binary search, we’d
have to use a more fine-grained approach than Big O. And to do this, we
first need to change up the way we’ve been expressing logarithms.

Throughout this book, we’ve been referring to “log N” without specifying
the logarithm’s base. This is because Big O notation doesn’t care about the

base, as the base is considered a constant.

However, in practice, the base will make a big difference in the context of
our discussion of external-memory algorithms. So, in this chapter (as well
as the next), I will make a point to specify a logarithm’s base.

With unoptimized external-memory binary search, we’d say that it performs
log2 N/B I/Os. As I explained in Volume 1, Chapter 3, the way I like to
think about this logarithm is: how many times do I need to divide a number
by 2 until I end up with a result of 1? For example, log2 1,024 is 10 since I
have to divide 1,024 10 times until I end up with 1.

The question to consider now, though, is the precise number of I/Os that
Optimized Search executes.

With Optimized Search, the way we cut down the list of blocks depends on
the block size. If the block size is 10, for example, each I/O divides the
original list into 11 sections. Each subsequent I/O takes one of those 11
sections and divides it into a list of 11 smaller subsections. We’d therefore
say that this takes log11 N I/Os. Put another way: this is the number of times
we need to divide the list by 11 until we get a result of 1.

If, however, the block size is 1,000, then each I/O reduces the original list
into 1,001 small subsections. Accordingly, we’d say that it takes log1,001 N
I/Os to find the value we’re looking for. Indeed, that’s why when we have a
list of one billion elements, it takes just 3 I/Os to perform Optimized
Search. That is, log1,001 of one billion is approximately 3.

It emerges that Optimized Search takes roughly logB N I/Os for N data
elements. That is, we keep dividing a list of N elements by the block size
until we find our search value.

If we wanted to express this even more accurately, we’d take note of the
fact that when we divide a list by B, we produce B + 1 sections.

To wrap this nicely in a Big O bow, we’d say that the speed of Optimized
Search is O(logB + 1 N). As you’ve seen, this is much faster than O(log2 N).
In fact, the greater B is, the faster the algorithm.

The Impracticality of Optimized Search
While the Optimized Search algorithm seems great at face value, it can’t be
implemented in reality—at least not in the particular way I’ve described it.
The entire premise of Optimized Search is that we tell the computer to
create a block using elements scattered across the computer’s memory.
However, there’s a problem with this approach.

The thing is, when a computer performs an I/O, we don’t get to tell it how
to form its block; it does so automatically. And when a computer creates a
block, it only does so using a chunk of contiguous memory. We simply
don’t get to tell the computer to form a block out of elements interspersed
throughout the data.

But there’s good news. While this version of Optimized Search may not be
practical, there’s a data structure out there that operates on the same
principles. This data structure uses a similar approach to Optimized Search
and drastically reduces the number of I/Os needed for external-memory
search. It’s no surprise that this data structure is popular.

Binary Search Trees in External Memory
Before revealing this exciting new data structure, let’s first talk about binary
search trees (BSTs) and how they might work with external memory. All of
our discussions about BSTs until this point assumed that the entire tree
would fit into RAM. But what would it look like if the BST was too large
for RAM? This could happen if our BST was absolutely huge or if our
computer had a tiny main memory, or both.

Say, for example, that we have a microcomputer that has a main memory
that could only hold up to 4 nodes of a BST. Let’s also say that the block
size was 4 nodes as well. How could our computer perform a search on the
following BST, which contains 50 values?

Well, first, this BST would need to be stored in the filesystem since that’s
the only place where we could even fit all this data. Let’s assume, then, that
we have a file that stores all of these nodes. How might the computer
perform a search on this BST?

Let’s apply our newfound knowledge about external-memory algorithms
and walk through the steps the computer would perform if it were to search
for the value 93 in the BST.

We begin our search at the root. Because the tree is currently in the
filesystem, the computer needs to perform an I/O to transfer data to RAM.
Because the computer’s block size is 4, we can transfer a block of up to 4
nodes.

Now, it’s hard to know exactly which nodes the computer might grab unless
we can see exactly how the data is organized in the file. Let’s make the
optimistic assumption that the computer will grab nodes that are in close
proximity to each other. Accordingly, the computer might transfer this
block of 4 nodes when it grabs the root as shown in the figure.

This is our first I/O.

With the first block now in memory, the computer begins its search. We’re
searching for 93, which is greater than the root of 50, so we move to the
root’s right child.

Luckily, the right child, which is the 75, is already in main memory. Now,
93 is greater than 75, so we need to move to the 75’s right child. However,
we don’t have that child in memory yet, so we need to perform our second
I/O to transfer the next block of nodes:

Again, we don’t know for sure if this is the exact block the computer will
transfer; it’s just an example.

We now have the 75’s right child in memory, which is the 87. 93 is greater
than 87, so we move to the 87’s right child, the 90. Our search value of 93
is greater than 90, so we need to move to the 90’s right child. However, it’s
not in memory, so we need to perform our third I/O as shown in the figure.

With this third block in memory, we now have access to the 90’s right child,
which is 95. Our search value of 93 is less than 95, so we move to the 95’s
left child, 92.

Because 93 is greater than 92, we need to move to the 92’s right child. It’s
not in memory, so we perform our fourth I/O:

Finally, we find the 93 we’ve been looking for. All in all, it took us 4 I/Os.
Naturally, a much larger tree might require many more I/Os.

Optimizing External-Memory Trees
How might we optimize our tree to allow for faster search? Again, let’s
review the key to optimizing external-memory algorithms: we should aim
to pack as much useful information as we can inside each block. With that
in mind, let’s ask ourselves whether the blocks from the previous BST
example contained useful information.

Looking at the particular blocks the computer transferred, each block ended
up containing two useful values. The first block, for example, contained the
root and the 75. We needed both of those values since that’s the beginning
of the path down to the 93. However, the block also contained information
that we did not need, since the 25 and 12 were completely useless to us.

Similarly, the second block contained the 87 and 90 that we needed, but a
62 and 81 that we didn’t. The same is true for the third and fourth blocks, as

at least half of each block contained useless data.

To optimize external-memory tree search, we need to try to pack blocks
with more useful information. In a perfect world, all of a block’s data
should be useful to us.

In the BST shown earlier, it would have been nice if the first block
contained the 50, 75, 87, and 90. And if the second block contained the 95,
92, and 93, we could have found the 93 in two I/Os:

But again, there’s no way we can ensure that the computer will choose these
blocks. We could, theoretically, structure the file’s data in such a way that
the 50, 75, 87, and 90 are all adjacent to each other so they end up in the
same block. However, this only optimizes for values descended from the
90, and would end up making other values even slower to find. Imagine that
we were searching for the 12, for example. If the root’s block also contained
75, 87, and 90, we wouldn’t even have transferred the root’s left child of 25
into memory, which is what we need to find the 12.

Our goal is to create a different kind of tree that somehow reduces I/Os by
packing each block with useful data. Well, it turns out that computer

scientists have already figured that out.

Enter the B-tree.

B-Trees
A B-tree is a tree data structure designed especially for external memory,
and aims to keep I/Os to a minimum. In a bit, I’ll get into all of the B-tree
rules and operations, but let’s begin with an overview of how it works.

The first thing to know about B-trees is that they are not binary trees. A
binary tree is, by definition, a tree whose nodes have up to two children at
most. Indeed, the trees we’ve dealt with so far in this book were types of
binary trees.

A B-tree, on the other hand, contains nodes that can have many children. In
fact, in the real world, B-tree nodes often have hundreds of children. Yes,
you read that right. As we’ll see shortly, the power of B-trees stems from
this idea.

What is clear is that the “B” in the name “B-tree” does not stand for
“binary.” As to what it does stand for, well, there’s no definitive answer to
that. For whatever reason, the inventors of the B-tree never explained what
the “B” represents. While various suggestions abound (including “bushy”!),
the most we have to go on is the cryptic statement by one of the B-tree’s
inventors, who said, “the more you think about what the B in B-trees
means, the better you understand B-trees.” This is truly computer science at
its best.

In addition to a B-tree node being able to have numerous children, each
node can also hold numerous values. Here’s an example of a small B-tree:

Here we can see that the root node has 3 values and 4 children. The pointers
to the children live in between the actual values, and help us find which
child we may be looking for. To find values less than 5, for instance, we
need to follow the pointer to the left of the 5. To find values between 5 and
20, we need to follow the pointer that lives between the 5 and the 20. And
so on.

When creating a B-tree, a decision needs to be made at the outset as to the
maximum number of values each node can store. This decision will be
applied to all nodes. In this example, each node stores a maximum of 3
values. In real life, it’s not uncommon to have a B-tree whose nodes store a
maximum of 500 values each. In this book, I’ll refer to this number as a B-
tree’s node maximum capacity. (This is not official jargon. Official jargon
uses the term “order.” However, some computer scientists use the term
“order” in slightly different ways, causing a fair amount of confusion. As
such, I’m going to stay away from that term.)

Note that the maximum number of children that a B-tree node can have is
the node’s maximum capacity plus 1. In the example tree, you can see that
the node’s maximum capacity is 3, but the maximum number of children
each node can have is 4.

B-trees make use of the key technique we’ve been discussing to minimize
I/Os, which is to pack as much useful data into a block as it can. When we
create a B-tree, we can take advantage of this by doing something clever:

we make it so that a B-tree’s node maximum capacity is the same as the
computer’s block size. So, if a computer’s block size can hold 500 values
(plus the pointers to the children nodes), we would decide that our B-tree’s
node maximum capacity should be 500. Let me explain why this is
advantageous.

A B-tree’s data is stored in the filesystem. Because each node fits perfectly
into a block, we only need one I/O to transfer a node into RAM. To see how
this will help us reduce I/Os, let’s take the same 50 values from our
example BST and store them in a B-tree. Let’s say that we’re still working
with our tiny computer that has a block size of 4. This means that we can
store 4 values plus 5 pointers to children.

The B-tree shown is what it may look like. I compacted the width of the
tree so it can fit on the page.

As an example, suppose we are searching for the value 39. (Can you spot
it?)

Recall that in our BST, it took 4 I/Os to find our desired value. Let’s see
how many I/Os it takes to find the 39 inside our B-tree.

First, our computer needs to access the B-tree’s root node, which takes 1
I/O. The root node contains the values 18, 40, 68, and 87.

Because 39 is between 18 and 40, we follow the pointer that lives between
18 and 40 to find the next node. This is the node containing the values 23,
30, 32, and 38. We spend our second I/O loading this node into memory.

Now, 39 is greater than 38. Therefore, we need to follow the pointer that
lies to the right of the 38, which leads to another node.

And so, we spend our third I/O loading this child. And whaddya know? The
node contains the 39 we’ve been looking for!

In total, we only had to execute 3 I/Os to find our value. Now, this may only
seem like a small savings compared with the 4 I/Os of the BST, but I need
to point out several important things.

First, with the BST, we only surmised that it might take 4 I/Os. It’s possible
that the data of the BST might be structured in a way that might take more
I/Os. With our example B-tree, though, we guarantee that we can find any
value in 3 I/Os.

Second, note that we’ve not filled the leaf nodes to capacity. We simply
took the same 50 values from the BST and used them to populate a B-tree.
This B-tree, though, has the capacity to store up to 124 values. (That’s 4
values at the root level, 20 values at the second level, and 100 values at the
bottom level.) And even with 124 values, we still guarantee that we can find
any value with 3 I/Os. The BST, on the other hand, could certainly take
many additional I/Os if it held 124 values.

Third, I’ve used a B-tree with a node maximum capacity of 4 only because
otherwise my diagram would be too large to fit on the page. In practice, B-
trees often have a node maximum capacity of 1,000. This means that such a
B-tree could fit one billion values on 3 levels. (1,000 * 1,000, * 1,000 = 1
billion.) And that means that we still only need 3 I/Os to find a value in
such a tree!

Why B-Trees Work
Recall that the general approach to optimizing external-memory algorithms
is to pack a block with useful data. Now, when it comes to B-trees, each
block contains a single node. For example, if our B-tree’s nodes each

contain 1,000 values, these 1,000 values are all useful because they
guarantee that the node’s children values will be divided into 1,001
subsections.

Because we will only select one of those subsections, our search space has
now become about one 1,000th of its original size. So, if the entire tree has
one billion values, after our first I/O, we now only have one million values
to search from. And after we perform our second I/O and load our next
node, we use that node’s values to split the remaining search space into
1,001 subsections, each of which has 1,000 values. So, after two I/Os,
we’ve reduced our total search space down to 1,000 values.

This is the same general technique we used with Optimized Search. That is,
both Optimized Search and B-trees pack a block with values interspersed
across the whole data set, and these values split the data set into many small
subsections. Each subsection, once accessed, divides the remaining search
space into even smaller subsections, and so on.

B-Tree Efficiency
Because searching a B-tree is so similar to Optimized Search, the way we
describe the time complexity for both algorithms is the same.

When we search a B-tree that has a node maximum capacity of 1,000, we
end up performing log1,001 N I/Os. That is, each I/O divides the search
space by 1,001. We keep doing this until we find the one singular value
we’re looking for. Similarly, if the node maximum capacity is 4, we
perform log5 N I/Os.

Essentially, the logarithm base is determined by the node maximum
capacity, which is also equal to the computer’s block size. As with
Optimized Search, the logarithm base is the block size plus 1. In other
words, we perform logB+1 N I/Os.

This is potentially way faster than searching a BST, where in a worst-case
scenario, each I/O only includes one useful value. This means that each I/O
moves us one child down the BST, which in turn reduces the remaining
search space by half. This would be described as O(log2 N) I/Os.

As to how much faster B-trees are than BSTs depends on the block size.
Even if a B-tree has a block size of 2, its speed of log3 N would still be
considerably faster than a BST’s speed of log2 N. And as a B-tree’s block
size increases, its search speed becomes faster and faster, leaving BSTs in
the dust.

Again, I’ll note that in terms of pure Big O Notation, we drop the base of
the algorithm, so B-tree search and BST search are technically both O(log
N). However, this is another example of where Big O Notation is limited in
helping us conceptualize the true difference between two competing
algorithms.

B-Trees In Main Memory
We’ve seen how B-trees surpass BST speeds when it comes to external
memory. But let’s say that our data is small enough to fit inside main
memory. Might we still want to reach for B-trees instead of BSTs? Let’s do
a quick analysis. For argument’s sake, let’s assume we’re dealing with trees
that are perfectly balanced.

Here are three in-memory data structures that all hold the numbers 1
through 9 in order. We have an ordered array, a BST, and a B-tree:

Say that we’re searching for the value 4. With each data structure, we’d
perform some type of binary search. Let’s walk through the steps
simultaneously with all three data structures.

Step 1: With the ordered array, we perform classic binary search. This
means we access the centermost value, which is the 5.

Likewise, in the BST, we access the root first, which is also the 5.

In the B-tree, we begin with the centermost value of the root node, which—
you guessed it—is the 5.

Step 2: Because the 4 we’re looking for is less than 5, we must turn toward
the left. With the array, we pick one of the center items in the left half of the
array—say, the 3.

In the BST, we access the 5’s left child, which is the 3.

With the B-tree, we perform binary search on the root node, turning toward
the left half of the node. In this case, the only item to the 5’s left is the 3.

Step 3: Because 4 is greater than 3, we must now look to the right of the 3
(but still left of the 5). In the ordered array, we find our 4 at this point.

Similarly, in the BST, we turn to the 3’s right child, which is the 4.

And with the B-tree, because there are no more values to choose from in the
root node, we follow the pointer between the 3 and the 5. This leads, of
course, to the 4.

It turns out that the search took the same number of steps with all three data
structures. But let me remind you why we’d choose one data structure over

the other, starting by comparing the ordered array with the BST.

While both data structures offer log2 N search, a BST also offers log2 N
insertion and deletion. An array, on the other hand, can take as much as
O(N) time for insertion. That is, if we insert or delete the left-most value of
the array, we have to shift the remaining values of the array to either the
right or the left.

If you don’t need fast insertions or deletions, though, an ordered array is
simpler and therefore easier to implement. But if you do need insertions and
deletions, a BST is faster overall than an ordered array.

Now, a B-tree is kind of a hybrid between the ordered array and the BST.
It’s like a BST in that it’s a tree, but like an array in that it can hold multiple
values in each node. (With this perspective, we can look at an ordered array
as one giant node.)

So, a B-tree isn’t a great choice for in-memory algorithms, because it has
drawbacks similar to the ordered array. That is, a B-tree will be slower than
a BST when it comes to insertion and deletion. This is because a B-tree
node holds multiple values like an array. So, if we insert a new left-most
value into a B-tree node, we have to shift the remaining values to the right.
Similarly, if we delete the left-most value, we’d have to then shift the
remaining values to the left.

At the same time, if we don’t need our data structure to implement insertion
and deletion, we may as well use an ordered array instead of a complicated
B-tree.

So, when it comes to in-memory data structures, the B-tree usually isn’t
your friend. But when it comes to external memory, the B-tree is a reliable
pal.

Implementing B-Trees
There are numerous ways to implement a B-tree. Here, I’ve chosen a simple
approach that will allow us to focus on the big picture of how B-trees work
while avoiding getting into the weeds of optimizations and other hacks.

Let’s begin by implementing a B-tree node. To mimic real life, I’ll create
nodes that will force the computer to perform an I/O to access the node.
Specifically, I’m going to store each node in a separate file.

Our example node file is called root.csv. On the right side, you’ll see a visual
of the node we’re representing with this file. On the left side, you’ll see the
file itself:

There are many ways I could have chosen to store the data in the file, but
this was my arbitrary choice.

Each file stores a node’s data using comma-separated values plus newlines.
Accordingly, I’ve called the file extension .csv, which is a common
convention for such files.

On the first line of the file, we store the filename of the node’s parent. In
this example, the file represents the root node, so it doesn’t have a parent,
and that’s why the word None appears in the first line. The second line
stores the node’s values, and the third line stores the filenames of the node’s
children.

Here is a complete set of files representing an entire B-tree. To make the
visual clearer, in the root.csv file, I added spacing around the values 5, 20,
and 42, but in reality, those extra spaces will not exist:

Because each node is stored in a file, I’m not going to bother writing code
to represent a node. All the information we need is already stored in the file
itself!

Code Implementation: B-Tree Search
Let’s continue our B-tree implementation by creating the search
functionality. There’s a fair bit of code here, but I’ll break it down:

 import os

 class BTree:

 def __init__ (self, root=None):

 self.root = root

 self.max_node_size = 4

 def search (self, search_value, node=None):

 node_file = node or self.root

 node_data = self.read_node_file(node_file)

 values = node_data.get('values')

 children = node_data.get('children')

 index = 0

 while index < len(values):

 current_value = values[index]

 if current_value == search_value:

 return [True, node_file, index]

 if search_value < current_value:

 if children:

 child_to_follow = children[index]

 break

 else :

 return [False, node_file, index]

 index += 1

 # if search_value is greater than all values:

 if search_value > current_value:

 if children:

 child_to_follow = children[len(children) - 1]

 else :

 return [False, node_file, index]

 return self.search(search_value, child_to_follow)

 def read_node_file (self, node_file):

 with open(node_file, 'r') as reader:

 parent = reader.readline().rstrip('\n')

 values = reader.readline().rstrip(',\n').split(',')

 values = list(map(lambda x: int(x), values))

 children = reader.readline().rstrip(',\n').split(',')

 if children[0] == '' :

 children = None

 return { 'parent' : parent, 'values' : values, 'children' : children}

Note that at the top of the file, we import the os Python module. We won’t
be using it for our search method, but we’ll need it when we implement B-
tree insertion later.

We kick off our BTree class like this:

 class BTree:

 def __init__ (self, root=None):

 self.root = root

The only class variable we keep track of is the file representing the root of
the tree. When we create a brand-new empty tree, this will be None since we
won’t create the file until we begin adding actual data to the tree. But let’s
assume that when we call the search method, our tree already consists of
multiple files.

Our search method begins as follows:

 def search (self, search_value, node=None):

 node_file = node or self.root

 node_data = self.read_node_file(node_file)

 values = node_data.get('values')

 children = node_data.get('children')

The search method expects a search_value and a node, which will be a string
representing the filename of one of the tree’s nodes. The search will begin
from that node.

The method begins by creating a variable called node_file which, at the
beginning of a search, will point to the tree’s root. Later, we’ll recursively
call the search method on children nodes, in which case the node_file will
point to whichever child node we’re searching next.

We then call a helper method called read_node_file, which reads the node_file

and retrieves all of its data and stores it in the node_data variable. The data is
stored as a hash table and contains the keys values and children. (It also

contains parent, but we’re not going to use that right now.) We’ll analyze the
read_node_file method soon, but for now, let’s continue to plow forward.

The next section is a loop that compares our search_value to each of the
values in the node:

 index = 0

 while index < len(values):

 current_value = values[index]

 if current_value == search_value:

 return [True, node_file, index]

We create an index variable which starts at 0, and use this variable to
retrieve each value of the node using values[index]. As we iterate, each
subsequent value of the node becomes the current_value.

If current_value == search_value, meaning that we found our search_value in the
node, we happily return the information regarding our find. I’ve chosen to
return an array containing three values. The first contains True to indicate
that the search_value is contained in the tree. (We return False if the
search_value is not there.) Additionally, we return the node_file where the
search_value can be found and the index pointing to the exact spot within the
node where the search_value is located. Depending on what you’re using a B-
tree for, you may want to return other information.

If the current node does not contain the search_value, we continue our loop:

 if search_value < current_value:

 if children:

 child_to_follow = children[index]

 break

 else :

 return [False, node_file, index]

 index += 1

As we compare the search_value to each value in the node (the current_value),
we check to see if the search_value is less than the current_value. If it is, and
the current node has children, we want to follow the child pointer that is
found immediately to the “left” of the current_value. This ends up being
children[index]. That is, if we’re up to, for example, the third value in the
node, the third child in the node will be that value’s “left” child. We store
the child’s filename in a variable called child_to_follow. (At the end of our
method, we’ll recursively call the search method on that child.) We also
terminate the loop early at this point since we’ve already found the child
we’re looking for.

If, however, this node does not contain children, which is the case for leaf
nodes, it must mean that the search_value is not present in the tree.
Accordingly, we return an array whose first value is False to indicate this.
Additionally, we return the node_file and index to represent the spot where
the search_value should go if it were to exist. This information will be useful
when we insert a new value into the B-tree.

Finally, we increment index and start the next round of the loop, which will
continue until the index moves beyond all the values we have in the current
node.

The next bit of code occurs when we reach the end of the current node
without finding the search_value:

 if search_value > current_value:

 if children:

 child_to_follow = children[len(children) - 1]

 else :

 return [False, node_file, index]

We check whether the search_value is greater than the current_value. Because
this code occurs after the loop has been terminated, the search_value being

greater than the current_value can only happen if the search_value is greater
than all the values in the array.

Because the search_value is greater than all the values in the current node, we
now have two possible paths. If the current node has no children, this means
that the search_value is simply not present in the tree, so we include False in
the array that we return.

But if the final value in the current node has a “right” child pointer, the
corresponding child is the node we need to traverse next, so we assign that
node to the child_to_follow variable. Again, the right-most child of the current
node will contain values that are greater than the current node’s right-most
value. So, if the current node’s final value is 56, and we’re searching for a
73, we need to move on to the current node’s right-most child.

Finally, our method concludes with the following line:

 return self.search(search_value, child_to_follow)

That is, we recursively call this search method on whichever child node we
have chosen to follow next.

You may notice that I’ve chosen to perform a linear search on each node.
That is, we use the while loop to sequentially compare the search_value with
each value of the current node. We could, alternatively, have performed a
binary search on each node, which would be a faster approach. I chose the
linear search approach to keep our code simpler. In any case, don’t forget
the main idea I’ve been emphasizing throughout this chapter: when dealing
with external memory, our primary focus should be on the number of I/Os
that occur and not on the in-memory steps. Although performing binary
search on the current node will reduce in-memory steps, it will not reduce
the number of I/Os. I’ve aimed for simplicity instead.

B-Tree Insertion
Like red-black trees and randomized treaps, B-trees are self-balancing.
However, B-trees perform a different kind of self-balancing, as you’ll now
see.

In the following example, we’re going to work with a B-tree whose nodes
hold a maximum of 4 values. We’ll assume that our B-tree is currently
empty, so we’ll start by inserting integers into the tree.

Step 1: Let’s insert a 20:

Step 2: Next, we’ll insert a 5. Because B-trees always hold their values in
order, we’ll need to move the 20 one slot to the right to make room for the
5. Here’s what this looks like when we complete this:

Steps 3 and 4: We’ll add the values 68 and 103 to the tree:

Now the party begins. Say that we want to insert a 150. It turns out that our
node is already full, so here’s what we’ll do. I’ll describe the algorithm first,
and then show it visually so you can understand what I’m talking about.

A. Add the 150 to the current node temporarily, despite the fact that there
will be too many values for the node to hold. (A node can hold just 4
values, and now there are 5.)

B. Grab the median value and remove it from the current node. The median
value is the one in the center. For our example of 5, 20, 68, 103, and 150,
the median value is 68.

C. Split the current node into two nodes, each of which contains half of the
remaining elements.

D. Move the median value into the parent node. If no parent node exists,
create a brand-new node to house the median value. This new node will
now be set as the parent to the two “split” nodes we created in the previous
step.

Let’s see now how this all plays out.

Step 5: Add the 150:

Step 6: Our node is now overstuffed, so we remove the median value (68)
from the node, and split the current node into two:

Finally, we create a new node to house the median element and set it as the
parent of the split nodes:

Note that the node with the 68 is the new root of our tree.

It can be said that a B-tree grows upward, as our original node was split into
two and created a brand-new parent. This will become even more apparent
as we continue with our walkthrough, so let’s move on.

Now that we have a parent with children, it’s time to introduce an important
rule about B-tree insertion: we always begin insertion by inserting the new
value into a leaf node. The new value may at some point work its way up
the tree, but it always begins its life in a leaf node. Let’s see how this plays
out in the next steps.

Steps 7 and 8: Let’s insert a 171 and 200. In theory, we could place them
into the root node. But as you’ve just learned, we only insert into leaf
nodes. So, we have to search the tree to find in which leaf node they belong.
In our case, they belong in the right child:

Step 9: Next, we’d like to insert 258, which is a fine number indeed.
However, there’s no room for it in the right child, as shown in the figure.
This means it’s time to split!

We split the right child into two nodes while grabbing the median value, the
171. In our previous split, we created a brand-new node for the median

value. Now, however, because the 171 can fit nicely into the root node, we
place it there.

Let’s keep going. Until I say when, the following steps will repeat the same
algorithm we’ve followed until now.

Steps 10 and 11: We’ll insert the integers 46 and 52. Remember that we
always insert into a leaf node:

Step 12: Next, we’ll insert a 1. It belongs in the left-most child, but it
doesn’t fit. That means we need to split:

As you can see, the median value of 20 moves up to the root node, shoving
the 68 and 171 over to the right to make room.

Steps 13 and 14: Insert a 155 and 161:

Step 15: We insert a 90, causing a split:

Steps 16 and 17: Insert a 300 and 323:

Okay, my friends, it’s time. We’re up to the grand finale. (I recommend
listening to the climax of Tchaikovsky’s 1812 Overture while reading the
next steps.)

Step 18: We ever so innocently insert a 350, unwittingly setting off a chain
reaction.

The 350 belongs in the right-most child, but there’s no room. So, we split
the child, and grab the median, 300. Now, we try to insert the 300 into the

root node:

But there’s no room! Can you guess what happens next?

Well, I’ll tell you. We split the root node in two, and grab its median, the
150. Because the root node has no parent, we create a brand-new root node
that houses the 150 as shown in the figure.

In other words, whenever we split a node, we do so recursively. That is, we
keep splitting nodes up the tree until we have no more nodes that are
overstuffed.

I mentioned earlier that a B-tree grows upward, and this last insertion gives
you a sense of that.

Well, we did it.

The B-Tree Insertion Algorithm

Let’s recap the B-Tree insertion algorithm:

1. If the tree is empty, we create a node to house the inserted value.

2. We search the tree for the correct leaf node to insert the new value, and
attempt to insert the value there.

3. If, after inserting the new value, the leaf node has too many values, we
recursively both split the nodes and move the median up the tree. The
specific details of this are outlined in Steps 4–6.

4. Remove the median value and split the leaf node into two nodes.

5. If the leaf node doesn’t have a parent, we create a new node to house
the median value. If the leaf node does have a parent, we insert the
median value into the proper place within the parent.

6. If the parent now has too many values, this is where the recursion
kicks in, and repeats Steps 4–6 on overstuffed nodes until there are no
more nodes that have too many values.

Code Implementation: B-Tree Insertion
I’ll admit that the code for B-Tree insertion isn’t short. Don’t feel guilty if
you want to skip it. It’s there for those who are interested in the nitty-gritty
details.

If you’re still here, I now present to you the insertion code in all its glory,
after which I’ll break it down:

 def insert (self, value):

 # if tree is empty:

 if not self.root:

 self.create_root(value)

 return

 search_result = self.search(value)

 # if value is already in tree:

 if search_result[0]:

 return

 node_file = search_result[1]

 self.insert_into_node(node_file, value)

 def insert_into_node (self, node_file, value):

 node_data = self.read_node_file(node_file)

 values = node_data.get('values')

 children = node_data.get('children')

 parent = node_data.get('parent')

 values.append(value)

 values.sort()

 if len(values) > self.max_node_size:

 self.split_node(node_file, parent, values, children)

 else :

 self.write_to_node_file(node_file, parent, values, children)

 def split_node (self, node_file, parent, values, children=None):

 os.remove(node_file)

 median_index = self.max_node_size // 2

 left_node_filename = str(values[0]) + '.csv'

 right_node_filename = str(values[median_index + 1]) + '.csv'

 if parent == 'None' :

 parent_node_filename = str(values[median_index]) + '.csv'

 else :

 parent_node_filename = parent

 # Split the current node by creating two new nodes

 # (a left node and right node):

 if children:

 left_children = children[:median_index + 1]

 right_children = children[median_index + 1:]

 else :

 left_children = None

 right_children = None

 self.write_to_node_file(left_node_filename, parent_node_filename,

 values[:median_index], left_children)

 self.write_to_node_file(right_node_filename, parent_node_filename,

 values[median_index + 1:], right_children)

 if parent == 'None' :

 new_parent = self.write_to_node_file(parent_node_filename,

 'None' , [values[median_index]],

 [left_node_filename, right_node_filename])

 self.root = new_parent

 else : # if current node has a parent:

 # We will soon split the current node into two new nodes, so we

 # have to add these nodes to the list of the parent's children:

 parent_data = self.read_node_file(parent_node_filename)

 index_of_node_file = parent_data.get('children').index(node_file)

 updated_children = parent_data.get('children')[:index_of_node_file]
+ \

 [left_node_filename, right_node_filename] + \

 parent_data.get('children')[index_of_node_file + 1:]

 self.write_to_node_file(parent_node_filename,

 parent_data.get('parent'),

 parent_data.get('values'),

 updated_children)

 # Insert the center value into the parent node:

 self.insert_into_node(parent_node_filename, values[median_index])

 # Update the left and right nodes' children to reflect their new
parents:

 if left_children:

 for child in left_children:

 child_data = self.read_node_file(child)

 self.write_to_node_file(child, left_node_filename,

 child_data.get('values'), child_data.get('children'))

 if right_children:

 for child in right_children:

 child_data = self.read_node_file(child)

 self.write_to_node_file(child, right_node_filename,

 child_data.get('values'), child_data.get('children'))

 def write_to_node_file (self, node_file, parent, values, children=None):

 values_string = ''

 for value in values:

 values_string += str(value) + ','

 if children:

 children_string = ''

 for child in children:

 children_string += str(child) + ','

 with open(node_file, 'w') as writer:

 writer.write(parent + '\n')

 writer.write(values_string)

 if children:

 writer.write('\n' + children_string)

 return node_file

 def create_root (self, value):

 filename = 'root.csv'

 with open(filename, 'w') as writer:

 writer.write('None\n')

 writer.write(str(value) + ',')

 self.root = filename

Let’s take it from the top, starting with the insert method. It accepts a value
parameter, which is the value we’re going to insert into our tree:

 def insert (self, value):

 if not self.root:

 self.create_root(value)

 return

First, if the tree is entirely empty and doesn’t have any nodes yet, we create
a root that will house the value we’re inserting. To accomplish this, we rely
on the helper method create_root, which you can find at the end of the code
listing.

Here’s the remainder of the insert method:

 search_result = self.search(value)

 if search_result[0]:

 return

 node_file = search_result[1]

 self.insert_into_node(node_file, value)

We call the search method from earlier in this chapter to find the value in the
tree. Whether the value is in the tree or not, we get back an array with some
important pieces of information. We store this array in a variable called
search_result.

If we find that the first item in the search_result array is truthy, this means
that the value we’re trying to insert is already in the tree. If this is the case,
we simply return without doing anything else since there’s nothing else we
need to do. B-trees generally do not accept duplicate values.

However, if the value is not in the tree, the first item within search_result will
be None. If this is the case, the second item of search_result will be the
filename of the leaf node where the value should be inserted.

At this point, we call another method, insert_into_node, that places the value
into this leaf node. This other method is essentially a continuation of the
insert method, but I’ve moved the remaining logic into this separate method
since we’ll need to call on that same logic again in another context.

Let’s dive into that insert_into_node method now. Here’s the first chunk:

 def insert_into_node (self, node_file, value):

 node_data = self.read_node_file(node_file)

 values = node_data.get('values')

 children = node_data.get('children')

 parent = node_data.get('parent')

The insert_into_node method accepts the arguments node_file and value for the
purpose of inserting the value into the node_file.

First, we call the helper method read_node_file, which reads the node_file and
pulls out the node’s values, children, and parent.

The code continues with:

 values.append(value)

 values.sort()

Here, we insert the value into the array of values that we pulled from the
node. We then sort the values array to make sure that the new value ends up
in the right spot.

At this point, our values array contains the modified node data, which now
includes our inserted value. But we haven’t yet modified the node_file itself.
Before doing so, though, we need to first see if the current node is
overstuffed. Hence, the next bit of code:

 if len(values) > self.max_node_size:

 self.split_node(node_file, parent, values, children)

 else :

 self.write_to_node_file(node_file, parent, values, children)

This conditional statement checks whether the current node has too many
values. Let’s first skip to the else clause, which occurs when we do not have
too many values. In this simpler case, we call the write_to_node_file helper
method, which overwrites the node_file’s values with the data from our new
list of values.

If you take a quick glance at the write_to_node_file method, you’ll see that it
accepts all the details of a node, including its parent and children pointers.
Here, though, we’re passing in the parent and children that the node already
has. The only thing we’re overwriting in this context is the new list of
values.

Now, let’s go back to the first clause of the previous conditional statement.
It handles a case where the node is now overstuffed. In this case, we call the
split_node method, which we’ll explore next.

I’ll admit that the split_node method is a doozy, but I’ll walk through it
gently.

The split_node method signature goes like this:

 def split_node (self, node_file, parent, values, children=None):

The method accepts a node_file representing the node we’ll be splitting.
Additionally, the method accepts the parent, values, and children of the node
we’ll be splitting.

In theory, once we are passing in the node_file, we shouldn’t have to also
pass in the parent, values, and children because that data can be read from the
node_file itself. However, since at the time of calling split_node we already
have that data handy, we may as well pass that data along and thereby avoid
performing an extra I/O.

The split_node method kicks things off with the following line:

 os.remove(node_file)

Let me explain. Our approach to splitting a node will be to create two
brand-new node files and then delete the original node file. And so, this line
uses Python’s operating system module, called os, to delete the original
node_file.

The next snippet creates filenames for the two new node files we’ll be
creating:

 median_index = self.max_node_size // 2

 left_node_filename = str(values[0]) + '.csv'

 right_node_filename = str(values[median_index + 1]) + '.csv'

We split our node by creating a new “left” node and a new “right” node,
each of which will contain half the contents of the original node. When
choosing filenames for these new nodes, though, we need to be sure that we
aren’t using a filename that already exists, since otherwise we’ll
accidentally overwrite an existing node.

There are several ways we can go about this, but because this B-tree is
designed to hold integers, I’ve decided to name the files after one of the
integers within the node. Since we can be sure that a particular value will
not exist more than once within the tree, we can also be sure that we’re not
creating a filename for one node that already belongs to another node.

To do all this, the previous snippet first finds the median_index, which
represents the index in values that begins the second half of the array. The
left_node_filename is named after the first integer in values, while the
right_node_filename is named after the item at median_index. Again, this is the
first item in the second half of the array.

Next, we decide what node file will serve as the parent for our left and right
nodes:

 if parent == 'None' :

 parent_node_filename = str(values[median_index]) + '.csv'

 else :

 parent_node_filename = parent

That is, if the node we’re splitting doesn’t already have a parent, this means
we have to create a brand-new node file to be the parent. (This will also
become the new root of the tree.) We name the parent node file after the
median value, which is going to live inside this node. If the node we’re
splitting does have a parent, that existing parent will be the parent for our
new left and right nodes.

In the snippet that follows, we deal with taking all the children pointers of
the node we’re splitting and divvying them up between the new left and

right nodes. This is necessary only for nonleaf nodes, which are otherwise
known as internal nodes. Internal nodes, by definition, contain children, so
we need to split them up:

 if children:

 left_children = children[:median_index + 1]

 right_children = children[median_index + 1:]

 else :

 left_children = None

 right_children = None

If the node is an internal node, we split up the children equally, using the
median_index as the halfway point. If the node doesn’t have children, which
is the case for leaf nodes, there are no children to split up.

The following code creates the left and right node files and fills them with
the appropriate parent, values, and children pointers:

 self.write_to_node_file(left_node_filename, parent_node_filename,

 values[:median_index], left_children)

 self.write_to_node_file(right_node_filename, parent_node_filename,

 values[median_index + 1:], right_children)

Okay, we’re making progress! We split up most of the current node’s values
into a left and right node, but there’s still a median value that needs to be
moved further up the tree.

The next snippet begins to deal with this:

 if parent == 'None' :

 new_parent = self.write_to_node_file(parent_node_filename,

 'None' , [values[median_index]],

 [left_node_filename, right_node_filename])

In this code, we state that if the split nodes don’t have a parent, then we
have to create a brand-new node. This new node will house the median
value and become the parent of the split nodes. Additionally, this new node
becomes the root of the tree.

However, if the split nodes do have a parent, we insert the median value
into that parent. The next snippet handles this. But because the upcoming
snippet is somewhat involved, let me first describe the high-level strategy
here.

Wait—are you still here? You’re awesome!

As I’ve said, we will insert the median value into the parent node. However,
we also need to tell the parent node that it has two new children, namely,
the recently created left and right nodes. On top of that, another thing we
need to do to the parent is remove the pointer to the child node we deleted.

This is a somewhat delicate surgery. For example, say we have the
following B-tree:

Note how the middle child pointer points to 63.txt. If we now insert a 134,
that 63.txt node will split:

We insert the median value (92) into the parent, but also need to create two
new child pointers. Now, just as the 63.txt child pointer was in between 3.txt
and 160.txt, we have to make sure that the new children pointers are also in
between 3.txt and 160.txt.

The following code executes this strategy:

 else :

 parent_data = self.read_node_file(parent_node_filename)

 index_of_node_file = parent_data.get('children').index(node_file)

 updated_children = parent_data.get('children')[:index_of_node_file] + \

 [left_node_filename, right_node_filename] + \

 parent_data.get('children')[index_of_node_file + 1:]

 self.write_to_node_file(parent_node_filename,

 parent_data.get('parent'),

 parent_data.get('values'),

 updated_children)

We begin by reading the data from the parent node file. Then, we look at
the parent node file’s children and locate the precise index where it
references the node we just split. Since we are deleting that node and
replacing it with a left and right node, we need to update the parent node
file accordingly to reflect this. That is, in the precise spot in the file where it
references the split node’s file, we remove the split node’s filename and
insert the filenames of the left and right nodes.

We accomplish this by setting an updated_children array. Here’s what we do
to create this variable:

1. We first include all the parent’s children filenames up until, but not
including, the filename of the current node.

2. We then add the filenames of the left and right nodes we’ve recently
created.

3. Finally, we add all the remaining children filenames. These are the
filenames that were to the right of the filename of the current node.

At the end of the day, the updated_children array holds the parent’s original
children pointers, except that we replace the pointer to the node we’ve split
with pointers to the left and right nodes. Afterwards, we call the
write_to_node_file method to overwrite the parent’s file.

At this point, the parent node now holds pointers to the correct children.
However, we have not yet inserted the median value into the parent. We do
this next:

 self.insert_into_node(parent_node_filename, values[median_index])

This recursively calls the insert_into_node method (that we walked through
previously) to insert the median value into the parent. It’s recursive because
our current split_node method was itself called by the insert_into_node
method.

Okay, we’re nearing the end of the split_node method. There’s one last major
step, and that’s to deal with splitting an internal node. Whenever we split an
internal node, it’s because we’ve previously split a leaf node, and we’re
trying to insert the leaf node’s median value into an internal node that’s
already full.

Now, here’s the problem. When we first split the leaf node into two new
nodes, we couldn’t tell these two nodes who their parent is. It might be
tempting to simply tell them that their parent is the deleted node’s parent,
but here’s the catch: we’re about to split and delete the parent!

Because of this, we can only tell the children who their parents are after
we’ve done all the splitting and have created nodes that are here to stay. We
do this with the following code:

 if left_children:

 for child in left_children:

 child_data = self.read_node_file(child)

 self.write_to_node_file(child, left_node_filename,

 child_data.get('values'), child_data.get('children'))

 if right_children:

 for child in right_children:

 child_data = self.read_node_file(child)

 self.write_to_node_file(child, right_node_filename,

 child_data.get('values'), child_data.get('children'))

That is, we tell the children of the left node that their parent is the
left_node_filename, and we tell the right node’s children that their parent is
the right_node_filename.

AND. THAT’S. A. WRAP. Whew! We’re done with B-tree insertion.

B-Tree Deletion
B-tree deletion follows yet another clever algorithm. Finding a value in a
leaf node and deleting the value isn’t a big deal itself, but what happens
when we delete a value from an internal node? Let’s take this tree, again,
for an example:

Imagine that we have to delete the 20. We’d end up with a root node that
has one value, but three children, which would completely mess up the B-
tree structure.

Because of this, B-tree deletion does the opposite of what insertion does.
While insertion causes nodes to split in order to grow the tree, deletion
fuses empty (or close to empty) nodes together in order to shrink the tree.

More specifically, when deleting a value causes a node to be less than half
full, that’s when we start fusing nodes together. So if a node’s maximum
capacity is 10 values, fusing will potentially occur when a node ends up
with only 4 values.

I will let you research the specific details of B-tree deletion if you’re
interested, as I need to save room in the book for some other important
concepts.

The Balance of B-Trees
Because B-trees grow (and shrink), they always maintain a kind of balance.
To be specific, all leaf nodes of a B-tree are always on the same level of the
tree. It’s not like one path of the tree can end on the second level while
another path stretches down to the fourth level. Because new values are
only inserted into leaf nodes, and the tree only grows upwards, leaf nodes
cannot possibly end up on different levels of the tree.

Another way to look at this is that if I try to make one branch of the tree
fatter than the others, at some point, I’ll end up failing. This is because if I
make one node too fat, it ends up splitting! And once it splits, all parts of
the tree grow at the same rate, and not only that branch.

Ultimately, the fact that all leaf nodes live on the same level means that all
paths from the root to any leaf node are all the same length. And so, in this
sense, we can say that a B-tree always remains balanced.

That being said, we cannot say that a B-tree is always perfectly efficient. As
with BSTs, inserting values in, say, perfectly ascending order will reduce
the tree’s efficiency to some extent. For example, look at the following B-
tree:

This tree houses all integers from 1 through 8 on two levels efficiently, as
all the nodes are full. Now, when building this tree, I happened to insert the
integers in the sequence of 1-5-3-6-8-4-2-7, and it worked out great.

However, if I build the B-tree by inserting the same integers in perfectly
ascending order, we get this tree:

You can see that this tree uses three levels while the previous tree used only
two. Accordingly, we’re not filling the nodes to capacity.

The reason this happens is that when we insert values in ascending order,
we always insert each new value into the right-most leaf node. And so,
while there are other leaf nodes to the left that have potential room to hold
new values, we nonetheless ignore those leaf nodes and don’t make use of
their full capacity. Instead, we keep inserting into the right-most leaf node,
which keeps causing it to split and grow the tree.

In other words, when inserting ascending values into a B-tree, we
unnecessarily cause the B-tree to grow instead of first filling each node to
capacity.

Ultimately, as with plain old BSTs, a B-tree could also benefit from
randomizing the order in which we insert values.

B-Trees as Database Indexes
Let’s now take a look at how B-trees may be used in the real world.

Many databases are organized as tables of columns and rows. An example
database table is shown that stores data about houses for sale.

Only a small section of the table is shown, but you can see that it includes
data regarding numerous house details, including the address, style, and
asking_price.

Typically, databases use the id column to map each row to its location in
memory. For example, if we ask the computer to find the row where the id
is 7, the computer can do so in one step since it knows the exact memory
address where that row is located. In any case, in this table, the rows are
sorted by the order of the id.

Now, let’s imagine that our table contains 10 million rows. If we were to
ask the database to find a house located in, say, San Diego, it would have to
perform a linear search on up to all 10 million rows to pick out a San Diego

home. The database cannot leverage the id in any way since the id has no
correlation to the house’s city. A San Diego house might belong to any id!

To combat this problem, many databases allow us to create something
known as a database index. Here’s an example of what a database index
looks like conceptually:

This is a kind of mini-table that contains only the city and id columns of
each house, and omits all the other attributes. And most importantly, this
table keeps the rows in alphabetical order by city name.

(For simplicity’s sake, this data only has one home in each city.
Realistically, a single city such as Atlanta will have many homes. As such,
the table would put all the Atlantas next to each other, and our search will
indeed return all those rows.)

Now, if this data structure were an ordered list, and we search for a San
Diego home, we can now perform binary search on the list to find San
Diego in speedy logarithmic time. And once the database finds the San

Diego row in the database index, it sees that the id is 4, and can, in one more
step, retrieve the entire row of data for id 4.

Very often, we have to create multiple database indexes. This database
index only helps us quickly find a home if we search for it by the city name.
But if we plan on also searching for homes by, say, the asking_price, then
we’d have to create a separate database index just for that.

At the same time, we don’t necessarily want to create database indexes for
each and every column of a table, since database indexes involve a trade-
off. That is, they can dramatically increase the speed of search, but they also
can take up a lot of space. If our table contains 10 million rows, for
example, then so too does a database index. This is a balance that database
designers always need to consider.

There’s another ramification of the fact that database indexes can consume
a lot of space, namely, that often the index is too large to fit into main
memory. Now, this isn’t a death knell. We could still store the index as an
ordered list and simply keep it in a file in the filesystem.

However, if we structure our database index as an ordered list, our only
option to search through it would be with external-memory binary search,
which we’ve seen takes log2 N I/Os. We can do much better with B-trees.

You’ve learned that B-trees offer a much faster search, namely, that of
logB+1 N I/Os. It is for this reason that numerous database engines use B-
trees to store database indexes. It allows us to keep a large database index in
the filesystem but still offer a blazing-fast search.

For a visual, how the previous database index may be stored in a B-tree
with nodes that contain a maximum of 3 values is shown.

This B-tree stores both the city and id in each slot, and the keys are arranged
alphabetically by city name. We can search this tree with just logB+1 N I/Os.
Once we find the city we’re looking for, we can then see its associated id.
We then use that id to immediately find the memory location of the entire
row of data corresponding to that home.

While some databases use classical B-trees to hold their database indexes,
other databases use variants of the B-tree, such as the B+ tree, the B* tree,
and others. Feel free to research those and explore all the delicious B-tree
flavors out there.

Wrapping Up
This chapter opened up a whole new world. When dealing with data too
large for main memory, we have to think about our algorithms in a
completely different way. Specifically, instead of measuring speed by
counting steps, we need to count I/Os.

Similarly, when we want to optimize external-memory algorithms, we need
to focus on reducing I/Os. One way to do this is to pack blocks with as
much useful information as we can. We also discovered that B-trees do this
and are a wonderful data structure for storing data in the filesystem. As
such, they’re popular in databases as well as many other applications.

The topic of external-memory algorithms is a broad subject unto itself, and
can easily fill its own book. I won’t be doing that here, but I will devote one
more chapter to the topic.

So, next up, we’ll be discussing external-memory sorting algorithms.
Onward we go!

Exercises
The following exercises provide you with the opportunity to practice with
B-trees and external-memory algorithms. The solutions to these exercises
are found in the section Chapter 7.

1. Let’s say that we have a file in the filesystem that contains one million
unsorted integers, and we want to find the greatest integer. The
computer’s block size is 500, and its RAM can hold a total of 10,000
values. How many I/Os will it take for us to find the greatest integer?

2. Take a look at this B-tree:

What will the B-tree look like after inserting the following values in
this order: 180, 85, 91, 117?

3. Here’s another B-tree:

What will the B-tree look like after inserting the following values in
this order: 30, 40, 50?

4. Say that we have a B-tree containing 100,000 values, and each node
can hold a maximum of 20 values. What is the greatest number of I/Os
it would take to find any value?

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 8

Wrangling Big Data with M/B-Way
Mergesort

The previous chapter introduced the concept of external-memory
algorithms and the unique approach for measuring and optimizing their
time complexity. Most of the discussion revolved around optimizing
external-memory search algorithms. But let’s take this conversation to the
next level and talk about how we might design external-memory sorting
algorithms.

Consider the following scenario:

We want to sort a list of values. However, we have so much data that we
can’t fit all the values in RAM at once. How can we sort them?

In this chapter, you’ll learn the optimal solution for solving this problem.
Along the way, you’ll also learn about a useful in-memory algorithm for
merging many lists simultaneously—a problem commonly known as
merging K sorted lists. And most importantly, you’ll gain further
sophistication in analyzing external-memory algorithms and developing
ways to optimize their speed.

External-Memory Sorting
In Volume 1, Chapter 5, I covered the good ol’ simple sorting algorithm,
Selection Sort. In a nutshell, Selection Sort performs a linear search through
all the values in an array and locates the lowest value. Once you have the
lowest value, you swap it with whatever value is at index 0. In the next
round, you search all the values from index 1 and on, find the lowest one,
and then swap the lowest value with the value at index 1. You then repeat
this process for each subsequent index until you reach the end of the array.
Selection Sort has a speed of O(N2).

But what would this process look like if the list of values is too large to fit
into main memory all at once?

Here’s an example of such a scenario. Suppose that our computer’s block
size is 4 integers. We’d like to sort the following list of integers that
currently lives in the filesystem:

Before proceeding, I recommend that you try to work out an approach for
sorting this data. You can try using a form of Selection Sort or any other
sorting algorithm of your choice. I’ll wait.

Okay, ready? Let’s make an attempt at performing external-memory
Selection Sort, and we’ll count the number of I/Os along the way, as we
discussed back in Count I/Os, Not Steps.

I/O #1: We load the first block into memory. We then do a linear search
within this block to find the lowest value, which happens to be 1:

Note that our RAM technically needs to be able to hold more than 4 values
since we have to hold the block plus a variable that keeps track of the
lowest value. In truth, with Selection Sort we also need to keep track of the
index of the lowest value. Let’s assume that our RAM can hold at least 6
values, even though the block size is 4. This foreshadows an important idea
we’ll look at soon: a computer’s main memory is generally larger than the
block size. But let’s keep things moving.

I/O #2: We load the second block and perform a linear search on it as
shown in the first figure.

This block contains an even lower number than 1—it’s a 0. The 0 is now
our new lowest number.

I/O #3: We load the third and final block as shown in the second figure.

This block’s values are all greater than 0, so 0 remains the lowest value in
the list.

The next step of Selection Sort is to swap the 0 with the value that is at the
beginning of the list, which happens to be the 9. However, this will take two
additional I/Os.

I/O #4: We overwrite the first integer of the list and make it a 0.

This requires an I/O because the act of writing to a file interacts directly
with the filesystem. Remember, the “I” of I/O stands for input, while the
“O” stands for output. There’s no better example of output than writing to a
file. And so, this is a slow operation.

I/O #5: Similarly, we perform another I/O to overwrite the original 0 and
replace it with a 9:

This took us a total of 5 I/Os. But lest you think we’re done, we’ve only
completed the first round of Selection Sort, as only the 0 is now in its
proper place. We still have to sort all the other values!

The next three rounds (to sort the values at indexes 1, 2, and 3) will also
each take 5 I/Os.

Technically, the next four rounds after that can use one fewer I/O since we
don’t need to load the first four values into memory anymore, as they’ll
already be sorted. We’d therefore be able to start the round by loading the
block starting at index 4. As we progress through the rounds, the number of
I/Os will decrease.

Big O of External-Memory Selection Sort
Let’s now try to describe the speed of external-memory Selection Sort using
Big O Notation. We’ll start by analyzing the first round alone.

First, let’s get our variables straight. We’ll use N, as always, to represent the
size of our data. In our example, this is 12 since our list contains 12 values.
We also have the variable B, which represents the computer’s block size. In
our example, this is 4.

Now that our variables are in order, let’s analyze how many I/Os our
external-memory Selection Sort takes as it relates to N.

Because N is 12 and B is 4, we have to load 3 blocks to scan the entire list
once, as 12 divided by 4 is 3. To put this in terms of N and B, we’d say that
we need to perform N/B I/Os to scan the list once.

Now, we also need to perform two final I/Os to swap the values. This
means that the first round takes N/B + 2 I/Os. Because Big O ignores
constants, though, we reduce this to O(N/B) I/Os. However, keep in mind
that this O(N/B) I/Os only describes the time complexity of the first round
of Selection Sort. We still have to factor in all the remaining rounds as well.

Let’s pretend for a moment that each and every round must perform N/B
I/Os to scan the list, just like the first round. Now, with Selection Sort, we
perform as many rounds as there are data elements. It comes out that for

each of the N data elements, we perform N/B I/Os. This comes out to be N
* N/B I/Os, which we can express as N2/B I/Os.

In the previous section, I pointed out that the number of I/Os decreases as
we progress through the rounds. Based on this, we don’t truly perform N2/B
I/Os. Technically, we can subtract a certain number of I/Os. However, I
explained in Volume 1, Chapter 6 that when we have multiple orders of N,
Big O only keeps the highest order. That is, if we have, say, N2+N steps,
we’d simply say that the time complexity is O(N2). So in our case, even if
we have N2/B - 6N I/Os, we’d drop the “- 6N” and remain with just
O(N2/B). In Big O Notation, we’d say that the time complexity of external-
memory Selection Sort is O(N2/B) I/Os.

This is most certainly a slow algorithm, but that shouldn’t come as a
surprise. After all, Selection Sort, even when performed in memory, is a
slow sorting algorithm. As such, we probably don’t want to use Selection
Sort as our external-memory sorting algorithm either.

We’ve seen that there are much faster sorting algorithms out there, like
Mergesort and Quicksort. Perhaps one of those could work well even when
dealing with data in external memory. Let’s try—you guessed it—
Mergesort! And so, Mergesort comes back to haunt us once again.

A First Attempt: Two-Way External Mergesort
Over the course of this chapter, we’ll make a few attempts at designing an
effective Mergesort algorithm for external data. We’ll start with a basic
approach and optimize it for speed as we move along. By building up the
concepts one layer at a time in this way, you’ll have a much stronger
appreciation and grasp of what will be our final algorithm.

Until this point, we’ve been using examples where the computer’s memory
blocks are the same size as RAM itself. In other words, RAM was just large
enough to hold a single block. Indeed, we never cared about the RAM size
in the first place. As long as it was large enough to hold a block, everything
worked out nicely. However, having a computer that can only store one
block in RAM will pose a significant hurdle for external-memory
Mergesort.

In the following example, let’s say that our block size is 4, and that main
memory can only hold one block. Let’s also say that we had to sort the
following list of 8 integers from the filesystem:

Okay, so the first thing we’d do is load our first block into memory:

Once we have some data in memory, we can use internal Mergesort to sort
the data within RAM.

With this data sorted, we can now spend another I/O to write these sorted
values back to the filesystem:

Next, we’ll do the same thing with the second half of the list. That is, we
spend another two I/Os to load the second block and write those sorted
values back to the file. And so, we now have a list whose two halves are
sorted, but the entire list is not yet properly sorted:

This is the perfect setup for Mergesort, as all we need to do is merge these
two halves together.

But here’s the catch. To merge the two halves, we have to be able to access
both halves at the same time. However, each half is contained within one
block, and if RAM can only hold one block at a time, we have no way to
access both halves simultaneously! If our RAM can hold no more than a
single block, we’re kind of stuck.

The good news is that in real life, a computer’s RAM is much larger than
the block size. And so, main memory has the capacity to hold many blocks.

In our example, we can solve everything by increasing our example
computer’s RAM to be able to store up to 8 values. This is equivalent to 2
blocks, which means that we can now proceed with external Mergesort.

To make things fun, let’s change up our scenario so that we’ll be sorting 32
values. For example, here’s a list of the integers from 1 through 32 in
random order:

This list exists on the filesystem, and again, our goal is to sort the list. Let’s
start by loading the first two blocks into memory, which takes two I/Os:

Next up, we can sort each block independently. We can do this with internal
Mergesort:

We then merge the two blocks:

Technically, this merge makes a copy of the original data, so our RAM
might have to contain up to 4 blocks. Alternatively, when we merge the
data, we can insert the data right back into the file instead of storing the
sorted data in RAM.

In any case, we spend another two I/Os writing this sorted sublist back to
disk.

Let’s now skip ahead and say that we did this for the entire list, creating 4
ordered sublists, with each sublist containing 8 elements:

We now want to merge the sublists together to put the entire list in order. So
our next immediate goal is to merge Sublist #1 with Sublist #2.

At first glance, though, it may seem impossible to merge sublists of 8
values if our RAM itself can only hold 8 values. How do we get both

sublists into memory?

Well, this is how. Ready for a trick?

We load the first block of each sublist into memory. We begin by merging
most of the values of the two blocks:

Here, we’ve merged the entire first block with the 11 and 12 from the
second block, but we’ve paused there. This is because we cannot yet merge
the 20 and 22 from the second block, since it’s possible that the remainder
of Sublist #1 still contains values that are less than 20 or 22. In fact, Sublist
#1 contains a 21, and if we merged in the 20 and 22 now, the 21 would
wind up being after the 22, which is just plain wrong.

What we do instead is that as soon as we complete merging values from one
entire block, we load in the next block from the sublist that the completed
block came from. In our example, because we’ve already merged all the
values from one whole block, namely, the 5, 14, 16, and 19, and because
this block came from Sublist #1, we now load the next block from Sublist
#1:

In this image, we load in the second block from Sublist #1, which is the
block containing the values 21, 25, 29, and 32. (I grayed out the 11 and 12
to indicate that they’ve already been merged previously.) We merge the 20
from the second block, the 21 from the first block, and then the 22 from the
second block. At this point, we’ve exhausted the second block. Because this
block came from Sublist #2, we now load in the next block from Sublist #2
and merge all the remaining values from Sublist #1 and Sublist #2:

We’ve now successfully merged Sublists #1 and #2, which is pretty
exciting. But do keep in mind that this only represents half of our original
list, which contains 4 sublists. As such, we then repeat these same steps for

Sublists #3 and #4. Once this is done, we are left with two sorted halves of
our original list, with each half containing 16 elements.

This brings us to the final phase of our algorithm, which is to merge the two
16-element lists together. Indeed, we can accomplish this the same way we
merged the 8-element sublists together, which is to load one block from
each 16-element list into memory and merge those blocks. As soon as we
exhaust one block, we simply load the next block from that list.

It turns out that to execute this external-memory Mergesort algorithm, we
require a RAM that can hold 2 blocks of data at once. Again, this is because
we’re continuously merging 2 sublists and using one block from each
sublist to do so.

Because this algorithm’s modus operandi is to keep merging 2 sublists at
once, some call this algorithm Two-Way External Mergesort.

A Bird’s-Eye View of Two-Way External Mergesort
Let’s visualize Two-Way External Mergesort from a bird’s-eye view:

The top row of this image depicts the initial merges that occur. To merge a
block, we must load it into memory with an I/O, so it takes a total of 8 I/Os
to conduct all the initial merges. (For now, we’re not counting the I/Os of
writing back to disk.)

Each of these merges produced a sublist of 8 elements, which can be seen
on the second row from the top.

This second row shows how we then merged each pair of sublists together
to get larger sublists of 16 elements. This takes another 8 I/Os, since we
must load 8 blocks (of size 4) to load all 32 elements into RAM. This
produces two larger sublists that each contain 16 elements.

The third row indicates that we spend yet another 8 I/Os to merge the two
16-element sublists. This finally produces the sorted list we’ve yearned for.
At the end of the day, it took us a grand total of 24 I/Os of loading data into
main memory.

It turns out that even with our computer’s constraints of having a block size
of 4 and a RAM size of 8, Two-Way External Mergesort is a fine algorithm

indeed. Had we used external-memory Selection Sort on the same 32 data
elements, it would have taken us 256 I/Os!

However, with a little more RAM, we can design even faster versions of
external-memory Mergesort.

M = Main Memory Size
We know that N represents the amount of data we’re dealing with. In the
prior example, N=32, since the list has 32 data elements. And we’ve also
learned that B represents the computer’s block size. In our example, B=4.

Now it’s time to take a look at a new variable that is going to play an
important role in our analysis of external-memory algorithms going
forward: a variable that computer scientists call M. This M variable
represents the size of RAM.

In the previous scenario, we used an example of RAM being able to contain
8 elements. And so, we’d say that M=8.

That’s it; there’s nothing earth-shattering here. It’s just that going forward,
I’m going to talk about M a lot. By digging into M further, you’re going to
level up your ability to analyze external-memory algorithms.

A Second Attempt at External Mergesort
Let’s work with the same scenario of sorting the integers from 1 to 32. In
this scenario, naturally, we’d say that N=32. And let’s also continue using a
computer whose block size is 4. In other words, B=4. But let’s now upgrade
our computer (for just $99!) so that its main memory has a capacity to hold
16 values. Using our new jargon, we’d say that M=16.

With this upgraded RAM, we can achieve external Mergesort using only 16
I/Os via what I’ll call “Second-Attempt Mergesort.” This algorithm will
simply be a bridge between Two-Way External Mergesort and our final
algorithm, so I won’t even try to come up with a better name for it.

Second-Attempt Mergesort will take 16 I/Os to sort 32 values, which is
faster than Two-Way External Mergesort, which took 24 I/Os. Second-
Attempt Mergesort is similar to Two-Way External Mergesort, except that
we can skip an entire set of steps.

In Two-Way External Mergesort, we merged every pair of blocks to create
sublists of size 8. However, since M=16, we can instead kick off our
algorithm by filling up RAM with as many blocks as possible. With M=16
and B=4, this means we can load 4 blocks:

With 16 elements in RAM, we can use internal Mergesort (or any internal
sorting algorithm, for that matter) to internally sort all 16 elements. And so,
after 4 I/Os, we’ve already sorted half of the original list:

After writing this back to disk, we do the same with the second half of the
list as shown in the figure.

From here on, the rest of the algorithm is the same as Two-Way External
Mergesort. That is, we perform another 8 I/Os to merge the list’s two sorted
halves together.

Essentially, what we accomplished here is that we skipped over the initial
steps of merging 2 blocks at a time. There’s no need to merge only 2 blocks

at a time if we can instead fill up RAM with 4 blocks at once and use an
internal-memory algorithm to sort all the blocks’ elements.

Let’s use another bird’s-eye view to visualize this new algorithm. Here,
we’re using a different, but simpler style of showing the data. Each oval
represents a list or sublist of data with a particular size:

The top row shows that the original list is divided into 8 sublists of size 4,
which is equal to our block size. These 8 sublists are divided into two
rectangles that represent main memory, with each rectangle holding 4
sublists. This is because main memory, whose M=16, can hold a maximum
of 4 sublists, which total 16 elements.

Loading these 8 sublists into RAM takes 8 I/Os since the job of an I/O is to
load a single block into memory, and each sublist fits perfectly into one
block. Each time RAM is filled with its maximum capacity of 4 sublists, it
sorts the 4 sublists to create a single sorted sublist of 16 elements, which are
depicted by the second row in the diagram. Note that I’ve labeled these lists

as being M-sized lists since each list indeed has a size that is equal to M.
We’ll talk more about the significance of the term “M-sized lists” soon.

The rest of the algorithm is identical to Two-Way External Mergesort. We
take blocks from the two M-sized sublists and merge them together to
create a final sorted list of size 32. This takes another 8 I/Os in total since
we have to load all the elements again—which take up a total of 8 blocks—
when doing the merging. This final merge produces a fully sorted list of
size 32, which is seen on the bottom row.

In sum, the entire algorithm executes a grand total of 16 I/Os.

Before going on, I’d like to highlight a major takeaway from Second-
Attempt Mergesort. First and foremost, we’ve discovered another general
technique for optimizing external-memory algorithms. In the previous
chapter, we looked at the trick of packing blocks with as much useful info
as possible. Here, we discovered a new trick, which is to fill RAM with as
much data as possible, if we can utilize an internal-memory algorithm to
process that data. In our context, it’s a waste to use an internal-memory
sorting algorithm on only one or two blocks of data at a time. We may as
well fill RAM to the brim, and sort all that data in memory all at once.

Don’t Forget to Eat Your Variables
Let’s now gear up to use Big O Notation to describe the speed of Second-
Attempt Mergesort. Even though we’ll ditch Second-Attempt Mergesort
eventually, this same analysis will be used in computing the Big O of our
final algorithm.

The first thing we need to do is figure out how to describe the number of
I/Os that take place using our variables, N, M, and B.

Recall that in the previous diagram, I highlighted in the second row that we
created sorted sublists of size M. That is, because we filled RAM (whose
size is M) completely before internally sorting the values, we ended up

producing M-sized sorted sublists. In our example, this meant that each
sorted sublist had a size of 16.

With this in mind, we can use our shiny variables to describe how many M-
size sublists we will be creating. In our example, N is 32 (there were 32
values), and M is 16 (our RAM can hold 16 values). Because 32/16=2, we
created 2 sublists of size M.

We can now state this more generally: the first part of Second-Attempt
Mergesort is to create N/M lists of size M. In other words, we used internal
sorting to create a number of M-sized sublists. And how many M-sized
sublists did we create? We created the same number of lists as whatever
N/M computes to.

However, if we change up the scenario so that our initial list has 64 values
(that is, N=64), this is what Second-Attempt Mergesort looks like now:

Once again, we begin by creating N/M sorted sublists of size M. In this
case, this comes out to be 4 sorted sublists of size 16. We then merge each

pair of sublists to create 2 sublists of size 32. Finally, we merge those 2
sublists to create a fully sorted list of 64 values.

Big O of Second-Attempt Mergesort
Okay, we’re almost ready to use Big O Notation to describe Second-
Attempt Mergesort. This is a little more complex than our usual Big O
analysis, but we can get there if we take one step at a time. Just tell yourself
that it will be fun.

(If you’re not having fun, that’s okay; you can skip ahead. The Big O isn’t
critical to understanding the algorithms of this chapter. It just helps us
contrast them all to each other in a quantitative way.)

In our most recent example scenario, we spent 16 I/Os in each phase of the
algorithm. This is because each phase deals with 64 values, and it takes 16
blocks (of size 4) to load these 64 values. And so, each phase took 16 I/Os.
Now, the algorithm underwent 3 phases, yielding a total of 48 I/Os since
16*3=48. It would be reasonable to generalize this for all scenarios and say:

 number of I/Os per phase * number of phases = total number of I/Os

I’ll refer to this equation as our “Grand Formula.” As you can see, we
compute the total number of I/Os by multiplying two factors: the number of
I/Os per phase and the number of phases. Since these factors are the key to
our Grand Formula, I’ll put them in quotes going forward to give them
heightened importance.

So, the next thing we need to figure out is how to use our shiny variables to
describe these “number of I/Os per phase” and the “number of phases.”
Then, we can plug those variables into the Grand Formula.

Calculating the Number of I/Os Per Phase
Let’s start by using our variables to describe the “number of I/Os per
phase.” We know that in the previous example, there were 16 I/Os per

phase. This, again, was because each phase had to process 64 data elements,
and when we divide these 64 values into blocks of size 4, we get 16 blocks.
And as we’ve learned, it takes one I/O to load one block. Refer back to the
image here to make sure this is clear.

As such, we get:

 64 data elements / block size of 4 = 16 I/Os

With our variables, we can generalize this formula with:

 N/B = the number of I/Os per phase

Tada! We’ve successfully used our shiny variables to calculate the “number
of I/Os per phase.” Let’s plug what we have so far into the Grand Formula.

Again, let’s take it from the top. Our Grand Formula to determine the Big O
of Second-Attempt Mergesort was:

 number of I/Os per phase * number of phases = total number of I/Os

Now, we’ve figured out that we can articulate the “number of I/Os per
phase” as N/B. Accordingly, we can plug this into the Grand Formula, and
come out with:

 N/B * number of phases = total number of I/Os

Our next step is to determine how we can use our variables to articulate the
“number of phases.”

Calculating the Number of Phases
Look back again at the diagram here. Note that there are three phases. The
first phase was spent creating the M-sized sublists, and the subsequent
phases each cut the number of sublists in half. To make the following
analysis easier, let’s temporarily ignore the first phase and instead start our
analysis from the second phase on.

The second phase starts with the M-sized sublists. To our great fortune,
we’ve already determined earlier that there are N/M of these sublists.

Now, how many phases will it take to keep halving these N/M sublists until
we get down to one single list? Well, that would be log2 N/M.

With that wrapped up, we can now return to the first phase.

We can treat the first phase as simply an extra phase that we add to log2
N/M. In other words, because the number of phases from the second phase
and onward is log2 N/M, when we add the first phase, we get (log2 N/M) +
1. And because the “+ 1” is a constant, Big O ignores it, so we can
articulate the number of phases as log2 N/M.

Now that we’ve calculated the “number of phases,” we can plug that back
into the Grand Formula.

As of this moment, here’s what the Grand Formula currently looks like:

 N/B * number of phases = total number of I/Os

Since we’ve determined that the “number of phases” is log2 N/M, we’ll
plug that in, leaving us with:

 N/B * log2 N/M = total number of I/Os

We did it! We can finally conclude that in Big O, our Second-Attempt
Mergesort algorithm has the time complexity of O(N/B * log2 N/M). In
truth, Big O Notation drops the log base, but I’ll leave it in because it’ll
allow us to make some important comparisons by the end of the chapter.

Now, I’ll be the first to admit that when I look at the expression O(N/B *
log2 N/M), I have trouble deriving much meaning from it. There are too
many variables flying around. However, having this Big O benchmark will
turn out to be useful when we contrast it with our final algorithm.

An Even Faster External-Memory Mergesort
I guess the heading spoils the surprise, but guess what? There’s a third
algorithm for external-memory Mergesort that is even faster than Second-
Attempt Mergesort. In fact, this third algorithm isn’t just faster; it’s way
faster. And it’s the algorithm the pros use.

Prepare to have your mind blown.

But not yet. You see, we first need to explore a completely different
algorithm. But don’t fret. Although this may seem like another hurdle to
jump over, this algorithm is super cool and worth learning about, even if
you learned nothing else in this chapter.

Merging K Sorted Lists
In this next section, we’re going to temporarily leave the world of external-
memory algorithms and return to some plain old internal-memory
algorithms. Eventually, we’ll tie this back into external-memory Mergesort.
Okay, here goes.

Whenever I’ve discussed merging lists throughout this book, I’ve always
been referring to the idea of merging two lists at once. But let’s say that we
have more than two ordered lists, like three, or four, or seventy-six. How
would we go about merging them? Again, right now I’m just talking about
merging lists in memory. We’re assuming that our RAM can comfortably
accommodate all of our lists at the same time.

At first glance, we can apply the classical merging algorithm to as many
lists as we’d like. For example, say we have four ordered lists:

Just as with merging two lists, we’d set pointers at the beginning of each
list:

We would then compare all the pointers’ values, find the lowest value, and
insert it into what will eventually be the merged list. In this case, the 1 from
the left-most list gets inserted:

Because we inserted a value from the left-most list, we move the pointer
from that list one index to the right.

We then rinse and repeat. So again, we identify the lowest value from all the
pointers. In this case, that would be the 2, so we insert it:

And so on and so forth. We repeat this process until all the lists have been
merged. I’ll refer to this algorithm as “naïve merging.”

While this approach certainly gets the job done, let’s analyze naïve
merging’s time complexity.

In this example, there are a total of 18 values. We spent 18 steps inserting
each value into our final, sorted list. But in addition to insertion, we also
performed comparisons. That is, before inserting any value, we had to look
at 4 different pointer values to find the lowest value—one pointer from each
list.

Now, looking at 4 different pointer values takes 4 steps. And we had to
perform these 4 comparisons before each and every insertion. So, our total
number of comparisons is:

 18 values * 4 pointers = 72 total comparisons

When we add the 18 insertion steps to the 72 comparison steps, we have a
grand total of 90 steps.

I also want to highlight a basic, but important idea: the number of pointers
is the same as the number of lists. This is because we always maintain one

pointer per list.

With this in mind, we can also restate this equation as:

 18 values * 4 lists = 72 total comparisons

Going forward, we’ll talk in terms of the number of lists rather than the
number of pointers; again, these numbers are one and the same.

Big O of Merging Multiple Lists
Let’s now express all of this with Big O Notation.

We can say that N represents the total number of values across all the lists.
In the previous example, N=18.

Now, we’ll need another variable to represent the number of lists we’re
merging. For this, many computer scientists have decided to use K, which
indeed is a nifty letter.

In fact, these same wonderful people also refer to our problem as merging K
sorted lists. That is, instead of merging 2 sorted lists, we are merging K
different sorted lists. In the previous example, K happened to be 4, but we
can also have a scenario where we’re merging 76 sorted lists, in which case
K=76.

With our N and K variables in place, we can now express the total number
of steps of naïve merging:

 (N * K) comparisons +

 N insertions =

 (N * K) + N steps

In Big O, we drop the “+N” since that’s considered a lower order than NK.
And therefore, we’d say that naïve merging has a speed of *O(NK).

Merging K Sorted Lists with Heaps
Now, there’s a second approach we can use to merge K sorted lists. This
approach involves the heap data structure, which I covered back in Volume
1, Chapter 16.

Here’s a quick reminder of the points we need to recall about heaps for the
sake of our discussion here:

1. Insertion into a heap has a speed of log2 N.

2. When we pop (in other words, remove) a value from a heap, we
always get the lowest value from the heap.

3. Like insertion, popping also has a speed of log2 N.

In truth, a heap can arbitrarily be set up as either a min-heap, where
popping from the heap gives us the lowest value, or as a max-heap, where
we get the greatest value. For our purposes here, we’ll use a min-heap,
which is why I mentioned earlier that popping from a heap gives us the
lowest value.

Now, how can we use a heap to merge multiple lists?

Perhaps the most straightforward thing to do is simply insert all the values
from all the lists into the heap. We have N values to insert and each
insertion takes log2 N steps, so completing all the insertions will take N log2
N time.

We can then pop all the values, one at a time, into our final list. Each pop
gives us the lowest value currently in the heap. And so, as we keep popping
values, we are effectively creating a perfectly sorted list. Indeed, this is a
pretty famous algorithm called Heapsort.

Now, each pop takes log2 N steps, and because we do it N times, we get a
total of N log2 N pops.

In sum, we have N log2 N insertions and N log2 N pops. While this is
technically 2(N log2 N) steps, we drop the constant and have a sweet speed
of O(N log2 N). This algorithm doesn’t care about the number of lists (K)
because the same steps would occur no matter how many lists the N values
are divided into.

So, is Heapsort’s O(N log2 N) better than naïve merging, which is O(NK)?
Well, it depends on what K is. Say that N is 50 and K is 10. In this case,
O(N log2 N) comes out to be about 300. That is:

 N * log2 N =

 50 * 6 =

 300

By contrast, the O(NK) naïve merging algorithm would take 500 steps
since:

 N * K =

 50 * 10 =

 500

In this scenario, where N=50 and K=10, the O(N log2 N) Heapsort
algorithm is faster.

However, in an alternative scenario where N is 50 but K is only 5, we’d find
that the O(NK) naïve merging algorithm is faster. In this case, the O(NK)
algorithm will take only 250 steps since:

 N * K =

 50 * 5 =

 250

It emerges that the two algorithms are competitive, and which one is faster
depends on how many lists there are. However, the top-grade approach I’ll
introduce next is faster than either of these algorithms in all cases.

The Top-Grade Way to Merge K Sorted Lists
It turns out there’s a much faster way of merging K sorted lists—faster than
either approach we covered so far. This third algorithm doesn’t have a
special name that I’m aware of; it’s simply the best way to merge K sorted
lists. For the sake of clarity, though, I’ll refer to this new algorithm as “Top-
Grade Merge.”

Now, the interesting thing is that Top-Grade Merge is a kind of hybrid of
our previous two approaches! It uses a heap, but relies on the following
epiphany: we don’t have to throw all the values into the heap at once. The
more the heap contains, the slower it is. All we truly need the heap to
contain at a given time is one value from each list. But don’t worry; this
will all make more sense when we walk through the Top-Grade Merge
algorithm, which we’ll do now.

Here’s how the Top-Grade Merge algorithm works:

Step 1: We start with pointers at the beginning of each list. We also insert
all these values into our heap:

As you’ll see, the heap will never contain more than 4 values. Also note
that in these diagrams, I place the lowest value at the bottom of the heap.

Step 2: Next, we pop from the heap and insert the popped value into what
will be our final sorted list. In this case, it’s the 1 that gets popped:

Step 3: Now, here’s the next major rule of the algorithm: we track down
which list the popped value came from, and move that list’s pointer to the
right. We then place that pointer’s value into the heap:

In this case, the popped value of 1 came from the left-most list, so we move
the left-most list’s pointer to the next index. This happens to be the 5, so we
add the 5 to the heap.

From here on, we rinse and repeat. This means that next, we’d pop the 2
from the heap and insert it into the final list. Because the 2 came from the
second list, we move the second list’s pointer to the right. This points to the

6, which we then insert into the heap. We repeat this entire process until
we’ve exhausted all the values from all the lists.

Here’s the gist of why this algorithm is both effective and fast. It’s similar
to naïve merging, where we compared the lowest value from each list,
picked out the lowest number, and inserted it into the final list. However,
whereas in that approach we had to spend K steps comparing the K pointer
values, in Top-Grade Merge, we rely on the heap to spit out the lowest of
the K values. And the heap can do that much faster than K steps; it can do
so in log2 K time.

Top-Grade Merge is also much faster than Heapsort, in which we simply
threw all N values into the heap at once. When we do that, the heap’s
operations each take O(log2 N) time. But in Top-Grade Merge, our heap
needs only to contain K values at once. And K is smaller than N since the
number of lists will certainly be smaller than the number of total values.

So, the heap’s operations in Top-Grade Merge take log2 K time, which can
be considerably faster than log2 N time. Therefore, Top-Grade Merge is
faster than Heapsort, as the heap in Heapsort takes log2 N time for each of
its operations.

With all this in mind, let’s calculate precisely how many steps take place in
Top-Grade Merge.

Big O of Top-Grade Merge
Let’s do the math. With Top-Grade Merge, we ultimately have to insert N
values into the heap. We’ve also seen that heap insertion for Top-Grade
Merge takes log2 K steps. Because we spend O(log2 K) time inserting each
of the N values into the heap, this amounts to a total of N * log2 K steps.

Now, we do also have to execute another N * log2 K steps in popping the
values from the heap. This gives us a grand total of 2(N * log2 K) steps. But

again, since Big O drops the constant of 2, we reduce this back to O(N log2
K).

And so, Top-Grade Merge has a total time complexity of O(N log2 K).

Comparing the Three Ways to Merge K Sorted Lists
We now have three different algorithms for merging K sorted lists with
three different speeds. To sum it up:

Naïve merging: O(NK)
Heapsort: O(N log2 N)
Top-Grade Merge: O(N log2 K)

We’ve already seen that sometimes naïve merging can be faster than
heapsort, and in other scenarios, heapsort can be faster than naïve merging.
However, Top-Grade Merge is always the fastest of the three. We’ve
touched on the reasons for this a bit ago, but here’s a crystal-clear summary.

When we compare Top-Grade Merge with naïve merging, it’s pretty clear
that Top-Grade Merge is the winner. This is because log2 K is always
smaller than K itself. And so N * log2 K is definitely smaller than N*K.

Similarly, Top-Grade Merge is always faster than Heapsort since N * log2 K
is smaller than N log2 N. This is because K is always smaller than N; the
number of lists will certainly be smaller than the number of total values.

Let’s take a look at how this all plays out in an example scenario.

Say that we have 10,000 values across 10 lists with 1,000 values in each
list. In other words, N=10,000 and K=10. Here’s how many steps each of
the three algorithms would take:

Naïve merging: 100,000 steps
Heapsort: 140,000 steps

Top-Grade Merge: 40,000 steps

As you can see, Top-Grade Merge is the fastest way to merge K sorted lists.

As I stated earlier, the entire discussion of merging K sorted lists has been
in the context of merging data in main memory. However, we can now
apply a similar idea to give a turbo boost to external-memory Mergesort.
Remember that?

Code Implementation: Merge K Sorted Lists
I implemented a Python heap back in Volume 1, Chapter 16. The
implementation here is basically the same, except that now we’re using a
min-heap instead of a max-heap. (For an explanation of the following code,
refer to Volume 1, Chapter 16.) I’ve gone ahead and saved this in a file
called heap.py:

 class Heap:

 def __init__ (self):

 self.data = []

 def root_node (self):

 return self.data[0]

 def last_node (self):

 return self.data[-1]

 def left_child_index (self, index):

 return (index * 2) + 1

 def right_child_index (self, index):

 return (index * 2) + 2

 def parent_index (self, index):

 return (index - 1) // 2

 def not_empty (self):

 return len(self.data) > 0

 def insert (self, value):

 self.data.append(value)

 new_node_index = len(self.data) - 1

 while (new_node_index > 0 and

 (self.data[new_node_index]

 < self.data[self.parent_index(new_node_index)])):

 parent_index = self.parent_index(new_node_index)

 self.data[parent_index], self.data[new_node_index] = \

 self.data[new_node_index], self.data[parent_index]

 new_node_index = parent_index

 def pop (self):

 if len(self.data) == 1:

 value_to_delete = self.data[0]

 self.data = []

 return value_to_delete

 value_to_delete = self.root_node()

 self.data[0] = self.data.pop()

 trickle_node_index = 0

 while self.has_smaller_child(trickle_node_index):

 smaller_child_index = \

 self.find_smaller_child_index(trickle_node_index)

 self.data[trickle_node_index], self.data[smaller_child_index] =
\

 self.data[smaller_child_index],
self.data[trickle_node_index]

 trickle_node_index = smaller_child_index

 return value_to_delete

 def has_smaller_child (self, index):

 return ((self.left_child_index(index) < len(self.data) and

 self.data[self.left_child_index(index)] < self.data[index])

 or

 (self.right_child_index(index) < len(self.data) and

 self.data[self.right_child_index(index)] <

self.data[index]))

 def find_smaller_child_index (self, index):

 if self.right_child_index(index) >= len(self.data):

 return self.left_child_index(index)

 if (self.data[self.right_child_index(index)]

 < self.data[self.left_child_index(index)]):

 return self.right_child_index(index)

 else :

 return self.left_child_index(index)

Armed with this min-heap, we can now implement the Top-Grade Merge
algorithm for merging K sorted lists, as follows:

 import heap as h

 def merge_k_sorted_lists (lists):

 sorted_list = []

 pointers = []

 heap = h.Heap()

 for index, list in enumerate(lists):

 # We always insert into a heap an array that contains a value,

 # and an integer telling us which of the k sorted lists the value

 # came from. This integer is the index of the 'lists' array that

 # was inputted into this method.

 heap.insert([list[0], index])

 pointers.append(1)

 while heap.not_empty():

 popped_item = heap.pop()

 popped_value = popped_item[0]

 sorted_list.append(popped_value)

 # The current_list represents which list the popped value came from:

 current_list = popped_item[1]

 if pointers[current_list] < len(lists[current_list]):

 next_item_from_current_list = \

 lists[current_list][pointers[current_list]]

 heap.insert([next_item_from_current_list, current_list])

 pointers[current_list] += 1

 return sorted_list

Let’s break this method down.

We first import the heap module so we can use it in our code. The
merge_k_sorted_lists method begins like this, accepting an array of arrays
called lists:

 def merge_k_sorted_lists (lists):

 sorted_list = []

 pointers = []

 heap = h.Heap()

The purpose of this method is to take all the arrays within lists and return a
single array containing all the values in ascending order. Here, we call that
single array sorted_list, which starts out empty at the beginning.

We also set a pointers variable. This will keep track of all the pointers to the
different lists. For example, say that we have four lists. Let’s also say that
the first list’s pointer is currently at index 3, the second list’s pointer is
currently at index 5, the third list’s pointer is currently at index 0, and the
fourth list’s pointer is currently at index 2. In this case, the pointers variable
will hold the array [3, 5, 0, 2].

Next, we create a heap, which we keep in a variable aptly named heap.

Our method continues by initiating a loop:

 for index, list in enumerate(lists):

 heap.insert([list[0], index])

 pointers.append(1)

We iterate over all the arrays in lists. In this loop, we insert the first value
from each list (that is, list[0]) into the heap. However, we don’t insert the
value alone. Instead, we wrap the value inside an array that also contains a

second item, namely, the identity of the list that the value came from. The
identity of the list is represented by its index within the lists variable.

So, if we insert [3, 1] into the heap, that means we’ve inserted the value 3,
and indicated that this 3 originated from the second list. Again, the 1
represents the second list because lists contains all the original lists starting
at index 0, so lists[1] is the second list.

Because we’ve already inserted the first value from each list into the heap,
we can start each list’s pointer at 1 (the second index), so for each list we
append a 1 into the pointers array.

Up until now, the method has largely been focused on setting things up. The
remainder of the method represents the primary merging algorithm.

The merging algorithm is powered by a loop that runs as long as the heap
contains anything. The reason for this is that, as I explained earlier, our
merging is complete once the heap has been emptied completely. Here’s the
first part of the loop:

 while heap.not_empty():

 popped_item = heap.pop()

 popped_value = popped_item[0]

 sorted_list.append(popped_value)

We pop the lowest item from the heap and put it in a variable called
popped_item. As I explained earlier, this popped_item is not solely the lowest
item. Rather, it’s an array whose first value is the lowest item and whose
second value is an integer pointing to the list where the lowest item
originally came from.

We then append the popped_value to the sorted_list, which puts the
popped_value in its proper sorted order.

The loop continues as follows:

 current_list = popped_item[1]

 if pointers[current_list] < len(lists[current_list]):

 next_item_from_current_list = lists[current_list]
[pointers[current_list]]

 heap.insert([next_item_from_current_list, current_list])

 pointers[current_list] += 1

We use the integer current_list to point to the original list where the
popped_value came from.

If the current_list’s pointer hasn’t yet reached the end of that list, we grab the
next_item_from_current_list, which is the value that the pointer of the
current_list is pointing to. In other words, we’re grabbing the next item from
the current_list.

We then insert the next_item_from_current_list into the heap. Together with
this value, we also insert the current_list so we can track which list this value
came from. Before concluding our loop, we move the pointer from the
current_list to the next index of that list.

Once the loop is done, we return our sorted_list, which is the completely
merged list.

M/B-Way Mergesort
You’ve seen many useful and interesting things in this chapter, and now
we’re going to put them all together. That’s right—it’s time to learn about
the external-memory Mergesort algorithm of choice. It’s called M/B-Way
Mergesort, and you’ll see soon where this algorithm gets its moniker.

Let’s set the stage. We’re back in a world where our data does not fit in
RAM, so we need an external-memory approach for executing Mergesort.

Say that we have a list of 64 data elements, and that our computer has a
block size of 4 and a RAM size of 16. We’ve seen this scenario before, and
our previous approach, which we called Second-Attempt Mergesort,
worked like this:

We had three phases, each of which performed 16 I/Os. This yielded 48
I/Os in total. However, with M/B-Way Mergesort, we can accomplish
Mergesort in two phases. Each phase will also take 16 I/Os, but because
there are only two phases, we’ll get a total of 32 I/Os.

Here’s how M/B-Way Mergesort works.

The first phase is identical to Second-Attempt Mergesort, in that we begin
by creating 4 M-sized sublists:

However, instead of merging these M-sized lists two by two as we did in
Second-Attempt Mergesort, we’ll now do something different. Ready for it?

The next step is that we use the Top-Grade Merge algorithm to merge all 4
sublists into our final array. Here’s an overview of what this looks like:

With this approach, we got the job done in just two phases! The first phase
spent 16 I/Os loading all the elements and creating the M-sized lists. And
the second phase spent another 16 I/Os moving all the elements into the
heap. So, in two phases and 32 I/Os, M/B-Way Mergesort shaved off a lot
of time.

With that overview taken care of, let’s dig a bit further into the details.

In our context of external-memory sorting, we have to tweak Top-Grade
Merge slightly. When I presented Top-Grade Merge earlier, it was as an
internal-memory algorithm. In our scenario, though, there’s a slight hurdle.

That is, we’re trying to use Top-Grade Merge to merge 4 lists that each
contain 16 values, which means that we’re merging a total of 64 values at
once. But if M=16, this means that RAM itself can only hold a max of 16
values at once. So, how can we merge 64 values at the same time?

The answer, though, is that we don’t need to have all 64 values in RAM at
once to perform Top-Grade Merge. Instead, we can use a technique that
may be familiar to you now—we simply load one block from each list into
RAM at once:

Here, we start by loading one block (of size 4) from each of the 16-element
M-sized sublists into main memory. We then perform internal Top-Grade
Merge on those four blocks, which are essentially four lists. As we exhaust
each block, we pull the next block from its associated 16-element sublist.
Note that when this diagram shows the four blocks in main memory, it’s a
snapshot in time. Eventually, all 64 elements from our original list have to
pass through main memory. However, at a given moment in time, there are
up to 4 blocks (totaling 16 elements) in main memory.

Just to be super clear: when the diagram shows the 4 blocks of 16 values
being inserted into the heap, we’re not inserting all 16 values at once.
Again, we’re performing Top-Grade Merge, which means that we’re only
inserting one value from each block into the heap, and the heap will hold no
more than 4 values at once. The diagram shows the process from a high
level.

Now, the heap has to live in main memory, too. In truth, we need our RAM
to be large enough to accommodate the blocks and the heap. The diagram
doesn’t depict the fact that the heap also lives in main memory, but keep in
mind that this will need to be the case.

In short, we merge K sorted lists by merging K sorted blocks. Once we’ve
exhausted a particular block, we load the next block from the list where that
block came from. At the end of the day, the result is the same as merging K
sorted lists.

Now, while this is all very awesome, there’s one last hiccup to deal with.

What’s M/B All About?
At first glance, it may seem that M/B-Way Mergesort will always get the
job done in two phases. However, this isn’t the case.

To demonstrate, let’s change up our scenario so that N=256. Assuming that
the other variables remain the same (M=16 and B=4), our first phase will
produce 16 sorted M-sized sublists:

These M-sized sublists are now back living in external memory once again.

For the next phase, we’d attempt to use Top-Grade Merge just as we’ve
done before, but there’s a little catch.

As I’ve explained in the previous section, to perform Top-Grade Merge, we
need to load one block from each and every sublist. And this is where we
hit a wall. That is, in our scenario, K is 16, meaning that we have 16
sublists. As such, this would require loading 16 blocks. But because B=4,
this means that loading 16 blocks means loading 64 values in total. But if

M=16, we don’t have room for all 16 blocks; we only have room for 16
elements! In our scenario, RAM can only hold a maximum of 4 blocks.

So, here’s what we do. We don’t perform Top-Grade Merge on all 16
sublists at once. Instead, we merge 4 sublists at a time:

The reason why we choose to merge specifically 4 sublists at once is
because RAM can hold a max of 4 blocks at once. Here, we load one block
from each of the sublists into main memory. This fits perfectly into our
main memory of size 16, as each of the 4 blocks contains 4 data elements,
totaling 16 elements.

We then perform the same algorithm as before, which gives us a sorted
sublist of 64 elements. This is the oval at the bottom of the diagram.

We’re not done with the algorithm yet, but let me highlight an important
takeaway: the greatest number of sublists we can merge at once is identical
to the maximum number of blocks that RAM can hold at once.

And what is that number? Well, in our scenario, it was 4, and this is because
M=16 and B=4. In other words, the greatest number of blocks that RAM
can hold at once is:

 M / B = maximum number of blocks that RAM can hold

And because M/B is the greatest number of blocks that can fit in RAM,
M/B is also the greatest number of sublists that we can merge at once.

And that’s where the algorithm of M/B-Way Mergesort gets its name. In
M/B-Way Mergesort, we execute a number of phases in which we merge a
certain number of sublists at once. And how many sublists do we merge at
once? The answer is: M/B.

Let’s walk through the rest of M/B-Way Mergesort. In our current example,
we merged the first M/B (4) lists to create a new sublist of size 64. We then
proceed to do the same with the other groups of M/B sublists:

This gives us 4 sublists of size 64 each. We’re now ready for the next phase.

Once again, we will use our Top-Grade Merge algorithm to merge these 4
sublists together. And once again, we can only merge M/B sublists at once.
Luckily, at this point, we only have M/B sublists to merge, so we can merge
them all at once as shown in the figure.

With this algorithm, we were able to merge the entire list of 256 items in
three phases.

As we increase the total number of values (N), the number of phases will
increase. However, M/B-Way Mergesort will nonetheless remain the most
efficient way to sort the values, no matter how many phases there are. Any
other approach would take a greater number of I/Os.

Big O of M/B-Way Mergesort
Now that we’re pros in juggling the variables N, M, B, and K, let’s see if
we can figure out how to articulate the Big O of M/B-Way Mergesort.
Fortunately, we’ve already done a lot of the heavy lifting when we analyzed
the Big O of Second-Attempt Mergesort. We’ve already figured out that the
formula for calculating the number of I/Os in Second-Attempt Mergesort is:

 number of I/Os per phase * number of phases = total number of I/Os

We’ve also already figured out that the “number of I/Os per phase” is N/B.
Again, this is because in each phase we need to load all N elements, and it
takes N/B blocks to do so.

This leaves us to figure out the “number of phases.” As we did with our
analysis of Second-Attempt Mergesort, let’s skip the first phase for now.

The second phase starts with M-sized lists. As with Second-Attempt
Mergesort, the number of M-sized lists we begin with is N/M. That is, if we
divide N into M-sized lists, we’ll have N/M such lists.

Now, in Second-Attempt Mergesort, each phase cuts the number of sublists
in half. Based on this, we described the number of phases as log2 N/M. That
is, each phase divides the sublists by 2 until we create one complete list.

In M/B-Way Mergesort, though, each phase divides the number of sublists
by more than 2. In our prior scenario, each phase divided the number of
sublists by 4.

Now, we’ve seen that this number 4 was computed based on M/B; the
maximum number of lists we can merge at once is M/B. And so, each phase
consolidates M/B sublists at once. In our example, 16 sublists became 4
sublists, and 4 sublists became 1. Given that each phase divides N/M (M-
sized) lists by M/B, we’d say that the total number of phases is logM/B N/M.
In other words, we start off with N/M lists, and we keep dividing that
number of lists by M/B until we get one final sorted list.

So, when we multiply this “number of phases,” which we’ve said is logM/B
N/M, by the “number of I/Os per phase,” which is N/B, we get a final Big O
of:

O(N/B logM/B N/M).

If that doesn’t look like gobbledygook, I don’t know what does. However,
this Big O Notation is useful because we can now plug in any scenario to
figure out approximately how many I/Os will occur.

Let me show one quick example, specifically focusing on the improvement
of M/B-Way Mergesort over Second-Attempt Mergesort. Again, the Big O
of each is:

Second-Attempt Mergesort: O(N/B log2 N/M)

M/B-Way Mergesort: O(N/B logM/B N/M)

They’re almost the same, except that Second-Attempt Mergesort has a
logarithm base of 2, while M/B-Way Mergesort has a logarithm base of
M/B.

Now, let’s dream up a scenario where we have 100,000 data elements, a
RAM size of 1,000, and a block size of 100. In other words, N=100,000,
M=1,000, and B=100.

If we plug this into Second-Attempt Mergesort’s Big O, we get:

 N/B * log2 N/M =

 (100,000 / 100) * (log2 100,000 / 1,000) =

 1,000 * 7 =

 7,000 I/Os

With M/B-Way Mergesort, on the other hand, we compute:

 N/B * logM/B N/M =

 (100,000 / 100) * (log10 100,000 / 1,000) =

 1,000 * 2 =

 2,000 I/Os

That’s some pretty significant time savings right there.

Once again, pure Big O Notation is a bit limiting here. Since Big O
technically drops logarithm bases, the Big O of both Second-Attempt
Mergesort and M/B-Way Mergesort come out to be O(N/B logN/M). But
then we wouldn’t be able to tell that there’s any speed difference between
the two algorithms. And so, I’m going a bit on a limb and putting the
logarithm bases back in so we can measure the precise advantage of M/B-
Way Mergesort.

Wrapping Up
You’re walking away from this chapter with a number of important tools
under your belt. First, you know how to wield M/B-Way Mergesort, which
is the fastest approach for using Mergesort on external memory. Second,
you can now use the Top-Grade Merge algorithm to merge K sorted lists
from internal memory in the speediest possible way. And perhaps most
important, you now possess the keys for analyzing and optimizing all sorts
of external-memory algorithms.

This chapter concludes our ambitious side quest into the world of external-
memory algorithms. As I’ve mentioned earlier, this topic can fill an entire
volume unto itself. So, it’s time to get back to our “main” storyline:
randomization algorithms.

The next chapter will reveal an entirely new class of algorithms that take
advantage of randomization. These algorithms, called Monte Carlo
algorithms, use randomization to achieve a most shocking trade-off.

Exercises
The following exercises provide you with the opportunity to practice with
external-memory sorting as well as merging K sorted lists. The solutions to
these exercises are found in the section Chapter 8.

1. Here’s a diagram depicting an example of M/B-Way Mergesort:

How many I/Os take place in total?

2. How many I/Os would M/B-Way Mergesort take if we modified this
scenario so that M=64 instead of M=16?

3. Say that we’re conducting the Top-Grade Merge algorithm to merge
data that fits entirely within memory. Specifically, we have one million
values divided among 512 lists. How many steps will our merging
algorithm take?

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 9

Counting on Monte Carlo
Algorithms

In the previous two chapters, we went on an exciting side quest and looked
at the fundamentals of external-memory algorithms. But now it’s time to
return to the topic of randomization.

Throughout this book, I’ve mentioned that there’s generally no one
algorithm that is the “best algorithm.” That is, when choosing between two
competing algorithms, there’s usually some sort of trade-off. Algorithm A
may be faster, but Algorithm B may consume less memory. Algorithm C
may be faster in the average case, but Algorithm D is faster in a worst-case
scenario. Algorithm E may be better in terms of time and space, but
Algorithm F may be simpler to implement and therefore have a smaller risk
of bugs.

In this chapter, we’ll take a look at a new kind of trade-off: reducing
accuracy for the sake of increasing speed. Now, this may not seem to make
much sense at first, but trust me; it can be the key to solving some tough
problems! Let’s take a look.

Monte Carlo Algorithms
I just made the audacious statement that some algorithms reduce accuracy
for the sake of increasing speed. In other words, Algorithm A is slower but
guaranteed to produce the correct result, while Algorithm B is faster but
may not produce the correct result.

Which would you choose?

If you’re a fourth-grade math teacher, this may be nothing short of
terrifying. Imagine the following classroom conversation:

You say, “Kids, kids, settle down. Okay, who can tell me the answer to
4 times 6? Wow, Chester, your hand shot up fast! Okay, Chester, what’s
the answer?”

Chester blurts out, “18!”

Some of the other children giggle softly. You say, “No, Chester. The
answer is 24. Perhaps …”

Chester interrupts you, shouting, “But you gotta be impressed with
how fast I gave you the answer!”

Impressive indeed. Do we want the wrong answer fast? This seems like a
bad trade-off.

Yet, Monte Carlo algorithms do just this. They sacrifice accuracy for the
sake of speed. (You’ll see in Chapter 13, Cultivating Efficiency with Bloom
Filters that some Monte Carlo algorithms sacrifice accuracy for the sake of
saving space, but in this chapter we’ll focus on speed.) Specifically, Monte
Carlo algorithms use randomization to boost speed, albeit with a reduction
in accuracy.

The name Monte Carlo comes from the Monte Carlo Casino in Monaco. In
truth, though, there’s not much of a connection between the casino and the
similarly named class of algorithms other than the fact that both have
something to do with random chance. It’s a computer-science naming
convention at its best.

Let’s take a look at where and why we’d want to use a Monte Carlo
algorithm.

Random Sampling
Let’s say we’re a polling agency and we want to predict the outcome of an
upcoming mayoral election. If we want to get the most accurate results, we
should interview everyone in the city who will be voting. In theory, if we
managed to contact everyone who will vote, and everyone told us the truth,
we’d identify our city’s next mayor with certainty.

The biggest hurdle preventing us from doing this is simply the fact that we
don’t have the time (or staff) to contact everybody who lives in the city. To
save time, pollsters only contact a portion of the total population.

This is a classic Monte Carlo algorithm at work. We save time by surveying
fewer people. Although this will certainly reduce the accuracy of our poll, it
may be accurate enough to get the job done.

Now, this only works if we conduct our poll according to the best practices
of statistics. Pollsters are only okay with reducing the accuracy of the poll if
statistics demonstrate that their results will likely not be far off from the
truth. Accordingly, pollsters have to know how many people to interview.
Obviously, interviewing one person will be super fast but will give us
worthless data. Knowledge of statistics and probability is used to dictate
how to conduct a random sampling so that our findings will likely be close
to accurate.

A fundamental point to highlight about random sampling is the fact that it’s,
well, random. Let’s say that statisticians determined, based on the size of
the city, that we should interview 500 people. We would make a terrible
mistake if we interviewed 500 people from the same neighborhood. This is
because it’s possible that people living in the same neighborhood have
similar political beliefs or have seen the same political billboards, so we
wouldn’t be interviewing a group that truly represents the entire city. For
sampling to work, we need to choose people at random, in which case it’ll
be likely that the people will be from different neighborhoods and have
different demographics.

In sum, random sampling is a great example of a Monte Carlo algorithm
widely used in practice. And now it makes a lot more sense as to why we’d
be willing to use such an algorithm even though we’re reducing accuracy.
The key is that although we’re reducing accuracy, we’re following the rules
of statistics so that our results will likely be accurate, or accurate enough for
our purposes.

How Important Is Accuracy?
How accurate an algorithm needs to be depends entirely on your
application. Here are some things to think about:

1. What is the worst thing that will happen if your results are not correct?
Will you lose money? Will someone get hurt? Or is the worst thing
that someone will be mildly annoyed?

2. A second item to figure out is the odds that the results will be correct,
and if you’re okay with those odds. For our mayoral poll, is it okay if
our results only have a 95 percent chance of predicting the winner?
What about 90 percent?

Here’s another example to highlight these points. Let’s say we’re running
an algorithm that will help a 10 billion dollar spacecraft land safely on

another planet. Obviously, the stakes are high. But do we need an algorithm
that is guaranteed to be 100 percent accurate? What if we can produce an
algorithm that’s much faster but will only land the spacecraft with
99.99999999 percent probability? A careful analysis must be done to
determine if we’re willing to take such a chance.

Approximations
You’ve seen that a Monte Carlo algorithm can be, say, only 90 percent
accurate. I’d like to point out, though, that this can manifest in two possible
ways. One way is that an algorithm can be right 90 percent of the time, but
the other 10 percent of the time, it’s completely wrong. Suppose that an
algorithm is supposed to produce a result of either True or False. For the 10
percent of instances where the algorithm spits out the wrong answer, it
couldn’t be more wrong.

However, another way in which an algorithm can be 90 percent accurate is
through approximation. For example, suppose that an algorithm predicts
tomorrow’s average temperature. If the true temperature is 100 degrees, and
our algorithm predicted that it would be 90 degrees, our algorithm was 90
percent accurate.

In theory, certain Monte Carlo algorithms can guarantee to give
approximate answers that deviate no more than 10 percent of the correct
answer. These “wrong” approximations yield worst-case scenarios that are
potentially much less “dangerous” than results that are completely wrong.

Monte Carlo Algorithms vs. Las Vegas Algorithms
If you do any research on Monte Carlo algorithms, you’re bound to stumble
upon another term called Las Vegas algorithms. Like Monte Carlo, the
name Las Vegas was picked simply because it’s another casino location.
Don’t read too much into the name; casinos in Las Vegas operate just like
the Monte Carlo one does.

Both Monte Carlo and Las Vegas algorithms are randomization algorithms,
but have opposite natures, as follows:

A Monte Carlo algorithm is a randomization algorithm that is
guaranteed to be fast but has a chance, albeit a small one, of producing
the wrong answer.

A Las Vegas algorithm is a randomization algorithm that is guaranteed
to be correct, but has a chance, albeit a small one, of being slow.

Virtually all the randomization algorithms we’ve dealt with up until this
chapter have been Las Vegas algorithms. Preshuffling an array before
inserting it into a binary search tree is a Las Vegas algorithm since the BST
is guaranteed to be “accurate”—which in this context means properly
structured—no matter what. We do the preshuffling to increase the
likelihood that the tree will be fast by being well-balanced, but we can’t
guarantee that the tree will be fast. After all, we may be super unlucky and
our shuffling may produce numbers that are in ascending order. In sum, this
is a randomization algorithm that is guaranteed to be correct but has a small
chance of being slow.

Randomized Quicksort is also a Las Vegas algorithm. No matter what, the
data will be properly sorted by the time we’re done. At the same time, we
randomize the pivot to increase the odds that the sorting will take place
quickly. However, we can’t guarantee that the sorting will be fast, since we

might choose unlucky pivots. Again, this is a randomization algorithm that
will definitely be correct but might run slowly in a small percentage of
cases.

Monte Carlo algorithms, on the other hand, work the other way around. By
sacrificing accuracy, we guarantee that the algorithm will run quickly. For
example, if we decide to only poll 500 residents of the city, we guarantee
that the speed of our algorithm will be whatever time it takes to poll 500
people. So, again, it’s an algorithm that will definitely be fast but may not
be entirely accurate.

When we think about Las Vegas and Monte Carlo algorithms further, we’ll
see that they utilize randomization to achieve different goals. Specifically,
they use randomization to help address their own weak points.

The purpose of randomization within Las Vegas algorithms is to increase
speed. Although a Las Vegas algorithm, by definition, is not guaranteed to
be fast, it uses randomization to increase the likelihood of being fast. (Think
about Randomized Quicksort, for example.)

Monte Carlo algorithms, by contrast, use randomization to increase
accuracy. The speed guarantee of Monte Carlo is achieved by techniques
like cutting corners—such as polling only 500 people instead of the entire
city. However, cutting corners has the side effect of reducing accuracy.
Randomization is used to mitigate this side effect and help keep the
algorithm as accurate as possible.

In any case, we can now put a bow on our definition of Monte Carlo
algorithms. A Monte Carlo algorithm is a randomization algorithm that is
guaranteed to be fast and is likely, but not guaranteed, to be correct.

Obtaining Averages Through Random Sampling
You’ve seen how random sampling is used in the world of pollsters. Let’s
now take a look at how we can use random sampling within the world of
code. We’ll begin with some examples of computing averages.

Approximating the Mean
Say that we have an unsorted array containing a whole bunch of integers.
To calculate the mean of these numbers, we first compute the sum of all N
integers and then divide by N. Because we have to add up all N numbers,
this algorithm takes roughly N steps.

With random sampling, though, we could calculate an approximate mean by
picking a random sample of integers from the array and then computing the
mean of that sample.

So, if our array contained 1,000,000 elements, getting the true mean would
take about 1,000,000 steps. However, we could instead choose to add up
1,000 randomly chosen integers from the array and then divide that number
by 1,000. This would be the sample mean. It would be less accurate than the
true mean, but we’d only have to perform 1,000 steps instead of 1,000,000
steps.

Again, a proper statistical analysis needs to be done to determine if this
approximate mean is good enough for your needs. But if it is, you can save
a lot of time. This is especially true if your data is in the billions or trillions
of elements.

For fun, though, let’s play around with this idea. Here goes:

 import random

 array = []

 for i in range(1000001):

 array.append(i)

 random.shuffle(array)

 sum = 0

 random_sample_size = 500

 for _ in range(random_sample_size):

 random_index = random.randint(0, 1000000)

 sum += array[random_index]

 mean = sum // random_sample_size

 print (mean)

We first build an array of the integers 0 through 1,000,000 in random order.
The mean of these numbers is basically 500,000.

Next, we randomly select 500 integers from the array and compute the
mean of those 500 numbers. In effect, we’re computing the mean of our
random sample.

When I run this code repeatedly, I get results like 501554, 498627, 499450,
506332, 477290, 505872, 489558, and 496410. These are all pretty close to the
true mean of 500000!

You can play around with the random_sample_size variable, which chooses
the size of our random sample. Even when I reduce this to 100, the results
aren’t far off. I think it’s pretty cool to see in action how close random
sampling comes to the ultimate truth.

Approximating the Median
We can use a similar approach to approximate the median of an array of
numbers. As a reminder, the median of a list of values is the middle-most
value if the values were to be sorted. In the array, [22, 56, 88, 89, 154, 207, 365],
89 is the median since it’s smack in the middle. This would be the case even

if the array were shuffled; the point is that the median is the center value
once the values are ordered.

If there are an even number of values, there’s no single value in the center.
Rather, there are two values in the center. When this is the case, the median
is the mean of those two values.

In the following code, I use random sampling to approximate the median of
the numbers 0 through 1,000,000. The median in this case happens to be the
same as the mean—it’s 500,000. Note that the approach is similar to what
we did for approximating the mean:

 import random

 array = []

 for i in range(1000001):

 array.append(i)

 random.shuffle(array)

 sum = 0

 random_sample_size = 501

 random_sample = []

 for _ in range(random_sample_size):

 random_index = random.randint(0, 1000000)

 random_sample.append(array[random_index])

 random_sample.sort()

 median = random_sample[random_sample_size // 2]

 print (median)

Here, we grab a random sample of 501 elements (I made the sample size
odd to keep things simple). We then compute the median of the random
sample by first sorting the random sample and then grabbing the value at
the center index, which is random_sample_size // 2.

When I run this code, I also get results that are close to the truth, although
not as close as when I approximated the mean. Try it out for yourself!

Primality Testing
One classic application of Monte Carlo algorithms is primality testing.
Primality testing means to test a number to determine whether it’s a prime
number. Finding prime numbers is not just a trivial math concept; it’s
important in many contexts, particularly in the field of cryptography.

In case you need a quick refresher, a prime number is one that cannot be
divided by any other whole number (save for the same number itself or the
number 1) without leaving a remainder. The number 17, for example, is
prime because every number we try dividing it by will leave a remainder.
The fact that 17 can be divided by 1 and 17 doesn’t rule 17 out from being
prime, since every number can be divided by itself or the number 1.

Another way of defining a prime number is that a prime number is one in
which no two whole numbers (that are both greater than 1) multiplied
together produce that number.

The opposite of a prime number is a composite number. A composite
number can be divided by another number (that isn’t 1) without leaving a
remainder. The number 15 is a composite number because it can be divided
by 3 or 5 without leaving a remainder. Said another way: because we can
find two whole numbers that multiply together to produce 15, namely the
numbers 3 and 5, the number 15 is composite.

Perhaps the most straightforward way to test whether a number is prime is
by using brute force. That is, we’ll try dividing the number by every other
smaller whole number. So, if our number is 11, we’ll first try dividing by 2,
and then by 3, and then by 4, and so on. As soon as we find a division that
doesn’t produce a remainder, we would conclude that 11 is composite.
However, if we try all the possible divisions and can’t get a remainder
(which indeed is the case with the number 11), we’ll know that the number
11 is prime.

In Volume 1, Chapter 3, we wrote a function that does this. Here it is:

 def is_prime (number):

 for i in range(2, number):

 if number % i == 0:

 return False

 return True

Here, our function accepts the number we’re testing for primality. We run a
loop that divides the number by every integer i from 2 up until the number

itself. If we find one such division that leaves no remainder, we return False

to indicate that the number is not prime. However, if we get through the
entire loop without finding a “remainderless” division, we return True since
the number must be prime.

Improving Brute-Force Primality Testing
We can optimize our is_prime function in a few ways. As things stand now,
we take N steps to run this primality test, if we consider number to be N.
That could take a long time if we’re testing whether the number
20,988,936,657,440,586,486,151,264,256,610,222,593,863,921 is prime! (It
is.)

One simple trick we can do to speed things up a bit is to first check if
number is even. If it is, number is certainly composite since it can be divided
by 2. (The exception is if number is itself 2; then it’s prime.)

With even numbers out of the way, our loop only has to divide number by
odd integers. Here’s the code:

 def is_prime (number):

 if number == 2:

 return True

 if number % 2 == 0:

 return False

 i = 3

 while i < number:

 if number % i == 0:

 return False

 i += 2

 return True

With this easy trick of skipping even numbers, we’ve effectively shaved off
half our search time.

Now, if we think about things a bit more (it’s always good to think about
things), we’ll find that we can speed up our primality test even further. To
help paint the picture, I’m going to refer to some division jargon—the type
of stuff we learned about in fourth grade but subsequently forgot:

In the division operation 36 / 9 = 4, 36 is the dividend, 9 is the divisor, and 4 is
the quotient.

An important property of division is that if 36 / 9 = 4, then it’s also true that
36 / 4 = 9. This is because 4 * 9 and 9 * 4 both equal 36. In other words, a
division equation holds true even after we swap the divisor with the
quotient.

Now, let’s say that I want to test whether the number 37 is prime. Let me
begin:

 Dividend Divisor Quotient Remainder

 37 / 2 = 18 1

 37 / 3 = 12 1

 37 / 4 = 9 1

 37 / 5 = 7 2

 37 / 6 = 6 1

Here, I tried dividing 37 by the numbers 2 through 6. The quotients range
from 18 down to 6. Now, watch what happens when I divide 37 by 7 and 8:

 Dividend Divisor Quotient Remainder

 37 / 7 = 5 2

 37 / 8 = 4 5

Note that at this point, the quotients we’re getting now are the same as the
divisors from our first bunch of division computations. What this means is
that I don’t have to bother dividing 37 by 7 or 8 to see whether 37 is prime.
After trying to divide 37 by 6, from here on in, I’m only going to get
quotients that lie in the range of divisors that I already tried previously.
Accordingly, I know that if I couldn’t find any remainderless quotients
earlier, there’s no way I’m going to find any remainderless quotients now.
And so I can conclude that 37 is prime.

This inflection point occurs when the divisor reaches the square root of the
dividend. As a reminder, because 6 squared is 36, we say that 6 is the square
root of 36.

When I divide 36 by 2 and 3 and so on, the quotients are still new numbers
we haven’t encountered before as divisors. This changes after I divide 36 by
its square root, which is 6. Henceforth, all the quotients we’ll get by
dividing by 7 and on will all lie in the range of divisors we’ve already tried
before. The same applies to the 37 example since the 6 is the approximate
square root of 37.

With this all in mind, we can now optimize the is_prime function to only run
its loop up until the square root of number:

 import math

 def is_prime (number):

 if number == 2:

 return True

 if number % 2 == 0:

 return False

 i = 3

 while i <= math.sqrt(number):

 if number % i == 0:

 return False

 i += 2

 return True

This algorithm belongs to a category of Big O notation we haven’t
encountered before in this book: O(sqrt(N)). An algorithm is described as
O(sqrt(N)) when the algorithm takes sqrt(N) steps when there are N
elements of data. In our case, the algorithm takes only half that number of
steps since we’re only dealing with odd numbers. Although this is truly
sqrt(N)/2 steps, we drop the constant, leaving us with O(sqrt(N)).

These are some pretty clever optimizations, so we should definitely pat
ourselves on the back. However, even this optimized algorithm is still no
match for massive numbers. The square root of a massive number may be a
massive number itself. As such, our primality test will still be impossibly
slow.

And that’s where Monte Carlo algorithms come in.

Monte Carlo Primality Testing
I’m going to take a stab at proposing a Monte Carlo algorithm for primality
testing that will take a trivial amount of time. It’ll turn out to be a terrible
algorithm in practice, so don’t try it at home! In fact, I’m going to call this
method “Bad Primality Testing.” I’m only introducing it because it’ll make
the “good” primality testing easier to understand.

Here is the Bad Primality Testing algorithm:

Instead of dividing number by all odd integers from 3 and up until the square
root of number, we’ll divide number by a bunch of randomly chosen integers.
If we choose, say, 100 random integers and divide number by them and
always get a remainder, there’s a certain probability that number is prime.

This certainly qualifies as a Monte Carlo algorithm. It has a guaranteed
speed, as we perform a fixed number of 100 division operations. However,
it only has a certain likelihood of being correct.

The problem with Bad Primality Testing, though, is that it’s not reliable
enough. For example, many composite numbers have only one pair of
smaller numbers that multiply into that composite number. Indeed, this is
what happens when the smaller numbers are themselves both prime. So, if
we test a number like this, it’s likely that none of our 100 random divisions
will divide our number by either of those smaller numbers that compose our
number. And so, the odds are high that we’ll mistakenly identify our number

as prime when it’s composite.

If our Monte Carlo algorithm will likely be wrong for certain numbers, it’s a
pretty poor algorithm. Monte Carlo algorithms are valuable when the odds
are that they’ll be correct, even if there’s no guarantee. But if the odds are in
favor of getting the wrong answer, we’d better avoid such an approach.

Fermat’s Little Theorem
Thankfully, there are good Monte Carlo algorithms for primality testing. A
number of them revolve around a theorem first published back in the year
1640.

Pierre de Fermat, a 17th-century French mathematician, came up with a
number of mathematical theorems in his lifetime, and the one relevant to us
is known as Fermat’s Little Theorem. (Yes, it’s actually called that, and
don’t ask me why.)

Fermat’s Little Theorem can be expressed in a number of ways, but I’ll
present it in the way that I feel is clearest for our context. Here goes.

Let’s use the variable N to refer to a number we’re testing for being prime.
Every number N has a series of smaller numbers that run from 1 up to N,
excluding N itself. We’re going to use another variable, A, to refer to these
smaller numbers.

Now, it may sound strange that a single variable can refer to a bunch of
numbers, but here’s what I mean. If N is 7, the numbers 1, 2, 3, 4, 5, and 6
all qualify as A. So, if we have a formula that contains our A variable, we
can plug any one of the numbers from 1 through 6 into A that we’d like; it’s
our choice. This will become clearer in a moment.

Fermat’s Little Theorem is that if N is prime, then the following formula
(expressed in Python code) will be true for all possible numbers that we can
plug into A:

 A**(N-1) % N = 1

This expression states that if we take a number A, raise it to the power of N -

1, and then divide the result by N, we’ll get a remainder of 1.

In other words, what Fermat’s Little Theorem is saying is: if N is prime,
then all possibilities of A will plug into this formula and produce a result of
1.

This may sound confusing, I know. So, let me clarify this theorem with an
example. For the rest of this chapter, I’m going to refer to A**(N-1) % N as
“The Formula.” (It’s way easier to type.)

Let’s say that N is 7, which is prime. The list, A, as mentioned, includes the
numbers 1, 2, 3, 4, 5, and 6. If we take any number from A, say the number
3, and apply The Formula, we get:

 A**(N-1) % N =

 3**6 % 7 =

 1

As you can see, this computes to 1.

Fermat’s Little Theorem says that The Formula will compute to 1 for all
integers that qualify as A. To demonstrate, all of the following statements
are true:

 1**6 % 7 = 1

 2**6 % 7 = 1

 3**6 % 7 = 1

 4**6 % 7 = 1

 5**6 % 7 = 1

 6**6 % 7 = 1

You have to admit that this is pretty cool. We’re not going to look at why
this is so, but let’s run with it.

To recap, Fermat’s Little Theorem claims that if N is prime, then for all of
A (which are the numbers from 1 up until N, not including N), if we
compute The Formula, we’ll get the result of 1.

Now, the following statement is key, so listen up and listen well.

A logical equivalence of Fermat’s Little Theorem is that if we compute The
Formula and get a result that is not 1, then we know that N is composite.
This follows logically, for if we’re guaranteed that for a prime N that The
Formula will produce 1, that means if we don’t get a result of 1, then N
cannot possibly be prime.

What Fermat’s Little Theorem does not mean, though, is that if we do get 1,
then N is prime. Many composite numbers have at least one number A in
which The Formula will produce 1. All Fermat said was that if N is prime,
then The Formula will produce 1 for every A. And equivalently, if The
Formula does not produce 1 for any given A, then we know that N is
composite.

It turns out that Fermat’s Little Theorem is a one-directional rule. We can
use it to prove whether a given number is composite, but cannot use it to
prove whether the number is prime.

In any case, now that we’re armed with Fermat’s Little Theorem, we’re
ready to discover a good Monte Carlo primality test.

Fermat’s Primality Test
Remember our Bad Primality Testing algorithm? We chose 100 random
numbers and divided a number by them to see if number was prime. This
turned out to be a losing proposition. However, we can use a similar tactic
that utilizes Fermat’s Little Theorem. This approach is called Fermat’s
primality testing since it’s predicated upon Fermat’s Little Theorem. I’m
going to unfold this algorithm one logical layer at a time, so bear with me.

We’ve already derived logically from Fermat’s Little Theorem that if we
take a number N and run it through The Formula by plugging in some
example of A and do not get a result of 1, then N must be composite.

Based on this, we can pick 100 random numbers to plug into the A variable,
and run each example of A through The Formula. So, if N is 45,321, we’ll
randomly pick 100 different example numbers for A, such as 3,453, 19,001,
and 767, and test them out. If any of them produce a result that isn’t 1, we’ll
know that N is composite.

However, if we get a result of 1 for all 100 tests, there’s a high likelihood
that N is prime. This is because a composite number is unlikely to pass all
100 tests. (Soon, we’ll discuss precisely what the odds are.)

That being said, even when it passes 100 tests, N may in reality be
composite. That is, N may in truth have some instances of A where the
result of The Formula is 1 and other results where the result is not 1.
However, we happened to be super unlucky and picked all the examples of
A where The Formula will yield a 1. So, we’d mistakenly identify N as
being prime even though it’s composite.

As such, this approach to primality testing is a Monte Carlo algorithm. The
odds are high that N is prime, but there’s a small chance that it’s composite.
Note, however, that the chance of error can only happen in one direction.

That is, if The Formula ever produces a result other than 1, we can be 100
percent sure that N is composite. If, on the other hand, The Formula
produces 100 instances of 1, although there are high odds that N is prime,
we can’t be absolutely certain that it is so.

Fermat’s vs. Bad Primality Testing
Let’s dig in deeper. Why, exactly, is Fermat’s Primality Testing any better
than our previous approach of Bad Primality Testing? After all, in both
techniques we try out 100 computations using random numbers.

Here’s the answer. Let’s look again at what happens when we perform Bad
Primality Testing. Say that we’re testing whether the number 47,957 is
prime by dividing it by a smaller random number, such as 45, to see if
there’s a remainder. If this doesn’t produce a remainder, we’d know that
47,957 is composite. But on the other side of the coin, if it does produce a
remainder, what does that tell us about the probability of 47,957 being
prime?

In truth, 47,957 is only divisible by the numbers 217 and 221. Indeed, many
composite numbers are only divisible by a couple of smaller numbers. So
the fact that we got a remainder when dividing 47,957 by 45 tells us almost
nothing about the odds of whether 47,957 is prime. We’ve only eliminated
one possible way in which 47,957 could be composite, but there may easily
be other numbers that 47,957 is divisible by. And so, we’ve hardly moved
the needle in seeing increased odds that 47,957 is prime.

However, each computation in Fermat’s Primality Testing that produces a 1
does significantly increase the odds that the number we’re testing is prime.
Fermat never articulated the following statement, but other mathematicians
did. This statement is the final piece of the puzzle:

If N is a composite number, each time we run The Formula, the chance
of getting a result of 1 is 50 percent or less.

Let that sink in for a moment.

Recall that I pointed out that Fermat’s Little Theorem is one-directional.
That is, if we run The Formula on a prime number N, there’s a 100 percent
chance that we will get a result of 1. If N is composite, though, it may or
may not produce a 1.

However, we’re filling in an additional detail now by saying that if N is
composite, the odds of us getting a 1 for any time we run The Formula are
50/50. In truth, the mathematicians stated that the odds may be less than
50/50, but let’s call it 50/50 to simplify things.

Let’s see how this all plays out. If I test N against one example of A, and
get a 1, I haven’t learned much. After all, there’s a 50/50 chance that N is
composite.

But say I test N again.

And again.

And again.

This is like flipping a coin. It’s not remarkable when a coin lands on heads;
there was a 50 percent chance that this would happen. But if I flip a coin
many times and always get heads, that’s truly remarkable since such a result
is very unlikely.

With Fermat’s Primality Testing, when we test N against 100 examples of
A, it’s like flipping a coin 100 times. Sure, if N is composite, each “flip”
has a 50 percent chance of yielding a 1. But if we make 100 flips for a
composite number, it’s extremely unlikely that all 100 flips will produce a 1.
This is like flipping a coin 100 times and always getting heads. (In math
terms, we’d say the odds are 1/2100.)

This is why Fermat’s Primality Testing is a highly effective algorithm. If we
run The Formula 100 times on N and always get a 1, it is highly probable
that N is prime.

And this, my friends, is how Fermat’s primality testing works. To sum it up:

To test N, we pick 100 random examples of A and run The Formula for
each example. If we ever get a result that is not 1, we’ll know with 100
percent certainty that N is composite. And if we always get a 1, then it’s
highly probable that N is prime.

Fermat’s primality testing is a solid Monte Carlo algorithm because it has a
guaranteed speed of 100 tests, but it is not necessarily correct. However,
because it’s highly probable to be correct, this algorithm can produce results
that you might consider to be accurate enough for your particular
application.

There’s one tiny caveat, though. We’ve gone through all the logical hoops
of analyzing Fermat’s Little Theorem, except for one, which we’ll take a
look at next.

Carmichael Numbers
Fermat asserted that if N is prime, if we run each and every example of A
through The Formula, we’ll always get 1. We’ve deduced from this that if
we ever get a result that isn’t 1, then N must be composite. We also saw that
if we do get a result of 1, we can’t know for certain whether N is prime or
composite. Even a composite number has a 50/50 chance of producing a 1
for each example of A.

But what happens if we methodically run The Formula for each and every
A and always get 1? Fermat said that if N is prime, we’ll always get 1, but
let’s analyze the converse. If we always get 1, does that mean that N is
prime?

It turns out that it does not mean that N is certainly prime. For there are
some composite numbers that will produce 1 each time we run The Formula
—even for all instances of A.

These special composite numbers are called Carmichael Numbers, named
after the mathematician Robert Carmichael, who researched these numbers
in depth.

The smallest Carmichael Number is 561. The number 561 is composite, as
561/17=33. However, incredibly enough, if we run The Formula for all
examples of A (that is, 1 through 560), the result will always be 1.

Carmichael Numbers throw a nice little monkey wrench into Fermat’s
Primality Testing. The success of this testing relies on our assertion that the
odds of The Formula computing a 1 for a composite number are no greater
than 50 percent. However, this doesn’t hold true for Carmichael Numbers,
as the chance of computing a result of 1 is 100 percent!

This being said, Fermat’s primality testing is still useful because
Carmichael Numbers themselves are rare. From numbers 1 up until
25,000,000,000, there are only 2,163 Carmichael Numbers. Additionally,
the frequency of Carmichael Numbers drops as we deal with higher and
higher numbers.

In other words, we kind of incorporate the rarity of Carmichael Numbers
into our Monte Carlo algorithm. That is, for a “regular,” non-Carmichael
composite number, there’s a high probability that our 100 tests will reveal
that it’s composite (by producing a number other than 1). And even though
this isn’t the case for Carmichael Numbers, there’s a high probability that
our number simply isn’t a Carmichael Number.

If you’ve decided that Carmichael Numbers have the potential to mess up
your application, you’re still in luck. There are other primality testing
algorithms—which are extensions of Fermat’s Primality Testing—that

properly handle the edge case of Carmichael Numbers. Some such
algorithms include the Miller–Rabin test and the Solovay–Strassen test. If
this piques your interest, go check them out.

Code Implementation: Fermat’s Primality Test
The code for Fermat’s primality test is concise and simple:

 import random

 # Fermat's Primality Test

 def is_prime (number):

 for _ in range(100):

 a = random.randint(1, number - 1)

 if pow(a, number - 1, number) != 1:

 return False

 return True

To test the primality of number, we run a loop 100 times. In each iteration,
we choose a random number a, representing what we’ve been calling “A”—
which is the series of smaller numbers from 1 up until number.

Next, we compute The Formula to see if we get a remainder of 1. To
accomplish this, we use the code:

 if pow(a, number - 1, number) != 1:

This syntax may not be familiar to you, so here’s a brief explanation:

It turns out that Python has at least five different ways that you can
calculate exponents. The most popular approach is the ** operator. If we
take this approach, we can run The Formula using the code:

 if a**(number - 1) % number != 1:

However, it turns out that the ** is unable to compute exponents using very
large numbers. While this code worked fine when I tried to test the integer
563 for being prime, it flatly refused to cooperate when the number was
2147480219.

However, Python has other ways to compute exponents, including the built-
in pow method. And fortunately, pow is able to process large primes like
2147480219.

The pow method accepts a minimum of two arguments, the first being the
base number and the second being the exponent. However, pow comes with
a super-convenient feature. It accepts an optional third argument that takes
the result of computing the first two arguments and divides it by the third
argument modulus style, giving us the remainder. In other words, pow(x, y, z)

is the equivalent of x**y % z. And that’s exactly what we want!

If the result of this calculation is not 1, it means number is composite, so we
return False. However, if after running The Formula 100 times we always
get a result of 1, we assume with high probability that number is prime and
so we return True.

Wrapping Up
Monte Carlo algorithms have the ability to greatly boost the speed of
operations that might otherwise take a really long time. Of course, they
come at the cost of some accuracy. But if you’ll get the correct result with
high probability, it can sometimes be a worthwhile trade-off. Ultimately,
how much you need perfect accuracy will depend on your specific
application.

In the next chapter, we’re going to look at another randomization topic
known as randomized hashing. With it, we’ll take our understanding of
hash tables to the next level. (Eventually, in Chapter 13, we’ll combine the
concepts of Monte Carlo algorithms and randomized hashing to produce an
astounding data structure known as a Bloom Filter.)

Ready to dive deeper into how hash tables work and how randomization
helps them become more efficient? Well, turn the page.

Exercises
The following exercises provide you with the opportunity to practice with
Monte Carlo algorithms. The solutions to these exercises are found in the
section Chapter 9.

1. Say that we have a large array of integers, and we want to determine
what percentage of the integers are even and what percentage are odd.
Write code that performs random sampling to approximate these
percentages.

2. Let’s say that I ran The Formula from Fermat’s Primality Test on an
integer N a total of four times. Three times the result was 1, and one
time the result was 2. What are the odds that N is prime?

3. Now, let’s say that I ran The Formula from Fermat’s Primality Test on
an integer N a total of four times, and all four times the result was 1.
What are the odds that N is prime?

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 10

Designing Great Hash Tables with
Randomization

Hash tables are ubiquitous, and for good reason. I first introduced hash
tables and demonstrated how they worked in Volume 1, Chapter 8. As I
discussed there, hash tables are blazing fast, as they have O(1) search,
insertion, and deletion. While this speed comes at the cost of not being able
to keep its values in a sorted order, hash tables are nonetheless one of the
most important data structures out there.

In this chapter, we’re going to revisit the inner workings of hash tables,
especially regarding how hash functions work. In particular, we’re going to
take a look at a sneaky, easily unnoticed vulnerability of hash tables and
how we can use randomization to make things better.

Hash Functions: A Quick Review
Under the hood, a hash table stores its data inside an array or similar
structure. However, while an array usually inserts new data at its end, a
hash table uses another approach in how it decides where to insert each
piece of data. We covered this concept back in Volume 1, but here I’ll
remind you of the most pertinent details and then take the discussion
further.

To keep things simple, I’ll use examples of inserting integers into the hash
table. (You can explore inserting strings, though, in the exercises of this
chapter.) Also, although hash tables generally store key-value pairs, I’m
going to keep my examples simple by making the key and value the same
piece of data. That is, if I say that I’m inserting the integer 17 into the hash
table, both the key and value will be 17.

Now, let’s work with an example hash table that uses an array of size 10
under the hood. This means we’re storing each piece of data into one of 10
slots:

To decide which slot each value will go in, a hash table uses something
called a hash function. A hash function is a function that converts a value
into some number, known as the hash code. When we insert a value into the
hash table, the hash table computes that value’s hash code, and then inserts
the value into the index that matches that hash code.

Let’s look at an example of a simple hash function that works as follows:
we take the value we’re inserting and, assuming it’s an integer, add up the
sum of all its digits to produce a hash code.

For example, say we want to insert the integer 402 into the hash table. The
hash function takes the 402 and adds up its digits:

4+0+2=6

This produces 6 as the hash code. Because of this, we store the 402 at index
6:

Next, say we want to insert 513. The hash function transforms the 513 into
the hash code:

5+1+3=9

Because we get a hash code of 9, we insert the 513 into index 9:

Running a value through a hash function is known as hashing the value. In
short, hashing transforms a value into an integer—namely, the hash code.

The power of hash tables lies in the fact that the value itself determines
where the value is going to be stored. And this is precisely why hash-table
search takes just O(1) time. To search for the value 513 in the future, we run
it through the hash function, get the hash code of 9, and immediately know
that we can find 513 at index 9.

Now, there’s an itty-bitty problem with our proposed hash function. That is,
say that we want to insert the value 183.

When we hash it, we get:

1+8+3=12

This means we’d store 183 in index 12. But there isn’t an index 12 in our
example hash table; the highest available index is 9.

To fix this, we can add another detail to our hash function: if the hash code
has more than one digit, we then add those digits until we produce a hash
code that is only a single digit. So, in this case, we’d hash the hash code of
12:

1+2=3

So, we’d insert 183 at index 3 of the array:

Scalable Hash Functions
You’ve now seen how important it is that a hash function aligns with the
size of a hash table’s underlying array. Now, determining the size of the
array depends primarily on the number of values you expect to insert. In
Volume 1, Chapter 8, I discussed the recommendation that a hash table
should have 10 slots for every 7 pieces of data. (There are other
recommendations out there, as well as other factors to consider when
making this decision, but I won’t get into the nitty-gritty details here.)

Once you determine the array size, you need to carefully choose a hash
function that will distribute values uniformly across the array.

If, for instance, we decided that our underlying array should have 500 slots,
the hash function we used earlier would be downright terrible. After all, that
function can only possibly insert values into indexes 0 through 9! Our
remaining 490 array slots would never be used.

In truth, even if a hash function distributed values across the length of the
array but couldn’t—for whatever reason—hash a value into the number 79,
this hash function is considered to be deficient. In computer science jargon,
we’d say that such a hash function lacks uniformity. The ideal hash function
should be designed so that each slot in the array will likely contain the same
number of items, or at least close to it.

So, how do you come up with a hash function that caters to the size of the
array and ensures uniformity?

The Division Method
There are many hash functions out there that are considered effective. In
this chapter, we’ll focus on one particular hash function design. It’s simpler
than most of the alternative approaches, but still effective.

The hash function I’ll demonstrate doesn’t have a fancy name, but is often
called Division Hashing or the Division Method. There are several variants
and optimizations of this method, but I’ll present it in its most basic form.

Before we start, let’s define a couple of variables. We’ll use the variable K
to refer to the integer we’re hashing, and M will refer to the size of the
array. Although I personally would have chosen other alphabet letters, these
are the variables that are often used in the literature.

Division hashing takes K and applies the following formula:

 K % M

In other words, we divide the integer we’re hashing by the size of our array.
Yes, that’s it.

Let’s see how this plays out with some examples. Say that M is 89. If K (the
integer we’re hashing) is 1632, we get:

 1632 % 89 = 30

That is, when we divide 1632 by 89, we get a remainder of 30. So, 30 is our
hash code.

This is an effective hash function, as it caters to the size of the array and is
uniform. Let me explain.

When we divide a number by 89, the resulting remainder is guaranteed to
be some integer from 0 up through 88, inclusive. Now, this is perfect for our

underlying array, which has that same range of indexes, namely, 0 through
88. So, it makes a lot of sense to hash K by simply dividing it by the array
size (M) since the remainder will match one of our array’s indexes.

Also, the distribution is uniform, and here’s why. In our example, K was
1632, and we got a hash code of 30. Let’s see what happens when we keep
increasing K by 1:

 1633 % 89 = 31

 1634 % 89 = 32

 1635 % 89 = 33

 1636 % 89 = 34

 1637 % 89 = 35

Let’s skip a few steps to where K is 1688:

 1688 % 89 = 86

 1689 % 89 = 87

 1690 % 89 = 88

 1691 % 89 = 0

 1692 % 89 = 1

Once K is 1691, we get a remainder of 0, and then start the cycle again. So,
if we were to insert all the integers from 0 to 1690, they’d be uniformly
distributed across indexes 0 through 88. The same applies to all values
greater than 1690 as well.

M Should Be Prime
One commonly recommended optimization to the Division Method is that
we should make sure that M is a prime number. Even if we’ve determined
that the size of our array needs only to be 10, it is usually worth it to
increase M to 11 since 11 is prime.

Without getting too much into number theory, the basic reason for this is a
concern that if M is not prime, our data may follow a nonuniform pattern.
This happens in particular if all instances of K (that is, all the items in our

data set) and M are both divisible by some other number, such as 12 and 9
being both divisible by 3.

Here’s an example that highlights this concern. Say that our data consists
exclusively of even integers. This isn’t so hard to imagine; perhaps we have
a list of test scores where it was only possible to get an even-numbered
score.

If each test score is even, this means that each score is divisible by 2. And if
M is, say, 10, then M is also divisible by 2.

Now, let’s also say that our test scores are [2, 4, 6, 8, 10, 12, 14, 16]. Here’s what
happens when we hash them when M is 10:

 2 % 10 = 2

 4 % 10 = 4

 6 % 10 = 6

 8 % 10 = 8

 10 % 10 = 0

 12 % 10 = 2

 14 % 10 = 4

 16 % 10 = 6

It turns out that we’ll only place values in even-numbered indexes of the
array. The odd slots of the array will never be used. As we’ve learned, this
hinders the effectiveness of a hash function.

Let’s look at one more example. Say that our test scores are all divisible by
3, such as [12, 15, 18, 21, 24, 27, 30]. If M is 9, which is also divisible by 3, our
hash codes end up being:

 12 % 9 = 3

 15 % 9 = 6

 18 % 9 = 0

 21 % 9 = 3

 24 % 9 = 6

 27 % 9 = 0

 30 % 9 = 3

Yikes! We’ll only be storing values in the array’s 0, 3, and 6 indexes. Most
of the array will never be used.

We can solve much of this issue by making M a prime number. If M is
prime, we can never have the issue where the data and M are both divisible
by the same third number, for a prime number isn’t divisible by any other
number!

And so, if we make M prime, such as 11, we’ll see that our integer
distribution becomes uniform:

 12 % 11 = 1

 15 % 11 = 4

 18 % 11 = 7

 21 % 11 = 10

 24 % 11 = 2

 27 % 11 = 5

 30 % 11 = 8

 33 % 11 = 0

 36 % 11 = 3

 39 % 11 = 6

 42 % 11 = 9

Every single hash code from 0 through 10 is computed once.

The same holds true for other data patterns, such as with the earlier example
of even-numbered test scores:

 2 % 11 = 2

 4 % 11 = 4

 6 % 11 = 6

 8 % 11 = 8

 10 % 11 = 10

 12 % 11 = 1

 14 % 11 = 3

 16 % 11 = 5

 18 % 11 = 7

 20 % 11 = 9

 22 % 11 = 0

It emerges that making M prime helps distribute data uniformly even when
the data follows certain patterns. Now, don’t forget that M represents the
size of the array. So, this means that we’re making sure that the array size
itself is prime.

However, this trick of making M prime doesn’t solve the uniformity issue
for all patterns.

Randomized Hashing
Despite our best efforts, it’s still possible to have a data set in which a given
hash function will not distribute the data with ideal uniformity. Let’s look at
some examples.

Example 1: If M is 11, and our data is [55, 22, 99, 88, 11, 66, 44, 77, 33], all the
data will end up at the array’s index 0 since all these integers of our data set
are divisible by 11. We’ve mentioned that uniformity gets messed up when
the data set and M are both divisible by a common third number. However,
it’s also problematic if all the data is divisible by M itself.

Example 2: Let’s keep M at 11, but use the data set of [56, 23, 100, 89, 12, 67,

45, 78, 34]. This data set is the data set from Example 1, except that each
integer has been increased by 1. When we divide each of these numbers by
11, we get a common remainder of 1.

Example 3: Even if the data were a mix of Examples 1 and 2, all of the data
will hash into either 0 or 1. This is pretty bad, as we’ll be using just 2 out of
the 11 available slots in the array. That is, all data would end up at index 0
or index 1 and not anywhere else.

One might brush this off by claiming that the odds of having these types of
data sets are slim. Indeed, that may be true if the data were picked
randomly. However, as I pointed out earlier, it’s not unreasonable to have
exam scores that are all divisible by the same number.

Furthermore, there are security issues to consider. If we have a high-volume
web application that depends on a hash table to allow for lookup speeds of
O(1), a nefarious hacker may be able to pull the rug out from under us. If
the hacker knows precisely what hash function we’re using, the hacker can
purposely feed our app data where all the data ends up in the same slot of
the underlying array. This could slow down our app to the point where we

can only search in O(N) time, and our app might conk out due to the heavy
load.

In short, computer scientists are horrified by the possibility of a data set on
which a given hash function performs poorly.

Fortunately, there’s a solution to this problem. And once again,
randomization comes to the rescue.

The concept of randomized hashing says that when we create an instance of
a hash table, we randomly pick the hash function that the hash table will use
for the remainder of the hash table’s existence.

I mentioned earlier that there are many different hash functions out there.
Now, each hash function has a weak spot, which is the particular data set
for which the hash function will not distribute the data uniformly. The idea
behind randomized hashing, though, is that each hash function has a
different weak spot. So, even if we have a data set that won’t work well
with Hash Function #1, it’ll work out fine if we instead use Hash Function
#2.

If we have, say, 100 hash functions to choose from, even if our particular
data set won’t work well with Hash Function #48, that may be okay. Since
we’re going to pick a hash function randomly out of a hat, the odds of us
picking Hash Function #48 for our hash table are only 1 out of 100.

So, with randomized hashing, when we instantiate a new hash table, the
hash table will randomly pick the hash function it’ll use. And once it
decides on a hash function, it must use that hash function forever. If we
hashed each key using a different hash function, we’d never be able to find
those keys ever again unless we knew what hash function we used for each
key. And that’s certainly not something we want to keep track of.

When we write code that uses multiple hash tables, it’s likely that each hash
table is using a different hash function. But again, each hash table will stick
with its unique hash function forever.

Hash Function Families
For a hash table to pick a random hash function, we need to first create a
pool of potential hash functions to choose from. One way we could do this
is to create a list of many of the different known hash functions out there.
The Division Method is one viable hash function, but there are plenty of
others, some of which have rather interesting names like MurmurHash,
CityHash, FarmHash, and SpookyHash.

However, there’s a simpler way to create a pool of hash functions. That is to
create what is called a hash function family. A hash function family is a
group of hash functions that all use the same general hashing method,
except that they differ with regard to some other detail. This will make
more sense with an example, so let’s go ahead and create a hash function
family out of division hashing.

Our approach will be to have lots of different hash functions that all use the
Division Method, but each hash function will divide values by different
numbers.

Let’s go back to our earlier example where M was 89. If K is 412341439,
we’ve learned that we’d compute K % M like so:

 412341439 % 89 = 78

Now, we can’t create other hash functions that have a different M.
Remember, M corresponds to the size of our hash table’s underlying array.
If the underlying array has 89 slots, we’re stuck dividing all of our values
by 89.

However, we can modify our division formula slightly so that we’re going
to perform not one, but two modulo operations. To do this, we’re going to
choose a second prime number, which we’ll call P, and run the following
formula:

 K % P % M

For our example, we’ll say that P is 10061, which is a prime number. This
gives us:

 412341439 % 10061 % 89 = 80

Thus, the hash code comes out to be 80.

This new variable, P, becomes the key to creating a hash function family.
Specifically, we can create multiple hash functions where each hash
function uses a different value for P. While they must all use the same value
for M, there’s no reason why they can’t have different Ps. Let’s see how this
allows us to create a hash function family and eventually solve our problem
of division hashing working poorly for a particularly unlucky data set.

Continuing with our example of M being 89, let’s create five different hash
functions. Each hash function will have one of the following possible P’s:
10037, 10039, 10061, 10067, or 10069. When each of these hash functions
hashes the same K of 412341439, we end up with five different hash codes:

 412341439 % 10037 % 89 = 70

 412341439 % 10039 % 89 = 69

 412341439 % 10061 % 89 = 80

 412341439 % 10067 % 89 = 66

 412341439 % 10069 % 89 = 35

At the same time, since each hash function also divides the results by the
same M of 89, we ensure that each hash code will all be within the range of
0 through 88. Again, this is exactly what we want if our hash table is to
distribute values into indexes 0 through 88.

And so, we’ve successfully created an effective hash function family. In
sum, this family consists of the following five hash functions:

 Hash Function #1: K % 10037 % M

 Hash Function #2: K % 10039 % M

 Hash Function #3: K % 10061 % M

 Hash Function #4: K % 10067 % M

 Hash Function #5: K % 10069 % M

Naturally, we can create hundreds of hash functions along these lines. We
need to find hundreds of prime numbers that can fill in for P. And indeed,
those prime numbers exist; there are plenty of prime numbers to go around.

With all this in mind, it’s pretty straightforward for the computer to select a
hash function at random. All it needs to do is choose a random value for P.
By picking a random P, we’ve effectively picked a random hash function.
This is true even though it’s already fixed that the hash function’s general
strategy will be to employ division hashing.

Let me bring this all back and spell out how we’ve solved our problem.
Again, our concern was that there might be a data set out there that simply
doesn’t get distributed uniformly by our chosen method of hash function,
such as division hashing, for example. Imagine, for example, that M was 89
and all the integers in our data set were divisible by 89. If we decide to use
the Division Method for our hashing approach, all the integers would get
shoved into index 0!

By having our hash table pick a P at random, there are high odds that the
Division Method will indeed distribute a given data set uniformly. We’d
only get messed over if the items in our data set were all divisible in the
same way by both M and P. Besides being extremely unlikely, it can in any
case no longer be said that there might be a data set that doesn’t distribute
well with the Division Method. The Division Method would indeed work
well for almost any P that we end up selecting.

And that makes one big, happy, hash function family.

Code Implementation: Randomized Hash Functions
It turns out that it takes relatively minimal code to implement random
hashing, at least at a basic level:

 import random

 class DivisionHasher:

 def __init__ (self, array_length):

 self.array_length = array_length

 # Choose a random prime number:

 p = random.randint(1000, 10000)

 while not self.is_prime(p):

 p = random.randint(1000, 10000)

 self.prime = p

 def hash (self, key):

 return key % self.prime % self.array_length

 # Fermat's Primality Test

 def is_prime (self, number):

 for _ in range(100):

 a = random.randint(1, number - 1)

 if pow(a, number - 1, number) != 1:

 return False

 return True

Let’s take a stroll through the code.

We’ve created a DivisionHasher class that acts as a “machine” that hashes a
value (which in our code is referred to as key) into a hash code. The
DivisionHasher class accepts an array_length variable that represents what
we’ve been calling M—that is, the length of a hash table’s underlying array.

To make things a little easier on us, we rely on the user to tell us what they
want their hash table size to be.

The next bit of code implements the randomization part of random hashing.
As we did earlier, our approach to random hashing is to pick a random
prime P that will be used for the computation of K % P % M. This P
effectively defines which hash function from our family we’ll be using.
Here, we randomly pick P and assign it to the variable self.prime:

 p = random.randint(1000, 10000)

 while not self.is_prime(p):

 p = random.randint(1000, 10000)

 self.prime = p

Here’s how we pick a random prime. We choose a random integer between
1000 and 10000. For this basic proof-of-concept example, we’re assuming
that the integers being hashed are all greater than 1000. For other types of
integers, this range would have to be adjusted.

We then ensure that the integer is prime by continuously picking integer
after integer until we find one that’s prime. This uses a helper method called
is_prime.

Now, here’s the fun part: how does the is_prime method work? Well, it uses
Fermat’s Primality Test, which we looked at in the previous chapter! Cool
beans.

The real action of our code, though, is the hash method. This method
accepts a key and returns a hash code using the snippet:

 return key % self.prime % self.array_length

This should look pretty familiar. It’s our formula of K % P % M!

It should also be noted that this hash method only works on a key that’s an
integer. If you wanted to hash a string, for example, you’d first perform
some computation to convert the string to an integer. You could,
theoretically, do this by converting each character to its corresponding
ASCII code and then multiplying or summing all the ASCII codes together.
We’ll explore this more in the next chapter.

I’ll emphasize that this entire implementation is bare-bones, and there are
many optimizations that can—and should—be made. My goal here, though,
is to simply present code that conveys the main ideas of this chapter.

Code Implementation: Bare-Bones Hash Table
Now that we’ve gotten this far, we may as well have fun by building our
own hash table from scratch. Again, you are way better off using Python’s
built-in dictionary, but this code implementation is here to help concretize
the concepts you’ve learned so far.

We’ll create our own hash table in two passes. First, we’ll implement a hash
table that is extremely basic but demonstrates how it makes use of the
DivisionHasher class. Then, we’ll add a couple more features (but the result
will admittedly still be pretty bare-bones).

First Pass
Here’s the first basic hash table implementation:

 import division_hasher

 class HashTable:

 def __init__ (self, array_length):

 self.array = [None] * array_length

 self.array_length = array_length

 self.hasher = division_hasher.DivisionHasher(array_length)

 def insert (self, key, value):

 hashcode = self.hasher.hash(key)

 self.array[hashcode] = value

 def search (self, key):

 hashcode = self.hasher.hash(key)

 return self.array[hashcode]

Like the DivisionHasher class, this HashTable relies on the user to decide the
size of the hash table’s underlying array. This is the argument array_length.

Here’s the constructor:

 def __init__ (self, array_length):

 self.array = [None] * array_length

 self.array_length = array_length

 self.hasher = division_hasher.DivisionHasher(array_length)

First, we create the underlying array, which we call self.array. We give it the
size of array_length and fill each slot with None for now.

Next, we save array_length as the instance variable self.array_length since
we’ll need to access it later.

Then, we choose which hash function our hash table will use. Here, we’re
using the DivisionHasher class we implemented earlier, which represents the
division hash function family. However, we could easily swap this out for
some other hash function family as long as we use a class that implements a
hash function. In any case, our hash function gets stored in a variable called
self.hasher.

Next, we have the insert method. We allow a user to insert a key-value pair
into the hash table using code like this:

 hash_table = HashTable(89) # array's size is 89

 hash_table.insert(55, 17)

That is, we’ll insert a key of 55 which has a corresponding value of 17.
Although throughout our discussion in this chapter, we’ve assumed that the
key and value are identical, in real life, the key and value are usually
different, as is the case here.

Here, again, is the insert method:

 def insert (self, key, value):

 hashcode = self.hasher.hash(key)

 self.array[hashcode] = value

First, we use self.hasher to hash the key into a hashcode.

Then, we place the value into the self.array at the index which is the hashcode.
So, if the hashcode for 55 is 9, then the value of 17 will be placed at index 9.

We also implement a search method, which allows a user to look up a value
by its key, such as:

 hash_table.search(55)

This will return 17.

In this first pass, the code for the search method is short and is similar to the
insert method:

 def search (self, key):

 hashcode = self.hasher.hash(key)

 return self.array[hashcode]

Here, we hash the key and get a hashcode. This hashcode represents the index
in self.array where our desired value will be found, so we go find it there.

Second Pass
Here’s a slightly better HashTable, but again, I’ll emphasize that it’s still not
nearly as robust as the real deal.

This version adds two important features. One is a delete method since it’s
pretty common to delete keys from a hash table. The other is that we now
handle collisions of keys, a problem I discussed in Volume 1, Chapter 8. In
short, the issue of collisions is that it’s possible for two different keys to be
hashed into the same hash code. This means that we have to somehow fit
both values into one array slot.

One approach for handling this is called separate chaining, which stores
multiple values in each array slot using another array (or linked list), which
I’ll call a “subarray.”

Here’s the specific way we’ll do this. If our hash table has five slots, each
slot will itself start out holding an empty array, like so:

 [

 [],

 [],

 [],

 [],

 []

]

Furthermore, we’ll need to store not just the values but also the keys so that
we can identify which value goes to which key.

So, let’s say that we insert the following key-value pairs:

 Key: 3, Value: "a"

 Key: 9, Value: "b"

If both keys 3 and 9 hash into the same hash code, say 0, here’s what the
hash table’s underlying array will look like:

 [

 [

 [3, "a"],

 [9, "b"]

],

 [],

 [],

 [],

 []

]

That is, in each subarray we’ll add a key-value pair in the form of yet
another array (a sub-subarray, I guess), where index 0 is the key and index 1
is the value.

Here’s the code:

 import division_hasher

 class HashTable:

 def __init__ (self, array_length):

 self.array_length = array_length

 self.array = [[]] * self.array_length

 self.hasher = division_hasher.DivisionHasher(self.array_length)

 def insert (self, key, value):

 hashcode = self.hasher.hash(key)

 for key_value_pair in self.array[hashcode]:

 if key_value_pair[0] == key:

 key_value_pair[1] = value

 return

 self.array[hashcode].append([key, value])

 def search (self, key):

 hashcode = self.hasher.hash(key)

 for key_value_pair in self.array[hashcode]:

 if key_value_pair[0] == key:

 return key_value_pair[1]

 return None

 def delete (self, key):

 hashcode = self.hasher.hash(key)

 for index, key_value_pair in enumerate(self.array[hashcode]):

 if key_value_pair[0] == key:

 del self.array[hashcode][index]

As you can see, a significant change in this version is that in the
constructor, instead of filling each slot of self.array with None, we fill it with
a blank subarray. This way, we can hold multiple key-value pairs in each
slot of self.array.

This has ramifications for all the methods of our class. In the insert method,
we now don’t simply insert a value but append to the subarray another array
that contains the key and value. Hence, the code:
self.array[hashcode].append([key, value]).

To improve the insert method further, I also provided the ability to overwrite
a key and give it a new value:

 for key_value_pair in self.array[hashcode]:

 if key_value_pair[0] == key:

 key_value_pair[1] = value

 return

For example, we may decide that the value associated with the key 3 should
now be "z" instead of "a".

Separate chaining also changes the way we search for values. In the updated
search method, you’ll note the newly added code that peers inside the proper
slot of self.array and performs a linear search to find the correct key-value
pair.

Lastly, I added a delete method. For example, if we want to delete the key of
3, we’d call the delete method like this:

 hash_table.delete(3)

The delete method hashes the key into a hashcode and then searches for the
key inside the appropriate slot of self.array. If we find the key, we delete the
entire key-value pair from self.array.

And so, we’ve created our own hash table from scratch. While it’s not
nearly as good as a Python dictionary, and you don’t want to use it in real
life, going through the process can help you better understand how hash
tables work under the hood.

Python Dictionaries' Hash Function
I mentioned that there are many different types of hash functions out there. The Division
Method is one of the simplest approaches, but there are plenty of more complex and nuanced
hash functions in the wild.

At one point, Python’s dictionary class used a hash function called Fowler–Noll–Vo, or FNV
for short. However, Python version 3.4 switched things up and now uses another hash
function called SipHash. Indeed, SipHash uses randomized hashing and hash function
families. In the words of the SipHash documentation:

“SipHash is a family of pseudorandom functions (aka keyed hash functions) optimized for
speed on short messages.”

For a fascinating read as to why this switch was made, you can find the details at
https://peps.python.org/pep-0456. It also makes for great dinner conversation.

https://peps.python.org/pep-0456

Wrapping Up
We took a deep dive into hashing in this chapter. You learned about division
hashing, hash function families, and how picking a hash function at random
can help avert a worst-case scenario for a hash table.

In the next chapter, we’re going to take a look at a clever Monte Carlo
algorithm that uses hashing to solve a common problem called substring
search. In fact, there’s a good chance that you rely on substring search daily
without even thinking about it. Along the way, we’ll also discuss some
crucial computer science concepts, such as base number systems and how
binary numbers truly work.

Onward!

Exercises
The following exercises provide you with the opportunity to practice with
hash functions, randomized hashing, and hash function families. The
solutions to these exercises are found in the section Chapter 10.

1. Imagine that you’re the nefarious hacker I described in the chapter.
You’ve found an app to exploit, and you obtained its source code.
(Bwah hah hah hah!) When reading the code, you discover that it
stores its data in a hash table, and the hash function being used is the
Division Method. However, it’s not randomizing the hash function in
any way. Instead, the app always uses the following hash function,
with K representing the key being hashed:

 K % 997

What data can you feed the app so that all the data ends up in the same
slot within the hash table?

2. Exploration: In this chapter, we only hashed numbers, but what if we
want to hash strings? Let’s extend our division hashing method so that
it can hash strings as well. To do this, we’ll rely on ASCII standards to
map each alphabet character to an integer. In Python, we can use the
ord method to convert a character to an integer. For example:

 ord('a')

 >>> 97

 ord('z')

 >>> 122

Modify the hash function from our DivisionHasher class so that it can
hash strings as well as integers.

3. Exploration: Once you’ve completed Exercise #2, here’s another thing
to think about. Does your hash function place anagrams in the same
slot? For example, does your hash function assign the same hash code
to both "listen" and "silent"? Can you make it so that your function
doesn’t necessarily assign the same hash code to anagrams?

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 11

Keeping Your Text Search Sharp
with a Little Rabin-Karp

In the previous chapter, you gained deeper insight into hash functions and
even built your own basic hash table using division hashing. However, hash
functions can be used even outside the context of hash functions to solve all
sorts of different problems, sometimes in surprising ways.

In this chapter, you’ll discover one innovative way in which hash functions,
when wrapped in a Monte Carlo algorithm, can be used to solve a common
and fundamental problem known as substring search.

Substring Search
When you’re working on your code in your text editor and you need to find
the variable doris_the_cat somewhere within thousands of lines of code, it’s
unlikely you’ll go scrolling down the code until the variable catches your
eye. Instead, you’ll probably use your text editor’s “find” feature, in which
you’ll enter doris_the_cat, or just doris, and your editor will immediately put
the first instance of that variable in view. While most of us take this feature
for granted, it’s not at all trivial to find the string doris_the_cat amid
thousands of lines of code so quickly.

This problem is known as substring search. That is, we have some large
body of text (such as a code file), and a smaller string (such as doris_the_cat),
and we need to find the smaller string within the larger body of text. We can
think of this as searching for a needle within a haystack. In computer
science jargon, the needle is called the pattern, and the haystack is called
the text. However, I’ll continue to use the terms “needle” and “haystack,”
since the term “text” is vague and can make things confusing.

Numerous algorithms exist that solve substring search, and researchers are
still on the lookout for even faster alternatives. We’ll look at a couple of
them in this chapter, starting with brute force.

Brute-Force Substring Search
The idea behind brute-force substring search is to use two loops to search
the haystack. The outer loop combs through each character of the haystack
one at a time, and when it finds a character that matches the first character
of the needle, an inner loop begins. Before we get to the inner loop, though,
let me show you what I’m talking about.

Say that our needle is the string "bet" and the haystack is the string
"flibbertigibbet". (Of course that’s a real word. A flibbertigibbet is an
excessively talkative person.) We begin with two pointers, one that points to
the needle’s first character, and the other that points to the haystack’s first
character:

We check if the two characters match. Currently, they don’t, so we move
the haystack’s pointer onward:

Again, the haystack’s letter "l" does not match the needle’s letter "b", so the
haystack pointer needs to move on. Let’s skip to the exciting part, where the
haystack and needle pointers do match:

Oh, a match! Both pointers point to "b"s. Now, this is when we begin the
inner loop I mentioned earlier. That is, we keep the haystack pointer in
place, but set a new, second haystack pointer—represented by an emoji in
the diagram shown—to scan the rest of the needle. I’ll call this second
pointer the “emoji pointer.” (I want to give this pointer a unique name, so
there it is.)

After initializing the emoji pointer, we move the needle pointer along to the
next character. We then check whether the needle pointer and the emoji
pointer point to matching letters.

The emoji pointer is sad because the "b" that it points to does not match the
"e" of the needle pointer. This means that we have not found our matching
substring—yet.

To continue our search, we terminate our inner loop and get rid of the emoji
pointer for the time being. We reset the needle pointer to point back to the
needle’s first character and begin the next round of the outer loop. As we’ve
done with the previous rounds of the outer loop, we next compare the
haystack and needle pointers to see if we have a match:

And sure enough, we do! This means we begin an inner loop once again,
which also means we get to bring our emoji pointer back, and also
increment our needle pointer. We then check to see whether the emoji
pointer and needle pointer yield a match:

This is terribly exciting because the emoji pointer and needle pointer both
point to an "e"! We now have matching substrings of "be". Are we about to
find our needle of "bet"? Well, let’s move the emoji and needle pointers
along and see:

Bummer, it’s not a match. Our inner loop terminates, and we’ve got to reset
our needle pointer back to the beginning, dispense with the emoji pointer,
and move on. We’ll skip a few steps once again and reach the climax of our
search:

The "b"s match, so we fire up an inner loop. We activate our emoji pointer
and move the needle pointer along:

Again, a match! Will we, once and for all, find our complete needle?

You bet! At this point, our algorithm will return the haystack index where
the beginning of the needle can be found.

And that wraps up our brute-force substring search walkthrough.

Code Implementation: Brute-Force Substring Search
Here’s one way to implement brute-force substring search:

 def find_needle (haystack, needle):

 for haystack_index in range(len(haystack) - len(needle) + 1):

 for needle_index in range(len(needle)):

 if needle[needle_index] != haystack[haystack_index +
needle_index]:

 break

 if needle_index == len(needle) - 1:

 return haystack_index

 return None

Here, the haystack_index serves as the haystack pointer and needle_index as
the needle pointer. We get our “emoji pointer” by adding the haystack_index
and needle_index together, rather than declaring an explicit “emoji pointer”
variable (which would be weird).

Once the needle_index reaches the end of the needle, it means we found the
needle in the haystack. Accordingly, we return the haystack_index, which is
the location of the needle’s first character within the haystack.

The Efficiency of Brute-Force Substring Search
In many practical cases, brute-force substring search isn’t half bad in terms
of speed. In looking at the previous example, our haystack pointer touched
each haystack character once, which is O(N) if N represents the number of
characters in the haystack.

For clarity’s sake, I’m going to use the variable H, instead of N, to refer to
the number of haystack characters, with H standing for “haystack.” I will
instead use N to refer to the number of characters in the “needle,” since
“needle” starts with the letter N. In short, H is the number of haystack
characters, and N is the number of needle characters. Got it?

So far, then, we can say that our haystack pointer will point to all H
characters of the haystack.

The additional steps of the algorithm consist of moving the needle and
emoji pointers, which we do in tandem within an inner loop. In the earlier
example, we only launched this inner loop a handful of times. We also saw
how the inner loop terminated after a couple of iterations before hitting a
mismatch between the needle and emoji pointers. In fact, the inner loop will
never run more times than the number of N needle characters. That is, if the
loop does manage to run N times, that means we’ll have scanned the entire
needle, and there’s nothing left for the loop to do. By that point, we’ll know
whether the needle was found at that point in the haystack or not.

In the earlier walkthrough, only a handful of inner loop steps were
executed. We might be tempted to simply discount those steps entirely and
say that our algorithm ran in approximately O(H) time. Indeed, brute-force
substring search does take O(H) time for average-case scenarios. However,

as you know, when evaluating an algorithm’s efficiency, we also need to
take into account the worst-case scenario.

Here’s an example of a kind of worst-case scenario for substring search.
Say that the needle is "aaaab" and the haystack is "aaaaaaaaaaaaaaaaaaab". In
this case, for every haystack character (save for the last few), we have to
activate our inner loop. And the inner loop itself will scan the full length of
the needle. Therefore, we’d say that brute-force substring search can take
up to O(HN) in the worst case. This can be slow if we’re dealing with a lot
of text.

Luckily, there are a number of algorithms out there that improve the
performance of substring search. These are perhaps the three most famous:

Knuth-Morris-Pratt (otherwise known as KMP)
Boyer-Moore
Rabin-Karp

All three of these algorithms run in O(H+N) time even for the worst-case
scenario. Note that O(H+N) is much faster than O(HN).

Of these three algorithms, we’ll explore the Rabin-Karp algorithm. It ties in
nicely with many of the concepts discussed earlier in this book, and it will
also unlock a bunch of new and useful concepts. One of those new and
useful concepts is a technique that many refer to as the “sliding window”
technique. So, let’s kick things off with that.

The Sliding Window Technique
Here’s a seemingly simple problem that has nothing to do with substring
search. Say we have the array [3, 2, 7, 4, 6, 3, 5, 8], and we want to find the
greatest contiguous four integers that yield the greatest sum when added
together. Here’s what I mean.

The first four integers of the array 3, 2, 7, 4 are contiguous, meaning they’re
all in a row. And when we add them together, we get a sum of 16. Cool.

The problem I’m proposing is to find the set of four contiguous integers that
will yield the greatest sum in the array. For example, there’s another set of
four contiguous numbers—7, 4, 6, 3—that add up to 20. Is this the greatest
sum we can get, though? Let’s devise an algorithm to figure this out.

One approach we can take is brute force. Specifically, we simply try out
every set of four contiguous numbers and keep track of which set gives us
the greatest sum. That is, we try 3, 2, 7, 4 and then 2, 7, 4, 6 and then 7, 4, 6, 3,
and so on.

To articulate the time complexity of this approach, we need to note that we
have two variables to contend with. First, we have the length of the array,
which we’ll call N. But we also have the number of how many contiguous
integers we’re summing up. In our example, we’re working with sets of 4
contiguous numbers, but alternative problems might have us find the
greatest sum of 3 numbers or 5 numbers. We’ll call this second variable K.

It turns out that for the brute-force approach, for each of the N elements of
the array, we have to compute the sum of K elements. The only saving
grace is that we don’t need to do this for the last three elements. Once we
calculate the sum of the final four elements, we’re done—since there are no
more groups of four elements after that point.

In the end, brute force here takes about NK steps, which in Big O is
expressed as O(NK). This has the potential to get unwieldy if our problem
involved more numbers. If, for example, our array had 1,000 values and we
were adding up 10 contiguous numbers, we’d have to perform 10,000 steps.
However, we can use a more clever approach—the *sliding window
technique—to complete our task in O(N) time. Here’s how it goes.

We begin by computing the sum of the first four integers:

The box surrounding the four integers is our “window.” So far, we haven’t
done anything clever. But watch what we do in the next step:

Instead of performing a brand-new computation to add up the next four
integers, 2, 7, 4, 6, we only perform one subtraction and one addition. That is,
because we know that the current window shares the numbers 7, 4, 6 with
the previous window, we don’t need to add those numbers up again. The
only difference between the current window and the old window is that the
current window drops the 3 and adds an additional 6. So, to compute the
sum of the current window, we take the sum of the old window, and simply
subtract 3 and add 6.

This is the essence of the sliding window technique. Because the window
“slides” incrementally, we only need to compute the differences between the
new window and the old window instead of recomputing everything over
again.

Moving on with our walkthrough, the 19 yielded by the current window is
greater than the 16 produced by the previous window. (We can use a
variable to keep track of the greatest sum we’ve encountered so far.) Let’s
see what happens when we “slide the window” in the next step as shown in
the diagram.

Here, we subtract 2 and add 3, giving us 20, which is the greatest sum
encountered so far. Although you may grasp the idea by now, let’s see this
example to the end (even at the risk of you thinking me a flibbertigibbet).

We slide the window again:

This window yields 18. As of this point, 20 is still the greatest sum. We have
one final step:

Aha! This final window sums to 22. Given that this is the greatest sum
we’ve found, this is the result that our algorithm will output.

The efficiency of this approach is O(N) since we make a single pass
through all N values. For each window, we perform a constant number of
computations, that is, one addition and one subtraction. Even if the problem
was changed so that we were searching for the greatest sum of 10—or even
100—contiguous numbers, this doesn’t affect the speed of our algorithm

whatsoever. No matter what, we’ll only perform one addition and one
subtraction for each of the N values. The K variable no longer matters.

This is a massive win since the sliding window algorithm executes in O(N)
time vs. the O(NK) time of the brute-force approach.

Code Implementation: The Sliding Window Technique
Here is a Python implementation of the sliding window algorithm:

 def max_sum_of_four_integers (array):

 current_window_sum = 0

 for i in range(4):

 current_window_sum += array[i]

 max_sum_so_far = current_window_sum

 for i in range(4, len(array)):

 current_window_sum += array[i]

 current_window_sum -= array[i - 4]

 max_sum_so_far = max(max_sum_so_far, current_window_sum)

 return max_sum_so_far

We begin by creating the initial window and storing the sum in the variable
current_window_sum. We also create a variable max_sum_so_far, which will
track the greatest window sum we encounter. We return this variable at the
end of the function. To start, though, this variable will contain the sum of
the current window.

We then begin a loop that “slides” the window along. We do this by starting
the loop’s index (i) at 4. This is because array[4] is the value just to the right
of the previous window. Because this is the new value we’re adding to the
new window, we add this value (array[i]) to current_window_sum.

At the same time, we subtract from current_window_sum the value at array[i -

4], as this is the first value of the previous window. If the current_window_sum

is greater than the max_sum_so_far, we update the max_sum_so_far to now be
the current_window_sum. We then continue to slide the window by
incrementing i, and repeat this entire process until we reach the end of the
input array.

We’re now ready for the Rabin-Karp algorithm, which, in fact, uses the
sliding window technique.

Rabin-Karp Substring Search
The Rabin-Karp substring search algorithm is doubly clever, for it relies not
on one, but two clever tricks to perform substring search in O(N) time.

The first trick is that it performs a hash function to convert the needle and
haystack window into integer hash codes. That is, the entire needle
becomes a single integer, and so does the haystack window. If these two
integers are the same, it means that the needle and haystack window are the
same.

The reason this is a big deal is that, as I noted earlier, it takes multiple steps
to compare our needle to a section of the haystack. That is, comparing
"aaab" to "aaaa" or "ddde” to "dddd" requires us to perform up to four
comparisons. But when it comes to comparing two integers, well, a
computer can do that in a single step, assuming that the integers aren’t
terribly long. Even if the integers have multiple digits, computers compare
integers in constant time, something they cannot do with strings.

For example, say we use a hash function to first convert "ddde" into the
integer 3334 and "dddd" into the integer 3333. At this point, the computer
only has to perform a single-step comparison of integers 3334 with 3333 to
know that there’s no match.

Now, the potential flaw with this first trick is that although comparing
integers takes constant time, it takes multiple steps to hash all the characters
of a string into an integer. This is because a hash function needs to perform
a computation with each and every character of the string to produce a hash
code.

For example, let’s say our hash function works like this: We convert each
character with a number according to the scheme that "a" = 0, "b" = 1, "c" =
2, "d" = 3, and so on. So, "cab" would become 201, and "bad" would become

103. However, this still requires the hash function to process each letter to
convert it into its corresponding numerical digit. If a string has 100
characters, this would take 100 steps. So, while the first trick is nice in
theory, it would seem that it doesn’t save us any time.

But this is where the second trick comes in. The second trick is that we use
—you guessed it—the sliding window technique so that we never have to
hash the same character more than once.

Now that you’ve seen the two “tricks” we’ll be using, let’s get into the fine
details.

Rabin-Karp in Action
First, we’ll look at a simplistic version of the Rabin-Karp algorithm, and
from there, we’ll move on to a more sophisticated approach. In this
simplistic model, we’re going to work with text that only contains the
letters a through j. That is, we’re going to deal with an alphabet that
contains only 10 letters. We’ll use the same scheme we did earlier, where a
is 0, b is 1, all the way up to j, which is 9. (Later, we’ll extend this to the full
26-character English alphabet.)

Now, say we want to find the needle "cafe" within the haystack
"decafcafeahead". In the following diagrams, I put each letter’s corresponding
number right above it for ease of reference.

We’re now ready to launch the Rabin-Karp substring search algorithm.

The first thing the algorithm does is perform our hash function on the
needle "cafe", turning it into a hash code of 2054 as shown in the diagram.

Now, it may seem straightforward to perform this conversion; after all,
we’re simply mapping each letter to its corresponding number. However,
there’s a tad more math going on here than first meets the eye. But we’re
going to defer that discussion until the next section. Let’s get a simple
overview of Rabin-Karp first.

At this point, all we’ve done so far is hash our needle. Going forward,
Rabin-Karp performs the following steps:

Step 1: We establish a “window” at the beginning of the haystack.
Throughout the algorithm, the haystack window will always be the same
length as the needle. In our example, the window spans four letters. We
next hash this haystack window, and compare its hash code to the needle’s
hash code:

Because the haystack window hash code is 3420 and is most certainly not
equal to the needle’s hash code of 2054, we know that our haystack window
and needle do not match. The next step is where the sliding window
technique kicks in. Going forward, I’m going to refer to the haystack
window simply as the “window.”

Step 2: We slide the window one letter to the right, encompassing the letters
"ecaf". Now, we could hash this new, second window of "ecaf" in the same
way we did our first window of "deca", but this would take too much time.
Instead, we perform our sliding window trick, relying on the fact that the
windows "deca" and "ecaf" share the same letters "eca" (which hashes to 420).

The only differences are that the first window had an extra "d" at the
beginning and the second window has an extra "f" at the end. So, we do this:

That is, we drop the initial 3 and tack on a new 5 at the end. Brilliant, right?
The 420 part doesn’t have to change at all since both windows have that in
common. This saves us from hashing the 420 digits again; we’ve already
done that when we processed the first window. (Again, I’m glossing over
some of the math for the moment.)

At this point, our current window is "ecaf", and our sliding window hash
function computed its hash code of 4205. Because our needle’s hash code is
2054, this means we have not found our match.

Step 3: The next step is to slide the window another notch to the right:

Applying the same sliding-window-hashing technique described earlier, we
drop the old 4 from the beginning and tack on a 2 at the end, giving us a
new hash code of 2052. While this isn’t far off from our needle’s hash code
of 2054, it’s not on the nose, so we have yet to find a match.

To move things along, we’ll skip Steps 4 and 5 and get to the punchline.

Step 6: After sliding the window three more notches, we get this:

Here, the current window computes a hash code of 2054, which is an exact
match of our needle’s hash code. This means we found a match! Indeed,
both the window and our needle are the same characters, "cafe".

The Rabin-Karp Hash Function
The hash function described in the previous section seems pretty simple.
We take a string, such as "bcd", and convert it into an integer based on the
number that each character corresponds to. Because b is 1, c is 2, and d is 3,
we convert "bcd" into 123.

This hash function would be as simple as I described it if we were
converting the string "bcd" into a string that was "123". But we’re not. We’re
converting the string "bcd" into the integer 123. As noted earlier, the reason
why we make the hash code an integer is that it’s faster to compare two
integer hash codes than it is to compare two string hash codes. The thing is,
though, that it takes a little math to convert a string into an integer.

To understand why this is so, you need to close your eyes and take a trip
down memory lane. Picture yourself as a student in the third-grade
classroom. At the front of the classroom, Mrs. Wilson was up at the
chalkboard (remember those?) and teaching math. She was pontificating
about the true meaning behind multidigit numbers, that is, numbers that
contain more than one digit. On the chalkboard, she demonstrated that the
meaning behind the number 2,054 is actually:

That is, the 2 in 2054 represents the thousands place, the 0 the hundreds
place, the 5 the tens place, and the 4 the ones place.

Okay, you can open your eyes now.

Based on what Mrs. Wilson taught us, if we want to convert "cafe" to 2054,
our hash function cannot simply convert the c from "cafe" into a 2. It needs
to convert the c into a 2000.

So, to convert the entire string "cafe", we need our hash function to do the
following:

This isn’t terribly complicated, and we’ll look at the code for this in a little
bit. In any case, this is the hash function we’ll use to hash our needle and
the first window from our haystack. Now, let’s move on to how our hash
function should work as we slide our window through the haystack.

Let’s back up to the beginning of our example. We started off by hashing
the first window of "deca" into 3420:

So far, so good. We just saw how this hash function works.

In the next step, though, we did this:

Now, what the hash function does here is not identical to hashing the first
window. Because we’re using the sliding window technique, we don’t
bother to hash "ecaf" from scratch. Instead, we eliminate the starting 3 from
the previous hash code, and the only new item we need to hash is the final
"f". This becomes a 5, which we tack on at the end of 420, turning 420 into
4205. So how does this hash function work, exactly?

The thing here is to remember Mrs. Wilson. We’re dealing with multidigit
numbers, so we need to reckon with our thousands place, hundreds place,
and so on.

The sliding window hash function goes like this. (I’ll show you a visual
depiction of the computation first, and then explain it.) Here’s how we
convert 3420 into 4205:

Let’s break this calculation down. Again, our goal is to do two things to the
3420 in order to convert it into 4205: we need to drop the initial 3, and we
need to tack on a 5 at the end.

First, we drop the starting 3. Because that 3 represents 3000, we need to
subtract 3000 from 3420 to eliminate that 3. This leaves us with a remainder
of 420.

Now, you and I know by looking at the 3420 that its 3 represents 3000. But a
computer didn’t take Mrs. Wilson’s class, so somehow, we need to tell the
computer how to convert that 3 into 3000. In other words, how do we get the
computer to understand that the 3 represents the thousands place?

The key is understanding that what the first digit represents is tied directly
to the haystack window size. When the window size is 4, the first digit will
represent the thousands place. But if our window size was 3, then the first
digit is the hundreds place, and if the window size was 5, then the first digit
would represent the ten-thousands place.

So, to figure out what number to multiply the first digit by, we take 10 and
raise it to the power of the window size minus 1. In our example, the
window size, 4, minus 1 is 3. When we raise 10 to the power of 3, we get
1,000. We can then multiply this number by our first digit to see what the
first digit represents. In our case, where the first digit is 3, this gives us 3000.

If our window size were 5, then we’d raise 10 to the power of 4 and get
10,000. If our first digit is 3, we’d know that the 3 represents 30000.

In any case, in our example, we’ve computed that the first digit represents
3000. And so, when we subtract that from 3420, we end up with 420, which
means that we successfully dropped the initial 3. Our next step is to convert
the 420 into 4205.

Thankfully, this part is a little more straightforward. We convert the 420 into
4200 by multiplying it by 10. In effect, this moves each digit one notch to the
left to make room for our new digit. Once we have this result of 4200 in
hand, we simply add the new, final digit of our current window to it. Since
in our example the final digit is 5, this gives us 4205.

By the way, a hash function that employs the sliding window technique is
known as a rolling hash function.

Note that our hash function for hashing the first window (as well as the
needle) is a plain old regular hash function. I’ll refer to this as the “initial
hash function.” But the hash function we use for hashing the second and
subsequent windows is the “rolling hash function” I just described.

Whew! Now that we’ve seen how our hash function works, let’s write up
some code.

Code Implementation Rabin-Karp for Base 10
Our current illustration of the Rabin-Karp algorithm is still a simplistic
variant, but we’re not far off from the full algorithm. However, let’s spin up
some code for what we’ve covered so far:

 def find_needle (haystack, needle):

 needle_hash_code = initial_hash(needle)

 window_hash_code = initial_hash(haystack[0:(len(needle))])

 if needle_hash_code == window_hash_code:

 return 0

 for index in range(1, len(haystack) - len(needle) + 1):

 drop_character = haystack[index - 1]

 new_character = haystack[index - 1 + len(needle)]

 window_hash_code = rolling_hash(window_hash_code, len(needle),

 drop_character, new_character)

 if needle_hash_code == window_hash_code:

 return index

 return None

 def initial_hash (string):

 power = 0

 result = 0

 for char in reversed(string):

 result += character_hash_code(char) * 10**power

 power += 1

 return result

 def rolling_hash (hash_code, window_length, drop_character, new_character):

 drop_number = \

 character_hash_code(drop_character) * 10**(window_length - 1)

 result = hash_code - drop_number

 result *= 10

 result += character_hash_code(new_character)

 return result

 def character_hash_code (char):

 return ord(char) - 97

Here, our primary method is find_needle, which accepts both the haystack and
needle arguments. If the needle is found, the method will return the index of

where the needle’s first character is found within the haystack. If the needle is
nowhere to be found, we return None.

The find_needle method relies on the two hash functions I described earlier,
namely, our initial hash function and our rolling hash function. I placed the
code for these hash functions in their own distinct methods: initial_hash and
rolling_hash, respectively.

First, the find_needle method performs the initial_hash function on the needle

and the first window of the haystack. This provides us with the hash codes of
both the needle and the first haystack window. At this point, we check
whether the hash codes are the same, which would indicate that the needle

and haystack window are both the same. If they are, we return 0 to indicate
that the needle can be found at index 0 within the haystack.

If we don’t have a match, we then begin a loop that iterates over almost
every index of the haystack. We begin at index 1, and end at whichever
index will be the first character of the final window. Within this loop, we
identify the drop_character, which is the first character of the old window.
Likewise, we locate the new_character that is being introduced as the final
character of the new window.

We compute the new window’s hash code by performing the rolling_hash

function, and then check to see if the new window’s hash code matches the
needle’s hash code. If we find a match at any point, we return the current
index, which is where our current haystack window begins. If we get
through the entire haystack without finding the needle, we simply return
None.

The initial_hash and rolling_hash functions track with the math I described
earlier. Note that they both rely on yet another function, character_hash_code,
which returns the hash code for a single character. I’ve set it up so that "a"

will return 0, "b" will return 1, and so on. To do this, I subtract 97 from
whatever Python’s built-in ord function returns since ord("a") is 97, and
ord("b") is 98, and so on, corresponding to the characters’ ASCII codes.

Collision Ahead
Although we’ve seen the gist of the Rabin-Karp algorithm, we need to iron
out a few more details. The first item is that, until now, we’ve dealt with
examples where our strings only contain letters a through j. Ultimately,
though, we want our algorithm to work with the full 26-letter English
alphabet. In fact, we want it to work for even larger character sets that
include lowercase and uppercase letters, numbers, punctuation marks, and
more. Indeed, the full ASCII character set contains 256 possible characters.
But for now, let’s deal with the set of 26 lowercase alphabet letters.

Here’s why we care about the size of the character set.

Let’s extend our letter-to-number scheme to the rest of the alphabet, even
beyond the letter j. So h corresponds to 10, i corresponds to 11, and so on,
until z, which corresponds to 25. (The letter a corresponded to 0, so our final
letter, the z, ends at 25.)

Here’s what happens if we try to hash the word "hazy":

While this computation seemed to work out, there’s a subtle flaw here.

Let’s zero in on the "z" and the "y". In fact, let’s pretend that the entire string
was just "zy". If we hash "zy" according to this method, we get 274.

The problem is that "zy" isn’t the only string that has a hash code of 274.
After all, "che" also hashes to 274.

This was not a problem when we only dealt with letters a through j, though.
Because there are only 10 possible characters, we are guaranteed that each
character’s corresponding digit (0 through 9) will only take up one “place”
in the larger number. That is, if the final character of our string is "e", its
corresponding number of 4 will be entirely contained within the ones place.
Even the highest available character—"j"—corresponds to 9, which is a
single digit.

But if our final letter is "k", which corresponds to 10, that’s a double-digit
number, so the hash code “bleeds” from the ones place into the tens place.
This, in turn, introduces the problem we saw earlier. That is, the hash code
10 could represent "k", but it could also represent "ba" since "b" is 1 and "a" is

0. There’s no longer a way to know for certain what string a given hash
code is supposed to represent.

In fact, you can even have two different strings of the same length that
convert to the same hash code. For example, both "lk" and "ma" have the
hash code 120. This is because "m" is equivalent to 12, and "a" is 0. Because
the a converts to a single digit, it doesn’t bleed at all into the tens place.
This gives us a hash code of 120 since we have 12 tens and 0 ones.

But the string "lk" is an entirely different story. The character "l" converts to
11, and "k" converts to 10, which is also two digits. This 10 bleeds from the
ones place into the tens place, and also causes "lk" to have a hash code of
120. That is, we have 11 tens, and 10 ones. This is 110 + 10 = 120.

Our algorithm might mistakenly think it found a match if our needle is "lk"

and the haystack window is "ma"! Because of this, our hash function needs
to make sure that when we convert a string into a numerical hash code, each
character of that string converts into a number that can be contained within
a single digit place.

So, how do we apply Rabin-Karp to a character set that contains more than
ten letters?

Covering All Our Bases
The solution to this problem is to use a different number base to represent
our numbers. While our day-to-day number system uses base 10, if we want
our hash function to cover 26 letters, we need to switch to base 26. This
will ensure that each character’s hash code will be contained within one
digit place.

If the previous paragraph made perfect sense to you, you can skip the rest of
this section. But if you’re a little fuzzy on the details of number base
systems, read on.

Take the number “ten.” Note how I spelled out this number using
alphabetical characters. If I wanted to express this same number using
numerical digits, I’d write “10.” However, this isn’t the only way to express
the number “ten” using numerical digits. Before I move on to the
alternatives, though, let me expound a bit on the “normal” system.

Base 10: The “Normal” System
The way we write numbers day to day is known as the decimal system, and
is also called base 10. The idea behind base 10 is that we have 10 different
numerical characters available to us, namely, the character set 0, 1, 2, 3, 4, 5,

6, 7, 8, 9. No matter how large a number we want to express, we’re only able
to use characters from this set.

So, to express the numbers zero through nine, I can do so using the 10
different numerical characters available to me. But how do I express the
number “ten” itself? If I wanted to do this using one digit, I’d need an
eleventh type of character. I could use fancy characters such as § or £, or
alphabet letters, or even emojis if I so desired, but I’d need some sort of
additional character beyond the digits 0 through 9.

But those characters don’t exist in the base 10 system. So we’re forced to
express the number “ten” by using multiple digits, putting various digits in
different places.

When we express the number “ten” as 10, we’re saying that there’s 1 ten,
and 0 ones. The number 25 means that there are 2 tens and 5 ones.

The same goes for representing the number one hundred. We can express
the number 99 using two digits, but when we want to express a larger
number, we’ve simply run out of ways in which we can use only two digits.
So, we move on to the hundreds place, and write out 100.

That’s how the base 10 system works. However, there can be a base system
using any number, such as base 8, or base 26, or base 457. While we don’t
generally use these other bases in day-to-day life, some alternative bases are
used in specific applications, especially in the world of computers.

Base 2: The Binary System
One of the most well-known bases outside of base 10 is base 2. Indeed,
base 2, also known as the binary system, or just binary, is the number
system that computers understand best. Just as base 10 has ten different
numerical characters, base 2 has two numerical characters. These characters
are 0 and 1.

With this system, like most other systems, “zero” is written out as 0, and
“one” is written out as 1. However, expressing the number “two” presents a
hurdle, as we only have the characters 0 and 1 available to us. And so, we
need to start using two digits. However, whereas with base 10, the second
place from the right is the tens place, in base 2, the second place is the twos
place. So here’s how we write out “two” in binary:

This means that there’s one “two” and zero “ones.” In other words, this is
the number two.

To express the number three in binary, we’d write: 11. That is, there is one
“two” and one “one.” When you have a two and you have a one, that makes
three.

To express the number four, though, we have to introduce a third digit
place, since the greatest number we can express using two digits is the
number three. Now, this third place expresses how many fours there are. In
other words, it’s the fours place. So, “four” is expressed as 100. Weird! In
base 2, then, 100 is not “one hundred,” but “four.”

Here are a few more binary examples:

As mentioned, computers run primarily on base 2 since most computers
store data in binary format. Whether it’s words, images, videos, or songs,
under the hood, they’re all stored as binary numbers.

True story: I once bumped into an old friend, and when I told him that I’d
become a software engineer, he asked me in all honesty whether I write
code in zeroes and ones. I explained to him that—yes, of course—in fact,
the keyboard I use has only two keys! He was quite impressed.

Base 16: The Hexadecimal System

Let’s move on to another system, namely, base 16, which is also known as
the hexadecimal system. The funny thing about the hexadecimal system is
that 16 is greater than 10. This means that we have sixteen different
numerical characters available to us.

Now, that may seem daunting, given that in real life we don’t have
numerical digits beyond 9. But here’s how we pull this off.

In hexadecimal notation, we have the following “numerical” characters
available to us: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f. That is, a represents “ten,”
and b represents “eleven,” and so on. The final character, f, represents
“fifteen.” That’s right; in base 16, the letters a through f are numbers.

Of course, even base 16 has its limitations. When we want to express the
number “sixteen,” we’ve run out of single characters to use. And so, we
move on to the next place over, which is the sixteens place. In hexadecimal,
10 is “sixteen.” That is, there’s one sixteen, and zero ones.

The greatest number we can express with two digits is ff, which is fifteen in
the sixteens place, and another fifteen in the ones place. This comes out to
two hundred fifty-five, as (15 * 16) + 15 = 255.

To express two hundred fifty-six, though, we need to move over to the next
place, which is the two-hundred fifty-sixes place. And so, in hexadecimal,
100 is what in decimal we call 256.

It can be a little hard to wrap one’s mind around this, but the hexadecimal
number a2e6 is forty-one thousand, seven-hundred two. This is because:

You may have encountered hexadecimal numbers before. Very often,
computer colors are expressed as hexadecimal numbers, otherwise known
as hex codes. For example, #2ECC71 is a lovely shade of green.

As I said, you can make a base out of any number. However, some of the
most commonly used ones beyond the decimal system, especially in
computing, are base 2 (binary), base 8 (octal), and base 16 (hexadecimal).

Before concluding this section, I want to point out something that holds true
for all base systems. No matter the base system, we use the following
scheme to determine what number each digit place represents. In the
following visual, the b is a variable that represents the base number. So for
base 2, the b is 2, and for base 10, the b is 10:

That is, the right-most digit place in all base systems is b0. Now, any
number raised to the power of zero is 1, so the right-most digit place is
always the ones place. But as we move leftward, each place is raised to the

next power. The table shows you how this plays out for bases 2, 10, and 16,
but this pattern holds true for every base system.

Okay! We’ve covered the basics of base systems. Now, let’s see why this
matters for the Rabin-Karp algorithm.

Perfecting Rabin-Karp with Base 26
Let’s quickly review the problem we encountered earlier. The Rabin-Karp
algorithm worked fine when we were dealing with an alphabet of 10
characters. This is because each character, when converted into an integer,
would live by itself in its own digit place within a larger number. With such
a scheme, it was impossible for any hash code to represent more than one
string, which is a good thing.

But as soon as we introduce more than 10 characters into our alphabet, we
now have characters that convert to two-digit numbers, such as k, l, and m,
which convert to 10, 11, and 12, respectively. And two-digit numbers take
up, well, two digit places. And when this happens, we can no longer know
if a two-digit number represents a single character that corresponds to a
two-digit number, or if it corresponds to two single characters that each
correspond to a single-digit number.

Additionally, we saw how a single hash code (that is, 120) can represent
both "lk" and "ma", even though they both have the same number of
characters. What we need is some way to ensure that each character will
only take up one digit place, even after we hash it. Fortunately, we can use
what we learned about numerical base systems to help us.

The String Is a Number
Before we look at how base systems will make things better, let’s first take
another look at strings, this time from an entirely different perspective.

If we chose to, we could look at any alphabetical string as if it were a
number. Here’s what I mean.

Let’s work with our familiar scheme of a = 0, and b = 1, and so on. What hash
code does the string "cab" convert to?

That’s right, the string "cab" is equivalent to the integer 201.

If we wanted to, we could say that the "cab" is the number 201. We happen to
be using alphabetical “digits” rather than numerical digits to express this
number. This may sound like mere semantics, but trust me, it’ll help.

Based on this perspective, we’d also say that until this point, our hash
function has been viewing a string as a base 10 number and converting its
digits from alphabetical ones into their numerical equivalents.

The problem, though, was that when our strings contained characters that
came after the letter j, our strings made for terrible base 10 numbers. This is
because when we represent a base 10 number using numerical digits, each
numerical digit takes up one digit place. But when we use a string, many
characters take up two digit places.

A New Base System for Strings
The trick to solving our problem is this: instead of treating a string as a base
10 number, we should treat it as a base 26 number. More generally
speaking, the base system of a string should correspond to the number of
characters in the alphabet we’re using.

Let me spell out what it means to treat a string as if it were a base 26
number.

In base 26, here’s what each digit place represents:

Let’s now take the string "bmm". (I know, it sounds pretty random, but wait
for it …) If we treated this as a base 26 number, what number would it be?
If you have the self-control of a yoga master, try to work this out for
yourself before reading on.

Here’s how "bmm" breaks down as a base 26 number:

In this image, and those that will follow, I’ve placed the corresponding
decimal value below the letter. So, in this example, there is one 676

(represented by the “b”), twelve 26s (represented by an “m”), and twelve
ones (also represented by an “m”). This is the base 26 way to express the
number one-thousand, since:

 (1 * 676) + (12 * 26) + 12 =

 676 + 312 + 12 =

 1000

Now, if we treat our strings as base 26 numbers rather than base 10
numbers, we automatically solve the digit bleeding problem we struggled
with before. A bleeding issue occurs when we have a character that needs
more than one digit place to hold it. But because each digit place of a base
26 number can hold 26 different characters (such as a through z), and we
only have 26 characters in our string’s alphabet, we’re guaranteed that each
character can fit neatly into a single digit place.

A Base-26 Hash Function
Let’s incorporate these ideas into Rabin-Karp and see how everything plays
out. We’ll go back to the beginning, starting with hashing our needle. In the
example at the start of the chapter, the needle was "cafe". Let’s peek back at
how we hashed "cafe" when we treated the string as a base 10 number:

We’re going to stick with this basic scheme, except that now we’ll treat our
strings as base 26 numbers. That is, we’re going to view "cafe" as follows:

This is the number that, in English, we’d refer to as thirty-five thousand,
two-hundred, eighty-six.

Recall that our ultimate goal is to convert strings into Python integers so
that our code can compare them more quickly. The thing, though, is that
Python integers are represented as base 10. (It’s binary under the hood, but
when we write the code x = 11, Python interprets it as base 10, so x is
eleven.)

This is what our hash function does: we treat the string as a base 26
number, and convert it into a base 10 number.

More specifically, instead of multiplying each digit by 1, 10, 100, or 1000

like we did originally, we multiply each digit by 1, 26, 676, and 17576. And
so, our hash function will hash "cafe" in the following way:

As you can see, when we hash "cafe" it yields a result of thirty-five
thousand, two-hundred, eighty-six—or what we write in decimal as 35286.
Our problem is now solved. The string "cafe" can represent one and only
one particular base 26 number. Our hash function simply converts that base
26 number to a base 10 number since that’s what Python understands.

Conversely, we also know with certainty that the base 10 number 35286 can
only represent the letters "cafe" and no other string. For when we convert a
number from one base system to another, we’re merely expressing the same
number in different ways. And so, if we’d convert 35286 from base 10 to
base 26, and use our scheme of a = 0...z = 25, we’d come up with the string
"cafe".

In our code, however, we’re only going to be doing this conversion in one
direction. That is, we never need to take a base 10 number and convert it
back into base 26. The modus operandi of Rabin-Karp is that we convert
both the needle and haystack window from base 26 to base 10 and see if
they match.

Rolling with Base 26
At this point, we’ve successfully adapted our initial hash function to handle
alphabets of 26 characters. However, we’ve only addressed the initial hash
function, that is, the one that hashes an entire string at once. We now have
to modify our rolling hash function as well. Luckily, it’s going to be a quick
and easy modification.

As a reminder, here’s what our rolling hash function did when working with
base 10:

Again, this updates the hash code from the previous haystack window and
converts it to match the current haystack window. With this math, we
effectively remove the old first digit and tack a new one at the end. In this
example, the 3420 lost the left-most 3 and gained a new 5 at the end, turning
into 4205.

To get this hash function to work with base 26, all we have to do is change
the formula so that wherever we’ve been multiplying by 10, we multiply by
26 instead. With our haystack of "decafcafeahead", the first window is "deca",
which in base 26 hashes to 55484, as you can see here:

Now, the next character in our haystack is an "f", which corresponds with
the digit 5. Here’s how our rolling hash formula will execute:

This gives us a new hash code of 71661, which indeed is the base 26
representation of the new haystack window "ecaf".

In other words, our old rolling hash function multiplied things by 10

because we were working with base 10 numbers. Since we are now working
with base 26 numbers, we multiply by 26 instead. Let’s walk through the
example line by line to make it super clear.

We start with the previous window’s hash code. Our immediate goal is to
delete the old "d" that our new window is dropping. Because the "d" in base
26 is in the 17,576s place, this computes to 52728. So, by subtracting this
from the previous hash code, we effectively delete that initial "d".

Then, we shift all the digits to the left by multiplying our current result by
26. When we worked with base 10, we multiplied by 10 to shift the digits.
But now that we’re working with base 26, we need to multiply by 26 to shift
the digits. This might be intuitive to some, but I always like spelling things
out (if you haven’t noticed). In the next section, I’ll elaborate further as to
why this works.

Shifting Places
Back when we were dealing with base 10, by multiplying a number by 10,
we were able to shift each of its digits one place to the left. For example, we

multiplied 420 by 10, which effectively shifted each digit one place leftward:

Essentially, when we multiply 420 by 10, we are saying to take the 4
hundreds and multiply them by 10, and to take the 2 tens and multiply them
by 10. This gives us 4200.

Now, here’s the thing. To shift any number from any base in this way, we
simply need to multiply the number by the base itself. So, because the
previous 420 example was a base 10 number, we multiplied it by 10 to shift
the numbers leftward.

To shift the digits of a base 2 number, we multiply the number by 2. And if
our number is in base 16, we’d multiply the number by 16. This shifting
process works no matter what the base is. The reason for this is outlined in
the chart from earlier:

Each digit place is equivalent to its right neighbor multiplied by the base.
For example, the b3 is the b2 multiplied by the base (b2 * b = b3.) So when
we multiply a number by its base, we multiply each digit in each place by
the base, and thereby shift each digit to the left. And so, now that our hash
functions work with base 26 numbers, we can shift such numbers by
multiplying them by 26.

Let’s look at this in action with our example. After subtracting out the
initial "d", we had a resulting code of 2756. Here’s the breakdown of what
happens when we multiply 2756 by 26:

This visual shows how multiplying 2756 by the base of 26 effectively shifts
each “digit” one place to the left.

Getting back to our rolling hash function, after we perform this shifting
step, the final step is to tack on the current window’s new character at the

end. We do this simply by adding the new character’s hash code to the
result of our previous computations.

We can now generalize our rolling hash function for any base, as follows:

Whew! I think we’ve made Mrs. Wilson proud.

Code Implementation: Rabin-Karp for Any Base
Let’s modify our Rabin-Karp code so it handles base 26. Even better, let’s
make it handle any base:

 # Global base variable:

 base = 26

 def find_needle (haystack, needle):

 needle_hash_code = initial_hash(needle)

 window_hash_code = initial_hash(haystack[0:(len(needle))])

 if needle_hash_code == window_hash_code:

 return 0

 for index in range(1, len(haystack) - len(needle) + 1):

 drop_character = haystack[index - 1]

 new_character = haystack[index - 1 + len(needle)]

 window_hash_code = rolling_hash(window_hash_code, len(needle),

 drop_character, new_character)

 if needle_hash_code == window_hash_code:

 return index

 return None

 def initial_hash (string):

 power = 0

 result = 0

 for char in reversed(string):

 result += character_hash_code(char) * base**power

 power += 1

 return result

 def rolling_hash (hash_code, window_length, drop_character, new_character):

 drop_number = \

 character_hash_code(drop_character) * base**(window_length - 1)

 result = hash_code - drop_number

 result *= base

 result += character_hash_code(new_character)

 return result

 def character_hash_code (char):

 return ord(char) - 97

This code is almost identical to the previous implementation, with the only
difference being that we’ve made the base flexible instead of hardcoding it
as 10. To do this, we declare a global base variable, which is then used
within our hash functions.

Currently, base is set to 26 since we’re working with an alphabet containing
26 characters. If you were working with, say, the entire range of ASCII
characters, you’d set base to 256.

Handling Long Needles
Armed with our new, shiny implementation of the Rabin-Karp algorithm,
we’re ready to tackle substring search for an alphabet of any size. This
could include uppercase letters, lowercase letters, the numbers 0 through 9,
punctuation marks, and various other characters. For our discussion,
though, we’ll continue to use the 26 lowercase letters of the English
alphabet.

But there’s a problem.

In our example, we had used a pretty short needle. After all, "cafe" only
contains four characters. But it’s not uncommon to search for longer
needles. If we’re searching a document for plagiarism, for example, we
might use an entire sentence as a needle.

Now, say that our needle is the 28-character word
"antidisestablishmentarianism". If we hash this from base 26 to base 10 (using
our scheme a=0, b=1, and so on), we get the number:
84602278762307761469177551207947970504. That’s pretty long. As our needle
length increases, our hash codes will grow longer and longer. Imagine if we
had a needle with a length of 500. Yikes!

The reason this is problematic is that the entire reason we’ve been hashing
words into numbers was so that a computer can compare two numbers
quickly. However, this is, in fact, only true when the numbers are relatively
small. When numbers are extremely large, computation speeds go down,
and memory consumption goes up. Python is better than some other
programming languages at processing large numbers, but even Python has
its limitations.

Now, if your application is not going to be dealing with long needles, our
current Rabin-Karp implementation is perfect, and there’s no need to adjust

it. The remainder of this chapter is all about optimizing Rabin-Karp to
handle both long and short needles efficiently.

Division Hashing
Fortunately, we can solve this issue with the technique of division hashing
described in The Division Method. Specifically, we’ll update our hash
functions to not only convert numbers from base 26 to base 10, but also
divide that result by some prime number. Let me show you what I mean.

The Basic Division Approach
The basic approach is that we’ll tweak our hash function ever so slightly.
Currently, our hash function is simply to convert base 26 to base 10. But
again, the problem is that if our string is very long, the hash code will be
very long as well.

Our trick is to perform one more computation after converting from base 26
to base 10. That is, after we do the base-26-to-base-10 computation, we
then divide the result by a predesignated prime number and grab the
remainder. This remainder is now our hash code. Later, I’ll discuss how
we’ll go about choosing our prime number. But whatever prime number we
choose, this will be the one we use throughout our entire substring search
algorithm.

Let’s walk through an example.

Say that our prime number is 613. When we divide a number by 613, the
remainder will be some number from 0 up through 612.

Let’s now hash our needle, "cafe". Earlier, our hash code of converting base
26 to base 10 gave us a result of 35286. We can now update our hash code so
that we then take the 35286 and perform one more computation of:

 35286 % 613 = 345

With this update, the hash code of "cafe" is now the shorter 345 rather than
the longer 35286. What’s nice about this is that even if our needle was much
longer, such as "antidisestablishmentarianism", the hash code will never be
larger than 612. Indeed, the hash code of "antidisestablishmentarianism" is now:

 84602278762307761469177551207947970504 % 613 = 230

Computer scientists like to refer to this concept as fingerprinting. A
detective can use a fingerprint to determine which person touched the
doorknob, even though the fingerprint is much smaller than the actual
person. Similarly, we can use a small piece of data (such as 230) to represent
a larger piece of data (such as 84602278762307761469177551207947970504).

So far, we’ve updated the initial hash function that computes the hash code
of the needle and the first haystack window. But we’re going to use this
same general division approach for our rolling hash function as well. That
is, we’ll be dividing various results by the same prime number of 613. Later,
I’ll explain how precisely to perform this math, but let’s take this general
approach at face value.

Because we’re applying the same hash function—including the division—
to our needle as well as the haystack windows, we can still perform an
effective substring search. That is, if the needle’s hash code is the same as
the haystack window’s hash code, we’ve found our match. Otherwise, the
two strings are definitely not the same.

Collision Ahead
This is where things get interesting and is, in fact, the impetus for
discussing the Rabin-Karp algorithm at this point in the book.

Before we introduced division hashing into our Rabin-Karp algorithm, the
hash function guaranteed that two strings must be identical if they have the
same hash code. But now that we started shortening numbers with division

hashing, it’s possible for two different strings to end up with the same hash
code. As we’ve seen, all numbers, no matter how large they are, will end up
having a hash code in the range of 0 through 612. If you take, say, 614
different strings and hash them, it’s guaranteed that at least two of them will
end up with the same hash code. Likely, many more strings will share hash
codes as well.

We saw this same idea when developing hash functions for hash tables.
There’s always a possibility that more than one value will end up within the
same hash table slot.

Now, for hash tables, this may not be the biggest deal since we can handle
collisions with separate chaining and other techniques. But it is a real
problem for substring search. That is, our code might mistakenly think that
it found the needle in the haystack even when it didn’t!

Here’s a quick example. We already know that our needle "cafe" hashes to
345. Now, if our algorithm encounters the haystack window "clzr", the
computer will hash it by converting it from base 26 to base 10, which yields
43255. Then, the computer will divide it by 613 and grab the remainder,
which is ... 345! The computer will then report that it successfully found
"cafe" when this couldn’t be farther from the truth.

It’s worth pointing out that the opposite type of bug cannot occur. That is,
the computer will never encounter a match and erroneously report that it’s
not a match. If two strings are, in fact, identical, they most certainly will
have the same hash code. But we do have the potential error in the direction
of the computer thinking that it’s found a match when it actually hasn’t.

However, let’s analyze the likelihood of this error happening.

Monte-Carlo Rabin-Karp
When we hash a value by dividing it by a number, the resulting hash code
will be some number from 0 up to (but excluding) that number itself. So if
our chosen prime number is 613, the hash code will be some number from 0
through 612. Put another way, there are 613 possibilities as to what the final
hash code will be.

It turns out that when a haystack window does not match the needle, there’s
still a 1 out of 613 chance that their hash codes will match. If we choose a
larger prime number, such as 7841, then each haystack window has a 1 in
7,841 chance of being incorrectly identified as a match to the needle.

Now, if our haystack is small relative to our needle so that we only have a
few haystack windows, we’re unlikely to encounter any mistaken matches.
For example, if each haystack window has a 1 in 7,841 chance of being a
mistaken match, if we have 3 haystack windows to check, there will be a 3
in 7,841 chance that we’ll encounter a mistaken match over the course of
our entire search.

As our haystack grows, though, the odds of a mistake increase. If we have,
say, 8,000 haystack windows, then there’s a decent chance that we will
come across an incorrectly identified match at some point in our search.

The trick for keeping the probability of a mistake low is to select a high
prime number. If we could pull off the math to select an ideal prime number
like this, it becomes significantly improbable that a mistake will occur.

And this, my friends, is what makes Rabin-Karp a Monte Carlo algorithm.
Recall that the whole point of Rabin-Karp was to make substring search
much faster than the brute-force approach. To accomplish this, though, we
end up accepting a small possibility that the algorithm will not produce an
accurate result. This is precisely what Monte Carlo algorithms do: they

sacrifice accuracy for the sake of increasing speed. If we ensure that our
prime number is high enough, we’ll end up with a speedy substring search
with a low chance of error.

It emerges that if our app isn’t going to handle long needles, we can avoid
collisions altogether if we use base 26 and do not use division hashing. It’s
only if we need to be concerned with long needles that end up in this
situation where two different strings may end up with the same hash code.

As things stand now, the current variant of Rabin-Karp is a clever Monte
Carlo algorithm. But there’s a plot twist.

Converting Monte Carlo to Las Vegas
It turns out that it’s possible to convert certain Monte Carlo algorithms into
Las Vegas algorithms. Not all Monte Carlo algorithms can be transformed
this way, but Rabin-Karp is an algorithm that can. As a quick reminder,
while a Monte Carlo algorithm is an algorithm that is definitely fast with a
small probability of being incorrect, a Las Vegas algorithm is definitely
correct, with a small chance of being slow.

Currently, Rabin-Karp will definitely be fast, but may be incorrect. We will
now tweak the Rabin-Karp algorithm so that it becomes definitely correct,
but will have a small chance of being slow.

This tweak is simple. We’ll add one additional step to the algorithm.
Specifically, each time our algorithm finds matching hash codes, the
algorithm will then do a “sanity check”; it will check both strings the old-
fashioned way, character by character, to see if they’re the same.

If our needle is "cafe", and the haystack window is "clzr", which both result
in the hash code 345, the algorithm will next do a sanity check by
comparing all the characters of these two strings. In this case, the strings are
not the same, so the algorithm will know that it hasn’t yet found a true
match and will move on and continue to search the rest of the haystack for
our needle. By performing this extra check, the computer will never report a
false match. Rabin-Karp is now a Las Vegas algorithm since it will
definitely be correct. And as we’ll now see, the odds of it being slow are
also slim.

Each time the computer performs a sanity check to see if two strings are the
same, this is relatively slow, as it has to comb through each character of
both the haystack window and the needle. And if the algorithm ends up
finding numerous instances of matching hash codes, this will require
numerous sanity checks and will slow down the entire algorithm.

But here’s what’s interesting. What are the odds that the computer will slow
down?

It turns out that the odds that the computer will perform a sanity check
(when the two strings are indeed not the same) are the very same odds as
the Monte Carlo version of Rabin-Karp not being correct.

That is, we noted that if the prime number is 7841, then each haystack
window has a 1 in 7,841 chance of producing a false match. Well, in the Las
Vegas form of the Rabin-Karp algorithm, there’s that same 1 in 7,841
chance that the algorithm will encounter a false match at this point and
perform that “slow” sanity check. Even if the algorithm has to perform a
handful of sanity checks here and there, we likely wouldn’t notice a
slowdown. The algorithm will only slow down significantly if it’s finding
many false matches and performing sanity checks over and over again. But
again, this is unlikely if each haystack window has only a 1 in 7,841 chance
of being a false match.

This new version of the Rabin-Karp algorithm is truly a Las Vegas
algorithm. It is definitely correct and has only a small chance of being slow.

The moral of this story is that when you do encounter a Monte Carlo
algorithm, see if there’s a way to transform it into a Las Vegas algorithm.
This transformation isn’t always possible, but if it is, it might be worth
considering.

At this point, we’re almost through with everything we need to know about
Rabin-Karp. The final item is to work out the math of the hash function so
that it uses division hashing. I happen to think that the math that follows is
pretty cool, but if you’ve had enough math for the day, I understand
completely. You can skip ahead to the end of the chapter if you prefer.

Modulus Magic
Here’s a quick summary of where we’re at right now.

Previously, our Rabin-Karp hash function simply treated each string as a
base 26 number and converted the number into base 10. In truth, this
worked pretty well. It was guaranteed to be both accurate and fast and
certainly got the job done. The only problem was that it would not perform
well in cases where the needle length is very long; the hash function would
produce large numbers, which would slow down the entire algorithm. If not
for the possibility of long needle lengths, I could have ended the chapter at
that point.

But if we want to make the Rabin-Karp algorithm production-ready, we
want it to perform well for long needle lengths. That’s why we introduced
division hashing, which takes large numbers and cuts them down to size.
Specifically, it ensures that the hash code will never be larger than the prime
number we use in our division.

However, to pull this off, we’ll need to employ some clever mathematical
tricks, and here’s why.

With division hashing, we first compute a long hash code, and then divide it
by a prime number (and grab the remainder). But if the needle is super long,
it will also take a long time to compute that long hash code. In other words,
we’ll encounter a slowdown before even getting a chance to perform our
division!

To spell this out even further, recall that before division hashing, we hashed
the needle this way:

In this case, we multiply the "e" by 1, the "f" by b2 (with “b” being 26), the
"a" by b3, and the "c" by b4.

Imagine, now, that a needle was 500 characters long. This means we’d have
to continue to compute each subsequent character by b5 and b6 all the way
up to b500! Those end up being some pretty large numbers; for example,
10500 is 1 followed by 500 zeroes.

And therein lies the problem. Although computers are fast, they have their
limitations, and computing large numbers can be significantly slow. To
resolve this issue, we’re going to use some ideas from the field of modular
arithmetic (math having to do with modulus operations) that some very
clever people figured out and applied to our situation.

Let’s keep going with our "cafe" needle example. As we’ve seen, the initial
hash code, before the prime number division, is 35286. To keep our
examples simple, let’s continue to use a smallish prime number, namely,
613. When we compute 35286 % 613, we get 345.

But watch this amazing alternative way to compute the same result. It’s
based on the mathematical properties of modulus operations. Here goes:

Here’s what’s going on in this computation. Instead of doing one single
modular operation at the end of the hash function, we instead perform a
modular operation for each and every character.

In this example, we start with the "c", grab its hash code (2), divide by the
prime number, and grab the remainder. We then take that remainder (2),
multiply it by the base (26), add the new character’s hash code (the hash
code of "a" is 0), and perform the modulus operation again. We repeat this
process for each character of our string.

Throughout this process, we never have to deal with any number larger than
613, and we still end up getting our desired result. Cool!

At this time, I’m not getting into why this modular arithmetic trick works.
For now, let’s just marvel at the magic of math and take this at face value.

We can use the earlier trick as is to serve as our initial hash function.
However, we do need to update our rolling hash function so that it
incorporates this type of math magic as well.

Let’s go back to our example haystack. If we perform our modified initial
hash function on the first haystack window of "deca", we get the hash code
314. We now need to perform our rolling hash function on the next window,
which drops the initial "d" and introduces the character "f".

Here’s the math formula for the rolling hash function. I’ll admit, it’s a little
involved. But it works! On the top, I show the actual formula, and on the
bottom, I show how it applies to our example by plugging in all the
numbers:

Here, we successfully compute the hash code for the new window "ecaf"

based on the previous window of "deca". The result of 553 is the same result
we’d get if we first converted "ecaf" to 71661 (by converting base 26 to base
10) and then dividing 71661 by our chosen prime number of 613. That is,
71661 % 613 = 553. However, with this fancy formula, we get the identical
result without ever needing to first come up with the longish number of
71661.

Now, there’s one last bit of math that we need to perform. In the visual, take
a look at the item shaped as a cloud. As you can see, this is a number
computed by taking base(window_length-1), dividing by our prime number, and
grabbing the remainder. I call the result of this computation the “drop place
remainder.”

However, we once again run into a problem. If our window size is 500, this
means that when we first compute base(window_length-1), we end up with a
large number and a slow computation.

However, we can use modular math tricks to compute this number without
ever having to wrangle with large numbers. Here’s how:

Here’s what the formula does:

We start with the number 1 and multiply it by the base (such as 26). We take
the result, divide it by our chosen prime number, and grab the remainder.
We then take this result and repeat the same process as many times as the
length of the needle minus 1. (In this visual, we’re working with an
example of where the needle length is 4.)

This computation produces the drop place remainder without ever
producing a number larger than the prime number.

Whew! We’ve come to the conclusion of how Rabin-Karp works in all its
gory detail. Let’s go ahead and code it all up.

Code Implementation: Las Vegas Rabin-Karp Substring
Search with Division Hashing
Here’s the Python code for the Rabin-Karp algorithm with division hashing
incorporated. Additionally, we’ve also transformed it into a Las Vegas
algorithm:

 # Global base variables:

 base = 26

 prime = 613

 def find_needle (haystack, needle):

 needle_hash_code = initial_hash(needle)

 window_hash_code = initial_hash(haystack[0:(len(needle))])

 if needle_hash_code == window_hash_code:

 return 0

 # Precompute the "drop place remainder":

 drop_place_remainder = 1

 for i in range(len(needle) - 1):

 drop_place_remainder = (drop_place_remainder * base) % prime

 for i in range(1, len(haystack) - len(needle) + 1):

 drop_character = haystack[i - 1]

 new_character = haystack[i - 1 + len(needle)]

 window_hash_code = rolling_hash(window_hash_code,

 drop_character, new_character,

 drop_place_remainder)

 if needle_hash_code == window_hash_code:

 # Las Vegas sanity check:

 if needle == haystack[i:(i + len(needle))]:

 return i

 return None

 def initial_hash (string):

 result = character_hash_code(string[0]) % prime

 for i in range(1, len(string)):

 result = (result * base + character_hash_code(string[i])) % prime

 return result

 def rolling_hash (hash_code, drop_character, new_character,

 drop_place_remainder):

 result = ((hash_code + prime - character_hash_code(drop_character) *

 drop_place_remainder) *

 base + character_hash_code(new_character)) % prime

 return result

 def character_hash_code (char):

 return ord(char) - 97

The thrust of this code is similar to previous implementations. The
difference, though, is that the hash functions themselves have now changed
since they incorporate division hashing according to the formulas I
described earlier.

Because the new hash formulas rely on a predetermined prime number, we
set a global prime number variable at the top. I’ve set it to 613 to correspond
to our previous examples, but in real life, this would likely be a larger
number. In fact, you can also choose it randomly based on the Monte Carlo
approach described in Monte Carlo Primality Testing.

As part of the new division hashing approach, we precompute the
drop_place_remainder within the find_needle function. Once we’ve computed
the drop_place_remainder, we use it as part of the rolling_hash function. (The
initial_hash function doesn’t need it.) As to the hash functions themselves,
they’re more involved now, but track directly to the earlier formula
descriptions.

The one final novelty of this implementation is that we transform the
find_needle code into a Las Vegas algorithm with a single extra line of code.
That is, if the needle and haystack window hash codes match, we do a sanity
check and see if the two strings themselves are indeed identical:

 if needle_hash_code == window_hash_code:

 if needle == haystack[i:(i + len(needle))]:

 return i

The code haystack[i:(i + len(needle))] represents the haystack window. This
sanity check takes the computer up to as many steps as there are characters
in the strings. But again, the odds are low that we’ll have to perform many
sanity checks.

Well, we’ve done it!

Division Hashing for Strings
In the previous chapter, I explained how division hashing works. However,
I focused solely on hashing integers and held off on the discussion of
applying division hashing to strings. (I did bring it up in the exercises,
though—and of course, you knew that.)

It turns out that one of the most efficient ways to use division hashing for
strings is the initial_hash method from our final implementation, which went
like this:

 def initial_hash (string):

 result = character_hash_code(string[0]) % prime

 for i in range(1, len(string)):

 result = (result * base + character_hash_code(string[i])) % prime

 return result

Besides being fast, it also ensures that anagrams don’t necessarily produce
the same hash codes as each other, something which is not the case if we
simply convert each character to a number and multiply the numbers
together.

So, in the DivisionHasher class we implemented in Code Implementation:
Randomized Hash Functions, we can swap out the hash method’s code and
instead use the code from the initial_hash method. That’s the gist of it,
anyway. I’ll leave the exact implementation to you, as an exercise to follow.

Wrapping Up
The Rabin-Karp algorithm uses a number of the techniques we’ve learned
about in the past few chapters. From division hashing to Monte Carlo,
we’ve pulled out all the stops. And the result is phenomenal: we’ve
achieved linear-time substring search.

We also looked at the important concept of base number systems, which
will also be crucial for the upcoming chapters. Finally, we’ve also seen how
sometimes it’s possible to convert a Monte Carlo algorithm into a Las
Vegas algorithm and eliminate the chance for any inaccuracies.

I recommend that you also check out other linear-time substring search
algorithms such as KMP and Boyer-Moore, as they’re fascinating and use a
completely different approach than Rabin-Karp. Indeed, each of the three
algorithms has nuanced pros and cons. One of the pros of Rabin-Karp is
that it doesn’t consume any extra space, while the other two algorithms do.

Over the past few chapters, you’ve learned how Monte Carlo algorithms
can be used to speed up your code. I’ll have you know, though, that Monte
Carlo algorithms can also be used to save space, as I’ll discuss in an
upcoming chapter about Bloom filters. However, to understand Bloom
filters, there’s a prerequisite concept I need to cover first—and that is the
data structure called the bit vector.

Exercises
The following exercises provide you with the opportunity to practice with
string matching and the sliding window technique. The solutions to these
exercises are found in the section Chapter 11.

1. Implement a new version of the DivisionHasher from Chapter 10 so that
it can now hash strings instead of integers. Use the approach of the
initial_hash function from our final implementation of Rabin-Karp. (I
warned you that this would be an exercise!)

2. Here’s a sliding window exercise for you. Write a function that accepts
a string. The function should return the maximum number of vowels
that are contained within any three-character substring (of the original
string).

For example, the correct answer for the string "spider" is 2 since the
three-character substring "ide" contains 2 vowels. There’s no three-
character substring within "spider" that contains a greater number of
vowels than 2.

On the other hand, the correct answer for the string "beautiful" is 3 since
the substring "eau" contains 3 vowels.

For the purposes of this exercise, we’ll say that vowels are the letters a,
e, i, o, and u.

3. New Concept: In this chapter, when discussing the sliding window
technique, we always worked with a window of a fixed size. That is, as
the window slides, it always contains the same number of values.
However, there’s another form of the sliding window technique in
which the window doesn’t just slide, but also expands or contracts.
Here’s such a problem:

Write a function that accepts a string, and returns the length of the
longest substring that doesn’t contain any duplicate characters.

For example, in the string "ababcdabca", the longest substring that
doesn’t contain any duplicate characters is "abcd", starting at index 2. It
has 4 characters, so our function should return 4.

(There’s another substring with the length of 4, namely, "bcda", which
starts at index 3. In any case, though, there’s no substring that has a
length greater than 4.)

Copyright © 2025, The Pragmatic Bookshelf.

Chapter 12

Saving Space: Every Bit Helps

Over the past several chapters, you’ve discovered a number of Monte Carlo
algorithms. In the chapter that follows this one, you’re going to look at your
first Monte Carlo data structure called the Bloom filter. The Bloom filter,
though, is based on another data structure called a bit vector, which in turn
is based on yet another data structure called a Boolean array. In this
chapter, I’ll introduce you to both the Boolean array and the bit vector.

Both Boolean arrays and bit vectors, though similar, offer different types of
performance boosts. In particular, Boolean arrays optimize for time, while
bit vectors optimize for space. In either case, the respective benefits of each
of these data structures are pretty astounding.

Along the way, we’ll take a look at bit manipulation, which refers to a set of
techniques that enable us to access the individual bits of an integer. Bit
manipulation is a foundational computer science concept that has many
useful and amazing capabilities, as you’ll soon see.

Sets
In Volume 1, Chapter 1, I introduced the notion of a set. A set is a collection
of unique values; there are no duplicate values. There are many different
applications where maintaining a set can be useful, which I demonstrate in
the following sections.

Finding Duplicates
Suppose we have an array of integers in which there may or may not be
duplicate values, and we need a function that will tell us whether there are
any duplicates. For example, if we have the array [4, 3, 5, 1, 7, 2, 6, 8], our
function will return False because no duplicate values are present. However,
if the array is [1, 2, 3, 1], the function will return True because there are two
instances of the integer 1.

The brute-force approach to detecting duplicates would be to use nested
loops. The outer loop would iterate over each value, and for each value,
we’d initiate a second loop that would scan the rest of the array to see if that
value appears again within the array. Naturally, this approach has a speed of
O(N2).

However, if we use a set-building algorithm (and the right data structure to
serve as our set), we can get the job done in O(N) time. That is, throughout
our algorithm, we’ll maintain a set of all the values we’ve ever encountered
before. With this approach, we can scan all N integers once, following these
steps:

1. We check the current integer to see if it’s a key in the set.

2. If it is, that means we’ve encountered this value before, which means
the current value is a duplicate. So, our function returns True.

3. If the current value is not in the set, we insert it into the set. The set is
a hash table that stores each integer as a key and True as the value. So,
if our data is [4, 3, 5], our hash table will be {4: True, 3: True, 5: True}.

4. If we search the entire array without finding a duplicate, our function
returns False.

Assuming that each value in our set can be accessed in constant time, this
algorithm has a time complexity of O(N). That is, in the “worst case,”
which is when there are no duplicates, we scan each of the N elements
once. Although we also perform additional steps such as inspecting the set
for the element and inserting the element into the set, this is 3N steps,
which reduces to O(N).

Because the speed of this algorithm hinges upon having a set where each
element can be accessed in constant time, we need to make a careful
decision as to what data structure we’ll use to house our set.

Choosing the Right Set Data Structure
In Volume 1, Chapter 1, I talked about using an array to serve as a set. An
array would not be ideal for our scenario of duplicate checking, since we’d
have to perform a linear search on the array each time we look up a value.
This means that accessing our set has a cost of O(N) time, and we’re
seeking to achieve O(1) lookup time.

We’d do much better with a hash table, which offers O(1) lookups. That is,
we’ll store our integers in the hash table as keys and use any arbitrary truthy
value, such as True, as the hash table values. Indeed, hash tables are often
used to represent sets, especially where the situation warrants many
lookups.

With this in mind, here’s the code for detecting duplicate values where we
use a hash table set:

 def has_duplicates (array):

 set = {}

 for item in array:

 if set.get(item):

 return True

 else :

 set[item] = True

 return False

This code takes O(N) time, as we iterate over each of the N array items
once. This may not be earth-shattering; we wrote this same code back in
Volume 1, Chapter 19. However, I’m leading up to an important point, so
bear with me.

In any case, this was one simple application where maintaining a set was
useful. Let’s look at one more.

Counting Sort
As I’ve mentioned numerous times, the fastest sorting algorithms take O(N
log N) time for average-case scenarios. However, this isn’t quite true for
every application. We can sort certain data sets, believe it or not, in
considerably faster time.

Suppose we have an array of integers and we have some special knowledge
about the nature of these integers. For example, we may know that all of
these integers fall within the range of 0 to 9999 and that there are no
duplicates.

Armed with this knowledge about our data, we can use a set to help us sort
the integers in linear time. Here’s how:

1. We create a new empty array that will eventually contain all the sorted
integers. (Alternatively, we could have chosen to overwrite the original
array; it’s easier to explain the algorithm this way.)

2. We scan all the integers and build a set—using a hash table—that
stores each integer as a key and True as the value. So, if our data is [860,

2345, 9999], our hash table will be {860: True, 2345: True, 9999: True}.

3. We then start a loop that I’ll call the “counting phase.” The loop will
run 10,000 times, keeping track of a variable called number, which,
before the loop begins, starts out as 0. In each round of the loop, we
increment number by 1. In the loop’s final iteration, number will be 9999.

4. In each iteration, we look up number inside our hash table. If it is there,
this means that number is also in the original array. As such, we append
number to the end of our new array.

And that’s it! In other words, we only need to execute two simple loops.
The first loop takes all of our integers and inserts them into a hash table.
The second loop then counts from 0 to 9999—that is, the variable number—
and checks to see if number is inside the hash table. (If it is, we append
number to our result array.) The reason this effectively sorts our array is that
because we’re counting number from 0 to 9999 in sorted order, our final
result array will also be in sorted order.

This algorithm, which many computer scientists call counting sort, doesn’t
have to compare any of the values we’re sorting to each other, which is
what slows all the other sorting algorithms down. Here’s the code for
counting sort:

 def counting_sort (array):

 sorted_array = []

 set = {}

 for value in array:

 set[value] = True

 for number in range(10000):

 if set.get(number):

 sorted_array.append(number)

 return sorted_array

As you can see, we use a hash table to serve as our set. Again, this allows
us to look up each integer in constant time.

The Time Complexity of Counting Sort
The counting sort algorithm first inserts all N integers of the array into the
hash table. It then performs a fixed number of 10,000 steps, looking up the
numbers 1 through 10000 in the hash table. If, say, we had 5,000 integers
that lie in the range of 1 through 10000, the algorithm would perform a total
of 15,000 steps. That is, it inserts the 5,000 integers and then performs
10,000 hash table lookups.

To generalize counting sort’s time complexity in terms of Big O, we can use
the variable N to refer to the number of integers in the array, and the
variable R to refer to the size of the range of data. (In our current example,
N is 5,000, and R is 10,000.) Armed with these variables, we’d say that
counting sort has a speed of O(N+R).

Had we gone with Quicksort or Mergesort, though, sorting would have
taken, on average, 65,000 steps. That is, these algorithms take O(N log N)
time. In this example, N is 5,000, and log N is 13, so 5000 * 13 = 65000.

This serves as another example of how sets, assuming they have O(1)
lookups, can significantly speed up our code.

Before moving on, it is important to remember that counting sort isn’t
always the best choice. If, for example, our integers could lie in the range of
1 to 1,000,000, counting sort would end up taking at least 1,005,000 steps.
Because we only have 5,000 values in our array, Quicksort would still have
taken 65,000 steps. So, make sure that counting sort is a good fit for your
data set before blindly using it. The shorter the range, the better fit that
counting sort may be.

It’s also worth noting that counting sort can also work even if our array
contains duplicate values. That is, instead of setting each hash table value
simply to True, we’d instead set it to be an integer representing the tally of
how many times we encounter that value. That is, the first time we
encounter a particular integer, we set its hash table value to 1. When we
encounter it a second time, we increment the corresponding hash table
value to 2, and so on. So, if the data was [7, 1, 1, 1, 4, 4], our hash table would
end up being:

 {7: 1, 1: 3, 4: 2}

When we get to the number 4 during the counting phase, we’ll add two 4’s
to our result array because the hash table tells us that there are two of them.

Later, I’ll make an important distinction between counting sort, where the
data contains duplicates, vs. where it does not. For now, though, keep in
mind that counting sort can work for both scenarios.

Boolean Arrays
We’ve looked at a couple of examples where sets offer considerable speed
benefits. In particular, we took full advantage of a hash table’s O(1) lookups
to achieve some really fast code.

The interesting thing, though, is that there’s an even faster set data structure
than a hash table. Don’t get me wrong; hash tables are great for serving as
sets. But in certain scenarios, other data structures can be even faster. One
such data structure is the Boolean array. The name may sound fancy, but
it’s simply a regular array in which we only store the values True or False.
The array [True, True, False, True, False, False, True] is a Boolean array.

A Boolean array can serve as a set when our data consists of integers that
lie in a relatively limited range—similar to the earlier counting sort
example. With such a data set, we can use the array’s index to signify one of
the integers of our data. For example, suppose we want to store a set that
contains the integers 1, 4, 5, and 9. We can do so with a Boolean array that
looks like this:

 [False, True, False, False, True, True, False, False, False, True]

If you look carefully, you’ll see that the indexes 1, 4, 5, and 9 are all set to
True. This is a simple trick for using a Boolean array to represent a set of
integers.

Using a Boolean Array to Find Duplicates
Let’s now go back to the previous examples of finding duplicates and
counting sort. We’ll swap out the hash table for a Boolean array and see
what happens. We’ll start with finding duplicates. The code is almost
identical to our previous implementation. It’s just that now we use an array
instead of a hash table:

 def has_duplicates (array):

 set = [False] * 1000

 for item in array:

 if set[item]:

 return True

 else :

 set[item] = True

 return False

We initialize our array by making it a Boolean array containing 1,000 False

values. We’ve made it 1000 with the assumption that our data will consist of
integers that lie in the range from 0 to 999. If your data has a different range,
you’d update this number accordingly.

One might reasonably assume that the efficiency of this code should be the
same as when we used a hash table. With either a hash table or a Boolean
array, in a worst-case scenario, we iterate over all N values of the input array

and insert them into a set. Yet, when I benchmark the two competing code
snippets, I get different results.

This is the speed of our hash table version over the course of five runs:

 [0.00016307830810546875, 0.0001590251922607422, 0.00015592575073242188,

 0.00015592575073242188, 0.00015592575073242188]

That’s pretty fast! But look at my results of benchmarking the Boolean
array code:

 [7.295608520507812e-05, 7.605552673339844e-05, 6.914138793945312e-05,

 6.794929504394531e-05, 6.699562072753906e-05]

The Boolean array code is definitely faster. So, despite both versions
seemingly consisting of the same steps, the Boolean array approach wins
the race. This is because looking up values in an array is faster than looking
up values in a hash table. With a hash table, the computer has to perform a
hash function on each value to determine where it lives. With an array, no

such computation is needed; a computer knows how to find an index
without a hash function.

Note that you can use Boolean arrays even if the range doesn’t start at 0. If,
say, the range of integers is from 3000 to 4000, you can still use a Boolean
array in the same way. That is, you simply add 3000 to each index in the
array to figure out what integer that index truly represents. So, the index 0
represents the integer 3000 of the Boolean array, and index 456 represents
the integer 3456.

Using a Boolean Array for Counting Sort
We’ve looked at the Boolean array version of duplicate detection. Let’s
return to our other application—counting sort—and modify its code to use a
Boolean array instead of a hash table:

 def counting_sort (array):

 set = [False] * 10000

 sorted_array = []

 for value in array:

 set[value] = True

 for number in range(10000):

 if set[number]:

 sorted_array.append(number)

 return sorted_array

Here, we initialize a Boolean array designed to represent the integers 0
through 9999. The code is the same as before, except that our set is housed
in a Boolean array rather than a hash table.

My benchmarking results also show that the Boolean array code is faster
than its hash table counterpart, although not by as large a margin as with
finding duplicates. Here are the results for when these snippets work to sort
9,000 values:

The hash table version yields these speeds:

 [0.002900791, 0.002561209000000002, 0.002523083999999995,

 0.002377707999999999, 0.0023617919999999945]

The Boolean array code runs at this speed:

 [0.0017609160000000013, 0.0016054999999999993, 0.0016088750000000027,

 0.0016091659999999952, 0.0015574169999999984]

For this example, the Boolean array approach is about 1.5 times faster than
its hash table counterpart. It emerges that choosing the right set data
structure can make a real difference.

Space-Saving Sets
We’ve seen how sets, whether in the form of a hash table or a Boolean
array, can boost our code’s speed in various applications. However, these
benefits don’t come for free.

Although the brute-force approach of finding duplicates is a slow O(N2), it
does have a saving grace in that it doesn’t take up any extra space. That is,
the brute-force algorithm doesn’t create any additional data structures.
However, the set-based approaches create a set that didn’t exist before.
These sets take up space!

To be precise, the hash table set holds up to N values, as we insert each of
the input array values into the hash table. The Boolean array also takes up
space, as it holds R values. That is, if our range of data is 0 to 9999, the
Boolean array holds 10,000 Boolean values. And so, the speed that we
gained by using a set comes with a trade-off that we must consume extra
space. There’s no way around the fact that a set will take up memory. That
being said, I will now introduce to you a new set data structure that can take
up way less space than either a hash table or Boolean array and yet still
offer O(1) lookups: bit vectors.

Bit Vectors
Suppose we want to maintain a set of the integers 0, 3, 4, 6. So far, we’ve
seen two possible ways of doing this.

We have the hash table approach:

 {0: True, 3: True, 4: True, 6: True}

And we also have the Boolean array approach:

 [True, False, False, True, True, False, True, False]

But there’s a third approach. What I’m about to show you is one of my
favorite tricks in all of computer science. I’ll introduce it by revealing one
layer at a time.

To start, let’s take the previous Boolean array and swap out each False for a
0, and each True for a 1:

 [1, 0, 0, 1, 1, 0, 1, 0]

Recall that with base 2, we can represent any integer using only 0’s and 1’s.
(If you’re rusty with base 2, check out the discussion of binary numbers in
Covering All Our Bases.) With this in mind, we can use base 2 to represent
the Boolean array [1, 0, 0, 1, 1, 0, 1, 0] using a simple binary number:

 10011010

We can represent the set of 0, 3, 4, 6 with the single base 2 number 10011010.

To make things more convenient, we’re going to reverse the direction of the
way we use bit indexes. That is, with an array, the left-most place is the 0th
index. However, if we’re using a binary number to represent our data, since
the right-most place of any number is the smallest place, it’ll be more
intuitive if we use the right-most place to be the 0th index. And so, the

right-most bit will represent index 0, and the indexes will increase as we
move leftward.

Here’s a visual of how we’re using a binary number to represent our set:

As you can see, because we want to store a 0 from our set, we take the
right-most index (the 0th index) and make its digit a 1. The same goes for
all the other numbers in our set. So, the binary number 01011001 represents
our set of integers 0, 3, 4, 6.

In Python, we don’t generally interact with integers in binary form. Instead,
we work with them as decimal (base 10) numbers. Accordingly, instead of
working with the binary number 01011001, we’d work with its decimal
equivalent, which is the integer 89.

Do you know what this means?

It means that we can store the entire set 0, 3, 4, 6 using a single Python
integer. Yes, the integer 89 is all we need to represent our set! This has
profound implications for how much memory we can save. Our Boolean
array had to hold at least seven Boolean values in memory. Likewise, our
hash table takes up space with an entire underlying array designed to hold
multiple values. But now, we can store the same set inside a single integer.

Let’s take a look at another example, this time working backward. If we
were told that the integer 1435 represented a set of numbers, we could figure
out which numbers are in the set by converting 1435 to base 2.

Luckily, we don’t have to do this by hand. Python comes with a bin function
that accepts an integer and converts it to binary:

 >>> bin(1435)

 '0b10110011011'

This ’0b10110011011’ is called a binary string—it’s a Python string object.
The starting characters "0b" are not part of the binary number and can be
ignored. It’s there to indicate that the digits that follow it represent a binary
number.

We can see that the decimal number 1435 in base 2 is 10110011011. Armed
with this binary number, we can now see which integers are in our set, as
shown in the following figure:

The single integer 1435 represents the entire set 0, 1, 3, 4, 7, 8, 10. This is an
incredibly compact way to store a set of 7 values!

This data structure is called a bit vector. It goes by other names, too,
including bit array, bit set, bit string, and bit map. I call it a bit vector since
that sounds the coolest.

In the example, our bit vector is nothing more than a single integer, even
though we’re treating it as a bona fide data structure. More commonly,
though, a bit vector consists of an array of integers, as I’ll explain in the
next section.

Before moving on, though, here’s another useful tip: in Python, you can use
the expression 0b to convert a number from binary to decimal. That is, if
you type 0b10110011011 in your Python terminal, you’ll get a result of 1435.
So, the bin keyword converts a number from decimal to binary, and 0b

converts a number from binary to decimal. Try it for yourself!

Bits and Bytes
While bit vectors are cool, there’s a catch with storing an entire bit vector
inside a single integer: some sets are simply too large to be stored within
one integer. Here’s why.

As noted in the previous chapter, most computers store their data as binary
numbers. This means that although our Python code may deal with integers
in base 10, the computer stores these numbers in base 2.

The smallest unit of measurement of computer space is the bit—short for
binary digit—which represents a single 0 or 1. A number larger than 0 or 1
is represented using multiple bits. For example, the binary number 10000000

(which in decimal happens to be 128) takes up 8 bits because there are 8
digits in the binary number. Now, generally speaking, a computer reserves
32 bits in memory to store any integer.

What this means for us is that if we want to use a single integer as a bit
vector to store a set of numbers, we’ll only have a maximum of 32 bits

available to us. And so, a single integer can only represent a range of
numbers from 0 through 31. Accordingly, we’d have no way to include a 32

or 33, for example, in our set.

To avoid confusion, note that the Python bin command only shows a binary
number starting from its left-most 1. That is, the command bin(2) spits out
0b10, which is the binary number 10. In truth, though, the integer 2 contains
32 bits. That is, there are another thirty zeroes to the left of the 1 in memory.
It’s just that Python doesn’t bother to show us that for the sake of brevity.

32 Bits or 64 Bits?
It’s not universal that a computer stores an integer using 32 bits. Some computers use
alternative schemes, such as storing integers using 64 bits. The number of bits that a
computer uses to store an integer is determined by the computer hardware itself.

It’s also worth noting that many languages, including Python, pack some extra information
into their integers. As such, a Python integer object may be several times larger than a 32-bit
machine-level integer.

In any case, a Python integer on many computers is designed to correspond to 32 bits. So, for
the purposes of the discussion of this chapter, I’ll talk as if a Python integer has 32 bits.

Array-Based Bit Vectors
We have a problem on our hands. How can we use a bit vector to store a set
that has numbers that lie in a range larger than 0 to 31? The answer is that
we can use an array of integers to serve as our bit vector, as shown in the
following illustration:

Here, the bit vector [48, 3, 12] represents the set 4, 5, 32, 33, 66, 67. That is, we
use the first integer in the bit vector array (which is 48 in this example) to
store values from the range 0 through 31. The second integer, though, works
with an offset of 32, meaning that we use its 32 bits to represent values
from the range of 32 through 63, rather than 0 through 31. The third integer
represents the next range of 32 values, namely, 64 through 95. And so on.

Although the size of our bit vector has grown, this approach still provides
incredible space savings. For example, the array of the following three
integers

 [3254916866, 2148077570, 2164327428]

stores this entire set of 18 numbers:

 [1, 8, 9, 10, 12, 17, 25, 30, 31, 33, 44, 48, 51, 63, 66, 74, 80, 88]

In fact, a bit vector of three integers can be used to store up to 96 different
values in a set—if every bit were set to 1. Each additional integer we add to
the bit vector can store an additional 32 values since, again, each integer
contains 32 bits.

Accessing Individual Bits
We’re almost ready to create our own Python implementation of a bit
vector. However, there’s one teeny, tiny, itty-bitty, little catch.

That is, Python, as well as most coding languages, doesn’t give us an easy
way to access the different bits within an integer. We are essentially
utilizing an integer to store a list of set values, but an integer is not actually
a list. It’s just an integer! Even though you and I can figure out that the
decimal integer 2148077570, when converted to binary, is the number
10000000000010010001000000000010, how can we write code that figures out
which bit indexes contain 1 bits?

By contrast, Python arrays allow us to easily look up or change a value at
any given index with simple commands like array[5] and array[5] = 1. But
Python doesn’t give us such commands for integers. There’s no Python
function like 44.get_bit_at_index_5 or 44[5].

You may be thinking that we can use the aforementioned bin command to
convert an integer into a binary string, such as

0b10000000000010010001000000000010. We can then use a loop to iterate over
the string and identify the 1 bits and count which index each one is located
at. However, iterating over a string is relatively slow and will neutralize the
speed that a bit vector is supposed to offer.

Furthermore, this loop approach only helps for inspecting bits. But we’re
still at a loss as to how we can modify an individual bit. Our bit vector will
need to do this since we have to set bits to 1 to represent the different values
in our set.

So, how do we quickly read and modify the individual bits of an integer?
Well, I have some good news and some bad news and some good news.
(Yes, you read that correctly.)

Bit Manipulation
The good news is that there is a way to quickly access the individual bits
that underlie an integer. And so, it is possible to implement a fast yet space-
saving bit vector. Yay!

The bad news, though, is that it’s not that straightforward.

But I have some more good news: the nonstraightforward techniques
unlock an entirely new skill set that is handy to know and also a lot of fun.
These dandy techniques are generally referred to as bit manipulation. That
is, we perform certain special operations to access and modify the
individual bits of an integer.

Bitwise Operations
The key to bit manipulation is being able to perform bitwise operations, a
special set of operations that deal with integers on the bit level. In the
following sections, I’ll describe each one.

The AND Operation
Open your Python terminal and enter these commands:

 5 & 6

 81 & 103

 4 & 8

You’ll find that you’ll get some peculiar results:

 >>> 5 & 6

 4

 >>> 81 & 103

 65

 >>> 4 & 8

 0

Though this may seem strange at first, it all makes sense when we get down
to the bit level.

The & operator is the bitwise “AND” operator. (Yes, it’s typically written in
all caps.) The AND operator takes two numbers, looks at them as binary
numbers, and produces a third number whose bits are set to 1 only in digit
places where the first two numbers both have 1 bits.

For example, in the following illustration, we AND the numbers 5 and 6, as
shown. (Yes, “AND” can be a verb!)

The integers 5 and 6, which in binary are 00000101 and 00000110,
respectively, only share a 1 in the third-to-right index. And so, when we
AND the two numbers together, the third number’s bits are all set to 0
except at that index, where we place a 1 bit. This produces the binary
number 00000100, which in decimal is the number 4. And that’s why 5 & 6

makes 4.

In sum, when we AND two numbers together, the resulting third number
will only have 1 bits where both of the two original numbers also had 1 bits.
This is why it’s called “AND”; we need the first number AND the second
number to have a 1 bit at the same index.

Let’s look at another example. Here’s what happens when we AND 81 and
103:

Here, there are two indexes at which both 81 and 103 have a 1 bit. This
yields a result of 01000001, which in decimal is 65.

Here’s one final example. When we AND 4 and 8, we get:

Because there isn’t a single index in which both 4 and 8 have a 1 bit, 4 & 8

yields 0.

The following are some key properties of the AND operation, which can all
be logically derived from our discussion until this point:

Whenever we AND a 0 bit with a second bit, the result will always be
a 0 bit.

Whenever we AND a 1 bit with a second bit, the result will be
identical to that second bit. (That is, 1 & 0 is 0, and 1 & 1 is 1.)

Whenever we AND two bits that are the same as each other, the result
will be the same as those bits. (That is, 0 & 0 is 0, and 1 & 1 is 1.)

For each bitwise operation, I’ll spell out its key properties as I did for the
AND operation. Many of these properties may seem obvious, but it will be
important to keep them in mind for discussions further on in the chapter.
Trust me.

The OR Operation
Another major bitwise operation is the OR operation. In Python, we execute
this operation with the | character, for example, 81 | 103.

When we OR two numbers together, the resulting third number has 1 bits
wherever either of the two original numbers had 1 bits. That is, it’s enough
for only one of the two original numbers to have a 1 bit in order for the third
number to have a 1 bit at that same index.

Here’s how this plays out for 81 | 103:

As you can see, the third number gets a 1 bit at any index where either of
the two original numbers had a 1 bit. Of course, the third number also gets a
1 bit in a spot where both original numbers had a 1 bit.

This is why the operation is called “OR”: it’s enough for either the first
number OR the second number to have a 1 bit at a particular index to show
up again as a 1 bit in the third number.

The following are some key properties of the OR operation:

Whenever we OR a 0 bit with a second bit, the result will be identical
to that second bit. (That is, 0 | 0 is 0, and 0 | 1 is 1.)

Whenever we OR a 1 bit with a second bit, the result will be a 1 bit.
(That is, that first 1 bit alone will be enough to guarantee that the third
number will have a 1 bit.)

Whenever we OR two of the same bits, the result will be a bit that is
the same as those bits. (That is, 0 | 0 is 0, and 1 | 1 is 1.)

Whenever we OR two opposite bits, the result will be 1. (That is, 0 | 1

is 1, and 1 | 0 is 1.)

The XOR Operation
The XOR operation is an interesting operation. XOR stands for “Exclusive
OR” and is pronounced by many as “ex-or.” (A minority of people
pronounce it “zor,” which certainly sounds cool, but might get you some
funny looks.) In Python, we execute XOR using the ^ operator, for example,
81 ^ 103.

When we XOR two numbers, we produce a third number that contains 1
bits at indexes only where just one of the two original numbers had 1 bits.
That is, if both original numbers have 1 bits at the same index (and certainly
if both original numbers had 0 bits at the same index), the third number will
have a 0 bit at that index. So, XOR is a little like OR, except that it excludes
indexes where both of the original numbers contain 1 bits. The following
image illustrates the example 81 ^ 103:

Here, there are four indexes where one number has a 0 bit and the other has
a 1 bit. Accordingly, these are the four indexes where the third number
receives a 1 bit. Again, where the two numbers both have a 1 bit, such as the
right-most index, the third number receives a 0 bit. This example yields the
number 00110110, which is 54 in decimal.

Another way I like to think about the XOR operation is that it serves as a
litmus test that produces 1 bits in each digit place wherever the two integers
have opposite bits. In other words, it’s a great way to see precisely where
two integers differ in terms of bits.

The following are some key properties of the XOR operation:

Whenever we XOR two identical bits, the result will be a 0 bit.

Whenever we XOR two opposite bits, the result will be a 1 bit.

Whenever we XOR a 0 bit with a second bit, the result will be that
second bit. (That is, 0 ^ 0 is 0, and 0 ^ 1 is 1.)

Whenever we XOR a 1 bit with a second bit, the result will be the
opposite of that second bit. (That is, 1 ^ 1 is 0, and 1 ^ 0 is 1.)

The NOT Operation
Unlike the previous three operations, which use two numbers to produce a
third one, the NOT operation uses a single number to produce a second
number. This operation, which in Python is executed using the ~ operator, is

pretty simple. It produces a new number that is the complete inverse of the
first number. That is, wherever the first number has a 0 bit, the new number
has a 1 bit. Likewise, at each index where the first number has a 1 bit, the
new number has a 0 bit. The image shown illustrates the example ~103:

So, ~103, in theory, should produce 152 since that’s the binary inverse of 103.

That being said, there’s a small catch. If we execute ~103 in Python, we get
the surprising result of -104, and not the 152 we expected.

In truth, though, the numbers -104 and 152 can both be represented using the
same bit pattern of 10011000. This is because Python uses a popular numeric
system called two’s complement to represent negative numbers using base 2.
(You can read more about two’s complement in an article located on the
book’s web page.[6])

In any case, ~103 does indeed produce the bit pattern 10011000 as we
expected it would. But 10011000 can translate into either -104 or 152, and
Python policy is to always return the negative number when we use the ~
operator.

The Shift Operation
The fifth, and final, bitwise operation is known as shifting. Shifting operates
on a single number, and we can shift bits either to the left or to the right.
Let’s look at an example.

The number 73 in binary is 01001001. We can shift each bit one place to the
left with the command 73 << 1, as shown in the following illustration:

Each bit, whether 1 or 0, moves leftward by one place. This produces the
number 10010010, which in decimal is 146. Note that when we shift leftward,
the right-most place gets filled in by a 0 bit. There’s no digit from the right
that we can move into that spot, so we simply place a 0 there.

Now, we can shift by more than one place at a time. If we want to shift each
bit leftward by two places, for example, we’d write 73 << 2. What this
produces is shown in the image.

This is the equivalent of executing 73 << 1 << 1. Note that here, the two right-
most places get filled in with 0 bits.

What’s interesting is that shifting a number leftward by one place, in effect,
doubles the number. This is always the case since each 1 bit doubles in
value by shifting one place to the left. This makes sense because each digit
place represents a number twice as large as the digit place to its right. So,
when we shift 73 << 1, we get 146, as 146 is double 73.

When we shift a number leftward by two places, it’s the equivalent of
multiplying the number by 4. When we shift it leftward by three places,
we’re effectively multiplying the number by 8. To put this more generally,
when we shift a number leftward by K places, we’re multiplying the
number by 2K.

We can also shift a number rightward. For example, we can shift 146 one
place to the right with the command 146 >> 1, as shown here:

Note that the left-most place gets filled in with a 0. When we shift a number
rightward by one place, we are basically halving the number. As is clear
from this example, half of 146 is 73.

Now, let’s look at what happens when we shift the number 73 rightward by
one place:

Here’s something noteworthy: the 73 had a 1 bit in the right-most index.
When we shift that bit rightward, it falls into oblivion. So in truth, it doesn’t
matter what the right-most bit is; whether it’s a 0 or a 1, it goes away.

Now, if the right-most bit of the original number was indeed a 0, the
original number would have been 72. It turns out that shifting 73 >> 1 and 72

>> 1 both yield the same result of 36.

It emerges that when we shift a number rightward, we divide the number
precisely in half only when the number is even. That is, with 146 >> 1 = 73,
the number 73 is exactly half of 146. However, when the number we’re
shifting is odd, we halve the number and then drop the remainder. That is,

technically speaking, half of 73 is 36.5. However, when we shift 73 one place
to the right, we end up with a rounded-down result of 36.

Rounding a number down to the nearest integer when dividing is commonly
known as floor division. And so, we can say that shifting a number
rightward by one place halves that number using floor division.

Using Bitwise Operations for Good
Well, that’s our motley crew of bitwise operations. At first glance, they can
appear kind of random and not particularly useful. However, these bitwise
operations can be incredibly useful. In fact, all math operations that a
computer performs rely on these operations under the hood! Let’s look at
one example.

Adding Binary Numbers
If we were to use pencil and paper to add two binary numbers together, such
as 5 + 2, it would look like this:

This example is pretty simple in that we didn’t have to carry any numbers.
If we had to carry numbers, as in the example of 5 + 1, it would look like
this:

Carrying works the same way as with base 10. It’s just that whenever we
add two 1 bits together, we have to carry that 1 bit to the next place to the
left. (With base 10, we carry a 1 when the sum of two digits is greater than
9.)

Now, here’s the interesting thing. At the most primitive machine level, a
computer does not have a + operation. Just as a computer at the machine
level only deals with binary numbers (rather than decimal numbers), it
likewise only deals with bitwise operations. This means that a math
operation as simple as adding two numbers can only be done by a computer
by using bitwise operations.

But how, exactly, do we use bitwise operations to add two numbers
together?

This answer is more straightforward in cases where we don’t need to carry.
Take a look again at the previous diagram showing the bit addition example
of 5 + 2. No carrying is needed there, as there’s no index where both
numbers have a 1 bit. Because of this, conveniently enough, we can perform
the addition by simply XORing the 5 and 2. This may seem like a cool
coincidence at first, but it makes sense after thinking about it a bit.

Take a good look at the 5 + 2 visual. The result is, in fact, the same as
XORing the 5 and 2. The reason this works is that when we add two 0 bits
together, we want to get 0. Indeed, XORing does this. Similarly, we need it
to be that when we add a 0 bit and a 1 bit, we get a resulting 1 bit. XORing
does this as well. Sweet!

The tricky part, though, is when we have a case where both numbers have a
1 bit at the same index. Our goal in that case is to have a result of 0 at that
index, which XORing takes care of as well. However, we also need to take
care of carrying a 1 to the next place over to the left, which XORing does
not do automatically.

That is, if we simply XOR two numbers without performing any extra
steps, the necessary carrying will not take place, and we’ll end up with an
incorrect result. Let’s look at this visually for the case of 5 + 1. If all we do is
XOR the 5 and 1 together, we end up with:

This would indicate that the sum of 5 and 1 is 4, which is clearly incorrect.
However, although this result is incorrect, it’s headed in the right direction.
The result of the XOR operation does, after all, make it so that three out of
the four digits of our result are, in fact, correct, as shown in the illustration.

Here, we get a result of 0100, while the true sum we want is 0110.

So, it turns out that XORing the two numbers gets us most of the way to the
desired solution. It produces what I call the “sum-without-carry.” That is, it
produces a sum that is accurate if we don’t have to carry any digits. And
even if we do need to carry, the sum-without-carry is almost accurate. The
only thing we’re missing is the carrying of numbers.

Luckily, we can perform the carrying with some additional bitwise
operations.

Carrying
The general strategy for carrying goes like this. If we could, somehow,
compute what I call the “carry number,” we could add it to the sum-
without-carry to get the correct sum. Here’s what I mean.

In the previous example of 5 + 1, our sum-without-carry is 0100. This isn’t
the correct sum, since we failed to carry a 1 bit over to the second-to-right-
most digit place. Now, this 1 bit we failed to carry represents the binary
number 0010. Put another way, a 1 bit in the second-to-right-most digit place
represents the decimal number 2, which in binary is 0010.

And so, the number 0010—which I call the “carry number”—is what we’re
missing from our total sum.

It follows that if we were to add the carry number to the sum-without-carry,
we’d get the true sum. That’s what carrying is: we’re adding a carry number
to the other numbers we’re working with. Indeed, when we add the carry
number 0010 to the sum-without-carry of 0100, we get 0110. This, in
decimal, is 6, which is the correct answer to 5 + 1.

For the computer to add the carry number to the sum-without-carry, though,
the computer first needs to figure out what the carry number is. Fortunately,
we can do this with a clever little trick.

This trick relies on the following observation: if we AND our two numbers,
and then shift the result leftward by one place, the result will be the number
we’re supposed to have carried, as shown in the illustration.

This result of 0010 is indeed the carry number we’re looking for. Here’s the
reason why ANDing with left shifting successfully computes the carry
number:

A carry number is only produced when we add two 1 bits together. The
AND operation does this; it produces a third number that shows us exactly
where the original two numbers shared 1 bits. However, we need to, well,
carry that 1 bit over to the next digit place to the left. We accomplish this,
though, with the left shift!

Okay, here’s where we’re at so far:

We have the XOR technique that computes the sum without carrying. We
now also have the AND-with-shift to produce the carry number. Next, we
need to add the sum-without-carry and carry number together. In our
example of 5 + 1, we can do this by XORing the sum-without-carry and
carry number together. Here’s how this all comes together:

In the previous diagram, Step #1 computes the sum-without-carry (using
XOR). Step #2 computes the carry number (using AND with left shift).
Step #3 then “adds” the sum-without-carry and the carry number with
another XOR command. This gives us the final, and accurate sum of 6!

You may be wondering how Step #3 successfully added the sum-without-
carry and carry number, as earlier you saw that XORing isn’t itself the same
as adding. Rather, XORing only computes the sum-without-carry!

In fact, you’re right. We happened to get lucky with the example of 5 + 1

since in Step #3, when we XORed 0100 and 0010, there was no carry

number! And so, we get the correct answer because the sum-without-carry
is indeed correct in cases where no carrying is needed.

In truth, there’s really a Step #4 to the process for adding binary numbers.
Step #3 XORed our sum-without-carry with the carry number to produce a
new sum-without-carry. Step #4 then uses AND with left-shift again to
compute a new carry number as shown here:

In this example, Step #4 produces 0000, which means that there’s no carry
number. (There’s only a carry number if there’s at least one 1 bit. This
means that our algorithm is complete.

However, in cases when Step #4 does produce a carry number, we need to
loop and keep repeating the same steps of XORing and also ANDing plus

left-shifting. We do this until we end up with no carry number. Fortunately
for us, we will reach such a point in all cases, at least eventually.

Here’s an example of what I mean. Suppose we want to add 7 + 1. If we did
this by hand, we’d get:

As you can see, if we perform good old pencil-and-paper addition, we end
up having to carry a 1 three times. Performing this computation will be a bit
of a doozy. In this scenario, when we perform Step #4, we do end up with a
carry number:

This means that we need to keep repeating the same process until we’re left
without a carry number. Here’s what this looks like:

Because Step #4 ends with a carry number, Step #5 XORs the new sum-
without-carry with the new carry number to produce yet another sum-
without-carry. Step #6 then computes a new carry number that is to be
added with the latest sum-without-carry.

Step #6 demonstrates that we still have to carry another number, so we loop
again and perform Steps #7 and #8. Step #8 yields no carry number, and the
binary addition is complete.

Whew!

Code Implementation: Adding Binary Numbers

Fortunately, the code for adding binary numbers is short and to the point:

 def add (first_number, second_number):

 while second_number != 0:

 sum_without_carry = first_number ^ second_number

 carry_number = (first_number & second_number) << 1

 first_number = sum_without_carry

 second_number = carry_number

 return first_number

We run a loop where, in each iteration, we first XOR the two numbers
we’re adding to produce a sum_without_carry. We then AND the two numbers
and shift one place leftward to produce a carry_number.

We then want to add the sum_without_carry to the carry_number, so we update
the first_number to now be the sum_without_carry and the second_number to
now be the carry_number and repeat the loop again.

The loop terminates once the second_number, which is equivalent to the
carry_number (after the first round of the loop is complete), is 0. At that
point, we return the first_number, which is equivalent to the
sum_without_carry.

You’ve now seen how bitwise operators are a lot more useful than they
look. Indeed, addition is not the only piece of arithmetic that a computer
can execute using bitwise operators. Virtually all math that a computer does
uses bitwise operators under the hood. Furthermore, computer scientists and
mathematicians have discovered various other cool tricks that bitwise
operators can pull off. There’s no room for us to discuss all of them here,
but hopefully the process of adding two numbers gives you a taste of this.

Now, let’s go back to where we began and use bitwise manipulation to build
our bit vector.

Bit Masks: The Key to Zeroing in on a Bit

The key to making our bit vector work is to gain the ability to access and
modify individual bits of an integer. As a reminder, our goal with a bit
vector is to do things like represent the set 0, 3, 4, 6 using a single integer
such as 89. Again, the way this works is that 89 in binary is 01011001 and,
therefore, has 1 bits at indexes 0, 3, 4, and 6 (with index 0 being the right-
most bit and the indexes increasing going leftward). Although you and I can
look at the binary number 01011001 and see which indexes contain 1 bits, we
need a way to write code so that the computer can do this as well.

Here’s another way to think about this problem. I once read a true story
about a child genius who, despite his genius—or more accurately, because
of his genius—couldn’t learn to read. The problem was that when he saw a
page of words, his mind took in all the letters and words simultaneously. As
such, he could never focus on just a single word.

The same applies to our case. Even if we enter into our Python terminal the
binary string 0b01011001, the computer will immediately spit out 89 because,
like the genius, the computer is looking at the entire number as a whole. We
need to somehow get the computer to identify a single bit within that
number.

Now, a specialist did end up finding a way to teach the child prodigy to
read, and the child eventually grew up and went on to become a highly
successful and prolific educator himself. What was the specialist’s trick?

The specialist figured out that if they covered an entire book page except for
one word, they could get the child to focus on that word alone. By blocking
the child’s view of all the other distracting words, the child was able to take
in one word at a time. To read the next word, they revealed the next word
only after blocking the previous word.

And so, we’re going to use that same trick to get the computer to access
individual bits.

The general approach for accessing individual bits of an integer is by using
something called a mask (or bit mask). A mask is, in fact, an integer, but it’s
an integer whose bits are cleverly set to allow us to focus on a specific part
of another integer. Let’s take a look at an example using the integer 89.
Again, in base 2, this is 01011001.

Suppose we want to check whether the bit at index 4 is a 0 bit or a 1 bit. You
and I can see that it’s a 1 bit, but the computer sees the entire number of 89.
Here’s how we get the computer to focus only on the bit at index 4.

We create a new integer—the mask—whose bits are all set to 0 except for
the bit at index 4, which is set to 1. This is the integer 00010000. In decimal,
this happens to be 16, but we don’t care about that. What we care about is
that the only bit set to 1 is the bit at index 4, and that the rest are 0 bits. This
integer, 00010000, is our mask.

Next, we AND our integer of 89 with this mask:

The result is a number whose bits are all 0 except for the bit at index 4. That
is, wherever our mask contains a 0 bit, we “cover” the corresponding bit of
the 89 since when we AND each of the 89’s other bits with the mask’s
corresponding 0 bit, the resulting bit will always be 0.

However, our mask has a 1 bit at index 4. This will enable us to see what bit
lies in the 89’s index 4 since when we AND the bit at the 89’s index 4 with

the mask’s 1 bit, the result will always be the same as the 89’s index 4 bit.
As you’ve learned, a key property of AND is that whenever we AND a 1 bit
with another bit, the result is always that other bit.

Now, suppose we want to identify the index 4 bit of the integer 73. This bit
is a 0. Therefore, when we AND the 73 with our same mask, 00010000, we
get:

It comes out that when we AND any integer with a mask, if the resulting
integer is 0 (which is a slew of 0 bits), we know that the bit we’re inspecting
is a 0 bit. However, if the resulting integer is anything other than a 0, we
know that the bit we’re inspecting is a 1 bit.

When we used the mask on the integer 89, the result was 00010000. In
decimal, this happens to be 16, but the thing we care about is simply
whether the result is 0 or not. Because it’s 16, and 16 is most certainly not 0,
we know that the bit we’re inspecting is a 1 bit.

This is essentially the same approach the specialist used with the genius
child. We’re using the mask’s 0 bits to block the computer’s view of the 89’s
other bits so that it can focus solely on the bit at index 4, as shown here:

We leave an opening—by way of a 1 bit at index 4—to focus and see which
bit lies at the 89’s index 4. Without the mask, all the other bits get in the way

because the computer naturally sees all the bits together as a whole without
being able to isolate a single bit. The mask, though, is what allows us to
isolate a single bit.

In short, the 1 bit of the mask at index 4 serves as the opening for the
computer to see what lies behind it. This is because when we AND a 1 bit
with another bit, the result will always be that other bit. So, if the resulting
integer is 0, we know that our bit in question is also 0. If the result is
anything other than 0, then our bit in question must be a 1.

The following code creates and uses this mask:

 mask = 0b00010000

 mask & 89

The output of this code is 16, which means that there’s a 1 bit at index 4. If
there were a 0 bit at index 4, the result would have been 0.

A Get-Bit Function
As we’ve seen, with a code expression like 0b00010000 & 89, we can use a
mask to get the computer to reveal an individual bit at any index of an
integer. Let’s now use this idea to write a function that checks a bit at a
given index of a particular integer.

That is, we’ll create a function, get_bit, which will accept two parameters.
The first parameter is our integer, and the second parameter is the index of
the bit we want to inspect. Let’s start writing it:

 def read_bit (integer, index):

 mask = # what code goes here???

 return (mask & integer) != 0

This code is only half-baked, but the final line of code makes sense. The
final line ANDs the mask and integer together and then returns False if the

result is 0 or returns True if the result is any integer other than 0. But we
haven’t yet figured out how to write code to produce the mask itself.

To solve this, we’ll once again use the power of bitwise operations.
Specifically, we’ll use the shift operator to solve this task! I’ll present the
code first, and then explain it:

 def read_bit (integer, index):

 mask = 1 << index

 return (mask & integer) != 0

To create our mask, we start with an integer 1. This is equivalent to 00000001,
where the 1 bit is at index 0 of the integer. If we want the 1 bit of our mask to
be at index 4 instead, all we have to do is simply shift the 1 bit four places
to the left. This produces our desired mask of 00010000. In other words, we
can take the integer 1 and left-shift it by whatever number index is. Cool!

Okay, we’re making progress. We’ve successfully written code to read
individual bits from an integer. Next up, let’s figure out how to change bits
of an integer, that is, flipping a bit from 0 to 1 or vice versa.

In bitwise manipulation jargon, the term for flipping a bit from 0 to 1 is
called setting the bit. And the term for flipping a bit from 1 to 0 is called
clearing a bit. Let’s now write the code for each of these operations.

A Set-Bit Function
Once again, we’re going to use a mask to help us achieve our task at hand.
As with the mask we used to read a bit, our mask will be a series of zeroes
except for the index whose bit we want to set. This index will contain the
only 1 bit.

To set our desired bit (that is, to make the bit 1), we simply OR the mask
with our integer. Let’s see how this works.

Suppose our integer is 89, which in binary is 01011001. To set its index 2 bit,
we create a mask of zeroes with the index 2 bit set to 1, which is 00000100.
We then OR the mask with the 01011001, which yields:

This result is the same as the 89, except that its bit at index 2 is now a 1 bit.
I’ll call this bit the “setting bit.”

The trick here is based on one of the key properties of OR. Whenever we
OR any bit with 1, the result will always be a 1. So, because we OR the
setting bit with a 1, the bit will now be a 1 bit whether it was a 1 bit before
or not.

At the same time, our mask ensures that we don’t modify any of the other
bits. This works because the rest of our mask (other than the setting bit)
consists of 0 bits. Another key property of OR is that whenever we OR 0
with another bit, the result will be that other bit. So, we leave all the other
bits unchanged.

We can implement this as a function:

 def set_bit (integer, index):

 mask = 1 << index

 return integer | mask

That is, we first create the mask, and then OR the integer with that mask.

Note that we’re not modifying the original integer since that isn’t something
that Python does. Instead, we’re returning a new integer that is the result of
ORing the original integer with our mask. The same goes for the methods
that follow.

A Clear-Bit Function
If you can believe it, clearing a bit is even more fun than setting a bit. To
clear a bit, we’re going to create a different type of mask than before. That
is, previously, our masks were a bunch of zeroes with a single 1 bit. But
now, we’ll do the opposite, as our mask will be a bunch of 1 bits, with only
a single 0 bit.

Again, let’s work with the example integer 89. Suppose we want to clear the
bit at index 3. To do this, we create a mask of 1 bits except for the bit at
index 3, which is a 0 bit. Our mask, then, is 11110111.

We then AND the mask together with the 89, which gives us this:

This result is exactly what we want; it’s an integer that’s identical to 89

except that its bit at index 3 was flipped to 0. I’ll call this bit the “clearing
bit.”

The reason this works is that we’re ANDing the clearing bit with 0. And as
we’ve seen, whenever we AND any bit with 0, the result will always be 0.

At the same time, our mask ensures that we don’t change any other bits. We
accomplish this by ANDing all the other bits with 1. We’ve seen that one of
the key properties of AND is that when we AND 1 with any bit, the result
will be that other bit, unchanged.

In sum, to clear a bit, we AND the clearing bit with 0, while ANDing all the
other bits with 1 to leave them as they are.

The nerd inside of you is loving this, I know. But now let’s get to the fun
part—creating the mask.

Our goal is to create a mask that consists of 1 bits except for a 0 bit at the
desired index. Now, it can be tricky to kick things off by setting an integer
that contains only 1 bits because it’s not always clear as to what Python
integer we should use. Sure, the integer 255 is a series of eight 1 bits, but if
the size of a computer’s integers is, say, 32 bits, there will be 24 0 bits on
the left-most side of the integer. And we don’t want that, since we need all
of our bits (save for one) to be 1. Furthermore, many computers use 64-bit
integers, so we can’t always know with certainty what integer we should
use to initialize our mask.

However, this is where the NOT operation is our friend.

Suppose we want to clear the bit at index 4. This means that we want a
mask along the lines of 11110111. To accomplish this, we’ll start by creating
the opposite mask, 00001000, which we’ve already seen how to do earlier.
(That is, we’ll take the integer 1 and shift it leftward four places.) Then, to
produce our desired mask, we simply NOT the mask to invert its bits! Thus,
00001000 becomes 11110111, which is precisely the mask we want.

This approach works no matter the number of bits in an integer. Whether
there are 10 0 bits trailing on the left-hand side of our initial mask, or 20
such trailing 0 bits, all these bits will now be flipped to 1 bits.

In code, we can create a function that executes this strategy:

 def clear_bit (integer, index):

 mask = ~(1 << index)

 return integer & mask

That is, to create our mask, we first shift a 1 bit leftward and then NOT the
result with the ~ operator. We then return the result of ANDing this mask

with our integer.

A Toggle Bit Function
We’re on a roll, so let’s create another classic bit vector function. To toggle
a bit is to flip it to the opposite of what it currently is. So, if the bit is
currently a 0, toggling it will set it to 1. Likewise, if the bit is currently a 1,
toggling it will clear it to 0. I’m going to call the bit we’re interested in
toggling the “toggle bit.”

Technically, we could accomplish this by using an if statement in
conjunction with our get_bit, set_bit, and clear_bit functions. That is, we can
use get_bit to check whether the toggle bit is a 0 or 1. If it’s a 0, we’ll run the
integer through the set_bit function, and if the toggle bit is a 1, we’ll run the
integer through the clear_bit function.

While this approach will certainly do the trick, there is a much more
concise—and nerdier—method.

To toggle a bit, we first create a mask of zeroes, except for a 1 bit that lives
at the index of our toggle bit. Then, we XOR the original integer with our
mask. And that’s it! Let’s look at how this all plays out.

Suppose we want to toggle the bit at index 2 of the integer 89. To do this, we
XOR the 89 with our mask as shown here:

Boom! The bit at index 2 gets toggled from a 0 to a 1.

Now, let’s toggle index 3 from the 89:

Here, the bit at index 3 gets toggled from a 1 to a 0.

The reason this all works is because of the key properties of XOR. That is,
if the toggle bit is currently a 0, XORing it with 1 produces a 1 bit. On the
other hand, if our toggle bit is a 1, XORing it with 1 produces a 0 bit.

And so, when we XOR our toggle bit with 1, the result will be the opposite
of the toggle bit.

At the same time, we leave all the other bits unchanged by XORing all of
them with 0. A 0 bit XORred with 0 produces 0, while a 1 bit XORred with 0
produces 1. And so, we can code up a toggle function, keeping it short and
sweet, like this:

 def toggle_bit (integer, index):

 mask = 1 << index

 return integer ^ mask

Now that we have a general approach for getting, setting, clearing, and
toggling bits, we’re finally—at long last—ready to implement our own bit
vector.

Code Implementation: Bit Vector
The code we wrote in the previous section is almost everything we need to
implement our bit vector; there’s only one missing piece. As I mentioned
earlier, a single integer can only hold 32 bits, and it can therefore only store
a set of values that range from 0 to 31. To store additional values, we’ll need
an array of integers.

Following is a Python implementation of a bit vector that uses an array of
integers to store its values. The scheme goes like this: the first integer
represents values in the range of 0 to 31. The second integer represents
values in the range of 32 to 63. The third integer represents values in the
range of 64 to 95, and so on. Each next integer within the array will store the
next set of 32 values.

First, I’ll show you the code, and then we’ll walk through it line by line:

 class BitVector:

 def __init__ (self, range_of_bits):

 self.range_of_bits = range_of_bits

 integers_length = range_of_bits // 32

 if range_of_bits % 32 != 0:

 integers_length += 1

 self.integers = [0] * integers_length

 def read_bit (self, index):

 integer_index = index // 32

 bit_index = index % 32

 mask = 1 << bit_index

 return (mask & self.integers[integer_index]) != 0

 def set_bit (self, index):

 integer_index = index // 32

 bit_index = index % 32

 mask = 1 << bit_index

 self.integers[integer_index] |= mask

 def clear_bit (self, index):

 integer_index = index // 32

 bit_index = index % 32

 mask = ~(1 << bit_index)

 self.integers[integer_index] &= mask

 def toggle_bit (self, index):

 integer_index = index // 32

 bit_index = index % 32

 mask = 1 << bit_index

 self.integers[integer_index] ^= mask

 def values (self):

 set = []

 for number in range(0, self.range_of_bits):

 if self.read_bit(number):

 set.append(number)

 return set

When creating a new bit vector, the user is expected to include as a
parameter the number of expected values. That is, if we expect to store a set
whose values range from 0 to 255, we’ll initialize the bit vector with code
like this:

 bv = BitVector(256)

The underlying data structure behind the bit vector is the self.integers array,
which is, you guessed it, an array of integers. When the bit vector is first
initialized, the constructor creates that array and then fills it with the
appropriate number of zeroes. If we determine that self.integers needs to hold
five integers, this means the array will start out as: [0, 0, 0, 0, 0].

To compute how many 0s we need to fill our array, our constructor first
makes the assumption that each integer contains 32 bits (each of which will
be either a 0 or a 1). If our bit vector stores values within a range of 0 to 255,
this will require 256 bits. Because each integer in our self.integers array can
store 32 of these bits, we’ll need our array to hold eight integers in total
since 256 // 32 = 8.

And so, the most important code of our constructor sets this all up with:

 integers_length = range_of_bits // 32

 self.integers = [0] * integers_length

(Note that we could have also performed the same calculation with
integers_length = range_of_bits >> 5 since shifting rightward by 5 is the
equivalent of dividing by 32! But I used the regular division operator to
make the code easier to understand.)

In any case, the range_of_bits // 32 calculation works perfectly if the
range_of_bits is divisible by 32. But let’s say our scenario required 1,000 bits.
If we divide 1,000 by 32, we get 31.25. This would mean that our
data.integers array would have to hold 31.25 integers, but there isn’t such a
thing as a quarter of an integer!

This means that, practically speaking, we’ll need 32 integers. To account for
this, our code checks to see whether there’s a remainder in range_of_bits %

32, and if there is, we add an extra integer inside the self.integers array to be
able to store those extra bits. And so, we have the following code:

 if range_of_bits % 32 != 0:

 integers_length += 1

Getting back again to the final line of our constructor, self.integers = [0] *

integers_length is what fills the self.integers array with zeroes. So, if
integers_length is 8, for example, the self.integers will end up being [0, 0, 0, 0, 0,

0, 0, 0]. This simple array is the heart of the bit vector.

The read_bit function is almost identical to how we wrote it earlier, except
that before, we simply passed a single integer to read one of its bits. Now,
however, we have to first identify which integer within self.integers we need
to access. Once we grab the correct integer, we can read a bit from it.

The first half of the read_bit function goes like this:

 def read_bit (self, index):

 integer_index = index // 32

 bit_index = index % 32

 # ...

To find the appropriate bit within the appropriate integer, we use division,
getting both the quotient and the remainder. Because each integer contains
32 bits, we divide the index we’re reading from by 32. For example, if we
want to inspect the bit corresponding to the value 64, we divide 64 by 32.
This gives us a quotient of 2, and a remainder of 0. This means that the bit
representing 64 can be found in the integer at index 2 (of self.integers), and
specifically at zeroth bit index within that integer. That is, it’s the first bit of
the third integer.

Similarly, if we desired to access the bit corresponding to the value 65, we
once again divide this number by 32. This time, we get a quotient of 2 but a
remainder of 1. This indicates that the 65 bit is found at index 2 (of
self.integers), but this time the specific bit index within this integer is 1. In
other words, the 65 bit is the second bit of the third integer.

So, our read_bit method calculates both an integer_index and a bit_index. The
integer_index tells us the index of the integer within self.integers we need to
inspect. The bit_index tells us which bit within that single integer we want to
read.

The final two lines of read_bit work as our original read_bit method of a
single integer did. It’s just that now we use the bit_index to compute the
mask and then AND it with the desired integer from self.integers:

 mask = 1 << bit_index

 return (mask & self.integers[integer_index]) != 0

If the result is False, it means that the bit we’re reading is 0, and if the result
is True, the bit is 1.

Let’s now jump into the set_bit, clear_bit, and toggle_bit methods. The
methods begin by computing the integer_index and bit_index in the same way
that the read_bit method did. Any time we modify a bit, we do so by

updating the integer in which that bit lives. With the set_bit method, we
can’t merely return a new integer as our original set_bit method did. Instead,
we now modify the target integer (which is self.integers[integer_index]) with
the following code:

 self.integers[integer_index] |= mask

The |= operator works much like the += operator. That is, just as x += 1 is
equivalent to x = x + 1, similarly, x |= mask is equivalent to x = x | mask.

Along the same lines, the clear_bit method updates the target integer with
self.integers[integer_index] &= mask, and the toggle_bit method updates the
target integer using self.integers[integer_index] ^= mask.

I also included a values method in our BitVector class. This method returns an
array containing the set of values that our bit vector represents. That is, if
our bit vector’s self.integers is [89] in order to represent the set 0, 3, 4, 6, then
values will return the array [0, 3, 4, 6].

And that’s it!

Using Our Bit Vector
Now that we have a working bit vector, let’s use it to serve as our set for the
algorithms we looked at earlier: finding duplicates and counting sort.

In the following code, I’ve rewritten our finding duplicates algorithm by
using a bit vector instead of a hash table or Boolean array:

 import bit_vector

 def has_duplicates (array):

 set = bit_vector.BitVector(1024)

 for item in array:

 if set.read_bit(item):

 return True

 else :

 set.set_bit(item)

 return False

I set the bit vector to hold values in the range of 0 through 1023 in this
example, assuming that our array will only hold values in that range.
Obviously, if you know that array will hold a different range of values,
you’d adjust this accordingly.

We can also now rewrite our counting sort algorithm using a bit vector:

 import bit_vector

 def counting_sort (array):

 set = bit_vector.BitVector(10000)

 for value in array:

 set.set_bit(value)

 return set.values()

Interestingly, when I benchmark these snippets, they run a little slower than
the Boolean array and hash table implementations. However, the advantage
of bit vectors is the space savings they offer.

Let’s see how much space bit vectors save us.

Benchmarking Space
We can benchmark space just as we can time, and thankfully, it’s easy to do
with Python. Here’s how we can use Python to measure how many bytes
the integer 2 takes up, for example:

 import sys

 object = 2

 sys.getsizeof(object)

For me, this outputs 28, which means that our object—which is the integer 2
—takes up 28 bytes. (One byte is equivalent to eight bits.) I mentioned
earlier that integers generally take up 32 bits, which should be only 4 bytes.
However, I also mentioned that Python crams extra stuff into objects, so it’s
hard to always predict precisely how much space a particular object will
take up.

To benchmark the space consumption of the various counting sort
algorithms, I inserted the sys.getsizeof() method into the three different
implementations of counting sort. Specifically, I called the getsizeof()
function on the underlying data structure within each implementation.
Here’s what this looks like for the bit vector implementation:

 import sys

 import bit_vector

 def counting_sort (array):

 set = bit_vector.BitVector(1000)

 for value in array:

 set.set_bit(value)

 print (sys.getsizeof(set.integers))

 return set.values()

Note that here I checked the space of set.integers rather than simply set. This
is because in this context, set is a BitVector instance, and when we run
sys.getsizeof() on a class instance, Python measures the space of the instance
itself without all the data it references. To get the actual data, I had to run
sys.getsizeof(set.integers).

I then shuffled the numbers 0 through 999 and ran counting sort for each
implementation (hash table, Boolean array, and bit vector). When I compare
the space consumption of each implementation, I get:

Hash Table 36,960 bytes
Boolean Array 8072 bytes
Bit Vector 312 bytes

I think these results speak for themselves and show how incredibly tiny a
bit vector can be, and yet still contain all of our set data.

Bit Vector Overkill
A bit vector isn’t going to save you space in all scenarios. In particular, bit
vectors are not ideal for sparse sets. A sparse set is a set in which there’s a
relatively large range of possible values, but only relatively few values
across that range. For example, suppose the range of possible values is 0
through 999. No matter how many values the set will ultimately hold, our bit
vector will contain 1,000 bits to accommodate all 1,000 possible set values.
So, even if our set only contained five values, our bit vector would take as
much space as it takes to hold 1,000 values.

However, with a hash table, if we’re only going to store five values, the
hash table will be quite small. When I benchmark it, Python tells me that a
hash table with five values takes up only 232 bytes of space, which is
smaller than the 1,000-value bit vector that takes up 312 bytes.

It emerges that a bit vector is ideal for sets that are more dense, meaning
that the number of values in the set is somewhat closer to the range of
possible values. For example, a bit vector of 1,000 bits that holds 800
values is relatively dense. Specifically, it has a density of 80 percent.

You may have to do some benchmarking of the space within your particular
application to figure out at what point it will be worth it to use a hash table
vs. a bit vector.

No matter what, though, a bit vector will always be smaller than a Boolean
array. This is because both data structures create as many pieces of data as
there are in the possible range of values. However, a Boolean array will
create a new Boolean object for each possible value, while a bit vector will
create a new integer for every 32 values.

The Space Complexity of Sets
In discussing time or space complexity, we typically use the variable N to
represent how many pieces of data we’re dealing with. In the context of
sets, N would represent the number of elements our set contains.

A hash table set has a space complexity of O(N) since the hash table’s space
is (constants aside) tailored to hold the set’s N elements in N cells.

However, with Boolean arrays and bit vectors, the number of values they
represent corresponds not to the number of values in our set, but rather the
range of possible set values. So, even if a set has five values, if those values
fall in a range from 0 to 1000, our Boolean array has to hold 1,000 integers.
To signify this, I’m going to use the variable R to represent the number of
possible values in the range.

So, a Boolean array has a space complexity of O(R), as it holds up to R
Boolean values of True or False.

A bit vector, on the other hand, can fit 32 values inside each of its integers
on a 32-bit machine. Because this number can vary from machine to
machine, we’ll use the variable B to signify the number of bits that each
integer holds.

It turns out that a bit vector stores a total of R/B integers. For example, if
the range is 256, and the number of bits in an integer is 32, a bit vector
needs only to contain 8 integers. This is because 256 / 32 = 8.

Accordingly, we’d say that the space complexity of a bit vector is O(R/B).
Some literature out there may use different variable names instead of R or
B, but you get the idea.

Classic Set Operations
Because we’re talking about sets, it’s worth highlighting some of the most
common set operations. These are the operations known as union,
intersection, and difference. To keep things simple, I’ll demo these
operations using single integers as bit vectors, rather than using an array of
integers.

Union
The union of two sets is a third set that contains all the values from the first
two sets combined. For example:

 Set A: {0, 3, 7}

 Set B: {2, 3, 6}

 Union: {0, 2, 3, 6, 7}

Note that the value 3 only appears once in the union. Although both Set A
and Set B contain a 3, the union set contains only one instance of 3. This
again is because a set, by definition, does not hold duplicate values.

Thanks to bitwise operators, it’s easy and fast to find the union of bit vector
sets. All we have to do is OR the two bit vectors together:

 Set A: 10001001

 Set B: 01001100

 A | B = 11001101

That is, the OR operation will produce a 1 bit at any bit index where either
bit vector has a 1 bit. This is the union of the two bit vectors.

Intersection

The intersection of two sets is a third set that contains only the values that
the first two sets have in common:

 Set A: {0, 3, 7}

 Set B: {2, 3, 6}

 Intersection: {3}

We can find the intersection of two bit vectors with a simple AND
operation:

 Set A: 10001001

 Set B: 01001100

 A & B = 00001000

The AND operation informs us where both bit vectors share a 1 bit. It is
only the values represented by these 1 bits that get included in the
intersection set.

Let’s look at one more operation.

Difference
The difference between two sets is a third set that contains all items from
the first set minus intersecting items from the second set:

 Set A: 10001001 -> {0, 3, 7}

 Set B: 01001100 -> {2, 3, 6}

 Difference of A minus B: 10000001 -> {0, 7}

Here, the difference is identical to Set A, except that we removed the 3
since Set B also contains a 3.

Interestingly, we can compute the difference between Set A and Set B by
ANDing A with the inverse of Set B. That is, we run the code: A & ~B.
Here’s what this looks like:

 Set A: 10001001

 Inverse of Set B: 10110011

 A & ~B = 10000001

Here’s why this works. Our goal can be broken down into three subgoals:

Subgoal #1: Our result integer should have the same 0 bits that Set A
does. (This is because the result set should not contain any values that
Set A doesn’t have.)

Subgoal #2: If both Set A and Set B share a 1 bit at a particular digit
place, the result should have a 0 bit at that place. (This is the
subtraction of Set B from Set A.)

Subgoal #3: At any place where Set A has a 1 bit, and Set B has a 0 bit,
the result should have a 1 bit at that place. (These are the values of Set
A that do not get subtracted out.)

Here’s how we achieve these three subgoals with the trick of A & ~B.

Subgoal #1 is accomplished because when we AND a 0 bit from Set A with
any other bit, the result will always be a 0 bit.

We take care of Subgoal #2 because by inverting Set B, we turn all of its 1
bits into 0 bits. This means that all of the values that Set B represents are
now 0 bits. When we AND these 0 bits with the 1 bits of Set A, the result is
a 0 bit. This subtracts out the Set B values from Set A.

Finally, we knock Subgoal #3 out of the park because by inverting Set B,
we take all of the values it doesn’t have and flip them into 1 bits. When we
AND these 1 bits with Set A’s 1 bits, the result will be a 1 bit.

And so, the pithy line A & ~B cleverly produces the difference between Set A
and Set B. Just wow.

Wrapping Up
Speaking of wow, we’ve covered so much in this chapter! We looked at
sets, Boolean arrays, and bit vectors. We also looked at binary numbers,
bitwise operators, and various bit manipulation techniques. We discovered
how Boolean arrays can produce unique speed boosts, and how bit vectors
can offer astounding space savings.

Although we implemented bit vectors from scratch, it’s worth noting that
there’s also a popular Python bit vector library out there called bitarray.[7]

You should definitely check that out if you’re planning on using bit vectors
in production.

There does appear to be a significant limitation to Boolean arrays and bit
vectors. That is, they can only be used in scenarios where the possible set
values are integers and these integers lie in a relatively small range. If, for
example, our set values are strings, these data structures won’t be very
useful. Or so it would seem.

In the next chapter, we’ll look at how we can harness the power of bit
vectors for all types of values, strings included. With a little help from
Monte Carlo algorithms, we can create a bit-vector-like data structure that
works in many other scenarios beyond a small range of integers. Prepare to
be amazed.

Exercises
The following exercises provide you with the opportunity to practice with
bit vectors and bit manipulation. The solutions to these exercises are found
in the section Chapter 12.

1. Write a function that accepts a binary string and returns the decimal
number that the string represents. For example, if the function receives
the string "100101", the function should return the integer 37. (Note that
this is essentially the functionality of the Python expression 0b.
However, this exercise is to build the same functionality from scratch.)

2. This exercise is the inverse of the previous exercise. Here, you are to
write a function that receives a decimal number and returns a binary
string. This binary string should always contain 32 bits, even if that
means that there will be many 0 bits on the left-most side. So, if the
function receives the integer 37, the function should return
"0000000000000000000000000100101". (This is essentially the same
functionality as Python’s bin command, but again, you are to build this
function from scratch.)

3. Toward the end of this chapter, I explained how the set operations
union, intersection, and difference work. However, I only demonstrated
how they operate on two single integers. Let’s get our BitVector class to
perform these operations as well.

Specifically, add three new methods to our BitVector class. The union

method should allow a BitVector instance to accept a second BitVector

instance and return a third BitVector instance that represents the union
of the first two bit vectors. The intersection and difference methods
should work similarly, except that they return a bit vector representing
the intersection and difference, respectively. To keep things simple,

you can assume that the two bit vectors we’re operating on are of the
same size.

4. Write a function that accepts two integers and returns their hamming
distance. The hamming distance of two integers is the number of digit
places in which the two integers have different bits. For example, take
the integers 1 and 8. Their hamming distance is 2, and here’s why:

 1: 0001

 8: 1000

 ^ ^

You can see that in two different digit places (the right-most and left-
most places), the 1 and the 8 have different bits. Because the bits are
different in two places, we say that 1 and 8 have a hamming distance of
2.

The integers 7 and 8 have a hamming distance of 4 since they have
different bits in four digit places:

 7: 0111

 8: 1000

 ^^^^

The key is figuring out what bitwise operations to utilize within your
function.

5. Puzzle: This is one of my all-time favorite computer science problems.
You are given an unsorted array that contains integers. It’s guaranteed
that in this array, each integer appears exactly twice—except for one
integer that appears only once. For example, the array might be [5, 9, 9,

3, 5]. The 3 only appears once, but the 5 and 9 both appear twice.

Write a function that returns the integer that only appears once in the
array. For this example, your function should return the integer 3.

[6]

[7]

This may sound simple enough, but there’s a catch. Your function
should run in O(N) time and take up no extra space. This rules out
using a hash table or even a bit vector since those both take up space.
It also rules out sorting since that takes O(N log N) time.

Once again, bitwise operators will be your friend. In fact, you may
need one bitwise operator. Hint hint.

Footnotes

https://pragprog.com/titles/jwpython2

https://pypi.org/project/bitarray/

Copyright © 2025, The Pragmatic Bookshelf.

https://pragprog.com/titles/jwpython2
https://pypi.org/project/bitarray/

Chapter 13

Cultivating Efficiency with Bloom
Filters

In the previous chapter, you discovered that bit vectors can store a lot of
data in an incredibly compact way. In fact, one could argue that bit vectors
are the most compact of all data structures. So, if you’re looking to save
space, bit vectors are an incredible tool.

However, you also learned that bit vectors are only useful in certain
scenarios, specifically, where the data consists of integers that lie within a
relatively short range. If you were to store integers in a large range or if you
had other forms of data, such as strings, you wouldn’t be able to take
advantage of the great space savings bit vectors afford.

Fortunately, there’s a variant of the bit vector that can handle even these
other scenarios. In this chapter, you’ll read about the Bloom filter, a data
structure that acts like a bit vector but can save space for virtually all types
of data. Bloom filters are incredibly clever and rely on several concepts we
explored previously, including Monte Carlo algorithms and hash function
families. By the time you’re done with this chapter, you’ll be able to
implement your own basic Bloom filter and use it to save space across
many different applications.

Finding Duplicates Revisited
Chapter 12, Saving Space: Every Bit Helps opened with the problem of how
to find duplicates in an array of data. The problem was simple enough:
write a function that, given an array, returns True if there are any duplicate
elements, and False if there aren’t. Using the brute-force approach, we grind
along in O(N2) time, but we discovered that if we use a set to track what
elements we encounter along the way, we can solve our problem at a brisk
O(N) pace.

We also explored various options in selecting the right data structure for our
set. Hash tables and bit vectors both gave us the O(N) result we were
looking for, but bit vectors took up a lot less space than hash tables.
However, we also learned that bit vectors can only store integers. This is
because we use each bit’s index to represent a value, and the index is itself
an integer.

But let’s say that our array contains strings, such as:

 ["apple" , "banana" , "cucumber" , "date" , "elderberry" , "fig" , "apple"]

These certainly aren’t integers, so we can’t store them in a bit vector.

Again, we can use a hash table, which works for any type of data, including
strings. However, if we’re strapped for space, and a hash table would
simply be too large, is there anything we can do?

This would be an awfully short chapter if there weren’t.

Bloom Filters
It turns out that even though a classic bit vector can’t store strings
compactly, a similar data structure called a Bloom filter can. The Bloom
filter, named after its inventor, Burton Bloom, has been put to widespread
use in all sorts of applications ever since the 1970s.

A Bloom filter is a space-efficient data structure used for storing a set. It’s a
variation of the bit vector, but can be used to store all sorts of data, not only
a small range of integers. To make this work, Bloom filters make use of
Monte Carlo principles, as you’ll soon see.

To make it a tad easier to understand how Bloom filters work, I’m going to
first introduce a similar but simpler data structure, which I call the Gloom
filter. Please don’t ever use a Gloom filter. I made it up for educational
purposes only; it’s not a real thing.

Gloom Filters
The Gloom filter utilizes hashing so that we can store strings inside bit
vectors—or at least, kind of.

As you learned in Chapter 10, Designing Great Hash Tables with
Randomization, we can use a hash function, such as division hashing, to
transform a string into an integer. Suppose we choose a hash function that
produces hash codes that are integers from 0 to 7. Armed with such a hash
function, we can store any string inside a byte-sized (8 bits) bit vector, as
shown in the figure.

Because the hash code of "apple" is 4, we flip the bit at index 4 to 1.

Similarly, we can also add "banana" to our Gloom filter:

Our Gloom filter now contains both "apple" and "banana".

And that, my friends, is the Gloom filter. In short, it uses a hash function to
transform each value into an integer, and then sets the corresponding index
in a bit vector to 1. It’s basically a bit vector, except that we first hash each
value to decide which bit we should store it in.

Okay, that seems pretty cool. Let’s analyze what we can and cannot
accomplish with a Gloom filter.

One-Directional
If we had a Gloom filter and wanted to know what values it contains, we’d
have absolutely no way to do that. The 1 bits in the byte 00010100 could
represent anything. They could represent any string that hashes into 2 or 4.
A bit vector, on the other hand, only stores integers, and so 00010100 can
only represent the integers 2 and 4. As such, we can always draw out the
integer values from the bit vector.

However, the fact that Gloom filters are one-directional doesn’t mean that
they can’t be useful. Take the finding duplicates problem, for example. We
never need to pull values out of the set; we only need the set to tell us if
we’ve encountered a value before. So, if the Gloom filter returns True when
we ask it if we’ve encountered "apple" before, we’ll know that we’ve found
a duplicate.

But there’s a pretty big problem with this.

Collisions
As I covered in Volume 1, Chapter 8, and touched on in Chapter 10,
Designing Great Hash Tables with Randomization, hashing can lead to
collisions. That is, multiple values can all be hashed into the same hash
code. This presented a potential problem for hash tables, but we were able
to deal with collisions by using approaches such as separate chaining,
which I discussed in Volume 1, Chapter 8.

However, collisions can derail Gloom filters since collisions cause false
positives. To see what this means in our context, let’s continue with the
example of finding duplicates.

In the previous Gloom filter example, we encountered and stored the strings
"apple" and "banana" in our Gloom filter, giving us the byte 00010100. Cool.

Say that the next item in our array is "cucumber" and that "cucumber" hashes
to 4. When we check our Gloom filter to see whether we’ve encountered
"cucumber" before, we’ll find that there’s a 1 bit at index 4, and our code will
tell us that we’ve already encountered "cucumber" before. In truth, though,
this 1 bit was placed there because of "apple", which happens to hash to the
same value. At this point, our program will happily shut down and tell us
that we found a duplicate—but we haven’t!

This is what I mean by a false positive; the computer thinks it found a
duplicate since it’s confusing "cucumber" with "apple", as they have the same
hash codes. In any case, this problem of false positives is, well,
problematic, as it means that a Gloom filter cannot help us detect duplicates
properly.

No False Negatives

Now, I’d like to point out that even though Gloom filters suffer from false
positives, it doesn’t mean that Gloom filters are utterly useless. In
particular, here’s one thing that Gloom filters have going for them: they
don’t produce false negatives.

That is, if a Gloom filter declares that a value does not exist in the set, then
the Gloom filter is 100 percent trustworthy. The reason for this is logical. A
Gloom filter states that a value is nonexistent when the value’s hash code
corresponds to an index with a 0 bit. If the value was seen before, that index
would definitely contain a 1 bit. If there’s a 0 bit, we can be guaranteed that
we’ve never encountered that value before.

To recap: a Gloom filter can produce false positives, meaning it may think
that a value is a duplicate even though it’s not. This can happen when two
different values share the same hash code. However, a Gloom filter cannot
produce false negatives. Accordingly, if the Gloom filter claims that the
value does not exist, we can absolutely believe that.

Blacklists
Believe it or not, false positives can potentially be tolerable in a number of
applications. One example of this is a blacklist.

Suppose we’re maintaining a web server and the server has been suffering
from a number of malicious attacks. Luckily, we’ve been able to check the
logs and discover that these attacks are coming from a relatively small set
of IP addresses. To combat the nefarious hackers, we create a blacklist of
these IP addresses and tell the server to deny access to all of them.

To save space, we can store these IP addresses inside a Gloom filter. Then,
each time our server receives a web request, we check the request source
against our blacklist. That is, we hash the IP address into an integer and
check the corresponding index inside our Gloom filter to see if there’s a 1

bit. If there is, it means that this IP has previously been blacklisted, and we
will therefore deny access to the request.

Now, because there may be false positives, it’s possible that we end up
blocking a request from a benign IP address. This can happen if the benign
IP address hashes into the same hash code as an address from our blacklist.
However, depending on the application, this may be okay. That is, it may
not be a big deal for us to block a few valid requests here or there in the
name of defending ourselves from hackers.

At the same time, our blacklist is ironclad, as we will never end up
accidentally allowing a request from an IP address on our blacklist. Because
a Gloom filter reports no false negatives, if it says that the current request’s
IP address is not on the blacklist, we can trust it fully.

The Return of Monte Carlo
So far, we’ve seen that a Gloom filter can be used to represent a set. The
Gloom filter is kind of like a bit vector, but it can be used to store even non-
integer data (like strings)—something that bit vectors cannot do.

Sure, a hash table can also be used to store strings as a set. The advantage
of Gloom filters, though, is that they take up less space than hash tables.
That being said, Gloom filters have the disadvantage of potentially
producing false positives.

You learned in Chapter 9, Counting on Monte Carlo Algorithms that a
Monte Carlo algorithm can sacrifice accuracy in order to gain speed. It
emerges that Gloom filters use another type of Monte Carlo algorithm. That
is, they sacrifice accuracy to gain space. We could even say that a Gloom
filter is a Monte Carlo data structure since it’s a data structure that operates
on Monte Carlo principles.

But is a Gloom filter a good Monte Carlo data structure? Indeed, all Monte
Carlo algorithms and data structures, by definition, sacrifice some accuracy.

But to be an effective Monte Carlo algorithm, we need to ensure that the
chances of error are low enough to satisfy our application’s needs. To
determine whether Gloom filters are effective, we need to measure how
accurate or inaccurate they are.

So, let’s do that.

Gloom Filter Error Rate
In the previous example, where all values hash into one of eight possible
hash codes, any two values will have a 1 in 8 chance of colliding. This
means that if we have a single item in our Gloom filter, when we check to
see if some other item is in the Gloom filter, there’s a 1 in 8 chance we’ll
get a false positive.

Now, say that there are four different items already in our Gloom filter, and
they’re all marked by different bits. The next item we check against our set
will have a 4 in 8, or 50 percent, chance of being a false positive. That’s a
pretty high error rate. If you’re using a Gloom filter for a blacklist, you’d be
wiping out half of all legitimate traffic, which may be too much.

The question, then, is how we can reduce the false positive error rate of
Gloom filters.

Increasing the Gloom Filter Size
Perhaps the easiest approach to reduce Gloom filter error rates is to simply
increase the size of the Gloom filter. If we made it so that our Gloom filter
uses 100 bits and the hash function produces 100 possible hash codes,
there’s only a 1 percent chance that two different values will collide. And if
we make the Gloom filter the size of 10,000, the chances of any two values
colliding will be a mere 1 in 10,000. Whether or not that’s okay for your
application is up to you, but this is most certainly a great improvement.

The downside, though, of increasing the Gloom filter’s size is the fact that
now we’re taking up more space. The entire point of the Gloom filter was to
reduce space, so by increasing its size, we’re neutralizing the Gloom filter’s
main advantage. It’s pretty hard to get a Gloom filter to an acceptable level
of accuracy while still allowing us to save significant space.

But we can do better. In the next section, I’ll introduce a new technique for
reducing the filter’s error rate. With this approach, we can turn our Gloom
filter into a Bloom filter and achieve some impressive results for striking a
solid balance between accuracy and space savings.

Use Multiple Hash Functions
We can turn our Gloom filter into a Bloom filter by using one deviously
clever trick. And that is, we hash each value more than once upon each
insertion and lookup. Let me explain.

You learned about hash function families in Chapter 10, Designing Great
Hash Tables with Randomization. That is, we can create different hash
functions that all use the same underlying hashing method and yet produce
different hash codes. In that chapter, we created multiple hash functions that
all use division hashing, but each hash function uses a different random
prime number as part of its hashing calculation.

The main point I’m driving at here is that we can run a single value through
a number of different hash functions, and each hash function will compute a
different hash code. For example, let’s say we have one hash function called
hash1() and another function hash2(). If we use each one to hash the string
"apple", we may get something like this:

When a Bloom filter is first initialized, it decides how many hash functions
it’ll use, and what those hash functions are. (You’ll see later how those
decisions are made.) This is all decided at the Bloom filter’s creation, and
from then on, the Bloom filter uses these same hash functions for all of its
operations, including lookups and insertions.

Let me demonstrate this with an example. Say that when we set up a Bloom
filter, it decides that it will always use the two hash functions hash1() and
hash2().

If we want to insert "apple" into our Bloom filter, we’ll run both hash
functions and end up setting two bits to 1:

Because hash1("apple") is 4, and hash2("apple") is 6, we set the bits of indexes
4 and 6 as 1 bits.

Now, let’s say that we next insert "cucumber". We might get something like
this:

Here, our two hash functions compute the hash codes of 4 and 0. So, the bit
at index 0 gets set to 1. We’d also set the bit at index 4 to 1, but it already
happens to be 1. But that’s okay—these types of collisions won’t prove to
be too much of a problem.

Insertions aren’t the only operation where we use these two hash functions.
When we look up an item in the Bloom filter, we also use both hash
functions. That is, if we look up "cucumber", we use the two hash functions
to create two hash codes corresponding to two bit indexes.

Now, here’s the key: only if both indexes have a 1 bit do we confirm that
"cucumber" is present in our Bloom filter. If any of these bits were 0, that
proves that "cucumber" is not in our set. If it were in our set, both bits would
have been set to 1.

The Multi-Hash Advantage

Here’s the advantage of using multiple hash functions. In the previous
section, when we were only using a single hash function, we hit a false
positive when trying to look up "cucumber". This is because both "apple" and
"cucumber" shared the same hash code of 4. So, if "apple" already flipped the
bit at index 4 to 1, it appears that "cucumber" is in the set too, even though it
isn’t.

But now that we’re using two hash functions, there’s less of a chance of
getting this false positive. Let’s go back to the case where only "apple" is
present in our set, and the Bloom filter looks like this:

If we now look up "cucumber", we’re no longer going to get a false positive
as shown in the figure.

Although the bit at index 4 is a 1 bit, the bit at index 0 is a 0 bit, so we know
that "cucumber" is not present in the set. In other words, with a single hash
function, two strings have a 1 in 8 chance of sharing the same hash code.
With two hash functions, though, there’s only a collision if both strings
share a set of two hash codes. Because there’s only a 1 in 8 chance of a
single hash code being shared, there’s a 1 in 64 chance that two hash codes
will be shared (1/8 * 1/8 = 1/64). And so, we significantly reduce the chances
of receiving a false positive.

Too Much of a Good Thing
Because increasing the number of hash functions reduces the odds of
getting false positives, it might be tempting to keep laying on the hash

functions. Why stop at two hash functions when we can use six, eight, or
ten? In theory, if we used 10 hash functions in our earlier example, the odds
of two values sharing the same exact hash codes for all 10 hash functions
should be 1 in 8 to the 10th power, which is 1 in 8,589,934,592.

However, a funny thing happens when we use too many hash functions.

Continuing with our earlier example, let’s say that we used six hash
functions for our byte of data. Here’s an example of what would happen
when we insert "apple":

Almost the entire byte has been turned into 1 bits. And now here’s what
happens when we insert "banana" as shown in the figure.

Yikes—now the byte consists entirely of 1 bits! From this point on, any
string we’d look up in the set would return True whether we ever inserted
that value into the set or not. The only way to get a result of False is by
encountering a 0 bit, but that could never happen anymore.

It’s a curious thing, but it’s true. Increasing the number of hash functions in
a Bloom filter helps reduce false positives, but if we increase the number of
hash functions by too much, we end up increasing false positives. The
following graph illustrates what this looks like.

In this example, having just one hash function leads to a 15 percent false
positive rate. As we increase the number of hash functions, the false
positive rate drops. The false positive rate is at its lowest (about 5.5 percent)
when we have four hash functions. However, as we continue to increase the
number of hash functions beyond four, the false positive rate starts climbing
higher again.

Bloom filters rely on a mathematical formula to calculate the ideal number
of hash functions needed to keep both memory consumption and false
positives to a minimum. So you, as the programmer, don’t need to fret

about choosing the right number of hash functions. Once you program your
Bloom filter correctly, it makes that decision for you.

Let’s dig into how that works.

The Bloom Filter Variables: N, M, K, and F
Throughout the remainder of this chapter, I’m going to refer to four
variables that factor into making sure our Bloom filter is optimized. You’re
already familiar with all the underlying concepts; I’m now assigning each
concept to a variable:

The variable N refers to the number of items we want our Bloom filter
to hold.

The variable M refers to how much memory our Bloom filter will take
up, in terms of the number of bits.

The variable K refers to the number of hash functions our Bloom filter
will be using.

The variable F refers to the false positive rate. If F is 0.01, for example,
this represents 1 percent. That is, for every 100 times our Bloom filter
returns True as a result of a lookup, one of those results is expected to
be a false positive.

Like or hate these variable names, these are what are used in the industry, so
we’ll run with them.

It turns out that these four variables are all connected to each other through
a mathematical formula. It can be expressed in Python like so:

 f = (1 - math.e**((-k * n) / m))**k

The variables f, k, n, and m refer to the F, K, N, and M variables we’ve been
discussing. So, if we’d fill in n, m, and k with actual numbers into the code

and run it, the result will be the value for f, which, again, is the false
positivity rate. (If you’re wondering, math.e refers to a mathematical
constant known as Euler’s number, which is approximately 2.71828.)

I’m not going to explain the mathematical theory behind this equation here.
However, I will show you what this formula means in practical terms.

We discovered earlier that the more bits our Bloom filter contains, the lower
F will be. That is, as we increase M, we have more hash codes available to
us since each hash function will produce a hash code from 0 up until M.
Accordingly, we reduce the chances that any two values end up with the
same hash code.

At the same time, increasing M only helps if N is significantly lower than it.
Imagine that M was 1,000; that is, we have 1,000 bits inside our Bloom
filter. If N is 10,000, we’re still going to have way too many collisions since
we’re trying to cram 10,000 values into 1,000 slots. So, the thing to focus
on is the M/N ratio—how many bits our Bloom filter will store relative to
the number of items it’ll hold.

For example, if we’ll be dedicating 100 bits to our Bloom filter and only
inserting 10 values, the M/N ratio is:

 (M / N) = (100 / 10) = 10

And so, M/N being 10 means that we’re going to have 10 times as many
bits as there are values in our set.

Now, the greater M/N is, the lower F is. For example, when M/N is 10, F
will be lower than when M/N is, say, 6 or 8. The following graph illustrates
this idea:

Here we can see how M, N, and K all affect F. When M/N = 6, meaning
that there are six times as many bits as there are values in the Bloom filter,
this produces one particular curve. However, you can see that the curve of
M/N = 8 reaches lower levels of F. And M/N = 10 reaches yet even lower
levels of F, yielding a false positivity rate that can be even lower than 1
percent.

You can also see from here that we can’t determine what F is from M/N
alone. M/N only produces the curve of what F can potentially be. It’s K that
finally pegs down what F is.

Take a look at the following graph. It’s the same graph shown earlier, but
here I highlight what K should ideally be for each curve (approximately):

Note that the ideal K changes based on what M/N is. When M/N is 6, it
turns out that F dips to its lowest point when K is about 4. When M/N is 10,
though, the ideal K is around 7.

Next up, we’re going to see how to set up our Bloom filter so that it figures
out for itself what its own M, F, and K should be.

The Classic Bloom Filter Constructor
The classic way to set up a Bloom filter is that upon creation, we pass in the
variables N and F. This means that we need to decide in advance how many
values (N) we plan on storing inside our Bloom filter. At the same time, we
also need to decide the false positive rate (F) that we’re willing to tolerate
for our application.

For example, we may decide that we’re going to store 100 items and that
we’re only willing to tolerate a false positive rate of up to 3 percent. Our
Bloom filter’s constructor starts like this:

 class BloomFilter:

 def __init__ (self, n, f):

 # remaining code will be filled in soon

And we’d initialize a new Bloom filter this way:

 bf = BloomFilter(100, 0.03)

That is, N is 100, and our maximum tolerable F is 0.03.

While it may be tempting to input a super-small F such as 0.00000001, this
can only be achieved with a tremendous amount of memory (M). Given that
we’re using a Bloom filter to conserve memory, we want to balance our
false positive rate with keeping the memory footprint small.

Code Implementation: Bloom Filter with the Classic
Constructor
Without further ado, here is a basic Python implementation of a Bloom
filter:

 import bit_vector

 import division_hasher

 import math

 class BloomFilter:

 def __init__ (self, n, f):

 self.m = int(-math.log(f) * n / (math.log(2)**2))

 self.k = int(self.m * math.log(2) / n)

 self.hash_functions = []

 self.hash_function_primes = {}

 for _ in range(self.k):

 hasher = division_hasher.DivisionHasher(self.m)

 while hasher.prime in self.hash_function_primes:

 hasher = division_hasher.DivisionHasher(self.m)

 self.hash_function_primes[hasher.prime] = True

 self.hash_functions.append(hasher)

 self.bv = bit_vector.BitVector(self.m)

 def insert (self, value):

 for hash_function in self.hash_functions:

 hashcode = hash_function.hash(value)

 self.bv.set_bit(hashcode)

 def read (self, value):

 for hash_function in self.hash_functions:

 hashcode = hash_function.hash(value)

 if not self.bv.read_bit(hashcode):

 return False

 return True

This is the classic Bloom filter I described in the previous section, which
accepts two parameters: n and f. That is, the programmer decides in advance
approximately how many items the set will contain and what the maximum
tolerable false positive rate should be.

With n and f in hand, the constructor first computes m with this dandy
formula:

 self.m = math.floor(-math.log(f) * n / (math.log(2)**2))

This formula is derived from the other formula we encountered earlier in
The Bloom Filter Variables: N, M, K, and F. In any case, our Bloom filter
now knows how much memory to allocate for our application.

Now that we’ve set both n and m, we also know our M/N ratio. Effectively,
the Bloom filter has selected its desired curve from the graph.

Once the curve has been selected, all it needs to do now is compute k so that
we hit the lowest possible f along that curve. The computation for k is:

 self.k = math.floor(self.m * math.log(2) / n)

This formula, too, is derived from the original formula.

Now that we have k in hand, which, again, is the number of hash functions
our Bloom filter will use, we now have to select the actual hash functions
we’ll be using. We store these hash functions in the array self.hash_functions.

To create the hash functions, we bring in the DivisionHasher class we created
back in Code Implementation: Randomized Hash Functions. Our strategy is
as follows: all of our hash functions will use division hashing. However,
each hash function will incorporate a different random prime number into
its division computation. (You can feel free to choose a different hashing
scheme if you’d like, though. I’m simply using division hashing because it’s
simple, and we’ve covered it before.)

To make sure we don’t accidentally create two identical hash functions, we
keep track of each hash function’s prime number in the hash table
self.hash_function_primes. Then, the following code loops until it has created k
different hash functions:

 for _ in range(self.k):

 hasher = division_hasher.DivisionHasher(self.m)

 while hasher.prime in self.hash_function_primes:

 hasher = division_hasher.DivisionHasher(self.m)

 self.hash_function_primes[hasher.prime] = True

 self.hash_functions.append(hasher)

The inner while loop keeps generating a random hash function (in the
variable hasher) until we get one that we haven’t already created before.
When we find an acceptable hash function, we append it to our array
self.hash_functions.

Finally, our constructor creates a new bit vector and stores it in the variable
self.bv. Here, we’re using the bit vector class we created in Code
Implementation: Bit Vector.

The rest of the class is relatively smooth sailing. The insert method iterates
over each of the Bloom filter’s hash functions and uses each one to hash the
value into a hash code. For each hash code, we then flip the corresponding
bit (based on its index) in the bit vector to 1.

Similarly, the read method uses the same set of hash functions to hash the
value and checks whether each hash code has a corresponding 1 bit inside
the bit vector. If all the bits we check are 1, we return True to indicate that
the value is currently in our set. However, if even a single bit is 0, we know
that the value is not in the set and we therefore return False.

An Alternative Constructor
A potential downside with the “classic” Bloom filter constructor is that we
don’t get to tell the Bloom filter how much memory it should consume.
Instead, we tell it what N and F are, and it computes M based on the
mathematical formula. But what if we are absolutely constrained for space?
It could happen that the Bloom filter may take up more memory than we’re
able to handle.

If you find yourself in this predicament, you may consider using an
alternative constructor for the Bloom filter. Specifically, when we initialize
the Bloom filter, instead of passing in the variables N and F, we pass N and
M. By passing in M, we are dictating to the Bloom filter the absolute
maximum amount of space that it should take up.

When we do this, though, we don’t get to control F. That is, when the
programmer chooses N and M, it is effectively choosing which curve on the
graph the Bloom filter will use. The Bloom filter then computes the
appropriate K to reduce F as much as possible. However, we’re giving up
our liberty to choose what F is.

For example, if we choose that M/N is 6, the best possible F we can achieve
is 4 percent, period. Hopefully, that’ll be okay for your application. If that’s

not okay, a Bloom filter is not going to be a good fit for your software.

Ultimately, we have two choices. With the classic constructor, we choose
what F we’re willing to tolerate, and the Bloom filter chooses the lowest
possible M. With the alternative constructor, we choose what M is, and we
have to deal with whatever F ends up being.

In theory, there could be yet other constructors, such as choosing F and M,
and let the math choose N. However, the two constructors I’ve described so
far are the most common, so we’ll stick with those.

Code Implementation: Bloom Filter with an Alternative
Constructor
Here is what the alternative constructor looks like:

 class BloomFilter:

 def __init__ (self, n, m):

 self.m = m

 self.k = int(m * math.log(2) / n)

 self.f = (1 - math.e**((-self.k * n) / m))**self.k

 self.hash_functions = []

 self.hash_function_primes = {}

 for _ in range(self.k):

 hasher = division_hasher.DivisionHasher(self.m)

 while hasher.prime in self.hash_function_primes:

 hasher = division_hasher.DivisionHasher(self.m)

 self.hash_function_primes[hasher.prime] = True

 self.hash_functions.append(hasher)

 self.bv = bit_vector.BitVector(self.m)

This constructor has the arguments of n and m. The variable k is computed
using the same code as the classic constructor, as only n and m are needed to
compute k.

The code then computes F. In truth, F isn’t used anywhere else in the code.
However, it’s useful to have so that a programmer can check what F ends up
being and can decide if it’s tolerable.

Bloom Filter Deletion
One important thing to note about Bloom filters is that they don’t have a deletion operation.
This is because deletion would be impossible for the following reason:

In theory, we’d delete a value by hashing the value into multiple hash codes and flipping all
the corresponding 1 bits to 0. The problem, though, is that other values in the set likely share
some of these 1 bits. So, by deleting one value, we’d be inadvertently deleting other values as
well.

Using Bloom Filters for Detecting Duplicates
It’s time to turn our attention back to the problem we discussed at the
beginning of this chapter. We have an array of strings and want to check
whether there are any duplicates. Let’s now solve this problem in a space-
efficient way by using a Bloom filter.

The strategy is to iterate over the array of strings, and if a string is deemed
not a duplicate, we insert it into a Bloom filter. To determine whether a
string is a duplicate, we look it up in the Bloom filter to see if we’ve ever
encountered it before.

Here’s the code to implement this approach:

 import bloom_filter

 def find_duplicates (array):

 set = bloom_filter.BloomFilter(len(array), 0.01)

 for item in array:

 if set.read(item):

 return True

 else :

 set.insert(item)

 return False

If this code gives the result of False, we know with certainty that there aren’t
any duplicate values. On the other hand, if the code returns True, then it’s
likely a duplicate. As to how likely, well, that depends on the false positive
rate we set for our Bloom filter. If F is 1 percent (as it is for this code
example), then it’s 99 percent likely that there’s a duplicate.

And so, if your application is willing to tolerate errors 1 percent of the time,
a Bloom filter is a great way to save space in storing your set while finding

duplicates.

Indeed, when I use the sys.getsizeof() method to measure the space of
different sets, I find that to contain 100 values, a hash table takes up 4,688
bytes of space, while a Bloom filter takes up 296 bytes. This is true even
though I’ve reduced the Bloom filter’s false positive rate down to 1 percent.

Bloom Filters in the Wild
You’ve seen how Bloom filters work wonders in terms of saving memory.
Because of this, Bloom filters are ubiquitous in the real world. In addition
to the use case of a blacklist of web traffic sources we looked at earlier, the
following sections highlight some further applications where Bloom filters
are used.

Reducing Database Lookups
Many database engines use Bloom filters to help reduce lookup time.
Looking up an item in the database usually involves reading information
from the disk and, therefore, takes a significant amount of time relative to
looking something up in main memory.

Now, this time lag takes place upon each lookup, no matter whether the
item we’re looking up is in the database or not. As such, it’s kind of a waste
of time to execute a database lookup to find an item that’s not there. After
all, there’s no actual information we need to extract from the database in
such a case. Wouldn’t it be nice if we could know in advance that the item
doesn’t exist so we can avoid the lookup cost?

This is where Bloom filters can help tremendously. Each time an item is
added to a database, that same item is also inserted into a Bloom filter that
lives in main memory. We don’t have to insert all the item’s information
into the Bloom filter; we can simply insert the item’s name (or whatever its
primary ID is).

The Bloom filter can then be used as a kind of index telling us what values
can be found in the database. Each time we perform a lookup, we first
check the Bloom filter to see if our desired item is in the database. Because
the Bloom filter lives in main memory, this check happens extremely
quickly. Only when the Bloom filter tells us that the item is present do we

then perform the more expensive operation of looking it up in the database.
On the other hand, if the Bloom filter tells us that the item is not in the
database, we get to skip the expensive database lookup.

As to the issue of the Bloom filter’s possibility of error, there’s not much
downside, and here’s why: If the Bloom filter tells us that the item doesn’t
exist, we can be absolutely sure that this is true since there can never be a
false negative.

Now, there’s a small chance for a false positive, meaning the Bloom filter
will tell us that the item is present even though it isn’t. However, the worst
thing that could happen is that we perform an unnecessary database lookup.
And this is not a big deal, especially considering that if we didn’t use a
Bloom filter at all, we’d be performing way more unnecessary database
lookups! In other words, although a Bloom filter may not completely
eliminate all unnecessary lookups, it will nevertheless still greatly reduce
their frequency.

Again, a hash table can be used in this case instead of a Bloom filter, but the
hash table would take up more space. And so, this is why many database
engines use Bloom filters in practice to reduce database lookups.

Caches
In Chapter 4, Cache Is King, you learned all about caching. One of the
primary lessons was that because caches only hold a limited amount of data,
we only keep data that will be requested again in the future. On the flip
side, we evict data that will never be asked for again.

The ultimate item we don’t want to cache is something often called a “one-
hit wonder.” A one-hit wonder is a piece of data that is only being requested
once in history; no one will ever request it again.

Now, there are some applications where most requests are indeed one-hit
wonders. If, say, 75 percent of requests are for one-hit wonders, then we

only want to cache the other 25 percent of requests.

Of course, we can’t know for sure whether a given request is a one-hit
wonder, since we can’t see into the future to know for certain that it’ll never
be requested again. However, we can use a Bloom filter to help prevent
inserting one-hit wonders into our cache.

The strategy here is to only cache data from a request we know has been
asked for more than once. That is, if this is the first time we ever had such a
request, we suspect that perhaps this is a one-hit wonder. However, if this is
already at least the second time we encounter this request, then we know
it’s certainly not a one-hit wonder; after all, it’s now been requested twice!
And so, we’ll cache the data, with the guesstimate that this request may be
made yet again in the future.

Specifically, we’ll use a Bloom filter to keep track of what requests have
ever been made previously. Whenever a request is made, we insert the
requested value into our Bloom filter. This will indicate to us in the future
that this request has been made once so far. Then, going forward, each time
a request is made, we first check the Bloom filter to see whether the request
has been made before. If it was never made before, we suspect that this may
be a one-hit wonder and do not cache the data. But if the Bloom filter tells
us that this request has been made before, then we do cache the data.

Now, when the Bloom filter tells us that the request has never been made
before, we can 100 percent believe this to be true. On the other hand, if the
Bloom filter tells us that this request has been made before, there’s a small
chance that this isn’t true.

However, the worst thing that can happen is that we cache a one-hit wonder.
This is no travesty, though, especially given that this will happen only
occasionally. And again, without the Bloom filter, we’d be caching all one-
hit wonders! Although a hash table would be more accurate (that is, 100

percent accurate), it may take up too much space to be worth it. The Bloom
filter is a much more compact data structure.

Variants
Besides the classic Bloom filter, there are plenty of other variants out there
as well. These include Bloomier filters (yep, that’s their name), Spatial
Bloom filters, Scalable Bloom filters, Layered Bloom filters, and more.
Each of these deals with specialized use cases, and you may enjoy
researching them to see how the general Bloom filtering strategy can be
used for so many different types of applications.

We’ve also seen that a Bloom filter is a Monte Carlo data structure. But it’s
certainly not the only one. While I don’t have the space to cover other
Monte Carlo data structures in this volume, I encourage you to check them
out. Some of these include skip lists, quotient filters, cuckoo filters
(totally!), count-min sketches, and HyperLogLogs.

Wrapping Up
Bloom filters can be used to save space even in instances where bit vectors
cannot. A bit vector is generally limited to cases where our data is integers
within a small range, but Bloom filters do not have these limitations. To
keep themselves small, Bloom filters use the Monte Carlo approach—they
sacrifice some accuracy in order to save space.

You’ve seen in previous chapters how Monte Carlo algorithms can also be
used to gain speed. In short, then, the idea of Monte Carlo is to sacrifice
some accuracy to gain either time or space.

In some cases, you may save both time and space. One example of this is
using a Bloom filter to reduce database lookups (as described in Reducing
Database Lookups). The main purpose of maintaining a set in main
memory in this context is to save time. And by specifically using a Bloom
filter to serve as the set, you’re ensuring that your set takes up minimal
space.

Parting Thoughts
Congratulations—you’ve leveled up! It’s been quite a journey, and you’ve
learned many ideas that you can take to the bank.

Understanding the limitations of Big O Notation and how to benchmark
time and space are critical to ensuring that your algorithms are truly
efficient.

Randomization and Monte Carlo play an important role in thoughtful
algorithm design. External-memory algorithms and caching are both
important components of good system design.

Data structures such as red-black trees and randomized treaps make sure
that when you need a tree, it’s fast. Bit vectors and Bloom filters, on the
other hand, offer tremendous space savings.

Sure, I can spell out a list of other things you’ve learned, such as bit
manipulation, the sliding-window technique, substring search, Mergesort,
B-trees, and random hashing. However, above all, you’ve upgraded the way
you think. You’re a more adept software engineer, able to thoughtfully
consider the various implications of each code implementation. You
understand the pros and cons of each data structure and the advantages and
disadvantages of various algorithms that all vie to solve the same problem.

And yet, your journey is still not over. There are many algorithms and data
structures yet to learn, and efficiency-producing techniques and tricks that
you have not yet encountered. As our computing problems get ever more
complex, new solutions are constantly being developed, and others are yet
to be discovered.

Your growth as a software engineer must continue! Whether it’s through my
own future writing or through your own research, I wish you the best of

luck as you progress along your journey.

Exercises
The following exercises provide you with the opportunity to practice with
Bloom filters. The solutions to these exercises are found in the section
Chapter 13.

1. You’re the lead engineer at the social media app HumbleBrag. This
particular app requires users, upon sign-up, to choose a unique
username. If a proposed username is already found to be taken, the
user is asked to choose a different username.

Now, you’ve gotten complaints that this process is too slow. Each time
a user suggests a username, it takes a whopping four seconds (sheesh!)
for the app to tell the user whether that username is available. You
know that this is happening because the app, under the hood, is calling
the database to search whether that username exists.

How might you use a Bloom filter to help speed things up?

2. Thanks to your ingenuity in using the Bloom filter, you made
HumbleBrag’s username validator much faster. Buoyed by this
success, the rest of your engineering team got super excited to apply
this technique to speed up other parts of the app.

Another slow part of the HumbleBrag app is user login. Specifically,
each time a user enters their password, the app needs to query the
database to see if (an encrypted version of) that password is correct.
The engineering team is suggesting storing encrypted passwords in a
Bloom filter. This way, we could check the password using the super-
quick Bloom filter rather than run a slow database lookup.

Is this a good idea?

3. Use Python to create an instance of the “classic” BloomFilter class. Set
it up to accommodate a set containing 1,000 values and to have a
failure rate of 3 percent. Write code to help you answer the following
questions:

What does M come out to be?

What does K come out to be?

How many bytes does the underlying bit vector data take up when you
call sys.getsizeof() on the bit vector’s underlying array?

Copyright © 2025, The Pragmatic Bookshelf.

Appendix 1

Solutions

Chapter 1
These are the solutions to the Exercises.

1. Here’s what the breakdown phase of Mergesort looks like for this
example:

2. Here’s what the merging phase of Mergesort looks like for this
example:

3. Here’s what the result of Mergesort looks like for this example:

The interesting thing to note here is that for each integer, the
timestamps remain sorted! For example, although we moved around
the three instances of value 1 so that they’re now all in a row, their
timestamps remain in their original order.

Because of this, computer scientists refer to Mergesort as an example
of a stable sort algorithm. A stable sort algorithm ensures that when
there are duplicate instances of the same value, those two instances
will remain in the same order (relative to each other) that they were
before the sorting.

Note that many sorting algorithms, including Quicksort, do not
produce a stable sort. If stable sorting is important for your application,
this may be reason enough to choose Mergesort over Quicksort.

4. As I mentioned in the exercise, there’s no right or wrong way of doing
this, but here’s what I did. Here are my two loops, starting with the
first version:

 for i in range(1, 11):

 print (i)

And here’s my second version:

 x = 1

 while x < 11:

 print (x)

Here are the two sets of bytecode:

 For loop:

 1 0 LOAD_NAME 0 (range)

 2 LOAD_CONST 0 (1)

 4 LOAD_CONST 1 (11)

 6 CALL_FUNCTION 2

 8 GET_ITER

 >> 10 FOR_ITER 12 (to 24)

 12 STORE_NAME 1 (i)

 2 14 LOAD_NAME 2 (print)

 16 LOAD_NAME 1 (i)

 18 CALL_FUNCTION 1

 20 POP_TOP

 22 JUMP_ABSOLUTE 10

 >> 24 LOAD_CONST 2 (None)

 While loop:

 1 0 LOAD_CONST 0 (1)

 2 STORE_NAME 0 (x)

 2 >> 4 LOAD_NAME 0 (x)

 6 LOAD_CONST 1 (11)

 8 COMPARE_OP 0 (<)

 10 POP_JUMP_IF_FALSE 22

 3 12 LOAD_NAME 1 (print)

 14 LOAD_NAME 0 (x)

 16 CALL_FUNCTION 1

 18 POP_TOP

 20 JUMP_ABSOLUTE 4

 >> 22 LOAD_CONST 2 (None)

 24 RETURN_VALUE

Both sets of bytecode seem to have the same number of instructions,
and similar ones at that. However, they clearly aren’t exactly the same.

For example, the for loop version has the FOR_ITER instruction, which
appears to be specific to a for loop. The while loop version has unique
instructions such as COMPARE_OP, which is needed to compare x to 11.
This version also has a POP_JUMP_IF_FALSE command, which appears to
terminate the loop if the expression x < 11 is false.

Chapter 2
These are the solutions to the Exercises.

1. Personally, I would have guessed that the first version is faster. This is
because the first version relies on linear search, which is O(N), while
the second version relies on sorting, which is O(N log N). Indeed, my
benchmarking bears out this hypothesis. Here is my benchmarking
code:

 import timeit

 setup_code = '''

 import random

 import exercise_1a

 array = []

 for i in range(1000000):

 n = random.randint(1, 1000000)

 array.append(n)

 '''

 test_code = '''

 exercise_1a.minimum(array)

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5,
number=1))

This code benchmarks the first version, which I saved in a file called
exercise_1a.py.

When I benchmarked the first version, my results were:

 0.029821541000000007, 0.030344957999999922, 0.03037758299999993,

 0.029123583000000064, 0.030518541999999815

I saved my second version in a file named exercise_1b.py and updated
my benchmarking code accordingly. The benchmarking results of my
second version, as I’d predicted, were slower:

 0.22374379099999997, 0.21845316700000006, 0.21908141599999986,

 0.22122462500000006, 0.218094958

2. For this scenario, I predicted that the two functions would have the
same speed. I based this hypothesis on the fact that in the exercises for
Chapter 1, we saw that the bytecode for a for..range loop and a while
loop were similar.

But it turns out that my prediction was not entirely correct. Here is my
benchmarking code:

 import timeit

 setup_code = '''

 import random

 import exercise_2a

 '''

 test_code = '''

 exercise_2a.sum_up_to_one_million()

 '''

 print (timeit.repeat(stmt=test_code, setup=setup_code, repeat=5,
number=1))

This code works just as well for the second version; I only needed to
change the module name.

Here are my benchmarking results for the for..range code:

 0.05982770799999999, 0.05473741700000001, 0.054945541000000014,

 0.05513195900000001, 0.055346958

My benchmarking results for the while loop code showed that this
second version was slightly slower:

 0.087291291, 0.08183283300000001, 0.08237899999999998,

 0.08279591600000002, 0.08296995899999998

As to why this is, well, that’s hard to know for sure without delving
into Python’s source code to see how its loops are implemented.
There’s discussion on the Internet about this, and I invite you to do
further research if you’re interested in learning more.

3. The most important case to test when it comes to sorting is a list of
jumbled values, which is the average case. In my setup code, though, I
created an array of sorted integers. Sorting presorted values can either
be much faster or slower than the average case, and it may be
worthwhile benchmarking as well. However, it’s certainly a mistake to
only benchmark this edge case and ignore the performance of the
typical case, which is to sort unsorted values. To fix this, the setup
code should instead create an array of integers that are in random
order.

4. First, I shouldn’t be including the print command in my testcode, as
printing takes time, and we’re not interested in testing how fast
printing is.

Second, in my setup code for linear search, my array only contains
100,000 values, while my binary search benchmark creates an array of
one million values. This isn’t an apples-to-apples comparison, and is
therefore an experiment that is not properly controlled. It’s pretty
messed up, to be honest.

Chapter 3
These are the solutions to the Exercises.

1. Here’s one possible approach, which randomly selects 3 indexes from
the array and returns the values at those indexes.

 import random

 def pick_3 (array):

 chosen_indexes = []

 for _ in range(3):

 random_index = random.randint(0, len(array) - 1)

 while random_index in chosen_indexes:

 random_index = random.randint(0, len(array) - 1)

 chosen_indexes.append(random_index)

 # sort the indexes to ensure we return the values

 # in their original order:

 chosen_indexes.sort()

 chosen_values = []

 for index in chosen_indexes:

 chosen_values.append(array[index])

 return chosen_values

2. Here, we grab all the hash table’s keys(), convert the result into an array
with the list keyword, and then use random.choice to pick one random
item from the array:

 import random

 def sample (hash_table):

 return random.choice(list(hash_table.keys()))

3. Let’s say that we’re selecting a single random value from the array ["a",

"b", "c", "d", "e", "f", "g"]. Our first iteration of the loop will point to the
"a" and decide whether it’s the value to select. The question is: how can
we ensure that this "a" has an equal chance of being selected as each
other value in the array?

Now, because there are 7 values, this means that each value should
have a 1/7 chance in being selected. And so, to decide if we’re going
to select the "a", we should roll a 7-sided die, and if the die lands on
one particular side, we’ll select the "a". If the die lands on any of the
other 6 sides, we will not select the "a".

In code, this would look something like roll = random.randint(1, 7), which
chooses a random integer from 1 to 7, inclusive. We can decide that if
the result is a 1, we’ll select the "a", and if the result is some other
number, we’ll move on to the next iteration of the loop.

Now, in the next iteration of the loop, the current value is "b". How do
we give "b" an equal opportunity of being the chosen value? Like every
other value, we want to ensure that the "b" also has a 1/7 chance of
being selected.

Intuitively, we may think that we should roll another 7-sided die to see
whether we’ll choose the "b". However, this is not the right move to
make, and here’s why.

The "a" already got its day in the sun—that is, we already gave it a fair
chance at being selected. Once the "a" was not selected, it no longer
has any bearing on whether we should choose the "b". And so, when
we are deciding whether to select "b", we need to give the "b" the same
odds as every other value that we haven’t iterated over yet, namely, "c",

"d", "e", "f", and "g".

In other words, with "a" out of the way, we’re now deciding whether,
of the 6 values that remain, we should select the "b". Therefore, we
want to give the "b" a 1/6 chance of being chosen. And so, we can run
roll = random.randint(1, 6) and select the "b" if the roll turns out to be 1.

To make this even more intuitive, I’ll explain this from yet another
angle. Imagine that we’re randomly selecting a value from an array
that only contains 2 values, such as ["a", "b"]. Say that we gave the "a" a
1/2 chance of being chosen, and it wasn’t selected. At this point, we
should simply select the "b" instead. The "a" lost its 50 percent chance,
so we select the "b" instead.

If we were to instead roll the die again to see whether we select the "b",
the "b" will ultimately only have a 1/4 chance of being selected since
1/2 * 1/2 = 1/4. Additionally, if the "b" loses on its roll, we won’t end
up selecting anything from the array!

Similarly, with the case of ["a", "b", "c", "d", "e", "f", "g"], if we rolled a 7-
sided die for "a" and do the same again for "b", it would come out that
the "b" has a 6/49 chance of being selected. That is, for the "b" to be
selected, it relies on the 6/7 chance that the "a" will not be selected.
When we multiply that 6/7 chance by the 1/7 that "b" will be selected,
that produces a chance of 6/49. The odds of 6/49 are slightly less than
the 1/7 we were aiming for.

So instead, we roll a 6-sided die for the "b". This way, when we
multiply the 6/7 chance that the "a" is not selected by the 1/6 chance
that the "b" is selected, we get: 6/7 * 1/6 = 6/42, which is the same as
1/7.

As we proceed through each value in the array, we reduce the “sides of
the die” by 1. So on the next round, we’ll roll a 5-sided die, and on the
next round a 4-sided die, and so on.

If the first 6 values are not selected, we automatically select the final
value, the "g". The "g" relies on the 6/7 chance that the "a" isn’t
selected, multiplied by the 5/6 chance that the "b" isn’t selected,
multiplied by the 4/5 chance that the "c" isn’t selected, and so on.

This gives us:

6/7 * 5/6 * 4/5 * 3/4 * 2/3 * 1/2 = 1/7. Tada!

Here is the code:

 import random

 def sample (array):

 denominator = len(array)

 for value in array[:-1]:

 roll = random.randint(1, denominator)

 if roll == 1:

 return value

 denominator -= 1

 return array[-1]

4. This solution builds upon the previous one. The gist of the algorithm
goes like this:

1. We begin to traverse the tree, starting at the root node. We’ll use
the variable current_node to refer to whichever node we’re
pointing to at a given moment.

2. We always keep track of how many nodes are contained in the
subtree of which the current_node is the “root.” We’ll call this
variable the subtree_size. (At the beginning of our algorithm, when

current_node is the true root, the subtree_size will indeed be the size
of the entire tree.) Since we know that the tree is complete, we
can compute the subtree_size based on how many levels the tree
has rather than traverse the entire tree and count all the nodes. See
the tree_size method to follow for the exact calculation.

3. We roll a die from 1 up to the subtree_size. If the die lands on 1, we
select the current_node as our winning node. If, for example, the
subtree contains 15 nodes, this gives the current node a 1/15
chance of being chosen. This is exactly what we want since we
want to give each of the 15 nodes of the tree an equal chance of
being chosen as the winner.

4. If our die does not land on 1, then we continue to traverse the tree
by moving down to the current_node’s child. To decide whether
we’ll select the left child or the right child, we roll a die. If it
lands on 1, we move left, and if it lands on 2, we move right. This
way, both the left descendants and the right descendants of the
current_node have an equal chance of eventually becoming the
winner. Whichever child we end up choosing becomes the new
current_node.

5. We now calculate how many nodes are contained in the subtree of
the new current_node. Since each time we move down a level in a
binary tree, we exclude half of the remaining nodes from our
traversal path, we simply divide the old subtree_size by 2. (We use
floor division, so if the previous subtree had 15 nodes, the current
subtree now has 7 nodes. This floor division works since we also
have to exclude the previous current_node itself, in addition to the
other half of its descendants.)

6. We start over again at Step “c.” That is, we now roll a die from 1
up to the new subtree_size. If we roll a 1, the new current_node is

the winner; otherwise, we move on again. If we eventually reach
a leaf node, the subtree_size will be 1, in which case the leaf node
will definitely be selected as the winner.

Here’s the code, including a simple implementation of a BST:

 import random

 class TreeNode:

 def __init__ (self, value, left=None, right=None):

 self.value = value

 self.left_child = left

 self.right_child = right

 def insert (value, node):

 if value < node.value:

 if not node.left_child:

 node.left_child = TreeNode(value)

 else :

 insert(value, node.left_child)

 elif value > node.value:

 if not node.right_child:

 node.right_child = TreeNode(value)

 else :

 insert(value, node.right_child)

 def tree_size (node):

 level_size = 1

 total_size = 1

 current_node = node.left_child

 while current_node:

 level_size *= 2

 total_size += level_size

 current_node = current_node.left_child

 return total_size

 def sample (node):

 subtree_size = tree_size(node)

 current_node = node

 while current_node:

 roll = random.randint(1, subtree_size)

 if roll == 1:

 return current_node.value

 subtree_size //= 2

 roll = random.randint(1, 2)

 if roll == 1:

 current_node = current_node.left_child

 else :

 current_node = current_node.right_child

The primary algorithm here takes place in the sample method. You’ll
see, though, that it relies on a tree_size method to calculate the size of
the entire tree. Again, this calculation is only valid if the tree is
complete. Otherwise, you may have to traverse the entire tree and
simply count up all the nodes.

Chapter 4
These are the solutions to the Exercises.

1. In the first five steps, we fill up our cache with 5 values:

 ["c", "t", "h", "o", "p"]

Technically, these are all cache misses, so we have 5 cache misses so
far. When we then request the next "t" and "h", these are both cache hits
since those values are currently in the cache.

Next, we reach the first "z", which brings our cache miss tally to 6.
This will evict the "c" since the "c" will never be requested again. Our
cache currently looks like this:

 ["z", "t", "h", "o", "p"]

The next request is the second "o", which is a cache hit. After that, we
reach the "a", which is our 7th cache miss. This will evict the "o",
which won’t ever be requested again.

Our cache now looks like this:

 ["z", "t", "h", "a", "p"]

The next two requests, namely the "p" and "t", are both cache hits. The
"b" is our 8th cache miss. At this point, we can evict an arbitrary choice
of the "t", "a", or "p" since we won’t be requesting those values again.

The final two requests of "z" and "h" are both cache hits.

So when all is said and done, we have a total of 8 cache misses.

2. We initially fill our cold cache with the first five requests. Because
we’re now dealing with an LRU cache, we fill the cache in reverse
order, with the first item representing the most recently used item:

 [p, o, h, t, c]

The next two requests, that is, the "t" and "h", are both cache hits. We
move these items to the front of our cache, which means that our cache
is now:

 [h, t, p, o, c]

The request after that, though, is our 6th cache miss since the "z" is not
currently in the cache. We evict the "c" since that’s the LRU item,
leaving our cache as:

 [z, h, t, p, o]

Our next request is "o", which is a cache hit. We move the "o" to the
front of the cache:

 [o, z, h, t, p]

The next request is "a", which is our 7th cache miss. We evict the "p":

 [a, o, z, h, t]

Unfortunately, we next request a "p", which we literally just evicted.
This is our 8th cache miss. We evict the "t":

 [p, a, o, z, h]

We next request a "t", which we also evicted in the previous step. This
is our 9th cache miss. After evicting the "h", our cache is now:

 [t, p, a, o, z]

Our next request of "b" is our 10th cache miss. The cache now appears
like this:

 [b, t, p, a, o]

Our last two requests are "z" and "h", which are also both cache misses.
Our final cache miss tally, then, is 12.

3. The clear_bits_2 method might raise your coworkers’ eyebrows, but it
does have better spatial locality. The problem with the other method,
clear_bits_1, is that when it loads bit_box.red_bits[i], the computer caches
the entire array of red bits.

However, the next step of code doesn’t read from red bits; it reads
from the array of blue bits instead! If your cache was just large enough
to hold the red bits, you’ll have to evict the red bits and then cache the
blue bits. Once again, though, the next step of code jumps to the green
bits, for which your cache doesn’t help in any which way.

This problem repeats itself when we start the loop again, for then the
code reads from the red bits again, even though we only have the green
bits in the cache.

With clear_bits_2, though, once we perform our first read from the array
of red bits and cache this array, our code continues to read all the red
bits. The fact that we already have the red bits in the cache will give
our code a performance boost.

However, as we’ve learned, one shouldn’t simply write a method like
clear_bits_2 without benchmarking it. Especially given that clear_bits_2 is
a wonky way of writing code in that it’s more verbose, we’d better
know for sure that it’s faster. In fact, when I’ve benchmarked this code,
I’ve found that clear_bits_2 is slightly slower than clear_bits_1. This may
be because, firstly, the spatial locality may not matter here since my

cache may be large enough to fit all the data (from red, blue, and green
bits together). Therefore, clear_bits_1 benefits from the cache just as
clear_bits_2 does. On top of that, clear_bits_2 has to initiate 3 separate
loops, which may slow things down slightly.

It turns out that not every algorithm that enjoys better spatial locality is
faster than competing algorithms with worse spatial locality.

4. A hash table provides for O(1) searches and O(1) insertions, but
doesn’t easily allow us to choose a random element.

An array, on the other hand, allows us to sample a random element in
O(1) time since we can choose a random index in one step. An array
can even allow us to insert new elements in O(1) time—if we append
new data at the end of the array. However, an array does not allow for
O(1) searches. Linear search of an array takes O(N) time, and even
binary search (if the array is sorted) takes O(log N) time.

So, how can we get the best of both worlds?

Well, one approach is to combine a hash table together with an array.
Here’s what I mean:

Each time we insert a new element, we insert that element into both
the hash table and the array. We can insert the element as a key in the
hash table, and simply make the value True or the like. At the same
time, we also append the element to the end of the array. Yes, there’s
duplicate data, but the exercise didn’t restrict that. In any case, we’ve
achieved O(1) insertion.

Since the data is present in the hash table, we can also pull off O(1)
searches. That is, each time we conduct a search, we always do so
from the hash table, which allows us to search in O(1) time.

However, when we perform a random sample, we do so from the
array. Again, a typical hash table doesn’t allow you to pick a key at
random. But since we have all the data in the array as well, we can
choose a random element from the array in O(1) time.

Chapter 5
These are the solutions to the Exercises.

1. The tree will look like this:

This is because we always switch the orientation of the parent-child
relationship. Since previously, the A was the B’s left child, the B will
now become the A’s right child.

2. The red-black tree will look like this after the rotation:

When we rotate the 80 and 100, the orientation flips, so the 100
becomes the right child of the 80. However, this creates a problem of
where to place the 85. Given that the 85 was the 80’s right child, where
does the 85 go now that the 100 became the 80’s right child?

The solution is to make the 85 a crossover node, which causes the 85
to become the 100’s left child.

3. The red-black tree will look like this after the insertion:

That is, we insert a red 30 as the 15’s right child. The 30 is red since all
new nodes start out red. Now, given that this doesn’t violate the Red
Enemies Rule, there’s no fixing up to do, and we can leave the tree as
is.

4. Initially, we insert a 20 as the 30’s left child, and color the 20 red as we
do with all new nodes:

However, this violates the Red Enemies Rule because the 20 and 30,
which are parent and child, are both red. This means we have some
fixing up to do!

The first thing we do as part of the fixing phase is to determine
whether this is a Red-Uncle Case or a Missing-Or-Black-Uncle Case.
This case happens to be a Missing-Uncle Case since the 20 doesn’t
have an uncle. (That is, the 20’s grandparent, 15, has no children other
than the 20’s parent, 30.)

Once we’ve determined that we’re dealing with a Missing-Uncle Case,
we next need to check whether the 20 and 30 have the same orientation

or not. Since the 20 is the 30’s left child, and the 30 is its parent’s right
child, this means that they have different orientations. And this means
that we need to execute the following steps:

First, we rotate the current node (20) and its parent (30) as shown in
the tree.

The 30 now becomes designated as the current node.

Second, we flip the current node’s parent (20) black and the current
node’s grandparent (15) red:

The third and final step is to rotate the current node’s parent (20) and
grandparent (15):

And we’re done!

Chapter 6
These are the solutions to the Exercises.

1. As with a BST, we’d make the L a right child of the K. Since the L has
a greater priority than its parent, the K, we don’t need to enter a fixing
phase. Therefore, the treap will look like the tree shown after inserting
the L.

2. As with the previous exercise, we start by inserting the L as the K’s
right child. However, because the L has a priority that is less than any
other node in the treap, we must rotate the L up the treap until it
becomes the root. After all the rotations are made, the treap will look
like this:

3. We delete the Q node by rotating it downward through the treap.
Which child we rotate the Q with depends on which child has a lower
priority than the other. In this case, the N’s priority of 60 is less than
the V’s priority of 72, so we rotate the Q with the N.

After this happens, the Q becomes a leaf node, and we then simply
pluck it off the treap. At the end of the day, the treap will look like this
after the deletion:

Chapter 7
These are the solutions to the Exercises.

1. It takes one I/O to load each block. There are N/B blocks, which in this
case is:

 10000 data elements / 500 block size = 2000 blocks

And so, we have to perform 2,000 I/Os.

2. After inserting the 180, 85, 91, and 117, the B-tree will appear like
this:

3. Inserting a 30, 40, and 50 will cause the tree to grow another level and
end up like this:

4. Searching a B-tree takes O(logB + 1 N) I/Os in a worst-case scenario.
When a B-tree node has nodes that hold 20 values, this means that the
variable B is 20 since a B-tree’s node size matches the computer’s
block size.

In our case, we have log21 100,000 I/Os, which computes to about
3.781520977582. Therefore, we can find anything in this B-tree with a
maximum of 4 I/Os.

Chapter 8
These are the solutions to the Exercises.

1. There are a total of 128 I/Os. We can arrive at this either through
analyzing the diagram or by plugging the numbers into our Big O
expression. Let’s do both!

At the top level of the diagram, we can see that we take 256 items and
load them into main memory. Since each block holds 4 items, this
means we’ll have to load a total of 64 blocks since 256/4=64. Since it
takes one I/O to load one block, this means we perform 64 I/Os.

At the next level, we take the same 256 items again (this time, in the
form of 4 sublists that each contain 64 items) and load them into
memory. As with the top level, this, too, will take 64 I/Os.

At this point, the algorithm is complete. It comes out that we
performed 64+64=128 I/Os.

We can also plug the numbers into the Big O formula, which is O(N/B
logM/B N/M). In our scenario, this computes to:

 N/B * logM/B N/M =

 (256 / 4) * log16/4 256/16 =

 64 * log4 16 =

 64 * 2 =

 128 I/Os

2. In this case, we can sort all 256 items in 64 I/Os since we only need to
engage in one round of Mergesort. To use the Big O formula:

 N/B * logM/B N/M =

 (256 / 4) * (log4 256 / 64) =

 64 * 1 =

 64 I/Os

3. As we’ve seen, Top-Grade Merge takes O(N log2 K) time. So let’s
plug in our numbers:

 N * log2 K =

 1,000,000 * log2 512 =

 9,000,000

Therefore, there would be a total number of 9,000,000 steps.

Chapter 9
These are the solutions to the Exercises.

1. Here’s one way to use random sampling to determine the ratio of evens
to odds:

 import random

 array = []

 number_of_integers = 1000001

 for i in range(number_of_integers):

 array.append(i)

 random.shuffle(array)

 number_of_evens = 0

 number_of_odds = 0

 random_sample_size = 500

 for _ in range(random_sample_size):

 random_index = random.randint(0, number_of_integers - 1)

 if array[random_index] % 2 == 0:

 number_of_evens += 1

 else :

 number_of_odds += 1

 percentage_of_evens = (number_of_evens / random_sample_size) * 100

 percentage_of_odds = (number_of_odds / random_sample_size) * 100

 print ([percentage_of_evens, percentage_of_odds])

2. If The Formula—even once—produces a result that isn’t 1, then we
know for certain that N is composite.

3. Each time I run The Formula on a prime number, there’s no more than
a 50 percent chance that I’ll get a result of 1. Therefore, each time I run
the formula it’s akin to flipping a coin. Getting a 1 four times is like a
coin landing on heads four times. The odds of this are:

 1/2 * 1/2 * 1/2 * 1/2 = 1/16

That is, there’s a 1/16 chance that N in this case is prime.

Chapter 10
These are the solutions to the Exercises.

1. We can feed the app integers that, when divided by 997, each produce
the same remainder. For example, we can feed the app numbers that
produce a remainder of 0, such as 1994, 2991, 3972, and so on. This will
cause all these integers to end up in the same hash table slot, namely,
index 0. If all the integers we fed the app would have the remainder of,
say, 88, then all the integers would wind up at index 88 of the hash
table.

2. Here’s one way to hash strings while also incorporating randomization:

 def hash (self, key):

 # If key is a string:

 if isinstance(key, str):

 numeric = 1

 for char in key:

 numeric *= ord(char)

 return numeric % self.prime % self.array_length

 return key % self.prime % self.array_length

3. So … I’m going to cover this in the next chapter. But it’s good to get
you thinking about this issue now, so you will better appreciate our
discussion then!

Chapter 11
These are the solutions to the Exercises.

1. Here, I’ve updated the DivisionHasher class to incorporate the Rabin-
Karp initial hash function as a basic way to hash any string:

 import random

 class DivisionHasher:

 def __init__ (self, array_length):

 self.array_length = array_length

 self.base = 26

 # Choose a random prime number:

 p = random.randint(1000, 10000)

 while not self.is_prime(p):

 p = random.randint(1000, 10000)

 self.prime = p

 def hash (self, key):

 key = str(key)

 result = self.character_hash_code(key[0]) % self.prime

 for i in range(1, len(key)):

 result = \

 (result * self.base + self.character_hash_code(key[i]))
\

 % self.prime

 return result

 def character_hash_code (self, char):

 return ord(char) - 97

 # Fermat's Primality Test

 def is_prime (self, number):

 for _ in range(100):

 a = random.randint(1, number - 1)

 if pow(a, number - 1, number) != 1:

 return False

 return True

Note that in the hash function, I first convert the key to a string just in
case it comes in as something else, such as an integer.

2. In the following code, I use the sliding window technique by
maintaining a window of three characters at all times:

 def max_vowels (string):

 num_of_window_vowels = 0

 for i in range(3):

 if is_vowel(string[i]):

 num_of_window_vowels += 1

 max_num_of_vowels_so_far = 0

 for i in range(3, len(string)):

 if is_vowel(string[i - 3]):

 num_of_window_vowels -= 1

 if is_vowel(string[i]):

 num_of_window_vowels += 1

 max_num_of_vowels_so_far = \

 max(max_num_of_vowels_so_far, num_of_window_vowels)

 return max_num_of_vowels_so_far

 def is_vowel (char):

 return char in { 'a' : True, 'e' : True, 'i' : True, 'o' : True, 'u' :
True}

I begin by creating the initial window and counting how many vowels
it contains. We store this number inside the variable

num_of_window_vowels. Then, we move the sliding window along using
a for loop that runs from index 3 until the end of the string. Each time
we shift the window forward, we check to see if we dropped a vowel,
in which case we decrement the num_of_window_vowels by 1. We also
check to see if the window gained a vowel on its right end, in which
case we increment num_of_window_vowels by 1.

We track the greatest number of vowels in any window within the
max_num_of_vowels_so_far variable, which is what we return at the end
of the function.

3. First, I’ll show you the code, and then I’ll explain it:

 def length_of_longest_substring (string):

 if not string:

 return 0

 left = 0

 right = 0

 max_distance_so_far = 0

 current_window_chars = {}

 while right < len(string):

 if string[right] not in current_window_chars:

 current_window_chars[string[right]] = True

 max_distance_so_far = max(max_distance_so_far, right -
left)

 right += 1

 else :

 del current_window_chars[string[left]]

 left += 1

 return max_distance_so_far + 1

This code features a sliding window, but the size of the window
expands and contracts as needed. To allow our window to change size,
we establish two pointers, with left pointing to the left-most index of
the window, and right pointing to the right-most index of the window.

Let me walk through what the code does using an example.

Say that our input string is "abac". The left and right pointers start out
both pointing to the first character, "a". Throughout our algorithm, we
keep track of the max_distance_so_far, which is the greatest distance
between the two pointers. At the beginning, since both pointers are at
the same spot, their distance is 0.

We also establish a hash table called current_window_chars, which keeps
track of which characters are contained within the current window. If a
character is inside the window, the hash table will contain that
character as a key. (I made True the arbitrary value associated with each
key.)

The guts of the algorithm is a while loop that lasts until the right pointer
reaches the end of the string. In this loop, we move the right pointer to
the right, one character at a time. As we do, we expand the window,
since the left pointer is standing still. With each new character that
enters our window, we insert that character into the
current_window_chars hash table.

After one round of the loop with our example string "abac", left points
to the first "a" and right points to the "b". The distance between the two
pointers is 1, and given that this is the maximum distance we’ve
encountered so far, this becomes the new max_distance_so_far.

In each round of the loop, we check the hash table to ensure that the
new character we include in the window isn’t already inside the hash
table.

In the next round of the loop, the right pointer encounters the second
"a". This is an “invalid” window since it contains two instances of the

character "a". That is, right points to the second "a" while left still points
to the first "a".

Now, we might be tempted to have the left pointer skip to where the
right pointer currently is and continue with the loop. However, this
would be a mistake since in truth, the "b" is part of the longest valid
window, "bac". So instead, we move the left pointer along, which
thereby shrinks the window since now left has moved closer to right.
Because the window shrinks, we also delete the old character left was
pointing to from our hash table. From this point, we continue once
again to move the right pointer along and expand the window once
again.

In our example, the window will eventually encompass the characters
"bac".

The loop finally terminates once right hits the end of the input string.
At this point, max_distance_so_far will be the greatest distance between
the two pointers we’ve ever encountered. In truth, though, the length
of the largest window is the greatest distance plus 1. That is, in "bac",
with left pointing to "b" and right pointing to "c", the distance between
the two pointers is 2. However, the actual length of the substring is 3,
so that’s the number our function finally returns.

Chapter 12
These are the solutions to the Exercises.

1. Here is one way we can convert a binary string into a decimal number:

 def decimal (string):

 integer = 0

 power = 0

 index = len(string) - 1

 while index >= 0:

 if string[index] == "1" :

 integer += 2**power

 index -= 1

 power += 1

 return integer

This function accepts a string parameter. We expect this to be a binary
string such as "000101001010".

We start by initializing an integer at 0. Eventually, this will be the
decimal number we return at the end of our function.

We also initialize a power variable, which we’ll use to help us compute
what number each digit place of our binary string represents. The
right-most digit place will be 2 to the power of 0 (that is, the ones
place). The next digit place to the right will be 2 to the power of 1,
which is the twos place. The digit place immediately to the right of
that is 2 to the power of 2, which is the fours place, and so on.

We then begin a loop which scans our binary string from right to left by
tracking an index. We use the current power to compute the number that
is represented by the digit place of the current index. If there is a 1 at

the current digit place, we take the number represented by the current
digit place and add it to integer. For example, if we’re looking at the
eights place and there’s a 1 bit there, we add 8 to integer. If there’s a 0
bit there, we simply proceed to the next round of the loop without
modifying integer in the current round.

Alternatively, there’s another way we could have computed the value
of each digit place without tracking a power variable. Instead, we could
compute each digit place by doubling whatever the previous digit
place to the right represented:

 def decimal (string):

 integer = 0

 place = 1

 index = len(string) - 1

 while index >= 0:

 if string[index] == "1" :

 integer += place

 index -= 1

 place *= 2

 return integer

When I benchmark both approaches, this second version turns out to
be faster. This is because computing powers is slower than performing
simple multiplication.

2. Here is a Python-based approach for converting a decimal number into
a binary string:

 def binary (number):

 place = 2147483648

 binary_string = ""

 while place >= 1:

 if number >= place:

 binary_string += "1"

 number -= place

 else :

 binary_string += "0"

 place //= 2

 return binary_string

This function accepts a number parameter; this is the decimal number
we will convert into a binary string.

The first thing that will undoubtedly jump out at you is the seemingly
random integer of 2147483648 that we initialize our place variable with.
However, I’ve chosen this number with careful precision. Because the
exercise asks us to return a string containing exactly 32 bits, this
means that the right-most bit represents the 2147483648s place. That is,
2 to the power of 31 is 2147483648. (Remember, it’s the second-to-
right-most bit that represents 2 to the first power. Accordingly, 30 bits
to the right of that will represent 2 to the 31st power.)

We initialize a binary_string as an empty string. By the time our function
is complete, this will contain 32 characters that are either "0" or "1",
such as "00000000000000000110100110101011". So, this is what we’ll
return at the end of our function.

In the meantime, though, we begin a while loop. In the loop’s first
round, we check to see if there should be a 1 in the 2147483648 place.
This would be the case if our input number is greater than or equal to
2147483648. If we find that number is indeed greater than or equal to
2147483648, we place a "1" in that spot of the binary_string.

As an example, let’s pretend our input number is a smaller number,
such as 9. To determine if we should place a 1 bit in the eights place, it

all depends on whether 9 is greater than or equal to 8. Since 9 is greater
than 8, we’ll put a 1 bit in the eights place. If we put a 0 bit in the
eights place, it’s impossible to produce a binary string that can equal 9
with the remaining digit places to the right. That is, the greatest
number we can represent with a 0 bit in the eights place is 0111, which
is only 7.

If our number is smaller than 8, though, we certainly can’t put a 1 bit in
the eights place, since our binary string would then represent a number
of 8 or greater.

In any case, if within a particular loop round we do place a "1" into our
binary_string, we then reduce number by the place we’re in to determine
what the rest of the binary string should look like. Again, dealing with
the example number of 9, once we place a 1 bit in the eights place, this
means that we need to figure out how to represent what remains of
number, specifically 1, as 9 - 8 = 1.

Whether we place a 1 bit or 0 bit in the current place, we then compute
the next place to the right by halving place. By the time our loop is
complete, binary_string will contain some combination of 32 0 and 1 bits
that properly represent our input number.

3. Here, I’ve added three methods to our BitVector class:

 def union (self, other_bit_vector):

 bv = BitVector(self.range_of_bits)

 for i in range(len(self.integers)):

 bv.integers[i] = self.integers[i] |
other_bit_vector.integers[i]

 return bv

 def intersection (self, other_bit_vector):

 bv = BitVector(self.range_of_bits)

 for i in range(len(self.integers)):

 bv.integers[i] = self.integers[i] &
other_bit_vector.integers[i]

 return bv

 def difference (self, other_bit_vector):

 bv = BitVector(self.range_of_bits)

 for i in range(len(self.integers)):

 bv.integers[i] = self.integers[i] &
~other_bit_vector.integers[i]

 return bv

The union method uses OR as I described in the chapter. However,
instead of ORing two integers, we OR two arrays of integers. To do
this, we run a loop in which we iterate over each index (i) of both
arrays. When i is 0, for example, this means we OR the first integer of
the first bit vector with the first integer of the second bit vector. We
place the result in a brand-new third bit vector’s underlying array.
Finally, we return the new bit vector.

The intersection and difference methods work similarly, except that they
use their appropriate bitwise operators.

4. We could compute the hamming distance by scanning the two integers
and comparing the integers’ bits at each digit place. But why do all
that work when our good pal XOR can do the heavy lifting for us?

As I mentioned in the chapter, XOR is essentially a litmus test that
reveals precisely where two integers have differing bits. Specifically, it
does this by placing a 1 bit in each digit place where the two integers
have opposite bits.

So, our approach is to XOR the two integers (x and y in my code that
follows), producing an integer called difference, and then we count how
many 1 bits are in difference:

 def hamming_distance (x, y):

 difference = x ^ y

 bit_count = 0

 for n in range(0, 32):

 mask = 1 << n

 if mask & difference != 0:

 bit_count += 1

 return bit_count

The for loop here counts the 1 bits by using the same mask technique
used in the read_bit method of our BitVector class. And so, we read each
of the 32 bits of difference and count up the 1 bits.

5. Did I mention that this is one of my favorite puzzles? The solution
isn’t obvious, but it’s super fun. Let me break it down piece by piece.

The hero of this solution is our good pal XOR. Let’s talk about XOR a
bit more.

One thing to highlight about XOR is that when we XOR two identical
integers, the result will be 0. Think again about XOR being that litmus
test for revealing 1 bits wherever two integers have differing bits. It
emerges that if we XOR two identical integers (such as 5 and 5), XOR
will produce only 0 bits. And, as you know, an integer with only 0 bits
is, well, 0.

So, let’s pretend for a moment that our input array is [3, 3, 7, 7, 4, 4, 1].
As you can see, this array has two instances of 3, 7, and 4; however,
there’s only one instance of 1. Let’s XOR all these numbers up.

When we XOR the two 3s, we get 0 since the 3s are identical. When
we take this resulting 0 and XOR it by the 7, we’ll get some nonzero
result. But it’s not going to matter because when we XOR that result
by the second 7, the result will be 0 again. The same happens for the
two 4s.

By the time we get up to the 1, our result will be 0. When we XOR the
0 with 1, we’ll get 1 since one of the rules of XOR is that when we
XOR 0 with some other number, the result will be that other number.

It turns out that the final result of XORing all the numbers will be the
very number we’re seeking—that is, the number that only appears once
in the array.

Here’s the surprisingly concise solution code:

 def single_number (array):

 running_total = 0

 for num in array:

 running_total ^= num

 return running_total

Now, you’re probably wondering, “Well, that works if the numbers are
ordered that way, where each pair of integers appears together, and the
single number is located at the end. But what if the integers aren’t
sorted in any particular order?”

That’s a great question; I had it too. The answer, though, is that when
you XOR a bunch of numbers together, you’ll always get the same
result no matter the order of the numbers. In fancy terms, this is the
commutative property. Just as the order of numbers doesn’t matter
when you add them or multiply them together, the same applies to
XORing.

This isn’t necessarily intuitive, but try it out for yourself and you’ll see
it’s true!

So, at the end of the day, the result of XORing all the array’s numbers
will be the number we’re looking for—namely, the integer that appears
only once in the array. This makes for a great party trick at a nerdy
event (but not too nerdy, since you don’t want everyone there to
already know the solution before you show them).

Chapter 13
These are the solutions to the Exercises.

1. You can store all usernames inside an in-memory Bloom filter. Then, each
time a user asks if a particular username is available, your app would
check for its existence inside the Bloom filter. Bloom filter lookups have
the potential to be a lot faster than database lookups.

Because a Bloom filter never produces a false negative, it can be trusted to
say if a given username is available. (That is, it doesn’t exist within the
Bloom filter.) Accordingly, we never have to worry that we’ll
inadvertently allow two users to end up with the same username.

At the same time, a Bloom filter can produce false positives, which means
that it’s possible that the Bloom filter may tell us that a username is
unavailable even though it’s not taken. However, this may not be a big
deal, since the user can find some other username (that’s equally unclever)
to use.

2. Luckily for HumbleBrag, you put the kibosh on the engineering team’s
plan. Since a Bloom filter can produce a false positive, it’s possible that
the Bloom filter will validate the entered password even if it’s not correct!
If ten strings hash into the same set of bits in the Bloom filter, any one of
those strings would be accepted as the correct password, even though only
one of those passwords is the right one.

3. With this code, we can get the info we need:

 import sys

 import bloom_filter

 bf = bloom_filter.BloomFilter(1000, 0.03)

 print (bf.m) # number of bits

 print (bf.k) # number of hash functions

 print (sys.getsizeof(bf.bv.integers)) # bit vector's number of bytes

Thank you!
We hope you enjoyed this book and that you’re already thinking about what
you want to learn next. To help make that decision easier, we’re offering you
this gift.

Head on over to https://pragprog.com right now, and use the coupon code
BUYANOTHER2025 to save 30% on your next ebook. Offer is void where
prohibited or restricted. This offer does not apply to any edition of The
Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not
propose a writing idea to us? After all, many of our best authors started off as
our readers, just like you. With up to a 50% royalty, world-class editorial
services, and a name you trust, there’s nothing to lose. Visit
https://pragprog.com/become-an-author/ today to learn more and to get
started.

Thank you for your continued support. We hope to hear from you again soon!

The Pragmatic Bookshelf

When I run this, I find that M (the number of bits) is 7,298, and that K
(the number of hash functions) is 5.

Now, I’d expect that if the Bloom filter takes up 7,298 bits, then it takes
up around 912 bytes since 7298 // 8 = 912. However, when I run
sys.getsizeof() on the actual underlying array of the bit vector (which, in
turn, underlies the Bloom filter), I find that it takes up 1,888 bytes. This,
again, is because Python crams some extra info into its arrays and
integers. So, in reality, the size of the Bloom filter is somewhat larger than
the strict computation of M.

Copyright © 2025, The Pragmatic Bookshelf.

https://pragprog.com/
https://pragprog.com/become-an-author/

A Common-Sense Guide to Data Structures and Algorithms
in Python, Volume 1

If you thought data structures and algorithms were
all just theory, you’re missing out on what they can
do for your Python code. Learn to use Big O
notation to make your code run faster by orders of
magnitude. Choose from data structures such as
hash tables, trees, and graphs to increase your
code’s efficiency exponentially. With simple
language and clear diagrams, this book makes this

complex topic accessible, no matter your background. Every chapter
features practice exercises to give you the hands-on information you need
to master data structures and algorithms for your day-to-day work.

Jay Wengrow

(502 pages) ISBN: 9798888650356 $57.95

Python Testing with pytest, Second Edition
Test applications, packages, and libraries large and small with pytest,
Python’s most powerful testing framework. pytest helps you write tests
quickly and keep them readable and maintainable. In this fully revised
edition, explore pytest’s superpowers—simple asserts, fixtures,
parametrization, markers, and plugins—while creating simple tests and
test suites against a small database application. Using a robust yet simple

You May Be Interested In…
Select a cover for more information

http://pragmaticprogrammer.com/titles/jwpython

fixture model, it’s just as easy to write small tests
with pytest as it is to scale up to complex functional
testing. This book shows you how.

Brian Okken

(272 pages) ISBN: 9781680508604 $45.95

Pythonic Programming
Make your good Python code even better by
following proven and effective pythonic
programming tips. Avoid logical errors that usually
go undetected by Python linters and code
formatters, such as frequent data look-ups in long
lists, improper use of local and global variables, and
mishandled user input. Discover rare language
features, like rational numbers, set comprehensions,

counters, and pickling, that may boost your productivity. Discover how to
apply general programming patterns, including caching, in your Python
code. Become a better-than-average Python programmer, and develop
self-documented, maintainable, easy-to-understand programs that are fast
to run and hard to break.

Dmitry Zinoviev

(150 pages) ISBN: 9781680508611 $26.95

Python Brain Teasers
We geeks love puzzles and solving them. The Python programming
language is a simple one, but like all other languages it has quirks. This

http://pragmaticprogrammer.com/titles/bopytest2
http://pragmaticprogrammer.com/titles/dzpythonic

book uses those quirks as teaching opportunities via
30 simple Python programs that challenge your
understanding of Python. The teasers will help you
avoid mistakes, see gaps in your knowledge, and
become better at what you do. Use these teasers to
impress your co-workers or just to pass the time in
those boring meetings. Teasers are fun!

Miki Tebeka

(116 pages) ISBN: 9781680509007 $18.95

Portable Python Projects
Discover easy ways to control your home with the
powerful new Raspberry Pi hardware. Program
short Python scripts that will detect changes in your
home and react with the instructions you code. Use
new add-on accessories to monitor a variety of
measurements, from light intensity and temperature
to motion detection and water leakage. Expand the
base projects with your own custom additions to

perfectly match your own home setup. Most projects in the book can be
completed in under an hour, giving you more time to enjoy and tweak
your autonomous creations. No breadboard or electronics knowledge
required!

Mike Riley

(180 pages) ISBN: 9781680508598 $45.95

http://pragmaticprogrammer.com/titles/d-pybrain
http://pragmaticprogrammer.com/titles/mrpython

Intuitive Python
Developers power their projects with Python
because it emphasizes readability, ease of use, and
access to a meticulously maintained set of packages
and tools. The language itself continues to improve
with every release: writing in Python is full of
possibility. But to maintain a successful Python
project, you need to know more than just the
language. You need tooling and instincts to help

you make the most out of what’s available to you. Use this book as your
guide to help you hone your skills and sculpt a Python project that can
stand the test of time.

David Muller

(140 pages) ISBN: 9781680508239 $26.95

Machine Learning in Elixir
Stable Diffusion, ChatGPT, Whisper—these are just
a few examples of incredible applications powered
by developments in machine learning. Despite the
ubiquity of machine learning applications running
in production, there are only a few viable language
choices for data science and machine learning tasks.
Elixir’s Nx project seeks to change that. With Nx,
you can leverage the power of machine learning in

your applications, using the battle-tested Erlang VM in a pragmatic
language like Elixir. In this book, you’ll learn how to leverage Elixir and
the Nx ecosystem to solve real-world problems in computer vision,
natural language processing, and more.

http://pragmaticprogrammer.com/titles/dmpython
http://pragmaticprogrammer.com/titles/smelixir

Sean Moriarity

(372 pages) ISBN: 9798888650349 $61.95

Designing Data Governance from the Ground Up
Businesses own more data than ever before, but it’s
of no value if you don’t know how to use it. Data
governance manages the people, processes, and
strategy needed for deploying data projects to
production. But doing it well is far from easy: Less
than one fourth of business leaders say their
organizations are data driven. In Designing Data
Governance from the Ground Up, you’ll build a

cross-functional strategy to create roadmaps and stewardship for data-
focused projects, embed data governance into your engineering practice,
and put processes in place to monitor data after deployment.

Lauren Maffeo

(100 pages) ISBN: 9781680509809 $29.95

http://pragmaticprogrammer.com/titles/lmmlops

	Acknowledgments
	Preface
	Who Is This Book For?
	What’s in This Book?
	How to Read This Book
	A Note About the Code
	Online Resources
	Connecting

	1. Getting Things in Order with Mergesort
	Merging Arrays
	Merging in Action
	The Efficiency of Merging
	Mergesort
	Mergesort in Action
	The Efficiency of Mergesort
	Comparing Mergesort and Quicksort: Lessons Learned
	Wrapping Up
	Exercises

	2. Benchmarking Code
	Benchmarking
	Using the timeit Module
	Benchmarking Gotchas
	Benchmarking Sorting Algorithms
	Mergesort vs. Insertion Sort
	Mergesort vs. Quicksort
	Using Python’s Built-In Sorting Algorithm
	Quicksorting a Sorted Array
	Wrapping Up
	Exercises

	3. How Random Is That?
	Randomized Quicksort
	Randomized Algorithms
	Generating Random Numbers
	TRNGs vs. PRNGs
	The Fisher-Yates Shuffle
	The Fisher-Yates Shuffle in Action
	The Efficiency of the Fisher-Yates Shuffle
	Shuffling the Wrong Way
	Binary Search Tree Randomization
	Randomization for Distribution
	Load Balancing
	Wrapping Up
	Exercises

	4. Cache Is King
	Caching
	Eviction Policies
	LRU Cache
	The LRU Cache Data Structure
	Fixing the LRU Worst-Case Scenario with Randomization
	The Memory Hierarchy
	Writing Cache-Friendly Code
	Spatial Locality
	Wrapping Up
	Exercises

	5. The Great Balancing Act of Red-Black Trees
	Online Algorithms and Self-Balancing Trees
	Red-Black Trees
	The Red-Black Rules
	Red-Black Tree Insertion
	The Efficiency of Red-Black Trees
	Red-Black Tree Deletion
	Wrapping Up
	Exercises

	6. Randomized Treaps: Haphazardly Achieving Equilibrium
	Treaps
	Treap Insertion
	Self-Balancing Treaps in Action
	The Power of Random Priorities
	Treap Deletion
	Wrapping Up
	Exercises

	7. To B-Tree or Not to B-Tree: External-Memory Algorithms
	External Memory
	Count I/Os, Not Steps
	External Binary Search
	Optimizing External-Memory Algorithms
	Binary Search Trees in External Memory
	B-Trees
	Implementing B-Trees
	B-Tree Insertion
	B-Tree Deletion
	The Balance of B-Trees
	B-Trees as Database Indexes
	Wrapping Up
	Exercises

	8. Wrangling Big Data with M/B-Way Mergesort
	External-Memory Sorting
	A First Attempt: Two-Way External Mergesort
	M = Main Memory Size
	A Second Attempt at External Mergesort
	Merging K Sorted Lists
	M/B-Way Mergesort
	Wrapping Up
	Exercises

	9. Counting on Monte Carlo Algorithms
	Monte Carlo Algorithms
	Monte Carlo Algorithms vs. Las Vegas Algorithms
	Obtaining Averages Through Random Sampling
	Primality Testing
	Monte Carlo Primality Testing
	Fermat’s Little Theorem
	Fermat’s Primality Test
	Wrapping Up
	Exercises

	10. Designing Great Hash Tables with Randomization
	Hash Functions: A Quick Review
	Scalable Hash Functions
	The Division Method
	Randomized Hashing
	Wrapping Up
	Exercises

	11. Keeping Your Text Search Sharp with a Little Rabin-Karp
	Substring Search
	Brute-Force Substring Search
	The Sliding Window Technique
	Rabin-Karp Substring Search
	Covering All Our Bases
	Perfecting Rabin-Karp with Base 26
	Handling Long Needles
	Monte-Carlo Rabin-Karp
	Converting Monte Carlo to Las Vegas
	Wrapping Up
	Exercises

	12. Saving Space: Every Bit Helps
	Sets
	Boolean Arrays
	Bit Vectors
	Bit Manipulation
	Bit Masks: The Key to Zeroing in on a Bit
	Benchmarking Space
	The Space Complexity of Sets
	Classic Set Operations
	Wrapping Up
	Exercises

	13. Cultivating Efficiency with Bloom Filters
	Finding Duplicates Revisited
	Bloom Filters
	Use Multiple Hash Functions
	Using Bloom Filters for Detecting Duplicates
	Bloom Filters in the Wild
	Wrapping Up
	Parting Thoughts
	Exercises

	A1. Solutions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13

