

Python in a Nutshell
A Desktop Quick Reference

FOURTH EDITION

Alex Martelli, Anna Martelli Ravenscroft, Steve Holden, and Paul
McGuire

Python in a Nutshell
by Alex Martelli, Anna Martelli Ravenscroft, Steve Holden, and Paul
McGuire
Copyright © 2023 Alex Martelli, Anna Ravenscroft, Steve Holden, Paul
McGuire. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.
O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Editor: Angela Rufino

Production Editor: Christopher Faucher

Interior Designer: David Futato

Cover Designer: Karen Montgomery

April 2017: Third Edition

December 2022: Fourth Edition

Revision History for the Early Release
2022-01-28: First Release

2022-03-18: Second Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449392925 for release
details.
The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Python
in a Nutshell, the cover image, and related trade dress are trademarks of

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781449392925

O’Reilly Media, Inc.
While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.
978-1-098-11349-0

Chapter 1. The Python
Interpreter

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 2nd chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

To develop software systems in Python, you write text files that contain
Python source code. Use any text editor, including those in Integrated
Development Environments (IDEs). Then, process the source files with the
Python compiler and interpreter. You can do this directly, or within an IDE,
or via another program that embeds Python. The Python interpreter also lets
you execute Python code interactively, as do IDEs.

The Python Program
The Python interpreter program is run as python (it’s named python.exe
on Windows). python includes both the interpreter itself and the Python
compiler, which is implicitly invoked, as and if needed, on imported
modules. Depending on your system, the program may typically have to be
in a directory listed in your PATH environment variable. Alternatively, as
with any other program, you can give a complete pathname to it at a
command (shell) prompt, or in the shell script (or shortcut target, etc.) that
runs it.1

PEP 397
On Windows, since PEP 397, py.exe, the launcher, installs in the system area, meaning it is sure—
barring further manipulation on your part—to be on the PATH.

On Windows, press the Windows key and start typing python: “Python
3.x (command-line)” appears, along with other choices, such as “IDLE
(Python GUI).” If you have the py.exe launcher installed (which is the
normal case), at any command prompt, typing py launches Python.

Environment Variables
Besides PATH, other environment variables affect the python program.
Some environment variables have the same effects as options passed to
python on the command line, as we show in the next section. Several
environment variables provide settings not available via command-line
options. The following list covers just the basics of a few frequently used
ones; for all details, see the online docs.

PYTHONHOME

The Python installation directory. A lib subdirectory, containing the
standard Python library, must exist under this directory. On Unix-like
systems, the standard library modules should be in lib/python-3.x for
Python 3.x, where x is the minor Python version. If not set, Python uses
some heuristics to locate the installation directory.

PYTHONPATH

A list of directories, separated by colons on Unix-like systems, and by
semicolons on Windows. Python can import modules from these
directories. This list extends the initial value for Python’s sys.path
variable. We cover modules, importing, and sys.path in Chapter
“Modules.”

https://www.python.org/dev/peps/pep-0397
https://docs.python.org/3/using/cmdline.html#environment-variables

PYTHONSTARTUP

The name of a Python source file to run each time an interactive
interpreter session starts. No such file runs if you don’t set this variable,
or set it to the path of a file that is not found. The PYTHONSTARTUP
file does not run when you run a Python script; it runs only when you
start an interactive session.

How to set and examine environment variables depends on your operating
system. In Unix, use shell commands, often within startup shell scripts. On
Windows, press the Windows key and start typing environment var
and a couple of shortcuts appear: one for user env vars, the other for system
ones. On a Mac, you can work like in other Unix-like systems, but you have
options, including a MacPython-specific IDE. For more information about
Python on the Mac, see Using Python on a Mac.

Command-Line Syntax and Options
The Python interpreter command-line syntax can be summarized as follows:

[path]python {options} [-c command | -m module | file | -] {args}

Brackets ([]) enclose what’s optional, braces ({}) enclose items of which
zero or more may be present, and bars (|) mean a choice among alternatives.
Python uses a slash (/) for file paths, as in Unix.
Running a Python script at a command line can be as simple as:

$ python hello.py
Hello World

You can also explicitly provide the path to the script:

$ python ./hello/hello.py
Hello World

https://docs.python.org/3/using/mac.html

The filename of the script can be any absolute or relative file path, and need
not have any specific extension (though it is conventional to use a .py
extension). Each operating system has its own way to make the Python
scripts themselves executable, but we do not cover those details here.
Options are case-sensitive short strings, starting with a hyphen, that ask
python for non-default behavior. python accepts only options that start
with a hyphen (-). The most frequently used options are in Table 2-1. Each
option’s description gives the environment variable (if any) that, when set,
requests that behavior. Many options have longer versions, starting with
two hyphens, as shown by python -h. For all details, see the online docs.

Table 2-1. Python frequently used command-line options

Option

 Meaning (and environment variable, if any)

 -B

Don’t save compiled bytecode files to disk
(PYTHONDONTWRITEBYTECODE)

 -c

Gives Python statements within the command line

 -E

Ignores all environment variables

 -h

Show then full list of options, then terminate

 -i

Runs an interactive session after the file or command runs
(PYTHONINSPECT)

 -m

Specifies a Python module to run as the main script

 -O

Optimizes bytecode (PYTHONOPTIMIZE)—note that this is an uppercase
letter O, not the digit 0

 -OO

Like -O, but also removes docstrings from the bytecode

https://docs.python.org/3/using/cmdline.html#command-line

 -S

Omits the implicit import site on startup (covered in “The site and
sitecustomize Modules”)

 -t, -
tt

Issues warnings about inconsistent tab usage (-tt instead issues errors for the
same issues)

 -u

Uses unbuffered binary files for standard output and standard error
(PYTHONUNBUFFERED)

 -v

Verbosely traces module import and cleanup actions (PYTHONVERBOSE)

 -V

Prints the Python version number, then terminates

 -W
arg

Adds an entry to the warnings filter (see “The warnings Module”)

 -x

Excludes (skips) the first line of the script’s source

Use -i when you want to get an interactive session immediately after
running some script, with top-level variables still intact and available for
inspection. You do not need -i for normal interactive sessions, though it
does no harm.
-O and -OO yield small savings of time and space in bytecode generated
for modules you import, turning assert statements into no-operations, as
covered in “The assert Statement.” -OO also discards documentation
strings.
After the options, if any, tell Python which script to run. A file path means a
Python source or bytecode file to run; on any platform, you may use a slash
(/) to separate components in this path. On Windows only, you may
alternatively use a backslash (\). Instead of a file path, you can use -c
command to execute a Python code string command. command normally
contains spaces, so you need quotes around it to satisfy your operating

2

system’s shell or command-line processor. Some shells (e.g., bash) let you
enter multiple lines as a single argument, so that command can be a series
of Python statements. Other shells (e.g., Windows shells) limit you to a
single line; command can then be one or more simple statements separated
by semicolons (;), as we discuss in “Statements.”
Another way to specify which Python script to run is -m module. This
option tells Python to load and run a module named module (or the
__main__.py member of a package or ZIP file named module) from some
directory that is part of Python’s sys.path; this is useful with several
modules from Python’s standard library. For example, as covered in “The
timeit module,” -m timeit is often the best way to perform micro-
benchmarking of Python statements.
A hyphen, or the lack of any token in this position, tells the interpreter to
read program source from standard input—normally, an interactive session.
You need a hyphen only if arguments follow. args are arbitrary strings; the
Python you run can access these strings as items of the list sys.argv.
For example, on a standard Windows installation, you can enter the
following at a command prompt to have Python print the current date and
time:

C:\> py -c "import time; print(time.asctime())"

On Cygwin, Linux, OpenBSD, macOS, and other Unix-like systems, with a
default installation of Python from sources, enter the following at a shell
prompt to start an interactive session with verbose tracing of module import
and cleanup:

$ /usr/local/bin/python -v

You can start the command with just python (you do not have to specify
the full path to Python) if the directory of the Python executable is in your
PATH environment variable. (If you have multiple versions of Python
installed, you can specify the version, with, for example, python3, or

python3.10, as appropriate; then, the version used if you just say
python is the one you installed most recently.)

Interactive Sessions
When you run python without a script argument, Python starts an
interactive session and prompts you to enter Python statements or
expressions. Interactive sessions are useful to explore, to check things out,
and to use Python as a powerful, extensible interactive calculator. (IPython,
mentioned in “IPython,” is like “Python on steroids” specifically for
interactive-session usage.)
When you enter a complete statement, Python executes it. When you enter a
complete expression, Python evaluates it. If the expression has a result,
Python outputs a string representing the result and also assigns the result to
the variable named _ (a single underscore) so that you can immediately use
that result in another expression. The prompt string is >>> when Python
expects a statement or expression and ... when a statement or expression has
been started but not completed. In particular, Python prompts you with ...
when you have opened a parenthesis (or other matched delimiter) on a
previous line and have not closed it yet.
There are several ways you can end an interactive session. The most
common are:

Enter the end-of-file keystroke for your operating system (Ctrl-Z on
Windows, Ctrl-D on Unix-like systems).

Execute either of the built-in functions quit or exit, using the form quit()
or exit(). (Omitting the trailing ()’s will display a message like “Use
quit() or Ctrl-D (i.e. EOF) to exit,” but will still leave you in the
interpreter.)

Execute the statement raise SystemExit, or call sys.exit(), either
interactively or in running code (we cover SystemExit and raise in
Chapter “Exceptions”).

NOTE
Use the Python Interactive Interpreter for Simple Experimenting

Trying out Python statements in the interactive interpreter is a quick way to experiment with
Python and immediately see the results. For example, here is a simple test of the built-in
enumerate function:

>>> print(list(enumerate("abc")))
 (0, 'a'), (1, 'b'), (2, 'c')]

The interactive interpreter is a great introductory platform for learning basic Python syntax and
features. (Even experienced Python developers will often open a Python interpreter to quickly
check out an infrequently-used command or function.)

Line-editing and history facilities depend in part on how Python was built:
if the readline module was included, all features of the GNU readline
library are available. Windows has a simple but usable history facility for
interactive textmode programs like python. To use other line-editing and
history facilities, install pyreadline on Windows, or pyrepl for Unix.
In addition to the built-in Python interactive environment, and those offered
as part of richer development environments covered in the next section, you
can freely download other alternative, powerful interactive environments.
The most popular one is IPython, covered in “IPython,” which offers a
dazzling wealth of features. A simpler, lighter-weight, but still quite handy
alternative read-line interpreter is bpython.

Python Development Environments
The Python interpreter’s built-in interactive mode is the simplest
development environment for Python. It is primitive, but is lightweight, has
a small footprint, and starts fast. Together with a good text editor (as
discussed in “Free Text Editors with Python Support”), and line-editing and
history facilities, the interactive interpreter (or, alternatively, the much more
powerful IPython/Jupyter command-line interpreter) is a usable

https://pypi.python.org/pypi/pyreadline/2.0
https://pypi.org/project/pyrepl/
http://ipython.org/
https://bpython-interpreter.org/

development environment. However, there are several other development
environments you can use.

IDLE
Python’s Integrated DeveLopment Environment (IDLE) comes with
standard Python distributions on most platforms. IDLE is a cross-platform,
100% pure Python application based on the Tkinter GUI. IDLE offers a
Python shell similar to the interactive Python interpreter, but richer. It also
includes a text editor optimized to edit Python source code, an integrated
interactive debugger, and several specialized browsers/viewers.
For more functionality in IDLE, install IdleX, a substantial collection of
free third-party extensions to it.
To install and use IDLE in macOS, follow these specific instructions.

Other Python IDEs
IDLE is mature, stable, easy, fairly rich, and extensible. There are, however,
many other IDEs—cross-platform and platform-specific, free and
commercial (including commercial IDEs with free offerings, especially if
you’re developing open source software), standalone and add-ons to other
IDEs.
Some of these IDEs sport features such as static analysis, GUI builders,
debuggers, and so on. Python’s IDE wiki page lists over 30, and points to
many other URLs with reviews and comparisons. If you’re an IDE
collector, happy hunting!
We can’t do justice to even a tiny subset of those IDEs, but it’s worth
singling out the popular cross-platform, cross-language modular IDE
Eclipse: the free third-party plug-in PyDev for Eclipse has excellent Python
support. Steve is a long-time user of Wing IDE by Archaeopteryx, the most
venerable Python-specific IDE. Paul’s IDE of choice, and perhaps the
single most popular third-party Python IDE today may be PyCharm. And,
not to be overlooked, Microsoft’s Visual Studio Code (also referred to as
Visual Studio, or VSCode) is an excellent cross-platform IDE, with support

http://idlex.sourceforge.net/
https://www.python.org/download/mac/tcltk/
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments
http://www.eclipse.org/
http://www.pydev.org/
https://wingware.com/
https://www.jetbrains.com/pycharm/
https://code.visualstudio.com/

for a number of languages, including Python. If you use Visual Studio,
check out PTVS, an open source plug-in that’s particularly good at allowing
mixed-language debugging in Python and C as and when needed.

Free Text Editors with Python Support
You can edit Python source code with any text editor, even simplistic ones
such as Notepad on Windows or ed on Linux. Powerful free editors support
Python with extra features such as syntax-based colorization and automatic
indentation. Cross-platform editors let you work in uniform ways on
different platforms. Good text editors also let you run, from within the
editor, tools of your choice on the source code you’re editing. An up-to-date
list of editors for Python can be found on the Python wiki, which lists
dozens of them.
The very best for sheer editing power may be classic Emacs (see the Python
wiki for Python-specific add-ons). Emacs is not easy to learn, nor is it
lightweight. Alex’s personal favorite is another classic, vim, Bram
Moolenaar’s improved version of traditional Unix editor vi: perhaps not
quite as powerful as Emacs, but still well worth considering—fast,
lightweight, Python-programmable, runs everywhere in both text-mode and
GUI versions, and excellently taught in O’Reilly’s book “Learning the vi
and vim editors,” now in its 8th edition. See the Python wiki for Python-
specific tips and add-ons. Steve and Anna also use vim. Where it’s
available, Steve also uses the commercial editor Sublime Text 2, with good
syntax coloring and enough integration to run your programs from inside
the editor. For quick editing and executing of short Python scripts (and as a
fast and lightweight general text editor, even for multi-megabyte text files),
SciTE is Paul’s go-to editor.

Tools for Checking Python Programs
The Python compiler does not check programs and modules thoroughly: the
compiler checks only the code’s syntax. If you want more thorough
checking of your Python code, download and install third-party tools for the
purpose. Pyflakes is a very fast, lightweight checker: it’s not thorough, but

https://docs.microsoft.com/en-us/visualstudio/python/installing-python-support-in-visual-studio
https://wiki.python.org/moin/PythonEditors
https://www.gnu.org/software/emacs/
https://wiki.python.org/moin/EmacsEditor
http://www.vim.org/
https://wiki.python.org/moin/Vim
https://scintilla.org/SciTE.html
https://pypi.python.org/pypi/pyflakes

does not import the modules it’s checking, which makes using it safer. At
the other end of the spectrum, PyLint is very powerful and highly
configurable. PyLint is not lightweight, but repays that by being able to
check many style details in a highly configurable way based on
customizable configuration files.
For more thorough checking of Python code for proper variable type
usages, tools like mypy are used; see more discussion in “Type
Annotations.”

Running Python Programs
Whatever tools you use to produce your Python application, you can see
your application as a set of Python source files, which are normal text files.
A script is a file that you can run directly. A module is a file that you can
import (as covered in Chapter “Modules”) to provide functionality to other
files or interactive sessions. A Python file can be both a module (providing
functionality when imported) and a script (OK to run directly). A useful and
widespread convention is that Python files that are primarily intended to be
imported as modules, when run directly, should execute some self-test
operations, as covered in “Testing.”
The Python interpreter automatically compiles Python source files as
needed. Python source files normally have the extension .py. Python saves
the compiled bytecode in subdirectory __pycache__ of the directory with
the module’s source, with a version-specific extension, and annotated to
denote optimization level.
Run Python with option -B to avoid saving compiled bytecode to disk,
which can be handy when you import modules from a read-only disk. Also,
Python does not save the compiled bytecode form of a script when you run
the script directly; rather, Python recompiles the script each time you run it.
Python saves bytecode files only for modules you import. It automatically
rebuilds each module’s bytecode file whenever necessary—for example,
when you edit the module’s source. Eventually, for deployment, you may

https://www.pylint.org/
http://mypy-lang.org/

package Python modules using tools covered in Chapter “Distributing
Extensions and Programs.”
You can run Python code with the Python interpreter or an IDE . Normally,
you start execution by running a top-level script. To run a script, give its
path as an argument to python, as covered earlier in “The python
Program.” Depending on your operating system, you can invoke python
directly from a shell script or command file. On Unix-like systems, you can
make a Python script directly executable by setting the file’s permission bits
x and r and beginning the script with a shebang line, a line such as:

#!/usr/bin/env python

or some other line starting with #! followed by a path to the python
interpreter program, in which case you can optionally add a single word of
options, for example:

#!/usr/bin/python -O

On Windows, you can use the same style #! line, in accordance with PEP
397, to specify a particular version of Python, so your scripts can be cross-
platform between Unix-like and Windows systems. You can also run
Python scripts with the usual Windows mechanisms, such as double-
clicking their icons. When you run a Python script by double-clicking the
script’s icon, Windows automatically closes the text-mode console
associated with the script as soon as the script terminates. If you want the
console to linger (to allow the user to read the script’s output on the screen),
ensure the script doesn’t terminate too soon. For example, use, as the
script’s last statement:

input('Press Enter to terminate')

This is not necessary when you run the script from a command prompt.
On Windows, you can also use extension .pyw and interpreter program
pythonw.exe instead of .py and python.exe. The w variants run Python

3

https://www.python.org/dev/peps/pep-0397/

without a text-mode console, and thus without standard input and output.
This is good for scripts that rely on GUIs, or run invisibly in the
background. Use them only when a program is fully debugged, to keep
standard output and error available for information, warnings, and error
messages during development. On a Mac, use interpreter program
pythonw, rather than python, when you want to run a script that needs
to access any GUI toolkit, rather than just text-mode interaction.
Applications coded in other languages may embed Python, controlling the
execution of Python for their own purposes. We examine this briefly in
“Embedding Python.”

The PyPy Interpreter
PyPy may be run similarly to python:

[path]pypy {options} [-c command | file | -] {args}

See the PyPy homepage for complete, up-to-date information.

1 This may involve using quotes if the pathname contains spaces—again, this depends on your
operating system.

2 This may affect code that parses docstrings for meaningful purposes; we suggest you avoid
writing such code.

3 or, online: one of the authors, for example, maintains an online list of online Python
interpreters.

http://pypy.org/
https://github.com/pyparsing/pyparsing/wiki/Try-Pyparsing-Online

Chapter 2. The Python
Language

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 3rd chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

This chapter is a guide to the Python language. To learn Python from
scratch, we suggest you start with the appropriate links from the online
docs. If you already know at least one other programming language well,
and just want to learn specifics about Python, this chapter is for you.
However, we’re not trying to teach Python: we cover a lot of ground at a
pretty fast pace. We focus on the rules, and only secondarily point out best
practices and style; as your Python style guide, use PEP 8 (optionally
augmented by extra guidelines such as The Hitchhiker’s Guide, CKAN’s,
and Google’s).

Lexical Structure
The lexical structure of a programming language is the set of basic rules
that govern how you write programs in that language. It is the lowest-level
syntax of the language, specifying such things as what variable names look
like and how to denote comments. Each Python source file, like any other
text file, is a sequence of characters. You can also usefully consider it a
sequence of lines, tokens, or statements. These different lexical views

https://wiki.python.org/moin/BeginnersGuide
https://www.python.org/dev/peps/pep-0008/
http://docs.python-guide.org/en/latest/writing/style/
http://docs.ckan.org/en/latest/contributing/python.html
https://google.github.io/styleguide/pyguide.html

complement each other. Python is very particular about program layout,
especially lines and indentation: pay attention to this information if you are
coming to Python from another language.

Lines and Indentation
A Python program is a sequence of logical lines, each made up of one or
more physical lines. Each physical line may end with a comment. A hash
sign # that is not inside a string literal starts a comment. All characters after
the #, up to but excluding the line end, are the comment: Python ignores
them. A line containing only whitespace, possibly with a comment, is a
blank line: Python ignores it. In an interactive interpreter session, you must
enter an empty physical line (without any whitespace or comment) to
terminate a multiline statement.
In Python, the end of a physical line marks the end of most statements.
Unlike in other languages, you don’t normally terminate Python statements
with a delimiter, such as a semicolon (;). When a statement is too long to
fit on a physical line, you can join two adjacent physical lines into a logical
line by ensuring that the first physical line has no comment and ends with a
backslash (\). However, Python also automatically joins adjacent physical
lines into one logical line if an open parenthesis ((), bracket ([), or brace
({) has not yet been closed: take advantage of this mechanism to produce
more readable code than you’d get with backslashes at line ends. Triple-
quoted string literals can also span physical lines. Physical lines after the
first one in a logical line are known as continuation lines. Indentation rules
apply to the first physical line of each logical line, not to continuation lines.
Python uses indentation to express the block structure of a program. Python
does not use braces, or other begin/end delimiters, around blocks of
statements; indentation is the only way to denote blocks. Each logical line
in a Python program is indented by the whitespace on its left. A block is a
contiguous sequence of logical lines, all indented by the same amount; a
logical line with less indentation ends the block. All statements in a block
must have the same indentation, as must all clauses in a compound
statement. The first statement in a source file must have no indentation (i.e.,

must not begin with any whitespace). Statements that you type at the
interactive interpreter primary prompt >>> (covered in “Interactive
Sessions”) must also have no indentation.
Python treats each tab as if it was up to eight spaces, so that the next
character after the tab falls into logical column 9, 17, 25, and so on.
Standard Python style is to use four spaces (never tabs) per indentation
level.
If you must use tabs, Python does not allow mixing tabs and spaces for
indentation.

Use Spaces, Not Tabs
Configure your favorite editor to expand a Tab keypress into four spaces, so that all Python source
code you write contains just spaces, not tabs. This way, all tools, including Python itself, are
consistent in handling indentation in your Python source files. Optimal Python style is to indent
blocks by exactly four spaces: use no tab characters.

Character Sets
A Python source file can use any Unicode character, encoded by default as
UTF-8. (Characters with codes between 0 and 127, AKA ASCII characters,
encode in UTF-8 into the respective single bytes, so an ASCII text file is a
fine Python source file, too.)
You may choose to tell Python that a certain source file is written in a
different encoding. In this case, Python uses that encoding to read the file.
To let Python know that a source file is written with a nonstandard
encoding, start your source file with a comment whose form must be, for
example:

coding: iso-8859-1

After coding:, write the name of an ASCII-compatible codec from the
codecs module, such as utf-8 or iso-8859-1. Note that this coding
directive comment (also known as an encoding declaration) is taken as such
only if it is at the start of a source file (possibly after the “shebang line”
covered in “Running Python Programs”). Best practice is to use utf-8 for
all of your text files, including Python source files.

Tokens
Python breaks each logical line into a sequence of elementary lexical
components known as tokens. Each token corresponds to a substring of the
logical line. The normal token types are identifiers, keywords, operators,
delimiters, and literals, which we cover in the following sections. You may
freely use whitespace between tokens to separate them. Some whitespace
separation is necessary between logically adjacent identifiers or keywords;
otherwise, Python would parse them as a single, longer identifier. For
example, ifx is a single identifier; to write the keyword if followed by
the identifier x, you need to insert some whitespace (typically only one
space character, i.e., you write if x).

Identifiers
An identifier is a name used to specify a variable, function, class, module,
or other object. An identifier starts with a letter (any character that Unicode
classifies as a letter) or an underscore (_), followed by zero or more letters,
underscores, digits or other characters that Unicode classifies as digits or
combining marks (as defined in Unicode® Standard Annex #31).
For example, in the 8-bit ASCII-plus character range, the valid leading
characters for an identifier are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþÿ

After the leading character, the valid identifier body characters are:

https://unicode.org/reports/tr31/#Combining_Marks

0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz
ªµ·ºÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ
ÿ

Case is significant: lowercase and uppercase letters are distinct. Punctuation
characters such as @, $, and ! are not allowed in identifiers.

Beware of Using Unicode Characters that are
Homoglyphs
Some Unicode characters look very similar to, if not indistinguishable from, other characters -
such character pairs are called homoglyphs. For instance, compare capital letter ‘A’ and capital
Greek letter alpha 'Α'. These are actually two different letters that just look very similar in most
fonts. In Python, they define two different variables:

>>> A = 100
>>> Α = 200 # this variable is GREEK CAPITAL LETTER ALPHA
>>> print(A, Α)
100 200

If you want to make your Python code widely usable, we recommend a policy that all identifiers,
comments, and documentation are written in English, avoiding, in particular, non-English
homoglyph characters. For more information, see PEP 3131.

Unicode normalization strategies add further complexities (Python uses
NFKC normalization when parsing identifiers containing Unicode
characters). See Jukka K. Korpela’s “Unicode Explained” and other
technical information at https://unicode.org, particularly all books in the list
they recommend.

https://www.python.org/dev/peps/pep-3131/
https://unicode.org/reports/tr15/
https://learning.oreilly.com/library/view/unicode-explained/059610121X/
https://unicode.org/
https://www.unicode.org/announcements/books.html

Unicode Normalization can Create Unintended Overlap
Between Variables
Python may create an unintended alias between variables when one contains certain Unicode
characters. This normalization internally converts the name as shown in the Python script to one
using normalized characters. For example, the letters “ª” and “º” normalize to the ASCII
lowercase letters “a” and “o”. See how variables using these letters could clash with other
variables:

>>> a, o = 100, 101
>>> ª, º = 200, 201
>>> print(a, o, ª, º)
200 201 200 201 # not "100 101 200 201"

It is best to avoid using normalizable Unicode characters in your Python identifiers.

Normal Python style is to start class names with an uppercase letter, and
other identifiers with a lowercase letter. Starting an identifier with a single
leading underscore indicates by convention that the identifier is meant to be
private. Starting an identifier with two leading underscores indicates a
strongly private identifier; if the identifier also ends with two trailing
underscores, however, this means that the identifier is a language-defined
special name. Identifiers composed of multiple words should be all
lowercase with underscores between words, sometimes referred to as
“snake case,” as in login_password.

Single Underscore _ in the Interactive Interpreter
The identifier _ (a single underscore) is special in interactive interpreter sessions: the interpreter
binds _ to the result of the last expression statement it has evaluated interactively, if any.

Keywords

Python has 35 keywords, which are identifiers that Python reserves for
special syntactic uses. Like identifiers, keywords are case-sensitive. You
cannot use keywords as regular identifiers (thus, they’re sometimes known
as “reserved words”). Some keywords begin simple statements or clauses of
compound statements, while other keywords are operators. We cover all the
keywords in detail in this book, either in this chapter or in Chapters
“Object-Oriented Python”, “Exceptions”, and “Modules”. The keywords in
Python are:

and

break

elif

from

is

pass

with

as

class

else

glob
al

lambda

raise

yield

assert

contin
ue

excep
t

if

nonloc
al

retur
n

False

async

def

final
ly

impo
rt

not

try

None

await

del

for

in

or

while

True

You can list them by importing the keyword module and printing
keyword.kwlist.

||3.9++|| In addition, Python 3.9 introduced the concept of soft keywords.
Soft keywords are keywords that are context-sensitive. They are language
keywords for some specific syntax constructs, but outside of those
constructs they may be used as variable or function names, so they are not
reserved words. No soft keywords were defined in Python 3.9, but Python
3.10 introduced the following soft keywords:

_

case

match

You can list them from the keyword module by printing
keyword.softkwlist.

Operators

Python uses non-alphanumeric characters and character combinations as
operators. Python recognizes the following operators, which are covered in
detail in “Expressions and Operators”:

+ - * / % ** // << >> & @
| ^ ~ < <= > >= <> != == @= :=

You can use @ as an operator (in matrix multiplication, covered in Chapter
15), although the character is technically a delimiter.

Delimiters
Python uses the following characters and combinations as delimiters in
expressions, list, dictionary, and set literals and comprehensions, and
various statements, among other purposes:

() [] { }
, : . ` = ; @
+= -= *= /= //= %=
&= |= ^= >>= <<= **=

The period (.) can also appear in floating-point literals (e.g., 2.3) and
imaginary literals (e.g., 2.3j). The last two rows are the augmented
assignment operators, which are delimiters, but also perform operations. We
discuss the syntax for the various delimiters when we introduce the objects
or statements using them.
The following characters have special meanings as part of other tokens:

' " # \

' and " surround string literals. # outside of a string starts a comment,
which ends at the end of the current line. \ at the end of a physical line
joins the following physical line into one logical line; \ is also an escape
character in strings. The characters $ and ?, and all control characters
except whitespace, can never be part of the text of a Python program,
except in comments or string literals.

1

Literals
A literal is the direct denotation in a program of a data value (a number,
string, or container). The following are number and string literals in Python:

42 # Integer literal
3.14 # Floating-point literal
1.0j # Imaginary literal
'hello' # String literal
"world" # Another string literal
"""Good
night""" # Triple-quoted string literal, spanning
2 lines

Combining number and string literals with the appropriate delimiters, you
can build literals that directly denote data values of container types:

[42, 3.14, 'hello'] # List
[] # Empty list
100, 200, 300 # Tuple
() # Empty tuple
{'x':42, 'y':3.14} # Dictionary
{} # Empty dictionary
{1, 2, 4, 8, 'string'} # Set

There is no literal to denote an empty set; use set() instead

We cover the syntax for literals in detail in “Data Types”, when we discuss
the various data types Python supports.

Statements
You can look at a Python source file as a sequence of simple and compound
statements.

Simple statements
A simple statement is one that contains no other statements. A simple
statement lies entirely within a logical line. As in many other languages,
you may place more than one simple statement on a single logical line, with
a semicolon (;) as the separator. However, one statement per line is the
usual and recommended Python style, and makes programs more readable.

Any expression can stand on its own as a simple statement (we discuss
expressions in “Expressions and Operators”). When working interactively,
the interpreter shows the result of an expression statement you enter at the
prompt (>>>) and binds the result to a global variable named _
(underscore). Apart from interactive sessions, expression statements are
useful only to call functions (and other callables) that have side effects
(e.g., perform output, change global variables, or raise exceptions).
An assignment is a simple statement that assigns values to variables, as we
discuss in “Assignment Statements”. An assignment in Python using the =
operator is a statement and can never be part of an expression. To perform
an assignment as part of an expression, you must use the := (jokingly
known as the “walrus”) operator.

Compound statements
A compound statement contains one or more other statements and controls
their execution. A compound statement has one or more clauses, aligned at
the same indentation. Each clause has a header starting with a keyword and
ending with a colon (:), followed by a body, which is a sequence of one or
more statements. Normally, these statements, also known as a block, are on
separate logical lines after the header line, indented four spaces rightward.
The block lexically ends when the indentation returns to that of the clause
header (or further left from there, to the indentation of some enclosing
compound statement). Alternatively, the body can be a single simple
statement, following the : on the same logical line as the header. The body
may also consist of several simple statements on the same line with
semicolons between them, but, as we’ve already mentioned, this is not good
Python style.

Data Types
The operation of a Python program hinges on the data it handles. Data
values in Python are known as objects; each object, AKA value, has a type.
An object’s type determines which operations the object supports (in other

words, which operations you can perform on the value). The type also
determines the object’s attributes and items (if any) and whether the object
can be altered. An object that can be altered is known as a mutable object,
while one that cannot be altered is an immutable object. We cover object
attributes and items in “Object attributes and items”.
The built-in type(obj) accepts any object as its argument and returns the
type object that is the type of obj. The built-in function isinstance(obj,
type) returns True when object obj has type type (or any subclass thereof);
otherwise, it returns False.

Python has built-in types for fundamental data types such as numbers,
strings, tuples, lists, dictionaries, and sets, as covered in the following
sections. You can also create user-defined types, known as classes, as
discussed in “Classes and Instances”.

Numbers
The built-in numeric types in Python include integers, floating-point
numbers, and complex numbers. The standard library also offers decimal
floating-point numbers, covered in “The decimal Module”, and fractions,
covered in “The fractions Module”. All numbers in Python are immutable
objects; therefore, when you perform an operation on a number object, you
produce a new number object. We cover operations on numbers, also
known as arithmetic operations, in “Numeric Operations”.
Numeric literals do not include a sign: a leading + or -, if present, is a
separate operator, as discussed in “Arithmetic Operations”.

Integer numbers
Integer literals can be decimal, binary, octal, or hexadecimal. A decimal
literal is a sequence of digits in which the first digit is nonzero. A binary
literal is 0b followed by a sequence of binary digits (0 or 1). An octal
literal is 0o followed by a sequence of octal digits (0 to 7). A hexadecimal
literal is 0x followed by a sequence of hexadecimal digits (0 to 9 and A to
F, in either upper- or lowercase). For example:

1, 23, 3493 # Decimal integer literals
0b010101, 0b110010 # Binary integer literals
0o1, 0o27, 0o6645 # Octal integer literals
0x1, 0x17, 0xDA5, 0xda5 # Hexadecimal integer literals

Integer literals have no defined upper bound.
An int object i supports the following methods:

as_integer_ra
tio

||3.8++|| i.as_integer_ratio()
 Returns a tuple of 2 ints, whose exact ratio is the original integer value.
(Since i is always int, the tuple is always (i, 1); compare with
float.as_integer_ratio.)

bit_count

||3.10++|| i.bit_count()
 Returns the number of ones in a binary representation of abs(i).

bit_length

i.bit_length()
 Returns the minimum number of bits needed to represent i. Equivalent to the
length of the binary representation of abs(i), after removing 'b' and all
leading zeros. (0).bit_length() returns 0.

to_bytes

i.to_bytes(length, byteorder, signed=False)
 Returns a bytes value length bytes in size representing the binary value of i.
byteorder must be the str value 'big' or 'little', indicating whether the
return value should be big-endian (most-significant byte first) or little-endian
(least-significant byte first). For example, (258).to_bytes(2, 'big')
returns b'\x01\x02', and (258).to_bytes(2, 'little') returns
b'\x02\x01'. When i < 0 and signed is True, to_bytes returns the
bytes of i represented in 2’s complement. If i < 0 and signed is False,
to_bytes raises OverflowError.

from_bytes

int.from_bytes(bytes_value, byteorder, signed=False)
 Returns an int from the bytes in bytes_value following the same argument
usage as in to_bytes. (Note that from_bytes is a classmethod of int.)

Floating-point numbers
A floating-point literal is a sequence of decimal digits that includes a
decimal point (.), an exponent suffix (e or E, optionally followed by + or
-, followed by one or more digits), or both. The leading character of a
floating-point literal cannot be e or E; it may be any digit or a period (.).
For example:

0., 0.0, .0, 1., 1.0, 1e0, 1.e0, 1.0e0 # Floating-point
literals

A Python floating-point value corresponds to a C double and shares its
limits of range and precision, typically 53 bits of precision on modern
platforms. (For the exact range and precision of floating-point values on the
current platform, and many other details, see sys.float_info: we do
not cover that in this book—see the online docs.)
A float object f supports the following methods:

as_integer_ra
tio

f.as_integer_ratio()
 Returns a tuple of 2 ints, a numerator and a denominator, whose exact ratio
is the original float value, f. Example:
 >>> f=2.5
 >>> f.as_integer_ratio()
 (5, 2)

is_integer

f.is_integer()
 Returns a bool value indicating if f is an integer value. Equivalent to int(f)
== f.

 hex

f.hex()
 Returns a hexadecimal representation of f, with leading 0x and trailing p and
exponent. For example, (99.0).hex() returns
'0x1.8c00000000000p+6'.

from_hex

float.from_hex(s)
 Returns a float value from the hexadecimal str value s. s can be of the
form returned by f.hex(), or simply a string of hexadecimal digits. When
the latter is the case, from_hex returns float(int(s,16)).

Complex numbers
A complex number is made up of two floating-point values, one each for
the real and imaginary parts. You can access the parts of a complex object z
as read-only attributes z.real and z.imag. You can specify an
imaginary literal as any floating-point or integer decimal literal followed by
a j or J:

0j, 0.j, 0.0j, .0j, 1j, 1.j, 1.0j, 1e0j, 1.e0j, 1.0e0j

https://docs.python.org/3.10/library/sys.html#sys.float_info

The j at the end of the literal indicates the square root of -1, as commonly
used in electrical engineering (some other disciplines use i for this purpose,
but Python has chosen j). There are no other complex literals. To denote
any constant complex number, add or subtract a floating-point (or integer)
literal and an imaginary one. For example, to denote the complex number
that equals one, use expressions like 1+0j or 1.0+0.0j. Python performs
the addition or subtraction at compile time, so, no need to worry about
overhead.
A complex object c supports the following method:

conjugate

c.conjugate()
 Returns a new complex number complex(c.imag,c.real) (i.e., the
return value has c’s real and imag attributes exchanged).

See “The math and cmath Modules” for several other functions that use
floats and complex numbers.

Underscores in numeric literals
To assist visual assessment of the magnitude of a number, numeric literals
can include single underscore (_) characters between digits or after any
base specifier. It’s not only decimal numeric constants that can benefit from
this notational freedom:

>>> 100_000.000_0001, 0x_FF_FF, 0o7_777, 0b_1010_1010
(100000.0000001, 65535, 4095, 170)

There is no enforcement of location of the underscores (except that two
may not occur consecutively), so 123_456 and 12_34_56 both represent
the same int as 123456.

Sequences
A sequence is an ordered container of items, indexed by integers. Python
has built-in sequence types known as strings (bytes and Unicode), tuples,
and lists. Library and extension modules provide other sequence types, and

you can write yet others yourself (as discussed in “Sequences”). You can
manipulate sequences in a variety of ways, as discussed in “Sequence
Operations”.

Iterables
A Python concept that generalizes the idea of “sequence” is that of
iterables, covered in “The for Statement,” “Iterators,” and “Iterables vs.
Iterators”. All sequences are iterable: whenever we say you can use an
iterable, you can, in particular, use a sequence (for example, a list).
Also, when we say that you can use an iterable, we mean, usually, a
bounded iterable: an iterable that eventually stops yielding items. All
sequences are bounded. Iterables, in general, can be unbounded, but, if you
try to use an unbounded iterable without special precautions, you could
produce a program that never terminates, or one that exhausts all available
memory.

Strings
Python has two built-in string types, str and bytes . A str object is a
sequence of characters used to store and represent text-based information. A
bytes object stores and represents arbitrary sequences of binary bytes.
Strings of both types in Python are immutable: when you perform an
operation on strings, you always produce a new string object of the same
type, rather than mutating an existing string. String objects provide many
methods, as discussed in detail in “Methods of String and Bytes Objects”.
A string literal can be quoted or triple-quoted. A quoted string is a sequence
of zero or more characters within matching quotes, single (') or double (").
For example:

'This is a literal string'
"This is another string"

The two different kinds of quotes function identically; having both lets you
include one kind of quote inside of a string specified with the other kind,
with no need to escape quote characters with the backslash character (\):

2

'I\'m a Python fanatic' # a quote can be escaped
"I'm a Python fanatic" # this way may be more readable

Most (but not all) style guides that pronounce on the subject suggest that
you use single quotes when the choice is otherwise indifferent.
To have a string literal span multiple physical lines, you can use a \ as the
last character of a line to indicate that the next line is a continuation:

'A not very long string \
that spans two lines' # comment not allowed on previous
line

You can embed a newline in the string to make it print over two lines rather
than just one:

'A not very long string\n\
that prints on two lines' # comment not allowed on previous
line

A better approach is to use a triple-quoted string, enclosed by matching
triplets of quote characters (''', or better, as mandated by PEP 8, """). In
a triple-quoted string literal, line breaks in the literal remain as newline
characters in the resulting string object:

"""An even bigger
string that spans
three lines""" # comments not allowed on previous
lines

You can start a triple-quoted literal with an escaped newline, to avoid
having the first line of the literal string’s content at a different indentation
level from the rest. For example:

the_text = """\
First line
Second line
""" # the same as "First line\nSecond line\n" but more readable

https://www.python.org/dev/peps/pep-0008/#string-quotes

The only character that cannot be part of a triple-quoted string literal is an
unescaped backslash, while a single-quoted string literal cannot contain
unescaped backslashes, nor line ends, nor the quote character that encloses
it. The backslash character starts an escape sequence, which lets you
introduce any character in either kind of string literal. See all of Python’s
string escape sequences in Table 3-1.

Table 2-1. String escape sequences

 Sequence

 Meaning

 ASCII/ISO
code

 \
<newline>

Ignore end of line None

 \\

Backslash 0x5c

 \'

Single quote 0x27

 \"

Double quote 0x22

 \a

Bell 0x07

 \b

Backspace 0x08

 \f

Form feed 0x0c

 \n

Newline 0x0a

 \r

Carriage return 0x0d

 \t

Tab 0x09

 \v

Vertical tab 0x0b

\ DDD Octal value DDD As given

\x XX Hexadecimal value XX As given

\N{Unicode char name} Unicode character As given

\ other Any other character: a two-character
string

0x5c + as given

A variant of a string literal is a raw string literal. The syntax is the same as
for quoted or triple-quoted string literals, except that an r or R immediately
precedes the leading quote. In raw string literals, escape sequences are not
interpreted as in Table 3-1, but are literally copied into the string, including
backslashes and newline characters. Raw string literal syntax is handy for
strings that include many backslashes, especially regular expression
patterns (see “Pattern-String Syntax”) and Windows absolute filenames
(which use backslashes as directory separators). A raw string literal cannot
end with an odd number of backslashes: the last one would be taken as
escaping the terminating quote.

Raw and Triple-Quoted String Literals are Different
Source Code Representations, Not Different Types
Raw and triple-quotes string literals are not different types from other strings; they are just
alternative syntaxes for literals of the usual two string types, bytes and str.

In str literals, you can use \u followed by four hex digits, or \U followed
by eight hex digits, to denote Unicode characters; you can also include the
escape sequences listed in Table 3-1. str literals can also include Unicode
characters using the escape sequence \N{name}, where name is a standard

Unicode name. For example, \N{Copyright Sign} indicates a
Unicode copyright sign character (©).

Formatted string literals let you inject formatted expressions into your
string “literals”, which are therefore no longer constant, but rather are
subject to evaluation at execution time. The formatting process is described
in “String Formatting.” From a syntactic point of view, these new literals
can be regarded just as another kind of string literal.
Multiple string literals of any kind—quoted, triple-quoted, raw, bytes,
formatted—can be adjacent, with optional whitespace in between (as long
as you do not mix text and bytes strings). The compiler concatenates such
adjacent string literals into a single string object. Writing a long string
literal in this way lets you present it readably across multiple physical lines
and gives you an opportunity to insert comments about parts of the string.
For example:

marypop = ('supercalifragilistic' # Open paren->logical line
continues
 'expialidocious') # Indentation ignored in
continuation

The string assigned to marypop is a single word of 34 characters.

Bytes
A bytes object is a sequence of ints from 0 to 255. Bytes objects are
usually encountered when reading data from or writing data to a binary
source (e.g, a file, a socket, or a network resource).
A bytes object can be initialized from a list of ints or from a string of
characters. A bytes literal has the same syntax as a str literal, prefixed
with 'b':

b'abc'
bytes([97, 98, 99]) # same as the previous line
rb'\ = solidus' # a raw bytes literal, containing a
'\'

http://www.unicode.org/charts/

To convert a bytes object to a str, use the bytes.decode() method.
To convert a str object to a bytes, use the str.encode() method, as
described in detail in Chapter “Strings and Things”.

Bytearray
A bytearray is a mutable ordered sequence of ints from 0 to 255; like
bytes, you can construct it from a sequence of ints or characters. Apart
from mutability, it is just like a bytes object. As they are mutable,
bytearray objects support methods and operators that modify elements
within the array of byte values.

ba = bytearray([97, 98, 99]) # like bytes, can construct from a
sequence of ints
ba[1] = 97 # unlike bytes, contents can be
modified
print(ba.decode()) # prints 'aac'

Chapter “Strings and Things” has additional material on creating and
working with bytearray objects.

Tuples
A tuple is an immutable ordered sequence of items. The items of a tuple are
arbitrary objects and may be of different types. You can use mutable objects
(such as lists) as tuple items; however, best practice is to avoid tuples with
mutable items.
To denote a tuple, use a series of expressions (the items of the tuple)
separated by commas (,); if every item is a literal, the whole construct is a
tuple literal. You may optionally place a redundant comma after the last
item. You may group tuple items within parentheses, but the parentheses are
necessary only where the commas would otherwise have another meaning
(e.g., in function calls), or to denote empty or nested tuples. A tuple with
exactly two items is also known as a pair. To create a tuple of one item, add
a comma to the end of the expression. To denote an empty tuple, use an
empty pair of parentheses. Here are some tuple literals, all with the optional
parentheses (the parentheses are not optional in the last case):

(100, 200, 300) # Tuple with three items
(3.14,) # Tuple with 1 item needs trailing
comma
() # Empty tuple (parentheses NOT
optional)

You can also call the built-in type tuple to create a tuple. For example:

tuple('wow')

This builds a tuple equal to that denoted by the tuple literal:

('w', 'o', 'w')

tuple() without arguments creates and returns an empty tuple, like ().
When x is iterable, tuple(x) returns a tuple whose items are the same as
those in x.

Lists
A list is a mutable ordered sequence of items. The items of a list are
arbitrary objects and may be of different types. To denote a list, use a series
of expressions (the items of the list) separated by commas (,), within
brackets ([]); if every item is a literal, the whole construct is a list literal.
You may optionally place a redundant comma after the last item. To denote
an empty list, use an empty pair of brackets. Here are some examples of list
literals:
list() without arguments creates and returns an empty list, like [].
When x is iterable, list(x) returns a list whose items are the same as
those in x.

[42, 3.14, 'hello'] # List with three items
[100] # List with one item
[] # Empty list

You can also call the built-in type list to create a list. For example:

list('wow')

This builds a list equal to that denoted by the list literal:

['w', 'o', 'w']

You can also build lists with list comprehensions, covered in “List
comprehensions”.

Sets
Python has two built-in set types, set and frozenset, to represent
arbitrarily ordered collections of unique items. Items in a set may be of
different types, but they must be hashable (see hash in Table 7-2).
Instances of type set are mutable, and thus, not hashable; instances of type
frozenset are immutable and hashable. You can’t have a set whose
items are sets, but you can have a set (or frozenset) whose items are
frozensets. Sets and frozensets are not ordered.
To create a set, you can call the built-in type set with no argument (this
means an empty set) or one argument that is iterable (this means a set
whose items are those of the iterable). You can similarly build a frozenset
by calling frozenset.

Alternatively, to denote a (non-frozen, non-empty) set, use a series of
expressions (the items of the set) separated by commas (,) within braces
({}); if every item is a literal, the whole assembly is a set literal. You may
optionally place a redundant comma after the last item. Some example sets
(two literals, one not):

{42, 3.14, 'hello'} # Literal for a set with three items
{100} # Literal for a set with one item
set() # Empty set (can't use {}--empty dict!)

You can also build non-frozen sets with set comprehensions, as discussed in
“Set comprehensions”.

Dictionaries

A mapping is an arbitrary collection of objects indexed by nearly arbitrary
values called keys. Mappings are mutable and, like sets but unlike
sequences, are not (necessarily) ordered.
Python provides a single built-in mapping type: the dictionary type. Library
and extension modules provide other mapping types, and you can write
others yourself (as discussed in “Mappings”). Keys in a dictionary may be
of different types, but they must be hashable (see hash in Table 7-2).
Values in a dictionary are arbitrary objects and may be of any type. An item
in a dictionary is a key/value pair. You can think of a dictionary as an
associative array (known in some other languages as a “map,” “hash table,”
or “hash”).
To denote a dictionary, you can use a series of colon-separated pairs of
expressions (the pairs are the items of the dictionary) separated by commas
(,) within braces ({}); if every expression is a literal, the whole construct
is a dict literal. You may optionally place a redundant comma after the last
item. Each item in a dictionary is written as key: value, where key is an
expression giving the item’s key and value is an expression giving the
item’s value. If a key’s value appears more than once in a dictionary
expression, only an arbitrary one of the items with that key is kept in the
resulting dictionary object—dictionaries do not allow duplicate keys. To
denote an empty dictionary, use an empty pair of braces.
Here are some dictionary literals:

{'x':42, 'y':3.14, 'z':7} # Dictionary with three items, str
keys
{1:2, 3:4} # Dictionary with two items, int
keys
{1:'za', 'br':23} # Dictionary with mixed key types
{} # Empty dictionary

You can also call the built-in type dict to create a dictionary in a way that,
while usually less concise, can sometimes be more readable. For example,
the dictionaries in the preceding snippet can equivalently be written as:

dict(x=42, y=3.14, z=7) # Dictionary with three items, str
keys

3

dict([(1, 2), (3, 4)]) # Dictionary with two items, int
keys
dict([(1,'za'), ('br',23)]) # Dictionary with mixed key types
dict() # Empty dictionary

dict() without arguments creates and returns an empty dictionary, like
{}. When the argument x to dict is a mapping, dict returns a new
dictionary object with the same keys and values as x. When x is iterable, the
items in x must be pairs, and dict(x) returns a dictionary whose items
(key/value pairs) are the same as the items in x. If a key value appears more
than once in x, only the last item from x with that key value is kept in the
resulting dictionary.
When you call dict, in addition to, or instead of, the positional argument
x, you may pass named arguments, each with the syntax name=value,
where name is an identifier to use as an item’s key and value is an
expression giving the item’s value. When you call dict and pass both a
positional argument and one or more named arguments, if a key appears
both in the positional argument and as a named argument, Python associates
to that key the value given with the named argument (i.e., the named
argument “wins”).
You can also create a dictionary by calling dict.fromkeys. The first
argument is an iterable whose items become the keys of the dictionary; the
second argument is the value that corresponds to each and every key (all
keys initially map to the same value). If you omit the second argument, it
defaults to None. For example:

dict.fromkeys('hello', 2) # same as {'h':2, 'e':2, 'l':2,
'o':2}
dict.fromkeys([1, 2, 3]) # same as {1:None, 2:None, 3:None}

You can also build dicts with dict comprehensions, as discussed in “Dict
comprehensions”.

None

The built-in None denotes a null object. None has no methods or other
attributes. You can use None as a placeholder when you need a reference
but you don’t care what object you refer to, or when you need to indicate
that no object is there. Functions return None as their result unless they
have specific return statements coded to return other values. None is
hashable and can be used as a dict key.

Ellipsis (...)
The Ellipsis, written as three periods with no intervening spaces "...", is
a special object in Python used in numerical applications, or as an
alternative to None when None is a valid entry. For instance, to initialize a
dict that may take None as a legitimate value, you can initialize it with ...
as an indicator of “no value supplied, not even None”. Ellipsis is hashable
and can be used as a dict key.

use None for "None of the above", ... for "no entry"
votes_tally = dict.fromkeys(['Candidate A', 'Candidate B', None,
...], 0)

Callables
In Python, callable types are those whose instances support the function call
operation (see “Calling Functions”). Functions are callable. Python
provides several built-in functions (see “Built-in Functions”) and supports
user-defined functions (see “The def Statement”). Generators are also
callable (see “Generators”).
Types are also callable, as we already saw for the dict, list, set, and
tuple built-in types. (See “Built-in Types” for a complete list of built-in
types.) As we discuss in “Python Classes”, class objects (user-defined
types) are also callable. Calling a type normally creates and returns a new
instance of that type.
Other callables include methods, which are functions bound as class
attributes, and instances of classes that supply a special method named
__call__.

Boolean Values
Any data value in Python can be used as a truth value: true or false. Any
nonzero number or nonempty container (e.g., string, tuple, list, set, or
dictionary) is true. 0 (of any numeric type), None, and empty containers are
false.

Beware Using a float as a Truth Value
Be careful about using a floating-point number as a truth value: that’s like comparing the number
for exact equality with zero, and floating-point numbers should almost never be compared for
exact equality.

The built-in type bool is a subclass of int. The only two values of type
bool are True and False, which have string representations of 'True'
and 'False', but also numerical values of 1 and 0, respectively. Several
built-in functions return bool results, as do comparison operators.

You can call bool(x) with any x as the argument. The result is True
when x is true and False when x is false. Good Python style is not to use
such calls when they are redundant, as they most often are: always write if
x:, never any of if bool(x):, if x is True:, if x==True:, if
bool(x)==True:. However, you can use bool(x) to count the number
of true items in a sequence. For example:

def count_trues(seq):
 return sum(bool(x) for x in seq)

In this example, the bool call ensures each item of seq is counted as 0 (if
false) or 1 (if true), so count_trues is more general than sum(seq)
would be.
When we say “expression is true” we mean that
bool(expression) would return True. This is also known as

“expression being truthy” (the other possibility is that “expression
is falsy”).

Variables and Other References
A Python program accesses data values through references. A reference is a
“name” that refers to a value (object). References take the form of
variables, attributes, and items. In Python, a variable or other reference has
no intrinsic type. The object to which a reference is bound at a given time
always has a type, but a given reference may be bound to objects of various
types in the course of the program’s execution.

Variables
In Python, there are no “declarations.” The existence of a variable begins
with a statement that binds the variable (in other words, sets a name to hold
a reference to some object). You can also unbind a variable, resetting the
name so it no longer holds a reference. Assignment statements are the usual
way to bind variables and other references. The (rarely used) del statement
unbinds references.
Binding a reference that was already bound is also known as rebinding it.
Whenever we mention binding, we implicitly include rebinding (except
where we explicitly exclude it). Rebinding or unbinding a reference has no
effect on the object to which the reference was bound, except that an object
goes away when nothing refers to it. The cleanup of objects with no
references is known as garbage collection.
You can name a variable with any identifier except the 30-plus reserved as
Python’s keywords (see “Keywords”). A variable can be global or local. A
global variable is an attribute of a module object (see Chapter “Modules”).
A local variable lives in a function’s local namespace (see “Namespaces”).

Object attributes and items

The main distinction between the attributes and items of an object is in the
syntax you use to access them. To denote an attribute of an object, use a
reference to the object, followed by a period (.), followed by an identifier
known as the attribute name. For example, x.y refers to one of the attributes
of the object bound to name x, specifically that attribute whose name is ‘y’.
To denote an item of an object, use a reference to the object, followed by an
expression within brackets ([]). The expression in brackets is known as the
item’s index or key, and the object is known as the item’s container. For
example, x[y] refers to the item at the key or index bound to name y,
within the container object bound to name x.
Attributes that are callable are also known as methods. Python draws no
strong distinctions between callable and noncallable attributes, as some
other languages do. All general rules about attributes also apply to callable
attributes (methods).

Accessing nonexistent references
A common programming error is to access a reference that does not exist.
For example, a variable may be unbound, or an attribute name or item index
may not be valid for the object to which you apply it. The Python compiler,
when it analyzes and compiles source code, diagnoses only syntax errors.
Compilation does not diagnose semantic errors, such as trying to access an
unbound attribute, item, or variable. Python diagnoses semantic errors only
when the errant code executes—that is, at runtime. When an operation is a
Python semantic error, attempting it raises an exception (see Chapter
“Exceptions”). Accessing a nonexistent variable, attribute, or item—just
like any other semantic error—raises an exception.

Assignment Statements
Assignment statements can be plain or augmented. Plain assignment to a
variable (e.g., name=value) is how you create a new variable or rebind an
existing variable to a new value. Plain assignment to an object attribute
(e.g., x.attr=value) is a request to object x to create or rebind the attribute
named 'attr'. Plain assignment to an item in a container (e.g., x[k] =

value) is a request to container x to create or rebind the item with index or
key k.
Augmented assignment (e.g., name+=value) cannot, per se, create new
references. Augmented assignment can rebind a variable, ask an object to
rebind one of its existing attributes or items, or request the target object to
modify itself. When you make any kind of request to an object, it is up to
the object to decide whether and how to honor the request, and whether to
raise an exception.

Plain assignment
A plain assignment statement in the simplest form has the syntax:

target = expression

The target is known as the left-hand side (LHS), and the expression is the
right-hand side (RHS). When the assignment executes, Python evaluates the
RHS expression, then binds the expression’s value to the LHS target. The
binding never depends on the type of the value. In particular, Python draws
no strong distinction between callable and noncallable objects, as some
other languages do, so you can bind functions, methods, types, and other
callables to variables, just as you can numbers, strings, lists, and so on. This
is part of functions and other callables being first-class objects.
Details of the binding do depend on the kind of target. The target in an
assignment may be an identifier, an attribute reference, an indexing, or a
slicing:

An identifier
Is a variable name. Assigning to an identifier binds the variable with
this name.

An attribute reference
Has the syntax obj.name, where obj is an arbitrary expression, and name
is an identifier, known as an attribute name of the object. Assigning to
an attribute reference asks object obj to bind its attribute named ‘name’.

An indexing
Has the syntax obj[expr]. obj and expr are arbitrary expressions.
Assigning to an indexing asks container obj to bind its item indicated by
the value of expr, also known as the index or key of the item in the
container.

A slicing
Has the syntax obj[start:stop] or
obj[start:stop:stride].obj, start, stop, and stride
are arbitrary expressions. start, stop, and stride are all optional
(i.e., obj[:stop:] and obj[:stop] are also syntactically correct
slicings, each being equivalent to obj[None:stop:None]).
Assigning to a slicing asks container obj to bind or unbind some of its
items. Assigning to a slicing such as obj[start:stop:stride] is
equivalent to assigning to the indexing obj[slice(start, stop,
stride)]. See Python’s built-in type slice in (Table 7-1), whose
instances represent slices.

We’ll get back to indexing and slicing targets when we discuss operations
on lists, in “Modifying a list”, and on dictionaries, in “Indexing a
Dictionary”.
When the target of the assignment is an identifier, the assignment statement
specifies the binding of a variable. This is never disallowed: when you
request it, it takes place. In all other cases, the assignment statement denotes
a request to an object to bind one or more of its attributes or items. An
object may refuse to create or rebind some (or all) attributes or items,
raising an exception if you attempt a disallowed creation or rebinding (see
also __setattr__ in Table 4-1 and __setitem__ in “Container
methods”).
A plain assignment can use multiple targets and equals signs (=). For
example:

a = b = c = 0

binds variables a, b, and c to the same value, 0. Each time the statement
executes, the RHS expression evaluates just once, no matter how many
targets are in the statement. Each target, left to right, is bound to the one
object returned by the expression, just as if several simple assignments
executed one after the other.
The target in a plain assignment can list two or more references separated
by commas, optionally enclosed in parentheses or brackets. For example:

a, b, c = x

This statement requires x to be an iterable with exactly three items, and
binds a to the first item, b to the second, and c to the third. This kind of
assignment is known as an unpacking assignment. The RHS expression
must be an iterable with exactly as many items as there are references in the
target; otherwise, Python raises an exception. Each reference in the target
gets bound to the corresponding item in the RHS. An unpacking assignment
can be used, for example, to swap references:

a, b = b, a

This assignment statement rebinds name a to what name b was bound to,
and vice versa. Exactly one of the multiple targets of an unpacking
assignment may be preceded by *. That starred target, if present, is bound
to a list of all items, if any, that were not assigned to other targets. For
example:

first, *middle, last = x

when x is a list, is the same as (but more concise, clearer, more general, and
faster than):

first, middle, last = x[0], x[1:-1], x[-1]

Each of these forms requires x to have at least two items. This feature is
known as extended unpacking.

Augmented assignment
An augmented assignment (sometimes also known as an in-place
assignment) differs from a plain assignment in that, instead of an equals
sign (=) between the target and the expression, it uses an augmented
operator, which is a binary operator followed by =. The augmented
operators are +=, -=, *=, /=, //=, %=, **=, |=, >>=, <<=, &=, ^=, and
@=. An augmented assignment can have only one target on the LHS;
augmented assignment does not support multiple targets.
In an augmented assignment, like in a plain one, Python first evaluates the
RHS expression. Then, when the LHS refers to an object that has a special
method for the appropriate in-place version of the operator, Python calls the
method with the RHS value as its argument (it is up to the method to
modify the LHS object appropriately and return the modified object;
“Special Methods” covers special methods). When the LHS object has no
applicable in-place special method, Python uses the corresponding binary
operator on the LHS and RHS objects, then rebinds the target to the result.
E.g.: x+=y is like x=x.__iadd_(y) when x has special method
__iadd__, “in-place addition”. Otherwise, x+=y is like x=x+y.

Augmented assignment never creates its target reference; the target must
already be bound when augmented assignment executes. Augmented
assignment can rebind the target reference to a new object, or modify the
same object to which the target reference was already bound. Plain
assignment, in contrast, can create or rebind the LHS target reference, but it
never modifies the object, if any, to which the target reference was
previously bound. The distinction between objects and references to objects
is crucial here. For example, x=x+y never modifies the object to which
name x was originally bound, if any. Rather, it rebinds name x to refer to a
new object. x+=y, in contrast, modifies the object to which the name x is
bound, when that object has special method __iadd__; otherwise, x+=y
rebinds the name x to a new object, just like x=x+y.

del Statements
Despite its name, a del statement unbinds references—it does not, per se,
delete objects. Object deletion may automatically follow, by garbage
collection, when no more references to an object exist.
A del statement consists of the keyword del, followed by one or more
target references separated by commas (,). Each target can be a variable,
attribute reference, indexing, or slicing, just like for assignment statements,
and must be bound at the time del executes. When a del target is an
identifier, the del statement means to unbind the variable. If the identifier
was bound, unbinding it is never disallowed; when requested, it takes place.
In all other cases, the del statement specifies a request to an object to
unbind one or more of its attributes or items. An object may refuse to
unbind some (or all) attributes or items, raising an exception if you attempt
a disallowed unbinding (see also __delattr__ in “General-Purpose
Special Methods” and __delitem__ in “Container methods”).
Unbinding a slicing normally has the same effect as assigning an empty
sequence to that slicing, but it is up to the container object to implement this
equivalence.
Containers are also allowed to have del cause side effects. For example,
assuming del C[2] succeeds, when C is a dict, this makes future
references to C[2] invalid (raising KeyError) until and unless you
assign to C[2] again; but when C is a list, del C[2] implies that every
following item of C “shifts left by one”—so, if C is long enough, future
references to C[2] are still valid, but denote a different item than they did
before the del (generally, what you’d have used C[3] to refer to, before
the del statement).

Expressions and Operators
An expression is a “phrase” of code, which Python evaluates to produce a
value. The simplest expressions are literals and identifiers. You build other
expressions by joining subexpressions with the operators and/or delimiters

listed in Table 3-2. This table lists operators in decreasing order of
precedence, higher precedence before lower. Operators listed together have
the same precedence. The third column lists the associativity of the
operator: L (left-to-right), R (right-to-left), or NA (non-associative).

Table 2-2.
 Operator precedence in expressions

 Operator

 Description

Associati
vity

 { key : expr
,...}

Dictionary creation NA

 { expr ,...}

Set creation NA

 [expr ,...]

List creation NA

 (expr ,...)

Tuple creation (parentheses recommended, but not
always required; 1+ commas required), or just
parentheses

NA

 f (expr
,...)

Function call L

 x [index :
index]

Slicing L

 x [index]

Indexing L

 x . attr

Attribute reference L

 Exponentiation (x to the yth power) R

 x ** y

 ~ x

Bitwise NOT NA

 +x, -x

Unary plus and minus NA

 x*y, x/y,
x//y, x%y

Multiplication, division, floor division, remainder L

 x+y, x-y

Addition, subtraction L

 x<<y, x>>y

Left-shift, right-shift L

 x & y

Bitwise AND L

 x ^ y

Bitwise XOR L

 x | y

Bitwise OR L

 x<y, x<=y,
x>y, x>=y,x!=y,
x==y

Comparisons (less than, less than or equal, greater
than, greater than or equal, inequality, equality)

NA

 x is y, x is
not y

Identity tests NA

 x in y, x
not in y

Membership tests NA

 not x

Boolean NOT NA

 x and y

Boolean AND L

 x or y

Boolean OR L

 x if expr
else y

Ternary operator NA

 lambda
arg,...: expr

Anonymous simple function NA

 (id :=
expr)

Assignment expression (parentheses recommended, but not
always required)

N
A

In Table 3-2, expr, key, f, index, x, and y mean any expression, while
attr, arg and id mean any identifier. The notation ,... means commas
join zero or more repetitions; in such cases, a trailing comma is optional
and innocuous.

Comparison Chaining
You can chain comparisons, implying a logical and. For example:

a < b <= c < d

where a, b, c, and d are arbitrary expressions, has (in the absence of
evaluation side-effects) the same value as:

a < b and b <= c and c < d

The chained form is more readable, and evaluates each subexpression at
most once.

Short-Circuiting Operators
The and and or operators short-circuit their operands’ evaluation: the right
hand operand evaluates only when its value is needed to get the truth value
of the entire and or or operation.

In other words, x and y first evaluates x. When x is false, the result is
x; otherwise, the result is y. Similarly, x or y first evaluates x. When x is
true, the result is x; otherwise, the result is y.

and and or don’t force their results to be True or False, but rather
return one or the other of their operands. This lets you use these operators
more generally, not just in Boolean contexts. and and or, because of their
short-circuiting semantics, differ from other operators, which fully evaluate
all operands before performing the operation. and and or let the left
operand act as a guard for the right operand.

The ternary operator
Another short-circuiting operator is the ternary operator if/else:

whentrue if condition else whenfalse

Each of whentrue, whenfalse, and condition is an arbitrary
expression. condition evaluates first. When condition is true, the
result is whentrue; otherwise, the result is whenfalse. Only one of the
subexpressions whentrue and whenfalse evaluates, depending on the
truth value of condition.

The order of the subexpressions in this ternary operator may be a bit
confusing. The recommended style is to always place parentheses around
the whole expression.

Numeric Operations
Python offers the usual numeric operations, as we’ve just seen in Table 3-2.
Numbers are immutable objects: when you perform operations on number

objects, you produce new number objects, never modify existing ones. You
can access the parts of a complex object z as read-only attributes z.real
and z.imag. Trying to rebind these attributes raises an exception.

A number’s optional + or - sign, and the + or - that joins a floating-point
literal to an imaginary one to make a complex number, are not part of the
literals’ syntax. They are ordinary operators, subject to normal operator
precedence rules (see Table 3-2). For example, -2**2 evaluates to -4:
exponentiation has higher precedence than unary minus, so the whole
expression parses as -(2**2), not as (-2)**2. (Again, parentheses are
recommended, to avoid confusing a reader of the code).

Numeric Conversions
You can perform arithmetic operations and comparisons between any two
numbers of Python built-in types. If the operands’ types differ, Python
converts the operand with the “smaller” type to the “larger” type . Builtin
number types, in order from smallest to largest, are integers, floating-point
numbers, and complex numbers. You can request an explicit conversion by
passing a non-complex numeric argument to any of the built-in number
types: int, float, and complex. int drops its argument’s fractional
part, if any (e.g., int(9.8) is 9). You can also call complex with two
numeric arguments, giving real and imaginary parts. You cannot convert a
complex to another numeric type in this way, because there is no single
unambiguous way to convert a complex number into, for example, a
float.

You can also call each built-in numeric type with a string argument with the
syntax of an appropriate numeric literal, with small extensions: the
argument string may have leading and/or trailing whitespace, may start with
a sign, and—for complex numbers—may sum or subtract a real part and an
imaginary one. int can also be called with two arguments: the first one a
string to convert, and the second the radix, an integer between 2 and 36 to
use as the base for the conversion (e.g., int('101', 2) returns 5, the
value of '101' in base 2). For radices larger than 10, the appropriate

4

subset of ASCII letters from the start of the alphabet (in either lower- or
uppercase) are the extra needed “digits.”

Arithmetic Operations
Python arithmetic operations behave in rather obvious ways, with the
possible exception of division and exponentiation.

Division
When the right operand of /, //, or % is 0, Python raises an exception at
runtime. Otherwise, the // operator performs floor division, which means
it returns an integer result (converted to the same type as the wider operand)
and ignores the remainder, if any. The / operator performs true division,
returning a floating-point result (or a complex result if either operand is a
complex number). The % operator returns the remainder of the (floor)
division.
The built-in divmod function takes two numeric arguments and returns a
pair whose items are the quotient and remainder, so you don’t have to use
both // for the quotient and % for the remainder .

Exponentiation
The exponentiation (“raise to power”) operation, when a is less than zero
and b is a floating-point value with a nonzero fractional part, returns a
complex number. The built-in pow(a, b) function returns the same result
as a**b. With three arguments, pow(a, b, c) returns the same result as
(a**b)%c but is faster. Note that, unlike other arithmetic operations,
exponentiation evaluates right-to-left: in other words, a**b**c evaluates
as a**(b**c) .

Comparisons
All objects, including numbers, can be compared for equality (==) and
inequality (!=). Comparisons requiring order (<, <=, >, >=) may be used
between any two numbers, unless either operand is complex, in which case

5

they raise exceptions at runtime. All these operators return Boolean values
(True or False). Beware comparing floating-point numbers for equality,
as the online tutorial explains.

Bitwise Operations on Integers
Integers can be interpreted as strings of bits and used with the bitwise
operations shown in [Link to Come]. Bitwise operators have lower priority
than arithmetic operators. Positive integers are conceptually extended by an
unbounded string of 0 bits on the left. Negative integers, since they’re held
in two’s complement representation, are conceptually extended by an
unbounded string of 1 bits on the left.

Sequence Operations
Python supports a variety of operations applicable to all sequences,
including strings, lists, and tuples. Some sequence operations apply to all
containers (including sets and dictionaries, which are not sequences); some
apply to all iterables (meaning “any object over which you can loop,” as
covered in [Link to Come]; all containers, be they sequences or not, are
iterable, and so are many objects that are not containers, such as files,
covered in [Link to Come], and generators, covered in “Generators”). In the
following we use the terms sequence, container, and iterable quite
precisely, to indicate exactly which operations apply to each category.

Sequences in General
Sequences are ordered containers with items that are accessible by indexing
and slicing .
The built-in len function takes any container as an argument and returns
the number of items in the container.
The built-in min and max functions take one argument, an iterable whose
items are comparable, and return the smallest and largest items,
respectively. You can also call min and max with multiple arguments, in
which case they return the smallest and largest arguments, respectively.

https://docs.python.org/3.5/tutorial/floatingpoint.html
https://en.wikipedia.org/wiki/Two's_complement

min and max also accept two keyword-only optional arguments: key, a
callable to apply to each item (the comparisons are then performed on the
callable’s results rather than on the items themselves); and default, the value
to return when the iterable is empty (when the iterable is empty and you
supply no default argument, the function raises ValueError). For
example, max('who', 'why', 'what', key=len) returns ‘what’.

The built-in sum function takes one argument, an iterable whose items are
numbers, and returns the sum of the numbers.

Sequence conversions
There is no implicit conversion between different sequence types. You can
call the built-ins tuple and list with a single argument (any iterable) to
get a new instance of the type you’re calling, with the same items, in the
same order, as in the argument.

Concatenation and repetition
You can concatenate sequences of the same type with the + operator. You
can multiply a sequence S by an integer n with the * operator. S*n is the
concatenation of n copies of S. When n<=0, S*n is an empty sequence of
the same type as S.

Membership testing
The x in S operator tests to check whether object x equals any item in
the sequence (or other kind of container or iterable) S. It returns True
when it does and False when it doesn’t. The x not in S operator is
equivalent to not (x in S). For dictionaries, x in S tests for the
presence of x as a key. In the specific case of strings, x in S is more
widely applicable; in this case, x in S tests whether x equals any
substring of S, not just any single character.

Indexing a sequence
To denote the nth item of a sequence S, use indexing: S[n]. Indexing is
zero-based (S’s first item is S[0]). If S has L items, the index n may be 0,

1…up to and including L-1, but no larger. n may also be -1, -2…down to
and including -L, but no smaller. A negative n (e.g., -1) denotes the same
item in S as L+n (e.g., L + -1) does. In other words, S[-1], like S[L-
1], is the last element of S, S[-2] is the next-to-last one, and so on. For
example:

x = [1, 2, 3, 4]
x[1] # 2
x[-1] # 4

Using an index >=L or <-L raises an exception. Assigning to an item with
an invalid index also raises an exception. You can add elements to a list, but
to do so you assign to a slice, not to an item, as we’ll discuss shortly.

Slicing a sequence
To indicate a subsequence of S, you can use slicing, with the syntax
S[i:j], where i and j are integers. S[i:j] is the subsequence of S
from the ith item, included, to the jth item, excluded. In Python, ranges
always include the lower bound and exclude the upper bound. A slice is an
empty subsequence when j is less than or equal to i, or when i is greater
than or equal to L, the length of S. You can omit i when it is equal to 0, so
that the slice begins from the start of S. You can omit j when it is greater
than or equal to L, so that the slice extends all the way to the end of S. You
can even omit both indices, to mean a shallow copy of the entire sequence:
S[:]. Either or both indices may be less than 0. Here are some examples:

x = [1, 2, 3, 4]
x[1:3] # [2, 3]
x[1:] # [2, 3, 4]
x[:2] # [1, 2]

A negative index n in slicing indicates the same spot in S as L+n, just like
it does in indexing. An index greater than or equal to L means the end of S,
while a negative index less than or equal to -L means the start of S.

Slicing can use the extended syntax S[i:j:k]. k is the stride of the slice,
meaning the distance between successive indices. S[i:j] is equivalent to
S[i:j:1], S[::2] is the subsequence of S that includes all items that
have an even index in S, and S[::-1] is a slicing, also whimsically
known as “the Martian smiley,” with the same items as S but in reverse
order. With a negative stride, in order to have a nonempty slice, the second
(“stop”) index needs to be smaller than the first (“start”) one—the reverse
of the condition that must hold when the stride is positive. A stride of 0
raises an exception.

y = list(range(10))
y[-5:] # last five items
[5, 6, 7, 8, 9]
y[::2] # every other item
[0, 2, 4, 6, 8]
y[10:0:-2] # every other item, in reverse order
[9, 7, 5, 3, 1]
y[:0:-2] # every other item, in reverse order (simpler)
[9, 7, 5, 3, 1]
y[::-2] # every other item, in reverse order (best)
[9, 7, 5, 3, 1]

Strings
String objects (byte strings, as well as text, AKA Unicode, ones) are
immutable: attempting to rebind or delete an item or slice of a string raises
an exception. (For bytes, though not for text, there’s a mutable, but
otherwise equivalent, built-in type, bytearray). The items of a text string
(each of the characters in the string) are themselves text strings, each of
length 1—Python has no special data type for “single characters” (the items
of a bytes or bytearray object are ints). All slices of a string are strings of
the same kind. String objects have many methods, covered in [Link to
Come].

Tuples
Tuple objects are immutable: therefore, attempting to rebind or delete an
item or slice of a tuple raises an exception. The items of a tuple are arbitrary

objects and may be of different types; tuple items may be mutable, but we
recommend not mutating them, as doing so can be confusing. The slices of
a tuple are also tuples. Tuples have no normal (nonspecial) methods, except
count and index, with the same meanings as for lists; they do have many of
the special methods covered in [Link to Come].

Lists
List objects are mutable: you may rebind or delete items and slices of a list.
Items of a list are arbitrary objects and may be of different types. Slices of a
list are lists.

Modifying a list
You can modify a single item in a list by assigning to an indexing. For
instance:

x = [1, 2, 3, 4]
x[1] = 42 # x is now [1, 42, 3, 4]

Another way to modify a list object L is to use a slice of L as the target
(LHS) of an assignment statement. The RHS of the assignment must be an
iterable. When the LHS slice is in extended form (i.e., the slicing specifies a
stride!=1), then the RHS must have just as many items as the number of
items in the LHS slice. When the LHS slicing does not specify a stride, or
explicitly specifies a stride of 1, the LHS slice and the RHS may each be of
any length; assigning to such a slice of a list can make the list longer or
shorter. For example:

x = [1, 2, 3, 4]
x[1:3] = [22, 33, 44] # x is now [1, 22, 33, 44, 4]
x[1:4] = [8, 9] # x is now [1, 8, 9, 4]

There are some important special cases of assignment to slices:
Using the empty list [] as the RHS expression removes the target slice
from L. In other words, L[i:j]=[] has the same effect as del L[i:j] (or the
peculiar statement L[i:j]*=0).

Using an empty slice of L as the LHS target inserts the items of the RHS at
the appropriate spot in L. For example, L[i:i]=['a','b'] inserts ‘a’ and 'b'
before the item that was at index i in L prior to the assignment.

Using a slice that covers the entire list object, L[:], as the LHS target,
totally replaces the contents of L.

You can delete an item or a slice from a list with del. For instance:

x = [1, 2, 3, 4, 5]
del x[1] # x is now [1, 3, 4, 5]
del x[::2] # x is now [3, 5]

In-place operations on a list
List objects define in-place versions of the + and * operators, which you
can use via augmented assignment statements. The augmented assignment
statement L+=L1 has the effect of adding the items of iterable L1 to the end
of L, just like L.extend(L1). L*=n has the effect of adding n-1 copies of L
to the end of L; if n<=0, L*=n makes L empty, like L[:]=[] or del L[:].

List methods
List objects provide several methods, as shown in Table 3-3. Nonmutating
methods return a result without altering the object to which they apply,
while mutating methods may alter the object to which they apply. Many of a
list’s mutating methods behave like assignments to appropriate slices of the
list. In Table 3-3, L indicates any list object, i any valid index in L, s any
iterable, and x any object.

Table 3-3. List object methods

Method

 Description

Nonmutating

L .count(x) Returns the number of items of L that are equal to x.

L .index(x) Returns the index of the first occurrence of an item in L that is equal to x,
or raises an exception if L has no such item.

Mutating

L .append(x
)

Appends item x to the end of L ; like L[len(L):]=[x].

L .extend(s
)

Appends all the items of iterable s to the end of L ; like L[len(L):]=s
or L += s.

L.insert(i,
x)

Inserts item x in L before the item at index i, moving following items of L
(if any) “rightward” to make space (increases len(L) by one, does not
replace any item, does not raise exceptions; acts just like L[i:i]=[x]).

L .remove(x
)

Removes from L the first occurrence of an item in L that is equal to x, or
raises an exception if L has no such item.

 L

.pop(
 i
 =-1)

Returns the value of the item at index i and removes it from L; when you
omit i, removes and returns the last item; raises an exception if L is empty
or i is an invalid index in L.

 L

.reverse()

Reverses, in place, the items of L.

 L

.sort(key=N
one,
reverse=Fal
se)

Sorts, in-place, the items of L (in ascending order, by default; in descending
order, if argument reverse is true) When argument key is not None,
what gets compared for each item x is key(x), not x itself. For more
details, see “
 Sorting a list
 ”.

All mutating methods of list objects, except pop, return None.

Sorting a list

A list’s method sort causes the list to be sorted in-place (reordering items
to place them in increasing order) in a way that is guaranteed to be stable
(elements that compare equal are not exchanged). In practice, sort is
extremely fast, often preternaturally fast, as it can exploit any order or
reverse order that may be present in any sublist (the advanced algorithm
sort uses, known as timsort to honor its inventor, great Pythonista Tim
Peters, is a “non-recursive adaptive stable natural mergesort/binary
insertion sort hybrid”—now there’s a mouthful for you!).
The sort method takes two optional arguments, which may be passed with
either positional or named-argument syntax. The argument key, if not
None, must be a function that can be called with any list item as its only
argument. In this case, to compare any two items x and y, Python compares
key(x) and key(y) rather than x and y (internally, Python
implements this in the same way as the decorate-sort-undecorate idiom
presented in [Link to Come], but much faster). The argument reverse, if
true, causes the result of each comparison to be reversed; this is not exactly
the same thing as reversing L after sorting, because the sort is stable
(elements that compare equal are never exchanged) whether the argument
reverse is true or false. In other words, Python sorts the list in ascending
order by default, in descending order if reverse is true.

 mylist = ['alpha', 'Beta', 'GAMMA']
 mylist.sort() # ['Beta', 'GAMMA', 'alpha']
 mylist.sort(key=str.lower) # ['alpha', 'Beta',
'GAMMA']

Python also provides the built-in function sorted (covered in [Link to
Come]) to produce a sorted list from any input iterable. sorted, after the
first argument (which is the iterable supplying the items), accepts the same
two optional arguments as a list’s method sort.

The standard library module operator (covered in [Link to Come])
supplies higher-order functions attrgetter, itemgetter, and
methodcaller, which produce functions particularly suitable for the

https://en.wikipedia.org/wiki/Timsort

key= optional argument of lists’ method sort and the built-in function
sorted. The key= optional argument also exists, with exactly the same
meaning, for built-in functions min and max, as well as for functions
nsmallest, nlargest, and merge in standard library module heapq,
covered in [Link to Come], and class groupby in standard library module
itertools, covered in [Link to Come].

Set Operations
Python provides a variety of operations applicable to sets (both plain and
frozen). Since sets are containers, the built-in len function can take a set as
its single argument and return the number of items in the set. A set is
iterable, so you can pass it to any function or method that takes an iterable
argument. In this case, iteration yields the items of the set in some arbitrary
order. For example, for any set S, min(S) returns the smallest item in S,
since min with a single argument iterates on that argument (the order does
not matter, because the implied comparisons are transitive).

Set Membership
The k in S operator checks whether object k equals one of the items of
set S. It returns True when it does, False when it doesn’t. k not in
S is like not (k in S).

Set Methods
Set objects provide several methods, as shown in Table 3-4. Nonmutating
methods return a result without altering the object to which they apply, and
can also be called on instances of frozenset; mutating methods may
alter the object to which they apply, and can be called only on instances of
set. In Table 3-4, S denotes any set object, S1 any iterable with hashable
items (often but not necessarily a set or frozenset), x any hashable
object.
Table 3-4. Set object methods

 Method

 Description

 Nonmutating

 S

 .copy()

Returns a shallow copy of S (a copy whose items are the same
objects as S’s, not copies thereof), like set(S)

S .difference(S1
)

Returns the set of all items of S that aren’t in S1

S .intersection(
S1)

Returns the set of all items of S that are also in S1

S .issubset(S1) Returns True when all items of S are also in S1; otherwise, returns
False

S .issuperset(S1
)

Returns True when all items of S1 are also in S; otherwise, returns
False (like S1.issubset(S))

S
.symmetric_diffe
rence(S1)

Returns the set of all items that are in either S or S1, but not both

S .union(S1) Returns the set of all items that are in S, S1, or both

 Mutating

S .add(x) Adds x as an item to S; no effect if x was already an item in S

 S

 .clear()

Removes all items from S, leaving S empty

S .discard(x) Removes x as an item of S; no effect when x was not an item of S

 S

 .pop()

Removes and returns an arbitrary item of S

S .remove(x) Removes x as an item of S; raises a KeyError exception when x
was not an item of S

All mutating methods of set objects, except pop, return None.

The pop method can be used for destructive iteration on a set, consuming
little extra memory. The memory savings make pop usable for a loop on a
huge set, when what you want is to “consume” the set in the course of the
loop. Besides saving memory, a potential advantage of a destructive loop
such as

while S:
 item = S.pop()
 ...handle item...

in comparison to a nondestructive loop such as

for item in S:
 ...handle item...

is that, in the body of the destructive loop, you’re allowed to modify S
(adding and/or removing items), which is not allowed in the nondestructive
loop.
Sets also have mutating methods named difference_update,
intersection_update, symmetric_difference_update, and
update (corresponding to non-mutating method union). Each such
mutating method performs the same operation as the corresponding
nonmutating method, but it performs the operation in place, altering the set
on which you call it, and returns None.

The four corresponding non-mutating methods are also accessible with
operator syntax: where S2 is a set or frozenset, respectively, S-S2, S&S2,
S^S2, and S|S2; the mutating methods are accessible with augmented
assignment syntax: respectively, S-=S2, S&=S2, S^=S2, and S|=S2.
In addition, sets (and frozensets) also support comparison operators: == (the
sets have the same items, AKA, they’re “equal” sets), != (the reverse of
==), >= (issuperset), <= (issubset), < (issubset and not equal),
> (issuperset and not equal).

When you use operator or augmented assignment syntax, both operands
must be sets or frozensets; however, when you call named methods,
argument S1 can be any iterable with hashable items, and it works just as if
the argument you passed was set(S1).

Dictionary Operations
Python provides a variety of operations applicable to dictionaries. Since
dictionaries are containers, the built-in len function can take a dictionary
as its argument and return the number of items (key/value pairs) in the
dictionary. A dictionary is iterable, so you can pass it to any function that
takes an iterable argument. In this case, iteration yields only the keys of the
dictionary, in insertion order. For example, for any dictionary D, min(D)
returns the smallest key in D.

Dictionary Membership
The k in D operator checks whether object k is a key in dictionary D. It
returns True when it is, False otherwise. k not in D is like not (k
in D).

Indexing a Dictionary
To denote the value in a dictionary D currently associated with key k, use
an indexing: D[k]. Indexing with a key that is not present in the dictionary
raises an exception. For example:

d = {'x':42, 'y':3.14, 'z':7}
 d['x'] # 42
 ['z'] # 7

 d['a'] # raises KeyError exception

Plain assignment to a dictionary indexed with a key that is not yet in the
dictionary (e.g., D[newkey]=value) is a valid operation and adds the
key and value as a new item in the dictionary. For instance:

d = {'x':42, 'y':3.14}

 d['a'] = 16 # d is now {'x':42, 'y':3.14, 'a':16}

The del statement, in the form del D[k], removes from the dictionary
the item whose key is k. When k is not a key in dictionary D, del D[k]
raises a KeyError exception.

Dictionary Methods
Dictionary objects provide several methods, as shown in Table 3-5.
Nonmutating methods return a result without altering the object to which
they apply, while mutating methods may alter the object to which they
apply. In Table 3-5, D and D1 indicate any dictionary objects, k any
hashable object, and x any object.

Table 2-3.
 Dictionary object methods

Method

 Description

Nonmutating

 D

.copy()

Returns a shallow copy of the dictionary (a copy whose items are the same
objects as D’s, not copies thereof), like dict(D)

D.get(k[,
x])

Returns D[k] when k is a key in D; otherwise, returns x (or None, when x
is not given)

 D

.items()

Returns an iterable “view” object whose items are all current items
(key/value pairs) in D.

 D

.keys()

Returns an iterable “view” object whose items are all current keys in D

 D

.values()

Returns an iterable “view” object whose items are all current values in D

Mutating

 D

.clear()

Removes all items from D, leaving D empty

D.pop(k[,
x])

Removes and returns D[k] when k is a key in D; otherwise, returns x (or
raises a KeyError exception when x is not given)

 D

.popitem()

Removes and returns an arbitrary item (key/value pair)

D.setdefaul
t(k[, x])

Returns D[k] when k is a key in D; otherwise, sets D[k] equal to x (or
None, when x is not given) and returns x

D.update(
D1)

For each k in mapping D1, sets D[k] equal to D1[k]

The items, keys, and values methods return values known as view
objects. If the underlying dict changes, the retrieved view changes also;
and you are not allowed to alter the set of keys in the underlying dict
while using a for loop on any of its view objects.
Iterating on any of the view objects yields values in insertion order. In
particular, when you call more than one of these methods without any
intervening change to the dict, the order of the results is the same for all.

Never modify a dict’s set of keys while iterating on it
Never modify the set of keys in a dict (i.e., never add nor remove keys)
while iterating over that dict, or any of the iterable views returned by its
methods. If you need to avoid such constraints against mutation during
iteration, iterate instead on a list explicitly built from the dict or view; for
example, iterate on list(D). Iterating directly on a dict D is exactly like
iterating on D.keys().

The return values of methods items and keys also implement set
nonmutating methods and behave much like frozensets; the return
value of method values doesn’t, since, differently from the others (and
from sets), it may contain duplicates.
The popitem method can be used for destructive iteration on a dictionary.
Both items and popitem return dictionary items as key/value pairs.
popitem is usable for a loop on a huge dictionary, when what you want is
to “consume” the dictionary in the course of the loop.
D.setdefault(k, x) returns the same result as D.get(k, x), but,
when k is not a key in D, setdefault also has the side effect of binding
D[k] to the value x. (In modern Python, setdefault is not often used,
since type collections.defaultdict, covered in #defaultdict, often
offers similar, faster, clearer functionality.)
The pop method returns the same result as get, but, when k is a key in D,
pop also has the side effect of removing D[k] (when x is not specified,
and k is not a key in D, get returns None, but pop raises an exception).
d.pop(key, None) is a useful shortcut for removing a key from a dict
without having to first check if the key is present, much as
s.discard(x) (as opposed to s.remove(x)) when s is a set.

The update method is accessible with augmented assignment syntax:
where D2 is a dict, D|=D2 is the same as D.update(D2). Operator
syntax, D|D2, mutates neither dictionary: rather, it returns a new dictionary
result, such that D3=D|D2 is equivalent to D3=D.copy();
D3.update(D2).

https://atlas.oreilly.com/oreillymedia/python-in-a-nutshell-4e/editor/main/ch03_3rd_ed.html#defaultdict

The update method (but not the | and |= operators) can also accept an
iterable of key/value pairs, as an alternative argument instead of a mapping,
and can accept named arguments instead of—or in addition to—its
positional argument; the semantics are the same as for passing such
arguments when calling the built-in dict type, as covered in #dictionaries.

Control Flow Statements
A program’s control flow regulates the order in which the program’s code
executes. The control flow of a Python program mostly depends on
conditional statements, loops, and function calls. (This section covers the
if conditional statement and for and while loops; we cover the match
conditional statement in “The match statement”, and functions in
“Functions”.) Raising and handling exceptions also affects control flow; we
cover exceptions in Chapter “Exceptions”.

The if Statement
Often, you need to execute some statements only when some condition
holds, or choose statements to execute depending on mutually exclusive
conditions. The compound statement if—comprising if, elif, and
else clauses—lets you conditionally execute blocks of statements. The
syntax for the if statement is:

if expression:
 statement(s)
elif expression:
 statement(s)
elif expression:
 statement(s)
...
else:
 statement(s)

The elif and else clauses are optional. Before the introduction of the
match construct (see “The match statement”), if, elif, and else had to
be used for all conditional processing.

https://atlas.oreilly.com/oreillymedia/python-in-a-nutshell-4e/editor/main/ch03_3rd_ed.html#dictionaries

Here’s a typical if statement with all three kinds of clauses:

if x < 0:
 print('x is negative')
elif x % 2:
 print('x is positive and odd')
else:
 print('x is even and non-negative')

Each clause controls one or more statements (known as “a block”): place
the block’s statements on separate logical lines after the line containing the
clause’s keyword (known as the header line of the clause), indented 4
spaces from the header line. The block terminates when the indentation
returns to that of the clause header (or further left from there). (This is the
style mandated by PEP 8).
You can use any Python expression as the condition in an if or elif
clause. Using an expression this way is known as using it in a Boolean
context. In this context, any value is taken as either true or false. As
mentioned earlier, any nonzero number or nonempty container (string,
tuple, list, dictionary, set, ...) evaluates as true; zero (of any numeric type),
None, and empty containers evaluate as false. To test a value x in a
Boolean context, use the following coding style:

if x:

This is the clearest and most Pythonic form. Do not use any of the
following:

if x is True:
if x == True:
if bool(x):

There is a crucial difference between saying that an expression returns
True (meaning the expression returns the value 1 with the bool type) and
saying that an expression evaluates as true (meaning the expression returns
any result that is true in a Boolean context). When testing an expression, for
example in an if clause, you only care about what it evaluates as, not

https://www.python.org/dev/peps/pep-0008/#indentation

what, precisely, it returns. Informally, “evaluates as true” is often expressed
as “is truthy”, and “evaluated as false” as “is falsy”.
When the if clause’s condition evaluates as true, the statements within the
if clause execute, then the entire if statement ends. Otherwise, Python
evaluates each elif clause’s condition, in order. The statements within the
first elif clause whose condition evaluates as true, if any, execute, and the
entire if statement ends. Otherwise, when an else clause exists, it
executes. In any case, statements following the entire if construct, at the
same level, execute next.

||3.10+|| The match statement
The match statement brings structural pattern matching to the Python
language. You might think of this as doing for other Python types
something similar to what the re module (see “Regular expressions and the
re module”) does for strings: it allows easy testing of the structure and
contents of Python objects . Resist the temptation to use match unless
there is a need to analyse the structure of an object.
The overall syntactic structure of the statement is the new (soft) keyword
match followed by an expression whose value becomes the matching
subject. This is followed by one or more indented case clauses, each of
which controls the execution of the indented code block it contains.

match expression:
 case pattern [if guard]:
 statement(s)
 ...

In execution, Python first evaluates the expression, then tests the resulting
subject value against the pattern in each case in turn, in order from first to
last, until one matches: then, the block indented within the matching case
clause evaluates. A pattern can do two things:

verify that the subject is an object with a particular structure, and

6

bind matched components to names for further use (usually within the
associated case clause).

When a pattern matches the subject, the guard allows a final check before
selection of the case for execution. All the pattern’s name bindings have
occurred and you can use them in the guard. When there is no guard, or
when the guard evaluates as true, the case’s indented code block executes,
after which the match statement’s execution is complete and no further
cases are checked.
Unlike the if statement, there is no syntactic equivalent to the else
clause. The match statement, per se, provides no default action. If one is
needed, the last case clause must specify a wildcard case—one whose
syntax ensures it matches any subject value. It is a SyntaxError to
follow a case clause having such a wildcard pattern with any further
case clauses.

Pattern elements cannot be created in advance, bound to variables and (for
example) re-used in multiple places. Pattern syntax is only valid
immediately following the (soft) keyword case, so there is no way to
perform such an assignment. For each execution of a match statement, the
interpreter is free to cache pattern expressions that repeat inside the cases,
but the cache starts empty for each new execution.
We first describe the various types of pattern expressions, before discussing
guards and providing some more complex examples.

Pattern Expressions
The syntax of pattern expressions can seem familiar, but their interpretation
is sometimes quite different from their non-pattern interpretation, which
could mislead readers unaware of the differences. Specific syntactic forms
are used in the case clause to indicate matching of particular structures. To
summarise all this syntax would require more than the simplified notation
we use in this book . We therefore prefer to explain this new feature in
plain language, with examples. For more detailed examples, refer to the

7

Python documentation, which details the match statement features and the
various pattern types.

Building Patterns
Patterns are expressions, though with a syntax specific to the case clause, so
familiar grammatical rules apply, despite different interpretation of various
features. They can be in parentheses, to let elements of a pattern be treated
as a single expression unit. Like other expressions, patterns have a recursive
syntax and can be combined to form more complex patterns. Let’s start with
the simplest patterns first.

Literal Patterns
Most literal values are valid patterns. Integer, float, complex number and
string literals (but not formatted string literals) are all permissible, and all
succeed in matching subjects of the same type and value.

>>> for subject in (42, 42.0, 42.1, 1+1j, b'abc', 'abc'):
... print(subject, end=': ')
... match subject:
... case 42: print('integer') # note this matches
42.0,too!
... case 42.1: print('float')
... case 1+1j: print('complex')
... case b'abc': print('bytestring')
... case 'abc': print('string')
42: integer
42.0: integer
42.1: float
(1+1j): complex
b'abc': bytestring
abc: string

For most matches, the interpreter checks for equality, without type
checking, which is why 42.0 matches integer 42. If the distinction is
important, consider using class matching (see “Class Patterns”) rather than
literal matching. True, False, and None being singleton objects, each
matches itself.

The Wildcard Pattern

https://docs.python.org/3/tutorial/controlflow.html?highlight=pattern%20matching#match-statements

In pattern syntax, the underscore (_) plays the role of a wildcard expression.
As the simplest wildcard pattern, _ matches any value at all:

>>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
... match subject:
... case _: print('matched', subject)
...
matched 42
matched string
matched ('tu', 'ple')
matched ['list']
matched <class 'object'>

Capture Patterns
The use of unqualified names (names with no dots in them) is so different in
patterns that we feel it necessary to begin this section with a warning note.

Simple Names Bind to Matched Elements Inside
Patterns
Unqualified names—simple identifiers (e.g., color) rather than attribute references (e.g.,
name.attr)—do not necessarily have their usual meaning in pattern expressions. Some names,
rather than being references to values, are instead bound to elements of the subject value during
pattern matching.

Unqualified names, except _, are capture patterns—they’re wildcards,
matching anything, but with a side-effect: the name, in the current local
namespace, gets bound to the object matched by the pattern. Bindings
created by matching remain after the statement has executed, allowing the
statements in the case clause and subsequent code to process extracted
portions of the subject value.
The example below is similar to the preceding one, except that the name x,
instead of the underscore, matches the subject. The absence of exceptions
shows that the name captures the whole subject in all cases.

>>> for subject in 42, 'string', ('tu', 'ple'), ['list'], object:
... match subject:
... case x: assert x == subject
...

Value Patterns
This section, too, begins with a warning to remind readers that simple
names can’t be used to inject their bindings into pattern values to be
matched.

Represent Variable Values in Patterns with Qualified
Names
Because simple names capture values during pattern matching, you must use attribute references
(qualified names like name.attr) to express values that may change between different executions
of the same match statement.

Though this feature is useful, it means you can’t reference values directly
with simple names. Therefore, in patterns, values must be represented by
qualified names, which are known as value patterns—they represent values,
rather than capturing them as simple names do. While slightly
inconvenient, the use of qualified names is easily accomplished by setting
attribute values on an otherwise empty class ; for example:

>>> class m: v1 = "one"; v2 = 2; v3 = 2.56
...
>>> match ('one', 2, 2.56):
... case (m.v1, m.v2, m.v3): print('matched')
...
matched

It is also relatively easy to give yourself access to the current module’s
global namespace, like this:

>>> import sys
>>> g = sys.modules[__name__]

8

>>> v1 = "one"; v2 = 2; v3 = 2.56
>>> match ('one', 2, 2.56):
... case (g.v1, g.v2, g.v3): print('matched')
...
matched

OR Patterns
When P1 and P2 are patterns, the expression P1 | P2 is an OR pattern,
matching anything that matches either P1 or P2, as shown below. Any
number of alternate patterns can be used, and matches are attempted from
left to right.

>>> for subject in range(5):
... match subject:
... case 1 | 3: print('odd')
... case 0 | 2 | 4: print('even')
even
odd
even
odd
even

It is a syntax error to follow a wildcard pattern with further alternatives,
since they can never be activated. While our initial examples are simple,
remember that the syntax is recursive, so patterns of arbitrary complexity
can replace any of the sub-patterns in our examples.

Group Patterns
If P1 is a pattern, then (P1) is also a pattern that matches the same values.
This addition of “grouping” parentheses can be useful when patterns
become complicated, just as it is with standard expressions. As in other
expressions, take care to distinguish between (P1), a simple grouped pattern
matching P1, and (P1,), a sequence pattern (see “Sequence Patterns”)
matching a sequence with a single element matching P1.

Sequence Patterns
A list or tuple of patterns, optionally with a single starred wildcard (*_) or
starred capture pattern (*name), is a sequence pattern. When the starred

pattern is absent, the pattern matches a fixed-length sequence of values of
the same length as the pattern. Elements of the sequence are matched one at
a time, until all elements have matched (then, matching succeeds), or, an
element fails to match (then, matching fails).
When the sequence pattern includes a starred pattern, that sub-pattern
matches a sequence of elements sufficiently long to allow the remaining
unstarred patterns to match the final elements of the sequence. When the
starred pattern is of the form *name, name is bound to the (possibly empty)
list of the elements in the middle that don’t correspond to individual
patterns at the beginning or end.
You can match a sequence with patterns that look like tuples or lists—it
makes no difference to the matching process. The next example shows an
unnecessarily complicated way to extract the first, middle, and last elements
of a sequence.

>>> for sequence in (["one", "two", "three"], range(2),
range(6)):
... match sequence:
... case (first, *vars, last): print(first, vars, last)
one ['two'] three
0 [] 1
0 [1, 2, 3, 4] 5

AS Patterns
You can use so-called AS patterns to capture values matched by more
complex patterns, or components of a pattern, which simple capture
patterns (see “Capture Patterns” above) cannot.
When P1 is a pattern, then P1 as name is also a pattern; when P1 succeeds,
Python binds the matched value to name name in the local namespace. The
interpreter tries to ensure that, even with complicated patterns, the same
bindings always take place when a match occurs.

>>> match subject:
... case ((0 | 1) as x) | 2: print(x)
...
SyntaxError: alternative patterns bind different names
>>> match subject:

... case (2 | x): print(x)

...
SyntaxError: alternative patterns bind different names
>>> match 42:
... case (1 | 2 | 42) as x: print(x)
42

Mapping Patterns
Mapping patterns match mapping objects, usually dictionaries, which
associate keys with values. The syntax of mapping patterns uses key:
pattern pairs. The keys must be either literal or value patterns.

The interpreter iterates over the keys in the mapping pattern, processing
each as follows.

Python looks up the key in the subject mapping; a lookup failure causes
immediate match failure.

Python then matches the extracted value against the pattern associated
with the key; if the value fails to match the pattern, then the whole match
fails.

When all keys match, the whole match succeeds.

>>> match {1: "two", "two": 1}:
... case {1: v1, "two": v2}: print(v1, v2)
...
two 1

You can also use a mapping pattern together with an as clause:

>>> match {1: "two", "two": 1}:
... case {1: v1} as v2: print(v1, v2)
...
two {1: 'two', 'two': 1}

The as pattern in the second example binds v2 to the whole subject
dictionary, not just the matched keys.
The final element of the pattern may optionally be a double-starred capture
pattern such as **name; when that is the case, Python binds name to a

possibly-empty dictionary whose items are the (key, value) pairs from
the subject mapping whose keys were not present in the pattern.

>>> match {1: 'one', 2: 'two', 3: 'three'}:
... case {2: middle, **others}: print(middle, others)
...
two {1: 'one', 3: 'three'}

Class Patterns
The final, and maybe the most versatile kind of pattern, is the class pattern,
offering the ability to match instances of particular classes and their
attributes.
A class pattern is of the general form

name_or_attr(patterns)

where name_or_attr is a simple or qualified name bound to a class –
specifically, an instance of the built-in type type (or of a subclass thereof,
but, no super-fancy metaclasses need apply!). patterns is a (possibly empty)
comma-separated list of pattern specifications. When no pattern
specifications are present in a class pattern, the match succeeds whenever
the subject is an instance of the given class, so for example the pattern
int() matches any integer.

Like function arguments and parameters, the pattern specifications can be
positional (like pattern) or named (like name=pattern). If a class
pattern has positional pattern specifications, they must all precede the first
named pattern specification. User-defined classes cannot use positional
patterns without setting the class’s __match_args__ attribute (see
“Configuring Classes for Positional Matching.”)
The built-in types bool, bytearray, bytes, dict, float,
frozenset, int, list, set, str, and tuple, are all configured to
take a single positional pattern, which is matched against the instance value.
For example, the pattern str(x) matches any string and binds its value to

x by matching the string’s value against the capture pattern—as does
str() as x.

You may remember a literal pattern example we presented earlier, showing
that literal matching could not discriminate between the integer 42 and the
float 42.0 because 42 == 42.0. You can use class matching to overcome that
issue:

>>> for subject in 42, 42.0:
... match subject:
... case int(x): print('integer', x)
... case float(x): print('float', x)
...
integer 42
float 42.0

Once the type of the subject value has matched, for each of the named
patterns name=pattern, Python retrieves the attribute name from the
instance and matches its value against pattern. If all named pattern
matches succeed, the whole match succeeds. Python handles positional
patterns by converting them to named patterns, as we describe in
“Configuring Classes for Positional Matching.”

Guards
When a case clause’s pattern succeeds, it is often convenient to determine
on the basis of values extracted from the match whether this case should
execute. When a guard is present, it executes after a successful match. If the
guard expression evaluates as false, Python abandons the current case,
despite the match, and moves to consider the next case. This example uses a
guard to exclude odd integers by checking the value bound in the match.

>>> for subject in range(5):
... match subject:
... case int(i) if i % 2 == 0: print(i, "is even")
...
0 is even
2 is even
4 is even

Configuring Classes for Positional Matching
When you want your own classes to handle positional patterns in matching,
you have to tell the interpreter which attribute of the instance (not “which
argument to __init__”) each positional pattern corresponds to. You do
this by setting the class’s __match_args__ attribute to a sequence of names.
The interpreter raises a TypeError exception if you attempt to use more
positional patterns than you defined.

>>> class Color:
... __match_args__ = ('red', 'green', 'blue')
... def __init__(self, r, g, b, name='anonymous'):
... self.name = name
... self.red, self.green, self.blue = r, g, b
...
>>> red = Color(255,0,0, 'red')
>>> blue = Color(0, 0, 255)
>>> for subject in (42.0, red, blue):
... match subject:
... case float(x):
 print('float', x)
... case Color(a, b, c, name='red'):
 print(type(subject).__name__, subject.name a, b,
c)
... case Color(a, b, c=255) as blue:
... print(type(blue).__name__, a, b, c, blue.name,)
… case _: print(type(subject), subject)
...
float 42.0
Color red 255 0 0
Color 0 0 255 anonymous
>>> match red:
... case Color(1, 2, 3, 4): print("matched")
...
Traceback (most recent call last):
 File "<stdin>", line 2, in <module>
TypeError: Color() accepts 3 positional sub-patterns (4 given)

The while Statement
The while statement repeats execution of a statement, or block of
statements, as long as a conditional expression evaluates as true. Here’s the
syntax of the while statement:

while expression:
 statement(s)

A while statement can also include an else clause, covered in “The else
Clause on Loop Statements”, and break and continue statements,
covered in “The break Statement” and “The continue Statement”.
Here’s a typical while statement:

count = 0
while x > 0:
 x //= 2 # floor division
 count += 1
print('The approximate log2 is', count)

First, Python evaluates expression, which is known as the loop condition, in
a Boolean context. When the condition is false, the while statement ends.
When the loop condition evaluates as true, the statement or block of
statements that make up the loop body execute. Once the loop body finishes
executing, Python evaluates the loop condition again, to check whether
another iteration should execute. This process continues until the loop
condition evaluates as false, at which point the while statement ends.

The loop body should contain code that eventually makes the loop
condition false, otherwise the loop never ends (unless the body raises an
exception or executes a break statement). A loop within a function’s body
also ends if the loop body executes a return statement, since in this case
the whole function ends.

The for Statement
The for statement repeats execution of a statement, or block of statements,
controlled by an iterable expression. Here’s the syntax of the for
statement:

for target in iterable:
 statement(s)

The in keyword is part of the syntax of the for statement; its purpose here
is distinct from the in operator, which tests membership.

Here’s a rather typical for statement:

for letter in 'ciao':
 print(f'give me a {letter}...')

A for statement can also include an else clause, covered in “The else
Clause on Loop Statements”, and break and continue statements,
covered in “The break Statement” and “The continue Statement”. iterable
may be any iterable Python expression (as explained in detail in the next
section). In particular, any sequence is iterable. The interpreter calls the
iterable’s __iter__ method to produce an iterator (see “Iterators”),
which it then iterates over.
target is normally an identifier naming the control variable of the loop; the
for statement successively rebinds this variable to each item of the iterator,
in order. The statement or statements that make up the loop body execute
once for each item in iterable (unless the loop ends because of an exception
or a break or return statement). Since the loop body may terminate
before the iterator is exhausted, this is one case in which you may use an
unbounded iterable—one that, per se, would never cease yielding items.
You can also use a target with multiple identifiers, as in an unpacking
assignment. In this case, the iterator’s items must themselves be iterables,
each with exactly as many items as there are identifiers in the target.
Precisely one of the identifiers may be preceded by a star, in which case the
starred identifier is bound to a list of all items not assigned to other targets.
For example, when d is a dictionary, this is a typical way to loop on the
items (key/value pairs) in d:

for key, value in d.items():
 if key and value: # print only truish keys and
values
 print(key, value)

The items method returns another kind of iterable (a “view”), whose
items are key/value pairs; so, we use a for loop with two identifiers in the
target to unpack each item into key and value. Although components of a
target are commonly identifiers, values can be bound to any acceptable LHS
expression as covered in “Assignment Statements”:

prototype = [1, 'placeholder', 3]
for prototype[1] in 'xyz':
 print(prototype)
prints [1, 'x', 3], then [1, 'y', 3], then [1, 'z', 3]

Don’t Alter Mutable Objects While Looping on Them
When an iterator has a mutable underlying iterable, don’t alter that underlying object during a
for loop on the iterable. For example, the preceding key/value printing example cannot alter d.
The items method returns a “view” iterable whose underlying object is d, so the loop body
cannot mutate the set of keys in d (e.g., by executing del d[key]). To ensure that d is not the
underlying object of the iterable, you may, for example, iterate over list(d.items()) to allow the
loop body to mutate d. Specifically:

When looping on a list, do not insert, append, or delete items (rebinding an item at an existing
index is OK) into that list.

When looping on a dictionary, do not add or delete items (rebinding the value for an existing
key is OK) into that dict.

When looping on a set, do not add or delete items (no alteration permitted).

The loop body may rebind control target variable(s), but the next iteration
of the loop will always rebind them again. If the iterator yields no items, the
loop body does not execute at all. In this case, the for statement does not
bind or rebind its control variable it in any way. However, if the iterator
yields at least one item, then, when the loop statement ends, the control
variable remains bound to the last value to which the loop statement bound
it. The following code is therefore correct only when someseq is not
empty:

for x in someseq:
 process(x)
print(f'Last item processed was {x}') # potential NameError on
empty sequence

Iterators
An iterator is an object i such that you can call next(i), which returns the
next item of iterator i or, when exhausted, raises a StopIteration
exception. Alternatively, you can call next(i, default), in which case,
when iterator i has no more items, the call returns default.
When you write a class (see “Classes and Instances”), you can let instances
of the class be iterators by defining a special method __next__ that takes
no argument except self, and returns the next item or raises
StopIteration. Most iterators are built by implicit or explicit calls to
built-in function iter, covered in Table 7-2. Calling a generator also
returns an iterator, as we discuss in “Generators”.
As pointed out in “The for statement”, the for statement implicitly calls
iter on iits iterable to get an iterator. The statement:

for x in c:
 statement(s)

is exactly equivalent to:

_temporary_iterator = iter(c)
while True:
 try:
 x = next(_temporary_iterator)
 except StopIteration:
 break
 statement(s)

where _temporary_iterator is an arbitrary name not used elsewhere in the
current scope.
Thus, when iter(c) returns an iterator i such that next(i) never raises
StopIteration (an unbounded iterator), the loop for x in c continues
indefinitely unless the loop body includes suitable break or return

statements, or raises or propagates exceptions. iter(c), in turn, calls
special method c.__iter__() to obtain and return an iterator on c. We’ll
talk more about the special method __iter__ in “Container methods”.

Many of the best ways to build and manipulate iterators are found in the
standard library module itertools, covered in “The itertools Module”.

Iterables vs. Iterators
Python’s built-in sequences, like all iterables, implement an __iter__
method, which the interpreter calls to produce an iterator over the iterable.
Because each call to an iterable’s __iter__ method produces a new
iterator, it is possible to nest multiple iterations over the same iterable.

>>> iterable = [1, 2]
>>> for i in iterable:
... for j in iterable:
... print(i, j)
...
1 1
1 2
2 1
2 2

Iterators also implement an __iter__ method, but it always returns self,
so nesting iterations over them doesn’t work as expected.

>>> iterator = iter([1, 2])
>>> for i in iterator:
... for j in iterator:
... print(i, j)
...
1 2

Here both the inner and outer loops are iterating over the same iterator. By
the time the inner loop first gets control, the first value from the iterator has
already been consumed. The first iteration of the inner loop exhausts the
iterator, which therefore terminates the loops when the next iteration is
attempted.

range

Looping over a sequence of integers is a common task, so Python provides
built-in function range to generate integer sequences. The simplest way to
loop n times in Python is:

for i in range(n):
 statement(s)

range(x) generates the consecutive integers from 0 (included) up to x
(excluded). range(x, y) generates a list whose items are consecutive
integers from x (included) up to y (excluded). range(x, y, stride)
generates a list of integers from x (included) up to y (excluded), such that
the difference between each two adjacent items is stride. If stride is less
than 0, range counts down from x to y.

range generates an empty iterator when x is >= y and stride is > 0, or
when x is <= y and stride is < 0. When stride == 0, range raises an
exception.
range returns a special-purpose object, intended just for use in iterations
like the for statement shown previously. range returns an iterable, not an
iterator; you can easily obtain such an iterator, should you need one, by
calling iter(range(...)). The special-purpose object returned by
range consumes less memory (for wide ranges, much less memory) than
the equivalent list object would. If you need a list that’s an arithmetic
progression of ints, call list(range(...)). You will most often find
that you don’t, in fact, need such a complete list to be fully built in memory.

List comprehensions
A common use of a for loop is to inspect each item in an iterable and build
a new list by appending the results of an expression computed on some or
all of the items. The expression form known as a list comprehension or
listcomp lets you code this common idiom concisely and directly. Since a
list comprehension is an expression (rather than a block of statements), you
can use it wherever you need an expression (e.g., as an argument in a

function call, in a return statement, or as a subexpression of some other
expression).
A list comprehension has the following syntax:

[expression for target in iterable lc-clauses]

target and iterable are the same as in a regular for statement. When
expression denotes a tuple, you must enclose it in parentheses.
lc-clauses is a series of zero or more clauses, each with one of the two
forms:

for target in iterable
if expression

target and iterable in each for clause of a list comprehension have the
same syntax and meaning as those in a regular for statement, and the
expression in each if clause of a list comprehension has the same syntax
and meaning as the expression in a regular if statement.

A list comprehension is equivalent to a for loop that builds the same list
by repeated calls to the resulting list’s append method. For example
(assigning the list comprehension result to a variable for clarity):

result1 = [x+1 for x in some_sequence]

is (apart from the different variable name) the same as the for loop:

result2 = []
for x in some_sequence:
 result2.append(x+1)

Here’s a list comprehension that uses an if clause:

result3 = [x+1 for x in some_sequence if x>23]

This list comprehension is the same as a for loop that contains an if
statement:

result4 = []
for x in some_sequence:
 if x>23:
 result4.append(x+1)

Here’s a list comprehension using a nested for clause to flatten a “list of
lists” into a single list of items:

result5 = [x for sublist in listoflists for x in sublist]

This is the same as a for loop with another for loop nested inside:

result6 = []
for sublist in listoflists:
 for x in sublist:
 result6.append(x)I

As these examples show, the order of for and if in a list comprehension
is the same as in the equivalent loop, but, in the list comprehension, the
nesting remains implicit. If you remember “order for clauses as in a nested
loop,” that can help you correctly get the ordering of the list
comprehension’s clauses.

Don’t Build A List Unless You Need To
If you are just going to loop over the items, rather than needing an actual, indexable, list, use a
generator expression instead (covered in “Generator expressions”). This avoids list creation, and
uses less memory. In particular, resist the temptation to use comprehensions as a “single-line loop”
such as

[side_effects_but_no_return_value(x) for x in seq]

-- just use a normal for loop instead!

List Comprehensions And Variable Scope
A list comprehension expression evaluates in its own scope (as do set and dict comprehensions,
described in the following sections, and generator expressions—see “Generator expressions”).
When a target component in the for statement is a name, the name is defined solely within the
expression scope and is not available outside it.

Set comprehensions
A set comprehension has exactly the same syntax and semantics as a list
comprehension, except that you enclose it in braces ({}) rather than in
brackets ([]). The result is a set; for example:

s = {n//2 for n in range(10)}
print(sorted(s)) # prints: [0, 1, 2, 3, 4]

A similar list comprehension would have each item repeated twice, but a
set removes duplicates.

Dict comprehensions
A dict comprehension has the same syntax as a set comprehension, except
that, instead of a single expression before the for clause, you use two
expressions with a colon : between them—key:value. The result is a
dict, which retains insertion ordering. For example:

d = {s: i for (i, s) in enumerate(['zero', 'one', 'two'])}
print(d) # prints: {'zero': 0, 'one': 1, 'two': 2}

The break Statement
You can use a break statement only within a loop body. When break
executes, the loop terminates without executing any else clause the loop
may have. When loops are nested, a break terminates only the innermost
nested loop. In practice, a break is typically within a clause of an if (or,

occasionally, a match) statement in the loop body, so that break executes
conditionally.
One common use of break is to implement a loop that decides whether it
should keep looping only in the middle of each loop iteration (what Donald
Knuth called the “loop and a half” structure in his great 1974 paper
“Structured Programming with go to Statements”). For example:

while True: # this loop can never terminate “naturally”
 x = get_next()
 y = preprocess(x)
 if not keep_looping(x, y):
 break
 process(x, y)

The continue Statement
The continue statement can exist only within a loop body. It causes the
current iteration of the loop body to terminate, and execution continues with
the next iteration of the loop. In practice, a continue is usually within a
clause of an if (or, occasionally, a match) statement in the loop body, so
that continue executes conditionally.

Sometimes, a continue statement can take the place of nested if
statements within a loop. For example, here each x has to pass multiple tests
before being completely processed:

for x in some_container:
 if seems_ok(x):
 lowbound, highbound = bounds_to_test()
 if lowbound <= x < highbound:
 pre_process(x)
 if final_check(x):
 do_processing(x)

Nesting increases with the number of conditions. Equivalent code with
continue flattens the logic:

for x in some_container:
 if not seems_ok(x):
 continue

9

http://www.kohala.com/start/papers.others/knuth.dec74.html

 lowbound, highbound = bounds_to_test()
 if x < lowbound or x >= highbound:
 continue
 pre_process(x)
 if final_check(x):
 do_processing(x)

Flat Is Better Than Nested
Both versions work the same way, so which one you use is a matter of personal preference and
style. One of the principles of The Zen of Python (which you can see at any time by typing
import this at an interactive Python interpreter prompt) is “Flat is better than nested.” The
continue statement is just one way Python helps you move toward the goal of a less-nested
structure in a loop, if you so choose.

The else Clause on Loop Statements
while and for statements may optionally have a trailing else clause.
The statement or block under that else executes when the loop terminates
naturally (at the end of the for iterator, or when the while loop condition
becomes false), but not when the loop terminates prematurely (via break,
return, or an exception). When a loop contains one or more break
statements, you often want to check whether the loop terminates naturally
or prematurely. You can use an else clause on the loop for this purpose:

for x in some_container:
 if is_ok(x):
 break # item x is satisfactory, terminate loop
else:
 print('Beware: no satisfactory item was found in container')
 x = None

The pass Statement
The body of a Python compound statement cannot be empty; it must always
contain at least one statement. You can use a pass statement, which
performs no action, as an explicit placeholder when a statement is

https://www.python.org/dev/peps/pep-0020/

syntactically required but you have nothing to do. Here’s an example of
using pass in a conditional statement as a part of somewhat convoluted
logic to test mutually exclusive conditions:

if condition1(x):
 process1(x)
elif x>23 or (x<5 and condition2(x)):
 pass # nothing to be done in this case
elif condition3(x):
 process3(x)
else:
 process_default(x)

Empty def or class Statements: Use a Docstring, Not
pass
As the body of an otherwise empty def or class statement, use a docstring, covered in
“Docstrings”; when you do write a docstring, you do not need to also add a pass statement (you
can do so if you wish, but it’s not optimal Python style).

The try and raise Statements
Python supports exception handling with the try statement, which includes
try, except, finally, and else clauses. Your code can explicitly
raise an exception with the raise statement. All of this is discussed in
detail in “Exception Propagation” in Chapter “Exceptions”. When code
raises an exception, normal control flow of the program stops, and Python
looks for a suitable exception handler.

The with Statement
A with statement can often be a more readable, useful alternative to the
try/finally statement. We discuss it in detail in “The with Statement
and Context Managers” in Chapter “Exceptions”. A good grasp of context

managers can often help you structure code more clearly without
compromising efficiency.

Functions
Most statements in a typical Python program are part of some function.
Code in a function body may be faster than at a module’s top level, as
covered in “Avoid exec and from ... import *”, so there are excellent
practical reasons to put most of your code into functions, and no
disadvantages: clarity, readability and code reusability all improve when
you avoid having any substantial chunks of module-level code.
A function is a group of statements that execute upon request. Python
provides many built-in functions and lets programmers define their own
functions. A request to execute a function is known as a function call. When
you call a function, you can pass arguments that specify data upon which
the function performs its computation. In Python, a function always returns
a result value, either None or a value, the result of the computation.
Functions defined within class statements are also known as methods. We
cover issues specific to methods in “Bound and Unbound Methods”; the
general coverage of functions in this section, however, also applies to
methods.
Python is somewhat unusual in the flexibility it affords the programmer in
defining and calling functions. This flexibility does mean that some
constraints are not adequately expressed solely by the syntax. In Python,
functions are objects (values), handled just like other objects. Thus, you can
pass a function as an argument in a call to another function, and a function
can return another function as the result of a call. A function, just like any
other object, can be bound to a variable, can be an item in a container, and
can be an attribute of an object. Functions can also be keys into a
dictionary. The fact that functions are ordinary objects in Python is often
expressed by saying that functions are first-class objects.
For example, given a dict keyed by functions, with values being each
function’s inverse, you could make the dictionary bidirectional by adding

the inverse values as keys, with their corresponding keys as values. Here’s a
small example of this idea, using some functions from module math,
covered in “The math and cmath Modules”, that takes a one-way mapping
of inverse pairs and then adds the inverse of each entry to complete the
mapping:

def add_inverses(i_dict):
 for f in list(i_dict): # iterates over keys while mutating
i_dict
 i_dict[i_dict[f]] = f
math_map = {sin:asin, cos:acos, tan:atan, log:exp}
add_inverses(math_map)

Note that in this case the function mutates its argument (whence its need to
use a list call). In Python, the usual convention is for such functions not
to return a value (see “The return statement”).

Defining Functions: the def Statement
The def statement is the usual way to create a function. def is a single-
clause compound statement with the following syntax:

def function_name(parameters):
 statement(s)

function_name is an identifier, and the non-empty indented statement(s) are
the function body. When the interpreter meets a def statement, it compiles
the function body, creating a function object, and binds (or rebinds, if there
was an existing binding) function_name to the compiled function object in
the containing namespace (typically the module namespace, or a class
namespace when defining methods).
parameters is an optional list specifying the identifiers that will be bound to
values that each function call provides. We distinguish between those
identifiers, and the values provided for them in calls, by referring to the
former as parameters and the latter as arguments.

In the simplest case, a function defines no parameters, meaning the function
won’t accept any arguments when you call it. In this case, the def
statement has empty parentheses after function_name, as must all calls.
Otherwise, parameters will be a list of specifications (see “Parameters”
below). The function body does not execute when the def statement
executes. Rather, Python compiles it into bytecode, saves it as the function
object’s __code__ attribute, and executes it later on each call to the
function. The function body can contain zero or more occurrences of the
return statement, as we’ll discuss shortly.

Each call to the function supplies argument expressions corresponding to
the parameters defined in the function definition. The interpreter evaluates
the argument expressions from left to right and creates a new namespace in
which it binds the argument values to the parameter names as local
variables of the function call (as we discuss later in “Calling functions”).
Then, Python executes the function body, with the function-call namespace
as the local namespace.
Here’s a simple function that returns a value that is twice the value passed
to it each time it’s called:

def twice(x):
 return x*2

The argument can be anything that you can multiply by two, so you could
call the function with a number, string, list, or tuple as an argument: each
call returns a new value of the same type as the argument.

Function signatures
The number of parameters of a function, together with the parameters’
names, the number of mandatory parameters, and the information on
whether and where unmatched arguments should be collected, are a
specification known as the function’s signature. A signature defines how
you can call the function.

Parameters

Parameters (pedantically, formal parameters) name the values passed into a
function call, and may specify default values for them. Each time you call
the function, the call binds each parameter name to the corresponding
argument value in a new local namespace, which Python later destroys on
function exit.
Besides letting you name individual arguments, Python also lets you collect
argument values not matched by individual parameters, and lets you
specifically require that some arguments be positional, or named.

Positional parameters
Each positional parameter is an identifier name, which names the
parameter. You use these names inside the function body to access the
argument values to the call. Callers can normally provide values for these
parameters with either positional or named arguments (see “Matching
arguments to parameters”).

Named parameters
Each of these takes the form name=expression. They are also known as
default, optional, and even, alas!—confusingly, since they do not involve
any Python keyword—keyword parameters. Executing the def statement,
the interpreter evaluates each such expression and saves the resulting value,
known as the default value for the parameter, among the attributes of the
function object. A function call need not provide an argument value for a
named parameter: in that case, the call binds it to its default value. Unless a
function’s signature includes a positional argument collector (see below),
the call may provide positional arguments as values for some named
parameters (see “Matching arguments to parameters”).
Python computes each default value exactly once, when the def statement
executes, not each time you call the resulting function. In particular, this
means that Python binds exactly the same object, the default value, to the
named parameter, whenever the caller does not supply a corresponding
argument.

Beware Using Mutable Default Values
A function can alter a mutable default value, such as a list, each time you call the function without
an argument corresponding to the respective parameter. This is usually not the behavior you want;
see all details under “Mutable default parameter values”.

Positional-only marker
||3.8++|| A function’s signature may contain a single positional-only marker
(/) as a dummy parameter. The parameters preceding the marker are known
as positional-only parameters, and must be provided as positional
arguments, not named arguments, when calling the function. Using named
arguments for these parameters raises a TypeError exception.

Positional argument collector
This can take one of two forms, either *name or (||3.8++||) just *. In the
former case, name is bound at call-time to a tuple of unmatched positional
arguments (see “Matching arguments to parameters”—when all positional
arguments are matched, the tuple is empty). In the latter case (the * is a
dummy parameter), a call with unmatched positional arguments raises a
TypeError exception.
When a function’s signature has a positional argument collector, no call can
provide a positional argument for a named parameter: either the collector
prohibits (in the * form), or provides a destination for (in the *name form),
positional arguments not corresponding to positional parameters.

Named argument collector
This final, optional parameter specification has the form **name. When the
function is called, name is bound to a dictionary whose items are the (name,
value) pairs of any unmatched named arguments (see “Matching arguments
to parameters”), or an empty dictionary if there are no such arguments.

Parameter sequence

Generally speaking, positional parameters are followed by named
parameters, with the positional and named argument collectors (if present)
last. The positional-only marker, however, may appear at any position in the
list of parameters.

Mutable default parameter values
When a named parameter’s default value is a mutable object, things get
tricky if the function body alters the parameter. For example:

def f(x, y=[]):
 y.append(x)
 return id(y), y
print(f(23)) # prints: (4302354376, [23])
print(f(42)) # prints: (4302354376, [23, 42])

The second print prints [23, 42] because the first call to f altered the
default value of y, originally an empty list [], by appending 23 to it. The
id values confirm that both calls return the same object. If you want y to
be a new, empty list object, each time you call f with a single argument (a
far more frequent need!), use the following idiom instead:

def f(x, y=None):
 if y is None:
 y = []
 y.append(x)
 return id(y), y
print(f(23)) # prints: (4302354376, [23])
print(f(42)) # prints: (4302180040, [42])

Of course, there are cases in which you explicitly want to alter a
parameter’s default value, most often for caching purposes, as in the
following example:

def cached_compute(x, _cache={}):
 if x not in _cache:
 _cache[x] = costly_computation(x)
 return _cache[x]

Such caching behavior (also known as memoization), however, is usually
best obtained by decorating the underlying function with
functools.lru_cache, covered in Table 7-4.

Argument collector parameters
The presence of argument collectors (the special forms *, *name and
**name) in a function’s signature allows functions to prohibit (*) or collect
positional (*name) or named(**name) arguments that do not match any
parameters (see “Matching arguments to parameters”). There is no
requirement to use particular names—you can use any identifier you want
in each special form. args and kwds or kwargs, as well as a and k, are
popular choices. We discuss positional and named arguments in “Calling
Functions”.
The presence of the special form * causes calls with unmatched positional
arguments to raise a TypeError exception.
*args specifies that any extra positional arguments to a call (i.e., positional
arguments not matching positional parameters in the signature, as we cover
in “Function signatures”) get collected into a (possibly empty) tuple, bound
in the call’s local namespace to the name args. Without a positional
arguments collector, unmatched positional arguments raise a TypeError
exception.
Similarly, **kwds specifies that any extra named arguments (i.e., those
named arguments not explicitly specified in the signature, as we cover in
“Function signatures”) get collected into a (possibly empty) dictionary
whose items are the names and values of those arguments, bound to the
name kwds in the function call namespace. Without a named arguments
collector, unmatched named arguments raise a TypeError exception.
For example, here’s a function that accepts any number of positional
arguments and returns their sum (and demonstrates the use of an identifier
other than *args):

def sum_sequence(*numbers):
 return sum(numbers)

print(sum_sequence(23, 42)) # prints: 65

Attributes of Function Objects
The def statement sets some attributes of a function object f. String
attribute f.__name__ is the identifier that def uses as the function’s
name. You may rebind __name__ to any string value, but trying to unbind
it raises a TypeError exception. f.__defaults__, which you may freely
rebind or unbind, is the tuple of default values for named parameters
(empty, if the function has no named parameters).

Docstrings
Another function attribute is the documentation string, also known as the
docstring. You may use or rebind a function f’s docstring attribute as
f.__doc__. When the first statement in the function body is a string
literal, the compiler binds that string as the function’s docstring attribute. A
similar rule applies to classes (see “Class documentation strings”) and
modules (see “Module documentation strings”). Docstrings can span
multiple physical lines, so it’s best to specify them in triple-quoted string
literal form. For example:

def sum_sequence(*numbers):
 """Return the sum of multiple numerical arguments.

 The arguments are zero or more numbers.
 The result is their sum.
 """

 return sum(numbers)

Documentation strings should be part of any Python code you write. They
play a role similar to that of comments, but the’re even more useful, since
they remain available at runtime (unless you run your program with python
-OO, as covered in “Command-Line Syntax and Options”). Python’s help
function (see “The help function”), development environments, and other
tools, can use the docstrings from function, class, and module objects to
remind the programmer how to use those objects. The doctest module

(covered in “The doctest Module”) makes it easy to check that sample code
present in docstrings is accurate and correct, and remains so as the code and
docs get edited and maintained.
To make your docstrings as useful as possible, respect a few simple
conventions, as detailed in PEP 257. The first line of a docstring should be
a concise summary of the function’s purpose, starting with an uppercase
letter and ending with a period. It should not mention the function’s name,
unless the name happens to be a natural-language word that comes naturally
as part of a good, concise summary of the function’s operation. Use
imperative rather than descriptive form: e.g., say “Return xyz…” rather
than “Returns xyz…”. If the docstring is multiline, the second line should
be empty, and the following lines should form one or more paragraphs,
separated by empty lines, describing the function’s parameters,
preconditions, return value, and side effects (if any). Further explanations,
bibliographical references, and usage examples (which you should check
with doctest) can optionally (and often very usefully!) follow, toward
the end of the docstring.

Other attributes of function objects
In addition to its predefined attributes, a function object may have other
arbitrary attributes. To create an attribute of a function object, bind a value
to the appropriate attribute reference in an assignment statement after the
def statement executes. For example, a function could count how many
times it gets called:

def counter():
 counter.count += 1
 return counter.count
counter.count = 0

Note that this is not common usage. More often, when you want to group
together some state (data) and some behavior (code), you should use the
object-oriented mechanisms covered in Chapter “Object-oriented Python”.
However, the ability to associate arbitrary attributes with a function can
sometimes come in handy.

https://www.python.org/dev/peps/pep-0257/

Function Annotations
Every parameter in a def clause can be annotated with an arbitrary
expression—that is, wherever within the def’s parameter list you can use
an identifier, you can alternatively use the form identifier:expression, and
the expression’s value becomes the annotation for that parameter.
You can also annotate the return value of the function, using the form ->
expression between the) of the def clause and the : that ends the def
clause; the expression’s value becomes the annotation for name
'return'. For example:

>>> def f(a:'foo', b)->'bar': pass
...
>>> f.__annotations__{'a': 'foo', 'return': 'bar'}

As shown in this example, the __annotations__ attribute of the
function object is a dict mapping each annotated identifier to the
respective annotation.
You can currently, in theory, use annotations for whatever purpose you
wish: Python itself does nothing with them, except construct the
__annotations__ attribute. However, this is possibly due to change
||3.11++||, focusing annotation on “type-hinting” purposes only. For detailed
information about annotations used for type hinting, see Chapter “Type
Annotations”.

The return Statement
You can use the return keyword in Python only inside a function body,
and you can optionally follow it with an expression. When return
executes, the function terminates, and the value of the expression is the
function’s result. A function returns None when it terminates by reaching
the end of its body, or by executing a return statement with no expression
(or by explicitly executing return None).

Good Style in return Statements
As a matter of good style, when some return statements in a function have an expression, then
all return statements in the function should have an expression. return None should only
ever be written explicitly to meet this style requirement. Never write a return statement without
an expression at the end of a function body. Python does not enforce these stylistic conventions,
but your code is clearer and more readable when you follow them.

Calling Functions
A function call is an expression with the following syntax:

function_object(arguments)

function_object may be any reference to a function (or other callable)
object; most often, it’s just the function’s name. The parentheses denote the
function-call operation itself. arguments, in the simplest case, is a series of
zero or more expressions separated by commas (,), giving values for the
function’s corresponding parameters. When the function call executes, the
parameters are bound to the argument values in a new namespace, the
function body executes, and the value of the function-call expression is
whatever the function returns. Objects created inside and returned by the
function are liable to garbage-collection unless the caller retains a reference
to them.

Don’t Forget The Trailing () To Call A Function
Just mentioning a function (or other callable object) does not, per se, call it. To call a function (or
other object) without arguments, you must use () after the function’s name (or other reference to
the callable object).

Positional and named arguments

Arguments can be of two types. Positional arguments are simple
expressions; named (also known, alas!, as keyword) arguments take the
form

identifier=expression

It is a syntax error for named arguments to precede positional ones in a
function call. Zero or more positional arguments may be followed by zero
or more named arguments. Each positional argument supplies the value for
the parameter that corresponds to it by position (order) in the function
definition. There is no requirement for positional arguments to match
positional parameters, or vice versa—if there are more positional arguments
than positional parameters, the additional arguments are bound by position
to named parameters, if any, for all parameters preceding an argument
collector in the signature. For example:

def f(a, b, c=23, d=42, *x):
 print(a, b, c, d, x)
f(1,2,3,4,5,6) # prints (1, 2, 3, 4, (5, 6))

Note that it matters where in the function signature the argument collector
occurs—see “Matching arguments to parameters” for all the gory details!

def f(a, b, *x, c=23, d=42):
 print(a, b, x, c, d)
f(1,2,3,4,5,6) # prints 1 2 (3, 4, 5, 6) 23 42

In the absence of any **kwds parameter, each argument’s name must be
one of the parameter names used in the function’s signature . The
expression supplies the value for the parameter of that name. Many built-in
functions do not accept named arguments: you must call such functions
with positional arguments only. However, functions coded in Python
usually accept named as well as positional arguments, so you may call them
in different ways. Positional parameters can be matched by named
arguments, in the absence of matching positional arguments.

10

11

A function call must supply, via a positional or a named argument, exactly
one value for each mandatory parameter, and zero or one value for each
optional parameter . For example:

def divide(divisor, dividend=94):
 return dividend // divisor
print(divide(12)) # prints: 7
print(divide(12, 94)) # prints: 7
print(divide(dividend=94, divisor=12)) # prints: 7
print(divide(divisor=12)) # prints: 7

As you can see, the four calls to divide are equivalent. You can pass
named arguments for readability purposes whenever you think that
identifying the role of each argument and controlling the order of arguments
enhances your code’s clarity.
A common use of named arguments is to bind some optional parameters to
specific values, while letting other optional parameters take default values:

def f(middle, begin='init', end='finis'):
 return begin+middle+end
print(f('tini', end='')) # prints: inittini

With named argument end='', the caller specifies a value (the empty
string '') for f’s third parameter, end, and still lets f’s second parameter,
begin, use its default value, the string 'init'. You may pass the
arguments as positional, even when parameters are named; for example,
with the preceding function:

print(f('a','c','t')) # prints: cat

At the end of the arguments in a function call, you may optionally use either
or both of the special forms *seq and **dct. If both forms are present, the
form with two asterisks must be last. *seq passes the items of iterable seq to
the function as positional arguments (after the normal positional arguments,
if any, that the call gives with the usual syntax). seq may be any iterable.
**dct passes the items of dct to the function as named arguments, where dct

12

must be a mapping whose keys are all strings. Each item’s key is a
parameter name, and the item’s value is the argument’s value.
You may want to pass an argument of the form *seq or **dct when the
parameters use similar forms, as covered earlier in “Parameters”. For
example, using the function sum_sequence defined in that section (and
shown again here), you may want to print the sum of all the values in
dictionary d. This is easy with *seq:

def sum_sequence(*numbers):
 return sum(numbers)
print(sum_sequence(*d.values()))

(Of course, print(sum(d.values())) would be simpler and more
direct.)
You may also pass arguments *seq or **dct when calling a function that
does not use the corresponding forms in its signature. In that case, you must
ensure that iterable seq has the right number of items, or, respectively, that
dictionary dct uses the right identifier strings as keys; otherwise, the call
raises an exception. As noted in “‘Keyword-only’ Parameters”, below, a
positional argument cannot match a keyword-only parameter; only a named
argument, explicit or passed via **kwargs, can do that.
A function call may have zero or more occurrences of *seq and/or **dct, as
specified in PEP 448.

“Keyword-only” parameters
Parameters after a positional argument collector (*name or *) in the
function’s signature are known as keyword-only parameters: corresponding
arguments, if any, must be named arguments. In the absence of any match
by name, such a parameter is bound to its default value, as set when you
defined the function.
Keyword-only parameters can be either positional or named. You must pass
them as named arguments, not as positional ones. It’s more usual and
readable to have simple identifiers, if any, at the start of the keyword-only

https://www.python.org/dev/peps/pep-0448/

parameter specifications, and identifier=default forms, if any, following
them, though this is not a requirement of the Python language.
Functions requiring keyword-only parameter specifications without
collecting positional arguments indicate the start of the keyword-only
parameter specifications with a dummy parameter consisting solely of an
asterisk (*), to which no argument corresponds. For example:

def f(a, *, b, c=56): # b and c are keyword-only
 return a, b, c
f(12,b=34) # returns (12, 34, 56) – c's optional, since it has a
default
f(12) # raises a TypeError exception, since you didn’t pass
`b`:
error message is: missing 1 required keyword-only argument: 'b'

If you also specify the special form **kwds, it must come at the end of the
parameter list (after the keyword-only parameter specifications, if any). For
example:

def g(x, *a, b=23, **k): # b is keyword-only
 return x, a, b, k
g(1, 2, 3, c=99) # returns (1, (2, 3), 23, {'c': 99})

Matching arguments to parameters
A call must provide an argument for all positional parameters, and may do
so for named parameters.
The matching proceeds as follows.

1. Arguments of the form *expression are internally replaced by a
sequence of positional arguments obtained by iterating over
expression.

2. Arguments of the form **expression are internally replaced by a
sequence of keyword arguments whose names and values are obtained
by iterating over expression’s items().

3. Say that the function has N positional parameters and the call has M
positional arguments:

When M≤N, bind all the positional arguments to the first M
positional parameter names; remaining positional parameters, if
any, must be matched by named arguments.

When M>N, bind remaining positional arguments to named
parameters in the order in which they appear in the signature. This
process terminates in one of three ways:
— All positional arguments have been bound.

— The next item in the signature is a * argument collector: the
interpreter raises a TypeError exception.

— The next item in the signature is a *name argument collector:
the remaining positional arguments are collected in a tuple that is
then bound to name in the function call namespace.

4. The named arguments are then matched, in the order of the
arguments’ occurrences in the call, by name with the parameters—
both positional and named. Attempts to rebind an already-bound
parameter name raise a TypeError exception.

5. If unmatched named arguments remain at this stage:
When the function signature includes a **name collector, the
interpreter creates a dictionary that keys the argument values with
their names and binds it to name in the function call namespace.

In the absence of such an argument collector, Python raises a
TypeError exception.

6. Any remaining unmatched named parameters are bound to their
default values.

7. At this point, the function call namespace is fully populated, and the
interpreter executes the function’s body using that “call namespace”
as the local namespace for the function.

The semantics of argument passing
In traditional terms, all argument passing in Python is by value (although, in
modern terminology, to say that argument passing is by object reference is
more precise and accurate; you may also check out the synonym call by
sharing). When you pass a variable as an argument, Python passes to the
function the object (value) to which the variable currently refers(not “the
variable itself”!), binding this object to the parameter name in the function
call namespace. Thus, a function cannot rebind the caller’s variables.
However, if you pass a mutable object as an argument, the function may
make changes to that object, because Python passes a reference to the object
itself, not a copy. Rebinding a variable and mutating an object are totally
disjoint concepts. For example:

def f(x, y):
 x = 23
 y.append(42)
a = 77
b = [99]
f(a, b)
print(a, b) # prints: 77 [99, 42]

print shows that a is still bound to 77. Function f’s rebinding of its
parameter x to 23 has no effect on f’s caller, nor, in particular, on the
binding of the caller’s variable that happened to be used to pass 77 as the
parameter’s value. However, print also shows that b is now bound to
[99, 42]. b is still bound to the same list object as before the call, but f
has appended 42 to that list object, mutating it. In neither case has f has
altered the caller’s bindings, nor can f alter the number 77, since numbers
are immutable. However, f can alter a list object, since list objects are
mutable.

Namespaces

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_sharing

A function’s parameters, plus any names that are bound (by assignment or
by other binding statements, such as def) in the function body, make up the
function’s local namespace, also known as its local scope. Each of these
variables is known as a local variable of the function.
Variables that are not local are known as global variables (in the absence of
nested function definitions, which we’ll discuss shortly). Global variables
are attributes of the module object, as covered in “Attributes of module
objects”. Whenever a function’s local variable has the same name as a
global variable, that name, within the function body, refers to the local
variable, not the global one. We express this by saying that the local
variable hides the global variable of the same name throughout the function
body.

The global statement
By default, any variable that is bound within a function body is a local
variable of the function. If a function needs to bind or rebind some global
variables (not a good practice!), the first statement of the function’s body
must be:

global identifiers

where identifiers is one or more identifiers separated by commas (,). The
identifiers listed in a global statement refer to the global variables (i.e.,
attributes of the module object) that the function needs to bind or rebind.
For example, the function counter that we saw in “Other attributes of
function objects” could be implemented using global and a global
variable, rather than an attribute of the function object:

_count = 0
def counter():
 global _count
 _count += 1
 return _count

Without the global statement, the counter function would raise an
UnboundLocalError exception when called, because _count would
then be an uninitialized (unbound) local variable. While the global
statement enables this kind of programming, this style is inelegant and ill-
advised. As we mentioned earlier, when you want to group together some
state and some behavior, the object-oriented mechanisms covered in
“Object-oriented Python” are usually best.

Eschew global
Never use global if the function body just uses a global variable (including mutating the object
bound to that variable, when the object is mutable). Use a global statement only if the function
body rebinds a global variable (generally by assigning to the variable’s name). As a matter of
style, don’t use global unless it’s strictly necessary, as its presence causes readers of your
program to assume the statement is there for some useful purpose. Never use global except as
the first statement in a function body.

Nested functions and nested scopes
A def statement within a function body defines a nested function, and the
function whose body includes the def is known as an outer function to the
nested one. Code in a nested function’s body may access (but not rebind)
local variables of an outer function, also known as free variables of the
nested function.
The simplest way to let a nested function access a value is often not to rely
on nested scopes, but rather to pass that value explicitly as one of the
function’s arguments. If need be, you can bind the argument’s value at
nested-function def time: just use the value as the default for an optional
argument. For example:

def percent1(a, b, c):
 def pc(x, total=a+b+c):
 return (x*100.0) / total
 print('Percentages are:', pc(a), pc(b), pc(c))

Here’s the same functionality using nested scopes:

def percent2(a, b, c):
 def pc(x):
 return (x*100.0) / (a+b+c)
 print('Percentages are:', pc(a), pc(b), pc(c))

In this specific case, percent1 has one tiny advantage: the computation
of a+b+c happens only once, while percent2’s inner function pc repeats
the computation three times. However, when the outer function rebinds
local variables between calls to the nested function, repeating the
computation can be necessary: be aware of both approaches, and choose the
appropriate one case by case.
A nested function that accesses values from outer local variables is also
known as a closure. The following example shows how to build a closure:

def make_adder(augend):
 def add(addend):
 return addend+augend
 return add

Closures are sometimes an exception to the general rule that the object-
oriented mechanisms covered in Chapter “Object-Oriented Python” are the
best way to bundle together data and code. When you need specifically to
construct callable objects, with some parameters fixed at object-
construction time, closures can be simpler and more effective than classes.
For example, the result of make_adder(7) is a function that accepts a
single argument and returns 7 plus that argument. An outer function that
returns a closure is a “factory” for members of a family of functions
distinguished by some parameters, such as the value of argument augend in
the previous example, and may often help you avoid code duplication.
The nonlocal keyword acts similarly to global, but it refers to a name
in the namespace of some lexically surrounding function. When it occurs in
a function definition nested several levels deep (a rarely-needed structure!),
the compiler searches the namespace of the most deeply nested containing
function, then the function containing that one, and so on, until the name is

found or there are no further containing functions, in which case the
compiler raises an error.
Here’s a nested-functions approach to the “counter” functionality we
implemented in previous sections using a function attribute, then a global
variable:

def make_counter():
 count = 0
 def counter():
 nonlocal count
 count += 1
 return count
 return counter
c1 = make_counter()
c2 = make_counter()
print(c1(), c1(), c1()) # prints: 1 2 3
print(c2(), c2()) # prints: 1 2
print(c1(), c2(), c1()) # prints: 4 3 5

A key advantage of this approach versus the previous ones is that these two
nested functions, just like an OOP approach would, let you make
independent counters, here c1 and c2—each closure keeps its own state and
doesn’t interfere with the other one. This approach, and OOP, are both quite
acceptable.

lambda expressions
If a function body is a single return expression statement, you may (very
optionally!) choose to replace the function with the special lambda
expression form:

lambda parameters: expression

A lambda expression is the anonymous equivalent of a normal function
whose body is a single return statement. Note that the lambda syntax
does not use the return keyword. You can use a lambda expression
wherever you could use a reference to a function. lambda can sometimes
be handy when you want to use an extremely simple function as an

argument or return value. Here’s an example that uses a lambda
expression as an argument to the built-in filter function (covered in
Table 7-2):

a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
low = 3
high = 7
list(filter(lambda x: low<=x<high, a_list)) # returns: [3, 4,
5, 6]

Alternatively, you can always use a local def statement to give the function
object a name, then use this name as an argument or return value. Here’s the
same filter example using a local def statement:

a_list = [1, 2, 3, 4, 5, 6, 7, 8, 9]
def within_bounds(value, low=3, high=7):
 return low<=value><high
filter(within_bounds, a_list) # returns: [3, 4, 5, 6]

While lambda can at times be handy, def is usually better: it’s more
general, and makes the code more readable, since you can choose a clear
name for the function.

Generators
When the body of a function contains one or more occurrences of the
keyword yield, the function is known as a generator, or more precisely a
generator function. When you call a generator, the function body does not
execute. Instead, the generator function returns a special iterator object,
known as a generator object (sometimes, quite confusingly, also called just
“a generator”), wrapping the function body, its local variables (including
parameters), and the current point of execution, initially the start of the
function.
When you (implicitly or explicitly) call next on a generator object, the
function body executes from the current point up to the next yield, which
takes the form:

yield expression

A bare yield without the expression is also legal, and equivalent to
yield None. When yield executes, the function execution is “frozen,”
preserving current point of execution and local variables, and the expression
following yield becomes the result of next. When you call next again,
execution of the function body resumes where it left off, again up to the
next yield. When the function body ends, or executes a return
statement, the iterator raises a StopIteration exception to indicate that
the iteration is finished. The expression after return, if any, is the
argument to the StopIteration.

yield is an expression, not a statement. When you call g.send(value)
on a generator object g, the value of the yield is value; when you call
next(g), the value of the yield is None. We cover this in “Generators
as near-coroutines”: it’s the elementary building block to implement
coroutines in Python.
A generator function is often a handy way to build an iterator. Since the
most common way to use an iterator is to loop on it with a for statement,
you typically call a generator like this (with the call to next being implicit
in the for statement):

for avariable in somegenerator(arguments):

For example, say that you want a sequence of numbers counting up from 1
to N and then down to 1 again. A generator can help:

def updown(N):
 for x in range(1, N):
 yield x
 for x in range(N, 0, -1):
 yield x
for i in updown(3):
 print(i) # prints: 1 2 3 2 1

Here is a generator that works somewhat like built-in range, but returns an
iterator on floating-point values rather than on integers:

https://en.wikipedia.org/wiki/Coroutine

def frange(start, stop, stride=1.0):
 while start < stop:
 yield start
 start += stride

This frange example is only somewhat like range because, for
simplicity, it makes arguments start and stop mandatory, and assumes
that stride is positive.

Generators are more flexible than functions that return lists. A generator
may return an unbounded iterator, meaning one that yields an infinite
stream of results (to use only in loops that terminate by other means, e.g.,
via a conditionally-executed break statement). Further, a generator-object
iterator performs lazy evaluation: the iterator can compute each successive
item only when and if needed, “just in time”, while the equivalent function
does all computations in advance and may require large amounts of
memory to hold the results list. Therefore, if all you need is the ability to
iterate on a computed sequence, it is usually best to compute the sequence
in a generator, rather than in a function returning a list. If the caller needs a
list of all the items produced by some bounded generator g(arguments),
the caller can simply use the following code to explicitly request Python to
build a list:

resulting_list = list(g(arguments))

yield from
To improve execution efficiency and clarity when multiple levels of
iteration are yielding values, you can use the form yield from
expression, where expression is iterable. This yields the values from
expression one at a time into the calling environment, avoiding the need to
yield repeatedly. We can thus simplify the updown generator we defined
earlier:

def updown(N):
 yield from range(1, N)
 yield from range(N, 0, -1)

for i in updown(3):
 print(i) # prints: 1 2 3 2 1

Moreover, using yield from lets you use generators as full-fledged
coroutines, as covered in Chapter “Multitasking”.

Generator expressions
Python offers an even simpler way to code particularly simple generators:
generator expressions, commonly known as genexps. The syntax of a
genexp is just like that of a list comprehension (as covered in “List
comprehensions”), except that a genexp is within parentheses (()) instead
of brackets ([]). The semantics of a genexp are the same as those of the
corresponding list comprehension, except that a genexp produces an iterator
yielding one item at a time, while a list comprehension produces a list of all
results in memory (therefore, using a genexp, when appropriate, saves
memory). For example, to sum the squares of all single-digit integers, you
could code sum([x*x for x in range(10)]); however, you can
express this better as sum(x*x for x in range(10)) (just the
same, but omitting the brackets): you get just the same result but consume
less memory. The parentheses that indicate the function call also “do double
duty” and enclose the genexp. Parentheses are, however, required when the
genexp is not the sole argument. Additional parentheses don’t hurt, but are
usually best omitted, for clarity.

Generators as near-coroutines
Generators are further enhanced, with the possibility of receiving a value
(or an exception) back from the caller as each yield executes. This lets
generators implement coroutines, as explained in PEP 342. When a
generator resumes (i.e., you call next on it), the corresponding yield’s
value is None. To pass a value x into some generator g (so that g receives x
as the value of the yield on which it’s suspended), instead of calling
next(g), call g.send(x) (g.send(None) is just like next(g)).

Other enhancements to generators regard exceptions: we cover them in
“Generators and Exceptions”.

https://www.python.org/dev/peps/pep-0342/

Recursion
Python supports recursion (i.e., a Python function can call itself, directly or
indirectly), but there is a limit to how deep the recursion can go. By default,
Python interrupts recursion and raises a RecursionLimitExceeded
exception (covered in “Standard Exception Classes”) when it detects that
recursion has exceeded a depth of 1,000. You can change this default
recursion limit by calling setrecursionlimit in module sys, covered
in Table 7-3.
However, changing the recursion limit does not give you unlimited
recursion; the absolute maximum limit depends on the platform on which
your program is running, particularly on the underlying operating system
and C runtime library, but it’s typically a few thousand levels. If recursive
calls get too deep, your program crashes. Such runaway recursion, after a
call to setrecursionlimit that exceeds the platform’s capabilities, is
one of the few ways a Python program can crash—really crash, hard,
without the usual safety net of Python’s exception mechanism. Therefore,
beware “fixing” a program that is getting RecursionLimitExceeded
exceptions by raising the recursion limit with setrecursionlimit.
While it’s a valid technique, most often you’re better advised to look for
ways to remove the recursion, unless you are confident you’ve been able to
limit the depth of recursion that your program needs.
Readers who are familiar with Lisp, Scheme, or functional programming
languages, must in particular be aware that Python does not implement the
optimization of “tail-call elimination,” which is so crucial in those
languages. In Python, any call, recursive or not, has the same “cost” in
terms of both time and memory space, dependent only on the number of
arguments: the cost does not change, whether the call is a “tail-call”
(meaning that the call is the last operation that the caller executes) or any
other, non-tail call. This makes recursion removal even more important.
For example, consider a classic use for recursion: “walking a binary tree.”
Suppose you represent a binary tree structure as nodes, where each node is
a three-element (payload, left, right) tuple where left and right are either
similar tuples or None representing the left-side and right-side descendants

respectively. A simple example might be: (23, (42, (5, None, None), (55,
None, None)), (94, None,None)) to represent the tree shown here.

To write a generator function that, given the root of such a tree, “walks the
tree,” yielding each payload in top-down order, the simplest approach is
recursion:

def rec(t):
 yield t[0]
 for i in (1, 2):
 if t[i] is not None:
 yield from rec(t[i])

However, if a tree is very deep, recursion becomes a problem. To remove
recursion, we can handle our own stack—a list used in last-in, first-out
fashion, thanks to its append and pop methods. To wit:

def norec(t):
 stack = [t]
 while stack:
 t = stack.pop()
 yield t[0]
 for i in (2, 1):
 if t[i] is not None:
 stack.append(t[i])

The only small issue to be careful about, to keep exactly the same order of
yields as rec, is switching the (1, 2) index order in which to examine
descendants, to (2, 1), adjusting to the “reversed” (last-in, first-out)
behavior of stack.

1 Control characters include nonprinting characters such as \t (tab) and \n (newline), both of
which count as whitespace; and others such as \a (alarm, AKA “beep”) and \b (backspace),
which are not whitespace.

2 Also see bytearray, covered later, for a bytes-like “string” which, however, is mutable.

3 Each specific mapping type may put constraints on the type of keys it accepts: in particular,
dictionaries only accept hashable keys.

4 This is not, strictly speaking, the “coercion” you observe in other languages, but, among
builtin number types, it produces pretty much the same effect.

5 Note that the second item of divmod's result, just like the result of %, is the remainder, not
the modulo, despite the function’s misleading name. The difference matters when the divisor is
negative. In some other languages, such as C# and Javascript, the result of a % operator is the
modulo; in others yet, such as C and C++, it’s machine-dependent whether the result is the
modulo or the remainder, when either operand is negative.

6 It is notable that the match statement specifically excludes matching values of type str, bytes,
and bytearray with sequence patterns.

7 Indeed, the syntax notation used in the Python online documentation required, and got,
updates to concisely describe some of Python’s more recent syntax additions.

8 for this unique use-case, it’s common to break the normal style conventions about making
class names have an uppercase initial and avoiding semicolons to stash multiple assignments
within one line, although the authors haven’t yet found a style-guide that blesses this peculiar,
rather-new usage.

9 in that paper, Knuth also first proposed using “devices like indentation, rather than delimiters”
to express program structure—just as Python does!

10 “alas!” because they have nothing to do with Python keywords, so the terminology is
confusing.

11 Python developers introduced positional-only arguments when they realised that parameters
to many built-in functions effectively had no valid names as far as the interpreter was
concerned.

12 an “optional parameter” being one for which the function’s signature supplies a default value.

https://rob.conery.io/2018/08/21/mod-and-remainder-are-not-the-same/

Chapter 3. Exceptions

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 5th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

Python uses exceptions to indicate errors and anomalies. An exception is an
object that indicates an error or anomaly. When Python detects an error, it
raises an exception—that is, Python signals the occurrence of an anomalous
condition by passing an exception object to the exception-propagation
mechanism. Your code can explicitly raise an exception by executing a
raise statement.

Handling an exception means catching the exception object from the
propagation mechanism and taking actions as needed to deal with the
anomalous situation. If a program does not handle an exception, the
program terminates with an error traceback message. However, a program
can handle exceptions and keep running, despite errors or other anomalies,
by using the try statement with except clauses.

Python also uses exceptions to indicate some situations that are not errors,
and not even abnormal. For example, as covered in “Iterators”, calling the
next built-in on an iterator raises StopIteration when the iterator has
no more items. This is not an error; it is not even an anomaly, since most
iterators run out of items eventually. The optimal strategies for checking
and handling errors and other special situations in Python are therefore
different from other languages’, and we cover that in “Error-Checking
Strategies”. This chapter shows how to use exceptions for errors and special

situations. It also covers the logging module of the standard library, in
“Logging Errors”, and the assert statement, in “The assert Statement”.

The try Statement
The try statement is Python’s core exception-handling mechanism. It’s a
compound statement with three kinds of optional clauses:

it may have zero or more except clauses, defining how to handle
particular classes of exceptions

if it has except clauses, then it may also have, right afterwards, one
else clause, executed only if the try suite raised no exceptions, and

whether or not it has except clauses, it may have a single finally
clause, unconditionally executed, with behavior covered in “The
try/except/finally Statement”.

Python’s syntax requires the presence of at least one except clause or a
finally clause, both of which might also be present in the same
statement; else is only valid following one or more excepts.

try/except
Here’s the syntax for the try/except form of the try statement:

try:
 statement(s)
except [expression [as target]]:
 statement(s)
[else:
 statement(s)]
[finally:
 statement(s)]

This form of the try statement has one or more except clauses, as well
as an optional else clause (and an optional finally clause, whose

meaning does not depend on whether except and else clauses are
present: we cover it in the “try/finally” section below).
The body of each except clause is known as an exception handler. The
code executes when the expression in the except clause matches an
exception object propagating from the try clause. expression is a class (or
tuple of classes, in parentheses), and matches any instance of one of those
classes or their subclasses. The optional target is an identifier that names a
variable that Python binds to the exception object just before the exception
handler executes. A handler can also obtain the current exception object by
calling the exc_info function of module sys (covered in Table 7-3).

Here is an example of the try/except form of the try statement:

try:
 1/0
 print('not executed')
except ZeroDivisionError:
 print('caught divide-by-0 attempt')

When an exception is raised, execution of the try suite immediately
ceases. If a try statement has several except clauses, the exception-
propagation mechanism checks the except clauses in order; the first
except clause whose expression matches the exception object executes as
the handler, and the exception-propagation mechanism checks no further
except clauses after that.

Place Handlers For Specific Exceptions Before More
General Ones
Place handlers for specific cases before handlers for more general cases: when you place a general
case first, the more specific except clauses that follow never execute.

The last except clause need not specify an expression. An except
clause without any expression handles any exception that reaches it during
propagation. Such unconditional handling is rare, but it does occur, often in
“wrapper” functions that must perform some extra task before reraising an
exception, as we discuss in “The raise Statement” later in this chapter.

Avoid A “Bare Except” That Doesn’t Re-raise The
Exception
Beware of using a “bare except” (an except clause without an expression) unless you’re re-
raising the exception in it: such sloppy style can make bugs very hard to find, since the bare
except is over-broad and can easily mask coding errors and other kinds of bugs by allowing
execution to continue after an unanticipated exception.

New programmers who are “just trying to get things to work” may even write code like:

try:
 ...code that has a problem...
except:
 pass

This is a dangerous practice, since it catches important process-exiting exceptions such as
KeyboardInterrupt or SystemExit - a loop with such an exception handler can’t be
exited with Ctrl-C, nor terminated with a system kill command. At the very least, such code
should use except Exception:, which is still overly broad but at least does not catch the
process-exiting exceptions.

Exception propagation terminates when it finds a handler whose expression
matches the exception object. When a try statement is nested (lexically in
the source code, or dynamically within function calls) in the try clause of
another try statement, a handler established by the inner try is reached
first on propagation, so it handles the exception when it matches it. This
may not be what you want. For example:

try:
 try:
 1/0

 except:
 print('caught an exception')
except ZeroDivisionError:
 print('caught divide-by-0 attempt')
prints: caught an exception

In this case, it does not matter that the handler established by the clause
except ZeroDivisionError: in the outer try clause is more
specific than the catch-all except: in the inner try clause. The outer try
does not enter into the picture: the exception doesn’t propagate out of the
inner try. For more on exception propagation, see “Exception
Propagation”.
The optional else clause of try/except executes only when the try
clause terminates normally. In other words, the else clause does not
execute when an exception propagates from the try clause, or when the
try clause exits with a break, continue, or return. Handlers
established by try/except cover only the try clause, not the else
clause. The else clause is useful to avoid accidentally handling
unexpected exceptions. For example:

print(repr(value), 'is ', end=' ')
try:
 value + 0
except TypeError:
 # not a number, maybe a string...?
 try:
 value + ''
 except TypeError:
 print('neither a number nor a string')
 else:
 print('some kind of string')
else:
 print('some kind of number')

try/finally
Here’s the syntax for the try/finally form of the try statement:

try:
 statement(s)

finally:
 statement(s)

This form has 1 finally clause (and no else clause—unless it also has
1+ except clauses, as covered in “The try/except/finally Statement”).

The finally clause establishes what is known as a clean-up handler. The
code always executes after the try clause terminates in any way. When an
exception propagates from the try clause, the try clause terminates, the
clean-up handler executes, and the exception keeps propagating. When no
exception occurs, the cleanup handler executes anyway, regardless of
whether the try clause reaches its end or exits by executing a break,
continue, or return statement.

Clean-up handlers established with try/finally offer a robust and
explicit way to specify finalization code that must always execute, no
matter what, to ensure consistency of program state and/or external entities
(e.g., files, databases, network connections); such assured finalization is
nowadays usually best expressed via a context manager used in a with
statement (see “The with Statement and Context Managers”). Here is an
example of the try/finally form of the try statement:

f = open(some_file, 'w')
try:
 do_something_with_file(f)
finally:
 f.close()

and here is the corresponding, more concise and readable, example of using
with for exactly the same purpose:

with open(some_file, 'w') as f:
 do_something_with_file(f)

Avoid break and return statements in a finally clause
A finally clause may contain one or more of the statements continue ||3.8++||, break , or
return. Such usage may make your program less clear: exception propagation stops when such
a statement executes, and most programmers would not expect propagation to be stopped within a
finally clause. The usage may confuse people who are reading your code, so we recommend
you avoid it.

The try/except/finally Statement
A try/except/finally statement, such as:

try:
 ...guarded clause…
except ...expression...:
 ...exception handler code…
finally:
 ...clean-up code...

is equivalent to the nested statement:

try:
 try:
 ...guarded clause...
 except ...expression...:
 ...exception handler code…
finally:
 ...clean-up code...

A try statement can have multiple except clauses, and optionally an
else clause, before a terminating finally clause. In all variations, the
effect is always as just shown—that is, just like nesting a try/except
statement, with all the except clauses and the else clause if any, into a
containing try/finally statement.

The with Statement and Context Managers

The with statement is a compound statement with the following syntax:

with expression [as varname] [, ...]:
 statement(s)
||3.10++||
with (expression [as varname], ...):
 statement(s)

The semantics of with are equivalent to:

_normal_exit = True
_manager = expression
varname = _manager.__enter__()
try:
 statement(s)
except:
 _normal_exit = False
 if not _manager.__exit_(*sys.exc_info()):
 raise
 # note that exception does not propagate if __exit__ returns
a true value
finally:
 if _normal_exit:
 _manager.__exit__(None, None, None)

where _manager and _normal_exit are arbitrary internal names that are not
used elsewhere in the current scope. If you omit the optional as varname
part of the with clause, Python still calls _manager.__enter__(), but
doesn’t bind the result to any name, and still calls _manager.__exit_()
at block termination. The object returned by the expression, with methods
__enter__ and __exit__, is known as a context manager.

The with statement is the Python embodiment of the well-known C++
idiom “resource acquisition is initialization” (RAII): you need only write
context manager classes—that is, classes with two special methods
__enter__ and __exit__. __enter__ must be callable without
arguments. __exit__ must be callable with three arguments: all None
when the body completes without propagating exceptions; otherwise, the
type, value, and traceback of the exception. This provides the same
guaranteed finalization behavior as typical ctor/dtor pairs have for auto

https://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

variables in C++, and try/finally statements have in Python or Java.
In addition, they can finalize differently depending on what exception, if
any, propagates, and optionally block a propagating exception by returning
a true value from __exit__.

For example, here is a simple, purely illustrative way to ensure <name>
and </name> tags are printed around some other output:

class tag(object):
 def __init__(self, tagname):
 self.tagname = tagname
 def __enter__(self):
 print(f'<{self.tagname}>', end='')
 def __exit__(self, etyp, einst, etb):
 print(f'</{self.tagname}>')
to be used as:
tt = tag('sometag')
with tt:
 ...statements printing output to be enclosed in
 a matched open/close `sometag` pair

A simpler way to build context managers is to use the contextmanager
decorator in the contextlib module of the standard Python library. This
decorator turns a generator function into a factory of context manager
objects.
The contextlib way to implement the tag context manager, having
imported contextlib earlier, is:

@contextlib.contextmanager
def tag(tagname):
 print(f'<{tagname}>', end='')
 try:
 yield
 finally:
 print(f'</{tagname}>')
to be used the same way as before

contextlib supplies, among others, the class and functions listed in
Table 5-1.

Table 3-1. The contextlib module summarised

AbstractCont
extManager

AbstractContextManager
 Abstract base class with two overridable methods: __enter__, which
defaults to return self, and __exit__, which defaults to return
None.

contextmanag
er

contextmanager
 The above-described decorator, which you apply to a generator to make it
into a context manager.

closing

closing(something)
 A context manager whose __enter__ is return something, and whose
__exit__ calls something.close().

nullcontext

nullcontext(something)
 A context manager whose __enter__ is return something, and whose
__exit__ does nothing.

redirect_stde
rr

redirect_stderr(destination)
 A context manager which temporarily redirects, within the body of the with
statement, sys.stderr to file or file-like object destination.

redirect_stdo
ut

redirect_stdout(destination)
 A context manager which temporarily redirects, within the body of the with
statement, sys.stdout to file or file-like object destination.

suppress

suppress(*exception_classes)
 A context manager which silently suppresses exceptions, occurring in the
body of the with statement, of any of the classes listed in exception_classes.
Use sparingly, since silently suppressing exceptions is often bad practice.

For more details, examples, “recipes”, and even more (somewhat abstruse)
classes, see Python’s online docs.

Generators and Exceptions

https://docs.python.org/3/library/contextlib.html

To help generators cooperate with exceptions, yield statements are
allowed inside try/finally statements. Moreover, generator objects
have two other relevant methods, throw and close. Given a generator
object g, built by calling a generator function, the throw method’s
signature is:

g.throw(exc_value)

When the generator’s caller calls g.throw, the effect is just as if a raise
statement with the same argument executed at the spot of the yield at
which generator g is suspended.
The generator method close has no arguments; when the generator’s
caller calls g.close(), the effect is like calling
g.throw(GeneratorExit()) . GeneratorExit is a built-in
exception class that inherits directly from BaseException. Generators
also have a finalizer (special method __del__) which implicitly calls
close when the generator object is garbage-collected.

If a generator raises or propagates StopIteration, Python turns the
exception’s type into RuntimeError.

Exception Propagation
When an exception is raised, the exception-propagation mechanism takes
control. The normal control flow of the program stops, and Python looks for
a suitable exception handler. Python’s try statement establishes exception
handlers via its except clauses. The handlers deal with exceptions raised
in the body of the try clause, as well as exceptions propagating from
functions called by that code, directly or indirectly. If an exception is raised
within a try clause that has an applicable except handler, the try clause
terminates and the handler executes. When the handler finishes, execution
continues with the statement after the try statement (in the absence of any
explicit change to the flow of control such as a raise or return).

1

If the statement raising the exception is not within a try clause that has an
applicable handler, the function containing the statement terminates, and the
exception propagates “upward” along the stack of function calls to the
statement that called the function. If the call to the terminated function is
within a try clause that has an applicable handler, that try clause
terminates, and the handler executes. Otherwise, the function containing the
call terminates, and the propagation process repeats, unwinding the stack of
function calls until an applicable handler is found.
If Python cannot find any applicable handler, by default the program prints
an error message to the standard error stream (file sys.stderr). The error
message includes a traceback that gives details about functions terminated
during propagation. You can change Python’s default error-reporting
behavior by setting sys.excepthook (covered in Table 7-3). After error
reporting, Python goes back to the interactive session, if any, or terminates
if execution was not interactive. When the exception type is SystemExit,
termination is silent, and ends the interactive session, if any.
Here are some functions to show exception propagation at work:

def f():
 print('in f, before 1/0')
 1/0 # raises a ZeroDivisionError exception
 print('in f, after 1/0')
def g():
 print('in g, before f()')
 f()
 print('in g, after f()')
def h():
 print('in h, before g()')
 try:
 g()
 print('in h, after g()')
 except ZeroDivisionError:
 print('ZD exception caught')
 print('function h ends')

Calling the h function prints the following:

>>> h()
in h, before g()

in g, before f()
in f, before 1/0
ZD exception caught
function h ends

That is, none of the “after” print statements execute, since the flow of
exception propagation “cuts them off.”
The function h establishes a try statement and calls the function g within
the try clause. g, in turn, calls f, which performs a division by 0, raising an
exception of type ZeroDivisionError. The exception propagates all
the way back to the except clause in h. The functions f and g terminate
during the exception-propagation phase, which is why neither of their
“after” messages is printed. The execution of h’s try clause also terminates
during the exception-propagation phase, so its “after” message isn’t printed
either. Execution continues after the handler, at the end of h’s
try/except block.

The raise Statement
You can use the raise statement to raise an exception explicitly. raise is
a simple statement with the following syntax:

raise [expression]

Only an exception handler (or a function that a handler calls, directly or
indirectly) can use raise without any expression. A plain raise
statement re-raises the same exception object that the handler received. The
handler terminates, and the exception propagation mechanism keeps going
up the call stack, searching for other applicable handlers. Using raise
without any expression is useful when a handler discovers that it is unable
to handle an exception it receives, or can handle the exception only
partially, so the exception should keep propagating to allow handlers up the
call stack to perform their own handling and cleanup.

When expression is present, it must be an instance of a class inheriting from
the built-in class BaseException, and Python raises that instance.

Here’s an example of a typical use of the raise statement:

def cross_product(seq1, seq2):
 if not seq1 or not seq2:
 raise ValueError('Sequence arguments must be non-empty')
 return [(x1, x2) for x1 in seq1 for x2 in seq2]

This cross_product example function returns a list of all pairs with one item
from each of its sequence arguments, but first, it tests both arguments. If
either argument is empty, the function raises ValueError rather than just
returning an empty list as the list comprehension would normally do.

Check Only What You Need To
There is no need for cross_product to check whether seq1 and seq2 are iterable: if either isn’t, the
list comprehension itself raises the appropriate exception, presumably a TypeError.

Once an exception is raised, by Python itself or with an explicit raise
statement in your code, it is up to the caller to either handle it (with a
suitable try/except statement) or let it propagate further up the call
stack.

Don’t Use raise for Duplicate, Redundant Error Checks
Use the raise statement only to raise additional exceptions for cases that would normally be
okay but that your specification defines to be errors. Do not use raise to duplicate the same
error-checking that Python already, implicitly, does on your behalf.

Exception Objects
Exceptions are instances of BaseException (more specifically,
instances of one of its subclasses). Any exception has attribute args, the
tuple of arguments used to create the instance; this error-specific
information is useful for diagnostic or recovery purposes. Some exception
classes interpret args and set convenient named attributes on the classes’
instances.

The Hierarchy of Standard Exceptions
Exceptions are instances of subclasses of BaseException.

The inheritance structure of exception classes is important, as it determines
which except clauses handle which exceptions. Most exception classes
extend the class Exception; however, the classes
KeyboardInterrupt, GeneratorExit, and SystemExit inherit
directly from BaseException and are not subclasses of Exception.
Thus, a handler clause except Exception as e: does not catch
KeyboardInterrupt, GeneratorExit, or SystemExit (we cover
exception handlers in “try/except”). Instances of SystemExit are
normally raised via the exit function in module sys (covered in Table 7-
3). We cover GeneratorExit in “Generators and Exceptions”. When the
user hits Ctrl-C, Ctrl-Break, or other interrupting keys on their keyboard,
that raises KeyboardInterrupt.

The hierarchy of built-in expression classes is, roughly:

BaseException
 Exception
 AssertionError, AttributeError, BufferError, EOFError,
 MemoryError, ReferenceError, OsError, StopAsyncIteration,
 StopIteration, SystemError, TypeError
 ArithmeticError
 OverflowError, ZeroDivisionError
 ImportError
 ModuleNotFoundError, ZipImportError
 LookupError
 IndexError, KeyError

 NameError
 UnboundLocalError
 OSError
 ...
 RuntimeError
 RecursionError
 NotImplementedError
 SyntaxError
 IndentationError
 TabError
 ValueError
 UnsupportedOperation
 UnicodeError
 UnicodeDecodeError, UnicodeEncodeError,
 UnicodeTranslateError
 Warning
 ...
 GeneratorExit
 KeyboardInterrupt
 SystemExit

There are other exception subclasses (in particular, Warning and
OSError have many, summarized above with ellipses ...), but this is the
gist of the hierarchy. A more complete list is in Python’s online docs.
Two subclasses of Exception are abstract ones, never instantiated
directly. Their purpose is to make it easier for you to specify except
clauses that handle a range of related errors. The two abstract subclasses of
Exception are:

ArithmeticError

The base class for exceptions due to arithmetic errors (i.e.,
OverflowError, ZeroDivisionError, and the currently-unused
FloatingPointError)

LookupError

The base class for exceptions that a container raises when it receives an
invalid key or index (i.e., IndexError, KeyError)

Standard Exception Classes

https://docs.python.org/3/library/exceptions.html#exception-hierarchy

Common runtime errors raise exceptions of the following classes:

AssertionError

An assert statement failed.

AttributeError

An attribute reference or assignment failed.

ImportError

An import or from...import statement (covered in “The import
Statement”) couldn’t find the module to import (in this case, what
Python raises is actually an instance of ImportError’s subclass
ModuleNotFoundError), or couldn’t find a name to be imported
from the module.

IndentationError

The parser encountered a syntax error due to incorrect indentation.
Extends SyntaxError.

IndexError

An integer used to index a sequence is out of range (using a noninteger
as a sequence index raises TypeError). Extends LookupError.

KeyError

A key used to index a mapping is not in the mapping. Extends
LookupError.

KeyboardInterrupt

The user pressed the interrupt key combination (Ctrl-C, Ctrl-Break,
Delete, or others, depending on the platform’s handling of the
keyboard).

M emoryError
An operation ran out of memory.

NameError

A name was referenced, but it was not bound to any variable in the
current scope.

NotImplementedError

Raised by abstract base classes to indicate that a concrete subclass must
override a method.

OSError

Raised by functions in the module os (covered in “The os Module” and
“Running Other Programs with the os Module”) to indicate platform-
dependent errors. It has many subclasses, covered at “OSError and
subclasses”.

RecursionError

Python detects that recursion depth has been exceeded. Extends
RuntimeError.

RuntimeError

Raised for any error or anomaly not otherwise classified.

SyntaxError

Python’s parser encounters a syntax error.

SystemError

Python has detected an error in its own code, or in an extension module.
Please report this to the maintainers of your Python version, or of the

extension in question, including the error message, the exact Python
version (sys.version), and, if possible, your program’s source code.

TypeError

An operation or function was applied to an object of an inappropriate
type.

UnboundLocalError

A reference was made to a local variable, but no value is currently
bound to that local variable. Extends NameError.

UnicodeError

An error occurred while converting Unicode(i.e., an str) to a byte
string, or vice versa. Extends ValueError.

ValueError

An operation or function was applied to an object that has a correct type
but an inappropriate value, and nothing more specific (e.g.,
KeyError) applies.

ZeroDivisionError

A divisor (the righthand operand of a /, //, or % operator, or the second
argument to the built-in function divmod) is 0. Extends
ArithmeticError.

OSError and subclasses
OSError represents errors detected by the operating system. To handle
such errors much more elegantly, OSError has many subclasses, whose
instances are what actually get raised—see Python’s online docs.
For example, consider this task: try to read and return the contents of a
certain file; return a default string if the file does not exist; propagate any

https://docs.python.org/3/library/exceptions.html#os-exceptions

other exception that makes the file unreadable (except for the file not
existing). Using an OSError subclass, you can accomplish the task quite
simply:

def read_or_default(filepath, default):
 try:
 with open(filepath) as f:
 return f.read()
 except FileNotFoundError:
 return default

The FileNotFoundError subclass of OSError makes this kind of
common task simple and direct to express in code.

Exceptions “wrapping” other exceptions or tracebacks
Sometimes, you cause an exception while trying to handle another. To let
you clearly diagnose this issue, each exception instance holds its own
traceback object; you can make another exception instance with a different
traceback with the with_traceback method.

Moreover, Python automatically stores which exception it’s handling as the
__context__ attribute of any further exception raised during the
handling (unless you set the new exception’s __suppress_context__
attribute to true, which you do with the raise...from statement, which
we cover shortly). If the new exception propagates, Python’s error message
uses that exception’s __context__ attribute to show details of the
problem. For example, take the (deliberately!) broken code:

try: 1/0
except ZeroDivisionError:
 1+'x'

The error displayed is:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero
During handling of the above exception, another exception
occurred:

Traceback (most recent call last):
 File "<stdin>", line 3, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'str'

Thus, Python clearly displays both exceptions, the original and the
intervening one.
To get more control over the error display, you can, if you wish, use the
raise...from statement: when you execute raise e from ex, both e
and ex are exception objects: e is the one that propagates, and ex is its
“cause;” Python records ex as the value of e.__cause__, and sets
e.__suppress_context__ to true. (Alternatively, ex can be None:
then, Python sets e.__cause__ to None, but still sets
e.__suppress_context__ to true, and thus leaves e.__context__
alone). For all details and motivations, see PEP 3134.

Custom Exception Classes
You can extend any of the standard exception classes in order to define your
own exception class. Often, such a subclass adds nothing more than a
docstring:

class InvalidAttribute(AttributeError):
 """Used to indicate attributes that could never be valid"""

An Empty Class Or Function Should Have A Docstring,
Not pass
As covered in “The pass Statement”, you don’t need a pass statement to make up the body of a
class. The docstring (which you should always write, to document the class’s purpose if nothing
else!) is enough to keep Python happy. Best practice for all “empty” classes (regardless of whether
they are exception classes), just like for all “empty” functions, is to always have a docstring and
no pass statement.

https://www.python.org/dev/peps/pep-3134/

Given the semantics of try/except, raising a custom exception class
such as InvalidAttribute is almost the same as raising its standard
exception superclass, AttributeError. Any except clause that can
handle AttributeError can handle InvalidAttribute just as
well. In addition, client code that knows about your InvalidAttribute
custom exception class can handle it specifically, without having to handle
all other cases of AttributeError when it is not prepared for those. For
example:

class SomeFunkyClass:
 """much hypothetical functionality snipped"""
 def __getattr__(self, name):
 """only clarifies the kind of attribute error"""
 if name.startswith('_'):
 raise InvalidAttribute(f'Unknown private attribute
{name!r}')
 else:
 raise AttributeError(f'Unknown attribute {name!r}')

Now, client code can, if it so chooses, be more selective in its handlers. For
example:

s = SomeFunkyClass()
try:
 value = getattr(s, thename)
except InvalidAttribute as err:
 warnings.warn(str(err), stacklevel=2)
 value = None
other cases of AttributeError just propagate, as they're
unexpected

Define And Raise Custom Exception Classes
It’s an excellent idea to define, and raise, custom exception classes in your modules, rather than
plain standard exceptions: by using custom exception classes which extend standard ones, you
make it easier for callers of your module’s code to handle exceptions that come from your module
separately from others, if they choose to.

Custom Exceptions and Multiple Inheritance
An effective approach to custom exceptions is to multiply-inherit exception
classes from your module’s special custom exception class and a standard
exception class, as in the following snippet:

class CustomAttributeError(CustomException, AttributeError):
 """An AttributeError which is ALSO a CustomException."""

Now, when your code raises an instance of CustomAttributeError,
that exception can be caught by calling code that’s designed to catch all
cases of AttributeError as well as by code that’s designed to catch all
exceptions raised only, specifically, by your module.

Use Multiple Inheritance For Custom Exceptions
Whenever you must decide whether to raise a specific standard exception, such as
AttributeError, or a custom exception class you define in your module, consider this
multiple-inheritance approach, which gives you the best of both worlds in such cases. Make sure
you clearly document this aspect of your module, because the technique, although handy, is not
widely used. Users of your module may not expect it unless you clearly and explicitly document
what you are doing.

Other Exceptions Used in the Standard Library
Many modules in Python’s standard library define their own exception
classes, which are equivalent to the custom exception classes that your own
modules can define. Typically, all functions in such standard library
modules may raise exceptions of such classes, in addition to exceptions in
the standard hierarchy covered in “Standard Exception Classes”. We cover
the main cases of such exception classes throughout the rest of this book, in
chapters covering the standard library modules that supply and may raise
them.

Error-Checking Strategies
Most programming languages that support exceptions raise exceptions only
in rare cases. Python’s emphasis is different. Python deems exceptions
appropriate whenever they make a program simpler and more robust, even
if that makes exceptions rather frequent.

LBYL Versus EAFP
A common idiom in other languages, sometimes known as “Look Before
You Leap” (LBYL), is to check in advance, before attempting an operation,
for anything that might make the operation invalid. This approach is not
ideal for several reasons:

The checks may diminish the readability and clarity of the common,
mainstream cases where everything is okay.

The work needed for checking purposes may duplicate a substantial part
of the work done in the operation itself.

The programmer might easily err by omitting a needed check.

The situation might change between the moment when you perform the
checks, and the moment when, later (even by a tiny fraction of a
second!), you attempt the operation.

The preferred idiom in Python is to attempt the operation in a try clause
and handle the exceptions that may result in one or more except clauses.
This idiom is known as “it’s Easier to Ask Forgiveness than Permission”
(EAFP), a motto widely credited to Rear Admiral Grace Murray Hopper,
co-inventor of COBOL. EAFP shares none of the defects of LBYL. Here is
a function using the LBYL idiom:

def safe_divide_1(x, y):
 if y==0:
 print('Divide-by-0 attempt detected')
 return None

https://ep2013.europython.eu/conference/talks/permission-or-forgiveness

 else:
 return x/y

With LBYL, the checks come first, and the mainstream case is somewhat
hidden at the end of the function. Here is the equivalent function using the
EAFP idiom:

def safe_divide_2(x, y):
 try:
 return x/y
 except ZeroDivisionError:
 print('Divide-by-0 attempt detected')
 return None

With EAFP, the mainstream case is upfront in a try clause, and the
anomalies are handled in the following except clause, making the whole
function easier to read and understand.

Proper usage of EAFP
EAFP is a good error-handling strategy, but it is not a panacea. In particular,
never cast too wide a net, catching errors that you did not expect and
therefore did not mean to catch. The following is a typical case of such a
risk (we cover built-in function getattr in Table 7-2):

def trycalling(obj, attrib, default, *args, **kwds):
 try:
 return getattr(obj, attrib)(*args, **kwds)
 except AttributeError:
 return default

The intention of function trycalling is to try calling a method named attrib
on object obj, but to return default if obj has no method thus named.
However, the function as coded does not do just that: it also accidentally
hides any error case where AttributeError is raised inside the sought-
after method, silently returning default in those cases. This may easily
hide bugs in other code. To do exactly what’s intended, the function must
take a little bit more care:

def trycalling(obj, attrib, default, *args, **kwds):
 try:
 method = getattr(obj, attrib)
 except AttributeError:
 return default
 else:
 return method(*args, **kwds)

This implementation of trycalling separates the getattr call, placed in
the try clause and therefore guarded by the handler in the except clause,
from the call of the method, placed in the else clause and therefore free to
propagate any exception. The proper approach to EAFP involves frequent
use of the else clause on try/except statements (which is more
explicit, and thus better Python style, than just placing the nonguarded code
after the whole try/except statement).

Handling Errors in Large Programs
In large programs, it is especially easy to err by making your
try/except statements too wide, particularly once you have convinced
yourself of the power of EAFP as a general error-checking strategy. A
try/except combination is too wide when it catches too many different
errors, or an error that can occur in too many different places. The latter is a
problem when you need to distinguish exactly what went wrong and where,
and the information in the traceback is not sufficient to pinpoint such details
(or you discard some or all of the information in the traceback). For
effective error handling, you have to keep a clear distinction between errors
and anomalies that you expect (and thus know how to handle) and
unexpected errors and anomalies that indicate a bug in your program.
Some errors and anomalies are not really erroneous, and perhaps not even
all that anomalous: they are just special, “edge” cases, perhaps somewhat
rare but nevertheless quite expected, which you choose to handle via EAFP
rather than via LBYL to avoid LBYL’s many intrinsic defects. In such
cases, you should just handle the anomaly, often without even logging or
reporting it.

Keep Your try/except Constructs Narrow
Be very careful to keep try/except constructs as narrow as feasible. Use a small try clause
that contains a small amount of code that doesn’t call too many other functions, and use very
specific exception-class tuples in the except clauses; if need be, further analyze the details of
the exception in your handler code, and raise again as soon as you know it’s not a case this
handler can deal with.

Errors and anomalies that depend on user input or other external conditions
not under your control are always expected, precisely because you have no
control over their underlying causes. In such cases, you should concentrate
your effort on handling the anomaly gracefully, reporting and logging its
exact nature and details, and keeping your program running with
undamaged internal and persistent state. The breadth of try/except
clauses under such circumstances should also be reasonably narrow,
although this is not quite as crucial as when you use EAFP to structure your
handling of not-really-erroneous special/edge cases.
Lastly, entirely unexpected errors and anomalies indicate bugs in your
program’s design or coding. In most cases, the best strategy regarding such
errors is to avoid try/except and just let the program terminate with
error and traceback messages. (You might want to log such information
and/or display it more suitably with an application-specific hook in
sys.excepthook, as we’ll discuss shortly.) In the unlikely case that
your program must keep running at all costs, even under dire circumstances,
try/except statements that are quite wide may be appropriate, with the
try clause guarding function calls that exercise vast swaths of program
functionality, and broad except clauses.

In the case of a long-running program, make sure to log all details of the
anomaly or error to some persistent place for later study (and also report to
yourself some indication of the problem, so that you know such later study
is necessary). The key is making sure that you can revert the program’s
persistent state to some undamaged, internally consistent point. The

techniques that enable long-running programs to survive some of their own
bugs, as well as environmental adversities, are known as checkpointing
(basically, periodically saving program state, and writing the program so it
can reload the saved state and continue from there) and transaction
processing; we do not cover them further in this book.

Logging Errors
When Python propagates an exception all the way to the top of the stack
without finding an applicable handler, the interpreter normally prints an
error traceback to the standard error stream of the process (sys.stderr)
before terminating the program. You can rebind sys.stderr to any file-
like object usable for output in order to divert this information to a
destination more suitable for your purposes.
When you want to change the amount and kind of information output on
such occasions, rebinding sys.stderr is not sufficient. In such cases,
you can assign your own function to sys.excepthook: Python calls it
when terminating the program due to an unhandled exception. In your
exception-reporting function, output whatever information will help you
diagnose and debug the problem and direct that information to whatever
destinations you please. For example, you might use module traceback
(covered in “The traceback Module”) to format stack traces. When your
exception-reporting function terminates, so does your program.

The logging package
The Python standard library offers the rich and powerful logging
package to let you organize the logging of messages from your applications
in systematic, flexible ways. Pushing things to the limit, you might write a
whole hierarchy of Logger classes and subclasses; you might couple the
loggers with instances of Handler (and subclasses thereof); you might
also insert instances of class Filter to fine-tune criteria determining what
messages get logged in which ways.

http://www.cism.ucl.ac.be/Services/Formations/checkpointing.pdf
https://en.wikipedia.org/wiki/Transaction_processing

Messages are formatted by instances of the Formatter class—the
messages themselves are instances of the LogRecord class. The
logging package even includes a dynamic configuration facility, whereby
you may dynamically set logging-configuration files by reading them from
disk files, or even by receiving them on a dedicated socket in a specialized
thread.
While the logging package sports a frighteningly complex and powerful
architecture, suitable for implementing highly sophisticated logging
strategies and policies that may be needed in vast and complicated software
systems, in most applications you may get away with using a tiny subset of
the package. First, import logging. Then, emit your message by
passing it as a string to any of the module’s functions debug, info,
warning, error, or critical, in increasing order of severity. If the
string you pass contains format specifiers such as %s (as covered in
“Legacy String Formatting with %”) then, after the string, pass as further
arguments all the values to be formatted in that string. For example, don’t
call:

logging.debug('foo is %r' % foo)

which performs the formatting operation whether it’s needed or not; rather,
call:

logging.debug('foo is %r', foo)

which performs formatting if and only if needed (i.e., if and only if calling
debug is going to result in logging output, depending on the current
threshold level).
Unfortunately, the logging module does not support the more readable
formatting approach covered in “String Formatting”, but only the
antiquated one covered in “Legacy String Formatting with %”. Fortunately,
it’s very rare to need any formatting specifier beyond the simple %s and %r.

By default, the threshold level is WARNING: any of the functions
warning, error, or critical results in logging output, but the
functions debug and info do not. To change the threshold level at any
time, call logging.getLogger().setLevel, passing as the only
argument one of the corresponding constants supplied by module
logging: DEBUG, INFO, WARNING, ERROR, or CRITICAL. For
example, once you call:

logging.getLogger().setLevel(logging.DEBUG)

all of the logging functions from debug to critical result in logging
output until you change level again; if later you call:

logging.getLogger().setLevel(logging.ERROR)

then only the functions error and critical result in logging output
(debug, info, and warning won’t result in logging output); this
condition, too, persists until you change level again, and so forth.
By default, logging output goes to your process’s standard error stream
(sys.stderr, as covered in Table 7-3) and uses a rather simplistic format
(for example, it does not include a timestamp on each line it outputs). You
can control these settings by instantiating an appropriate handler instance,
with a suitable formatter instance, and creating and setting a new logger
instance to hold it. In the simple, common case in which you just want to
set these logging parameters once and for all, after which they persist
throughout the run of your program, the simplest approach is to call the
logging.basicConfig function, which lets you set up things quite
simply via named parameters. Only the very first call to
logging.basicConfig has any effect, and only if you call it before
any of the logging functions (debug, info, and so on). Therefore, the
most common use is to call logging.basicConfig at the very start of
your program. For example, a common idiom at the start of a program is
something like:

import logging
logging.basicConfig(
 format='%(asctime)s %(levelname)8s %(message)s',
 filename='/tmp/logfile.txt', filemode='w')

This setting writes logging messages to a file, nicely formatted with a
precise human-readable timestamp, followed by the severity level right-
aligned in an eight-character field, followed by the message proper.
For excruciatingly large amounts of detailed information on the logging
package, and all the wonders you can perform with it, be sure to consult
Python’s rich online information about it.

The assert Statement
The assert statement allows you to introduce “sanity checks” into a
program. assert is a simple statement with the following syntax:

assert condition[, expression]

When you run Python with the optimize flag (-O, as covered in “Command-
Line Syntax and Options”), assert is a null operation: the compiler
generates no code for it. Otherwise, assert evaluates condition. When
condition is satisfied, assert does nothing. When condition is not
satisfied, assert instantiates AssertionError with expression as the
argument (or without arguments, if there is no expression) and raises the
resulting instance.
assert statements can be an effective way to document your program.
When you want to state that a significant, nonobvious condition C is known
to hold at a certain point in a program’s execution (known as an invariant of
your program), assert C is often better than a comment that just states
that C holds.
The advantage of assert is that, when C does not in fact hold, assert
immediately alerts you to the problem by raising AssertionError, if
the program is running without the -O flag. Once the code is thoroughly

2

https://docs.python.org/3/library/logging.html?module-logging

debugged, run it with -O, turning assert into a null operation and
incurring no overhead (the assert remains in your source code to
document the invariant).

Don’t Overuse assert
Never use assert for other purposes besides sanity-checking program invariants. A serious but
very common mistake is to use assert about the values of inputs or arguments: checking for
erroneous arguments or inputs is best done more explicitly, and in particular must not be turned
into a null operation by a command-line flag.

The __debug__ Built-in Variable
When you run Python without option -O, the __debug__ built-in variable
is True. When you run Python with option -O, __debug__ is False.
Also, with option -O, the compiler generates no code for any if statement
whose sole guard condition is __debug__.

To exploit this optimization, surround the definitions of functions that you
call only in assert statements with if __debug__:. This technique
makes compiled code smaller and faster when Python is run with -O, and
enhances program clarity by showing that those functions exist only to
perform sanity checks.

1 except that multiple calls to close are allowed and innocuous: all but the first one perform no
operation.

2 Some third-party frameworks, such as pytest, materially improve the usefulness of the assert
statement.

http://docs.pytest.org/en/latest/

Chapter 4. Modules

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 6th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

A typical Python program is made up of several source files. Each source
file is a module, grouping code and data for reuse. Modules are normally
independent of each other, so that other programs can reuse the specific
modules they need. Sometimes, to manage complexity, you group together
related modules into a package—a hierarchical, tree-like structure.
A module explicitly establishes dependencies upon other modules by using
import or from statements. In some programming languages, global
variables provide a hidden conduit for coupling between modules. In
Python, global variables are not global to all modules, but rather are
attributes of a single module object. Thus, Python modules always
communicate in explicit and maintainable ways, clarifying the couplings
between them by making them explicit.
Python also supports extension modules—modules coded in other
languages such as C, C++, Java, or C#—for use in Python. For the Python
code importing a module, it does not matter whether the module is pure
Python or an extension. You can always start by coding a module in Python.
Later, should you need more speed, you can refactor and recode some parts
of modules in lower-level languages, without changing the client code that
uses those modules. Chapter “Extending and Embedding Classic Python”
shows how to write extensions in C and Cython.

This chapter discusses module creation and loading. It also covers grouping
modules into packages, using Python’s distribution utilities (the older,
deprecated distutils, and the currently-recommended setuptools) to install
packages, and how to prepare packages for distribution; this latter subject is
more thoroughly covered in Chapter “Distributing Extensions and
Programs.” This chapter closes with a discussion on how best to manage
your Python environment(s).

Module Objects
A module is a Python object with arbitrarily named attributes that you can
bind and reference. The Python code for a module named aname usually
lives in a file named aname.py, as covered in “Module Loading.”
In Python, modules are objects (values), handled like other objects. Thus,
you can pass a module as an argument in a call to a function. Similarly, a
function can return a module as the result of a call. A module, just like any
other object, can be bound to a variable, an item in a container, or an
attribute of an object. Modules can be keys or values in a dictionary, and
can be members of a set. For example, the sys.modules dictionary,
covered in “Module Loading,” holds module objects as its values. The fact
that modules can be treated like other values in Python is often expressed
by saying that modules are first-class objects.

The import Statement
You can use any Python source file as a module by executing an import
statement in another Python source file. import has the following syntax:

import modname [as varname][,...]

After the import keyword come one or more module specifiers separated
by commas. In the simplest, most common case, a module specifier is just
modname, an identifier—a variable that Python binds to the module object

https://docs.python.org/3/library/distutils.html
https://packaging.python.org/guides/tool-recommendations/
https://pypi.org/project/setuptools/

when the import statement finishes. In this case, Python looks for the
module of the same name to satisfy the import request. For example:

import mymodule

looks for the module named mymodule and binds the variable named
mymodule in the current scope to the module object. modname can also be a
sequence of identifiers separated by dots (.) to name a module contained in
a package, as covered in “Packages.”
When as varname is part of a module specifier, Python looks for a module
named modname and binds the module object to the variable varname. For
example:

import mymodule as alias

looks for the module named mymodule and binds the module object to
variable alias in the current scope. varname must always be a simple
identifier.

Module body
The body of a module is the sequence of statements in the module’s source
file. There is no special syntax required to indicate that a source file is a
module; you can use any valid Python source file as a module. A module’s
body executes immediately the first time a given run of a program imports
it. When the body starts executing, the module object has already been
created, with an entry in sys.modules already bound to the module
object. The module’s (global) namespace is gradually populated as the
module’s body executes.

Attributes of module objects
An import statement creates a new namespace containing all the
attributes of the module. To access an attribute in this namespace, use the
name or alias of the module as a prefix:

import mymodule
a = mymodule.f()

or:

import mymodule as alias
a = alias.f()

Normally, it’s statements in the module body that bind the attributes of a
module object. When a statement in the module body binds a (global)
variable, what gets bound is an attribute of the module object.

A Module Body Exists To Bind the Module’s Attributes
The normal purpose of a module body is to create the module’s attributes: def statements create
and bind functions, class statements create and bind classes, and assignment statements can
bind attributes of any type. For clarity and cleanliness of your code, be wary about doing anything
else in the top logical level of the module’s body except binding the module’s attributes.

You can also bind module attributes in code outside the body (i.e., in other
modules); just assign a value to the attribute reference syntax M.name
(where M is any expression whose value is the module, and identifier name
is the attribute name). For clarity, however, it’s best to bind module
attributes only in the module’s own body.
The import statement binds some module attributes as soon as it creates
the module object, before the module’s body executes. The __dict__
attribute is the dict object that the module uses as the namespace for its
attributes. Unlike other attributes of the module, __dict__ is not
available to code in the module as a global variable. All other attributes in
the module are items in __dict__ and are available to code in the module
as global variables. Attribute __name__ is the module’s name; attribute
__file__ is the filename from which the module was loaded; other

dunder-named attributes hold other module metadata. (Also see “Special
Attributes of Package Objects” for attribute __path__, in packages only).

For any module object M, any object x, and any identifier string S (except
__dict__), binding M.S = x is equivalent to binding M.__dict__['S'] = x.
An attribute reference such as M.S is also substantially equivalent to
M.__dict__['S']. The only difference is that, when S is not a key in
M.__dict__, accessing M.__dict__['S'] raises KeyError, while accessing
M.S raises AttributeError. Module attributes are also available to all
code in the module’s body as global variables. In other words, within the
module body, S used as a global variable is equivalent to M.S (i.e.,
M.__dict__['S']) for both binding and reference (when S is not a key in
M.__dict__, however, referring to S as a global variable raises
NameError).

Python built-ins
Python supplies several built-in objects (covered in Chapter “Core Built-ins
and Standard Library Modules”). All built-in objects are attributes of a
preloaded module named builtins. When Python loads a module, the
module automatically gets an extra attribute named __builtins__,
which refers either to the module builtins or to its dictionary. Python
may choose either, so don’t rely on __builtins__. If you need to access
the module builtins directly (a rare need), use an import builtins
statement. When you access a variable found neither in the local namespace
nor in the global namespace of the current module, Python looks for the
identifier in the current module’s __builtins__ before raising
NameError.

The lookup is the only mechanism that Python uses to let your code access
builtins. The built-ins’ names are not reserved, nor are they hardwired in
Python itself. Your own code can use the access mechanism directly (do so
in moderation, or your program’s clarity and simplicity will suffer). Since
Python accesses built-ins only when it cannot resolve a name in the local or
module namespace, it is usually sufficient to define a replacement in one of
those namespaces. You can, however, add your own built-ins or substitute

your functions for the normal built-in ones, in which case all modules see
the added or replaced one. The following toy example shows how you can
wrap a built-in function with your own function, allowing abs() to take a
string argument (and return a rather arbitrary mangling of the string):

abs takes a numeric argument; let's make it accept a string as
well
import builtins
_abs = builtins.abs # save original
built-in
def abs(str_or_num):
 if isinstance(str_or_num, str): # if arg is a string
 return ''.join(sorted(set(str_or_num))) # get this
instead
 return _abs(str_or_num) # call real built-in
builtins.abs = abs # override built-in
w/wrapper

Module documentation string
If the first statement in the module body is a string literal, Python binds that
string as the module’s documentation string attribute, named __doc__.
Documentation strings are also called docstrings; we cover them in
“Docstrings.”

Module-private variables
No variable of a module is truly private. However, by convention, every
identifier starting with a single underscore (_), such as _secret, is meant
to be private. In other words, the leading underscore communicates to
client-code programmers that they should not access the identifier directly.
Development environments and other tools rely on the leading-underscore
naming convention to discern which attributes of a module are public (i.e.,
part of the module’s interface) and which are private (i.e., to be used only
within the module).

Respect the “Leading Underscore Means Private”
Convention
It’s important to respect the “leading underscore means private” convention, particularly when you
write client code that uses modules written by others. Avoid using any attributes in such modules
whose names start with _. Future releases of the modules will strive to maintain their public
interface, but are quite likely to change private implementation details: private attributes are meant
exactly for such details.

The from Statement
Python’s from statement lets you import specific attributes from a module
into the current namespace. from has two syntax variants:

from modname import attrname [as varname][,...]
from modname import *

A from statement specifies a module name, followed by one or more
attribute specifiers separated by commas. In the simplest and most common
case, an attribute specifier is just an identifier attrname, which is a variable
that Python binds to the attribute of the same name in the module named
modname. For example:

from mymodule import f

modname can also be a sequence of identifiers separated by dots (.) to
name a module within a package, as covered in “Packages.”
When as varname is part of an attribute specifier, Python gets from the
module the value of attribute attrname and binds it to variable varname. For
example:

from mymodule import f as foo

attrname and varname are always simple identifiers.

You may optionally enclose in parentheses all the attribute specifiers that
follow the keyword import in a from statement. This can be useful when
you have many attribute specifiers, in order to split the single logical line of
the from statement into multiple logical lines more elegantly than by using
backslashes (\):

from some_module_with_a_long_name import (
 another_name, and_another as x, one_more, and_yet_another as
y)

from ... import *
Code that is directly inside a module body (not in the body of a function or
class) may use an asterisk (*) in a from statement:

from mymodule import *

The * requests that “all” attributes of module modname be bound as global
variables in the importing module. When module modname has an attribute
named __all__, the attribute’s value is the list of the attribute names that
this type of from statement binds. Otherwise, this type of from statement
binds all attributes of modname except those beginning with underscores.

Beware Using From M Import * in Your Code
Since from M import * may bind an arbitrary set of global variables, it can have unforeseen,
undesired side effects, such as hiding built-ins and rebinding variables you still need. Use the *
form of from very sparingly, if at all, and only to import modules that are explicitly documented
as supporting such usage. Your code is most likely better off never using this form, which is meant
mostly as a convenience for occasional use in interactive Python sessions.

from Versus import
The import statement is often a better choice than the from statement.
When you always access module M with the statement import M and

always access M’s attributes with explicit syntax M.A, your code is slightly
less concise but far clearer and more readable. One good use of from is to
import specific modules from a package, as we discuss in “Packages.” In
most other cases, import is better style than from.

Module Loading
Module-loading operations rely on attributes of the built-in sys module
(covered in “The sys Module”) and are implemented in the built-in function
__import__. Your code could call __import__ directly, but this is
strongly discouraged in modern Python; rather, import importlib and
call importlib.import_module with the module name string as the
argument. import_module returns the module object or, should the
import fail, raises ImportError. However, it’s best to have a clear
understanding of the semantics of __import__, because
import_module and import statements both depend on it.

To import a module named M, __import__ first checks dictionary
sys.modules, using string M as the key. When key M is in the
dictionary, __import__ returns the corresponding value as the requested
module object. Otherwise, __import__ binds sys.modules[M] to a
new empty module object with a __name__ of M, then looks for the right
way to initialize (load) the module, as covered in “Searching the Filesystem
for a Module.”
Thanks to this mechanism, the relatively slow loading operation takes place
only the first time a module is imported in a given run of the program.
When a module is imported again, the module is not reloaded, since
__import__ rapidly finds and returns the module’s entry in
sys.modules. Thus, all imports of a given module after the first one are
very fast: they’re just dictionary lookups. (To force a reload, see “Reloading
Modules.”)

Built-in Modules

When a module is loaded, __import__ first checks whether the module
is built-in. The tuple sys.builtin_module_names names all built-in
modules, but rebinding that tuple does not affect module loading. When
Python loads a built-in module, as when it loads any other extension,
Python calls the module’s initialization function. The search for built-in
modules also looks for modules in platform-specific locations, such as the
Registry in Windows.

Searching the Filesystem for a Module
If module M is not built-in, __import__ looks for M’s code as a file on
the filesystem. __import__ looks at the strings, which are the items of
list sys.path, in order. Each item is the path of a directory, or the path of
an archive file in the popular ZIP format. sys.path is initialized at
program startup, using the environment variable PYTHONPATH (covered in
“Environment Variables”), if present. The first item in sys.path is
always the directory from which the main program is loaded. An empty
string in sys.path indicates the current directory.

Your code can mutate or rebind sys.path, and such changes affect which
directories and ZIP archives __import__ searches to load modules.
Changing sys.path does not affect modules that are already loaded (and
thus already recorded in sys.modules) when you change sys.path.

If there is a text file with the extension .pth in the PYTHONHOME
directory at startup, Python adds the file’s contents to sys.path, one item
per line. .pth files can contain blank lines and comment lines starting with
the character #; Python ignores any such lines. .pth files can also contain
import statements (which Python executes before your program starts to
execute), but no other kinds of statements.
When looking for the file for module M in each directory and ZIP archive
along sys.path, Python considers the following extensions in this order:

1. .pyd and .dll (Windows) or .so (most Unix-like platforms), which
indicate Python extension modules. (Some Unix dialects use different
extensions; e.g., .sl on HP-UX.) On most platforms, extensions cannot

https://en.wikipedia.org/wiki/ZIP_(file_format)

be loaded from a ZIP archive—only source or bytecode-compiled
Python modules can.

2. .py, which indicates Python source modules.

3. .pyc, which indicates bytecode-compiled Python modules.

4. When it finds a .py file, Python also looks for a directory called
___pycache__; if it finds such a directory, Python looks in that
directory for the extension .<tag>.pyc, where <tag> is a string
specific to the version of Python that is looking for the module.

One last path in which Python looks for the file for module M is
M/__init__.py: a file named __init__.py in a directory named M, as covered
in “Packages.”
Upon finding source file M.py, Python compiles it to M.<tag>.pyc, unless
the bytecode file is already present, is newer than M.py, and was compiled
by the same version of Python. If M.py is compiled from a writable
directory, Python creates a __pycache__ subdirectory if necessary and saves
the bytecode file to the filesystem in that subdirectory so that future runs
won’t needlessly recompile. When the bytecode file is newer than the
source file (based on an internal timestamp in the bytecode file, not on
trusting the date as recorded in the filesystem), Python does not recompile
the module.
Once Python has the bytecode, whether built anew by compilation or read
from the filesystem, Python executes the module body to initialize the
module object. If the module is an extension, Python calls the module’s
initialization function.

The Main Program
Execution of a Python application starts with a top-level script (known as
the main program), as explained in “The python Program.” The main
program executes like any other module being loaded, except that Python
keeps the bytecode in memory, not saving it to disk. The module name for

the main program is '__main__', both as the __name__ variable
(module attribute) and as the key in sys.modules.

Don’t Import the .py File You’re Using as the Main
Program
You should not import the same .py file that is the main program. If you do, Python loads the
module again, and the body executes again in a separate module object with a different
__name__.

Code in a Python module can test if the module is being used as the main
program by checking if global variable __name__ has the value
'__main__'. The idiom:

if __name__ == '__main__':

is often used to guard some code so that it executes only when the module
runs as the main program. If a module is meant only to be imported, it
should normally execute unit tests when run as the main program, as
covered in “Unit Testing and System Testing.”

Reloading Modules
Python loads a module only the first time you import the module during a
program run. When you develop interactively, you need to reload your
modules after editing them (some development environments provide
automatic reloading).
To reload a module, pass the module object (not the module name) as the
only argument to the function reload from the importlib module.
importlib.reload(M) ensures the reloaded version of M is used by
client code that relies on import M and accesses attributes with the syntax
M.A. However, importlib.reload(M) has no effect on other existing

references bound to previous values of M’s attributes (e.g., with a from
statement). In other words, already-bound variables remain bound as they
were, unaffected by reload. reload’s inability to rebind such
variables is a further incentive to use import rather than from.

reload is not recursive: when you reload module M, this does not imply
that other modules imported by M get reloaded in turn. You must reload, by
explicit calls to reload, every module you have modified.

Circular Imports
Python lets you specify circular imports. For example, you can write a
module a.py that contains import b, while module b.py contains
import a.

If you decide to use a circular import for some reason, you need to
understand how circular imports work in order to avoid errors in your code.

Avoid Circular Imports
In practice, you are nearly always better off avoiding circular imports, since circular dependencies
are fragile and hard to manage.

Say that the main script executes import a. As discussed earlier, this
import statement creates a new empty module object as
sys.modules['a'], then the body of module a starts executing. When
a executes import b, this creates a new empty module object as
sys.modules['b'], and then the body of module b starts executing.
a’s module body cannot proceed until b’s module body finishes.

Now, when b executes import a, the import statement finds
sys.modules['a'] already bound, and therefore binds global variable
a in module b to the module object for module a. Since the execution of
a’s module body is currently blocked, module a is usually only partly

populated at this time. Should the code in b’s module body try to access
some attribute of module a that is not yet bound, an error results.

If you keep a circular import, you must carefully manage the order in which
each module binds its own globals, imports other modules, and accesses
globals of other modules. You get greater control over the sequence in
which things happen by grouping your statements into functions, and
calling those functions in a controlled order, rather than just relying on
sequential execution of top-level statements in module bodies. Removing
circular dependencies (for example, by moving an import away from
module scope and into a referencing function) is easier than ensuring bomb-
proof ordering to deal with circular dependencies.

sys.modules Entries
__import__ never binds anything other than a module object as a value
in sys.modules. However, if __import__ finds an entry already in
sys.modules, it returns that value, whatever type it may be. import
and from statements rely on __import__, so they too can use objects
that are not modules.

Custom Importers
Another advanced, rarely-needed functionality that Python offers is the
ability to change the semantics of some or all import and from
statements.

Rebinding __import__
You can rebind the __import__ attribute of module builtin to your
own custom importer function—for example, one using the generic built-in-
wrapping technique shown in “Python built-ins.” Such a rebinding affects
all import and from statements that execute after the rebinding and thus
can have an undesired global impact. A custom importer built by rebinding
__import__ must implement the same interface and semantics as the

built-in __import__, and, in particular, it is responsible for supporting
the correct use of sys.modules.

Beware Rebinding Builtin __import__
While rebinding __import__ may initially look like an attractive approach, in most cases where
custom importers are necessary, you’re better off implementing them via import hooks.

Import hooks
Python offers rich support for selectively changing the details of imports’
behavior. Custom importers are an advanced and rarely-needed technique,
yet some applications may need them for purposes such as importing code
from archives other than ZIP files, databases, network servers, and so on.
The most suitable approach for such highly advanced needs is to record
importer factory callables as items in the attributes meta_path and/or
path_hooks of the module sys, as detailed in PEP 451. This is how
Python hooks up the standard library module zipimport to allow
seamless importing of modules from ZIP files, as previously mentioned. A
full study of the details of PEP 451 is indispensable for any substantial use
of sys.path_hooks and friends, but here’s a toy-level example to help
understand the possibilities, should you ever need them.
Suppose that, while developing the first outline of some program, you want
to be able to use import statements for modules that you haven’t written
yet, getting just messages (and empty modules) as a consequence. You can
obtain such functionality (leaving aside the complexities connected with
packages, and dealing with simple modules only) by coding a custom
importer module as follows:

import sys, types
class ImporterAndLoader(object):
 '''importer and loader can be a single class'''
 fake_path = '!dummy!'

https://www.python.org/dev/peps/pep-0451/

 def __init__(self, path):
 # only handle our own fake-path marker
 if path != self.fake_path:
 raise ImportError
 def find_module(self, fullname):
 # don't even try to handle any qualified module name
 if '.' in fullname:
 return None
 return self
 def create_module(self, spec):
 # create module "the default way"
 return None
 def exec_module(self, mod):
 # populate the already-initialized module
 # just print a message in this toy example
 print(f'NOTE: module {mod!r} not yet written')
sys.path_hooks.append(ImporterAndLoader)
sys.path.append(ImporterAndLoader.fake_path)
if __name__ == '__main__': # self-test when run as main
script
 import missing_module # importing a simple *missing*
module
 print(missing_module) # ...should succeed
 print(sys.modules.get('missing_module')) # ...should also
succeed

We just write trivial versions of create_module (which in this case just
returns None, asking the system to create the module object in the “default
way”) and exec_module (which receives the module object already
initialized with dunder attributes, and whose task would normally be to
populate it appropriately).
We could, alternatively, use the powerful new module spec concept as
detailed in PEP 451. However, that requires the standard library module
importlib; for this toy example, we don’t need all that extra power.
Therefore, we choose instead to implement the method find_module,
which, although now deprecated, still works fine for backward
compatibility.

Packages

A package is a module containing other modules. Some or all of the
modules in a package may be subpackages, resulting in a hierarchical tree-
like structure. A package named P typically resides in a subdirectory, also
called P, of some directory in sys.path. Packages can also live in ZIP
files; in this section, we explain the case in which the package lives on the
filesystem, since the case in which a package is in a ZIP file is similar,
relying on the hierarchical filesystem-like structure within the ZIP file.
The module body of P is in the file P/__init__.py. This file must exist
(except for namespace packages, covered in “Namespace Packages”), even
if it’s empty (representing an empty module body), in order to tell Python
that directory P is indeed a package. Python loads the module body of a
package when you first import the package (or any of the package’s
modules), behaving just like for any other Python module. The other .py
files in directory P are the modules of package P. Subdirectories of P
containing __init__.py files are subpackages of P. Nesting can proceed to
any depth.
You can import a module named M in package P as P.M. More dots let you
navigate a hierarchical package structure. (A package’s module body
always loads before any module in the package.) If you use the syntax
import P.M, the variable P is bound to the module object of package P,
and the attribute M of object P is bound to the module P.M. If you use the
syntax import P.M as V, the variable V is bound directly to the module
P.M.
Using from P import M to import a specific module M from package P
is a perfectly acceptable, indeed highly recommended practice: the from
statement is specifically okay in this case. from P import M as V is also
just fine, and exactly equivalent to import P.M as V. You can also use
relative paths: that is, module M in package P can import its “sibling”
module X (also in package P) with from . import X.

Sharing Objects Among Modules In A Package
The simplest, cleanest way to share objects (e.g., functions or constants) among modules in a
package P is to group the shared objects in a module conventionally named P/common.py. That
way, you can use from . import common in every module in the package that needs to
access some of the common objects, and then refer to the objects as common.f, common.K, and
so on.

Special Attributes of Package Objects
A package P’s __file__ attribute is the string that is the path of P’s
module body—that is, the path of the file P/__init__.py. P’s
__package__ attribute is the name of P’s package.

A package P’s module body—that is, the Python source that is in the file
P/__init__.py—can optionally set a global variable named __all__ (just
like any other module can) to control what happens if some other Python
code executes the statement from P import *. In particular, if
__all__ is not set, from P import * does not import P’s modules, but
only names that are set in P’s module body and lack a leading _. In any
case, this is not recommended usage.
A package P’s __path__ attribute is the list of strings that are the paths to
the directories from which P’s modules and subpackages are loaded.
Initially, Python sets __path__ to a list with a single element: the path of
the directory containing the file __init__.py that is the module body of the
package. Your code can modify this list to affect future searches for
modules and subpackages of this package. This advanced technique is
rarely necessary, but can be useful when you want to place a package’s
modules in various directories; a namespace package, as covered next, is
however the usual way to accomplish this goal.

Namespace Packages

On import foo, when one or more directories that are immediate
children of sys.path members are named foo, and none of them contains
a file named __init__.py, Python deduces that foo is a namespace package.
As a result, Python creates (and assigns to sys.modules['foo']) a
package object foo without a __file__ attribute; Python sets
foo.__path__ to the list of all the various directories that make up the
package (like for any other package, your code may optionally choose to
further alter it). This advanced approach is rarely needed.

Absolute Versus Relative Imports
As mentioned in “Packages,” an import statement normally expects to
find its target somewhere on sys.path, a behavior known as an absolute
import. Alternatively, you can explicitly use a relative import, meaning an
import of an object from within the current package. Relative imports use
module or package names beginning with one or more dots, and are only
available within the from statement. from . import X looks for the
module or object named X in the current package; from .X import y
looks in module or subpackage X within the current package for the module
or object named y. If your package has subpackages, their code can access
higher-up objects in the package by using multiple dots at the start of the
module or subpackage name you place between from and import. Each
additional dot ascends the directory hierarchy one level. Getting too fancy
with this feature can easily damage your code’s clarity, so use it with care,
and only when necessary.

Distribution Utilities (distutils) and
setuptools
Python modules, extensions, and applications can be packaged and
distributed in several forms:

Compressed archive files

Generally .zip or .tar.gz (AKA .tgz) files—both forms are portable, and
many other forms of compressed archives of trees of files and
directories exist

Self-unpacking or self-installing executables
Normally .exe for Windows

Self-contained, ready-to-run executables that require no installation
For example, .exe for Windows, ZIP archives with a short script prefix
on Unix, .app for the Mac, and so on

Platform-specific installers
For example, .msi on Windows, .rpm and .srpm on many Linux
distributions, .deb on Debian GNU/Linux and Ubuntu, .pkg on macOS

Python Wheels
Popular third-party extensions, covered in “Python Wheels”

When you distribute a package as a self-installing executable or platform-
specific installer, a user installs the package simply by running the installer.
How to run such an installer program depends on the platform, but it
doesn’t matter which language the program was written in. We cover
building self-contained, runnable executables for various platforms in
Chapter “Distributing Extensions and Programs.”
When you distribute a package as an archive file or as an executable that
unpacks but does not install itself, it does matter that the package was coded
in Python. In this case, the user must first unpack the archive file into some
appropriate directory, say C:\Temp\MyPack on a Windows machine or
~/MyPack on a Unix-like machine. Among the extracted files there should
be a script, conventionally named setup.py, which uses the Python facility
known as the distribution utilities (the now-deprecated, but still functioning,
standard library package distutils) or, better, the more popular,1

modern, and powerful third-party package setuptools. The distributed
package is then almost as easy to install as a self-installing executable. The
user opens a command prompt window and changes to the directory into
which the archive is unpacked. Then the user runs, for example:

C:\Temp\MyPack> python setup.py install

(pip is the preferred way to install packages nowadays, and is briefly
discussed in “Python Environments.”) The setup.py script, run with this
install command, installs the package as a part of the user’s Python
installation, according to the options specified by the package’s author in
the setup script. Of course, the user needs appropriate permissions to write
into the directories of the Python installation, so permission-raising
commands such as sudo may also be needed; or, better yet, you can install
into a virtual environment, covered in “Python Environments.”
distutils and setuptools, by default, print some information when
the user runs setup.py. Option --quiet, right before the install command,
hides most details (the user still sees error messages, if any). The following
command gives detailed help on distutils or setuptools,
depending on which toolset the package author used in their setup.py:

C:\Temp\MyPack> python setup.py --help

Recent versions of Python come with the excellent installer pip (a
recursive acronym for “pip installs packages”), copiously documented
online, yet very simple to use in most cases. pip install package finds
the online version of package (usually on the huge PyPI repository, hosting
more than 300,000 packages at the time of this writing), downloads it, and
installs it for you (in a virtual environment, if one is active—see “Python
Environments”). This books’ authors have been using that simple, powerful
approach for well over 90% of their installs for quite a while now.
Even if you have downloaded the package locally (say to /tmp/mypack), for
whatever reason (maybe it’s not on PyPI, or you’re trying out an
experimental version that is not yet there), pip can still install it for you:

https://pypi.python.org/pypi/setuptools
https://pip.pypa.io/en/stable/user_guide/
https://pypi.python.org/pypi

just run pip install --no-index --find-
links=/tmp/mypack and pip does the rest.

Python Wheels
Python wheels are an archive format including structured metadata as well
as Python code. Wheels offer an excellent way to package and distribute
your Python packages, and setuptools (with the wheel extension,
easily installed with pip install wheel) works seamlessly with
them. Read all about them online and in Chapter “Distributing Extensions
and Programs.”

Python Environments
A typical Python programmer works on several projects concurrently, each
with its own list of dependencies (typically, third-party libraries and data
files). When the dependencies for all projects are installed into the same
Python interpreter, it is very difficult to determine which projects use which
dependencies, and impossible to handle projects with conflicting versions
of certain dependencies.
Early Python interpreters were built on the assumption that each computer
system would have “a Python interpreter” installed on it, to be used to run
any Python program on that system. Operating system distributions started
to include Python in their base installation, but, because Python has always
been under active development, users often complained that they would like
to use a version of the language more up-to-date than the one their
operating system provided.
Techniques arose to let multiple versions of the language be installed on a
system, but installation of third-party software remained nonstandard and
intrusive. This problem was eased by the introduction of the site-packages
directory as the repository for modules added to a Python installation, but it
was still not possible to maintain projects with conflicting requirements
using the same interpreter.

http://pythonwheels.com/

Programmers accustomed to command-line operations are familiar with the
concept of a shell environment. A shell program running in a process has a
current directory, variables that you can set with shell commands (very
similar to a Python namespace), and various other pieces of process-specific
state data. Python programs have access to the shell environment through
os.environ.

Various aspects of the shell environment affect Python’s operation, as
mentioned in “Environment Variables.” For example, the PATH
environment variable determines which program, exactly, executes in
response to python and other commands. You can think of those aspects of
your shell environment that affect Python’s operation as your Python
environment. By modifying it you can determine which Python interpreter
runs in response to the python command, which packages and modules are
available under certain names, and so on.

Leave the System’s Python to the System
We recommend taking control of your Python environment. In particular, do not build applications
on top of a system-distributed Python. Instead, install another Python distribution independently,
and adjust your shell environment so that the python command runs your locally installed Python
rather than the system’s Python.

Enter the Virtual Environment
The introduction of the pip utility created a simple way to install (and, for
the first time, to uninstall) packages and modules in a Python environment.
Modifying the system Python’s site-packages still requires administrative
privileges, and hence so does pip (although it can optionally install
somewhere other than site-packages). Installed modules are still visible to
all programs.
The missing piece is the ability to make controlled changes to the Python
environment, to direct the use of a specific interpreter and a specific set of

Python libraries. That is just what virtual environments (virtualenvs) give
you. Creating a virtualenv based on a specific Python interpreter copies or
links to components from that interpreter’s installation. Critically, though,
each one has its own site-packages directory, into which you can install the
Python resources of your choice.
Creating a virtualenv is much simpler than installing Python, and requires
far less system resources (a typical newly created virtualenv takes less than
20 MB). You can easily create and activate them on demand, and deactivate
and destroy them just as easily. You can activate and deactivate a virtualenv
as many times as you like during its lifetime, and if necessary use pip to
update the installed resources. When you are done with it, removing its
directory tree reclaims all storage occupied by the virtualenv. A virtualenv’s
lifetime can be from minutes to months.

What Is a Virtual Environment?
A virtualenv is essentially a self-contained subset of your Python
environment that you can switch in or out on demand. For a Python X.Y
interpreter it includes, among other things, a bin directory containing a
Python X.Y interpreter and a lib/pythonX.Y/site-packages directory
containing pre-installed versions of easy-install, pip,
pkg_resources, and setuptools. Maintaining separate copies of
these important distribution-related resources lets you update them as
necessary rather than forcing reliance on the base Python distribution.
A virtualenv has its own copies of (on Windows), or symbolic links to (on
other platforms), Python distribution files. It adjusts the values of
sys.prefix and sys.exec_prefix, from which the interpreter and
various installation utilities determine the location of some libraries. This
means that pip can install dependencies in isolation from other
environments, in the virtualenv’s site-packages directory. In effect, the
virtualenv redefines which interpreter runs when you run the python
command and which libraries are available to it, but leaves most aspects of
your Python environment (such as the PYTHONPATH and PYTHONHOME

variables) alone. Since its changes affect your shell environment, they also
affect any subshells in which you run commands.
With separate virtualenvs you can, for example, test two different versions
of the same library with a project, or test your project with multiple
versions of Python. You can also add dependencies to your Python projects
without needing any special privileges, since you normally create your
virtualenvs somewhere you have write permission.
The modern way to deal with virtualenvs is the venv module of the
standard library: just run python -m venv envpath.

Creating and Deleting Virtual Environments
The command python -m venv envpath creates a virtual environment (in
the envpath directory, which it also creates if necessary) based on the
Python interpreter used to run the command. You can give multiple
directory arguments to create, with a single command, several virtual
environments (running the same Python interpreter); you can then install
different sets of dependencies in each virtualenv. venv can take a number
of options, as shown in Table 6-1.

Table 4-1. venv options

 Option

 Purpose

 --
clear

Removes any existing directory content before installing the virtual
environment

 --
copies

Installs files by copying on the Unix-like platforms where using symbolic
links is the default

 --h
or

Prints out a command-line summary and a list of available options

 --
help

 --
system-site-
packages

Adds the standard system site-packages directory to the environment’s
search path, making modules already installed in the base Python available
inside the environment

 --
symlinks

Installs files by using symbolic links on platforms where copying is the
system default

 --
upgrade

Installs the running Python in the virtual environment, replacing whichever
version had originally created the environment

 --
without-pip

Inhibits the usual behavior of calling ensurepip to bootstrap the pip
installer utility into the environment

The following Unix terminal session shows the creation of a virtualenv and
the structure of the directory tree created. The listing of the bin subdirectory
shows that this particular user, by default, uses an interpreter installed in
/usr/local/bin.

machine:~ user$ python3 -m venv /tmp/tempenv
machine:~ user$ tree -dL 4 /tmp/tempenv
/tmp/tempenv
|--- bin
|--- include
|___ lib
 |___ python3.5
 |___ site-packages
 |--- __pycache__
 |--- pip
 |--- pip-8.1.1.dist-info
 |--- pkg_resources
 |--- setuptools
 |___ setuptools-20.10.1.dist-info
11 directories
machine:~ user$ ls -l /tmp/tempenv/bin/
total 80
-rw-r--r-- 1 sh wheel 2134 Oct 24 15:26 activate

-rw-r--r-- 1 sh wheel 1250 Oct 24 15:26 activate.csh
-rw-r--r-- 1 sh wheel 2388 Oct 24 15:26 activate.fish
-rwxr-xr-x 1 sh wheel 249 Oct 24 15:26 easy_install
-rwxr-xr-x 1 sh wheel 249 Oct 24 15:26 easy_install-3.5
-rwxr-xr-x 1 sh wheel 221 Oct 24 15:26 pip
-rwxr-xr-x 1 sh wheel 221 Oct 24 15:26 pip3
-rwxr-xr-x 1 sh wheel 221 Oct 24 15:26 pip3.5
lrwxr-xr-x 1 sh wheel 7 Oct 24 15:26 python->python3
lrwxr-xr-x 1 sh wheel 22 Oct 24 15:26 python3-
>/usr/local/bin/python3

Deleting the virtualenv is as simple as removing the directory in which it
resides (and all subdirectories and files in the tree: rm -rf envpath in Unix-
like systems). Ease of removal is a helpful aspect of using virtualenvs.
The venv module includes features to help the programmed creation of
tailored environments (e.g., by pre-installing certain modules in the
environment or performing other post-creation steps). It is comprehensively
documented online; we do not cover the API further in this book.

Working with Virtual Environments
To use a virtualenv you activate it from your normal shell environment.
Only one virtualenv can be active at a time—activations don’t “stack” like
function calls. Activation tells your Python environment to use the
virtualenv’s Python interpreter and site-packages (along with the
interpreter’s full standard library). When you want to stop using those
dependencies, deactivate the virtualenv and your standard Python
environment is once again available. The virtualenv directory tree continues
to exist until deleted, so you can activate and deactivate it at will.
Activating a virtualenv in Unix-based environments requires use of the
source shell command so that the commands in the activation script make
changes to the current shell environment. Simply running the script would
mean its commands were executed in a subshell, and the changes would be
lost when the subshell terminated. For bash and similar shells, you activate
an environment located at path envpath with the command:

source envpath/bin/activate

https://docs.python.org/3/library/venv.html

Users of other shells are supported by scripts activate.csh and activate.fish
located in the same directory. On Windows systems, use activate.bat:

envpath/Scripts/activate.bat

Activation does many things; most importantly:
Adds the virtualenv’s bin directory at the beginning of the shell’s PATH
environment variable, so its commands get run in preference to anything
of the same name already on the PATH

Defines a deactivate command to remove all effects of activation
and return the Python environment to its former state

Modifies the shell prompt to include the virtualenv’s name at the start

Defines a VIRTUAL_ENV environment variable as the path to the
virtualenv’s root directory (scripts can use this to introspect the
virtualenv)

As a result of these actions, once a virtualenv is activated, the python
command runs the interpreter associated with that virtualenv. The
interpreter sees the libraries (modules and packages) installed in that
environment, and pip—now the one from the virtualenv, since installing
the module also installed the command in the virtualenv’s bin directory—by
default installs new packages and modules in the environment’s site-
packages directory.
Those new to virtualenvs should understand that a virtualenv is not tied to
any project directory. It’s perfectly possible to work on several projects,
each with its own source tree, using the same virtualenv. Activate it, then
move around your filesystem as necessary to accomplish your programming
tasks, with the same libraries available (because the virtualenv determines
the Python environment).
When you want to disable the virtualenv and stop using that set of
resources, simply issue the command deactivate.

This undoes the changes made on activation, removing the virtualenv’s bin
directory from your PATH, so the python command once again runs your
usual interpreter. As long as you don’t delete it, the virtualenv remains
available for future use by repeating the invocation to activate it.

Managing Dependency Requirements
Since virtualenvs were designed to complement installation with pip, it
should come as no surprise that pip is the preferred way to maintain
dependencies in a virtualenv. Because pip is already extensively
documented, we mention only enough here to demonstrate its advantages in
virtual environments. Having created a virtualenv, activated it, and installed
dependencies, you can use the pip freeze command to learn the exact
versions of those dependencies:

(tempenv) machine:- user$ pip freeze
appnope==0.1.0
decorator==4.0.10
ipython==5.1.0
ipython-genutils==0.1.0
pexpect==4.2.1
pickleshare==0.7.4
prompt-toolkit==1.0.8
ptyprocess==0.5.1
Pygments==2.1.3
requests==2.11.1
simplegeneric==0.8.1
six==1.10.0
traitlets==4.3.1
wcwidth==0.1.7

If you redirect the output of this command to a file called filename, you can
recreate the same set of dependencies in a different virtualenv with the
command pip install -r filename.

To distribute code for use by others, Python developers conventionally
include a requirements.txt file listing the necessary dependencies. When
you are installing software from the Python Package Index, pip installs the
packages you request along with any indicated dependencies. When you’re
developing software it’s convenient to have a requirements file, as you can

https://pip.pypa.io/en/stable/

use it to add the necessary dependencies to the active virtualenv (unless
they are already installed) with a simple pip install -r
requirements.txt.

To maintain the same set of dependencies in several virtualenvs, use the
same requirements file to add dependencies to each one. This is a
convenient way to develop projects to run on multiple Python versions:
create virtualenvs based on each of your required versions, then install from
the same requirements file in each. While the preceding example uses
exactly versioned dependency specifications as produced by pip
freeze, in practice you can specify dependencies and version
requirements in quite complex ways.

Other environment management solutions
Python virtual environments are focused on providing an isolated Python
interpreter, into which you can install dependencies for one or more Python
applications. The virtualenv package was the original way to create and
manage virtualenvs. It has extensive facilities, including the ability to create
environments from any available Python interpreter. Now maintained by the
Python Packaging Authority team, a subset of its functionality has been
extracted as the standard library venv module covered above, but
virtualenv is worth learning about if you need more control.

The pipenv package is another dependency manager for Python
environments. It maintains virtual environments whose contents are
recorded in a file named Pipfile. Much in the manner of similar Javascript
tools, it provides deterministic environments through the use of a
Pipfile.lock file, allowing the exact same dependencies to be deployed as in
the original installation.
The conda packages have a rather broader scope and can provide package,
environment and dependency management for any language. An alternative
miniconda package works exactly the same way but downloads only
those packages it needs, while the full anaconda package pre-loads many
hundreds of extension packages; the two are otherwise equivalent.

https://virtualenv.pypa.io/en/latest/
https://pipenv.pypa.io/en/latest/
https://docs.conda.io/projects/conda/en/latest/index.html

conda is written in Python, and installs its own Python interpreter in the
base environment. Whereas a standard Python virtualenv normally uses the
Python interpreter with which it was created, Python itself (when it is
included in the environment) is simply another dependency. This makes it
practical to update the version of Python used in the environment if
necessary. You can also, if you wish, use pip to install packages in a
Python-based conda environment. conda can dump an environment’s
contents as a YAML file, and you can use the file to replicate the
environment elsewhere.
Because of its additional flexibility, coupled with comprehensive open
source support led by its originators Anaconda, Inc. (formerly Continuum),
conda is widely used in academic environments, particularly in data
science and engineering, artificial intelligence, and financial analytics. It
installs software from what it calls channels. The default channel
maintained by Anaconda contains a wide range of packages, and third
parties maintain specialised channels such as the bioconda channel for
bioinformatics software. There is a community-based conda-forge channel,
open to anyone who wants to join up and add software. Signing up for an
account on the anaconda.org site lets you create your own channel, and also
to distribute software through the conda-forge channel.

Best practices with virtualenvs
There is remarkably little advice on how best to manage your work with
virtualenvs, though there are several sound tutorials: any good search
engine gives you access to the most current ones. We can, however, offer a
modest amount of advice that we hope will help you to get the most out of
them.
When you are working with the same dependencies in multiple Python
versions, it is useful to indicate the version in the environment name and
use a common prefix. So for project mutex you might maintain
environments called mutex_39 and mutex_310 for development under two
different versions of Python. When it’s obvious which Python is involved
(remember, you see the environment name in your shell prompt), there’s

https://conda-forge.org/docs/user/introduction.html
https://anaconda.org/

less risk of testing with the wrong version. You maintain dependencies
using common requirements to control resource installation in both.
Keep the requirements file(s) under source control, not the whole
environment. Given the requirements file it’s easy to re-create a virtualenv,
which depends only on the Python release and the requirements. You
distribute your project, and let your consumers decide which version(s) of
Python to run it on and create the appropriate virtual environment(s).
Keep your virtualenvs outside your project directories. This avoids the need
to explicitly force source code control systems to ignore them. It really
doesn’t matter where else you store them.
Your Python environment is independent of your projects’ location in the
filesystem. You can activate a virtual environment and then switch branches
and move around a change-controlled source tree to use it wherever
convenient.
To investigate a new module or package, create and activate a new
virtualenv and then pip install the resources that interest you. You can
play with this new environment to your heart’s content, confident in the
knowledge that you won’t be installing unwanted dependencies into other
projects.
You may find that experiments in a virtualenv require installation of
resources that aren’t currently project requirements. Rather than “pollute”
your development environment, fork it: create a new virtualenv from the
same requirements plus the testing functionality. Later, to make these
changes permanent, use change control to merge your source and
requirements changes back in from the fork.
If you are so inclined, you can create virtual environments based on debug
builds of Python, giving you access to a wealth of instrumentation
information about the performance of your Python code (and, of course, of
the interpreter itself).
Developing your virtual environment itself requires change control, and the
ease of virtualenv creation helps here too. Suppose that you recently
released version 4.3 of a module, and you want to test your code with new

versions of two of its dependencies. You could, with sufficient skill,
persuade pip to replace the existing copies of dependencies in your existing
virtualenv.
It’s much easier, though, to branch your project using source control tools,
update the requirements, and create an entirely new virtual environment
based on the updated requirements. You still have the original virtualenv
intact, and you can switch between virtualenvs to investigate specific
aspects of any migration issues that might arise. Once you have adjusted
your code so that all tests pass with the updated dependencies, you check in
your code and requirement changes, and merge into version 4.4 to complete
the update, advising your colleagues that your code is now ready for the
updated versions of the dependencies.
Virtual environments won’t solve all of a Python programmer’s problems.
Tools can always be made more sophisticated, or more general. But, by
golly, virtualenvs work, and we should take all the advantage of them that
we can.

1 Planned to be deleted in Python 3.12.

Chapter 5. Strings and Things

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 8th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

Python’s str type implements Unicode text strings with operators, built-in
functions, methods, and dedicated modules. The somewhat similar bytes
type represents arbitrary binary data as a sequence of bytes, also known as a
bytestring or byte string. Many textual operations are possible on objects of
either type: since these types are immutable, methods mostly create and
return a new string unless returning the subject string unchanged. A
mutable sequence of bytes can be represented as a bytearray, briefly
introduced in “Built-In Types.”
This chapter covers the methods available on these three types, in “Methods
of String and Bytes Objects”; string formatting, in “String Formatting”; and
the modules string (in “The string Module”) and pprint (in “The
pprint Module”). Issues related specifically to Unicode are covered in
“Unicode”. Formatted string literals are covered in “Formatted string
literals”.

Methods of String, Bytes and Bytearray
Objects

str, bytes and bytearray objects are sequences, as covered in
“Strings”; of these, only bytearray objects are mutable. All immutable-
sequence operations (repetition, concatenation, indexing, and slicing) apply
to instances of all three types, returning a new object of the same type.
Unless otherwise specified in Table 8-1 methods are present on objects of
all three types. Methods of str, bytes and bytearray objects return
values of the same type.
Terms such as “letters,” “whitespace,” and so on, refer to the corresponding
attributes of the string module, covered in “The string Module”.
Although bytearray objects are mutable, their methods returning a
bytearray result do not mutate the object but instead return a newly-
created bytearray even when the result is the same as the subject string.

For brevity the discussions below describe bytes and bytearray
objects as bytes. Take care when mixing these types: while they are
generally interoperable, the type of the result usually depends on the order
of the operands.

NOTE
In Table 8-1, for conciseness, we use sys.maxsize for integer default values meaning, in
practice, “any number, no matter how large.”

Table 5-1. Significant string and bytes methods.

capitalize

s.capitalize()
 Returns a copy of s where the first character, if a letter, is uppercase, and all
other letters, if any, are lowercase.

casefold

s.casefold()
 str only. Returns a string processed by the algorithm described in section
3.13 of the Unicode standard. This is similar to s.lower (described later in
this list) but also takes into account equivalences such as that between the
German 'ß' and 'ss', and is thus better for case-insensitive matching.

s.center(n, fillchar=' ')
 Returns a string of length max(len(s), n), with a copy of s in the central
part, surrounded by equal numbers of copies of character fillchar on both

https://www.unicode.org/versions/Unicode9.0.0/ch03.pdf

center

sides (e.g., 'ciao'.center(2) is 'ciao' and 'x'.center(4,'_')
is '_x__').

 count

s.count(sub, start=0, end=sys.maxsize)
 Returns the number of nonoverlapping occurrences of substring sub in
s[start:end].

decode

s.decode(encoding='utf-8', errors='strict')
 Not str. Returns a str object decoded from the bytes s according to the
given encoding. errors specifies how to handle decoding errors: 'strict'
cause errors to raise UnicodeError exceptions, 'ignore' ignores the
malformed data, and 'replace' replaces them with question marks; see
“Unicode” for details. Other values can be registered via
codecs.register_error(), covered in Table 8-7.

encode

s.encode(encoding='utf-8', errors='strict')
 str only. Returns a bytes object obtained from s with the given encoding
and error handling. See “Unicode” for more details.

endswith

s.endswith(suffix,start=0,end=sys.maxsize)
 Returns True when s[start:end] ends with string suffix; otherwise, False.
suffix can be a tuple of strings, in which case endswith returns True when
s[start:end] ends with any one of them.

expandtabs

s.expandtabs(tabsize=8)
 Returns a copy of s where each tab character is changed into one or more
spaces, with tab stops every tabsize characters.

 find

s.find(sub,start=0, end=sys.maxsize)
 Returns the lowest index in s where substring sub is found, such that sub is
entirely contained in s[start:end]. For example, 'banana'.find('na')
is 2, as is 'banana'.find('na',1), while
'banana'.find('na',3) is 4, as is 'banana'.find('na',-2).
find returns -1 when sub is not found.

format

s.format(*args, **kwargs)
 str only. Formats the positional and named arguments according to
formatting instructions contained in the string s. See “String Formatting” for
further details.

format_map

s.format_map(mapping)
 str only. Formats the mapping argument according to formatting instructions
contained in the string s. Equivalent to s.format(**mapping) but uses the
mapping directly. See “String Formatting” for formatting details.

 index

s.index(sub, start=0, end=sys.maxsize)
 Like find, but raises ValueError when sub is not found.

s.isalnum()
 Returns True when len(s) is greater than 0 and all characters in s are

isalnum

letters or digits. When s is empty, or when at least one character of s is neither
a letter nor a digit, isalnum returns False.

isalpha

s.isalpha()
 Returns True when len(s) is greater than 0 and all characters in s are
letters. When s is empty, or when at least one character of s is not a letter,
isalpha returns False.

isascii

Return True when the string is empty or all characters in the string are
ASCII, False otherwise. ASCII characters have code points in the range
U+0000-U+007F.

isdecimal

s.isdecimal()
 str only. Returns True when len(s) is greater than 0 and all characters in
s can be used to form decimal-radix numbers. This includes Unicode
characters defined as Arabic digits.

isdigit

s.isdigit()
 Returns True when len(s) is greater than 0 and all characters in s are
digits. When s is empty, or when at least one character of s is not a digit,
isdigit returns False.

isidentifier

s.isidentifier()
 str only. Returns True when s is a valid identifier according to the Python
language’s definition; keywords also satisfy the definition, so, for example,
'class'.isidentifier() returns True.

islower

s.islower()
 Returns True when all letters in s are lowercase. When s contains no letters,
or when at least one letter of s is uppercase, islower returns False.

isnumeric

s.isnumeric()
 str only. Similar to s.isdigit(), but uses a broader definition of numeric
characters that includes all characters defined as numeric in the Unicode
standard (such as fractions).

isprintable

s.isprintable()
 str only. Returns True when all characters in s are spaces ('\x20') or are
defined in the Unicode standard as printable. Because the null string contains
no unprintable characters, ''.isprintable() returns True.

isspace

s.isspace()
 Returns True when len(s) is greater than 0 and all characters in s are
whitespace. When s is empty, or when at least one character of s is not
whitespace, isspace returns False.

 istitle

s.istitle()
 Returns True when letters in s are titlecase: a capital letter at the start of
each contiguous sequence of letters, all other letters lowercase (e.g., 'King
Lear'.istitle() is True). When s contains no letters, or when at least
one letter of s violates the titlecase condition, istitle returns False (e.g.,

a

'1900'.istitle() and 'Troilus and Cressida'.istitle()
return False).

isupper

s.isupper()
 Returns True when all letters in s are uppercase. When s contains no letters,
or when at least one letter of s is lowercase, isupper returns False.

 join

s.join(seq)
 Returns the string obtained by concatenating the items of seq separated by
copies of s (e.g., ''.join(str(x) for x in range(7)) is
'0123456' and 'x'.join('aeiou') is 'axexixoxu').

 ljust

s.ljust(n, fillchar=' ')
 Returns a string of length max(len(s),n), with a copy of s at the start,
followed by zero or more trailing copies of character fillchar.

 lower

s.lower()
 Returns a copy of s with all letters, if any, converted to lowercase.

 lstrip

s.lstrip(x=string.whitespace)
 Returns a copy of s after removing any leading characters found in string x.
For example, 'banana'.lstrip('ab') returns 'nana'.

removeprefix

||3.9++||s.removeprefix(prefix)
 When s begins with prefix returns the remainder of s, otherwise returns s

removesuffix

||3.9++||s.removesuffix(suffix)
 When s ends with suffix returns the rest of s, otherwise returns s

replace

s.replace(old,new,count=sys.maxsize)
 Returns a copy of s with the first count (or fewer, if there are fewer)
nonoverlapping occurrences of substring old replaced by string new (e.g.,
'banana'.replace('a', 'e', 2) returns 'benena').

 rfind

s.rfind(sub,start=0,end=sys.maxsize)
 Returns the highest index in s where substring sub is found, such that sub is
entirely contained in s[start:end]. rfind returns -1 if sub is not found.

rindex

s.rindex(sub,start=0,end=sys.maxsize)
 Like rfind, but raises ValueError if sub is not found.

 rjust

s.rjust(n,fillchar=' ')
 Returns a string of length max(len(s),n), with a copy of s at the end,
preceded by zero or more leading copies of character fillchar.

 rstrip

s.rstrip(x=string.whitespace)
 Returns a copy of s, removing trailing characters that are found in string x.

 For example, 'banana'.rstrip('ab') returns 'banan'.

 split

s.split(sep=None,maxsplit=sys.maxsize)
 Returns a list L of up to maxsplit+1 strings. Each item of L is a “word” from
s, where string sep separates words. When s has more than maxsplit words,
the last item of L is the substring of s that follows the first maxsplit words.
When sep is None, any string of whitespace separates words (e.g., 'four
score and seven years'.split(None,3) is
['four','score','and','seven years']).
 Note the difference between splitting on None (any string of whitespace is a
separator) and splitting on ' ' (each single space character, not other
whitespace such as tabs and newlines, and not strings of spaces, is a
separator). For example:

>>> x = 'a b' # two spaces between a and b
>>> x.split() # or x.split(None) ['a', 'b']
>>> x.split(' ') ['a', '', 'b']

In the first case, the two-spaces string in the middle is a single separator; in
the second case, each single space is a separator, so that there is an empty
string between the two spaces.

splitlines

s.splitlines(keepends=False)
 Like s.split('\n'). When keepends is true, however, the trailing '\n'
is included in each item of the resulting list (except the last one, if s does not
end with '\n').

startswith

s.startswith(prefix,start=0,end=sys.maxsize)
 Returns True when s[start:end] starts with string prefix; otherwise,
False. prefix can be a tuple of strings, in which case startswith returns
True when s[start:end] starts with any one of them.

 strip

s.strip(x=string.whitespace)
 Returns a copy of s, removing both leading and trailing characters that are
found in string x. For example, 'banana'.strip('ab') is 'nan'.

swapcase

s.swapcase()
 Returns a copy of s with all uppercase letters converted to lowercase and vice
versa.

 title

s.title()
 Returns a copy of s transformed to titlecase: a capital letter at the start of each
contiguous sequence of letters, with all other letters (if any) lowercase.

translate

s.translate(table,delete=b’’)
 Returns a copy of s where characters found in table are translated or deleted.
When s is a str, you cannot pass argument delete; table is a dict whose
keys are Unicode ordinals; values are Unicode ordinals, Unicode strings, or
None (to delete the corresponding character)—for example:
 tbl = {ord('a'):None, ord('n'):'ze'}
print('banana'.translate(tbl)) # prints: 'bzeze'
 When the value of s is bytes, table is a bytes object of length 256; the
result of s.translate(t, d) is a bytes object with each item b of s
omitted if b is one of the items of delete, otherwise changed to t[ord(b)].
 Each of bytes and str have a class method named maketrans which
you can use to build tables suitable for the respective translate methods.

upper

s.upper()
 Returns a copy of s with all letters, if any, converted to uppercase.

a Note that this does not include the punctuation marks used as a radix, such as dot (.)
and comma (,).

The string Module
The string module supplies several useful string attributes:

ascii_letters
The string ascii_lowercase+ascii_uppercase

ascii_lowercase
The string 'abcdefghijklmnopqrstuvwxyz'

ascii_uppercase
The string 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

digits
The string '0123456789'

hexdigits
The string '0123456789abcdefABCDEF'

octdigits
The string '01234567'

punctuation
The string '!"#$%&\'()*+,-./:;<=>?@[\]^_'{|}~' (i.e., all
ASCII characters that are deemed punctuation characters in the 'C'
locale; does not depend on which locale is active)

printable
The string of those ASCII characters that are deemed printable (i.e.,
digits, letters, punctuation, and whitespace)

whitespace
A string containing all ASCII characters that are deemed whitespace: at
least space, tab, linefeed, and carriage return, but more characters (e.g.,
certain control characters) may be present, depending on the active
locale

You should not rebind these attributes; the effects of doing so are undefined,
since other parts of the Python library may rely on them.
The module string also supplies the class Formatter, covered in
“String Formatting”.

String Formatting
Python provides a flexible mechanism for formatting strings (but not byte
strings: for those, see “Legacy String Formatting with %”). A format string
is simply a string containing replacement fields enclosed in braces ({}),
made up of a value part, a conversion part and a format specifier.

The value part differs depending on the string type.
For formatted string literals, the value part is evaluated as a Python
expression (see “Formatted string literals”); expressions cannot end in an
exclamation mark.

For other strings the value part selects an argument or an element of an
argument to the format method.

The optional conversion part is an exclamation mark (!) followed by one of
the letters s, r, or a.
The optional format specifier begins with a colon (:) and determines how
the converted value is rendered for interpolation in the format string in the
place of the original replacement field.
Here’s a simple formatted string literal example. Notice that text
surrounding the replacement fields is copied through literally into the result:

>>> n = 10; s = 'zero', 'one', 'two', 'three'; i=2
>>> f'start {"-"*n} : {s[i]} end'
'start ---------- : two end'

For other strings, the formatting operation is performed by a call to the
string’s format method. In these cases the replacement field begins with a
value part that selects an argument of the call. You can specify both
positional and named arguments. A simple format method call is shown
below:

>>> "This is a {0}, {1}, type of {type}".format("large", "green",
type="vase")
'This is a large, green type of vase'

For simplicity, none of the replacement fields above contain a conversion
part or a format.

Values by expression evaluation

Because these expressions occur inside formatted string literals, take care to
avoid syntax errors when attempting to use value part expressions that
themselves contain string quotes. With four different string quotes plus the
ability to use escape sequences most things are possible, though admittedly
readability can suffer.

Values by argument lookup
The argument selection mechanism can handle positional and named
arguments. The simplest replacement field is the empty pair of braces ({}),
representing an automatic positional argument specifier. Each such
replacement field automatically refers to the value of the next positional
argument to format:

>>> 'First: {} second: {}'.format(1, 'two')
'First: 1 second: two'

To repeatedly select an argument, or use it out of order, use the argument’s
number to specify its position in the list of arguments (counting from zero):

>>> 'Second: {1}, first: {0}'.format(42, 'two')
'Second: two, first: 42'

You cannot mix automatic and numbered replacement fields: it’s an either-or
choice.
For named arguments, use argument names and if desired mix them with
(automatic or numbered) positional arguments:

>>> 'a: {a}, 1st: {}, 2nd: {}, a again: {a}'.format(1, 'two',
a=3)
'a: 3, 1st: 1, 2nd: two, a again: 3'
>>> 'a: {a} first:{0} second: {1} first: {0}'.format(1, 'two',
a=3)
'a: 3 first:1 second: two first: 1'

If an argument is a sequence, you can use numeric indexes to select a
specific element of the argument as the value to be formatted. This applies

to both positional (automatic or numbered) and named arguments:

>>> 'p0[1]: {[1]} p1[0]: {[0]}'.format(('zero', 'one'), ('two',
'three'))
'p0[1]: one p1[0]: two'
>>> 'p1[0]: {1[0]} p0[1]: {0[1]}'.format(('zero', 'one'), ('two',
'three'))
'p1[0]: two p0[1]: one'
>>> '{} {} {a[2]}'.format(1, 2, a=(5, 4, 3))'1 2 3'

If an argument is a composite object, you can select its individual attributes
as values to be formatted by applying attribute-access dot notation to the
argument selector. Here is an example using complex numbers, which have
real and imag attributes that hold the real and imaginary parts,
respectively:

>>> 'First r: {.real} Second i: {a.imag}'.format(1+2j, a=3+4j)
'First r: 1.0 Second i: 4.0'

Indexing and attribute-selection operations can be used multiple times, if
required.

Value Conversion
You may apply a default conversion to the value via one of its methods.
You indicate this by following any selector with !s to apply the object’s
__str__ method, !r for its __repr__ method, or !a for the ascii
built-in.
In the presence of a conversion part the converted value replaces the
original value in the remainder of the formatting process.

Value Formatting
The formatting of the value (if any further formatting is required) is
determined by a final (optional) portion of the replacement field, following
a colon (:), known as the format specifier. The absence of a colon in the
replacement field means that the converted value is used with no further

formatting. Format specifiers may include one or more of the following: fill,
alignment, sign, radix indicator, width, comma separation, precision, type.

Alignment, with optional (preceding) fill
If alignment is required the formatted value is filled to the correct field
width. The default fill character is the space, but an alternative fill character
(which may not be an opening or closing brace) can, if required, precede the
alignment indicator. See Table 8-2.

Table 5-2. Alignment indicators

Character

 Significance as alignment indicator

 '<'

Align value on left of field

 '>'

Align value on right of field

 '^'

Align value in the center of the field

 '='

Only for numeric types: add fill characters between the sign and the first
digit of the numeric value

When no alignment is specified, most values are left-aligned, except that
numeric values are right-aligned. Unless a field width is specified later in
the format specifier, no fill characters are added, whatever the fill and
alignment may be.

Optional sign indication
For numeric values only, you can indicate how positive and negative
numbers are differentiated by optionally including a sign indicator. See
Table 8-3.

Table 5-3. Sign indicators

Character

 Significance as sign indicator

'+'

Insert '+' as sign for positive numbers; '-' as sign for negative numbers

'-'

Insert '-' as sign for negative numbers; do not insert any sign for positive
numbers (default behavior if no sign indicator is included)

 '
'

Insert ' ' as sign for positive numbers; '-' as sign for negative numbers

Radix indicator
For numeric integer formats only, you can include a radix indicator, the
'#' character. If present, this indicates that the digits of binary-formatted
numbers are preceded by '0b', those of octal-formatted numbers by
'0o', and those of hexadecimal-formatted numbers by '0x'. For
example, '{:x}'.format(23) is '17', while
'{:#x}'.format(23) is '0x17'.

Field width
You can specify the width of the field to be printed. If the width specified is
less than the length of the value, the length of the value is used (no
truncation). If alignment is not specified, the value is left-justified (except
numbers, which are right-justified):

>>> s = 'a string'
>>> '{^i2s}'.format(s)' a string '
>>> '{:.>12s}'.format(s)'....a string'

The field width can be a format argument too:

>>> '{:.>{}s}'.format(s, 20)
'............a string'

Digit grouping
For numeric values only in decimal (default) format type, you can insert
either a comma (,) or an underscore (_) to request that each group of three
digits in the result be separated by that character. For example:

print('{:,}'.format(12345678))# prints 12,345,678

This behavior ignores system locale; for a locale-aware use of appropriate
digit grouping and decimal point character, see format type 'n' in Table 8-
4.

Precision specification
The precision (e.g., .2) has different meanings for different format types
(see the following section), with .6 as the default for most numeric
formats. For the f and F format types, it specifies the number of decimal
digits to which the value should be rounded in formatting; for the g and G
format types, it specifies the number of significant digits to which the value
should be rounded; for non-numeric values, it specifies truncation of the
value to its leftmost characters before formatting.

>>> s = 'a string'
>>> x = 1.12345
>>> 'as f: {:.4f}'.format(x)
'as f: 1.1235'
>>> 'as g: {:.4g}'.format(x)
'as g: 1.123'
>>> 'as s: {:.6s}'.format(s)
'as s: a stri'

Format type
The format specification ends with an optional format type, which
determines how the value gets represented in the given width and at the
given precision. When the format type is omitted, the value being formatted
applies a default format type.

The s format type is used to format Unicode strings.

Integer numbers have a range of acceptable format types, listed in Table 8-
4.

Table 5-4. Table caption to come

Format type

 Formatting description

 'b'

Binary format—a series of ones and zeros

 'c'

The Unicode character whose ordinal value is the formatted value

 'd'

Decimal (the default format type)

 'o'

Octal format—a series of octal digits

'x' or 'X' Hexadecimal format—a series of hexadecimal digits, with the letters,
respectively, in lower- or uppercase

 'n'

Decimal format, with locale-specific separators (commas in the UK and
US) when system locale is set

Floating-point numbers have a different set of format types, shown in Table
8-5.

Table 5-5. Table caption to come

Format type

 Formatting description

'e' or 'E' Exponential format—scientific notation, with an integer part between one and
nine, using 'e' or 'E' just before the exponent

'f' or 'F' Fixed-point format with infinities ('inf') and nonnumbers ('nan') in

lower- or uppercase

'g' or 'G' General format—uses a fixed-point format when possible, otherwise
exponential format; uses lower- or uppercase representations for 'e',
'inf', and 'nan', depending on the case of the format type

'n'

Like general format, but uses locale-specific separators, when system locale is
set, for groups of three digits and decimal points

'%'

Percentage format—multiplies the value by 100 and formats it as a fixed-point
followed by '%'

When no format type is specified, a float uses the 'g' format, with at
least one digit after the decimal point and a default precision of 12.

>>> n = [3.1415, -42, 1024.0]
>>> for num in n:
... '{:>+9,.2f}'.format(num)
...
' +3.14'
' -42.00'
'+1,024.00'

Nested format specifications
In some cases you want to include an argument to format to help
determine the precise format of another argument: you can use nested
formatting to achieve this. For example, to format a string in a field four
characters wider than the string itself, you can pass a value for the width to
format, as in:

>>> s = 'a string'
>>> '{0:>{1}s}'.format(s, len(s)+4)
' a string'
>>> '{0:_^{1}s}'.format(s, len(s)+4)
'__a string__'

With some care, you can use width specification and nested formatting to
print a sequence of tuples into well-aligned columns. For example:

def columnar strings(str_seq, widths):
 for cols in str_seq:
 row = ['{c:{w}.{w}s}'.format(c=c, w=w)
 for c, w in zip(cols, widths)]
 print(' '.join(row))

('{c:{w}.{w}s}'.format(c=c, w=w) can be simplified to f'{c:
{w}.{w}s}', as covered in “Formatted String Literals”.) Given this
function, the following code:

c = [
 'four score and'.split(),
 'seven years ago'.split(),
 'our forefathers brought'.split(),
 'forth on this'.split(),
]
print(columnar_strings(c, (8, 8, 8)))

prints:

four score and
seven years ago
our forefathers brought
forth on this

Formatting of user-coded classes
Values are ultimately formatted by a call to their __format__ method
with the format specifier as an argument. Built-in types either implement
their own method or inherit from object, whose format method only
accepts an empty string as an argument.

>>> object().__format__('')
'<object object at 0x110045070>'
>>> math.pi.__format__('18.6')
' 3.14159'

You can use this knowledge to implement an entirely different formatting
mini-language of your own, should you so choose. The following simple
example demonstrates the passing of format specifications and the return of
a (constant) formatted string result. The interpretation of the format

specification is under your control, and you may choose to implement
whatever formatting notation you choose.

>>> class S:
... def __init__(self, value):
... self.value = value
... def __format__(self, fstr):
... match fstr:
... case "U":
... return self.value.upper()
... case 'L':
... return self.value.lower()
... case 'T':
... return self.value.title()
... case _:
... return ValueError(f’Unrecognised format code
{fstr!r}’)
...
>>> my_s = S('random string')
>>> f'{my_s:L}, {my_s:U}, {my_s:T}'
'random string, RANDOM STRING, Random String'

The return value of the __format__ method is substituted for the
replacement field in the output of the call to format, allowing any desired
interpretation of the format string.
To help you format your objects more easily, the string module provides
a Formatter class with many helpful methods for handling formatting
tasks. See the documentation for Formatter in the online docs.

Formatted String Literals
This feature helps use the formatting capabilities just described. It uses the
same formatting syntax, but lets you specify expression values inline rather
than through parameter substitution. Instead of argument specifiers, f-
strings use expressions, evaluated and formatted as specified. For example,
instead of:

>>> name = 'Dawn'
>>> print('{name!r} is {l} characters long'
 .format(name=name, l=len(name)))
'Dawn' is 4 characters long

https://docs.python.org/3/library/string.html#string.Formatter

you can use the more concise form:

>>> print(f'{name!r} is {len(name)} characters long')
'Dawn' is 4 characters long

You can use nested braces to specify components of formatting expressions:

>>> for width in 8, 11:
... for precision in 2, 3, 4, 5:
... print(f'{3.14159:{width}.{precision}}')
...
 3.1
 3.14
 3.142
 3.1416
 3.1
 3.14
 3.142
 3.1416

Do remember, though, that these string literals are not constants—they
evaluate each time a statement containing them runs, causing runtime
overhead.

Debug printing with formatted string literals
||3.8++|| As a convenience for debugging, the last non-blank character of the
value expression in a formatted string literal can be followed by an equals
sign (=), optionally surrounded by spaces. In this case the text of the
expression itself and the equals sign, including any leading and trailing
spaces, is output before the value. If no format is specified the interpreter
uses the repr() of the value as output, otherwise the str() of the value is
used unless a !r value conversion is specified.

>>> f'{a*s=}'
"a*s='*-*-*-*-*-*-*-*-*-*-*-*-'"
>>> f'{a*s = :30}'
'a*s = *-*-*-*-*-*-*-*-*-*-*-*- '

Note that this form is only available in formatted string literals.

Legacy String Formatting with %
A legacy form of string formatting expression in Python has the syntax:

format % values

where format is a string, bytes or bytearray containing format specifiers and
values are the values to format, usually as a tuple (in this book we cover
only the subset of this legacy feature, the format specifier, that you must
know to properly use the logging module, covered in “The logging
package”). Unlike Python’s newer formatting capabilities, you can use %-
formatting with bytes and bytearray objects.
The equivalent use in logging would be, for example:

logging.info(format, *values)

with the values coming as positional arguments after the first, format one.
The legacy string-formatting approach has roughly the same set of features
as the C language’s printf and operates in a similar way. Each format
specifier is a substring of format that starts with a percent sign (%) and ends
with one of the conversion characters shown in Table 8-6.

Table 5-6. String-formatting conversion characters

Character

 Output format

 Notes

 d,
i

Signed decimal integer Value must be a number.

 u

Unsigned decimal integer Value must be a number.

 o

Unsigned octal integer Value must be a number.

 x

Unsigned hexadecimal integer (lowercase
letters)

Value must be a number.

 X

Unsigned hexadecimal integer (uppercase
letters)

Value must be a number.

 e

Floating-point value in exponential form
(lowercase e for exponent)

Value must be a number.

 E

Floating-point value in exponential form
(uppercase E for exponent)

Value must be a number.

 f,
F

Floating-point value in decimal form Value must be a number.

 g,
G

Like e or E when exp is >=4 or <
precision; otherwise, like f or F

exp is the exponent of the
number being converted.

 a

String Converts any value with
ascii.

 r

String Converts any value with repr.

 s

String Converts any value with str.

 %

Literal % character Consumes no value.

The a, r and s conversion characters are the ones most often used with the
logging module. Between the % and the conversion character, you can
specify a number of optional modifiers, as we’ll discuss shortly.
What is logged with a formatting expression is format, where each format
specifier is replaced by the corresponding item of values converted to a
string according to the specifier. Here are some simple examples:

import logging
logging.getLogger().setLevel(logging.INFO)
x = 42
y = 3.14
z = 'george'
logging.info('result = %d', x) # logs: result = 42
logging.info('answers: %d %f', x, y) # logs: answers: 42
3.140000
logging.info('hello %s', z) # logs: hello george

Format Specifier Syntax
A format specifier can include modifiers to control how the corresponding
item in values is converted to a string. The components of a format
specifier, in order, are:

The mandatory leading % character that marks the start of the specifier

Zero or more optional conversion flags:
— # The conversion uses an alternate form (if any exists for its type).

— 0 The conversion is zero-padded.

— - The conversion is left-justified.

— A space Negative numbers are signed, a space is placed before a
positive number.

— + A numeric sign (+ or -) is placed before any numeric conversion.

An optional minimum width of the conversion: one or more digits, or an
asterisk (*), meaning that the width is taken from the next item in values

An optional precision for the conversion: a dot (.) followed by zero or
more digits, or by a *, meaning that the precision is taken from the next
item in values

A mandatory conversion type from Table 8-6

Each format specifier corresponds to an item in values by position, and
there must be exactly as many values as format has specifiers (plus one
extra for each width or precision given by *). When a width or precision is
given by *, the * consumes one item in values, which must be an integer
and is taken as the number of characters to use as width or precision of that
conversion.

When to use %r (or %a)
Most often, the format specifiers in your format string are all %s;
occasionally, you’ll want to ensure horizontal alignment on the output (for
example, in a right-justified, maybs-truncated space of exactly 6 characters,
in which case you’d use %6.6s). However, there is an important special
case for %r or %a.

Always Use %r (or %a) to Log Possibly Erroneous
Strings
When you’re logging a string value that might be erroneous (for example, the name of a file that is
not found), don’t use %s: when the error is that the string has spurious leading or trailing spaces,
or contains some nonprinting characters such as \b, %s can make this hard for you to spot by
studying the logs. Use %r or %a instead, so that all characters are clearly shown, possibly via
escape sequences.

Text Wrapping and Filling
The textwrap module supplies a class and a few functions to format a
string by breaking it into lines of a given maximum length. To fine-tune the
filling and wrapping, you can instantiate the TextWrapper class supplied
by textwrap and apply detailed control. Most of the time, however, one
of the these functions exposed by textwrap suffices:

 wrap

wrap(s,width=70)
 Returns a list of strings (without terminating newlines), each no longer than

 width characters. s.wrap also supports other named arguments (equivalent to
attributes of instances of class TextWrapper); for such advanced uses, see
the online docs.

 fill

fill(s,width=70)
 Returns a single multiline string equal to '\n'.join(wrap(s,width)).

dedent

dedent(s)
 Takes a multiline string and returns a copy in which all lines have had the
same amount of leading whitespace removed, so that some lines have no
leading whitespace.

The pprint Module
The pprint module pretty-prints complicated data structures, with
formatting that strives to be more readable than that supplied by the built-in
function repr (covered in Table 7-2). To fine-tune the formatting, you can
instantiate the PrettyPrinter class supplied by pprint and apply
detailed control, helped by auxiliary functions also supplied by pprint.
Most of the time, however, one of two functions exposed by pprint
suffices:

pformat

pformat(obj)
 Returns a string representing the pretty-printing of obj.

pprint

pprint(obj, stream=sys.stdout)
 Outputs the pretty-printing of obj to open-for-writing file object stream, with
a terminating newline.
 The following statements do exactly the same thing:

print(pprint.pformat(x)) pprint.pprint(x)

 Either of these constructs is roughly the same as print(x) in many cases,
for example for a container that can be displayed within a single line.
However, with something like x=list(range(30)), print(x) displays
x in two lines, breaking at an arbitrary point, while using the module pprint
displays x over 30 lines, one line per item. Use pprint when you prefer the
module’s specific display effects to the ones of normal string representation.

https://docs.python.org/3/library/textwrap.html

The reprlib Module
The reprlib module supplies an alternative to the built-in function repr
(covered in Table 7-2), with limits on length for the representation string.
To fine-tune the length limits, you can instantiate or subclass the Repr
class supplied by the module and apply detailed control. Most of the time,
however, the function exposed by the module suffices.

 repr

repr(obj)
 Returns a string representing obj, with sensible limits on length.

Unicode
To convert bytestrings into Unicode strings use the decode method of
bytestrings. The conversion must always be explicit, and is performed using
an auxiliary object known as a codec (short for coder-decoder). A codec
can also convert Unicode strings to bytestrings using the encode method
of strings. To identify a codec, pass the codec name to decode, or
encode. When you pass no codec name Python uses a default encoding,
normally 'utf8'.

Every conversion has a parameter errors, a string specifying how
conversion errors are to be handled. Sensibly, the default is 'strict',
meaning any error raises an exception.
When errors is 'replace', the conversion replaces each character
causing errors with '?' in a bytestring result, with u'\ufffd' in a
Unicode result. When errors is 'ignore', the conversion silently skips
characters causing errors. When errors is 'xmlcharrefreplace', the
conversion replaces each character causing errors with the XML character
reference representation of that character in the result. You may code your
own function to implement a conversion error handling strategy and register
it under an appropriate name by calling codecs.register_error,
covered in Table 8-7 below.

The codecs Module
The mapping of codec names to codec objects is handled by the codecs
module. This module also lets you develop your own codec objects and
register them so that they can be looked up by name, just like built-in
codecs. The codecs module also lets you look up any codec explicitly,
obtaining the functions the codec uses for encoding and decoding, as well
as factory functions to wrap file-like objects. Such advanced facilities are
rarely used, and we do not cover them in this book.
The codecs module, together with the encodings package of the
standard Python library, supplies built-in codecs useful to Python
developers dealing with internationalization issues. Python comes with over
100 codecs; a list of these codecs, with a brief explanation of each, is in the
online docs. It’s not good practice to install a codec as the site-wide default
in the module sitecustomize; rather, the preferred usage is to always
specify the codec by name whenever converting between byte and Unicode
strings. A popular codec in Western Europe is 'latin-1', a fast, built-in
implementation of the ISO 8859-1 encoding that offers a one-byte-per-
character encoding of special characters found in Western European
languages; beware that it lacks the Euro currency character '€'-- if you
need that, use 'iso8859-15'.

The codecs module also supplies codecs implemented in Python for most
ISO 8859 encodings, with codec names from 'iso8859-1' to
'iso8859-15'. On Windows systems only, the codec named 'mbcs'
wraps the platform’s multibyte character set conversion procedures. The
codecs module also supplies various code pages with names from
'cp037' to 'cp1258', and Unicode standard encodings 'utf-8'
(likely to be most often the best choice, thus recommended, and the default)
and 'utf-16' (which has specific big-endian and little-endian variants:
'utf-16-be' and 'utf-16-le'). For use with UTF-16, codecs also
supplies attributes BOM_BE and BOM_LE, byte-order marks for big-endian
and little-endian machines, respectively, and BOM, the byte-order mark for
the current platform.

https://docs.python.org/3/library/codecs.html%23standard-encodings

The codecs module also supplies a function to let you register your own
conversion-error-handling functions, as described in Table 8-7.

Table 5-7. Table caption to come

register_erro
r

register_error(name, func)
 name must be a string. func must be callable with one argument e that’s an
instance of exception UnicodeDecodeError, and must return a tuple with
two items: the Unicode string to insert in the converted-string result and the
index from which to continue the conversion (the latter is normally e.end).
The function’s body can use e.encoding, the name of the codec of this
conversion, and e.object[e.start:e.end], the substring that caused
the conversion error.

The unicodedata Module
The unicodedata module supplies easy access to the Unicode Character
Database. Given any Unicode character, you can use functions supplied by
unicodedata to obtain the character’s Unicode category, official name
(if any), and other relevant information. You can also look up the Unicode
character (if any) that corresponds to a given official name.

>>> unicodedata.name("🌈" 'RAINBOW')
>>> unicodedata.name("Ⅵ")
'ROMAN NUMERAL SIX'
>>> int("Ⅵ")
ValueError: invalid literal for int() with base 10: 'Ⅵ'
>>> unicodedata.numeric("Ⅵ") # use unicodedata to get the
numeric value
6.0
>>> unicodedata.lookup("MUSICAL SCORE")
§'🎼'

Chapter 6. Regular Expressions

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 9th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

Regular expressions (REs) let you specify pattern strings and perform
searches and substitutions. Regular expressions are not easy to master, but
they can be a powerful tool for processing text. Python offers rich regular
expression functionality through the built-in re module. In this chapter, we
thoroughly present all of Python’s REs.

Regular Expressions and the re Module
A regular expression (RE) is built from a string that represents a pattern.
With RE functionality, you can examine any string and check which parts of
the string, if any, match the pattern.
The re module supplies Python’s RE functionality. The compile function
builds an RE object from a pattern string and optional flags. The methods of
an RE object look for matches of the RE in a string or perform
substitutions. The re module also exposes functions equivalent to an RE
object’s methods, but with the RE’s pattern string as the first argument.
REs can be difficult to master, and this book does not purport to teach them;
we cover only the ways in which you can use REs in Python. For general
coverage of REs, we recommend the book Mastering Regular Expressions,

by Jeffrey Friedl (O’Reilly), offering thorough coverage of REs at both
tutorial and advanced levels. Many tutorials and references on REs can also
be found online, including an excellent, detailed tutorial in Python’s online
docs. Sites like Pythex and regex101 let you test your REs interactively.

REs and bytes Versus str
REs in Python work in two ways, depending on the type of the object being
matched: when applied to str instances, an RE matches accordingly (for
example, a Unicode character c is deemed to be “a letter” if 'LETTER'
in unicodedata.name(c)); when applied to bytes instances, an
RE matches in terms of ASCII (for example, a byte c is deemed to be “a
letter” if c in string.ascii_letters). For example:

import re
print(re.findall(r'\w+', 'cittá'))# prints ['cittá']
print(re.findall(rb'\w+', 'cittá'.encode())) # prints [b'citt']

Pattern-String Syntax
The pattern string representing a regular expression follows a specific
syntax:

Alphabetic and numeric characters stand for themselves. An RE whose
pattern is a string of letters and digits matches the same string.

Many alphanumeric characters acquire special meaning in a pattern
when they are preceded by a backslash (\).

Punctuation works the other way around: self-matching when escaped,
special meaning when unescaped.

The backslash character is matched by a repeated backslash (i.e., pattern
\\).

Since RE patterns often contain backslashes, it’s best to always specify
them using raw string literal form (covered in “Strings”). Pattern elements

https://docs.python.org/3/howto/regex.html
http://pythex.org/
https://regex101.com/

(such as r'\t', equivalent to the string literal '\\t') do match the
corresponding special characters (in this case, the tab character '\t'); so,
you can use a raw string literal even when you need a literal match for such
special characters.
Table 9-1 lists the special elements in RE pattern syntax. The exact
meanings of some pattern elements change when you use optional flags,
together with the pattern string, to build the RE object. The optional flags
are covered in “Optional Flags”.

Table 6-1. RE pattern syntax

Element

 Meaning

 .

Matches any single character except \n (if DOTALL, also matches \n)

 ^

Matches start of string (if MULTILINE, also matches right after \n)

 $

Matches end of string (if MULTILINE, also matches right before \n)

 *

Matches zero or more cases of the previous RE; greedy (match as many as
possible)

 +

Matches one or more cases of the previous RE; greedy (match as many as
possible)

 ?

Matches zero or one case of the previous RE; greedy (match one if possible)

*?, +?, ?? Non-greedy versions of *, +, and ?, respectively (match as few as possible)

{m} Matches m cases of the previous RE

{m, n} Matches between m and n cases of the previous RE; m or n (or both) may be
omitted, defaulting to m=0 and n=infinity (greedy)

{m, n}? Matches between m and n cases of the previous RE (non-greedy)

 Matches any one of a set of characters contained within the brackets

[...]

[^...]

Matches one character not contained within the brackets after the caret ^

 |

Matches either the preceding RE or the following RE

(...)

Matches the RE within the parentheses and indicates a group

 (?
aiLmsux)

Alternate way to set optional flags; no effect on match

(?:...)

Like (...) but does not capture the matched characters in a group

 (?
P<
 id

>...)

Like (...) but the group also gets the name id

 (?
P=
 id
)

Matches whatever was previously matched by group named id

 (?
#...)

Content of parentheses is just a comment; no effect on match

 (?
=...)

Lookahead assertion: matches if RE ... matches what comes next, but does not
consume any part of the string

 Negative lookahead assertion: matches if RE ... does not match what comes

a

(?!...)

next, and does not consume any part of the string

 (?
<=...)

Lookbehind assertion: matches if there is a match ending at the current
position for RE ... (... must match a fixed length)

 (?
<!...)

Negative lookbehind assertion: matches if there is no match ending at the
current position for RE ... (... must match a fixed length)

\ number Matches whatever was previously matched by group numbered number
(groups are automatically numbered left to right, from 1 to 99)

 \A

Matches an empty string, but only at the start of the whole string

 \b

Matches an empty string, but only at the start or end of a word (a maximal
sequence of alphanumeric characters; see also \w)

 \B

Matches an empty string, but not at the start or end of a word

 \d

Matches one digit, like the set [0-9] (in Unicode mode, many other Unicode
characters also count as “digits” for \d, but not for [0-9])

 \D

Matches one non-digit, like the set [^0-9] (in Unicode mode, many other
Unicode characters also count as “digits” for \D, but not for [^0-9])

 \s

Matches a whitespace character, like the set [\t\n\r\f\v]

 \S

Matches a non-whitespace character, like the set [^\t\n\r\f\v]

 \w

Matches one alphanumeric character; unless in Unicode mode, or LOCALE or
UNICODE is set, \w is like [a-zA-Z0-9_]

 \W

Matches one non-alphanumeric character, the reverse of \w

 \Z

Matches an empty string, but only at the end of the whole string

 \\

Matches one backslash character

a Always place the (?...) construct for setting flags, if any, at the start of the pattern, for
readability; placing it elsewhere raises a DeprecationWarning.

Using a '\' character followed by an alphabetic character not listed here
or in Table 3-1 raises a re.error exception.

Common Regular Expression Idioms

Always Use r’...’ Syntax for RE Pattern Literals
Use raw string literals for all RE pattern literals, and for them only: this ensures you’ll never
forget to escape a backslash (\), and improves code readability as it makes your RE pattern literals
stand out.

.* as a substring of a regular expression’s pattern string means “any
number of repetitions (zero or more) of any character.” In other words, .*
matches any substring of a target string, including the empty substring. .+
is similar, but matches only a nonempty substring. For example:

r'pre.*post'

matches a string containing a substring 'pre' followed by a later substring
'post', even if the latter is adjacent to the former (e.g., it matches both
'prepost' and 'pre23post'). On the other hand:

r'pre.+post'

matches only if 'pre' and 'post' are not adjacent (e.g., it matches
'pre23post' but does not match 'prepost'). Both patterns also

match strings that continue after the 'post'. To constrain a pattern to
match only strings that end with 'post', end the pattern with \Z. For
example:

r'pre.*post\Z'

matches 'prepost', but not 'preposterous'.

All of these examples are greedy, meaning that they match the substring
beginning with the first occurrence of 'pre' all the way to the last
occurrence of 'post'. When you care about what part of the string you
match, you may want to specify nongreedy matching, meaning to match the
substring beginning with the first occurrence of 'pre' but only up to the
first following occurrence of 'post'.

For example, when the string is 'preposterous and post facto',
the greedy RE pattern r'pre.*post' matches the substring
'preposterous and post'; the nongreedy variant r'pre.*?
post' matches just the substring 'prepost'.

Another frequently used element in RE patterns is \b, which matches a
word boundary. To match the word 'his' only as a whole word and not its
occurrences as a substring in such words as 'this' and 'history', the
RE pattern is:

r'\bhis\b'

with word boundaries both before and after. To match the beginning of any
word starting with 'her', such as 'her' itself and 'hermetic', but
not words that just contain 'her' elsewhere, such as 'ether' or
'there', use:

r'\bher'

with a word boundary before, but not after, the relevant string. To match the
end of any word ending with 'its', such as 'its' itself and 'fits',

but not words that contain 'its' elsewhere, such as 'itsy' or
'jujitsu', use:

r'its\b'

with a word boundary after, but not before, the relevant string. To match
whole words thus constrained, rather than just their beginning or end, add a
pattern element \w* to match zero or more word characters. To match any
full word starting with 'her', use:

r'\bher\w*'

To match just the first three letters of any word starting with 'her', but
not the word 'her' itself, use a negative word boundary \B:

r'\bher\B'

To match any full word ending with 'its', including 'its' itself, use:

r'\w*its\b'

Sets of Characters
You denote sets of characters in a pattern by listing the characters within
brackets ([]). In addition to listing characters, you can denote a range by
giving the first and last characters of the range separated by a hyphen (-).
The last character of the range is included in the set, differently from other
Python ranges. Within a set, special characters stand for themselves, except
\,], and -, which you must escape (by preceding them with a backslash)
when their position is such that, if not escaped, they would form part of the
set’s syntax. You can denote a class of characters within a set by escaped-
letter notation, such as \d or \S. \b in a set means a backspace character
(chr(8)), not a word boundary. If the first character in the set’s pattern,
right after the [, is a caret (^), the set is complemented: such a set matches
any character except those that follow ^ in the set pattern notation.

A frequent use of character sets is to match “a word”, using a definition of
which characters can make up a word that differs from \w’s default (letters
and digits). To match a word of one or more characters, each of which can
be an ASCII letter, an apostrophe, or a hyphen, but not a digit (e.g.,
"Finnegan-O'Hara"), use:

r"[a-zA-Z'\-]+"

Escape a Hyphen that’s Part of an RE Character Set,
for Readability
It’s not strictly necessary to escape the hyphen with a backslash in this case, since its position at
the end of the set makes the situation syntactically unambiguous. However, the backslash is
advisable because it makes the pattern more readable, by visually distinguishing the hyphen that
you want to have as a character in the set from those used to denote ranges.

Alternatives
A vertical bar (|) in a regular expression pattern, used to specify
alternatives, has low syntactic precedence. Unless parentheses change the
grouping, | applies to the whole pattern on either side, up to the start or end
of the pattern, or to another |. A pattern can be made up of any number of
subpatterns joined by |. It is important to note that an RE of subpatterns
joined by | will match the first matching subpattern, not the longest. A
pattern like r'ab|abc' will never match 'abc', because the 'ab'
match gets evaluated first.
Given a list L of words, an RE pattern that matches any one of the words is:

'|'.join(rf'\b{word}\b' for word in L)

Escaping Strings
If the items of L can be more general strings, not just words, you need to escape each of them with
the function re.escape (covered in Table 9-3), and you may not want the \b word boundary
markers on either side. In this case, you could use the following RE pattern (sorting the list in
reverse order by length to avoid “masking” a longer word by a shorter one):

'|'.join(re.escape(s) for s in sorted(L, key=len, reverse=True))

Groups

A regular expression can contain any number of groups, from none to 99
(or even more, but only the first 99 groups are fully supported). Parentheses
in a pattern string indicate a group. Element (?P<id>...) also indicates a
group, and gives the group a name, id, that can be any Python identifier. All
groups, named and unnamed, are numbered, left to right, 1 to 99; “group 0”
means the string that the whole RE matches.
For any match of the RE with a string, each group matches a substring
(possibly an empty one). When the RE uses |, some groups may not match
any substring, although the RE as a whole does match the string. When a
group doesn’t match any substring, we say that the group does not
participate in the match. An empty string ('') is used as the matching
substring for any group that does not participate in a match, except where
otherwise indicated later in this chapter. For example:

r'(.+)\1+\Z'

matches a string made up of two or more repetitions of any nonempty
substring. The (.+) part of the pattern matches any nonempty substring
(any character, one or more times) and defines a group, thanks to the
parentheses. The \1+ part of the pattern matches one or more repetitions of
the group, and \Z anchors the match to the end of the string.

Optional Flags
A regular expression pattern element with one or more of the letters
aiLmsux between (? and) lets you set RE options within the pattern,
rather than by the flags argument to the compile function of the re
module. Options apply to the whole RE, no matter where the options
element occurs in the pattern.

Always Place Options at the Start of an RE’s Pattern
In particular, placement at the start is mandatory if x is among the options, since x changes the
way Python parses the pattern. Options not at the start of the pattern produce a deprecation
warning.

Using the explicit flags argument is more readable than placing an options
element within the pattern. The flags argument to the function compile is
a coded integer built by bitwise ORing (with Python’s bitwise OR operator,
|) one or more of the following attributes of the module re. Each attribute
has both a short name (one uppercase letter), for convenience, and a long
name (an uppercase multi-letter identifier), which is more readable and thus
normally preferable:

A or ASCII
Uses ASCII-only characters for \w, \W, \b, \B, \d and \D; overrides the
default UNICODE flag

I or IGNORECASE
Makes matching case-insensitive

L or LOCALE
Uses the Python LOCALE setting to determine characters for \w, \W, \b,
\B, \d and \D markers; can only be used with bytes patterns

M or MULTILINE
Makes the special characters ^ and $ match at the start and end of each
line (i.e., right after/before a newline), as well as at the start and end of
the whole string (\A and \Z always match only the start and end of the
whole string)

S or DOTALL
Causes the special character . to match any character, including a
newline

U or UNICODE
Uses full Unicode to determine characters for \w, \W, \b, \B, \d and \D
markers; although retained for backwards compatibility, this flag is now
the default

X or VERBOSE
Causes whitespace in the pattern to be ignored, except when escaped or
in a character set, and makes a non-escaped # character in the pattern
begin a comment that lasts until the end of the line

For example, here are three ways to define equivalent REs with function
compile, covered in Table 9-3. Each of these REs matches the word
“hello” in any mix of upper- and lowercase letters:

import re
r1 = re.compile(r'(?i)hello')
r2 = re.compile(r'hello', re.I)
r3 = re.compile(r'hello', re.IGNORECASE)

The third approach is clearly the most readable, and thus the most
maintainable, though slightly more verbose. The raw string form is not
strictly necessary here, since the patterns do not include backslashes.
However, using raw string literals does no harm, and we recommend you
always do that for RE patterns, and only for RE patterns, to improve clarity
and readability.
Option re.VERBOSE (or re.X) lets you make patterns more readable and
understandable by appropriate use of whitespace and comments.
Complicated and verbose RE patterns are generally best represented by
strings that take up more than one line, and therefore you normally want to

use a triple-quoted raw string literal for such pattern strings. For example,
to match a string representing an integer that may be in octal, hex, or
decimal format:

repat_num1 = r'(0o[0-7]*|0x[\da-fA-F]+|[1-9]\d*)\Z'
repat_num2 = r'''(?x) # (re.VERBOSE) pattern matching
int literals
 (0o [0-7]* # octal: leading 0o, 0+ octal
digits
 | 0x [\da-fA-F]+ # hex: 0x, then 1+ hex digits
 | [1-9] \d* # decimal: leading non-0, 0+
digits
)\Z # end of string
 '''

The two patterns defined in this example are equivalent, but the second one
is made more readable and understandable by the comments and the free
use of whitespace to visually group portions of the pattern in logical ways.

Match Versus Search
So far, we’ve been using regular expressions to match strings. For example,
the RE with pattern r'box' matches strings such as 'box' and
'boxes', but not 'inbox'. In other words, an RE match is implicitly
anchored at the start of the target string, as if the RE’s pattern started with
\A.

Often, you’re interested in locating possible matches for an RE anywhere in
the string, without anchoring (e.g., find the r'box' match inside such
strings as 'inbox', as well as in 'box' and 'boxes'). In this case, the
Python term for the operation is a search, as opposed to a match. For such
searches, use the search method of an RE object; the match method
matches only from the start. For example:

import re
r1 = re.compile(r'box')
if r1.match('inbox'):
 print('match succeeds')
else:
 print('match fails') # prints: match fails

if r1.search('inbox'):
 print('search succeeds') # prints: search succeeds
else:
 print('search fails')

Anchoring at String Start and End
\A and \Z are the pattern elements ensuring that a regular expression
match is anchored at the string’s start or end. Elements ^ for start and $ for
end are also used in similar roles. For RE objects that are not flagged as
MULTILINE, ^ is the same as \A, and $ is the same as \Z. For a multiline
RE, however, ^ can anchor at the start of the string or the start of any line
(where “lines” are determined based on \n separator characters). Similarly,
with a multiline RE, $ can anchor at the end of the string or the end of any
line. \A and \Z always anchor exclusively at the start and end of the string,
whether the RE object is multiline or not. For example, here’s a way to
check whether a file has any lines that end with digits:

import re
digatend = re.compile(r'\d$', re.MULTILINE)
with open('afile.txt') as f:
 if digatend.search(f.read()):
 print('some lines end with digits')
 else:
 print('no line ends with digits')

A pattern of r'\d\n' is almost equivalent, but in that case the search fails
if the very last character of the file is a digit not followed by an end-of-line
character. With the preceding example, the search succeeds if a digit is at
the very end of the file’s contents, as well as in the more usual case where a
digit is followed by an end-of-line character.

Regular Expression Objects
A regular expression object r has the following read-only attributes that
detail how r was built (by the function compile of the module re,
covered in Table 9-3):

flags

The flags argument passed to compile, or re.UNICODE when flags
is omitted; also includes any flags specified in the pattern itself using a
leading (?...) element

groupindex

A dictionary whose keys are group names as defined by elements (?
P<id>...); the corresponding values are the named groups’ numbers

pattern

The pattern string from which r is compiled

These attributes make it easy to get back from a compiled RE object to its
pattern string and flags, so you never have to store those separately.
An RE object r also supplies methods to locate matches for r within a
string, as well as to perform substitutions on such matches (Table 9-2).
Matches are generally represented by special objects, covered in “Match
Objects”.

Table 6-2. Methods of RE objects

findall

r.findall(s)
 When r has no groups, findall returns a list of strings, each a substring of
s that is a nonoverlapping match with r. For example, to print out all words in
a file, one per line:

import re
reword = re.compile(r'\w+')
with open('afile.txt') as f:
 for aword in reword.findall(f.read()):
 print(aword)

 When r has one group, findall also returns a list of strings, but each is
the substring of s that matches r’s group. For example, to print only words that
are followed by whitespace (not the ones followed by punctuation or end of

string), you need to change only one statement in the example:
 reword = re.compile('(\w+)\s')
 When r has n groups (with n>1), findall returns a list of tuples, one per
non-overlapping match with r. Each tuple has n items, one per group of r, the
substring of s matching the group. For example, to print the first and last word
of each line that has at least two words:

import re
first_last =
re.compile(r'^\W*
(\w+)\b.*\b(\w+)\W*$',re.MULTILINE)
with open('afile.txt') as f:
 for first, last in
first_last.findall(f.read()):
 print(first, last)

finditer

r.finditer(s)
 finditer is like findall, except that, instead of a list of strings or
tuples, it returns an iterator whose items are match objects. In most cases,
finditer is therefore more flexible and performs better than findall.

fullmatch

r.fullmatch(s,start=0,end=sys.maxsize)
 Returns a match object when the complete substring s, starting at index start
and ending at index end, matches r. Otherwise, fullmatch returns None.

match

r.match(s, start=0,end=sys.maxsize)
 Returns an appropriate match object when a substring of s, starting at index
start and not reaching as far as index end, matches r. Otherwise, match
returns None. match is implicitly anchored at the starting position start in s.
To search for a match with r at any point in s from start onward, call
r.search, not r.match. For example, here one way to print all lines in a
file that start with digits:

import re
digs = re.compile(r'\d')
with open('afile.txt') as f:
 for line in f:
 if digs.match(line):
 print(line, end='')

search

r.search(s, start=0, end=sys.maxsize)
 Returns an appropriate match object for the leftmost substring of s, starting
not before index start and not reaching as far as index end, that matches r.
When no such substring exists, search returns None. For example, to print
all lines containing digits, one simple approach is as follows:

import re
digs = re.compile(r'\d')
with open('afile.txt') as f:
 for line in f:
 if digs.search(line):
 print(line, end='')

 split

r.split(s, maxsplit=0)
 Returns a list L of the splits of s by r (i.e., the substrings of s separated by
nonoverlapping, nonempty matches with r). For example, here’s one way to
eliminate all occurrences of substring 'hello' (in any mix of lowercase and
uppercase) from a string:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
astring = ''.join(rehello.split(astring))

When r has n groups, n more items are interleaved in L between each pair of
splits. Each of the n extra items is the substring of s that matches r’s
corresponding group in that match, or None if that group did not participate
in the match. For example, here’s one way to remove whitespace only when it
occurs between a colon and a digit:

import re
re_col_ws_dig = re.compile(r'(:)\s+(\d)')
astring = ''.join(re_col_ws_dig.split(astring))

 If maxsplit is greater than 0, at most maxsplit splits are in L, each followed by
n items as above, while the trailing substring of s after maxsplit matches of r,
if any, is L’s last item. For example, to remove only the first occurrence of
substring 'hello' rather than all of them, change the last statement in the
first example above to:
 astring=''.join(rehello.split(astring, 1))

 sub

r.sub(repl,s,count=0)
 Returns a copy of s where non-overlapping matches with r are replaced by
repl, which can be either a string or a callable object, such as a function. An
empty match is replaced only when not adjacent to the previous match. When
count is greater than 0, only the first count matches of r within s are replaced.
When count equals 0, all matches of r within s are replaced. For example,
here’s another, more natural way to remove only the first occurrence of
substring 'hello' in any mix of cases:

import re
rehello = re.compile(r'hello', re.IGNORECASE)

astring = rehello.sub('', astring, 1)

 Without the final 1 argument to sub, the example removes all occurrences of
'hello'.
 When repl is a callable object, repl must accept one argument (a match
object) and return a string (or None, which is equivalent to returning the
empty string '') to use as the replacement for the match. In this case, sub
calls repl, with a suitable match-object argument, for each match with r that
sub is replacing. For example, here’s one way to uppercase all occurrences of
words starting with 'h' and ending with 'o' in any mix of cases:

import re
h_word = re.compile(r'\bh\w*o\b', re.IGNORECASE)
def up(mo):
 return mo.group(0).upper()
astring = h_word.sub(up, astring)

 When repl is a string, sub uses repl itself as the replacement, except that it
expands back references. A back reference is a substring of repl of the form
\g<id>, where id is the name of a group in r (established by syntax (?
P<id>...) in r’s pattern string) or \dd, where dd is one or two digits taken
as a group number. Each back reference, named or numbered, is replaced with
the substring of s that matches the group of r that the back reference indicates.
For example, here’s a way to enclose every word in braces:

import re
grouped_word = re.compile('(\w+)')
astring = grouped_word.sub(r'{\1}', astring)

subn

r.subn(repl,s,count=0)
 subn is the same as sub, except that subn returns a pair (new_string, n),
where n is the number of substitutions that subn has performed. For example,
here’s one way to count the number of occurrences of substring 'hello' in
any mix of cases:

import re
rehello = re.compile(r'hello', re.IGNORECASE)
_, count = rehello.subn('', astring)
print(f'Found {count} occurrences of "hello"')

Match Objects

Match objects are created and returned by the methods match and
search of a regular expression object, and are the items of the iterator
returned by the method finditer. They are also implicitly created by the
methods sub and subn when the argument repl is callable, since in that
case the appropriate match object is passed as the only argument on each
call to repl. A match object m supplies the following read-only attributes
that detail how a search or match created m:

pos

The start argument that was passed to search or match (i.e., the
index into s where the search for a match began)

endpos

The end argument that was passed to search or match (i.e., the index
into s before which the matching substring of s had to end)

lastgroup

The name of the last-matched group (None if the last-matched group
has no name, or if no group participated in the match)

lastindex

The integer index (1 and up) of the last-matched group (None if no
group participated in the match)

re

The RE object r whose method created m

string

The string s passed to finditer, match, search, sub, or subn

A match object m also supplies several methods, detailed in Table 9-3.

Table 6-3. Methods of match object

 end,
span, start

m.end(groupid=0) m.span(groupid=0) m.start(groupid=0)
 These methods return the limit indices, within m.string, of the substring
that matches the group identified by groupid (a group number or name;
“group 0”, the default value for groupid, means “the whole RE”). When the
matching substring is m.string[i:j], m.start returns i, m.end returns
j, and m.span returns (i, j). If the group did not participate in the match, i
and j are -1.

expand

m.expand(s)
 Returns a copy of s where escape sequences and back references are replaced
in the same way as for the method r.sub, covered in Table 9-2.

group

m.group(groupid=0, *groupids)
 When called with a single argument groupid (a group number or name),
group returns the substring that matches the group identified by groupid, or
None if that group did not participate in the match. The idiom m.group(),
also spelled m.group(0), returns the whole matched substring, since group
number 0 means the whole RE. Groups can also be accessed using
m[index] notation, as if called using m.group(index)(in either case,
index may be an int or a str).
 When group is called with multiple arguments, each argument must be a
group number or name. group then returns a tuple with one item per
argument, the substring matching the corresponding group, or None if that
group did not participate in the match.

groups

m.groups(default=None)
 Returns a tuple with one item per group in r. Each item is the substring that
matches the corresponding group, or default if that group did not participate in
the match. The tuple does not include the 0-group representing the full pattern
match.

groupdict

m.groupdict(default=None)
 Returns a dictionary whose keys are the names of all named groups in r. The
value for each name is the substring that matches the corresponding group, or
default if that group did not participate in the match.

Functions of the re Module
The re module supplies the attributes listed in “Optional Flags”. It also
provides one function for each method of a regular expression object
(findall, finditer, fullmatch, match, search, split, sub,
and subn), each with an additional first argument, a pattern string that the
function implicitly compiles into an RE object. It is usually better to

compile pattern strings into RE objects explicitly and call the RE object’s
methods, but sometimes, for a one-off use of an RE pattern, calling
functions of the module re can be handier. For example, to count the
number of occurrences of 'hello' in any mix of cases, one concise,
function-based way is:

import re
_, count = re.subn(r'hello', '', astring, flags=re.I)
print(f'Found {count} occurrences of "hello"')

The re module internally caches RE objects it creates from the patterns
passed to functions; to purge the cache and reclaim some memory, call
re.purge().

The re module also supplies error, the class of exceptions raised upon
errors (generally, errors in the syntax of a pattern string), and two more
functions (Table 9-4):

Table 6-4. Add legend here.

compile

compile(pattern,flags=0)
 Creates and returns an RE object, parsing string pattern as per the syntax
covered in “Pattern-String Syntax”, and using integer flags, as covered in
“Optional Flags”.

escape

escape(s)
 Returns a copy of string s with each nonalphanumeric character escaped (i.e.,
preceded by a backslash \); useful to match string s literally as part of an RE
pattern string.

REs and the := operator
The introduction of the := operator in Python 3.8 established support for a
successive-match idiom in Python similar to one that’s common in Perl. In
this idiom, a series of if-elif branches tests a string against different regular
expressions. In Perl, the if ($var =~ /regExpr/) statement both
evaluates the regular expression and saves the successful match in the
variable var.1

if ($statement =~ /I love (\w+)/) {
 print "He loves $1\n";
}
elsif ($statement =~ /Ich liebe (\w+)/) {
 print "Er liebt $1\n";
}
elsif ($statement =~ /Je t\'aime (\w+)/) {
 print "Il aime $1\n";
}

Prior to Python 3.8, this behavior of evaluate-and-store was not possible in
a single if-elif statement; developers had to use a cumbersome cascade
of nested if-else statements:

m = re.match('I love (\w+)', statement)
if m:
 print(f'He loves {m.group(1)}')
else:
 m = re.match('Ich liebe (\w+)', statement)
 if m:
 print(f'Er liebt {m.group(1)}')
 else:
 m = re.match('J'aime (\w+)', statement)
 if m:
 print(f'Il aime {m.group(1)}')

Using the := operator, this code simplifies to:

if m := re.match(r'I love (\w+)', statement):
 print(f'He loves {m.group(1)}')
elif m := re.match(r'Ich liebe (\w+)', statement):
 print(f'Er liebt {m.group(1)}')
elif m := re.match(r'J'aime (\w+)', statement):
 print(f'Il aime {m.group(1)}')

The 3rd party regex module
In addition to Python’s built-in re module, a popular package for regular
expressions is the third-party regex module, by Matthew Barnett. regex
has a compatible API with the re module and adds a number of extended
features, including:
Recursive expressions

https://pypi.org/project/regex/

Applying some of the inline flags to only a part of the pattern
Define character sets by Unicode property/value
Overlapping matches
Fuzzy matching
Multithreading support – releases GIL during matching
Matching timeout
Unicode case folding in case-insensitive matches
Nested sets

1 Example taken from regex - Match groups in Python - Stack Overflow

https://stackoverflow.com/questions/2554185/match-groups-in-python/2555047

Chapter 7. Time Operations

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 12th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

A Python program can handle time in several ways. Time intervals are
floating point numbers in units of seconds (a fraction of a second is the
fractional part of the interval): all standard library functions accepting an
argument that expresses a time interval in seconds accept a float as the
value of that argument. Instants in time are expressed in seconds since a
reference instant, known as the epoch. (Midnight, UTC, of January 1, 1970,
is a popular epoch used on both Unix and Windows platforms.) Time
instants often also need to be expressed as a mixture of units of
measurement (e.g., years, months, days, hours, minutes, and seconds),
particularly for I/O purposes. I/O, of course, also requires the ability to
format times and dates into human-readable strings, and parse them back
from string formats.

The time Module
The time module is somewhat dependent on the underlying system’s C
library, which determines the range of dates that the time module can
handle. On Unix systems, years 1970 and 2038 are typical cut-off points, a
limitation that datetime avoids. Time instants are normally specified in
UTC (Coordinated Universal Time, once known as GMT, or Greenwich

Mean Time). The time module also supports local time zones and daylight
saving time (DST), but only to the extent the underlying C system library
does.
As an alternative to seconds since the epoch, a time instant can be
represented by a tuple of nine integers, called a timetuple. (Timetuples are
covered in Table 12-1.) All items are integers: timetuples don’t keep track
of fractions of a second. A timetuple is an instance of struct_time. You
can use it as a tuple, and you can also, more usefully, access the items as the
read-only attributes x.tm_year, x.tm_mon, and so on, with the attribute
names listed in Table 12-1. Wherever a function requires a timetuple
argument, you can pass an instance of struct_time or any other
sequence whose items are nine integers in the right ranges (all ranges in the
table include both lower and upper bounds; in the table, upper bounds are
included).

Table 7-1. Tuple form of time representation

 Item

Meaning

 Field
name

Range

 Notes

 0

Year

tm_year

1970–2038 Wider on some platforms.

 1

Month

tm_mon

1–12 1 is January; 12 is December.

 2

Day

tm_mday

1–31

 3

Hour

tm_hour

0–23 0 is midnight; 12 is noon.

 4

Minute

0–59

 tm_min

 5

Second

tm_sec

0–61 60 and 61 for leap seconds.

 6

Weekday

tm_wday

0–6 0 is Monday; 6 is Sunday.

 7

Year day

tm_yday

1–366 Day number within the year.

 8

DST flag

tm_isdst

−1 to 1 −1 means the library
determines DST.

To translate a time instant from a “seconds since the epoch” floating-point
value into a timetuple, pass the floating-point value to a function (e.g.,
localtime) that returns a timetuple with all nine items valid. When you
convert in the other direction, mktime ignores redundant items six
(tm_wday) and seven (tm_yday) of the tuple. In this case, you normally
set item eight (tm_isdst) to −1 so that mktime itself determines
whether to apply DST.
time supplies the functions and attributes listed in Table 12-2.

Table 7-2. Table caption to come

asctime

asctime([tupletime])
 Accepts a timetuple and returns a readable 24-character string such as 'Sun
Jan 8 14:41:06 2017'. asctime() without arguments is like
asctime(localtime(time())) (formats current time in local time).

 ctime

ctime([secs])
 Like asctime(localtime(secs)), accepts an instant expressed in
seconds since the epoch and returns a readable 24-character string form of that
instant, in local time. ctime() without arguments is like asctime()
(formats current time in local time).

 gmtime([secs])

gmtime

 Accepts an instant expressed in seconds since the epoch and returns a
timetuple t with the UTC time (t.tm_isdst is always 0). gmtime()
without arguments is like gmtime(time()) (returns the timetuple for the
current time instant).

localtime

localtime([secs])
 Accepts an instant expressed in seconds since the epoch and returns a
timetuple t with the local time (t.tm_isdst is 0 or 1, depending on whether
DST applies to instant secs by local rules). localtime() without
arguments is like localtime(time()) (returns the timetuple for the
current time instant).

mktime

mktime(tupletime)
 Accepts an instant expressed as a timetuple in local time and returns a
floating-point value with the instant expressed in seconds since the epoch.
DST, the last item in tupletime, is meaningful: set it to 0 to get solar time, to 1
to get DST, or to −1 to let mktime compute whether DST is in effect at the
given instant.

monotonic

monotonic()
 Like time(), returns the current time instant, a float with seconds since
the epoch. Guaranteed to never go backward between calls, even when the
system clock is adjusted (e.g., due to leap seconds).

perf_counter

perf_counter()
 Returns the value in fractional seconds using the highest-resolution clock
available to get accuracy for short durations. It is system-wide and includes
time elapsed during sleep. Use only the difference between successive calls,
as there is no defined reference point.

process_time

process_time()
 Returns the value in fractional seconds using the highest-resolution clock
available to get accuracy for short durations. It is process-wide and doesn’t
include time elapsed during sleep. Use only the difference between
successive calls, as there is no defined reference point.

 sleep

sleep(secs)
 Suspends the calling thread for secs seconds. The calling thread may start
executing again before secs seconds (when it’s the main thread and some
signal wakes it up) or after a longer suspension (depending on system
scheduling of processes and threads). You can call sleep with secs=0 to
offer other threads a chance to run, incurring no significant delay if the current
thread is the only one ready to run.

strftime

strftime(fmt[, tupletime])
 Accepts an instant expressed as a timetuple in local time and returns a string
representing the instant as specified by string fmt. If you omit tupletime,
strftime uses localtime(time()) (formats the current time instant).
The syntax of string format is similar to the one covered in “Legacy String
Formatting with %.” Conversion characters are different, as shown in Table
12-3. Refer to the time instant specified by tupletime; the format can’t specify
width and precision.

a

 For example, you can obtain dates just as formatted by asctime (e.g.,
'Tue Dec 10 18:07:14 2002') with the format string:
 '%a %b %d %H:%M:%S %Y’
 You can obtain dates compliant with RFC 822 (e.g., 'Tue, 10 Dec 2002
18:07:14 EST') with the format string:
 '%a, %d %b %Y %H:%M:%S %Z’

strptime

strptime(str,[fmt='%a %b %d %H:%M:%S %Y'])
 Parses str according to format string fmt and returns the instant as a timetuple.
The format string’s syntax is as covered in strftime earlier.

 time

time()
 Returns the current time instant, a float with seconds since the epoch. On
some (mostly, older) platforms, the precision of this time is as low as one
second. May return a lower value in a subsequent call if the system clock is
adjusted backward between calls (e.g., due to leap seconds).

timezone

timezone
 The offset in seconds of the local time zone (without DST) from UTC (>0 in
the Americas; <=0 in most of Europe, Asia, and Africa).

tzname

tzname
 A pair of locale-dependent strings, which are the names of the local time zone
without and with DST, respectively.

a mktime’s result’s fractional part is always 0, since its timetuple argument does not
account for fractions of a second.

Table 7-3. Conversion characters for strftime

 Type
char

 Meaning

 Special notes

 a

Weekday name, abbreviated Depends on locale

 A

Weekday name, full Depends on locale

 b

Month name, abbreviated Depends on locale

 B

Month name, full Depends on locale

 c

Complete date and time representation Depends on locale

d

Day of the month Between 1 and 31

f Microsecond as decimal, padded on left 1 to 6 digits

 G

ISO 8601:2000 standard week-based year
number

 H

Hour (24-hour clock) Between 0 and 23

 I

Hour (12-hour clock) Between 1 and 12

 j

Day of the year Between 1 and 366

 m

Month number Between 1 and 12

 M

Minute number Between 0 and 59

 p

A.M. or P.M. equivalent Depends on locale

 S

Second number Between 0 and 61

 u

day of week Monday is 1, up to 7

 U

Week number (Sunday first weekday) Between 0 and 53

 V

ISO 8601:2000 standard week-based week
number

 Weekday number 0 is Sunday, up to 6

 w

 W

Week number (Monday first weekday) Between 0 and 53

 x

Complete date representation Depends on locale

 X

Complete time representation Depends on locale

 y

Year number within century Between 0 and 99

 Y

Year number 1970 to 2038, or wider

z UTC offset as a string: ±HHMM[SS[.ffffff]]

 Z

Name of time zone Empty if no time zone
exists

 %

A literal % character Encoded as %%

The datetime Module
datetime provides classes for modeling date and time objects, which can
be either aware of time zones or naive (the default). The class tzinfo,
whose instances model a time zone, is abstract: module datetime
supplies only one simple implementation, datetime.timezone (for all
the gory details, see the online docs); module zoneinfo, covered in “The
zoneinfo Module,” offers a richer concrete implementation of tzinfo,
which lets you easily create timezone-aware datetime objects. All types
in datetime have immutable instances: attributes are read-only, instances
can be keys in a dict or items in a set, and all functions and methods
return new objects, never altering objects passed as arguments.

https://docs.python.org/3/library/datetime.html%23timezone-objects

The date Class
Instances of the date class represent a date (no time of day in particular
within that date) between date.min<=d<=date.max, are always naive,
and assume the Gregorian calendar was always in effect. date instances
have three read-only integer attributes: year, month, and day:

 date

date(year,month,day)
 Returns a date object for the given year, month, and day arguments, in the
valid ranges 1<=year <=9999, 1<=month<=12, and 1<=day<= number of
days for the given month and year. Raises ValueError if invalid values are
given.

The date class also supplies these class methods usable as alternative constructors:

fromordinal

date.fromordinal(ordinal)
 Returns a date object corresponding to the proleptic Gregorian ordinal
ordinal, where a value of 1 corresponds to the first day of year 1 CE.

fromtimesta
mp

date.fromtimestamp(timestamp)
 Returns a date object corresponding to the instant timestamp expressed in
seconds since the epoch.

today

date.today()
 Returns a date representing today’s date.

Instances of the date class support some arithmetic: the difference
between date instances is a timedelta instance; you can add or
subtract a timedelta to/from a date instance to make another date
instance. You can compare any two instances of the date class (the later
one is greater).
An instance d of the class date supplies the following methods:

ctime

d.ctime()
 Returns a string representing the date d in the same 24-character format as
time.ctime (with the time of day set to 00:00:00, midnight).

d.isocalendar()
 Returns a tuple with three integers (ISO year, ISO week number, and ISO

https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar

isocalendar

weekday). See the ISO 8601 standard for more details about the ISO
(International Standards Organization) calendar.

isoformat

d.isoformat()
 Returns a string representing date d in the format 'YYYY-MM-DD'; same as
str(d).

isoweekday

d.isoweekday()
 Returns the day of the week of date d as an integer, 1 for Monday through 7
for Sunday; like d.weekday() + 1.

replace

d.replace(year=None,month=None,day=None)
 Returns a new date object, like d except for those attributes explicitly
specified as arguments, which get replaced. For example:
 date(x,y,z).replace(month=m) == date(x,m,z)

strftime

d.strftime(fmt)
 Returns a string representing date d as specified by string fmt, like:
 time.strftime(fmt, d.timetuple())

timetuple

d.timetuple()
 Returns a time tuple corresponding to date d at time 00:00:00 (midnight).

toordinal

d.toordinal()
 Returns the proleptic Gregorian ordinal for date d. For example:
 date(1,1,1).toordinal() == 1

weekday

d.weekday()
 Returns the day of the week of date d as an integer, 0 for Monday through 6
for Sunday; like d.isoweekday() - 1.

The time Class
Instances of the time class represent a time of day (of no particular date),
may be naive or aware regarding time zones, and always ignore leap
seconds. They have five attributes: four read-only integers (hour,
minute, second, and microsecond) and an optional read-only
tzinfo (None for naive instances).

 time

time(hour=0,minute=0,second=0,microsecond=0, tzinfo=None)
 Instances of the class time do not support arithmetic. You can compare two
instances of time (the one that’s later in the day is greater), but only if they
are either both aware or both naive.

https://en.wikipedia.org/?title=ISO_8601

An instance t of the class time supplies the following methods:

isoformat

t.isoformat()
 Returns a string representing time t in the format 'HH:MM:SS'; same as
str(t). If t.microsecond!=0, the resulting string is longer:
'HH:MM:SS.mmmmmm'. If t is aware, six more characters, '+HH:MM', are
added at the end to represent the time zone’s offset from UTC. In other words,
this formatting operation follows the ISO 8601 standard.

replace

t.replace(hour=None, minute=None,second=None,
microsecond=None[, tzinfo])
 Returns a new time object, like t except for those attributes explicitly
specified as arguments, which get replaced. For example:
 time(x,y,z).replace(minute=m) == time(x,m,z)

strftime

t.strftime(fmt)
 Returns a string representing time t as specified by the string fmt.

An instance t of the class time also supplies methods dst, tzname, and
utcoffset, which accept no arguments and delegate to t.tzinfo,
returning None when t.tzinfo is None.

The datetime Class
Instances of the datetime class represent an instant (a date, with a
specific time of day within that date), may be naive or aware of time zones,
and always ignore leap seconds. datetime extends date and adds
time’s attributes; its instances have read-only integers year, month,
day, hour, minute, second, and microsecond, and an optional
tzinfo (None for naive instances).

Instances of datetime support some arithmetic: the difference between
datetime instances (both aware, or both naive) is a timedelta
instance, and you can add or subtract a timedelta instance to/from a
datetime instance to construct another datetime instance. You can
compare two instances of the datetime class (the later one is greater) as
long as they’re both aware or both naive.

https://en.wikipedia.org/wiki/ISO_8601

datetime

datetime(year,month, day,hour=0,minute=0, second=0,
microsecond=0,tzinfo=None)
 Returns a datetime object following similar constraints as the date
class constructor.

The class datetime also supplies some class methods usable as alternative constructors.

combine

datetime.combine(date, time)
 Returns a datetime object with the date attributes taken from date and the
time attributes (including tzinfo) taken from time.
datetime.combine(d, t) is like:
 datetime(d.year, d.month, d.day,
 t.hour, t.minute, t.second,
 t.microsecond, t.tzinfo)

fromordinal

datetime.fromordinal(ordinal)
 Returns a datetime object for the date given proleptic Gregorian ordinal
ordinal, where a value of 1 means the first day of year 1 CE, at midnight.

fromtimesta
mp

datetime.fromtimestamp(timestamp, tz=None)
 Returns a datetime object corresponding to the instant timestamp
expressed in seconds since the epoch, in local time. When tz is not None,
returns an aware datetime object with the given tzinfo instance tz.

 now

datetime.now(tz=None)
 Returns a datetime object for the current local date and time. When tz is
not None, returns an aware datetime object with the given tzinfo
instance tz.

strptime

datetime.strptime(str, fmt)
 Returns a datetime representing str as specified by string fmt. When %z is
present in fmt, the resulting datetime object is time zone-aware.

today

datetime.today()
 Returns a naive datetime object representing the current local date and
time, same as the now class method (but not accepting optional argument tz).

utcfromtimes
tamp

datetime.utcfromtimestamp(timestamp)
 Returns a naive datetime object corresponding to the instant timestamp
expressed in seconds since the epoch, in UTC.

utcnow

datetime.utcnow()
 Returns a naive datetime object representing the current date and time, in
UTC.

An instance d of datetime also supplies the following methods:

astimezone

d.astimezone(tz)
 Returns a new aware datetime object, like d (which must also be aware),
except that the time zone is converted to the one in tzinfo object tz.

ctime

d.ctime()
 Returns a string representing date and time d in the same 24-character format
as time.ctime.

 date

d.date()
 Returns a date object representing the same date as d.

isocalendar

d.isocalendar()
 Returns a tuple with three integers (ISO year, ISO week number, and ISO
weekday) for d’s date.

isoformat

d.isoformat(sep='T')
 Returns a string representing d in the format 'YYYY-MM-DDxHH:MM:SS',
where x is the value of argument sep (must be a string of length 1). If
d.microsecond!=0, seven characters, '.mmmmmm', are added after the
'SS' part of the string. If t is aware, six more characters, '+HH:MM', are
added at the end to represent the time zone’s offset from UTC. In other words,
this formatting operation follows the ISO 8601 standard. str(d) is the same
as d.isoformat(' ').

isoweekday

d.isoweekday()
 Returns the day of the week of d’s date as an integer; 1 for Monday through
7 for Sunday.

replace

d.replace(year=None,month=None,day=None,hour=None,minute=No
ne,second=None,
 microsecond=None[,tzinfo])
 Returns a new datetime object, like d except for those attributes specified
as arguments, which get replaced (but does no timezone conversion, see
footnote 2). For example:
 datetime(x,y,z).replace(month=m) == datetime(x,m,z)

strftime

d.strftime(fmt)
 Returns a string representing d as specified by the format string fmt.

 time

d.time()
 Returns a naive time object representing the same time of day as d.

 d.timestamp()

a

timestamp

 Returns a float with the seconds since the epoch. Naive instances are assumed
to be in the local time zone.

timetz

d.timetz()
 Returns a time object representing the same time of day as d, with the same
tzinfo.

timetuple

d.timetuple()
 Returns a timetuple corresponding to instant d.

toordinal

d.toordinal()
 Returns the proleptic Gregorian ordinal for d’s date. For example:
 datetime(1,1,1).toordinal() == 1

utctimetuple

d.utctimetuple()
 Returns a timetuple corresponding to instant d, normalized to UTC if d is
aware.

weekday

d.weekday()
 Returns the day of the week of d’s date as an integer; 0 for Monday through
6 for Sunday.

a Note that d.astimezone(tz) is quite different from d.replace(tzinfo=tz): the latter does no
time zone conversion, but rather just copies all of d’s attributes except for d.tzinfo.

An instance d of the class datetime also supplies the methods dst,
tzname, and utcoffset, which accept no arguments and delegate to
d.tzinfo, returning None when d.tzinfo is None (i.e., when d is
naive).

The timedelta Class
Instances of the timedelta class represent time intervals with three read-
only integer attributes: days, seconds, and microseconds.

timedelta

timedelta(days=0, seconds=0, microseconds=0, milliseconds=0,
minutes=0, hours=0, weeks=0)
 Converts all units with the obvious factors (a week is 7 days, an hour is 3,600
seconds, and so on) and normalizes everything to the three integer attributes,
ensuring that 0<=seconds<3600*24 and

0<=microseconds<1000000. For example:
 print(repr(timedelta(minutes=0.5))
 #prints: datetime.timedelta(seconds=30)
 print(repr(timedelta(minutes=-0.5))) datetime.timedelta(days=-1,
seconds=86370)
 Instances of timedelta support arithmetic: + and - between themselves
and with instances of the classes date and datetime; * with integers; /
with integers and timedelta instances (floor division, true division,
divmod, %); and comparisons between themselves.

An instance td of timedelta supplies the following method:

 total_seconds

td.total_seconds()
 Returns the total seconds represented by a timedelta instance.

The zoneinfo Module
The zoneinfo module ||3.9++|| is a concrete implementation of
timezones for use with datetime’s tzinfo. zoneinfo uses the system’s
timezone data by default, with tzdata (available on PyPI) as a fallback.
zoneinfo provides one class: ZoneInfo, a concrete implementation of
the datetime.tzinfo abstract class. You can assign it to tzinfo or
tz during construction of an aware datetime instance, or use it with
datetime.replace or datetime.astimezone methods. You can
find a list of the time zones on Wikipedia. Here is an example of
construction:

>>> from datetime import datetime
>>> from zoneinfo import ZoneInfo
>>> d=datetime.now(tz=ZoneInfo("America/Los_Angeles"))
>>> d
datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneI
nfo(key='America/Los_Angeles'))

Update the timezone to a different one without changing other attributes:

>>> dny=d.replace(tzinfo=ZoneInfo("America/New_York"))
>>> dny
datetime.datetime(2021,10,21,16,32,23,96782,tzinfo=zoneinfo.ZoneI
nfo(key='America/New_York'))

1

2

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Convert a datetime instance to UTC:

>>> dutc=d.astimezone(tz=ZoneInfo("UTC"))
>>> dutc
datetime.datetime(2021,10,21,23,32,23,96782,tzinfo=zoneinfo.ZoneI
nfo(key='UTC'))

Convert the datetime instance into a different timezone:

>>>
dutc.astimezone(ZoneInfo("Europe/Rome"))datetime.datetime(2021,10
,22,1,32,23,96782,tzinfo=zoneinfo.ZoneInfo(key='Europe/Rome'))

Always Use The Utc Time Zone Internally
The best way to program around the traps and pitfalls of time zones is to always use the UTC time
zone internally, converting from other time zones on input, and use datetime.astimezone only for
display purposes.

The dateutil Module
The third-party package dateutil (which you can install with pip install
python-dateutil) offers modules to manipulate dates in many ways: time
deltas, recurrence, timezones, Easter dates, and fuzzy parsing. (See the
package’s website for complete documentation of its rich functionality.) In
addition to timezone-related operations (now best performed with
zoneinfo), dateutil’s main modules are:

easter

easter.easter(year)
 Returns the datetime.date object for Easter of the given year. For
example:
 from dateutil import easter

print(easter.easter(2006))

 prints 2006-04-16

https://pypi.org/project/python-dateutil/
https://labix.org/python-dateutil

parser

parser.parse(s)
 Returns the datetime.datetime object denoted by string s, with very
permissive (AKA “fuzzy”) parsing rules. For example:
 from dateutil import parser

print(parser.parse('''Saturday, January 28, 2006,
at 11:15pm'''))

 prints 2006-01-28 23:15:00

relativedelta

relativedelta.relativedelta(...)
 relativedelta allows, among other things, an easy way to find “next
Monday,” “last year,” etc. dateutil’s docs offer detailed explanations of
the rules defining the inevitably complicated behavior of relativedelta
instances.

 rrule

rrule.rrule(freq, ...)
 Module rrule implements RFC2445 (also known as the iCalendar
RFC), in all the glory of its 140+ pages. rrule allows you to deal with
recurring events, providing such methods as after, before, between,
and count. See the dateutil docs for more information .

The sched Module
The sched module implements an event scheduler, letting you easily deal,
along a single thread of execution or in multithreaded environments, with
events that may be scheduled in either a “real” or a “simulated” time scale.
sched supplies a scheduler class:

scheduler

class scheduler([timefunc],[delayfunc])
 The arguments timefunc and delayfunc are optional and default to
time.monotonic and time.sleep, respectively.
 timefunc must be callable without arguments to get the current time instant
(in any unit of measure); for example, you can pass time.time or
time.monotonic. delayfunc is callable with one argument (a time
duration, in the same units as timefunc) to delay the current thread for that
time; for example, you can pass time.sleep. scheduler calls
delayfunc(0) after each event to give other threads a chance; this is
compatible with time.sleep. By taking functions as arguments,
scheduler lets you use whatever “simulated time” or “pseudotime” fits
your application’s needs (a great example of the dependency injection design
pattern for purposes not necessarily related to testing).

https://dateutil.readthedocs.io/en/stable/relativedelta.html
https://www.ietf.org/rfc/rfc2445.txt
https://dateutil.readthedocs.io/en/stable/rrule.html
https://en.wikipedia.org/wiki/Dependency_injection

If monotonic time (time cannot go backward, even if the system clock is
adjusted backward between calls, e.g., due to leap seconds) is important to
your application, use time.monotonic for your scheduler. A
scheduler instance s supplies the following methods:

cancel

s.cancel(event_token)
 Removes an event from s’s queue. event_token must be the result of a
previous call to s.enter or s.enterabs, and the event must not yet have
happened; otherwise, cancel raises RuntimeError.

empty

s.empty()
 Returns True when s’s queue is currently empty; otherwise, False.

enterabs

s.enterabs(when,priority,func,args=(),kwargs={})
 Schedules a future event (a callback to func(args, kwargs)) at time when.
when is in the units used by the time functions of s. Should several events be
scheduled for the same time, s executes them in increasing order of priority.
enterabs returns an event token t, which you may later pass to s.cancel
to cancel this event.

 enter

s.enter(delay,priority,func,args=(),kwargs={})
 Like enterabs, except that delay is a relative time (a positive difference
forward from the current instant), while enterabs’s argument when is an
absolute time (a future instant).
 To schedule an event for repeated execution, use a little wrapper function; for
example:

def enter_repeat(s, first_delay, period, priority,
func, args):
 def repeating_wrapper():
 s.enter(period, priority,
 repeating_wrapper, ())
 func(*args)
 s.enter(first_delay, priority,
 repeating_wrapper, args)

 run

s.run(blocking=True)
 Runs scheduled events. If blocking is true, s.run loops until s.empty(),
using the delayfunc passed on s’s initialization to wait for each scheduled
event. If blocking is false, executes any soon-to-expire events, then returns the
next event’s deadline (if any). When a callback func raises an exception, s
propagates it, but s keeps its own state, removing the event from the schedule.
If a callback func runs longer than the time available before the next
scheduled event, s falls behind but keeps executing scheduled events in order,
never dropping any. Call s.cancel to drop an event explicitly if that event is
no longer of interest.

The calendar Module
The calendar module supplies calendar-related functions, including
functions to print a text calendar for a given month or year. By default,
calendar takes Monday as the first day of the week and Sunday as the
last one. To change this, call calendar.setfirstweekday.
calendar handles years in module time’s range, typically (at least) 1970
to 2038.
The calendar module supplies the following functions:

calendar

calendar(year,w=2, l=1,c=6)
 Returns a multiline string with a calendar for year year formatted into three
columns separated by c spaces. w is the width in characters of each date; each
line has length 21*w+18+2*c. l is the number of lines for each week.

firstweekday

firstweekday()
 Returns the current setting for the weekday that starts each week. By default,
when calendar is first imported, this is 0, meaning Monday.

 isleap

isleap(year)
 Returns True if year is a leap year; otherwise, False.

leapdays

leapdays(y1,y2)
 Returns the total number of leap days in the years within range(y1,y2)
(remember, this means that y2 is excluded).

month

month(year,month,w=2,l=1)
 Returns a multiline string with a calendar for month month of year year, one
line per week plus two header lines. w is the width in characters of each date;
each line has length 7*w+6. l is the number of lines for each week.

monthcalend
ar

monthcalendar(year,month)
 Returns a list of lists of ints. Each sublist denotes a week. Days outside
month month of year year are set to 0; days within the month are set to their
day-of-month, 1 and up.

monthrange

monthrange(year,month)
 Returns two integers. The first one is the code of the weekday for the first day
of the month month in year year; the second one is the number of days in the
month. Weekday codes are 0 (Monday) to 6 (Sunday); month numbers are 1
to 12.

 prcal

prcal(year,w=2,l=1,c=6)
 Like print(calendar.calendar(year, w,l,c)).

prmonth

prmonth(year,month,w=2,l=1)
 Like print(calendar.month(year,month,w,l)).

setfirstweekd
ay

setfirstweekday(weekday)
 Sets the first day of each week to weekday code weekday. Weekday codes are
0 (Monday) to 6 (Sunday). calendar supplies the attributes MONDAY,
TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY,
whose values are the integers 0 to 6. Use these attributes when you mean
weekdays (e.g., calendar.FRIDAY instead of 4) to make your code clearer
and more readable.

timegm

timegm(tupletime)
 Just like time.mktime: accepts a time instant in timetuple form and
returns that instant as a float num of seconds since the epoch.

weekday

weekday(year,month,day)
 Returns the weekday code for the given date. Weekday codes are 0 (Monday)
to 6 (Sunday); month numbers are 1 (Jan) to 12 (Dec).

python -m calendar offers a useful command-line interface to the module’s
functionality: run python -m calendar -h to get a brief help message.

1 pre-3.9, use instead third-party module pytz

2 On some platforms, you may need to pip install tzdata; once installed, you don’t import tzdata
in your program -- rather, zoneinfo uses it automatically.

https://pypi.org/project/pytz/

Chapter 8. Numeric Processing

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 15th chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

You can perform some numeric computations with operators (covered in
“Numeric Operations”) and built-in functions (covered in “Built-in
Functions”). Python also provides modules that support additional numeric
computations, covered in this chapter: math and cmath in “The math and
cmath Modules”, statistics in “The statistics Module”, operator in
“The operator Module”, random and secrets in “The random
Module”, fractions in “The fractions Module”, and decimal in “The
decimal Module”. Numeric processing often requires, more specifically, the
processing of arrays of numbers, covered in “Array Processing”, focusing
on the standard library module array and popular third-party extension
NumPy. Finally, “Additional Numeric Packages” lists several additional
numeric processing packages produced by the Python community.

Floating-point Values
Python represents real numeric values (that is, those that are not integers)
using variables of type float. Unlike integers, computers can rarely
represent floats exactly, due to their internal implementation as a fixed-
size binary integer significand (often incorrectly called “mantissa”) and a
fixed-size binary integer exponent. They are limited in terms of how many

decimal places they can represent, how large an integer they can accurately
store, and how large an overall number they can store.
For most everyday applications, floats are sufficient for arithmetic, but they
are limited in the number of decimal places they can represent.

>>> f = 1.1 + 2.2 - 3.3 # f should be equal to 0
>>> f
4.440892098500626e-16

They are also limited in the range of integer values they can accurately store
(“accurately” meaning “can distinguish from next largest or smallest integer
value”).

>>> f = 2**53
>>> f
9007199254740992
>>> f + 1
9007199254740993 # integer arithmetic is not bounded
>>> f + 1.0
9007199254740992.0 # conversion to float loses integer precision
at 2**53

Always keep in mind that floats are not entirely precise, due to their
internal representation in the computer. The same consideration applies to
complex numbers.

DON’T USE == BETWEEN FLOATING-POINT OR COMPLEX NUMBERS
Given the approximate nature of floating-point arithmetic, it rarely makes sense to check if two
floats x and y are equal. Tiny variations in how each was computed can easily result in
unexpected differences. Instead, use function isclose exported by built-in module math.
The following code illustrates why:

>>> import math
>>> f = 1.1 + 2.2 - 3.3 # f is intuitively equal to 0
>>> f==0
False
>>> f
4.440892098500626e-16
>>> # default tolerance is fine for this comparison
>>> math.isclose(-1, f-1)
True

For some values, you may have to set the tolerance value explicitly (it is always necessary when
comparing with 0):

>>> # near-0 comparison with default tolerances
>>> math.isclose(0,f)
False
>>> # use abs_tol for near-0 comparison
>>> math.isclose(0,f,abs_tol=1e-15)
True

DON’T USE A FLOAT AS A LOOP CONTROL VARIABLE
A common error is to use a floating-point value as the control variable of a loop, assuming that
it will eventually equal some ending value, such as 0. However, the following loop, expected to
loop 5 times and then end, will loop forever:

>>> f = 1
>>> while f != 0:
... f -= 0.2 # even though f started as int, it's now a float

This code shows why:

>>> 1 - 0.2 - 0.2 - 0.2 - 0.2 - 0.2 # should be 0, but...
5.551115123125783e-17

Even using the inequality operator > results in incorrect behavior, looping 6 times instead of 5
(since the residual float value is still greater than 0):

>>> f = 1
>>> count = 0
>>> while f > 0:
... count += 1
... f -= 0.2
>>> print(count)
6 # 1 time too many!

Using math.isclose for comparing f with 0, the for loop now repeats the correct number of
times:

>>> f = 1
>>> count = 0
>>> while not math.is_close(0,f,abs_tol=1e-15):
... count += 1
... f -= 0.2
>>> print(count)
5 # just right this time!

In general, it is better practice to use an int for a loop’s control variable, rather than a float.

The math and cmath Modules
The math module supplies mathematical functions on floating-point
numbers; the cmath module supplies equivalent functions on complex
numbers. For example, math.sqrt(-1) raises an exception, but
cmath.sqrt(-1) returns 1j.

Just like for any other module, the cleanest, most readable way to use these
is to have, for example, import math at the top of your code, and
explicitly call, say, math.sqrt afterward. However, if your code includes
a large number of calls to the modules’ well-known mathematical functions,
it is allowed (though it may lose some readability) to either use from
math import *, or use from math import sqrt, and afterward
just call sqrt.

Each module exposes three float attributes bound to the values of
fundamental mathematical constants, e, pi, and tau, and a variety of
functions, including those shown in Table 15-1.

https://www.python.org/dev/peps/pep-0628/

The math and cmath modules are not fully symmetric. The following
table lists the methods in these modules, and, for each method, indicates
whether it is in math, cmath, or both.

Table 8-1. Methods in the math and cmath modules
m
at
h

c
m
at
h

acos,
 asin,
 atan,
 cos, sin,
 tan

acos(x)
 Returns the arccosine, arcsine, arctangent, cosine, sine, or tangent of x,
respectively, in radians.

✓ ✓

acosh,
 asinh,
 atanh,
 cosh,
 sinh,
 tanh

acosh(x)
 Returns the arc hyperbolic cosine, arc hyperbolic sine, arc hyperbolic
tangent, hyperbolic cosine, hyperbolic sine, or hyperbolic tangent of x,
respectively, in radians.

✓ ✓

 atan2

atan2(y,x)
 Like atan(y/x), except that atan2 properly takes into account the
signs of both arguments. For example:

>>> import math
>>> math.atan(-1./-1.) 0.78539816339744828
>>> math.atan2(-1., -1.) -2.3561944901923448

When x equals 0, atan2 returns pi/2, while dividing by x would
raise ZeroDivisionError.

✓

 ceil

ceil(x)
 Returns float(i), where i is the lowest integer such that i>=x.

✓

 comb

||3.8++|| comb(n, k)
 Returns the number of combinations of n items taken k items at a
time, regardless of order. When counting the number of combinations
taken from 3 items A, B, and C, 2 at a time (comb(3, 2)), A-B and
B-A are considered the same combination. Raises ValueError if k
or n is negative; raises TypeError if k or n are not int.

✓

copysign

copysign(x, y)
 Returns the absolute value of x with the sign of y.

✓

degrees

degrees(x)
 Returns the degree measure of the angle x given in radians.

✓

 dist

||3.8++|| dist(pt0, pt1)
 Returns the Euclidean distance between two n-dimensional points,
where each point is represented as a sequence of values (coordinates).
Raises ValueError if pt0 and pt1 are not the same length.

✓

 e

The mathematical constant e (2.718281828459045). ✓ ✓

 erf

erf(x)
 Returns the error function of x as used in statistical calculations.

✓

 erfc

erfc(x)
 Returns the complementary error function at x, defined as 1.0 -
erf(x).

✓

 exp

exp(x)
 Returns e**x.

✓ ✓

expm1

expm1(x)
 Returns e**x - 1. Inverse of log1p.

✓

 fabs

fabs(x)
 Returns the absolute value of x.

✓

factorial

factorial(x)
 Returns the factorial of x. Raises ValueError when x is negative
and TypeError when x is not integral.

✓

 floor

floor(x)
 Returns float(i), where i is the greatest integer such that i<=x.

✓

 fmod

fmod(x,y)
 Returns the float r, with the same sign as x, such that r==x-n*y for
some integer n, and abs(r)<abs(y). Like x%y, except that, when x
and y differ in sign, x%y has the same sign as y, not the same sign as x.

✓

 frexp

frexp(x)
 Returns a pair (m, e) where m is a floating-point number, and e is an
integer such that x==m*(2**e) and 0.5<=abs(m)<1, except that

✓
a

frexp(0) returns (0.0,0).

 fsum

fsum(iterable)
 Returns the floating-point sum of the values in iterable to greater
precision than the sum built-in function.

✓

gamma

gamma(x)
 Returns the Gamma function evaluated at x.

✓

 gcd

gcd(x,y)
 Returns the Greatest Common Divisor of x and y. When x and y are
both zero, returns 0. (||3.9++|| gcd can accept any number of values)

✓

 hypot

hypot(x,y)
 Returns sqrt(x*x+y*y). (||3.8++|| can accept any number of values,
to compute a hypotenuse length in n-dimensions)

✓

 inf

inf
 A floating-point positive infinity, like float('inf').

✓ ✓

 infj

infj
 A complex imaginary infinity, equal to complex(0, float('inf'))

✓

isclose

isclose(x, y, rel_tol=1e-09, abs_tol=0.0)
Returns True when x and y are approximately equal, within relative
tolerance rel_tol, with minimum absolute tolerance of abs_tol;
otherwise, returns False. Default is rel_tol within 9 decimal
digits. rel_tol must be greater than 0. abs_tol is used for
comparisons near zero: it must be at least 0.0. NaN is not considered
close to any value (including NaN itself); each of -inf and inf is
only considered close to itself. Except for behavior at +/- inf,
isclose is like:

abs(x-y) <= max(rel_tol*max(abs(x),
abs(y)),abs_tol)

✓

✓

isfinite

isfinite(x)
 Returns True when x (in cmath, both the real and imaginary part of
x) is neither infinity nor NaN; otherwise, returns False.

✓

✓

 isinf

isinf(x)
 Returns True when x (in cmath, either the real or imaginary part of
x, or both) is positive or negative infinity; otherwise, returns False.

✓ ✓

 isnan(x)
Returns True when x (in cmath either the real or imaginary part of

✓ ✓

 isnan

 Returns True when x (in cmath, either the real or imaginary part of
x, or both) is NaN; otherwise, returns False.

 isqrt

||3.8++|| isqrt(x)
 Returns int(sqrt(x)).

✓

 lcm

||3.9++|| lcm(x, ...)
 Returns the Least Common Multiple of the given ints. If all values are
not ints, raises TypeError.

 ldexp

ldexp(x,i)
 Returns x*(2**i) (i must be an int; when i is a float, ldexp
raises TypeError). Inverse of frexp.

✓

lgamma

lgamma(x)
 Returns the natural log of the absolute value of the Gamma function
evaluated at x.

✓

 log

log(x)
 Returns the natural logarithm of x.

✓ ✓

 log10

log10(x)
 Returns the base-10 logarithm of x.

✓ ✓

 log1p

log1p(x)
 Returns the natural log of 1+x. Inverse of expm1.

✓

 log2

log2(x)
 Returns the base-2 logarithm of x.

✓

 modf

modf(x)
 Returns a pair (f,i) with fractional and integer parts of x, meaning two
floats with the same sign as x such that i==int(i) and x==f+i.

✓

 nan

nan
 A floating-point “Not a Number” (NaN) value, like float('nan')
or complex('nan').

✓ ✓

 nanj

A complex number with a 0.0 real part and floating-point “Not a
Number” (NaN) imaginary part.

✓

nextafter

||3.9++|| nextafter(a, b)
 Returns the next higher or lower float value from a in the direction of
b.

✓

 ||3.8++|| perm(n, k)
Returns the number of permutations of n items taken k items at a time

✓

 perm

 Returns the number of permutations of n items taken k items at a time,
where selections of the same items but in differing order are counted
separately. When counting the number of permutations of 3 items A, B,
and C, taken 2 at a time (perm(3, 2)), A-B and B-A are considered
to be different permutations. Raises ValueError when k or n is
negative; raises TypeError when k or n are not int.

 pi

The mathematical constant π, 3.141592653589793. ✓ ✓

 phase

phase(x)
 Returns the phase of x, as a float in the range (-π, π). Like
math.atan2(x.imag, x.real). See “Conversions to and from
polar coordinates” in the Python online docs.

✓

 polar

polar(x)
 Returns the polar coordinate representation of x, as a pair (r, phi)
where r is the modulus of x and phi is the phase of x. Like (abs(x),
cmath.phase(x)). See “Conversions to and from polar
coordinates” in the Python online docs.

✓

 pow

pow(x,y)
 Returns x**y.

✓

 prod

||3.8++|| prod(seq, start=1)
 Returns the product of all values in the sequence, beginning with the
given start value, which defaults to 1.

✓

radians

radians(x)
 Returns the radian measure of the angle x given in degrees.

✓

 rect

rect(r, phi)
 Returns the complex value representing the polar coordinates (r,
phi) converted to rectangular coordinates as (x + yj).

✓

remainder

remainder(x, y)
 Returns the remainder from dividing x / y.

✓

 sqrt

sqrt(x)
 Returns the square root of x.

✓ ✓

 tau

The mathematical constant τ=2π, 6.283185307179586. ✓ ✓

 trunc

trunc(x) ✓

https://docs.python.org/3/library/cmath.html%23conversions-to-and-from-polar-coordinates
https://docs.python.org/3/library/cmath.html%23conversions-to-and-from-polar-coordinates

t u c
 Returns x truncated to an int.

 ulp

||3.9++|| ulp(x)
 Returns the least significant bit of floating-point value x. For positive
values, equals math.nextafter(x, x+1) - x. For negative
values, equals ulp(-x). If x is NaN or inf, returns x. ulp stands for
“Unit of Least Precision.”

✓

a Formally, m is the mantissa or, rather, significand, and e is the exponent. Used to render
a cross-platform portable representation of a floating-point value.

The statistics Module
The statistics module supplies functions to compute common
statistics, and the class NormalDist to perform distribution analytics.

 harmonic_mean

 median_high

 pvariance

 mean

 median_low

 stdev

 median

 mode

 variance

 median_grouped

 pstdev

||3.8++||

 fmean

 multimode

 NormalDist

 geometric_mean

 quantiles

||3.10++||

 correlation

 covariance

 linear_regression

The Python online docs contain detailed information on the signatures and
use of these functions.

The operator Module
The operator module supplies functions that are equivalent to Python’s
operators. These functions are handy in cases where callables must be
stored, passed as arguments, or returned as function results. The functions
in operator have the same names as the corresponding special methods
(covered in “Special Methods”). Each function is available with two names,
with and without “dunder” (leading and trailing double underscores): for
example, both operator.add(a,b) and operator.__add__(a,b)
return a+b.
Matrix multiplication support has been added for the infix operator @, but
you must implement it by defining your own __matmul__, __rmatmul__,
and/or __imatmul__; NumPy currently supports @ (but, as of this writing,
not yet @=) for matrix multiplication.

Table 15-2 lists some of the functions supplied by the operator module.

Table 8-2. Functions supplied by the operator module

https://docs.python.org/3/library/statistics.html
https://docs.python.org/3/reference/datamodel.html%23object.__matmul__
https://docs.python.org/3/reference/datamodel.html%23object.__rmatmul__
https://docs.python.org/3/reference/datamodel.html%23object.__imatmul__

 Method

Signature

 Behaves like

 abs

 abs(a)

 abs(
 a
)

 add

 add(a,

 b)

a + b

 and_

 and_(a,

 b)

a & b

 concat

 concat
 (a,

 b)

a + b

 contains

 contains(
a,

 b)

b in a

 countOf

 countOf
 (a,

 b)

 a
 .count
 (
 b
)

 delitem

 delitem
 (a,

 b)

del a[b]

 delslice

 delslice

del a[b:c]

 (a,

 b,

 c)

 div

 div(a, b)

a / b

 eq

 eq(

 a, b

)

 a == b

 floordiv

 floordiv
 (a, b

)

 a // b

 ge

 ge
 (a, b

)

 a >= b

 getitem

 getitem
 (a, b

)

a [b]

 getslice

 getslice
 (a, b, c

)

a [b : c]

 gt

 gt
 (a, b

)

 a > b

 indexOf

 indexOf
 (a, b

)

 a
 .index
 (
 b
)

 invert,
inv

 invert(a
),

 inv(a)

~a

 is_

 is_(a, b)

a is b

 is_not

 is_not
 (a, b)

a is not b

 le

 le(a, b)

 a <= b

 lshift

 lshift
 (a, b)

 a << b

 lt

 lt
 (

 a, b

)

 a < b

 matmul

 matmul
 (m1,

 m2)

 m1 @ m2

 mod

 mod(a, b

 a % b

)

 mul

 mul
 (

 a, b

)

 a * b

 ne

 ne(a, b

)

 a != b

 neg

 neg(

 a

)

- a

 not_

 not_(a

)

not a

 or_

 or_(a, b

)

 a | b

 pos

 pos(

 a

)

+ a

pow
 pow(a, b)

a ** b

 repeat

 repeat(a,

 b

 a * b

)

 rshift

 rshift
 (

 a,

 b

)

 a >> b

 setitem

 setitem
 (a,

 b,

 c

)

a [b]= c

 setslice

 setslice
 (a,

 b
 ,
 c
 ,
 d)

a [b : c]= d

 sub

 sub(a,

 b

)

 a - b

 truediv

 truediv
 (

 a,

 b

 a/b
 # "true" div -> no
truncation

)

 truth

 truth(

 a

)

 bool(
 a
), not not a

 xor

 xor
 (a,

 b

)

 a ^ b

The operator module also supplies additional higher-order functions.
Three of these functions, attrgetter, itemgetter, and
methodcaller, return functions suitable for passing as named argument
key= to the sort method of lists, the sorted, min, and max built-in
functions, and several functions in standard library modules such as heapq
and itertools.

attrgetter

attrgetter(attr)
 Returns a callable f such that f(o) is the same as getattr(o,attr). The attr
string can include dots (.), in which case the callable result of attrgetter
calls getattr repeatedly. For example,
operator.attrgetter('a.b') is equivalent to lambda o:
getattr(getattr(o, 'a'), 'b').
 attrgetter(*attrs)
 When you call attrgetter with multiple arguments, the resulting callable
extracts each attribute thus named and returns the resulting tuple of values.

itemgetter

itemgetter(key)
 Returns a callable f such that f(o) is the same as getitem(o, key).
itemgetter(*keys)
 When you call itemgetter with multiple arguments, the resulting callable
extracts each item thus keyed and returns the resulting tuple of values.
 For example, say that L is a list of lists, with each sublist at least three items
long: you want to sort L, in-place, based on the third item of each sublist, with
sublists having equal third items sorted by their first items. The simplest way:

import operator L.sort(key=operator.itemgetter(2,
0))

length_hint

length_hint(iterable, default=0)
 Used to try to pre-allocate storage for items in iterable. Calls object
iterable’s __len__ method to try to get an exact length. If __len__ is
not implemented, then Python tries calling iterable’s
__length_hint__ method. If also not implemented, length_hint
returns the given default.

methodcaller

methodcaller(methodname, args...)
 Returns a callable f such that f(o) is the same as o.methodname(args,
...). The optional args may be given as positional or named arguments.

Random and Pseudorandom Numbers
The random module of the standard library generates pseudorandom
numbers with various distributions. The underlying uniform pseudorandom
generator uses the popular Mersenne Twister algorithm, with a period of
length 2**19937-1.

The random Module
All functions of the random module are methods of one hidden global
instance of the class random.Random. You can instantiate Random
explicitly to get multiple generators that do not share state. Explicit
instantiation is advisable if you require random numbers in multiple threads
(threads are covered in Chapter “Threads and Processes”). Alternatively,
instantiate SystemRandom if you require higher-quality random numbers.
(See “Physically Random and Cryptographically Strong Random
Numbers”.) This section documents the most frequently used functions
exposed by module random:

choice

choice(seq)
 Returns a random item from nonempty sequence seq.

choices(seq, *, weights, cum_weights, k=1)

https://en.wikipedia.org/wiki/Mersenne_Twister

choices

 Returns k elements from nonempty sequence seq, with replacement. If
weights or cum_weights are given (as a list of floats or ints), then their
respective choices are weighted by that amount during choosing. The
cum_weights argument accepts a list of floats or ints as would be returned
by itertools.accumulate(weights) ; e.g., if weights for a seq
containing 3 items were [1, 2, 1], then the corresponding cum_weights
would be [1, 3, 4]. Only one of weights or cum_weights may be
specified, and the one specified must be the same length as seq. If neither is
specified, elements are chosen with equal probability. (If used, cum_weights
and k must be given as named arguments.)

getrandbits

getrandbits(k)
 Returns an int >=0 with k random bits, like randrange(2**k) (but
faster, and with no problems for large k).

getstate

getstate()
 Returns a hashable and pickleable object S representing the current state of
the generator. You can later pass S to function setstate to restore the
generator’s state.

jumpahead

jumpahead(n)
 Advances the generator state as if n random numbers had been generated.
This is faster than generating and ignoring n random numbers.

randbytes

randbytes(k)
 ||3.9++|| Generates k random bytes. To generate bytes for secure or
cryptographic applications, use secrets.randbits(k*8), then unpack
the int it returns into k bytes, using int.to_bytes(k, 'big').

randint

randint(start, stop)
 Returns a random int i from a uniform distribution such that
start<=i<=stop. Both endpoints are included: this is quite unnatural in
Python, so you would normally prefer randrange.

random

random()
 Returns a random float r from a uniform distribution, 0<=r<1.

randrange

randrange([start,]stop[,step])
 Like choice(range(start,stop,step)), but much faster.

sample

sample(seq,k)
 Returns a new list whose k items are unique items randomly drawn from seq.
The list is in random order, so that any slice of it is an equally valid random
sample. seq may contain duplicate items. In this case, each occurrence of an
item is a candidate for selection in the sample, and the sample may also
contain such duplicates.

 seed(x=None)

 seed

 Initializes the generator state. x can be any int, float, str, bytes,
or bytearray. When x is None, and when the module random is first
loaded, seed uses the current system time (or some platform-specific source
of randomness, if any) to get a seed. x is normally an int up to 2**256, a
float, or a str, bytes, or bytearray up to 32 bytes in size.
Larger x values are accepted, but may produce the same generator state as
smaller ones.

setstate

setstate(S)
 Restores the generator state. S must be the result of a previous call to
getstate (such a call may have occurred in another program, or in a
previous run of this program, as long as object S has correctly been
transmitted, or saved and restored).

shuffle

shuffle(alist)
 Shuffles, in place, mutable sequence alist.

uniform

uniform(a,b)
 Returns a random floating-point number r from a uniform distribution such
that a<=r<b.

The random module also supplies several other functions that generate
pseudo random floating-point numbers from other probability distributions
(Beta, Gamma, exponential, Gauss, Pareto, etc.) by internally calling
random.random as their source of randomness.

Physically and Cryptographically Strong Random
Numbers:
the secrets module
Pseudorandom numbers provided by the random module, while sufficient
for simulation and modeling, are not of cryptographic quality. To get
random numbers and sequences for use in security and cryptography
applications, use the functions defined in the secrets module. Those
functions use the random.SystemRandom class, which in turn calls
os.urandom. os.urandom returns random bytes, read from physical
sources of random bits such as /dev/urandom on older Linux releases, or the
getrandom() syscall on Linux 3.17 and above. On Windows,
os.urandom uses cryptographical-strength sources such as the

CryptGenRandom API. If no suitable source exists on the current system,
os.urandom raises NotImplementedError. Module secrets
exports the following functions:

choice

choice(seq)
 Returns a randomly selected item from nonempty sequence seq.

randbelow

randbelow(n)
 Returns a random int x in the range 0 <= x < n

randbits

randbits(k)
 Returns an int with k random bits.

token_bytes

token_bytes(n)
 Returns a bytes object of n random bytes. If n is omitted, a default value,
such as 32, is used.

token_hex

token_hex(n)
 Returns a string of hexadecimal characters from n random bytes, with two
characters per byte. If n is omitted, a default value, such as 32, is used.

token_urlsafe

token_urlsafe(n)
 Returns a string of base64-encoded characters from n random bytes; the
resulting string’s length is approx 1.3 times n. If n is omitted, a default value,
such as 32, is used.

Additional recipes and best cryptographic practices are listed in Python’s
online documentation.
An alternative source of physically random numbers is online, from
Fourmilab.

The fractions Module
The fractions module supplies a rational number class called
Fraction whose instances can be constructed from a pair of integers,
another rational number, or a string. You can pass a pair of (optionally

https://docs.python.org/3/library/secrets.html
http://www.fourmilab.ch/hotbits/

signed) ints: the numerator and denominator. When the denominator is 0,
a ZeroDivisionError is raised. A string can be of the form '3.14',
or can include an optionally signed numerator, a slash (/) , and a
denominator, such as '-22/7'. Fraction also supports construction
from decimal.Decimal instances, and from floats (although the
latter may not provide the result you’d expect, given floats’ bounded
precision). Fraction class instances have the properties numerator
and denominator.

Reduced to Lowest Terms
Fraction reduces the fraction to the lowest terms—for example, f = Fraction(226,
452) builds an instance f equal to one built by Fraction(1, 2). The specific numerator and
denominator originally passed to Fraction are not recoverable from the instance thus built.

>>> from fractions import Fraction
>>> Fraction(1,10)
Fraction(1, 10)
>>> Fraction(Decimal('0.1'))
Fraction(1, 10)
>>> Fraction('0.1')
Fraction(1, 10)
>>> Fraction('1/10')
Fraction(1, 10)
>>> Fraction(0.1)
Fraction(3602879701896397, 36028797018963968)
>>> Fraction(-1, 10)
Fraction(-1, 10)
>>> Fraction(-1,-10)
Fraction(1, 10)

Fraction supplies methods, including limit_denominator, which
allows you to create a rational approximation of a float—for example,
Fraction(0.0999).limit_denominator(10) returns
Fraction(1, 10). Fraction instances are immutable and can
be keys in dictionaries and members of sets, as well as being used in

arithmetic operations with other numbers. See the fractions online docs
for more complete coverage.
The fractions module also supplies a function called gcd that works
just like math.gcd, covered in Table 15-1.

The decimal Module
A Python float is a binary floating-point number, normally according to
the standard known as IEEE 754, implemented in hardware in modern
computers. An excellent, concise, practical introduction to floating-point
arithmetic and its issues can be found in David Goldberg’s essay “What
Every Computer Scientist Should Know about Floating-Point Arithmetic”.
A Python-focused essay on the same issues is part of the online tutorial;
another excellent summary, not focused on Python, is also available online.
Often, particularly for money-related computations, you may prefer to use
decimal floating-point numbers; Python supplies an implementation of the
standard known as IEEE 854, for base 10, in the standard library module
decimal. The module has excellent documentation: there, you can find
complete reference documentation, pointers to the applicable standards, a
tutorial, and advocacy for decimal. Here, we cover only a small subset of
decimal’s functionality, the most frequently used parts of the module.

The decimal module supplies a Decimal class (whose immutable
instances are decimal numbers), exception classes, and classes and
functions to deal with the arithmetic context, which specifies such things as
precision, rounding, and which computational anomalies (such as division
by zero, overflow, underflow, and so on) raise exceptions when they occur.
In the default context, precision is 28 decimal digits, rounding is “half-
even” (round results to the closest representable decimal number; when a
result is exactly halfway between two such numbers, round to the one
whose last digit is even), and the anomalies that raise exceptions are:
invalid operation, division by zero, and overflow.

https://docs.python.org/3/library/fractions.html
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.python.org/3/tutorial/floatingpoint.html
http://www.lahey.com/float.htm
https://docs.python.org/3/library/decimal.html?highlight=decimal%23module-decimal

To build a decimal number, call Decimal with one argument: an integer,
float, string, or tuple. If you start with a float, it is converted losslessly to
the exact decimal equivalent (which may require 53 digits or more of
precision):

>>> from decimal import Decimal
>>> df = Decimal(0.1)
>>> df
Decimal('0.100000000000000005551115123125782702118158340454101562
5')

If this is not the behavior you want, you can pass the float as a string; for
example:

>>> ds = Decimal(str(0.1)) # or, directly, Decimal('0.1')
>>> ds
Decimal('0.1')

You can easily write a factory function for ease of interactive
experimentation with decimal:

def dfs(x):
 return Decimal(str(x))

Now dfs(0.1) is just the same thing as Decimal(str(0.1)), or
Decimal('0.1'), but more concise and handier to write.

Alternatively, you may use the quantize method of Decimal to
construct a new decimal by rounding a float to the number of significant
digits you specify:

>>> dq = Decimal(0.1).quantize(Decimal('.00'))
>>> dq
Decimal('0.10')

If you start with a tuple, you need to provide three arguments: the sign (0
for positive, 1 for negative), a tuple of digits, and the integer exponent:

>>> pidigits = (3, 1, 4, 1, 5)
>>> Decimal((1, pidigits, -4))
Decimal('-3.1415')

Once you have instances of Decimal, you can compare them, including
comparison with floats (use math.isclose for this); pickle and
unpickle them; and use them as keys in dictionaries and as members of
sets. You may also perform arithmetic among them, and with integers, but
not with floats (to avoid unexpected loss of precision in the results), as
demonstrated here:

>>> a = 1.1
>>> d = Decimal('1.1')
>>> a == d
False
>>> math.isclose(a, d)
True
>>> a + d
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +:
 'decimal.Decimal' and 'float'
>>> d + Decimal(a) # new decimal constructed from a
Decimal('2.200000000000000088817841970') # whoops
>>> d + Decimal(str(a)) # convert a to decimal with str(a)
Decimal('2.20')

The online docs include useful recipes for monetary formatting, some
trigonometric functions, and a list of Frequently Asked Questions (FAQ).

Array Processing
You can represent arrays with lists (covered in “Lists”), as well as with the
array standard library module (covered in “The array Module”). You can
manipulate arrays with loops; indexing and slicing; list comprehensions;
iterators; generators; genexps (all covered in Chapter “The Python
Language”); built-ins such as map, reduce, and filter (all covered in
“Built-in Functions”); and standard library modules such as itertools
(covered in “The itertools Module”). If you only need a lightweight, one-

https://docs.python.org/3/library/decimal.html#recipes

dimensional array, stick with array. However, to process large arrays of
numbers, such functions may be slower and less convenient than third-party
extensions such as NumPy and SciPy (covered in “Extensions for Numeric
Array Computation”). When you’re doing data analysis and modeling,
pandas, which is built on top of NumPy, might be most suitable.

The array Module
The array module supplies a type, also called array, whose instances
are mutable sequences, like lists. An array a is a one-dimensional
sequence whose items can be only characters, or only numbers of one
specific numeric type, fixed when you create a.
array.array’s advantage is that, compared to a list, it can save memory
to hold objects all of the same (numeric or character) type. An array
object a has a one-character, read-only attribute a.typecode, set on
creation: the type code of a’s items. Table 15-3 shows the possible type
codes for array.

Table 8-3. Type codes for the array module

typecode

 C type

 Python type

 Minimum
size

 'b'

 char

 int

1 byte

 'B'

 unsigned char

 int

1 byte

 'u'

 unicode char

 str
(length 1)

see note

 'h'

 short

 int

2 bytes

 2 bytes

 'H'

 unsigned short

 int

 'i'

 int

 int

2 bytes

 'I'

 unsigned int

 int

2 bytes

 'l'

 long

 int

4 bytes

 'L'

 unsigned long

 int

4 bytes

 'q'

 long long

 int

8 bytes

 'Q'

 unsigned long
long

 int

8 bytes

 'f'

 float

 float

4 bytes

 'd'

 double

 float

8 bytes

NOTE
Note: 'u' has an item size of 2 on a few platforms (mostly, Windows) and 4 on just about every
other platform. You can check the build type of a Python interpreter by using
array.array('u').itemsize.

The size in bytes of each item may be larger than the minimum, depending
on the machine’s architecture, and is available as the read-only attribute
a.itemsize.

The module array supplies just the type object called array:

 array

array(typecode,init='')
 Creates and returns an array object a with the given typecode. init can be a
string (a bytestring, except for typecode 'u') whose length is a multiple of
itemsize: the string’s bytes, interpreted as machine values, directly
initialize a’s items. Alternatively, init can be an iterable (of chars when
typecode is 'u', otherwise of numbers): each item of the iterable initializes
one item of a.
 Array objects expose all methods and operations of mutable sequences (as
covered in “Sequence Operations”), except sort. Concatenation with + or
+=, and slice assignment, require both operands to be arrays with the same
typecode; in contrast, the argument to a.extend can be any iterable with
items acceptable to a.

In addition to the methods of mutable sequences (append, extend,
insert, pop, etc.), an array object a exposes the following methods and
properties.

buffer_info

a.buffer_info()
 Returns a 2-item tuple (address, array_length), where
array_length is the number of elements that can be stored in a. The size
of a in bytes is a.buffer_info()[1] * a.itemsize.

byteswap

a.byteswap()
 Swaps the byte order of each item of a.

frombytes

a.frombytes(s)
 frombytes appends to a the bytes, interpreted as machine values, of bytes
s. len(s) must be an exact multiple of a.itemsize.

fromfile

a.fromfile(f, n)
 Reads n items, taken as machine values, from file object f and appends the
items to a. Note that f should be open for reading in binary mode—for
example, with mode 'rb'. When fewer than n items are available in f,
fromfile raises EOFError after appending the items that are available.

fromlist

a.fromlist(L)
 Appends to a all items of list L.

fromunicode

a.fromunicode(s)
 Appends to a all characters from string s. a must have typecode 'u';
otherwise, Python raises ValueError.

a.itemsize
 Property that returns the size in bytes of an element in a.

itemsize

tobytes

a.tobytes()
 tobytes returns the bytes representation of the items in a. For any a,
len(a.tobytes())== len(a)*a.itemsize.
f.write(a.tobytes()) is the same as a.tofile(f).

 tofile

a.tofile(f)
 Writes all items of a, taken as machine values, to file object f. Note that f
should be open for writing in binary mode—for example, with mode 'wb'.

 tolist

a.tolist()
 Creates and returns a list object with the same items as a, like list(a).

tounicode

a.tounicode()
 Creates and returns a string with the same items as a, like ''.join(a). a
must have typecode 'u'; otherwise, Python raises ValueError.

typecode

a.typecode
 Property that returns the type code character used to create a.

Extensions for Numeric Array Computation
As you’ve seen, Python has great support for numeric processing. However,
third-party library SciPy and packages such as NumPy, Matplotlib, Sympy,
numba, pandas, and TensorFlow provide even more tools. We introduce
NumPy here, then provide a brief description of SciPy and other packages,
with pointers to their documentation.

NumPy
If you need a lightweight one-dimensional array of numbers, the standard
library’s array module may suffice. If you are handling scientific
computing, image processing, multidimensional arrays, linear algebra, or
other applications involving large amounts of data, the popular third-party
NumPy package meets your needs. Extensive documentation is available
online; a free PDF of Travis Oliphant’s Guide to NumPy book is also
available.

https://docs.scipy.org/doc/
http://web.mit.edu/dvp/Public/numpybook.pdf

NumPy or numpy?
The docs variously refer to the package as NumPy or Numpy; however, in coding, the package is
called numpy, and you usually import it with import numpy as np. In this section, we use
all of these monikers.

NumPy provides class ndarray, which you can subclass to add
functionality for your particular needs. An ndarray object has n
dimensions of homogenous items (items can include containers of
heterogenous types). An ndarray object a has a number of dimensions
(AKA axes) known as its rank. A scalar (i.e., a single number) has rank 0,
a vector has rank 1, a matrix has rank 2, and so forth. An ndarray object
also has a shape, which can be accessed as property shape. For example,
for a matrix m with 2 columns and 3 rows, m.shape is (3,2).

NumPy supports a wider range of numeric types (instances of dtype) than
Python; the default numerical types are: bool_, one byte; int_, either
int64 or int32 (depending on your platform); float_, short for float64;
and complex_, short for complex128.

Creating a NumPy Array
There are several ways to create an array in NumPy; among the most
common are:

with the factory function np.array, from a sequence (often a nested
one), with type inference or by explicitly specifying dtype

with factory functions zeros, ones, empty, which default to dtype
float64, and indices, which defaults to int64

with factory function arange (with the usual start, stop, stride), or with
factory function linspace (start, stop, quantity) for better floating-
point behavior

https://docs.scipy.org/doc/numpy/user/basics.subclassing.html
https://docs.scipy.org/doc/numpy/user/basics.types.html

reading data from files with other np functions (e.g., CSV with
genfromtxt)

Here are examples of creating an array, as just listed:

import numpy as np
np.array([1, 2, 3, 4]) # from a Python list
array([1, 2, 3, 4])

np.array(5, 6, 7) # a common error: passing items separately
(they
 # must be passed as a sequence, e.g. a list)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: only 2 non-keyword arguments accepted

s = 'alph', 'abet' # a tuple of two strings
np.array(s)
array(['alph', 'abet'], dtype='<U4')

t = [(1,2), (3,4), (0,1)] # a list of tuples
np.array(t, dtype='float64') # explicit type designation
array([[1., 2.],
 [3., 4.],
 [0., 1.]]

x = np.array(1.2, dtype=np.float16) # a scalar
x.shape
()
x.max()
1.2

np.zeros(3) # shape defaults to a vector
array([0., 0., 0.])

np.ones((2,2)) # with shape specified
array([[1., 1.],
 [1., 1.]])

np.empty(9) # arbitrary float64s
array([4.94065646e-324, 9.88131292e-324, 1.48219694e-323,
 1.97626258e-323, 2.47032823e-323, 2.96439388e-323,
 3.45845952e-323, 3.95252517e-323, 4.44659081e-323])

np.indices((3,3))
array([[[0, 0, 0],
 [1, 1, 1],
 [2, 2, 2]],

 [[0, 1, 2],
 [0, 1, 2],
 [0, 1, 2]]])

np.arange(0, 10, 2) # upper bound excluded
array([0, 2, 4, 6, 8])

np.linspace(0, 1, 5) # default: endpoint included
array([0. , 0.25, 0.5 , 0.75, 1.])

np.linspace(0, 1, 5, endpoint=False) # endpoint not included
array([0. , 0.2, 0.4, 0.6, 0.8])

import io
np.genfromtxt(io.BytesIO(b'1 2 3\n4 5 6')) # using a pseudo-file
array([[1., 2., 3.],
 [4., 5., 6.]])

with io.open('x.csv', 'wb') as f:
 f.write(b'2,4,6\n1,3,5')
np.genfromtxt('x.csv', delimiter=',') # using an actual CSV file
array([[2., 4., 6.],
 [1., 3., 5.]])

Shape, Indexing, and Slicing
Each ndarray object a has an attribute a.shape, which is a tuple of
ints. len(a.shape) is a’s rank; for example, a one-dimensional array
of numbers (also known as a vector) has rank 1, and a.shape has just one
item. More generally, each item of a.shape is the length of the
corresponding dimension of a. a’s number of elements, known as its size, is
the product of all items of a.shape (also available as property a.size).
Each dimension of a is also known as an axis. Axis indices are from 0 and
up, as usual in Python. Negative axis indices are allowed and count from
the right, so -1 is the last (rightmost) axis.

Each array a (except a scalar, meaning an array of rank-0) is a Python
sequence. Each item a[i] of a is a subarray of a, meaning it is an array
with a rank one less than a’s: a[i].shape==a.shape[1:]. For
example, if a is a two-dimensional matrix (a is of rank 2), a[i], for any
valid index i, is a one-dimensional subarray of a that corresponds to a row

of the matrix. When a’s rank is 1 or 0, a’s items are a’s elements (just one
element, for rank-0 arrays). Since a is a sequence, you can index a with
normal indexing syntax to access or change a’s items. Note that a’s items
are a’s subarrays; only for an array of rank 1 or 0 are the array’s items the
same thing as the array’s elements.
As for any other sequence, you can also slice a: after b=a[i: j], b has the
same rank as a, and b.shape equals a.shape except that b.shape[0]
is the length of the slice i: j (j- i when a.shape[0]>j>=i>=0, and so
on).
Once you have an array a, you can call a.reshape (or, equivalently,
np.reshape with a as the first argument). The resulting shape must
match a.size: when a.size is 12, you can call a.reshape(3,4) or
a.reshape(2,6), but a.reshape(2,5) raises ValueError. Note
that reshape does not work in place: you must explicitly bind or rebind
the array—that is, a = a.reshape(i, j) or b = a.reshape(i, j).

You can also loop on (nonscalar) a in a for, just as you can with any other
sequence. For example:

for x in a:
 process(x)

means the same thing as:

for _ in range(len(a)):
 x = a[_]
 process(x)

In these examples, each item x of a in the for loop is a subarray of a. For
example, if a is a two-dimensional matrix, each x in either of these loops is
a one-dimensional subarray of a that corresponds to a row of the matrix.
You can also index or slice a by a tuple. For example, when a’s rank is
>=2, you can write a[i][j] as a[i,j], for any valid i and j, for rebinding as
well as for access; tuple indexing is faster and more convenient. Do not put
parentheses inside the brackets to indicate that you are indexing a by a

tuple: just write the indices one after the other, separated by commas. a[i,j]
means the same thing as a[(i,j)], but the form without parentheses is
more readable.
An indexing is a slicing when one or more of the tuple’s items are slices, or
(at most once per slicing) the special form ... (the Python built-in
Ellipsis). ... expands into as many all-axis slices (:) as needed to
“fill” the rank of the array you’re slicing. For example, a[1,...,2] is
like a[1,:,:,2] when a’s rank is 4, but like a[1,:,:,:,:,2] when
a’s rank is 6.
The following snippets show looping, indexing, and slicing:

a = np.arange(8)
a
array([0, 1, 2, 3, 4, 5, 6, 7])
a = a.reshape(2,4)
a
array([[0, 1, 2, 3],
 [4, 5, 6, 7]])
print(a[1,2])
6
a[:,:2]
array([[0, 1],
 [4, 5]])
for row in a:
 print(row)
[0 1 2 3]
[4 5 6 7]
for row in a:
 for col in row[:2]: # first two items in each row
 print(col)
0
1
4
5

Matrix Operations in NumPy
As mentioned in “The operator Module”, NumPy implements the operator
@ for matrix multiplication of arrays. a1 @ a2 is like
np.matmul(a1,a2). When both matrices are two-dimensional, they’re
treated as conventional matrices. When one argument is a vector, you

conceptually promote it to a two-dimensional array, as if by temporarily
appending or prepending a 1, as needed, to its shape. Do not use @ with a
scalar; use * instead (see the following example). Matrices also allow
addition (using +) with a scalar (see example), as well as with vectors and
other matrices of compatible shapes. Dot product is also available for
matrices, using np.dot(a1, a2). A few simple examples of these
operators follow:

a = np.arange(6).reshape(2,3) # a 2-d matrix
b = np.arange(3) # a vector
a
array([[0, 1, 2],
 [3, 4, 5]])
a + 1 # adding a scalar
array([[1, 2, 3],
 [4, 5, 6]])
a + b # adding a vector
array([[0, 2, 4],
 [3, 5, 7]])
a * 2 # multiplying by a scalar
array([[0, 2, 4],
 [6, 8, 10]])
a * b # multiplying by a vector
array([[0, 1, 4],
 [0, 4, 10]])
a @ b # matrix-multiplying by vector
array([5, 14])
c = (a*2).reshape(3,2) # using scalar multiplication to create
c # another matrix
array([[0, 2],
 [4, 6],
 [8, 10]])
a @ c # matrix multiplying two 2-d matrices
array([[20, 26],
 [56, 80]])

NumPy is rich enough to warrant books of its own; we have only touched
on a few details. See the NumPy documentation for extensive coverage of
its many features.

SciPy

https://numpy.org/doc/stable/

NumPy contains classes and methods for handling arrays; the SciPy library
supports more advanced numeric computation. For example, while NumPy
provides a few linear algebra methods, SciPy provides many more
functions, including advanced decomposition methods, and also more
advanced functions, such as allowing a second matrix argument for solving
generalized eigenvalue problems. In general, when you are doing advanced
numerical computation, it’s a good idea to install both SciPy and NumPy.
SciPy.org also hosts docs for a number of other packages, which are
integrated with SciPy and NumPy: Matplotlib, which provides 2D plotting
support; Sympy, which supports symbolic mathematics; Jupyter/Notebook,
a powerful interactive console shell and web-application kernel; and
pandas, which supports data analysis and modeling.

Additional Numeric Packages
The Python community has produced many more packages in the field of
numeric processing.
Anaconda - Anaconda is a consolidated environment that simplifies the
installation of pandas, numpy, and many related numerical processing,
analytical, and visualization packages, and provides package management
via its own conda package installer.

gmpy2 - the gmpy2 module supports the GMP/MPIR, MPFR, and MPC
libraries, to extend and accelerate Python’s abilities for multiple-precision
arithmetic.
numba - numba is a just-in-time compiler to convert numba-decorated
Python functions and Numpy code to LLVM. Numba-compiled numerical
algorithms in Python can approach the speeds of C or FORTRAN. ()
TensorFlow - TensorFlow is a comprehensive machine learning platform
that operates at large scale and in mixed environments. It uses dataflow
graphs to represent computation, shared state, and state manipulation
operations. TensorFlow supports processing across multiple machines in a

http://www.scipy.org/index.html
http://www.scipy.org/docs.html
http://jupyter.org/
https://pandas.pydata.org/
https://www.anaconda.com/
https://pypi.org/project/gmpy2/
https://numba.pydata.org/
https://www.tensorflow.org/api_docs/python/

cluster, and within-machine across multicore CPUs, GPUs, and custom-
designed ASICs. TensorFlow’s main and most popular API uses Python.

Chapter 9. Structured Text:
HTML

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 22nd chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

Most documents on the web use HTML, the HyperText Markup Language.
Markup is the insertion of special tokens, known as tags, in a text
document, to structure the text. HTML is, in theory, an application of the
large, general standard known as SGML, the Standard General Markup
Language. In practice, many documents on the web use HTML in sloppy or
incorrect ways.
HTML is not suitable for much more than presenting documents on a
browser. Complete, precise extraction of the information in the document,
working backward from what most often amounts to the document’s
presentation, often turns out to be unfeasible. To tighten things up, HTML
tried evolving into a more rigorous standard called XHTML. XHTML is
similar to traditional HTML, but it is defined in terms of XML, and more
precisely than HTML. You can handle well-formed XHTML with the tools
covered in Chapter “Structured text: XML”. However, as of this writing,
XHTML does not appear to have enjoyed overwhelming success, getting
scooped instead by the (non-XML) newest version, HTML5.
Despite the difficulties, it’s often possible to extract at least some useful
information from HTML documents (a task known as screen-scraping, or

1

just scraping). Python’s standard library tries to help, supplying the html
package for the task of parsing HTML documents, whether this parsing is
for the purpose of presenting the documents, or, more typically, as part of
an attempt to extract (“scrape”) information. However, when you’re dealing
with somewhat-broken web pages (which is almost always!), the third-party
module BeautifulSoup usually offers your last, best hope. In this book, we
mostly cover BeautifulSoup, ignoring the standard library modules
competing with it.
Generating HTML, and embedding Python in HTML, are also reasonably
frequent tasks. The standard Python library doesn’t support HTML
generation or embedding, but you can use Python string formatting, and
third-party modules can also help. BeautifulSoup lets you alter an
HTML tree (so, in particular, you can build one up programmatically, even
“from scratch”); an (often preferable) alternative approach is templating,
supported, for example, by the third-party module jinja2, whose bare
essentials we cover in “The jinja2 Package.”

The html.entities Module
The html.entities module in Python’s standard library supplies a few
attributes, all of them being mappings. They come in handy whatever
general approach you’re using to parse, edit, or generate HTML, including
the BeautifulSoup package covered in “The BeautifulSoup Third-Party
Package.”

codepoint2name

A mapping from Unicode codepoints to HTML entity names. For
example, entities.codepoint2name[228] is 'auml', since
Unicode character 228, ä, “lowercase a with diaeresis,” is encoded in
HTML as 'ä'.

entitydefs

https://pypi.org/project/beautifulsoup4/
http://jinja.pocoo.org/

A mapping from HTML entity names to Unicode equivalent single-
character strings. For example, entities.entitydefs['auml']
is 'ä', and entities.entitydefs['sigma'] is 'σ'.

html5

html5 is a mapping from HTML5 named character references to
equivalent single-character strings. For example,
entities.html5['gt;'] is '>'. The trailing semicolon in the
key does matter—a few, but far from all, HTML5 named character
references can optionally be spelled without a trailing semicolon, and,
in those cases, both keys (with and without the trailing semicolon) are
present in entities.html5.

name2codepoint

A mapping from HTML entity names to Unicode codepoints. For
example, entities.name2codepoint['auml'] is 228.

The BeautifulSoup Third-Party Package
BeautifulSoup lets you parse HTML even if it’s rather badly formed—
BeautifulSoup uses simple heuristics to compensate for typical HTML
brokenness, and succeeds at this hard task with surprisingly good
frequency. The current major version of BeautifulSoup is version 4, also
known as bs4; in this book, we specifically cover version 4.10, the latest
stable one as of this writing, of bs4.

Installing Versus Importing Beautifulsoup
You install the module, for example, by running, at a shell command prompt, pip install
beautifulsoup4; but when you import it, in your Python code, use import bs4.

https://www.crummy.com/software/BeautifulSoup/

The BeautifulSoup Class
The bs4 module supplies the BeautifulSoup class, which you
instantiate by calling it with one or two arguments: first, htmltext—
either a file-like object (which is read to get the HTML text to parse) or a
string (which is the text to parse)—and next, an optional parser
argument.

Which parser BeautifulSoup uses
If you don’t pass a parser argument, BeautifulSoup “sniffs around”
to pick the best parser (you may get a warning in this case). If you haven’t
installed any other parser, BeautifulSoup defaults to html.parser
from the Python standard library (to specify that parser explicitly, use the
string 'html.parser'). To get more control – to avoid the differences
between parsers mentioned in the BeautifulSoup documentation, pass
the name of the parser library to use as the second argument as you
instantiate BeautifulSoup. Unless specified otherwise, the following
examples use the default Python html.parser.

For example, if you have installed the third-party package html5lib (to
parse HTML in the same way as all major browsers do, albeit more slowly),
you may call:

soup = bs4.BeautifulSoup(thedoc, 'html5lib')

When you pass 'xml' as the second argument, you must have installed
the third-party package lxml, mentioned in “ElementTree,” and
BeautifulSoup parses the document as XML, rather than as HTML. In
this case, the attribute is_xml of soup is True; otherwise,
soup.is_xml is False. (If you have installed lxml, you can also use it
to parse HTML, by passing as the second argument 'lxml').

>>> import bs4
>>> s = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> sx = bs4.BeautifulSoup('<p>hello', 'xml')
>>> sl = bs4.BeautifulSoup('<p>hello', 'lxml')
>>> s5 = bs4.BeautifulSoup('<p>hello', 'html5lib')

2

https://www.crummy.com/software/BeautifulSoup/bs4/doc/

>>> print(s, s.is_xml)
<p>hello</p> False
>>> print(sx, sx.is_xml)
<?xml version="1.0" encoding="utf-8"?><p>hello</p> True
>>> print(sl, sl.is_xml)
<html><body><p>hello</p></body></html> False
>>> print(s5, s5.is_xml)<html><head></head><body><p>hello</p>
</body></html> False

Differences Between Parsers in Fixing Invalid HTML
Input
In the example, 'html.parser' just inserts end-tag </p>, missing from the input. As also
shown, other parsers go further in repairing invalid HTML input, adding required tags such as
<body> and <html>, to different extents depending on the parser.

BeautifulSoup, Unicode, and encoding
BeautifulSoup uses Unicode, deducing or guessing the encoding
when the input is a bytestring or binary file. For output, the prettify
method returns an str (thus, Unicode) representation of the tree, including
tags, with attributes, plus extra white-space and newlines to indent
elements, to show the nesting structure; to have it instead return a bytes
object (a byte string) in a given encoding, pass it the encoding name as an
argument. If you don’t want the result to be “prettified,” use the encode
method to get a bytestring, and the decode method to get a Unicode
string. For example:

>>> s = bs4.BeautifulSoup('<p>hello', 'html.parser')
>>> print(s.prettify())
<p>
 hello
</p>
>>> print(s.decode())
<p>hello</p>
>>> print(s.encode())
b'<p>hello</p>'

3

The Navigable Classes of bs4
An instance b of class BeautifulSoup supplies attributes and methods
to “navigate” the parsed HTML tree, returning instances of classes Tag and
NavigableString (and subclasses of NavigableString:
CData, Comment, Declaration, Doctype, and
ProcessingInstruction—differing only in how they are emitted
when you output them).

Navigable Classes Terminology
When we say “instances of NavigableString,” we include instances of any of its subclasses;
when we say “instances of Tag,” we include instances of BeautifulSoup, since the latter is a
subclass of Tag. Instances of navigable classes are also known as the elements or nodes of the
tree.

Each instance of a “navigable class” lets you keep navigating, or dig for
more information, with pretty much the same set of navigational attributes
and search methods as b itself. There are differences: instances of Tag can
have HTML attributes and children nodes in the HTML tree, while
instances of NavigableString cannot (instances of
NavigableString always have one text string, a parent Tag, and zero
or more siblings, i.e., other children of the same parent tag).
All instances of navigable classes have attribute name: it’s the tag string for
Tag instances, '[document]' for BeautifulSoup instances, and
None for instances of NavigableString.

Instances of Tag let you access their HTML attributes by indexing; or, you
can get them all as a dict via the .attrs Python attribute of the
instance.

Indexing instances of Tag

When t is an instance of Tag, a construct like t['foo'] looks for an
HTML attribute named foo within t’s HTML attributes, and returns the
string for the foo HTML attribute. When t has no HTML attribute named
foo, t['foo'] raises a KeyError exception; just like on a dict, call
t.get('foo', default=None) to get the value of the default
argument, instead of an exception, when t has no HTML attribute named
foo.

A few attributes, such as class, are defined in the HTML standard as
being able to have multiple values (e.g., <body class="foo
bar">...</body>); in these cases, the indexing returns a list of
values—for example, soup.body['class'] would be ['foo',
'bar'] (again, you get a KeyError exception when the attribute isn’t
present at all; use the get method, instead of indexing, to get a default
value instead).
To get a dict that maps attribute names to values (or, in a few cases
defined in the HTML standard, lists of values), use the attribute
t.attrs:

>>> s = bs4.BeautifulSoup('<p foo="bar" class="ic">baz')
>>> s.get('foo')
>>> s.p.get('foo')
'bar'
>>> s.p.attrs
{'foo': 'bar', 'class': ['ic']}

How To Check if a Tag Instance Has a Certain Attribute
To check if a Tag instance t’s HTML attributes include one named 'foo', don’t use if
'foo' in t:—the in operator on Tag instances looks among the Tag’s children, not its
attributes. Rather, use if 'foo' in t.attrs: or if t.has_attr('foo'):.

When you have an instance of NavigableString, you often want to
access the actual text string it contains; when you have an instance of Tag,

you may want to access the unique string it contains, or, should it contain
more than one, all of them—perhaps with their text stripped of any
whitespace surrounding it. Here’s how you can best accomplish these tasks.

Getting an actual string
When you have a NavigableString instance s and you need to stash
or process its text somewhere, without further navigation on it, call
str(s). Or, use s.encode(codec='utf8') to get a bytestring, and
s.decode() to get a string (Unicode). These give you the actual string,
without references to the BeautifulSoup tree impeding garbage
collection (s supports all methods of Unicode strings, so call those directly
if they do all you need).
Given an instance t of Tag, you can get its single contained
NavigableString instance with t.string (so
t.string.decode() could be the actual text you’re looking for).
t.string only works when t has a single child that’s a
NavigableString, or a single child that’s a Tag whose only child is a
NavigableString; otherwise, t.string is None.

As an iterator on all contained (navigable) strings, use t.strings
(''.join(t.strings) could be the string you want). To ignore
whitespace around each contained string, use the iterator
t.stripped_strings (it also skips strings that are all-whitespace).

Alternatively, call t.get_text()—it returns a single (Unicode) string
with all the text in t’s descendants, in tree order (equivalently, access the
attribute t.text). You can optionally pass, as the only positional
argument, a string to use as a separator (default is the empty string '');
pass the named parameter strip=True to have each string stripped of
whitespace around it, and all-whitespace strings skipped:

>>> soup = bs4.BeautifulSoup('<p>Plain bold</p>')
>>> print(soup.p.string)
None
>>> print(soup.p.b.string)
bold

>>> print(soup.get_text())
Plain bold
>>> print(soup.text)
Plain bold
>>> print(soup.get_text(strip=True))
Plainbold

The simplest, most elegant way to navigate down an HTML tree or subtree
in bs4 is to use Python’s attribute reference syntax (as long as each tag you
name is unique, or you care only about the first tag so named at each level
of descent).

Attribute references on instances of BeautifulSoup and Tag
Given any instance t of a Tag, a construct like t.foo.bar looks for the
first tag foo within t’s descendants, gets a Tag instance ti for it, looks
for the first tag bar within ti’s descendants, and returns a Tag instance
for the bar tag.

It’s a concise, elegant way to navigate down the tree, when you know
there’s a single occurrence of a certain tag within a navigable instance’s
descendants, or when the first occurrence of several is all you care about,
but beware: if any level of look-up doesn’t find the tag it’s looking for, the
attribute reference’s value is None, and then any further attribute reference
raises AttributeError.

Beware typos in attribute references on Tag instances
Due to this BeautifulSoup behavior, any typo you may make in an attribute reference on a Tag
instance gives a value of None, not an AttributeError exception—so, be especially careful!

bs4 also offers more general ways to navigate down, up, and sideways
along the tree. In particular, each navigable class instance has attributes that
identify a single “relative” or, in plural form, an iterator over all relatives of
that ilk.

contents, children, descendants
Given an instance t of Tag, you can get a list of all of its children as
t.contents, or an iterator on all children as t.children. For an
iterator on all descendants (children, children of children, and so on), use
t.descendants.

>>> soup = bs4.BeautifulSoup('<p>Plain bold</p>')
>>> list(t.name for t in soup.p.children)
[None, 'b']
>>> list(t.name for t in soup.p.descendants)
[None, 'b', None]

The names that are None correspond to the NavigableString nodes;
only the first one of them is a child of the p tag, but both are descendants of
that tag.

parent, parents
Given an instance n of any navigable class, its parent node is n.parent;
an iterator on all ancestors, going upwards in the tree, is n.parents. This
includes instances of NavigableString, since they have parents, too.
An instance b of BeautifulSoup has b.parent None, and
b.parents is an empty iterator.

>>> soup = bs4.BeautifulSoup('<p>Plain bold</p>')
>>> soup.b.parent.name
'p'

next_sibling, previous_sibling, next_siblings, previous_siblings
Given an instance n of any navigable class, its sibling node to the
immediate left is n.previous_sibling, and the one to the immediate
right is n.next_sibling; either or both can be None if n has no such
sibling. An iterator on all left siblings, going leftward in the tree, is
n.previous_siblings; an iterator on all right siblings, going
rightward in the tree, is n.next_siblings (either or both iterators can
be empty). This includes instances of NavigableString, since they

have siblings, too. An instance b of BeautifulSoup has
b.previous_sibling and b.next_sibling both None, and both
of its sibling iterators are empty.

>>> soup = bs4.BeautifulSoup('<p>Plain bold</p>')
>>> soup.b.previous_sibling, soup.b.next_sibling
('Plain ', None)

next_element, previous_element, next_elements,
previous_elements
Given an instance n of any navigable class, the node parsed just before it is
n.previous_element, and the one parsed just after it is
n.next_element; either or both can be None when n is the first or last
node parsed, respectively. An iterator on all previous elements, going
backward in the tree, is n.previous_elements; an iterator on all
following elements, going forward in the tree, is n.next_elements
(either or both iterators can be empty). Instances of NavigableString
have such attributes, too. An instance b of BeautifulSoup has
b.previous_element and b.next_element both None, and both
of its element iterators are empty.

>>> soup = bs4.BeautifulSoup('<p>Plain bold</p>')
>>> soup.b.previous_element, soup.b.next_element
('Plain ', 'bold')

As shown in the previous example, the b tag has no next_sibling
(since it’s the last child of its parent); however, as shown here, it does have
a next_element—the node parsed just after it (which in this case is the
'bold' string it contains).

bs4 find... Methods (“Search Methods”)
Each navigable class in bs4 offers several methods whose names start with
find, known as search methods, to locate tree nodes that satisfy conditions
you specify.

Search methods come in pairs—one method of each pair walks all the
relevant parts of the tree and returns a list of nodes satisfying the
conditions, and the other one stops and returns a single node satisfying the
conditions as soon as it finds it (or None when it finds no such node). So,
calling the latter method is like calling the former one with argument
limit=1, and indexing the resulting one-item list to get its single item, but
a bit faster and more elegant.
So, for example, for any Tag instance t and any group of positional and
named arguments represented by ..., the following equivalence always
holds:

just_one = t.find(...)
other_way_list = t.find_all(..., limit=1)
other_way = other_way_list[0] if other_way_list else None
assert just_one == other_way

The method pairs are:

 find,

find_all

b.find(...) b.find_all(...)
 Searches the descendants of b, except that, if you pass named argument
recursive=False (available only for these two methods, not for other
search methods), it searches b’s children only. These methods are not
available on NavigableString instances, since they have no descendants;
all other search methods are available on Tag and NavigableString
instances.
 Since find_all is frequently needed, bs4 offers an elegant shortcut:
calling a tag is like calling its find_all method. That is, b(...) is the
same as b.find_all(...).
 Another shortcut, already mentioned in “Attribute references on instances of
BeautifulSoup and Tag,” is that b.foo.bar is like
b.find('foo').find('bar').

find_next
 ,

find_all_next

b.find_next(...) b.find_all_next(...)
 Searches the next_elements of b.

find_next_sib
ling

b.find_next_sibling(...) b.find_next_siblings(...)
 Searches the next_siblings of b.

 ,

find_next_sib
lmgs

find_parent
 ,

find_parents

b.find_parent(...) b.find_parents(...)
 Searches the parents of b.

find_previous
 ,

find_all_previ
ous

b.find_previous(...) b.find_all_previous(...)
 Searches the previous_elements of b.

find_previous
_sibling
 ,

find_previous
_siblings

b.find_previous_sibling(...)
b.find_previous_siblings(...)
 Searches the previous_siblings of b.

Arguments of search methods
Each search method has three optional arguments: name, attrs, and
string. name and string are filters, as described later in this section;
attrs is a dict, also described later in this section. In addition, find
and find_all only (not the other search methods) can optionally be
called with the named argument recursive=False, to limit the search
to children, rather than all descendants.
Any search method returning a list (i.e., one whose name is plural or starts
with find_all) can optionally have the named argument limit, whose
value, if passed, is an integer, putting an upper bound on the length of the
list it returns.

After these optional arguments, each search method can optionally have any
number of arbitrary named arguments, whose name can be any identifier
(except the name of one of the search method’s specific arguments), while
the value is a filter.

Search method arguments: filters
A filter is applied against a target that can be a tag’s name (when passed as
the name argument); a Tag’s string or a NavigableString’s textual
content (when passed as the string argument); or a Tag’s attribute (when
passed as the value of a named argument, or in the attrs argument). Each
filter can be:

A Unicode string
The filter succeeds when the string exactly equals the target

A bytestring
It’s decoded to Unicode using utf8, and then the filter succeeds when
the resulting Unicode string exactly equals the target

A regular expression object (AKA RE, as produced by re.compile,
covered in “Regular Expressions and the re Module”)

The filter succeeds when the search method of the RE, called with the
target as the argument, succeeds

A list of strings
The filter succeeds if any of the strings exactly equals the target (if any
of the strings are bytestrings, they’re decoded to Unicode using utf8)

A function object
The filter succeeds when the function, called with the Tag or
NavigableString instance as the argument, returns True

True

The filter always succeeds

As a synonym of “the filter succeeds,” we also say, “the target matches the
filter.”
Each search method finds the relevant nodes that match all of its filters (that
is, it implicitly performs a logical and operation on its filters on each
candidate node).

Search method arguments: name
To look for Tags whose name matches a filter, pass the filter as the first
positional argument to the search method, or pass it as name=filter:

soup.find_all('b') # or soup.find_all(name='b')
returns all instances of Tag 'b' in the document
soup.find_all(['b', 'bah'])
returns all instances of Tags 'b' and 'bah' in the document
soup.find_all(re.compile(r'^b'))
returns all instances of Tags starting with 'b' in the document
soup.find_all(re.compile(r'bah'))
returns all instances of Tags including string 'bah' in the
document
def child_of_foo(tag):
 return tag.parent == 'foo'
soup.find_all(name=child_of_foo)
returns all instances of Tags whose parent's name is 'foo'

Search method arguments: string
To look for Tag nodes whose .string’s text matches a filter, or
NavigableString nodes whose text matches a filter, pass the filter as
string=filter:

soup.find_all(string='foo')
returns all instances of NavigableString whose text is 'foo'
soup.find_all('b', string='foo')
returns all instances of Tag 'b' whose .string's text is 'foo'

Search method arguments: attrs

To look for tag nodes who have attributes whose values match filters, use a
dict d with attribute names as keys, and filters as the corresponding
values. Then, pass d as the second positional argument to the search
method, or pass attrs=d.

As a special case, you can use, as a value in d, None instead of a filter; this
matches nodes that lack the corresponding attribute.
As a separate special case, if the value f of attrs is not a dict, but a
filter, that is equivalent to having an attrs of {'class' : f}. (This
convenient shortcut helps because looking for tags with a certain CSS class
is a frequent task.)
You cannot apply both special cases at once: to search for tags without any
CSS class, you must explicitly pass attrs={'class' : None} (i.e.,
use the first special case, but not at the same time as the second one):

soup.find_all('b', {'foo': True, 'bar': None})
returns all instances of Tag 'b' w/an attribute 'foo' and no
'bar'

Matching Tags with Multiple CSS Classes
Differently from most attributes, a tag can have multiple values for its attribute 'class'. These
are shown in HTML as a space-separated string (e.g., '<p class='foo bar baz'>...'),
and in bs4 as a list of strings (e.g., t['class'] being ['foo', 'bar', 'baz']).

When you filter by CSS class in any search method, the filter matches a tag if it matches any of
the multiple CSS classes of such a tag.

To match tags by multiple CSS classes, you can write a custom function and pass it as the filter to
the search method; or, if you don’t need other added functionality of search methods, you can
eschew search methods and instead use the method t.select, covered in “bs4 CSS Selectors,”
and go with the syntax of CSS selectors.

Search method arguments: other named arguments

Named arguments, beyond those whose names are known to the search
method, are taken to augment the constraints, if any, specified in attrs.
For example, calling a search method with foo=bar is like calling it with
attrs={'foo': bar}.

bs4 CSS Selectors
bs4 tags supply the methods select and select_one, roughly
equivalent to find_all and find but accepting as the single argument a
string that’s a CSS selector and returning the list of tag nodes satisfying that
selector, or, respectively, the first such tag node.
bs4 supports only a subset of the rich CSS selector functionality, and we
do not cover CSS selectors further in this book. (For complete coverage of
CSS, we recommend the book CSS: The Definitive Guide, 4th Edition
[O’Reilly].) In most cases, the search methods covered in “bs4 find...
Methods (“Search Methods”)” are better choices; however, in a few special
cases, calling select can save you the (small) trouble of writing a custom
filter function:

def foo_child_of_bar(t):
 return t.name=='foo' and t.parent and t.parent.name=='bar'
soup(foo_child_of_bar)
returns tags with name 'foo' children of tags with name 'bar'
soup.select('foo < bar')
exactly equivalent, with no custom filter function needed

An HTML Parsing Example with BeautifulSoup
The following example uses bs4 to perform a typical task: fetch a page
from the web, parse it, and output the HTTP hyperlinks in the page.

import urllib.request, urllib.parse, bs4
f = urllib.request.urlopen('http://www.python.org')
b = bs4.BeautifulSoup(f)
seen = set()
for anchor in b('a'):
 url = anchor.get('href')
 if url is None or url in seen:
 continue

http://www.w3schools.com/cssref/css_selectors.asp
https://www.oreilly.com/library/view/css-the-definitive/9781449325053/

 seen.add(url)
 pieces = urllib.parse.urlparse(url)
 if pieces[0]=='http':
 print(urllib.parse.urlunparse(pieces))

The example calls the instance of class bs4.BeautifulSoup
(equivalent to calling its find_all method) to obtain all instances of a
certain tag (here, tag '<a>'), then the get method of instances of the tag
in question to obtain the value of an attribute (here, 'href'), or None
when that attribute is missing.

Generating HTML
Python does not come with tools specifically meant to generate HTML, nor
with ones that let you embed Python code directly within HTML pages.
Development and maintenance are eased by separating logic and
presentation issues through templating, covered in “Templating.” An
alternative is to use bs4 to create HTML documents, in your Python code,
by gradually altering very minimal initial documents. Since these
alterations rely on bs4 parsing some HTML, using different parsers affects
the output, as covered in “Which parser BeautifulSoup uses.”

Editing and Creating HTML with bs4
You can alter the tag name of an instance t of Tag by assigning to
t.name; you can alter t’s attributes by treating t as a mapping: assign to
an indexing to add or change an attribute, or delete the indexing—for
example, del t['foo'] removes the attribute foo. If you assign some
str to t.string, all previous t.contents (Tags and/or strings—the
whole subtree of t’s descendants) are discarded and replaced with a new
NavigableString instance with that str as its textual content.

Given an instance s of NavigableString, you can replace its textual
content: calling s.replace_with('other') replaces s’s text with
'other'.

Building and adding new nodes
Altering existing nodes is important, but creating new ones and adding
them to the tree is crucial for building an HTML document from scratch.
To create a new NavigableString instance, just call the class, with the
textual content as the single argument:

s = bs4.NavigableString(' some text ')

To create a new Tag instance, call the new_tag method of a
BeautifulSoup instance, with the tag name as the single positional
argument, and optionally named arguments for attributes:

t = soup.new_tag('foo', bar='baz')
print(t)
<foo bar="baz"></foo>

To add a node to the children of a Tag, you can use the Tag’s append
method to add the node at the end of the existing children, if any:

t.append(s)
print(t)
<foo bar="baz"> some text </foo>

If you want the new node to go elsewhere than at the end, at a certain index
among t’s children, call t.insert(n, s) to put s at index n in
t.contents (t.append and t.insert work as if t was a list of its
children).
If you have a navigable element b and want to add a new node x as b’s
previous_sibling, call b.insert_before(x). If instead you
want x to become b’s next_sibling, call b.insert_after(x).

If you want to wrap a new parent node t around b, call b.wrap(t)
(which also returns the newly wrapped tag). For example:

print(t.string.wrap(soup.new_tag('moo', zip='zaap')))
<moo zip="zaap"> some text </moo>

print(t)
<foo bar="baz"><moo zip="zaap"> some text </moo></foo>

Replacing and removing nodes
You can call t.replace_with on any tag t: the call replaces t, and all
its previous contents, with the argument, and returns t with its original
contents. For example:

soup = bs4.BeautifulSoup(
 '<p>first second <i>third</i></p>', 'lxml')
i = soup.i.replace_with('last')
soup.b.append(i)
print(soup)
<html><body><p>first second<i>third</i> last</p></body>
</html>

You can call t.unwrap() on any tag t: the call replaces t with its
contents, and returns t “emptied,” that is, without contents. For example:

empty_i = soup.i.unwrap()
print(soup.b.wrap(empty_i))
<i>secondthird</i>
print(soup)
<html><body><p>first <i>secondthird</i> last</p></body>
</html>

t.clear() removes t’s contents, destroys them, and leaves t empty (but
still in its original place in the tree). t.decompose() removes and
destroys both t itself, and its contents. For example:

soup.i.clear()
print(soup)
<html><body><p>first <i></i> last</p></body></html>
soup.p.decompose()
print(soup)
<html><body></body></html>

Lastly, t.extract() removes t and its contents, but—doing no actual
destruction—returns t with its original contents.

Building HTML with bs4
Here’s an example of how to use bs4’s methods to generate HTML.
Specifically, the following function takes a sequence of “rows” (sequences)
and returns a string that’s an HTML table to display their values:

def mktable_with_bs4(seq_of_rows):
 tabsoup = bs4.BeautifulSoup('<table>', 'html.parser')
 tab = tabsoup.table
 for row in seq_of_rows:
 tr = tabsoup.new_tag('tr')
 tab.append(tr)
 for item in row:
 td = tabsoup.new_tag('td')
 tr.append(td)
 td.string = str(item)
 return tab

Here is an example using the function we just defined:

example = (
 ('foo', 'g>h', 'g&h'),
 ('zip', 'zap', 'zop'),
)
print(mktable_with_bs4(example))
prints:
<table><tr><td>foo</td><td>g>h</td><td>g&h</td></tr><tr>
<td>zip</td><td>zap</td><td>zop</td></tr></table>

Note that bs4 automatically “escapes” strings containing mark-up
characters such as <, >, and &; for example, 'g>h' renders as 'g>h'.

Templating
To generate HTML, the best approach is often templating. Start with a
template, a text string (often read from a file, database, etc.) that is almost
valid HTML, but includes markers, known as placeholders, where
dynamically generated text must be inserted. Your program generates the
needed text and substitutes it into the template.
In the simplest case, you can use markers of the form {name}. Set the
dynamically generated text as the value for key 'name' in some dictionary

d. The Python string formatting method .format (covered in “String
Formatting”) lets you do the rest: when t is the template string,
t.format(d) is a copy of the template with all values properly
substituted.
In general, beyond substituting placeholders, you also want to use
conditionals, perform loops, and deal with other advanced formatting and
presentation tasks; in the spirit of separating “business logic” from
“presentation issues,” you’d prefer it if all of the latter were part of your
templating. This is where dedicated third-party templating packages come
in. There are many of them, but all of this book’s authors, having used and
authored some in the past, currently prefer jinja2, covered next.

The jinja2 Package
For serious templating tasks, we recommend jinja2 (available on PyPI, like
other third-party Python packages, so, easily installable with pip install
jinja2).
The jinja2 docs are excellent and thorough, covering the templating
language itself (conceptually modeled on Python, but with many differences
to support embedding it in HTML, and the peculiar needs specific to
presentation issues); the API your Python code uses to connect to jinja2,
and expand or extend it if necessary; as well as other issues, from
installation to internationalization, from sandboxing code to porting from
other templating engines—not to mention, precious tips and tricks.
In this section, we cover only a tiny subset of jinja2’s power, just what
you need to get started after installing it: we earnestly recommend studying
jinja2’s docs to get the huge amount of extra, useful information they
effectively convey.

The jinja2.Environment Class
When you use jinja2, there’s always an Environment instance
involved—in a few cases you could let it default to a generic “shared
environment,” but that’s not recommended. Only in very advanced usage,

https://www.safaribooksonline.com/library/view/python-cookbook/0596001673/ch03s23.html
http://jinja.pocoo.org/docs/dev/
https://pypi.org/project/Jinja2/
https://jinja.palletsprojects.com/en/3.0.x/
https://jinja.palletsprojects.com/en/3.0.x/templates/
https://jinja.palletsprojects.com/en/3.0.x/api/
https://jinja.palletsprojects.com/en/3.0.x/api/#custom-filters
https://jinja.palletsprojects.com/en/3.0.x/extensions/
https://jinja.palletsprojects.com/en/3.0.x/intro/#installation
https://jinja.palletsprojects.com/en/3.0.x/extensions/#i18n-extension
https://jinja.palletsprojects.com/en/3.0.x/sandbox/
https://jinja.palletsprojects.com/en/3.0.x/switching/
https://jinja.palletsprojects.com/en/3.0.x/tricks/

when you’re getting templates from different sources (or with different
templating language syntax), would you ever define multiple environments
—usually, you instantiate a single Environment instance env, good for
all the templates you need to render.
You can customize env in many ways as you build it, by passing named
arguments to its constructor (including altering crucial aspects of templating
language syntax, such as which delimiters start and end blocks, variables,
comments, etc.), but the one named argument you’ll almost always pass in
real-life use is loader=....

An environment’s loader specifies where to load templates from, on
request—usually some directory in a filesystem, or perhaps some database
(you’d have to code a custom subclass of jinja2.Loader for the latter
purpose), but there are other possibilities. You need a loader to let templates
enjoy some of jinja2’s most powerful features, such as template
inheritance.
You can equip env, as you instantiate it, with custom filters, tests,
extensions, and so on (each of those can also be added later).
In the following sections’ examples, we assume env was instantiated with
nothing but
loader=jinja2.FileSystemLoader('/path/to/templates
'), and not further enriched—in fact, for simplicity, we won’t even make
use of the loader. In real life, however, the loader is almost invariably set;
other options, seldom.
env.get_template(name) fetches, compiles, and returns an instance
of jinja2.Template based on what env.loader(name) returns. In
the following examples, for simplicity, we’ll instead use the rarely-
warranted env.from_string(s) to build an instance of
jinja2.Template from string s.

The jinja2.Template Class

https://jinja.palletsprojects.com/en/3.0.x/templates/#template-inheritance
https://jinja.palletsprojects.com/en/3.0.x/api/#custom-filters
https://jinja.palletsprojects.com/en/3.0.x/api/#custom-tests
https://jinja.palletsprojects.com/en/3.0.x/extensions/#adding-extensions

An instance t of jinja2.Template has many attributes and methods,
but the one you’ll be using almost exclusively in real life is:

render

t.render(...context...)
 The context argument(s) are the same you might pass to a dict
constructor—a mapping instance, and/or named arguments enriching and
potentially overriding the mapping’s key-to-value connections.
 t.render(context) returns a (Unicode) string resulting from the
context arguments applied to the template t.

Building HTML with jinja2
Here’s an example of how to use a jinja2 template to generate HTML.
Specifically, just like previously in “Building HTML with bs4,” the
following function takes a sequence of “rows” (sequences) and returns an
HTML table to display their values:

TABLE_TEMPLATE = '''\
<table>
{% for s in s_of_s %}
 <tr>
 {% for item in s %}
 <td>{{item}}</td>
 {% endfor %}
 </tr>
{% endfor %}
</table>'''
def mktable_with_jinja2(s_of_s):
 env = jinja2.Environment(
 trim_blocks=True,
 lstrip_blocks=True,
 autoescape=True)
 t = env.from_string(TABLE_TEMPLATE)
 return t.render(s_of_s=s_of_s)

The function builds the environment with option autoescape=True, to
automatically “escape” strings containing mark-up characters such as <, >,
and &; for example, with autoescape=True, 'g>h' renders as
'g>h'.

The options trim_blocks=True and lstrip_blocks=True are
purely cosmetic, just to ensure that both the template string and the

rendered HTML string can be nicely formatted; of course, when a browser
renders HTML, it does not matter whether the HTML itself is nicely
formatted.
Normally, you would always build the environment with option
loader=..., and have it load templates from files or other storage with
method calls such as t = env.get_template(template_name). In
this example, just in order to present everything in one place, we omit the
loader and build the template from a string by calling method
env.from_string instead. Note that jinja2 is not HTML- or XML-
specific, so its use alone does not guarantee the validity of the generated
content, which you should carefully check if standards conformance is a
requirement.
The example uses only the two most common features out of the many
dozens that the jinja2 templating language offers: loops (that is, blocks
enclosed in {% for ... %} and {% endfor %}) and parameter
substitution (inline expressions enclosed in {{ and }}).

Here is an example use of the function we just defined:

example = (
 ('foo', 'g>h', 'g&h'),
 ('zip', 'zap', 'zop'),
)
print(mktable_with_jinja2(example))
prints:
<table>
 <tr>
 <td>foo</td>
 <td>g>h</td>
 <td>g&h</td>
 </tr>
 <tr>
 <td>zip</td>
 <td>zap</td>
 <td>zop</td>
 </tr>
</table>

1 Except perhaps for its latest version (HTML5), when properly applied

2 The BeautifulSoup documentation provides detailed information about installing various
parsers.

3 As explained in the BeautifulSoup documentation, which also shows various ways to guide or
override BeautifulSoup’s guesses.

https://www.crummy.com/software/BeautifulSoup/bs4/doc
https://www.crummy.com/software/BeautifulSoup/bs4/doc/

Chapter 10. Structured Text:
XML

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the authors’ raw and unedited
content as they write—so you can take advantage of these technologies long before the official
release of these titles.

This will be the 23rd chapter of the final book. Please note that example code will be hosted at
https://github.com/holdenweb/pynut4.

If you have comments about how we might improve the content and/or examples in this book,
or if you notice missing material within this chapter, please reach out to the authors at
pynut4@gmail.com.

XML, the eXtensible Markup Language, is a widely used data-interchange
format. On top of XML itself, the XML community (in good part within the
World Wide Web Consortium [W3C]) has standardized many other
technologies, such as schema languages, namespaces, XPath, XLink,
XPointer, and XSLT.
Industry consortia have defined industry-specific markup languages on top
of XML for data exchange among applications in their respective fields.
XML, XML-based markup languages, and other XML-related technologies
are often used for inter-application, cross-language, cross-platform data
interchange in specific industries.
Python’s standard library, for historical reasons, has multiple modules
supporting XML under the xml package, with overlapping functionality;
this book does not cover them all--see the online documentation.
This book (and, specifically, this chapter) covers only the most Pythonic
approach to XML processing: ElementTree, whose elegance, speed,
generality, multiple implementations, and Pythonic architecture make it the
package of choice for Python XML applications. For complete tutorials and

https://docs.python.org/3/library/xml.html

all details on the xml.etree.ElementTree module, see the online
docs) and the website of ElementTree’s creator, deeply-missed Fredrik
Lundh, best known as “the effbot.”
This book takes for granted some elementary knowledge of XML itself; if
you need to learn more about XML, we recommend the book XML in a
Nutshell (O’Reilly).
Parsing XML from untrusted sources puts your application at risk for many
possible attacks; this book does not cover this issue specifically–see the
online documentation, which recommends third-party modules to help
safeguard your application if you do have to parse XML from sources you
can’t fully trust. In particular, if you need an ElementTree
implementation with safeguards against parsing untrusted sources, consider
defusedxml.ElementTree.

ElementTree
Python and third-party add-ons offer several alternative implementations of
the ElementTree functionality; the one you can always rely on in the
standard library is the module xml.etree.ElementTree. Just
importing xml.etree.ElementTree gets you the fastest
implementation available in your Python installation’s standard library. The
third-party package defusedxml, mentioned in the previous section of
this chapter, offers slightly slower but safer implementations if you ever
need to parse XML from untrusted sources; another third-party package,
lxml, gets you faster performance, and some extra functionality, via
lxml.etree.
Traditionally, you get whatever available implementation of
ElementTree you prefer, by a from...import...as statement such
as:

from xml.etree import ElementTree as et

1

https://docs.python.org/3/library/xml.etree.elementtree.html
http://effbot.org/zone/element-index.htm
http://shop.oreilly.com/product/9780596007645.do
https://docs.python.org/3/library/xml.html%23xml-vulnerabilities
https://pypi.python.org/pypi/defusedxml%23defusedxml-elementtree
http://lxml.de/
http://lxml.de/api.html

(or more than one such statement, with try...except
ImportError: guards to discover what’s the best implementation
available), then use et (some prefer the uppercase variant, ET) as the
module’s name in the rest of your code.
ElementTree supplies one fundamental class representing a node within
the tree that naturally maps an XML document, the class Element.
ElementTree also supplies other important classes, chiefly the one
representing the whole tree, with methods for input and output and many
convenience classes equivalent to ones on its Element root—that’s the
class ElementTree. In addition, the ElementTree module supplies
several utility functions, and auxiliary classes of lesser importance.

The Element Class
The Element class represents a node in the tree that maps an XML
document, and it’s the core of the whole ElementTree ecosystem. Each
element is a bit like a mapping, with attributes that are a mapping from
string keys to string values, and a bit like a sequence, with children that are
other elements (sometimes referred to as the element’s “subelements”). In
addition, each element offers a few extra attributes and methods. Each
Element instance e has four data attributes or properties:

attrib

A dict containing all of the XML node’s attributes, with strings, the
attributes’ names, as its keys (and, usually, strings as corresponding values as
well). For example, parsing the XML fragment bc, you
get an e whose e.attrib is {'x': 'y'}.

 tag

The XML tag of the node, a string, sometimes also known as “the element’s
type.” For example, parsing the XML fragment bc, you
get an e with e.tag set to 'a'.

 tail

Arbitrary data (a string) immediately “following” the element. For example,
parsing the XML fragment bc, you get an e with e.tail
set to 'c'.

 text

Arbitrary data (a string) directly “within” the element. For example, parsing
the XML fragment bc, you get an e with e.text set to
'b'.

Avoid Accessing Attrib On Element Instances, If
Feasible
It’s normally best to avoid accessing e.attrib when possible, because the implementation
might need to build it on the fly when you access it. e itself, as covered later in this section, offers
some typical mapping methods that you might otherwise want to call on e.attrib; going
through e’s own methods allows a smart implementation to optimize things for you, compared to
the performance you’d get via the actual dict e.attrib.

e has some methods that are mapping-like and avoid the need to explicitly
ask for the e.attrib dict:

clear

e.clear()
 e.clear() leaves e “empty,” except for its tag, removing all attributes
and children, and setting text and tail to None.

 get

e.get(key, default=None)
 Like e.attrib.get(key, default), but potentially much faster. You cannot
use e[key], since indexing on e is used to access children, not attributes.

items

e.items()
 Returns the list of (name, value) tuples for all attributes, in arbitrary order.

 keys

e.keys()
 Returns the list of all attribute names, in arbitrary order.

 set

e.set(key, value)
 Sets the value of the attribute named key to value.

The other methods of e (including indexing with the e[i] syntax, and
length as in len(e)) deal with all e’s children as a sequence, or in some
cases—indicated in the rest of this section—with all descendants (elements
in the subtree rooted at e, also known as subelements of e).

Don’t Rely On Implicit Bool Conversion Of An Element
In all versions up through Python 3.10, an Element instance e evaluates as false if e has no
children, following the normal rule for Python containers’ implicit bool conversion. However, it
is documented that this behavior may change in some future version of Python. For future
compatibility, if you want to check whether e has no children, explicitly check if len(e) ==
0:—don’t use the normal Python idiom if not e:.

The named methods of e dealing with children or descendants are the
following (we do not cover XPath in this book: see the online docs). Many
of the following methods take an optional argument namespaces,
defaulting to None. When present, namespaces is a mapping with XML
namespace prefixes as keys and corresponding XML namespace full names
as values.

append

e.append(se)
 Adds subelement se (which must be an Element) at the end of e’s children.

extend

e.extend(ses)
 Adds each item of iterable ses (every item must be an Element) at the end
of e’s children.

 find

e.find(match, namespaces=None)
 Returns the first descendant matching match, which may be a tag name or an
XPath expression within the subset supported by the current implementation
of ElementTree. Returns None if no descendant matches match.

findall

e.findall(match, namespaces=None)
 Returns the list of all descendants matching match, which may be a tag name
or an XPath expression within the subset supported by the current
implementation of ElementTree. Returns [] if no descendants match
match.

findtext

e.findtext(match, default=None, namespaces=None)
 Returns the text of the first descendant matching match, which may be a
tag name or an XPath expression within the subset supported by the current
implementation of ElementTree. The result may be an empty string '' if
the first descendant matching match has no text. Returns default if no
descendant matches match.

https://docs.python.org/3/library/xml.etree.elementtree.html%23elementtree-xpath

insert

e.insert(index, se)
 Adds subelement se (which must be an Element) at index index within the
sequence of e’s children.

 iter

e.iter(tag='*')
 Returns an iterator walking in depth-first order over all of e’s descendants.
When tag is not '*', only yields subelements whose tag equals tag. Don’t
modify the subtree rooted at e while you’re looping on e.iter.

iterfind

e.iterfind(match, namespaces=None)
 Returns an iterator over all descendants, in depth-first order, matching match,
which may be a tag name or an XPath expression within the subset supported
by the current implementation of ElementTree. The resulting iterator is
empty when no descendants match match.

itertext

e.itertext(match, namespaces=None)
 Returns an iterator over the text (not the tail) attribute of all descendants,
in depth-first order, matching match, which may be a tag name or an XPath
expression within the subset supported by the current implementation of
ElementTree. The resulting iterator is empty when no descendants match
match.

remove

e.remove(se)
 Removes the descendant that is element se (as covered in Identity tests, in
Table 3-2).

The ElementTree Class
The ElementTree class represents a tree that maps an XML document.
The core added value of an instance et of ElementTree is to have
methods for wholesale parsing (input) and writing (output) of a whole tree
(Table 23-1), namely:

Table 10-1. ElementTree instance parsing and writing methods

parse

et.parse(source,parser=None)
 source can be a file open for reading, or the name of a file to open and read
(to parse a string, wrap it in io.StringIO, covered in “In-Memory “Files”:
io.StringIO and io.BytesIO”), containing XML text. et.parse parses that
text, builds its tree of Elements as the new content of et (discarding the
previous content of et, if any), and returns the root element of the tree. parser
is an optional parser instance; by default, et.parse uses an instance of class
XMLParser supplied by the ElementTree module (this book does not
cover XMLParser; see the online docs).

 et.write(file, encoding='us-ascii', xml_declaration=None,

https://docs.python.org/3/library/xml.etree.elementtree.html%23xmlparser-objects

write

default_namespace=None, method='xml', short_empty_elements=True)
 file can be a file open for writing, or the name of a file to open and write (to
write into a string, pass as file an instance of io.StringIO, covered in “In-
Memory “Files”: io.StringIO and io.BytesIO”). et.write writes into that file
the text representing the XML document for the tree that’s the content of et.
 encoding should be spelled according to the standard—for example, 'iso-
8859-1', not 'latin-1', even though Python itself accepts both spellings
for this encoding. You can also pass encoding as 'unicode'; this outputs
text (Unicode) strings, when file.write accepts such strings; otherwise,
file.write must accept bytestrings, and that is the type of strings et.write
outputs, using XML character references for characters not in the encoding—
for example, with the default ASCII encoding, “e with an acute accent”, é, is
output as é.
 You can pass xml_declaration as False to not have the declaration in the
resulting text, as True to have it; the default is to have the declaration in the
result only when encoding is not one of 'us-ascii', 'utf-8', or
'unicode'.
 You can optionally pass default_namespace to set the default namespace for
xmlns constructs.
 You can pass method as 'text' to output only the text and tail of each
node (no tags). You can pass method as 'html' to output the document in
HTML format (which, for example, omits end tags not needed in HTML, such
as </br>). The default is 'xml', to output in XML format.
 You can optionally (only by name, not positionally) pass
short_empty_elements as False to always use explicit start and end tags,
even for elements that have no text or subelements; the default is to use the
XML short form for such empty elements. For example, an empty element
with tag a is output as <a/> by default, as <a> if you pass
short_empty_elements as False.

In addition, an instance et of ElementTree supplies the method
getroot—et.getroot() returns the root of the tree—and the
convenience methods find, findall, findtext, iter, and
iterfind, each exactly equivalent to calling the same method on the root
of the tree—that is, on the result of et.getroot().

Functions in the ElementTree Module
The ElementTree module also supplies several functions, described in
Table 23-2.

Table 10-2. Caption to come

Comment

Comment(text=None)
 Returns an Element that, once inserted as a node in an ElementTree,
will be output as an XML comment with the given text string enclosed
between '<!--' and '-->'. XMLParser skips XML comments in any
document it parses, so this function is the only way to get comment nodes.

ProcessingIns
truction

ProcessingInstruction(target,text=None)
 Returns an Element that, once inserted as a node in an ElementTree,
will be output as an XML processing instruction with the given target and text
strings enclosed between '<?' and '?>'. XMLParser skips XML
processing instructions in any document it parses, so this function is the only
way to get processing instruction nodes.

SubElement

SubElement(parent, tag, attrib={}, **extra)
 Creates an Element with the given tag, attributes from dict attrib and
others passed as named arguments in extra, and appends it as the rightmost
child of Element parent; returns the Element it has created.

XML

XML(text,parser=None)
 Parses XML from the text string and returns an Element. parser is an
optional parser instance; by default, XML uses an instance of the class
XMLParser supplied by the ElementTree module (this book does not
cover class XMLParser; see the online docs).

XMLID

XMLID(text,parser=None)
 Parses XML from the text string and returns a tuple with two items: an
Element and a dict mapping id attributes to the only Element having
each (XML forbids duplicate ids). parser is an optional parser instance; by
default, XMLID uses an instance of the class XMLParser supplied by the
ElementTree module (this book does not cover the XMLParser class; see
the online docs).

dump

dump(e)
 Writes e, which can be an Element or an ElementTree, as XML to
sys.stdout; it is meant only for debugging purposes.

fromstring

fromstring(text,parser=None)
 Parses XML from the text string and returns an Element, just like the XML
function just covered.

fromstringlist

fromstringlist(sequence,parser=None)
 Just like fromstring(''.join(sequence)), but can be a bit faster by
avoiding the join.

iselement

iselement(e)
 Returns True if e is an Element.

 iterparse(source,events=['end'],parser=None)

http://bit.ly/2nMPeRh
http://bit.ly/2nMPeRh

iterparse

 source can be a file open for reading, or the name of a file to open and read,
containing an XML document as text. iterparse returns an iterator
yielding tuples (event, element), where event is one of the strings listed in
argument events (each string must be 'start', 'end', 'start-ns', or
'end-ns'), as the parsing progresses and iterparse incrementally builds
the corresponding ElementTree. element is an Element for events
'start' and 'end', None for event 'end-ns', and a tuple of two
strings (namespace_prefix, namespace_uri) for event 'start-ns'.
parser is an optional parser instance; by default, iterparse uses an
instance of the class XMLParser supplied by the ElementTree module
(this book does not cover class XMLParser; see the online docs).
 The purpose of iterparse is to let you iteratively parse a large XML
document, without holding all of the resulting ElementTree in memory at
once, whenever feasible. We cover iterparse in more detail in “Parsing
XML Iteratively”.

parse

parse(source,parser=None)
 Just like the parse method of ElementTree, covered in Table 23-1,
except that it returns the ElementTree instance it creates.

register_nam
espace

register_namespace(prefix,uri)
 Registers the string prefix as the namespace prefix for the string uri; elements
in the namespace get serialized with this prefix.

tostring

tostring(e,encoding='us-ascii,method='xml',
short_empty_elements=True)
 Returns a string with the XML representation of the subtree rooted at
Element e. Arguments have the same meaning as for the write method of
ElementTree, covered in Table 23-1.

tostringlist

tostringlist(e,encoding='us-
ascii,method='xml',short_empty_elements=True)
 Returns a list of strings with the XML representation of the subtree rooted at
Element e. Arguments have the same meaning as for the write method of
ElementTree, covered in Table 23-1.

The ElementTree module also supplies the classes QName,
TreeBuilder, and XMLParser, which we do not cover in this book,
and the class XMLPullParser, covered in “Parsing XML Iteratively.”

Parsing XML with ElementTree.parse
In everyday use, the most common way to make an ElementTree
instance is by parsing it from a file or file-like object, usually with the

http://bit.ly/2nMPeRh

module function parse or with the method parse of instances of the
class ElementTree.

For the examples in this chapter, we use the simple XML file found at
http://www.w3schools.com/xml/simple.xml; its root tag is
'breakfast_menu', and the root’s children are elements with the tag
'food'. Each 'food' element has a child with the tag 'name', whose
text is the food’s name, and a child with the tag 'calories', whose text
is the string representation of the integer number of calories in a portion of
that food. In other words, a simplified representation of that XML file’s
content of interest to the examples is:

<breakfast_menu>
 <food>
 <name>Belgian Waffles</name>
 <calories>650</calories>
 </food>
 <food>
 <name>Strawberry Belgian Waffles</name>
 <calories>900</calories>
 </food>
 <food>
 <name>Berry-Berry Belgian Waffles</name>
 <calories>900</calories>
 </food>
 <food>
 <name>French Toast</name>
 <calories>600</calories>
 </food>
 <food>
 <name>Homestyle Breakfast</name>
 <calories>950</calories>
 </food>
</breakfast_menu>

Since the XML document lives at a WWW URL, you start by obtaining a
file-like object with that content, and passing it to parse; the simplest way
uses the urllib.request module:

from urllib import request
from xml.etree import ElementTree as et
content =

request.urlopen('http://www.w3schools.com/xml/simple.xml')
tree = et.parse(content)

Selecting Elements from an ElementTree
Let’s say that we want to print on standard output the calories and names of
the various foods, in order of increasing calories, with ties broken
alphabetically. The code for this task:

def bycal_and_name(e):
 return int(e.find('calories').text), e.find('name').text
for e in sorted(tree.findall('food'), key=bycal_and_name):
 print(f"{e.find('calories').text} {e.find('name').text}")

When run, this prints:

600 French Toast
650 Belgian Waffles
900 Berry-Berry Belgian Waffles
900 Strawberry Belgian Waffles
950 Homestyle Breakfast

Editing an ElementTree
Once an ElementTree is built (be that via parsing, or otherwise), it can
be “edited”—inserting, deleting, and/or altering nodes (elements)—via
various methods of ElementTree and Element classes, and module
functions. For example, suppose our program is reliably informed that a
new food has been added to the menu—buttered toast, two slices of white
bread toasted and buttered, 180 calories—while any food whose name
contains “berry,” case-insensitive, has been removed. The “editing the tree”
part for these specs can be coded as follows:

add Buttered Toast to the menu
menu = tree.getroot()
toast = et.SubElement(menu, 'food')
tcals = et.SubElement(toast, 'calories')
tcals.text = '180'
tname = et.SubElement(toast, 'name')
tname.text = 'Buttered Toast'
remove anything related to 'berry' from the menu
for e in menu.findall('food'):

 name = e.find('name').text
 if 'berry' in name.lower():
 menu.remove(e)

Once we insert these “editing” steps between the code parsing the tree and
the code selectively printing from it, the latter prints:

180 Buttered Toast
600 French Toast
650 Belgian Waffles
950 Homestyle Breakfast

The ease of “editing” an ElementTree can sometimes be a crucial
consideration, making it worth your while to keep it all in memory.

Building an ElementTree from Scratch
Sometimes, your task doesn’t start from an existing XML document: rather,
you need to make an XML document from data your code gets from a
different source, such as a CSV document or some kind of database.
The code for such tasks is similar to the one we showed for editing an
existing ElementTree—just add a little snippet to build an initially
empty tree.
For example, suppose you have a CSV file, menu.csv, whose two comma-
separated columns are the calories and name of various foods, one food per
row. Your task is to build an XML file, menu.xml, similar to the one we
parsed in previous examples. Here’s one way you could do that:

import csv
from xml.etree import ElementTree as et
menu = et.Element('menu')
tree = et.ElementTree(menu)
with open('menu.csv') as f:
 r = csv.reader(f)
 for calories, namestr in r:
 food = et.SubElement(menu, 'food')
 cals = et.SubElement(food, 'calories')
 cals.text = calories
 name = et.SubElement(food, 'name')

 name.text = namestr
tree.write('menu.xml')

Parsing XML Iteratively
For tasks focused on selecting elements from an existing XML document,
sometimes you don’t need to build the whole ElementTree in memory—
a consideration that’s particularly important if the XML document is very
large (not the case for the tiny example document we’ve been dealing with,
but stretch your imagination and visualize a similar menu-focused
document that lists millions of different foods).
So, again, what we want to do is print on standard output the calories and
names of foods, this time only the 10 lowest-calorie foods, in order of
increasing calories, with ties broken alphabetically; and menu.xml, which
for simplicity’s sake we now suppose is a local file, lists millions of foods,
so we’d rather not keep it all in memory at once, since, obviously, we don’t
need complete access to all of it at once.
Here’s some code that one might think would let us ace this task:

import heapq
from xml.etree import ElementTree as et
def cals_and_name():
 # generator for (calories, name) pairs
 for _, elem in et.iterparse('menu.xml'):
 if elem.tag != 'food':
 continue
 # just finished parsing a food, get calories and name
 cals = int(elem.find('calories').text)
 name = elem.find('name').text
 yield (cals, name)
lowest10 = heapq.nsmallest(10, cals_and_name)
for cals, name in heap:
 print(cals, name)

Simple But Memory-Intensive Approach
This approach does indeed work, but it consumes just about as much memory as an approach
based on a full et.parse would!

Why does the simple approach still eat up memory? Because iterparse,
as it runs, builds up a whole ElementTree in memory, incrementally,
even though it only communicates back events such as (by default) just
'end', meaning “I just finished parsing this element.”

To actually save memory, we can at least toss all contents of each element
as soon as we’re done processing it—that is, right after the yield, add
elem.clear() to make the just-processed element empty.

This approach would indeed save some memory—but not all of it, because
the tree’s root would end up with a huge list of empty children nodes. To be
really frugal in memory consumption, we need to get 'start' events as
well, so we can get hold of the root of the ElementTree being built, and
remove each element from it as it’s used, rather than just clearing the
element—that is, change the generator into:

def cals_and_name():
 # memory-thrifty generator for (calories, name) pairs
 root = None
 for event, elem in et.iterparse('menu.xml', ['start',
'end']):
 if event == 'start':
 if root is not None:
 root = elem
 continue
 if elem.tag != 'food':
 continue
 # just finished parsing a food, get calories and name
 cals = int(elem.find('calories').text)
 name = elem.find('name').text
 yield (cals, name)
 root.remove(elem)

This approach saves as much memory as feasible, and still gets the task
done!

Parsing XML within an asynchronous loop
While iterparse, used correctly, can save memory, it’s still not good
enough to use within an asynchronous loop. That’s because iterparse
makes blocking read calls to the file object passed as its first argument:
such blocking calls are a no-no in async processing.
ElementTree offers the class XMLPullParser to help with this issue.
See the ElementTree docs for the class’s usage pattern.

1 Alex is far too modest to mention it, but from around 1995 to 2005 both he and Fredrik were,
along with Tim Peters, the Python bots. Known as such for their encyclopedic and detailed
knowledge of the language, the effbot, the martellibot, and the timbot have created software
and documentation that are of immense value to millions of people.

https://docs.python.org/3/library/xml.etree.elementtree.html#pull-api-for-non-blocking-parsing

About the Authors
Alex Martelli has been programming for 40 years, mainly in Python for the
recent half of that time. He wrote the first two editions of Python in a
Nutshell, and coauthored the first two editions of the Python Cookbook and
the third edition of Python in a Nutshell. He is a PSF Fellow and Core
Committer (emeritus), and won the 2002 Activators’ Choice Award and the
2006 Frank Willison Memorial Award for contributions to the Python
community. He is active on Stack Overflow and a frequent speaker at
technical conferences. He’s been living in Silicon Valley with his wife Anna
for 17 years, and working at Google throughout this time, currently as
Senior Staff Engineer in Google Cloud Tech Support.
Anna Martelli Ravenscroft is a PSF Fellow and winner of the 2013 Frank
Willison Memorial Award for contributions to the Python community. She
co-authored the second edition of the Python Cookbook and 3rd edition of
Python in a Nutshell. She has been a technical reviewer for many Python
books and is a regular speaker and track chair at technical conferences.
Anna lives in Silicon Valley with her husband Alex, two dogs, one cat, and
several chickens.
Passionate about programming and community, Steve Holden has worked
with computers since 1967 and started using Python at version 1.4 in 1995.
He has since written about Python, created instructor-led training, delivered
it to an international audience built 40 hours of video training for “reluctant
Python users.” An Emeritus Fellow of the Python Software Foundation,
Steve served as a director of the Foundation for eight years and as its
chairman for three; he created PyCon, the Python community’s
international conference series and was presented with the Simon Willison
Award for services to the Python community. He lives in Hastings, England
and works as Technical Architect for the UK Department for International
Trade, where he is responsible for the systems that maintain and regulate
the trading environment.
Paul McGuire has been programming for 40+ years, in languages ranging
from FORTRAN to Pascal, PL/I, COBOL, Smalltalk, Java, C/C++/C#, and
Tcl, settling on Python as his language-of-choice in 2001. He is the author

and maintainer of the popular pyparsing module, as well as littletable and
plusminus. Paul authored the O’Reilly Short Cut Getting Started with
Pyparsing, and has written and edited articles for Python Magazine. He has
also spoken at PyCon and at the Austin Python Users’ Group, and is active
on StackOverflow. Paul now lives in Austin, Texas with his wife and dog,
and works for Indeed as a Site Reliability Engineer, helping people get jobs!

	1. The Python Interpreter
	The Python Program
	Environment Variables
	Command-Line Syntax and Options
	Interactive Sessions

	Python Development Environments
	IDLE
	Other Python IDEs
	Free Text Editors with Python Support
	Tools for Checking Python Programs

	Running Python Programs
	The PyPy Interpreter

	2. The Python Language
	Lexical Structure
	Lines and Indentation
	Character Sets
	Tokens
	Statements

	Data Types
	Numbers
	Sequences
	Sets
	Dictionaries
	None
	Ellipsis (...)
	Callables
	Boolean Values

	Variables and Other References
	Variables
	Assignment Statements
	del Statements

	Expressions and Operators
	Comparison Chaining
	Short-Circuiting Operators
	The ternary operator
	Numeric Operations
	Numeric Conversions
	Arithmetic Operations
	Sequence Operations
	Strings
	Tuples
	Lists

	Set Operations
	Set Membership
	Set Methods

	Dictionary Operations
	Dictionary Membership
	Dictionary Methods

	Control Flow Statements
	The if Statement
	||3.10+|| The match statement
	The while Statement
	The for Statement
	The break Statement
	The continue Statement
	The else Clause on Loop Statements
	The pass Statement
	The try and raise Statements
	The with Statement

	Functions
	Defining Functions: the def Statement
	Parameters
	Mutable default parameter values
	Argument collector parameters
	Attributes of Function Objects
	Function Annotations
	The return Statement
	Calling Functions
	Namespaces
	lambda expressions
	Generators
	Recursion

	3. Exceptions
	The try Statement
	try/except
	try/finally
	The try/except/finally Statement

	The with Statement and Context Managers
	Generators and Exceptions

	Exception Propagation
	The raise Statement
	Exception Objects
	The Hierarchy of Standard Exceptions
	Standard Exception Classes

	Custom Exception Classes
	Custom Exceptions and Multiple Inheritance
	Other Exceptions Used in the Standard Library

	Error-Checking Strategies
	LBYL Versus EAFP
	Handling Errors in Large Programs
	Logging Errors

	The assert Statement
	The __debug__ Built-in Variable

	4. Modules
	Module Objects
	The import Statement
	The from Statement

	Module Loading
	Built-in Modules
	Searching the Filesystem for a Module
	The Main Program
	Reloading Modules
	Circular Imports
	sys.modules Entries
	Custom Importers

	Packages
	Special Attributes of Package Objects
	Namespace Packages
	Absolute Versus Relative Imports

	Distribution Utilities (distutils) and setuptools
	Python Wheels

	Python Environments
	Enter the Virtual Environment
	What Is a Virtual Environment?
	Creating and Deleting Virtual Environments
	Working with Virtual Environments
	Managing Dependency Requirements
	Other environment management solutions
	Best practices with virtualenvs

	5. Strings and Things
	Methods of String, Bytes and Bytearray Objects
	The string Module
	String Formatting
	Values by expression evaluation
	Values by argument lookup
	Value Conversion
	Value Formatting
	Formatted String Literals
	Legacy String Formatting with %
	Format Specifier Syntax

	Text Wrapping and Filling
	The pprint Module
	The reprlib Module
	Unicode
	The codecs Module
	The unicodedata Module

	6. Regular Expressions
	Regular Expressions and the re Module
	REs and bytes Versus str
	Pattern-String Syntax
	Common Regular Expression Idioms
	Sets of Characters
	Alternatives
	Groups
	Optional Flags
	Match Versus Search
	Anchoring at String Start and End
	Regular Expression Objects
	Match Objects
	Functions of the re Module
	REs and the := operator
	The 3rd party regex module

	7. Time Operations
	The time Module
	The datetime Module
	The date Class
	The time Class
	The datetime Class
	The timedelta Class

	The dateutil Module
	The sched Module
	The calendar Module

	8. Numeric Processing
	Floating-point Values
	The math and cmath Modules
	The operator Module
	Random and Pseudorandom Numbers
	The random Module
	Physically and Cryptographically Strong Random Numbers:the secrets module

	The fractions Module
	The decimal Module
	Array Processing
	The array Module
	Extensions for Numeric Array Computation
	NumPy
	Creating a NumPy Array
	Shape, Indexing, and Slicing
	Matrix Operations in NumPy
	SciPy

	Additional Numeric Packages

	9. Structured Text: HTML
	The html.entities Module
	The BeautifulSoup Third-Party Package
	The BeautifulSoup Class
	The Navigable Classes of bs4
	bs4 find... Methods (“Search Methods”)
	bs4 CSS Selectors
	An HTML Parsing Example with BeautifulSoup

	Generating HTML
	Editing and Creating HTML with bs4
	Building HTML with bs4
	Templating
	The jinja2 Package
	The jinja2.Environment Class
	The jinja2.Template Class

	10. Structured Text: XML
	ElementTree
	The Element Class
	The ElementTree Class
	Functions in the ElementTree Module
	Parsing XML with ElementTree.parse
	Building an ElementTree from Scratch
	Parsing XML Iteratively

	About the Authors

