Hands-On
Data Preprocessing

in Python

Learn how to effectively prepare data for successful
data analytics

Roy Jafari

Packh

BIRMINGHAM—MUMBAI

Hands-On Data Preprocessing in Python
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for

any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot

guarantee the accuracy of this information.
Group Product Manager: Gebin George
Publishing Product Manager: Ali Abidi
Senior Editor: Roshan Kumar

Content Development Editor: Priyanka Soam
Technical Editor: Sonam Pandey

Copy Editor: Safis Editing

Project Coordinator: Aparna Ravikumar Nair
Proofreader: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Nilesh Mohite
Marketing Coordinator: Shifa Ansari

First published: January 2022

Production reference: 1161221
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

978-1-80107-213-7

www.packt.com

http://www.packt.com/

pysle g 5
" d"
- | MJE;
S
(S yo
9

Sy Haler

To my parents,

Soqra Bayati

and

Jahanfar Jafari.

Contributors

About the author

Roy Jafari, Ph.D. is an assistant professor of business analytics at the University of Redlands.

Roy has taught and developed college-level courses that cover data cleaning, decision making, data

science, machine learning, and optimization.

Roy's style of teaching is hands-on and he believes the best way to learn is to learn by doing. He uses

active learning teaching philosophy and readers will get to experience active learning in this book.

Roy believes that successful data preprocessing only happens when you are equipped with the most
efficient tools, have an appropriate understanding of data analytic goals, are aware of data
preprocessing steps, and can compare a variety of methods. This belief has shaped the structure of
this book.

About the reviewers

Arsia Takeh is a director of data science at a healthcare company and is responsible for designing
algorithms for cutting-edge applications in healthcare. He has over a decade of experience in
academia and industry delivering data-driven products. His work involves the research and
development of large-scale solutions based on machine learning, deep learning, and generative
models for healthcare-related use cases. In his previous role as a co-founder of a digital health start-
up, he was responsible for building the first integrated -omics platform that provided a 360 view of

the user as well as personalized recommendations to improve chronic diseases.

Sreeraj Chundayil is a software developer with more than 10 years of experience. He is an expert in
C, C++, Python, and Bash. He has a B.Tech from the prestigious National Institute of Technology
Durgapur in electronics and communication engineering. He likes reading technical books, watching
technical videos, and contributing to open source projects. Previously, he was involved in the
development of NX, 3D modeling software, at Siemens PLM. He is currently working at Siemens

EDA (Mentor Graphics) and is involved in the development of integrated chip verification software.

I would like to thank the C++ and Python communities who have made an immense contribution to

molding me into the tech lover I am today.

Table of Contents

Preface

Part 1:Technical Needs

Chapter 1: Review of the Core Modules of NumPy and

Pandas

Technical requirements

Overview of the Jupyter Notebook

Are we analyzing data via computer programming?

Overview of the basic functions of NumPy

The np.arange()_function

The np.zeros()_.and np.ones()_functions

The np.linspace()_function

Overview of Pandas

Pandas data access

Boolean masking for filtering a DataFrame

Pandas functions for exploring_a DataFrame

Pandas applying_a function

The Pandas groupby function

Pandas multi-level indexing

Pandas pivot and melt functions

Summary

Exercises

Chapter 2: Review of Another Core Module — Matplotlib

Technical requirements

Drawing_the main plots in Matplotlib
Summarizing_ numerical attributes using_histograms or boxplots

Observing_trends in the data using_a line plot

Relating_two numerical attributes using_a scatterplot

Modifying_the visuals

Adding_a title to visuals and labels to the axis

Adding legends
Modifying_ticks
Modifying_markers
Subplots

Resizing_visuals and saving them

Resizing
Saving
Example of Matplotilb assisting data preprocessing

Summary

Exercises

Chapter 3: Data — What Is It Really?

Technical requirements
What is data?

Why this definition?
DIKW pyramid

Data preprocessing for data analytics versus data
preprocessing_for machine learning

The most universal data structure — a table

Data objects

Data attributes

Types of data values

Analytics standpoint

Programming_standpoint

Information versus pattern

Understanding everyday use of the word "information"

Statistical use of the word "information"

Statistical meaning_of the word "pattern”

Summary
Exercises

References

Chapter 4: Databases

Technical requirements
What is a database?

Understanding_the difference between a database and a dataset

Types of databases

The differentiating_elements of databases

Relational databases (SQL databases)

Unstructured databases (NoSQL databases).

A practical example that requires a combination of both
structured and unstructured databases

Distributed databases

Blockchain

Connecting_to, and pulling data from, databases

Direct connection

Web page connection

APl connection

Request connection

Publicly shared

Summary

Exercises

Part 2: Analytic Goals

Chapter 5: Data Visualization

Technical requirements

Summarizing_a population

Example of summarizing_ numerical attributes

Example of summarizing _categorical attributes

Example of comparing_populations using_boxplots

Example of comparing_populations using_histograms

Example of comparing_populations using_bar charts

Investigating_the relationship between two attributes

Visualizing_the relationship between two numerical attributes

Visualizing_the relationship between two categorical attributes

Visualizing the relationship between a numerical attribute and a
categorical attribute

Adding_visual dimensions

Example of a five-dimensional scatter plot
Showing_and comparing_trends

Example of visualizing_and comparing_trends
Summary

Exercise

Chapter 6: Prediction

Technical requirements

Predictive models

Forecasting

Regression analysis

Linear regression

Example of applying_linear regression to perform regression

analysis
MLP
How does MLP work?

Example of applying MLP to perform regression analysis

Summary

Exercises

Chapter 7: Classification

Technical requirements

Classification models

Example of designing_a classification model

Classification algorithms
KNN

Example of using KNN for classification

Decision Trees

Example of using Decision Trees for classification

Summary

Exercises

Chapter 8: Clustering_Analysis

Technical requirements

Clustering_model

Clustering example using _a two-dimensional dataset

Clustering_ example using a three-dimensional dataset

K-Means algorithm

Using K-Means to cluster a two-dimensional dataset

Using K-Means to cluster a dataset with more than two
dimensions

Centroid analysis

Summary

Exercises

Part 3: The Preprocessing

Chapter 9: Data Cleaning_Level | — Cleaning_Up the
Table

Technical requirements

The levels, tools, and purposes of data cleaning — a roadmap to

chapters 9, 10, and 11
Purpose of data analytics

Tools for data analytics

Levels of data cleaning

Mapping_the purposes and tools of analytics to the levels of
data cleaning

Data cleaning_level | — cleaning_up the table

Example 1 - unwise data collection
Example 2 - reindexing_(multi-level indexing).

Example 3 — intuitive but long_column titles

Summary

Exercises

Chapter 10: Data Cleaning_Level |l — Unpacking,.
Restructuring,_ and Reformulating_the Table

Technical requirements

Example 1 - unpacking columns and reformulating_the table

Unpacking FileName

Unpacking_Content

Reformulating_a new table for visualization

The last step — drawing_the visualization

Example 2 - restructuring_the table

Example 3 - level | and Il data cleaning

Level | cleaning

Level Il cleaning

Doing_the analytics — using_linear regression to create a
predictive model

Summary

Exercises

Chapter 11: Data Cleaning_Level Ill — Missing_Values,
OQutliers,_and Errors

Technical requirements

Missing_values

Detecting_missing_values

Example of detecting _missing values

Causes of missing_values

Types of missing_values

Diagnosis of missing values

Dealing with missing _values

Outliers

Detecting_outliers
Dealing with outliers

Errors

Types of errors

Dealing with errors

Detecting_systematic errors

Summary

Exercises

Chapter 12: Data Fusion and Data Integration

Technical requirements

What are data fusion and data integration?
Data fusion versus data integration

Directions of data integration

Frequent challenges regarding_data fusion and integration

Challenge 1 — entity identification

Challenge 2 - unwise data collection

Challenge 3 - index mismatched formatting

Challenge 4 - aggregation mismatch

Challenge 5 — duplicate data objects

Challenge 6 — data redundancy

Example 1 (challenges 3 and 4)
Example 2 (challenges 2 and 3)

Example 3 (challenges 1, 3, 5, and 6)

Checking for duplicate data objects

Designing_the structure for the result of data integration

Filling_ songlntegrate df from billboard df

Filling songlntegrate df from songAttribute df

Filling_songintegrate df from artist df

Checking for data redundancy

The analysis

Example summary

Summary

Exercise

Chapter 13: Data Reduction

Technical requirements

The distinction between data reduction and data redundancy

The objectives of data reduction

Types of data reduction

Performing numerosity data reduction

Random sampling

Stratified sampling

Random over/undersampling

Performing dimensionality data reduction

Linear regression as a dimension reduction method

Using_a decision tree as a dimension reduction method

Using random forest as a dimension reduction method

Brute-force computational dimension reduction
PCA
Functional data analysis

Summary

Exercises

Chapter 14: Data Transformation and Massaging,

Technical requirements

The whys of data transformation and massaging

Data transformation versus data massaging

Normalization and standardization

Binary coding, ranking_transformation, and discretization

Example one - binary coding_of nhominal attribute

Example two - binary coding_or ranking transformation of
ordinal attributes

Example three — discretization of numerical attributes

Understanding_the types of discretization

Discretization — the number of cut-off points

A summary - from numbers to categories and back

Attribute construction

Example - construct one transformed attribute from two
attributes

Feature extraction

Example — extract three attributes from one attribute

Example - Morphological feature extraction

Feature extraction examples from the previous chapters

Log_transformation

Implementation — doing_it yourself

Implementation — the working_module doing_it for you

Smoothing, aggregation, and binning

Smoothing
Aggregation
Binning.
Summary

Exercise

Part 4: Case Studies

Chapter 15: Case Study 1 — Mental Health in Tech

Technical requirements

Introducing_the case study

The audience of the results of analytics

Introduction to the source of the data

Integrating the data sources

Cleaning_the data

Detecting_and dealing with outliers and errors

Detecting_and dealing with missing_values

Analyzing_the data

Analysis question one — is there a significant difference
between the mental health of employees across the attribute of
gender?

Analysis question two — is there a significant difference
between the mental health of employees across the Age
attribute?

Analysis question three — do more supportive companies have
mentally healthier employees?

Analysis question four — does the attitude of individuals toward

mental health influence their mental health and their seeking_of
treatments?

Summary

Chapter 16: Case Study 2 — Predicting COVID-19
Hospitalizations

Technical requirements

Introducing_the case study

Introducing_the source of the data

Preprocessing_the data

Designing_the dataset to support the prediction

Filling up the placeholder dataset

Supervised dimension reduction

Analyzing_the data

Summary

Chapter 17: Case Study 3: United States Counties
Clustering_Analysis

Technical requirements

Introducing_the case study

Introduction to the source of the data

Preprocessing_the data

Transforming_election df to partisan df

Cleaning edu df, employ df, pop df, and pov df

Data integration

Data cleaning_level Ill - missing values, errors, and outliers
Checking_for data redundancy

Analyzing_the data

Using PCA to visualize the dataset

K-Means clustering_analysis

Summary

Chapter 18: Summary, Practice Case Studies, and

Conclusions

A summary of the book

Part 1 — Technical requirements

Part 2 - Analytics goals

Part 3 — The preprocessing

Part 4 — Case studies

Practice case studies

Google Covid-19 mobility dataset

Police Kkillings in the US
US accidents

San Francisco crime

Data analytics job market
FIFA 2018 player of the match
Hot hands in basketball

Wildfires in California

Silicon Valley diversity profile

Recognizing_fake job posting

Hunting more practice case studies

Conclusions

Other Books You May Enjoy

Preface

Data preprocessing is the first step in data visualization, data analytics, and machine learning, where
data is prepared for analytics functions to get the best possible insights. Around 90% of the time
spent on data analytics, data visualization, and machine learning projects is dedicated to performing

data preprocessing.

This book will equip you with the optimum data preprocessing techniques from multiple
perspectives. You'll learn about different technical and analytical aspects of data preprocessing — data
collection, data cleaning, data integration, data reduction, and data transformation — and get to grips
with implementing them using the open source Python programming environment. This book will
provide a comprehensive articulation of data preprocessing, its whys and hows, and help you identify
opportunities where data analytics could lead to more effective decision making. It also demonstrates
the role of data management systems and technologies for effective analytics and how to use APIs to

pull data.

By the end of this Python data preprocessing book, you'll be able to use Python to read, manipulate,
and analyze data; perform data cleaning, integration, reduction, and transformation techniques; and

handle outliers or missing values to effectively prepare data for analytic tools.

Who this book is for

Junior and senior data analysts, business intelligence professionals, engineering undergraduates, and
data enthusiasts looking to perform preprocessing and data cleaning on large amounts of data will
find this book useful. Basic programming skills, such as working with variables, conditionals, and

loops, along with beginner-level knowledge of Python and simple analytics experience, are assumed.

What this book covers

Chapter 1, Review of the Core Modules of NumPy and Pandas, introduces two of three main modules

used for data manipulation, using real dataset examples to show their relevant capabilities.

Chapter 2, Review of Another Core Module — Matplotlib, introduces the last of the three modules
used for data manipulation, using real dataset examples to show its relevant capabilities.

Chapter 3, Data — What Is It Really?, puts forth a technical definition of data and introduces data

concepts and languages that are necessary for data preprocessing.

Chapter 4, Databases, explains the role of databases, the different kinds, and teaches you how to
connect and pull data from relational databases. It also teaches you how to pull data from databases

using APIs.

Chapter 5, Data Visualization, showcases some analytics examples using data visualizations to

inform you of the potential of data visualization.

Chapter 6, Prediction, introduces predictive models and explains how to use Multivariate
Regression and a Multi-Layered Perceptron (MLP).

Chapter 7, Classification, introduces classification models and explains how to use Decision Trees
and K-Nearest Neighbors (KNN).

Chapter 8, Clustering Analysis, introduces clustering models and explains how to use K-means.

Chapter 9, Data Cleaning Level I — Cleaning Up the Table, introduces three different levels of data
cleaning and covers the first level through examples.

Chapter 10, Data Cleaning Level II — Unpacking, Restructuring, and Reformulating the Table, covers

the second level of data cleaning through examples.

Chapter 11, Data Cleaning Level III — Missing Values, Outliers, and Errors, covers the third level of

data cleaning through examples.

Chapter 12, Data Fusion and Data Integration, covers the technique for mixing different data

sources.

Chapter 13, Data Reduction, introduces data reduction and, with the help of examples, shows how its
different cases and versions can be done via Python.

Chapter 14, Data Transformation and Massaging, introduces data transformation and massaging and,

through many examples, shows their requirements and capabilities for analysis.

Chapter 15, Case Study 1 — Mental Health in Tech, introduces an analytic problem and preprocesses
the data to solve it.

Chapter 16, Case Study 2 — Predicting COVID-19 Hospitalizations, introduces an analytic problem

and preprocesses the data to solve it.

Chapter 17, Case Study 3 — United States Counties Clustering Analysis, introduces an analytic

problem and preprocesses the data to solve it.

Chapter 18, Summary, Practice Case Studies, and Conclusions, introduces some possible practice

cases that users can use to learn in more depth and start creating their analytics portfolios.

To get the most out of this book

The book assumes basic programming skills such as working with variables, conditionals, and loops,
along with beginner-level knowledge of Python. Other than that, you can start your journey from the

beginning of the book and start learning.

The Jupyter Notebook is an excellent UI for learning and practicing programming and data analytics.
It can be downloaded and installed easily using Anaconda Navigator. Visit this page for installation:

https://docs.anaconda.com/anaconda/navigator/install/.

Software/hardware covered in the book Operating system requirements
Python using the Jupyter Notebook Windows or macOS

While Anaconda has most of the modules that the book uses already installed, you will need to install
a few other modules such as Seaborn and Graphviz. Don't worry; when the time comes, the book will

instruct you on how to go about these installations.

If you are using the digital version of this book, we advise you to type the code yourself or
access the code from the book's GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

While learning, keep a file of your own code from each chapter. This learning repository can be used
in the future for deeper learning and real projects. The Jupyter Notebook is especially great for this

purpose as it allows you to take notes along with the code.

Download the example code files

You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. If there's an update to

the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

https://docs.anaconda.com/anaconda/navigator/install/
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots and diagrams used in this book.
You can download it here: https://static.packt-cdn.com/downloads/9781801072137 Colorlmages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: "To
create this interactive visual, we have used the interact and widgets programming objects from the
ipywidgets module."

A block of code is set as follows:
from ipywidgets import interact, widgets
interact(plotyear,year=widgets.IntSlider (min=2010, max=2019, step=1,value=2010))
When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:
Xs_t.plot.scatter(x='PC1',y="'PC2',c="PC3"',sharex=False,
vmin=-1/0.101, vmax=1/0.101,
figsize=(12,9))
x_ticks_vs = [-2.9%4 + 2.9*1 for 1 in range(9)]
Bold: Indicates a new term, an important word, or words that you see on screen. For instance, words

in menus or dialog boxes appear in bold. Here is an example: "The missing values for the attributes

from SupportQ1 to AttitudeQ3 are from the same data objects."

TIPS OR IMPORTANT NOTES

Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at

customercare@packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book, we would be grateful if you would report this to us.

Please visit www.packtpub.com/support/errata and fill in the form.

https://static.packt-cdn.com/downloads/9781801072137_ColorImages.pdf
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be
grateful if you would provide us with the location address or website name. Please contact us at

copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share Your Thoughts

Once you've read Hands-On Data Preprocessing in Python, we'd love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering

excellent quality content.

mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/1-801-07213-2

Part 1:Technical Needs
After reading this part of the book, you will be able to use Python to effectively manipulate data.

This part comprises the following chapters:
o Chapter 1, Review of the Core Modules of NumPy and Pandas
o Chapter 2, Review of Another Core Module — Matplotlib
e Chapter 3, Data — What Is It Really?

e Chapter 4, Databases

Chapter 1. Review of the Core Modules of NumPy and
Pandas

NumPy and Pandas modules are capable of meeting your needs for the majority of data analytics and
data preprocessing tasks. Before we start reviewing these two valuable modules, I would like to let
you know that this chapter is not meant to be a comprehensive teaching guide to these modules, but
rather a collection of concepts, functions, and examples that will be invaluable, as we will cover data

analytics and data preprocessing in proceeding chapters.

In this chapter, we will first review the Jupyter Notebooks and their capability as an excellent coding
User Interface (UI). Next, we will review the most relevant data analytic resources of the NumPy

and Pandas Python modules.

The following topics will be covered in this chapter:
o Overview of the Jupyter Notebook
o Are we analyzing data via computer programming?
« Overview of the basic functions of NumPy

« Overview of Pandas

Technical requirements

The easiest way to get started with Python programming is by installing Anaconda Navigator. It is
open source software that brings together many useful open source tools for developers. You can
download Anaconda Navigator by following this link:

https://www.anaconda.com/products/individual.

We will be using Jupyter Notebook throughout this book. Jupyter Notebook is one of the open source
tools that Anaconda Navigator provides. Anaconda Navigator also installs a Python version on your
computer. So, following Anaconda Navigator's easy installation, all you need to do is open Anaconda

Navigator and then select Jupyter Notebook.

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, click on the following link:
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. Each chapter in this

book will have a folder that contains all of the code and datasets that were used in the chapter.

Overview of the Jupyter Notebook

https://www.anaconda.com/products/individual
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The Jupyter Notebook is becoming increasingly popular as a successful User Interface (UI) for
Python programing. As a Ul, the Jupyter Notebook provides an interactive environment where you

can run your Python code, see immediate outputs, and take notes.

Fernando Pérezthe and Brian Granger, the architects of the Jupyter Notebook, outlines the following

reasons in terms of what they were looking for in an innovative programming UI:
« Space for individual exploratory work
« Space for collaboration

o Space for learning and education

If you have used the Jupyter Notebook already, you can attest that it delivers all these promises, and
if you have not yet used it, I have good news for you: we will be using Jupyter Notebook for the
entirety of this book. Some of the code that I will be sharing will be in the form of screenshots from
the Jupyter Notebook UI.

The UI design of the Jupyter Notebook is very simple. You can think of it as one column of material.
These materials could be under code chunks or Markdown chunks. The solution development and the
actual coding happens under the code chunks, whereas notes for yourself or other developers are
presented under Markdown chunks. The following screenshot shows both an example of a
Markdown chunk and a code chunk. You can see that the code chunk has been executed and the

requested print has taken place and the output is shown immediately after the code chunk:
Hello World! This is a Markdown chunk!

In [1]: M print('Hello World! This is Code Chunk!")
Hello World! This is Code Chunk!
Figure 1.1 — Code for printing Hello World in a Jupyter notebook

To create a new chunk, you can click on the + sign on the top ribbon of the UI. The newly added
chunk will be a code chunk by default. You can switch the code chunk to a Markdown chunk by
using the drop-down list on the top ribbon. Moreover, you can move the chunks up or down by using

the correct arrows on the ribbon. You can see these three buttons in the following screenshot:

Move the chunks up Switch between
Cut, Copy, Paste or down Markdown and Code

\

+ x B ¥ MRun H | C MW | Markdown ~

\ \

Create a new chunk Run, Stop, Restart, Restart & Run

Figure 1.2 — Jupyter Notebook control ribbon
You can see the following in the preceding screenshot:
¢ The ribbon shown in the screenshot also allows you to Cut, Copy, and Paste the chunks.
o The Run button on the ribbon is to execute the code of a chunk.
« The Stop button is to stop running code. You normally use this button if your code has been running for a while with no output.
« The Restart button wipes the slate clean; it removes all of the variables you have defined so you can start over.

« Finally, the Restart & Run button restarts the kernel and runs all of the chunks of code in the Jupyter Notebook files.

There is more to the Jupyter Notebook, such as useful short keys to speed up development and
specific Markdown syntax to format the text under Markdown chunks. However, the introduction
here is just enough for you to start meaningfully analyzing data using Python through the Jupyter
Notebook UI.

Are we analyzing data via computer programming?

To benefit most from the two modules that we will cover in this chapter, we need to understand what
they really are and what we are really doing when we use them. I am sure whoever is in the business
of content development for data analytics using Python, including me (guilty as charged), would tell
you that when you use these modules to manipulate your data, you are analyzing your data using
computer programming. However, what you are actually doing is not computer programming. The
computer programming part has already been done for the most part. In fact, this has been done by
the top-notch programmers who put together these invaluable packages. What you do is use their
code made available to you as programming objects and functions under these modules. Well, if I am
being completely honest, you are doing a tad bit of computer programming, but just enough to access
the good stuff (these modules). Thanks to these modules, you will not experience any difficulty in

analyzing data using computer programming.

So, before embarking on your journey in this chapter and this book, remember this: for the most part,
our job as data analysts is to connect three things — our business problem, our data, and technology.
The technology could be commercial software such as Excel or Tableau, or, in the case of this book,

these modules.

Overview of the basic functions of NumPy

In short, as the name suggests, NumPy is a Python module brimming with useful functions for
dealing with numbers. The Num in the first part of the name NumPy stands for numbers, and Py

stands for Python. There you have it. If you have numbers and you are in Python, you know what you

need to import. That is correct; you need to import NumPy, simple as that. See the following

screenshot:

In [2]: M import numpy as np

Figure 1.3 — Code for importing the NumPy module

As you can see, we have given the alias np to the module after importing it. You can actually assign
any alias that you wish and your code would function; however, I suggest sticking with np. I have two
compelling reasons for doing so:

« First, everyone else uses this alias, so if you share your code with others, they know what you are doing throughout your project.

» Second, a lot of the time, you end up using code written by others in your projects, so consistency will make your job easier. You

will see that most of the famous modules also have a famous alias, for example, pd for Pandas, and p1t for matplotlib.pyplot.

GOOD PRACTICE ADVICE

NumPy can handle all types of mathematical and statistical calculations for a collection of numbers, such as mean,
median, standard deviation (std), and variance (var). If you have something else in mind and are not sure whether
NumPy has it, | suggest googling it before trying to write your own. If it involves numbers, chances are NumPy has it.

The following screenshot shows the mean, for example, applied to a collection of numbers:

In [3]: M 1st_nums = [2,5,7,11,13,17,23,31,37,41,43,47]
np.mean(lst_nums)

Out[3]: 23.083333333333332

In [4]: M 1lst_nums = [2,5,7,11,13,17,23,31,37,41,43,47]
ary_nums = np.array(lst _nums)
ary_nums.mean()

Out[4]: 23.083333333333332

Figure 1.4 — Example of using the np.mean() NumPy function and the .mean() NumPy array function

As shown in Figure 1.4, there are two ways to do this. The first one, portrayed in the top chunk, uses
np.mean(). This function is one of the properties of the NumPy module and can be accessed directly.
The great aspect of using this approach is that you do not need to change your data type most of the
time before NumPy honors your request. You can input lists, Pandas series, or DataFrames. You can
see on the top chunk that np.mean() easily calculated the mean of 1st_nums, which is of the list type.
The second way, as shown in the bottom chunk, is to first use np.array() to transform the list into a
NumPy array and then use the .mean() function, which is a property of any NumPy array. Before
continuing to progress with this chapter, take a moment and use the Python type() function to see the

different types of 1st_numbs and ary_nums, as shown in the following screenshot:

In [5]: M type(lst_nums)

Out[5]: 1list

In [6]: M type(ary_nums)
Out[6]: numpy.ndarray

Figure 1.5 — The application of the type() function

Next we will learn about four NumPy functions: np.arange(), np.zeros(), np.ones(), and

np.linspace().

The np.arange() function

This function, as shown in the following screenshot, produces a sequence of numbers with equal

increments. You can see in the figure that by changing the two inputs, you can get the function to

output many different sequences of numbers that are required for your analytic purposes:

In [7]: M

Out[7]:

In [8]: M
Out[8]:

In [9]: M

Out[9]:

np.arange(15)

ar‘r\a)',([a} 1) 2) 3) 4) 5) 6) 7’ 8) 9) 10) 11) 12) 13’ 14])

np.arange(5,15)

array([5, 6, 7, 8, 9, 10, 11, 12, 13, 14])

np.arange(-7.1,7)

array([-7.1, -6.1, -5.1, -4.1, -3.1, -2.1, -1.1, -@0.1, ©.9, 1.9, 2.9,
3.9, 4.9, 5.9, 6.9])

Figure 1.6 — Examples of using the np.arange() function

Pay attention to the three chunks of code in the preceding figure to see the default behavior of

np.arange() when only one or two inputs are passed.

» When only one input is passed, as in the first chunk of code, the default of np.arange () is that you want a sequence of

numbers from zero to the input number with increments of one.

« When two inputs are passed, as in the second chunk of code, the default of the function is that you want a sequence of numbers

from the first input to the second input with increments of one.

The np.zeros() and np.ones() functions

np.ones() creates a NumPy array filled with ones, and np.zeros() does the same thing with zeros.

Unlike np.arange(), which takes the input to calculate what needs to be included in the output array,

np.zeros() and np.ones() take the input to structure the output array. For instance, the top chunk of

the following screenshot specifies the request for an array with four rows and five columns filled

with zeros. As you can see in the bottom chunk, if you only pass in one number, the output array will

have only one dimension:

In [10]: M np.zeros([4,5])

Out[10]: array([[0., ©., ©., 0., 0.],
[0., ©., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 8., 0., 0., 0.]1])

In [11]: M np.ones(7)
Out[11]: array([l., 1., 1., 1., 1., 1., 1.])

Figure 1.7 — Examples of np.zeros() and np.ones()

These two functions are excellent resources for creating a placeholder to keep the results of

calculations in a loop. For instance, review the following example and observe how this function

facilitated the coding.
Example - Using a placeholder to accommodate analytics

Given the grade data of 10 students, create a code using NumPy that calculates and reports their

grade average.

The data of the 10 students and the solution to this example are provided in the following

screenshots. Please review and try this code before progressing:

In [12]: Names = ['Jevon’, 'Dawn', 'Kayleigh', 'Jadene', 'Kennedy', 'Kaydee',

'"Ansh', 'Flynn', 'Kier', 'Clarence']
Math_grades = [80, 50, 60, 70, 60, 100, 70, 70, 60, 70]
Science_grades = [90, 80, 50, 50, 60, 50, 90, 70, 80, 80]
History grades = [60, 90, 50, 90, 100, 100, 100, 100, 90, 70]

Figure 1.8 — Grade data for the example

Now that you've had a chance to engage with this example, allow me to highlight a few matters about

the provided solution presented in Figure 1.9:

Notice how np . zeros () facilitated the solution by streamlining it significantly. After the code is done, all of the average grades

are calculated and saved already. Compare the printed values before and after the for loop.

The enumerate () function in the for loop might sound strange to you. What that does is help the code to have both an index

(1) and the item (name) from the collection (Names).

e The .format () function is an invaluable property of any string variable. If there are any symbols such as {} in the string, this

function will replace them with what has been input sequentially.

o # better-looking report is a comment in the second chunk of the code. Comments are not compiled and their only

purpose is to communicate something with whoever reads the source code.

In [13]: Average grades = np.zeros(10)
print(Average_grades)

for i, name in enumerate(Names):
Average_grades[i] = np.mean([Math_grades[i],Science_grades[i],
History_grades[i]])

print(Average grades)

[0. 0. 0. 0. 8. 0. 0. 0. 0. 0.]
[76.66666667 73.33333333 53.33333333 70. 73.33333333 83.33333333
86.66666667 80. 76.66666667 73.33333333]

In [14]: |# better-Looking report

for i, name in enumerate(Names):
print("Average for {} : {}".format(name,Average_grades[i]))

Average for Jevon : 76.66666666666667
Average for Dawn : 73.33333333333333
Average for Kayleigh : 53.333333333333336
Average for Jadene : 70.0

Average for Kennedy : 73.33333333333333
Average for Kaydee : 83.33333333333333
Average for Ansh : 86.66666666666667
Average for Flynn : 80.90

Average for Kier : 76.66666666666667
Average for Clarence : 73.33333333333333

Figure 1.9 — Solution to the preceding example

The np.linspace() function

This function returns evenly spaced numbers over a specified interval. The function takes three
inputs. The first two inputs specify the interval, and the third shows the number of elements that the

output will have. For example, refer to the following screenshot:

In [15]: np.linspace(9,1,21)

.45, 9.5 ,

)

Out[15]: array([@. , ©.05, 0.1 , ©.15, 0.2 , 0.25, 0.3
9.8 , 0.85,

©.55, 0.6 , .65, 0.7 , 0.75,

o ®

O W

-

© A
.
®

In [16]: np.linspace(10,1000,100)

Out[16]: array([1., 20., 30. 40., 50., 60., 70., 80., 9.,

-

100., 110., 120., 130., 140., 150., 160., 170., 180.,
199., 200., 210., 220., 230., 240., 250., 260., 270.,
280., 290., 300., 310., 320., 330., 340., 350., 360.,
370., 380., 390., 400., 410., 420., 430., 449., 450.,
460., 470., 480., 490., 500., 510., 520., 530., 540.,
550., 560., 570., 589., 590., 600., 610., 620., 630.,
640., 650., 660., 670., 680., 690., 700., 710., 720.,
730., 740., 750., 760., 770., 780., 790., 80@., 810.,
820., 830., 848., 850., 860., 870., 880., 890., 900.,
910., 920., 930., 940., 950., 960., 970., 980., 990.,

1000.1])

Figure 1.10 — Solution to the preceding example

In the first code block, 19 numbers are evenly spaced between 0 and 1, altogether creating an array
with 21 numbers. The second gives another example. After trying out the two examples in the
screenshot, try np.linspace(0,1,20) and after investigating the results, think about why I chose 21

over 20 in my example.

np.linspace() is a very handy function for situations where you need to try out different values to
find the one that best fits your needs. The following example showcases a simple situation like that.
Example - np.linspace() to create solution candidates

We are interested in finding the value(s) that holds the following mathematical statement:
x?—-5x+6=0

Imagine that we don't know that the statement can be simplified easily to ascertain that either 2 or 3

will hold the statement:
x?2—5x+ 6=(x—2)(x—3)

So we would like to use NumPy to try out any whole numbers between -1000 and 1000 and find the

answer.

The following screenshot shows Python code that provides a solution to this problem:

In [16]: M Candidates = np.linspace(-1000,1000,2001)
#print(Candidates)

for candidate in Candidates:
if(candidate**2 - S5*candidate +6 ==0):
print("Just found a possible answer: {}".format(candidate))

Just found a possible answer: 2.0
Just found a possible answer: 3.0

Figure 1.11 — Solution to the preceding example

Please review and try this code before moving on.

Now that you've had a chance to engage with this example, allow me to highlight a couple of things:
o Notice how smart use of np.linspace () leads to an array with all of the numbers that we were interested in trying out.

o Uncomment #print (Candidates) and review all of the numbers that were tried out to establish the desired answers.

This concludes our review of the NumPy module. Next, we will review another very useful Python

module, Pandas.

Overview of Pandas

In short, Pandas is our main module for working with data. The module is brimming with useful
functions and tools, but let's get down to the basics first. The greatest tool of Pandas is its data
structure, which is known as a DataFrame. In short, a DataFrame is a two-dimensional data structure

with a good interface and great codability.

The DataFrame makes itself useful to you right off the bat. The moment you read a data source using

Pandas, the data is restructured and shown to you as a DataFrame. Let's give it a try.

We will use the famous adult dataset (adult.csv) to practice and learn the different functionalities of
Pandas. Refer to the following screenshot, which shows the importing of Pandas and then reading
and showing the dataset. In this code, .head() requests that only the top five rows of data are output.

The .tail() code could do the same for the bottom five rows of the data.

In [17]: M dimport pandas as pd

adult_df = pd.read_csv('adult.csv')
adult_df.head()

Out[17]:
education- marital-

age workclass fnlwgt education i atatiie

occupation relationship race

Never- Adm-

0 39 State-gov 77516 Bachelors 13 e St Not-in-family White
Self-emp- Married- Exec-
1 50 notinc 83311 Bachelors 13 V- hanagerial Husband White
spouse
2 38 Private 215646 HS-grad 9 Divorced ~ aNdIETS- ot in family White
cleaners
Married- o iers-
3 53 Private 234721 11th 7 civ- Husband Black
cleaners
spouse
Married- Prof-
4 28 Private 338409 Bachelors 1% Civ- e Wife Black F
spouse P y

Figure 1.12 — Reading the adult.csv file using pd.read_csv() and showing its first five rows

The adult dataset has six continuous and eight categorical attributes. Due to print limitations, I have
only been able to include some parts of the data; however, if you pay attention to Figure 1.12, the
output comes with a scroll bar at the bottom that you can scroll to see the rest of the attributes. Give
this code a try and study its attributes. As you will see, all of the attributes in this dataset are self-
explanatory, apart from fnlwgt. The title is short for final weight and it is calculated by the Census

Bureau to represent the ratio of the population that each row represents.

GOOD PRACTICE ADVICE

It is good practice to always get to know the dataset you are about to work on. This process always starts with making sure
you understand each attribute, the way | just did now. If you have just received a dataset and you don't know what each
attribute is, ask. Trust me, you will look more like a pro than not.

There are other steps to get to know a dataset. | will mention them all here and you will learn how to do them by the end of
this chapter.

Step one: Understand each attribute as | just explained.

Step two: Check the shape of the dataset. How many rows and columns does the dataset have? This one is easy. For
instance, just try adult_df. shape and review the result.

Step three: Check whether the data has any missing values.

Step four: Calculate summarizing values for numerical attributes such as mean, median, and standard deviation, and
compute all the possible values for categorical attributes.

Step five: Visualize the attributes. For numerical attributes, use a histogram or a boxplot, and for categorical ones, use a
bar chart.

As you just saw, before you know it, you are enjoying the benefits of a Pandas DataFrame. So it is
important to better understand the structure of a DataFrame. Simply put, a DataFrame is a collection
of series. A series is another Pandas data structure that does not get as much credit, but is useful all

the same, if not more so.

To understand this better, try to call some of the columns of the adult dataset. Each column is a
property of a DataFrame, so to access it, all you need to do is to use .columnname after the
DataFrame. For instance, try running adult_df.age to see the column age. Try running all of the
columns and study them, and if you come across errors for some of them, do not worry about it; we
will address them soon if you continue reading. The following screenshot shows how you can

confirm what was just described for the adult dataset:

In [18]: M type(adult_df.age)

Out[18]: pandas.core.series.Series

In [19]: M type(adult_df)
Out[19]: pandas.core.frame.DataFrame

Figure 1.13 — Checking the type of adult_df and adult_df.age

It gets more exciting. Not only is each attribute a series, but each row is also a series. To access each
row of a DataFrame, you need to use .1loc[] after the DataFrame. What comes between the brackets
is the index of each row. Go back and study the output of df_adult.head() in Figure 1.12 and you
will see that each row is represented by an index. The indices do not have to be numerical and we
will see how indices of a Pandas DataFrame can be adjusted, but when reading data using
pd.read_csv() with default properties, numerical indices will be assigned. So give it a try and access
some of the rows and study them. For instance, you can access the second row by running
adult_df.loc[1]. After running a few of them, run type(adult_df.loc[1]) to confirm that each row

is a series.

When accessed separately, each column or row of a DataFrame is a series. The only difference
between a column series and a row series is that the index of a column series is the index of the
DataFrame, and the index of a row series is the column names. Study the following screenshot, which

compares the index of the first row of adult_df and the index of the first column of adult_df:

In [20]: M adult _df.loc[@].index

Out[20]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', ‘'relationship’, ‘race', 'sex’,
‘capitalGain’, ‘'capitalLoss', "hoursPerWeek', 'nativeCountry’,
‘income'],
dtype="object"')

In [21]: M adult_df.age.index
Out[21]: RangeIndex(start=0, stop=32561, step=1)
Figure 1.14 — Investigating the index for a column series and a row series

Now that we have been introduced to Pandas data structures, next we will cover how we can access

the values that are presented in them.

Pandas data access

One of the greatest advantages of both Pandas series and DataFrames is the excellent access they
afford us. Let's start with DataFrames, and then we will move on to series as there are lots of
commonalities between the two.

Pandas DataFrame access

As DataFrames are two-dimensional, this section first addresses how to access rows, and then

columns. The end part of the section will address how to access each value.

DataFrame access rows

The only two keywords you will ever need to access the rows of a DataFrame are .1oc[] and
.iloc[]. To understand the difference between them, you need to know that each Pandas series or
DataFrame carries two types of indices: default indices or assigned indices. The default indices are
the integer numbers that are automatically assigned to your dataset upon reading. However, Pandas
allows you to update them. The function that you can use to do so is .set_index(). For instance, we
would like to make sure all of the indices in adult_df have five digits, so instead of indices between
0 and 32651 (run len(adult_df) to see that this is the number of rows adult_df has), we want indices
to be from 10000 to 42651. The following screenshot uses np.arange() and .set_index() to do this.
In this code, inplace=True indicates to the .set_index() function that you want the change to be

applied to the DataFrame itself.

Why is it that when inplace=True is incorporated, there is no output, and when it is included, Jupyter

Notebook shows the updated DataFrame?

The answer is that the .set_index() function, by default, outputs a new DataFrame that has the
requested index unless inplace=True is specified, which requests the change to be applied to the

original DataFrame.

In [22]: M adult_df.set_index(np.arange(10000,42561),inplace=True)

In [23]: M adult_df.set_index(np.arange(10000,42561))

out[23]:

education- marital-

age workclass fnlwgt education occupation relationship ra

num status
10000 39 State-gov 77516 Bachelors 13 Never AdM= ot in-family Whi
married clerical
Self-emp- Rarriads Exec
10001 50 P 83311 Bachelors 13 Civ- e Husband Whi
not-inc managerial
spouse
10002 38 Private 215646 HS-grad 9 Divorced ~ Handlers- i amily Whi
cleaners

Figure 1.15 — Updating the index of adult_df as described

Now, each row of the DataFrame can be accessed by specifying the index in between the brackets of
.1loc[]. For instance, running adult_df.loc[10001] will give you the second row. This is how you
would always access the DataFrame using the assigned indices. If you started missing the default

indices, as you often do when you go about preprocessing your data, Pandas has you covered.

You can use .iloc[] to access the data using the default integer indices. For instance, running
adult_df.iloc[1] will also return the second row. In other words, Pandas will change the index to
your liking, but behind the scenes, it will also keep its integer default index and also lets you use it if

you so wish.

DataFrame access columns

As there are two ways to access each row, there are also two ways to access each column. The easier
and better way to access your columns is to know that each column is coded to be a property of a
DataFrame. So, you can access each column by using .columnName. For instance, run adult_df.age,

adult_df.occupation, and so on to see how easy it is to access the columns in this way.

If you happened to run adult_df.education-number, you have already seen that this gives you an

error. If you haven't, go ahead and do so to study the error. Why does this error happen?

In [24]: M adult_df.education-num

NameError Traceback (most recent call last)
<ipython-input-24-a83283968914> in <module>
----> 1 adult_df.education-num

NameError: name 'num’' is not defined

Figure 1.16 — Running adult_df.education-number and its error

If you study the error message, it is prompting that 'num' is not defined. That is true; we do not have

anything named 'num'. That is the key to use this error to answer my question.

Python deciphers dashes as subtraction operators unless presented inside a quotation. So it all comes
down to this. Because of the way this variable is named, you cannot use the .columnname method to
access the variable. You either need to change the name of the variable or use the second method to

access the columns.

The second method passes the name as a string, or, in other words, inside a quotation. Try running

adult_df['education-num'] and this time you will not get an error.

GOOD PRACTICE ADVICE

If you are new to programming, one of the pieces of advice that | have for you is not to be intimidated by errors, and not
only that, welcome errors with open arms because they are an excellent opportunity to learn. | just used an error to teach
you something.

DataFrame access values

Imagine you want to access the education value for the third row of adult_df. There are so many
ways you can go about this. You can start from the column and once you get a column series, access
the value, or you can go from the row, and once you get a row series, access the value. Study the
following screenshot; the first three chunks of code show different possibilities of doing that.

However, my favorite way to access the values is to use .at[], shown in the last chunk.

In

In

In

In

[25]: M

Out[25]:

[26]: M

Out[26]:

[271: M

Out[27]:

[28]1: M

Out[28]:

adult_df.iloc[2].loc['education’]

'"HS-grad'’

adult_df.education.loc[10002]

'"HS-grad'

adult df["education'].iloc[2]

"HS-grad'

adult_df.at[10002, 'education’]

'"HS-grad'

Figure 1.17 — Four different methods of accessing the records of a Pandas DataFrame

Accessing values with .at[] is my favorite for two reasons. First, it is much neater and more

straightforward. Second, you can treat the DataFrame like a matrix as it is one, at least visually.
Pandas series access

Access to the values of series is very similar to that of DataFrames, just simpler. You can access the

values of a series using all of the methods mentioned for DataFrames, except for .at[]. You can see

all of the possibilities in the following screenshot. If you were to try the last line of the second chunk

of code, Python would generate a syntax error as numbers cannot be the name of programming

objects. To use this method, you have to make sure that the series indices are of the string type.

In [29]: M row_series = adult_df.loc[10002]
print(row_series.loc['education’])
print(row_series.iloc[3])
print(row_series['education'])
print(row_series.education)

HS-grad
HS-grad
HS-grad
HS-grad

In [30]: M columns_series = adult_df.education
print(columns_series.loc[10002])
print(columns_series.iloc[2])
print(columns_series[10002])

print(row_series.10002) This will give syntax error!

HS-grad
HS-grad
HS-grad

Figure 1.18 — Different methods of accessing the values of a Pandas series
Slicing
Slicing applies to both NumPy and Pandas; however, since this is a book about data preprocessing,

we will use it more often with a Pandas DataFrame. Let's begin by slicing NumPy arrays to

understand slicing and then apply it to a Pandas DataFrame.

Slicing a NumPy array

We slice a NumPy array when we need access to more than one value of the data. For instance,

consider the code in the following screenshot:

In [31]: M my_array = np.array([[2,3,5,7],[11,13,17,19],
[23,29,31,37,], [41,43,47,49]])
my_array

Out[31]: array([[2, 3, 5, 7],
[11, 13, 17, 19],
[23, 29, 31, 37],
[41, 43, 47, 49]])

In [32]: M my_array[1,1]

Out[32]: 13

In [33]: M my_array[1,:]

Out[33]: array([11, 13, 17, 19])

In [34]: M my_array[:,1]

Out[34]: array([3, 13, 29, 43])

Figure 1.19 — Examples of slicing NumPy arrays

Here, my_array, which is a 4 x 4 matrix, has been sliced in different ways. The second chunk of code
is not slicing; as you can see, only one value is accessed. What separates normal access from slicing
access is the presence of a colon (:) in any of the index inputs. For instance, a colon in the third
chunk of code means you are requesting all of the columns, and the output includes all of the
columns, but since only the second row (index 1) is specified, the entirety of the second row is
output. The fourth chunk of code is the opposite; one column is specified and the whole rows are
requested, so the entirety of the second column is output.

You can also use a colon (:) to only specify access from a certain index to another one. For instance,
in the second chunk of the following code, while all the columns are requested, only the second to
fourth rows (1:3) are requested. The third chunk of code shows that both columns and rows can be
sliced at the same time. Finally, the last chunk of code shows that you can pass a list of indices that

you want to include in your slice.

In [35]: M my_array
Out[35]: array([[2, 3, 5, 7],
[11, 13, 17, 19],
[23, 29, 31, 37],
[41, 43, 47, 49]])
In [36]: M my_array[1:3,:]
Out[36]: array([[11, 13, 17, 19],
[23, 29, 31, 371])
In [37]: M my_array[1:3,0:2]
Out[37]: array([[11, 13],
[23, 29]1])
In [38]: M my_array[1:3,[0,2]]

Oout[38]: array([[11, 17],
[23, 311])

Figure 1.20 — More complex examples of slicing

Slicing a Pandas DataFrame

Just like NumPy arrays, Pandas DataFrames can also be sliced both on the columns and rows.
However, the slicing function can only be done inside either .1oc[] or .iloc[]. The access method,
.at[], and the other ways of accessing data do not support slicing. For instance, the following code
slices adult_df to show all of the rows, but only the columns from education to occupation. Running

adult_df.iloc[:,3:6] will result in the same output.

In [39]: M adult df.loc[:,'education':'occupation']

Out[39]:
education education-num marital-status occupation
10000 Bachelors 13 Never-married Adm-clerical
10001 Bachelors 13 Married-civ-spouse Exec-managerial
10002 HS-grad 9 Divorced Handlers-cleaners

Figure 1.21 — Example of slicing a Pandas DataFrame

You want to become comfortable with slicing a Pandas DataFrame. It is a very useful way to access
your data. See the following example, which showcases one practical way in which you could use

slicing.

Practical example of slicing

Run adult_df.sort_values('education-num'). You will see this code sort the DataFrame based on
the education-num column. In Jupyter Notebook output, you only see the first five and the last five
rows of this sorting. Slice the output of the rows from across the DataFrame instead of just from the

beginning and the end.

The following screenshot shows how slicing the DataFrame can make this happen:

In [40]: M adult_df.sort_values('education-num').reset_index().iloc[1:32561:3617]

out[40]:
education- marital-

index age workclass fnlwgt education num status

occupation relationsh

) Never- Machine- :
1 23248 68 Private 168794 Preschool 1] op-inspct Not-in-fam
3618 19607 25 Private 251854 11th 7 Nower Adm-— 5 n-chi
married clerical
7235 38845 31 Private 272856 HS-grad g Never ot repair Ownechi
married
Married- Machine-
10852 32759 56 Private 182273 HS-grad 9 Civ- 2 Husbar
op-inspct
spouse
14469 10419 34 State-gov 240283 HS-grad 9 Divorced Tra;f)‘\’l‘i’:é Unmarri
18086 31532 25 SelempP- gape SAmS: 10 Divorced Adm- 5 chi
inc college clerical
21703 17245 37 rederak 4nag5 Some- 10 Never- Other- o in-chi
gov college married service
Married- Adm-
25320 40595 43 Private 342567 Bachelors 13 spouse- B Unmarri
clerical
absent
28937 15200 43 ederdk 14778 Bachelors 13 Never- Exec- \otin-fami
gov married managerial
32554 27308 55 OONeMP- sasee Doctorate 16 Divorced EX€C- \otein-fami
not-inc managerial

Figure 1.22 — Solution to the practical example of slicing a Pandas DataFrame
Let's go over this code step by step:

o The first part, . sort_values('education-num'), as mentioned, sorts the DataFrame by education-num. I hope you
have given this a try before reading on. Pay attention to the indices of the sorted adult_df. They look jumbled up, as they

should. The reason is that the DataFrame is now sorted by another column.

« If we want to have a new index that matches this new order, we can use . reset_index(), as it has been used in the preceding
screenshot. Go ahead and give this a try as well. Run adult_df.sort_values('education-num').reset_index().

You will see that the old index is presented as a new column and that the new index looks as ordered as any newly read dataset.

e Adding .iloc[1:32561:3617] achieves what this example is asking. This specific slice requests the first row and every
3,617th row after that until the end of the DataFrame. The number 32561 is the number of rows in adult_df (run
len(adult_df)), and 3617 is the quotient of the division of 32561 by 9. This division calculates the equal jumps that take us

from row one to nearly the end of adult_df. Pay attention if the division of 32561 by 9 didn't have a remainder; the code would

take you all the way to the end of the DataFrame.

GOOD PRACTICE ADVICE

Being able to slice DataFrames this way is advantageous in the initial stages of getting to know a dataset. One of the
disadvantages of data manipulations using programming instead of spreadsheet software such as Excel is that you
cannot scroll through the data as you would in Excel. However, slicing the data this way can allow you to somehow
mitigate this shortcoming.

Now that we have learned how to access and slice a dataset, we need to learn how to filter the data
based on our needs. To do that, next we will learn about Boolean masking, which is a powerful

filtering technique.

Boolean masking for filtering a DataFrame

One of the simplest and yet most powerful tools of working with data is Boolean masking. When
you want to filter a DataFrame using a Boolean mask, you need a one-dimensional collection of
Boolean values (True or False) that has as many Boolean values as the number of rows of

DataFrames you want to filter.
The following screenshot shows an example of Boolean masking:
In [41]: M twopowers_sr = pd.Series([1,2,4,8,16,32,64,128,256,512,1024])

BM = [False,False,False,True,False,False,False,True,True,True,True]
twopowers_sr[BM]

Out[41]: 3 8
7 128
8 256
9 512
10 1024

Figure 1.23 — Example of Boolean masking

The code portrays Boolean masking in three steps:

1. The code first creates the Pandas series twopowers_sr, which contains the values of 2 to the power of 0 through 10 (2°, 21, 22,
..., 210,

2. Then, a Boolean mask is set up. Pay attention as twopowers_sr has 11 numerical values, while BM also has 11 Boolean values.

From now on in this book, every time you see BM, you can safely assume it stands for Boolean mask.

3. The last line of code filters the series using the mask.

The way a Boolean mask works is straightforward. If the counterpart of the numerical value from

twopowers_sr in the Boolean mask (Bwm) is False, the mask blocks the number, and if it is True, the

mask lets it through. Check whether that has been the case regarding the output of the preceding

code. This is shown in the following figure:

1
False

2
False

4
False

8
True

O

8

16
False

32
False

64
False

128
True

O

128

256
True

O

256

512
True

O

512

1024
True

O

1024

Figure 1.24 — Depiction of Boolean masking

What is great about Pandas is that you can use the DataFrame or series themselves to create useful

Boolean masks. You can use any of the mathematical comparison operators to do this. For instance,

the following screenshot first creates a Boolean mask that would only include True for numbers

greater than or equal to 500. Then, the Boolean mask is applied to twopowers_sr to filter out the

numbers in two ways.

Both of these ways are legitimate, correct, and they work. On the first one, you still give the Boolean

mask a name. We use the name Bm to do this as mentioned earlier. Then, we use BMm to apply the

Boolean mask. On the second one, you create and use the Boolean mask on the fly, as programmers

say. That means you do everything in one line of code. I use the first one more often than not as I

believe it makes the code more readable.

In [42]: M twopowers_sr >=500

Out[42]: o False
1 False
2 False
3 False
4 False
5 False
6 False
7 False
8 False
9 True
10 True

dtype: bool

In [43]: M BM = twopowers_sr >=500
twopowers_sr[BM]

out[43]: 9 512
10 1024
dtype: int64

In [44]: M twopowers_sr[twopowers sr >=500]

Out[44]: 9 512
10 1024
dtype: int64

Figure 1.25 — Example of Boolean masking to filter data

You might be asking from the preceding code, so what if we can filter the data using Boolean
masking? That is a legitimate question. Boolean masks come into their own when you use them on
DataFrames for analytics. The following two examples will clarify this for you.

Analytic example 1 that uses Boolean masking

We are interested in calculating the mean and median age of people with preschool education in
adult_df.

This can be easily done using Boolean masking. The following screenshot first creates B using the

series adult_df.education.

In [45]: M BM = adult_df.education == 'Preschool’
print('Mean: {}'.format(np.mean(adult_df[BM].age)))
print('Median: {}'.format(np.median(adult_df[BM].age)))

Mean: 42.76470588235294
Median: 41.0

Figure 1.26 — Solution to the preceding example

Since the BM series has as many elements as the adult_df DataFrame (why?), BM can be applied to
filter it. Once the DataFrame is filtered using adult_df[BM], it only contains rows that their education
is "Preschool'. So now you can easily use np.mean() and np.median() to calculate the mean and

median of age for these filtered rows.

Analytic example 2 that uses Booleanh masking

We are interested in comparing the Capital Gain of individuals with less than 10 years' education

with individuals with more than 10 years' education.

In [46]: M BM1
BM2

adult_df['education-num'] > 10
adult_df['education-num'] < 10

print('More than 1@ years of education - Capital Gain: {}'
.format(np.mean(adult_df[BM1].capitalGain)))

print('Less than 10 years of education - Capital Gain: {}'
.format(np.mean(adult_df[BM2].capitalGain)))

More than 10 years of education - Capital Gain: 2230.9397109166985
Less than 10 years of education - Capital Gain: 492.25532059102613

Figure 1.27 — Solution to the preceding example

Again, Boolean masks can help us immensely here. Two of them, BmM1 and BmM2, are first created based
on what we are interested in calculating. Then, two calculations and reports show the mean of the

capital gain for people with more than, and less than, 10 years of education.

Pandas functions for exploring a DataFrame

When you compare spreadsheet software such as Excel with coding, one of the stark disadvantages

of coding is that you cannot create as tangible a relationship with your data as you would with Excel.

That is a fair comparison as Excel lets you scroll up and down on your data and so allows you to get
to know it. While coding does not grant you this privilege, Pandas has a handful of useful functions

that help you to familiarize yourself with the data.

Getting to know a dataset has two aspects. The first is to get to know the structure of the data, such as
the number of rows, columns, and the name of columns. The second one is to get to know the values
under each column. So we first cover getting to know the structure of the dataset and then we will
focus on the values under each column.

Getting to know the structure of a dataset

You can use three useful properties of a Pandas Dataframe to study the structure of a dataset. These

are .shape, .columns, and .info(). In the following sections, we will go over them one by one.

The .shape property

.shape is the property of any Pandas DataFrame. It tells you how many rows and columns the
DataFrame has. So, once you apply this to adult_df, as executed by the code in the following

screenshot, you can see that the DataFrame has 32,561 rows and 15 columns:

In [47]: M adult_df.shape

out[47]: (32561, 15)

Figure 1.28 — Example of using the .shape property of a DataFrame to get to know the dataset

The .columns property

.columns allows you to see and edit the column names in your DataFrame. In the following code, you
can see that adult_df.columns resulted in the output of all the column names of adult_df. Of course,
you could have scrolled to see all of the columns when you read the dataset; however, this is not

possible when the data has more than 20 columns.

In [48]: M adult_df.columns

Out[48]: Index(['age', 'workclass', 'fnlwgt', 'education', 'education-num’,
'marital-status’, ‘occupation’, ‘relationship', 'race’, ‘'sex’,
'capitalGain', 'capitalloss', 'hoursPerWeek', 'nativeCountry’,
‘income'],
dtype="'object")

Figure 1.29 — Example of using the .columns property of a DataFrame to get to know the dataset

Furthermore, .columns can be used to update the columns' names. This has been shown in the
following screenshot. After running the following code, you can safely use adult_df.education_num

to access the relevant attribute. We just change the attribute name from 'education-num' to

'education_num' and now the attribute can be accessed using the .columnname method. Refer to

Figure 1.16, which showed the error you'd get if you were to run adult_df.education-num.

In [49]: M adult_df.columns = ['age', 'workclass', 'fnlwgt', 'education’,
‘education_num', 'marital_status', 'occupation’,
'relationship', 'race', 'sex', 'capitalGain',
‘capitalLoss’, 'hoursPerWeek', 'nativeCountry',
"income']

Figure 1.30 — Example of updating the column titles of a DataFrame

The .info() function

This function provides information about both the shape and the columns of the DataFrame. If you
run adult_df.info(), you will see other information, such as the number of non-null values and also
the type of data under each column that will be reported.

Getting to know the values of a dataset

The functions that Pandas has to get to know the numerical columns are different than those of
categorical columns. The difference between numerical and categorical columns is that categorical

columns are not represented by numbers or, more accurately, do not carry numerical information.

To get to know numerical columns, the .describe(), .plot.hist(), and .plot.box() functions are
very useful. On the other hand, the .unique() and .value_counts() functions are instrumental for

categorical columns. We will cover these one by one.

The .describe() function

This function outputs many useful statistical metrics that are meant to summarize data for each
column. These metrics include Count, Mean, Standard Deviation (std), Minimum (min), first quartile
(25%), second quartile (50%) or median, third quartile (75%), and Maximum (max). The following

screenshot shows the execution of the function for adult_df and its output:

In [50]: M adult_df.describe()

Out[50]:
age fnlwgt education_num capitalGain capitalLoss hoursPerWee

count 32561.000000 3.256100e+04 32561.000000 32561.000000 32561.000000 32561.00000

mean 38.581647 1.897784e+05 10.080679 1077.648844 87.303830 40.43745
std 13.640433 1.055500e+05 2572720 7385.292085 402.960219 12.34742
min 17.000000 1.228500e+04 1.000000 0.000000 0.000000 1.00000
25% 28.000000 1.178270e+05 9.000000 0.000000 0.000000 40.00000
50% 37.000000 1.783560e+05 10.000000 0.000000 0.000000 40.00000
75% 48.000000 2.370510e+05 12.000000 0.000000 0.000000 45.00000
max 90.000000 1.484705e+06 16.000000 99999.000000 4356.000000 99.00000

Figure 1.31 — Example of using the .describe() function to get to know a dataset

The metrics that the .describe() function outputs are very valuable summarizing tools, especially if
these metrics are meant to be used for algorithmic analytics. However, studying them all at once still
overwhelms our human comprehension. To summarize data for human comprehension, there are

more effective tools, such as visualizing data using histograms and boxplots.

Histograms and boxplots to visualize numerical columns

Pandas makes drawing these visuals very easy. Each Pandas series has a very useful collection of plot
functions. For instance, the following screenshot shows how easy it is to draw the histogram for the
age column. To create the boxplot for the age column, all you need to change is the last part of the
code: adult_df.age.plot.box(). Give it a try. Also, draw the boxplot and histogram for all of the
other numerical attributes and see for yourself how much easy it is to understand each column using

visualization.

In [51]: M adult_df.age.plot.hist()

Out[51]: <matplotlib.axes._subplots.AxesSubplot at ©x29b11f8d8be>

6000

5000 -

4000 A

3000 -

Frequency

2000 -

1000 -

0.
20 30 40 50 60 70 80 90

Figure 1.32 — Drawing the histogram of the adult_df.age column

Let's move on to the functions that we will use for categorical attributes. We will start with

.unique().

The .unique() function

If the column is categorical, our approach to get to know it would be completely different. First, we
need to see what are all the possibilities for the column. The .unique() function does just that. Tt
simply returns all the possible values of the columns. See the following screenshot, which is an

example of all the possible values of the relationship column in adult_df:

In [52]: M adult_df.relationship.unique()

Out[52]: array(['Not-in-family', 'Husband', 'Wife', 'Own-child', 'Unmarried’,
'Other-relative'], dtype=object)

Figure 1.33 — Example of using the .unique() function to get to know a dataset

Now that we have covered the .unique() function, we will cover the .value_counts() function next.

The .value_counts() function

The next step in getting to know a categorical column is realizing how often each possibility happens.
The .value_counts() function does exactly that. The following screenshot shows the outcome of this

function on the column's relationship:

In [53]:

Out[53]:

Husband 13193
Not-in-family 8305
Own-child 5068
Unmarried 3446
Wife 1568
Other-relative 981

M adult df.relationship.value_ counts()

Name: relationship, dtype: int64

Figure 1.34 — Example of using the .value_counts() function to get to know a dataset

The output of the .value counts() function is also known as the frequency table. There is also the
relative frequency table, which shows the ratio of occurrences instead of the number of occurrences

for each possibility. To get the relative frequency table, all you need to do is to specify that you want

the table to be normalized: .value_counts(normalize=True). Give it a try!

Barcharts for visualizing numerical columns

To draw the bar chart of a categorical attribute, even though you might be tempted to try out

something like adult_df.relationship.plot.bar(), it won't work. Give it a try and study the error.

To create the bar chart, you would have to first create the frequency table. As the frequency table is a
Pandas series itself, you can then draw the bar chart using that. The following screenshot shows how

we can draw the bar chart for the relationship column using the functions .value counts() and

adult_df.relationship.value_counts().plot.bar()

<matplotlib.axes. subplots.AxesSubplot at 6x2341fcf2f40>

.plot.bar():

In [54]: M
out[54]:

12000 -

10000 A

8000 -

2000 -

0 E

I
)

Own child
Unmarried

Husband
Not in family

Wife

Other relative

Figure 1.35 — Drawing the bar chart of the adult_df.relationship column

In this part, we learned how we can take advantage of Pandas resources to get to know new datasets.
Next, we will learn about a Pandas function that is a game-changer in analyzing and preprocessing

data using programming.

Pandas applying a function

There are a lot of instances where we will want to do the same calculations for each row in a dataset.
The traditional approach to going about such calculations is to loop through the data and, on every
iteration of the loop, perform and save the calculations. Python and Pandas have changed this
paradigm by introducing the concept of applying a function. When you apply a function to a

DataFrame, you request Pandas to run it for every row.

You can apply a function to a series or a DataFrame. Since applying a function to a series is
somewhat easier, we will learn about that first and then we will move on to apply a function to a

DataFrame.

Applying a function to a series

Let's say we want to multiply the series adult_df.age by 2. First, you need to write a function that
assumes one input as a number, multiply the input by 2, and then output the result. The following
screenshot shows this. First, the mutiplyBy2() function is defined, and then, using

adult_df.age.apply(MutiplyBy2), is applied to the series.

In [55]: M def MultiplyBy2(n):
return n*2

adult_df.age.apply(MultiplyBy2)

Out[55]: 10000 78
10001 100
10002 76
10003 106
loo04 56
42556 54
42557 80
42558 116
42559 44
42560 104

Figure 1.36 — Example of using the .apply() function

Now, let's see an analytic example where the .apply() function can be instrumental.

Applying a function - Analytic example 1

Not only does the series adult_df.fnlwgt not have an intuitive name, but also its values are not easily
relatable. As mentioned earlier, the values are meant to be the ratio of the population that each row
represents. As the numbers are neither percentages nor the actual number of people that each row

represents, these values are neither intuitive nor relatable.

Now that we know how to do a calculation for each value in a series, let's fix this with a simple

calculation. How about we divide every value by the sum of all the values in the series?

The following screenshot shows the steps for going about this:
1. First, total_fnlwgt, which is the sum of all the values in the fnlwgt column, is calculated.

2. Second, the CalculatePercentage function is defined. This function outputs the input values divided by total_fnlwgt

and multiplied by 100 (to develop a percentage).

3. Third, the CalculatePercentage function is applied to the series adult_df.fnlwgt.

Now, pay attention! Instead of just seeing the results of the calculations, the following code has
assigned the result to adult_df.fnlwgt itself, which substitutes the original values with the newly
calculated percentages. The following code does not show the output of the code, but give it a try on

your Jupyter notebook and study the output on your own:
total_fnlwgt = adult_df.fnlwgt.sum()
def CalculatePercentage(v):
return v/total fnlwgt*100
adult_df.fnlwgt = adult_df.fnlwgt.apply(CalculatePercentage)
adult_df

Applying a Lambda function

A lambda function is a function that is expressed in one line. So, a lot of the time, applying a
lambda function may make coding easier and perhaps help our code become a bit more readable at
times. For instance, if you wanted to answer the preceding calculations "on the fly," you could simply
apply a lambda function instead of an explicit function. See the following code and compare the

simplicity and conciseness of using a lambda function instead of an explicit function:

total fnlwgt = adult_df.fnlwgt.sum()

adult_df.fnlwgt = adult_df.fnlwgt.apply(lambda v: v/total fnlwgt*100)

adult_df

It is important to understand that the right choice between a lambda function or an explicit function
depends on the situation. Sometimes, having to jam a perhaps complicated function into a line causes

coding to become more difficult and renders the code less readable. This will be the case if the

function has more than one conditional statement.

Applying a function to a DataFrame

The major difference between applying a function to a DataFrame and a series is when you are
defining the function. While, for a series, we had to assume that one value would be input in the
function, for a DataFrame, we have to assume that a row series will be input. So, when you are

defining a function to apply to a DataFrame, you can engage any column that you need.

For instance, the following code has defined and applied a function that subtracts education_num from

age for every column. Pay attention to three aspects:

1. First, when defining the CalcLifeNoEd () function, the input row was assumed to be a row series of adult_df. In other
words, the CalcLifeNoEd () function is tailored just for application to adult_df or any DataFrame that has age and

eduction_num as columns.

2. Second, the .apply () function comes right after the DataFrame itself instead of after any columns. Compare the code for

applying a function to a DataFrame to that of a series. Compare the last two code snippets with the following code snippet.

3. Third, the inclusion of axis=1 is necessary, and what this means is that you want to apply the function to every row and not
every column. You could also apply a function to every column. That almost never happens for analytics, but if you ever needed

to, you would have to change it to axis=0.

I have not included the output of this executed code. Give the code a try and study its output:
def CalcLifeNoEd(row):
return row.age - row.education_num
adult_df.apply(CalcLifeNoEd, axis=1)
This could have easily been done using the lambda function as well. The code that you will need to
run is the following. Give it a try:
adult_df.apply(lambda r: r.age-r.education_num,axis=1)
Applying a function - Analytic example 2
Which one is more important in terms of your financial success: education or life experience?
To answer this question, we could use adult_df as a sample dataset and extract some insight from the

population of people in 1966. The code in the following screenshot first creates two new columns in
the data:

o lifeNoEd: The number of years for which you have lived without formal education

« capitalNet: The subtraction of capitalLoss from capitalGain

To answer this question, we can check which one of education_num or 1ifeNoEd has a higher
correlation with capitalNet. Doing this is very easy using Pandas, as each Pandas DataFrame comes
with a function, .corr(), which calculates the Pearson correlation coefficient for all the combinations

of the numerical attributes in the DataFrame. As we are only interested in the correlations between

education_num, 1ifeNoEd, and capitalNet, the last line of the code has removed other columns before

running the .corr() function.

In [60]: M adult_df['lifeNoEd'] = adult_df.apply(
lambda r: r.age-r.education_num,axis=1)

adult_df['capitalNet'] = adult_df.apply(
lambda r: r.capitalGain - r.capitalloss,axis=1)

adult_df[['education_num','lifeNoEd', 'capitalNet']].corr()

Out[60]:
education_num lifeNoEd capitalNet
education_num 1.000000 -0.150452 0.117891
lifeNoEd -0.150452 1.000000 0.051490
capitalNet 0.117891 0.051490 1.000000

Figure 1.37 — Solution to the preceding example

From the output, you can see that while the correlation between 1ifeNoEd and capitalNet is
0.051490, the correlation between education_num and capitalNet is higher, at 0.117891. So we have

some evidence that education has a more effective role in financial success than just life experience.

Now that you've learned how to effectively apply a function for analytics purposes, we can move on
to learn about another very powerful and useful function in Pandas that is invaluable for data

analytics and preprocessing.

The Pandas groupby function

This is one of the most useful analytics and preprocessing tools of Pandas. As the name Groupby
suggests, it groups your data by something. Normally, you would want to group your data by

categorical attributes.

If you are familiar with SQL queries, Pandas groupby is almost identical to SQL groupby. For both
SQL queries and Pandas queries, grouping your data by itself will not have any added value or any

output, unless it is accompanied by an aggregate function.

For instance, if you want to count the number of rows per marital_status category, you can use the

Groupby function. See and try the following code:

adult_df.groupby('marital_status').size()

You can group the DataFrame by more than one column as needed. To do so, you will have to

introduce the columns you are grouping the DataFrame by in the form of a list of column names. For

instance, the following code groups the data based on both the marital status and sex columns:
adult_df.groupby(['marital_status', 'sex']).size()

Pay attention that the two columns are introduced to the function as a list of string values.

The only aggregate function that works without having to specify a column of interest is .size(), as
seen above. However, once you specify the column of interest that you want to aggregate the data of,

you could use any aggregate function that you can use on a Pandas series or DataFrame. The

following table shows a list of all the aggregate functions that you can use:

Function Description Function Description
Number of non-null . Arithmetic median of

.count () . .median ()
observations values

.sum () Sum of values .min () Minimum of values

.mean () Mean of values .max () Maximum of values
M bsolut

.mad () e;im.a ROIEE .mode () Mode of values
deviation
Unbiased standard

.std () o .var () Unbiased variance
deviation

S Unbiased standard SIS Tor dere() Count(), mean(), std(),
error of the mean and so on

.skew () Unbiased skewness Jkurt () Unbiased kurtosis

Figure 1.38 — List of Pandas aggregate functions

For instance, the following shows the code to group adult_df by martial_status and sex, and
calculates the median of each group:

adult_df.groupby(['marital_status', 'sex']).age.median()
As you study the code and its output, you can start appreciating the analytic value of the .groupby()

function. Next, we will look at an example that will help you appreciate this valuable function even
further.

Analytic example using Groupby

Were the race and gender of individuals in 1966 influential in their financial success?

Incidentally, adult_df was collected in 1966, so we can use it to provide some insight into this

question. You may take different approaches in going about this. One approach, as depicted in the

following screenshot, is to group the data by race and sex and then calculate the mean of capitalNet

for the groups and study the differences.

In [62]: M adult_df.groupby(['race’,'sex']).capitalNet.mean()

Out[62]: race sex
Amer-Indian-Eskimo Female 530.142857
Male 628.864583
Asian-Pac-Islander Female 727.583815
Male 1707.440115
Black Female 471.142765
Male 627.268324
Other Female 218.385321
Male 1314.438272
White Female 508.219857
Male 1266.413112

Figure 1.39 — Solution to the preceding example

Another approach would be to group the data based on race, sex, and income and then calculate the

mean of fnlwgt. Give this one a try and see whether you come to a different conclusion.

Pandas multi-level indexing

Let's first understand what multi-level indexing is. If you look at the output of grouping a
DataFrame by more than one column, the indexing of the output looks different than normal.
Although the output is a Pandas series, it looks different. The reason for this dissimilarity is multi-
level indexing. The following screenshot shows you the index of the .groupby() output for the
previous screenshot. You can see that the index of the series has two levels, specifically, race and

sex:

In [63]: M grb_result =adult_df.groupby(['race', 'sex']).capitalNet.mean()

print(grb_result.index)

MultiIndex([('Amer-Indian-Eskimo’, ‘'Female'),

("Amer-Indian-Eskimo', 'Male'),
('Asian-Pac-Islander', 'Female'),
('Asian-Pac-Islander’', 'Male'),

(‘Black', 'Female'),

('Black’, 'Male'),

('Other', 'Female'),

(‘Other’, 'Male'),

('White', 'Female'),

('"White"', 'Male')],
names=['race', 'sex'])

Figure 1.40 — An example of multi-level indexing

Now, let's learn a few useful and relevant functions that can help us with data analytics and
preprocessing. These functions are .stack() and .unstack().
The .unstack() function

This function pushes the outer level of the multi-level index to the columns. If the multi-level index
only has two levels, after running .unstack(), it will become single-level. Likewise, if the
.unstack() function is run for a series with a multi-level index, the output will be a DataFrame
whose columns are the outer level index that was pushed. For instance, the following screenshot
demonstrates the change in appearance and structure of the output when the .unstack() function is

executed:

In [64]: M grb_result =adult_df.groupby(['race','sex']).capitalNet.mean()

grb_result
Out[64]: race sex

Amer-Indian-Eskimo Female 530.142857
Male 628.864583

Asian-Pac-Islander Female 727 .583815
Male 1707 .440115

Black Female 471.142765
Male 627.268324

Other Female 218.385321
Male 1314.438272

White Female 508.219857
Male 1266.413112

Name: capitalNet, dtype: floate4

In [65]: M grb_result.unstack()

Out[65]:
sex Female Male

race

Amer-Indian-Eskimo 530.142857 628.864583
Asian-Pac-Islander 727.583815 1707.440115
Black 471.142765 627.268324

Other 218.385321 1314.438272

White 508.219857 1266.413112

Figure 1.41 — Example of the .unstack() function

If there are more than two levels, executing .unstack() more than once will, one by one, push the
outer level of the index to the columns. For instance, you can see in the following screenshot that the
code in the first chunk results in grb_result, which is a series with a three-level index. The second
chunk of code executes .unstack() once and the outer level of the index in grb_result, which is
inconme, is pushed to the columns. The third chunk of code, however, executes .unstack() twice, and

the second outer level of the index in grb_result, which is sex, joins income in the columns.

In [66]: M mlt_seris =adult_df.groupby(['race’, 'sex', "income']).fnlwgt.mean()

mlt_seris
Out[66]: race sex income
Amer-Indian-Eskimo Female <=50K 0.001764
>50K 0.002395
Male <=50K 0.002046
>50K 0.001954
Asian-Pac-Islander Female <=50K 0.002398
>50K 0.002305
Male <=50K 0.002652
>50K 0.002762
Black Female <=50K 0.003454
>50K 0.003331
Male <=50K 0.003922
>50K 0.003971
Other Female <=50K 0.002803
>50K 0.002593
Male <=50K 0.003478
>50K 0.003310
White Female <=50K 0.002969
>50K 0.002978
Male <=50K 0.003074
>50K 0.003025
Name: fnlwgt, dtype: float64
In [67]: M mlt_seris.unstack()
Out[67]:
income <=50K >50K
race sex
Amer-Indian-Eskimo Female 0.001764 0.002395
Male 0.002046 0.001954
Asian-Pac-Islander Female 0.002398 0.002305
Male 0.002652 0.002762
Black Female 0.003454 0.003331
Male 0.003922 0.003971
Other Female 0.002803 0.002593
Male 0.003478 0.003310
White Female 0.002969 0.002978
Male 0.003074 0.003025
In [68]: M mlt_seris.unstack().unstack()
Out[68]:
income <=50K >50K
sex Female Male Female Male

race

Amer-Indian-Eskimo 0.001764 0.002046 0.002395 0.001954
Asian-Pac-Islander 0.002398 0.002652 0.002305 0.002762
Black 0.003454 0.003922 0.003331 0.003971

Other 0.002803 0.003478 0.002593 0.003310

White 0.002969 0.003074 0.002978 0.003025

Figure 1.42 — Another example of the .unstack() function with two levels of indexing

As an index can be multi-level in Pandas, columns can also have multiple levels. For instance, in the
first chunk of the following screenshot, you can see that the output DataFrame has two levels. The
second chunk of code outputs the columns of the DataFrame. You can see that the columns have the

two levels that were pushed from the index using .unstack():

In [69]: mlt_seris.unstack().unstack()

Out[69]:
income <=50K >50K

sex Female Male Female Male

race

Amer-Indian-Eskimo 0.001764 0.002046 0.002395 0.001954
Asian-Pac-Islander 0.002398 0.002652 0.002305 0.002762
Black 0.003454 0.003922 0.003331 0.003971

Other 0.002803 0.003478 0.002593 0.003310

White 0.002969 0.003074 0.002978 0.003025

In [70]: mlt_df= mlt_seris.unstack().unstack()
mlt_df.columns

Out[70]: MultiIndex([('<=50K', 'Female'),
('<=50K', 'Male'),
(">50K', 'Female'),
('>5eK", 'Male')],
names=["income', 'sex'])

Figure 1.43 — An example of multi-level columns

The .stack() function

The opposite of .unstack() is .stack(), where the outer level of the columns is pushed to be added
as the outer level of the index. For example, in the following screenshot, you can see that m1t_df,
which we saw has two-level columns, has undergone .stack() twice. The first .stack() function
pushed the income level to the index, and the second .stack() function pushed the sex level to the

index. This made the data be presented as a series as there is only one column of data.

In [71]: mlt_df.stack()

Out[71]:

race

income <=50K >50K

sex

Amer-Indian-Eskimo

Asian-Pac-Islander

Black

Other

White

Female 0.001764 0.002395

Male 0.002046 0.001954

Female 0.002398 0.002305

Male 0.002652 0.002762

Female 0.003454 0.003331

Male 0.003922 0.003971

Female 0.002803 0.002593

Male 0.003478 0.003310

Female 0.002969 0.002978

Male 0.003074 0.003025

In [72]: mlt_df.stack().stack()

Out[72]: race

sex

Amer-Indian-Eskimo Female

Male

Asian-Pac-Islander Female

Black

Other

White

dtype: floate4

Male

Female

Male

Female

Male

Female

Male

income
<=50K
>50K
<=50K
>50K
<=50K
>56K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K
<=50K
>50K

OO0 OO ®

.001764
.002395
.002046
.001954
.002398
.002305
.002652
.002762
.003454
.003331
.003922
.003971
.002803
.002593
.003478
.003310
.002969
.002978
.003074
.003025

Figure 1.44 — Example of the .stack() function
Multi-level access

The value access in series or DataFrames with multi-level indexes, or DataFrames with multi-level

columns, is slightly different. Exercise 2 at the end of this chapter is designed to help you learn that.

In this subsection, we gathered sizable exposure to multi-level indexing and columns. Now we are
moving on to another set of functions that are somewhat similar to the .stack() and .unstack()

functions, but different at the same time. These functions are .pivot() and .melt().

Pandas pivot and melt functions

In a nutshell, .pivot() and .melt() help you to switch between two forms of two-dimensional data
structures: wide form and long form. The following figure depicts the difference between the two
forms. The wide form is what you are typically used to if you are a spreadsheet user. The wide form
uses many columns to introduce new dimensions in the dataset. The long form, however, uses a
different logic of data structure and uses one index column to include all the relevant dimensions.
The .melt() function, as you may picture it in your mind based on the meaning of the word melt, can
easily reshape a dataset from the wide form to the long form. The .pivet () function can do the

opposite.

To practice and learn these two functions, we will read wide . csv using Pandas into wide_df, and read

long.csv using Pandas into long_df.

ReadingDateTime Species Value

0 01/01/2017 00:00 NO 3.5
1 01012017 01:00 NO 3.6
2 01/01/2017 02:00 NO 2.2
3 01012017 00:00 NO2 308
4 01/01/2017 01:00 NO2 315

ReadingDateTime NO NO2 NOX PM10 PM2.5

01/01/2017 02:00 NOZ 273
0 01/01/2017 00:00 35 308 362 357 31.0

01/01/2017 00:00 NOX 36.2
1 01/01/201701:00 36 315 370 285 310

01/01/2017 01:00 NOX 37.0
2 01/01/2017 02:00 22 273 307 227 31.0
01/01/2017 02:00 NOX 307

wide df

w e - ®

01/01/2017 00:00 PM10 357
10 01/01/2017 01:00 PM10 285
11 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM25 31.0
13 01/01/201701:00 PM25 31.0
14 01/01/2017 02:00 PM25 31.0

long_df

Figure 1.45 — Comparison of the long and wide forms

To switch between the long and the wide format, all you need to do is to provide the right input to
these functions. The following screenshot shows the application of .melt() on wide_df, reshaping it

into a long format. In the second chunk of code, you can see that .melt() requires four inputs:
o 1id_vars: This input takes the identifying columns.
« value_vars: This input takes the columns that hold the values.
« var_name: This input takes the name you would like to give to the identifying column that will be added to the long format.
« value_name: This input takes the name you would like to give to the new value column that will be added to the long format.

The following screenshot shows an example of using the .melt () function to switch the data from

wide format to long format:

In [73]: M wide df = pd.read csv('wide.csv')
wide_df

Out[73]:
ReadingDateTime NO NO2 NOX PM10 PM2.5

0 01/01/2017 00:00 3.5 30.8 36.2 357 31.0
1 01/01/201701:00 3.6 315 370 285 31.0
2 01/01/2017 02:00 2.2 273 307 227 31.0

In [74]: M wide_df.melt(id vars='ReadingDateTime",
value_vars=['NO', 'NO2', "NOX', 'PM1@', 'PM2.5'],
var_name="'Species"’,
value_name='Value')

Out[74]:

ReadingDateTime Species Value

0 01/01/2017 00:00 NO 3.5
1 01/01/2017 01:00 NO 3.6
2 01/01/2017 02:00 NO 22
3 01/01/2017 00:00 NO2 30.8
4 01/01/2017 01:00 NO2 315
5 01/01/2017 02:00 NOz 273
6 01/01/2017 00:00 NOX 36.2
7 01/01/2017 01:00 NOX 37.0
8 01/01/2017 02:00 NOX 30.7
9 01/01/2017 00:00 PM10 357
10 01/01/2017 01:00 PM10 285
11 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM2.5 31.0
13 01/01/2017 01:00 PM25 310

14 01/01/2017 02:00 PM2.5 31.0

Figure 1.46 — Example of using the .melt() function to switch the data from wide format to long format

The .pivot () function reshapes a DataFrame from the long form to the wide form. For instance, the
following screenshot shows the application of the function on long_df. Unlike, .melt (), which

requires four inputs, .pivot () needs three:

« index: This input takes what will be the index of the wide form.
o columns: This input takes the columns of the long form that will be expanded to create the columns for the wide form.

o values: This input takes the column in which the long form keeps the values.

Ik [/75]:

OuE[75];

In [76]:

out[76]:

M long_df = pd.read_csv('long.csv')

long_df

ReadingDateTime Species Value

0 01/01/2017 00:00 NO £
1 01/01/2017 01:00 NO 3.6
2 01/01/2017 02:00 NO 2.2
3 01/01/2017 00:00 NO2 30.8
4 01/01/2017 01:00 NO2 31.5
5 01/01/2017 02:00 NO2 273
6 01/01/2017 00:00 NOX 36.2
7 01/01/2017 01:00 NOX 37.0
8 01/01/2017 02:00 NOX 30.7
9 01/01/2017 00:00 PM10 357
10 01/01/2017 01:00 PM10 285
11 01/01/2017 02:00 PM10 227
12 01/01/2017 00:00 PM2.5 310
13 01/01/2017 01:00 PM2.5 31.0
14 01/01/2017 02:00 PM2.5 31.0

columns="'Species’,
values='Value')

M long_df.pivot(index='ReadingDateTime",

Species NO NO2 NOX PM10 PM2.5
ReadingDateTime
01/01/2017 00:00 35 30.8 36.2 357 31.0
01/01/2017 01:00 36 315 37.0 285 31.0
01/01/2017 02:00 2.2 273 30.7 227 31.0

Figure 1.47 — Example of using the .pivot() function to switch the data from the long format to the wide format

Summary

Congratulations on your excellent progress so far! In this chapter, you first learned about the Jupyter

Notebook, which is the UI we will be using throughout this book. Then, you learned about the most

important functions of the two Python core modules for data analytics and data preprocessing. In the

next chapter, you will learn about the functions of another core module: Matplotlib. This module will

be our core module for visualization needs.

Before moving on to the next chapter, I highly encourage you to spend some time and meaningfully

engage with the following exercises.

Exercises

1. Use the adult . csv dataset and run the code shown in the following screenshots. Then, answer the questions that follow:

In

In

In

In

[11: M
[21: M
[31: M
Out[3]:
[4]1: M
Out[4]:

import pandas as pd
import numpy as np

adult_df = pd.read_csv('adult.csv')
adult_df.set_index(np.arange(10000,42561),inplace=True)

adult_df.iloc[5:7,0:2]

age workclass

10005 37 Private

10006 49 Private

adult_df.loc['1@005':'10007", "age": 'fnlwgt"']

age workclass fnlwgt
10005 37 Private 284582
10006 49 Private 160187

10007 52 Self-emp-not-inc 209642

Figure 1.48 — Exercise 1

a) Use the output to answer what is the difference in behavior of .1loc and .iloc when it comes to

slicing?

b) Without running, but just by looking at the data, what will be the output of

adult_df.loc['10000':'10003', 'relationship':'sex']?

c) Without running, but just by looking at the data, what will be the output of adult_df.iloc[0:3,
7:9]17

. Use Pandas to read adult.csv into adult_df and then use the . groupby () function to run the following code and create

the multi-index series m1t_sr:

import pandas as pd

adult_df = pd.read_csv('adult.csv')

mlt_seris =adult_df.groupby(['race', 'sex', 'income']).fnlwgt.mean()
mlt_seris

a) Now that you have created a multi-index series, run the following code, study the outputs, and

answer the following questions:

Run the following code first and then answer this question: When we use .iloc[] for a multi-
index series or DataFrame, what should we expect?

print(mlt_seris.iloc[0])

print(mlt_seris.iloc[1])

print(mlt_seris.iloc[2])

b) Run the following code first and then answer this question: When we use .1oc[] to access the
data of one of the innermost index levels of the multi-index series, what should we expect?
mlt_seris.loc['Other']

¢) Run the following code first and then answer this question: When we use .1oc[] to access the

data of one of the non-innermost index levels of a multi-index series, what should we expect?
When you run either line of the following code, you will get an error, and that is the point of this
question. Study the error and try to answer the question:

mlt_seris.loc['Other']

mlt_seris.loc['<=50K"]

d) Run the following code first and then answer this question: How does the use of .1oc[] or
.iloc[] differ when working with a multi-index series or a DataFrame?
print(mlt_seris.loc['Other']['Female']['<=50K"'])

print(mlt_seris.iloc[12])

. For this exercise, you need to use a new dataset: billboard. csv. Visit https://www.billboard.com/charts/hot-100 and see the

latest song rankings of the day. This dataset presents information and rankings for 317 song tracks in 80 columns. The first four
columns are artist, track, time, and date_e. The first columns are intuitive descriptions of song tracks. The date_e
column shows the date that the songs entered the hot 100 list. The rest of the 76 columns are song rankings at the end of each

week from "w1" to "w76". Download and read this dataset using Pandas and answer the following questions:

https://www.billboard.com/charts/hot-100

a) Write one line of code that gives you a great idea of how many null values each column has. If

any columns have no non-null values, drop them.
b) With a for loop, draw and study the values in each of the remaining W columns.

c¢) The dataset is in wide format. Use an appropriate function to switch to a long format and name

the transformed DataFrame m1t_df.

d) Write code that shows m1t_df every 1,200 rows.

e) Run the following code first and answer this question: Could this also have been done by using
Boolean masking?

mlt_df.query('artist == "Spears, Britney"')

f) Use either the approach in e or the Boolean mask to extract all the unique songs that Britney
Spears has in this dataset.

g) In m1t_df, show all of the weeks when the song "Oops!.. I Did It Again" was in the top 100.

. We will use LagnData. csv for this exercise. Each row of this dataset shows an hourly measurement recording of one of the
following five air pollutants: NO, NO2, NOX, PM10, and PM2.5. The data was collected in a location in London for the entirety
of the year 2017. Read the data using Pandas and perform the following tasks:

a) The dataset has six columns. Three of them, named 'site', 'units', and 'Provisional or
Ratified' are not adding any informational values as they are the same across the whole dataset.

Use the following code to drop them:

air_df.drop(columns=['Site', 'Units', 'Provisional or Ratified'], inplace=True)

b) The dataset is in a long format. Apply the appropriate function to switch it to the wide format.
Name the transformed Dataframe pvt_df.

¢) Draw and study the histogram and boxplots for columns of pvt_df.
. We will continue working with LagnData.csv:

a) Run the following code, see its output, and then study the code to answer what each line of this
code does:

air_df = pd.read_csv('LaqgnData.csv')

air_df.drop(columns=['Site', 'Units', 'Provisional or Ratified'], inplace=True)
datetime_df = air_df.ReadingDateTime.str.split(' ', expand=True)

datetime_df.columns = ['Date', 'Time']

date_df = datetime_df.Date.str.split('/', expand=True)

date_df.columns = ['Day', 'Month', 'Year']

air_df = air_df.join(date_df).join(datetime_df.Time).drop(columns=
['ReadingDateTime', 'Year'])

air_df

b) Run the following code, see its output, and then study the code to answer what this line of code
does:

air_df = air_df.set_index(['Month', 'Day', 'Time', 'Species'])

air_df

¢) Run the following code, see its output, and then study the code to answer what this line of code

does:
air_df.unstack()

d) Compare the output of the preceding code with pvt_df from Exercise 4. Are they the same?

e) Explain what the differences and similarities are between the pair .melt()/.pivot() and the

pair .stack()/.unstack()?

f) If you were to choose one counterpart for .melt() between .stack()/.unstack(), which one

would you choose?

Chapter 2. Review of Another Core Module — Matplotlib

Matplotlib is our go-to module for creating visualizations from data. Not only can this module draw
many different plots, but it also gives us the capability to design and tailor the plots to our needs.
Matplotlib will serve our data analytics and data preprocessing journey by providing a great number

of functions for effective visualizations.

Before we start reviewing this valuable module, T would like to let you know that this chapter is not
meant to be a comprehensive teaching guide for Matplotlib, but rather a collection of concepts,
functions, and examples that will be invaluable as we cover data analytics and data preprocessing in

future chapters.

We have actually started using this module in the previous chapter. The Pandas plot functions that
we introduced in Chapter 1, Review of the Core Modules of NumPy and Pandas, under the Pandas

functions to explore a DataFrame are section, actually Matplotlib visuals that Pandas uses internally.

In this chapter, I will first introduce the main plots that Matplotlib can draw. Following that, I will
cover some design and altering functionalities of the visuals. Then, we will learn about the invaluable
subplotting capability of Matplotlib that will allow us to create more complex and effective
visualizations.
The following topics will be covered in this chapter:

« Main plots

« Modifying the visuals

« Subplots

« Resizing visuals and saving them

Technical requirements

You will be able to find all of the code and the dataset that is used in this chapter in this book's
GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Each chapter in this book will have a folder that contains all of the code and datasets used.

Drawing the main plots in Matplotlib

Drawing visuals with Matplotlib is easy. All you need is the right input and a correct understanding
of the data. The main five visuals that we use in Matplotlib to draw are histograms, boxplots, bar

charts, line plots, and scatterplots. Let's introduce them with the following examples.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Summarizing numerical attributes using histograms or
boxplots

We already draw histograms using Pandas, which we learned about in the Pandas functions to
explore a DataFrame section in the previous chapter. However, the same plot can also be drawn
using Matplotlib. The following screenshot shows the best and most common way to import

Matplotlib. There are two points here:

1. First, you want to use the p1t alias, as everyone else uses that.

2. Second, you want to import matplotlib.pyplot instead of just matplotlib, as everything we will need from

matplotlib is under . pyplot.

The second chunk of code in the following screenshot shows how easy it is to draw a histogram
using Matplotlib. All you need to do is input the data you want to be plotted into p1t.hist(). The last
line of code, p1t.show(), is what I always add to force Jupyternotebook to only show the plot I want
without the rest of the outputs that come with the plot. Run plt.hist(adult_df.age) by itself to see
the difference.

In [1]: M #from previous chapter
import pandas as pd

import numpy as np
adult_df = pd.read_csv('adult.csv')

In [2]: M import matplotlib.pyplot as plt

In [3]: M plt.hist(adult_df.age)
plt.show()

6000 -

5000 1

4000 -

3000 1

2000 -

1000 -

0.
20 30 40 50 60 70 80 90

Figure 2.1 — Drawing the histogram of adult_df.age using Matplotlib

The following screenshot, in turn, shows the boxplot of the same data using p1t.boxplot(). I have
also requested the boxplot to be drawn horizontally by specifying vert=False so the boxplot and the

preceding histogram can be compared visually.

In [4]: M plt.boxplot(adult_df.age, vert=False)
plt.show()

Ll T T T T T T T

20 30 40 50 60 70 80 90

Figure 2.2 — Drawing the box plot of adult_df.age using Matplotlib

So far, we've learned two of the main plots of the Matplotlib module. Next, we will cover the line

plot.

Observing trends in the data using a line plot

A line plot, not exclusively, but very often, is applied to time series data to show trends. A great
example of time series data is stock prices. For instance, the stock price of the company Amazon
changes minute by minute, and if someone is interested to see the trend of changes in these stock

prices, they can use a line plot to do that.

We are going to use Amazon and Apple stock prices to showcase the application of line plots in
illustrating trends. The following code shows the loading of that data with the Amazon stock.csv and
Apple Stock.csv files using the pd.read_csv() function. These files contain the stock prices of
Amazon and Apple from 2000 to 2020:

amz_df = pd.read_csv('Amazon Stock.csv')

apl_df = pd.read_csv('Apple Stock.csv')

The following screenshot shows us using the p1t.plot() function to draw the line plot of the closing

prices of the stocks:

In [6]: M plt.plot(amz_df.Close)
plt.plot(apl_df.Close)
plt.show()

3500 -

3000 1

2500 A

2000 -

1500 -

1000 -

500 -

0-

L) L)

] L] I
0 1000 2000 3000 4000 5000
Figure 2.3 — Drawing the line plots of Amazon and Apple stock trends

Next, we are going to learn about scatterplots.

Relating two numerical attributes using a scatterplot

Scatterplots can be drawn using the plt.scatter() function. This function is great for examining the
relationship between numerical attributes. For instance, the following screenshot shows us the
relationship between the prices of Amazon and Apple stocks in the years from 2000 to 2020. Each
dot in this scatterplot represents one trading day from 2000 to 2020.

In [7]: M plt.scatter(apl _df.Close,amz_df.Close)
plt.show()

3000 -

2500

2000

1500 -

1000 -

500 1

0.

] L) L L) T T

0 20 40 60 80 100 120 140

Figure 2.4 — Drawing the scatterplots of Amazon and Apple stock trends

So far in this chapter, we have been introduced to the main plots of Matplotlib and their analytics

functionalities. Next, we will learn how to edit the visuals in simple but effective ways.

Modifying the visuals

The Matplotlib module is great at allowing you to modify the plots so that they serve your needs. The
first thing you need before modifying a visual is to know the name of the part of the visual that you
are intending to modify. The following figure shows you the anatomy of these visuals and is a great

reference to find the name of the part you intend to modify.

In the following examples, we will see how to modify the title and markers of the visuals, and the
labels and the ticks of the axes of the visuals. These are the most frequent modifications that you will
need. If you found yourself in situations where you need to modify other parts too, how you would
go about those are very similar, and so long as you know the name of what you plan to modify, you

are one Google search away from finding how it is done.

Y axis label

Anatom§ of a MatpJotlib Figure

Title Blue Ting
Red Lipe
Legend
markers
2] O o O O e} O
o)
o o ® o

O (0] Qa o

] Line plot

2 3 4 5
X axis label

xlabel

Figure 2.5 — Anatomy of Matplotlib visuals

Adding a title to visuals and labels to the axis

To modify any part of a Matplotlib visual, you need to execute a function that can do the modifying

trick. For instance, to add a title to a visual, you need to use p1t.title() after a visual is executed.

Also, to add a label to the x axis or the y axis, you can employ plt.xlabel() or plt.ylabel().

The following screenshot shows the application of plt.title() and plt.ylabel() to add a title to the
visual and add a label to the y axis respectively:

In [8]: M |plt.plot(amz_df.Close)
plt.plot(apl_df.Close)
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')

plt.ylabel('Closing Price')
plt.show()
Line plots of Amazon and Apple stock prices from 2000 to 2020
3500 -

Closing Price
5 6 B B
& 8 8 8

&
)

— _—

=]

0 1000 2000 3000 4000 5000
Figure 2.6 — Example of adding a title and label to a Matplotlib visual

Having learned how to add titles and labels, we will now turn our attention to learn how to add and

modify legends.

Adding legends

For adding legends to a Matplotlib visual, there are two steps:
1. First, you need to add a relevant label as you introduce each segment of the data to Matplotlib.

2. Second, after executing the visuals, you need to execute p1t.legend().

The following screenshot depicts how these two steps are taken to add a legend to the line plot:

In [9]: M plt.plot(amz_df.Close, label='Amazon')
plt.plot(apl_df.Close, label='Apple')
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price')
plt.legend()
plt.show()

Line plots of Amazon and Apple stock prices from 2000 to 2020

3500 1 —— Amazon
—— Apple

Closing Price
5 & B B
8 8 8 8

3
=)

—

I

0 1000 2000 3000 4000 5000

Figure 2.7 — Example of adding a legend to a Matplotlib visual

Next, we will learn about how to edit the xticks or the yticks.

Modifying ticks

Modifying the ticks is perhaps the most complex of all modifications of Matplotlib visuals. Let's
discuss how this is done as it pertains to a line plot, and you can extrapolate that to the other visuals

easily.

You need to know a little about the workings of the plt.plot() function before you can successfully
modify the ticks. When a line plot is first introduced, you either explicitly introduce the x axis to the
plt.plot()function, or the function assumes integer values starting from zero to the number values
inputted for plotting minus one. As we did not explicitly introduce the x values in the past couple of
line plots (see previous), the plt.plot() function has assumed the integer values for the x axis.
However, pay attention to the outputted visuals where only x values of e, 1000, 2000, 3000, 4000, and

5000 are being represented.

The following screenshot shows how instead of representing all the trading days with six integers,
you could represent them with as many as you want. The integers you want to be represented in the
ticks are simply introduced to the plt.xticks() function. Also, you can use the property rotation to

change the angle of the ticks, so they are more legible.

In [10]: M plt.plot(amz_df.Close, label="Amazon')
plt.plot(apl_df.Close, label='Apple')
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price')
plt.xticks([0,560,1000,1500,2000,2500,3000,3500,4000,4500,5000,5500],
rotation=90)
plt.legend()

plt.show()
Line plots of Amazon and Apple stock prices from 2000 to 2020
3500 { —— Amazon
—— Apple
3000 -
2500 -
Y
&£ 2000 -
g
'd 1500 1
[}
1000 -
500 A
0{ =~ s =ers
° g88 828888 8 8
2 89 R B R ¥ & & R B8

Figure 2.8 — Example of modifying the ticks of a Matplotlib visual — level 1

How about if we want to re-represent these integers that represent trading days with their trading
day's actual dates? This can easily be done using the plt.xticks() function. After introducing the
integers that you want to be represented, you need to also introduce the replacing counterparts of

these integers to the function.

The code in the following screenshot provides an example of how this can be done:

1. First, the integers that we want represented are inputted as np.arange (0, len(amz_df), 250). Pay attention to the fact that
instead of typing the integers, the code has used the np.arange () function to produce those integers. Run
np.arange(0,len(amz_df), 250) separately and study the output.

2. Second, the replacing counterparts, which are the dates of these trading days, are also introduced to p1t.xticks(). They are
introduced using the column Date in amz_df. The amz_df.Date[0:1len(amz_df):250] code ensures that the replacing
representations are their relevant counterparts in the integer representation. Pay attention — we have used amz_df, as we know

the column date for amz_df and apl_df are identical.

In [11]: M plt.plot(amz_df.Close, label='Amazon')
plt.plot(apl_df.Close, label="Apple")
plt.title('Line plots of Amazon and Apple stock prices from 2000 to 2020')
plt.ylabel('Closing Price")
plt.legend()
plt.xticks(np.arange(0,len(amz_df),250),amz_df.Date[0:1len(amz_df):250],

rotation=90)

plt.show()

Line plots of Amazon and Apple stock prices from 2000 to 2020

3500 1 —— Amazon
—— Apple
3000 -
2500 1
[Y]
kv
£ 2000 A
o
£
§1500-
o
1000 A
500
0 - R
T LI | LI L) LI LI LN B | LI | LA B
CONNMFNONDODNOANMITINWO~ON O
CD OO0 DD O et e -
OO0 0000000000000 000000 O
R S
© OCWMOoOWONNNOONTANOWN NS W N
gNgMNNNAHA—t\\\\NNNNﬁ.—c.—q
= NSNS NSNANNNSSSSSESS
I o s o s o s a dAd4d4d4d4d4d

Figure 2.9 — Example of modifying the ticks of a Matplotlib visual — level 2

Pay attention to the fact that the number 250 in the preceding code had been reached by trial and
error. We were looking for an increment that would not make the xticks too crowded or too sparse.

Try running the code with alternative increments and study the behavior of the visual.

Modifying markers

The only visuals that we presented here that use markers are scatterplots. To modify the color and the
shape of the markers, all you need to do is specify them when executing plt.scatter(). This
function takes two inputs that it uses to draw the visual the way you would like. The marker input
takes the shape of the marker you intend to draw, and the color input takes its color. The following
screenshot shows how to change the default blue dots of Matplotlib scatterplots to green crosses by
inputting marker="x" and color="green'. You cannot see the change of the colors in print as the book
is printed in grayscale, but you will see the change in color if you try out the code yourself. The code
also shows another example of using plt.title(), plt.xlabel(), and plt.ylabel() to modify the
title of the visual and the labels of its axes.

In [12]: M plt.scatter(apl_df.Close,amz_df.Close, marker = 'x', color='green')
plt.title('Amazon and Apple stock prices in 2000 to 2020')
plt.xlabel('Apple price ($)')
plt.ylabel('Amazon price ($)")
plt.show()

Amazon and Apple stock prices in 2000 to 2020
3500 4
3000 - ﬂ

2500

2000

1500

Amazon price ($)

1000 -

500

T T T T

0 0 4 €0 80 100 120 140
Apple price ($)

Figure 2.10 — Example of modifying the markers in a Matplotlib visual

There are many marker shapes and marker color options that you can use. To study these options,

visit the following web pages from the Matplotlib official website:

o Markers: https://matplotlib.org/stable/api/markers api.html

« Colors: https://matplotlib.org/stable/gallery/color/named colors.html

So far, we have learned how to create visuals and modify them using Matplotlib. Next, we will learn

another useful function that allows us to organize multiple visuals next to one another.

Subplots

Drawing a subplot can be a very useful data analytics and data preprocessing tool. We use subplots
when we want to populate more than one visual and organize them next to one another in a specific

way.

The following screenshot shows an example of subplotting. The logic of creating subplots in
Matplotlib is unique and interesting. To draw a subplot, you first need to plan and decide the number
of visuals you intend to have and their matrix-like organization. For instance, the following example
has two visuals, and the visuals are organized in a matrix with two rows and one column. Once you

know that, you can start coding.

Let's do this together step by step:

https://matplotlib.org/stable/api/markers_api.html
https://matplotlib.org/stable/gallery/color/named_colors.html

1. The logic of Matplotlib subplots is that you use a line of code to announce you are about to start giving the code for each specific
visual. The p1t.subplot(2,1,1) line says that you want to have a subplot with two rows and one column, and you are about

to run the code for the first visual.

2. Once you are done with the first visual, you run another p1t.subplot (), but this time you announce your intention to start
another visual. For instance, by running p1t.subplot (2,1, 2), you are announcing that you are done with the first visual,

and you are about to start introducing the second visual.

Pay attention to the fact that the first two inputs of plt.subplot () stay the same throughout
subplotting, as they specify the matrix-like organization of the subplots and they should be the same
throughout.

The plt.tight_layout() function is best used after you are done with all the visuals and are about to
show the whole subplots. This function makes sure that each visual fits within its own boundaries and
there are no overlaps. Run the following code block without p1t.tight_layout() and study the

differences:

In [13]: M plt.subplot(2,1,1)
plt.hist(adult_df.age)
plt.title('Histogram")
plt.ylabel('Age")

plt.subplot(2,1,2)
plt.boxplot(adult_df.age, vert=False)
plt.title('Boxplot')

plt.yticks([1],['Age’'])

plt.tight_layout()

plt.show()
Histogram
6000 -
o 4000 -
I
2000 -
0-
80 90
Me '—-I I } ------- |[)°
20 30 4 S0 6 70 8 9

Figure 2.11 — Example of using subplots

So far, we have learned how to draw and design the visuals and then modify them. However, we have
yet to learn how to resize them so we can fit them for our needs. Next, we will learn how to resize

and save them on our computers.

Resizing visuals and saving them

It is very simple to save Matplotlib visuals with any resolution that you would like. However, before
adjusting the resolution and saving the visuals, you might want to resize the visual. Let's first take a
look at how we can resize the visuals and then see how we can save the visuals with specific

resolutions.

Resizing

Matplotlib uses a default visual size (6x4 inches) for all its visual output, and from time to time, you
may want to adjust the size of the visuals (especially if you have subplots as you may need a larger
output). To adjust the visual size, the easiest way is to run plt.figure(figsize=(6,4)) before starting
to request any visuals. Of course, adding the mentioned code will not change the size as the inputted
values are the same as the Matplotlib default size. To observe the difference, add
plt.figure(figsize=(9,6)) to the code in the previous screenshot and run it to study the differences.

Also, change the values a few times to find the values that work best for you.

Saving

All you need to use to save and adjust the resolution of the output figures is the p1t.savefig()
function. This function takes the name of the file you would like to create for saving the visual and
also its resolution in terms of dots per inch (DPI). The higher the DPI value of a figure, the higher
its resolution. For instance, running plt.savefig('visual.png',dpi=600) saves the visual in a file
named visual.png in your computer under the same directory where your Jupyter Notebook file is

located. Of course, the DPI resolution of the saved visual will be 6eo0.

Example of Matplotilb assisting data preprocessing

A great way to get to know a new dataset is to visualize its columns. The numerical columns are best
visualized using either histograms or boxplots. However, the combination of the two is the best,
especially when the boxplot is drawn vertically. Use the subplot function of Matplotlib to draw the
histogram and boxplot of all the numerical columns of adult_df in a 2x5 matrix-like visual. Make
sure that the histogram and the boxplot of each column are in the same subplot column. Also, save

the visual in a file named columnsvsiaulization.png with a resolution of 9ee DPI.
The following code shows the solution for this example:
Numerical_colums = ['age',6 'education_num', 'capitalGain', 'capitallLoss', 'hoursPerWeek']
plt.figure(figsize=(20,5))
for i,col in enumerate(Numerical_colums):
plt.subplot(2,5,i+1)
plt.hist(adult_df[col])
plt.title(col)
for i,col in enumerate(Numerical_colums):

plt.subplot(2,5,1i+6)

plt.boxplot(adult_df[col], vert=False)
plt.yticks([])
plt.tight_layout()

plt.savefig('ColumnsVsiaulization.png', dpi=900)

After running the code, if it is successfully executed, check the directory that your Jupyter Notebook
file is in, and the columnsvisualization.png file must be added there. Open the file and enjoy the
high-quality visual that was created by Matplotlib.

age education_num capitalGain capitalLoss hoursPerWeek
6000 10000 30000 30000

15000
8000

4000 20000 20000
6000 10000

2000 4000 10000 10000 5000
2000

o 0 0
20 40 60 80 25 50 75 100 125 15.0 0 20000 40000 60000 80000 100000 0 1000 2000 3000 4000 0 20 40 60 80 100

|—|:‘—hmmn 0000} | q) o By e — SR _—Q—]—{—nm

20 40 60 80 25 50 75 100 125 150 o 20000 40000 60000 80000 100000 0 1000 2000 3000 4000 0 20 40 60 80 100
Figure 2.12 — Histogram and boxplot of the numerical attributes of adult_df

Congratulations on successfully finishing this chapter! Now you are equipped with visualization tools

that will prove very handy for data analytics and data preprocessing.

Summary

In this chapter, you learned how to create the five main Matplotlib visuals and design them for your
needs. You also learned how to create more complex visuals by organizing them in one visual using
the Matplotlib subplot functionality. Ultimately, you also learned how to resize the visuals and save
them with your desired resolution for later use.

In the next chapter, you will be given some essential lessons about data, along with concepts that are
necessary for successful data preprocessing. However, before moving on to the next chapter, take

some time and solidify and improve your learning using the following exercises.

Exercises

1. Use adult . csv and Boolean masking to answer the following questions:
a. Calculate the mean and median of education-num for every race in the data.
b. Draw one histogram of education-num that includes the data for each race in the data.
c. Draw a comparative boxplot that compares the education-num for each race.

d. Create a subplot that puts the visual from b) on top of the one from c).

2. Repeat the analysis on 1, a), but this time use the groupby function.

a. Compare the runtime of using Boolean masking versus groupby (hint: you can import the

module time and use the .time() function).

3. If you have not already done so, solve Exercise 4 in the previous chapter. After you have created pvt_df for Exercise 4, run the

following code:
import seaborn as sns

sns.pairplot(pvt_df)

The code outputs what is known as a scatter matrix. This code takes advantage of the Seaborn
module, which is another very useful visualization module. To practice subplots and resizing,
recreate what Seaborn was able to do with sns.pairplot() using Matplotlib (hint: doing this with
plt.subplot() might be a bit too challenging for you. First, give it a try and figure out what the
challenge is, and then Google plt.subplot2grid()).

Pay attention — if you have never used the Seaborn module before, you may have to install it on

your Anaconda first. It is easy — just run the following code in your Jupyter notebook:

conda install seaborn

Chapter 3. Data — What Is It Really?

This chapter presents a conceptual understanding of data and introduces data concepts, definitions,
and theories that are essential for effective data preprocessing. First, the chapter demystifies the word
"data" and presents a definition that best serves data preprocessing. Next, it puts forth the universal
data structure, table, and the common language everyone uses to describe it. Then, we will talk about
the four types of data values and their significance for data preprocessing. Finally, we will discuss the
statistical meanings of the terms information and pattern and their significance for data

preprocessing.
The following topics will be covered in this chapter:

« What is data?
« The most universal data structure: a table
« Types of data values

« Information versus pattern

Technical requirements

You will be able to find all of the code examples that are used in this chapter, as well as the dataset, in

Chapter 3's GitHub repository:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03

What is data?

What is the definition of data? If you ask this question of different professionals in various fields, you
will get all kinds of answers. I always ask this at the beginning of my data-related courses, and I
always get a wide range of answers. The following are some of the common answers that my
students have given when this question was asked:

o Facts and statistics

« Collections of records in databases

o Information

« Facts, figures, or information that's stored in or used by a computer

« Numbers, sounds, and images

« Records and transactions

« Reports

o Things that computers operate on

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter03

All of the preceding answers are correct, as the term data in different situations could be used to refer
to all of the preceding. So, next time someone says we came to XYZ conclusions after analyzing the
data, you know what your first question should be, right? Yes, the next question would be to

understand exactly what they mean by "data.”

So, let me try and answer this question, What is meant by data?, with regards to this book, Hands-On

Data Preprocessing Using Python.

From a data preprocessing perspective, we need to step back and provide a more general and all-
encompassing definition. Here, we define data as symbols or signs representing a measurement or
model of reality. These symbols and signs are in themselves useless until used with regard to higher-

level conventions and understandings (HLCUs).
I like two things about the previous definition:

o First, the definition is universal and encompasses all of the kinds of data you can imagine, including the ones my students offered.

« Second, it verbalizes an implicit assumption in all the other definitions — the existence of HLCUs.
Without HL.CUs, data is a pile of meaningless symbols and signs.

NOTE:

A quick note before moving forward — | am going to use "HLCU" a lot in this chapter, so maybe read its definition a few
more times to commit it to memory.

Before the advent of Al, we could safely say the HLCU is almost always human language and
comprehension. However, now algorithms and computers are becoming a legitimate, and in some

aspects more powerful, HLCU of data.

Why this definition?

For data preprocessing, the very first thing you want to decide is the HLCU you will be using. That
is, what HLCU are you preparing your data for? If the data is being prepared for human
comprehension, the result will be very different than when the data is prepared for computers and

algorithms. Not only that, the HLCU might be different from one algorithm to another.

One of the stark differences between human comprehension and computers as HLCUs is that humans
cannot digest more than two to three dimensions at a time. Being able to process data with larger

dimensions and size is the hallmark of algorithms and computers.

There is an important and distinctive relationship between the two HL.CUs that needs to be
understood for effective data preprocessing. Let's learn about the DIKW pyramid first, and I will use

this to discuss that distinction.

DIKW pyramid

Data, Information, Knowledge, and Wisdom (DIKW), also known as the wisdom hierarchy or
data pyramid, shows the relative importance and abundance of each of these four elements. The
following figure shows transactional steps between the stages, namely processing, cognition, and
judgment. Moreover, the figure specifies that only wisdom, which is the rarest and most important
element, is of the future, and the three other elements, namely knowledge, information, and data, are

of the past.

’

I
Future v

Knowledge

=—= Cognition ==

Information

Processing F=

Data

Figure 3.1 — DIKW pyramid
The definition of the four elements is presented as follows:

« Data: A collection of symbols — cannot answer any questions.
« Information: Processed data — can answer the questions who, when, where, and what.
« Knowledge: Descriptive application of Information — can answer the question how.

¢ Wisdom: Embodiment of Knowledge and appreciation of why.

While the DIKW pyramid is referenced again and again in many data analytics books and articles,
you can see that the pyramid's HLCU is human language and comprehension. That is why even
though the pyramid makes a lot of sense, it is still not completely applicable to data analytics.

An update to DIKW for machine learning and Al

I have updated the DIKW pyramid to Data, Dataset, Pattern, and Action (DDPA) as I believe it

pertains better to Machine Learning (ML) and artificial intelligence.

’

(4
Future s

Risk
Analysis [————-

Figure 3.2 — DDPA pyramid
The definitions of all four elements of DDPA are presented as follows:
« Data: All possible data from across all the data resources
» Dataset: A relevant collection of data selected from all the available data sources, cleaned and organized for the next step
« Patterns: The interesting and useful trends and relationships within the dataset

o Action: The decision made, which is informed by the recognized patterns

Let's go through the three transactional steps between the four elements of the DDAP pyramid:

1. Preprocess is to select the relevant data and prepare it for the next step.
2. Mine is applying data mining algorithms to the data in search of patterns.

3. Lastly, risk analysis is the step to consider the uncertainty of the recognized patterns and arrive at a decision.

The DDPA pyramid shows the pivotal role of data preprocessing as the goal of being able to drive
action from data. Preprocessing of the data is perhaps the most important step from D to A (Data to
Action). Not all the data in the world will be useful for driving action in specific cases, and the data
mining algorithms that are developed are not capable of finding patterns in all types of data.

An update to DIKW for data analytics

It is important to remember that data preprocessing in no way pertains only to ML and artificial
intelligence. When analyzing data using data visualization, data preprocessing also has a pivotal but
slightly different role.

Neither the DIWK nor the DDPA pyramid can be applied well to data analytics. As mentioned
earlier, DIWK was designed for human language and comprehension, and I created DDPA for
algorithms and computers, so it is better suited for machine learning and artificial intelligence.
However, data analytics falls between the two ends of this spectrum, where both humans and

computers are involved.

I have designed another pyramid specifically for data analytics and its unique HLCUs. As the
HLCUs of data analytics are both humans and computers, the Data, Dataset, Visualization, and

Wisdom (DDVW) pyramid is a combination of the other two pyramids.

[
4

e’
Future 7

’
4

,:' Wisdom
‘ Judgment

Visualization

Analyze ===

Dataset

Preprocess

Data

Figure 3.3 — DDVW pyramid

The definitions of all four elements of DDVW are presented as follows:
« Data: All possible data from across all the data resources
« Dataset: A relevant collection of data selected from all the available data sources and organized for the next step

« Visualization: The comprehensible presentation of what has been found in the dataset (similar to Knowledge in DIKW —

descriptive application of Information)
¢ Wisdom: Embodiment of Knowledge and appreciation of why (the same as Wisdom in DIKW)
While the first transactional step of DDVW is similar to that of DDPA (both are preprocessing), the
second and third are different. The second transactional step of DDVW is to analyze. That is what a
data analyst does — use technology to do the following:
1. Explore the dataset.

2. Test the hypothesis.

3. Report the relevant findings.

The most understandable way to report the findings for the decision-maker is visualization. A
decision-maker will understand the visualization and use judgment (the third transaction step of
DDVW) to develop wisdom.

Data preprocessing for data analytics versus data
preprocessing for machine learning

Data preprocessing is a pivotal step for both data analytics and machine learning. However, it is
important to recognize the preprocessing that is done for data analytics is very different from that of

machine learning.

As seen in DDPA, the only HLCU for machine learning is computers and algorithms. However, as
shown in DDVW, the HLCU of data analytics is first computers and then it switches over to humans.
So, in a sense, the data preprocessing that is done for machine learning is simpler, as there is only one
HLCU to consider. However, when the data is preprocessed for data analytics, both HLCUs need to

be considered.

Now that we have a good understanding of what we mean by data, let's switch gears and learn some
important concepts surrounding data. The next concept we will discuss helps us distinguish between

data analytics and machine learning even further.

The three Vs of big data

A very useful concept that helps to distinguish between machine learning and data analytics is the

three Vs of big data. The three Vs are volume, variety, and velocity.

The general rule of thumb is that when your data has high volume, high variety, and high velocity,
you want to consider machine learning and Al over data analytics. As a general rule, this could be
true, but if and only if you have high volume, high variety, and high velocity after appropriate data
preprocessing. So, data preprocessing plays a major role, and that will be explained in more detail

after going over the three Vs:

» Volume: The number of data points that you have. You can roughly think of data points as rows in an Excel spreadsheet. So, if
you have many occurrences of the phenomena or entities that you have collected, your data is of high volume. For example, if
Facebook was interested in studying its users in the US, the volume of this data would be the number of Facebook users in the

US. Pay attention — the data point in this study of Facebook is US users of the platform.

« Variety: The number of different sources of data you have that give you fresh new information and perspective about the data
points. You can roughly think of the variety of your data as the number of columns you have in an Excel spreadsheet. Continuing
the Facebook example — Facebook has information such as the name, date of birth, and email of its users. But Facebook could
also add variety to this data by including behavior columns, such as the number of visits in the last week, the number of posts, and
many more. The variety does not stop there for Facebook, as it also owns other services that users may be using, such as

Instagram and WhatsApp. Facebook could add variety by including the behavior data of the same users from the other services.

« Velocity: The rate at which you are getting new data objects. For instance, the velocity of Facebook US users' data is much higher
than the velocity of Facebook's employees' data. But the velocity of Facebook US users' data is much lower than Facebook's US
post's data. Pay attention to what changes the velocity of data — it is how often the phenomena or the entities you are collecting

happen.

The importance of the three Vs for data preprocessing

Data analytics that heavily involves human comprehension cannot accommodate data that has high
volume, high variety, and high velocity. However, sometimes the high Vs are happening due to the
lack of proper data preprocessing. One important element of successful data preprocessing is to
include data that is relevant to the analysis. Just because you have to dig through data with high Vs to
prepare a dataset, that is not enough of a reason to give up on data analytics in favor of machine

learning.

Next, we will move on from pure concepts to begin talking about the data itself and the way we

normally organize it.

The most universal data structure — a table

Regardless of the complexity and high Vs of your data, and even regardless of you wanting to do data
visualization or machine learning, successful data preprocessing always leads to one table. At the end
of successful data preprocessing, we want to create a table that is ready to be mined, analyzed, or
visualized. We call this table a dataset. The following figure shows you a table with its structural

elements:

Data Attributes
I

| \
Column1 | Column2 |. . . Column m
Row 1 | xxx XXX . . . XXX
Row 2 | xxx XXX : . XXX
Data Objects
Row n | xxx XXX . , ; XXX

Figure 3.4 — Table data structure

As shown in the figure, for data analytics and machine learning, we use specific keywords to talk

about the structure of a table: data objects and data attributes.

Data objects

I'm sure you have seen and successfully made sense of so many tables and created so many of them
as well. I bet many of you would have never paid attention to the conceptual foundations of the table
that allows you to create them and make sense of them. The conceptual foundation of a table is its

definition of the data object.

Data objects are known by many different names, such as data points, rows, records, examples,
samples, tuples, and many more. However, as you know for a table to make sense, you need the
conceptual definition of data objects. You need to know for what phenomena, entity, or event the

table is presenting values.

The definition of the data object is the entity, concept, phenomena, or event that all of the rows share.
For instance, the entity that holds a table of information about customers together is the concept of
the "customer." Each row of the table represents a customer and gives you more information about

them.

The definition of the data object for some tables is straightforward, but not always. The very first
concept you want to figure out when reading a new table is what the assumed definition of data
objects for the table is. The best way you can go about this is to ask the following question: what is
the one entity that all of the columns in the table describe? Once you have found that one entity,
bingo! You have found the definition of the data object.

Emphasizing the importance of data objects

For data preprocessing, the definition of the data objects becomes more important. A lot of the time,
the data analyst or machine learning engineer is the one that needs to first envision the end table that
data needs to be preprocessed into. This table needs to be both realistic and useful. In the following

two paragraphs I will address what I mean by realistic and useful:

« Realistic: The table needs to be realistic in the sense that you have the data, technology, and access to create the table. For
instance, I can imagine if I had a table of data about newly married couples, with columns for the first month of their marriage
such as the number of times they kissed, or the number of times they were passive-aggressive toward each other, I could build a
universal model that could tell couples whether their marriage was going to be successful or not. In this case, the definition of data
objects is newly married couples, and all of the imagined columns describe this entity. However, realistically coming up with such
a table is very difficult. Incidentally, John Gottman from the University of Washington and James Murry from Oxford University
did create this model, but only with 700 couples who were willing to be recorded while they were discussing contentious topics

and were willing to share the updates on their relationship with the researchers.

o Useful: The imagined table also needs to be useful for analytics goals. For instance, suppose that somehow we have access to the
video recordings of the first month of all of the newly married couples. These recordings are stored in separate files, organized by
day. So, we set out to preprocess the data and count the number of kisses and the number of passive-aggressive incidents for each
recording and store them in a table. This table's data object definition is the video recording of one day of a newly married couple.
Is this data object definition useful for the analytics goals of predicting the success of couples? No, the data needs to be collated

differently so the data objects are the newly married couples.

Data attributes

As shown in Figure 3.4, the columns of a table are known as attributes. Different names such as
columns, variables, features, and dimensions might be used instead of attributes. For example, in
math, you are more likely to refer to "variables" or "dimensions," whereas, in programming, you

more often refer to "variables."

Attributes are describers of the data objects in a table. Each attribute describes something about all of
the data objects. For instance, in the table we envisioned for the newly married couples, the number

of kisses and the number of passive-aggressive incidents are the attributes of that table.

Types of data values

For successful data preprocessing, you need to know the different types of data values from two
different standpoints: analytics and programming. I will review the types of data values for both

standpoints and then share with you their relationships and their connections.

Analytics standpoint

There are four major types of values from analytics standpoints: nominal, ordinal, interval-scaled,
and ratio-scaled. In the literature, these four types of values are under four types of data attributes.
The reason is that the types of values for each attribute must remain the same, therefore, you can

extrapolate value types to attribute types.

Ratio-Scaled
Interval-
Data Scaled
Attributes
Ordinal Symmetric

Categorical

Nominal

Asymmetric

Figure 3.5 — Types of data attributes

The preceding figure shows the tree of attribute types. The four mentioned types are in the middle.
As you can see in the tree, Nominal and Ordinal attributes are called Categorical (or qualitative)
attributes, whereas Interval-Scaled and Ratio-Scaled attributes are called Numerical (or
quantitative).

Nominal attributes

As the name suggests, this type of attribute refers to the naming of objects. There is no other
information that this attribute describes apart from a simple set of letters and symbols that act as a

name of the object or a category of the object.

A prominent example of a nominal attribute is gender when data objects are individuals. While this
attribute may be shown differently, the information it contains is a simple name for two categories of
humans. I have seen this information represented in many ways. The following table shows all the
different ways the nominal attribute gender can be presented. Regardless of how the categories are
presented, the information that is gathered by this category is that an individual is either male or

female.

Male M |0 1|1

Female | F 1 |02

Figure 3.6 — Different presentations of the nominal attribute gender

Other examples of nominal attributes when the data objects are individuals are hair color, skin color,
eye color, marital status, or occupation. What is important to remember about nominal attributes is
that they do not contain any other information than just names.

Ordinal attributes

On the other hand, ordinal attributes, as the name suggests, contain more information that pertains to
some types of order. For instance, when the data objects are individuals, the level of education is a
prime example of an ordinal attribute. While high school, bachelor's, master's, and doctoral are names

that refer to the names of education degrees, there is a well-recognized order between all of them.

No one could logically give any order to the importance, value, or recognition between the values of
a nominal attribute such as gender. However, it is quite acceptable to assume the number of resources
(time, money, energy) someone has spent to get a bachelor's degree is more than a high school

degree.

Other examples of ordinal attributes are course letter grades (A, B, C, D), professional rankings
(Assistant Professor, Associate Professor, and Full Professor), and survey rates (highly agree, agree,

neutral, disagree, highly disagree).

So far, we know that ordinal attributes can contain more information than nominal attributes. At the
same time, ordinal attributes are themselves limited in the sense that they do not contain how much
each possible value of an ordinal attribute is different from the other. For instance, we know that
Individual A, who has a doctorate, might be able to deal with research projects better than Individual

B, who has a bachelor's degree. However, we cannot say Individual A will finish a research task 20

hours faster than Individual B. Simply put, ordinal attributes do not contain information that allows

for interval comparison between data objects.

Interval-scaled attributes

These attributes contain more information than ordinal attributes, as they allow for interval
comparison between data objects. By moving from ordinal attributes to interval attributes, we also
move from symbols and categories to numbers (categorical attributes to numerical attributes). With
numbers comes the capability to know how much difference exists between data objects. For
instance, when data objects are individuals, height is an interval attribute. For instance, Roger
Federer's height is 6'1", and everyone will agree that he is shorter than Juan Martin del Potro by 5", as
del Potro's height is 6'6".

Another example of an interval attribute when the data objects are individuals is weight. The
measurement of temperature in Fahrenheit or Celcius when the data objects are days is also an

example of an interval-scaled attribute.

The limitation of interval attributes is that we cannot use them for a ratio-based comparison. For
instance, will we ever be able to say an individual is twice as tall as the other individual? You might
be thinking yes. But the answer is no. The reason is that there is no meaningful zero for the concept

of human tallness. That is to say, there is no individual whose height is zero.

The shortest man in the world is documented to have been Chandra Bahadur Dangi and his height
was 1'10". Also, Robert Wadlow, with a height of 8'3", is reported to have been the tallest man in the
world. To put things into perspective, consider the following figure, where you can compare the

average heights with the recorded extremes:

Robert Wadlow
Height: 8 ft 3 in

)

Netherland Average Man
US Averag Height: 4 ft
Height: 5ft7in

SriLanka Average Man H !iu'lt’ﬁ f7in
Indonesia Average Man Height: S ft 5in
Height: 5 ft 3in

5 9

Chandra Bahadur Dangi
Height: 11t 10in

X+30

Figure 3.7 — The spectrum of men's heights

Looking at the two extremes might challenge our preconceptions about height. However, if you
remove the two extremes, you will start feeling more comfortable. The reason for this discomfort is
that tallness is an interval attribute for our brain. We do not come across very tall people or very short
people in our daily lives. Although it will completely make sense to most people if you say you are 2
inches taller than another person, it would not make sense if you were to claim you are more than 3

times taller than the shortest man in the world.

For instance, since I am 6'3", you will believe I am 3.41 times taller than the shortest man in the
world. While the mathematics of this calculation is correct ((6*12+3) / (6*1+10) = 3.41), you cannot
say I am 3.41 times taller than the shortest man in the world, because the shortest man in the world is
the zero in the concept of human tallness. At best, you can say I am 3.41 times taller an object than
Chandra Bahadur Dangi. But to be able to do that, you had to change the definition of the data object

from an individual to an object.

Even if you have a roommate that is a very short person and you see him every day, mathematically,
it does not make sense to have a multiplication of tallness as there is no absolute zero. There is no
individual you could ascribe the value zero to for their tallness.

Ratio-scaled attributes

When we move to ratio-scaled attributes, the last limitation, which was the incapability to multiply or
divide values for interval-scaled attributes, is also removed, as we can find an inherent zero for them.
For instance, when our data objects are individuals, monthly income is an example of a ratio-scaled
attribute. We can imagine an individual with no monthly income. For instance, it completely makes
sense if you were to report that your dad makes twice what you make every month. Another example
of a ratio-scaled attribute is the temperature in kelvin when the definition of data object is a day.
Binary attributes

Binary attributes are nominal attributes with only two possibilities. For instance, the gender you are
assigned at birth is either male or female, so Sex Assigned At Birth (SAAB) is a binary attribute.

There are two types of binary attributes: symmetric and asymmetric. Symmetric binary attributes,
such as SAAB, are where either of the two possibilities happens as frequently and carries the same

level of importance for our analysis.

However, one of the two possibilities of asymmetric binary attributes happens less frequently and is
normally more important. For instance, the result of a COVID test is an asymmetric binary attribute,

where the positive results happen less often but are more important in our analysis.

You might think that symmetric binary attributes are more common than asymmetric binary
attributes, however, that is far from the reality. Try to think of other symmetric binary attributes, and

email them to me if you find a few good ones.

Conventionally, the rarer possibility of a binary attribute is denoted by a positive (or one), whereas

the more common possibility is denoted by a negative (or zero).

Understanding the importance of attribute types

As analytic methods become more complex, it will become easier to make mistakes and never know
about them. For instance, you might inadvertently input an integer-coded nominal attribute into an
algorithm that regards these values as real numbers. What you have done is to input randomly
assumed relationships between the data objects that have no basis in reality to a model that cannot

think for itself. See Exercise 5 for an example of this.

Programming standpoint

By and large, values are either known as numbers, strings, or Booleans for computers. Numbers

might be recognized as integers or floating points, but that is it.

Integers are whole numbers from zero to infinity. For instance, 0, 1, 2, 3, and so on are all integer
values. Floating points are numbers. They can be positive or negative and have decimal points. For
instance, 1.54, -25.1243, and 0.1 are all floating points.

I hope you see the challenge here — from an analytics perspective, you may have nominal or ordinal
attributes but computers can only show them as strings. Similarly, from an analytics perspective, you
may have ratio-scaled or interval-scaled attributes but computers can only show them as numbers.
The only complete match between programming value types and analytics value types is binary

attributes that can be presented completely with Boolean values.

The following table presents a mapping of attribute (value) types between analytics and programming
perspectives. As you are developing skills to effectively preprocess data, this mapping should
become second nature to you. For instance, you want to understand your options of presenting an
ordinal attribute with Booleans, strings, or integers, and what each option would entail (see exercise 6

in the Exercise section).

Analytic Perspective Programming Perspective
Binary

Mominal attributes :)
Mon-binary Booleans or strings

Ordinal attributes
Integers

Interval-scaled attributes

Integers or floating points
Ration-scaled attributes g &P

Figure 3.8 — Mapping of value types between analytics and programming

So far in this chapter, we covered the definition of data and also the types of data attributes. Now, we
are going to talk about two high-level and important concepts that are essential for successful data

preprocessing: information and pattern.

Information versus pattern

Before finishing this chapter, which aims to arm you with all the necessary definitions and concepts

needed for data preprocessing, we need to cover two more concepts: information and pattern.

Understanding everyday use of the word "information”

First, I need to bring your attention to two specific and yet very different functions of the term
information. The first one is the everyday use of "information," which means "facts or details about
somebody or something." This is how the Oxford English Dictionary defines information. However,
while statisticians also employ this function of the word, sometimes the term information serves

another purpose.

Statistical use of the word "information"

The term "information" could also refer to the value variation of one attribute across the population
of a data object. In other words, information is used to refer to what an attribute adds to space

knowledge of a population of data objects. Let's explore an example dataset, customer_df, as shown
in the following screenshot. The dataset is pretty small and has 10 data objects and 4 attributes. The

definition of the data object for the following dataset is customers.

In [1]: M import pandas as pd
customer_df = pd.read_excel('Customers Dataset.xlsx')
customer_df

Out[1]:

Customer Name Store Last week numt‘)’?;ig Last week Purchas;

0 o vitoe Starbuck - CIareAmont 5 33.43
Village

1 Colleen Melendez Sarbck.=Clarsmont 4 11.32
Village

2 Lyla-Rose Ruiz Starbuck - Clare_mont 1 9.48
Village
. : Starbuck - Claremont

3 Riley-Jay Manning Village 2 15.50

4 leuan Carroll S RbucKSIClaRIenk 4 17.96
Village

5 Renesmae Starbuck - Clare_mont 5 19.84
Lawson Village

6 Lawrence Medina Sl palie Sl 3 23.21
Village

7 Ben O'Connor Starbuck - Clare_mont 1 6.12
Village

8 S [Starbuck - Clare'mont 6 36.16
Village

9 Abbigail Dunlap Starbuck - Claremont 9 6.88

Village
Figure 3.9 — Reading Customer Dataset.xlsx and seeing its records

We will talk about this dataset as we go over the following subsections.

Statistical information for categorical attributes

Customer Name is a nominal attribute, and the value variation this attribute adds to the space
knowledge of this dataset is the maximum possible for a nominal attribute. Each data object has a
completely different value under this attribute. Statistically speaking, the amount of information this

attribute has is very high.

The case of the attribute store is the opposite. This attribute adds the minimal possible information a
nominal attribute may add — that is, the value for every data object under this attribute is the same.
When this happens, you should remove the attribute and see whether you can perhaps update the
definition of the data objects. If we change the definition of the data objects to starbucks customers
of Claremont village store, we have retained the information and we can safely remove the
attribute.

Statistical information for numerical attributes

The matter of statistical information for numerical attributes is a little bit different. For numerical

attributes, you can calculate a metric called variance to drive how much information each numerical

attribute has. Variance is a statistical metric that captures the spread between a collection of numbers.
It is calculated by the summation of the squared distances of each number from the mean of all the
numbers. The higher the variance of an attribute, the more information the attribute has. For instance,
the variance for the Last week number of visits attribute is 3.12, and the variance for the Last week
Purchase $ attribute is $109.63. Calculating the variance using Pandas is very easy. See the
following screenshot:

In [2]: M customer_df.var()

Out[2]: Last week number of visits 3.122222
Last week Purchase $ 109.628044
dtype: floate64

Figure 3.10 — Calculating the variance for the numerical attributes of customer_df

We would be able to say the Last week Purchase $ attribute has more information than the Last week
number of visits attribute if the attributes had a similar range. However, the attributes have a
completely different range of values, and it makes the two variance values incomparable. There is a
way to get around this issue — we can normalize both the attributes and then calculate their variance.

Normalization is a concept that we will cover later in this book.

Data redundancy - attributes presenting similar information

We call an attribute redundant if the variation of its value across the data objects of a dataset is too
similar to that of another attribute. To check data redundancy, you can draw a scatterplot for the
variables you suspect are presenting similar information. For instance, the following screenshot has

drawn the scatterplot of the two numerical attributes of customer_df:

In [3]: M import matplotlib.pyplot as plt
customer_df.plot.scatter(x="Last week number of visits',
y="Last week Purchase $')

plt.show()

35 []

&

30.
Wi
w
B
8 o5
=4 2
3
o
o 1 L
o .
;]5- ®
s

-
101
° #
5‘]] L] L] L
1 2 3 4 5 6

Last week number of visits
Figure 3.11 — Drawing the scatterplots for the two attributes, Last week number of visits and Last week Purchase $

You can see that it seems that with the increase in the number of visits, the purchase has also

increased.

Correlation coefficient to investigate data redundancy

You can also use the correlation coefficient to investigate data redundancy. A correlation coefficient
value falls between -1 and 1. When the value is close to zero, it means the two attributes are not
showing similar information. When the correlation coefficient between two numerical attributes is
closer to both ends of the spectrum (-1 or +1), it shows that the two attributes are showing similar
statistical information and perhaps one of them is redundant. When two attributes have a significant
and positive correlation coefficient (greater than 0.7), that means if the value of one attribute
increases the value of the other attribute will also increase. On the other hand, when two attributes
have a significant and negative correlation coefficient (smaller than -0.7), that means the increase of

one attribute leads to the decrease of the other.

The following screenshot has used .corr() to calculate the correlation coefficient between the

numerical attributes in customer_df:

In [4]: M customer_df.corr()

Out[4]:
Last week number of visits Last week Purchase $
Last week number of visits 1.000000 0.821282
Last week Purchase $ 0.821282 1.000000

Figure 3.12 — Finding the correlation coefficients for the pairs of numerical attributes in customer_df

The correlation coefficient is 0.82, which is considered high, indicating one of the two numerical
attributes might be redundant. The cut-off rule of thumb for high correlation is 0.7 — that is, if the

correlation coefficient is higher than 0.7 or lower than -0.7, there might be a case of data redundancy.

Now that we have a good understanding of the term information, let's turn our attention to the term

pattern.

Statistical meaning of the word "pattern”

While the statistical meaning of "information" is the value variation of one attribute across the data
objects of a dataset, the statistical meaning of "pattern" is about the value variation of more than one
attribute across the data objects. Every specific value variation of more than one attribute across the

data objects of a dataset is called a pattern.

It is important to understand that most patterns are neither useful nor interesting. It is the job of a data
analyst to find interesting and useful patterns from the data and present them. Also, it is the job of an
ML engineer to streamline a model that collects the expected and useful patterns from the data and
makes calculated decisions based on the collected patterns.

Example of finding and employing a pattern

The relationship we found between the two numerical attributes of customer_df in the following

situation could be considered as useful.

The manager of the Starbucks store in Claremont Village made a huge blunder and accidentally
removed the values of Last week Purchase $ for 10 customers from the records, but luckily she
knows about the power of data analytics, and the Last week number of visits attribute is intact. The

following screenshot shows the second part of this data:

In [5]: M customer2_df = pd.read_excel('Customers Dataset 2.x1lsx')
customer2_df

Out[5]:
Customer Srore Last week number of Last week Purchase
Name visits $

Starbuck - Claremont

0 Nelson Rivera ; 2 NaN
Village

1 Abbigail Felix SAlRUCk- Claremont 1 NaN
Village

5 Kelly North Starbuck - Clare-_mont 2 NaN
Village

3 Aneesa Moran Starbuck - Claremont 5 NaN
Village

4 Ammara Ritter StarauekeClaremont 7 NaN
Village
. Starbuck - Claremont

5 Elise Valenzuela Village 1 NaN
. Starbuck - Claremont

6 Jaidan Gay Village 4 NaN

7 Alejandro Starbuck - Clare_mont 3 NaN
Mercer Village

8 Arisha Whittaker SEN IR SR 5 NaN
Village

9 Wetimiet Bower Starbuck - Claremont 2 NaN

Village
Figure 3.13 — Reading Customer Dataset 2.xIsx and seeing its records

The manager of the store, after having seen the high correlation between Last week number of
visits and Last week Purchase $, can use simple linear regression to extract, formulate, and
package the pattern from the 10 customers with all of the data. After the regression model is trained,

the manager can use it to estimate the purchase $ for the customers that have missing values.

Simple linear regression is a statistical method where the values of one numerical attribute (X) are
linked to the values of another numerical attribute (Y). In statistical terms, when we observe a close

relationship between two numerical attributes, we may investigate to see whether X can predict Y.

The following screenshot illustrates the application of .regplot() from the Seaborn module to

visualize the linear regression line that has fitted to the data of the first 10 customers in customer_df:

In [6]: M import seaborn as sns
sns.regplot(x="Last week number of visits’',
y="Last week Purchase $',data=customer_df)
plt.show()

o

Last week Purchase §
G 8 B 8

(]

0 T T T
1 2 3 - 5 6

Last week number of visits

Figure 3.14 — Using .regplot() to show the regression line between the two attributes, Last week number of visits and
Last week Purchase $

INSTALLATION OF THE SEABORN MODULE

If you have never used the Seaborn module, you have to install it first. Installing it on Anaconda is very simple. Open a
chunk of code in your Jupyter notebook and run the following line of code:

conda install seaborn

The equation of the fitted regression model is shown as follows:

Last Week Purchase $ = 1.930 + 4.867 X Last Week number of visits

Now, this equation allows us to estimate the missing values of customer2_df. The following

screenshot shows the preceding equation is applied to customer2_df to calculate the missing values:

In [7]: M| customer2_df['Last week Purchase $'] = customer2_df[
"Last week number of visits'].apply(lambda v:1.930 + 4.867 *v)
customer2_df

Out[7]:

Customer Siore Last week number of Last week Purchase

Name visits $

0 Nelson Rivera Slalbuck Sl on: 3 16.531
Village

1 Abbigail Felix Siarbuek=Claremont 1 6.797
Village
Starbuck - Claremont

2 Kelly North Village 2 11.664

3 Aneesa Moran Starbuck - Clar\¢/3-mont 5 26.265
illage

4 Ammara Ritter BN fo C EElora 7 35.999
Village

5 Elise Valenzuela Slathuck~ Claremont 1 6.797
Village

6 Jaidan Gay Starbuck - Clare_mont 4 21398
Village
Alejandro Starbuck - Claremont

5 Mercer Village 4 16:5491

8 Arisha Whittaker Starbuck - Claremont 5 26.265
Village

9 Mehmet Power Starbuck - Claremont 2 11.664

Village

Figure 3.15 — Using the extracted pattern (regression equation) and .apply() function to estimate and replace the
missing values
So, this way the manager of the Starbucks store in Claremont Village was able to save the day and

replace the missing values with estimated values that are based on a reliable pattern found in the data.

Before moving on, let me acknowledge that we have not yet covered linear regression in this book
(we will do this in Chapter 6, Prediction). However, in this example, we used linear regression to
showecase an instance of extracting and using the pattern in a dataset for an analytic situation. We did
this in the interest of understanding what we mean by "useful patterns," and extracting and packaging

patterns for later use.

Summary

Congratulations on finishing this chapter. You have now equipped yourself with an essential
understanding of data, data types, information, and pattern. Your understanding of these concepts will

be vital in your journey to successful data preprocessing.

In the next chapter, you will learn about the important roles databases play for data analytics and data
preprocessing. However, before moving on to the next chapter, take some time and solidify and

improve your learning using the following exercises.

Exercises

1. Ask five colleagues or classmates to provide a definition for the term data.

a) Record these definitions and notice the similarities among them.
b) In your own words, define the all-encompassing definition of data put forth in this chapter.
¢) Indicate the two important aspects of the definition in b).

d) Compare the five definitions of data from your colleagues with the all-encompassing

definitions and indicate their similarities and differences.

2. In this exercise, we are going to use covid_impact_on_airport_traffic.csv. Answer the following questions. This

dataset is from Kaggle.com — use this link to see its page:

https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic

The key attribute of this dataset is PercentofBaseline, which shows the ratio of air traffic in a

specific day compared to a pre-pandemic time range (February 1 to March 15, 2020).
a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique() function to

check. If there are, remove them from the data and update the definition of the data object.
c) What type of values do the remaining attributes carry?

d) How much statistical information does the percentofBaseline attribute have?

3. For this exercise, we are going to use US_Accidents.csv. Answer the following questions. This dataset is from Kaggle.com —

use this link to see its page:

https://www.kaggle.com/sobhanmoosavi/us-accidents

This dataset shows all the car accidents in the US from February 2016 to December 2020.
a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique() function to

check. If there are, remove them from the data and update the definition of the data object.
¢) What type of values do the remaining attributes carry?

d) How much statistical information do the numerical attributes of the dataset carry?

https://www.kaggle.com/terenceshin/covid19s-impact-on-airport-traffic
https://www.kaggle.com/sobhanmoosavi/us-accidents

e) Compare the statistical information of the numerical attributes and see whether any of them are

a candidate for data redundancy.

. For this exercise, we are going to use fatal-police-shootings-data.csv. There are a lot of debates, discussions,
dialogues, and protests happening in the US surrounding police killings. The Washington Post has been collecting data on all fatal
police shootings in the US. The dataset available to the government and the public alike has date, age, gender, race, location, and
other pieces of situational information related to these fatal police shootings. You can download the last version of the data from

https://github.com/washingtonpost/data-police-shootings.

a) What is the best definition of the data object for this dataset?

b) Are there any attributes in the data that only have one value? Use the .unique() function to

check. If there are, remove them from the data and update the definition of the data object.
c) What type of values do the remaining attributes carry?
d) How much statistical information do the numerical attributes of the dataset carry?

e) Compare the statistical information of the numerical attributes and see whether any of them are
a candidate for data redundancy.
. For this exercise, we will be using electricity_prediction.csv. The following screenshot shows the five rows of this

dataset and a linear regression model created to predict electricity consumption based on the weekday and daily average

temperature:

https://github.com/washingtonpost/data-police-shootings

In [1]: import pandas as pd

electricity_df = pd.read_csv('electricity_prediction.csv')
electricity_df.head()

Out[1]:
Date Weekday Consumption Average Temperature
0 1/1/2016 4 2581914 80
1 1/2/2016 5 2663011 77
2 1/3/2016 6 2725351 78
3 1/4/2016 0 3092978 80
4 1/5/2016 1 3231827 81

In [2]: | from sklearn.linear_model import LinearRegression

X
y

electricity df[['Weekday', 'Average Temperature']]
electricity_df['Consumption']

1rm = LinearRegression()
Irm.fit(X, y)

print('intercept ', lrm.intercept)
print(pd.DataFrame({ 'Predictor': X.columns, ‘coefficient': 1lrm.coef_}))

intercept 3074181.4950158806
Predictor coefficient

%] Weekday -55710.145405

1 Average Temperature -3476.377056

Figure 3.16 — Screenshot for Exercise 5
a) The regression model that is derived from the data is presented as follows:
Consumption = 3074181.5 — 55710.1 X Weekday — 3476.4 X Average Temperature

b) What is the fundamental mistake in this analysis? Describe it and provide possible solutions
for it.

. For this exercise, we will be using adult . csv. We used this dataset extensively in Chapter 1, Review of the Core Modules

NumPy and Pandas and Chapter 2, Review of Another Core Module — Matplotlib. Read the dataset using Pandas and call it
adult_df.

a) What type of values does the education attribute carry?
b) Run adult_df.education.unique(), study the results, and explain what the code does.
c) Based on your understanding, order the output of the code you ran for b).

d) Run pd.get_dummies(adult_df.education), study the results, and explain what the code does.

e) Run adult_df.sort_values(['education-num']).iloc[1:32561:1200], study the results, and

explain what the code does.

f) Compare your answer to c¢) and what you learned from e). Was the order you came up with in

c) correct?

g) The education attribute is an ordinal attribute — translating an ordinal attribute from an analytic
perspective to a programming perspective involves choosing between Boolean representation,
string representation, and integer representation. Choose which choice has been made for the

three following representations of the education attribute:
adult_df.education
pd.get_dummies(adult_df.education)
adult_df['education']

h) Each choice has some advantages and some disadvantages. Select which programing data

representation each following statement describes:

If an ordinal attribute is presented using this programming value representation, no bias or
assumptions are added to the data, but algorithms that work with numbers cannot use the

attribute.

If an ordinal attribute is presented using this programming value representation, the data can be
used by algorithms that only take numbers, but the size of the data becomes bigger and there may

be concerns for computational costs.

If an ordinal attribute is presented using this programming value representation, there will be no
size or computational concerns, but some statistical information that may not be true is assumed

and it may create bias.

References

John M. Gottman, James D. Murray, Catherine C. Swanson, Rebecca Tyson, and Kristin R. Swanson.
The Mathematics of Marriage: Dynamic Nonlinear Models. MIT Press, 2005.

Chapter 4. Databases

Databases play a major technological role in data preprocessing and data analytics. However, time
and again, I have seen plenty of misunderstandings surrounding their role in analytics. While it is
possible to do simple analytics and data preprocessing using databases themselves, these tasks are not
what databases are designed for. In contrast, databases are technological solutions to record and

retrieve data effectively and efficiently.

In this chapter, we will first discuss the technological role of databases in effective analytics and
preprocessing. We will then enumerate and understand the different types of databases. Finally, we

will cover five different methods of connecting to, and pulling data from, databases.

The following topics will be covered in this chapter:
o What is a database?
o Types of databases

« Connecting to, and pulling data from, databases

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, click on this link,
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python, find chapter 04 in this

repository, and download the code and the data for better learning.

What is a database?

There may be a handful of different definitions of a database, all of which might be correct, but there
is one definition that best serves the purpose of data analytics. A database is a technological solution

to store and retrieve data both effectively and efficiently.

While it is true that databases are the technological foundations of data analytics, effective analytics
do not happen inside them and that is a great thing. We want databases to be good at what they are
meant to do: the effective and efficient storage and retrieval of data. We want a database to be fast,
accurate, and secure. We also want a database to be able to serve our needs as regards quick sharing

and synching.

When we want to get some data from databases for analytics purposes, it is easy to forget that

databases are not designed to serve our analytics purposes. So, it should not be a surprise that the data

in the database is organized in a way that serves its functions — the effective and efficient storage and

retrieval of data — rather than being organized for our analytics purposes.

One of the very first steps of data analytics is to locate and collect data from various databases and
sources, and reorganize it into a dataset that has the potential to answer questions about our decision-

making environment. The following diagram illustrates this important step of data analytics:

Column1 | Column2 A . . Columnm
Row 1 | xxx XXX . . . XXX
Row 2

XXX

Row n | »xxx XXX

—
—

Figure 4.1 — From databases to a dataset

At times, the data might be coming from one database but, all the same, the data needs to be
reorganized into a dataset that is designed for our analytics needs. When we are reorganizing the data
into a dataset, we need to pay close attention to the dataset's definition of the data objects. We define

the data object of a dataset so that the dataset serves the needs of our analytics.

Understanding the difference between a database and
a dataset

A database and dataset are not the same concepts, but are often and incorrectly used interchangeably.
We did define a database as a technological solution for storing and retrieving data both effectively
and efficiently. However, a dataset is a specific organization and presentation of some data for a

specific reason.

For data analytics, while the data comes from databases, it is eventually reorganized into a dataset.
The "specific reason" for such a dataset is the analytics goals and the "specific organization and

presentation” of that dataset is to support those goals.

For instance, we want to use weather data such as temperature, humidity, and wind speed to predict
the hourly electricity consumption of the city of Redlands. For such analytics, we need a dataset
whose definition of the data object is an hour in the city of Redlands. The attributes will be average
temperature, average humidity, average wind speed, and electricity consumption. Pay attention that
all of these attributes describe the data object — an hour in the city of Redlands. That is the design of
the dataset that supports the analytical goal of predicting hourly electricity consumption in the city of

Redlands based on weather data.

In the city of Redlands, the weather data and electricity data come from different databases. The
weather data comes from 5 databases that collect data from 5 locations across the city, and each
database records the weather data of its surroundings every 15 minutes. The electricity data comes
from the city's only electricity supplier and its database records the amount of electricity consumption

in the city every 5 minutes.

The data in these six databases needs to be collated and reorganized into the described dataset so that

the prediction of hourly electricity consumption based on weather is possible.

Types of databases

Mainly there are four types of databases:
« Relational databases (or SQL databases)
« Unstructured databases (NoSQL)
« Distributed databases

« Blockchain

The distinctions between these databases are not cut and dried technologically and in practice. For
instance, distributed databases are essentially a combination of different types of databases in
multiple locations. Here, we will discuss these types of databases to develop a better appreciation for
the way databases organize data according to a situation's needs. We will also briefly talk about the

differences and similarities, as well as the advantages and disadvantages, of the types of databases.

WHY DO WE NEED TO KNOW THE TYPES OF DATABASES FOR DATA
PREPROCESSING?

Each of the four types of databases organizes and stores the data differently. As our data analytics journey always
involves locating and collecting data from various databases, knowing different kinds of databases serves two important
purposes.

First, by knowing what is possible, we may be able to envision what could be out there when we look for data.

Second, and more importantly, as we want to reorganize the relevant data into our designed dataset, we need to
understand the organization and structure of its source first.

The differentiating elements of databases

Before discussing the four types of databases, let's first talk about what are the elements that may
require using various kinds of databases. These elements are the level of structure, storage location,

and authority.
Level of data structure

Data with no structure is a pile of signs and symbols with no use or meaning. So do not let the term
"unstructured databases" fool you since every piece of usable data needs at least some structure. The
more data is structured, the less processing it will need when using it. However, structuring data is

expensive and not always sensible.

When data is structured, not only does it potentially take up more space, but it also needs resources to
preprocess and handle data before it is recorded. On the other hand, when the data is sufficiently
structured on one occasion, it can then be used again and again. So, the way to determine how much

structure data needs is to factor in the costs and benefits of structuring.

For example, while the benefits of structuring the basic customer data that is the core asset of many
businesses easily outweigh its costs, in many cases, the costs of structuring customer emails, voice,

and social media data may seem too overwhelming for small and medium organizations.

The following diagram shows the interaction between costs and benefits of structuring data. As the
data is more structured, naturally, the cost of structuring it goes up. But in return, the cost of having
to deal daily with unstructured data goes down until the benefits of structuring the data plateau. By

considering the costs and benefits, we can find the appropriate level of data structure.

— Cost of structuring data o
—— (ost of dealing with unstructured data -~
----- Total cost

® Minimum cost

L
"

"
N
.
.
.
s
r®
.
e
..
s
e

Level of data structure

Figure 4.2 — Interaction between costs and benefits of structuring data — a general case

The best level of structuring data will vary from situation to situation and also from data to data. For
instance, some data, such as video, sound, and social media data, may need specific preprocessing
every time it is used for different purposes. That means every time it is used, it needs to go through
data restructuring in any case, so structuring the data will not bestow any benefit and it does not make
economical sense. Furthermore, these types of data tend to be large, and only a unique segment of
them are needed to be structured from time to time without us not knowing which segment in
advance. In such cases, structuring the whole data in advance does not make economical sense as we
do not know what segment of the data we will need to be structured in the future. The following

diagram shows this specific situation:

— Cost of structuringdata | .7
- (Cpst of dealing with unstructured data
----- Tetal cost

® Minimum cost

L
an®
i

wi®
et
ast”
wee®
we?
.
o

Cost
L

Level of data structure
Figure 4.3 — Interaction between costs and benefits of structuring data — a specific situation
Storage location

The geographical location that the databases are located in is also important for a variety of reasons,

including data security, data availability, data accessibility, and, of course, operation costs.

Authority

There are two key questions under authority that are very important to consider when choosing what

type of database is appropriate:

1. Who does that data belong to?

2. Who should have the authority to update it?

Relational databases (SQL databases)

Relational databases, or structured databases, are an ecosystem of data collection and
management in which both the collected data and the incoming data must conform with a pre-defined

set of relationships between the data. For relational databases, if incoming data is not expected in a

relational database, the data cannot be stored. Until the database ecosystem is updated in such ways,

those types of incoming data are expected in the new ecosystem.

Some types of data are so different that updating the ecosystem of the database so that they are
expected will only impede the database's goals. Furthermore, for some types of data, we may not be
certain if we want to invest in them enough to change the ecosystem for them. This is often the case
for video, voice, text, and social media data that tends to have a large size. For these types of data, we
give up on changing the relational databases to accommodate them and store them in types of

databases that do not require as much structuring.

Unstructured databases (NoSQL databases)

NoSQL, or unstructured databases, are precisely the solution for the problem of wanting to store
data that we are unable to structure, or are ambivalent to do so. Furthermore, unstructured databases

can be used as an interim house for data we do not have the resources to structure just now.

The term "unstructured databases" is not literal of course. Fully unstructured data is a pile of signs
and symbols with no values. The term "unstructured databases" comes up against relational databases
to create a distinction. The following example demonstrates a practical distinction between structured

and unstructured data and their different applications for a law firm.

A practical example that requires a combination of both
structured and unstructured databases

Seif and Associates law firm has been active in the area of civil and criminal law since 1956. Back in
the day, the firm kept a paper copy of every legal document, every memo, every appeal, every
invoice, and so on. In 1998, the firm went through a major IT overhaul and created a relational
database that keeps track of all of the legal and business activities. The relational database that
supports the firm is highly structured and allows the firm four different types of reports, that only
such a highly structured database would allow. For instance, the database could report the monthly

assigned legal tasks of every paralegal.

All of the documents that are sent out to the courts and the invoices that are sent to customers are not
data objects in the database, but are produced on demand from the database. For instance, an invoice
is produced every time by checking the invoice number in the database reading the items and prices

associated with the invoice. Once all this data is found in the database, a piece of software puts them

together and prints out an invoice every time.

As the major IT overhaul in 1998 was a significant undertaking by itself, the firm never had the

chance to digitalize the paper copies from 1956 to 1998. However, 1 year ago, the firm decided to

unburden itself from having to carry all those physical copies. Now, the firm keeps a scanned version
of these documents on an unstructured database. Even though the data is all in the unstructured

database, detailed reports from this database are not possible.

An AI company has recently approached the firm and suggested that they have the technology to go
through the digital copies of the documents from 1956 to 1998 and include them in the structured
database. The firm concluded that the cost of structuring that data (the AI company's price quote)
does not meet or exceed the possible benefits of structuring it. Therefore, the firm decided that an
unstructured database for those records will suffice as they are only recorded for legal purposes and if
any of those documents are needed, the unstructured database has enough indexing, so the documents

are found in 5 to 10 minutes.

Distributed databases

When we think of structured or unstructured databases, we normally assume that each database is
located physically at one site or one computer. However, this can easily be an incorrect assumption.
There are many reasons for having multiple locations/sites/computers for a database, such as higher
data availability, lower operational costs, and superior data safety. Simply put, a distributed database
is a collection of databases (structured, unstructured, or a combination of the two) whose data is

physically stored in multiple locations. To the end user, however, it feels like just one database.

The foundation of cloud computing is distributed databases. For instance, Amazon Web Services
(AWS) is a masterfully connected web of distributed databases across the world that offers database

space with high availability and safety and bills its customers based on their actual usage.

Blockchain

We normally assume that a database is owned by one person or one organization. While this is a
correct assumption in many cases, Blockchain is the solution when central ownership and authority

are not advantageous.

For instance, this is one of the many reasons that Bitcoin has become a competitive option for digital
money. While banks' central authority of the databases provides some assurances for data safety, the
banks will also have the technological authority to cut customers off from their money if they deem
this necessary. However, Blockchain is a database alternative that does not have a central authority

while providing data safety.

The downside of Blockchain is that all of its data is stored in blocks and each block can only hold a
small amount of information. Furthermore, the complex and detailed reports that are easily produced

by relational databases cannot be created by Blockchain.

So far, we have covered some important topics:

e What are databases?
« Different types of databases

« Why we need various types of databases

Now, we turn our attention to how we can create and connect to databases and get the data we want.

Connecting to, and pulling data from, databases

For data analytics and data preprocessing, we need to have the skillset to connect to databases and
pull the data we want from them. There are a few ways you can go about this. In this section, we will
cover these ways, share their advantages and disadvantages, and, with the help of examples, we will

see how this is done.

We will cover five methods of connecting to a database: direct connection, web page connection,

API connection, request connection, and publicly shared.

Direct connection

When you are allowed access to a database directly, it means you can pull any data you want from the
database. This is a great method of pulling data from databases, but there are two major
disadvantages. First, you are rarely given direct access to databases unless you are completely trusted
by the owner of the database. Second, you need to have the skillset to interact with a database to pull
the data from it. The script you need to know for connecting to relational databases is called
Structured Query Language (SQL). In SQL, every time you want to pull data from a database, you
write a query using the SQL language. A great resource for learning SQL is available for free at

W3Schools.com: https://www.w3schools.com/sql/.

ADVICE TO BEGINNERS ABOUT LEARNING SQL

If you are not familiar with SQL, make certain to at least know the following concepts: SQL table, primary keys, and foreign
key, and the following operators: SELECT, DISTINCT, WHERE, AND, OR, ORDER BY, LIKE, JOIN, GROUP BY, COUNT(),
MIN(), MAX(), AVE(), SUM(), HAVING, and CASE. htips.//www.w3schools.com/sql/ can help you learn the topics
mentioned.

When you have written a correct query, you need to somehow send it to the database and be able to
get back the results, and for that, you need a connection to the database. There is no one way to create
a connection to the database. There is software with an interactive User Interface (UI) that can do
that for you. Examples of such software are Microsoft Access, SQL Server Management Studio
(SSMS), and SQLite.

http://w3schools.com/
https://www.w3schools.com/sql/
https://www.w3schools.com/sql/

The good news is that we can also create a connection to a database using the Python module

sqlite3. We will be using the Chinook sample database to practice connecting to databases using

Python and the module sqlite3. The following diagram shows the Chinook database using the

Unified Modeling Language (UML). This sample database has 11 tables that are connected to one

another by their primary keys to create a database that is designed to support a small/medium-sized

business that sells music tracks. The UML of a database helps to understand the connections between

tables and to design queries to pull data from a database.

MediaTypeld: INTEGER
Name: NVARCHAR(120)

Genreld: INTEGER
Name: NVARCHAR(120)

Playlistld: INTEGER
Name: NVARCHAR(120)

Playlistld: INTEGER
Trackld: INTEGER

Trackld: INTEGER
Name: NVARCHAR(120
Albumld: INTEGER
MediaTypeld: INTEGER
Genreld: INTEGER
Composer: NVARCHAR(220)
Milliseconds: INTEGER
Bytes: INTEGER
UnitPrice: NUMERIC

Artistld: INTEGER
Name: NVARCHAR(120)

Figure 4.4 — UML of the Chinook database (source: sqlitetutorial.net)

Customerld: INTEGER
InvoiceDate: DATETIME
BillingAddress: NVAR...
BillingCity: NVARCHA...
4 more columns...

Nee " A

Log l Invoiceltemld: INTEGER

Invoiceld: INTEGER
S Trackld: INTEGER
UnitPrice: NUMERIC
Quantity: INTEGER

Albumld: INTEGER
Title: NVARCHAR(160)
Artistld: INTEGER

FirstName: NVARCHAR(40)
LastName: NVARCHAR(20)
Company: NVARCHAR(80)
Address: NVARCHAR(70)
City: NVARCHAR(40)
State: NVARCHAR (40)
Country: NVARCHAR(40)

Phone: NVARCHAR(24)
Fax: NVARCHAR(24)
Email: NVARCHAR(B0)
SupportRepld: INTEGER

—HH ! Invoiceld: INTEGER ~—HH l Customerld: INTEGER

PostalCode: NVARCHAR(10)

LastName: NVARCHAR(20)
FirstName: NVARCHAR(20)
Title: NVARCHAR(30)
ReportsTo: INTEGER
BirthDate: DATETIME
HireDate: DATETIME
Address: NVARCHAR(70)
7 more columns...

J
! Employeeld: INTEGER

s

The following screenshot shows the combined use of pandas and sqlite3 modules to create a

connection to a database and read the data from the database into a pandas DataFrame. The code

employs the function pd.read_sql_query() for this purpose. This function requires two inputs: a

query in the form of a string and a connection. The code uses the sqlite3.connect () function to

create a connection, and then passes connection and query_txt into pd.read_sql_query() to have the

requested data in a DataFrame.

In [1]:

In [2]:

M

M

import sqlite3
import pandas as pd

Connection =
query_txt =

df customers =

sqlite3.connect('chinook.db")
"SELECT * FROM customers;"

pd.read_sql_query(query_txt,Connection)

Figure 4.5 — Creating a connection to chinook.db using the sqlite3 module

So far, we have covered one of the five methods of connecting to databases: direct connection. Next,
we will look at the four remaining methods: web page connection, API connection, request

connection, and publicly shared.

Web page connection

Sometimes, the owner of the database only wishes to give you controlled access to their database. As
these types of access are controlled, data sharing happens on the owner's terms. For instance, the
owner might wish to give you access to a certain part of their database. Furthermore, the owner might

not wish you to be able to pull all the data you need at once, but in timed portions.

A web page connection is one of the methods that database owners can use when offering controlled

access to their database. A great example of a web page connection can be seen and interacted with at

londonair.org.uk/london/asp/datadownload.asp. After you open this page, you can either pick a
specific location or a specific measurement. Regardless of your choice, the page takes you to another
page and takes more input from you before showing you a graph and providing you with a CSV

dataset. Go to this web page and try different inputs and download some datasets before reading on.

APl connection

The second method for giving out controlled access to databases is providing an API connection.
However, unlike the web page connection method, where a web page would navigate and respond to
your request, with API connections, a web server handles your data requests. A great example of data
sharing through an API connection is data of the stock market. Different web services provide free
and or subscription-based APIs for users to get access to live stock market data.

An example of connecting and pulling data using an API

The Finnhub Stock API (finnhub.io) is a great example of such a web service. Finnhub provides both
free and subscription-based access to its databases. You can access and use their basic stock market
data, such as daily, hourly, and minute by minute, of US stock prices. With their free version access,
you can request their basic data, such as stock prices and you may send up to 60 requests per minute.
If you need to process more than 60 requests per minute, or you want data that is not included in the

free access, you will have to subscribe.

The Finnhub free version is enough for us to practice accessing data through APIs. First, on the first
page of finnhub.io, click on Get a Free API Key and get yourself an API key. Second, type the
following code into your Jupyter notebook and change Ap1_key from the arbitrary

'abcdefghijklmnopq' to the free API key you got from finnhub.io. If you have done every step

http://londonair.org.uk/london/asp/datadownload.asp
http://finnhub.io/
http://finnhub.io/
http://finnhub.io/

correctly, you will get <Response [200]> printed out, which means everything went well. Via this
code, you connected to the Finnhub web server and collected some data:

import requests

stk_ticker = 'AMZN'

data_resolution = 'W'

timestamp_from = 1577865600

timestamp_to = 1609315200

API_Key = 'abcdefghijklmnopq'

Address_template = 'https://finnhub.io/api/vil/stock/candle?symbol={}&resolution={}&from=
{}&to={}&token={}"

API_address = Address_template.format(stk_ticker, data_resolution, timestamp_from,
timestamp_to, API_Key)

r = requests.get(API_address)

print(r)

Now, let's dissect this code together. Every API request needs to be expressed in a web address. This
is universally true; the way you should translate your request into a web address might be somewhat
different for different web servers, but they are very similar. If you have already run the proceeding
code, when you execute print (API_address), as realized in the following screenshot, you will see the
web address that claims to have the API key of abcdefghijklmnopq and requests the weekly Amazon

stock price from January 1 to December 30, 2020. Study the web address and find out each segment

of the address before reading on.

In [4]: M print(API_address)

https://finnhub.io/api/v1l/stock/candle?symbol=AMZN&resolution=W&from=157786
5600&t0=1609315200&token=bsiqli7rh5rc8orbnkqg

Figure 4.6 — Printing API_address

The following bullet points list and explain the different parts of the web address:
o symbol=AMZN specifies that you want the prices with the stock ticker AMZN, which indicates Amazon.

« resolution=W specifies that you want the weekly prices. You could request minute by minute, every 5 minutes, every 15

minutes, every half an hour, hourly, daily, weekly, and monthly prices by using, respectively, 1, 5, 15, 30, 60, D, W, and M.

o from=1577865600 specifies the time from which you want data. The weird-looking number is a timestamp for January 1,
2020.

o t0=1609315200 specifies the time up to which you want data. The weird-looking number is a timestamp for December 30,
2020.

. token=abcdefghijklmnopq specifies the API key for this address.

What is next?

Now that you understand the preceding code and you have got the <Response [200]> message, we
need to access and use the data. Let's do this step by step. First, run and study the output of the
following code:

print(r.json())
The output is a JSON formatted string that has the following structure: {'c': a list with 51

numbers, 'h': a list with 51 numbers, 'l': a list with 51 numbers, 'o': a list with 51

numbers, 's': 'okay', 't: a list with 51 numbers, 'v': a list with 51 numbers}.
The output basically shows the 51-week data of Amazon stock prices. The following list shows what
each letter stands for.

o 'c': the closing price for the period

o "h': the highest price during the period

o '1": the lowest price during the period

« '0':the opening price for the period

o 's':the status of the stock

o 't':the timestamp showing the end of the period

o 'v':the trading volume in the period

Working with the stock data when presented with this format is not easy. However, transforming it to

a format that you are used to is easy. Run the following code and study the output:

AMZN_df = pd.DataFrame(r.json())

AMZN_df

After running the code, the data will be presented in Amzn_df, which is a pandas DataFrame. A pandas

DataFrame is a data structure that we like as we know how to manipulate the data using multiple

pandas functions.

Putting it all together

The following screenshot shows all the preceding code that created aAMzn_df and another six lines of

code that are added to restructure the data into a more presentable and codeable format:

In [7]: M| from datetime import datetime
import requests
import pandas

stk_ticker = "AMZN'

data_resolution = "W’

timestamp_from = 1577865600

timestamp_to = 1609315200

API_Key = 'bsiqli7rh5rc8orbnkqgg’

Address_template = 'https://finnhub.io/api/v1/stock/candle?symbol={}&resolut:

API_address = Address_template.format(stk_ticker,data_resolution,
timestamp_from,timestamp_to,API_Key)

AMZN_df = pd.DataFrame(r.json())
AMZN_df.drop(columns=["'s"'],inplace=True)

AMZN_df.t = AMZN_df.t.apply(datetime.fromtimestamp)

AMZN_df.t = AMZN_df.t.apply(lambda v:v.date())
AMZN_df.set_index('t',drop=True,inplace=True)

AMZN_df.columns = ['Closing', 'High','Low", 'Opening’, 'Volume']
AMZN_df.head()

Out[7]:

Closing High Low Opening Volume
t

2020-01-01 1891.97 1913.89 1860.00 1875.00 19514188
2020-01-08 1862.02 1917.82 1855.09 1909.89 15160738
2020-01-15 1887.46 1902.50 1857.25 1882.99 13580875
2020-01-22 1858.00 1894.99 1815.34 1885.11 14688733

2020-01-29 2039.87 2071.02 1850.61 1858.00 37459327

Figure 4.7 — An example of using an API connection to connect and pull data
The following list indicates how each added line of code contributes to this goal.

o inplace=True: When this is added to a pandas function, you mean to specify that you want the requested change to be applied
to the DataFrame itself. The alternative is to have the function output a new DataFrame that has the requested change. This code is

added to two of the following lines of code.

o AMZN_df.drop(columns=['s'],inplace=True): This line of code drops the column s as this column only has one

value across all the data objects.

e AMZN_df.t = AMZN_df.t.apply(datetime.fromtimestamp): This line of code applies the
datetime.fromtimestamp function from the datatime module to the column t. This function takes a timestamp and
transforms it into a DateTime object. Run datetime.fromtimestamp(1609315200) to see the workings of this

function.

o AMZN_df.t = AMZN_df.t.apply(lambda v:v.date()): This line of code applies a lambda function to only keep the

date part of a DataTime object as the time for all the data objects is 16:00.

« AMZN_df.set_index('t',drop=True, inplace=True): This line of code sets the column t as the index of the

DataFrame. The part drop=True indicates that you want the original index to be dropped.

e« AMZN_df.columns = ['Closing', 'High', 'Low', 'Opening', 'Volume']: This line of code changes the name
of AMZN_df columns.

o AMZN_df.head(): This line of code outputs a DataFrame with only the first five rows of the AMZN_df DataFrame.

So far, we have covered three of the five methods of connecting to databases: direct connection, web
page connection, and API connection. Next, we will look at the remaining two methods: request

connection and publicly shared.

Request connection

This type of connection to a database happens when you do not have any access to the database of
interest under any of the three preceding methods, but you know someone who has access and is
authorized to share some parts of the data with you. In this method, you need to clearly explain what
data you need from the database. This method of accessing the database has some pros and cons. See

Exercise 4 to figure out what they are.

Publicly shared

This method of connecting to databases is the least flexible. Under the publicly shared method, the
owner of the database has extracted one dataset out of the databases they owned and has provided
access to that one dataset. For instance, almost all of the datasets that you find on kaggle.com fall
under this method of connecting to a database. Furthermore, most of the data access that is provided

under data.gov also falls under this inflexible access to the databases.

Summary

Congratulations on successfully finishing this chapter! Now you are equipped with a powerful

understanding of databases and it will pay dividends in your quest for effective data preprocessing.

In this chapter, you learned the technological role of databases in data analytics and data
preprocessing. You also learned about different kinds of databases and how they should be chosen for
different situations. Specifically, you understood how you would decide about the level of data
structures in their databases. Last but not least, you learned the five different methods of connecting

to, and pulling data from, databases.

This chapter concludes your learning of part 1 of this book: Technical needs. Now you are ready to
start learning about analytics goals, which is the second part of this book. The technical needs will

empower you to use technology to effectively read and manipulate data. The analytics goals will give

http://kaggle.com/
http://data.gov/

you a foundational understanding so that you know for what purposes you will need to manipulate
the data.

The next part of the book will be an exciting one as we will see examples of what can be done with
data. However, before moving on to the next part, take some time and solidify and improve your

learnings by completing the following exercises.

Exercises

1. In your own words, describe the difference between a dataset and a database.

2. What are the advantages and disadvantages of structuring data for a relational database? Mention at least two advantages and two

disadvantages. Use examples to elucidate.

3. In this chapter, we were introduced to four different types of databases: relational databases, unstructured databases, distributed

databases, and Blockchain.

a. Use the following table to specify a ranking for each of the four types of databases based on the

criteria presented in the table.
b. Provide reasoning for your selections.

The table already has some of the rankings to get you started. N/A stands for Not applicable.

Study the ranking provided and give your reasoning as to why they are correct.

Relational | Unstructured | Distributed Blockchain
Databases | Databases databases

Ease of loading new data to 5 1 1672 N/A

the database

Ease of introducing new

types of data to the database

Data access reliability 2 2 1 N/A

Decentralized authority

Ease of creating more

detailed reports

Ease of recording larger sizes

of data

Better manageability of

operational costs

Pronfe to p9I|t|ca| N/A N/A 1 5

considerations

The need for more

preprocessing for analytic

purposes

Figure 4.8 — Database type ranking

4. In this chapter, we were introduced to five different methods for connecting to databases: direct connection, web page connection,
API connection, request connection, and publicly shared. Use the following table to indicate a ranking for each of the five
methods of connecting to databases based on the specified criteria. Study the rankings and provide reasoning as to why they are

correct.

Direct Web page API Request Publicly

Connection | Connection | Connection | Connection Shared
Flexibility of access 1 2 2 4 5
PrFJne to hur.nan. 5 5 5 1 5
miscommunications
Nged for a high level of technical 1 3 5 4 5
skillset
Need for knowing the database 1 5 5 5 5
tables
Fastest access to the desired data 1 2 2 5 4
More code-friendly 1 5 2 5 5
Awareness of the possibilities in 1 3 3 5 €
the database
Least time-consuming data pulling 1 3 2 5 4
Highest database security 4 2 2 3 1

Figure 4.9 — Ranking of database connection methods

5. Using the Chinook database as an example, we want to investigate and find an answer to the following question: Do tracks that

are titled using positive words sell better on average than tracks that are titled with negative words. We would like to focus solely

on the following words in the investigations:

List of negative words: ['Evil', 'Night', 'Problem’, 'Sorrow’, 'Dead’, 'Curse', '"Venom', 'Pain’,

'Lonely’, 'Beast']

List of positive words: ['Amazing', 'Angel’, 'Perfect’, 'Sunshine', 'Home', 'Live', 'Friends']

a. Connect to the Chinook database using sqlite3 and execute the following query:

SELECT * FROM tracks join invoice_items on tracks.TrackId = invoice_items.TrackId

b. Use the skills you learned in previous chapters (applying a function, group by function, and so

on) to come up with a table that lists the average total sales for tracks containing good words and

the same for tracks containing bad words. Here is what the table will look like:

TotalSale

MusicTitleTyple
Negative 1.110000
Neither 1.174550
Positive 1.188667

Figure 4.10 — Table report from the Chinook database for Exercise 5

c. Report your conclusions.

6. In the year 2020, which of the following 12 stocks experienced the highest growth.
Stocks: ['Baba’, 'NVR', '"AAPL', 'NFLX', 'FB', 'SBUX', ' NOW', 'AMZN', 'GOOGL', 'MSFT",
'FDX', and 'TSLA']
For a good estimate of growth, use both formula 1 and formula 2 on the weekly closing stock
prices. (a) Formulai: (a-b), and (b) Formula2: (a-b)/c
In these formulas, a, b, and c are, respectively, the stock closing price for 2020, the median of

stock prices during 2020, and the mean of stock prices during 2020.

Based on each formula, what is the stock with the highest growth, and what is the difference

between the outcome of each formula?

Part 2: Analytic Goals

After reading this part, you will be able to perform popular analytics using cleaned and issue-free
data.
This part comprises the following chapters:

e Chapter 5, Data Visualization

o Chapter 6, Prediction

o Chapter 7, Classification

o Chapter 8, Clustering Analysis

Chapter 5: Data Visualization

Being able to visualize data is the backbone of data analysis. The area of data visualization is very
exciting, as there are endless possibilities for novelty and creativity in drawing visualizations that tell
better stories about your data. However, the core mechanisms of even the most innovative graphs are
similar. In this chapter, we will cover these fundamental mechanisms of visualizations that give life to

the data and allow us to compare, analyze, and see patterns in it.

As you will learn these fundamental mechanisms, you will also be developing a better
backbone/skillset for your data preprocessing goals. If you can fully understand the connection
between the data and its visualizations, you will be more effective at preprocessing data for effective
visuals. In this chapter, you will work with the data that I have already preprocessed, but in later
chapters, we will cover the concepts and techniques that lead to these preprocessed datasets.
This chapter will cover the following main topics:

o Summarizing a population

« Comparing populations

« Investigating the relationship between two attributes

¢ Adding visual dimensions

« Showing and comparing trends

Technical requirements

You will be able to find the codes and dataset for this chapter in the book's GitHub repository in the

chapteros folder:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Summarizing a population

You can use simple tools such as the histogram, boxplot, or bar chart to visualize the variations in
the values of one column of a dataset across the populations of the data object. These visualizations

are immensely useful, as they help you to see the values of one attribute at a glance.

One of the most common reasons for using these visuals is to familiarize yourself with a dataset. The
term getting to know your data is famous among data scientists and is said time and again to be one

of the most necessary steps for successful data analytics and data preprocessing.

What we mean by getting to know a dataset is understanding and exploring the statistical information

for each attribute of the dataset. That is, we want to know what types of values each attribute has and

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

how the values vary across the population of the datasets.

For this purpose, we use data visualization tools to summarize the data object population per
attribute. Numerical and categorical attributes require different tools for each type of attribute. For
numerical attributes, we can use either the histogram or boxplot to summarize the attribute, whereas
for categorical attributes, it is best to use bar charts. The following examples walk you through how

this can be done all at once for any dataset.

Example of summarizing numerical attributes

Write some code that does the following:
1. Reads the adult. csv dataset into the adult_df pandas DataFrame
2. Creates a histogram and boxplots for the numerical attributes of adult_df

3. Saves the figure for each attribute with a 600 mpi resolution in a separate file

Give the preceding example a try before looking at the following code:
1. First, we will import the modules that we will use throughout this chapter:
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
2. Then, we start working on the problem:
adult_df = pd.read_csv('adult.csv')

numerical_attributes = ['age', 'fnlwgt', 'education-num', 'capitalGain', 'capitallLoss',
"hoursPerWeek']

for att in numerical_attributes:
plt.subplot(2,1,1)
adult_df[att].plot.hist()
plt.subplot(2,1,2)
adult_df[att].plot.box(vert=False)
plt.tight_layout()
plt.show()

plt.savefig('{}.png'.format(att), dpi=600)

When you run this code, the Jupyter notebook will show you all 12 charts. Each numerical attribute
will have one histogram and one boxplot. The code will also save a .png file on your computer for
each attribute that saves the histogram and boxplot of the attribute. For example, the following figure

shows the education-num.png file that was saved on my computer after running the preceding code:

10000 A

> 7500 -
=
3
S 5000 -
[}
i
2500 -
0_
2 4 16
education-num4{ ©0 O O O | |
2 4 6 8 10 12 14 16

Figure 5.1 — education-num.png

WHERE ARE THE FILES ON MY COMPUTER?

If you have difficulty finding the files on your computer, you need to understand the difference between an absolute file
path and a relative file path. The absolute file path includes the root element and the complete directory path. However, the
relative path is given with an understanding that you are already in a specific directory.

In the preceding code, we did not include the root element in the file path when using p1t.savefig(), so Python
correctly read this as a relative path and assumed that you want the files to be saved in the same directory as the one you

have in your Jupyter notebook file.

In this example, you saw the application of boxplots and histograms to summarize the numerical
attributes of a dataset. Now, let's look at another example that shows you similar steps for categorical

attributes. For categorical attributes, we always use bar charts.

Example of summarizing categorical attributes

Write some code that does the following:

1. Creates bar charts for the categorical attributes of adult_df

2. Saves the figure for each attribute with a 600 mp1i resolution in a separate file

Give the preceding example a try before looking at the following code:

categorical _attributes = ['workclass', 'education', 'marital-status', 'occupation',
'relationship', 'race', 'sex', 'nativeCountry', "income']

for att in categorical_attributes:

adult_df[att].value_counts().plot.barh()

plt.title(att)

plt.tight_layout()

plt.savefig('{}.png'.format(att), dpi=600)

plt.show()
When you run this code, the Jupyter notebook will show you all nine charts. Each categorical
attribute will have one bar chart. The code will also save a .png file on your computer for each

attribute that saves the bar chart of the attribute. For example, the following figure shows the

education.png file that was saved on my computer after running the preceding code:

education

Preschool
1st-4th
5th-6th

Doctorate

12th

9th
Prof-school
7th-8th

10th
Assoc-acdm
11th
Assoc-voc
Masters
Bachelors
Some-college
HS-grad

0 2000 4000 6000 8000 10000
Figure 5.2 — education.png

GOOD PRACTICE ADVICE

Technically, you could also use a pie chart to summarize a categorical attribute. However, | advise against it. The reason is
that pie charts are not as easily digested by our human brains as bar charts. It has been shown we do much better in
appreciating differences in length than the difference in chunks of pies.

So far, you were able to create visualizations that are meant to summarize a population. There are
other advantages of being able to do this. Now that we can create these visualizations, we can also
create more than one of them and put them next to one another for comparison. The next section will

teach you how to do this.

Comparing populations

Putting these kinds of summarizing visualizations of different populations next to one another will be
useful to create visuals that help us compare those populations. This can be done with histograms,

boxplots, and bar charts. Let's see how this is done using the following three examples.

Example of comparing populations using boxplots

Write some code that creates the following two boxplots next to one another:
« A boxplot of education-num for data objects with an income value that is <=50K

« A boxplot of education-num for data objects with an income value that is >50K

Give the preceding example a try on your own before looking at the following code:
income_possibilities = adult_df.income.unique()
for poss in income_possibilities:

BM = adult_df.income == poss

plt.hist(adult_df[BM]['education-num'], label=poss, histtype="'step')

plt.boxplot(dataForBox_dic.values(),vert=False)
plt.yticks([1,2],income_possibilities)

plt.show()

Once you run this code, the Jupyter notebook will display the following figure:

<=50K<0000000|—E|—|ooooo

Figure 5.3 — Boxplots of education-num for two populations of income <=50K and >50K

Let's first go through the code before discussing the preceding visual. To completely understand the

functioning of the preceding code, you will need to understand three concepts:

1. The code first loops through all the populations that we want to be included in the visual. Here, we have two populations: data
objects with an income <=50K and data objects with an income >50K. In each iteration of the loop, the code uses Boolean

masking to extract each specific population from adult_df.

2. The code uses dataForBox_dic, which is a dictionary data structure, as a placeholder. On each iteration of the loop, the code

adds a new key and its specific value. In the case of this code, there are two iterations. The first iteration adds '<=50K ' as the

first key and all the education-num values of the specific population as the value of the key. All those values are assigned to

each key as a Pandas Series. On the second iteration, the code does the same thing for '>50K '.

3. After the loop is completed, the dataForBox_dic is full with the necessary data, so p1t.boxplot () can be applied to
create the visuals with two boxplots. The reason that dataForBox_dic.values() is passed instead of dataForBox_dic
is that p1t.boxplot () requires the dictionary that is passed for drawing only has strings as keys and lists of numbers as values
of the keys. Add print (dataForBox_dic) and print(dataForBox_dic.values()) before and after the loop to see

all these differences on your own.

Now, let's bring our attention to the merit of the output of the preceding code, which is shown in
Figure 5.3. As you can see, the visual clearly tells the story of how education is important for higher

income.

Example of comparing populations using histograms

Write some code that creates the following two histograms in the same plot:
« A histogram of education-num for data objects with an income value that is <=50K

o A histogram of education-num for data objects with an income value that is >50K

Give the preceding example a try on your own before looking at the following code:
income_possibilities = adult_df.income.unique()
for poss in income_possibilities:

BM = adult_df.income == poss

plt.hist(adult_df[BM]['education-num'], label=poss, histtype='step')
plt.legend()

plt.show()

Once you run this code, the Jupyter notebook will display the following figure:

3 <=50K
8000 1 >50K
6000 -
4000 A
2000 -
P el —]

2 - 6 8 10 12 14 16
Figure 5.4 — Histograms of education-num for two populations of income <=50K and >50K

The code for creating histograms is less complicated than the code for creating boxplots. The major
difference is that for histograms, you do not need to use a placeholder to prepare the data for
plt.boxplot(). With plt.hist(), you can just call it as many times as you need and Matplotlib will
put these visuals on top of one another. The code, however, uses two of the plt.hist() properties:
label=poss and histtype='step'. The following explains the necessity of both:

o label=poss is added to the code so that p1t.legend() can add the legends to the visual. Remove label=poss from the

code and study the warning that running the update code gives you.
o histtype='step' is setting the type of histogram. There are two different histograms that you can choose from: 'bar' or

'step'. Change histtype="step' to histtype='bar' and run the code to see the difference between them.

The following figure is created by using plt. subplot() to put Figure 5.3 and Figure 5.4 together. I

have not shared the code here, so challenge yourself to create it before reading on:

>50K - coo0oo0 —m(T }+—

<==50k{0 0 0 00O OO0 ——1+H— O0O0OOTUOO

.
-
-

6 8 W 12 1 16

[
=

8000 [<=50K
[=50K
6000 -
4000 -
2000 -
2 4 6 8 10 12 14 16

Figure 5.5 — Histograms and boxplots of education-num for two populations of income <=50K and >50K

These two visuals next to one another can help us see the differences and similarities between the two
populations easily, and that is the value we get from creating them and meaningfully organizing them

together.

So far, we have learned how to compare populations that are described by numerical attributes. Now,
let's look at an example that will teach us how we can compare populations that are described by

categorical attributes. For this purpose, we will use bar charts.

Example of comparing populations using bar charts

Create a visualization that uses bar charts to compare the categorical attribute race for the two

following populations:
« Data objects with an income value that is <=50K

« Data objects with an 1ncome value that is >50K

Give this a try on your own before reading on.

You can do this in six different but meaningful ways. Let's go through all of the possible ways that
this can be done.
The first way of solving the problem

The following screenshot shows the code and its output for the first way. In this way of solving the
problem, we have used plt.subplot () to put the bar charts of the two populations on top of one

another:

In [8]: M income_possibilities = adult_df.income.unique()

for i,poss in enumerate(income_possibilities):
plt.subplot(2,1,i+1)
BM = adult_df.income == poss
adult_df[BM].race.value_counts().plot.barh()
plt.x1im([©,22000])
plt.ylabel(poss)

Other
Amer-Indian-Eskimo
Asian-Pac-Islander
Black

White

0 2500 5000 7500 10000 12500 15000 17500 20000

<=50K

Other
Amer-Indian-Eskimo
Asian-Pac-Islander
Black

White

0 2500 5000 7500 10000 12500 15000 17500 20000

>50K

Figure 5.6 — The first way of solving the problem (screenshot of the code and its output)

While this way of solving the problem is legitimate and valuable, bar chats are capable of fusing the
chart of the two populations at different levels. The five other ways show these levels.
The second way of solving the problem

The following screenshot shows the code and its output for the second way. In this way of coding it,
we have merged the two visuals we saw in Figure 5.6 and we only have one bar chart that contains
all the information. However, this merging has come at the price of having to make the y-ticks of the

chart more complicated. Take a moment to compare Figure 5.6 and Figure 5.7 before reading on:

In [9]: M adult_df.groupby(['income', 'race']).size().plot.barh()
plt.show()

(>50K, White)

(=50K, Other)

(>50K, Black)

(>50K, Asian-Pac-Islander)

(>50K, Amer-Indian-Eskimo)

(<=50K, White)

(==50K, Other)

(<=50K, Black)

(<=50K, Asian-Pac-Islander)

(«<=50K, Amer-Indian-Eskimo)
0 2500 5000 7500 10000 12500 15000 17500 20000

income,race

Figure 5.7 — The second way of solving the problem (screenshot of the code and its output)

So far, we have managed to somewhat fuse the bar charts of the two populations. Let's take another
step by using a legend and colors to make the resulting chart a bit stronger.
The third way of solving the problem

The following screenshot shows the code and its output for the third way. In this way, we have used a
legend and different colors to represent each possibility under the race attribute. Compared to the

fusion in Figure 5.7, the fusion in the following figure is more effective:

In [10]: M adult_df.groupby(['income', 'race']).size().unstack().plot.barh()

plt.show()
race
R Amer-Indian-Eskimo
Bl Asian-Pac-Islander
>50K = Black
EEE Other
B N \White
E
S
£
<=50K

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.8 — The third way of solving the problem (screenshot of the code and its output)

While the comparison of the two populations based on income is possible with all three preceding
figures, the comparison of each possibility of the race attribute is not easily done. The next three

ways of solving this problem will highlight visualizations that make that easier.

The fourth way of solving the problem

The following screenshot shows the code and its output for the fourth way. In this approach, we have
coded the visual so that the two possibilities of the income attribute are next to one another for each

possibility of the race attribute. This way allows us to compare both income group populations
(income <=50K and income >50K) against each race attribute.

In [11]: M adult_df.groupby(['race','income']).size().plot.barh()

plt.show()
(White, >50K)
(White, <=50K)
(Other, >50K)
" (Other, <=50K)
- (Black, >50K)
'ij (Black, <=50K)
€ (Asian-Pac-islander, >50K)
(Asian-Pac-Islander, <=50K)
(Amer-Indian-Eskimo, >50K)
(Amer-Indian-Eskimo, <=50K)

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.9 — The fourth way of solving the problem (screenshot of the code and its output)

The fusion level of the preceding visual can be improved, and the next way of solving this problem
will do this.

The fifth way of solving the problem

The following screenshot shows the code and its output for the fifth way. The only difference
between this and the previous way is the use of a legend and colors to make the visual more
presentable and neater. Without reservations, we can claim that Figure 5.10 is more effective in

solving this problem than Figure 5.9. Why?

In [12]: M adult_df.groupby(['race', 'income’]).size().unstack().plot.barh()
plt.legend(loc=4)

plt.show()
White
Other
g Black

Asian-Pac-Islander

N <=50K

Amer-Indian-Eskimo . 50K

0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 5.10 — The fifth way of solving the problem (screenshot of the code and its output)
The last way of presenting this data is to stack the two bars under each race category, instead of
having them next to one another. The next way of solving the problem will show how that can be
done.

The sixth way of solving the problem

The following screenshot shows the code and its output for the sixth way. The visual created from

this code is called a stacked bar chart.

In [13]: M adult_df.groupby(['race', 'income']).size().unstack().plot.barh(stacked=True)
plt.legend(loc=4)

Out[13]: <matplotlib.legend.Legend at 9x2ac©34b4970>

White

Other

Black

race

Asian-Pac-Islander

Amer-indion-Eski N <=50K
er-Indian-Eskimo — >50K

0 5000 10000 15000 20000 25000

Figure 5.11 — The sixth way of solving the problem (screenshot of the code and its output)

We prefer a stacked bar chart to a typical bar chart when we know the total number of data objects
under each possibility is more important than the comparison between populations. In this case, as we
are creating this visual to compare the two income group populations, using a stacked bar chart is not

very wise.

So far in this chapter, we have learned how we can summarize and compare populations of data
objects based on one attribute. Next, we are going to learn how we can see if two or more attributes
have specific relationships with one another.

Investigating the relationship between two attributes

The best way to investigate the relationships between attributes visually is to do it in pairs. The tools
we use for investigating the relationship between a pair of attributes depends on the type of attributes.
In what follows, we will cover these tools based on the following pairs: numerical-numerical,

categorical-categorical, and categorical-numerical.

Visualizing the relationship between two numerical
attributes

The best tool for portraying the relationship between two numerical attributes is the scatter plot. In
the following example, we will use a tool called scatter matrix that creates a matrix of scatterplots
for a dataset with numerical attributes.

Example of using scatterplots to investigate relationships
between numerical attributes

In this example, we will use a new dataset, Universities_imputed_reduced.csv. This dataset's
definition of data objects is universities in the USA, and these data objects are described using the
following attributes: college Name, State, Public/Private, num_appli_rec, num_appl_accepted,
num_new_stud_enrolled, in-state tuition, out-of-state tuition, % fac. w/PHD, stud./fac. Ratio,
and 6raduation rate. The naming of these attributes is very intuitive and does not need further

description.

To practice, apply the techniques that you have learned so far to get to know this new dataset before

reading on. It will help your understanding immensely.

The following code uses the pariplot () function of the seaborn module to create a scatter plot for
every pair combination of the numerical attributes in the uni_df DataFrame. If you have never used
the seaborn module before, you need to install it first. How to install seaborn is shown in Chapter 4,

Databases, in the Statistical meaning of the word pattern section:

import seaborn as sns

uni_df = pd.read_csv('Universities_imputed_reduced.csv')
sns.pairplot(uni_df)

After running the preceding code, the Jupyter notebook will show you Figure 5.12. Using this figure,
you can investigate the relationship between any two attributes in uni_df. For instance, you can see
that there is a strong relationship between num_appl_accepted and num_new_stud_enrolled, which
makes sense. As the number of accepted applications increases, we would expect the number of new

enrollments to increase.

Furthermore, by studying the last column or the last row of the scatter matrix in the following figure,
you can study the relationship between graduation and all the other attributes one by one. After doing
so, you can see that, surprisingly and interestingly, the graduation rate attribute's strongest
relationship is with in-state tuition and out-of-state tuition. Interestingly, graduation does not
have a strong relationship with other attributes, such as num_new_stud_enrolled, % fac. w/PHD, and

stud./fac. Ratio.

% fac. wPHD

stud Jfac. ratio
83 3
L

o
Lo
B

5 B
e s
.

Graduation rate

2 8 8 8

wo o0] s 100

0 20000 40000 0 10000 20000 0 2000 4000 6000 0 0 10000 20000

10000 20000 5 0 75 W 6@ 0 7
rum_appli_rec num_appl_accepted num_new_stud_enrolled in-state tuition out-of-state tuition % fac. wPHD stud./fac. ratio Graduation rate

Figure 5.12 — Scatter matrix of the uni_df DataFrame

Now that we have practiced making visuals to investigate the relationship between numerical

attributes, next, we will do the same for categorical attributes.

Visualizing the relationship between two categorical
attributes

The best visual tool for examining the relationship between two categorical attributes is the color-
coded contingency table. A contingency table is a matrix that shows the frequency of data objects in

all the possible value combinations of two attributes. While you could create a contingency table for

numerical attributes, doing so in most cases will not lead to effective visualizations; contingency
tables are almost always used for categorical attributes.

Example of using a contingency table to examine the
relationship between two categorical (binary) attributes

In this example, we are interested to see if there is a relationship between two categorical attributes,
sex and income, among the data objects in adult_df. To examine this relationship, we will use a
contingency table. The following screenshot shows how this can be done using the pd.crosstab()

pandas function. This function gets two attributes and outputs the contingency table for them:

In [15]: M contingency_tbl = pd.crosstab(adult_df.income,adult_df.sex)
contingency_tbl

Out[15]:
sex Female Male

income

<=50K 9592 15128
>50K 1179 6662

Figure 5.13 — The code and output of creating a contingency table for two categorical attributes, adult_df.sex and
adult_df.income

You can see in the outputted contingency table in the preceding screenshot that, while around 11% of
female data objects have an income >50K, around 30% of male data objects have an income >50K.
To derive such conclusions from a contingency table we normally do some simple calculations, such
as the one we did just now; we calculated the relative percentages of the income totals for each
gender. However, we could color code the contingency table so that these extra steps are not be
needed. The following screenshot displays a two-step process for doing this by using the

sns.heatmapt () function from the seaborn module:

In [16]: M probablity tbl = contingency_tbl/ contingency_tbl.sum()
sns.heatmap(probablity_tbl, annot=True, center=0.5 ,cmap="Greys")
plt.show()

08

0.7

50K

06

<

05

income

-04

- 0.11 031 03

>50K

-02

I i
Female Male
sex

Figure 5.14 — Transforming the contingency table from Figure 5.13 into a heatmap

The two steps to create the color-coded contingency table from the original contingency table are as
follows:

1. Create a probability table from the contingency table by dividing the values of each column by the sum of all the values in the

column.

2. Use sns.heatmap () to create the color-coded contingency table. Apart from inputting the calculated probability table
(probablity_tbl) from the previous step, three more inputs are added: annot=True, center=0.5, and
cmap="6reys". Remove them one by one and run the same code shown in the preceding screenshot to understand what each

addition does.

Now, by simply looking at the color-coded contingency table in the preceding screenshot, we can see
that while among both males and females, more data objects earn <=50K, data objects that are male
are more likely to earn >50K than female data objects. Therefore, we can conclude that sex and

income do have a meaningful and visualizable relationship with one another.

This example examines the relationship between two binary attributes. When the attributes are not
binary, the steps we take to create a color-coded contingency table are identical. Let's see this in an
example.

Example of a using contingency table to relationship between
two categorical (non-binary) attributes

Create a visualization that examines the relationship between the race and occupation attributes for

the data objects in adult_df.

Give this a try on your own before reading on.

The following screenshot displays the code and the correct output for this example:

In [17]: M contingency_tbl = pd.crosstab(adult_df.occupation,adult_df.race)
probablity tbl = contingency tbl/ contingency_ tbl.sum()
sns.heatmap(probablity tbl, annot=True, center=0.5 ,cmap="Greys")

plt.show()
Adm-clerical - 0.11 014 017 01 012
Armed-Forces - 0.0035 0 0.00034 0 0.00027 -0.175
Craft-repair - 015 0.091 0084 011 014
Exec-managerial - 0.1 014 0.084 0.044 0.14 -0.150

Farming-fishing - 0.035 0016 0014 0044 0.035

S Handlers-cleaners - 0077 0024 0062 0048 0043 s
£ Machine-op-inspct - 0.066 0.061 0.094 0.16 0.061 - 0.100
S Othersevice- 012 013 02 016 0096
8 Priv-house-serv - 0 00041 00096 0.012 0.0043 - 0075
Prof-specialty - 0.12 019 0.082 0.12 014
Protective-serv - 0.028 0015 0035 0.02 0.02 -0.050
Sales - 0.091 0.11 0.087 0.1 0.12
Ech-support - 0.014 0045 0024 0012 0031 -0.025
TFansport-moving - 0.087 0.029 0.058 0.056 0.052
\ i i i i - 0.000
: 5 3§ @ ¢
:;.' ~§ @ g $
c T
E ok
£ &
o ©
g 2
race

Figure 5.15 — Creating a contingency heatmap for the two categorical attributes, adult_df.race and adult_df.occupation

In the color-coded table, you can clearly see the following patterns:

« Data objects with the race attribute value of white are more likely to have the occupation attribute values of Craft -

repair, Exec-managerial, or Prof-specialty

« Data objects with the race attribute value of black are more likely to have the occupation attribute values of Adm-

clerical and Other-service

« Data objects with the race attribute value of Asian-Pac-Islander are more likely to have the occupation attribute

value of Prof-specialty

« Data objects with the race attribute value of Amer -Indian-Eskimo are more likely to have the occupation attribute

value of Craft-repair.

Again, using the contingency table we can see that there is a visualizable and meaningful relationship

between race and occupation among the data object in adult_df.

So far, we have learned how to visualize the relationships between pairs of attributes of the same
type, namely, numerical-numerical and categorical-categorical. Next, we will tackle visualizing the

relationship for the non-matching pairs, specifically, numerical-categorical.

Visualizing the relationship between a numerical
attribute and a categorical attribute

What makes this situation more challenging is obvious: the types of the attributes are different. To be
able to visualize the relationship between a categorical attribute and a numeric attribute, one of the
attributes has to be transformed into the other type of attribute. Almost always, it is best to transform
the numerical attribute into a categorical one, and then use a contingency table to examine the
relationship between the two attributes. The following example shows how this can be done.

Example of examining the relationship between a categorical
attribute and a numerical attribute

First, create a visualization that examines the relationship between the race and age attributes for the

data objects in adult_df.

The Age attribute is numerical and the race attribute is categorical. So first, we need to transform age
into a categorical attribute. Then, we can use a contingency table to visualize their relationship. The

following screenshot shows these steps:

In [18]: M age_discretized = pd.cut(adult_df.age, bins = 5)
contingency tbl = pd.crosstab(age discretized,adult_df.race)
probablity tbl = contingency tbl/ contingency tbl.sum()
sns.heatmap(probablity_tbl, annot=True, center=0.5 ,cmap="Greys")

plt.show()
05
(16.927, 31.6]
04
(31.6, 46.2] 0.34
-03
'!!" (46.2,60.8] - 017 017 0.19 012 02
-02
(60.8, 75.4] - 0.032 0.048 0.05 0.015 0.067
-01

(75.4,90.0] - 00064 00067 00038 00037 00079

Black -
Other -
White -

Amer-Indian-Eskimo -
Asian-Pac-Islander -

race

Figure 5.16 — Creating a contingency heatmap for a categorical attribute (adult_df.race) and a numerical attribute
(adult_df.age)

The solution showed in the preceding screenshot has the following three steps:

1. Use the pd. cut () pandas function to transform adult_df.age into a categorical attribute with five possibilities. Choosing 5
bins is arbitrary, but it is a good number unless there are good reasons to group the data into a different number of bins.
Discretization is what we call the transformation of a numerical attribute into a categorical one; that is why we have used

age_discretized as the name for the transformed adult_df . age attribute.
2. Create a contingency table for age_discretized and adult_df.race using the pd.crosstab() pandas function.

3. Create a probability table using the contingency table created in the previous step and then use sns.heatmap () to create the

color-coded contingency table.

The output visual shows that there is a meaningful and visualizable relationship between the two
attributes. Specifically, the data objects that have other for the race attribute are younger than the
data objects where the race attributes are white, black, asian-Pac-Islander, and Amer-Indian-

Eskimo.

This example demonstrated the common scenario where the numerical attribute will be transformed
into a categorical attribute to examine its relationship with another categorical attribute. While this is
will be the best way to go about this in almost all cases, there are cases where it is advantageous to
transform the categorical attribute into a numerical one. The following example shows a rare
situation where this transformation is preferred.

Another example of examining the relationship between a
categorical attribute and a numerical attribute

First, create a visualization that examines the relationship between the education and age attributes

for the data objects in adult_df.

Again, we have a categorical attribute and a numerical attribute. However, this time, the categorical
attribute has two characteristics that make it possible for us to choose the less common way to

approach this situation. These two characteristics are as follows:
« Education is an ordinal categorical attribute and not a nominal categorical attribute.

« The attribute can be made into a numeric attribute with a few reasonable assumptions.

The default method to transform an ordinal attribute to a numerical one is ranking transformation.
For instance, you can perform a ranking transformation on the education attribute and replace each
of the possibilities under adult_df.education with an integer number. Interestingly, the adult_df
dataset already has another attribute that is the rank transformation of the education attribute, and
that transformed attribute is called education-num. The following figure shows the one-to-one

relationship between these two attributes:

education Preschool 'S B T g gt q1th 1ot HS; SOme- Assoc- ASSOC- g poiore Masters D'OC Doctorate
4th 6th 8th grad college voc acdm school

education-

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
num

Figure 5.17 — The one-to-one relationship between the education and education-num attributes in adult_df

You can see the relationship between the two attributes portrayed in the preceding figure yourself by
running the following code:

adult_df.['education', 'education-num']).size()

When you run this code, you will see that the .groupy() function does not split per possibilities of
education-num for education; the reason for this is that there is a one-to-one relationship between

these two attributes.

Now that we have the numerical version of the education attribute, we can use a scatter plot to
visualize the relationship between education and age. The following screenshot shows the code and

the visualization:

In [21]: M adult_df.plot.scatter(x='age',y="education-num")
plt.show()

16 A * oossdatietassittatitttitiiiiamseImime G 00 ¢ O

14 1 @ oo cONNNRNNOIORNRIORNNNINRNNNININNIMNNNININNINeNININNS 00 @

12 A S P SRS GASE B 6 468 @

10 1 ekttt SN s2es = 5 B

education-num
(=]
®
]
k]

Figure 5.18 — Creating a scatter plot for a categorical attribute (adult_df.education) and a numerical attribute
(adult_df.age)
Using the visualized relationship, we can see that the two attributes, age and education, are not
related. For the sake of practice, let's also do this analysis the other way around; let's discretize age
and create a contingency table to see if we will get to the same conclusion. The following screenshot

shows the code and the output visual for this analysis:

In [22]: M age _discretized = pd.cut(adult_df['age'], bins = 5)
contingency_tbl = pd.crosstab(adult_df.education,age_discretized)
probablity tbl = contingency_tbl/ contingency_tbl.sum()
sns.heatmap(probablity tbl, annot=True, center=0.5 ,cmap="Greys")
plt.show()

10th - 0.036 0.018 0.032 0.043 0.029
11th - 0.058 0.022 0.026 0.033 0.025 - 030
12th - 0021 00088 00088 0.01 0.0041

1st-4th - 00032 00042 00076 0.012 0.017

Sth-6th - 00084 00084 0013 0.02 0.029 -025
Tth-8th - 0.011 0.012 0.031 0.067 0.12
g oh - 0015 0.012 0.018 0.03 0.033 -0.20
& Assoc-acdm - 0032 0.04 0.026 0014 0.017
Y Assoc-voc - 0038 0.053 0.036 0.031 0.025 015
T Bachelors - 015 0.19 0.15 013 012 :
Doctorate - 0003 0.014 0.023 0.028 0.021
HS-grad - 031 032 034 034 031 -0.10
Masters - 0.02 0.068 0.082 0.051 0.075
Preschool - 0.0012 00013 0002 00038 0 -0.05
Prof-school - 0.0065 0.024 0.022 0.027 0.037
Some-college - 0.|28 O.‘2 0.}8 O.|16 0.l13 - 0,00
) ~) < S
- (V-] (=] w (=]
m - w M~ (2]
o "] ~N] or
g e 0 o wn
4 ™ - <] r~
b hal = ° o
—
age

Figure 5.19 — Creating a contingency heatmap for a categorical attribute (adult_df.education) and a numeric attribute
(adult_df.age)
We can see that this visual also gives the impression that the two attributes, age and education, are

not related to one another.

So far in this chapter, we have learned how to summarize a population, compare populations, and just
now, we learned how to visualize the relationship between all kinds of attributes. Now, let's begin

another data visualization aspect — next, we will learn about adding dimensions to our visualizations.

Adding visual dimensions

The visualizations that we have created so far have only two dimensions. When using data
visualization as a way to tell a story or share findings, there are many good reasons not to add too
many dimensions to your visuals. For instance, visuals that have too many dimensions may
overwhelm your audience. However, when the visuals are used as exploratory tools to detect patterns

in the data, being able to add dimensions to the visuals might be just what a data analyst needs.

There are many ways to add dimensions to a visual, such as using color, size, hue, line styles, and
more. Here, we will cover the three most applied approaches by adding dimensions using color, size,

and time. In this case, we will show adding the dimensions for the case of scatter plots, but the

techniques shown can be easily extrapolated to other visuals if applicable. The following example

demonstrates how adding extra dimensions to the scatter plot could be of significant value.

Example of a five-dimensional scatter plot

Use WH Report_preprocessed.csv to create a visualization that shows the interaction of the following
five columns in this dataset:

« Healthy_life_expectancy_at_birth

« Log_GDP_per_capita

« Year

« Continent

« Population

To solve this problem, we are going to have to do it step by step. So, please stay with me throughout.

The dataset we use for this example is taken from The World Happiness Report, which includes the
data of 122 countries from 2010 to 2019. Before starting to engage with the solutions given for this

example, take some time and familiarize yourself with the dataset.

ADVICE FOR BETTER LEARNING

As we learn more and more complex analyses, algorithms, and code, we may not have space in these pages to get to
know every new dataset we cover in the book. Every time a new dataset is introduced throughout this book, | strongly
recommend that you take the steps that were laid out in the Pandas functions to explore a DataFrame section in Chapter
1, Review of the Core Modules NumPy and Pandas. Of course, this applies here. Take the time to get to know the WH
Report_preprocessed. csv dataset before reading on.

The following code uses plt.subplot() and plt.scatter() to bring three dimensions together:
Healthy life_expectancy_at_birth, Log_GDP_per_capita, and year:
country_df = pd.read_csv('WH Report_preprocessed.csv')
plt.figure(figsize=(15,8))
year_poss = country_df.year.unique()
for i,yr in enumerate(year_poss):
BM = country_df.year == yr
X= country_df[BM].Healthy_ life_expectancy_at_birth
Y= country_df[BM].Log_GDP_per_capita
plt.subplot(2,5,1i+1)
plt.scatter(X,Y)

plt.title(yr)

plt.x1im([30,80])

plt.ylim([6,12])
plt.show()
plt.tight_layout()

The output of the preceding code is shown in Figure 5.20. The visual manages to achieve the

following important things:

 The figure visualizes the three dimensions all at once.

« The figure shows the upward and rightward movement of the countries in both X and Y dimensions. This movement has the
potential to tell the story of global success improving on both dimensions, Healthy_life_expectancy_at_birth and
Log_GDP_per_capita.

However, the visual is choppy and sloppy at showing the movement of the countries in the years
between 2010 and 2019, so we can do better.

2010 2011 2012 2013 2014

.
L]
1 1 1 11 4 1 F
10 10 10 10 . 10 L
* - -~ o X -~
[)
» — A
'l
‘Ne
L

" o, of . q] [? o . ? o
B :}1‘0. 8 "% B 3.‘-. 8 ‘% » B
] U | [T] o
7 S 7 b 7 0!' 7 7
6 , 6 6 . : 6 6 :
40 &0 80 40 0 B0 40 60 80 40 &0 80 40 &0 80
2015 2016 2017 2018 2019
12 12 12 12 12
*e e ol o e
1 F 1 F 1 3 11 4 b 1 &
10 ® 10 10 . 10 10
.~. L ® L] [
9 9 9 3 9 A 9 &
[] > . L ® . (] . o
‘. L]
8 *8 3% 8 o 8 'I}. 8 - ¥ - 8 u.o
F . - de .t!o. Py
7 oy 7 ., 7 L 74 L™ 7 ..

f”
[=4]
_“
-m
o

20 &0 80 20 €0 80 0 &0 80 20 &0)) &0 a0
Figure 5.20 — One figure with three dimensions of the WH Report_preprocessed.csv dataset

Now, we want to improve the preceding figure by seamlessly incorporating time in one visual instead
of having to use subplots. The following figure (Figure 5.21) shows our end goal in this segment.
The figure is interactive, and by sliding the control bar on the top widget, we can change the year for
the visual and therefore see the movement of countries under the two dimensions of

Healthy life_ expectancy at_birth and Log_6DP_per_capita. Of course, we cannot do that on paper,
but I will share the code that can make this happen right here. But, we have to do this in two steps:

1. Create a function that outputs the relevant visual for the inputted year.

2. Use new modules and programing objects to create the slide bar.

year () 2010
12
s
*
11 - .: &
o be
E—lﬁ e ® ¢ e L
| ® Y
L
L4 Yoo
o L] : L
o 81 L %°
5 L % L
* B g
7 o0
5‘ T T L] T
30 40 50 B0 70 80

Healthy life_expectancy at_birth

Figure 5.21 — One figure with three dimensions of the WH Report_preprocessed.csv dataset using a slide bar widget

The following code creates the function that we need for the interactive visual:
def plotyear(year):
BM = country_df.year == year
X= country_df[BM].Healthy life_ expectancy_at_birth
Y= country_df[BM].Log_GDP_per_capita
plt.scatter(X,Y)
plt.xlabel('Healthy_ life_expectancy_at_birth")
plt.ylabel('Log_GDP_per_capita')
plt.x1im([30,80])
plt.ylim([6,12])
plt.show()
After creating this function and before moving forward, put the function in use by calling it a few

times — for instance, run plotyear(2011), plotyear(2018), and plotyear (2015). If everything is

working well, you'd get a new scatter plot on every run.

After you have a well-functioning plotyear (), writing and running the following code gives you the
interactive visual showed in the preceding figure (Figure 5.21). To create this interactive visual, we

have used the interact and widgets programming objects from the ipywidgets module:

from ipywidgets import interact, widgets

interact(plotyear,year=widgets.IntSlider (min=2010, max=2019, step=1,value=2010))

After you have managed to create the interactive visual, go ahead and put the control bar to use and
enjoy the upward movement of the countries. Before your eyes, you will see the history of global
success from 2010 to 2019.

The fourth dimension

So far, we have only been able to include three dimensions in our visuals:

Healthy life_expectancy_at_birth, Log_GDP_per_capita, and year. We have two more dimensions
to go.

We used a scatter plot to include the first two dimensions, and we used the time to include the third

dimension, year. Now, let's use color to include the fourth dimension, continent.

The following code adds color to what we've already built. Pay close attention to how a for loop has
been used to iterate over all the continents and add the data of each continent one by one to the visual

and thus separate them:
Continent_poss = country_df.Continent.unique()

colors_dic={'Asia':'b', 'Europe':'g', 'Africa':'r', 'South America':'c', 'Oceania':'m',
'North America':'y', 'Antarctica':'k'}

def plotyear(year):
for cotinent in Continent_poss:

BM1

(country_df.year == year)

BM2

(country_df.Continent ==cotinent)

BM = BM1 & BM2

X = country_df[BM].Healthy life_expectancy_at_birth
Y= country_df[BM].Log_GDP_per_capita

plt.scatter(X,Y,c=colors_dic[cotinent], marker='o', linewidths=0.5,
edgecolors='w', label=cotinent)

plt.xlabel('Healthy_life_expectancy_at_birth")

plt.ylabel('Log_GDP_per_capita')

plt.x1im([30,80])

plt.ylim([6,12])

plt.legend()

plt.show()
interact(plotyear,year=widgets.IntSlider (min=2010, max=2019, step=1,value=2010))

After successfully running the preceding code, you will get another interactive visual. The following

figure shows the visual when the year control bar is set to 2015.

year) 2015

12
e Asia - =
e Europe .
1 e Africa o: o' ﬁ.
- » South America & Yok)
£10{ e Oceania e £
S, » North America T .ﬁ’
E' g # Antarctica ® :. &
& = o °°
9, . @ % .
o 8 A
5 .D . '..'.- ._®
7 . 5
6 T T T T
30 40 50 60 70 80

Healthy_life_expectancy_at_birth

Figure 5.22— One figure with four dimensions of the WH Report_preprocessed.csv dataset using a slide bar widget and
color

Contemplating and interacting with the preceding visual not only adds extra dimensions to the visual
before our eyes, but it also adds further dimensions to the story we have been developing. We can see
the clear disparity between the continents in the world, but also, we see the same upward movement
to a higher GDP and life expectancy for all countries.
The fifth dimension
So far, we have only been able to include the following four dimensions in one visual:
Healthy_life_expectancy_at_birth, Log_GDP_per_capita, year, and continent. Now, let's add the
fifth dimension, which is population, using the size of the markers to represent this. The following
code adds the dimension of the population as the size of the markers:
Continent_poss = country_df.Continent.unique()

colors_dic={'Asia':'b', 'Europe':'g', 'Africa':'r', 'South America':'c', 'Oceania':'m',
'North America':'y', 'Antarctica':'k'}

country_df.sort_values(['population'],inplace = True, ascending=False)
def plotyear(year):
for cotinent in Continent_poss:

BM1

(country_df.year == year)

BM2

(country_df.Continent ==cotinent)
BM = BM1 & BM2

size = country_df[BM].population/200000

X = country_df[BM].Healthy life_expectancy_at_birth
Y= country_df[BM].Log_GDP_per_capita

plt.scatter(X,Y,c=colors_dic[cotinent], marker='o', s=size, inewidths=0.5,

edgecolors='w', label=cotinent)

plt
plt
plt
plt

plt

plt.

.xlabel('Healthy_ life_expectancy_at_birth')
.ylabel('Log_GDP_per_capita')
.x1im([30,80])

.ylim([6,12])

.legend(markerscale=0.5)

show()

interact(plotyear,year=widgets.IntSlider (min=2010, max=2019, step=1,value=2010))

After successfully running the preceding code, you will get another interactive visual. The following

figure shows the visual when the year control bar is set to 2019.

year () 2019
12 -
Asia
11 - Oceania
@ South America
@ Africa
-‘E_ 10 # North America
S, e Europe
o 9] - Antarctica
ﬂ.l
2
ml
E? 8
T -
6 L] L L]]
30 40 50 B0 70 80

Healthy _life_expectancy_at_birth

Figure 5.23 — One figure with five dimensions of the WH Report_preprocessed.csv dataset, using a slide bar widget,

color, and size

There are three parts of the preceding code that might be confusing for you. Let's go over them

together:

country_df.sort_values(['population'], inplace = True, ascending=False)

The preceding code is included so the countries with higher populations are added to the visual first,

therefore, their markers will go to the background and will not cover up the countries with lower

populations.

size = country_df[BM].population/200000

The preceding code is added to scale down the big population numbers for creating the visual. The

number was found purely after some trial and error.

plt.legend(markerscale=0.5)

The markerscale=0.5 is added to scale the markers shown in the legend, as without this they would

be too big. Remove markerscale=0.5 from the code to see this for yourself.
Voila! We are done. We were able to learn how to create a five-dimensional scatter plot.

So far in this chapter, you have been able to learn useful visualization techniques and concepts, such
as summarizing and comparing populations, investigating the relationships between attributes, and
adding visual dimensions. Next, we will cover how we can use Python to display and compare trends

in data.

Showing and comparing trends

Trends can be visualized when the data objects are described by attributes that are highly related to
one another. A great example of such datasets is time series data. Time series datasets have data
objects that are described by time attributes and with an equal duration of time between them. For
instance, the following dataset is a time series dataset that shows the daily closing prices of Amazon
and Apple stocks for the first 10 trading days of 2020. In this example, you can see that all of the

attributes of the dataset have a time nature and they have an equal duration of a day between them:

Date 1/2/2020 1/3/2020 1/6/2020 1/7/2020 1/8/2020 1/9/2020 1/10/2020 1/13/2020 1/14/2020 1/15/2020

Amazon 1898.01 1874.97 1902.88 1906.86 1891.97 1901.05 1883.16 1891.3 1869.44 1862.02

Apple 743335 73.6108 74.1974 73.8484 75.0364 76.6302 76.8035 78.4443 77.3851 77.0534

Figure 5.24 — Time series data example (daily stock prices of Amazon and Apple)

The best way to visualize time series data is using line plots. Figure 2.9 from Chapter 2, Review of
Another Core Module — Matplotlib, is a great example of using line plots to show and compare

trends.

Line plots are very popular in stock market analysis. If you search for any stock ticker, you will see
that Google will show you a line plot of the price trends. It also gives you the option to change the
duration of time over which you want the line plot to visualize the price trends. Give this a try — for

example, try some searches: Amazon stock, Google stock, and Wwalmart stock.

Line plots are popular in stock market analysis; however, they are very useful in other areas, too. Any
dataset that has time series data could potentially take advantage of line plots for showing trends. The

following example illustrates another instance of applying line lots to visualize and compare trends.

Example of visualizing and comparing trends

Use wH Report_preprocessed.csv to create a visualization that shows and compares the trend of the
Perceptions_of_corruption attribute for all continents between the years 2010 and 2019. To be clear,

we want the data for only the two years — 2010 and 2019.
Give this example a try before reading on.

This example can be easily solved by all the programming and visualization tools that we have
learned so far. The following code creates the requested visualization:

country_df = pd.read_csv('WH Report_preprocessed.csv')

continent_poss = country_df.Continent.unique()

byContinentYear_df =
country_df.groupby(['Continent', 'year']).Perceptions_of_corruption.mean()

Markers_options = ['o', 'A','P', '8', 's', 'p', '*']
for i,c in enumerate(continent_poss):

plt.plot([2010,2019], byContinentYear_ df.loc[c, [2010,2019]], label=c,
marker=Markers_options[i])

plt.xticks([2010,2019])

plt.legend(bbox_to_anchor=(1.05, 1.0))

plt.title('Aggregated values per each continent in 2010 and 2019'")
plt. label('Perceptions_of_corruption')

plt.show()

Before going over the different parts of this code, let's enjoy seeing, analyzing, and appreciating the

story the following visual tells us. These are the following five points that the visual clearly shows:

« For most continents, namely, Africa, North America, Asia, and Europe, Perceptions_of_corruption have

declined.
« Between all these improving continents, Europe has had the fastest decrease in Perceptions_of_corruption.

o Asia has had a faster improvement than North America, thereby placing Asia in a better place than North America in
2019 compared to 2010.

« The two continents that have had an increase in Perceptions_of_corruption are South Americaand Antarctica.

« The Perceptions_of_corruption values for Oceania have not changed, and because of that, the continent has achieved

the status of having the lowest Perceptions_of_corruption among all continents.

Aggregated values per each continent in 2010 and 2019

0.80 1 - Asia
—&— Europe

c 075 -~ Africa
2 \: —&— South America
Eom e -~ Oceania
] ——__‘_ﬁ___H‘H_‘ —a— North America
»6:0.65- -~ -+ Antarctica
- -
5 060 - -
"é e =
¥ 055 1 e
3 -

0.50 _—

045 ¥ N

2010 2019

Figure 5.25 — Line plot comparing Perceptions_of_corruption across different continents in 2010 and 2019
Now, let's go through different elements of the preceding code:

1. The following line of code groups the data based on the two attributes, Continent and year, and then calculates the aggregate
function .mean() for the Perceptions_of_corruption attribute. The result of this grouping is recorded in
byContinentYear_df, which is a DataFrame.

byContinentYear_df =
country_df.groupby(['Continent', 'year']).Perceptions_of_corruption.mean()
The rest of the solution uses numbers in this DataFrame to draw different elements of the visual.
Separately, run print (byContinentYear_df) to see this. That will help your understanding of the
solution.

2. To better separate the continents, the code has used markers. First, the code creates a list of possible markers for later use. The
following line of code has done this: Markers_options = ['o', 'A','P', '8', 's', 'p', '*']. Then, within

the loop through all the continents and when each line is introduced using the p1t.plot () function, the code uses

marker=Markers_options[i] to assign one of those possible markers.

3. The code has incorporated box_to_anchor=(1.05, 1.0) for plt.legend() to place the legend box outside the visual.

Change the numbers a few times and run the code to see how this functionality of Matplotlib works.

Now, we are completely done with this example. We first appreciated the visual's storytelling values,

then we also discussed each important element of the code we used to create the visual.

Summary

Congratulations on your excellent progress in this chapter. Together, we learned the fundamental data
visualization paradigms, such as summarizing and comparing populations, examining the
relationships between attributes, adding visual dimensions, and comparing trends. These visualization

techniques are very useful in effective data analytics.

All of the data we used in this chapter had been cleaned and preprocessed so we could focus on
learning the visualization goals of data analytics. Now that you are on your way toward learning
about effective data preprocessing in the next chapters, this deeper understanding of data
visualization will help you become more effective in data preprocessing, and in turn, become more

effective in data visualization and analytics.

In the next two chapters, we will continue learning about other data analytics goals, namely,
prediction, classification, and clustering, before we start introducing effective preprocessing
techniques.

Before moving forward and starting your journey in understanding those goals, spend some time on

the following exercises to practice what you have learned.

Exercise

1. In this exercise, we will be using Universities_imputed_reduced. csv. Draw the following visualizations:

a) Use boxplots to compare the student/faculty ratio (stud./fac. ratio) for the two populations

of public and private universities.

b) Use a histogram to compare the student/faculty ratio (stud./fac. ratio) for the two

populations of public and private universities.

) Use subplots to put the results of a) and b) on top of one another to create a visual that

compares the two populations even better.
2. In this exercise, we will continue using Universities_imputed_reduced. csv. Draw the following visualizations:

a) Use a bar chart to compare the private/public ratio of all the states in the dataset. In this

example, the populations we are comparing are the states.

b) Improve the visualizations by sorting the states on the visuals based on the total number of

universities they have.

c) Create a stacked bar chart that shows and compares the percentages of public and private

schools across different states.
3. For this example, we will be using WH Report_preprocessed. csv. Draw the following visualizations:

a) Create a visual that compares the relationship between all the happiness indices.

b) Use the visual you created in a) to report the happiness indices with strong relationships and

describe those relationships.

¢) Confirm the relationships you found and described by calculating their correlation coefficients

and adding these new pieces of information to your description to improve them.

4. For this exercise, we will continue using WH Report_preprocessed.csv. Draw the following visualizations:

a) Draw a visual that examines the relationship between two attributes, continent and

Generosity.
b) Based on the visual, is there a relationship between the two attributes? Explain why.
5. For this exercise, we will be using whickham. csv. Draw the following visualizations:

a) What is the numerical attribute in this dataset? Draw two different plots that summarize the

population of data objects for the numerical attribute.

b) What are the categorical attributes in this dataset? Draw a plot per attribute that summarizes

the population of the data object for each attribute.

¢) Draw a visual that examines the relationship between outcome and smoker. Do you notice
anything surprising about this visualization?

d) To demystify the surprising relationship you observed on c), run the following code, and study
the visual it creates:

person_df = pd.read_csv('whickham.csv')

person_df['age_discretized'] = pd.cut(person_df.age, bins = 4, labels=False)

person_df.groupby(['age_discretized', 'smoker']).outcome.value_counts().unstack().unstac
k().plot.bar(stacked=True)

plt.show()

Using the visual that was created for the preceding code, explain the surprising observation made

for c).

e) How many dimensions does the visual that was created for d) have? How did we manage to

add dimensions to the bar chart?

6. For this exercise, we will be using WH Report_preprocessed.csv.

a) Use this dataset to create a five-dimensional scatter plot to show the interactions between the
following five attributes: year, Healthy life_ expectancy_at_birth, Social support,
Life_Ladder, and population. Use a control bar for year, marker size for population, marker
color for social support, the x-axis for Healthy life expectancy_ at_birth, and the y-axis for

Life_Ladder.
b) Interact with and study the visual you created for a) and report your observations.
7. For this exercise, we will continue using WH Report_preprocessed.csv.

a) Create a visual that shows the trend of change for the Generosity attribute for all the countries
in the dataset. To avoid making the visual overwhelming, use a gray color for the line plots of all

the countries, and don't use a legend.

b) Add three more line plots to the previous visual using a blue color and a thicker line
(1inewidth=1.8) for the three countries, united States, China, and India. Work out the visual so
it only shows you the legend of these three countries. The following screenshot shows the visual

that is being described:

—+— United States
—&— India
—&~ China [

-\—-
056 1

Generosity

Figure 5.26 — Line plot comparing Generosity across all countries in 2010 and 2019 with an emphasis on the United
States, India, and China

c) Report your observations from the visual. Make sure to refer to all of the line plots (gray and blue)

in your observations.

Chapter 6: Prediction

Being able to predict the future using data is becoming increasingly possible. Not only that; soon,
being able to perform successful predictive modeling will not be a competitive advantage anymore—
it will be a necessity to survive. To improve the effectiveness of predictive modeling, many focus on
the algorithms that are used for prediction; however, there are many meaningful steps you can take to
improve the success of prediction by performing more effective data preprocessing. That is the end
goal in this book: learning how to preprocess data more effectively. However, in this chapter, we are
going to take a very important step toward that goal. In this chapter, we are going to learn the
fundamentals of predictive modeling. When we learn the concepts and the techniques of data

preprocessing, we will rely on these fundamentals to make better data preprocessing decisions.

While many different algorithms can be applied for predictive modeling, the fundamental concepts of
these algorithms are all the same. After covering those fundamentals in this chapter, we will cover
two of these algorithms that are distinct from one another in terms of complexity and transparency:

linear regression and multi-layer perceptron (MLP).
These are the main topics that this chapter will cover:
o Predictive models

o Linear regression

« MLP

Technical requirements

You will be able to find all of the code and the datasets that are used in this book in a GitHub
repository exclusively created for this book. To find the repository, click on this link:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. In this repository, you

will find a folder titled chapteres, from which you can download the code and the data for better

learning.

Predictive models
Using data to predict the future is exciting and doable using data analytics. In the realm of data

analytics, there are two types of future predictions, outlined as follows:

o Predict a numerical value—for example, predict next year's price of Amazon's stock market.

o Predict a label or a class—for example, predict whether a customer is likely to stop purchasing your services and switch to your

competition.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

By and large, when we use the term prediction, we mean predicting a numerical value. To predict a
class or a label, the term that is used is classification. In this chapter, we will focus on the prediction

goal of data analytics, and the next chapter will cover classification.

The prediction of future numerical values also falls into two major overarching types: forecasting

and regression analysis. We will briefly explain forecasting, before turning our attention to
regression analysis.

Forecasting

In data analytics, forecasting refers to techniques that are used to predict the future numerical values
of time-series data. Where forecasting is distinct is in its application to time-series data—for instance,
the simplest forecasting method is the simple moving average (SMA). Under this method, you
would forecast the numerical value of a future data point in your time-series data using the most

recent data points.

Example of using forecasting to predict the future

Let's look at an example that features the moving average (MA) for forecasting. The following table

shows the number of student applications that Mississippi State University (MSU) received from
2006 to 2021:

Year 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

N_Applications 5778 5140 6141 7429 7839 9300 9864 10449 11117 10766 12701 13930 13817 17363 18269 16127

Figure 6.1 — Number of MSU applications from 2006 to 2021

The following screenshot visualizes the data presented in the preceding table using a line plot:

18000 H
16000 H
14000 H
12000 -
10000 H
8000
6000

2006 -
2007 A
2008 -
2009 -
2010 1
2011 -
2012 -
2013 -
2014 -
2015 -
2016 4
2017 -
2018 -
2019 -
2020 -
2021 -

Figure 6.2 — Line plot for the number of MSU applications from 2006 to 2021

MSU, for planning purposes, would like to have some ideas of how many new applications they will
receive in 2022. One way to go about this would be to use the MA method. For this method, you
need to specify the number of data points you want to use for forecasting. This is often denoted by n.
Let's use five data points (n=5). In that case, you would use the data from 2017, 2018, 2019, 2020,
and 2021 in your prediction. Simply, you calculate the average number of applications for these years
and use that as the estimated forecast for the next year. The average value of 13,930, 13,817, 17,363,
18,269, and 16,127 is 15,901.2, which can be used as an estimate for the number of applications for
2022.

The following screenshot depicts the application of MA with n=5:

18000 H
16000 H
14000 -
12000 H
10000 -

8000 -

6000

T T T T
O ™~ o O,
i i [i

~ R R R

T T T T
- ~ m =
i - i i

~ R R R

T T T T
O ~ o O
(=T = T = B =

~ R R R

2010 -
2015 4
2020 -
2021 -

Figure 6.3 — Application of a simple MA forecasting method on the number of MSU applications from 2006 to 2021

There are more complicated methods for forecasting using time-series data such as weighted MA,

exponential smoothing, double exponential smoothing, and more.

We do not cover these methods in this book as the data preprocessing that is needed for all time-
series data is the same. However, what you'd want to remember from forecasting is that the methods
work on single-dimensional time-series data for prediction. For instance, in the MSU example, the

only dimension of data we had was the N_Applications attribute.

This single dimensionality is in stark contrast to the next prediction methodology we will cover.
Regression analysis, in contrast to forecasting, finds relationships between multiple attributes to

estimate numerical values of one of the attributes.

Regression analysis

Regression analysis tackles the task of predicting numerical values using the relationship between

predictor attributes and the target attribute.

The target attribute is the attribute whose numerical values we are interested in predicting. The term
dependent attribute is another name that is used for the same idea. The meaning of dependent
attribute comes from the fact that the value of the target attribute is dependent on other attributes; we

call those attributes predictors or independent attributes.

Many different methods could be used for regression analysis. As long as the methods seek to find
relationships between the independent attributes and the dependent attribute for predicting the
dependent attribute, we categorize the methods under regression analysis. Linear regression, which
is one of the simplest and yet widely used methods of regression analysis is, of course, one of these
methods. However, other techniques such as MLP and regression tree are also categorized under
regression analysis.

Example of designing regression analysis to predict future
values

For example, the prediction of the number of MSU applications in the next year can also be modeled
using regression analysis. The following figure shows two independent attributes that have the
potential to predict the Number of Applications dependent attribute. You can see in this example
that the prediction model engages more than one dimension; we have three dimensions—two

independent attributes and one dependent attribute.

The first independent attribute, Previous year football performance, is the MSU football team ratio
of winning games. The second independent attribute is Average number of applications from last

two years:

Independent Attributes Dependent Attribute

Previous year football

performance \

Average number of
applications from last
two years

Number of applications

Figure 6.4 — Example of regression analysis

The second independent attribute is interesting as it depicts that you can interface forecasting

methods with regression analysis by including the value of forecasting methods as independent

attributes of regression analysis. The average number of applications from the last 2 years is the value
of the SMA method with n=2.

HOW DO WE FIND POSSIBLE INDEPENDENT ATTRIBUTES?

You can see the vital role of having appropriate independent attributes for predicting the attribute of interest (dependent
attribute) in regression analysis. Envisioning and collecting possible predictors (independent attributes) is the most
important part of performing successful regression analysis.

So far, you have learned valuable skills in this book that can help you in the quest to envision possible predictors. The
understanding you amassed in Chapter 4, Databases, will allow you to imagine what is possible and search for and collect
that data.

In one of the future chapters, Chapter 12, Data Fusion and Integration, you will learn all the skills you will need to go about
integrating data from different sources to support your regression analysis.

Once the independent and dependent attributes are identified, we have completed and modeled our
regression analysis. Next, we will need to employ the appropriate algorithms to find relationships
between these attributes and use those relationships for prediction. In this chapter, we will cover two

very different algorithms that can do this: linear regression and MLP.

Linear regression

The name linear regression will tell you all you need to know about it—the regression part tells you
this method performs regression analysis, and the linear part tells you the method assumes linear

relationships between attributes.

To find a possible relationship between attributes, linear regression assumes and models a universal
equation that relates the target (the dependent attribute) to the predictors (the independent attributes).

This equation is depicted here:

target = o + 1 X predictorl + 5, X predictor2 + -+ By X predictorN
This equation uses a parameter approach. In this equation N stands for the number of predictors
shows the linear regression universal equation.

The working of linear regression is very simple. The method first estimates the f3s so that the

equation fits the data best, and then uses the estimated f3s for prediction.

Let's learn this method with an example. We will continue solving the number of MSU applications

in the following example.

Example of applying linear regression to perform
regression analysis

We have so far identified our independent and dependent attributes, so we can show the linear

regression equation for this example. The equation is shown here:

N_Applications = [, + 1 X P_Football_Performance + 3, X SMAZ2

The Msu applications.csv dataset has all the attributes we need to estimate the f3s. Let's first read
this data and take a look at it. The following screenshot shows the code we run to read the data and

the whole dataset:

In [1]: M import pandas as pd
msu_df = pd.read_csv('MSU applications.csv')
msu_df.set_index('Year',drop=True,inplace=True)

msu_df
out[1]:

P_Football_Performance SMANn2 N_Applications
Year
2006 0.273 5778.0 5778
2007 0.273 5778.0 5140
2008 0.250 5459.0 6141
2009 0.615 5640.5 7429
2010 0.333 6785.0 7839
2011 0417 7634.0 9300
2012 0.692 8569.5 9864
2013 0.538 9582.0 10449
2014 0.615 10156.5 11117
2015 0.538 10783.0 10766
2016 0.769 10941.5 12701
2017 0.692 11733.5 13930
2018 0.462 13315.5 13817
2019 0.692 13873.5 17363
2020 0.615 15590.0 18269
2021 0.462 17816.0 16127

Figure 6.5 — Reading MSU applications.csv and showing the dataset
In this dataset, we have the following attributes:

« P_Football Performance: This attribute is the overall winning ratio of the MSU football team during the previous

academic year.

e SMAN2: This attribute is the calculated value of the SMA with n=2. For instance, SMANn2 for row 2009 is the average of the
N_Applications attribute in 2008 and 2007. Confirm this calculation before reading on.

o« N_Applications: This is the same data as what we saw in Figure 6.1 and Figure 6.2. This is the dependent attribute that we

are interested in predicting.

We are going to use the scikit-learn module to estimate these 3s using msu_df, so first, we need to

install this module on our Anaconda platform. Running the following code will install the module:
conda install scikit-learn

Once installed, you need to import the module to start using it every time, just as with the other
module we have been using. However, since scikit-1learn is rather large, we will import exactly

what we want to use each time. For instance, the following code only imports the LinearRegression

function from the module:

from sklearn.linear_model import LinearRegression

Now, we have at our disposal a function that can seamlessly calculate the s of our model using
msu_df. We now only need to introduce the data to the LinearRegression() function in the
appropriate way.

We can do this in four steps, as follows:

1. First, we will specify our independent and dependent attributes, by specifying the X and y list of variables. See the following code

snippet:
X = ['P_Football_Performance', 'P_2SMA']
Y = 'N_Applications'

2. Second, we will create two separate datasets from msu_df using the list X and Y: data_X and data_y. data_Xisa

DataFrame with all the independent attributes, and data_y is a Series that is the dependent attribute. The following code shows

this:
data_X = msu_df[X]
data_y = msu_df[y]

This step and the previous step could have been merged with the next steps; however, it is best to
keep your code clean and tidy, and I highly recommend using my guidelines, at least in the
beginning.

3. Next, we will create the model and introduce the data. The following code will do that. We create a linear regression model and
call it 1m, and introduce the data to it:

1m = LinearRegression()

Im.fit(data_X, data_y)

When you run the following code almost nothing happens, but don't worry—the model has done

its bit, and we only need to access the estimated fs in the next step.

4. As indicated, the estimated s are within the trained 1m model. We can use 1m.intercept_ to access 0, and 1m.coef_ will

show you 81, and 32. The following code prints out an organized report with all the 0 instances:

print('intercept (b0®) ', 1lm.intercept_)

coef_names = ['b1', 'b2']

print(pd.DataFrame({'Predictor': data_X.columns, 'coefficient

Name':coef_names, 'coefficient Value': 1lm.coef_}))

After running these four steps successfully, you will have estimated the fs. I did show the code for

this step by step, but all this is normally done in one chunk of code. The following screenshot shows

the preceding lines of code and a small report from Step 4:

In [2]:

M from sklearn.linear_model import LinearRegression

X ["P_Football Performance’, 'SMAn2"]
y = 'N_Applications’

data X
data_y

msu_df[X]
msu_df[y]

lm = LinearRegression()
Im.fit(data_X, data_y)

print('intercept (b@) ', 1lm.intercept_)

coef names = ['bl',"'b2"']

print(pd.DataFrame({'Predictor': data_X.columns,
‘coefficient Name':coef_names,
‘coefficient Value': 1m.coef_}))

intercept (be) -890.7106225983407

Predictor coefficient Name coefficient Value
@ P_Football_Performance bl 5544.961933
1 SMANn2 b2 ©.907032

Figure 6.6 — Fitting msu_df data to LinearRegression() and reporting the s

Now that we have estimated the f3s of the regression model, we can introduce our trained model. The

following equation shows the trained regression equation:

N_Applications = —890.71 + 5544.96 X P_Football_Performance + 0.91 X SMAn2

Next, we will learn how the trained regression equation can be used for prediction.
How to use the trained regression equation for prediction

To use the equation to predict the number of MSU applications in 2022, MSU needs to put together

the P_Football performance and sMAn2 attributes for 2022. Here, we describe the process of finding

these values:

« P_Football performance: At the time of writing this chapter (April 2021), the college football season of 2020-21 had

ended and MSU achieved 4 wins out of 11 games, reaching 0.364 winning ratios.

e SMAN2: The N_Applications values for 2021 and 2020 are 18,269 and 16,127, respectively. The average value of these
numbers is 17,198.

Here is the calculation to predict N_Applications values in 2022:
Napprications = —890.71 + 5544.96 x 0.364 +0.91 x 17198 = 16777.83

We do not have to do the preceding calculations ourselves; we did this for learning purposes. We can
use the .predict() function that comes with all of the scikit-learn predictive models. The following

screenshot shows how this can be done:

In [3]: M newData = pd.DataFrame({'P_Football Performance':0.364, 'SMAn2':17198},
index=[2022])
newData

Out[3]:
P_Football_Performance SMAn2

2022 0.364 17198

In [4]: M 1lm.predict(newData)

Out[4]: array([16726.78787061])

Figure 6.7 — Calculating the number of applications for 2022 using the .predict() function

There is some difference between the preceding equation calculation and programming calculation.
One reached 16777.82 and the other arrived at 16726.78. The difference is due to the rounding-ups we
did to present the regression equation. The value that the .predict() function came to, 16726.78, is

more accurate.

PAY ATTENTION!

Linear regression, and regression analysis in general, is a very established field of analytics. There are many evaluative
methods and procedures to ensure the model we have created is of good quality. In this book, we will not cover those
concepts, as the goal of this chapter is to introduce techniques that may need data preprocessing. By knowing the
mechanism of these techniques, you will be able to perform data preprocessing more effectively.

Now that we have completed this prediction, look back and examine the working of linear regression.
Here, linear regression achieved the following two objectives:
1. Linear regression used its universal and linear equation to find the relationship between the independent and dependent attributes.
The f3 coefficient of each independent attribute tells you how the independent attributes relate to the dependent attribute—for
instance, the coefficient of SMAn2, 32, came out to be 0.91. This means that even if the MSU football team loses all of its games

(which makes the value of N_Football Performance zero), next year, the number of applications will be an equation of
-890.71 + 0.91xSMAn2.

2. The linear regression equation has packaged the estimated relationship in an equation that can be used for future observations.

These two matters, extraction and estimation of the relationships and packaging the estimated

relationship for future data objects, are essential for the proper working of any predictive model.

What is great about linear regression is that the simplicity of these matters can be seen and
appreciated. This simplicity helps in understanding the working of linear regression and
comprehending the patterns it extracts. However, the simplicity works against the method as far as its
reach to estimate and package a more complex and non-linear relationship between the independent

and dependent attributes.

Next in this chapter, we will be briefly introduced to another prediction algorithm that is at the other
end of the spectrum. MLP is a complex algorithm that is capable of finding and packaging more
complex patterns between independent and dependent attributes, but it lacks the transparency and

intuitiveness of linear regression.

MLP

MLP is a very complex algorithm with many details, and going over its functioning and different
parts abstractly will be difficult to follow. So, let's dive in with an example. We will continue using

the number of MSU applications in this section.

While linear regression uses an equation, MLP uses a network of neurons to connect the independent
attributes to the dependent attribute. An example of such a network is shown in the following

screenshot:

P_Football_Performance |
SMAN2

N_Applications

Figure 6.8 — An MLP network example for the number of MSU applications problem
Every MLP network has six distinct parts. Let's go through these parts using Figure 6.8, as follows:

o Neurons: Each of the circles in Figure 6.8 is called a neuron. A neuron could be in the input layer, output layer, and hidden layers.

We will cover three tree types of layers in the following section.

« Input layer: A layer of neurons from which values are inputted to the network. In a prediction task, for as many as the number of
independent attributes, we will have neurons in the input layer. In Figure 6.8, you can see we have two neurons in the input layer,

one for each of our independent attributes.

o Output layer: A layer of neurons out of which the processed values of the network come. In a prediction task, for as many as the

number of dependent attributes, we will have neurons in the output layer. More often than not, we only have one dependent

attribute. This holds true for Figure 6.8, as our prediction task only has one dependent attribute and the network has only one

neuron in the output layer.

« Hidden layers: One or more layers of neurons that come between the input and output layers. The number of hidden layers and
the number of neurons in each hidden layer can be—and should be—adjusted for the desired level of model complexity and

computational cost. For example, Figure 6.8 only has one hidden layer and six neurons in that hidden layer.

« Connections: The lines that connect the neurons of one layer to the next level are called connections. These connections must
exist exhaustively from one level to the next; exhaustively means that all the neurons in a left layer are connected to all the

neurons to its right layer.

Now that you understand each part of the preceding MLP network, we will turn our attention to how
MLP goes about finding the relationship between the independent attributes and the dependent
attribute.

How does MLP work?

MLP works both similarly to and differently from linear regression. Let's first go over their
similarities, and then we will cover their differences. Their similarities are listed here:

« Linear regression relies on its structured equation to capture the relationships between the independent attributes and the

dependent attribute. MLP, too, relies on its network structure to capture the same relationships.

« Linear regression estimates the 3s as a way to use its structured equation to fit itself to the data and hence find the relationship
between the independent attributes and the dependent attribute. MLP, too, estimates a value for each of the connections on its
structure to fit itself to the data; these values are called the connection's weight. So, both linear regression and MLP use the data to

update themselves so that they can explain the data using their predefined structures.

o Once the f3s for linear regression and the connections' weight for MLP are properly estimated using the data, both algorithms are

ready to be used to predict new cases.

We can see that both algorithms are very similar; however, they also have many differences. Let's go
over those now, as follows:
» While the linear regression algorithm's structured equation is fixed and simple, MLP's structure is adjustable and can be set to be

very complex. In essence, the more hidden layers and neurons an MLP structure has, the more the algorithm is capable of

capturing more complex relationships.

« While linear regression relies on proven mathematical formulas to estimate the 35, MLP has to resort to heuristics and

computations to estimate the best connections' weights for the data.

The most famous heuristic that is used to estimate the connections' weights for ML.P is called
backpropagation. The heuristic is very simple in essence; however, coding it and getting it to work
can be tricky. The good news for us is that we do not have to worry about coding it, as there are
stable modules we can use. However, let's go through its simple idea once before seeing how we can

use the aforementioned modules.

Backpropagation

For backpropagation, each connection's weight is first assigned a random number between -1 and 1.

Yes—this is done completely randomly and it is called MLP's random initialization.

After MLP's random initialization, the algorithm will be capable of predicting a value for any
inputted data object. Of course, these predictions will be erroneous. Backpropagation uses these

errors and the extent of these errors to learn.

Every time a data object is exposed to the MLP network, MLP expects its dependent attribute. As
mentioned, this expectation is wrong, at least in the beginning. So, backpropagation calculates the
error of the network for each exposure, moves backward on the network, and updates the
connection's weight in such a way that if the same data object is exposed again, the amount of error

will be a little less.

The network will be exposed to all data objects in the dataset more than once. Every time all the data
objects are exposed to the network, we call that one epoch of learning. Backpropagation makes the
network undergo enough epochs of learning so that the collective amount of error for the network

will be acceptable.

Now that we have this general understanding of MLP and its major heuristic to estimate the
connections' weights, let's together see an example of using the scikit-learn module to perform a

prediction task using MLP.

Example of applying MLP to perform regression
analysis

To implement MLP using the scikit-learn module, we need to take the same four steps that we took
for linear regression. In short, these four steps are listed as follows.

1. Specifying our independent and dependent attributes

2. Creating two separate datasets: data_X and data_y

3. Creating a model and introducing the data

4. Predicting

The following code snippet shows these four steps being applied to the number of MSU applications
problem. It shows the MLPRegressor class being imported from the sklearn.neural network module
first:

from sklearn.neural_network import MLPRegressor

X = ['P_Football Performance', 'SMAn2']

y = 'N_Applications'

data_X = msu_df[X]

data_y = msu_df[y]
mlp = MLPRegressor(hidden_layer_sizes=6, max_iter=10000)
mlp.fit(data_X, data_y)

mlp.predict(newData)

The code is almost the same as the code that we used for linear regression, with some minor changes.

ets go over tnose, as 10110wWS:
Let' th foll
« Instead of creating 1m using LinearRegression(), we created mlp using MLPRegressor ().

o The LinearRegression() function did not need any input, as linear regression is a simple algorithm with no
hyperparameters. But MLPRegressor () needed at least two inputs, hidden_layer_sizes=6 and max_iter=10000.
The first input (hidden_layer_sizes=6) specifies the network structure. By inputting only one number, we are indicating
we only have one hidden layer, and by using the number 6, we are indicating that the hidden layer has six neurons. This is in line
with the network design we saw in Figure 6.8. The second input (max_iter=10000) specifies that you want at least 10,000

epochs of learning before the module should give up on converging.

If you successfully run the preceding code a few times, you will observe the following two general

trends:
« The code will output a somewhat different prediction for newData every time, but the values are all around 18,000.

o On some runs, the code will also create a warning. The warning is that the MLP algorithm was not able to converge even after

10,000 epochs of learning.

Now, let's discuss these two trends.
MLP reaching different predictions on every run

Let's discuss the first observation: The code will output a somewhat different prediction for newData

every time, but the values are all around 18,000.

MLP is a random-based algorithm. If you remember from our backpropagation learning, every time
the network is initialized, a random number between -1 and 1 is assigned to each of the connections.
These values are then updated so that the network fits the data better; however, the beginning is

random, and therefore the results are going to be different.

However, if you pay attention to these different conclusions the random-based model reached, you
will see that even though they are different, they are somewhat consistent. They are all around
18,000. This shows that the random-based procedure is capable of finding similar and meaningful
patterns in the data.

MLP needing significant epochs of learning

Let's now discuss the second observation: On some runs, the code will also create a warning. The

warning is that the MLP algorithm was not able to converge even after 10,000 epochs of learning.

As we will never know when the random-based algorithm will converge, we will have to put a cap on

the number of epochs of learning. In fact, having 10,000 epochs of learning is extravagantly high,

and we can afford it only because the data has only 16 data objects. The default value of max_iter for
MLPRegressor () is 260. That means if we had not specified max_iter=10eee, the function would have
assumed max_iter=200. In this case, that would mean the algorithm would not converge more often,

and its conclusions would be less consistent. Give this a try and observe the aforementioned patterns.

PAY ATTENTION!

MLP is a very complex and flexible algorithm; here, we only discussed two of its hyperparameters
(hidden_layer_sizes and max_iter), but it has many more, and to successfully use MLP, you will need to tune it first.
To tune an algorithm is to find the hyperparameters that work best for a dataset. We will not cover how MLP is tuned here,
as we only need a basic understanding of the algorithm so that it will support our data preprocessing journey.

Furthermore, just as with linear regression, MLP should be rigorously evaluated for validity and reliability before
implementation. We will not use those concepts and techniques in this book either for the same reason.

Summary

Congratulations! You made really good progress in this chapter. Together, we learned the
fundamental concepts and techniques for using data to perform predictions. We separated the
predictions into predicting numerical values and predicting events and labels. In data mining, the
term prediction is used for predicting numerical values, and we use classification for predicting
events and labels. In this chapter, we covered data mining task prediction, and in the next chapter, we

will cover data mining task classification.

Before moving forward and starting your journey to learn about classification and how it can be done

in the next chapter, spend some time on the following exercises and solidify your learnings.

Exercises

1. MLP has the potential to create prediction models that are more accurate than prediction models that are created by linear
regression. This statement is generally correct. In this exercise, we want to explore one of the reasons why the statement is
correct. Answer the following questions:

a) The following formula shows the linear equation that we used to connect the dependent and
independent attributes of the number of MSU applications problem. Count and report the number

of coefficients that linear regression can play with to fit the equation to the data.

N_Applications = py + 1 X P_Football_Performance + [X SMA2

b) Figure 6.8 shows the MLP network structure we used to connect the dependent and
independent attributes of the number of MSU applications problem. Count and report the number

of connections' weights MLP can play with to fit the network to the data.

c) Use your answers from a) and b) to state why MLP has more potential in terms of creating
prediction models with higher accuracy.

. In this exercise, we will be using ToyotaCorolla_preprocessed.csv. This dataset has the following columns: Age,
Mileage_KM, Quarterly_Tax, Weight, Fuel_Type_ CNG, Fuel_Type_Diesel, Fuel_Type_Petrol, and

Price. Each data object in this dataset is a used Toyota Corolla car. We would like to use this dataset to predict the price of used

Toyota Corolla cars.

a) Read the data into the car_df pandas DataFrame.

b) Use the skills you picked up in the previous chapter to come up with data visualizations that

show the relationship between the attribute price and the rest of the attributes.

) Use the visuals in b) to describe the relationship each of the attributes has with the attribute

price.

d) Create a correlation matrix for all the attributes, and report the correlation values for the

relationship that you investigated in b) and c).

e) Were the visual investigations you performed in b) and c) confirmed in d)? For which types of

attributes were the conclusions for c) not confirmed in d)?

f) Perform linear regression to predict the attribute price. Use all the attributes that you detect had
a meaningful relationship with the attribute price as independent attributes. Predict the price of a
car with the following specifications: Age: 74 months, Mileage_kM: 124,057, Quarterly_Tax: 69,

and weight: 1,050. The car fuel type is petrol.

g) Implement an MLP algorithm to predict the attribute price. Use all the attributes that you used
in f) and predict the price of the same new car presented in f). Use 15 neurons in one hidden layer

(hidden_layer_sizes), and set the max_iter attribute as 10e.

h) The actual price of the new car presented under f) is 7,950. Report which algorithm performed

a better prediction.

Chapter 7: Classification

As you learned how to go about predicting numerical values in the previous chapter, in this chapter,
we will turn our attention to predicting categorical ones. Essentially, that is what classification is:
predicting future categorical values. While prediction focuses on estimating what some numerical
values will be in the future, classification predicts the occurrence or non-occurrence of events in the
future. For instance, in this chapter, we will see how classification can predict whether an individual

will default on their loan or not.

In this chapter, we will also discuss the procedural similarities and differences between prediction
and classification and will cover two of the most famous classification algorithms: Decision Trees
and K-Nearest Neighbors (KNN). While this chapter provides a fundamental understanding of
classification algorithms and also shows how they are done using Python, this chapter cannot be
looked at as a comprehensive reference for classification. Rather, you want to focus on the
fundamental concepts so that you will be ready for your data preprocessing journey, which you will
start in Chapter 9, Data Cleaning Level I — Cleaning Up the Table.

These are the main topics that this chapter will cover:
o Classification models

« KNN

o Decision Trees

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, click on this link:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. In this repository, you

will find a folder titled chapteroez, from which you can download the code and the data for better

learning.

Classification models

In the previous chapter, we covered predictive modeling. Classification is a type of predictive
modeling; specifically, classification is a regression analysis where the dependent attribute or the
target is categorical instead of numerical.

Even though classification is a subset of predictive modeling, it is the area of data mining that has

received the most attention due to its usefulness. At the core of many machine learning (ML)

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

solutions in the real world today is a classification algorithm. Despite its prevalent applications and

complicated algorithms, the fundamental concepts of classification are simple.

Just as with prediction, for classification, we need to specify our independent attributes (predictors)
and the dependent attribute (target). Once we are clear about these and we have a dataset that

includes these attributes, we are set to employ classification algorithms.

Classification algorithms, just as with prediction algorithms, seek to find the relationship between
independent attributes and the dependent attribute, so by knowing the values of the independent

attributes of the new data object, we can guess the class of (classify) the new data object.

Let's now look at an example together so that these rather abstract concepts start making more sense

to you.

Example of designing a classification model

When you apply for a cash loan these days, make no mistake that a classification algorithm is going
to have a major role in deciding if you are going to get the loan or not. The classification models that
are used in real cases tend to be very complex with many independent attributes. However, the two

most important pieces of information these algorithms rely on are your income and credit score.

Here, we will present a simple version of these complex classifications. The classification design
shown in the following diagram uses Income and Credit Score as independent attributes to classify
if an applicant will default on an accepted loan or not. The Default? binary attribute is the dependent

attribute of the classification design:

Independent Attributes Dependent Attribute

ACOmE \

Default?

Credit Score

Figure 7.1 — Classification design of loan application problem

If you compare Figure 6.4 from the previous chapter with the preceding diagram, you might assert

that there is no difference between prediction and classification; you would not be completely wrong.

Prediction and classification are almost identical but for one simple distinction: a classification's
dependent attribute is categorical, but a prediction’'s dependent attribute is numerical. That small

distinction amounts to lots of algorithmic and analytic changes for these two data mining tasks.

Classification algorithms

There are many well-researched, -designed, and -developed classification algorithms. In fact, there
are more classification algorithms than there are prediction algorithms. To name a few, we have
KNN, Decision Trees, Multi-Layer Perceptron (MLP), Support Vector Machine (SVM), and
Random Forest. Some of these algorithms are listed for both prediction and classification. For
instance, MLP will always be listed for both; however, MLP is inherently designed for the prediction
task, but it can be modified so that it can also successfully tackle classification. On the other hand, we
have the Decision Trees algorithm, which is inherently designed for classification, but it can also be

modified to address prediction.

In this chapter, we are going to be briefly introduced to two of these algorithms: KNN and Decision

Trees.

KNN

KNN is one of the simplest classification algorithms, and almost everything you need to know about
its mechanism is presented in its name. In simple terms, to classify a new data object, KNN finds the
K-nearest neighbors to the new data object from the training dataset and uses the label of those data

objects to assign the likely label of the new data object.

It might be the case that KNN is too simple, and because of that, you do not fully understand its

mechanism. Let's continue our learning, using the following example.

Example of using KNN for classification

We are going to continue working on the loan application problem that was introduced earlier. After
completing the classification design, we specified Income and Credit Score as independent
attributes and Default? as the dependent attribute. The following screenshot shows a dataset that can

support this classification design. The dataset is from the customerLoan.csv file:

income score default

0 78479 800 NO
1 95483 801 NO
2 1010641 815 NO
3 104234 790 NO
4 108726 795 NO
5 112845 750 NO
6 114114 799 NO
7 114799 801 NO
8 119147 805 NO
9 119976 790 NO
10 84519 740 Yes
11 86504 753 Yes
12 89292 750 Yes
13 93941 706 Yes
14 97262 T Yes
15 102658 680 Yes
16 103760 740 Yes
17 104451 o0 Yes
18 107388 789 Yes
19 107400 690 Yes

Figure 7.2 — CustomerLoan.csv file

Now, let's assume that we want to use the preceding data to classify whether a customer with a yearly
income of US Dollars (USD) $98,487 and a credit score of 785 will default on a loan or not.

As this example only includes three dimensions, we can use visualizations to perform and understand
the KNN algorithm. The following screenshot shows the classification problem we would like to

solve at one glance:

820 1
2’ e DefaultYES
g0 @ * 9 3’ & Default-NO
0 1 % PY .4’ 6 * v New Applicant
780 - & 3 18 9
14
760 -
w * o e
Q
% 740 - o 12 - 5
10 16,
720 - 17
&
700 4 13
®
680 - s 19
80000 90000 100000 110000 120000
income

Figure 7.3 — Visualization of the loan application problem

The first step in performing KNN is to decide on K. Basically, we need to decide the number of
nearest neighbors we would like to base our classification on. Let's assume we would like to use
K=4.

TUNING KNN

Similar to many other data mining algorithms, to successfully use KNN for classification, you will need to tune the
algorithm. Tuning KNN would mean finding the best number of K that would allow KNN to reach its best performance for
every case study. In this book, we will not cover tuning as we are learning about algorithms, mainly to help us perform
more successful data preprocessing.

So, when K=4, we can easily eyeball the preceding screenshot and see that the four nearest neighbors
of the new applicant are data objects 1, 2, 3, and 14. As three out of four nearest data objects have a
label of Default-NO, we will classify the new applicant as Default-NO. That is it—it's as simple as
that.

While KNN is that simple in terms of its mechanism, creating a computer program that implements

this algorithm is more difficult. Why is that? A few reasons are presented as follows:

« Here, we learned the mechanism of KNN, using an example that only had three dimensions. So, using a scatterplot and colors, we
were able to display the problem and summarize all the data that we need to work with. Real-world problems will likely have

more than just three dimensions.

o While we were able to eyeball the visual and detect the nearest neighbors, computers do not have the capability to just "see"
which are the nearest neighbors. A computer program would need to calculate the distance between the new data object with all

the data objects in the dataset so that it would find the K-nearest neighbors.

« What will happen if there is a tie? Let's say we have selected K=4, and two of the nearest neighbors are of one class and two
others are from another.
The great news for us is that we don't need to worry about any of these challenges because we can
simply use a stable module that includes this algorithm. Let's import KNeighborsClassifier from

the sklearn.neighbors module and apply it to our example here.

Before we can apply the algorithm, we need to take action about the following two matters:
1. First, if you have never used the sklearn module on Anaconda Navigator, you have to install it. Running the following code
will install the module:

conda install scikit-learn

2. Next, we will need to normalize our data. This is a data preprocessing concept, and we will cover it in depth when we get to it.

However, let's briefly discuss its necessity here.

The reason that we need normalization of the data before applying KNN is that normally, the scale of
the independent attributes are different from one another, and if the data is not normalized, the
attribute with the larger scale will end up being more important in the distant calculation of the KNN
algorithm, effectively canceling the role of other independent attributes. In this example, income
ranges from 78,479 to 119,976, while score (for credit score) ranges from 680 to 815. If we were to
calculate the distance between the data objects using these scales, all that would matter is income and

not credit score.

So, to avoid letting the scale of the attributes meddle with the mechanism of the algorithm, we will
normalize the data before using KNN. When an attribute is normalized, its values are transformed so
that the updated attribute ranges from 0 to 1 without influencing the attribute's relative differentiation
between the data objects.

The following code reads the customerLoan.csv file into the applicant_df DataFrame and creates
two new columns in applicant_df that are the normalization transformation of the two columns in
the original data:

applicant_df = pd.read_csv('CustomerLoan.csv')

applicant_df['income_Normalized'] = (applicant_df.income -
applicant_df.income.min())/(applicant_df.income.max() - applicant_df.income.min())

applicant_df['score_Normalized'] = (applicant_df.score -
applicant_df.score.min())/(applicant_df.score.max() - applicant_df.score.min())

The preceding code has created two new columns by using the following formula:

Original Value — min

Normalized Value = _
max — min
The preceding code has used the formula to transform the income column to income_Normalized,
and score to score_Normalized. The following screenshot shows the result of this data

transformation:

income score default income_Normalized score_Normalized

0 78479 800 NO 0.000000 0.888889
1 95483 801 NO 0.409765 0.896296
2 101641 815 NO 0.558161 1.000000
3 104234 790 NO 0.620647 0.814815
4 108726 795 NO 0.728896 0.851852
5 112845 750 NO 0.828156 0.518519
6 114114 799 NO 0.858737 0.881481
7 114799 801 NO 0.875244 0.896296
8 119147 805 NO 0.980023 0.925926
9 119976 790 NO 1.000000 0.814815
10 84519 740 Yes 0.145553 0.444444
11 86504 7563 Yes 0.193387 0.540741
12 89292 750 Yes 0.260573 0.518519
13 93941 706 Yes 0.372605 0.192593
14 97262 777 Yes 0.452635 0.718519
15 102658 680 Yes 0.582669 0.000000
16 103760 740 Yes 0.609225 0.444444
17 104451 730 Yes 0.625877 0.370370
18 107388 789 Yes 0.696653 0.807407
19 107400 690 Yes 0.696942 0.074074
20 98487 785 NaN 0.482155 0.777778

Figure 7.4 — Transformed applicant_df DataFrame

Take a moment to study the preceding screenshot; specifically, see the relationship between the
columns and their normalized version. You will notice that the relevant distance and order between
the values under the original attribute and its normalized version do not change. To see this, find the

minimum and maximum under both the original attribute and its normalized version, and study those.

Pay attention to the fact that the last row of the data in the preceding screenshot is the new applicant

that we would like to classify.

Now that the data is ready, we can apply the kneighborsclassifier module from sklearn.neighbors
to do this. You can carry this out in four steps, as follows:
1. First, the KneighborsClassifier module needs to be imported. The following code does the import:

from sklearn.neighbors import KNeighborsClassifier

2. Next, we need to specify our independent attributes and the dependent attribute. The following code keeps the independent

attributes in Xs and the dependent attribute in y.

Pay attention to the fact that we are dropping the last row of the data, as this is the row of the data
we want to perform the prediction for. The .drop(index=[20]) part will take care of this
dropping:
predictors = ['income_Normalized', 'score_Normalized']
target = 'default'
Xs = applicant_df[predictors].drop(index=[20])
y= applicant_df[target].drop(index=[20])
3. Next, we will create a KNN model and then fit the data into it. The following code shows how this is done:
knn = KNeighborsClassifier (n_neighbors=4)
knn.fit(Xs, y)

4. Now, knn is ready to classify the new data objects. The following code shows how we can separate the last row of the dataset and

make a prediction for it using knn:

newApplicant = pd.DataFrame({'income_Normalized':
applicant_df.iloc[20].income_Normalized, 'score_Normalized':
applicant_df.iloc[20].score_Normalized},index = [20])

predict_y = knn.predict(newApplicant)
print(predict_y)

If you put all the preceding four code snippets together, you will get the following output, which
also reports the prediction for newApplicant:

In [7]: M from sklearn.neighbors import KNeighborsClassifier

predictors = ['income Normalized', 'score_ Normalized']
target = 'default'’

Xs = applicant_df[predictors].drop(index=[20])
y= applicant_df[target].drop(index=[20])

knn = KNeighborsClassifier(n_neighbors=4)
knn.fit(Xs, y)

newApplicant = pd.DataFrame({'income_Normalized':
applicant_df.iloc[20].income_Normalized,
"score_Normalized':
applicant_df.iloc[20].score_Normalized},
index = [20])
predict_y = knn.predict(newApplicant)
print(predict_y)

['NO"]
Figure 7.5 — Classification using sklearn.neighbors
The output in the preceding screenshot, which is the class for newApplicant, confirms the conclusion

we had already decided that KNN should arrive at.

So far in this chapter, you have learned about classification analysis, and you have also learned how
the KNN algorithm works and how to get kneighborsclassifier from the sklearn.neighbors module
to apply KNN to a dataset. Next, you will be introduced to another classification algorithm: Decision

Trees.

Decision Trees

While you can use the Decision Trees algorithm for classification, just like KNN, it goes about the
task of classification very differently. While KNN finds the most similar data objects for
classification, Decision Trees first summarizes the data using a tree-like structure and then uses the

structure to perform the classification.

Let's learn about Decision Trees using an example.

Example of using Decision Trees for classification

We will use pecisionTreeClassifier from sklearn.tree to apply the Decision Trees algorithm to
applicant_df. The code needed to use Decision Trees is almost identical to that of KINN. Let's see the

code first, and then I will draw your attention to their similarities and differences. Here it is:

from sklearn.tree import DecisionTreeClassifier

predictors = ['income', 'score']

target = 'default'

Xs = applicant_df[predictors].drop(index=[20])

y= applicant_df[target].drop(index=[20])

classTree = DecisionTreeClassifier()

classTree.fit(Xs, vy)

predict_y = classTree.predict(newApplicant)

print(predict_y)

There are two differences between the preceding code and the KNN code. Here, we list these

differences:

« First, the decision tree, due to the way it works, does not need the data to be normalized, so that is why the predictors =

['income', 'score'] line of code uses the original attributes. We used the normalized version for KNN.

« Second, and obviously, we have used DecisionTreeClassifier () instead of KneighborsClassifier (). We also

named our classification model classTree here, as opposed to knn, which we used for KNN.

PAY ATTENTION!

As you probably have noticed, the code to use any predictive model (prediction and classification) in Python is very
similar. Here are the steps we take for every single one of the models. First, we import the module that has the
algorithm we would like to use. Next, we separate the data into independent and dependent attributes. After that, we
create a model using the module we imported. Then, we use the . fit () function of the model we created to fit the
data into the model. Lastly, we use the . predict () function to predict the dependent attribute for the new data

objects.

If you successfully run the preceding code, you will see that the decision tree, unlike KNN, classifies
newApplicant as YES. Let's look at the tree-like structure that becisionTreeclassifier () created to
come to this conclusion. To do this, we will use the plot_tree() function from the sklearn.tree

module. Try running the following code to draw the tree-like structure:

from sklearn.tree import plot_tree

plot_tree(classTree, feature_names=predictors, class_names=y.unique(),
filled=True, impurity=False)

The preceding code will output the following:

score <= 789.5
samples = 20
value = [10, 10]
class = NO

— N

Figure 7.6 — Classification using sklearn.neighbors

The output in the preceding screenshot will intuitively tell you why Decision Trees arrived at a
different conclusion from that of KNN. Starting from the top node, the dataset is separated into two
groups: data objects whose scores are greater than 789.5 and data objects whose scores are lower than
the cutoff value. All of the data objects with scores higher than 789.5 are labeled NO-default;
therefore, the decision tree has come to the conclusion that if an applicant's score is higher than
789.5, they should be classified as NO.

Since the score of newApplicant is 785, this rule does not apply to this data object. To find the class
of the data object based on this tree-like structure. we need to go deeper. From the tree-like structure,
we see that the data object that has scores lower than 789.5 and an income lower than 110,122.5 has
defaulted on the loan. So, again, Decision Trees has reached the rule that when applicant scores are
lower than 789.5 and 110,122.5, they should be classified as YES. As the score and income of
newApplicant are both lower than these cutoff values, the decision tree has concluded YES for it.

TUNING DECISION TREES

Just as with KNN, Decision Trees also needs tuning to reach its fullest potential. In fact, Decision Trees requires even
more tuning than what KNN needs, as Decision Trees has more hyperparameters that could be adjusted. However, for the
same reasons mentioned for KNN, we will not cover the how-to of the tunings in this book.

The way Decision Trees works is also simple—Decision Trees splits the dataset into two segments
again and again, at different stages, using one of the independent attributes until all segments of the

data are pure. Purity means that all of the data in the segment is of the same class.

Before making our way to the end of this chapter, let's take a moment to discuss why the two
algorithms have reached a different conclusion. First, we need to understand that when two distinct
algorithms arrive at different conclusions about the same data object, this is a sign that classification
of that data object is difficult, meaning that there are different patterns in the data that show the data

object could be either of the classes. Second, as these algorithms have various ways of pattern

recognition and decision-making, the algorithms that conclude differently may have prioritized the

patterns in dissimilar ways.

Summary

Congratulations on your excellent progress in this chapter! Together, we learned the fundamental
concepts and techniques of classification analysis. Specifically, we understood the distinction
between classification and prediction, and we also learned about two famous classification algorithms

and used them on a sample dataset to understand them even deeper.

In the next chapter, we will cover another important analytics task: clustering analysis. We will use

the famous K-Means algorithm to learn more about clustering and also run a few experiments.

Before moving forward and starting your journey to learn about clustering, spend some time on the

following exercises and solidify your learning.

Exercises

1. The chapter asserts that before using KNN, you will need to have your independent attributes normalized. This is certainly true,

but how come we were able to get away with no normalization when we performed KNN using visualization? (See Figure 7.3.)

2. We did not normalize the data when applying Decision Trees to the loan application problem. For practice and a deeper

understanding, apply Decision Trees to the normalized data, and answer the following questions:

a) Did the conclusion of Decision Trees change? Why do you think that is? Use the mechanism of

the algorithm to explain.

b) Did the Decision Trees tree-like structure change? In what ways? Did the change make a

meaningful difference in the way that the tree-like structure could be used?

3. For this exercise, we are going to use the Customer Churn.csv dataset. This dataset is randomly collected from an Iranian
telecom company's database over a period of 12 months. A total of 3,150 rows of data, each representing a customer, bear

information for 9 columns. The attributes that are in this dataset are listed here:
Call Failures: Number of call failures

Complaints: Binary (0: No complaint; 1: complaint)
Subscription Length: Total months of subscription

Seconds of Use: Total seconds of calls

Frequency of Use: Total number of calls

Frequency of SMS: Total number of text messages

Distinct Called Numbers: Total number of distinct phone calls

Status: Binary (1: active; 0: non-active)

Churn: Binary (1: churn; 0: non-churn)—class label

All of the attributes except for attribute churn are the aggregated data of the first 9 months. The
churn labels are the state of the customers at the end of 12 months. 3 months is the designated

planning gap.

Using the preceding data, we would like to use this dataset to predict if the following customer

will churn in 3 months:

Call Failures: 8; Complaints: 1; Subscription Length: 40; Seconds of Use: 4,472; Frequency of
Use: 70; Frequency of SMS: 100; Distinct Called Numbers: 25; Status: 1.

To do this, perform the following steps:
a) Read the data into the pandas customer_df DataFrame.

b) Use the skills you picked up in Chapter 5, Data Visualization, to come up with data

visualizations that show the relationship between the churn attribute and the rest of the attributes.

) Use the visuals in Step 2 to describe the relationship each of the attributes has with the attribute
Churn.

d) Perform KNN to predict if the aforementioned customer will be churned using all of the
attributes that had a meaningful relationship with churn. Do you need to normalize the data first?
Use K=5.

e) Repeat Step 4, but this time use K=10. Are the conclusions different?

f) Now, use the Decision Trees algorithm for classification. Do you need to normalize the data?
Use max_depth=4. Is the conclusion of the Decision Trees algorithm different from that of the
KNN algorithm?

max_depth is a hyperparameter of the Decision Trees algorithm that controls how deep the
learning can be. The number that is assigned is the maximum number of splits from the root of

the tree.

g) Draw the tree-like structure of the decision tree and explain how the decision tree came to the

conclusion it did.

Chapter 8. Clustering Analysis

Finally, you have made your way to the last chapter of the second part of this book. Clustering
analysis is another useful and popular algorithmic pattern recognition tool. When performing
classification or prediction, the algorithms find the patterns that help create a relationship between the
independent attributes and the dependent attribute. However, clustering does not have a dependent
attribute, so it does not have an agenda in pattern recognition. Clustering is an algorithmic pattern
recognition tool with no prior goals. With clustering, you can investigate and extract the inherent
patterns that exist in a dataset. Due to these differences, classification and prediction are called

supervised learning, while clustering is known as unsupervised learning.

In this chapter, we will use examples to fundamentally understand clustering analysis. Then, we will
learn about the most popular clustering algorithm: K-Means. We will also perform some K-Means

clustering analysis and examine the clustering output using centroid analysis.

In this chapter, we will cover the following topics:
e Clustering model

o K-Means algorithm

Technical requirements

You can find all the code and the dataset for this book in this book's GitHub repository. To find the
repository, go to https:/github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You

can find chapteres in this repository and download the code and the data for ease of learning.

Clustering model

Since you've already learned how to perform prediction and classification tasks in data analytics, in
this chapter, you will learn about clustering analysis. In clustering, we strive to meaningfully group

the data objects in a dataset. We will learn about clustering analysis through an example.

Clustering example using a two-dimensional dataset

In this example, we will use wH Report_preprocessed.csv to cluster the countries based on two

scores called Life_Ladder and Perceptions_of_corruption in 2019.

The following code reads the data into report_df and uses Boolean masking to preprocess the dataset

into report2019_df, which only includes the data of 2e19:

report_df = pd.read_csv('WH Report_preprocessed.csv')

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

BM = report_df.year == 2019

report2019_df = report_df[BM]

The result of the preceding code is that we have a DataFrame, reprot1e19_df, that only includes the

data of 2e19, as requested by the prompt.

Since we only have two dimensions to perform the clustering, we can take advantage of a scatterplot

to visualize all the countries in relation to one another based on the two attributes in question:

Life_Ladder and Perceptions_of_corruption.

The following code creates the scatterplot in two steps:

1. Create the scatterplot as we learned about in Chapter 5, Data Visualization.

2. Loop over all the data objects in report2019_df and annotate each point in the scatterplot using p1t .annotate():

plt

plt.

for

plt

plt

plt.

.figure(figsize=(12,12))

scatter(report2019_df.Life_Ladder, report2019_df.Perceptions_of_corruption)
_, row in report2019_df.iterrows():

plt.annotate(row.Name, (row.Life_lLadder, row.Perceptions_of_corruption))
.xlabel('Life_Ladder")

.ylabel('Perceptions_of_corruption')

show()

The output of the preceding code is as follows:

1.0 A
P &o.arair%g% Herzegovina
fghanistan . ¢-roatia
&9 \Ibania gortugal
geba nisia
eierra Leone ;‘;i_la%ina‘lkr‘m d *‘"ﬁm %al
Share #ndod e;gw&ng Bi{'rce Snibia ﬁzzsetghRFlt:eapumlc
imbabwe gfambia &hagordan rgentina
< do MUatenegroaonUWr%mm
0.8 1 otswana enya
¢ e el S gron
. kmemstan Arabla
dndia tanua einegorocco gurl ﬁbd ‘
(dsrael
glaiti adaga éfr &ﬁeso &pain
- dlepal ﬁza hstan gJnited Stateiceland
&Malawi J/Iyanmar éibya & sa |%E§F|um
‘Eeoégngladesh
:: ‘ap&dicaragua
2 9165 ganzania érmenia @)ruguay
o &stonia rance
2 L’(uwalt ¢
S $elarus
o
ol ahrain
) @/zbekistan ¢
'é dajikistan &/nited Kingdom
B @zerbaijan Fegama
5 &3k ralia
0.4 1 . I‘u;embourg
elan
&nited Arab Emiisideriands
ewitzerlpnd
@lorway
eweden
dlew Zealand
0.2 1 ginlang
&wanda denmark
@ingapore
3 4 5 6 7 8
Life_Ladder

Figure 8.1 — Scatterplot of countries based on two happiness indices called Life_Ladder and Perception_of_corruption
in 2019
As the data only has two dimensions, we can just look at the preceding figure and see the groups of
countries that have more similarities to one another based on Life_Ladder and
Perceptions_of_corruption. For instance, the following figure depicts the groups of countries based
on the preceding scatterplot. The countries that are within the boundaries of more than one cluster

should be assigned to one of the clusters.

1.0 1

$ulgaria
@\bania
ebapgunisia Lk rdiae
T .
SBhan

hagordan mnateneg "
enya ; a3

{’aki‘s(tan "jhlnaﬂﬁgﬁl&g1| X

rﬁmnfeso

dlepal
in)
Myanmar éibya

pfghanistan

eierra Leone

(Jzech Republic
{ osta Rica

&imbabwe gambia

0.8 A @Sotswana

éndia

; &paln
f?zaéhst éJnited Stateicel nd

& sa '%Elﬁum

gapatlicaragua

érmenia stonia
id(uwalt grance

$elarus

Saiti Madaga

&/ruguay

2
o
L

@/zbekistan

daijikistan hited Kingdom

Azerbaijan

&3pdralia

Perceptions_of_corruption

o
S
f

@uxembourg

dreland
&/nited Arab Emitigideriands

ewitzerlp

dlorway
eweden
dlew Zealand

0.2
&wanda

Singapore

3 4 5 6 7 8
Life_Ladder

Figure 8.2 — Scatterplot and clustering of countries based on two happiness indices called Life_Ladder and
Perceptions_of _corruption in 2019
Here, we see that we can meaningfully group all of the countries in the dataset into six clusters. One
of the clusters only has one data object, indicating that the data object is an outlier based on the

Life_Ladder and Perceptions_of_corruption attributes.

The key term here is meaningful clusters. So, let's use this example to understand what we mean by
meaningful clusters. The six clusters shown in the preceding figure are meaningful for the following
reasons:

« The data objects that are in the same clusters have similar values under Life_Ladder and

Perceptions_of_corruption.

o The data objects that are in different clusters have different values under Life_Ladder and

Perceptions_of_corruption.

In summary, meaningful clustering means that the clusters are grouped in such a way that the

members of the same clusters are similar, while the members of different clusters are different.

When we cluster in two dimensions, meaning that we only have two attributes, the task of clustering
is simple, as shown in the preceding example. However, when the number of dimensions increases,

our ability to see patterns among the data using visualization either decreases or becomes impossible.

For instance, in the following example, we will learn about the difficulty of visual clustering when

we have more than two attributes.

Clustering example using a three-dimensional dataset

In this example, we will use wH Report_preprocessed.csv. Try to cluster the countries based on the

three happiness indexes, called Life_Ladder, Perceptions_of corruption, and Generosity, in 2019.

The following code creates a scatterplot that uses color to add a third dimension:

plt.figure(figsize=(12,12))

plt.scatter(report2019_df.Life_Ladder, report2019_df.Perceptions_of_corruption,
c=report2019_df.Generosity,cmap="binary')

plt.xlabel('Life_Ladder")

plt.ylabel('Perceptions_of_corruption')

plt.show()

Running the preceding code will create the following figure. The following figure visualizes
Life_Ladder as the x dimension, Perceptions_of_corruption as the y dimension, and Generosity as
color. The lighter the markers, the lower the Generosity score, while the darker the markers the

higher the Generosity score:

10 4
[
¢ @
® ° & 8 ° L] -
@
[] L])
(5 e o
0.8 1 ° -
° £y
® o o
.' : @ " ®
L] &
© ,. °
® °
© . o
L
®
s .
] 06 ®
a
=
E
S
w! ®
o o
s ® @
g e
E‘.’ ®e
0.4 1 .
®
° []
°
@
®
[]
0.2 @
® [
[
3 4 5 6 7 8
Life_Ladder

Figure 8.3 — Scatterplot of countries based on three happiness indices called Life_Ladder, Perceptions_of_corruption,
and Generosity in 2019
Try to use the preceding visualizations to find the meaningful clusters of data objects based on the
three attributes all at once. This task will be overwhelming for us as our brains aren't good at

performing tasks where we need to process more than two dimensions at once.

The preceding figure does not include the names of the countries because even without them, we
have difficulty using this figure for clustering. Adding the country label would only overwhelm us
further.

The purpose of this example was not to complete it, but the conclusion we arrived at is very

important: we need to rely on tools other than data visualization and our brains to perform

meaningful clustering when the data has more than two dimensions.

The tools that we use for higher-dimensional clustering are algorithms and computers. There are
many different types of clustering algorithms with various working mechanisms. In this chapter, we
will learn about the most popular clustering algorithm: K-Means. This algorithm is simple, scalable,

and effective for clustering.

K-Means algorithm

K-Means is a random-based heuristic clustering algorithm. Random-based means that the output of
the algorithm on the same data may be different on every run, while heuristic means that the
algorithm does not reach the optimal solution. However, from experience, we know that it reaches a

good solution.

K-Means clusters the data objects using a simple loop. The following diagram shows the steps that

the algorithm performs, as well as the loop that heuristically finds the clusters in the data:

=3

;

Set k

}

Input the dataset

|

Randomly select k data objects from the
dataset as centroids of the k clusters

!

(re)assign the data objects to the clusters such
that they are closest to its centroid

Any
cluster
changed?

End]

Update each centroid as the mean of its

members

Figure 8.4 — K-Means flowchart

As we can see, the algorithm starts by randomly selecting k data objects as the cluster centroids.
Then, the data objects are assigned to the cluster that is closest to its centroid. Next, the centroids are
updated via the mean of all the data objects in the clusters. As the centroids are updated, the data
objects are reassigned to the cluster that is closest to its centroid. Now, as the clusters are updated, the
centroids will be updated as the mean of all the new data objects in the clusters. These last two steps
keep occurring until there is no change in the cluster after updating the centroids. Once this stability

has been reached, the algorithm terminates.

From a coding perspective, applying K-means is very similar to applying any of the other algorithms
that we have learned about so far. The following example shows how we could have reached a

similar result we reached using visualization. See Figure 8.2 for more information.

Using K-Means to cluster a two-dimensional dataset

Earlier in this chapter, we grouped the countries into six clusters using Life_Ladder and

Perception_of_corruption. Here, we would like to confirm the same clustering using K-Means.

The following code uses the kMeans function from the sklearn.cluster module to perform this

clustering:

from sklearn.cluster import KMeans

dimensions = ['Life_Ladder"', 'Perceptions_of_corruption']
Xs = report2019_df[dimensions]

kmeans = KMeans(n_clusters=6)

kmeans.fit(Xs)

The preceding code performs kmeans clustering in four lines:

1. dimensions = ['Life_Ladder', 'Perceptions_of_corruption’]: This line of code specifies the attributes of

the data we want to use for clustering.
2.Xs = report2019_df[dimensions]: This line of code separates the data we want to use for clustering.

3. kmeans = KMeans(n_clusters=6): This line of code creates a K-Means model that is ready to cluster input data into six

clusters.

4. kmeans. fit (Xs): This line of code introduces the dataset we want to be clustered to the model we created in the previous

step.

When we run the preceding code successfully, almost nothing happens. However, clustering has been
performed, and the cluster membership of every row can be accessed using kmeans.labels_. The
following code uses a loop, kmeans. labels_, and Boolean masking to print the members of each

cluster:

for 1 in range(6):
BM = kmeans.labels_==i

print('Cluster {}: {}'.format(i, report2019_df[BM].Name.values))

The following screenshot puts the two preceding codes together and shows the output of the code as
well. After running the code, you will probably get a different output from the one shown in the
following screenshot. If you run the same code a few times, you will get a different output every

time.

The reason for this inconsistency is that K-Means is a random-based algorithm. Please refer to the K-
Means flowchart shown in Figure 8.4: K-Means starts by randomly selecting k data objects as the

initial centroids. As this initialization is random, the outputs are different from one another.

Even though the outputs are different, the same countries are grouped under the same cluster each
time. For instance, notice that the United Kingdom and Canada are in the same cluster every time.
This is reassuring; it means that K-Means finds the same pattern in the data, even though it follows a

random procedure:

In [1@]: M from sklearn.cluster import KMeans
dimensions = ['Life_Ladder', 'Perceptions_of_corruption']
Xs = report2019_df[dimensions]
kmeans = KMeans(n_clusters=6)
kmeans.fit(Xs)

for 1 in range(6):
BM = kmeans.labels_==i
print('Cluster {}: {}'.format(i,report2019_df[BM].Name.values))

Cluster @: ['Australia' 'Austria' 'Bahrain' 'Canada' 'Denmark' 'Finland' 'G

ermany’

'Iceland' 'Ireland' 'Israel' 'Luxembourg' 'Netherlands' 'New Zealand'

'Norway' 'Sweden' 'Switzerland' ‘'United Kingdom']

Cluster 1: ['Albania' 'Algeria' 'Armenia' 'Azerbaijan' 'Bangladesh' 'Benin'
'Bulgaria'’ 'Burkina Faso' 'Cambodia' 'Cameroon' 'China‘' 'Gabon' 'Georgia'
‘Ghana' 'Guinea' 'Indonesia' 'Iraq’ 'Liberia' 'Libya' 'Malaysia’ 'Mali’
'Mongolia' 'Montenegro’ 'Morocco' ‘Nepal' 'Niger' 'Senegal’

'South Africa' 'Tajikistan' 'Turkey' 'Turkmenistan' 'Uganda' 'Vietnam']
Cluster 2: ['Argentina' 'Belarus' 'Bolivia' 'Bosnia and Herzegovina' 'Chil
al

'Colombia’ 'Croatia’ 'Cyprus' 'Dominican Republic' ‘'Ecuador' 'Estonia’

'Greece' 'Guatemala' 'Honduras' 'Hungary' 'Japan' 'Kazakhstan' 'Kuwait'

'Latvia' 'Lithuania' 'Moldova' 'Nicaragua' 'Panama’ 'Paraguay' 'Peru’

'Philippines’ 'Poland' 'Portugal' 'Romania' 'Serbia‘' 'Thailand’

'Uzbekistan']

Cluster 3: ['Afghanistan' 'Botswana’ 'Haiti' 'India' 'Rwanda’ 'Sierra Leon

o
'Tanzania' 'Zambia' 'Zimbabwe']

Cluster 4: ['Belgium' 'Brazil' 'Costa Rica' 'Czech Republic' 'El Salvador'

'France'

'ITtaly' 'Malta' 'Mexico' 'Saudi Arabia' 'Singapore' 'Slovenia' 'Spain’

'United Arab Emirates' 'United States' 'Uruguay']

Cluster 5: ['Chad' 'Ethiopia' 'Jordan' 'Kenya' 'Lebanon' 'Madagascar’' 'Mala

wi'

'Mauritania' 'Myanmar' 'Nigeria' 'Pakistan' 'Sri Lanka' 'Togo' 'Tunisia'

‘Ukraine']

Figure 8.5 — K-Means clustering based on two happiness indices called Life_Ladder and Perception_of_corruption in
2019 — Original data

Now, let's compare the clusters we found using K-Means (Figure 8.5) and the clusters we found
using visualization (Figure 8.2). These clusters are different, even though the data that was used for
clustering was the same. For instance, while Rwanda was an outlier in Figure 8.2, it is the member

of a cluster in Figure 8.5. Why is this happening? Give this question some thought before reading on.
The following code will output a visual that can help you answer this question:
plt.figure(figsize=(21,4))

plt.scatter(report2019_df.Life_Ladder, report2019_df.Perceptions_of_corruption)

for _, row in report2019_df.iterrows():

plt.annotate(row.Name,
(row.Life_Ladder, row.Perceptions_of_corruption), rotation

=90)

plt.x1im([2.3,7.8])
plt.xlabel('Life_Ladder")
plt.ylabel('Perceptions_of_corruption')

plt.show()

This code will produce the following output:

B o - F e 5
) e ™ 3
S = c

5 2 8 s 8 o 5 2 c 2 o s s 5

102 i 2o E5-= 2B =5 2 o s

= 2 2 = E eSO = 2ol BE= 3 Eo 8 = 2%

o 2 =) o0 > e STEET £ & 5 o & £ =59

£ E = & S ESREE s & StiEL o & >]] 38

£ H) 2ienltE 2 2 53] - 5] 5 = & =
0.8 -~ o -] _ - o5e® 7 & = o o 5 90 E A £ g 2
h:] e = 2 2 S & s TES ERC) R s ¢ H
< & 2 P ey X . ® 8 ¥y EE = 3 e 3
s e & 8 5. & %5 w5 248 “ B =] ® -
g “@ ® 5 EE 3‘35 2 >E¥
0.6 P ® 2 PGherd L & &pes
£ 4 o ez . EgBEs3
g & & < £
= 3 ©
c
&

Perceptions_of_corruption
o <
e

&,
Hnite
Rew zi:g‘;‘g
Stcoimemanes
Bennfktzerland

=
N
fwanda

@ingapore

5
Life_Ladder
Figure 8.6 — The resized version of Figure 8.1 and Figure 8.2

The only difference between the preceding output and Figure 8.1 and Figure 8.2 is that in the
preceding output, the numerical scale of Life_Ladder and Perceptions_of corruption has been

adjusted to be the same.

Matplotlib automatically scaled both dimensions of Figure 8.1 and Figure 8.2 — Life_Ladder and
Perceptions_of_corruptions — so that they appear to have a similar visual range. This can be seen if
you pay attention to the amount of visual space between 3 and 4 on the Life_Ladder dimension, and
then compare that to the amount of visual space between e.2 and e.4 on the
Perceptions_of_corruption dimension. So, we can see that while the amounts of visual space are
equal, the numerical values that represent them are very different. This realization answers the
question that was raised earlier: why is the clustering outcome of Figure 8.5 entirely different from
the one we detected visually in Figure 8.2? The answer is that the two clusterings are not using the
same data. The clustering represented in Figure 8.2 uses a scaled version of the data, while the

clustering represented in Figure 8.5 (K-Means clustering) uses the original data.

Now, a second question we need to answer is, which clustering output should we use? Let me help
you come to the right answer. When we want to cluster our data objects using two dimensions,
Life_Ladder and Perceptions_of_corruption, how much weight do we want each dimension to play
in the result of the clustering? Don't we want both attributes to play an equal role? Yes, that is the
case. So, we want to choose the clustering that has given both dimensions equal importance. Since K-
Means clustering used the original data without scaling it, the fact that Life_Ladder happened to have

larger numbers influenced K-Means to prioritize Life_Ladder over Perceptions_of_corruption.

To overcome this challenge, before applying K-Means or any other algorithm that uses the distance
between data objects as an important deciding factor, we need to normalize the data. Normalizing the
data means the attributes are rescaled in such a way that all of them are represented in the same
range. For instance, as you may recall, we normalized our datasets before applying KNN in the

previous chapter for the same reason.

The following screenshot shows the code and the clustering output when the dataset is normalized
before using K-Means. In this code, Xs = (Xs - Xs.min())/(Xs.min()-Xs.max()) is used to rescale
all the attributes in xs to be between zero and one. The rest of the algorithm code is the same as the
code we tried earlier in this chapter. Now, you can compare the clustering outcome in the following
screenshot and the one shown in Figure 8.2 to detect that the two ways of clustering are achieving

almost the same results:

In [12]: M dimensions = ['Life_Ladder','Perceptions_of_corruption']
Xs = report2019_df[dimensions]
Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
kmeans = KMeans(n_clusters=6)
kmeans.fit(Xs)

for i in range(6):
BM = kmeans.labels ==i
print('Cluster {}: {}'.format(i,report2019_df[BM].Name.values))

Cluster @: ['Australia' 'Austria’ 'Canada' 'Denmark' 'Finland' 'Germany' 'I
reland’
'Luxembourg' 'Netherlands' 'New Zealand' 'Norway' 'Singapore' 'Sweden'
'Switzerland' 'United Arab Emirates' 'United Kingdom']
Cluster 1: ['Argentina’ 'Bolivia’' 'Bosnia and Herzegovina' 'Brazil’' 'Chile’
'Colombia' 'Costa Rica' 'Croatia' 'Cyprus' 'Czech Republic'’
"Dominican Republic' 'Ecuador' 'Greece' 'Guatemala' 'Honduras' 'Hungary'
'Italy' 'Latvia' 'Lithuania' 'Mexico' 'Moldova' 'Mongolia' 'Panama’
'Paraguay' 'Peru' 'Philippines' 'Portugal’' ‘Romania’ 'Saudi Arabia’
'Serbia’ 'Slovenia' 'Thailand']
Cluster 2: ['Albania' 'Algeria' 'Bangladesh' 'Benin' 'Bulgaria’ 'Burkina Fa
so'
'Cambodia’ 'Cameroon' 'China' 'Gabon' 'Georgia' 'Ghana’ 'Guinea’
'Indonesia’ 'Iraq' 'Jordan' 'Kenya' 'Liberia' 'Libya' 'Malaysia’ 'Mali’
'Montenegro' 'Morocco’ 'Myanmar' 'Nepal' 'Niger' 'Pakistan' 'Senegal’
'South Africa' 'Turkey' 'Turkmenistan' 'Uganda' 'Ukraine' 'Vietnam']
Cluster 3: ['Afghanistan' 'Botswana' 'Chad' 'Ethiopia' 'Haiti' 'India' 'Leb
anon'
'Madagascar' ‘'Malawi' ‘Mauritania’' 'Nigeria’ 'Sierra Leone' 'Sri Lanka'
"Tanzania' 'Togo' 'Tunisia' 'Zambia' 'Zimbabwe']
Cluster 4: ['Armenia’ 'Azerbaijan’ 'Bahrain’ 'Belarus' 'Belgium' 'El Salvad
or'
'Estonia’ 'France' 'Iceland’' 'Israel' 'Japan' 'Kazakhstan' 'Kuwait'
'Malta' 'Nicaragua' 'Poland' 'Spain' 'Tajikistan' 'United States'
'Uruguay' 'Uzbekistan']
Cluster 5: ['Rwanda’]

Figure 8.7 — K-Means clustering based on two happiness indices called Life_Ladder and Perceptions_of_corruption in
2019 — Normalized data
In this example, we saw how K-Means, when applied correctly, can produce a meaningful clustering
compared to what we had reached using data visualization. However, the K-Means clustering in this
example was applied to a two-dimensional dataset. In the next example, we will see that, from a
coding perspective, there is almost no difference between applying K-Means to a two-dimensional

dataset and applying the algorithm to a dataset with more dimensions.

Using K-Means to cluster a dataset with more than two
dimensions

In this section, we will use K-Means and form three meaningful clusters of countries in
report2019_df based on all the Life_Ladder, Log_GDP_per_capita, Social_support,
Healthy life expectancy_at_birth, Freedom_to_make_life_choices, Generosity,

Perceptions_of_corruption, Positive_affect, and Negative affect happiness indices.

Go ahead and run the following code; you will see that it will form three meaningful clusters and
print out the members of each cluster:
dimensions = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_support',

'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_choices', 'Generosity',
'Perceptions_of_corruption', 'Positive_affect', 'Negative_affect']

Xs report2019_df[dimensions]

Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
kmeans = KMeans(n_clusters=3)
kmeans.fit(Xs)

for 1 in range(3):

BM = kmeans.labels_==i

print('Cluster {}: {}' .format(i,report2019_df[BM].Name. values))

Here, the only difference between the preceding code and the code presented in Figure 8.7 is the first
line, where the dimensions of the data are selected. After this, the code is the same. The reason for

this is that K-Means can handle as many dimensions as inputted.

HOW MANY CLUSTERS?

Choosing the number of clusters is the most challenging part of performing a successful K-Means clustering analysis. The
algorithm itself does not accommodate finding out how many meaningful clusters are in the data. Finding the meaningful
number of clusters in the data is a difficult task when the dimensions of the data increase.

While there is no one perfect solution to go about finding the meaningful number of clusters in a dataset, there are a few
different approaches you can adopt. In this book, we will not cover this aspect of clustering analysis as we know enough

about clustering analysis to perform effective data preprocessing.

So far, we have learned how to use K-Means to form meaningful clusters. Next, we are going to learn
how to profile these clusters using centroid analysis.

Centroid analysis

Centroid analysis, in essence, is a canonical data analytics task that is done once meaningful clusters
have been found. We perform centroid analysis to understand what formed each cluster and gain

insight into the patterns in the data that led to the cluster's formation.

This analysis essentially finds the centroids of each cluster and compares them with one another. A

color-coded table or a heatmap can be very useful for comparing centroids.

The following code finds the centroids using a loop and Boolean masking and then uses the
sns.heatmap() function from the seaborn module to draw the color-coded table.
The following code must be run once you've run the preceding code snippet:
import seaborn as sns
clusters = ['Cluster {}'.format(i) for i in range(3)]
Centroids = pd.DataFrame(0.0, index = clusters, columns = Xs.columns)
for i,clst in enumerate(clusters):
BM = kmeans.labels_==i
Centroids.loc[clst] = Xs[BM].median(axis=0)
sns.heatmap(Centroids, linewidths=.5, annot=True, cmap='binary')

plt.show()

The preceding code will output the following heatmap:

H N B b
0:33 0.37 [k 0.68
-0.4
0.43 0.4 KRN 0.2
=0.3

Cluster O

Cluster 1

0.89(0.84|0.92(0.84

Cluster 2

[I 1 1 I I
— + -+
« & £ £ 8§ 2 § © U
T B 2 £ R v o
£~ © Qo 5 O B £ £
© O Q2 | e © ©
o 8 2 o0& 5 £ 8
€ 8 5 3 ¢ 8§ 8 = 3
- Q.I U c = Y w ©
p) -L—'J ~ U‘)I o
O © <
| Qv -
=y T = kS
o} x I)
= g 2 =
|
& E o
|) Y
> O
£ 3
f_U- -
4 -
I

Figure 8.8 — Using sns.heatmap() to perform centroid analysis

Before we analyze the preceding heatmap, allow me to give you a heads up. As K-Means is a
random-based algorithm, your output may be different to the one printed here. We would expect to

see the same patterns emerge from the data, but the cluster names might be different.

In the preceding heatmap, we can see that cluster o has the best happiness scores among all the
clusters, so we may label this cluster as Very Happy. On the other hand, cluster 2 is second best in
every index except for Generosity and Perception_of_corruption, so we will label this cluster
Happy but Crime-ridden. Finally, cluster 1 has the lowest value for almost all of the happiness
indices, but Geneoristy has a close second rank among all the centroids; we will call this cluster

Unhappy but Generous.

Summary

Congratulations on your excellent progress in this chapter and this book! By finishing this chapter,
you have also finished the second part of this book. In this chapter, we learned about clustering
analysis and some techniques we can use to perform it. In this part of this book, we learned about the

four most in-demand data analytics goals: data visualization, prediction, classification, and clustering.

In the first part of this book, you learned about data and databases, as well as programming skills that
allow you to effectively manipulate data for data analytics. In the second part, which is the one you
just finished, you learned about the four most important data analytics goals and learned how they

can be met using programming.

Now, you are ready to take on the next challenge: learning how to effectively preprocess data for the
data analytics goals you just learned about in the second part of this book using your programming

skills, your fundamental understanding of data, and your appreciation of data analytics goals.

In the next part of this book, we will start our journey of data preprocessing. The next part of this
book is comprised of data cleaning, data fusion and integration, data reduction, and data massaging
and transformation. These processes are the pieces of a puzzle that, when put together appropriately

and effectively, improve data preprocessing and improve the quality of data analytics.

Before you move on and start your journey on data cleaning, spend some time on the following

exercises and solidify what you've learned.

Exercises

1. In your own words, answer the following two questions. Use 200 words (at most) to answer each question:
a) What is the difference between classification and prediction?

b) What is the difference between classification and clustering?

2. Consider Figure 8.6 regarding the necessity of normalization before performing clustering analysis. With your new appreciation

for this process, would you like to change your answer to the first exercise question from the previous chapter?

3. In this chapter, we used WH Report_preprocessed. csv to form meaningful clusters of countries using 2019 data. In this

exercise, we want to use the data from 2010-2019. Perform the following steps to do this:

a) Use the .pivot () function to restructure the data so that each combination of the year and
happiness index has a column. In other words, the data of the year is recorded in long format, and
we would like to change that into wide format. Name the resulting data pvt_df. We will not need

the Population and continent columns in pvt_df.
b) Normalize pvt_df and assign it to Xs.

¢) Use K-Means and xs to find three clusters among the data objects. Report the members of each

cluster.

d) Use a heatmap to perform centroid analysis. As there are many columns for this clustering, you
may have to resize the heatmap so that you can use it for analysis. Make sure you've named each

cluster.

. For this exercise, we will be using the Mall_Customers.x1sx dataset to form four meaningful clusters of customers. The

following steps will help you do this correctly:
a) Use pd.read_excel() to load the data into customer_df.

b) Set customerIp as the index of customer_df and binary code the Gender column. This means

replacing male values with e and Female values with 1.

c¢) Clean the names of the columns by using the following names: ender, Age, Annual_income,

and spending_score.
d) Normalize customer_df and load it into the xs variable.

e) Use K-Means and xs to find four clusters among the data objects. Report the members of each

cluster.
f) Use a heatmap to perform centroid analysis. Make sure you've named each cluster.

g) Why did we binary code the Gender attribute in Step b?

Part 3: The Preprocessing

In this part, you will learn how to use Python to perform data cleaning, data integration, data

reduction, and data transformation to prepare data for successful analytic purposes.
This part comprises the following chapters:

o Chapter 9, Data Cleaning Level I — Cleaning Up the Table

o Chapter 10, Data Cleaning Level II — Unpacking, Restructuring, and Reformulating the Table

o Chapter 11, Data Cleaning Level 111 — Missing Values, Outliers, and Errors

e Chapter 12, Data Fusion and Data Integration

e Chapter 13, Data Reduction

o Chapter 14, Data Transformation and Massaging

Chapter 9. Data Cleaning Level | — Cleaning Up the
Table

We are finally here! After making sure that we have the required technical skills (part 1 of this book)
and analytics skills (part 2 of this book), we can start discussing effective data preprocessing. We will
start this journey by looking at data cleaning. This chapter divides data cleaning into three levels:
levels I, 11, and III. As you move up these levels, learning about the concept of data cleaning will
become deeper and more complex. We will talk about what they are, how they are different, and what
types of situations require us to perform each level of data cleaning. Furthermore, for each level of

data cleaning, we will see examples of data sources that will require different levels of data cleaning.

In this chapter, we will focus on data cleaning level I — cleaning up the table. The next two chapters
are also dedicated to data cleaning but at levels II and III.
In this chapter, we're going to cover the following main topics:

« The levels, tools, and purposes of data cleaning — a roadmap to Chapter 9, Data Cleaning Level I — Cleaning Up the Table,
Chapter 10, Data Cleaning Level I1 — Unpacking, Restructuring, and Reformulating the Table, and Chapter 11, Data Cleaning

Level 111 — Missing Values, Outliers, and Errors

« Data cleaning level I — cleaning up the table

Technical requirements

You can find all of the code and the dataset for this book in this book's GitHub repository. To find the
repository, go to https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You

can find Chapter09 in this repository and download the code and the data to aid with your learning.

The levels, tools, and purposes of data cleaning — a
roadmap to chapters 9, 10, and 11

One of the most exciting moments in any data analytics project is when you have one dataset that you
believe contains all the data you need to effectively meet the goals of the project. This moment comes
normally in one of the following situations:

» You are done collecting data for the analysis you have in mind.

« You have done extensive data integration from different data sources. Data integration is a very important skillset and we will

cover it in Chapter 12, Data Fusion and Data Integration.

o The dataset is just shared with you and it contains everything that you need.

Regardless of how you got your hands on the dataset, this is an exciting moment. But beware that

more often than not, you still have many steps to take before you can analyze the data. First, you

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

need to clean the dataset.

To learn about and perform data cleaning, we need to fully understand the following three aspects:

« Purpose of data analytics: Why are we cleaning the dataset? In other words, how are we going to use the dataset once it has been

cleaned?

« Tools for data analytics: What will be used to perform data analytics? Python (Matplotlib/sklearn)? Excel? MATLAB?

Tableau?

« Levels of data cleaning: What aspects of the dataset need cleaning? Is our cleaning at the surface level, in that we are only

cleaning up the name of the columns, or is our cleaning deeper, in that we are making sure that the recorded values are correct?

In the next three subsections, we will look at each of these aspects in more detail.

Purpose of data analytics

While it might sound like data cleaning can be done separately without us paying too much attention
to the purpose of the analysis, in this chapter, we will see that more often than not, this is not the case.
In other words, you will need to know what analytics you will be performing on the dataset when you
are cleaning your data. Not only that, but you also need to know exactly how the analytics and

perhaps the algorithms that you have in mind will be using and manipulating the data.

So far in this book, we have learned about four different data analytic goals: data visualization,
prediction, classification, and clustering. We learned about these analytics goals and how data is
manipulated to meet them. We needed a more profound level of understanding and appreciation for
these goals so that they can support our data cleaning. By knowing how the data will be used after we
have cleaned it, we are in a position to make better decisions regarding how the data should be
cleaned. In this chapter, we will see that our deeper understanding of the analytic goals will guide us

to perform more effective data cleaning.

Tools for data analytics

The software tools you intend to use will also have a major role in how you will go about data
cleaning. For instance, if you intend to use MATLAB to perform clustering analysis and you've
completed data cleaning in Python and have the completed data in Pandas DataFrame format, you
will need to transform the data into a structure that MATLAB can read. Perhaps you could use
.to_csv() to save the DataFrame as a .csv file and open the file in MATLAB since .csv files are

compatible with almost any software.

Levels of data cleaning

The data cleaning process has both high-level goals and many nitty-gritty details. Not only that but
what needs to be done for data cleaning from one project to another can be completely different. So,
it is impossible to give clear-cut, step-by-step instructions on how you should go about data cleaning.

However, we can loosely place the data cleaning procedure at three levels, as follows:

1. Level I: Clean up the table.
2. Level II: Unpack, restructure, and reformulate the table.

3. Level III: Evaluate and correct the values.

In this chapter and the next two, we will learn about various data cleaning situations that fall under
one of the preceding levels. While each of these levels will have a specific section in this book, we
will briefly go over what they are and how they differ from one another here.

Level I- cleaning up the table

This level of cleaning is all about how the table looks. A level I cleaned dataset has three
characteristics: it is in a standard data structure, it has codable and intuitive column titles, and each
row has a unique identifier.

Level Il- restructuring and reformulating the table

This level of cleaning has to do with the type of data structure and format you need your dataset to be
in so that the analytics you have in mind can be done. Most of the time, the tools you use for
analytics dictate the structure and the format of the data. For instance, if you need to create multiple
box plots using plt.boxploet (), you need to separate the data for each box plot. For instance, see the
Comparing populations using box plots example in the Comparing populations section of Chapter 5,
Data Visualization, where we restructured the data before using the function to draw multiple box
plots.

Level IlI- evaluating and correcting the values

This level of cleaning is about the correctness and existence of the recorded values in the dataset. At
this level of cleaning, you want to make certain that the recorded values are correct and are presented
in a way that best supports the analytics goals. This level of data cleaning is the most technical and
theoretical part of the data cleaning process. Not only do we need to know how the tools we will be
using need the data to be, but we also need to understand how the data should be corrected,
combined, or removed, as informed by the goals of the analytics process. Dealing with missing

values and handling outliers are also major parts of this level of data cleaning.

So far, we have looked at the three most important dimensions of data cleaning: the purpose of data
analytics, the tools for data analytics, and the three data cleaning levels. Next, we will understand the
roles these three dimensions — analytics purposes, analytic tools, and the levels of data cleaning —

play when it comes to effective data cleaning.

Mapping the purposes and tools of analytics to the
levels of data cleaning

The following diagram shows the map of these three dimensions. Having a dataset that has been
cleaned at level I is the very first step, and taking the time to make sure this level of data cleaning has
been performed will make the next data cleaning levels and the data analytics process easier. While
we can perform data cleaning level I without knowing the analytics we have for the dataset, it would
be unwise to do any level II or level I1I data cleaning without knowing the software tools or the
analytics you intend to employ. The following diagram shows that level IT data cleaning needs to be
done while you're informed about the tools and the analytic goals, while level III data cleaning needs

to be executed once you know about the data analytics goals:

A standard data structure
Level | - Attributes have intuitive and codable names
Rows have a unique identifier

_ Change data structure
Level i Reshiichwe the datacet Restructure the dataset
Deal with data errors
Level W - Deal with missing values
Detect and handle outliers
| | L}
Generals cleaning steps Steps for the analytic tools Steps for analytic goals

Figure 9.1 — Relevant amount of general and specific steps for three different levels of data cleaning

In the remainder of this chapter, we will cover data cleaning level I in more detail by providing data
cleaning examples that tend to occur frequently. In the next few chapters, we will do the same thing

for data cleaning levels II and III.

Data cleaning level | — cleaning up the table

Data cleaning level I has the least deep data preprocessing steps. Most of the time, you can get away
with not having your data cleaned at level I. However, having a dataset that is level I cleaned would
be very rewarding as it would make the rest of the data cleaning process and data analytics much

easier.
We will consider a level I dataset clean where the dataset has the following characteristics:

o Itisin astandard and preferred data structure.
« It has codable and intuitive column titles.

« Each row has a unique identifier.

The following three examples feature at least one or a combination of the preceding characteristics

for ease of learning.

Example 1 — unwise data collection

From time to time, you might come across sources of data that are not collected and recorded in the
best possible way. These situations occur when the data collection process has been done by someone
or a group of people who don't have the appropriate skills regarding database management.
Regardless of why this situation might have occurred, you are given access to a data source that

requires significant preprocessing before it can be put in one standard data structure.

For instance, imagine that you have been hired by an election campaign to use the power of data to
help move the needle. Omid was hired just before you, and he knows a lot about the political aspects
of the election but not much about data and data analytics. You have been assigned to join Omid and
help process what he has been tasked with. In your first meeting, you realize that the task is to
analyze the speeches that have been made by the 45th President of the United States, Donald Trump.
To bring you up to speed, he smiles and tells you that he has completed the data collection process
and that all that needs to be done is the analysis now; he shows you a folder on his computer that
contains text files (. txt) for every one of Donald Trump's speeches made in 2019 and 2020. The

following screenshot shows this folder on Omid's computer:

| = | Speeches — O X

Home Share View v o
« v 4 « Previous Presidents » 45th » Speeches v O L Search Speeches
~
jjsmmo%mamgmmn ijsmmm@mgmmm ijM@mm&m&mmm
CharlotteMar2_2020.txt j CincinnatiAug1_2019.txt ColoradorSpringsFeb20_2020.txt

¥

= DallasOct17_2019.txt = DesMoinesJan30_2020.txt — FayettevilleSep9_2019.txt

= — FayettevilleSep19_2020.txt ~— FreelandSep10_2020.txt — GreenvilleJul17_2019.txt

9

» — HendersonSep13_2020.txt — HersheyDec10_2019.txt — LasVegasFeb21_2020.txt

@ ~— LatrobeSep3_2020.txt — LexingtonNov4_2019.txt — | MilwaukeelJan14_2020.txt

9
Yy — MindenSep12_2020.txt — MinneapolisOct10_2019.txt ~— MosineeSep17_2020.txt
[
ac — NewHampshireAug15_2019.txt — NewHampshireAug28_2020.txt — NewHampshireFeb10_2020.txt
w7 — NewMexicoSep16_2019.txt — OhioSep21_2020.txt — PhoenixFeb19_2020.txt

'. — PittsburghSep22_2020.txt — TexasSep23_2019.txt — ToledoJan9_2020.txt

[l

— TulsaJun20_2020.txt — TupeloNov1_2019.txt — WildwoodJan28_2020.txt

‘ — Winston-SalemSep8_2020.txt j YumaAug18_2020.txt

d

=

v
35 items ==

Figure 9.2 — Example of unwise data collection

After viewing the folder, you instantly realize that data preprocessing must be done before any
analytics can be considered. In the interest of building a good working relationship with Omid, you
don't tell him directly that a huge data preprocessing task needs to be done; instead, you comment on
the aspects of his data collection that are great and can be used as a cornerstone for data
preprocessing. You mention that it is great that the naming of these files follows a predictable order.
The order is that city names come first, comes the name of the month as three letters, then the day as

one or two digits, and finally the year as four digits.

As you are well-versed with Pandas DataFrame, you suggest that the data should be processed into a

DataFrame and Omid, eager to learn, accepts.

You can perform the following steps to process the data into a DataFrame:

1. First, we need to access the filenames so that we can use them to open and read each file. Pay attention: we can type the names of
the files ourselves as there are only 35 of them. However, we must do this using programing as we are trying to learn scalable
skills; imagine that we have one million files instead of 35. The following code shows how using the 1istdir () function from

the 0s module can do that for us very easily:
from os import listdir

FileNames = listdir('Speeches')

print(FileNames)

2. Next, we need to create a placeholder for our data. In this step, we need to imagine what our dataset would look like after this data
cleaning process has been completed. We want to have a DataFrame that contains the names of each file and its content. The

following code uses the pandas module to create this placeholder:
import pandas as pd

speech_df = pd.DataFrame(index=range(len(FileNames)), columns=['File Name', 'The
Content'])

print(speech_df)
3. Lastly, we need to open each file and insert its content into speech_df, which we created in the previous step. The following

code loops through the elements of FineNames. As each element is the name of one of the files that can be used to open and

read the file, we can use the open() and .readlines() functions here:
for i,f_name in enumerate(FileNames):
f = open('Speeches/' + f_name, "r", encoding='utf-8'")
f_content = f.readlines()
f.close()
speech_df.at[i, 'File Name'] = f_name

speech_df.at[i, 'The Content'] = f_content[0]

Once you have completed these three steps, run Print (speech_df) and study it before moving on.
Here, you can see that speech_df has two of the three characteristics of level I cleaned data. The
dataset has the first characteristics as it is now one standard data structure, which is also your

preferred one.

The dataset, after being processed into speech_df, also has the third characteristic as each row has a
unique index. You can run speech_df.index to investigate this. You might be pleasantly surprised that
we didn't do anything to acquire this cleaning characteristic. This is automatically done for us by

Pandas.

However, we could have done better regarding the second characteristic. The File Name and The
content column names are intuitive enough, but they are not as codable as they can be. We can
access them using the df['columnName'] method but not df.columnName, as shown here:

1. First, run speech_df['File Name'] and speech_df['The Content']; you will see that you can easily access each

column using this method.

2. Second, run speech_df .File Name and speech_df.The Content; you will get errors. Why? To jog your memory,
please go back to Chapter 1, Reviewing the Core Modules of NumPy and Pandas, find the DataFrame access columns section,

and study the error shown in Figure 1.16. The cause of the error is very similar here.

So, to make the column titles codable when using a Pandas DataFrame, we only have to follow a few

guidelines, as follows:

« Try to shorten the column's titles as much as possible without them becoming unintuitive. For instance, The Content can

simply be Content.

« Avoid using spaces and possible programming operators such as -, +, =, %, and & in the names of the columns. If you have to

have more than one word as the column's name, either use camel case naming (FileName) or use an underscore (Fi1le_Name).

You may have noticed in the second to last piece of code that I could have used more codable column
titles; I could have used columns=['FileName', 'Content'] instead of columns=['File Name', 'The
content']. You are right. I should have done this there; I only did this so I was able to make this
point afterward. So, go ahead and improve the code before moving on. Alternatively, you can use the

following code to change the column names to their codable versions:

speech_df.columns = ['FileName', 'Content']

Now that we have completed this example, let's review the characteristics of Level I data cleaning
that the sources of data in this example needed. This source of data needed all three characteristics of
Level I data cleaning to be improved. We had to take action explicitly to make sure that the data is in
standard data structure and also has intuitive and codable column names. Also, the tool we used,

Pandas, automatically gave each row a unique identifier.

Example 2 — reindexing (multi-level indexing)

In this example, we want to perform Level 1 data Cleaning on Tempbata.csv. The following

screenshot shows how to use Pandas to read the data into a DataFrame:

In [7]: M air_df = pd.read_csv('TempData.csv')

air_df
Out[7]:

Temp Year Month Day Time

0 79.0 2016 1 1 00:00:00

1 79.0 2016 1 1 00:30:00

2 790 2016 1 1 01:00:00

3 77.0 2016 1 1 01:30:00

4 78.0 2016 1 1 02:00:00

20448 77.0 2016 12 31 22:00:00

20449 77.0 2016 12 31 22:30:00
20450 77.0 2016 12 31 23:00:00
20451 77.0 2016 12 31 23:00:00

20452 77.0 2016 12 31 23:30:00

20453 rows x 5 columns
Figure 9.3 — Reading TempData.CSV into a Pandas DataFrame

Our first evaluation of the dataset reveals that the data is in one standard data structure, the column
titles are intuitive and codable, and each row has a unique identifier. However, upon looking at this
more closely, the default indices assigned by Pandas are unique but not helpful for identifying the
rows. The Year, Month, bay, and Time columns would be better off as the indexes of the rows. So, in
this example, we would like to reindex the DataFrame using more than one column. We will use
Pandas's special capability known as multi-level indexing. We covered this in the Pandas multi-level

indexing section Chapter 1, Reviewing the Core Modules of NumPy and Pandas.

This can be done easily by using the .set_index() function of a Pandas DataFrame. However, before
we do that, let's remove the Year column as its value is only 2016. To check this, run
air_df.Year.unique(). In the following line of code, so that we don't lose the information stating that

this dataset is for 2016, we will change the DataFrame's name to air2e16_df:
air2016_df = air_df.drop(columns=['Year'])

Now that the unnecessary column has been removed, we can use the .set_index() function to

reindex the DataFrame:
air2016_df.set_index(['Month', 'Day', 'Time'], inplace=True)

If you print air2e16_df after running the preceding code, you will get the DataFrame with a multi-

level index, as shown in the following screenshot:

Temp
Month Day Time

1 1 00:00:00 79.0
00:30:00 79.0
01:00:00 79.0
01:30:00 77.0
02:00:00 78.0

12 31 22:00:00 77.0
22:30:00 770
23:00:00 77.0
23:00:00 77.0

23:30:00 77.0

20453 rows x 1 columns
Figure 9.4 — air2016_df with a multi-level index

Our achievement here is that not only does each row have a unique index but the indices can be used
to meaningfully identify each row. For instance, you can run air2016_df.loc[2,24, '00:30:00'] t0

get the temperature value of February 24 at 30 minutes after midnight.

In this example, we focused on the third characteristic of level I data cleaning: each row has a unique
identifier. In the following example, we will focus on the second characteristic: having a codable and

intuitive column name.

Example 3 — intuitive but long column titles

In this example, we will be using oSMI Mental Health in Tech Survey 2019.csv from

https://osmihelp.org/research. The following screenshot shows the code that reads the dataset into

response_df, and then uses the .head() function to show the first row of the data:

https://osmihelp.org/research

In [12]: M response _df = pd.read_csv('OSMI Mental Health in Tech Survey 2019.csv')
response_df.head(1)

Oout[12]:
Do you
know the
Is your Does your options empl
i loyer for mental
How many primary - empoy
” role provide health d
£re sye?;j_ e(rjr;;;lsoyf)is; Is your employer within mental care men
emploved? com a: or primarily a tech your health available (for ex
ploy 2 . aan)iza}({ion company/organization? company benefits under
9 have? related as part of your
’ to healthcare employer- ca
tech/IT? coverage? provided oth
health commun
coverage?
0 False 26-100 True True | dont No

1 rows x 82 columns

Figure 9.5 — Reading data into response_df and showing its first row

Working with a dataset that has very long column titles can be hard from a programing and
visualization perspective. For instance, if you would like to access the sixth column of the dataset,

you would have to type out the following line of code:

response_df['Do you know the options for mental health care available under your employer-
provided health coverage?']

For cases where we cannot have short and intuitive titles for the columns, we need to use a column
dictionary. The idea is to use a key instead of each full title of columns, which is somewhat intuitive
but significantly shorter. The dictionary will also provide access to the full title if need be through the
relevant key.

The following code creates a column dictionary using a Pandas Series:

keys = ['Q{}'.format(i) for i in range(1,83)]

columns_dic = pd.Series(response_df.columns, index=keys)

The preceding code breaks the process of creating the dictionary column into two steps:

1. First, the code creates the keys variable, which is the list of shorter substitutes for column titles. This is done using a list

comprehension technique.
2. Second, the code creates a Pandas Series called columns_dic, whose indices are keys and whose values are

response_df.columns.

Once the preceding code has been run successfully, the columns_dic Panda Series can act as a

dictionary. For instance, if you run columns_dic['Q4'], it will give you the full title of the fourth

column (the fourth question).

Next, we need to update the columns of response_df, which can be done with a simple line of code:
response_df.columns = keys. Once you've done this, response_df will have short and somewhat
intuitive column titles whose full descriptions can easily be accessed. The following screenshot

shows the transformed version of response_df once the preceding steps have been performed:

In [17]: M response_df.head(1)

Out[17]:
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 .. Q73 Q74 Q75 Q76 Q77

| |

0 False e True True dont No Yes Yes don't
100

know know

Very
easy

NaN NaN False 25 Male

1 rows x 82 columns

Figure 9.6 — Showing the first row of the cleaned response_df

In this example, we took steps to ensure that the second characteristic of level I data cleaning has

been met since the dataset was in good shape in terms of the first and third characteristics.

So far, you've learned and practiced, by example, some examples of data cleaning. In the next

chapter, we will learn about and see examples of level II data cleaning.

Summary

Congratulations on your excellent progress. In this chapter, we introduced you to three different
levels of data cleaning and their relevance, along with the goals and tools of analytics. Moreover, we
covered level I of data cleaning in more detail and practiced dealing with situations where this type of
data cleaning is needed. Finally, by looking at three examples, we used the programming and
analytics skills that we had developed in the previous chapters to effectively preprocess example

datasets and meet the examples' analytical goals.

In the next chapter, we will focus on level II of data cleaning. Before moving forward and starting
your journey on data cleaning level II, spend some time on the following exercises and solidify what

you've learned.

Exercises

1. In your own words, describe the relationship between the analytics goals and data cleaning. Your response should answer the

following questions:

a) Is data cleaning a separate step of data analytics and can be done in isolation? In other words,

can data cleaning be performed without you knowing about the analytics process?

b) If the answer to the previous question is no, are there any types of data cleaning that can be

done in isolation?

c) What is the role of analytic tools in the relationship between analytic goals and data cleaning?

2. A local airport that analyzes the usage of its parking has employed a Single-Beam Infrared Detector (SBID) technology to count
the number of people who pass the gate from the parking area to the airport.
As shown in the following diagram, an SBDI records every time the infrared connection is

blocked, signaling a passenger entering or exiting:

[,:‘Figure 9.7 — An example of a Single-Beam Infrared Detector (SBID)

Figure 9.7 — An example of a Single-Beam Infrared Detector (SBID)

Unfortunately, the person who installed the SBID was not up to date with the latest and greatest
database technology, so they have set up the system in a way that the recorded date of each day is
stored in an Excel file. The Excel files are named after the days the records were created. You have
been hired to help and analyze the data. Your manager has given you access to a zipped file called
SBID_Data.zip. This zipped file contains 14 files, each containing the data of one day between
October 12, 2020, and October 25, 2020. Your manager has informed you that due to security
reasons, she cannot share all 3,000 files with you. She has asked you to do the following for the 14

files she has shared with you:
a) Write some code that can automatically consolidate all the files into one Pandas DataFrame.
b) Create a bar chart that shows the average airport passenger traffic per hour.

c) Label and describe the data cleaning steps you did in this exercise.

Chapter 10: Data Cleaning Level Il — Unpacking,
Restructuring, and Reformulating the Table

In level I data cleaning, we were only concerned about the neat and codable organization of our
dataset. As we mentioned previously, level I data cleaning can be done in isolation, without having to
keep an eye on what data will be needed next. However, level II data cleaning is deeper. It is more
about preparing the dataset for analysis and the tools for this process. In other words, in level II data
cleaning, we have a dataset that is reasonably clean and is in a standard data structure, but the
analysis we have in mind cannot be done because the data needs to be in a specific structure due to

the analysis itself, or the tool we plan to use for the analysis.

In this chapter, we will look at three examples of level I data cleaning that tend to happen frequently.
Pay attention to the fact that, unlike level I data cleaning, where the examples were merely a source
of data, the examples for level II date cleaning must be coupled with an analytical task.
In this chapter, we're going to cover the following main topics:

« Example 1 —unpacking columns and reformulating the table

o Example 2 — restructuring the table

o Example 3 —level I and II data cleaning

Technical requirements

You can find all the code and the dataset for this book in this book's GitHub repository:
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You can find the

chapterie directory in this repository and download the code and the data for a better learning

experience.

Example 1 — unpacking columns and reformulating the
table

In this example, we will use the level I cleaned speech_df dataset to create the following bar chart.
We cleaned this DataFrame in the Example 1 — unwise data collection section of Chapter 9, Data
Cleaning Level I — Cleaning Up the Table. The level I cleaned speech_df database only has two
columns: FileName and content. To be able to create the following visual, we need columns such as
the month of the speech and the number of times the four words (vote, tax, campaign, and
economy) have been repeated in each speech. While the level I cleaned speech_df dataset contains all

this information, it is somewhat buried inside the two columns.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

The following is a list of the information we need and the column of speech_df that this information
is stored in:
o The month of the speech: This information is in the FileName column.

o The number of times the words vote, tax, campaign, and economy have been repeated in each speech: This information is in

the Content column:

0.00200 - EEN wte W campaign
. tax EEN economy
0.00175 1
>
[=)
S 0.00150
3
o
£ 000125 -
£ 0.00100
20
@ 0.00075 -
E]
Z 0.00050 -
0.00025 -
0.00000 -
5 (=] a © > (v} c o e [= o a
- < % 5 2 & 5 & = 3 2 &
4 &' o' o p] o o py| o . py
=] - — =] - — § g ~ § ~ ~
S S R S S R] = <
Year_Month

Figure 10.1 — Average frequency of the words vote, tax, campaign, and economy per month in speech_df

So, for us to be able to meet our analytic goal, which is to create the previous visualization, we need
to unpack the two columns and then reformulate the table for visualization. Let's do this one step at a
time. First, we will unpack Filename and then we bring our attention to unpacking content. After

that, we will reformulate the table for the requested visualization.

Unpacking FileName

Let's take a look at the values of the Filename column. To do this, you can run speech_df.FileName
and study the values under this column. You will notice that the values follow a predictable pattern.
The pattern is CitynameMonthDD_YYYY.txt; Cityname is the name of the city where the speech was
given, Month is the three-letter version of the month when the speech was given, DD is the one- or
two-digit number that represents the day of the month, YYYY is the four digits that represent the year

during which the speech was given, and .txt is the file extension, which is the same for all the values.

You can see that the Filename column contains the following information about the speeches in the
dataset:

o City: The city where the speech was given

¢ Date: The date when the speech was given
o Year: The year when the speech was given
o Month: The month when the speech was given

o Day: The day when the speech was given

In the following code, we will use our programming skills to unpack the Filename column and
include the preceding information as separate columns. Let's plan our unpacking first and then put it

into code. The following are the steps we need to take for the unpacking process:

1. Extract City: Use Month from the CitynameMonthDD_YYYY.txt pattern to extract the city. Based on this pattern, everything that

comes before Month is Cityname.
2. Extract Date: Use the extracted Cityname to extract Date.

3. Extract Year, Month, and Day from Date.

Now, let's put these steps into code:

1. Extract City: The following code creates the SeparateCity () function and applies it to the speech_df .FileName
Series. The SeparateCity() function loops through the previously created Months list to find the three-letter word that
represents a month, which is used for each filename. Then, we can use the. find () function and the slicing capability of the

Python strings to return the city's name:
Months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Oct"', 'Sep', 'Nov', 'Dec']
def SeperateCity(v):
for mon in Months:
if (mon in v):
return v[:v.find(mon)]

speech_df['City'] = speech_df.FileName.apply(SeperateCity)

PAY ATTENTION!

Here, we had to use Month as the separator between Cityname and the date. If the naming convention of the files was
a bit more organized, we could have done this a bit easier; in the speech_df.FileName column, some days are
presented by one digit, such as LatrobeSep3_2020. txt, while some days are presented by two digits, such as
BattleCreekDec19_2019. txt. If all the days were presented with two digits, in that they used
LatrobeSep03_2020. txt instead of LatrobeSep3_2020.txt, the task of unpacking the column, from a programming
perspective, would have been much simpler. For an example, see Exercise 2, later in this chapter.

2. Extract Date: The following code creates the SeparateDate () function and applies it to speech_df. This function uses the

extracted city as the starting point, and the . find () function to separate the date from the city:
def SeperateDate(r):
return r.FileName[len(r.City):r.FileName.find("Ltxt')]

speech_df['Date'] = speech_df.apply(SeparateDate,axis=1)

Every time we work with date information, it is better to make sure that Pandas knows the
recording is a datetime programming object so that we can use its properties, such as sorting by
date or accessing the day, month, and year values. The following code uses the pd.to_datetime()
function to transform the strings that represent the dates to datetime programming objects. To
effectively use the pd.to_datetime() function, you need to be able to write the format pattern that
the strings that represent dates follow. Here, the format pattern is '%b%d_%Y', which means the
string starts with a three-letter month representation (%b), then a digit representation for the day
(%d), followed by an underscore (_), and then a four-digit year representation (%Y). To be able to
come up with a correct format pattern, you need to know the meaning of each of the directives,
such as %b, %d, and so on. Go to https://docs.python.org/3/library/datetime.html#strftime-and-

strptime-behavior to find a comprehensive list of these directives:
speech_df.Date = pd.to_datetime(speech_df.Date, format="%b%d_%Y"')

. Extract Year, Month, and Day from Date: The following code creates the extractDMY () function and applies it to
speech_df to add three new columns to each row. Note that the code is taking advantage of the fact that the speech_df
column is a datetime programming object that has properties such as . day and .month to access the day and the month for each

date:

def extractDMY(r):
r['Day'] = r.Date.day
r['Month'] = r.Date.month
r['Year'] = r.Date.year
return r

speech_df = speech_df.apply(extractDMY, axis=1)

After running the preceding code snippets successfully, you will have managed to unpack the
FileName column of speech_df. Since all of the information that was packed in FileName is not
presented under other columns, we can go ahead and remove this column by running the

following command:
speech_df.drop(columns=['FileName'], inplace=True)
Before unpacking the other column, content, let's take a look at the state of the data and enjoy

looking at the progress we've made. The following screenshot shows the first five rows of the
data:

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

In [25]: M speech_df.head()

Out[25]:
Content City Date Day Month Year
0 Thank you. Thank you. Thank you to Vice Presid... BattleCreek 2019-12-19 19 12 2019
1 There's a lot of people. That's great. Thank y... Bemidji 2020-09-18 18 9 2020
2 Thank you. Thank you. Thank you. All | can say... Charleston 2020-02-28 28 2 2020
3 | want to thank you very much. North Carolina,... Charlotte 2020-03-02 2 3 2020
4 Thank you all. Thank you very much. Thank you ... Cincinnati 2019-08-01 1 8 2019

Figure 10.2 — speech_df after unpacking FileName

Now that we have unpacked Filename into five new columns called city, pate, Day, Month, and Year,
we have taken one step toward the end goal: we've got access to create the x axis shown in Figure

10.1. Now, we need to pay attention to unpacking the column content.

Unpacking Content

Unpacking the column content differs somewhat from unpacking FileName. As the column FileName
only had a limited amount of information, we were able to unpack everything this column had to
offer. However, the column content has a lot of information and it could be unpacked in many
different ways. However, we only need to unpack a small portion of what is under the column
content; we need to know about the ratio of the usage of four words: vote, tax, campaign, and

economy.

We can unpack what we need from the column content in one step. The following code creates the
FindwordRatio() function and applies it to speech_df. The function uses a for loop to add four new
columns to the DataFrame, one column for each of the four words. The calculation for each word is
simple: the returning value for each word is the total occurrence of the word in the speech
(row.content.count(w)), divided by the total number of words in the speech (total n_words):
Words = ['vote', 'tax', 'campaign', 'economy']
def FindwWordRatio(row):

total_n_words = len(row.Content.split(' '))

for w in Words:

row['r_{}'.format(w)] = row.Content.count(w)/total_n_ words

return row
speech_df = speech_df.apply(FindwWordRatio, axis=1)
The resulting speech_df after running the previous code will have 10 columns, as shown in the

following screenshot:

In [27]: M speech_df.head()

Out[27]:
Content City Date Day Month Year r_vote r_tax r_campaign r_econon

Thank
you.
Thank

0 you. BattleCreek
Thank you
to Vice
Presid...

2019-

12-19 19 12 2019 0.000561 0.000505 0.000224 0.0006

There's a
lot of
people.
That's
great.
Thank y...

2020-
09-18

-

Bemidiji 18 9 2020 0.000710 0.000237 0.000533 0.0000

Thank
you.
Thank 5020
2 you. Charleston . 28 2 2020 0.000950 0.000317 0.000106 0.0000
02-28
Thank
you. All |
can say...

| want to

thank you
very Charlotte 2020- 2 3 2020 0.000750 0.001500 0.000150 0.0004
much. 03-02
North

Carolina,...

Thank you
all. Thank
you very
4
much.
Thank you

2019-

08-01 1 8 2019 0.001713 0.000857 0.001224 0.0002

Cincinnati

Figure 10.3 — speech_df after extracting the needed information from Content

So far, we have restructured the table, so we are inching closer to drawing Figure 10.1; we've got the
information for both the x axis and y axis. However, the dataset needs to be modified further before

we can visualize Figure 10.1.

Reformulating a new table for visualization

So far, we have cleaned speech_df for our analytic goals. However, the table we need for Figure 10.1
needs each row to be Donald Trump's speeches in a month while each of the rows in speech_df is one
of Donald Trump's speeches. In other words, to be able to draw the visualization, we need to
reformulate a new table so that the definition of our data object is Donald Trump's speeches in a

month instead of one Donald Trump speech.

The new definition of the Donald Trump's speeches in a month data object is an aggregation of some
of the data objects that are defined as Donald Trump's speeches. When we need to reformulate a
dataset so that its new definition of data objects is an aggregation of the current definition of data

objects, we need to perform two steps:

1. Create a column that can be the unique identifier for the reformulated dataset.

2. Use a function that can reformulate the dataset while applying the aggregate functions. The pandas functions that can do this are

.groupby() and .pivot_table().

So, let's perform these two steps on speech_df to create the new DataFrame called vis_df, which is
the reformulated table we need for our analytics goal:

1. The following code applies a lambda function that attaches the Year and Month properties of each row to create a new column

called Y_M. This new column will be the unique identifier of the reformulated dataset we are trying to create:
Months = ['Jan', 'Feb', 'Mar', "Apr', 'May', 'Jun', 'Jul', 'Aug', 'Oct', 'Sep', 'Nov', 'Dec']
lambda_func = lambda r: '{}_{3}'.format(r.Year,Months[r.Month-1])

speech_df['Y_M'] = speech_df.apply(lambda_func, axis=1)

The preceding code created the lambda function (1ambda_func) in a separate line in the interest of
making the code more readable. This step could have been skipped and the lambda function could
have been created "on the fly."

2. The following code uses the . pivot_table() function to reformulate speech_df into vis_df. If you've forgotten how

the.pivot_table() function works, please revisit the pandas pivot and melt functions section of Chapter 1, Review of the
Core Modules of NumPy and Pandas:

Words = ['vote', 'tax', 'campaign', 'economy']

vis_df = speech_df.pivot_table(index= ['Y_M'],values= ['r_{}'.format(w) for w in
words], aggfunc= np.mean)

The preceding code uses the aggfunc property of the .pivot_table() function, which was not
mentioned in Anchor 1, Review of the Core Modules of NumPy and Pandas. Understanding
aggfunc is simple; when index and values of .pivot_table() are specified in a way that more
than one value needs to be moved into one cell in the reformulated table, the.pivot_table() uses

the function that is passed for aggfunc to aggregate the values into one value.

The preceding code also uses a list comprehension to specify the values. The list comprehension
is['r_{3}'.format(w) for w in Words], which is essentially the list of four columns from

speech_df. Run the list comprehension separately and study its output.

3. We could have also reformulated the data into vis_df using . groupby (). The following is the alternative code:

vis_df = pd.DataFrame({ 'r_vote': speech_df.groupby('Y_M').r_vote.mean(), 'r_tax':
speech_df.groupby('Y_M").r_tax.mean(), 'r_campaign':
speech_df.groupby('Y_M").r_campaign. mean(), 'r_economy':
speech_df.groupby('Y_M').r_economy. mean()})

While the preceding code might feel more intuitive since working with .groupby() function

might be easier than using .pivot_table(), the first piece of code is more scalable.

MORE SCALABLE CODE

When coding, if possible, you want to avoid repeating the same line of code for a collection of items. For example, in
the second alternative in the two preceding codee blocks, we had to use the . groupby () function four times, one for
each of the four words. What if, instead of 4 words, we needed to do this analysis for 100,000 words? The first
alternative is certainly more scalable as the words are passed as a list and the code will be the same, regardless of
the number of words in the list.

At this point, you have created the reformulated vis_df, which we created to draw Figure 10.1. The
following screenshot shows vis_df:

r_campaign r_economy r_tax r_vote
Y_M

2019_Aug 0.001499 0.000270 0.000872 0.001596
2019 _Dec 0.000316 0.000665 0.000558 0.000739
2019_Jul 0.000283 0.000660 0.000660 0.001603
2019_Nov 0.000551 0.000333 0.000385 0.002048
2019_0Oct 0.000533 0.000572 0.001340 0.001398
2019_Sep 0.000843 0.000448 0.000419 0.000409
2020_Aug 0.000428 0.000222 0.001189 0.001577
2020_Feb 0.000353 0.000224 0.000625 0.001206
2020_Jan 0.000299 0.000240 0.001331 0.001215
2020_Jun 0.000356 0.000267 0.000535 0.000713
2020_Mar 0.000150 0.000450 0.001500 0.000750
2020_Oct 0.000306 0.000386 0.000504 0.001235

Figure 10.4 — vis_df

Now that we have vis_df, all that remains is to represent the information in vis_df in the form of a

bar chart. The following subsection shows how this is done.

The last step — drawing the visualization

Figure 10.4 and Figure 10.1 are essentially presenting the same information. While Figure 10.4

(vis_df) uses a table to present the information, Figure 10.1 used a bar chart. In other words, we have

almost made it and we need to perform one more step to create the requested visualization.

The following code block shows the code that creates the visualization shown in Figure 10.1. Pay
attention before running the following code as you must import the matplotlib.pyplot module first.

You can use import matplotlib.pyplot as plt to do this:
column_order = vis_df.sum().sort_values(ascending=False).index
row_order = speech_df.sort_values('Date').Y_M.unique()
vis_df[column_order].loc[row_order].plot.bar(figsize=(10,4))
plt.legend(['vote', 'tax"', 'campaign', 'economy'],ncol=2)
plt.xlabel('Year_Month')

plt.ylabel('Average Word Frequency')

plt.show()

The preceding code creates two lists: column_order and row_order. As their names suggest, these lists
are the order in which the columns and rows will be shown on the visual. The column_order is the list
of words based on the summation of their occurrence ratio, while row_order is the list of Y_m based on

their natural order in the calendar.

In this example, we learned about different techniques for level II data cleaning; we learned how to
unpack columns and reformulate the data for the analytics tools and goals. The next example will

cover data preprocessing to restructure the dataset.

What's the difference between restructuring and reformulating a dataset? We tend to use reformulate
when the definition of data objects needs to change for the new dataset. In contrast, we use
restructure when the table structure does not support our analytic goals or tools, and we have to use
alternative structures such as a dictionary. In this example, we change the definition of a data object
from one Donald Trump speech to Donald Trump's speeches in a month so we called this a dataset

reformulation.

Here, we are being introduced to the new materials while immersing ourselves in examples. In this
example, we learned about unpacking columns and reformulating the table. In the next example, we

will be exposed to a situation that requires restructuring the table.

Example 2 — restructuring the table

In this example, we will use the customer churn.csv dataset. This dataset contains the records of
3,150 customers of a telecommunication company. The rows are described by demographic columns
such as gender and age, and activity columns such as the distinct number of calls in 9 months. The
dataset also specifies whether each customer was churned or not 3 months after the 9 months of

collecting the activity data of the customers. Customer churning, from a telecommunication

company's point of view, means the customer stops using the company's services and receives the

services from the company's competition.

We would like to use box plots to compare the two populations of churning customers and non-
churning customers for the following activity columns: Call Failure, Subscription Length, Seconds

of Use, Frequency of use, Frequency of SMS, and Distinct Called Numbers.

Let's start by reading the customer churn.csv file into the customer_df DataFrame. The following

screenshot shows this step:

In [34]: M customer_df = pd.read_csv('Customer Churn.csv')
customer_df.head(1)

Out[34]:
s Distinct
9 Numbers
0 8 0 38 4370 71 5 17/ 1

Figure 10.5 — customer_df before level | cleaning

At first glance, we can see that this dataset needs some level I data cleaning. While the column titles
are intuitive, they can become more codable. The following line of code makes sure that the columns

are also codable:

customer_df.columns = ['Call Failure', 'Complains', 'Subscription_Length',
'Seconds_of_Use', 'Frequency_of_use', 'Frequency_of_SMS', 'Distinct_Called_Numbers',
'Status', 'Churn']

Before you move on, make sure that you study the new state of customer_df after running the

preceding code.
Now that the dataset has been level I cleaned, we can pay attention to level II data cleaning.

This example needs us to draw six box plots. Let's focus on the first box plot; the rest will follow the

same data cleaning process.

Let's focus on creating multiple box plots that compare the call_Failure attribute of churning
customers with that of non-churning customers. A box plot is an analytic tool that needs a simpler

data structure than a dataset. A box plot only needs a dictionary.

What is the difference between a dataset and a dictionary? A dataset is a table that contains rows that
are described by columns. As described in Chapter 3, Data — What is it Really?, in the The most
universal data structure — a table section, we specified that the glue of a table is the definition of the
data objects that each row represents. Each column also describes the rows. On the other hand, a

dictionary is a simpler data structure where values are associated with a unique key.

For the box plot we want to draw, the dictionary we need has two keys — churn and non-churn — one
for each population that will be presented. The value for each key is the collection of call_Failure
records for each population. Pay attention to the fact that, unlike a table data structure that has two

dimensions (rows and columns), a dictionary only has one dimension.

The following code shows the usage of a pandas Series as a dictionary to prepare the data for the box
plot. In this code, box_sr is a pandas Series that has two keys called e and 1, with e being non-churn
and 1 being churn. The code uses a loop and Boolean masking to filter the churning and non-

churning data objects and record them in box_sr:
churn_possibilities = customer_df.Churn.unique()
box_sr = pd.Series('',index = churn_possibilities)
for poss in churn_possibilities:

BM = customer_df.Churn == poss

box_sr[poss] = customer_df[BM].Call_Failure.values

Before moving on, execute print(box_sr) and study its output. Pay attention to the simplicity of the

data structure compared to the data's initial structure.

Now that we have restructured the data for the analytic tool we want to use, the data is ready to be
used for visualization. The following code uses plt.boxplot() to visualize the data we have prepared

in box_sr. Don't forget to import matplotlib.pyplot as plt before running the following code:

plt.boxplot(box_sr,vert=False)
plt.yticks([1,2],['Not Churn', 'Churn'])

plt.show()

If the preceding code runs successfully, your computer will show multiple box plots that compare the

two populations.

So far, we have drawn a box plot that compares call_railure for churning and non-churning
populations. Now, let's create some code that can do the same process and visualizations for all of the
requested columns to compare the populations. As we mentioned previously, these columns are
call_Failure, Subscription_Length, Seconds_of_Use, Frequency_of_use, Frequency_of_sMs, and

Distinct_cCalled_Numbers.

The following code uses a loop and pl1t.subplot () to organize the six required visuals for this
analytic so that they're next to one another. Figure 10.6 shows the output of the code. The data
restructuring that's required to draw the box plot happens for each box plot shown in Figure 10.6. As
practice, try to spot them in the following code and study them. I recommend that you review

Chapter 1, Review of the Core Modules — NumPy and pandas, and Chapter 2, Review of Another

Core Module — Matplotlib, if you don't know what the enumerate(), p1t.subplot(), and

plt.tight_layout() functions are:

select_columns = ['Call_Failure', 'Subscription_Length', 'Seconds_of_Use',
'Frequency_of_use', 'Frequency_of_SMS', 'Distinct_Called_Numbers']

churn_possibilities = customer_df.Churn.unique()
plt.figure(figsize=(15,5))
for i,sc in enumerate(select_columns):
for poss in churn_possibilities:
BM = customer_df.Churn == poss
box_sr[poss] = customer_df[BM][sc].values
plt.subplot(2,3,i+1)
plt.boxplot(box_sr,vert=False)
plt.yticks([1,2],['Not Churn', 'Churn'])
plt.title(sc)
plt.tight_layout()

plt.show()

The following diagram is what you will get once the preceding code has been successfully executed:

[,I:jFigure 10.6 — End solution for Example 2 — restructuring the table

Figure 10.6 — End solution for Example 2 — restructuring the table

In this example, we looked at a situation where we needed to restructure the data so that it was ready
for the analytic tool of our choice, the box plot. In the next example, we will look at a more
complicated situation where we will need to perform both dataset reformulation and restructuring to

make predictions.

Example 3 — level | and |l data cleaning

In this example, we want to use Electric_Production.csv to make predictions. We are specifically
interested in being able to predict what the monthly electricity demand will be 1 month from now.
This 1-month gap is designed in the prediction model so that the predictions that come from the
model will have decision-making values; that is, the decision-makers will have time to react to the

predicted value.

We would like to use linear regression to perform this prediction. The independent and dependent

attributes for this prediction are shown in the following diagram:

[':;Figure 10.7 — The independent and dependent attributes needed for the prediction task

Figure 10.7 — The independent and dependent attributes needed for the prediction task
Let's go through the independent attributes shown in the preceding diagram:

« Average demand of the month over the years: For instance, if the month we want to predict demands for is March 2022, we
want to use the average of the demands for every March in the previous years. So, we will collate the historical demands of March
from the beginning of the data collection process (1985) to 2021 and calculate its average. This is shown in the following

diagram.

« Slope of change for the demand of the month over the years: For instance, if the month we want to predict demands for is
March 2022, we want to use the slope of change in the demand in March over the years. As shown in the following diagram, we

can fit a line on the Demand in March data points across the years. The slope of that fitted line will be used for prediction.

o Average demands of months t-2, t-3, and t-4: In the preceding diagram, the t, t-2, t-3, and t-4 notations are used to create a time
reference. This time reference is that if we want to predict the demand of a month, we want to use the average demand of the
following data points: the monthly demand of 2 months ago, the monthly demand of 3 months ago, and the monthly demand of 4
months ago. For instance, if we want to predict the monthly demand of March 2021, we'd want to calculate the average of January

2021, December 2020, and November 2020. Note that we skipped February 2021 as it was our planned decision-making gap.

[,:Figure 10.8 — Example of extracting the first two independent attributes for March
Figure 10.8 — Example of extracting the first two independent attributes for March

Now that we have a clear understanding of the data analytic goal, we will focus on preprocessing the
data. Let's start by reading the data and covering its level I data cleaning process. The following
screenshot shows the code that reads the Electric_Production.csv file into month_df and shows its

first five and last five rows:

[,:Figure 10.9 — month_df before level I data cleaning

Figure 10.9 — month_df before level | data cleaning

At first glance, you can see that month_df can use some level I data cleaning. Let's get started.

Level | cleaning

The month_df dataset could do with the following level I data cleaning steps:
« The title of the second column can be more intuitive.

o The data type of the DATE column can be switched to datetime so that we can take advantage of datetime programming

properties.
o The default index that's been assigned to the data by pandas can be improved as the DATE column would provide a better and
more unique identification.
The following code takes care of the aforementioned level I data cleaning properties:
month_df.columns = ['Date', 'Demand’]
month_df.set_index(pd.to_datetime(month_df.Date, format="'%m/%d/%Y"'),inplace=True)

month_df.drop(columns=["'Date'], inplace=True)

Print month_df and study its new state.

Next, we will learn what level II data cleaning we need to perform.

Level Il cleaning

Looking at Figure 10.7 and Figure 10.9 may give you the impression that the prescribed prediction
model in Figure 10.7 is not possible as the dataset that's shown in Figure 10.9 only has one column,
while the prediction model needs four attributes. This is both a correct and incorrect observation.

While it is a correct observation that the data has only one value column, the suggested independent
attributes in Figure 10.7 can be driven from month_df by some column unpacking and restructuring.

That is the level II data cleaning that we need to do.

We will start by structuring a DataFrame that we want to restructure the current table into. The
following code creates predict_df, which is the table structure that we will need for the prescribed
prediction task:

attributes_dic={'IA1':'Average demand of the month', 'IA2':'Slope of change for the demand
of the month', 'IA3': 'Average demands of months t-2, t-3 and t-4', 'DA': 'Demand of month

t'}

predict_df = pd.DataFrame(index=month_df.iloc[24:].index, columns= attributes_dic.keys())

When creating the new table structure, predict_dt, the code is drafted while taking the following into

consideration:

o The preceding code uses the attributes_dic dictionary to create intuitive and concise columns that are also codable. As
predict_df needs to include rather long attribute titles, as shown in Figure 10.7, the dictionary allows the title columns to be
concise, intuitive, and codable, and at the same time, you will have access to the title's longer versions through
attributes_dic. This is a form of level I data cleaning, as shown in Chapter 9, Data Cleaning Level I — Cleaning Up the
Table, in the Example 3 — intuitive but long column titles section. However, since we are the ones creating this new table, why not

start with a level I cleaned table structure?

« The table structure we have created, predict_df, uses the indices of month_df, but not all of them. It uses all of them except
for the first 24 rows, as specified in the code by month_df.iloc[24:].index. Why are the first 24 indices not included?
This is due to the second independent attribute: Slope of change for the demand of the month over the years. As the slope of
demand change for each month will be needed for the described prediction model, we cannot have a meaningful slope value for
the first 24 rows of month_df in predict_df. This is because we at least need two historical data points for each month to be

able to calculate a slope for the second independent attribute.

The following diagram summarizes what we want to accomplish by level II data cleaning month_df.
The DataFrame on the left shows the first and last five rows of month_df, while the DataFrame on the
right shows the first and last five rows of predict_df. As you already know, predict_df is empty as
we just created an empty table structure that supports the prediction task. The following diagram, in a

nutshell, shows that we need to fill predict_df using the data of month_df:

L':;Figure 10.10 — Summary of data cleaning level II for Example 3

Figure 10.10 — Summary of data cleaning level Il for Example 3

We will complete the depicted data processing and fill out the columns in predict_df in the following
order: DA, IA1, IA2, and IA3.

Filling out DA

This is the simplest column filling process. We just need to specify the correct portion of
month_df .Demand to be placed under predict_df.pA. The following screenshot shows the code and its

impact on predict_df:

[,:'Figure 10.11 — Code for filling out predict_df.DA and its result

Figure 10.11 — Code for filling out predict_df.DA and its result

As we can see, predict_df.DpA was filled out properly. Next, we will fill out predict_df.IA1.

Filling out 1Al

To compute 1A1, which is the Average demand of the month over the years, we need to be able to
filter month_df using the value of the month. To create such a capability, the following code maps a

lambda function to month_df and extracts the month of each row:
month_df['Month'] = list(map(lambda v:v.month, month_df.index))

Before you move on, print out month_df and study its new state.

The following code creates the computeIA1() function, which uses month_df to filter out the data
points needed for the correct value of each cell under predict_df.IA1. Once it's been created, the

computeIA1() function is applied to predict_df:
def ComputeIAl(r):
row_date = r.name
wdf = month_df.loc[:row_date].iloc[:-1]
BM = wdf.Month == row_date.month
return wdf[BM].Demand.mean()
predict_df.IA1 = predict_df.apply(ComputeIAl,axis=1)
The function computeIA1() that is written to be applied to the rows of predict_df, performs the
following steps:
1. First, it filters out month_df using the calculated row_date to remove the data points whose dates are after row_date.
2. Second, the function uses a Boolean mask to keep the data points with the same month as the row's month (row_date.month).

3. Next, the function calculates the average demand of the filtered data points and then returns it.

NOTE

Let me share a side note before moving on. The wdf variable that was created in the preceding code is short for
Working DataFrame. The abbreviation wdf is what | use every time | need a DataFrame inside a loop or a function but

where | won't need it afterward.

After successfully running the preceding code, make sure that you print out predict_df and study its

new state before moving on.

So far, we have filled out bA and 1A1. Next, we will fill out 1A2.
Filling out 1A2

To fill out 1A2, we will follow the same general steps that we did for filling out 1a1. The difference is
that the function we will create and apply to predict_df to calculate the 1A2 values is more complex;
for 1A1, we created and applied computeIA1(), while for 1A2, we will create and apply computeIA2().

The difference is that computeIA2() is more complex.

The code that creates and applies the compute1a2() function is shown here. Try to study the code and
figure out how it works before moving on:
from sklearn.linear_model import LinearRegression
def ComputeIA2(r):
row_date = r.name
wdf = month_df.loc[:row_date].iloc[:-1]
BM = wdf.Month == row_date.month
wdf = wdf[BM]
wdf.reset_index(drop=True, inplace=True)
wdf.drop(columns = ['Month'],inplace=True)
wdf['integer'] = range(len(wdf))
wdf['ones'] = 1
1m = LinearRegression()
Im.fit(wdf.drop(columns=["'Demand']), wdf.Demand)
return 1m.coef_[0]

predict_df.IA2 = predict_df.apply(ComputeIA2,axis=1)

The preceding code is both similar and different to the code we used to fill out 1A1. It is similar since
both computeIA1() and computeIA2() start by filtering out month_df to get to a DataFrame that only
includes the data objects that are needed to compute the value. You may notice that the three lines of
code under def computeIAi(r): and def ComputeIA2(r): are the same. The difference between the
two starts from there. As computing 1A1 was a simple matter of calculating the mean of a list of
values, the rest of computeIA1() was very simple. However, for computeIA2(), the code needs to fit a

linear regression to the filtered data points so that it can calculate the slope of the change over the

years. The computeIA2() function uses LinearRegression from sklearn.linear_model to find the

fitted regression equation and then return the calculated coefficient of the model.

After successfully running the preceding code, make sure that you print out predict_df and study its

new state before moving on.

To understand the way compute1A2() finds the slope of change for each cell under predict_df.IA2,
see the following screenshot, which shows the code and its output for calculating the slope for one
cell under predict_df.1A2. The following screenshot calculates the a2 value for the row with an

index of 2017-10-01:

[,:Figure 10.12 — A sample calculation of the slope (IA2) for one row of predict_df

Figure 10.12 — A sample calculation of the slope (IA2) for one row of predict_df

So far, we have filled out DA, 1A1, and 1A2. Next, we will fill out 1A3.
Filling out I1A3

Among all the independent attributes, IA3 is the easiest one to process. IA3 is the Average demands of
months t-2, t-3, and t-4. The following code creates the computeIA3() function and applies it to
predict_df. This function uses the index of predict_df to find the demand values from 2 months
ago, 3 months ago, and 4 months ago. It does this by filtering out all the data that is after row_date
using .loc[:row_date], and then by only keeping the fourth, third, and second rows of the remaining
data from the bottom using .ilec[-5:-2]. Once the data filtering process is complete, the average of

three demand values is returned:
def ComputeIA3(r):
row_date = r.name
wdf = month_df.loc[:row_date].iloc[-5:-2]
return wdf.Demand.mean()
predict_df.IA3 = predict_df.apply(ComputeIA3,axis=1)
Once the preceding code has been run successfully, we will be done performing level II data cleaning

on month_df. The following screenshot shows the state of predict_df after the steps we took to create

and clean it:

[,I;;Figure 10.13 — Level II cleaned predict_df
Figure 10.13 — Level Il cleaned predict_df

Now that the dataset is level II cleaned and has been prepared for the prediction, we can use any
prediction algorithm to predict the future monthly demands. In the next section, we'll apply linear

regression to create a prediction tool.

Doing the analytics — using linear regression to create
a predictive model

First, we will import LinearRegression from sklearn.linear_model to fit the data to a regression
equation. As we learned in Chapter 6, Prediction to apply prediction algorithms to our data, we need
to separate the data into independent and dependent attributes. Customarily, we use x to denote
independent attributes and y to denote the dependent attribute. The following code performs these
steps and feeds the data into the model:

from sklearn.linear_model import LinearRegression

X = predict_df.drop(columns=['DA'])

y = predict_df.DA

Im = LinearRegression()

Im.fit(X,y)

As we learned in Chapter 6, Prediction, once the preceding code has been executed, almost nothing
happens, but the analysis has been performed. We can use 1m to access the estimated s and also

perform prediction.

The following code extracts the s from 1m:
print('intercept (b@) ', 1lm.intercept_)
coef_names = ['b1', 'b2', 'b3']

print(pd.DataFrame({'Predictor': X.columns, 'coefficient
Name':coef_names, 'coefficient Value': 1lm.coef_}))

Using the output of the preceding code, we can figure out the following regression equation:

To find out the quality of the prediction model, we can see how well the model has been able to find
the patterns in the dependent attribute, pA. The following screenshot shows the code that draws the

actual and fitted data of the linear regression model:

[,:’Figure 10.14 — Comparing the actual and predicted values of predict_df using linear regression

Figure 10.14 — Comparing the actual and predicted values of predict_df using linear regression

From the preceding diagram, we can see that the model has been able to capture the trends in the data

very well and that it is a great model to be used to predict future data points.

Before moving on, take a moment to consider all we did to design and implement an effective
predictive model. Most of the steps we took were data preprocessing steps rather than analytics ones.
As you can see, being able to perform effective data preprocessing will take you a long way in

becoming more successful at data analytics.

Summary

Congratulations on your excellent progress. In this chapter and through three examples, we were able
to use the programming and analytics skills that we have developed throughout this book to

effectively preprocess example datasets and meet the example's analytics goals.

In the next chapter, we will focus on level III data cleaning. This level of data cleaning is the toughest
data cleaning level as it requires an even deeper understanding of the analytic goals of data

preprocessing.

Before moving on and starting your journey regarding level IIT data cleaning, spend some time on the

following exercises and solidify what you've learned.

Exercises

1. This question is about the difference between dataset reformulation and dataset restructuring. Answer the following questions:

a) In your own words, describe the difference between dataset reformulation and dataset

restructuring.

b) In Example 3 of this chapter, we moved the data from month_df to predict_df. The text
described the level II data cleaning for both table reformulation and table restructuring. Which of
the two occurred? Is it possible that the distinction we provided for the difference between table
restructuring and reformulation cannot specify which one happened? Would that matter?

2. For this exercise, we will be using LagnData . csv, which can be found on the London Air website

(https://www.londonair.org.uk/LondonAir/Default.aspx) and includes the hourly readings of five air particles (NO, NO2, NOX,

PM2.5, and PM10) from a specific site. Perform the following steps for this dataset:
a) Read the dataset into air_df using pandas.

b) Use the .unique() function to identify the columns that only have one possible value and then

remove them from air_df.

¢) Unpack the readingbateTime column into two new columns called pate and time. This can be
done in different ways. The following are some clues about the three approaches you must take to
perform this unpacking:

o Useair_df.apply().

« Useair_df.readingDateTime.str.split(' ', expand=true).

o Usepd.to_datetime().

d) Use what you learned in this chapter to create the following visual. Each line in each of the

five line plots represents 1 day's reading for the plot's relevant air particle:

https://www.londonair.org.uk/LondonAir/Default.aspx

[,:'Figure 10.15 — air_df summary

Figure 10.15 — air_df summary

e) Label and describe the data cleaning steps you performed in this exercise. For example, did
you have to reformulate a new dataset to draw the visualization? Specify which level of data
cleaning each of the steps performed.

. In this exercise, we will be using stock_index. csv. This file contains hourly data for the Nasdaq, S&P, and Dow Jones stock
indices from November 7, 2019, until June 10th, 2021. Each row of data represents an hour of the trading day, and each row is
described by the opening value, the closing value, and the volume for each of the three stock indices. The opening value is the
value of the index at the beginning of the hour, the closing value is the value of the index at the end of the hour, and the volume is
the amount of trading that happened in that hour.

In this exercise, we would like to perform a clustering analysis to understand how many different
types of trading days we experienced during 2020. Using the following attributes, which can be
found in stock_df.csv, we'd like to use K-Means to cluster the stock trading days of 2020 into

four clusters:

a) nasdaqchPe: Nasdaq change percentage over the trading day.
b) nasdaqTovo: Total Nasdaq trading volume over the trading day.
c) dowchpPe: Dow Jones change percentage over the trading day.
d) dowTovo: Total Dow Jones trading volume over the trading day.
e) sNpchpe: S&P change percentage over the trading day.

f) sNpTovo: Total S&P trading volume over the trading day.

g) N_daysMarketClose: The number of days before the market closes for the weekend; for
Mondays, it is 5, for Tuesdays, it is 4, for Wednesdays, it is 3, for Thursdays, it is 2, and for
Fridays, it is O.

Make sure that you finish the clustering analysis by performing a centroid analysis via a heatmap
and give each cluster a name. Once the clustering analysis is complete, label and describe the data

cleaning steps you performed in this exercise.

Chapter 11: Data Cleaning Level Ill — Missing Values,
Outliers, and Errors

In level I, we cleaned up the table without paying attention to the data structure or the recorded
values. In level I, our attention was to have a data structure that would support our analytic goal, but
we still didn't pay much attention to the correctness or appropriateness of the recorded values. That is
the objective of data cleaning level III. In data cleaning level I1I, we will focus on the recorded values
and will take measures to make sure that three matters regarding the values recorded in the data are
addressed. First, we will make sure missing values in the data have been detected, that we know why
this has happened, and that appropriate measures have been taken to address them. Second, we will
ensure that we have taken appropriate measures so that the recorded values are correct. Third, we will
ascertain that the extreme points in the data have been detected and appropriate measures have been

taken to address them.

Level IIT data cleaning is similar to level II in its relationship to data analytic goals and tools. While
level I data cleaning can be done in isolation without having an eye on data analytics goals and tools,
levels IT and IIT data cleaning must be done while we are informed by the analytic goals and tools. In
examples 1, 2, and 3 in the previous chapter, we experienced how level II data cleaning was
performed for analytic tools. The examples in this chapter are also going to be very well connected to

analytical situations.

In this chapter, we're going to cover the following main topics:
o Missing values
o Outliers

o Errors

Technical requirements

You will be able to find all of the code and the datasets that are used in this book in a GitHub

repository exclusively created for this book. To find the repository, click on this link:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. In this repository, you
will find a folder titled chapteri1, from where you can download the code and the data for better

learning.

Missing values

Missing values, as the name suggests, are values we expect to have but we don't. In the simplest

terms, missing values are empty cells in a dataset that we want to use for analytic goals. For example,

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

the following screenshot shows an example of a dataset with missing values—the first and third
students' grade point average (GPA) is missing, the fifth student's height is missing, and the sixth

student's personality type is missing:

‘Gender Height Year GPA | Personality "

Type

} 190 Sophomore‘ | IST]
189 = Freshman 3.81 ESN]J
160 Freshman | | IST]

181 Sophomore | 3.95 INTP
| Freshman \ 3.62 ‘ IST]
184 | Freshman 3.87
| 172 Junior 331 ISTP

g oV Ul W N
O OR Rk OoRiE

Figure 11.1 — A dataset example with missing values

In Python, missing values are not presented with emptiness—they are presented via NaN, which is
short for Not a Number. While the literal meaning of Not a Number does not completely capture all
the possible situations for which we have missing values, Nan is used in Python whenever we have

missing values.

The following screenshot shows a pandas DataFrame that has read and presented the table
represented in Figure 11.1. After comparing the two screenshots, you will see that every cell that is

empty in Figure 11.1 has nan in Figure 11.2.

Gender Height Year GPA Personality Type
0 1 190.0 Sophomore NaN ISTJ
1 1 189.0 Freshman 3.81 ESNJ
2 0 160.0 Freshman NaN ISTJ
3 1 181.0 Sophomore 3.95 INTP
4 1 NaN Freshman 3.62 ISTJ
5 0 184.0 Freshman 3.87 NaN
6 0 1720 Junior 3.31 ISTP

Figure 11.2 — A dataset example with missing values presented in pandas

We now know what missing values are and how they are presented in our analytic environment of
choice, Python. Unfortunately, missing values are not always presented in a standard way; for
example, having Nan on a pandas DataFrame is a standard way of presenting missing values.

However, someone who did not know any better may have used some internal agreements to present

missing values with an alternative such as mv, None, 99999, and n/A. If missing values are not
presented in a standard way, the first step of dealing with them is to rectify that. In such cases, we

detect the values that the author of the dataset meant as missing values and replace them with np.nan.

Even if missing values are presented in the standard way, detecting them might sometimes be as easy
as just eyeballing the dataset. When the dataset is large, we cannot rely on eyeballing the data to
detect and understand missing values. Next, we will turn our attention to how we can detect missing

values, especially for larger datasets.

Detecting missing values

Every Pandas DataFrame comes with two functions that are very useful in detecting which attributes
have missing values and how many there are: .info() and .isna(). The following example shows
how these functions can be used to detect whether a dataset has missing values and how many values

are missing.

Example of detecting missing values

The Airdata.csv air quality dataset comprises hourly recordings of the year 2020 from three
locations. The dataset—apart from no2 readings for three locations A, B, and c—has pateTime,
Temperature, Humidity, Wind_Speed, and wind_birection readings. The following screenshot shows
the code that reads the file into the air_df DataFrame and shows the first and last few rows of the

dataset:

In [3]: M air_df = pd.read_csv('Airdata.csv')
air_df

Oout[3]:
DateTime Temperature Humidity Wind_Speed Wind_Direction NO2_Location_A NO2_

1/1/2020

0 20 2180529 87 1484318 75.963760 39.23
1 V120204 490529 89 2741678 113.198590 38.30
2 1’”220:38 1.690529 85 3563818 135.000000 NaN
3 1”’23°:gg 1.430529 84 2.811690 129.805570 37.28
a V220 0840800 86 1800000 126 869896 29.97
gr7e 1212020 4920528 72 4553679 251565060 53.44
grao 1Z312020 4990529 74 3.259938 186.340200 49.80
g7e1 12P120%0 4360529 84 10.587917 252.181120 43.32
g7z 12P120%0 3820529 88 8.435069 219.805570 39.88
gres 123172020 3170529 80 6.792466 212.005390 39.04

8784 rows x 8 columns

Figure 11.3 — Reading Airdata.csv into air_df

The first method we can use to detect whether any columns of the data have any missing values is to
use the .info() function. The following screenshot showcases the application of this function on

air_df:

In [4]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8784 entries, © to 8783

M air _df.info()

Data columns (total 8 columns):

#

ooVl WNRO®

~

Column

DateTime

Temperature

Humidity

Wind_Speed

Wind Direction
NO2_Location_A
NO2_ Location_ B
NO2 Location_C

Non-Null Count

8652

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

object
floate4
inte4
floate4
floate4
floate4
floate4
float64

dtypes: float64(6), int64(1), object(1l)
memory usage:

549.1+ KB

Figure 11.4 — Using .info() to detect missing values in air_df

As you can see in the preceding screenshot, air_df has 8784 rows (entries) of data, but the

NO2_Location_A, NO2_Location_B, and NO2_Location_c columns have fewer non-null values, and that

means these attributes have missing values.

A second method to figure out which attributes have missing values is to use the .isnan() function of
Pandas Series. Both Pandas DataFrames and Pandas Series have the .isnan() function, and it outputs
the same data structure with all the cells filled with Booleans indicating whether the cell is nan. The

following screenshot uses the .isnan() function to count the number of Nan entries in each attribute

of air_df:

In [5]: M print('Number of missing values:')
for col in air_df.columns:
n_MV = sum(air_df[col].isna())
print('{}:{}"'.format(col,n_MV))

Number of missing values:
DateTime:0

Temperature:0

Humidity:0

Wind Speed:0

Wind _Direction:®

NO2 Location_A:120
NO2_Location_B:580

NO2 Location_ C:132

Figure 11.5 — Detecting missing values in air_df

In the preceding screenshot, we see that the no2 readings in all three locations have missing values.
This only confirms the detection of missing values we performed in Figure 11.4 using the .info()

function.

Now that we know how to detect missing values, let's turn our attention to understanding what could
have caused these values to be missing. In our quest to deal with missing values, we first and
foremost need to know why this has happened. In the next subchapter, we will focus on which

situations cause missing values.

Causes of missing values

There can be a wide range of reasons as to why missing values may occur. As we will see in this
chapter, knowing why a value is missing is the most important piece of information that enables us to
handle missing values effectively. The following list provides the most common reasons why values
may be missing:

o Human error.

« Respondents may refuse to answer a survey question.

o The person taking the survey does not understand the question.

o The provided value is an obvious error, so it was deleted.

« Not enough time to respond to questions.

e Lost records due to lack of effective database management.

« Intentional deletion and skipping of data collection (probably with fraudulent intent).
« Participant exiting in the middle of the study.

o Third-party tampering with or blocking data collection.

o Missed observations.

« Sensor malfunctions.

« Programing bugs.

When working with data as a data analyst, sometimes all you have is the data and you do not have
anyone to whom you can ask questions about the data. So, the important thing here would be to be
inquisitive about the data and imagine what could be the reasons behind the missing values.
Committing the preceding list to memory and understanding these reasons will be beneficial to you

when you have to guess what could have caused missing values.

It goes without saying that if you have access to someone who knows about the data, the best course

of action on finding out the causes of missing values is to ask the informant.

Regardless of what caused missing values, from a data analytic perspective, we can categorize all the
missing values into three types. Understanding these types will be very important in deciding how

missing values should be addressed.

Types of missing values

One missing value or a group of missing values in one attribute could fall under one of the following
three types: missing completely at random (MCAR), missing at random (MAR), and missing not
at random (MNAR). There is an ordinal relationship between these types of missing values. Moving

from MCAR to MNAR, the missing values become more problematic and harder to deal with.

MCAR is used when we do not have any reason to believe the values are missing due to any
systematic reasons. When a missing value is classed as MCAR, the data object that has a missing
value could be any of the data objects. For instance, if an air quality sensor fails to communicate with
its server to save records due to random fluctuations in the internet connection, the missing values are
of the MCAR type. This is because internet connection issues could have happened for any of the

data objects, but it just happened to occur for the ones it did.

On the other hand, we have MAR when some data objects in the data are more likely to have missing
values. For instance, if a high wind speed sometimes causes a sensor to malfunction and renders it
unable to give a reading, the missing values that have happened in the high wind are classed as MAR.

The key to understanding MAR is that the systematic reason that leads to having missing values does

not always cause missing values but increases the tendency of the data objects to have missing

values.

Lastly, MNAR happens when we know exactly which data object will have missing values. For
instance, if a power plant that tends to emit too much air pollutant tampers with the sensor to avoid
paying a penalty to the government, the data objects that are not collected due to this situation would
be classed as MNAR. MNAR missing values are the most problematic ones, and figuring out why

they happen and stopping them from happening is often the priority of a data analytic project.

Next, we will learn how we can use data analytic tools to diagnose the types of missing values. In the

following section, we will see an example that showcases the three types of missing values.

Diagnosis of missing values

An attribute with missing values has, in fact, the information of two variables: itself, and a hidden
attribute. The hidden attribute is a binary attribute whose value is one when there is a missing value,
and zero otherwise. To figure out the types of missing values (MCAR, MAR, and MNAR), all we
need to do is to investigate whether there is a relationship between the hidden binary variable of the
attribute with missing values and the other attributes in the dataset. The following list shows the

kinds of relationships we would expect to see based on each of the missing value types:

« MCAR: We don't expect the hidden binary variable to have a meaningful relationship with the other attributes.
« MAR: We expect a meaningful relationship between the hidden binary variable and at least one of the other attributes.

« MNAR: We expect a strong relationship between the hidden binary variable and at least one of the other attributes.

The following subsections showcase three situations with different types of missing values, and we

will use our data analytic toolkit to help us diagnose them.

We will continue using the air_df dataset that we saw earlier. We saw that N02_Location_A,
NO2_Location_B, and NO2_Location_c have 12e, 560, and 176 missing values, respectively. We will
tackle diagnosing missing values under each column one at a time.

Diagnosing missing values in NO2_Location_A

To diagnose the types of missing values, there are two methods at our disposal: visual and statistical
methods. These diagnosis methods must be run for all of the attributes in the dataset. There are four
numerical attributes in the data: Temperature, Humidity, Wind_bDirection, and wind_speed. There is
also one pateTime attribute in the data that can be unpacked into four categorical attributes: month,
day, hour, and weekday. The way we need to run the analysis is different for numerical attributes than
for categorical attributes. So, first, we will learn about numerical attributes, and then we will turn our

attention to categorical attributes.

Let's start with the Temperature numerical attribute. Also, we'll first do the diagnosis visually and

then we will do it statistically.

Diagnosing missing values based on temperature

The visual diagnosis is done by comparing the temperature values for the two populations: first, data
objects with missing values for N02_Location_A, and second, data objects with no missing values for
N02_Location_A. In Chapter 5, Data Visualization, under Comparing populations, we learned how we
use data visualizations to compare populations. Here, we will use those techniques. We can either use

a boxplot or histogram to do this. Let's use both—first, a boxplot, and then a histogram.

The following screenshot shows the code and the boxplot that compares the two populations. The
code is very similar to what we learned in Chapter 5, Data Visualization, so we will just discuss the

implications of the visualizations.

In [6]: M BM_MV = air_df.NO2_Location_A.isna()
MV_labels = ['With Missing Values', 'Without Missing Values']

box _sr = pd.Series('',index = BM_MV.unique())

for poss in BM_MV.unique():
BM = BM_MV == poss
box_sr[poss] = air_df[BM].Temperature

plt.boxplot(box_sr,vert=False)
plt.yticks([1,2],MV_labels)
plt.show()

Without Missing Values 1 I—:: i o]

With Missing Values { ——— \ f i

Figure 11.6 — Code for the diagnosis of missing values in NO2_Location_A using the boxplots of temperature

Looking at the boxplot in the preceding screenshot, we can see that the value of Temperature does not
meaningfully change between the two populations. That shows that a change in Temperature could

not have caused or influenced the occurrence of missing values under N02_Location_A.

We could also have done this analysis using a histogram. This was also shown in Chapter 5, Data
Visualization, under Comparing populations. The following screenshot shows the code to create a

histogram and compare the two populations:

In [7]: M BM_MV = air_df.NO2_Location_A.isna()
temp_range = (air_df.Temperature.min(),air_df.Temperature.max())
MV_labels = ['With Missing Values', 'Without Missing Values']

plt.figure(figsize=(10,4))

for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
air_df[BM].Temperature.hist()
plt.xlim = temp_range
plt.title(MV_labels[i])

plt.show()

With Missing Values Without Missing Values

0 10 20 30 0 5 10 15 20 25 30

Figure 11.7 — The code for the diagnosis of missing values in NO2_Location_A using the histogram of temperature

The preceding screenshot confirms the same conclusion we arrived at when using boxplots. As we do
not see a significant difference between the two populations, we conclude that the value of

Temperature could not have influenced or caused the occurrence of missing values.

Lastly, we would also like to confirm this using a statistical method: a two-sample t-test. The two-
sample t-test evaluates whether the value of a numerical attribute is significantly different among the
two groups. The two groups here are the data objects having missing values under N02_Location_A

and the data objects without missing values under N02_Location_A.

In short, the two-sample t-test hypothesizes that there is no significant difference between the
attributes' value among the two groups and then calculates the probability of the data turning out the
way it has if the hypothesis is correct. This probability is called the p-value. So, if the p-value is very
small, we have meaningful evidence to suspect the hypothesis of the two-sample t-test could have

been wrong.

We can easily do any hypothesis testing using Python. The following screenshot uses the ttest_ind

function from the scipy.stats module to do a two-sample t-test:

In [8]: M from scipy.stats import ttest_ind
BM MV = air_df.NO2_Location_A.isna()
ttest_ind(air_df[BM_MV].Temperature, air_df[~BM_MV].Temperature)

Out[8]: Ttest_indResult(statistic=0.05646499065315542, pvalue=0.9549726689684548)

Figure 11.8 — Using t-test to evaluate whether the value of temperature is different in NO2_Location_A between data
objects with missing values and without missing values
As you can see in the previous screenshot, to use the ttest_ind() function, all we need to do is to

pass the two groups of numbers.

The p-value of the t-test is very large—0.95 out of 1, which means we do not have any reason to
suspect the value of Temperature can be meaningfully different between the two groups. This

conclusion confirms the one that we arrived at using boxplots and histograms.

Here, we showcased the code for diagnosing missing values based on only one numerical attribute.
The code and analysis for the rest of the numerical attributes are similar. Now that you know how to
do this for one numerical attribute, we will next create a code that outputs all we need for missing

value diagnosis using numerical attributes.

Diagnosing missing values based on all the numerical attributes

To do a complete diagnosis of missing values, a similar analysis to what we did for the Temperature
attribute needs to be done for all of the attributes. While each part of the analysis is simple to
understand and interpret, the fact that the diagnosis analysis has many parts begs a very organized

way of coding and analysis.

To do this in an organized way, we will first create a function that performs all of the three analyses
that we showed can be done for Temperature. Apart from the dataset, the function takes the name of
the numerical attribute we want to perform the analysis and the Boolean mask that is True for the data
objects with missing values and False for the data object without missing values. The function
outputs boxplots, a histogram, and the p-value of the t-test for the inputted attribute. The code in the

following screenshot shows how this function is created. The code is rather long; if you'd like to copy

it, please find it in the ch 11 pata Cleaning Level III - missing values, outliers, and errors

folder in the dedicated GitHub repository for this book.

In [10]: M from scipy.stats import ttest ind
def Diagnose_MV_Numerical(df,str_att_name,BM_MV):
MV_labels = {True:'With Missing Values',False:'Without Missing Values'}

labels=[]
box_sr = pd.Series('',index = BM_MV.unique())
for poss in BM_MV.unique():
BM = BM_MV == poss
box_sr[poss] = df[BM][str_att_name].dropna()
labels.append(MV_labels[poss])

plt.boxplot(box_sr,vert=False)
plt.yticks([1,2],1labels)
plt.xlabel(str_att_name)
plt.show()

plt.figure(figsize=(10,4))
att_range = (df[str_att_name].min(),df[str_att_name].max())

for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
df[BM][str_att_name].hist()
plt.xlim = att_range
plt.xlabel(str_att_name)
plt.title(MV_labels[poss])

plt.show()

group_ 1 data
group_2_data

df[BM_MV][str_att_name].dropna()
df[~BM_MV][str_att_name].dropna()

n

p_value = ttest_ind(group_1_data,group_2_data).pvalue

print('p-value of t-test: {}'.format(p_value))

Figure 11.9 — Creating a Diagnose_MV_Numerical() function for diagnosing missing values based on numerical
attributes
Simply put, the previous code is a parameterized and combined version of the code presented in
Figure 11.6, Figure 11.7, and Figure 11.8. After running the preceding code, which creates a
Diagnose_MV_Numerical() function, running the following code will run this function for all of the
numerical attributes in the data, and it allows you to investigate whether the missing values of
No2_Location_A happen due to any systematic reasons that are linked to numerical attributes in the

dataset.
numerical_attributes = ['Temperature', 'Humidity', 'Wind Speed', 'Wind Direction']

BM_MV = air_df.NO2_Location_C.isna()

for att in numerical_attributes:
print('Diagnosis Analysis of Missing Values for {}:'. format(att))
Diagnose_MV_Numerical(air_df,att,BM_MV)

print('- - - - - - - - - - divider - - - - - - - - - ")

Running the preceding code will produce four diagnosis reports, one for each of the numerical
attributes. Each report has three parts: diagnosis using boxplots, diagnosis using a histogram, and

diagnosis using a t-test.

Studying the ensuing reports from the preceding code snippet shows that the tendency of the missing

value under No2_Location_A does not change based on values of either numerical attribute in the data.

Next, we will do a similar coding and analysis for categorical attributes. Like what we did for
numerical attributes, let's do a diagnosis for one attribute first, and then we will create code that can
output all the analysis we need all at once. The first attribute that we will do the diagnosis for is

weekday.

Diagnosing missing values based on weekday

You may be confused that the air_df dataset does not have a categorical attribute named weekday,
and you would be right, but unpacking the air_df.pataTime attribute can give us the following

attributes: weekday, day, month, and hour.

If you are thinking that sounds like level II data cleaning, you are absolutely right. To be able to do
level I1I data cleaning more effectively, we need to do some level II data cleaning first. The following
code performs the described level II data cleaning:

air_df.DateTime = pd.to_datetime(air_df.DateTime)

air_df['month'] = air_df.DateTime.dt.month

air_df['day'] = air_df.DateTime.dt.day

air_df['hour'] = air_df.DateTime.dt.hour

air_df['weekday'] = air_df.DateTime.dt.day_name()

After running the preceding code and before reading on, check the new state of air_df and study the
new columns that are added to it. You will see that the month, day, hour, and weekday categorical

attributes are unpacked into their own attributes.

Now that this data cleaning level II is done, we can perform a diagnosis of missing values in the
air_df.N02_Location_A column based on the weekday categorical attribute. As we saw in Chapter 5,
Data Visualization, a bar chart is a data visualization technique to compare populations based on a

categorical attribute. The following screenshot shows a modification of what we learned in Chapter

5, Data Visualization, under the heading Example of comparing populations using bar charts, the

first way, for this situation:

L,: Figure 11.10 — Using a bar chart to evaluate whether the value of weekday is different between data objects in NO2_Location_A

with missing values and without missing values

Figure 11.10 — Using a bar chart to evaluate whether the value of weekday is different between data objects in
NO2_Location_A with missing values and without missing values
Looking at the preceding screenshot, we can see that the missing values could have happened
randomly and we don't have a meaningful trend to believe there is a systematic reason for the missing

values happening due to a change of the value of airt_df.weekday.

We can also do a similar diagnosis using a chi-square test of independence statistical test. In short
and for this situation, this test hypothesizes that there is no relationship between the occurrence of
missing values and the weekday attribute. Based on this hypothesis, the test calculates a p-value that is
the probability of the data we have happening if the hypothesis is true. Using that p-value, we can

decide whether we have any evidence to suspect a systematic reason for missing values.

WHAT IS A P-VALUE?

This is the second time we are seeing the concept of a p-value in this chapter. A p-value is the same concept across all
statistical tests and it has the same meaning. Every statistical test hypothesizes something (which is called a null
hypothesis), and the p-value is calculated based on this hypothesis and the observations (data). The p-value is the
probability that the data that has already happened is happening if the null hypothesis is true.

A popular rule of thumb for using p-value is to employ the famous 5% significance level. A 0.05 significance level denotes
that if the p-value turns out to be larger than 0.05, then we don't have any evidence to suspect the null hypothesis is not
correct. While this is a fairly good rule of thumb, it is best to understand the p-value and then complement the statistical
test with data visualization.

The following screenshot shows a chi-square test of independence being performed using
chi2_contingency() from scipy.stats. The code first uses pd.crosstab() to create a contingency
table that is a visualization tool, to investigate the relationship between two categorical attributes (this
was covered in the Visualizing the relationship between two categorical attributes section in Chapter
5, Data Visualization). Then, the code passes contigency_table to the chi2_contingency() function
to perform the test. The test outputs some values, but not all of them are useful for us. The p-value is
the second value, which is 0.4127.

[,:;Figure 11.11 — Using the chi-square test of independence to evaluate whether the value of weekday is different between data objects

in NO2_Location_A with missing values and without missing values

Figure 11.11 — Using the chi-square test of independence to evaluate whether the value of weekday is different
between data objects in NO2_Location_A with missing values and without missing values

Having a p-value of 0.4127 confirms the observation we made under Figure 11.10, which is that there

is no relationship between the occurrence of missing values in air_df.N02_Location_A and the value

of weekday, and the fact that the missing values happened the way they did could have just been a

random chance.

Here, we showcased the code for diagnosing missing values based on only one categorical attribute.
The code and analysis for the rest of the categorical attributes are similar. Now that you know how to
do this for one numerical attribute, we will next create a code that outputs all we need for missing
value diagnosis using categorical attributes.

Diagnosing missing values based on all the categorical attributes

To do a complete diagnosis of missing values, a similar analysis to what we did for the weekday
attribute needs to be done for all of the other categorical attributes. To do this in an organized way,
we will first create a function that performs the two analyses that we showed can be done for
weekday. Along with the dataset, the function takes the name of the categorical attribute we want to
perform the analysis and the Boolean mask, which is True for the data objects with missing values
and False for the data objects without missing values. The function outputs bar charts, and the p-
value of the chi-squared test of independence for the inputted attribute. The following code snippet
shows how this function is created:
from scipy.stats import chi2_contingency
def Diagnose_MV_Categorical(df,str_att_name,BM_MV):
MV_labels = {True:'With Missing Values', False:'Without Missing Values'}
plt.figure(figsize=(10,4))
for i,poss in enumerate(BM_MV.unique()):
plt.subplot(1,2,i+1)
BM = BM_MV == poss
df[BM][str_att_name].value_counts().plot.bar()
plt.title(MV_labels[poss])
plt.show()
contigency_table = pd.crosstab(BM_MV,df[str_att_name])
p_value = chi2_contingency(contigency_table)[1]

print('p-value of Chi_squared test: {}' .format(p_value))

The preceding code snippet is a parameterized and combined version of the code presented in Figure
11.10 and Figure 11.11. After running the preceding code, which creates a
Diagnose_MV_categorical() function, running the following code will run this function for all of the
categorical attributes in the data, and it allows you to investigate whether the missing values of
No2_Location_A happen due to any systematic reasons that are linked to the categorical attributes in
the dataset:

categorical_attributes = ['month', 'day', 'hour', 'weekday']

BM_MV = air_df.NO2_Location_A.isna()

for att in categorical_attributes:
print('Diagnosis Analysis for {}:'.format(att))
Diagnose_MV_Categorical(air_df,att, BM_MV)
print('- - - - - - - - - - divider - - - - - - - - - ")

When you run the preceding code, it will produce four diagnosis reports, one for each of the

categorical attributes. Each report has two parts, as follows:

« Diagnosis using a bar chart

« Diagnosis using a chi-squared test of independence

Studying the reports shows that the tendency of the missing value under N02_Location_A does not

change based on values of either categorical attribute in the data.

Combined with what we learned for numerical attributes earlier in this subchapter and what we just
learned about categorical attributes, we do see that none of the attributes in the data—namely,
Temperature,Humidity,Wind_Speed,Wind_Direction,weekday,day,month,and hour——{nayllave
influenced the tendency of missing values. Based on all the diagnoses that we ran for the missing

values, we conclude that missing values in N02_Location_A are of the MCAR type.

Now that we have been able to determine the missing values of N02_Location_A, let's also run the
diagnosis that we learned so far for the missing values of N02_Location_B and N02_Location_c. We

will do so in the following two subsections.

Diagnosing missing values in NO2_Location_B

To diagnose missing values in N02_Location_B, we need to do exactly the same analysis we did for
No2_Location_A. The coding part is very easy as we have already done this, for the most part. The
following code uses the biagnose Mv_Numerical() and bDiagnose Mv_categorical() functions that we
already created to run all needed diagnoses in order to figure out which types of missing values
happen under N02_Location_B:

categorical_attributes = ['month', 'day', 'hour', 'weekday']

numerical_attributes = ['Temperature', 'Humidity', 'Wind_Speed',
'Wind_Direction']

BM_MV = air_df.NO2_Location_B.isna()

for att in numerical_attributes:
print('Diagnosis Analysis for {}:'.format(att))
Diagnose_MV_Numerical(air_df,att,BM_MV)

print('- - - - - - - - - divider - - - - - - - - ")

for att in categorical_attributes:
print('Diagnosis Analysis for {}:'.format(att))
Diagnose_MV_Categorical(air_df,att, BM_MV)

print('- - - - - - - - - divider - - - - - - - - - ")

When you run the preceding code, this produces a long report that investigates whether the tendency
of missing values happening may have been influenced by the values of any of the categorical or

numerical attributes.

After studying the report, you can see that there are a couple of attributes that seem to have a
meaningful relationship with the occurrence of missing values. These attributes are Temperature,
wind_Speed, Wind_Direction, and month. The following screenshot shows a diagnosis analysis for

wind_speed that has the strongest relationship with the missing values:

[,:;Figure 11.12 — Diagnosis of missing values in NO2_Location_B based on the Wind_Speed attribute

Figure 11.12 — Diagnosis of missing values in NO2_Location_B based on the Wind_Speed attribute

In the preceding screenshot, you can see all three analytic tools are showing that there is a significant
difference in the value of wind_speed between data objects that have missing values under
No2_Location_B and data objects that don't have missing values. In short, a higher wind_speed value

tends to increase the chance of N02_Location_B having missing values.

After this diagnosis, the results were shared with the company that sold us the air quality sensor. Here

is the email that was sent to the company:

Dear Sir/Madam,

I am writing this email to share with you what seems to be a pattern of malfunction with the
electrochemical sensors with serial number 231703612 that we purchased from you. The sensor
seems to skip recording when the temperature is lower, and the wind speed is higher. We thought

to let you know and we would appreciate it if you could tell us what you make of this pattern.

Sincerely,

Iman Ahmadian

After a few days, we received the following email:

Dear Analytic Team,

Thanks for sharing your concern and the information regarding the issues with the

electrochemical sensors.

What you shared with us is consistent with our recent findings. We have understood that the

model of the sensor that you have listed tends to malfunction in high wind conditions.

For future cases, you would expect to experience similar issues with the sensors whose serial
numbers start with 2317.

We sincerely apologize for this inconvenience and would be more than happy to accommodate
you with a 50% discount on our brand-new sensors that do not suffer from this malfunction. If

you wish to use this discount, please follow up with our sales department citing this email.

Best wishes

Nima Ghaderi

There we have it—now we know why some of the missing values under N02_Location_B occurred.
As we know, the value of Temperature can cause an increase in the occurrence of missing values, so

we can conclude that the missing values under N02_Location_B are of the MAR type.

A good question to ask here is that if a high wind_speed value is a culprit for the missing values, how
come the missing values also showed meaningful patterns with Temperature, wind_birection, and
month? The reason is that wind_speed has a strong relationship with Temperature, wind_birection, and
month. Use what you learned in Chapter 5, Data Visualization, in the Investigating the relationship
between two attributes section, to put this into an analysis. Due to those strong relationships, it may
look as though the other attributes also influence the tendency of missing values. We know that is not

the case from our communication with the manufacturer of the sensor.

So far, we have been able to diagnose missing values under N02_Location_A and NO2_Location_B.
Next, we will perform a diagnosis for N02_Location_c.

Diagnosing missing values in NO2_Location_C

We only need to change one line in the code for the diagnosis of missing values in N02_Location_B so
that we can diagnose missing values in N02_Location_c. You need to change the third line of code
from BM_Mv = air_df.NO2_Location_B.isna() t0o BM_MV = air_df.N02_Location_cC.isna(). Once that
change is applied and the code is run, you will get a diagnosis report based on all the categorical and
numerical attributes in the data. Try to go through and interpret the diagnosis report before reading

on.

The diagnosis report shows a relationship between the tendency of missing values and most of the
attributes—namely, Temperature, Humidity, Wind_Speed, day, month, hour, and weekday. However, the
relationship with the weekday attribute is the strongest. The following screenshot shows a missing
value diagnosis based on weekday. The bar chart in the screenshot shows that the missing values

happen exclusively on Saturdays. The p-value of the chi-square test is very small.

[,:Figure 11.13 — Diagnosis of missing values in NO2_Location_C based on the weekday attribute

Figure 11.13 — Diagnosis of missing values in NO2_Location_C based on the weekday attribute

The diagnosis based on hour and day also shows meaningful patterns (the diagnosis report for the
hour and day attributes is not printed here, but please look at the report you just created). The missing
values happen equally only when the value of the hour attribute is 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, and 20, or when the value of the day attribute is 25, 26, 27, 28, and 29. From these reports, we can
deduce that the missing values happen predictably on the last Saturday of every month from 10 A.M.
to 8 P.M. That is the pattern we see in the data, but why?

After letting the local authority of location ¢ know, it turned out that a group of employees at the
power plant in location ¢ had been taking advantage of the resources of the power plant to engage in
the mining of various cryptocurrencies. This abuse of resources had happened only on the last
Saturday of the month as the power plant in question had a complete day off for regular and
preventive maintenance. As this group of employees had been under a lot of stress to cover their
tracks and avoid getting caught, they had decided to tamper with the sensor that had been put in place
to regulate the air pollution from the power plant. Little did they know that tampering with data
collection leaves a mark on the dataset that is not easily hidden from the eyes of a high-quality data

analyst such as yourself.

This last piece of information and the diagnosis brings us to the conclusion that the missing value in
N02_Location_c is an MNAR value. Such values are missed due to a direct reason as to why the data
was being collected in the first place. A lot of times when a dataset has a significant number of
MNAR missing values, the dataset becomes worthless and cannot be of value in meaningful
analytics. A very first step in dealing with MNAR missing values is to prevent them from happening

ever again.

After learning how to detect and diagnose missing values, now is the perfect time to discuss dealing

with missing values. Let's get straight to it.

Dealing with missing values

As shown in the following list, there are four different approaches to dealing with missing values:
o Keep them as is.
« Remove the data objects (rows) with missing values.
« Remove the attributes (columns) with missing values.

« Estimate and impute a value.
Each of the previous strategies could be the best strategy in different circumstances. Regardless,
when dealing with missing values, we have the following two goals:

« Keeping as much data and information as possible

« Introducing the least possible amount of bias in our analysis

Simultaneously achieving these two goals is not always possible, and a balance often needs to be
struck. To effectively find that balance in dealing with missing values, we need to understand and

consider the following items:
o Our analytic goals

e Our analytic tools

o The cause of the missing values

o The type of the missing values (MCAR, MAR, MNAR)

In most situations when there is sufficient understanding of the preceding items, the best course of
action in dealing with missing values shows itself to you. In the following subsection, we will first
describe each of the four approaches in dealing with missing values, and then we will put what we
learn into practice, with some examples.

First approach - Keep the missing value as is

As the heading suggests, this approach keeps the missing value as a missing value and enters the next
stage of data preprocessing. This approach is the best way to deal with missing values in the

following two situations.

First, you would use this strategy in cases where you will be sharing this data with others and you are
not necessarily the one who is going to be using it for analytics. In this way, you will allow them to

decide how they should deal with missing values based on their analytics needs.

Second, if both data analytic goals and data analytic tools you will be using can seamlessly handle
missing values, keep as is is the best approach. For instance, the K-Nearest Neighbors (KNN)
algorithm that we learned about in Chapter 7, Classification, can be adjusted to deal with missing
values without having to remove any data objects. As you remember, KNN calculates the distance
between data objects to find the nearest neighbors. So, every time the distance between a data object
with missing values and other data objects is being calculated, a value will be assumed for the
missing values. The assumed values will be selected in such a way that the assumed values will not
help, so the data object with the missing value will be selected. In other words, a data object with
missing values will be selected as one of the nearest neighbors only if its non-missing values show a
very high level of similarity that cancels out the negative effect of the assumed values for the missing

values.

You can see that if the KNN is adjusted in this way, then it would be best if we kept the missing
values as is so as to meet both of the listed goals in dealing with missing values: keeping as much

information as possible and avoiding the introduction of bias in the analysis.

While the described modification to the KNN algorithm is an accepted approach in the literature, it is
not guaranteed that every analytic tool that features KNN has incorporated the described modification
so that the algorithm can deal with missing values. For instance, KNeighborsclassifier that we used
from the sklearn.neighbors module will give you an error if the dataset has missing values. If you
are planning to use this analytics tool, then you cannot use a keep as is approach and have to use one
of the other approaches.

Second approach - Remove data objects with missing values

This approach must be selected with great care because it can work against the two goals of
successfully dealing with missing values: not introducing bias into the dataset, and not removing
valuable information from the data. For instance, when the missing values in a dataset are of the type
MNAR or MAR, we should refrain from removing data objects with missing values. That is because

doing so means that you are removing a meaningfully distinct part of the population in the dataset.

Even if the missing values are of type MCAR, we should first try to find other ways of dealing with
missing values before turning toward removing data objects. Removing data objects from a dataset
should be considered as a last resort when there are no other ways to deal with missing values.
Third approach - Remove the attributes with missing values

When most of the missing values in a dataset come from one or two attributes, we might consider
removing the attributes as a way of dealing with missing values. Of course, if the attribute is a key
attribute without which you cannot proceed with the project, facing too many missing values in the
key attribute means the project is not doable. However, if the attributes are not absolutely essential to

the project, removing the attributes with too many missing values might be the right approach.

When the number of missing values in one attribute is large enough (roughly more than 25%),
estimating and inputting missing values becomes meaningless, and letting go of the attribute is better

than estimating missing values.

Fourth approach - Estimate and impute missing values

In this approach, we would use our knowledge, understanding, and analytic tools to fill missing
values. The term imputing captures the essence of what this does to a dataset—we put value instead
of missing value while knowing that this could cause bias in our analysis. If the missing values are of
the MCAR or MAR type and the analytic we have chosen cannot process the dataset with missing

values, imputing the missing values might be the best approach.

There are four general methods to estimate a replacement for missing values. The following list

outlines these methods:
« Impute with the general central tendency (mean, median, or mode). This is better for MCAR missing values.
« Impute with the central tendency of a more relevant group of data to the missing values. This is better for MAR missing values.

« Regression analysis. Not ideal, but if we have to proceed with a dataset that has MNAR missing values, this method is better for

such a dataset.

o Interpolation. When the dataset is a time series dataset and the missing values are of the MCAR type.

A common misconception about the process of estimation and imputation is that we want to impute
missing values with the most accurate replacements. That is not correct at all. When imputing, we do
not aim to best predict the value of missing values but to impute with values that would create the
least amount of bias for our analysis. For instance, for clustering analysis, if a dataset has MCAR

missing values, imputing with the whole-population central tendency is the best way to go. The

reason is that the central tendency value will act as a neutral vote in the process of grouping the data
objects, and if the data objects with missing values are pushed to be a part of one cluster, this is not

due to the imputed value.

Now that we have had a chance to understand the different approaches to dealing with missing
values, let's put things together and see a step-by-step decision-making process in selecting the right
strategy.

Choosing the right approach in dealing with missing values

The following diagram summarizes what we have discussed in dealing with missing values so far.
The diagram shows that the selection of the right approach in dealing with missing values must be
informed from four items: analytic goals, analytic tools, the cause of missing values, and the type of
missing values (MCAR, MAR, MNAR).

[,I:jFigure 11.14 — Diagram for choosing approaches and methods for dealing with missing values

Figure 11.14 — Diagram for choosing approaches and methods for dealing with missing values

Now, let's put what we have learned so far into practice and see some examples.
Example 1

Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we would like
to draw a bar chart that shows the average NOZ2 per hour value in Location A.

If you remember, the missing values in air_df.N02_Location_A are of the MCAR missing value type.
Since the missing values are not of the MNAR type and a bar chart can easily handle missing values,
the strategy we chose to deal with the missing values will be to keep them as it is. The following

screenshot shows the code and the bar chart that it creates:

[,:;Figure 11.15 — Dealing with missing values of NO2_Location_A to draw an hourly bar chart
Figure 11.15 — Dealing with missing values of NO2_Location_A to draw an hourly bar chart

In the preceding screenshot, you observed that the .groupby() and .mean() functions were able to
handle missing values. When the data is aggregated and the number of missing values is not
significant, the aggregation of the data handles the missing values without imputation. In fact, the
.mean() function ignores the existence of attributes with missing values and calculates the mean
based on data objects that have a value.

Example 2

Using air_df, whose missing values we detected and diagnosed earlier in this chapter, we would like

to draw a line chart that compares the NO2 variation of the first day of each month in Location A.

We know that the missing values in air_df.No02_Location_A are of the MCAR type; however, assume

that we don't know if a line plot can handle the missing values or not. So, let's give it a try and see if

the keep as is strategy will work. The following screenshot shows the line plot we need without

dealing with the missing values:

[,:Figure 11.16 — Daily line plot of NO2_Location_A for the first day of every month
Figure 11.16 — Daily line plot of NO2_Location_A for the first day of every month
In the preceding screenshot, we see that the line plots are cut in between due to the existence of
missing values. If the figure meets our analytic need, then we are done and there is no need to do
anything further. However, if we would like to deal with the missing values and remove the empty
spots in the line plots, we would need to use interpolation as the missing values are of the MCAR
type and the data is time series data. The following code snippet shows how to deal with the missing
values and then draw complete line plots:
NO2_Location_A noMV = air_df.NO2_Location_A.interpolate(method="'linear")
month_poss = air_df.month.unique()
hour_poss = air_df.hour.unique()
plt.figure(figsize=(15,4))
for mn in month_poss:
BM = (air_df.month == mn) & (air_df.day ==1)
plt.plot(NO2_Location_A_noMV[BM].values, label=mn)
plt.legend(ncol=6)
plt.xticks(hour_poss)

plt.show()

The preceding code snippet uses the .interploate() function to impute the missing values. When
method="'1linear' is used, the function imputes with the average of the data points before and after it.
In our eyes, it will appear as though the empty spots are connected with a ruler. Run the preceding
code and compare its output with Figure 11.16.

Example 3

Using air_df, we would like to draw a bar chart that compares the average NOZ2 per hour value in
Location A and Location B.

We remember that the missing values in air_df.N02_Location_A are of the MCAR type and that those
in air_df.N02_Location_B are of the MAR type. As neither of the attributes has MNAR missing
values and the bar chart can handle missing values, we can use a keep as is strategy. The following

screenshot shows the code needed to create a bar chart for this situation:

[,I:jFigure 11.17 — Dealing with missing values of NO2_Location_A and NO2_Location_B to draw an hourly bar chart

Figure 11.17 — Dealing with missing values of NO2_Location_A and NO2_Location_B to draw an hourly bar chart
Example 4

Using air_df, we would like to draw a bar chart that compares the average NO2 per hour value in

Location A, Location B, and Location C.

We remember that the missing values are of types MCAR, MAR, and MNAR, respectively, in
NO2_Location_A, NO2_Location_B, and NO2_Location_c. As we mentioned, dealing with MCAR and
MAR missing values is much easier than dealing with MINAR missing values. For MCAR and MAR,

we already saw that we can use a keep as is strategy.

For MNAR, we need to answer the question: Are the MNAR missing values essential attributes?
Answering this question requires a deep understanding of the analytic goals. In two different analytic

situations, we may have to deal with the missing values differently.

In one analytic situation, a bar chart is requested from an air pollution regulatory government body.
In this situation, we cannot move past the MINAR missing values in N02_Location_c, and instead of
sending them what they have requested, we need to reject their request and instead inform the
regulatory body about the existence of missing values. This is because a bar chart would be
misleading, as the missing values are due to data tampering, with the intention of downplaying air

pollution data.

In another situation, a bar chart is requested from a researcher who would like to investigate general
air pollution in different regions. In this situation, even though the missing values are of the MNAR
type, the systematic reason behind them is not essential to our analytic goals. Therefore, we can use a
keep as is strategy for all three columns. Creating a bar chart is very similar to what we did in Figure
11.17. Running air_df.groupby('hour')[['NO2_Location_A', 'NO2_Location_B',
'NO2_Location_C']].mean().plot.bar () will create the requested visual.

Example 5

We would like to use the kidney_disease.csv dataset to classify between the cases of chronic kidney
disease (CKD) and those cases that are not CKD. The dataset shows the data of 400 patients and has
5 independent attributes—namely, red blood cells (rc), serum creatinine (sc), packed cell volume
(pcv), specific gravity (sg), and hemoglobin (hemo). Of course, the dataset also has a dependent
attribute named diagnosis whereby the patients are labeled with either CKD or not CKD. Decision

Tree is the classification algorithm we would like to use.

In our initial look at the dataset, we notice that the dataset has missing values, and after using the
code we learned under Detecting missing values, we conclude that the number of missing values for
rc, sc, pcv, sg, and hemo are 131, 17, 71, 47, and 52, respectively. This means the percentage of
missing values under re, sc, pcv, sg, and hemo is 32.75%, 4.25%, 17.75%, 11.75%, and 13%,

respectively.

Use what you've learned in this chapter to confirm the information in the previous paragraph before

reading on.

When the number of missing values are across different attributes and are high (more than 15%), it
might be the case that most of the missing values happen for the same data objects, and that could be
very problematic for our analysis. So, before moving to the diagnosis of missing values for each
attribute, let's use the heatmap() function from the seaborn module to visualize missing values across

the dataset. The following screenshot shows the code and the heatmap it produces:

[,:'Figure 11.18 — Using seaborn to visualize missing values in kidney_disease.csv

Figure 11.18 — Using seaborn to visualize missing values in kidney_disease.csv

The heatmap in the preceding screenshot shows that the missing values are somewhat scattered
across the data objects, and it is certainly not the case that the missing values under different

attributes are only from specific data objects.

Next, we turn our attention to the missing value diagnosis per attribute. After performing what we've
learned in this chapter, we can conclude that the missing values of the sc attribute are of the type
MCAR, and the missing values of rc, pcv, sg, and hemo are of the type MAR. The tendency of all of
the MAR missing values is highly linked to the diagnosis dependent attribute.

Use what you've learned in this chapter to confirm the information in the previous paragraph before

reading on.

Now that we have a better idea of the types of missing values, we need to turn our focus to the
essence of analytic goals and tools. We want to perform classification using the Decision Tree
algorithm. When we want to deal with missing values, before using the dataset in an algorithm, we
need to first consider how the algorithm uses the data and then try to choose a strategy that
simultaneously optimizes the two goals of dealing with missing values. Let's remind ourselves of the

two goals of dealing with missing values, as follows:
» Keeping as much data and information as possible

« Introducing the least possible amount of bias in our analysis

We know that Decision Tree is not inherently designed to deal with missing values, and the tool we
know for the Decision Tree algorithm—the pecisionTreeclassifier () function from the
sklearn.tree module—will give an error if the input data has missing values. Knowing that will tell

us that a keep as is strategy is not an option.

We also just realized that the tendency of some of the missing values can be a predictor of the
dependent attribute. This is important because if we were to impute the missing values, that would
remove this valuable information from the dataset; the valuable information is that the missing values
of some of the attributes (the MAR ones) predict the dependent attribute. Therefore, regardless of the
imputation method that we will use, we will add a binary attribute to the dataset for every attribute

with MAR missing values that describes whether the attribute had a missing value. These new binary

attributes will be added to the independent attributes of the classification task to predict the diagnosis

dependent attribute.

The following code snippet shows these binary attributes being added to the patient_df dataset:
patient_df['rc_BMV'] = patient_df.rc.isna().astype(int)

patient_df['pcv_BMV'] = patient_df.pcv.isna().astype(int)

patient_df['sg_BMV'] = patient_df.sg.isna().astype(int)

patient_df['hemo_BMV'] = patient_df.hemo.isna().astype(int)

Run the preceding lines of code first and study the state of patient_df before reading on.

Let's now turn our attention to imputing missing values. If you do not remember how the Decision
Tree algorithm goes about the task of classification, please go back to Chapter 7, Classification, to
jog your memory before reading on. The Decision Tree algorithm consecutively splits data objects
into groups based on the value of the attributes, and when the data objects have values that are larger
than or smaller than the central tendencies of the attribute, they are more likely to be classified with a
specific label. Therefore, by imputing with the central tendency of the attributes, we will not
introduce a bias into the dataset, so the imputed value will not cause the classifier to predict one label

over the other more often.

Thus, we have concluded that imputing with the central tendency of attributes is a reasonable way to
address missing values. The question that we now need to answer is: Which central tendency should
we use—median or mean? The answer to that question is that the mean is better if the attribute does

not have many outliers.

After investigating the boxplots of the attributes with missing values, you will see that sc has too
many outliers, and the rest of the attributes are not highly skewed. Therefore, the following code
snippet shows the missing values of patient_df.sc being imputed with patient_df.sc.median(), and

the rest of the attributes with missing values with their means:
patient_df.sc.fillna(patient_df.sc.median(),inplace=True)
patient_df.fillna(patient_df.mean(), inplace=True)

The preceding code snippet uses the . fillna() function, which is very useful when imputing missing

values. After running the preceding code, recreate the heatmap shown in Figure 11.18 to see the state

of missing values in your data.

Phew! The detection of, diagnosis of, and dealing with missing values have now been completed.
The dataset is now preprocessed for the classification task. All we need to do is use the code we
learned from Chapter 7, Classification, to run the Decision Tree algorithm. The following code

snippet shows the modified code from Chapter 7, Classification, for this analytic situation:

from sklearn.tree import DecisionTreeClassifier, plot_tree

predictors = ['rc', 'sc', 'pcv', 'sg', 'hemo', 'rc_BMV', 'pcv_BMV', 'sg_BMV', 'hemo_BMV']
target = 'diagnosis'

Xs = patient_df[predictors]

y= patient_df[target]

classTree = DecisionTreeClassifier(min_impurity_decrease= 0.01, min_samples_split= 15)
classTree.fit(Xs, vy)

The preceding code snippet creates a Decision Tree model and trains it using the data we've

preprocessed. Pay attention to the fact that min_impurity decrease= .01 and min_samples_split=

15 are hyperparameters of the Decision Tree algorithm that are adjusted using a process of tuning.
The following code snippet uses the classTree trained decision tree model to visually draw its tree
for analysis and use:

from sklearn.tree import plot_tree

plt.figure(figsize=(15,15))

plot_tree(classTree,
feature_names=predictors, class_names=y.unique(), filled=Tru
e, impurity=False)

plt.show()

Successfully running the preceding code will create the following output:

[,:;Figure 11.19 — Trained decision tree for the preprocessed kidney_disease.csv data source
Figure 11.19 — Trained decision tree for the preprocessed kidney_disease.csv data source
We can now use the preceding decision tree to make decisions regarding incoming patients.
You've made excellent progress so far in this chapter. You are now capable of detecting, diagnosing,

and dealing with missing values from both a technical and an analytic standpoint. Next in this

chapter, we will discuss the issue of extreme points and outliers.

Outliers

Outliers, a.k.a. extreme points, are data objects whose values are too different than the rest of the
population. Being able to recognize and deal with them is important from the following three
perspectives:

o Outliers may be data errors in data and should be detected and removed.

o Outliers that are not errors can skew the results of analytic tools that are sensitive to the existence of outliers.

e Outliers may be fraudulent entries.

We will first go over the tools we can use to detect outliers, and then we will cover dealing with them

based on the analytic situation.

Detecting outliers

The tools we use for detecting outliers depend on the number of attributes involved. If we are
interested in detecting outliers only based on one attribute, we call that univariate outlier detection;
if we want to detect them based on two attributes, we call that bivariate outlier detection; and
finally, if we want to detect outliers based on more than two attributes, we call that multivariate
outlier detection. We will cover the tools we can use for outlier detection for each of these
mentioned categories. We will also cover detecting outliers for time series data as there are better

tools for this.

Univariate outlier detection

The tools we will use for univariate outlier detection depend on the attribute's type. For numerical
attributes, we can use a boxplot or the [Q1-1.5*IQR, Q3+1.5*IQR] statistical range. The concept of
outliers does not have much meaning for a single categorical attribute, but we can use tools such as a

frequency table or a bar chart.

The following two examples feature univariate outlier detection. In these examples, we will use
responses.csv and columns.csv files. The two files are used to record the date of a survey conducted
in Slovakia. To access the data on Kaggle, use this link:

https://www.kaggle.com/miroslavsabo/young-people-survey.

The dataset uses two files to keep the records due to a level I data cleaning reason— intuitive and
codable attribute names. The columns.csv file keeps the codable attribute titles and their complete
titles, and the file responses.csv has a table of data objects (survey responses) whose attributes are

named using the codable titles.

The following screenshot shows the reading of these two files into Pandas DataFrames and the first

two rows of both DataFrames:

[,:;Figure 11.20 — Reading responses.csv and columns.csv into response_df and column_df and showing them

Figure 11.20 — Reading responses.csv and columns.csv into response_df and column_df and showing them

Now, let's look at the first example of univariate outlier detection across one numerical attribute.

Example of detecting outliers across one numerical attribute

In this example, we would like to detect outliers in the response_df.weight numerical attribute. There

are two ways we can go about this; both ways will lead to the same conclusion. The first way is

https://www.kaggle.com/miroslavsabo/young-people-survey

visual; we will use a boxplot. The following screenshot shows the code for creating a boxplot for

response_df.weight:

[':Figure 11.21 — Creating a boxplot for response_df.Weight

Figure 11.21 — Creating a boxplot for response_df.Weight

The circles that come before the lower cap and and after the upper cap represent data objects in the
data that are statistically too different from the rest of the numbers. These circles are called fliers in

the context of boxplot analysis.

There are different ways we can access the data objects that are fliers in a boxplot. First, we can do
this visually. We can see that the fliers have a weight value larger than 105, so we can use a Boolean
mask to filter out these data objects. Running response_df[response_df.weight>105] will list the
outliers presented in the preceding screenshot.

Second, we can access the fliers directly from the boxplot itself. If you pay attention to the preceding
screenshot, you will notice that for the first time in this book, the output of a plot function—in this
case, plt.boxplot()—is assigned to a new variable—in this case, fig. The reason for this is that up
until now, the end goal of data visualization was the visualization itself, and we did not need to
access the details of the visualization. However, here, we would like to access the fliers and find out

their values to avoid possible visual mistakes.

We can access all aspects of every Matplotlib visualization similarly. If you run print(fig) and study
its results, you will see that fig is a dictionary whose keys are different elements of the visualization.
As the visualization in this case is a boxplot, the elements are caps, whiskers, fliers, boxes, and
median. Each key is associated with a list of one or multiple matplotlib.lines.Line2D programming
objects. This is a programing object that Matplotlib uses in its internal processes, but here we want to
use this to give us the values of the fliers. Each matplotlib.lines.Line2D object has the .get_data()
function that gives you values that are shown on the plot. For instance, running fig[' fliers']

[0].get_data() gives you the weight values that are shown as fliers in Figure 11.21.

We didn't need to use a boxplot to find outliers. A boxplot itself uses the following formulas to
calculate the upper cap and lower cap of the boxplot. Q1 and Q3 are the first and third quarters of the
data:

Anything that is not between the upper cap and the lower cap will be marked as outliers. The

following code uses the .quantile() function and the preceding formulas to output the outliers:

Q1 = response_df.Weight.quantile(0.25)

Q3 = response_df.Weight.quantile(0.75)

IQR = Q3-Q1
BM = (response_df.Weight > (Q3+1.5 *IQR)) | (response_df.Weight < (Q1-1.5 *IQR))

response_df[BM]

Using any of the two methods we covered in this example, you will realize that there are nine data
objects whose weight values are statistically too different from the rest of the data objects. The
weight values for these outliers are 120, 110, 111, 120, 113, 125, 165, 120, and 150. Make sure to

confirm this using both methods before reading on.

Next, we will see an example that showcases detecting outliers based on one categorical attribute.

Example of detecting outliers across one categorical attribute

In this example, we would like to detect the outliers in the response_df.Education categorical
attribute. For detecting outliers across one categorical attribute, we can use a frequency table or a bar
chart. As we learned in Chapter 5, Data Visualization, you may run
response_df.Education.value_counts() to get a frequency table, and running
response_df.Education.value_counts().plot.bar () will create a bar chart. Run both lines of code to
confirm that the data object whose Education value is doctorate degree is an outlier across this one

categorical attribute.

We are now equipped with the tools for univariate outlier detection. Let's turn our attention to

bivariate outlier detection.

Bivariate outlier detection

As univariate outlier detection was across only one attribute, bivariate outlier detection is across two
attributes. In bivariate outlier detection, outliers are data objects whose combination of values across
the two attributes is too different from the rest. Similar to univariate outlier detection, the tools we
will use for bivariate outlier detection depend on the attributes' type. For numerical-numerical
attributes, it is best to use a scatterplot; for numerical-categorical attributes, it is best to use multiple
boxplots; and for categorical-categorical attributes, the tool we use is a color-coded contingency
table.

Each of the following three examples features one of the three possible paired combinations of

categorical and numerical attributes.

Example of detecting outliers across two numerical attributes

In this example, we would like to detect outliers when they are described by two numerical attributes,
response_df.Height and response_df.weight. When detecting outliers across two numerical
attributes, it is best to use a scatterplot. Running response_df.plot.scatter (x='Weight',

y="Height ') will result in the following output:

200 -

100 -

40 60 80 100 120 140
Weight

Figure 11.22 — Scatterplot to detect outliers across response_df.Weight and response_df.Height

Based on the preceding screenshot, we can clearly see two outliers, one with a weight value larger
than 120, and one with a Height value smaller than 70. To filter out these two outliers, we can use a

Boolean mask. The following code snippet shows how this can be done:
BM = (response_df.Weight>130) | (response_df.Height<70)

response_df [BM]

When the preceding code is run, you will see three data objects. If you check the Height and weight
values of these data objects, you will see one of them has a missing value for Height and therefore is

not shown on the scatterplot.

This example featured a bivariate outlier detection when two attributes are numerical. The next

example will be a bivariate outlier detection when two attributes are categorical.

Example of detecting outliers across two categorical attributes

In this example, we want to detect outliers across two categorical attributes, response_df.6od and
response_df.Education. As the two attributes are categorical, it is best to use a contingency table to
detect outliers. Running pd.crosstab(response_df['Education'], response_df['God']) will create a
contingency table. To help see the outliers, you can turn the table into a heatmap by using .heatmap()
from the seaborn module. The code shown in the following snippet will create a heatmap from the
contingency table:

cont_table =

pd.crosstab(response_df['Education'], response_df['God'])

sns.heatmap(cont_table, annot=True, center=0.5 ,cmap="Greys")

The following screenshot shows the heatmap that the preceding code will produce:

[,:Figure 11.23 — Color-coded contingency table to detect outliers across response_df.God and response_df.Education

Figure 11.23 — Color-coded contingency table to detect outliers across response_df.God and response_df.Education

From the preceding screenshot, we can see that there are cases of one data object that have some
combinations of values across response_df.God and response_df.Education. To filter out these
outliers, we can also use a Boolean mask, but as there will be a lot of typing due to the values of the
categorical attributes, we might be better off using another Pandas DataFrame function. The .query()
function, as its name suggests, can also help us perform filtering of a DataFrame based on the values
of the attributes. Run the following lines of code one at a time to filter out each of the data objects we

spotted as outliers:

. response_df.query('Education== "currently a primary school pupil" & God==2"')
« response_df.query('Education== "currently a primary school pupil" & God==4")
« response_df.query('Education== "doctorate degree" & God==1')
« response_df.query('Education== "doctorate degree" & God==2"')
« response_df.query('Education== "doctorate degree" & God==3')

In this example, we covered categorical-categorical bivariate outlier detection. In the example
preceding this, we covered numerical-numerical bivariate outlier detection. Next, we will feature

numerical-categorical bivariate outlier detection.

Example of detecting outliers across two attributes — one categorical and the
other numerical

In this example, we want to detect outliers across two attributes, response_df.Education and
response_df.Age. Pay attention to the fact that response_df.Education is categorical and
response_df.Age is numerical. When performing bivariate outlier detection across one numerical and

one categorical attribute, we use multiple boxplots. In essence, we will create one boxplot across the

numerical attribute for each of the categories of the categorical attribute. Running
sns.boxplot (x=response_df.Age, y=response_df.Education) will create the following boxplot that

can be used for outlier detection:

[,:{Figure 11.24 — Multiple boxplots to detect outliers across response_df.Age and response_df.Education

Figure 11.24 — Multiple boxplots to detect outliers across response_df.Age and response_df.Education

This is the first time we are using sns.boxplot() in this book. We did learn how we would be able to
do this using Matplotlib in Chapter 5, Data Visualization. Try to recreate the boxplot using

Matplotlib before reading on. You will see that using the seaborn function is significantly easier.

Looking at the multiple boxplots, we can see that we have some fliers for Education categories:
college/bachelor degree, secondary school, and primary school. To filter out the outliers, we can
use Boolean masks or the query() function. The following code shows how we can create one

Boolean mask to include all the fliers:

BM1

(response_df.Education=="'college/bachelor degree') & (response_df.Age>26)

BM2 = (response_df.Education == 'secondary school') & ((response_df.Age>24) |
(response_df.Age<16))

BM3 = (response_df.Education == 'primary school') & ((response_df.Age>19) |
(response_df.Age<16))

BM = BM1 | BM2 | BM3

response_df [BM]

So far, we have managed to learn how to perform univariate and bivariate outlier detection. Next, we
will cover multivariate outlier detection.
Multivariate outlier detection

Detecting outliers across more than two attributes is called multivariate outlier detection. The best
way to go about multivariate outlier detection is through clustering analysis. The following example

features a case of multivariate outlier detection.

Example of detecting outliers across four attributes using clustering analysis

In this example, we would like to see whether we have outliers based on the following four attributes:
Country, Musical, Metal or Hardrock, and Folk. If you check the complete description of these
attributes on columns_df, you will realize these attributes describe the liking level of data objects for
each of four kinds of music. As mentioned, the best way to perform multivariate outlier detection is
through cluster analysis. In Chapter 8, Clustering Analysis, we learn about the K-Means algorithm,

and here, we will use it to see whether we have outliers.

If K-Means groups one data object or only a handful of data objects in one cluster, that will be our
clue that there are multivariate outliers in our data. If you remember, the one big weakness of the K-
Means algorithm is that the number of clusters, k, must be specified. To ensure the K-Means
algorithm's weakness will not stand in the way of effective outlier detection and to give the analysis
the best chance of success, we will use different k values: 2, 3, 4, 5, 6, and 7. We need to do this in
multiple steps, as follows:

1. First, we will create an Xs attribute, which includes the attributes we want to be used for clustering analysis. The following code

snippet shows how this is done:

dimensions = ['Country', 'Metal or Hardrock', 'Folk', 'Musical']
Xs = response_df[dimensions]

2. Second, we need to check whether there are any missing values. You may use Xs.info() for the quick detection of missing

values.

3. If there are missing values, we need to do a similar analysis to what we did in Figure 11.18 to check whether all the missing
values are from one of the data objects. If that is the case, the fact that one data object has more than two missing values could be
a reason for concern. However, if the missing values seem to be happening randomly across Xs, we may impute them with
Q3+1.5*IQR.
Why not impute them with a central tendency? The reason we don't is that we would decrease the
likelihood of a data object with a missing value being detected as outliers if we imputed with a
central tendency. We don't want to help a data object that has the potential to be an outlier with

our missing value imputation.

In this case, the missing values are spread across the data objects and the dimensions of xs. So,

we can use the following line of code to impute the missing values with Q3+IQr*1.5:

Q3 = Xs.quantile(0.75)
Q1 = Xs.quantile(0.25)
I0R = Q3 - Q1

Xs = Xs.fillna(Q3+IQR*1.5)
4. Next, of course, we will not forget to standardize the dataset using Xs = (Xs - Xs.min())/(Xs.max()-Xs.min()).

5. Lastly, we can use a loop to perform clustering analysis for different Ks and report its results. The following line of code shows

how this can be done:
from sklearn.cluster import KMeans
for k in range(2,8):
kmeans = KMeans(n_clusters=k)
kmeans.fit(Xs)
print('k={}"'.format(k))
for i in range(k):

BM = kmeans.labels_==i

print('Cluster {}: {}'.format(i,Xs[BM].index. values))

print('--------- Divider ---------- ")

Once the preceding code is successfully run, you can scroll through its prints to see that under none
of the Ks, has K-Means grouped one data object or a handful of data objects in one cluster. This will
allow us to conclude that there is no multivariate outlier in xs.

Time series outlier detection

Outliers in time series data are best detected using line plots, the reason being that between
consecutive records of a time series there is a close relationship, and using the close relationship is
the best way to check the correctness of a record. All you need is to evaluate the value of the record
against its closest consecutive records, and that is easily done using line plots. We will see an
example of time series outlier detection in this chapter—please see the example under Detecting

systematic errors toward the end of this chapter.

Now that we have covered all the three possible outlier detections—univariate, bivariate, and

multivariate—we can turn our attention to dealing with outliers.

Dealing with outliers

When we have detected outliers in a dataset we want to analyze, we also need to effectively deal with
outliers. The following list highlights the four approaches we can use to deal with outliers:

« Do nothing

« Replace with the upper cap or lower cap

« Perform a log transformation

« Remove data objects with outliers

Next, we will talk more about each of the preceding approaches.

First approach - Do nothing

Although it may not feel like this, especially after going through so many hoops to detect outliers, do
nothing is the best strategy in most analytic situations. The reason for this is that most analytic tools
we use can easily handle outliers. In fact, if you know the analytic tools you want to use can handle
outliers, you might not perform outlier detection in the first place. However, outlier detection itself

may be the analytic you need, or the analytic tool you need to use is prone to outliers.

The table shown in the following screenshot lists all the analytic tools/goals we have covered in this

book and specifies the best approach for dealing with outliers:

[,:Figure 11.25 — Summary table of analytic goals and tools and the best way to deal with outliers if they exist

Figure 11.25 — Summary table of analytic goals and tools and the best way to deal with outliers if they exist

As you can see in Figure 11.25, in most analytic situations, it will be better to adopt the first
approach: do nothing. Now, let's continue and learn about the next approaches.

Second approach - Replace with the upper cap or the lower cap
Applying this approach may be wise when the following criteria are met:

o The outlier is univariate.
o The analytic goals and/or tools are sensitive to outliers.
« We do not want to lose information by removing data objects.

« An abrupt change of value will not lead to a significant change in the analytic conclusions.

If the criteria are met, in this approach the outliers are replaced with the correct upper or lower cap.
The upper and lower caps are statistical concepts we discussed earlier in this chapter in the
Univariate outlier detection section. They are also an essential part of any boxplot. We replace the
univariate outliers that are too much smaller than the rest of the data object with the lower cap of the
Q1-1.5*IQR attribute, and replace the univariate outliers that are too much larger than the rest of the
data objects with the upper cap of the Q3+1.5*IQR attribute.

Third approach - Perform a log transformation

This approach is not just a method to deal with outliers but is also an effective data transformation
technique that we will cover in the relevant chapter. As a method to deal with outlier detection, it is
only applicable in certain situations. When an attribute follows an exponential distribution, it is only
typical for some of the data objects to be very different from the rest of the population. In those
situations, applying a log transformation will be the best approach.

Fourth approach - Remove data objects with outliers

When the other methods are not helpful or possible, we may be reduced to removing the data objects
with the outliers. This is our least favorite approach and should only be used when absolutely
necessary. The reason that we would like to avoid this approach is that the data is not incorrect; the
values of the outliers are correct but happen to be too different from the rest of the population. It is

our analytic tool that is incapable of dealing with the actual population.

PAY ATTENTION!

As to when and whether you should adopt the approach of removing data objects due to being outliers, | would like to
share with you an important word of advice. First, only apply this approach to the preprocessed version of the dataset that
you've created for the specific analysis and not to the source data. The fact that this analysis needed the data objects with
outliers to be removed does not mean all the analysis will need that. Second, make it a priority to inform the audience of
the resulting analytic as they will be aware of this invasive approach in dealing with outliers.

Now that we know all four approaches in dealing with outliers, let's spend some time going over a
summary of how best we should go about selecting the best one.
Choosing the right approach in dealing with outliers

The selection of the right approach in dealing with outliers must be informed from analytic goals and
analytic tools. As shown in Figure 11.25, in most situations, the best way to deal with outliers is
using a do nothing approach. When and if the other approaches are necessary, make sure to only
apply them to the preprocessed version of the data you are creating for your analytics and refrain

from changing the source dataset.

We now know everything we need to know about dealing with outliers, so let's see a couple of
examples to put what we learned into practice.
Example 1

We earlier saw that the response_df.weight attribute has some outliers. We would like to use a

histogram to draw the distribution of the population across this attribute.

As our analytic end goal is to visualize the population distribution, the existence of outliers might

consume some visualization space, and therefore removing them can open the visualization space.

The following code snippet and its output show how to create both histogram versions for
response_df .Weight, one with outliers and the other without them:

response_df .Weight.plot.hist(histtype="'step')

plt.show()

BM = response_df.wWeight<105

response_df.weight[BM].plot.hist(histtype="'step')

plt.show()

The preceding code will produce the following output:

[,:;Figure 11.26 — Histogram of response_df.Weight featuring two different approaches in dealing with outliers

Figure 11.26 — Histogram of response_df.Weight featuring two different approaches in dealing with outliers

In the previous screenshot, from an analytic perspective, you may imagine situations where either
visual would be more appropriate. For instance, if we are interested in seeing the frequency changes
where most of the population is between 40 and 100, then a histogram without outliers would be
better. On the other hand, if a true representation of the population is our end goal, then a histogram

with outliers would be ideal.

In the previous screenshot, from a data preprocessing perspective, pay attention to the fact that to
create a histogram without outliers, we did not edit response_df but created a DataFrame on the fly

just for the purpose of creating a histogram without outliers.

Now, let's consider another example.
Example 2

We would like to visualize the relationship between two attributes, response_df.Height and
response_df. Weight. As the two attributes are both numerical, we do know the best way to visualize
this relationship is a scatterplot. We also would like to include a linear regression (LR) line in the

visualization so as to augment its analytic values.

We have been told that LR is prone to outliers. Let's use this opportunity to learn why. We will first
adopt a do nothing approach and create a visualization to see what would happen if there were

outliers in the data for regression analysis.

The following screenshot shows the application of the .regplot () function from the seaborn module

to create a scatterplot visualization:

L,:, Figure 11.27 — Scatterplot to visualize the relationship between response_df.Height and response_df.Weight without dealing with

outliers

Figure 11.27 — Scatterplot to visualize the relationship between response_df.Height and response_df.Weight without
dealing with outliers
You can see in the preceding screenshot that the outliers we detected in Figure 11.22 are consuming

the visualization space and do not allow the relationship to show itself fully.

However, the following screenshot shows the code that removes the outliers at the last step of the

visualization:

L,: Figure 11.28 — Scatterplot to visualize the relationship between response_df.Height and response_df.Weight after dealing with

outliers
Figure 11.28 — Scatterplot to visualize the relationship between response_df.Height and response_df.Weight after
dealing with outliers
Comparing the last two screenshots, we can see how removing the two outliers allows the
visualization to show the relationship between the two variables much better. You can see in the
preceding screenshot how higher Height values can lead to higher weight values.
Example 3

In this example, we would like to use regression to capture the linear relationship between weight,
Height, and Gender to predict weight, which we saw in the previous example. In other words, we
would like to find the S0 and 1 values in the following equation:

As we saw in Figure 11.25, regression analysis is sensitive to outliers. We also observed in Figure
11.28 that both weight and Height have outliers. We also need to check whether ender has any

outliers.

This is going to be a long example, so please bear with me throughout. In this example, we will go

over the following steps, one by one:

1. Dealing with missing values

2. Detecting univariate outliers and dealing with them
3. Detecting bivariate outliers and dealing with them

4. Detecting multivariate outliers and dealing with them

5. Applying LR

Let's start with the first step.

Dealing with missing values

However, before doing that, we will first need to deal with the missing values in these three
attributes, as LinearRegression from sklearn.linear_model gives an error when the input data has
missing values. The following code snippet shows how we would start preprocessing the data for this

example:
select_attributes = ['Weight', 'Height', 'Gender']
pre_process_df = pd.DataFrame(response_df[select_attributes])

pre_process_df.info()

After running the previous code, you will be able to see that weight and Height have 20 missing
values, and Gender has 6 missing values. Assume that we know that the missing values are of the
MCAR type.

To deal with missing values for regression analysis, we cannot use a keep as is strategy, as the tool
we plan to use cannot handle outliers. Imputing values will not be a good option either as this will
create bias in the data. Therefore, the only doable option that remains is dropping the data objects.
The following line of code uses the .dropna() function to remove the data objects with missing

values:
pre_process_df.dropna(inplace=True)
After running this code, rerun pre_process_df.info() to confirm that pre_process_df does not have

missing values anymore.

Now that we are certain there are no missing values in pre_process_df, we can turn our attention to
detecting and dealing with outliers, as LR is prone to outliers. We need to detect whether the data has
univariate, bivariate, or multivariate outliers. In the following subsections, we will do this one step at

a time.

Detecting univariate outliers and dealing with them

The following screenshot shows the code that has created boxplots for the numerical attributes and a

bar chart for the categorical attribute in this example:

In [75]: M num_attributes = ['Weight', 'Height']
for i,att in enumerate(num_attributes):
plt.subplot(1,3,i+1)
pre_process_df[att].plot.box()

plt.subplot(1,3,3)
pre_process_df.Gender.value_counts().plot.bar()
plt.tight_layout()

plt.show()
600
o 200 1
140 1 500
180
120 g
| 160 400 1
8
100 - 140
300 A1
- 120 1
200 4
100 -
m -
80 1 100 A
40 1 60 1 o 0
Weight Height

female
male

Figure 11.29 — Drawing boxplots of the numerical attributes and a bar chart of the categorical attribute in the example

In the preceding screenshot, we can see that both Height and weight have outliers, but Gender does
not. So, before moving on to the LR analysis, we need to deal with the outliers. As suggested by

Figure 11.25, we can use one of the following two approaches in dealing with outliers:
« Remove these data objects

o Replace them with their statistical upper cap or lower cap

But which approach is better? When the data objects are univariate outliers, it is better to use the
second approach, as replacing the statistical upper or the lower cap will help to keep the data objects

and at the same time mitigate the negative effect of the data object with the outliers.

On the other hand—and this also applies generally—when the data objects are bivariate or
multivariate outliers, it would be better to remove them. This is because these outliers will not allow
the regression model to capture the patterns among the non-outlier data objects. In the special case of
bivariate outliers whereby the pair of attributes is categorical-numerical, it might also be sensible to

replace the outlier values with the upper or lower caps of the specific population.

So, let's first deal with the univariate outliers by replacing them with the statistical lower and upper
caps. The following code replaces the fliers of pre_process_df.weight with the statistical upper cap
of the attribute:

Q3 = pre_process_df.Weight.quantile(0.75)

Q1 = pre_process_df.Weight.quantile(0.25)

IQR = Q3 - Q1

upper_cap = Q3+IQR*1.5

BM = pre_process_df.Weight > upper_cap

pre_process_df.loc[pre_process_df[BM].index, 'Weight'] = upper_cap

After running the previous code, run pre_process_df.weight.plot.box() to see that the outliers are
taken care of. Also, pay attention to two matters before moving on to replace the flier in
pre_process_df.Height, as follows:

« First, by looking at Figure 11.29, you will realize that pre_process_df.Weight only has fliers that are larger than the

statistical upper cap of the attribute. That is why in the previous code, we don't have any replacement with the statistical lower cap

of the attribute. This will change when we do the same procedure for pre_process_df .Height.

« Second, we could have the boxplot itself extract the statistical upper caps and lower caps of the attribute, but instead, we use the
formulas Q1-1.5*IQR and Q3+1.5*IQR, respectively, to calculate the statistical lower and upper caps. This is because we don't
want to waste computational resources by having the computer draw unnecessarily when we have the formula to calculate it

ourselves.

Next, we will do the same procedure for pre_process_df.Height to deal with the univariate outliers.

The following code shows how this is done:

Q3 pre_process_df.Height.quantile(0.75)

Q1 = pre_process_df.Height.quantile(0.25)

IQR = Q3 - Q1

lower_cap = Q1-IQR*1.5

upper_cap = Q3+IQR*1.5

BM = pre_process_df.Height < lower_cap
pre_process_df.loc[pre_process_df[BM].index, 'Height'] = lower_cap
BM = pre_process_df.Height > upper_cap
pre_process_df.loc[pre_process_df[BM].index, 'Height'] = upper_cap

After running the previous code successfully, run pre_process_df.weight.plot.box() to check the

state of the outliers.

Now that the univariate outliers are taken care of, let's see whether we have bi- or multivariate

outliers.

Detecting bivariate outliers and dealing with them

Running pre_process_df.plot.scatter(x='Height', y='Weight') will show that we don't have
bivariate outliers based on the Height and weight numerical attributes. However, running the

following code will tell us that we do have bivariate outliers under Height and Gender, and under

weight and Gender:
plt.subplot(1,2,1)
sns.boxplot(y=pre_process_df.Height, x=pre_process_df.Gender)

plt.subplot(1,2,2)

sns.boxplot(y=pre_process_df.Weight, x=pre_process_df.Gender)

plt.tight_layout()

Running the preceding code successfully will create the following output:

200 1 + L]
100 -
190 -
m E
180 -
5 5
£ 170 - -
L]
160 - N
150 -
E -
female male female male
Gender Gender

Figure 11.30 — Multiple boxplots to investigate bivariate outliers under numerical-categorical attributes for Height-
Gender and Weight-Gender

Given the recognized bivariate outliers in the preceding screenshot, we will need to deal with them.
As these outliers are bivariate in a pair of categorical-numerical attributes, we may be replacing them

with the specific population's upper or lower caps.

The following code replaces the outliers for the attribute pairs of Height-Gender:

for poss in pre_process_df.Gender.unique():
BM = pre_process_df.Gender == poss
wdf = pre_process_df[BM]
Q3 = wdf.Height.quantile(0.75)
Q1 = wdf.Height.quantile(0.25)
IQR = Q3 - Q1
lower_cap = Q1-IQR*1.5

upper_cap = Q3+IQR*1.5

BM = wdf.Height > upper_cap

pre_process_df.loc[wdf[BM].index, 'Height'] = upper_cap

BM = wdf.Height < lower_cap

pre_process_df.loc[wdf[BM].index, 'Height'] = lower_cap
Very similar code will replace the outliers for the attribute pairs of weight-Gender, as illustrated here:
for poss in pre_process_df.Gender.unique():

BM = pre_process_df.Gender == poss

wdf = pre_process_df[BM]

Q3 = wdf.wWeight.quantile(0.75)

Q1 = wdf.weight.quantile(0.25)

IQR = Q3 - Q1

lower_cap = Q1-IQR*1.5

upper_cap = Q3+IQR*1.5

BM = wdf.Weight > upper_cap

pre_process_df.loc[wdf[BM].index, '"Weight'] = upper_cap

BM = wdf.Weight < lower_cap
pre_process_df.loc[wdf[BM].index, 'Weight'] = lower_cap
After running the preceding codes successfully, running the code shown in the following screenshot,

which is the same code as under Detecting bivariate outliers and dealing with them, will show us that

the bivariate outliers are taken care of:

In [84]: M plt.subplot(1,2,1)
sns.boxplot(y=pre_process_df.Height,x=pre_process_df.Gender)
plt.subplot(1,2,2)
sns.boxplot(y=pre_process_df.Weight, x=pre_process_df.Gender)
plt.tight_layout()

200 A1
100 1
190 1 90 4
m .
- 180 T -
F — =
o 2 70
S 2
170 A
m -
160 - 50 1
150 : . t r T
female male female male
Gender Gender

Figure 11.31 — Checking the state of bivariate outliers under numerical-categorical attributes for Height-Gender and
Weight-Gender

Next, we will need to see whether there are any multivariate outliers, and if there are, we will see
how we can deal with them.

Detecting multivariate outliers and dealing with them

To detect multivariate outliers, the standard method is to use clustering analysis; however, when two
of the three attributes are numerical and the other is categorical, we can do outlier detection using a

specific visualization technique.
The following code creates a scatterplot of Height and weight for each possibility of the Gender
categorical attribute:
Cat_attribute_poss = pre_process_df.Gender.unique()
for i,poss in enumerate(cat_attribute_poss):
BM = pre_process_df.Gender == poss
pre_process_df[BM].plot.scatter(x="Height',6 y="Weight')
plt.title(poss)

plt.show()

Running the preceding code will create the following visualization:

female

.® ® esssesee T
75 & oe *° o e 3 - !
. oo'l ¢
70 1 » * o og o :' o= $
° . S o o0
65 A 1 eee ! !
o ¢ ., S ':! ! sd l:: : .
60 1 . o:. t-.o B
* e ‘ ‘ *
55 4 ® .® ! ‘ eee
' ¢ .
50 1 i '
. . [] L]
45 -
m 1 L L] L L L]
155 160 155 170 175 180 185
Height
male
- . 2 TEE Y .
100 A k3 - ™
o o %o o,
*e » . -
@ e o . ;
| o
0 w ' o, .'o.l' = s
» .' -5 o'o'lo
o e 3 ' | lo §
80 - *%el 'o.= =.!: ."'.' . ., N
° » : .l:‘!. Bee .o.':..: N
. 'o' "l-.l il
70 - T gel ool l .
o * :oo l"l o"* ®
e o® o8] %08 o0 oo .
P x *2* N°
60 1 L] ® L, "0 & e *
2 * o ® » o ®
.
165 170 175 180 185 190 195 200

Figure 11.32 — Scatterplots of the numerical attributes per the possibilities of the Gender attribute

Based on the preceding screenshot, we can conclude that there are no multivariate outliers in the data.
If there were any, the only choice we would have would be to remove them, as outliers can negatively
impact LR performance. Also, as mentioned before, replacing the outliers with upper and lower caps

is not an option for multivariate outliers.

After dealing with the outliers and the missing values, we are finally ready to use LR to estimate the

relationship between Height, Gender, and weight to predict weight.

Applying LR
Before applying LR to pre_process_df, we need to take another preprocessing step. Pay attention to
the fact that the Gender attribute is categorical and not numerical, and LR can only work with

numbers. So, the following code performs the data transformation so that the attribute is binary
coded:

pre_process_df.Gender.replace({'male':0, 'female':1},inplace=True)

The following code prepares the independent and dependent attributes, respectively, in data_x and
data_v, and then uses LinearRegression() from sklearn.linear_model to fit the preprocessed data
into the model:

from sklearn.linear_model import LinearRegression

X

['Height', 'Gender']

y = 'Weight'

data_X = pre_process_df[X]
data_y = pre_process_df[y]
1m = LinearRegression()
Im.fit(data_X, data_y)

If the preceding code runs successfully, then we can run the code in the following screenshot to

access the estimated 3 values from the fitted 1m value:

In [88]: M print('intercept (b@) ', lm.intercept)
coef_names = ['bl', 'b2"]
print(pd.DataFrame({'Predictor': data_X.columns,
'coefficient Name':coef_names,
'coefficient Value': 1m.coef }))

intercept (b@) -51.10382582783839

Predictor coefficient Name coefficient Value
@ Height bl 0.704025
1 Gender b2 -8.602017

Figure 11.33 — Extracted 3 values from the train Im value

Therefore, the following equation can be driven from the output in the preceding screenshot. The

equation can now predict the individual weight value based on their Height and Gender values:

Weight = —51.1038 + 0.7040 x Height — 8.6020 X Gender

For instance, my height is 189 centimeters (cm) and my gender is male (0). Using the following

equation, my weight can be predicted to be 82.895:

My Weight = —51.1038 + 0.7040 x 189.5 — 8.6020 X 0 = 82.3042

That's pretty good, but my current weight is 86 kilograms (kg), so there is an error of around 4 kg.
Example 4

In this example, we would like to repeat the previous example, but this time, we would like to use a

multilayer perceptron (MLP) to predict weight based on gender and height.

The data preprocessing difference between this example and the previous one is that MLP is resilient
toward outliers, and we don't need to worry about the dataset having outliers. However, we do need
to take care of missing values and also binary code for the Gender attribute. The following code
recreates pre_process_df, deals with missing values, and performs the binary coding transformation
of the ender attribute:

select_attributes = ['Weight', 'Height', 'Gender']

pre_process_df = pd.DataFrame(response_df[select_attributes])
pre_process_df.dropna(inplace=True)

pre_process_df.Gender.replace({'male':0, 'female':1},inplace=True)

After running the preceding code, pre_process_df is ready to be used for MLP. The following code

prepares the independent and dependent attributes, respectively, in data_x and data_y, and then uses

MLPRegressor () from sklearn.linear_model to fit the preprocessed data into the model:

from sklearn.neural_network import MLPRegressor

X = ['Height', 'Gender']

y = 'Weight'

data_X = pre_process_df[X]

data_y = pre_process_df[y]

mlp = MLPRegressor(hidden_layer_sizes=5, max_iter=2000)

mlp.fit(data_X, data_y)

Once the preceding code is run successfully, we can use the trained m1p attribute to perform

predictions. The following code snippet shows how to extract the prediction of my weight value

based on my Height and Gender values using mlp:

newData = pd.DataFrame({'Height':189.5, 'Gender':0}, index=[0])

mlp.predict(newData)

The prediction I received the last time I ran the preceding code was 80.0890. You will remember that
MLP is a random variable and that every time it is run, we expect a new result. Anyhow, as my
weight is 86, m1p is about 6 kg out. Does this mean that 1m (previous example) is a predictor
compared to mlp? Not necessarily—after all, I am only one data point. More test data is needed to

make that determination.

Let's look at another example that features dealing with outliers for the purpose of applying clustering
analysis, before moving on to the next item.
Example 5

In this example, we would like to use chicago_population.csv. The data objects in this dataset are
communities in Chicago. These data objects are described by the following attributes:

o population: The population of the community

« income: The median income of the community

« latino: The percentage of Latinos in the population

« black: The percentage of blacks in the population

« white: The percentage of whites in the population

« asian: The percentage of Asians in the population

» other: The percentage of other races in the population
The mayor of Chicago would like to assign 5 communication liaisons for these 77 communities. The

data analyst in the office suggests employing K-Means clustering to group the communities into five

groups and assigning the appropriate liaisons based on the characteristics of clustered groups.

First, we will read the file into the community_df pandas DataFrame and check whether there are

missing values in the dataset. The following code shows how this is done:
community_df = pd.read_csv('chicago_population.csv')
community_df.info()

Reading the output of the previous code will show us that there are no missing values in
community_df. Next, we will need to detect outliers and deal with them.

Detecting univariate outliers and dealing with them
The following code uses sns.boxplot () to create boxplots of all the numerical attributes:
numerical_atts = ['population', 'income', 'latino', 'black', 'white', 'asian', 'other']
plt.figure(figsize=(12,3))
for i,att in enumerate(numerical_atts):

plt.subplot(1,len(numerical_atts),i+1)

sns.boxplot(y=community_df[att])
plt.tight_layout()

plt.show()

Running the preceding code will create the following output:

100000 ¢ 90000 7 —— 10

o7d ! 0.040 { :
80000 08 -
1 08 1 06 035
80000 o
05 0.030
§ 60000 | 0000 R 06 c 04 0025 1
] E [(] | u
= o 50000 -]] 2 '} =
E g k] = g] £ 0020
g 40000 { £ 10000 04 03
H 0.015 1
30000 021
20000 02 a1 0.010
20000 1 o ool —
01 10000 . . . : . : ’ :

Figure 11.34 — Boxplots of all the numerical attributes in community_df

In the preceding screenshot, we can see we have some univariate outliers in the population, asian,

and other attributes.

As we are using K-Means to cluster the communities into five homogenous groups to assign

communication liaisons, the best way to deal with the outliers is to replace them with statistical lower

or upper caps. We don't want the extreme values of the outliers to impact the results of the clusters.

Please pay attention to the fact this is not the only or the best way to deal with outliers before
applying cluster analysis. If we use clustering analysis to find out the inherent pattern in the data,
then the best way to deal with the outliers is to do nothing.

The following code uses similar code to what we used under Example 3 to filter the outliers and then
replace them with the appropriate cap. Notice that this code is a bit smarter than what we saw in
Example 3, as the process of dealing with the outliers is parameterized in one loop:

pre_process_df = community_df.set_index('name')

candidate_atts = ['population', 'asian', 'other']

for att in candidate_atts:

Q3 = pre_process_df[att].quantile(0.75)
Q1 = pre_process_df[att].quantile(0.25)
IQR = Q3 - Q1

lower_cap = Q1-IQR*1.5

upper_cap = Q3+IQR*1.5

BM = pre_process_df[att] < lower_cap
candidate_index = pre_process_df[BM].index
pre_process_df.loc[candidate_index,att] = lower_cap
BM = pre_process_df[att] > upper_cap
candidate_index = pre_process_df[BM].index
pre_process_df.loc[candidate_index,att] = upper_cap

After running the preceding code, the univariate outliers will have been replaced with the appropriate
statistical cap.

Detecting bivariate and multivariate outliers and dealing with them

It adds no value to detect bivariate and multivariate outliers as the only strategy we can use for them
at this stage is to do nothing—we cannot replace them with the upper or lower caps as there is more
than one numerical attribute; neither can we remove the data objects as we need all the data objects to
be in at least one of the clusters. Therefore, the current state of pre_process_df is the best possible it

can be for the clustering analysis.

As the data preprocessing is complete, the only remaining step in this example is to perform
clustering. That is what we will do next.

Applying K-Means

The following code snippet shows the adjusted version of the code for K-Means clustering from
Chapter 8, Clustering Analysis:

From sklearn.cluster import Kmeans

dimensions = ['population', 'income', 'latino', ‘'black', 'white', 'asian', 'other']

Xs pre_process_df[dimensions]

Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
kmeans = Kmeans(n_clusters=5)

kmeans.fit(Xs)

Once the preceding code is run successfully, clusters are formed. The following screenshot shows the

code we can use to extract the clusters and the code's output:

In [97]: M for i in range(5):
BM = kmeans.labels_==1i
print('Cluster {}: {}'.format(i,pre_process_df[BM].index.values))

Cluster ©: ['Armour Square' 'Douglas' 'McKinley Park' 'Bridgeport']
Cluster 1: ['Montclare' 'Belmont Cragin' 'Hermosa' 'Avondale' 'Logan Squar
"
'Humboldt Park' 'South Lawndale' 'Lower West Side' 'East Side'’
'Hegewisch' 'Archer Heights' 'Brighton Park' 'New City' 'West Elsdon’
'Gage Park' 'Clearing’ 'West Lawn' 'Chicago Lawn' ‘'Ashburn’]
Cluster 2: ['Rogers Park' 'West Ridge' 'Uptown' 'Lincoln Square' ‘North Par
K
'Albany Park' 'Irving Park' ‘Near West Side' 'Loop' ‘'Near South Side’
'Hyde Park' ‘'Edgewater']
Cluster 3: ['Austin' 'West Garfield Park' 'East Garfield Park' 'North Lawnd
ale’
'Oakland' 'Fuller Park' 'Grand Boulevard' 'Kenwood' ‘'Washington Park'’
'Woodlawn' 'South Shore' 'Chatham' 'Avalon Park' 'South Chicago'
'Burnside' 'Calumet Heights' 'Roseland' 'Pullman' 'South Deering'
'West Pullman' 'Riverdale' 'West Englewood' 'Englewood'
‘Greater Grand Crossing' 'Auburn Gresham' ‘'Washington Heights'
'Morgan Park’]
Cluster 4: ['North Center' 'Lake View' 'Lincoln Park' 'Near North Side' 'Ed
ison Park'
"Norwood Park' 'Jefferson Park' 'Forest Glen' 'Portage Park' 'Dunning’
'West Town' 'Garfield Ridge' 'Beverly' 'Mount Greenwood' "O'Hare"]

Figure 11.35 — Extracting the clusters of data objects in community_df

We can also perform centroid analysis for the clusters that were just formed. The code for centroid
analysis was presented in Chapter 8, Clustering Analysis, in the Using K-Means to cluster a dataset
with more than two dimensions section. Find the code and adjust it to confirm the following heatmap
as a result of centroid analysis. Note that as K-Means is a random algorithm, we do expect the
heatmap to be different. At the same time, we expect the patterns that emerge from the data to be

similar:

Cluster 0 - 021 ~025 0015 0.0096 0.0096

Cluster 1

Cluster 2 019 011

Cluster 3 0032 012 0064 012

Cluster 4

i L

Figure 11.36 — Centroid analysis of the formed clusters

We can see in the preceding screenshot that the communities in each cluster are distinctively

different, and this result will be tremendously helpful in assigning communication liaisons.

So far in this chapter, we have covered and seen examples of how to detect and deal with missing
values and outliers. Next, we will turn our attention to detecting errors and dealing with them in the
dataset.

Errors

Errors are an inevitable part of any data collection and measurement. The following formula best
captures this fact:

Data = True Signal + Error

The True Signal is the reality we are trying to measure and present in the form of Data, but due to the
incapability of our measurement system or data presentation, we cannot capture the True Signal.
Therefore, Error is the difference between the True Signal and the recorded Data.

For instance, let's say we have purchased seven thermometers and we would like to accurately
calculate the room temperature using these seven thermometers. At a given point in time, we take the

following readings from them:

Thermometer 1 70.16

hermometer 2 69.94

hermometer 3 Z70.35

hermometer 4 69.83

hermometer 5 70.01

hermometer 6 70.38

o Ol O e e O el e

hermometer 7 70.12

Figure 11.37 — Seven thermometers' readings

Looking at the preceding screenshot, what would you say the temperature of the room—the True
Signal—is? The answer is that we cannot measure or capture the True Signal—in this case, the exact
temperature of the room. With seven thermometers, we may have been able to come to a more

accurate reading, but we cannot eliminate error.

Types of errors

There are two types of errors: random errors and systematic errors. The biggest distinction

between these two types of errors is that random errors are not avoidable, but systematic errors are.

Random errors happen due to unavoidable inconsistencies and the limitations of our measurement
equipment. What we saw in the seven thermometers example was a case of random errors. Another
example is random errors that happen when measuring people's opinions using surveys due to

unavoidable miscommunications and misunderstandings.

On the other hand, systematic errors are avoidable inconsistencies that happen because of a problem
that persists throughout the entire data collection. Systematic errors happen on top of random errors,
meaning random errors are always present. For example, if an uncalibrated thermometer is used for
measuring a room temperature, we have random errors due to the incapability of the device in
capturing the true signal, and we also have a systematic error due to failing to calibrate the

thermometer before the act of measuring.

Dealing with errors

We will deal with errors differently based on their types. Random errors are unavoidable and, at best,
we may be able to mitigate them using smoothing or aggregation. These are techniques that we will

cover in one of the future chapters: Data Massaging and Transformation.

However, systematic errors are avoidable, and once recognized, we should always take the following

steps in dealing with them:
1. Adjust and improve the data collection so that systematic errors will not happen in the future.

2. Try to use other data resources if available to find the correct value, and if there are none, we will regard the systematic error as a

missing value.

From the second step onward, you would deal with systematic errors as missing values. That is great,
as we have already covered values and have got many powerful tools and techniques in dealing with

missing values.

Detecting systematic errors

Detecting systematic errors is not very easy, and it is likely that they go unnoticed and negatively
influence our analysis. The best chance we have in detecting systematic errors is the techniques we
learned in the Detecting outliers section. When outliers are detected and there is no explanation why
the value of the outliers are correct, then we can conclude that outliers are systematic errors. The
following example will help to shed light on this distinction.

Example of systematic errors and correct outliers

In this example, we would like to analyze customerEntries.x1sx. The dataset contains about 2
months of customer-visiting data from a local coffee shop between October 1, 2020, and November
24, 2020. The goal of the analysis is to profile the hours of the day to see at which times and days

peak customer visits happen.

The following screenshot shows the code to read the file into the hour_df pandas DataFrame and the

use of the .info() function to evaluate the state of the dataset in terms of the missing values:

In [99]: M hour_df = pd.read_excel('CustomerEnteries.xlsx")
hour_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 495 entries, © to 494
Data columns (total 3 columns):

Column Non-Null Count Dtype
© Date 495 non-null datetime64[ns]
1 Time 495 non-null int64

2 N_Cusotmers 495 non-null int64
dtypes: datetime64[ns](1), int64(2)
memory usage: 11.7 KB

Figure 11.38 — Reading CustomerEntries.xIsx into hour_df and using .info() function to check outliers

We can see in the preceding screenshot that the dataset does not have missing values. Next, we will
turn our attention to checking for outliers. As the dataset is essentially a time series, it is best to use a
line plot to see whether there are any outliers. The following screenshot shows the output of running

hour_df.N_cCustomers.plot() to create a line plot:

In [100]: M hour_df.N_Customers.plot()
plt.show()

40-

35

L L] L] L) L]
0 100 200 300 400 500
Figure 11.39 — Drawing a line plot of hour_df.N_Customers to check for outliers

In the preceding screenshot, we can see we have a clear case of an outlier between the 200 and 300

indexes. Running hour_df[hour_df.N_cCustomers>20] will reveal that the outlier happens in index

232, which is timestamped 2020-10-26 at 16.

To check whether this outlier is a case of a systematic error or not, we investigate using our other
sources and we realize that nothing out of the ordinary had happened during that day, and this record
could simply be a manual data entry error. This shows us that this is a systematic error, and therefore

we need to take the following two steps in dealing with systematic errors:

1. Step 1: We inform the entity who is in charge of data collection about this mistake and ask them to take appropriate measures to

prevent such a mistake from happening in the future.

2. Step 2: If we do not have ways to find the correct value using other resources within a reasonable time and effort, we regard the

data entry as a missing value and replace it with np . nan. The following code can take care of that:
err_index = hour_df[hour_df.N_Cusotmers>20].index
hour_df.at[err_index, 'N_Customers']=np.nan

After successfully running the previous code, you should rerun hour_df.N_Customers.plot() to
check the status of day_df regarding outliers. The following screenshot shows the new line plot:

In [183]: M hour_df.N_Customers.plot()
plt.show()

14

]2 -

10 -

T T T T
0 100 200 300 400 500
Figure 11.40 — Drawing a line plot of hour_df.N_Customers to check for outliers after dealing with the systematic error
You can see in the preceding screenshot that we do not see a univariate outlier anymore.

Although the time series looks like a univariate dataset, it is not univariate and we can always
perform level II data cleaning to unpack new columns such as month, day, weekday, hour, and minute.
In this dataset, time and data have already been separated, so we can perform the following bivariate

outlier detection.

As you remember, the best way to perform bivariate outlier detection for a pair of numerical-
categorical attributes is to use multiple boxplots. The following screenshot shows the output of
sns.boxplot (y=hour_df.N_Customers, x=hour_df.Time), which are multiple boxplots we need to see

whether there are bivariate outliers for the N_customers and Time attributes:

In [104]: M sns.boxplot(y=hour_df.N_Customers,x=hour_df.Time)

plt.show()
‘
14
12-
ElO‘
£
@
=
UI
=
‘
9 1 1N 2 1B 1B 15 16 U

Time

Figure 11.41 — Drawing multiple boxplots for the N_Customers and Time attributes to check for bivariate outliers

Looking at the preceding screenshot, we do see that we have two other outliers that could be
systematic errors. The first one is the smallest value of N_customers, which is zero, under the Time
value of 17. The value is consistent with the rest of the data. The Time value of 17 (or 5 P.M.) seems
to be getting the least number of customers, and we can imagine occasionally having no customers at

that hour.

However, the second flier at the same hour (5 P.M.) seems more troubling. After running
hour_df.query("Time==17 and N_Customers>12"), which filters the flier, we can see the outlier has
happened on November 17, 2020. After investigation, it turns out that on November 17, 2020 at 4:25,
a biking club made a half hour stop for refreshment, which was out of the ordinary for the store.

Therefore the data entry was not erroneous and just a correct outlier.

After preprocessing hour_df, it now has a missing value (the systematic error that was replaced with
np.nan) and two bivariate outliers. Knowing this, we allow ourselves to enter that last step: the

analysis.

Drawing a bar chart that shows and compares the central tendency of N_customers per working hour

of the coffee shop (Time) will be the visualization we need for this analysis. The prescribed bar chart

can easily deal with missing values as per the aggregation of the data to calculate the central
tendencies. As we have outliers in the dataset, we chose to use median over mean as the central

tendency for this analysis. Running the following line of code will create the described bar chart:
hour_df.groupby('Time').N_Customers.median().plot.bar()

As you experienced during this example, the techniques that we use for detecting and dealing with
systematic errors are already covered under the subsection on missing values and outliers. In a
nutshell, when we don't find any support to believe an outlier is a correct value, we regard this as a

systematic error and consequently a missing value.

Summary

Congratulations on your learning in this chapter. This chapter covered data cleaning level III.
Together, we learned how to detect and deal with missing values, outliers, and errors. This may sound
like too short of a summary for such a long chapter, but as we saw, detection, diagnosis, and dealing
with each of the three issues (missing values, outliers, and errors) can have many details and
delicacies. Finishing this chapter was a significant achievement, and now you know how to detect,
diagnose, and deal with all of these three possible issues you may encounter when working with a

dataset.

This chapter concludes our three-chapter-long data cleaning journey. In the next chapter, we move to
another important data preprocessing area, and that is data fusion and integration. Before moving on

to the next chapter, spend some time working on the following exercises to solidify your learnings.

Exercises

1. In this exercise, we will be using Temperature_data.csv. This dataset has some missing values. Do the following:
a) After reading the file into a pandas DataFrame, check whether the dataset is level I clean, and

if not, clean it. Also, describe the cleanings (if any).

b) Check whether the dataset is level II clean, and if not, clean it. Also, describe the cleanings (if
any).

¢) The dataset has missing values. See how many, and run a diagnosis to see which types of
missing values they are.

d) Are there any outliers in the dataset?

e) How should we best deal with missing values if our goal is to draw multiple boxplots that
show the central tendency and variation of temperature across the months? Draw the described

visualization after dealing with the missing values.

2. In this exercise, we are going to use the Iris_wMV.csvV file. The Iris dataset includes 50 samples of 3 types of iris flowers,
totaling 150 rows of data. Each flower is described by its sepal and petal length or width. The PetalLengthCm column has

some missing values.
a) Confirm that PetalLengthcm has five missing values.
b) Figure out the types of missing values (MCAR, MAR, MNAR).

¢) How would you best deal with missing values if your end goal was to draw the following
visualization? Comment on all four different approaches of dealing with missing values in this

chapter, citing why the approach would or wouldn't be appropriate:

34 200
. -64 .) . -5)
Iris-setosa Iris-setosa e 33 Iris-setosa 15 Iris-setosa 175
b 150
60 32 4
ki ki] Ei 125
9 Iris-versicolor - 5.9 - 5.8y Iris-versicolor 3-15 Iris-versicolor o Iris-versicolor
& & & & 100
-56 30 3
 cq 0.75
Iris-virginica - 6.6 53 Iris-virginica Iris-virginica - 56 P Iris-virginica 0.50
Ll - | la 1 |
SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm

Figure 11.42 — Exercise 2

d) Draw the preceding screenshot twice, once after adopting a keep as is approach, and once after
adopting an imputing with the central tendency of the appropriate iris species approach. Compare

the two outputs and comment on their differences.

w

. In this exercise, we will be using imdb_top_1000.csv. More information about this dataset may be found at this link:

https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows. Perform the following steps for this

dataset:

a) Read the file into movie_df, and list the level I data cleaning steps that the dataset needs.

Implement the listed items, if any.

b) We want to employ a Decision Tree Classification algorithm using the following columns to
predict IMDB_rating values: certificate, Runtime, Genre, and Gross. For this analytic goal, list

the level II data cleanings that need to be done, and then implement them.

¢) Does the dataset have issues regarding missing values? If yes, which types are they, and how

best should we deal with them given the listed data analytic goals in b)?

d) Use the following function from sklearn.tree to create RegressTree, which will be a
prediction model that can predict IMDB_rating values using Certificate, Runtime, Genre, and
Gross attributes: becisionTreeRegressor (max_depth=5, min_impurity_decrease=0,
min_samples_split=20, splitter='random'). The tuning parameters have been set for you so that

the pecisionTreeRegressor algorithm can perform better. Once the model is trained, draw the

https://www.kaggle.com/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows

trained tree and check whether the 6ross attribute is used for the prediction of 1MpB_rating

values.
e) Run the following code and then explain what summary_df is:
dt_predicted_IMDB_rating = RegressTree.predict(Xs)

mean_predicted_IMDB_rating = np.ones(len(y))*y.mean()

summary_df = pd.DataFrame({'Prediction by Decision Tree': dt_predicted_IMDB_rating,
'Prediction by mean': mean_predicted_IMDB rating, 'Actual IMDB_rating': y})

f) Run the following code and explain the visualization it creates. What can you learn from the
visualization?

summary_df['Decision Tree Error'] = abs(summary_df['Prediction by Decision Tree']-
summary_df["Actual IMDB_rating'])

summary_df['Mean Error'] = abs(summary_df['Prediction by mean'] - summary_df['Actual
IMDB_rating'])

plt.figure(figsize=(2,10))
table = summary_df[['Decision Tree Error', 'Mean Error']]

sns.heatmap(table, cmap='Greys')

. In this exercise, we will be using two CSV files: responses.csv and columns. csv. The two files are used to record the

data of a survey conducted in Slovakia. To access the data on Kaggle, use this link: https://www.kaggle.com/miroslavsabo/young-

people-survey. Perform the following exercises for this data source:

a) Are there respondents in this survey that are suspected to be outliers based on their age? How
many? List them in a separate DataFrame.

b) Are there respondents in this survey that are suspected to be outliers based on their level of

liking for country and hard rock music? How many? List them in a separate DataFrame.

c¢) Are there respondents in this survey that are suspected to be outliers based on their body mass
index (BMI) or education level? How many? List them in a separate DataFrame. BMI can be

calculated using the following formula:

_ Weight

BMI[= ———
Height?

The weight has to be in kg and height in meters (m) for the preceding formula. In the dataset,
weight is recorded in kg but height is recorded in cm and has to be transformed to m.

d) Are there respondents in this survey that are suspected to be outliers based on their BMI and

age? How many? List them in a separate DataFrame.

e) Are there respondents in this survey that are suspected to be outliers based on their BMI and

gender? How many? List them in a separate DataFrame.

https://www.kaggle.com/miroslavsabo/young-people-survey

5. One of the most common approaches for fraud detection is using outlier detection. In this exercise, you will use

creditcard.csv from https://www.kaggle.com/mlg-ulb/creditcardfraud to evaluate the effectiveness of outlier detection for

credit card fraud detection. Note that most of the columns in this data source are processed values to uphold data anonymity.

Perform the following steps:
a) Check the state of the dataset for missing values and address them, if any.

b) Using the class column, which shows whether a transaction has been fraudulent or not, find

out what percentage of the transactions in the dataset are fraudulent.

¢) Using data visualization or the appropriate statistical set (and, if necessary, both), specify
which univariate outliers have a relationship with the class column—in other words, if the values
of this column are outliers, then we may suspect fraudulent activity. Which statistical test is

appropriate here?

d) First, use the K-Means algorithm to group the transactions into 200 clusters by the attributes
that were found to have a relationship with the class column in part c). Then, filter out the
members of the clusters with fewer than 50 transactions. Do any of them contain significantly

fraudulent transactions?

e) If there are any clusters with significant fraudulent transactions, perform centroid analysis for

them.

6. In Chapter 5, Data Visualization, and Chapter 8, Clustering Analysis, we used WH Report_preprocessed.csv, which is
the preprocessed version of WH Report.csv. Now that you have learned numerous data preprocessing skills, you will be

preprocessing the dataset yourself. Proceed as follows:
a) Check the status of the dataset for missing values.
b) Check the status of the dataset for outliers.

c) We would like to cluster the countries based on their happiness indices over the years. Based

on these analytic goals, address the missing values.
d) Based on the listed goal in part c), address the outliers.

e) Does the data need any level I or level II data cleaning before clustering is possible? If any,

prepare the dataset for K-Means clustering.

f) Perform K-Means clustering to separate the countries into three groups, and do all the possible
analytics that we do when clustering.

7. Specify whether the following items describe random errors or systematic errors:
a) The data has these types of errors as the thermometer that the lab has purchased can give

precise readings to one-thousandth of a degree.

b) The data has these types of errors as the survey records were gathered by five different

surveyors who attended five rigorous training sessions.

https://www.kaggle.com/mlg-ulb/creditcardfraud

¢) The data has these types of errors because when asking for salary questions in a survey, there

were no options such as I would not like to share.
d) The data has these types of errors because the cameras were tampered with so that the robbery
would not be recorded.

8. Study Figure 11.14 one more time and run the first three exercises by this diagram, noting down the path that led to your decisions
regarding the missing values. Did you take steps in dealing with missing values that were not listed in this diagram or this

chapter? Would it be better to have a more complex diagram so every possibility would be included, or not? Why or why not?

9. Explain why the following statement is incorrect: a row may have a significant number of MCAR missing values.

Chapter 12: Data Fusion and Data Integration

The popular understanding of data pre-processing goes hand in hand with data cleaning. Although
data cleaning is a major and important part of data preprocessing, there are other important areas

regarding this subject. In this chapter, we will learn about two of those important areas: data fusion
and data integration. In short, data fusion and integration have a lot to do with mixing two or more

sources of data for analytic goals.

First, we will learn about the similarities and differences between data fusion and data integration.
After that, we will learn about six frequent challenges regarding data fusion and data integration.
Then, by looking at three complete analytic examples, we will get to encounter these challenges and
deal with them.
In this chapter, we are going to cover the following main topics:

o What are data fusion and data integration?

o Frequent challenges regarding data fusion and integration

o Example 1 (Challenges 3 and 4)

« Example 2 (Challenges 2 and 3)

« Example 3 (Challenges 1, 2, 3, 5, and 6)

Technical requirements

You can find the code and dataset for this chapter in this book's GitHub repository, which can be

found at https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You can find

chapter12 in this repository and download the code and the data for a better learning experience.

What are data fusion and data integration?

In most cases, data fusion and data integration are terms that are used interchangeably, but there are
conceptual and technical distinctions between them. We will get to those shortly. Let's start with what
both have in common and what they mean. Whenever the data we need for our analytic goals are
from different sources, before we can perform the data analytics, we need to integrate the data
sources into one dataset that we need for our analytic goals. The following diagram summarizes this

integration visually:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

Column 1 Column 2 4 2 . Column m

Row 1
Row 2

Row n

LU
—

(L

Figure 12.1 — Data integration from different sources

In the real world, data integration is much more difficult than what's shown in the preceding figure.
There are many challenges that you need to overcome before integration is possible. These
challenges could be due to organizational privacy and security challenges that restrict our data
accessibility. But even assuming that these challenges are not in the way when different data sources
need to be integrated, they arise because each data source is collected and structured based on the
needs, standards, technology, and opinions of the people who have collected them. Regardless of
correctness, there are always differences in the ways that the data is structured and because of that,

data integration becomes challenging.

In this chapter, we will cover the most frequently faced data integration challenges and learn how to
deal with them. These challenges will be discussed in the next subchapter. First, let's understand the

difference between data fusion and data integration.

Data fusion versus data integration

As we implied previously, both data integration and data fusion are all about mixing more than one
source of data. With data integration, the act of mixing is easier as all the data sources have the same
definition of data objects, or with simple data restructuring or transformation, the definitions of the
data objects can become the same. When the definitions of the data objects are the same and the data
objects are indexed similarly across the data sources, mixing the data sources becomes easy; it will be
one line of code. This is what data integration does; it matches the definitions of the data objects

across the data sources and then mixes the data objects.

On the other hand, data fusion is needed when the data sources do not have the same definitions as
the data objects. With restructuring and simple data transformation, we cannot create the same
definitions of data objects across the data sources. For data fusion, we often need to imagine a
definition of data objects that is possible for all the data sources and then make assumptions about the
data. Based on those assumptions, we must restructure the data sources. So, again, the data sources
are in states that have the same definitions of data objects. At that point, the act of mixing the data

sources becomes very easy and can be done in one line of code.

Let's try and understand the differences between the two by using two examples: one that needs data
integration and one that needs data fusion.

Data integration example

Imagine that a company would like to analyze its effectiveness in how it advertises. The company
needs to come up with two columns of data — the total sales per customer and the total amount of
advertisement expenditure per customer. As the sales department and marketing department keep and
manage their databases, each department will be tasked with creating a list of customers with the
relevant information. Once they've done that, they need to connect the data of each customer from the
two sources. This connection can be made by relying on the existence of real customers, so no
assumptions need to be made. No changes need to be made to connect this data. This is a clear
example of data integration. The definition of data objects for both sources is customers.

Data fusion example

Imagine a technology-empowered farmer who would like to see the influence of irrigation (water
dispersion) on yield. The farmer has data regarding both the amount of water its revolving water
stations have dispensed and the amount of harvest from each point in the farm. Each stationary water
station has a sensor and calculates and records the amount of water that is dispensed. Also, each time
the blade in the combine harvester moves, the machine calculates and record the amount of harvest

and the location.

In this example, there is no clear connection between the sources of data. In the previous example,
the clear connection was the definition of data objects - customers. However, we don't have that here,
so we need to make assumptions and change the data so that a connection is possible. The situation in
this example could look like something like the following figure. The blue dots represent the water

stations, while the gray ones represent harvest points:

0 ® & 00 ¢ 8 20 ° 0 20 ¢ 0 B NS S 0 SR 0SS NS SR TS N e B e B eSS0 e
S 8 5 8 5 8 8 8 0PSB E SRS e
9 8 0 8 0 8 0 0PSB E e EEE RS eEeEE e E e E e
LRI I B S B N A I S S R I N R B N B R A B R N R I B RN IR R R R R N R I R N IR R RN NN
B O 0 0 g OO P P OB P PO NP B PSS S0 g 9 8 9,0 20 BRSSPI IPKLELIEQgeEOgeee P
TS 0 0 8BS BB BEEEEEEEESRRS S e s st BRSSO ERSRBEOISEREBROEROERS
L B BN B BN BN BN RN BN BN BN BN BN NN BN BN BN BN I OB BN BN RN BN BN BN BN N] LN] ® 8 8 8 & 8 5 O BB B EEEEEEEEeeeD
A R R N N N N N N N I N I A I A I N S e s s sBBEBES OB EBSSEOEBEBROEBIOESES
B0 0 200 50005000 0 00000 0000 0,0 000,000,000 800080008000g000geeeg
S 9 5 0 8 8 8 O BB P BEEEEEEPEPEEEEEEE SRS
T R R R R N I I I R I I I I R I I I I I S R I I R A A R N I S A A S IR R BN SR
S0 0 0 PP S BRSSO OSSOSO PSSP OSSR
E R R R E N N R R Y T
HE T I e e N N T Y T T Y T Y M T T A Y T T T Y
L I R I I R I I I R I I R N R I I R I R R I I I N R R RN N
LRI I B S B N A I A I R I N R B N B R A B R N R I B RN IR R R NN N A S I N R RN I N NN
S 8 5 8 8 8 8 8 0SB S SN EEEEEEESEEEEEEEEEEEEEEENEEeee
: % l....'........l.......... >’3 :
LRI I B S B S A I A I R I A R B N BN A B R N R I B RN IR R R R N R S R N BN R I N N R
8 5 8 8 8 8 0 0 BB BE SRR
L R I I R A I A O R O A I N I A A I A B R) S e s st SR SR OIBRBSESEBEBISEREBROEEREESE
'..I'...‘...‘...‘.l.%..."...’...l..I.‘....’...’..I’.."...'..Q.
T R R R R I R I I R I I R I I N I I I S R R I I A I I S I I IR R B S
LRI RSN N A IR N R I RN BN I R R N R I I BN IR NN NI I R R IR R R N NN
® 8 5 0 8 8 8O P BB PSSR
Qoo ot ooV ooV soeN oo e%Necse®oese®moce®oscd®soe PosesPossPooseslocsclocet
LRI R RN R S I IR I R R RN R I I R N R I I BN R R N R N R I I N R R IR N
R R R R N
LR I I N I N N I N N R I R N R N R I R N R I I R N R R N R N R R R N NN RN RN NN
0 0 0 00 00600 000 ¢0 60 ¢ 066000 000 0 ¢ 0000 6 000 0000000 MO ¢0WOEEOIEBESISIBIESESIOBSIPSPESEDN

Figure 12.2 — Water points and harvest points

To perform data fusion, we need different sets of assumptions and sets of preprocessing that combine
or fuse these data sources. Next, let us see how these assumptions to make the fusion possible may
look like.

How about if we defined our data objects as the pieces of land that are harvested? In other words, we
define our data objects as harvest points. Then, based on the proximity of the revolving water station
to each harvest point, we calculate a number that represents the amount of water the point received.
Each water point could be attributed a radius of reach. The closer a harvest point is to the water point
within this radius of reach, the more the harvest point got from the amount of water that was
dispensed from the water station. We don't know how much water arrives at the harvest points, but
we make assumptions about it. These assumptions could be completely naive or based on some

careful experimentation or research.

In this example, we had to come up with a definition of data objects that did not exist within both
data sources. Then, we had to make many assumptions about the collected data so that the data

sources could be fused.
Good news! You will get to do this data fusion yourself in Exercise 8 at the end of this chapter.

You will see the term data integration for both data integration and data fusion throughout this

chapter. When you need to be aware of the distinction between them, the text will inform you of that.

You are almost ready to start seeing the frequent challenges that occur in these areas, as well as some
examples, but first, let's discuss one more thing. In the next section, we will introduce two directions

of data integration.

Directions of data integration

Data integration may happen in two different directions. The first is by adding attributes; we might
want to supplement a dataset with more describing attributes. In this direction, we have all the data
objects that we need, but other sources might be able to enrich our dataset. The second is by adding
data objects; we might have multiple sources of data with distinct data objects, and integrating them

will lead to a population with more data objects that represent the population we want to analyze.

Let's look at two examples to understand the two directions of data integration better.
Examples of data integration by adding attributes

The examples we saw earlier in the Data integration example and Data fusion example sections were
both data integration by adding attributes. In these examples, our aim was to supplement the dataset
by including more attributes that would be beneficial or necessary for the analytic goals. In both
examples, we looked at situations where we would need to perform data integration by adding
attributes. Next, we will examine situations that needs data integration by adding data objects.
Examples of data integration by adding data objects

In the first example (Data integration example), we wanted to integrate customer data from the sales
and marketing departments. The data objects and customers were the same, but different databases
included the data we needed for the analytic goals. Now, imagine that the company has five regional
managing bodies and that each managing body is in charge of keeping the data of their customers. In
this scenario, data integration will happen after each managing body has come up with a dataset that
includes the total sales per customer and the total amount of advertisement expenditure per customer.
This type of integration, where we're using five sources of data that include the data of distinct

customers, is known as performing data integration by adding data objects.

In the second example (Data fusion example), our goal was to fuse the irrigation and yield data for
one piece of land. Regardless of how we would define the data objects to serve the purpose of our
analysis, at the end of the day, we will have analyzed only one piece of land. So, different sets of
assumptions that would allow the data sources to be fused may have led to different numbers of data
objects, but the piece of land stays the same. However, let's imagine that we had more than one piece
of land whose data we wanted to integrate. That would become data integration by adding data
objects.

So far, we have learned about different aspects of data integration. We have learned what it is and its
goals. We've also covered the two directions of data integration. Next, we will learn about the six
challenges of data integration and data fusion. After that, we will look at examples that will feature

those frequent challenges.

Frequent challenges regarding data fusion and
integration

While every data integration task is unique, there are a few challenges that you will face frequently.
In this chapter, you will learn about those challenges and, through examples, you will pick up the
skills to handle them. First, let's learn about each. Then, through examples that feature one or more of

them, we will pick up valuable skills to handle them.

Challenge 1 — entity identification

The entity identification challenge — or as it is known in the literature, the entity identification
problem — may occur when the data sources are being integrated by adding attributes. The challenge
is that the data objects in all the data sources are the same real-world entities with the same
definitions of data objects, but they are not easy to connect due to the unique identifiers in the data
sources. For instance, in the data integration example section, the sales department and the marketing
department did not use a central customer unique identifier for all their customers. Due to this lack of
data management, when they want to integrate the data, they will have to figure out which customer

is which in the data sources.

Challenge 2 — unwise data collection

This data integration challenge happens, as its name suggests, due to unwise data collection. For
instance, instead of using a centralized database, the data of different data objects is stored in multiple
files. We covered this challenge in Chapter 9, Data Cleaning Level I — Cleaning Up the Table, as
well. Please go back and review Example 1 — Unwise data collection, before reading on. This
challenge could be seen as both level I data cleaning or a data integration challenge. Regardless, in
these situations, our goal is to make sure that the data is integrated into one standard data structure.

This type of data integration challenge happens when data objects are being added.

Challenge 3 — index mismatched formatting

When we start integrating data sources by adding attributes, we will use the pandas DataFrame
.join() function to connect the rows of two DataFrames that have the same indices. To use this
valuable function, the integrating DataFrames needs to have the same index formatting; otherwise,
the function will not connect the rows. For example, the following figure shows three attempts of
combining two DataFrames: temp_df and electric_df. temp_df contains the hourly temperature

(temp) of 2016, while electric_df carries the hourly electricity consumption (consumption) for the

same year. The first two attempts (the top one and the middle one) are unsuccessful due to the index
mismatched formatting challenge. For instance, consider the attempt at the top; while both
DataFrames are indexed with Date and Time and both show the same Date and Time, attempting the
.join() function will produce a "cannot join with no overlapping index names" error. What is
happening? The attempt to integrate was unsuccessful because the index formatting from the two

DataFrames is not the same:

temp
Consumpﬁon
Date Time
Date Time
20160101 00:00:00 79.0
1M12016 0:00 119052.0
01:00:00 79.0
10:00 101915.0
02:00:00 77.5
11:00 105796.0
03:00:00 79.0
12:00 109960.0
04:00:00 77.0
I 13:00 112189.0 E rror
20161231 19:00:00 79.0
g 9/9/2016 5:00 77492.0 N I
— . 6:00 84960.0 O over ap
21:00:00 77.0
7:00 94969.0
22:00:00 77.0
8:00 99795.0
23:00:00 77.0
9:00 104091.0
temp Consumption temp Consumption
Date Time Date Time Date Time
2016-01-01 00:00 79.0 20160101 0:00 119052.0 2016-01-01 00:00 79.0 NaN
01:00 79.0 10:00 101915.0 01:00 790 NaN
ALt i 11:00 105796.0 02:00 77.5 NaN
03:00 79.0 12:00 108960.0 03:00 790 NaN
04:00 /7.0 I 13:00 112189.0 04:00 77.0 NaN
IS 12 S R1000 o0 2016-12-31 5:00 128275.0 I 2016-12-31 19:00 79.0 154958.0
20:00 77.0 6:00 130920.0 20:00 77.0 149484.0
21:00 77.0 7-00 134707.0 21:00 77.0 143893.0
22:00 77.0 8:00 139168.0 22:00 77.0 142717.0
ald 9:00 143965.0 2300 77.0 150928.0
temp Consumption
Date Time Data ‘Tifhe temp Consumption
20160101 00:00 79.0 2016-01-01 00:00 119052.0 Date Time
01:00 790 e T 2016-0101 00:00 79.0 119052.0
02:00 775 02:00 THioian 01:00 79.0 113138.0
03:00 79.0 03:00 Fo— 02:00 775 111013.0
04:00 77.0 04:00 — 03:00 79.0 104808.0
s + 04:00 77.0 99552.0
2016-12-31 19:00 79.0 2016-12-31 19:00 154958.0 oy
20:00 77.0 %5550 AR 2016-12-31 18:00 79.0 154958.0
21:00 77.0 S e 20:00 77.0 149484.0
22:00 77.0 22:00 T 21:00 77.0 143693.0
2300 77.0 2500 1500280 22:00 77.0 142717.0
23:00 77.0 150928.0

Figure 12.3 — Examples of index mismatched formatting when combining two data sources

In the preceding diagram, while the attempt in the middle is better than the one at the top, it is still
unsuccessful. Pay close attention and see if you can figure out why there are so many NaNs in the

output of the integration.

Challenge 4 — aggregation mismatch

This challenge occurs when integrating data sources by adding attributes. When integrating time
series data sources whose time intervals are not identical, this challenge arises. For example, if the
two DataFrames presented in the following figure are to be integrated, not only do we have to
address the challenge of index mismatch formatting, but we will also need to face the aggregation
mismatch challenge. This is because temp_df carries the hourly temperature data but electric_df

carries the electricity consumption of every half an hour:

Timestamp temp Date Time Consumption

0 2016-01-01T00:00:00 79.0 0 12/1/2017 0:00:00 72650.0

1 2016-01-01T01:00:00 79.0 1 12/1/2017 0:30:00 70553.0

2 2016-01-01T02:00:00 77.5 2 12/1/2017 1:00:00 68277.0

3 2016-01-01T03:00:00 79.0 3 12/1/2017 1:30:00 67611.0

4 2016-01-01T04:00:00 77.0 4 12/1/2017 2:00:00 67388.0
8726 2016-12-31T19:00:00 79.0 19051 1/1/2016 21:30 56059.0
8727 2016-12-31T20:00:00 77.0 19052 1/1/2016 22:00 556107.0
8728 2016-12-31T21:00:00 77.0 19053 1/1/2016 22:30 55609.0
8729 2016-12-31722:00:00 77.0 19054 1/1/2016 23:00 58199.0
8730 2016-12-31T23:00:00 77.0 19055 1/1/2016 23:30 57539.0

Figure 12.4 — Example of an aggregation mismatch when combining two data sources

To deal with this challenge, we will have to restructure one source or both sources to get them to have

the same level of data aggregation. We will see this shortly, so now, let's cover another challenge.

Challenge 5 — duplicate data objects

This challenge occurs when we're integrating data sources by adding data objects. When the sources
contain data objects that are also in the other sources, when the data sources are integrated, there will
be duplicates of the same data objects in the integrated dataset. For example, imagine a hospital that
provides different kinds of healthcare services. For a project, we need to gather the socioeconomic
data of all of the patients in the hospital. The imaginary hospital does not have a centralized database,
so all of the departments are tasked with returning a dataset containing all the patients they have

provided services for. After integrating all of the datasets from different departments, you should

expect that there are multiple rows for the patients that had to receive care from different departments

in the hospital.

Challenge 6 — data redundancy

This challenge's name seems to be appropriate for the previous challenge as well, but in the literature,
the term data redundancy is used for a unique situation. Unlike the previous challenge, this challenge
may be faced when you're integrating data sources by adding attributes. As the name suggests, after
data integration, some of the attributes may be redundant. This redundancy could be shallow as there
are two attributes with different titles but the same data. Or, it could be deeper. In deeper data
redundancy cases, the redundant attribute does not have the same title, nor is its data the same as one
of the other attributes, but the values of the redundant attribute can be derived from the other

attributes.

For example, after integrating data sources into a dataset of customers, we have the following seven
attributes: age, average order $, days from the last visit, weekly visit frequency, weekly $ purchase,
and satisfaction score. If we use all seven attributes to cluster customers, we have made a mistake
regarding data redundancy. Here, the weekly visit frequency, weekly $ purchase, and average order $
attributes are distinct but the value of weekly $ purchase can be derived from weekly visit frequency
and average order $. By doing so, inadvertently, we will have given the information regarding the

customer's visit and their purchase amount more weight in the clustering analysis.

We should deal with data redundancy challenges that are informed by the analytic goals and data
analysis tools. For instance, if we were employing the decision tree algorithm to predict the
satisfaction score of the customers, we needn't have worried about data redundancy. This is because

the decision tree algorithm only uses the attributes that help its performance.

However, if the same task were to be done using linear regression, you would have a problem if you
didn't remove weekly $ purchase. This is because the same information being in more than one
attribute would confuse the linear regression. There are two reasons for this:

« First, the linear regression algorithm will have to use all the independent attributes as they are inputted.

o Second, the algorithm needs to come up with a set of weights that works for all the data objects for all the independent attributes,

all at the same time. In regression analysis, this situation is referred to as cellinearity and it should be avoided.

Now that we've learned about these six common challenges of data integration, let's look at some

examples that feature one or some of these challenges.

Example 1 (challenges 3 and 4)

In this example, we have two sources of data. The first was retrieved from the local electricity
provider that holds the electricity consumption (Electricity Data 2016_2017.csv), while the other was
retrieved from the local weather station and includes temperature data (Temperature 2016.csv). We
want to see if we can come up with a visualization that can answer if and how the amount of

electricity consumption is affected by the weather.

First, we will use pd.read_csv() to read these CSV files into two pandas DataFrames called
electric_df and temp_df. After reading the datasets into these DataFrames, we will look at them to

understand their data structure. You will notice the following issues:

« The data object definition of electric_df is the electric consumption in 15 minutes, but the data object definition of
temp_df is the temperature every 1 hour. This shows that we have to face the aggregation mismatch challenge of data

integration (Challenge 4).
« temp_df only contains the data for 2016, while electric_df contains the data for 2016 and some parts of 2017.
o Neither temp_df nor electric_df has indexes that can be used to connect the data objects across the two DataFrames. This

shows that we will also have to face the challenge of index mismatched formatting (challenge 3).

To overcome these issues, we will perform the following steps:

1. Remove the 2017 data objects from electric_df. The following code uses Boolean masking and the.drop () function to do

SO:
BM = electric_df.Date.str.contains('2017")
dropping_index = electric_df[BM].index

electric_df.drop(index = dropping_index, inplace=True)

Check the state of electric_df after successfully running the preceding code. You will see that

electric_df in 2016 is recorded every half an hour.

2. Add a new column titled Hour to electric_df from the Time attribute. The following code manages to do this in one line of

code using the.apply () function:
electric_df['Hour'] = electric_df.Time.apply(lambda v: '{}:00'.format(v.split(':')[0]))

3. Create a new data structure whose definition of the data object is hourly electricity consumption. The following code uses the
.groupby () function to create integrate_sr. The Pandas integrate_sr series is a stopgap data structure that will be

used for integration in the later steps:
integrate_sr = electric_df.groupby(['Date', 'Hour']).Consumption.sum()
One good question to ask here is this, why are we using the.sum() aggregate function instead of

.mean()? The reason is the nature of the data. The electricity consumption of an hour is the

summation of the electricity consumption of its half-hour pieces.

4. In this step, we will turn our attention to temp_df. We will add the Date and Hour columns to temp_df from Timestamp.

The following code does this by applying an explicit function:

First, we will create the function:

def unpackTimestamp(r):
ts = r.Timestamp
date, time = ts.split('T")
hour = time.split(':')[0]

year,month,day = date.split('-")

r['Hour'] = '"{}:00'.format(int(hour))
r['Date'] = '{}/{3/{}'". format(int(month),int(day), year)
return(r)

Then, we will apply the function to the temp_df DataFrame:
temp_df = temp_df.apply(unpackTimestamp, axis=1)

Check the status of temp_df after successfully running the preceding code block before moving to
the next step.

. For temp_df, set the Date and Hour attributes as the index and then drop the Timestamp column. The following code does

this in one line:

temp_df = temp_df.set_index(['Date', 'Hour']).drop(columns = ['Timestamp'])

Again, check the status of temp_df after successfully running the preceding code before moving

on to the next step.

. After all this reformatting and restructuring, we are ready to use . join() to integrate the two sources. The hard part is what

comes before using . join (). Applying this function is just as easy as applying it. See for yourself:
integrate_df =temp_df.join(integrate_sr)

Note that we came to integrate_sr as a stopgap data structure from Step 3. As always, take a

moment to investigate what integrate_df looks like before reading on.

. Reset the index of integrate_df as we no longer need the index for integration purposes, nor do we need those values for

visualization purposes. Running the following code will take care of this:

integrate_df.reset_index(inplace=True)

. Create a line plot of the whole year's electricity consumption, where the dimension of temperature is added to the line plot using
color. This visualization is shown in Figure 12.5 and was created using the tools we have learned about in this book. The

following code creates this visualization:
days = integrate_df.Date.unique()
max_temp, min_temp = integrate_df.temp.max(), integrate_df.temp.min()
green =0.1
plt.figure(figsize=(20,5))
for d in days:
BM = integrate_df.Date ==

wdf = integrate_df[BM]

average_temp = wdf.temp.mean()

red = (average_temp - min_temp)/ (max_temp - min_ temp)

blue = 1-red

clr = [red,green,blue]

plt.plot(wdf.index,wdf.Consumption,c = clr)
BM = (integrate_df.Hour =='0:00') & (integrate_df.Date.str.contains('/28/"))
plt.xticks(integrate_df[BM].index,integrate_df[BM].Date,rotation=90)
plt.grid()
plt.margins(y=0,x=0)
plt.show()

The preceding code brings many parts together to make the following visualization happen. The
most important aspects of the code are as follows:
 The code created the days list, which contains all the unique dates from integrate_df. By and large, the
preceding code is a loop through the days list, and for each unique day, the line plot of electricity consumption is

drawn and added to the days before and after. The color of each day's line plot is determined by that day's temperature

average, that is, temp.mean().

o The colors in the visualization are created based on the RGB color codes. RGB stands for Red, Green, and Blue.
All colors can be created by using a combination of these three colors. You can specify the amount of each color you'd
like and Matpletlib will produce that color for you. These colors can take values from 0 to 1 for Matplotlib. Here, we
know that when green is set to 0.1, and the red and blue have a blue = 1 - red relationship with one another,
we can create a red-blue spectrum of color that can nicely represent hot and cold colors. The spectrum can be used to
show hotter and colder temperatures. This has been done by calculating the maximum and minimum of the
temperature (using max_temp and min_temp) and calculating the three red, green, and blue elements of c1r

at the right time to pass as the color value to the p1t.plot () function.

« A Boolean Mask (BM) and p1t.xticks() are used to include the 28th of each month on the x axis so that we

don't have a cluttered x axis:

L,I:;Figure 12.5 — Line plot of electricity consumption color-coded by temperature

Figure 12.5 — Line plot of electricity consumption color-coded by temperature

Now, let's bring our attention to the analytic values shown in the preceding diagram. We can see a
clear relationship between temp and consumption; as the weather becomes colder, the electricity

consumption also increases.

We would not be able to draw this visualization without integrating these two data sources. By
experiencing the added analytic values of this visualization, you can also appreciate the value of data
integration and see the point of having to deal with both Challenge 3 — index mismatched formatting

and Challenge 4 — aggregation mismatch.

Example 2 (challenges 2 and 3)

In this example, we will be using the Taekwondo_Technique_Classification_Stats.csv and tablel.csv

datasets from https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification. The

datasets were collected by 2020 Armor (https://2020armor.com/), the first ever provider of e-scoring

vests and applications. The data includes the sensor performance readings of six taekwondo athletes,
who have varying levels of experience and expertise. We would like to see if the athlete's gender, age,
weight, and experience influence the level of impact they can create when they perform the following

techniques:
« Roundhouse/Round Kick (R)
« Back Kick (B)
¢ Cut Kick (C)

o Punch (P)

The data is stored in two separate files. We will use pd.read_csv() to read tablei.csv into
athlete_df and Taekwondo_Technique_Classification_Stats.csv into unknown_df. Before reading
on, take a moment to study athlete_df and unknown_df and evaluate their state to perform the

analysis.

After analysis, it will be obvious that the data structure that's been chosen for athlete_df is simple to
understand. The data object's definition of athlete_df is athletes, which means that each row
represents a taekwondo athelete_df. However, the unknown_df data structure is not readily
understandable and is somewhat confusing. The reason for this is that even though a very common
data structure — a table — is being used, it is not appropriate. As we discussed in Chapter 3, Data —
What Is It Really?, The most universal data structure — a table, we know that the glue that holds a
table together is an understandable definition of data objects. Therefore, the major data integration

challenge we will face in this example is Challenge 2 — unwise data collection.

To integrate the data when we face unwise data collection challenges, similar to what we did in
Chapter 9, Data Cleaning Level I — Cleaning Up the Table, in Example 1 — unwise data collection,

we need the data structure and its design to support the following two matters:
o The data structure can include the data of all the files.

o The data structure can be used for the mentioned analysis.

As we've discussed, the athlete_df dataset is simple and easy to understand, but what does the
information in unknown_df include? After putting two and two together, we will realize that the sensor
readings from the performance of six taekwondo athletes are in athlete_df. From studying
unknown_df, we also realize that each athlete has performed each of the four aforementioned

techniques five times. These techniques are coded in unknown_df using the letters R, B, ¢, and P; R

https://www.kaggle.com/ali2020armor/taekwondo-techniques-classification
https://2020armor.com/

stands for roundhouse, B stands for back kick, C stands for cut kick, and P stands for punch.

Furthermore, we can see that each technique is performed five times by each athlete.

Running the following code will create an empty pandas DataFrame called performance_df. This

dataset has been designed so that both athlete df and unknown_df can be integrated into it.

The number of rows (n_rows) we have designed for performance_df is one minus the number of
columns in unknown_df: len(unknown_df.columns)-1. We will see why that is the case when we are

about to fill up performance_df:

designed_columns = ['Participant_id', 'Gender',6 'Age', 'Weight', 'Experience',
'Technique_id', 'Trial_number', 'Average_read']

n_rows = len(unknown_df.columns)-1

performance_df = pd.DataFrame(index=range(n_rows),columns =designed_columns)

The following table shows performance_df, which the preceding code creates:

[,:'Figure 12.6 — The empty performance_df DataFrame before being filled in
Figure 12.6 — The empty performance_df DataFrame before being filled in
Because the dataset has been collected unwisely, we cannot use simple functions such as .jein() for

data integration here. Instead, we need to use a loop to go through the many records of unknown_df

and athlete_df and fill out performance_df row by row and, at times, cell by cell.

The following pieces of code will use both athlete_df and unknown_df to fill performance_df. Let's
get started:

1. First, we need to perform some level I data cleaning for athlete_df so that accessing this DataFrame within the loop becomes

easier. The following code takes care of these cleaning steps for athlete_df:
athlete_df.set_index('Participant ID', inplace=True)
athlete_df.columns = ['Sex', 'Age', 'Weight', 'Experience', 'Belt']

Study the state of athlete df after running the preceding code and make sure that you understand

what each line of code does before reading on.

2. Now that athlete_df is cleaner, we can create and run the loop that will fill up performance_df. As shown in the
following screenshot, the loop goes through all of the columns in unknown_df. Except for the first column in unknown_df,
each column contains information for one of the rows in performance_df. So, in each iteration of looping through the
columns of unknown_df, one of the rows of performance_df will be filled. To fill up each row in performance_df, the
data must come from both athlete_df and unknown_df. We will use the structures we know about from athlete_df and
unknown_df:

[,:;Figure 12.7 — The code that fills performance_df

Figure 12.7 — The code that fills performance_df

ATTENTION!

In this chapter, there are going to be a few instances of very large code, such as that shown in the preceding
screenshot. Because of the size of this code, we had to include a screenshot instead of a copiable code block. To
copy this code, please see the chapter12 folder in this book's GitHub repository.

3. After successfully running the code in the preceding screenshot, per formance_df will be filled up. Print per formance_df

to check its status before reading on.

4. Now that data integration has been performed, we can bring our attention to the data analytic goals. The following code creates a

box plot of Average_read based on Gender, Age, Weight, and Experience:
select_attributes = ['Gender', 'Age', 'Experience', 'Weight']
for i,att in enumerate(select_attributes):
plt.subplot(2,2,i+1)
sns.boxplot(data = performance_df, y='Average_read', x=att)
plt.tight_layout()

plt.show()

After running the preceding code, the following visualization will be created:

Figure 12.8 — A box plot of Average_read based on Gender, Age, Experience, and Weight

In the preceding diagram, we can see meaningful relationships between Average_read and Gender,
Age, Experience, and Weight. In a nutshell, these attributes can change the impact of the techniques
that are performed by the athletes. For example, we can see that as the experience of an athlete

increases, the impact of the techniques that are performed by the athlete increases.

We can also see a surprising trend: the impact of the techniques that are performed by female athletes

is significantly higher than the impact of male athletes. After seeing this surprising trend, let's look
back at athlete_df. We will realize that there is only one female athlete in the data, so we cannot

count on this visualized trend.

Before we move on to the next data integration example, let's have some fun and create visualizations

with higher dimensions. The following code creates multiple box plots that include the Average_read,

Experience, and Technique_id dimensions:

sns.boxplot(data = performance_df, y= 'Average_read', x= 'Experience',6 hue='Technique_id")

The following diagram will be created after running the preceding code:

[,:'Figure 12.9 — A three-dimensional box plot of Average_read, Experience, and Technique_id
Figure 12.9 — A three-dimensional box plot of Average_read, Experience, and Technique_id

Before reading on, look at the preceding diagram and see if you can detect more relationships and

patterns.

Now, let's bring our attention to the next example. Buckle up — the next example is going to be a

complex one with many different aspects.

Example 3 (challenges 1, 3, 5, and 6)

In this example, we would like to figure out what makes a song rise to the top 10 songs on Billboard

(https://www.billboard.com/charts/hot-100) and stay there for at least 5 weeks. Billboard magazine

publishes a weekly chart that ranks popular songs based on sales, radio play, and online streaming in
the United States. We will integrate three CSV files — billboardHot100 1999-2019.csv,
songAttributes_1999-2019.csv, and artistdf.csv from https:/www.kaggle.com/danield2255/data-
on-songs-from-billboard-19992019 to do this.

This is going to be a long example with many pieces that come together. How you organize your
thoughts and work in such data integration challenges is very important. So, before reading on, spend
some time getting to know these three data sources and form a plan. This will be a very valuable

practice.

Now that you've had a chance to think about how you would go about this, let's do this together.
These datasets seem to have been collected from different sources, so there may be duplicate data
objects among any or all of the three data files. After reading the files into billboard_df,
songAttributes_df, and artist_df, respectively, we will check if there are duplicate data objects in

them. This is dealing with Challenge 5 — duplicate data objects.

Checking for duplicate data objects

We will have to do this for every file. We will start with billboard_df before doing the same for
songAttributes_df and artist_df.

Checking for duplicates in billboard_df

The following code reads the billboardHot100_1999-2019.csv file into Billboard df and then creates
a pandas series called wsr. The name wsr is short for Working SeRies. As I've mentioned previously,
I tend to create a wdf (Working DataFrame) or wsr when I need a temporary DataFrame or series to
do some analysis. In this case, wsr is used to create a new column that is a combination of the

Artists, Name, and week columns, so we can use it to check if the data objects are unique.

The reason for this multi-column checking is obvious, right? There might be different unique songs
with the same name from different artists; every artist may have more than one song; or, the same
song may have a different weekly report. So, to check for the uniqueness of the data objects across

billboard_df, we need this column:

billboard_df = pd.read_csv('billboardHot100_1999-2019.csv')

https://www.billboard.com/charts/hot-100
https://www.kaggle.com/danield2255/data-on-songs-from-billboard-19992019

wsr = billboard_df.apply(lambda r: '{}-{3}-{3}'.format(r.Artists,r.Name,r.Week),axis=1)
wsr.value_counts()

After running the preceding code, the output shows that all the data objects appear once except for
the song outta control by 50 cent in week 2005-09-14. Running billboard_df.query("Artists ==

'50 Cent' and Name=='Outta Control' and Week== '2005-09-14'") will filter out these two data

objects. The following screenshot displays the outcome of running this code:

[,:Figure 12.10 — Filtering the duplicates in bilboard_df
Figure 12.10 — Filtering the duplicates in bilboard_df
Here, we can see that the two rows are almost identical and that there is no need to have both of

them. We can use the.drop() function to delete one of these two rows. This is shown in the following

line of code:
billboard_df.drop(index = 67647,inplace=True)
After running the preceding line of code successfully, it seems that nothing has happened. This is due

to inplace=True, which makes Python update the DataFrame in place instead of outputting a new

DataFrame.

Now that we are certain about the uniqueness of each row in bilboard_df, let's move on and do the
same thing for songAttributes_df.
Checking for duplicates in songAttributes_df

We will use a very similar code and approach to see if there are any duplicates in songAttributes_df.

The following code has been altered for the new DataFrame.

First, the code reads the songAttributes_1999-2019.csv file into songAttributes_df, then creates the
new column and checks for the duplicates using .value_counts(), which is a function of every

pandas Series:

songAttribute_df = pd.read_csv('songAttributes_1999-2019.csv')

wsr = songAttribute_df.apply(lambda r: '{}---{}'.format(r.Artist,r.Name),axis=1)
wsr.value_counts()

After running the preceding code, we will see that many songs have duplicate rows in

songAttributes_df.

We need to find out the causes of these duplicates. We can filter out the duplicates of a few songs and
study them. For instance, from the top, we can run the following lines of codes separately to study

their output:

. songAttribute_df.query("Artist == 'Jose Feliciano' and Name == 'Light My Fire'")

. songAttribute_df.query("Artist == 'Dave Matthews Band' and Name == 'Ants Marching -
Live'")

After studying the output of these codes, we will realize that there are two possible reasons for the
existence of duplicates:
o First, there might be different versions of the same song.

« Second, the data collection process may have been done from different resources.

Our study also shows that the attributes' value of these duplicates, while not identical, are very

similar.

To be able to do this analysis, we need to have only one row for each song. Therefore, we need to
either remove all but one row for the songs with duplicates or aggregate them. Either might be the
right course of action, depending on the circumstances. Here, we will drop all the duplicates except
for the first one. The following code loops through the songs with duplicate data objects in
songAttributes_df and uses .drop() to delete all the duplicate data objects, except for the first one.
First, the code creates doFrequencies (do is short for data object), which is a pandas series that shows
the frequencies of each song in songAttributes_df, and loops through the elements of doFrequencies

whose frequency is higher than 1:
songAttribute_df = pd.read_csv('songAttributes_1999-2019.csv')
wsr = songAttribute_df.apply(lambda r: '{}---{}'.format(r.Name,r.Artist),axis=1)
doFrequencies = wsr.value_counts()
BM = doFrequencies>1
for i,v in doFrequencies[BM].iteritems():
[name,artist] = i.split('---")
BM = ((songAttribute_df.Name == name) & (songAttribute_ df .Artist == artist))

wdf = songAttribute_df[BM]

dropping_index = wdf.index[1:]
songAttribute_df.drop(index = dropping_index, inplace=True)

If you try running the preceding code, you will see that it will take a long time. It took around 30
minutes on my computer. In these situations, it is nice to add some elements to the code that give
users some idea of how much the code has run and how much more time will be needed. The
following code is the same as the preceding one, but some more elements have been added to create a
mechanism for reporting the progress of the runtime. I would suggest running the following code

instead. But before doing so, compare the two options and study how the reporting mechanism is

added. Do not forget that you will need to import the time module before you can run the following

code. The time module is an excellent module that allows us to work with time and time differences:

[,:Figure 12.11 — Dropping the duplicates that were added with code to report progress
Figure 12.11 — Dropping the duplicates that were added with code to report progress

Once you've successfully run the preceding code, which will take a while, songAttributes_df will

not suffer from duplicate data object problems.

Next, we will check if artist_df contains duplicates and address them if it does.
Checking for duplicates in artist_df
Checking the uniqueness of the data objects in artisit_df is easier than it was for the two

DataFrames we looked at previously. The reason for this is that there is only one identifying column

in artist_df. There were two and three identifying columns for songAttribute df and billboard_df.
The following code reads artistbdf.csv into artisit_df and uses the .value counts() function to
check if all the rows in artisit_df are unique:

artist_df = pd.read_csv('artistDf.csv')

artist_df.Artist.value_counts()

After running the preceding code and studying its results, you will see that two rows represent the

artist Reba McEntire. Running artist_df.query("Artist == 'Reba McEntire'") will filter out these

two rows. The following screenshot displays the outcome of running this code:

[':Figure 12.12 — Filtering the duplicates in artist_df

Figure 12.12 — Filtering the duplicates in artist_df
Here, we can see that the two rows are the same and that there is no need to have both of them. The
following line of code uses the .drop() function to delete one of these two rows:
artist_df.drop(index = 716, inplace=True)
After running the preceding line of code successfully, it seems that nothing has happened. This is due

to inplace=True, which makes Python update the DataFrame in place instead of outputting a new

DataFrame.

Well done! Now, we know that all of our DataFrames only contain unique data objects. We can use

this knowledge to tackle the challenging task of data integration.

We are better off if we start with the end in sight. In the next section, we will envision and create the

structure of the DataFrame we would like to have at the end of the data integration process.

Designing the structure for the result of data
integration

As there are more than two data sources involved, it is paramount that we have a vision in sight for
the result of our data integration. The best way to do this is to envision and create a dataset whose
definition of data objects and its attribute have the potential to answer our analytic questions and, at

the same time, can be filled by the data sources that we have.

The following screenshot shows the code that can create a dataset that contains the listed
characteristics. The definition of the data objects is songs, while the attributes can be filled in using
one of three DataFrames. Once songIntegrate_df has been filled, it can help us answer the question

of what makes a song go all the way up to the top 10 on Billboard and stay there for at least 5 weeks:

[,:'Figure 12.13 — Designing and creating the result of data integration for songlntegrate_df

Figure 12.13 — Designing and creating the result of data integration for songIntegrate_df

Most of the envisioned attributes in songIntegrate_df are intuitive. Let's go over the ones that might
not be as obvious:

« Top_song: A binary attribute that describes if the song has been in the top 10 songs of Billboard for at least 5 weeks.
« First_date_on_Billboard: The first date that the song was on Billboard.

« Acousticness, Danceability, Duration, Energy, Explicit, Instrumentalness, Liveness, Loudness,
Mode, Speechiness, Tempo, TimeSignature, and Valence are the artistic properties of songs. These attributes will be
integrated into songIntegrate_df from songAttribute_df.

o Artists_n_followers: The artist's or artists' number of followers on social media. If there is more than one artist, the

summation of their number of followers will be used.

« n_male_artistsand n_female_artists are the attributes that show the gender of the artists. If one female artist has
produced the song, their values will be 0 and 1, respectively. If two male artists have produced the song, their values will be 2 and

0, respectively.
« n_bands: The number of bands that have been involved in producing the song.

. artist_average_years_after_first_album tries to capture the experience of the artists in the business. If one artist
has created the song, then a single value will be used, and when more than one artist is involved, an average value is used. These
values will be calculated based on First_date_on_Billboard.

. artist_average_number_albums also attempts to capture the experience of the artists in the business. Similar to the
previous attribute, if one artist has created the song, then a single value will be used, while when more than one artist is involved,

an average value will be used.

The first four attributes will be filled using billboard_df, the last six attributes will be filled using

artist_df, and the rest will be filled using songAttribute_df.

Note that the First_date_on_Billboard attribute will be created temporarily. It will be filled from

billboard_df so that when we get around to filling from artist_df, we can use

First_date_on_Billboard to calculate artist_average_years_after_first_album.

Before we start filling up songIntegrate df from the three sources, let's go over the possibility of
having to remove some songs from songIntegrate df. This might become inevitable because the
information we may need for every song on file may not exist in the other resource. Therefore, the

rest of the subsections in this example will be as follows:
« Filling songIntegrate_df from billboard_df
« Filling songIntegrate_df from songAttribute_df
« Removing data objects with incomplete data
« Filling songIntegrate_df fromartist_df
« Checking the status of songIntegrate_df

o Performing the analysis

It seems that we've got a lot of ground to cover, so let's get to it. We will start by using billboard_df

to fill songIntegrate_df.

Filling songlintegrate_df from billboard_df

In this part of filling songIntegrate_df, we will be filling the first four attributes: Name, Artists,
Top_song, and First_date_on_Billboard. Filling the first two attributes is simpler; the latter two need

some of the rows in billboard_df to be calculated and aggregated.

The challenge of filling data from billboard_df into songIntegrate_df is two-fold. First, the
definitions of the data objects in the two DataFrames are different. We have designed the definition of
the data objects in songIntegrate df to be songs, while the definition of the data objects in
billboard_df is the weekly reports of songs' billboard standings. Second, as billboard_df has a more
complex definition of data objects, it will also need more identifying attributes to distinguish between
unique data objects. For billboard_df, the three identifying attributes are Name, Artists, and week,

but for songIntegrate_df, we only have Name and Artists.

The songIntegrate_df DataFrame is empty and contains no data objects. Since the definition of data
objects we have considered for this DataFrame is songs, it is best to allocate a new row in

songIntegrate_df for all the unique songs in billboard_df.

The following code loops through all the unique songs in billboard_df using nested loops to fill
songIntegrate_df. The first loop goes over all the unique song names, so each iteration will be
processing one unique song name. As there might be different songs with the same song name, the

code does the following within the first loop:

1. First, it will filter all the rows with the song name of the iteration.

2. Second, it will figure out all Artists who have had a song with the song name of the iteration.
3. Third, it will go over all Artists we recognized in the second step and as per each iteration of this second loop, we will add a

row to songIntegrate_df.

To add a row to songIntegrate_df, the following code has used the.append() function. This function
either takes a pandas Series or a Dictionary to add it to a DataFrame. Here, we are using a dictionary;
this dictionary will have four keys, which are the four attributes — Name, Artists, Top_song,
First_date on_Billboard — of songIntegrate df that we intend to fill from billboard_df. Filling
Name and Artists is easy as all we need to do is insert the values from billboard_df. However, we

need to make some calculations to figure out the values of Top_song and First_date on_Billboard.

Study the following code and try to understand the logic behind the parts of the code that try to
calculate these two attributes. For Top_song, try to see if you can connect the logic to what we are
trying to do. Go back to the very first paragraph in this example. For First_date_on_Billboard, the
code has assumed something about billboard_df. See if you can detect what that assumption is and

then investigate if that assumption is reliable.

Now, it is time for you to give the code a try. Just a heads-up before you hit run: it might take a while

to finish. It will not be as lengthy as the preceding code to run, but it won't be instantaneous either:
SongNames = billboard_df.Name.unique()
for i, song in enumerate(SongNames):
BM = billboard_df.Name == song
wdf = billboard_df[BM]
Artists = wdf.Artists.unique()
for artist in Artists:
BM = wdf.Artists == artist
wdf2 = wdf[BM]
topsong = False
BM = wdf2['Weekly.rank'] <=10
if(len(wdf2[BM])>=5):
topsong = True
first_date_on_billboard = wdf2.Week.iloc[-1]

dic_append = {'Name':song, 'Artists':artist, 'Top_ song':topsong,
'First_date_on_Billboard': first_date_ on_billboard}

songIntegrate_df = songIntegrate_df.append(dic_append, ignore_index=True)

After successfully running the preceding code, print songIntegrate_df to study the state of the

DataFrame.

The challenge we just faced and addressed here can be categorized as Challenge 3 — index
mismatched formatting. This particular challenge is more difficult as not only do we have different
index formatting but also we have different definitions of data objects. To be able to perform data
integration, we had to refrain from declaring the identifying attributes as indexes. Why? Because that
would not help our data integration goal. However, having to do that also forced us to take things into
our hands and use loops instead of simpler functions such as .join(), as we saw in Example 1

(challenges 3 and 4) and Example 2 (challenges 2 and 3).

Next, we will fill in some of the remaining attributes of songIntegrate df from songAttribute_df.
Doing this will challenge us somewhat differently; we will have to deal with Challenge 1 — entity

identification.

Filling songlintegrate _df from songAttribute df

The challenge we have to reckon with in this part of data integration is entity identification. While the
definitions of the data objects for both songintegrate df and songAttribute_df are the same — that
is, songs — the way the unique data objects are distinguished in the two DataFrames is different. The
crux of the difference goes back to the songIntegrate df.Artists and songAttribute df.Artist
attributes; pay attention to the plural of Artists and the singular of Artist. You will see that the
songs that have more than one artist are recorded differently in these two DataFrames. However, in
songIntegrate_df, all of the artists of a song are included in the songIntegrate_df.Artists attribute,
separated by commas (,); in songAttribute_df, only the main artist is recorded in
songAttribute_df.Artist and if other artists are involved in a song, they are added to
songAttribute_df.Name. This makes identifying the same songs from the two DataFrames very

difficult. So, we need to have a plan before we approach data integration here.

The following table shows the five different situations where the same songs entered our two sources.

Let's answer two questions about these five situations.

First, how did we come up with these five situations? That is an excellent question. When dealing
with the entity identification challenge, you will need to study the sources of the data and figure out
how to work with the identifying attributes in the sources. Then, you can use a computer to connect
the rows that are for the same entity but not coded the same way. So, the answer to this question is

that we just studied the two sources enough to realize that these five situations exist.

Second, what do we do with these situations? Answering this question is simple. We will use them to

draft some code that will connect the identifiable songs from both sources to connect and integrate

the datasets:

[':Figure 12.14 — Five situations in the integration of songIntegrate_df with songAttribute_df due to the entity identification challenge

Figure 12.14 — Five situations in the integration of songintegrate_df with songAttribute_df due to the entity identification
challenge
The following code, which is rather long, uses the five extracted situations from the preceding
diagram and all the other coding capabilities we've picked up in this book to perform the integration
task. The code loops through the rows of songintegrate df and searches for any rows in
songAttribute_df that have listed the song. The code employes the five situations we've extracted to

create the preceding diagram as a guideline to search for songAttribute_df.

Before you look at the following code, allow me to bring your attention to a quick matter. Since the
code is lengthy, it's been commented to help you decipher it. Python line comments can be created
using #, so, for example, when you see # situation 1, that means what's coming has been created by

our understanding of situation 1.

Now, spend some time using the preceding diagram and the code in the following screenshot to

understand how the connection between songIntegrate_df and songAttribute_df has been made:

[,:Figure 12.15 — Creating the connection between songlntegrate_df and songAttribute_df

Figure 12.15 — Creating the connection between songlintegrate_df and songAttribute_df

After successfully running the preceding code, which might take a while, spend some time studying
the report it provided. If you have paid attention, then you'll know that the code is printed out every
time a connection between songs is found. This also happens if the connection was possible. Study

the printout to see the frequencies of the situations. Answer the following questions:

« Which situation was the most frequent?
o Which situation was the least frequent?

o Were all of the rows in songIntegrate_df filled in with the values found in songAttribute_df?

The answer to the last question is no — running songIntegrate df.info() will only show you that
4,045 out of 7,213 rows were filled from songAttribute df. A critical question to answer regarding
this data not being filled completely is to see if there is meaningful discrimination between the top
songs and not the top song. If there is any meaningful discrimination, then the values listed in
songAttribute_df become much less valuable. This is because our goal is to study the impact that the
song attributes have on the song becoming a top song. So, let's study this before moving on to the

next filling.

The following screenshot shows the contingency table for the two binary variables,
songIntegrate_df.Top_song, and the missing values. It also shows the p-value of the chi-square test

of association:

Lr: Figure 12.16 — The code and their output for studying if missing values in songIntegrate_df after integrating with songAttribute_df

are meaningfully connected to songIntegrate_df.Top_song

Figure 12.16 — The code and their output for studying if missing values in songintegrate_df after integrating with
songAttribute_df are meaningfully connected to songlintegrate_df.Top_song
After studying the preceding screenshot, we can conclude that there is not enough evidence for us to
reject the hypothesis that the missing values don't have a relationship with the songs being a top song

or not.

This makes our job easier as we won't need to do anything but remove the rows that don't contain
values before we start using artist_df to fill songintegrate_df. The following code uses the .drop()
function to delete the rows in songIntegrate_df that songAttribute_df failed to fill. Note that the

B_mv variable comes from the code in the preceding screenshot:
dropping_index = songIntegrate_df[B_MV].index

songIntegrate_df.drop(index = dropping_index, inplace=True)

Successfully running the preceding code and before moving on to the next step, which is using
artist_df to fill the rest of songIntegrate_df, run songIntegrate_df.info() to evaluate the state of
the DataFrame and ensure that the drops went as planned.

Filling songlintegrate _df from artist_df

The last six attributes of songIntegrate_df, which are Artists_n_followers, n_male_artsits,
n_female_artsits, n_bands, artist_average_years_after_first_album, and
artist_average_number_albums, will be filled from artist_df. The entity identification challenge that
we face here is much simpler than what we did when integrating songIntegrate df and
songAttribute_df. The definitions of the data objects in artist_df are artists, and that is only one
part of the definition of the data objects in songIntegrate_df. All we need to do is find the unique

artist or artists of each song of songIntegrate df in artist_df and then fill in songIntegrate df.

All of the attributes we need to fill in here need information from artist_df, but there will be no
direct filling. All of the aforementioned attributes will need to be calculated using the information

from artist_df.

Before data integration is possible, we will need to perform one pre-processing task on artist_df.
We need to make artist_df searchable by the name of the artist; that is, we must set the index of
artist_df as Artist. The following line of code makes sure that happens. The following code also

drops the x column, which will not serve any purpose at this point:

artist_df = artist_df.set_index('Artist').drop(columns=["'X"'])

Now, before moving on to the data integration part, give the searchable artist_df a chance to show
you how easy it can gather the information of each artist. For example, try artist_df.loc['Drake']

or any other artist you may know of.

The code in the following screenshot loops through all the rows of songIntegrate_df to find the
needed information about the songs' artists and fill up the last six attributes of songIntegrate_df. In
each iteration, the code separates the artists of the songs in songIntegrate_df and checks if
artists_df contains the information of all of the song's artists. If not, the code terminates as there is
not enough information in artist_df to fill out the six attributes. If this information exists, the code
assigns zero to all six new attributes and then, within some conditional and logical calculations,

updates the zero values.

Before you get your teeth into this rather large piece of code, a few words of caution. First, the lines
of code are rather long, so they may have been cut into more than one line. There are two different
ways to cut a line of code into more lines. The better method is called implicit line continuation;
whenever the line breaks after a parenthesis, (, a curly brace, {, or square bracket, [, Python assumes
there is more to come and automatically goes to the next line while looking for it. The other method —
the one we try to avoid if we can — is known as explicit line continuation and is where Python will
not go looking for more in the next line unless we explicitly request this by using a backslash, |, at

the end of the line.

The second word of caution is that the code uses what is called augmented arithmetic assignment
to save space when writing code. These types of assignments are used to avoid writing the same
variable twice when the calculation of the new value of the variable involves the old value of the
variable. For instance, you can write x+=1 instead of x = x +1, or you can write y/=5 instead of y =
y/5. Augmented arithmetic assignment has been used in multiple places throughout the following

code:

In [52]: M for i,row in songIntegrate_df.iterrows():
Artists = row.Artists.split(',")
Artists = list(map(str.strip,Artists))
ArtistsIn_artist_df = True
for artist in Artists:
if(artist not in artist_df.index.values):
ArtistsIn_artist_df= False
break
if(not ArtistsIn_artist_df):
continue

songIntegrate_df.loc[i, 'Artists_n_followers'] = @
songIntegrate_df.loc[i, 'n_male_artists'] = @

songIntegrate_df.loc[i, 'n_female_artists'] = 0
songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] = @
songIntegrate_df.loc[i, 'artist_average_number_albums'] = ©
songIntegrate_df.loc[i, 'n_bands'] = @

for artist in Artists:
songIntegrate_df.loc[i, 'Artists_n_followers'] += artist_df.loc[artist].Followers
if(artist_df.loc[artist]['Group.Solo']=="Solo"):

if(artist_df.loc[artist].Gender == 'M'):
songIntegrate_df.loc[i, 'n_male_artists'] += 1
if(artist_df.loc[artist].Gender == 'F'):

songIntegrate_df.loc[i, 'n_female_artists'] += 1

if(artist_df.loc[artist]['Group.Solo']=="Group"):

if(artist_df.loc[artist].Gender == 'M"):
songIntegrate_df.loc[i, 'n_male_artists'] += 2
if(artist_df.loc[artist].Gender == 'F'):

songIntegrate_df.loc[i, 'n_female_artists'] += 2
songIntegrate_df.loc[i, 'n_bands'] += 1
First_date_on_Billboard = int(row.First_date_on_Billboard[:4])
songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] += \
(First_date_on_Billboard - int(artist_df.loc[artist].YearFirstAlbum))

songIntegrate_df.loc[1i,
'artist_average_number_albums'] += int(artist_df.loc[artist].NumAlbums)

songIntegrate_df.loc[i, 'artist_average_years_after_first_album'] /= len(Artists)
songIntegrate_df.loc[i, 'artist_average_number_albums'] /= len(Artists)

Figure 12.17 — Filling up the last six attributes of songintegrate_df

You may have noticed that the code adds 2 to n_male_artists when the song's artist is a group and
the gender is listed as male, while it adds 2 to n_female_artists when the song's artist is a group and
the gender is listed as female. This includes the assumption that all the groups have only two artists.
As we don't have other sources so that we can be more accurate about these situations, this is a
reasonable assumption that lets us continue while avoiding the infliction of too much bias in the data.
However, this assumption must be communicated if the results are going to be presented to any

interested decision-maker.

After successfully running the preceding code, run songIntegrate_df.info() to investigate how
many of the rows in songIntegrate_df were completed using the information from artist_df. You
will see that 3,672 out of 4,045 songs were completed. While this is the major portion of
songIntegrate_df, we still need to make sure that there are no missing values due to reasons

connected to the songs being top songs or not. So, we will do a similar analysis to what we did for

Figure 12.16. The following screenshot shows the result of the same analysis with the updated

songIntegrate_df:

[,: Figure 12.18 — The code and their output for studying if missing values in songIntegrate_df after integrating with artist_df are

meaningfully connected to songIntegrate_df.Top_song

Figure 12.18 — The code and their output for studying if missing values in songintegrate_df after integrating with
artist_df are meaningfully connected to songintegrate_df.Top_song
After studying the preceding screenshot, we can see that there is no meaningful pattern that points to
the possible connection between a song being a top song and its tendency to have missing values at
this juncture. So, we can comfortably remove the rows with missing values and proceed. The

following line of code does the prescribed removal:
droping_indices = songIntegrate_df[B_MV].index.values

songIntegrate_df.drop(index = droping_indices, inplace=True)

The preceding code uses the .drop() function to delete the rows in songIntegrate_df that artist_df

failed to fill. Note that the B_mv variable comes from the code in the preceding screenshot.

Congratulations — you have integrated these three data sources! This was due to your excellent
understanding of data structures and your capability to see the definitions of data objects in each of
these sources. Furthermore, you were able to envision a dataset that could house the information from

all the sources and, at the same time, be useful for your analytic goals.

Before we proceed to the analysis, we need to tackle another challenge. Whenever we bring data
together from different sources, we may have inadvertently created a case that we called data
redundancy earlier (Challenge 6 — data redundancy). As we mentioned previously, data redundancy

is where you repeat the same attribute but where you repeat the same information.

Checking for data redundancy

As we mentioned previously, this part deals with Challenge 6 — data redundancy. Even though we've
never dealt with this challenge before in this book, we've seen many examples of investigating the
relationships between attributes. If there are attributes in songIntegrate_df that have a strong

relationship with each other, that can be our red flag for data redundancy. It's as simple as that!

So, let's get to it. First, we will use correlation analysis to investigate the relationship between the
numerical attributes. Then, we will use box plots and t-tests to investigate the relationship between

numerical attributes and categorical ones.

We would have investigated the relationships between categorical attributes as well if we didn't only
have one categorical attribute. If you do have more than one categorical attribute, to evaluate data

redundancy, you would need to use contingency tables and the chi-squared test of independence.

Checking for data redundancy among numerical attributes

As we mentioned previously, to evaluate the existence of data redundancy, we will use correlation
analysis. If the correlation coefficient between two attributes is two high (we will use the rule thumb
of 0.7), then this means that the information presented in the two attributes is too similar and there

might be a case of data redundancy.

The following code uses the .corr () function to calculate the correlation between the numerical
attributes that are explicitly listed in num_atts. The code also uses a Boolean mask (BM) to help our
eyes find the correlation coefficient that is either greater than 0.7 or smaller than -0.7. Pay attention to
the reason why the code had to include .astype(float): during the data integration process, some of

the attributes may have been carried over as strings instead of numbers:

num_atts = ['Acousticness', 'Danceability', 'Duration', 'Energy', 'Instrumentalness',
'Liveness', 'Loudness', 'Mode', 'Speechiness', 'Tempo', 'TimeSignature', 'Valence',
'Artists_n_followers', 'n_male_artists', 'n_female_artists', 'n_bands',
'artist_average_years_after_first_album', 'artist_average_number_albums']

corr_Table = songIntegrate_df[num_atts].astype(float).corr()
BM = (corr_Table > 0.7) | (corr_Table<-0.7)

corr_Table[BM]

After running the preceding code successfully, a correlation matrix will appear that has NaN for most
of the cells, but only for the ones that have had a correlation coefficient that's either greater than o.7
or smaller than -e.7. You will notice that the only flagged correlation coefficient is between Energy

and Loudness.

It makes sense that these two attributes have a relationship with one another. As these attributes come
from the same source, we will put our confidence in the creators of these attributes that they do show
different values and that around 30% of the information that is different between the two is worth

keeping.

Here, we can conclude that there are no issues regarding data redundancy between the numerical
attributes. Next, we will investigate whether the relationships between the categorical attributes and
the numerical attributes are too strong.

Checking for data redundancy between numerical and
categorical attributes

To evaluate if there is data redundancy, similar to what we did for the numerical attributes, we need
to examine the relationship between the attributes. As the attributes are of different natures — that is,

numerical and categorical — we need to use boxplots and t-tests.

The only categorical attribute that has been integrated and has analytic values at this point is the

Explicit attribute. Why not the top_song attribute? The top song does have an analytic value for us —

in fact, it is the hinge of our analysis — but it was not integrated from different sources. Instead, was
calculated for our analysis. Once we get to the analysis part of this example, we will look at the
relationship between this attribute and all the other ones. Why not name or Artists? These are merely
identifying columns. Why not First_date_on_Billboard? This was a temporary attribute to allow us
to perform calculations where we needed information from more than one source of data. This
attribute will be dropped before the analysis.

The following code creates the box plots that show the relationship between the numerical attribute
and the categorical attribute; that is, Explicit. Furthermore, the code uses the ttest_ind() function

from scipy.stats to run the t-test:

from scipy.stats import ttest_ind

for n_att in num_atts:
sns.boxplot(data=songIntegrate_df, y=n_att,x="'Explicit')
plt.show()

BM = songIntegrate_df.Explicit == True

print(ttest_ind(songIntegrate_df[BM][n_att], songIntegrate_df[~BM]
[n_att]))
print('----------------- divide------------------- ")

After running the preceding code, per each numerical attribute, a box plot and the result of the t-test
that evaluates the relationship between the Explicit attribute and the numerical attribute will appear.
After studying the output, you will realize that the Explicit attribute has a relationship with all the
numerical attributes except for Loudness, Mode, and valence. As it is very unlikely that the Explicit
attribute will contain any new information that has not already been included in the data, we will flag

Explicit for possible data redundancy.

Note that we will not necessarily need to remove Explicit at the data preprocessing stage. How we
will deal with data redundancy will depend on the analytic goals and the tools. For instance, if we
intend to use a decision tree to see the multivariate patterns that lead to a song being a top song or
not, then we won't need to do anything about the data redundancy. This is because the decision tree
has a mechanism for selecting the features (attributes) that help with the success of the algorithm. On
the other hand, if we are using K-means to group the songs, then we would need to remove Explicit
as the information has already been introduced in the other attributes. If we include it twice, then it

will create bias in our results.

The analysis

Finally, the data sources are appropriately integrated into songIntegrate_df and the dataset is ready

for analysis. Our goal is to answer the question of what makes a song become a top song. There is

more than one approach we can adopt here to answer this question, now that the data has been
preprocessed. Here, we will use two of them. We will use data visualization to recognize the

univariate patterns of top songs, and we will use a decision tree to extract the multi-variate patterns.
We will start with the data visualization process.

Before we start, there is no need to remove the Explicit attribute for any of the aforementioned
analytic tools due to the attribute being flagged as redundant. As we mentioned previously, the
decision tree has a smart mechanism for feature selection, so for data visualization, keeping Explicit
will only mean one more simple visualization that does not interfere with the other visualizations.
The data visualization approach to finding patterns in top songs
To investigate what makes a song become a top song, we can investigate the relationship that all the

other attributes in songIntegrate_df have with the Top_song attribute and see if any meaningful
pattern emerges.

The following code creates a box plot for each of the numerical attributes in songIntegrate_ df to
investigate if the value of the numerical attribute changes in two populations: top songs and not top
songs. The code also outputs the result of a t-test that answers the same question statistically.
Furthermore, the code outputs the median of the two populations in case it is hard to recognize the
minute comparisons between the values of the two populations in the box plots:
from scipy.stats import ttest_ind
for n_att in num_atts:

sns.boxplot(data=songIntegrate_df, y=n_att,x='Top_song')

plt.show()

BM = songIntegrate_df.Top_song == True

print(ttest_ind(songIntegrate_df[BM][n_att], songIntegrate_ df[~BM][n_att]))

dic = {'not Top Song Median': songIntegrate_df[~BM][n_att]. median(), 'Top Song
Median': songIntegrate_df[BM][n_att]. median()}

print(dic)

print('----------------- divide------------------- ")

Moreover, the following code outputs a contingency table that shows the relationship betweenn the
two categorical attributes; that is, songIntegrate df.Top_song and songIntegrate_df.Explicit. It

also prints out the p-value of the chi-squared test of independence for these two categorical attributes:
from scipy.stats import chi2_contingency

contingency_table = pd.crosstab(songIntegrate_df.Top_song, songIntegrate_df.Explicit)
print(contingency_table)

print('p-value = {}'.format(chi2_contingency(contingency_table)[1]))

After studying the outputs of the two preceding pieces of code, we may come to the following
conclusions:
o There is no evidence to reject the null hypothesis that the Top_song attribute does not have a relationship with the Duration,

Energy, Instrumentalness, Liveness, Loudness, Mode, Speechiness, Explicit, and TimeSignature

attributes. This means that the top songs cannot be predicted by looking at the values of these attributes.
o The top songs tend to have smaller values on the Acousticness, Tempo, n_male_artists, n_bands,

artist_average_years_after_first_album,and artist_average_number_albums attributes

« The songs that have greater values for the Danceability, Valence, Artists_n_followers, n_female_artists

attributes tend to become top songs more often.

Of course, these patterns sound too general, and they should be; this is because they are univariate.
Next, we will apply a decision tree to figure out the multivariate patterns, which may help us
understand how a song becomes a top song.

The decision tree approach to finding multivariate patterns in
top songs

As we discussed in Chapter 7, Classification, decision trees are famous for being transparent and
being able to render useful multivariate patterns from the data. Here, we would like to use the

decision tree algorithm to see the patterns that lead to a song raising to the top 10 list of the billboard.

The following code uses becisionTreeclassifier from sklearn.tree to create a classification model
that aims to find the relationships between the independent attributes and the dependent attribute; that
is, Top_song. Once the model has been trained using this data, the code will use graphviz to visualize
the trained decision tree. At the end of the code, the extracted graph will be saved in a file called
TopSongDT . pdf. After successfully running this code, you should be able to find the file in the same

folder where you have the Jupyter Notebook file.

ATTENTION!

If you have never used graphviz on your computer before, you may have to install it first.

To install graphviz, all you need to do is run the following piece of code. After successfully running
this code once, graphviz will be installed on your computer for good:

pip install graphviz

Before running the following code, note that the decision tree model that is used in the following
code has already been tuned. In Chapter 7, Classification, we mentioned that tuning decision trees is
very important. However, we have not covered how to do it in this book. The hyperparameters and
their tuned values are criterion= 'entropy', max_depth= 10, min_samples_split= 30, and splitter=
'best':

from sklearn.tree import DecisionTreeClassifier, export_graphviz

import graphviz

y = songIntegrate_df.Top_song.replace({True:'Top Song', False:'Not Top Song'})

Xs = songIntegrate_df.drop(columns =
['Name', 'Artists', 'Top_song', 'First_date_on_Billboard'])

classTree = DecisionTreeClassifier(criterion= 'entropy', max_depth= 10, min_samples_split=
30, splitter= 'best')

classTree.fit(Xs, vy)

dot_data = export_graphviz(classTree, out_file=None, feature_names=Xs.columns,
class_names=['Not Top Song', 'Top Song'], filled=True, rounded=True,
special_characters=True)

graph = graphviz.Source(dot_data)

graph.render(filename='TopSongDT")

After successfully runing the preceding code, the TopsongbT.pdf file will be saved on your computer,
which contains the visualized decision tree. This tree is shown in the following diagram. In this
instance, this diagram has not be shared with you so that you can study it; as you can see, the
decision tree is rather large and our space is very small. However, you can see that there are a lot of

meanigful multi-variate patterns forming the data, which can help us predict the top songs:

[,:'Figure 12.19 — A decision tree that visualizes the multivariate patterns of the top songs

Figure 12.19 — A decision tree that visualizes the multivariate patterns of the top songs
Open TopsongdT. pdf on your own and study it. For instance, you will see that the most important
attribute for a distinction between top songs and non-top songs is Artists_n_followers. For another
example, if the song does not have artists with high followings, the best shot the song has at
becoming a top song is that the song is explicit, danceable, and from artists with less experience.
There are many more useful patterns like this in the decision tree. Continue studying TopSongDT.pdf
to find them.

Example summary

In this example, we performed many steps to get to a point where songIntegrate_df was in a state
where we were able to perform analysis and find useful information. To jog our memory, these are
the steps that we took:

1. Checked for duplicates in all three data sources

2. Designed the structure of the final and integrated dataset

3. Integrated the data sources in three steps

4. Checked for data redundancy

5. Performed analysis

Now, let's summarize the chapter.

Summary

Congratulations on your excellent progress in this chapter. First, we learned the difference between
data fusion and data integration before becoming familiar with six common data integration
challenges. Then, through three comprehensive examples, we used the programming and analytic
tools that we've picked up throughout this book to face these data integration challenges and

preprocess the data sources so that we were able to meet the analytic goals.

In the next chapter, we will focus on another data preprocessing concept that is crucial, especially for

algorithmic data analytics due to the limitations of computational resources: data reduction.

Before you start your journey on data reduction, take some time and try out the following exercises to

solidify your learning.

Exercise

1. In your own words, what is the difference between data fusion and data integration? Provides examples other than the ones given

in this chapter.

2. Answer the following question about Challenge 4 — aggregation mismatch. Is this challenge a data fusion one, a data integration

one, or both? Explain why.

3. How come Challenge 2 — unwise data collection is somehow both a data cleaning step and a data integration step? Do you think it

is essential that we categorize an unwise data collection under data cleaning or data integration?

4. In Example 1 of this chapter, we used multi-level indexing using Date and Hour to overcome the index mismatched formatting
challenge. For this exercise, repeat this example but this time, use single-level indexing using the Python DataTime object

instead.

5. Recreate Figure 5.20 from Chapter 5, Data Visualization, but instead of using WH Report_preprocessed.csv, integrate
the following three files yourself first: WH Report.csv, populations.csv, and Countries.csv. Hint: information
about happiness indices come from WH Report . csv, information of the countries comes from Countries.csv, and

population information comes from populations.csv.

6. In Chapter 6, Prediction, Exercise 2, we used ToyotaCorolla_preprocessed. csv to create a model that predicts the
price of cars. In this exercise, we want to do the preprocessing ourselves. Use ToyotaCorolla.csv to answer the following

questions:

a) Are there any concerns regarding level I data cleaning? If so, address them if necessary.
b) Are there any concerns regarding level II data cleaning? If so, address them if necessary.
c) Are there any concerns regarding level III data cleaning? If so, address them if necessary.

d) Are there any attributes in ToyotaCorolla.csv that can be considered redundant?

e) Apply LinearRegression from sklearn.linear_model. Did you have to remove the redundant
attributes? Why/why not?

f) Apply MLPRegressor from sklearn.neural network. Did you have to remove the redundant
attributes? Why/why not?

. We would like to use the Universities.csv file to put the universities into two meaningful clusters. However, the data

source has many issues, including data cleaning levels I — III and data redundancy. Do the following:
a) Deal with data cleaning issues.
b) Deal with data redundancy issues.

¢) Use any column necessary except for state and Public (1)/ Private (2) to find the two

meaningful clusters.
d) Perform centroid analysis and name each cluster.

e) Find out if the newly created categorical attribute cluster has a relationship with either of the
two categorical attributes we intentionally did not use for clustering: state or Public (1)/

Private (2).

. In this exercise, we will see an example of data fusion. The case study that we will use in this exercise was already introduced in

the data fusion example for this chapter, so please go back and read it again before continuing with this exercise.

In this example, we would like to integrate vield.csv and Treatment.csv to see if the amount of

water can impact the amount of yield.
Do the following to make this happen:
a) Use pd.read_csv() to read Yield.csv to yield_df, and read Treatment.csv into treatment_df.

b) Draw a scatterplot of the points in treatment_df. Use the dimension of color to add the amount

of water that has been dispensed from each point.

¢) Draw a scatterplot of the points in yield df. Use the dimension of color to add the amount of

harvest that has been collected from each point.
d) Create a scatterplot that combines the visual in Steps b and c.

e) From the scatterplots in the preceding steps, we can deduce that the water stations are
equidistant from one another. Based on this realization, calculate the distance between the water
points, and call it radius. We are going to use this variable in the following set of calculations.
e) First, use the following code to create the calculatebistance() function:

import math

def calculateDistance(x1,yl,x2,y2):

dist = math.sqrt((x2 - x1)**2 + (y2 - yl1)**2)

return dist
Then, using the following code and the preceding function we just created, create the
waterRecieved () function so that we can apply it to the function for the rows of treatment_df:
def WaterReceived(r):

w =0

for i, rr in treatment_df.iterrows():

distance = calculateDistance(rr.longitude, rr.latitude, r.longitude,
r.latitude)

if (distance< radius):
w= w + rr.water * ((radius-distance)/radius)
return w

a) Apply waterRecieved() to the rows of yield_df and add the newly calculated value for each

row to the water column.

b) Study the newly updated yield df. You just fused these two data sources. Go back and study
these steps, especially the process of creating the waterRecieved() function. What are the

assumptions that made this data fusion possible?

¢) Draw a scatterplot of the yield df.harvest and yield_df.water attributes. Do we see any

impact that yield_df.water has on yield_df.harvest?

d) Use the correlation coefficient to confirm your observation from the previous step.

Chapter 13:. Data Reduction

We have come to yet another important step of data preprocessing that is not concerned with data
cleaning; this is known as data reduction. To successfully perform analytics, we need to be able to
recognize situations where data reduction is necessary and know the best techniques and the how-to
of their implementation. In this chapter, we will learn what data reduction is. Let's put this another
way: we will learn what the data pre-processing steps are that we call data reduction. Furthermore,
we will cover the major reasons and objectives of data preprocessing. Most importantly, we will look
at a categorized list of data reduction tools and learn what they are, how they can help, and how we

can use Python to implement them.
In this chapter, we are going to cover the following main topics:

o The distinction between data reduction and data redundancy
o Types of data reduction
« Performing numerosity data reduction

« Performing dimensionality data reduction

Technical requirements

You can find the code and dataset for this chapter in this book's GitHub repository at
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You can find

chapter13 in this repository and download the code and data for a better learning experience.

The distinction between data reduction and data
redundancy

In the previous chapter, Chapter 12, Data Fusion and Data Integration, we discussed and saw an
example of the data redundancy challenge. While data redundancy and data reduction have very
similar names and their terms use words that have connected meanings, the concepts are very
different. Data redundancy is about having the same information presented under more than one
attribute. As we saw, this can happen when we integrate data sources. However, data reduction is
about reducing the size of data due to one of the following three reasons:

« High-Dimensional Visualizations: When we have to pack more than three to five dimensions into one visual, we will reach the

human limitation of comprehension.

« Computational Cost: Datasets that are too large may require too much computation. This might be the case for algorithmic

approaches.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

« Curse of Dimensionality: Some of the statistical approaches become incapable of finding meaningful patterns in the data because

there are too many attributes.

In other words, data redundancy is a characteristic that a dataset may have. This characteristic is
about having redundant data in the dataset, so we may have to take some actions. On the other hand,
data reduction is a set of actions that we can take to reduce the size of data due to the aforementioned

reasons.

When we remove some part of a dataset due to its data redundancy, can we call the removal part data
reduction? After all, we are removing and reducing the dataset. In the general sense of the term
reduction, yes, the dataset is being reduced, but in the context of data mining, the terms data
reduction and data redundancy have specific meanings. And based on those specific meanings, as

described previously, the answer to the question is no.

Now that we've learned about the distinction between data redundancy and data reduction, let's learn

how to assess the success of a data reduction operation.

The objectives of data reduction

Successful data reduction seeks to achieve the following two objectives at the same time. First, data
reduction seeks to obtain a reduced representation of the dataset that is much smaller in volume.
Second, it tries to closely maintain the integrity of the original data, which means making sure that

data reduction will not lead to including bias and critical information being lost in the data.

As shown in the following diagram, these two objectives can be contradictory and when performing
data reduction actions, the two objectives must be taken into consideration at the same time so that

one is not overshadowed by the other:

Obtain a reduced representation
of the dataset that is much
smaller in volume

Closely maintain the integrity
of the original dataset

Figure 13.1 — The counterbalancing objectives of data reduction

With these two objectives in mind, we will look at examples of data reduction and how we can ensure
both objectives are met. However, before we do that, let's categorize the different methods of data

reduction so that we can give our content a nice structure.

Types of data reduction

There are two types of data reduction methods. They are called numerosity data reduction and
dimensionality data reduction. As their names suggest, the former performs data reduction by
reducing the number of data objects or rows in a dataset, while the latter performs data reduction by

reducing the number of dimensions or attributes in a dataset.

In this chapter, we will cover three methods for numerosity reduction and six methods for

dimensionality reduction. The following are the numerosity reduction methods we will cover:
» Random Sampling: Randomly selecting some of the data objects to avoid unaffordable computational costs.

o Stratified Sampling: Randomly selecting some of the data objects to avoid the unaffordable computational costs, all the while

maintaining the ratio representation of the sub-populations in the sample.

« Random Over/Under Sampling: Randomly selecting some of the data objects to avoid the unaffordable computational costs, all

the while creating a prescribed representation of the sub-populations in the sample.

The following are the dimensionality reduction methods we will cover:

« Linear Regression: Using regression analysis to investigate the predictive power of independent attributes to predict a specific

dependent attribute

« Decision Tree: Using the decision tree algorithm to investigate the predictive power of the independent attributes to predict a

specific dependent attribute

« Random Forest: Using the random forest algorithm to investigate the predictive power of the independent attributes to predict a

specific dependent attribute

» Brute-force Computational Dimension Reduction: Computational experimentations to figure out the best subset of independent

attributes that leads to the most successful prediction of the dependent attribute

o Principal Component Analysis (PCA): Representing the data by transforming the axes in such ways that most of the variation in

the data is explained by the first attributes and the attributes are orthogonal to one another

« Functional Data Analysis (FDA): Representing the data using fewer points using functional representation

Some of these explanations may have gone over your head here. Don't worry; next, we will learn
about each of these using analytic examples, so the context of those examples will help you

understand all of these techniques.

First, we will look at the three numerosity reduction methods, after which we will cover the

dimensionality reduction ones.

Performing numerosity data reduction

When we need to reduce the number of data objects (rows) as opposed to the number of attributes
(columns), we have a case of numerosity reduction. In this section, we will cover three methods:
random sampling, stratified sampling, and random over/undersampling. Let's start with random

sampling.

Random sampling

Randomly selecting some of the rows to be included in the analysis is known as random sampling.
The reason we are compelled to accept random sampling is when we run into computational
limitations. This normally happens when the size of our data is bigger than our computational
capabilities. In those situations, we may randomly select a subset of the data objects to be included in
the analysis. Let's look at an example.

Example - random sampling to speed up tuning

In this example, we are using customer Churn.csv to train a decision tree so that it can predict

(classify) what customer will be churning in the future.

Before reading on, please go back and study Example 2 — restructuring the table in Chapter 10,
Cleaning Level II — Unpacking, Restructuring, and Reformulating the Table. In that example, we

used visualization — specifically, box plots — to figure out which attributes have the potential to give

us an insight into the customer's future decisions regarding churning. In this example, we want to do
the same thing but this time, we want to take a multi-variate approach where the interactions of these

attributes are also considered. This can be done using a well-tuned decision tree algorithm.

In this book, we have not covered the techniques of algorithm tuning. But we'll get a glimpse of them
here. One of the standard ways of tuning an algorithm is to take a brute-force approach where we use
all the possible combinations of hyperparameters and see which one leads to the best outcome. The
following code uses the Gridsearchcv() function from sklearn.model_selection to experiment with
all the combinations of the listed possibilities for the criterion, max_depth, min_samples_split, and
min_impurity_decrease hyperparameters. These hyperparameters are the becisionTreeclassifier ()

model's from sklearn.tree:

from sklearn.tree import DecisionTreeClassifier
from sklearn.model _selection import GridSearchCV
y=customer_df['Churn']

Xs = customer_df.drop(columns=['Churn'])

param_grid = { 'criterion':['gini', 'entropy'], 'max_depth': [10,20,30,40,50,60],
'min_samples_split': [10,20,30,40,50], 'min_impurity_decrease': [0,0.001, 0.005, 0.01,
0.05, 0.1]}

gridSearch = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=3,
scoring='recall',verbose=1)

gridSearch.fit(Xs, vy)
print(Best score: ', gridSearch.best_score_)

print(Best parameters: ', gridSearch.best_params_)

Run the preceding code before reading on. Upon running this code, it will report that there are 360
candidate models, and each will be fitted three times on different subsets of the input dataset, totaling
1,080 fittings. The 360 model candidate comes from the multiplication of 2,6, 5, and 6, which are the
number of possibilities that the preceding code has listed for the mentioned hyperparameters,

respectively.

The code will take a while to run. It took my computer, with a CPU speed of 1.3 GHz, around 26
seconds to finish. This may not sound like a very significant amount of time, but the dataset only
contains around 3,000 customers. Imagine if the number of customers was 30 million, which is not
unimaginable for today's telecommunication companies. Here, this 26 seconds would probably be

26,000 seconds, which is equivalent to 7 hours, just to tune the algorithm. That is no good.

One of the approaches we can take to reduce this amount of time is random sampling. The following
code has implemented random sampling by using the pandas DataFrame .sample() function, which

takes the number of random samples you'd like from the DataFrame:

customer_df_rs = customer_df.sample(1000, random_state=1)
y=customer_df_rs['Churn']
Xs = customer_df_rs.drop(columns=["'Churn'])

gridSearch = GridSearchCV(DecisionTreeClassifier(), param_grid, cv=3,
scoring='recall',verbose=1)

gridSearch.fit(Xs, vy)
print(Best score: ', gridSearch.best_score_)

print(Best parameters: ', gridSearch.best_params_)

As you can see, first, 1,000 of the data objects have been randomly selected and then the same tuning
code has been applied. After running this code, you will see that the amount of time it takes for the

code to finish will drop significantly. On my computer, it dropped from 26 seconds to 18 seconds.

What is random_state=1 in the preceding code? This is the ingenious way of sklearn modules
controlling randomness for better experimentations. What that means for us is that if you run the
preceding code multiple times, even though you have included some randomness in the code, you
will get the same result every time. Even better, by assigning the same number to random_state, you

can also get the same results that I am getting, even though we are experimenting with randomness.

You won't have to include random_state=1 in your code, but if you have, you will get the following
parameters as the best ones: {'criterion': 'entropy', 'max_depth': 10,

'min_impurity_decrease': 0.005, 'min_samples_split': 10}.

Now that we know the optimized hyperparameters, we can use them to draw the decision tree and
evaluate the multi-variate patterns that lead to customer churning in this dataset. The following code
uses all the data objects to train pecisionTreeclassifier (), which includes the optimized
hyperparameters we found earlier, to find the multi-variate relationships between the independent
attributes and the dependent attribute; that is, churn. Once the model has been trained using this data,
the code uses graphviz to visualize the trained decision tree. At the end of the code, the extracted

graph will be saved in the churnpT. pdf file.

ATTENTION!

If you have never used garaphvis on your computer before, you may have to install it first. To install graphvis, all you
need to do is run the following one-line piece of code. After successfully running this code, graphvis will be installed on

your computer for good.

Run the following one-line piece of code to install graphvis on your computer:

pip install graphviz

After successfully running the following code, you should be able to find the churnpT.pdf file in the
same folder where you have your Jupyter Notebook file:

from sklearn.tree import export_graphviz

import graphviz
y=customer_df['Churn']
Xs = customer_df.drop(columns=['Churn'])

classTree = DecisionTreeClassifier(criterion= 'entropy', max_depth= 10, min_samples_split=
10, min_impurity_decrease= 0.005)

classTree.fit(Xs, vy)

dot_data = export_graphviz(classTree, out_file=None,
feature_names=Xs.columns, class_names=['Not Churn', 'Churn'], filled=True, rounded=True,
special_characters=True)

graph = graphviz.Source(dot_data)
graph.render(filename='ChurnDT")

The following diagram shows the content of churnpT. pdf that will be saved on your computer after

running the preceding code successfully:

False
Complains 0.5
entropy = 0.998

sample: 2
value =[412, 370]
class = Not Chum

Subscription Length<27.5
entro 948

Seconds of Use 22425
ntropy = 0.88

7
val ,23]
class = Not Churn

entropy = 0.93
samples = 159
value = [55, 104]
class = Churn

Figure 13.2 — The trained decision tree showing the multivariate patterns of customer churning in customer_df

As we can see, random sampling is useful when we don't have the computational capability to

include all of the data objects. It is debatable if random sampling maintains a good balance of the two

counterbalancing objectives of successful data reduction shown in Figure 13.1. Due to its limited
computational capabilities, we do need a smaller version of the dataset. By incorporating complete
randomness, we give all of the data objects the same chance to be selected, so to some extent, we are
maintaining the integrity of the dataset and avoiding introducing any bias by arbitrarily selecting a

subset of the dataset.

In this example, we could have maintained the integrity of the dataset better. When it comes to binary
classification, most of the time, one of the classes is significantly less frequent. In the case of
churn_df, there are 495 Churn=1 cases and 2,655 Churn=0 cases; that is, approximately 15.7% of
cases are churn cases and 84.3% are non-churn cases. You can see this by running

customer_df.Churn.value_counts(normalize=True).

Now, let's see what happens to these ratios when we take samples from customer_df. The following
screenshot shows the ratios of churn and non-churn for three experiments of sampling from

customer_df:

In [7]: M for i in range(3):
print(customer_df.sample(1000).Churn.value_counts(normalize=True))

0 0.865
1 0.135
Name: Churn, dtype: float64
(4] 0.85
1 0.15
Name: Churn, dtype: float64
0 0.835
1 0.165

Name: Churn, dtype: float64

Figure 13.3 — Three sampling experiments on churn_df to see the ratios of churn and non-churn in the samples

In the preceding screenshot, we can see that after every three experiments, the ratios do not match the
original dataset's. This begs the question, are there sampling methods that make sure these ratios
match the original dataset? The answer is yes. One such method is stratified sampling. We will look

at this in the next section.

Stratified sampling

Stratified sampling, also known as proportional random sampling, is a numerosity data reduction
method. The similarity between random sampling and stratified sampling is that in both samplings,
all the data objects have some chance to be selected in the sample. The distinction is that stratified
sampling makes sure that the selected data objects show the same representation of the groups in the

original dataset. The distinction between these methods is shown in the following diagram:

Random Sampling

ok ok

|
|
e+ & I + + + + +
- Al + | ++'+
i e o * +
" |
|
| *
* % | *
3 1 4
\ I / .
¥ $ + \ | / -,
2 e \ / + +a
+ I + 4 +
+ \ / =
* > \ I / ‘*
. \ b [/ /
\ = T F /
* \ N | / / * o
\ i /
4 + * \ + +++ 4+ + / + + +
¥ 3 + \ + ¥ 3 + Vi ¥ 3 +
+ 3 + \ % Foak & 7 B . i -
A - - ——— 9** (— —————— b
Il | * \
kL // x \ *
| / S Y\
7 N\
- — 7 i I T \ :
a4 5| & VAR BN \ W F o
+ R /7 / I \ \ - AP
* # % I \ \
/ \
7/ 1 \ =
o / 1 \ "
7/ | N\ Las
4 I N
P . | ~¢ & +
¥ o3 + 5 v
+ +4 I + t + +
|
|
|
|
|
|

Figure 13.4 — Stratified sampling versus random sampling

The preceding diagram shows a dataset in the middle, five instances of random sampling on the right,
and five instances of stratified sampling on the left. The dataset contains 30 data objects: six stars (*)
and 24 pluses (+). Each of the 10 samples selects 15 data objects out of the 30 data objects. Before
reading on, investigate the preceding diagram and try to figure out the difference between random

sampling and stratified sampling.

What jumps out from this diagram is that while all of the stratified samplings have three stars, the

instance of random sampling has stars ranging from two to four. This is because stratified sampling

has maintained the ratio of the data between the groups, while random sampling does not have such
restrictions; 20% (6/30) of the data objects in the original data are stars, while 20% (3/15) of the data
objects in the stratified samples are stars. However, such restrictions have not been put in place for

the random sampling instance.

Example - stratified sampling for an imbalanced dataset

In the previous example, we saw that customer_df is imbalanced as 15.7% of its cases are churn,
while the rest, which is 84.3%, are non-churn. Now, we want to come up with some code that can

perform stratified sampling.

The following code will be able to get a stratified sample of customer_df that contains 1eee data

objects out of the 3,150 data objects. In the end, the code will print the ratios of churn and non-churn
data objects in the sample using .value counts(normalize=True). Run the code a few times. You will
see that even though the process is completely random, it will always lead to the same ratios of churn

and non-churn cases:
n,s=len(customer_df), 1000
r = s/n

sample_df = customer_df.groupby('Churn', group_keys=False) .apply(lambda sdf:
sdf.sample(round(len(sdf)*r)))

print(sample_df.Churn.value_counts(normalize=True))

The preceding code may have gone over your head in terms of its way of using the .groupby() and
.apply() functions. This is the first time we have had to use this combination in this book. This is as
good an opportunity as any to learn about this combination. When we want a specific set of
operations to be performed on multiple subsets of a DataFrame, we will specify the subsets by
the.groupby() function first. After this, using the .apply() function opens the door for us to be able
to perform operations on those subsets created by .groupby(). Here, sdf stands for Subset

DataFrame.

Before moving on to the next section, let's discuss how stratified sampling approaches the two
objectives of data reduction presented in Figure 13.1. As we implied previously, stratified sampling
puts more effort into the objective of maintaining the integrity of the original data. Of course, when
we have different populations in the same dataset and we want to make sure the representation ratios

are intact, stratified sampling helps us achieve this goal.

Random over/undersampling

Unlike random sampling and stratified sampling, where the chance of objects being selected in the
sample is dictated by the dataset, random over/undersampling due to the needs of analytic gives more

or less chance of being selected to certain data objects.

To understand random over/undersampling, let's compare it to stratified sampling. When we perform
stratified sampling, we calculate the ratio of the sub-populations based on the important attribute and
then perform a controlled random sampling, where the ratios are maintained in the sample. On the
other hand, in random over/undersampling, we have a prescribed ratio that we want our sample to

have; that is, we decide what ratios we want based on our analytic needs.

To illustrate this, the following diagram compares two instances of stratified sampling from
customer_df with two instances of over/undersampling, with a 50-50% (1:1) prescribed ratio between
churning and non-churning customers. All the samples contain 500 data objects from the 3,150 data
objects in the original dataset. If you study the four samples in the following diagram, you will notice
a few patterns. First, you will see that all of them are different, which they should be due to the
randomized nature of both sampling methods. Second, you will see that the ratio of churn and non-
churn customers in the two instances of over/undersampling has been shifted, as described

previously:

x
500 { Chum ,F'E:;:i:”"
e 1 wxuERRERG R
¥ XX
0
. Kl‘,l = L
400 T L
n wxnBREE SRl Rukinx
ﬁ ,x,_::E“!-

1 Sl T
5,300 1 a ey EuRugiuitnn”
> _— ,u,gxig;;!xiw‘
= v:‘g,;{,;ux* L el
L 200 xEwEERELR & R'x;gul*:d!;;x.g;u"
g Ol wonXREQYR o xuREREGEXE L
[FRb bl H PR AL

. i
. ST oot

i 1L e— I

100 ‘25*555:*“" :)"5!:5555&)’: .

,u'}h ﬁu’ii;'ﬁ;'i";" M phat.

Fey ® Evmuls N

i
0 -.lo'l‘i"i'i!!:; HEELH T 8
:

Over/Under-Sampling Stratified Sampling
(Equal ratios)

sg0{ Chum i g 5001 chwm %" x¥
e 1 . e 1 -
n 0 s 0
400 * x 400 o o B
w x o x X Wi = ax®%
! - 1300 1 x
&300 L. 5, o M Ee
g . ‘ " 2 * x xx
x x x x
g0 * ™ « % O, g% x $207 * "y W xS wew
g x i R g e
ey Xy X at w x * % & ¥n
100 e Xx xE ¥ 100 % . e B %2
xx LI . Exy R x
x g :KK X nx l . l,!." X X l:: ‘xx,ll{x;"x o n‘ ,..' . i
5 -+ . H xx A w
0l e odedaitel onxxg hink.d lio.'==l " l' géee 0] e e ‘es 0 :,"ﬂi*;:;iiitf! l‘ili‘h"' "
10 20 30 40 10 20 30 40
Subscription_Length Subscription_Length
200 ¥ ¥ Chum 5001 Chum TLE TR,
H » 3
e 1 e 1 ® x
x
=z 0 s 0
400 : - iy e .
wn x R "] = <ix %
= x x
EI 300 e X x 2300 :x X
s X2 5 g
> x x - - x % ®
§ ® - . * xx 5 - 1 ,.. X Xx %
3200 x %% i . ,i: i §ZOO n = wX & X x : x X x xX
g Ex x xxx 4 x x % !!igll=
= B ¥;, . [® ii =
100 x ® WA 100 Hyuugh® x u ®n
" “Fe * L x LI
xx . » b u % XX x@2
%, X ¥ xx ¥ BuXaexyX ' .
o L E oS¥xx2¥
0 u-.ulo.'! (TLM 1P lili“i“l ” gale” o] o wex x®R <TxEEi Yl bl“. .!' ' x
10 20 10 20 30 40
Subscnptnon_Length Subscription_Length

Figure 13.5 — Stratified sampling versus random over/undersampling using customer_df

The most common analytic situation that might require over/undersampling is binary classification
using an imbalanced dataset. An imbalanced dataset is a table that has been prepared for
classification and its dependent attribute has two characteristics. First, the dependent attribute is
binary, meaning that it only has two class labels. Second, there are significantly more of one class
label than the other. For example, the customer churn prediction that we discussed earlier in this
chapter uses an imbalanced dataset. To check this, you can run

customer_df.Churn.value_counts(normalize=True).plot.bar (), which will create a bar chart that
shows the frequency of each label in the customer_df.churn attribute. You will see that there are

around five times more cases of 0 (non-churn customers) and cases of 1 (churn customers).

TOO SPECIFIC TO MATTER?

Binary classification using an imbalanced dataset might sound too specific to matter. However, the most important
classification tasks are binary, and in almost all of them, the dataset is imbalanced. To name a few very common and
important examples of binary classification that have to use imbalanced datasets, we can mention online fraud detection,
machinery fault detection using sensor data, and automatic disease detection using radiology images.

The reason that we might want to perform over/undersampling is that it has been seen time and again
that the classification algorithm, by default, might overemphasize learning from the less frequent
class label, and unfortunately, often, the case that matters more for us is the less frequent one. For
example, in the example of churn prediction, it is more important for us to recognize who will be
churning, rather than who will not be churning. So, when developing an algorithmic solution, we
might choose to perform over/undersampling. This is done to give the algorithm a greater opportunity

to learn from the less frequent cases.

The code that we use to apply randomly over/undersampling is very similar to and simpler than
stratified sampling. The following code will be able to get a sample of customer_df that contains 500
data objects out of the 3,150 data objects. There will be 256 data objects from both the churning and
non-churning customers. In the end, the code will print the ratios of the churn and non-churn data
objects in the sample using .value_counts(normalize=True). This code is a copy of the preceding
code with a few changes; to help you see them, the updated parts are highlighted. Before running the
following code, first, compare it with the preceding one to study the changes. Then, run the code a
few times. You will see that even though the process is completely random, it will always lead to the

same and equal ratios of churn and non-churn cases:

n,s=len(customer_df), 500

sample_df = customer_df.groupby('Churn', group_keys=False) .apply(lambda sdf:
sdf.sample(250))

print(sample_df.Churn.value_counts(normalize=True))

Before switching gears from numerosity data reduction to dimensionality data reduction, let's discuss
how random over/undersampling approaches the two objectives of data reduction presented in Figure
13.1. This approach intentionally disrupts the integrity of the original dataset due to analytic reasons.
However, as the sampling is performed randomly, the randomness helps keep the integrity of the
dataset to some degree. The fact that we committed to this transgression here is that, at times, random
over/undersampling happens both as a data reduction strategy and as a data transformation strategy.
This is the mixing that allowed us to do this. As we will learn in the next chapter, data transformation

does inflict changes on the data for analytic purposes.

Over/undersampling is more of a data transformation technique, though, at times, it gets mixed with
data reduction. Also, from a technical perspective, it is very similar to random sampling and stratified
sampling, as we learned about here. As a data transformation technique, oversampling could also
mean having repetitions of data objects with the less frequent class label or even having simulated

data objects that we would predict having the less frequent class label.

ATTENTION!

We will not discuss over/undersampling beyond this point in this book. This is because successful over/undersampling is
highly relevant to the classification algorithm of choice and you could see it as a hyperparameter of any classification
algorithm. This means that one algorithm's performance might improve using oversampling, while the other may suffer.
Therefore, oversampling is the content that a book with more emphasis on teaching algorithms should cover. In this book,
our focus is on data preprocessing.

Now, it is time to switch gear! Dimensionality data reduction, here we come!

Performing dimensionality data reduction

When we need to reduce the number of attributes (columns) as opposed to the number of data objects
(rows), we have a case of dimensionality reduction. This is also known as dimension reduction. In
this section, we will cover six methods: regression, decision tree, random forest, computational

dimension reduction, functional data analysis (FDA), and principal component analysis (PCA).

Before we talk about each of them, we must note that there are two types of dimension reduction
methods: supervised and unsupervised. Supervised dimension reduction methods aim to reduce the
dimensions to help us predict or classify a dependent attribute. For instance, when we applied a
decision tree algorithm to figure out which multi-variate patterns can predict customer churning,
earlier in this chapter, we performed a supervised dimensionality reduction. The attributes that did

not show up on the tree in Figure 13.2 are not important for predicting (classifying) customer churn.

On the other hand, when dimension reduction is performed without paying attention to the task of
prediction or classification, and data reduction is done only to reduce the data size or perhaps data
transformation and massaging, then we have unsupervised dimension reduction. If the terms data
transformation and data massaging are not familiar to you, don't worry. We will discuss these in the

next chapter.

Now, let's look at each of the six methods. I will refrain from mentioning if each method is
supervised or unsupervised so that you can think about them on your own. Exercise 4, at the end of

this chapter, will ask you to answer that for each method.

Linear regression as a dimension reduction method

We learned about linear regression as a prediction model in Chapter 6, Prediction. Linear regression
is a very well-researched and integrated statistical method. As such, the libraries that package this
method normally come with many built-in metrics and hypothesis testings that can be very useful for
analyzing the dataset. A group of such hypothesis testing is very useful in deciding if each

independent attribute is playing a significant role in predicting a dependent attribute.

Therefore, linear regression can be used as a dimension reduction method by looking at the resulting
p-value of those hypothesis testings. The p-values that do not show that there is a meaningful
relationship between the relevant independent attributes and the dependent attribute can be used as
evidence, to help remove those independent attributes from the analysis. Let's look at an example to

understand this better.

Example - dimension reduction using linear regression

In this example, we would like to use amznstock.csv, which contains some calculated metrics from
the historical data of Amazon stock that's was collected and computed on January 11, 2021, to predict
the next day percentage of change of the Amazon stock. The dependent attribute in this dataset is

today_changeP. The independent attributes are as follows:
« yes_changeP: Amazon's stock price change in the previous day
« lastweek_changeP: Amazon's stock price change in the previous week
« dow_yes_changeP: Dow Jones change in the previous day
. dow_lastweek_changeP: Dow Jones change in the previous week
« nasdaq_yes_changeP: NASDAQ 100 change in the previous day
- nasdaq_lastweek_changeP: Last week's NASDAQ 100 change in the previous week

I created this dataset on January 11, 2021, to create the YouTube video A Taste of Prediction
(https:/youtu.be/ z0oHuTnMKc). To find out more about this dataset and the logic behind it, please

see the YouTube video.

Now that I am looking at the name of the attributes, I think the attribute names can become much
more intuitive. So, let's start by doing some level I data cleaning; that is, creating concise and

intuitive attribute titles. The attribute titles are concise but they can be more intuitive.

The following code reads the dataset into amzn_df, sets t as the index of amzn_df, and changes the
attribute titles:

amzn_df = pd.read_csv('amznStock.csv')

amzn_df.set_index('t',drop=True,inplace=True)

amzn_df.columns = ['pd_changeP', 'pw_changeP', 'dow_pd_changeP', 'dow_pw_changeP',
'nasdaq_pd_changeP', 'nasdaq_pw_changeP', 'changeP']

https://youtu.be/_z0oHuTnMKc

Changing the attribute titles in the previous code followed three simple patterns. The _yes_ title
segment, which was meant to represent yesterday, was updated with _pd_, which is meant to present
the previous day. Moreover, the _lastweek_ title segment was updated with _pw_, which is meant to
present the previous week. Lastly, the today title segment was eliminated from the dependent

attribute.

Now, let's bring our attention to dimension reduction using linear regression. To use linear regression
as a dimension reduction method, we have to perform linear regression as though we are going to

train the prediction model. The following is the linear regression equation for this amzn_df:

Changep =)80 +)81 X pdchangeP + ,82 X chhangeP + .83 X dOW—pd—ChangeP
+ [4 X dow_pw_changeP + [s5 X nasdaq_pd_changeP
+ f¢ X nasdaq_pw_changeP

To practice and review this, before reading on, refer back to the Example of applying linear
regression to perform regression analysis section of Chapter 5, Data Visualization, and estimate the
values of the s in the preceding linear regression equation using LinearRegression() from

sklearn.linear_model.

Even though LinearRegression() is a great and stable function to use for linear regression,
unfortunately, this function does not include the hypothesis testings that are necessary for applying
linear regression as a dimension reduction method. That is why the following code uses the oLs()
function, from statsmodels.api, to import a linear regression module that outputs the results of the

hypothesis testing we discussed earlier:

import statsmodels.api as sm

Xs = amzn_df.drop(columns=['changeP'], index =['2021-01-12'])
Xs = sm.add_constant(Xs)

y = amzn_df.drop(index =['2021-01-12"']).changeP

sm.OLS(y, Xs).fit().summary()

Let's go over a few things about the preceding code that might have become a question for you before

we analyze its output:

» Why are we dropping the data object with an index of 2021-01-12? If you print amzn_df, you will see that this data object is
presented as the last row of this DataFrame and that there is no value for the dependent attribute; that is, changeP. Do you
remember that the dataset was collected and computed on January 11, 2021? At that time, we did not know what changeP of

January 12 will be. The dataset was put together to try to predict this value.

o What is the purpose of Xs = sm.add_constant (Xs)? This line of code adds a column whose value for all the rows is 1.
The reason for this addition is to make sure OLS () will include a constant coefficient, which is what linear regression models

have. Why did we not have to include this when we used LinearRegression() from sklearn.linear_model? That is

a good question and the answer is that the developer of each module may choose to create their module based on what they think

is a better approach. As users, we need to learn how and when we should use what module.

Now that we understand the code, let's pay attention to its output. After successfully running the

preceding code, you will get the following output:

[,:Figure 13.6 — The result of the OLS() function on the described linear regression model

Figure 13.6 — The result of the OLS() function on the described linear regression model

Before reading on, go back to the s you estimated using LinearRegression(). The § values must be

the same as the values you can see in the preceding diagram, under the coef column.

In the same table, in the P>|t| column, you can find the p-values of the hypothesis test of the
independent attribute's significance for predicting the dependent attribute. You can see that most of
the p-values are way larger than the cut-off point of 0.05, except for dow_pd_changeP, which is
slightly larger than the cut-off point. Based on our understanding of the p-value, we can see that we
don't have enough evidence to reject the null hypothesis that most of the independent attributes are
not related to the dependent attribute — that is, except for dow_pd_changeP, which has a rather small
probability that this attribute is not related to the dependent attribute. So, if we were going to keep

any attribute, we would keep dow_pd_changeP and remove the rest.

In this example, we used linear regression to turn a prediction model with six independent attributes
into a prediction model with only one independent attribute. The following is a simplified version of

the linear equation:

If you modify the preceding code so that the oLs() functions will run the new model, you will get the

following output:

L'I:;Figure 13.7 — The result of the OLS() function on the reduced linear regression model

Figure 13.7 — The result of the OLS() function on the reduced linear regression model

Comparing the adjusted R? (Adj. R-squared), which is a reliable metric for the quality of linear
regression, in Figure 13.6 and Figure 13.7 shows that data reduction helped with the success of the
model. Even though the model in Figure 13.7 has fewer independent attributes, it is more successful
than the model in Figure 13.6.

The shortcoming of linear regression as a dimension reduction method is that the model takes a
univariate approach in deciding if an independent attribute helps predict the dependent attribute. In
many situations, it might be the case that an independent attribute is not a good predictor of the
dependent attribute but its interaction with other independent attributes might be helpful. That is why,
when we want to perform dimension reduction before capturing multi-variate pattern recognition,

linear regression is not a good method of choice. For those cases, we should use one of the other

methods, such as decision tree, random forest, or computational dimension reduction. We will be
learning about each of these methods in this section. Next up, we'll look at using a decision tree as a

dimension reduction method.

Using a decision tree as a dimension reduction method

Throughout this book, we have learned that the decision tree algorithm can handle both prediction
and classification data mining tasks. However, here, we want to see how a decision tree can be used
as a method for dimension reduction. The logic is simple: if an attribute was a part of a tuned and
trained final decision tree, then the attribute must have helped predict or classify the dependent

attribute.

For example, in the tuned and trained decision tree for predicting customer churn, as shown in Figure
13.2, all of the eight attributes were used in the final decision tree. This shows that we would not

want to remove any of the independent attributes for multi-variate pattern recognition.

The decision tree algorithm is an effective way to see if an attribute has the potential to predict or
classify a dependent attribute in a multi-variate way, but it does have some shortcomings. First, the
decision tree makes a binary decision about whether each attribute should be included or not, and we
do not have a way to see how valuable each dependent attribute is. Second, it might be the case that
an attribute is excluded — not because it does not play a role in any multivariate pattern, which can
help predict the dependent attribute — but because the attribute can be beneficial but the structure
and/or the logic of the decision tree fails to capture the specific patterns that the attribute plays a role
in.

Next, we will learn about the random forest algorithm, which rectifies the first shortcoming of the
decision tree. After that, we will learn about brute-force computational dimension reduction, which

can deal with the second shortcoming.

Using random forest as a dimension reduction method

We have not been introduced to the random forest algorithm before in this book. This algorithm is
similar to the decision tree algorithm and can handle both classification and prediction data mining
tasks. However, its unique design makes the random forest a prime candidate to be used as a

dimension reduction method.

Random forest, as the name suggests, instead of just relying on one decision tree to perform
classification or prediction, uses many decision trees in a randomized way. The decision trees that the
random forest uses are random and have fewer levels. These smaller decision trees are called weak

predictors or classifiers. The logic behind random forest is that instead of using an opinionated

decision tree (one strong predictor) to give us one prediction, we can employ multiple, more flexible,

decision trees (weak predictors) and consolidate their predictions into a final class or a value.

As a dimension reduction method, we can just look at the number of times each attribute appeared in
the multiple weak decision trees and arrive at a percentage of decision trees that each attribute was

employed by. This will be invaluable information regarding our choice to keep or remove attributes.

Let's look at an example.

Example - dimension reduction using random forest

In this example, we would like to use random forest to come to the relative importance of each
attribute in the classification of customer churn using the customer Churn.csv file. We saw the
influence that each attribute has on one tuned and trained decision tree in Figure 13.2. However, here,

we are more interested in coming to a numerical value that shows the importance of each attribute.

The following code uses RandomForestclassifier () from sklearn.ensemble to train a random forest

model that uses 1000 weak decision trees:

from sklearn.ensemble import RandomForestClassifier
y=customer_df['Churn']

Xs = customer_df.drop(columns=['Churn'])

rf = RandomForestClassifier(n_estimators=1000)

rf.fit(Xs, vy)

After successfully running the preceding code, which might take a few seconds to run, nothing will
happen. But don't worry — the magic has happened; we just need to access what we are looking for.
Print rf.feature_importances_ and look at the numerical values that show the importance of the
independent attributes. The code shown in the following screenshot creates a pandas Series, sorts the
attributes based on their importance, and then creates a bar chart that shows the relative importance

of each attribute to classify customer churn:

[,: Figure 13.8 — Creating a bar chart using a pandas Series and Matplotlib to show the relative importance of independent attributes to

classify customer churn in customer_df
Figure 13.8 — Creating a bar chart using a pandas Series and Matplotlib to show the relative importance of independent
attributes to classify customer churn in customer_df
The information shown in the preceding screenshot, other than the valuable implications for
dimension reduction, may also be used for direct analysis. For instance, we can see that the
complaints attribute has floated to the top of the list. This means that customer complaints have very
important implications for customer churn and that the decision-makers of the telecommunication

company that this data was collected from may be able to use that for positive change.

While random forests do not suffer from the first shortcoming of decision trees regarding dimension
reduction, they do suffer from the second shortcoming. That is, we cannot be certain that if an
attribute does not show enough importance through the fandom forest, it will not be valuable for
predicting the dependent attribute in other algorithms. The next dimension reduction method that we
will learn about, brute-force computational dimension reduction, does not have this shortcoming.

However, this method is computationally very expensive. Let's learn more about it.

Brute-force computational dimension reduction

This method uses a brute-force approach where all the different subsets of independent attributes are
used in an algorithm to predict or classify the dependent attribute. After this brute-force
experimentation, we will know which combination of the independent attributes can best predict the

dependent attribute.

The Achilles heel of this method is that it can become computationally very expensive, especially if
the algorithm of choice is also computationally expensive. For instance, using computational
dimension reduction to find the best subset of independent attributes using an artificial neural
network (ANN) will probably have a higher chance of leading to the optimum predictor, but at the

same time, it will probably take a significant amount of time to run.

On the other hand, this approach does not suffer from the shortcomings of the other dimension
reduction methods we have learned about so far. Brute-force computational dimension reduction can
be coupled with any prediction or classification algorithms, thus removing our method-specific
results concern we had with the decision tree and random forest.

Now, let's look at an example and see what brute-force computational dimension reduction would
look like.

Example - finding the best subset of independent attributes for
a classification algorithm

In this example, we would like to find the best subset of independent attributes that would lead to the
best performance of K-Nearest Neighbors (KNN) in predicting customer churn in the customer

churn.csv file.

We learned about KNN in Chapter 7, Classification, and, as you may recall, to successfully
implement KNN, we need to have tuned the number of neighbors (K). So, if we want to check which
subset will lead to the best KNN performance, we will need to tune KNN once for every combination

of the independent attributes. This will make the process even more computationally expensive.

The following code has put all these pieces together so that we can experiment with every

combination of independent attributes after tuning KNN for them. This code has many parts and we

will go over them later in the chapter.

This code has been presented in the form of a screenshot because it is rather large. If you wish to

copy the code instead of typing it, please see the chapter13 file in this book's GitHub repository:

|8
| Figure 13.9 — Brute-force dimensionality reduction to optimize KNN's performance when predicting customer churn

Figure 13.9 — Brute-force dimensionality reduction to optimize KNN's performance when predicting customer churn

Let's go over the different parts of the code in the form of the questions you might have about it.

Before reading on, try running and also understanding the code.

As the code will be computationally expensive, it might be smart to let your computer run the code
while you try to understand it:

o What is itertools and why do we need it? It is a very useful module when we need a complex web of nested loops to get our
task done. To create every possible combination of the independent attributes, we need to have various number of nested loops
under the main loop, and that is not possible to do using the regular iteration functionality of Python. If the previous sentence
didn't make sense and you are adamant about understanding it, try to write some code that prints all the combinations of the
independent attributes; then, you will understand.

By using itertools .combinations(), we were able to create all the combinations in a two-level
nested loop.

o What is result_df and why do we need it? This is a pandas DataFrame that this code uses as a placeholder, in which we will

record the records of all the brute_force experimentations.

o What is recall and why are we evaluating our method using recall instead of accuracy? Recall is a specific evaluation metric of
binary classification tasks, and in this case study, having a better recall is more important than better accuracy. I'd say Google it
and learn more about it, but if you are not interested in learning about what recall is at this point in your data analytics career, I

think just looking at it as an appropriate evaluation metric would do for now.

o Why are we only experimenting with the four possible values of [1,3,5, 7] for K? This is a measure that's used to cut the

computational costs because without it, the code would take a very long time to run.

Once you have fully understood the preceding code and your computer has finished running it, you
should sort the pandas DataFrame, result_df, by the performance column and see the results of your
experimentation. result_df.sort_values('performance', ascending=False) does this, and studying
its output will help you realize that the following two combinations will lead to a very successful

KNN classification with recall scores of 0.99596:

o Complains, Seconds of Use, Frequency of use, Distinct Called Numbers
o Seconds of Use, Frequency of SMS, Distinct Called Numbers
Comparing the final results of this example with Figure 13.8, which was the final result of the

random forest on the same case study, can teach us a lot about the advantages of the brute-force

computational dimension reduction method:

« First, we can see that what was important for the random forest is not necessarily important for KNN. For instance, while for the

random forest, Distinct Called Numbers was not very important, we can see that KNN can use it to get its best performance.

« Second, while the random forest gave us a good visualization about the importance of the attributes after we received these
results, we will still need to make decisions as to what attributes we need to exclude or include. However, brute-force

computational dimension reduction will tell us exactly what attributes to include.

While these advantages of brute-force computational dimension reduction sound very impressive, I'd

hesitate to write this method up as the best. The computational cost of this method is a real concern.

So far in this chapter, we've learned about two numerosity reduction methods and four dimensionality
reduction methods. The dimensionality reduction methods we've learned about so far are specific to
prediction or classification. We will learn about two more dimensionality reduction methods that are
more general and can be used as one of the preprocessing steps before any task, including
classification and prediction. These two methods are principal component analysis (PCA) and
functional data analysis (FDA). Let's start with PCA.

PCA

This dimension reduction method is the most famous general and non-parametric dimension
reduction method in the literature. There are rather complex mathematical formulas if we raise the
hood of the method and take a look at how the method works. However, we are not going to get
bogged down in the mathematical complexities. Instead, we are going to learn about PCA by using
two examples: one containing a toy dataset and one containing a real example. So, let's dive into the

first example and learn about PCA.

Example - toy dataset

In this example, we are going to use the PCA_toy_dataset.x1sx file. The following screenshot, which

is in a dashboard-style, shows five items:
o The code to read the file into toy_df
« The Jupyter Notebook representation of toy_df
« The scatterplot of the two dimensions of toy_df
« The calculated variance of both attributes in toy_df and their summation (Total)

o The correlation matrix of toy_df:

[,:'Figure 13.10 — A dashboard containing information and visuals for toy_df
Figure 13.10 — A dashboard containing information and visuals for toy_df
Using the preceding screenshot, we can gain a lot of insight into toy_df. What jumps out right off the

bat is that Dimension_1 and Dimension_2 are strongly correlated. We can see this both in the

scatterplot and the correlation matrix; the correlation coefficient between Dimension_1 and

Dimension_2 is 0.859195. We can also see that there is a total of 1026.989474 variations in toy_df;

Dimension_1 contributes 415.315789 of the total variation, while Dimension_2 contributes the rest.

The way PCA looks at any data is in terms of variations. For PCA, there is this much (1026.989474)
information presented in toy_df. Yes, PCA considers variations across different data attribute
information. For PCA, the way that the information is presented across the two attributes is
troublesome. PCA doesn't like the fact that some of the information that is presented by
Dimension_1 is the same as some of the information presented by Dimension_2, and vice versa.
PCA has a non-parametric view of the data. For PCA, the attributes are simply the holders of
information in form of numerical variations. Thus, PCA sees it as fitting to transform the data so that

the dimensions do not show similar information.

Before discussing what transformations PCA applies to a dataset, let's go ahead and apply them to
toy_df and see its results. The following screenshot shows another dashboard-style visual that shows
the information about the PCA-transformed toy_df. This screenshot contains five items that are
similar to the ones shown in Figure 13.11. This screenshot also contains the code that uses the PCA()

function from sklearn.decomposition to transform toy_df:

L,:;Figure 13.11 — A dashboard containing information and visuals for the PCA transformed toy_df dataset

Figure 13.11 — A dashboard containing information and visuals for the PCA transformed toy_df dataset

In the preceding screenshot, we can see the information and visualizations of the PCA-transformed
toy_df, which is called toy_t_df. We call the new columns of a PCA-transformed dataset principal
components (PCs). Here, you can see that since toy_df has two attributes, toy_t_df has two PCs
called PC1 and PC2.

After taking a cursory look at the preceding screenshot and comparing it with Figure 13.11, it might
feel like there's no points of similarity between the two DataFrames: the original toy_df dataset and
its PCA-transformed version, toy_t_df. However, you'll be surprised to know that there are lots of
commonalities between the two. First, look at the total amount of variance in both figures. They are
both exactly 1026.989474. So, PCA does not add information to and remove information from the

dataset, it just moves the variations from one attribute to the other.

A second similarity will show itself when we rotate the scatterplot of Dimension_1 and
Dimension_2 in Figure 13.11. This can be seen in the following diagram, and you can see that the
data presented in Figure 13.12 is the same as that shown in Figure 13.11 after some axis

transformation:

[,:Figure 13.12 — A comparison between the PCA-transformed toy_df dataset and the visually rotated toy_df dataset

Figure 13.12 — A comparison between the PCA-transformed toy df dataset and the visually rotated toy_df dataset

Now, let's talk about what PCA does to a dataset. In plain English, PCA transforms the axes of a
dataset in such a way that the first PC — in this example, PC1 — carries the maximum possible

variation, and the correlation between the PCs — in this example, PC1 and PC2 — will be zero.

Now, let's compare Figure 13.11 and Figure 13.12 again. While Dimension_1 only contributes
415.315789 to the total 1026.989474 variations in Figure 13.11, PC1 contributes 957.53716 to the
total 1026.989474 variations in Figure 13.12. So, we can see that the PCA transformation has
successfully pushed most of the variations into the first PC, PC1. Moreover, looking at the scatterplot
and the correlation matrix in Figure 13.12, we can see that PC1 and PC2 have no relationship with
one another and that the correlation coefficient is zero (-2.682793e-17). However, we do remember
from Figure 13.11 that the relationship between Dimension_1 and Dimension_2 was rather strong
(0.859195). Again, we can see that PCA has been successful in making sure there is no correlation
between PC1 and PC2 in this example. When two attributes are poised to have zero correlation with

one another, it is said that they are orthogonal to one another.

There is more to learn about PCA, but now, you are ready to learn via a real data analytic application.
Let's look at the next example.

Example - non-parametric dimension reduction

Go back to Chapter 8, Clustering Analysis, the Using K-Means to cluster a dataset with more than
two dimensions section and review the clustering we performed there. We employed K-Means to
cluster the countries in wH Report_preprocessed.csv based on their data from 2019 into three groups.
In this example, instead of using only 2019 data, we want to use all of the data in the file. Also,

instead of using clustering analysis, we want to use PCA to visualize the inherent patterns in the data.

In Chapter 8, Clustering Analysis, we used the following nine attributes to cluster the countries:
Life_Ladder, Log_GDP_per_capita, Social_support, Healthy_life_expectancy_at_birth,
Freedom_to_make_life_choices, Generosity, Perceptions_of_corruption, Positive_affect, and
Negative_ affect. As there are more than three attributes, we were unable to use the visualization
methods to visualize a complete representation of the dataset. With the help of PCA, we can push
most of the variations in the data into the first few PCs and visualize them instead, which will help us
get some insight into the general trends in the dataset.

The following code reads the wH Report_preprocessed.csv file into report_df and then uses the

pandas.pivot () function to create country_df:

report_df = pd.read_csv('WH Report_preprocessed.csv')

country_df = report_df.pivot(index="'Name', columns='year"', values=
['Life_Ladder', 'Log_GDP_per_capita', 'Social_support', 'Healthy_life_expectancy_at_birth',
'Freedom_to_make_life_choices', 'Generosity', 'Perceptions_of_corruption',

'Positive_affect', 'Negative_affect'])

After running the preceding code and studying country_df, you will see that the dataset has been
restructured so that the definitions of the data objects are for each country, while all the happiness
indices of all the 10 years from 2010 to 2019 are included. Therefore, in total, country_df has 90

attributes now.

After data restructuring, the following code creates xs and standardizes it. To be specific, xs = (xs -

Xs.mean())/Xs.std() standardizes the xs DataFrame:

Xs

country_df
Xs = (Xs - Xs.mean())/Xs.std()

Xs

We already know how to normalize a dataset. Here, we are using another data transformation
technique: standardization. What distinguishes these two data transformation methods is why they
are used. For clustering, we use normalization as it makes sure the scale of all the attributes is the
same, so each attribute will have equal weight in the clustering analysis. However, it is essential to
standardize the data before applying PCA. That is because standardization transforms the attributes,
so all of the transformed attributes will have an equal standard deviation: one. After successfully
running the preceding code, run either xs.var () or xs.std() to see that standardizing the data ensures

each attribute has the same variance across the data objects.

Why is standardization necessary before applying PCA? If you remember from what we have been
learning about PCA, this method looks at each attribute as a carrier of some variation of the total
variation. If one attribute happens to have a significantly larger variance, it will just dominate the
PCA's attention. Therefore, to ensure each attribute will get fair and equal attention from PCA, we

will standardize the dataset.

Now that the dataset is ready, let's apply PCA. The following code uses the pca() function from
sklearn.decomposition to PCA-transform xs into xs_t:

from sklearn.decomposition import PCA

pca = PCA()

pca.fit(Xs)

Xs_t = pd.DataFrame(pca.transform(Xs), index = Xs.index)

Xs_t.columns = ['PC{}'.format(i) for i in range(1,91)]

After successfully running the preceding code, print the transformed dataset, Xs_t, and investigate its

state.

ATTENTION!

You might be confused about ['PC{}'.format(i) for i in range(1,91)] in the preceding code. The technique
that was used in this line of code is called list comprehension. Whenever we want to fill a collection with iterable items,

instead of using traditional loops, we can use list comprehensions. For instance, if you were to run this line of code
separately, it would printout ['PC1', 'PC2', 'PC3', .., 'PC90']

The question we should be asking ourselves now is, was PCA successful? We can do better than
asking — we can check. By simply running xs_t .var (), we can see the amount of variations that are
explained by each PC. After running this, we can see that most of the variations are explained by the
first PCs, but we don't know by exactly how much. Normally, after performing PCA, we perform

cumulative variance explanation analysis on the PCs.

The following screenshot shows the code for creating explanation_df, which is a reporting
DataFrame that was created to show the variance percentage of each PC, as well as the cuamulative

variance percentage up until each PC, starting from PC1:

In [37]: M total_variance = Xs_t.var().sum()
dic = {'variance_percentage':Xs_t.var()/total_variance,
'cumulative_variance_percentage':
Xs_t.var().cumsum()/total_variance}

explanation_df = pd.DataFrame(dic)
explanation_df

Out[37]:

variance_percentage cumulative_variance_percentage

PC1 4.775917e-01 0.477592
PC2 1.609550e-01 0.638547
PC3 7.197769e-02 0.710524
PC4 6.833512e-02 0.778860
PC5 5.290713e-02 0.831767
PC86 4.023476e-08 1.000000
PC87 6.144899e-11 1.000000
PC88 2.005157e-31 1.000000
PC89 1.969081e-33 1.000000
PC90 2.021922e-33 1.000000

90 rows x 2 columns
Figure 13.13 — Creating explanation_df from Xs_t

In the preceding screenshot, we can see that the first three PCs account for 71% of the total variation
in data. We would roughly need 64 out of 90 attributes to be able to account for around 71% of the
variations in a dataset with 90 attributes. However, thanks to PCA, we have transformed the dataset

into a state where we can show 71% of the variations in the dataset only using three attributes.

Next, we will use our visualization skills to draw a three-dimensional scatterplot. Running
Xs_t.plot.scatter(x='PC1', y='PC2', c='Pc3', sharex=False) will ouput the following 3D

scatterplot:

[,:Figure 13.14 — Visualizing 71% of the variations in country_df using PC1, PC2, and PC3

Figure 13.14 — Visualizing 71% of the variations in country_df using PC1, PC2, and PC3

The preceding visualization now has the advantage of having visualized 71% of the information in
country_df, which is an excellent achievement. However, the disadvantage of creating visualizations
using PCs is that the dimensions in the visualization will not have the intuitive meaning that they
would if we were to use the original attributes for visualization. For instance, compare the preceding
diagram with Figure 8.3 of Chapter 8, Clustering Analysis. In Figure 8.3, you will see that the x-axis
shows Life_Ladder, whereas the y-axis shows Perception_of_corruption, and the color shows
Generosity. When we look at the visualization, we have an understanding of what intuitive values
change while moving from one dot to the other. However, in the preceding diagram, PC1, PC2 and

PC3 are simply capsules of variations; we have no intuitive understanding of what they show.

And that's not where things end. When looking at a regular scatterplot, we would intuitively assume
that the x-axis and y-axis have equal weight and importance. However, we should try to beat that
second nature when looking at the scatterplots of PCs. The reason for this is that the first PCs have
more importance as they carry more variations. We also need to keep in mind that the representation
of color only carries about 10.1% of the total variations shown by the visualization; 10.1% was
calculated using the formula 7.197769e-02/0.710524; both numbers are from Figure 13.13.

In any case, beating our perception by paying attention to the relevancy and ratios of PCs all at once
is a tall order, especially for untrained eyes. The good news is that we can use other visualization
techniques to somewhat guide our eyes. The following code uses a few strategies to help us see the
relative relationship that the data points have to one another regarding the PCs:
Xs_t.plot.scatter(x='PC1',y="'PC2',c="PC3"',sharex=False, vmin=-1/0.101, vmax=1/0.101)
x_ticks_vs = [-2.9%4 + 2.9*1 for 1 in range(9)]
for v in x_ticks_vs:

plt.axvline(v,c="'gray',linestyle="'--"',1linewidth=0.5)
plt.xticks(x_ticks_vs)
y_ticks_vs = [-8.7,0,8.7]
for v in y_ticks_vs:

plt.axhline(v,c="'gray',linestyle="'--",1linewidth=0.5)
plt.yticks(y_ticks_vs)

plt.show()

Before we look at how the strategies were translated into the preceding code, let's look at the result
and use that as a lead-in to learning about those strategies. After running the preceding code, Python

will produce the following diagram:

[,: Figure 13.15 — A repeat of Figure 13.13 but with new details to guide our eyes regarding the relevance and ratios of PC1, PC2, and
PC3

Figure 13.15 — A repeat of Figure 13.13 but with new details to guide our eyes regarding the relevance and ratios of
PC1, PC2, and PC3

In the preceding diagram, you can see that two changes have been adopted. Let's go through them

one by one and explain them:

o X-ticks of the plot has been updated, and vertical lines have been added accordingly. These changes are adopted using the
amount of variations PC1 offers. Likewise, y - ticks of the plot has also been updated, and horizontal lines have been added

accordingly.

The numbers 2.9 and 8.7 have been calculated by trial and error and the information taken from
Figure 13.13; first, we can calculate 67.21682870670097% and 22.652999757925132% as the
percentages that PC1 and PC2 are representing in the diagram, respectively. Then once 1 is
divided by each of these values we get 2.9 and 8.7 for PC1 and PC2. Where did being divided by
1 come from? Think about it.

« The color spectrum changes as it represents PC3, which has been widened. We use the range of -1/0.101 to 1/0.101 here.
Earlier, we calculated 11.1% as the percentage amount of variations that PC3 carries. This change, as you can observe in the

preceding diagram, helps us not give undue importance to the changes of PC3 among the data objects.

Before we move on, let's do one last thing to enrich the visualization.

We want to annotate the dots in the preceding diagram with the names of the countries. Since
annotating all of the countries would probably make the visual cluttered and unreadable, we will only
add 50 countries; these 50 counties will be selected randomly using the pandas DataFrame.sample()
function. We will also make the scatterplot a bit larger. The following code will do this for us. The

changes that we've made to the preceding code are in bold so that you can easily find them:

Xs_t.plot.scatter(x='PC1',y="'PC2',c="'PC3"',sharex=False, vmin=-1/0.101, vmax=1/0.101,
figsize=(12,9))

x_ticks_vs = [-2.9%4 + 2.9*1 for 1 in range(9)]

for v in x_ticks_vs:
plt.axvline(v,c='gray',linestyle="'--",1linewidth=0.5)

plt.xticks(x_ticks_vs)

y_ticks_vs = [-8.7,0,8.7]

for v in y_ticks_vs:

plt.axhline(v,c='gray',linestyle="'--",1linewidth=0.5)

plt.yticks(y_ticks_vs)
for i, row in Xs_t.sample(50).iterrows():
plt.annotate(i, (row.PC1, row.PC2), rotation=50,c="gray',6 size=8)

plt.show()

The following diagram will be produced after successfully running the preceding code:

[,:'Figure 13.16 — The annotated and enlarged version of Figure 13.15

Figure 13.16 — The annotated and enlarged version of Figure 13.15

Now, instead of having to rely on a clustering algorithm to extract and give us the inherent multi-
variate patterns in a dataset, we can visualize them. This visualization, to a decision-maker whose
eyes have been trained, can be invaluable as 71% of the variations in the dataset are presented in this

visualization.

The next dimensionality reduction method we will learn about is functional data analysis (FDA);
however, let's discuss the advantages and disadvantages of PCA first. As we saw in this example,
PCA may be able to push most of the variations across all the attributes of a dataset into the first PCs.

This is great as we can present more information using fewer dimensions.

This can have two distinct positive impacts. First, as we saw in this example, we can visualize more
information using fewer visual dimensions. Second, we may use PCA as a way to help with
computational costs for algorithmic decision-making. For instance, instead of having to have 90
independent attributes, we may be able to have only three attributes with only a minimal loss of

information.

On the other hand, there is a very significant negative impact that comes with using PCA. By pushing
the variations around, PCA effectively makes the new dimensions of the transformed data

meaningless, which can deprive us of some analytical capabilities.

The next strength/weakness of PCA is also the weakness/strength of the next method we will learn
about, which is FDA. PCA is a non-parametric method, which means it can be applied to any dataset
and it may be able to transform the data into a new space where fewer dimensions are necessary to
present much of the variations. However, FDA is not a method that can be applied to any data. FDA
may be applicable or not — it all depends on if we can find a mathematical function that can imitate
our data to an acceptable degree. That being said, if we do manage to find that function and apply
FDA, then dimension reductionality will not transform the data into a new space where the

dimensions are meaningless. However, this is what PCA does.

IS PCA APPLICABLE TO ANY DATASET?

Actually, no. If the attributes of a dataset form non-linear relationships whose inclusion is important for the analytic goals,
PCA should be avoided. However, in most everyday datasets, the assumption that attributes have a linear relationship with

one another is safe. On the other hand, if capturing the non-linear relationships between data attributes is essential, you
should stay away from PCA.
At this point, I hope you are very excited to learn about FDA. You should be since FDA is a very

powerful and exciting method.

Functional data analysis

As the name suggests, functional data analysis (FDA) involves applying mathematical functions to
data analytics. FDA can be a standalone analytic tool, or it can be used for dimension reduction or
data transformation. Here, we will discuss how it can be used as a dimension reduction method. In

the next chapter, we will discuss how FDA can be used for data transformation.

Simply put, as a dimension reduction method, FDA finds a function that can imitate the data well

enough so that we can use the parameters of the function instead of the original data.

As always, let's look at an example to understand this better.
Example - parametric dimension reduction

In the preceding example, Example — non-parametric dimension reduction, we used PCA to
transform country_df so that most of the variations — 71%, to be exact — were presented in only three
dimensions; that is, PC1, PC2, and PC3. Here, we want to approach the same problem but use a

parametric approach instead.

Before moving on, get Jupyter Notebook to show country_df and study its structure. Its structure is
also shown in the following diagram. You can see that each country has 90 records from nine

happiness indices over 10 years:

[,:Figure 13.17 — The structure of country_df
Figure 13.17 — The structure of country_df

To gauge if FDA can help us transform this dataset, let's visualize the 10-year trend of each happiness

index per country.

The following code populates 1,098 (122*9) line plots. As you hit run in Jupyter Notebook, line plots
will start to appear. You will not have to let your computer populate all the visuals. Once you feel like
you have grasped what these plots look like, you can interrupt the kernel. If you don't know how to
stop your kernel, go back to Figure 1.2:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_support',
'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_choices', 'Generosity',
'Perceptions_of_corruption', 'Positive_affect', 'Negative_affect']

for i,row in country_df.iterrows():

for h_i in happines_index:

plt.plot(row[h_i])
plt.title('{} - {3}'.format(i,h_1i))
plt.show()

After this exercise, you might be convinced that a linear equation might be able to summarize the

trends in all of the visualizations. The general linear equation looks like this:

In this equation, t represents time, and in this example, it can take any one of the values in the list [0,
1,2,3,4,5,6,7,8, 9]. For each of the visualizations we saw after running the preceding code, we
strive to estimate the a and b parameters so that the function shown in the preceding formula can

represent all the points fairly.

Before making any final decisions, let's test the applicability of this function, both visually and
statistically. However, as this is our first time fitting a function to a data, let's perform curve fitting for
some sample data and then use loops to apply that to all of our data. The sample data we will be

using will be Life_Ladder of Afghanistan — the very first visualization the preceding code created.

We will be using the curve_fit() function from scipy.optimize to estimate the a and b parameters
for Life_Ladder of Afghanistan. To apply this function, other than importing it (from scipy.optimize

import curve_fit), we need to perform the following steps:

1. First, we need to define a Python function for the mathematical function we want to use to fit the data.
The following code creates 1linearFunction(), as we described previously:
def linearFunction(t,a,b):

y = a+ b*t
return vy
We will be using linearFunction() shortly.

2. Second, prepare the data for the curve_fit () function by organizing it into x_data and y_data.
The following code shows how this is done for Life_Ladder of Afghanistan:
x_data = range(10)
y_data = country_df.loc['Afghanistan', 'Life_Ladder']

3. Pass the function and the data into the curve_fit () function.

The following code shows how this can be done for the sample data:
from scipy.optimize import curve_fit

p, ¢ = curve_fit(linearFunction, x_data, y_data)

After running the three preceding code blocks, the p variable will have the estimated a and b

parameters. Printing p will show you that a is estimated to be 4.37978182, while b is estimated to

be -0.19528485.

To evaluate the goodness of this estimation, we can use both visualization and statistics. The
following screenshot shows the code to create the analyzing visualization, its result, the code for

calculating r2, and its result:

=%
| g Figure 13.18 — The code and the result of using visualization and statistics to evaluate the curve for fitting goodness-of_fit

Figure 13.18 — The code and the result of using visualization and statistics to evaluate the curve for fitting goodness-
of_fit
Statistically speaking, r2 is the ideal metric for capturing and summarizing the goodness of fit for
data one number. The metric can take any value between 0 and 1 and the higher values show a better
fit. The value of 0.59 in this example is not a value that would make you say "phew! I've found the
perfect fit," but it is also not terrible.

In any case, we want to combine visualization with statistics for the best interpretation and decision-
making. Visually speaking, the fitted data nicely shows where the country started in 2010 (a) and the
average slope of change the country has had over the years (b). Even though r2 does not show the
perfect fit, the visualization shows that the function tells a perfect story of the data with only two
parameters. When you're dealing with FDA, being able to capture what is essential to our analysis is
more important than having a perfect fit. Sometimes, the perfect fit shows we are capturing the noise
over the generalizable trend.

THE MEANING BEHIND THE PARAMETERS OF A LINEAR FUNCTION

Similar to any other famous function, the parameters of the linear function (y=a+b*x) have intuitive meanings. The a
parameter is known as an intercept or constant; in this example, the intercept represents where the country started. The b
parameter is known as the slope, and it represents the rate and direction of change. In this example, b represents exactly
that — the rate and direction of change a country has gone through over the years.

So, every time you perform FDA, one of the must-do activities is understanding the meaning of the parameters of the
function that can capture the essential information of the dataset.
Of course, we don't stop here before finalizing the linear function — we must test how well the

function can capture the essence of information for the happiness indices of each country.

The following code fits the linear function 1,098 times — one per combination of happiness indices —
and the countries (122 countries and 9 happiness indices). For every curve fitting, the line plot shows
the actual data and the fitted function is presented. r2 of the fit is also reported. Moreover, all
calculated r2 values are recorded in rsqured_df for future analysis:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_support',

'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_choices', 'Generosity',
'Perceptions_of_corruption', 'Positive_affect', 'Negative_affect']

rSqured_df = pd.DataFrame(index=country_df.index, columns=happines_index)

for i,row in country_df.iterrows():
for h_i in happines_index:
x_data = range(10)
y_data = row[h_1i]
p,c= curve_fit(linearFunction, x_data, y_data)

fit_y = linearFunction(x_data,p[0],p[1])

rS = r2_score(y_data, fit_y)

rSqured_df.at[i,h_i] = rS

plt.plot(x_data,y_data,label="data')

plt.plot(x_data, fit_y, '--', label='fit'")
plt.xticks(x_data,y_data.index)

plt.legend()

plt.title('{} - {3} - r2={}' .format(i,h_i,str(round(rS,2))))

plt.show()

Spend some time and review the visuals that the preceding code populates. You will see that while
the r2 values of some of the visualization and the fit of the linear function are not statistically high,

for almost all of the visualizations, the story about the linear function state makes sense.

To investigate this further, let's create a box plot of all of the r2 values per happiness index. The

following screenshot uses the seaborn.boxplot () function to do this:

[,I:jFigure 13.19 — The box plots of r2 per happiness index

Figure 13.19 — The box plots of r2 per happiness index

After studying the box plot in the preceding screenshot, we can see that the curve fitting for
Log_GDP_per_capita and Healthy_life_expectancy_at_birth have had very good fits. This shows
that the trends of these two happiness indices have been the most linear.

From the preceding screenshot, we could conclude that the linear function is not the appropriate
function to transform the other happiness indices and recommend going to the drawing board to find
a more suitable function for them. While that is also a valid direction, continuing with the linear
function for all of the happiness indices is also valid. This is because linear functions tend to capture
the essence of what is important for this analysis, and having a lower goodness-of-fit does not mean

the parameters will not be able to show the trends of the data.

The following code creates a code function to be applied to country_df. The linearFbA() function,
when applied to a row, loops through all the hapiness indices, fits the linear function to the 10 values,

and returns the estimated parameters, a and b:

happines_index = ['Life_Ladder', 'Log_GDP_per_capita', 'Social_support',
'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_choices', 'Generosity',
'Perceptions_of_corruption', 'Positive_affect', 'Negative_affect']

ml_index = pd.MultiIndex.from_product([happines_index,['a','b']], names=('Hapiness Index',
'Parameter'))

def linearFDA(row):

output_sr = pd.Series(np.nan,index = ml_index)

for h_i in happines_index:
x_data = range(10)
y_data = row[h_1i]
p,c= curve_fit(linearFunction, x_data, y_data)
output_sr.loc[(h_1i,'a")] =p[0]
output_sr.loc[(h_1i,'b")] =p[1]

return(output_sr)

Once the function has been created, you can use the following code to create country_t_df, which is
the FDA-transformed version of country_df.

However, there is a caveat before running the code. Once run, the code will provide a warning

regarding covariance not being able to estimate. That's nothing to worry about:

country_df_t=country_df.apply(linearFDA, axis=1)

Once the code has been run, get Jupyter Notebook to show you country_df_t and study the
transformed dataset. The following diagram shows the extent and structure of change that was

applied to country_df to shape country_df t:

[,:'Figure 13.20 — The original structure of country_df and its FDA-transformed one

Figure 13.20 — The original structure of country_df and its FDA-transformed one

In the preceding code, we can see that country_df t now only uses 18 attributes instead of the 90
attributes of country_df. Here, FDA has done more than just data reduction. FDA, along with the
linear function, has transformed the data so that its key features — the starting point and the slope of

change of the happiness indices — are massaged to the surface.

Before moving on, let's compare the FDA approach and PCA approach that we applied to the same
data. There are a few key points here:

« Extension of Reduction: PCA was able to reduce the data into only three attributes, while FDA reduced the data into 18

attributes.

» Loss of Information: Both approaches removed some variations from the data. We know that PCA kept 71% of the variation, but
we don't know exactly how many variations were kept by FDA. However, we did have control over what kind of variations we

were interested in using with the FDA. PCA does not offer this kind of control.

« Parametricality: While there were fewer new dimensions for PCA, they did not have an intuitive meaning. However, FDA's

reduced parameters did have meaning, and those were even more useful for analysis than the original attributes.

Next, we are going to learn about a few possible useful functions that are frequently used when

transforming data sources with FDA.

Prominent functions to use for FDA

In this section, we will learn about a few functions that are frequently used for FDA.

Before we look at this list of functions, let's reiterate that the functions can be anything that has the
potential to capture the trends in the data. However, the functions we will go over here are famous

and frequently used for curve fitting.

When you have data and want to apply it to FDA, you can experiment with one of the four functions
- exponential, Fourier, sinusoidal, and Gaussian - to see which one works best for the analytic

goals.

Now, let's learn a little bit about each of them. We will start with exponential. Before moving on,

please pay close attention to the following caveat.

CAVEAT!

There is a lot to be said about each of these functions, in a book dedicated to functional data analysis, each of these
functions could take up one whole chapter. However, here, we only get a very brief introduction to each of these functions.
These instructions will be enough for you to have a good guess if a function will be applicable for a dataset or not. If and
when you have a function candidate for a dataset, | highly encourage you to read more about the function to understand its
possible variations and the meanings of its parameters. This will be essential if you wish to succeed with functional data
analysis.

Now, let's learn a little bit about these functions. We will start with the exponential function.

Exponential function

This function can capture what is characterized as exponential growth or decay. For instance, what
we know as exponential growth is a growth that is slow at first but whose rate of growth rapidly

increases. The following equation shows the exponential function:

The parameters of these functions are a and b. Here, e is a constant known as Euler's number, which

is a constant that is approximately 2.71. To get an accurate value of e, run np.exp(1) in your Jupyter

Notebook after having imported NumPy as np.

For example, the following code uses the Googlestock.csv file, which contains the daily stock prices
of Google from the day it went public until September 3, 2021, which is the day this content is being
developed. This code uses everything we have learned about in this chapter on how to fit a function

to a dataset:
def exponantial(x,a,b):
y = a*np.exp(b*x)
return y
price_df = pd.read_csv('GoogleStock.csv')
price_df.set_index('t',inplace=True)

y_data = price_df.Price

x_data range(len(y_data))

p,c= curve_fit(exponantial, x_data, y_data,p0=[50,0])

fit_y = exponantial(x_data,p[0],p[1])

plt.plot(x_data,y_data, label='Google Stock Price Data')

plt.plot(x_data, fit_y, '--', label='fit'")
plt.xticks(np.linspace(1,len(y_data),15),y _data.iloc[1::300].index, rotation=90)
plt.legend()

plt.show()

Running the preceding code will create the following output:

[,:'Figure 13.21 — The output of fitting the exponential function to GoogleStock.csv
Figure 13.21 — The output of fitting the exponential function to GoogleStock.csv

Before moving on to the next function, allow me to share with you a rather disappointing reality
about the curve_fit() function from scipy.optimize. While this is a great and useful function, it is
not fully integrated and the most powerful it can be. For more complex functions, for curve_fit() to
estimate the best possible parameters, the function needs a leg-up. This small act of help must come
from us as a first guess about what we think the parameters should be. For example, in the preceding
code, pe=[50, 0] is that leg-up. For us to be able to have good educated guesses so that we can help
curve_fit(), we need to have a good understanding of what the parameters of the function mean. For
instance, in the case of the exponential function, a is known as the intercept and b is known as the
base. To get curve_fit() going, we have helped the function by stating that the intercept will be

around the number 50. The number 50 is the price of Google stocks for the first few days.

Now, let's move at the Fourier function.

Fourier function

This function is a valid candidate for capturing vibrational signals such as noise and voice data.
These vibrational signals are characterized by oscillating, reciprocating, or periodic, and the Fourier
function can capture these periodic oscillations and reciprocations. The following equation shows the

Fourier function. The parameters of the Fourier function are a0, al, a2, and w:

For example, the following code uses the Noise data.csv file, which contains 200 milliseconds of
vibrational signals collected from a car engine for health diagnosis. Similar to the preceding code, it

uses everything we have learned about in this chapter on how to fit a function to a dataset:
def fourier(x,a0,al,bl,w):

y = a@ + al*np.cos(x*w) + bl*np.sin(x*w)

return y
noise_df = pd.read_csv('Noise_data.csv')
noise_df.set_index('t',inplace=True)
y_data = noise_df.Signal
x_data = range(len(y_data))
p,c= curve_fit(fourier, x_data, y_data,p0=[10,1000,-400,0.3])
fit_y = fourier(x_data,p[0],p[1],p[2],p[3])
plt.figure(figsize=(15,4))
plt.plot(x_data,y_data,label="'Noise Data')
plt.plot(x_data, fit_y, '--', label='fit'")
plt.legend()
plt.show()

print("r2_score",r2_score(y_data,fit_y))

Running the preceding code will create the following output:

[,:;Figure 13.22 — The output of fitting the Fourier function to Noise_data.csv

Figure 13.22 — The output of fitting the Fourier function to Noise_data.csv

Before moving on to the next function, Sinusoidal, note that the curve_fit() function needed even a

stronger leg-up (pe=[1e, 1000, -400,0.3]) to be able to fit the data.

Sinusoidal function

This function, which is similar to the Fourier function, can capture oscillations and reciprocations,

and similarly, the function could be a candidate for capturing noise and voice data. The following

equation shows the sinusoidal function. The parameters of the sinusoidal function are al, b1, and c1:

For example, the following code uses the same data as in the previous example, which is contained in
the Noise_data.csv file, to see whether the function can simulate the data:
def sinusoidal(x,al,bi,c1):
y = al*np.sin(bl*x+c1)
return y
noise_df = pd.read_csv('Noise_data.csv')
noise_df.set_index('t',inplace=True)

y_data = noise_df.Signal

x_data = range(len(y_data))

p,c= curve_fit(sinusoidal, x_data, y_data,p0=[1000,0.25,2.5])
fit_y = sinusoidal(x_data,p[0],p[1],p[2])
plt.figure(figsize=(15,4))

plt.plot(x_data,y_data, label='Noise Data')

plt.plot(x_data, fit_y, '--', label='fit'")

plt.legend()

plt.show()

print("r2_score",r2_score(y_data,fit_y))

Running the preceding code will create the following output:

[,:'Figure 13.23 — The output of fitting the sinusoidal function to Noise_data.csv

Figure 13.23 — The output of fitting the sinusoidal function to Noise_data.csv

Again, note that the curve_fit() function needed even a more significant leg-up (pe=
[1000,0.25,2.5]) to be able to fit the data. These leg-ups can only be given to the curve_fit()
function if we have a good understanding of the parameters of the sinusoidal function.

Gaussian function

This function is famous for Gaussian or normal distribution from probability and statistics. The
functionality behind the normal distribution that we use to summarize, analyze, and compare many
populations with comes from the Gaussian function. The general Gaussian function has three

parameters called al, b1, and c1. The following equation shows its formula:

The density function of a normal distribution is a specific variation of the preceding formula with
only two parameters, where b1=p and c1=46, and a1 is calculated as . If you don't know about the
normal distribution, just ignore this paragraph and move on. You can just treat this function as

another famous function you just became aware of.

The Gaussian function is famous for being a bell-shaped figure, and each of the three parameters

shows the characteristics of the shape of a bell. Let's look at an example.

We will use the covidi9hospitalbycounty.csv file here, which contains the daily COVID
hospitalization data of all the counties in California, as collected on September 4, 2021. The
following code reads the file into covid_county _day df and then uses the .groupby() function to
aggregate all of the counties' data by summing them, thus creating covid_day_df. The code also plots
the trend of daily hospitalizations:

covid_county_day_df = pd.read_csv('covidi9hospitalbycounty.csv')

covid_day_df =
covid_county_day_df.groupby('todays_date').hospitalized_covid_patients.sum()

covid_day_df.plot()
plt.xticks(rotation=90)

plt.show()

Running the preceding code will create the following output:

[,:;Figure 13.24 — California COVID hospitalizations until September 4, 2021
Figure 13.24 — California COVID hospitalizations until September 4, 2021
We can see a few bell-shaped figures in the trend of the data. Each of these waves can be summarized

and captured using the Guassian function. For example, let's capture the one from 2020-10-15 to

2021-05-03. The following code does that just like all the previous curve fittings do:
def gaussian(x,al,bl,c1):

y= al*np.exp(-((x-bl)**2/2*c1**2))

return y

y_data = covid_day_df.loc['2020-10-15":"'2021-05-03"]

x_data range(len(y_data))

p,c= curve_fit(gaussian, x_data, y_data)

fit_y = gaussian(x_data,p[0],p[1],p[2])
plt.plot(x_data,y_data,label='Hospitalization Data')
plt.plot(x_data, fit_y, '--', label='fit'")
plt.legend()

plt.show()

print("r2_score",r2_score(y_data,fit_y))

Running the preceding code will create the following output:

[,I:jFigure 13.25 — The output of fitting the Gaussian function to a part of covid_day_df

Figure 13.25 — The output of fitting the Gaussian function to a part of covid_day_df

While the preceding diagram shows a great fit, you may be wondering how this can be of any
analytics value. This is an excellent question. Let's consider an analytics project where we want to
predict the number of COVID deaths in the next month using the historical data. You could create a
prediction model that connects the number of COVID deaths on any given day (the dependent
attribute) to the total number of hospitalizations 2 weeks before that day (the independent attribute).
Such a model can achieve a certain level of success in prediction. However, there are ways to
improve that. For instance, we could add more independent attributes, such as the rate of COVID test
positivity a month before that day, or the rate of vaccination 2 months before that day. This approach
uses more data sources to enrich the prediction model. A second approach, which can use FDA, is to
enrich the independent attributes that come from the same source of data. For instance, instead of just
extracting one value from the hospitalization data from 3 weeks ago, we might be able to use the
parameters of the function we used to fit the data. Doing this is certainly trickier than adding more
data sources, but this might just be the improvement a model needs to reach even better predictions.
See Chapter 16, Case Study 2 — Predicting COVID 19 Hospitalization, for great data

integration/reduction examples of using FDA.

As we get closer to the end of this chapter, let us first go over a quick summary of the FDA, and after

that, we will have another quick summary of the whole chapter.

Final notes on FDA

There is a lot to be said and covered in FDA. It has its own world. What we covered here should just
be looked at as an introduction and a springboard for a possible deep dive into this world for more

learning.

As we finish learning about FDA, we will provide a few notes and considerations:

« Any function, even one that has just been created, can be used as the function for FDA. The advantage of using these famous
functions is that they are well known and there are lots of resources for them to support your learning and your data analytic

projects.

« Most functions have variations and they can become more complex for more complicated datasets. If a function kind of works for
a dataset but not perfectly, maybe one of its variations will. For instance, the sinusoidal function, when used with two terms, can

accommodate more complex oscillations. See the following equation:

o Knowing the meaning of the parameters is essential in understanding the transformed data. Also, as we saw, you may have to tap

into that knowledge in giving a leg-up to the function curve_fit ().

e FDA can be used as a dimension reduction method. However, FDA can be looked at as a data analytics tool. Furthermore, as we

will see in the next chapter, FDA can be a data transformation method.

Now, let's summarize this chapter.

Summary

Congratulations on your excellent progress on yet another exciting and important chapter. In this
chapter, we learned about the concept of data reduction, its uniqueness, the different types, and saw a
few examples of how knowing about the tools and techniques we can use for data reduction can be of

significant value in our data analytic projects.

First, we understood the distinction between data redundancy and data reduction and then continued
to learn about the overarching categories of data reduction: numerosity data reduction and
dimensionality data reduction. For numerosity data reduction, we covered two methods and an
example to showcase when and where they could be of value. For dimensionality reduction, we

covered two categories: supervised and unsupervised dimension reduction.

Supervised dimension reduction is when we pick and choose the independent attributes for prediction
or classification data mining tasks, while unsupervised dimension reduction is when we reduce the

number of dimensions with a more general outlook.

The next chapter is going to be the last one in Part 3 of this book: preprocessing. We are going to
learn about data transformation and massaging. In this chapter, we sometimes had to talk a little
about data transformation as well. Some of the techniques that were covered in this chapter can also

be used as data transformation techniques.

The next chapter is going to be another exciting chapter. However, before we learn about data
transformation and data massaging, take advantage of the learning opportunities that the following

exercises provide.

Exercises

1. In your own words, describe the similarities and differences between data reduction and data redundancy from the following

angles: the literal meanings of the terms, their objectives, and their procedures.

2. If you decide to include or exclude independent attributes based on the correlation coefficient value of each independent attribute
with the dependent attribute in a prediction task, what would you call this type of preprocessing? Data redundancy or data

reduction?

3. In this example, we will be using new_train.csv from https://www.kaggle.com/rashmiranu/banking-dataset-classification.

Each row of the data contains customer information, along with campaign efforts regarding each customer, to get them to
subscribe for a long-term deposit at the bank. In this example, we would like to tune a decision tree that can show us the trends
that lead to successful subscription campaigning. As the only tuning process we know about will be computationally very

expensive, we have decided to perform one of the numerosity data reductions we've learned about in this chapter to ease the

https://www.kaggle.com/rashmiranu/banking-dataset-classification

computation for the tuning process. Which method would fit this data better? Why? Once you have arrived at the data reduction
method you want to use, apply the method, tune the decision tree, and draw the final decision tree. Finally, comment on a few

interesting patterns you found in the final decision tree.

. In this chapter, we learned about six dimensionality reduction methods. For each of these six methods, specify if the method is

supervised or unsupervised, and why.

. We would like to continue working on new_train.csv from Excercise 3. Use a decision tree and a random forest to evaluate
the usefulness of the independent attributes in new_train.csv. Report and compare the results using both dimension reduction

methods.

. Use brute-force computational dimension reduction to figure out the optimum subset of independent attributes that the KNN
algorithm needs for the classification task described in Exercise 3. If the task is computationally too expensive, what is one
strategy that we learned about that can curb that? If you did end up using that strategy, could you say the subset you've found is

still optimum?
. In this exercise, we will use the data in ToyotaCorolla.csvV to create a prediction model using MLP that can predict car
prices. Do the following:

a) Deal with all the data cleaning issues, if any.

b) Apply linear regression, a decision tree, and a random forest to evaluate the usefulness of the
independent attributes in the dataset. Use all the results of the evaluations to come to the top eight
independent attributes that can support MLP prediction best. Which three dimension reduction

methods should be given the least priority and why?

¢) Use similar code to the code we used in this chapter to tune the decision tree to tune MLP for
the prediction task of connecting the top eight independent attributes from the previous step to the
dependent attribute. In this tuning experiment, use the following two hyperparameters and the

values given in the list:
1. hidden_layer_sizes: [5,10,15,20,(5,5),(5,10),(10,10),(5,5,5),(5,10,5)]

2. max_iter:[50, 100, 200, 500]

If the computation takes too long, feel free to use the computational cost-cutting strategy you

have learned about in this chapter.

d) In this step, we would like to use brute-force computational dimension reduction to find the
best subset of independent attributes out of the eight independent attributes. Can we use the
tuning parameters we found from the previous step or, when using the brute-force dimension
reduction method, does it have to be mixed with parameter tuning? Why/why not? Apply the best
approach. Again, feel free to use the computational cost-cutting strategy you learned about in this
chapter.

. In this exercise, we would like to use the Cereals. csv dataset. This dataset contains rows of information about different cereal

products. We would like to perform clustering analysis on this dataset, first using K-Means and then using PCA. Do the following:

a) Impute a central tendency of the attribute for all the missing values.

b) What central tendency did you choose and why?

c) Why did we impute using the central tendency? Why not use other methods? Answer by

commenting on how the data will be used next.

d) Remove the categorical attribute from the data.

e) Should the data be normalized or standardized for clustering? Why?
f) Apply K-Means with K=7 and report the resulting clustering.

g) Perform centroid analysis and name each cluster.

h) Investigate the relationship between the clusters and the two categorical attributes that you
removed. Which cluster has both hot and cold kinds of cereal? Which company only creates

popular cereals that are not very nutritious?

i) The elementary public schools would like to choose a set of cereals to include in their
cafeterias. Every day, a different cereal is offered, but all the cereals should be healthy. Which

members from which cluster should be used here? Explain why.

j) Now, we want to complement this analysis using PCA. Before applying PCA, should we

standardize or normalize the dataset?

k) Using the first few PCs, come up with an annotated three-dimensional scatterplot that shows
most of the variation in the data. How much variation is shown? Make sure that the figure

contains the necessary element to explain to the audience the importance of each PC.

1) Looking at the three-dimensional scatterplot, would you say the choice of K=7 for K-Means

was good?
m) Can you spot the members of the cluster you found in Step i in the three-dimensional
scatterplot you created in Step k? Are they all together?

. In this exercise, we will use Stocks 2020.csv, which contains the daily stock prices of 4,154 companies in 2020. Remember
that 2020 is the year that the COVID-19 pandemic happened. During this year, the stock market experienced a sudden crash and
also a quick recovery. We want to use the data reduction methods that we know of to see if we can capture this from the data. Do

the following:

a) Use the k-means algorithm to cluster the data into 27 groups. Also, use the module time to

capture the amount of time it took the algorithm to run.
b) What are the outliers in the data based on the clustering results?
c) Draw line plots for all the outliers and describe the trends you see.

d) Draw line plots for all the members of the clusters where there are less than 10 members and

describe the trends.

e) Apply PCA to the data and report the number of variations that the first three PCs account for.
Also, draw an annotated scatterplot that includes the three PCs with all the necessary visual

guides.

f) Using the visual from the previous step, count and report the outliers. Are they the same

outliers that we found using k-means clustering?

g) Cluster the stocks into 27 groups again using the most significant PCs. Also, report the amount
of time it took for K-means to complete the task. See how much faster K-means was compared to

how fast it was in Step a.
h) Draw a visual that compares the clusterings in Steps a and g. Describe your observations.

i) We would like to extract the following features from the data:

« General_Slope: The slope of the linear regression line fitted to the data of the stock.

 Sellout_Slope: The slope of the linear regression line fitted to the data of the stock from Feb 14 — March 19 (stock sell-
out period due to COVID).

o Rebound_Slope: The slope of linear regression line fitted to the data of the stock from March 21 — December 30
(Stock rebound after COVID sell-out).

We will do this in a few steps. First, create a placeholder DataFrame (fda_df) where its

index is the stock symbols and its columns are the features mentioned previously.
j) Find General_slope and fill the placeholder using a linear regression model.
k) Find sellout_slope and fill the placeholder using a linear regression model.
1) Find Rebound_slope and fill the placeholder using a linear regression model.

m) Draw a three-dimensional scatterplot for fda_df. Use x_axis for sellout_slope and

y-axis for Rebound_Slope.

n) Cluster the stocks into 27 groups again using the three attributes of fda_df. Then,
compare the clustering outcomes with the clusterings from Steps a and g and describe

your observations.

0) Among the three preprocessing approaches (no preprocessing, PCA-transformed, and
FDA-transformed) you experimented with in this exercise, which one was able to help in

capturing the patterns we were interested in?

10. Figure 13.2 was created using a decision tree after random sampling. Recreate this figure but this time, use random
over/undersampling, where the sample has 500 churning customers and 500 non-churning customers. Describe the differences in

the final visual.

11. Figure 13.7 shows the result of dimension reduction for the task of predicting the next day's amazon Stock prices using linear

regression. Perform dimension reduction using a decision tree and compare the results. Don't forget that to do so, you will need to

tune DecisionTreeRegressor () from sklearn. tree. You can use the following code for this tuning process:
from sklearn.tree import DecisionTreeRegressor

from sklearn.model selection import GridSearchCVv
y=amzn_df.drop(index=['2021-01-12"'])['changeP']

Xs = amzn_df.drop(columns=["'changeP'],index=["'2021-01-12"])

param_grid = { 'criterion':['mse', 'friedman_mse', 'mae'], 'max_depth': [2,5,10,20],
'min_samples_split': [10,20,30,40,50,100], 'min_impurity_decrease': [0,0.001, 0.005,
0.01, 0.05, 0.1]}

gridSearch = GridSearchCV(DecisionTreeRegressor(), param_grid, cv=2,
scoring="'neg_mean_squared_error', verbose=1)

gridSearch.fit(Xs, vy)
print('Best score: ', gridSearch.best_score_)

print('Best parameters: ', gridSearch.best_params_)

Chapter 14: Data Transformation and Massaging

Congratulations, you've made your way to the last chapter of the third part of the book — The
Preprocessing. In this part of the book, we have so far covered data cleaning, data integration, and
data reduction. In this chapter, we will add the last piece to the arsenal of our data preprocessing

tools — data transformation and massaging.

Data transformation normally is the last data preprocessing that is applied to our datasets. The dataset
may need to be transformed to be ready for a prescribed analysis, or a specific transformation might
help a certain analytics tool to perform better, or simply without a correct data transformation, the

results of our analysis might be misleading.

In this chapter, we will cover when and where we need data transformation. Furthermore, we will
cover the many techniques that are needed for every data preprocessing situation. In this chapter,
we're going to cover the following main topics:

o The whys of data transformation and data massaging

o Normalization and standardization

 Binary coding, ranking transformation, and discretization

« Attribute construction

« Feature extraction

« Log transformation

« Smoothing, aggregation, and binning

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, go to:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You can find this

chapter in this repository and download the code and the data for better learning.

The whys of data transformation and massaging
Data transformation comes at the very last stage of data preprocessing, right before using the analytic
tools. At this stage of data preprocessing, the dataset already has the following characteristics.

o Data cleaning: The dataset is cleaned at all three cleaning levels (Chapters 9-11).

« Data integration: All the potentially beneficial data sources are recognized and a dataset that includes the necessary information

is created (Chapter 12, Data Fusion and Integration).

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

« Data reduction: If needed, the size of the dataset has been reduced (Chapter 13, Data Reduction).

At this stage of data preprocessing, we may have to make some changes to the data before moving to
the analyzing stage. The dataset will undergo the changes for one of the following reasons: we will
call them necessity, correctness, and effectiveness. The following list provides more detail for each
reason.

« Necessity: The analytic method cannot work with the current state of the data. For instance, many data-mining algorithms, such as

Multi-Layered Perceptron (MLP) and K-means, only work with numbers; when there are categorical attributes, those attributes

need to be transformed before the analysis is possible.

o Correctness: Without the proper data transformation, the resulting analytic will be misleading and wrong. For instance, if we use
K-means clustering without normalizing the data, we think that all the attributes have equal weights in the clustering result, but

that's incorrect; the attributes that happen to have a larger scale will have more weight.

« Effectiveness: If the data goes through some prescribed changes, the analytics will be more effective.

Now that we have a better understanding of the goals and reasons for data transformation and

massaging, let's learn what is the difference between data transformation and data massaging.

Data transformation versus data massaging

There is more similarity between the two terms than difference. Therefore, using them
interchangeably would not be incorrect in most situations. Both terms describe changes that a dataset
undergoes before analytics for improvement. However, there are two differences that it will be good

for us know.

« First, the term data transformation is more commonly used and known.

« Second, the literal meanings of transforming and massaging may be used for drawing a conclusive difference between the two

terms.

The term transformation is more general than massaging. Any changes a dataset undergoes can be
called data transformation. However, the term massaging is more specific and does not carry the
neutrality of transformation, but it carries the meaning of doing more for getting more. Therefore, as
the following figure suggests, data massaging can be interpreted as changing the data when we are
trying to improve the effectiveness of data analytics, whereas data transformation is a more general
term. So, some could argue that all data massaging is also data transformation, but not all data

transformation is also data massaging:

Correctness Effectiveness

Figure 14.1 — Data transformation versus data massaging

The preceding figure shows the three reasons for data transformation that we discussed earlier:
Necessity, Correctness, and Effectiveness. Furthermore, the figure shows that while data
transformation is a more general term used to refer to the changes a dataset undergoes before the
analysis, data massaging is more specific and can be used when the goal of transforming the dataset

is for effectiveness.

In the rest of this chapter, we will cover some data transformation and massaging tools that are

commonly used. We will start by covering normalization and standardization.

Normalization and standardization

At different points during our journey in this book, we've already talked about and used
normalization and standardization. For instance, before applying K-Nearest Neighbors (KNN) in
Chapter 7, Classification, and before using K-means on our dataset in Chapter 8, Clustering
Analysis, we used normalization. Furthermore, before applying Principal Component Analysis
(PCA) to our dataset for unsupervised dimension reduction in Chapter 13, Data Reduction, we used

standardization.

Here is the general rule of when we need normalization or standardization. We need normalization
when we need the range of all the attributes in a dataset to be equal. This will be needed especially
for algorithmic data analytics that uses the distance between the data objects. Examples of such
algorithms are K-means and KNN. On the other hand, we need standardization when we need the
variance and/or the standard deviation of all the attributes to be equal. We saw an example of needing

standardization when learning about PCA in Chapter 13, Data Reduction. We learned standardization

was necessary because PCA essentially operates by examining the total variations in a dataset; when

an attribute has more variations, it will have more say in the operation of PCA.
The following two equations show the formula we need to use to apply normalization and
standardization. The following list defines the variables used in the equations:

o A: The attribute

o i: The index for the data objects

o Ai: The value of data object i in attribute A

o NA: The normalized version of attribute A

o SA: The standardized version of attribute A

A; — min (4)

NA; = max(A) — min (4)
_ A; —mean (4)
SA = std(A)

Let's see an example. The following figure shows a small dataset of employees that are described by
only two attributes, Salary and GPA. Naturally, the numbers we use for salary are larger than GPA,
as you can see in the original attributes, Salary and GPA. The preceding two equations have been
used to apply normalization and standardization transformation respectively. The middle table is the
normalized version of the dataset showing N_Salary and N_GPA. You can see that after
normalization, the transformed versions of the attributes have the same range from zero to one. The
right table is the standardized version of the dataset featuring S_Salary and S_GPA. You can see in
the standardized version that the standard deviation (STD) of the two attributes are both equal to

one:

O 00 N O U1 B W N =

[EEY
o

Max=
Min=
Mean=
STD=

Salary GPA N_Salary N_GPA S_Salary S_GPA
A B _ NA___ NB__ _SA_ _SB__
92000 8:45 0.75 0.339806| | 0.817616 -0.57477
83000 3.36 0.5 0.446602| | -0.00919 -0.15882
83000 3.16 0.5 0.252427| | -0.00919 -0.91509
72000 3.45| | 0.194444 0.533981| | -1.01972 0.181506
101000 332 1 0.407767| | 1.644418 -0.31007
85000 3.57| | 0.555556 0.650485| | 0.174547 0.635271
74000 3193 0:25 1| | -0.83599 1.996565
65000 3.61 0 0.68932| | -1.66279 0.786526
98000 3.47| | 0.916667 0.553398| | 1.368817 0.257133
78000 2.9/] 0.361111 0| | -0.46852 -1.89825
101000 28938 1 1| | 1.644418 1.996565
65000 2.9 0 0| | -1.66279 -1.89825
83100 3.402| | 0.502778 0.487379 0 0
10885.31 0.264454| | 0.30237 0.256752 1 1

Figure 14.2 — An example of normalization and standardization

Upon further study of the preceding figure, you may observe two interesting trends:

« First, even though the goal of normalization is equalizing the range (Max and Min), the standard deviations (STD) of the

normalized attributes have become much closer to one another too.

« Second, even though the goal of standardization is equalizing the standard deviation (STD), the Max and Min values of the two

standardized attributes are much closer to one another too.

These two observations are the main reason in many resources standardization and normalization are

introduced as two methods that can be used interchangeably. Furthermore, I have seen all too often

that the choice of applying standardization or normalization is set in a supervised tuning. That means

the practitioner experiments with both normalizing the data and then standardizing it, and then selects

the one that leads to better performance on the prime evaluation metric. For instance, if we want to

apply KNN on the data, we might see the choice between normalization or standardization of the

attribute as a tuning parameter next to K and the subset of the independent attributes (see the

Example — finding the best subset of independent attributes for a classification algorithm subsection

in the Brute-force computational dimension reduction section in Chapter 13, Data Reduction) and

experiment with both to see which one works best for the case study.

Before moving to the next group of data transformation methods, let's discuss whether normalization
and standardization fall under data massaging or not. Most of the time, the reason we would apply
these two transformations are that without them, the results of our analysis would be misleading. So,
the best way to describe the reason behind applying them is correctness; therefore, we cannot refer to

standardization or normalization as data massaging.

In the course of this book, we have seen many examples of applying normalization and
standardization, so we will skip giving a practical example on these data transformation tools and go

straight to the next group of methods: binary coding, ranking transformation, and discretization.

Binary coding, ranking transformation, and
discretization
In our analytics journey, there will be many instances in which we want to transform our data from

numerical representation to categorical representation, or vice versa. To do these transformations, we

will have to use one of three tools: binary coding, ranking transformation, and discretization.

As the following figure shows, to switch from Categories to Numbers, we either have to use Binary
Coding or Ranking Transformation, and to switch from numbers to categories, we need to use

Discretization:

Ranking Transformation

Binary Coding

Numbers -« Categories

Discretization
Figure 14.3 — Direction of application for binary coding, ranking transformation, and discretization

One question that the preceding figure might bring to mind is, how do we know which one we choose
when we want to move from categories to numbers: binary coding or ranking transformation? The

answer is simple.

If the categories are nominal, we can only use binary coding; if they are ordinal, both may be used,

but each method has its pros and cons. We will talk about those using examples.

Before moving on to see examples of applying these transformations, let's discuss why we may need

these data transformations, in two parts:

« First, why we would transform the data into numerical form

« Second, why we would transform data into categorical form

We generally transform categorical attributes to numerical ones when our analytics tool of choice can
only work with numbers. For instance, if we would like to use MLP for prediction and some of the
independent attributes are categorical, ML.P will not be able to handle the prediction task unless the

categorical attributes are transformed into numerical attributes.

Now, let's discuss why we would transform numerical attributes into categorical ones. Most often,
this is done because the resulting analytics output will become more intuitive for our consumption.
For instance, instead of having to deal with a number that shows the GPA, we may be more
comfortable dealing with categories such as excellent, good, acceptable, and unacceptable. This will
become the case, especially if we want to use our attention to understand the interactions between

attributes. We will see an example of this in a few pages.

Furthermore, in some analytics situations, the types of attributes must be the same. For instance,
when we want to examine the relationship between a numerical attribute and a categorical one, we
may decide to transform the numerical attribute to a categorical attribute to be able to use a
contingency table for the analysis (see Visualizing the relationship between a numerical attribute and

a categorical attribute in Chapter 5, Data Visualization).

Now, let's start looking at some examples to understand these transformation tools.

Example one — binary coding of nominal attribute

In Chapter 8, Clustering Analysis, in the Using K-means to cluster a dataset with more than two
dimensions section, we did not use the continent categorical attribute for the clustering analysis
using K-means. This attribute indeed has information that can add to the interestingness of our
clustering analysis. Now that we have learned about the possibility of transforming categorical

attributes into numerical ones, let's try to enrich our clustering analysis.

As the attribute continent is nominal, we only have one choice and that is to use binary coding. In the
following code, we will use the pd.get_dummies() pandas function to binary-code the continent
attribute. Before doing that, we need to load the data as we did in Chapter 8, Clustering Analysis.
The following code takes care of that:

report_df = pd.read_csv('WH Report_preprocessed.csv')

BM = report_df.year == 2019

report2019_df = report_df[BM]

report2019_df.set_index('Name', inplace=True)

After running the preceding code, we are set to give pd.get_dummies() a try. The following
screenshot shows how this function is used and the first five rows of its output. The bc_continent

variable name is inspired by be, as in binary coded:

In [3]: M bc_Continent = pd.get_dummies(report2019_df.Continent)
bc_Continent.head(5)

oueial: Africa Antarctica Asia Europe North America Oceania South America
Name

Afghanistan 0 0 1 0 0 0 0

Albania 0 0 0 1 0 0 0

Algeria 1 0 0 0 0 0 0

Argentina 0 0 0 0 0 0 1

Armenia 0 0 0 1 0 0 0

Figure 14.4 — Screenshot of report2019_df.Continent using pd.get_dummies() binary coding

The preceding screenshot shows exactly what binary coding does. For each possible categorical
attribute, a binary attribute will be added. The combination of all the binary attributes will present the

same information.

Next, we will run a very similar code to what we ran in Chapter 8, Clustering Analysis. Only one part
of the following code has been updated, and the updated part is highlighted for your attention:

from sklearn.cluster import KMeans

dimensions = ['Life_lLadder', 'Log_GDP_per_capita', 'Social_support',
'Healthy_life_expectancy_at_birth', 'Freedom_to_make_life_choices', 'Generosity',
'Perceptions_of_corruption', 'Positive_affect', 'Negative_affect']

Xs report2019_df[dimensions]
Xs = (Xs - Xs.min())/(Xs.max()-Xs.min())
Xs = Xs.join(bc_Continent/7)
kmeans = KMeans(n_clusters=3)
kmeans.fit(Xs)
for 1 in range(3):

BM = kmeans.labels_==i

print('Cluster {}: {}'.format(i,Xs[BM].index.values))
After running the preceding code successfully, you will see the result of the clustering analysis.

The only noticeable difference between the preceding code and the one we used in Chapter 8,

Clustering Analysis, is the addition of Xxs = Xs.join(bc_continent/7), which adds the binary coded

version of the continent attribute (bc_continent) to Xs after xs is normalized, and before it is fed into

kmeans.fit (). There is another question — why didn't we add bc_continent without dividing it by 7?

Let's try to dispel all the confusion before moving on to centroid analysis. The reason we added
bc_continent to our code at a specific point in a specific manner is that we wanted to control how
much this binary coding would affect our results. If we had added without dividing it by 7,
bc_continent would have dominated the clustering result by clustering the countries mostly based on
their continent. To see this impact, remove the division by 7, run the clustering analysis, and create
the heatmap of the centroid analysis to see this. Why does this happen? Isn't it obvious? The

continent attribute has information worth only one attribute, and not 7.

Furthermore, if we had added bc_continent/7 before the normalization, the division by 7 would not
be meaningful, as the code we run for normalization, which is Xxs = (Xs - Xs.min())/(Xs.max()-

xs.min()), would have canceled out the division by 7.

So, now we understand why we added the binary-coded data the specific way that we did. Now, let's
perform the centroid analysis. The following code will create the heatmap for centroid analysis for
this specific situation. The code is very similar to any other centroid analysis that we have performed
so far in this book but for a small change. Instead of having one heatmap, we will have two — one for
the regular numerical attributes and one for the binary-coded attribute. The reason for this twofold
visual is that the normalized numerical values are between 0 and 1, and the binary-coded values are
between 0 and 0.14; without the separation, the heatmap would only show the normalized
numericals, as those values have a larger scale. Run the normal non-separated heatmap and see that
for yourself:
clusters = ['Cluster {}'.format(i) for i in range(3)]
Centroids = pd.DataFrame(0.0, index = clusters, columns = Xs.columns)
for i,clst in enumerate(clusters):

BM = kmeans.labels_==i

Centroids.loc[clst] = Xs[BM].mean(axis=0)
plt.figure(figsize=(10,4))
plt.subplot(1,2,1)
sns.heatmap(Centroids[dimensions], linewidths=.5, annot=True, cmap='binary')
plt.subplot(1,2,2)
sns.heatmap(Centroids[bc_Continent.columns], linewidths=.5, annot=True, cmap='binary"')
plt.show()
As described, the preceding code will create a twofold heatmap. To compare the results we arrived at

in Chapter 8, Clustering Analysis, with what we have arrived at here with the preceding code block,

we have put these two results in the following figure for comparison:

09
08
0.7
0.6
05
04
-03

- Paye aanebay

Uy ry 0.36

- 1)3ye aAIsod

I- uondnuod Jo suondadiag

- Aysasauan

- S2210YD 2| yew 0] Wopaly

- yuig e Adueyadxa ayy AyleaH
- yoddns jeidos

- ended sad 4go 6o

-
~
=)
[re)
r=]
(=]
-
o
e
o

-038 025 0_33..37 I 058 I

04215n)

1SS E DN ST T

a) Clustering Analysis without Continent

0.10
0.08
0.06
0.04
-0.02

|

-0.00

) o
= o S - EJURWY YInos
- &
—
=) =) b= - elueaxn
o P~ &
oo | m w
= = S - edUBWY YUON
=] p= _
- s
Bl E
S
S o o - eanaeIwy
=
] .
0 4235n]) T431sn)) z 13350
o © ~ w \n -
(=] [=] (=] (=] (=] [=]

H 034 [VEE]D 78

¥
™~
(=
w

0 J235n)

143150)

- J2aye aanebap

- 1D3ye aAnIsod

- uondnuiod Jo suondadiag

- Aysoiauan

- S3DI0YD 2JI| Ijew 03 wopay

- YyuIq 38 Aduepadxa a4 Ayyeay
- poddns|eios

- eydes sad 4go 6o

- Jappe 3N

z 50D

Clustering Analysis withbc Continent

b)

Figure 14.5 — Clustering analysis of countries based on their happiness indices with and without the inclusion of the

Continent categorical attribute

The comparison of the heatmaps from the preceding figure clearly shows the successful enrichment
of the clustering analysis by the inclusion of a categorical attribute after binary coding. Note that the
clustering results of a) and b) in the preceding figure are largely the same, except for Cluster 0 and

Cluster 2 having switched places.

Next, let's see an example where our categorical attribute is not nominal but ordinal and see how we

should decide between binary coding and ranking transformation.

Example two — binary coding or ranking transformation
of ordinal attributes

Transforming ordinal attributes into numbers is a bit tricky. There is no perfect solution; we either
have to let go of the ordinal information in the attribute, or assume some information into the data.

Let's see what that means in an example.

The following figure shows the transformation of an example ordinal attribute into numbers by three
methods: Binary Coding, Ranking Transformation, and Attribute Construction. Spend some

time studying this figure before moving on to the next paragraph:

Edicasion High School Bachelor Masters Doctorate ECucation Educntion
level Rank Years
1

High School 1 0 0 0 12
Bachelor 0 1 0 0 2 16
High School 1 0 0 0 1 12
Masters 0 0 1 0 3 18
Doctorate 0 0 0 1 4 21
Bachelor 0 1 0 0 2 16
Masters 0 0 1 0 3 18
High School 1 0 0 0 1 12,
High School 1 0 4] 0 1 12
Bachelor Blnary 0 1 0 0 2 16

Coding |

Ranking Transformation /

Attribute Construction

Figure 14.6 — An example showing three ways of transforming an ordinal attribute into numbers

Now, let's discuss why none of the transformations are perfect. In the case of Binary Coding, the
transformation has not assumed any information into the result, but the transformation has stripped
the attribute from its ordinal information. You see, if we were to use the binary-coded values instead
of the original attribute in our analysis, the data does not show the order of the possible values of the
attribute. For example, while the binary-coded values make a distinction between High School and

Bachelor, the data does not show that Bachelor comes after High School, as we know it does.

The next transformation, Ranking Transformation, does not have this shortcoming; however, it has
other cons. You see, by trying to make sure that the order of the possible values is maintained, we had
to engage numbers by ranking transformation; however, this goes a little bit overboard. By engaging
numbers, not only have we successfully included order in between the possible values of the attribute
but we have also collaterally assumed information that does not exist in the original attribute. For
example, with the ranking transformed attribute, we are assuming there is one unit difference

between Bachelors and High School.

The figure has another transformation, Attribute Construction, which is only possible if we have a
good understanding of the attribute. What Attribute Construction tries to fix is the gross
assumptions that are added by Ranking Transformation; instead, Attribute Construction uses the
knowledge about the original attribute to assume more accurate information into the transformed
data. Here, for example, as we know, achieving any of the degrees in the Education Level attribute
takes a different number of years of education. So, instead, Attribute Construction uses that

knowledge to assume more accurate assumptions into the transformed data.

We will learn more about Attribute Construction in a few pages in this chapter. Now, we want to

see an example of transforming numerical attributes into categories.

Example three — discretization of numerical attributes

For this example, let's start from the ending. The following figure shows what discretization can
achieve for us. The top plot is a box plot that shows the interaction between three attributes, sex,
income, and hoursPerWeek, from adult_df (adult.csv). We had to use a box plot because
hoursPerWeek is a numerical attribute. The bottom plot, however, is a bar chart that has the
interaction with the same three attributes, except that the hoursPerWeek numerical attribute has
been discretized. You can see the magic that the discretization of this attribute has done for us. The

bottom plot tells the story of the data far better than the top one:

sex,income

Male -

sex

Female -

hoursPerWeek

........................... I

Discretize hoursPerWeek

_________________________ poh

discretized_hoursPerWeek
EE <40
. 40
-l =40

(Male, >50K)

(Male, <=50K)

(Female, >50K) '
remate, <~50K) e

0 1000 2000 3000 4000 5000 6000 7000

Figure 14.7 — Example of discretization to show the simplifying benefit of the transformation

Now, let's look at the code that we used to make the two plots happen. The following code creates the

top plot using sns.boxplot():
adult_df = pd.read_csv('adult.csv')

sns.boxplot(data=adult_df, y='sex', x='hoursPerWeek', hue="income')

To create the bottom plot, we first need to discretize adult_df.hoursPerweek. The following code
uses the .apply() function to transform the numerical attribute to a categorical attribute with the

three possibilities of >4e, 40, and <=4e:

adult_df['discretized_hoursPerWeek']= adult_df.hoursPerWeek.apply(lambda v: '>40' if v>40
else ('40' if v==40 else '<40'"))

A good question here is, why are we using 40 as the cut-off point? In other words, how did we come
to use this cut-off? To best answer this question and, in most cases, find the appropriate cut-off point,
you'd want to study the histogram of the attribute you intend to discretize. So, you will know the
answer to this question after drawing the histogram of adult_df.hoursPerweek. The following

screenshot shows the code and the histogram:

In [10]: M adult_df.hoursPerWeek.plot.hist()
plt.show()

17500 A

15000 -

12500

10000 -

Frequency

7500

5000 1

2500

0 4
0 20 40 60 80 100

Figure 14.8 — Creating the histogram for adult_df.hoursPerWeek

After discretizing adult_df.hoursPerweek, running the following code will create the bottom plot in
Figure 14.7. The following code is a modified version of the code that we learned in Chapter 5, Data
Visualization, under Example of comparing populations using bar charts, which is part of the

Comparing populations subsection; this specific code is from The fifth way of solving in the example.

We have added [['<40','40', '>40']] to make sure that these values appear in the order that they
make the most sense:

adult_df.groupby(['sex', 'income']).discretized_hoursPerWeek.value_counts().unstack()
[['<40','40', '>40']].plot.barh()

This example served well to showcase the possible benefits of discretization. However, there is more

to learn about discretization. Next, we will learn about the different types of discretization.

Understanding the types of discretization

While the best tool to guide us through finding the best way to discretize an attribute is a histogram,
as we saw in Figure 14.8, there are a few different approaches one might adopt. These approaches are

called equal width, equal frequency, and ad hoc.

As the name suggests, the equal width approach makes sure that cut-off points will lead to equal
intervals of the numerical attribute. For instance, the following screenshot shows the application of

the pd.cut() function to create 5 equal-width bins from adult_df.age:

In [13]: M pd.cut(adult_df.age, bins = 5).value_counts().sort_index().plot.bar()
plt.show()

12000 -

10000 -
8000 -
6000 -
4000 -
2000 A
. m__
<

6]
2]
8]
0]

(16.927, 31
(31.6, 46
(46.2, 60
(60.8, 75
(75.4,90

Figure 14.9 — Using pd.cut() to create equal width binning

On the other hand, the equal frequency approach aims to have an equal number of data objects in
each bin. For instance, the following screenshot shows the application of the pd.qcut () function to

create 5 equal-frequency bins from adult_df.age:

In [14]: M pd.qcut(adult_df.age,q=5).value_counts().sort_index().plot.bar()
plt.show()

7000 -

6000 -
5000
4000 1
3000
2000 -
1000 A

0 -

y— = = = -
S i < S b
W ™ — =} =)
~ m o vl o
o =] =] =} =]
a o m — o

~ m - w
o . i | — =
—

Figure 14.10 — Using pd.qcut() to create equal frequency binning

As you can see in the preceding figure, the absolute equal frequency binning may not be feasible. In

these situations, pd.qcut () gets us as close as possible to equal frequency binning.

Lastly, the ad hoc approach prescribes the whereabouts of cut-off points based on the numerical
attribute and other circumstantial knowledge about the attribute. For instance, we decided to cut
adult_df.hoursePerWeek in Example 3 — discretization of numerical attributes ad hoc after having
consulted the histogram of the attribute (Figure 14.8) and the circumstantial knowledge that most

employees work 40 hours a week in the US.

In these examples, especially Figure 14.9 and Figure 14.10, one matter we did not talk about is how
we got to the number 5 for the number of bins. That's all right, because that is the topic of what we

will cover next.

Discretization — the number of cut-off points

When we discretize a numerical attribute with one cut-off point, the discretized attribute will have
two possible values. Likewise, when we discretize with two cut-off points, the discretized attribute
will have three possible values. The number of possible values resulting from k cut-off points during

discretization of a numerical attribute will be k+1.

Simply put, the question we want to answer here is how to find the optimum number for k. There is

no bulletproof procedure to follow, so you will get the same answer every time. However, there are a

few important guidelines that, when understood and practiced, make finding the right k less difficult.
The following lists these guidelines:
o Study the histogram of the numerical attribute you intend to discretize and keep an open mind about what will be the best number
of cut-off points.

« Too many cut-off points are not desirable, as one of the main reasons we would like to discretize a numerical attribute is to

simplify it for our own consumption.
« Study the circumstantial facts and knowledge about the numerical attribute and see if they can lead you in the right direction.

o Experiment with a few ideas and study their pros and cons.

Before ending our exploration of discretization, I would like to remind you that we've already used
discretization in our journey in this book. See the Example of examining the relationship between a
categorical attribute and a numerical attribute section in Chapter 5, Data Visualization, for another

example of discretization.

A summary — from numbers to categories and back

In this subsection, we learned about the techniques to transform categorical attributes into numerical
ones (binary coding, ranking transformation, and attribute construction), and we also learned how to

transform numerical attributes into categorical ones (discretization).

Before ending this subsection and moving to learn even more about attribute construction, let's
discuss whether any of what we see could be labeled as data massaging. As we discussed in Figure
14.1, anything we are doing in this chapter is indeed data transformation; however, a data
transformation can be labeled as data massaging when the transformation has been performed as a
way to increase the effectiveness of the analysis. Most of the time when we transform an attribute
from categorical to numerical or vice versa, it is done out of necessity; however, in the preceding few
pages, there are two instances where the transformation could be labeled as data massaging because
we did it for improving effectiveness. It will be your job to figure out which those are in Exercise 2 at
the end of the chapter.

Now, let's continue our journey of data transformation — next stop: attribute construction.

Attribute construction

We've already seen an example of this type of data transformation. We saw that we could employ it to
transform categorical attributes into numerical ones. As we discussed, using attribute construction
requires having a deep understanding of the environment that the data has been collected from. For

instance, in Figure 14.6, we were able to construct the Education Years attribute from Education

level because we have a pretty good idea of the working of the education system in the environment

the data was collected from.

Attribute construction can also be done by combining more than one attribute. Let's see an example

and learn how this could be possible.

Example — construct one transformed attribute from
two attributes

Do you know what Body Mass Index (BMI) is? BMI is a result of attribute construction by
researchers and physicians, who were looking for a healthiness index that takes both the weight and

height of individuals into account.

We are going to use 500_Person_Gender_Height_Weight_Index.csv from

https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex. Let's first read

the data and do some level one data cleaning. The following code does that:
person_df = pd.read_csv('500_Person_Gender_Height_Weight_Index.csv')

person_df.Index = person_df.Index.replace({0:'Extremely Weak',6 1: 'Weak', 2:
'Normal',3:'Overweight', 4:'Obesity',5:'Extreme Obesity'})

person_df.columns = ['Gender', 'Height', 'Weight', 'Condition']
After running the preceding code, get Python to show you person_df and evaluate its state before

reading on.

Next, we will leverage .scatterplot() of the seaborn module (sns) to create a 4D scatter plot. We
will use the x axis, y axis, color, and marker style to respectively represent Height, Wweight, Condition,

and eender. The following screenshot shows the code and the 4D scatterplot:

ATTENTION

If you are reading the print version of this book, you will not see the colors, which are an essential aspect of the
visualization, so make sure to create the visual before reading on.

https://www.kaggle.com/yersever/500-person-gender-height-weight-bodymassindex

In [17]: M sns.scatterplot(data = person_df, x='Height',y="Weight',
hue='Condition',style="Gender")

plt.legend(bbox_to_anchor=(1.05, 1))

plt.show()
e N N Condition
*, x "X L N *%e Obesity
S o5 x e ex x® E o “ .
140 - '.~ - o % X o ' .P. .nr # — ® Normal
«® o oxx Weo e e 3 ’.u. . x ® Overweight
120 | x o x . % '=,. o ae * "‘x e ® Extreme Obesity
o "o ‘u.: $ x o . % e o Weak
L L x @ - x
g 100 .:;‘ : o’: *x :'. .. T r. .:g ':“'! :.." : ‘: ¢ o f_:tr:mely Weak
$%x 9 ® , ¥yaxg x " o ° . nder
% & x - ex*x} x Mal
':.. x ™y . -=' ®, g w, x ® [ale
80 - 2"‘.. ﬁ... o :g‘.x*.,!.;:,,,g. . s Female
L 0“.:” @ l.: ': X ‘g H >, :.'
60 - o . ::,:o:‘ x " g A -§-
° x X o x o o:.'.“l 3.10 w
140 150 160 170 180 190 200
Height

Figure 14.11 — Using sns.scatterplot() to create a 4D visualization of person_df

Our observation from the preceding plot is obvious. The two Height and Weight attributes together
can determine a person's healthiness. This is what the researchers and physicians must have seen
before having arrived at the BMI formula. BMI is a function that factors in both weight and height to
create a healthiness index. The formula is as follows. Be careful — in this formula, weight is in
kilograms and height is in meters:

This begs the question, why this formula? We literally could have used an infinite number of
possibilities to come up with a transformed attribute that is driven by both weight and height. So,
why this one?

The answer goes back to the most important criteria of being able to apply attribute construction —
deep knowledge of the environment from which the data is collected. Therefore, on this one, we have
to trust that the researchers and physicians that have chosen this formula did possess such depth of

knowledge and appreciation for the human body.

Let's go ahead and construct the new attribute for person_df. The following code uses the formula
and the knowledge that the recorded weight and height in person_df are respectively in kilograms and
meters to construct person_df['BMI']. Of course, this has been done using the powerful .apply()

function:

person_df['BMI'] = person_df.apply(lambda r:r.wWeight/((r.Height/100)**2),axis=1)

After constructing the new person_df.BMI attribute, study it a bit, maybe create its histogram and
box plot to see its variation. After that, try to create the following figure. Having reached this part of
the book, you have all the skills to be able to create it. Anyhow, you have access to the code that has

created the visual in the dedicated GitHub repository file of this chapter:

[,:Figure 14.12 — Visualization of interaction between BMI and condition

Figure 14.12 — Visualization of interaction between BMI and condition

The preceding figure shows the interaction between the constructed attribute, BMI, and the condition
attribute. The y axis in the preceding scatterplot has been used to disperse the data points so we can
appreciate the number of data objects on the x axis (BMI). The trick to make the dispersion effect is

to assign a random number to each data object.

In any case, what the interaction between the two attributes shows is the main point; that is, we can
almost give out a set of cut-off points that tell us whether a person is healthy or not; BMI smaller than
15 indicates Extremely Weak, BMI between 15 and 19 shows Weak, BMI between 19 and 25
signifies Normal, BMI between 25 and 30 tells us the person is in the Overweight category, BMI
between 30 and 40 is a case of Obesity, and finally, BMI larger than 40 is a sign that the person is
Extremely Obese. Do a quick Google search to see whether what we've managed to find is the same

as what is recommended regarding BMI.

In this example, we managed to construct one attribute by combining two attributes. There are cases
where we can construct more than one attribute from a single attribute or source of data. However,
while that can also be thought of as attribute construction, in the relevant literature, doing that is

referred to as feature extraction. We will look into that next.

Feature extraction

This type of data transformation is very similar to attribute construction. In both, we use our deep
knowledge of the original data to drive transformed attributes that are more helpful for our analysis

purposes.

In attribute construction, we either come up with a completely new attribute from scratch or combine
some attributes to make a transformed attribute that is more useful; however, in feature extraction, we

unpack and pick apart a single attribute and only keep what is useful for our analysis.

As always, we will go for the best way to learn what we just discussed — examples! We will see some

illuminative examples in this arena.

Example — extract three attributes from one attribute

The following figure shows the transformation of the Email attribute into three binary attributes.
Every email ends with @aWebAddress; by looking at the website address providing the email service,
we have extracted the three Popular Free Platform, .edu, and Others features. While Email may
sound like just a meaningless string as regards being able to derive information about an individual,
this example shows a smart feature extraction can derive valuable information from email addresses.
For instance, here we can detect individuals who would like to use more popular services. Moreover,
we can distinguish the individual that uses emails provided by educational institutions; this shows

perhaps they work for academia or they are students:

[,:'Figure 14.13 — Feature extraction from the Email attribute

Figure 14.13 — Feature extraction from the Email attribute

Let's look at another example.

Example — Morphological feature extraction

The following figure shows 100 milliseconds of vibrational signals collected from a car engine for

health diagnosis. Furthermore, the figure shows the extraction of three morphological features.

Before getting more into these three features and what they are, let's discuss what the word
morphological means. The Oxford English Dictionary defines it as "connected to shape and form."
As a feature extraction approach, morphological feature extraction is employing the common shape

and form of the data to get to new features.

The following figure serves as an excellent example. We have extracted three morphological features.
Simply, in the line plot of the vibration signal, we have counted the number of peaks (n_Peaks), the
number of valleys (n_Valleys), and the extent of oscillation during the 100 milliseconds

(max_Oscillate):

[,:'Figure 14.14 — Morphological feature extraction of vibrational signals

Figure 14.14 — Morphological feature extraction of vibrational signals
The value of doing such feature extraction will show itself when we see them in comparison between
a few data objects. The preceding figure is the feature extraction of only one data point. However, the

following figure has put together five distinct data points that are from engines with five different
states: Healthy, Fault 1, Fault 2, Fault 3, and Fault 4:

[,:;Figure 14.15 — Morphological feature extraction of vibrational signals for five instances of data objects

Figure 14.15 — Morphological feature extraction of vibrational signals for five instances of data objects

Contemplating the preceding figure shows us that with simple morphological feature extraction, we

might be able to accurately distinguish between different types of fault and the healthy engine. You

will have the opportunity to create the classification model after doing morphological feature

extraction on similar data in Exercise 5 at the end of this chapter.

In our journey throughout this book, we have already seen other instances of feature extraction
without referring to it as such. Next, we are going to discuss those instances and how we had gotten

ahead of ourselves.

Feature extraction examples from the previous
chapters

In this book, we have dissected data preprocessing into different stages. These stages are Data
Cleaning (Chapters 9-11), Data Fusion and Integration (Chapter 12), Data Reduction (Chapter 13),
and Data Transformation (this chapter). However, in many instances of data preprocessing, these
stages may be done in parallel or at the same time. This is a great achievement from a practical
perspective and we should not force ourselves to take apart these stages in practice. We've only
discussed these stages separately to aid our understanding, but once you feel more comfortable with

them, it is recommended to do that at the same time if it's possible and useful.

That is the reason that we've already seen feature extraction in the other stages of data preprocessing.

Let's go over these examples and see why they are both feature extraction and also other things.

Examples of data cleaning and feature extraction

In Chapter 10, Data Cleaning Level II — Unpacking, Restructuring, and Reformulating the Table,
during the solution for the Example 1 — Unpacking columns and reformulating the table section,
which was cleaning speech_df, a dataset that had a few of President Trump's speeches, we
unwittingly performed some feature extraction under the name of unpacking the content column. The
content attribute had each of the speeches in text, and the solution unpacked these long texts by

counting the number of times the vote, tax, campaign, and economy terms had been used.

This is both data cleaning and data transformation (feature extraction). From the perspective of data
cleaning, there was so much fluff in the data that we did not need and got in the way of our
visualization goals, so we removed the fluff to bring what's needed to the surface. From a data

transformation perspective, we extracted four features that were needed for our analysis.

Next, let's see how data reduction and feature extraction are sometimes done at the same time.

Examples of data reduction and feature extraction

In Chapter 13, Data Reduction, we learned two unsupervised dimension reduction techniques. We
saw how a non-parametric method (that is, PCA) and a parametric method (that is, FDA) reduced
the dimension of country_df, a dataset of countries with 10 years of 9 happiness indices (90

attributes). From a data reduction perspective, the data was reduced by reducing the number of

attributes. However, after learning about data transformation and feature extraction, we can see that

we transformed the data by extracting a few features.

Almost always any unsupervised dimension reduction effort can also be referred to as feature
extraction. More interestingly, this type of data reduction/dimension reduction can also be seen as
data massaging, because we are extracting features and reducing the size of the data solely to

improve the effectiveness of the analysis.

The gear shift from attribute construction to feature extraction was very smooth as the two data
transformations are very similar and, in most cases, we can think of them as data massaging. These
two types of data transformation are also very general and can be employed in a wide range of ways,
and for their successful implementation, they require the resourcefulness of the analyst. For instance,
the analyst must be able to find appropriate functions to use FDA for parametric feature extraction,

which requires high-level resourcefulness.

However, the next data transformation technique we will learn is going to be very specific and is only

applicable in certain situations. Next, we will learn about log transformation.

Log transformation

We should use this data transformation when an attribute experiences exponential growth and decline
across the population of our data objects. When you draw a box plot of these attributes, you expect to
see fliers, but those are not mistaken records, nor are they unnatural outliers. Those significantly

larger or smaller values come naturally from the environment.

Attributes with exponential growth or decline may be problematic for data visualization and
clustering analysis; furthermore, they can be problematic for some prediction and classification
algorithms where the method uses the distance between the data objects, such as KNN, or where the

method drives its performance based on collective performance metrics, such as linear regression.

These attributes may sound very hard to deal with, but there is a very easy fix for them — log
transformation. In short, instead of using the attribute, you calculate the logarithms of all of the
values and use them instead. The following figure shows how this transformation looks using the
Gross Domestic Product (GDP) data of the world's countries in 2020. The data is retrieved from
https://data.worldbank.org/indicator/NY.GDP.MKTP.CD and preprocessed into GbP 2019 2020.csv:

[,:Figure 14.16 — Before and after log transformation — the GDP of the countries in the world
Figure 14.16 — Before and after log transformation — the GDP of the countries in the world
We can see in the preceding figure that the line plot of the original data shoots up; that is what we

earlier described as exponential growth. We also see in the box plot of the original data that there are

outliers with unrestrictedly high values compared to the rest of the population. You can imagine how

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD

these types of outliers can be problematic for our analytics, such as data visualization and clustering

analysis.

Now, pay attention to the log-transformed version of the visualization. The data objects still have the
same relationships with one another from the perspective of being more or less; however, the
exponential growth has been tamped down. We can see in the box plot of the log-transformed data

that we still have fliers, but those fliers' values are not unrestrictedly higher.

The preceding figures are created using 6bP 2019 220.csv, and you can find the code that created

them in the dedicated GitHub repository file of this chapter.

There are two approaches in applying log transformation — doing it yourself or the working module

doing it for you. Let's see these two approaches in the following section.

Implementation — doing it yourself

In this approach, you take matters into your own hands and first add a log-transformed attribute to the
dataset and then use that transformed attribute. For example, the following screenshot shows doing

the attribute for country_df['2020'].

Pay attention — before running the code presented in the following screenshot, you need to first run
the following code that reads the 6bP 2019 2020.csv file into country_df:
country_df = pd.read_csv('GDP 2019 2020.csv')

country_df.set_index('Country Name', inplace=True)

After running the preceding code, you can run the code presented in the following screenshot:

[':Figure 14.17 — Log transformation — doing it yourself

Figure 14.17 — Log transformation — doing it yourself

Next, let's cover the approach of the working module doing it for you.

Implementation — the working module doing it for you

As log transformation is a very useful and well-known data transformation, many modules provide
the option for you to use the log transformation. For instance, the code in the following screenshot
uses logy=True, which is a property of the .plot() Pandas Series function, to do the log

transformation without having to add a new attribute to the dataset:

[,:'Figure 14.18 — Log transformation — the working module doing it for you

Figure 14.18 — Log transformation — the working module doing it for you

The disadvantage of this approach is that the module you are using may not have this
accommodation, or you may not be aware of it. On the other hand, if such accommodation is

provided, it makes your code much easier to read.

Furthermore, the result of the working module doing it for you might be even more effective. For

instance, compare the y axis in Figure 14.15 with that of Figure 14.16.

Before moving to the next data transformation tools, let me remind you that we have already used log
transformation in our data analysis in the course of this book. Remember the wH
Report_preprocessed.csv and WH Report.csv datasets, which are the two versions of the World
Health Organization reports on the happiness indices of 122 countries? One of the attributes in these
datasets is Log_GDP_per_capita. As GDP_per_capita experiences exponential growth, for clustering

analysis, we used its log-transformed version.

The next group of data transformation tools is going to be used for dealing with noisy data, and

sometimes to deal with missing values and outliers. They are smoothing, aggregation, and binning.

Smoothing, aggregation, and binning

In our discussion about noise in data in Chapter 11, Data Cleaning Level I1I — Missing Values,
Outliers, and Errors, we learned that there are two types of errors — systematic errors and
unavoidable noise. In Chapter 11, Data Cleaning Level III — Missing Values, Outliers, and Errors, we
discussed how we deal with systematic errors, and now here we will discuss noise. This is not
covered under data cleaning, because noise is an unavoidable part of any data collection, so it cannot
be discussed as data cleaning. However, here we will discuss it under data transformation, as we may
be able to take measures to best handle it. The three methods that can help deal with noise are

smoothing, aggregation, and binning.

It might seem surprising that these methods are only applied to time-series data to deal with noise.
However, there is a distinct and definitive reason for it. You see, it is only in time-series data, or any
data that is collected consistently, consecutively, and with ordered intervals, that we can detect the
presence of noise. It is this unique data collection that allows us to be able to detect the existence of
noise. In other forms of data collection, we cannot detect the noise, and therefore there will be
nothing we can do. Why is that? The answer is in the consistent, consecutive, and ordered intervals.

Due to this unique data collection, we can pick apart patterns from noise.

The three methods that can help deal with noise are smoothing, aggregation, and binning. Each of
these three methods to deal with noise operate under a specific set of assumptions. In the following
three sections, we will first learn about these assumptions and then we will see examples of how they

are implemented.

One last word before seeing the sections — strictly speaking, missing values and outliers are types of
noise, and if they are non-systematic and a natural part of the data collection, either of these three

methods could also be applied to deal with them.

Now, let's look at the smoothing approach in dealing with noise.

Smoothing

The following screenshot uses the Noise_data.csv file, which is 200 milliseconds of vibrational
signals collected from a car engine for health diagnosis. The screenshot shows the line plot of these

vibrational signals:

L,:;Figure 14.19 — Line plot of Noise_data.csv

Figure 14.19 — Line plot of Noise_data.csv

In the preceding figure, you can sense what we meant by time-series data allowing us to distinguish

between patterns and noise. Now, let's use this data to learn more about smoothing.

By and large, there are two types of smoothing — functional and rolling. Let's learn about each of

them one by one.

Functional data smoothing

Functional smoothing is the application of Functional Data Analysis (FDA) for the purpose of
smoothing the data. If you need to refresh your memory on FDA, which we covered in Chapter 13,

Data Reduction, go back and review it before reading on.

When we used FDA to reduce the size of the data, we were interested in replacing the data with the
parameters of the function that simulate the data well. However, when smoothing, we want our data
with the same size, but we want to remove the noise. In other words, regarding how FDA is applied,
it is very similar to both data reduction and smoothing; however, the output of FDA is different for
each purpose. For smoothing, we expect to have the same size data as the output, whereas for data

reduction, we expect to only have the parameters of the fitting function.

There are many functions and modules in the space of the Python data analysis environment that use
FDA to smooth data. A few of them are savgol_filter from scipy.signal; cubicSpline,
UnivariateSpline, splrep, and splev from scipy.Interpolate; and KernelReg from
statsmodels.nonparametric.kernel_regression. However, none of these functions works as well as
it should, and I believe there is much more room for the improvement of smoothing tools in the space
of Python data analytics. For instance, the following figure shows the performance of the
.KernelReg() function on part of the data (50 numbers) versus its performance on the whole

Noise data.csv file (200 numbers):

[,:Figure 14.20 — The performance of .KernelReg() on part of signal_df and all of it
Figure 14.20 — The performance of .KernelReg() on part of signal_df and all of it
We can see in the preceding figure that the .KernelReg()function is successful in part of the data, but

it crumbles as the complexity of the data increases.

The code to create each of the plots in the preceding figure is very similar. For instance, to create the
top plot, you can use the following code. I am certain you are capable of modifying it to create the

bottom one as well:

from statsmodels.nonparametric.kernel_regression import KernelReg

X np.linspace(0,50,50)

% noise_df.Signal.iloc[:50]
plt.plot(x, vy, '+")

kr = KernelReg(y, X, 'c')
y_pred, y_std = kr.fit(x)
plt.plot(x, y_pred)
plt.show()

What was covered here in terms of functional data smoothing can only be looked at as an
introduction to this complex data transformation tool. There is a lot that can be said about functional
data smoothing, enough for an entire book. However, what you learned here can be a great

foundation for you to go off on your own and learn more.

Now, let's bring our attention to rolling data smoothing.
Rolling data smoothing

The biggest difference between functional data smoothing and rolling data smoothing is that
functional data smoothing looks at the whole data as one piece and then tries to find the function that
fits the data. In contrast, rolling data smoothing works on incremental windows of the data. The
following figure shows what rolling calculation and the incremental windows are using in the first 10

rows of singnal_df:

[,:;Figure 14.21 — Visual explanation of rolling calculations and the window
Figure 14.21 — Visual explanation of rolling calculations and the window
In the preceding figure, the width of each window is 5. As shown, the window rolling calculation

happens by picking the first 5 data points. After performing the prescribed calculations, the window

rolling calculation moves on to the next window by one increment jump.

For instance, the following code uses the .rolling() function of a Pandas DataFrame to calculate the

mean of every window of singnal_df in a rolling window calculation where the width of each

window is 5. The code also creates a line plot to show how this specific window rolling calculation
manages to smooth the data:

signal_df.Signal.plot(figsize=(15,5),label="Signal')
signal_df.Signal.rolling(window=5).mean().plot(label="'Moving Average Smoothed')
plt.legend()

plt.show()

After running the preceding code successfully, the following plot will be created. Theoretically, what
we just did is called Moving Average Smoothing, which is calculating the moving average of the

time-series data:

[':;Figure 14.22 — Moving Average Smoothing using window rolling calculations

Figure 14.22 — Moving Average Smoothing using window rolling calculations

As you can see, Moving Average Smoothing has smoothed the data pretty nicely, but it has a
distinct disadvantage — the data seems to have been shifted. Naively, you may think that you can
simply shift the plot a bit to the left and all will be okay. However, the following figure, the first
seven rows of Signal and Moving Average Smoothed shows you that a perfect match will never be

possible:

[,:'Figure 14.23 — Comparing the Signal and Moving Average Smoothed columns
Figure 14.23 — Comparing the Signal and Moving Average Smoothed columns
It is no surprise that the first four values for Moving Average Smoothed are NaN, right? It is due to

the nature of rolling window calculations. Always, when the width of windows is k, the first k-1 rows
will have NaN.

Rolling window calculations provide the opportunity to use simple or complex calculations to
smooth. For instance, you might want to try other time-series methods, such as simple exponential
smoothing. The following code uses the mechanism of the rolling window calculations to apply

exponential smoothing.

Before running the following code, pay attention to the way the code uses the .rolling() and

.apply() functions to implement simple exponential smoothing that was first defined as a function:
def ExpSmoothing(v):
a=0.2
yhat = v.iloc[0]
for i in range(len(v)):
yhat = a*v.iloc[i] + (1-a)*yhat

return yhat

signal _df.Signal.plot(figsize=(15,5),label="Signal"')

signal_df.Signal.rolling(window=5).apply(ExpSmoothing).plot(label = 'Exponential
Smoothing')

plt.legend()
plt.show()

Running the preceding code creates a figure similar to Figure 14.20, but this time, the smoothed

values have used the simple exponential smoothing formulas.

Now, let's bring our attention to the next tool that we will learn to deal with noise — aggregation.

Aggregation

Data aggregation is a specific type of rolling data smoothing. With aggregation, we do not use any
window's width, but we aggregate the data points from smaller data objects to wider data objects, for

example, from days to weeks, or from seconds to hours.

For example, the following figure shows the line plot of daily COVID-19 cases and deaths, and then
its aggregated version — weekly COVID-19 cases and deaths for California and the US:

[,:;Figure 14.24 — Example of aggregation to deal with noise — COVID-19 new cases and deaths

Figure 14.24 — Example of aggregation to deal with noise — COVID-19 new cases and deaths

The operation of aggregating a dataset to create a dataset with a new definition of data objects is not
new to us. Through the course of this book, we've seen many examples of it. For instance, see the
following items:

o Example 1 — unpacking columns and reformulating the table in Chapter 10, Data Cleaning Level I — Unpacking, Restructuring,

and Reformulating the Table — in this example, speech_df was aggregated to create vis_df, whose definition of data objects

is speeches in a month.

o Example 1 (challenges 3 and 4) in Chapter 12, Data Fusion and Integration — in this example, we had to aggregate
electric_df, whose definition of a data object was the electricity consumption of half an hour, to create a new dataset whose
definition of data object was hourly electricity consumption. This was done so electric_df could be integrated with

temp_df.

In any case, Exercise 12 will provide the opportunity for you to practice aggregation to deal with

noise. You will be able to create Figure 14.24 yourself.

Lastly, we will discuss binning as a method to transform the data to deal with noise.

Binning

It may seem that this is a new method, but binning and discretization are technically the same type of
data preprocessing. When the process is done to transform a numerical attribute to a categorical one,
it is referred to as discretization, and when it is used as a way to combat noise in numerical data, we

call the same data transformation binning.

Another possibly surprising fact is that we have done binning so many times before in this book.
Every time we created a histogram, binning was done under the hood. Now, let's raise that hood and

see what's happening inside.

The very first histogram we ever created in this book was shown in Figure 2.1 in Chapter 2, Review
of Another Core Module — Matplotlib. In that figure, we created the histogram of the adult_df.age

attribute. Go back and review the histogram.

The following screenshot shows how it would have looked if we had created the bar chart of

adult_df.age, instead of its histogram:

[,:'Figure 14.25 — Creating the bar chart of adult_df.age

Figure 14.25 — Creating the bar chart of adult_df.age

Comparing the preceding visualization with Figure 2.1 allows us to see the value of the histogram
and how it can help us with smoothing the data so that we can get a better understanding of the

variation among the population.

We can also create the same shape as the histogram by binning the attribute first and then creating the
bar chart. The code in the following screenshot uses the pd.cut () pandas function to bin
adult_df.age and then create its bar chart. Compare the bar chart in the following screenshot with

Figure 2.1; they are showing the same patterns:

[,:;Figure 14.26 — Creating the histogram of adult_df by pd.cut() and .bar() instead of .hist()
Figure 14.26 — Creating the histogram of adult_df by pd.cut() and .bar() instead of .hist()
If you are concerned about the preceding figure not looking exactly like the one in Figure 2.1, all you

need to change is the width of the bar. Replace .bar (width=1) with .bar() in the code of the

preceding screenshot and you will manage that.

In this section, we learned three ways to deal with noise in the data: smoothing, aggregation, and
binning. We are getting closer to the end of this chapter. Next, we will go over a summary of the

whole chapter and wrap up our learning.

Summary

Congratulations to you for completing this chapter. In this chapter, we added many useful tools to our

data preprocessing armory, specifically in the data transformation area. We learned how to

distinguish between data transformation and data massaging. Furthermore, we learned how to
transform our data from numerical to categorical, and vice versa. We learned about attribute
construction and feature extraction, which are very useful for high-level data analysis. We also
learned about log transformation, which is one of the oldest and most effective tools. And lastly, we

learned three methods that are very useful in our arsenal for dealing with noise in data.

By finishing this chapter successfully, you are also coming to the end of the third part of this book —
The Preprocessing. By now, you know enough to be very successful at preprocessing data that leads
to effective data analytics. In the next part of the book, we will have three case studies (Chapters 15—
17), into which we will put our learning from across the book into use and have culminating
experience of data preprocessing and effective analytics. We will end the book with Chapter 18,
Summary, Practice Case Studies, and Conclusions. This chapter will provide learning opportunities
for you to put what you have learned into real use and to start creating your portfolio of data

preprocessing and data analytics.

Before all that real, practical, and exciting learning, do not miss out on the learning opportunity that

the exercises at the end of this chapter provide.

Exercise

1. In your own words, what are the differences and similarities between normalization and standardization? How come some use

them interchangeably?

2. There are two instances of data transformation done during the discussion of binary coding, ranking transformation, and

discretization that can be labeled as massaging. Try to spot them and explain how come they can be labeled that way.

3. Of course, we know that one of the ways that the color of a data object is presented is by using their names. This is why we would
assume color probably should be a nominal attribute. However, you can transform this usually nominal attribute to a numerical
one. What are the two possible approaches? (Hint: one of them is an attribute construction using RGB coding.) Apply the two

approaches to the following small dataset. The data shown in the table below is accessible in the color_nominal. csv file:

L,:Figure 14.27 — color_nominal.csv

Figure 14.27 — color_nominal.csv

Once after binary codding and once after RGB attribute construction, use the transformed
attributes to cluster the 30 data objects into 3 clusters. Perform centroid analysis for both

clusterings and share what you learned from this exercise.

4. You've seen three examples of attribute construction so far. The first one can be found in Figure 14.6. The other one was in the
Example — Construct one transformed attribute from two attributes section, and the last one was the previous exercises. Use these

examples to argue whether attribute construction is data massaging or not.

5. In this exercise, you will get to work on a dataset collected for research and development. The dataset was used in a recent
publication titled Misfire and valve clearance faults detection in the combustion engines based on a multi-sensor vibration signal
monitoring to show that high-accuracy detection of engine failure is possible using vibrational signals. To see this article, visit this

link: https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439.

https://www.sciencedirect.com/science/article/abs/pii/S0263224118303439

The dataset that you have access to is Noise_Analysis.csv. The size of the file is too large and we
were not able to include it on the GitHub Repository. Please use this link

(https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise Analysis.csv?dl=1) to download the file.

This dataset has 7,500 rows, each showing 1 second (1,000 milliseconds) of the engine's
vibrational signal and the state of the engine (Label). We want to use the vibrational signal to
predict the state of the engine. There are five states: H — Healthy, M1 — Missfire 1, M2 — Missfire
2, M12 — Missfire 1 and 2, and VC — Valve Clearance.

To predict (classify) these states, we need to first perform feature extraction from the vibrational
signal. Extract the following five morphological features and then use them to create a decision

tree that can classify them:

a) n_Peaks — the number of peaks (see Figure 14.13)

b) n_Valleys — the number of valleys (see Figure 14.13)

¢) Max_Oscilate — the maximum oscillation (see Figure 14.13)

d) Negative_area — the absolute value of the total sum of negative signals
e) Positive_area — the total sum of the positive signals

Make sure to tune the decision tree to come to a final tree that can be used for analysis. After
creating the decision tree, share your observations. (Hint: to find n_Peaks and n_Valleys, you may

want to use the scipy.signal.find_peaks function.)

. In this chapter, we discussed the possible distinction between data massaging and data transformation. We also saw that FDA can
be used both for data reduction and data transformation. Review all of the FDA examples you have experienced in this book
(Chapter 13, Data Reduction, and this chapter) and use them to make a case regarding whether FDA should be labeled as data

massaging or not.

. Review Exercise 8 in Chapter 12, Data Fusion and Integration. In that exercise, we transformed the attribute of one of the
datasets so that the fusion of the two sources became possible. How would you describe that data transformation? Could we call it

data massaging?

. In this exercise, we will use BrainAllometry_ Supplement_Data.csv from a paper titled The allometry of brain size in

mammals. The data can be accessed from https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s.

The following scatterplot tries to show the relationship between mean body mass and mean brain
mass of species in nature. However, you can see that the relationship is not very well shown.

What transformation could fix this? Apply it and then share your observations:

L':Figure 14.28 — Scatter plot of Mean_body_mass_g and Mean_brain_mass_g
Figure 14.28 — Scatter plot of Mean_body _mass_g and Mean_brain_mass_g

. In this chapter, we learned three techniques to deal with noise: smoothing, aggregation, and binning. Explain why these methods

were covered under data transformation and not under data cleaning — level III.

https://www.dropbox.com/s/1x8k0vcydfhbuub/Noise_Analysis.csv?dl=1
https://datadryad.org/stash/dataset/doi:10.5061/dryad.2r62k7s

10.

11.

12.

13.

In two chapters (Chapter 13, Data Reduction, and this chapter) and under three areas of data preprocessing, we have shown the
applications of FDA: data reduction, feature extraction, and smoothing. Find examples of the FDA in these two chapters, and then

explain how FDA manages to do all these different data preprocesses. What allows FDA to be such a multipurpose toolkit?

In Figure 14.18, we saw that . KernelReg() on all of signal_df did not perform very well, but it did perform excellently on
part of it. How about trying to smooth all of signal_df with a combination of rolling data smoothing and functional data
smoothing? To do this, we need to have window rolling calculations with a step size. Unfortunately, the . rol1ling() Pandas
function only accommodates the step size of one, as shown in Figure 14.18. So, take matters into your hands and engineer a

looping mechanism that uses . KernelReg() to smooth all of signal_df.

Use United_States_COVID-19_Cases_and_Deaths_by_State_over_Time.csv to recreate Figure 14.24. You

may want to pull the most up-to-date data from https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-

over-time to develop an up-to-date visualization. (Hint: you will need to work with the two new_case and new_death

columns.)

It may seem like that binning and aggregation are the same method; however, they are not. Study the two examples in this chapter

and explain the difference between aggregation and binning.

https://catalog.data.gov/dataset/united-states-covid-19-cases-and-deaths-by-state-over-time

Part 4: Case Studies

In this part, you will see three real cases of data preprocessing for analytics that you can read to
shadow a real project before you pick up your own project. Some suggestions are also provided.
This part comprises the following chapters:

e Chapter 15, Case Study 1 — Mental Health in Tech

o Chapter 16, Case Study 2 — Predicting COVID-19 Hospitalizations

o Chapter 17, Case Study 3 — United States Counties Clustering Analysis

e Chapter 18, Summary, Practice Case Studies, and Conclusions

Chapter 15:. Case Study 1 — Mental Health in Tech

In this chapter and the two upcoming ones, we are going to put the skills that we have picked up in
the course of this book into practice. For this case study, we are going to use data collected by Open
Sourcing Mental Illness (OSMI) (https://osmihelp.org/), which is a non-profit corporation dedicated
to raising awareness, educating, and providing resources to support mental wellness in the tech and
open source communities. OSMI conducts yearly surveys that "aim to measure attitudes towards
mental health in the tech workplace and examine the frequency of mental health disorders among
tech workers." These surveys are accessible to the public for participation and can be found at

https://osmihelp.org/research.

In this chapter, we're going to learn about mental health in tech case study by covering the following:
o Introducing the case study
« Integrating the data sources
¢ Cleaning the data

¢ Analyzing the data

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, click on this link:
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python. You can find this

chapter's materials in this repository and can download the code and the data for better learning.

Introducing the case study

Mental health disorders such as anxiety and depression are inherently detrimental to people's well-
being, lifestyles, and ability to be productive in their work. According to Mental Health America,
over 44 million adults in the US have a mental health condition. The mental health of employees in
the tech industry is of great concern due to the competitive environments often found within and
among these companies. Some employees at these companies are forced to work overtime simply to
keep their jobs. Managers of these types of companies have good reason to desire improved mental

health for their employees because healthy minds are productive ones and distracted minds are not.

Managers and leaders of tech and non-tech companies must make difficult decisions regarding
whether or not to invest in the mental health of their employees and, if so, to what degree. There is

plenty of evidence that poor mental health can have a negative impact on workers' well-being and

https://osmihelp.org/
https://osmihelp.org/research
https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python

productivity. Every company has a finite amount of funds that it can invest in the physical health of

its employees, let alone mental health. Knowing where to allocate resources is of great importance.

This serves as a general introduction to this case study. Next, we will discuss a very important aspect

of any data analysis — who is the audience of our results?

The audience of the results of analytics

Always, the main audience of the results of any analytics is decision-makers; however, it is important
to be clear about who exactly are those decision-makers. In real projects, this should be obvious, but
here in this chapter of the book, as our goal is to practice, we need to imagine a specific decision-

maker and tailor our analysis for them.

The decision-makers that we will focus on are the managers and the leaders of tech companies who
are in charge of making decisions that can impact the mental health of their employees. While mental
health should be looked at as a priority, in reality, managers have to navigate a decision-making
environment that has many competing priorities, such as organizational financial health, survival,

profit maximization, sales, and customer service, as well as economic growth.

For instance, the following simple visualization created by OSMI (available at
https://osmi.typeform.com/report/A7mlxC/itVHRYbNRnPgDI9C) tells us that while mental health

support in tech companies is not terrible, there remains a large gap for improvement:

https://osmi.typeform.com/report/A7mlxC/itVHRYbNRnPqDI9C

Overall, how well do you think the tech industry supports employees with
mental health issues?

180 out of 180 answered

% 2.7 Average rating

12.2% 27.2% 41.7% 15.0% 3.9%

22 resp. 49 resp. 75 resp. 27 resp. 7 resp.

3 4 5

1 2
Figure 15.1 — A simple visualization from the 2020 OSMI mental health in tech survey

Our goal in this case study is to dig a bit deeper than the basic report provided by OSMI and see the
interactions between more attributes, which can be informative and beneficial to the described

decision-makers.

Specifically, for this case study, we will try to answer the following Analytic Questions (AQs) that
can inform the described decision-makers about the attitude and importance of mental health in their
employees:

o AQ1: Is there a significant difference between the mental health of employees across the attribute of gender?

o AQ2: Is there a significant difference between the mental health of employees across the attribute of age?

« AQ3: Do more supportive companies have healthier employees mentally?

o AQ4: Does the attitude of individuals toward mental health influence their mental health and their seeking of treatments?

Now that we are clear about how we are analyzing this data and what AQs we want to answer, let's

roll up our sleeves and start getting to know the source of the data.

Introduction to the source of the data

OSMI started conducting the mental health in tech survey in 2014, and even though the rate of

participation in their surveys has dwindled over the years, they have continued collecting data until

now. At the time of developing this chapter, the raw data for 2014 and 2016 to 2020 is accessible at

https://osmihelp.org/research.

GET TO KNOW THE SOURCES OF DATA

Go ahead and download the raw data from 2014 to the most recent version, and use the tools you've picked up in your
journey in this book to get to know these files. Continue reading once you have a good grasp of these datasets.

At the time of developing this chapter, only six raw datasets from 2014, 2016, 2017, 2018, 2019, and
2020 were collected and available. Only the five datasets from 2016 to 2020 are used in this chapter,

so there is continuity in the data.

As we move along in this chapter, feel free to add the most recent versions, if they are available at the

listed address, and update the code accordingly.
Now, let's get started. We will have to start with data integration and then data cleaning.

ATTENTION!

You are going to experience a shift in the way code is represented in this chapter. From Chapter 1 to Chapter 14, almost
all of the code that was used for analytics and preprocessing was shared both during the chapter and also in a dedicated
file in the GitHub repository. However, in this chapter, and in the following two chapters, Chapters 16, Case Study 2 —
Predicting COVID Hospitalization, and Chapter 17, Case Study 3 — United States Counties Clustering Analysis, the code
will be presented mainly in the dedicated file for this chapter in the GitHub repository. So, while studying this chapter, make
sure you also have the code in the GitHub repository handy so that you can go back and forth and learn.

Integrating the data sources

As discussed, five different datasets need to be integrated. After having seen these five datasets that
collected data of OSMI mental health in tech surveys across five different years, you will realize that
the survey throughout the years has undergone many changes. Also, while the collected datasets are
about mental health in tech, the wordings of the questions and sometimes the nature of these
questions have changed. Therefore, the figurative funnel in the following figure serves two purposes.
First, it lets the parts of the data from each dataset come through that are common among all six

datasets. Second, the funnel also filters out the data that is not relevant to our AQs:

https://osmihelp.org/research

Column 2

Column 1

Column 2

Columnm

Row 1

Row 2

1%

| Rown

\. |

Figure 15.2 — The schematic of the integration of five datasets into one

While the preceding figure makes the integration of these five datasets seem simple, there are

meaningful challenges ahead of us. The very first one is knowing what the common attributes are

among all these five datasets if there is no consistent wording among them. Do we need to do it

manually? While that is certainly one way of doing it, it would be a very long process. We can use

SequenceMatcher from the difflib module to find the attributes that are similar to one another.

After doing the filtering based on what is common among all five datasets, we still need to only keep

the attributes that are relevant to our AQs. The following list is the collection of the attributes that are

both common among all five datasets and are relevant to our AQs. To make cleaner-looking data,

each long attribute name that is a question on the survey has been assigned a name. These names are

used to create an attribute dictionary, column_dict, so the attribute names are codable and intuitive,

and the complete questions are also accessible:

SupportQl1: Does your employer provide mental health benefits as part of healthcare coverage?

SupportQ2: Has your employer ever formally discussed mental health (for example, as part of a wellness campaign or other

official communication)?
SupportQ3: Does your employer offer resources to learn more about mental health disorders and options for seeking help?

SupportQ4: Is your anonymity protected if you choose to take advantage of mental health or substance abuse treatment

resources provided by your employer?

SupportQ5: If a mental health issue prompted you to request medical leave from work, how easy or difficult would it be to ask

for that leave?

AttitudeQ1: Would you feel comfortable discussing a mental health issue with your direct supervisor(s)?
AttitudeQ2: Would you feel comfortable discussing a mental health issue with your coworkers?
AttitudeQ3: How willing would you be to share with friends and family that you have a mental illness?

SupportEx1: If you have revealed a mental health disorder to a client or business contact, how has this affected you or the

relationship?

SupportEx2: If you have revealed a mental health disorder to a coworker or employee, how has this impacted you or the

relationship?

Age: What is your age?

Gender: What is your gender?

ResidingCountry: What country do you live in?

WorkingCountry: What country do you work in?

Mental Illness: Have you ever been diagnosed with a mental health disorder?

Treatment: Have you ever sought treatment for a mental health disorder from a mental health professional?

Year: The year that the data was collected.

After removing the other attributes, renaming the long attribute names with their key in the

dictionary, the five datasets can be easily joined using the pd.concat () pandas function. I have named

the integrated DataFrame in_df.

Cleaning the data

While going about data integration, we took care of some level I data cleaning as well, such as the

data being in one standard data structure and the attributes having codable and intuitive titles.

However, because in_df is integrated from five different sources, the chances are that different data

recording practices may have been used, which may lead to inconsistency across in_df.

For instance, the following figure shows how varied data collection for the Gender attribute has been:

:;E:_m,.(:c
ad
= ALy

m

:M%m_
m,_w w?rmuu_.._:

mw(wmm RERCT ST T
F I

ﬁ% C

Bl -LOU SUE]
e IR L
Sl fiae
ucum&w_;nm_m,t& !
H%«ﬂm
- Buliay

oo
TR et

PRidealeg)

T Rauon
S

%cwm pue AJELIg LON

PENE

ek
- SRR ErvIesk e esleeg
= e

- _,MJ._ 12 paufisze ojeway
SRR B e apuon

_“E
il ,Df?ﬁm_wss

vaﬂ,m_m :Emmww_w;_: 500 Slenotiog 1350210 53 PSS 10 DINOR | Pl X35 BSAS2 10 PINOUS Nk "USaNI 4map daID © 513 SHEW 10K LUBIR U Uew e 11

B rp—
E _uwsguwmu:um_,uf_.wwb Yuyyuyyyyn
- usu:m

1400

1200

1000

BOO

00

Figure 15.3 — The state of the Gender attribute before cleaning

We need to go over every attribute and make sure that there is no repetition of the same possibilities

in a slightly different wording due to varying data collection or misspellings.

Detecting and dealing with outliers and errors

As our AQs are only going to rely on data visualization for answers, we don't need to detect outliers,

as our addressing them would be adopting the "do nothing" strategy. However, as we use outlier

detection to also find possible systematic errors in the data, we can visualize all of the attributes in

the data and spot inconsistencies, and then fix them.

The following figure shows the box plot and histogram of the Age attribute, and we can see there are
some mistaken data entries. The two unreasonably high values and the one unreasonably low value

were changed to NaN:

What is your age?

—
w S &
[[=] (=]
I I 4

Frequency

(=]

100 150 200 250 300

rge { @ [} wmo o o

I 1 I

0 50 100 150 200 250 300

Figure 15.4 — The box plot and histogram of the Age attribute before cleaning

After the prescribed transformation, the box plot changed to more healthy-looking data distribution,
as shown in the following figure. There are still some fliers in the data, but, after further investigation
of these entries, it was concluded these values are correct, and the individuals who responded to the

survey just happened to be older than the rest of the respondent population:

What is your age?

750 -
o
& 500 -
b= |
EZSO-

0- .

60 70
Age 1 | | COOOOOCO00000 O O
20 30 40 50 60 70

Figure 15.5 — The box plot and histogram of the Age attribute after cleaning

The visualization of another two attributes showed that they need our attention — ResidingCountry

and workingcCountry. The following figure shows the bar chart of the workingCountry attribute. The

visuals of the two attributes are very similar, which is why we have shown only one of them:

7000

1/50

1500

1000

H
3 g2 o]
a & 8 B8 2

United States of Americs | |

Figure 15.6 — The box plot and histogram of the WorkingCountry attribute before transformation

Considering the bar charts of these two attributes, we do know that the issue with this data is not

mistaken data entries; however, the fact that there are just more data entries from the US than the

g
Illlll
E O PN B0 UCEURDENUN »UO XN ES PLEBE INPNY gELE LU R U0 PR ncamERY comrmRE B TR
D CUgSES NUSTENEE REBUNEBUECETC U R E e ST EEs o cEBcu==xccesScpsd S50 [E8T XguaE
gggggee;ﬂggggsgggagggggufagﬁsz$g§£g§gﬁa:gg=’gsﬁgg%gg%ﬁﬁ =2§=§a§g 8?*35?21
@ S=5afn ETm 5= o553 S 5cegp3RITYE5B8y s EzE8ZERE so-2c e B 56 =2 g =
ZSET gPEVzELEdcl Ex PX¥cET35wnd EBL 2 o € e@585pE~ g Gve) ez gl
£] ES 36 SoIFF 3 dg €25 U888 5 ewp58GBE"E, g%3 v 32a 2
s0gz 2 FE889%%g2 28 8gs gg UL Ce53 YpS orEEIZCEETS AESUUSE 2 FEEz
3 o} Z3 3 = 5 K & Tg o a3 X @ >54u3
g = 2 W I < T e 3 =
Z b © <

2
S] b

o 2

2 £

5 2

g

a

other countries is not because the US only has tech companies, but, at a guess, because the survey
participation was more encouraged in the US. To deal with this situation, the best way is to focus our
analysis on the US respondents instead of the whole data. Therefore, we remove all the rows, except

for the ones that have united States of America under both workingCountry and ResidingCountry.

After implementing this data transformation, the values under workingcountry and ResidingCountry
will only have one possible value; therefore, they are not adding any information to the population of

the transformed dataset. The best way to move forward would be to remove these two attributes.

Next, let's deal with the missing values in the dataset.

Detecting and dealing with missing values

After investigation, we realize that except for AttitudeQ3, Age, Gender, Mental Illness, Treatment,
and vear, the rest of the attributes do have missing values. The first thing we check is to make sure
the missing values are all from the same data objects. The following figure was created so that we

can see the assortment of missing values across the population of the dataset:

0.6
0.4

- 1.0
0.2

- 0.8

S
o
I==78

juawyeal

AWV LRI - Ss3uTl 1e3usig

12pus3n)
aby

| - zx3juoddng
- Tx3uoddng

c09apnINVY
Z02pnMInvY
TO=2PMINY
gOuHoddnsg
pOuUoddng
cOuoddng
ZOuoddng
TOuoddng

OO ~OoOWmmou
O~OWINMNGIO W
AN NOW0~0o

1067
1149
1224
1313
1391
1483
1572
1664
A
1838
1921
1986
2047
2118
2178
2260
2336
2397
2455
2519
2592
2663
2751
2831
2935
3064

Figure 15.7 — Assortment of missing values across the population of the dataset

Considering the preceding figure, the answer to our wondering is yes, some data objects have missing
values on more than one attribute. The missing values for the attributes from SupportQ1 to
AttitudeQ3 are from the same data objects. However, the preceding figure brings our attention to the
fact that the missing values under SupportEx1 and SupportEx2 are much more troublesome, as the
majority of the data objects have missing values under these two attributes. The best way of moving
forward in these situations is to forego having these attributes. So these two attributes have been

removed from the analysis.

Now, let's bring our attention back to the common missing values among the data objects for the
attributes from SupportQ1 to AttitudeQ3.

The common missing values in attributes from SupportQ1 to
AttitudeQ3

We need to diagnose these missing values to figure out what type they are before we can deal with
them. After running the diagnosis, we can see these missing values have a relationship with the Age
attribute. Specifically, the older population in the dataset has left these questions unanswered.
Therefore, we can conclude that these missing values are of the Missing At Random (MAR) type.
We will not deal with these missing values here because our decision regarding them depends on the

analysis. However, we'll keep in mind that these missing values are of the mAR type.

Next, let's diagnose the missing values on the other attributes — next stop: the Mental Illness
attribute.
The missing values in the Mentallllness attribute

The Mental Illness attribute has 536 missing values. The missing value ratio is significant at 28%.
To investigate why these missing values happen, we compare the pattern of the occurrence of these
missing values with the distribution of the whole data. In other words, we diagnose these missing
values, and after the diagnosis, it will become apparent that missing values under this attribute are
closely connected with the Age, Treatment, and Year attributes. It is apparent that these missing values

are also of the mAR type, and we will not deal with them before the analysis.

Lastly, we need to address the three missing values in the Age attribute.

The missing values in the Age attribute

The Age attribute has three missing values. These are missing values that were imputed from the
extreme point analysis. We decided these attributes were mistake data entries. As we know where

they come from and that there are only three of them, we can assume that they are of the Missing
Completely At Random (MCAR) type.

Now that the dataset is clean and integrated, let's move our attention to the analysis part.

Analyzing the data

As we have seen in our journey in this book, data preprocessing is not an island and the best data
preprocessing is done by being informed about the analytics goals. So we will continue preprocessing
the data as we go about answering the four questions in this case study. Let's progress in this

subsection one AQ at a time.

Analysis question one — is there a significant
difference between the mental health of employees
across the attribute of gender?

To answer this question, we need to visualize the interaction between three attributes: Gender, Mental
Illness, and Treatment. We are aware that the Mental Illness attribute has 536 missing MAR values
and those missing values have a relationship with the Treatment attribute. However, as the goal of the
analysis is to see the mental health across 6ender, we can avoid interacting with Treatment and
Mental Illness and bring the focus of our analysis to the interaction of the Gender attribute with both
of these two attributes. With this strategy, we can adopt the do-nothing approach for the missing

values in Mental Illness.

Using the skills that we have picked up in the course of our learning in this book, we can come up
with the following two bar charts that meaningfully show the interactions in the data that can help us
answer this AQ:

Mental Iliness
B No
Other B Yes
T
2 Male
(]
(&)
ormale —
0 100 200 300 400 500 600 700 800
Treatment
N No
Other B Yes
T
2 Male
(]
(&)
ormale F

0 100 200 300 400 500 600 700 800

Figure 15.8 — Bar charts for AQ1

The preceding figure shows that the Gender attribute does have a meaningful impact on the mental
health of tech employees. So the answer to this question is yes. However, while the ratio of not
having a mental illness compared to having a mental illness is higher for Male than Female, there is
also a much higher "never having sought professional mental health help" ratio among Male. These
observations suggest that there is a population of male employees in tech that are not aware of their
mental health and have never sought professional help. Based on these observations, it should be

recommended to target male employees for mental health awareness.

Another important observation from the preceding figure is that there seem to be many more mental
health concerns for the individuals who have not chosen Male or Female for their gender. However,

the preceding figure does not show what the difference is because this segment of the population has
much smaller data objects than Male and Female. Therefore, to tease out the portion of these
individuals with mental health concerns and compare them with the other two subpopulations, the

following two heat maps were created:

08
w9 - 0.18 033 0.053
& 0.6
% 04
wvi
=3 02
Female Male Other
Gender
08
o o- 022 04 0.14
E = 0.6
E -04
-02
Female Male Other
Gender

Figure 15.9 — Heat maps for AQ1

In the preceding figure, we can see that indeed the subpopulation that did not identify as Male or
Female has a much larger percentage of people with mental illnesses than the other two populations.
However, we can that see this population, similar to the population of Female, has a higher

percentage of having sought treatment.

Now, let's discuss AQ?2.

Analysis question two — is there a significant difference
between the mental health of employees across the
Age attribute?

To answer this question, we need to visualize the interaction between three attributes: Age, Mental

Illness, and Treatment. We are aware that the Mental Illness attribute has 536 missing MAR values

and those missing values have a relationship with the Treatment and Age attributes. Moreover, we are

aware that Age has three missing McAR values.

Dealing with the missing McAR values is simple, as we know these missing values are completely
random. However, we cannot adopt the approach of leaving them as they are because to be able to
visualize these relationships, we need to transform the Age attribute from categorical to numerical.
Therefore, for this analysis, we have removed the data objects with missing values under the Age

attribute.

We cannot take the same approach we took in AQ1 to deal with the missing MAR values of Mental
Illness because this attribute has a relationship with both the Age and Treatment attributes. Therefore
here we have added a third category to Mental Illness — MV-MAR. The following figure shows the

bar charts that visualize the relationships that we are interested in investigating:

| _Figure 15.10 — Bar chart for AQ2

Figure 15.10 — Bar chart for AQ2

Studying the preceding figure, we can see that there seem to be some patterns in the data; however,
they are not as pronounced as they were under AQ1, so before discussing these patterns, let's see
whether these patterns are significant statistically. We can use the chi-square test of association for
this purpose. As seen in Chapter 11, Data Cleaning Level III — Missing Values, Outliers, and Errors,

the scipy.stats module has this test packaged in the chi2_contingency function.

After calculating the p-values of the test for both bar charts in the preceding figure, we come to
0.0022 and e.5497 respectively. This tells us that there are no significant patterns in the second bar
chart, but the patterns in the first bar chart are significant. Using this information, we can conclude
that while age does have an impact on mental health concerns, it does not impact the behavior of

individuals in seeking treatment.

Moreover, the significant pattern in the first bar chart tells us that as the Age attribute increases, the
answer no to the question "Have you ever been diagnosed with a mental health disorder?" also
increases. Surprisingly, the answer yes to the same question also increases. It is surprising because we
would expect these two to counteract with one another. The reason for this surprising observation is
also shown in this bar chart; as the age increases, the number of individuals who have not answered
the question has also increased. This could be because older individuals do not have as much trust in

the confidentiality of the data collection.

The conclusion that is drawn from this observation is that older tech employees may need to build

more trust for them to open up about their mental health concerns than younger employees.

Next, we will discuss AQ3.

Analysis question three — do more supportive
companies have mentally healthier employees?

To answer this question, we first need to perform some data transformation, specifically attribute
construction. We have constructed theperceivedsupportscore attribute, which is a column that
indicates how supportive the participant's employer is of mental health. The supportQ1, SupportQ2,
SupportQ3, SupportQ4, and SupportQs attributes were used to calculate supportscore. The +1 or +0.5
values were added to PerceivedSupportscore where the answers to these attributes indicated support,
whereas the -1 or -0.5 values were subtracted from PerceivedSupportScore where the answers to
these attributes indicated a lack of support. For instance, for supportqs, the +1, +0.5, -0.5, -0.75, and
-1 values were added/subtracted respectively for Very easy, Somewhat easy, Somewhat difficult,
Somewhat difficult, and Very difficult. The question that supportqs asked was "If a mental health
issue prompted you to request medical leave from work, how easy or difficult would it be to ask for

that leave?"

The following figure shows the histogram of the newly constructed column:

[,:;Figure 15.11 — Histogram of the newly constructed attribute for AQ3

Figure 15.11 — Histogram of the newly constructed attribute for AQ3

We certainly do not forget that all of the ingredients of the newly constructed supportq1 and
supportQz2 attributes have 228 missing MAR values. These missing MAR values showed a relationship
with the Age attribute. As for answering AQ3, we need to visualize the relationship between the
newly constructed attribute and the Mental Illness and Treatment attributes; we can adapt the
approach of "leaving as is" for these missing values. The reason is that neither the Mental Illness

attribute nor the Treatment attribute influenced the missing values on the ingredient attributes.

Before doing the visualization, as the newly constructed attribute is numerical and both mental
Illness and Treatment are categorical, we need to first discretize the attribute. Scores higher than 1
were labeled as Supportive and scores lower than -0.5 were labeled as Unsupportive. The results

are presented in the following bar chart:

[,:Figure 15.12 — Bar chart of the newly constructed attribute after discretization for AQ3
Figure 15.12 — Bar chart of the newly constructed attribute after discretization for AQ3

The following figure shows the interaction between the three Mental Illness, Treatment, and
pereceivedSupportGroup attributes. As a visualization with three dimensions is going to be
somewhat overwhelming, we can make a strategic decision to only include the two extreme

categories, Supportive and Unsupportive, and leave out Neutral:

Supportive

o

>

o

G}

<

S

Q

(o

>

[}

=

=

% Mental lliness, Treatment

Q -

Unsupportive (o, Noj
p (No, Yes)
B (Yes, No)
Bl (Yes, Yes)
] T T T T T T T
0] 50 100 150 200 250 300 350 400

Figure 15.13 — Bar chart for AQ3

Studying the patterns shown in the preceding figure, we realize that perceivedSupportScore
influences the employee's behavior in seeking professional help for mental health concerns. The
number of respondents that have answered Yes to both "Have you ever been diagnosed with a mental
health disorder?" and "Have you ever sought treatment for a mental health disorder from a mental
health professional ?" questions is significantly higher in the Supportive category. Likewise, the
number of respondents that have answered No to both questions is significantly lower in the

Supportive category.

Based on these observations, we can recommend investing in creating trust and employees'

perception of support in tech companies.

Next, we will address the last AQ.

Analysis question four — does the attitude of
individuals toward mental health influence their mental
health and their seeking of treatments?

Similar to AQ3, to answer this question, we first need to construct a new attribute; AttitudeScore
will be a column that indicates the participant's attitude toward sharing mental health issues. The
AttitudeQ1, AttitudeQ2, and AttitudeQ3 attributes are used to construct Attitudescore. The +1 or
+0.5 values were added to Attitudescore where the answers to these attributes indicated openness,
whereas the -1 or -0.5 values were subtracted from Attitudescore where the answers to these
attributes indicated a lack of openness. For instance, for AttitudeQs, the +1, +0.5, -0.5, and -1 values

were added/subtracted respectively for Very open, Somewhat open, Somewhat not open, and Not open

at all; the question that AttitudeQ3 asked was "Would you feel comfortable discussing a mental

health issue with your coworkers?"

The following figure shows the histogram of the newly constructed attribute:

[,:;Figure 15.14 — Histogram of the newly constructed attribute for AQ4

Figure 15.14 — Histogram of the newly constructed attribute for AQ4

Similar to perceivedsupportscore in AQ3, before doing the visualization, as the newly constructed
attribute is numerical and both Mental Illness and Treatment are categorical, we need to first
discretize the attribute. Scores higher than e.5 were labeled as OpenAttitude, scores lower than -0.5
were labeled as ClosedAttitude, and scores between -0.5 and 0.5 were labeled as Neutral. The

results are presented in the following bar chart:

[,:'Figure 15.15 — Bar chart of the newly constructed attributes after discretization for AQ4

Figure 15.15 — Bar chart of the newly constructed attributes after discretization for AQ4

The following stacked bar chart is created to show the interaction between the three MentalIllness,
Treatment, and attitudeGroup attributes. We use a similar strategy to the one used in Figure 15.13

to avoid overwhelming our sensory faculty:

[,:Figure 15.16 — Stacked bar chart for AQ4

Figure 15.16 — Stacked bar chart for AQ4

The preceding visualization provides an answer for AQ4. There seems to be a meaningful
improvement in employees seeking treatment if they have an open attitude toward sharing mental
health issues. These observations suggest that tech companies should see the education of employees

in their attitude toward mental health as a sensible investment option.

Summary

In this chapter, we got to practice what we have learned during our journey in this book. We did some
challenging data integration and data cleaning to prepare a dataset for analysis. Furthermore, based
on our analytics goals, we performed specific data transformations so that the visualization that

answers our AQs becomes possible and, at times, more effective.

In the next chapter, we will practice data preprocessing on another case study. In this case study, the
general goal of the analysis was data visualization; however, the preprocessing in the next case study

will be done to enable predictive modeling.

Chapter 16:. Case Study 2 — Predicting COVID-19
Hospitalizations

This chapter is going to provide an excellent learning opportunity to perform a predictive analysis
from scratch. By the end of this chapter, you will have learned a valuable lesson about preprocessing.
We will take the COVID-19 pandemic as an example. This is a good case study because there is lots
of data available about different aspects of the pandemic such as covid hospitalizations, cases, deaths,

and vaccinations.
In this chapter, we're going to cover the following:

« Introducing the case study
o Preprocessing the data

o Analyzing the data

Technical requirements

You will be able to find all of the code examples and the dataset that is used in this chapter in this
book's GitHub repository at https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-

Python/tree/main/Chapter16.

Introducing the case study

As the world started grappling with the ramifications of COVID-19, healthcare systems across the
globe started dealing with the new overwhelming burden of caring for the people infected with the
disease. For instance, in the US governments, all levels — Federal, State, and local, had to make
decisions so they can help the hospitals as they struggled to shoulder the crisis. The good news is that
database and data analytics technologies were able to create real value for these decision-makers. For
instance, the following figure shows a dashboard that monitors the COVID-19 situation for Los
Angeles County in the State of California in the United States. The figure was collected from

http://publichealth.lacounty.gov/media/coronavirus/data/index.htm on October 4, 2021.

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter16
http://publichealth.lacounty.gov/media/coronavirus/data/index.htm

LA County Daily COVID-19 Data

View Other Data Pages

Data through 6:00pm 10/02/2021

Cases

1,032

New Cases Reported (10/03)*

1,403,039

Total Cases Reported*

Testing

Daily Reported Number of Persons Tested
with Diagnostic Tests, Past 7-day Average from 7 days Ago
September 26, 2021

*including cases reported by Long Beach and Pasadena

Health Departments
7-Day Daily Average: 135,294

Total Number of People Tested: 8,683,814

What This Means @

Death Rate

Daily Number of Deaths, Past 7-day Average from 7 days Ago Age-Adjusted Death Rates due to COVID-19 per 100K
September 26, 2021 October 02, 2021

New Deaths Reported (10/03)*: 10
Total Deaths Reported*: 26,153

by Race, Ethnicity and Poverty Level

What This Means @

*including deaths reported by Long Beach and

Pasadena Health Departments

What This Means @

Testing Positivity Rate

Daily Reported Percent of COVID-19 Diagnostic Tests
that are Positive, Past 7-day Average
September 26, 2021

7-Day Daily Average: 1.19%

What This Means @

Hospitalizations

Daily Number of Hospitalized COVID-19 Confirmed Patients,
Past 7-day Average
September 30, 2021

Current Hospitalizations (10/1): 825

What This Means @

Figure 16.1 — An LA County COVID-19 data dashboard

In this case study, we are going to see an example of data analytics that can be of meaningful value to

a local government department. We are going to focus on the government of Los Angeles County

(LA), California. This county is the most populated in the US, with approximately 10 million

residents. We are going to use historical data to predict the number of patients that will need

hospitalization in the near future; specifically, we will create a model that can predict the number of

hospitalizations in LA County two weeks from the present moment.

Now that we have a general understanding of this case study, let's get to know the datasets that we

will use for our prediction model.

Introducing the source of the data

When we create a prediction model, one of the first things we need to do is to imagine what kind of
data can be useful for predicting our target. In this example, our target is the number of
hospitalizations. In other words, we want to imagine what the independent attributes could be for

predicting this specific dependent attribute.

Go back to Chapter 3, Data — What Is It Really?, and study the DDPA pyramid in Figure 3.2. When
we imagine what data resources could be useful for the prediction of our target, we are exploring the
base of the DDPA pyramid. The base of the pyramid represents all of the data that is available to us.
Not everything is going to be useful at this point, but that is the beginning of the data preprocessing
journey. We start by considering what could be useful, and by the end of the process, we should have

a suitable dataset that can be useful for pattern recognition.

The following list shows four sources of data that can be useful for predicting hospitalizations:

« Historical data of LA County COVID-19 hospitalizations (https://data.chhs.ca.gov/dataset/covid-19-hospital-data)

« Historical data of COVID-19 Cases and Deaths in LA County (https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-

county-and-state)

« Historical data of COVID-19 Vaccinations in LA County (https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-

data-by-zip-code)

o The dates of US public holidays (these can be accessed via Google)

You can download the latest versions of these datasets from the provided links. The three datasets
that we use in this chapter, covid19hospitalbycounty.csv, covidi9cases_test.csv, and
covidi9vaccinesbyzipcode_test.csv, were collected on October 3, 2021. You must keep this date in
mind as you go through this chapter, as the time range of our prediction is an important feature. I
strongly encourage you to download the latest version of these files and update the analysis and do
some actual predictions. Better yet, if the same datasets are available where you live, do the

predictive analysis for your local government.

The fourth data source is a simple one — the US public holidays are, well, public knowledge, and

some simple Googling can provide these.

ATTENTION!

| strongly encourage you to open each of these datasets on your own and scroll through them to get to know them before
continuing. This will enhance your learning.

https://data.chhs.ca.gov/dataset/covid-19-hospital-data
https://data.chhs.ca.gov/dataset/covid-19-time-series-metrics-by-county-and-state
https://data.chhs.ca.gov/dataset/covid-19-vaccine-progress-dashboard-data-by-zip-code

Now that we have the datasets, we need to perform some data preprocessing before we get to the data

analytics. So, let's dive in.

Preprocessing the data

The very first step in preprocessing data for prediction and classification models is to be clear about
how far in the future you are planning to make predictions. As discussed, our goal in this case study
is to make a prediction for two full weeks (that is, 14 days) in the future. This is critical to know
before we start the preprocessing.

The next step is to design a dataset that has two characteristics:

« First, it must support our prediction needs. For instance, in this case, we want to use historical data to predict hospitalizations in

two weeks.

« Second, the dataset must be filled with all of the data we have collected. In this example, the data includes
covidi9hospitalbycounty.csv, covidi9cases_test.csv, covidi9vaccinesbyzipcode_test.csv, and
the dates of US public holidays.

One of the very first things we will do codewise, of course, is to read these datasets into pandas
DataFrames. The following list shows the name we used for the pandas DataFrames:

« covidi9hospitalbycounty.csv: day_hosp_df

. covidl9cases_test.csv: day_case_df

. covidl9vaccinesbyzipcode_test.csv: day_vax_ df

Now, let's discuss the steps for designing the dataset, which needs to have the two characteristics we

previously described.

Designing the dataset to support the prediction

While designing this dataset to possess the two characteristics that were mentioned earlier, we
basically try to come up with possible independent attributes that can have meaningful predictive
values for our dependent attribute. The following list shows the independent attributes that we may

come up with for this prediction task.
In defining the attributes in the following list, we have used the t variable to represent time. For
instance, te shows t=0, and the attribute shows information about the same day as the row:

e n_Hosp_t0: The number of hospitalizations at t=0

o s_Hosp_tn7_0: The slope of the curve of hospitalizations for the period t=-7 to t=0

« Bn_days_MajHol: The number of days from the previous major holiday

o av7_Case_tn6_0: The seven-day average of the number of cases for the period t=-6 to t=0

e« s_Case_tn14_0: The slope of the curve of cases for the period t=-14 to t=0

« av7_Death_tn6_0: The seven-day average of the number of deaths for the period t=-6 to t=0
o s_Death_tn14_0: The slope of the curve of deaths for the period t=-14 to t=0

o p_Fullvax_to: The percentage of fully vaccinated people at t=0

o s_FullVax_tn14_0: The slope of the curve of the percentage of fully vaccinated people for the period t=-14 to t=0

NOTE!

A great question to ask about these suggested independent attributes is how did we come up with them. There is no
step-by-step process that can guarantee the perfect set of independent attributes, but you can learn the relevant skills
to position you for more success.

These independent attributes are the byproduct of the creative mind of a person that has the following characteristics:
1) they understand the prediction algorithms, 2) they know the types of data that are collected, 3) they are
knowledgeable about the target attribute and the factors that can influence it, and 4) they are equipped with data
preprocessing tools such as data integration and transformation that enable effective data preprocessing.

After reviewing these potential attributes, you realize the importance of functional data analysis
(FDA), which we learned about in different parts of this book. Most of these attributes will be the

outcome of the FDA for data integration, data reduction, and data transformation.

The dependent attribute (or our target) is also coded similarly as n_Hosp_t14, which is the number of

hospitalizations at t=14.

The following figure shows the placeholder dataset that we have designed so that we can fill it up

using the data resources we have identified:

t0 n_Hosp_t0 s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_t14

2020-

0 03.29 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

4 03-30 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

2 03.31 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

3 04-01 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2020-

4 04.02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
2021-

sa9 2000 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

550 3040 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

s51RZ020 NaN NaN NaN NaN NaN NaN NaN NeN NaN NaN
2021-

552 10.02 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

553024 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

10-03

554 rows x 11 columns

Figure 16.2 — The placeholder for the designed dataset

Filling up the placeholder dataset

The following figure tells a simple story of how we will be filling up the placeholder dataset. Of
course, the data comes from the four data sources that we have identified; however, the ingenuity and
the skills that we need to integrate, transform, reduce, and clean the data so it can fill up the

placeholder will come from our knowledge and creativity.

t0 n_Hosp_t0 s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_t14

2020-

0 o3og NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

i 2020 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
03.80 al al ai al al al al al al al
2020-

2 gaad NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

3 2020 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
04-01 al al al al al al al al al al

g 22 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

04-02

Figure 16.3 — A schematic of filling up the placeholder dataset

ATTENTION!

It is important to remember that we learned about each of the data preprocessing steps in isolation. We first learned about
data cleaning, then data integration, and after that data reduction, and at the end came data transformation. However, now
that we are starting to feel more comfortable with these stages, there is no need to do these in isolation. In real practice,
they can and should be done at the same time very regularly. In this case study, you are seeing an example of this.

So, as shown in the preceding figure, we will be using the data from the four sources to fill the
columns, one by one, in the designed placeholder dataset. However, to make the connections between
the data sources, some data cleaning is needed. The main priority is to make sure all of the rows in
day_hosp_df, day_case_df, day_vax_df, and even the placeholder day_df are indexed with the
datetime version of the dates. These dates will provide seamless connections between the data
sources. After that, we will use what we have learned in this book to fill the columns in the
placeholder day_df DataFrame. The following figure shows the day_df DataFrame rows after having
been filled:

t0 n_Hosp_t0 s_Hosp_tn7_0 n_days_MajHol av7_Case_tn6_0 s_Case_tn14_0 av7_Death_tn6_0 s_Death_tn14_0 p_FullVax_t0 s_FullVax_tn14_0 n_Hosp_t14

2020- 2020-

0329 03.29 489.0 NaN 67 NaN NaN NaN NaN 0.000000 0.000000 1433.0
2020- 2020-
03.30 03.30 601.0 NaN 68 NaN NaN NaN NaN 0.000000 0.000000 1501.0
2020- 2020-
03-31 03.31 713.0 NaN 69 NaN NaN NaN NaN 0.000000 0.000000 1587.0
2020- 2020-
04-01 04-01 739.0 NaN 70 NaN NaN NaN NaN 0.000000 0.000000 1624.0
2020- 2020-
04-02 04.02 818.0 NaN 7l NaN NaN NaN NaN 0.000000 0.000000 1679.0
2021- 2021-
09-29 09-29 872.0 -16.928571 24 970.285714 -34.732143 13.000000 -0.528571 0.712213 0.000669 NaN
2021- 2021-

862.0 -13.773810 22 954.142857 21.414284 11.857143 -0.814286 0.712213 0.000623 NaN
09-30 09-30
2021- 2021-
10-01 10.01 825.0 -14.380952 23 897.857143 -25.339285 9.714286 -1.021429 0.712213 0.000566 NaN
2021- 2021-
1002 10.02 790.0 -15.750000 24 804.571429 -42.971429 7.857143 -1.078571 0.712213 0.000503 NaN
33_201:; ?gi}:’: 768.0 -19.500000 25 737.285714 -67.714286 6.000000 -1.228571 0.712213 0.000437 NaN

554 rows % 11 columns

Figure 16.4 — The placeholder dataset after being filled

You may be wondering why some of the rows still contain nan. That's a great question and I am
confident you can figure out the answer on your own. Just go back to the definition of each of these

independent attributes we designed earlier. Give this some thought before reading on.

The answer to the question is simple. The reason that there are still Nnan values on some of the rows is
that we did not have the information in our data sources to calculate them. For instance, let's consider
why s_Hosp_tn7_e is NaN in the 2020-03-29 row. We have to go back to the definition of
s_Hosp_tn7_e, which is the slope of the curve of hospitalizations for the period t=-7 to t=0. As 2020-
03-29 is t=0 for this row, we will need to have the data of the following dates to calculate

s_Hosp_tn7_0, and we don't have them in our data sources:

« t=-1: 2020-03-28

« t=-2: 2020-03-27
« t=-3: 2020-03-26
o t=-4: 2020-03-25
« t=-5: 2020-03-24
« t=-6: 2020-03-23

o t=-7: 2020-03-22

The dataset that we are using in this case study has data from 2e2e-3-29. This almost always
happens when creating a dataset for future prediction with a decision-making gap. The reason we
included the 14 days' difference between the sources of data we use for calculating the independent
attributes and computing the dependent attribute is for our prediction to have decision-making values.
Of course, we can have a more accurate prediction if the decision-making gap is shorter, but at the
same time, these predictions will have fewer decision-making values, as they may not allow for the

decision-maker to process the situation and make the decision that can have a positive impact.

As you will see in the following sections, we will have to eliminate the rows that contain Nnan. But

that's okay, as we have enough data for our algorithm to still be capable of finding patterns.

Next, let's see whether the independent attribute we imagined would have predictive values has them.

We will do that with supervised dimension reduction during our data preprocessing.

Supervised dimension reduction

In Chapter 13, Data Reduction, we learned a few supervised dimension reduction methods. Here,
we want to apply three of them before moving to the data analysis part of the case study. These three
methods are linear regression, random forests, and decision trees. Before reading on, make sure to
revisit Chapter 13, Data Reduction, to freshen up your understanding of the strengths and
weaknesses of each of these methods. The following figures show the results of each of these three

methods.

In the following figure, we see that linear regression deems all of the independent attributes
significant for the prediction of n_Hosp_t14, except for n_days_MajHol and s_Fullvax_tn14_o. Pay
attention to the p>|t| column, which shows with the p-value of the test on the null hypothesis that the
relevant dependent attribute is not capable of predicting the target in this model. The p-values for all
of the other independent attributes — except n_days_MajHol and s_Fullvax tni4 0 — are very small,
indicating the rejection of the null hypothesis.

OLS Regression Results

Dep. Variable:
Model:

Method:

Date:

Time:

No. Observations:
Df Residuals:

Df Model:

Covariance Type:

const

n_Hosp_t0
s_Hosp_tn7_0
n_days_MajHol
av7_Case_tn6_0
s_Case_tn14 0
av7_Death_tn6_0
s_Death_tn14_0
p_FullvVax_t0

s_FullVax_tn14_0

Omnibus:
Prob(Omnibus):
Skew:

Kurtosis:

n_Hosp t14 R-squared:
OoLS Adj. R-squared:
Least Squares F-statistic:
Mon, 04 Oct 2021 Prob (F-statistic):
10:03:07 Log-Likelihood:
925 AIC:
Sl BIC:
9
nonrobust
coef stderr t P>t
316.7108 35.260 8.982 0.000
0.6368 0.053 12.043 0.000
8.7896 0.643 13.672 0.000
0.6326 0422 1499 0.135
0.2514 0.017 14956 0.000
0.5128 0.130 3.932 0.000
-5.3348 1.324 -4.030 0.000
-132.9086 12.351 -10.761 0.000
-496.0640 57139 -8.682 0.000
-7834.8102 8950.211 -0.875 0.382
27.076 Durbin-Watson: 0.168
0.000 Jarque-Bera (JB): 67.116
0.213 Prob(JB): 2.67e-15
4.699 Cond. No. 4.00e+06

0.981
0.981
2937.

0.00

-3653.5

7327.

7370.

[0.025
247.439
0.533
7.527
-0.197
0.218
0.257
-7.935
57 T2
-608.319

-2.54e+04

0.975]
385.983
0.741
10.053
1.462
0.284
0.769
-2.734
-108.645
-383.809

9748.603

Figure 16.5 — The output of linear regression for supervised dimension reduction

We should remember to take the conclusion from the preceding figure with the caveat that linear
regression is only capable of checking the linear relationships for us, and that these two attributes

may have non-linear relationships that could be useful in a more complex model.

This is shown in the second supervised dimension reduction method: the random forest. The
following figure visualizes the importance that the Random Forest has given to each independent
attribute, and we do see, unlike our conclusion we arrive at under Linear Regression, only four
independent attributes are among the most important attributes, and the rest has not given any sizable
share of importance.

s FullVax_tnl4 0 1
av7_Death _tn6 0 -
p_FullVax_t0 1

s Case_tnl4 0
n_days_MajHol 1

s Hosp tn7 0 1

s Death tn14 0
n_Hosp_t0

av7_Case tnb 0

0.0 0.2 04 0.6 08

Figure 16.6 — The output of a random forest for supervised dimension reduction

The following figure shows the final decision tree after being tuned for the successful prediction of
n_Hosp_t14. The resulting decision tree has many levels, and you will not be able to see the splitting
attributes. However, you can see the complete decision tree via the HospdT . pdf file in this book's

GitHub repository, or you can create it yourself to investigate it.

Figure 16.7 — The output of a decision tree for supervised dimension reduction

The data preprocessing is almost done. However, because we are going to use different algorithms in

the next section, we will leave some of the last preprocessing steps to be performed immediately

before applying each prediction algorithm.

Analyzing the data

Now that the data is almost ready, we get to reap the rewards of our hard work by being able to do
what some may consider magic — predict the future. However, our prediction is going to be even
better than magic. Our prediction will be reliable, as it is driven by meaningful patterns within
historical data.

Throughout this book, we have got to know three algorithms that can handle prediction: linear

regression, multilayer perceptrons (MLPs), and decision trees.

To be able to see the applicability of the prediction models, we need to have a meaningful validation
mechanism. We haven't covered this in this book, but there is a well-known and simple method
normally called the hold-out mechanism or the train-test procedure. Simply put, a small part of the
data will not be used in the training of the model, and instead, that small part will be used to evaluate
how well the model makes predictions.

Specifically, in this case study, after removing the rows that have any missing values, we have 525
data objects that can be used for prediction. We will use 511 of these data objects for training,
specifically, the data objects from 2020-04-12 to 2021-09-04 (which would include 507 data objects).
The rest, which are 14 data objects from two weeks of the data (that is, the data objects from 2021-
09-05 to 2021-09-18), will be used for testing our models. Using these dates, we will separate our data
into train and test sets. We will then train the algorithms using the train set and evaluate them using
the test set.

The following figure shows how well the three models — namely linear regression, the decision tree,
and the MLP — were able to fit themselves to the training data. With the decision tree and MLP, we
should not trust a good fit between the training data and the model, as these algorithms can easily
overfit the training data. Therefore, it is important to also see the performance of these algorithms on
the test data.

Linear Regression

Decision Tree

2021
L]

Figure 16.8 — The train dataset versus the fitted model for the linear regression, decision tree, and MLP models

The following figure shows how the trained models were able to predict the test data. The figure also
shows what the prediction of actual future values looks like. Remember that this content was created
on October 3, 2021.

Linear Regression

— test data
10001 -~ test prediction
—-= Future prediction
300 4
200 4
5
700 e
. S —
., s
600 - R a i
\\._ SRR - \-‘\.
20 27 ' 04 11
Oct
2021
Decision Tree
1300
— test data
12001 ==~ test prediction
1100 1 —-= Future prediction
| e s
1000 . 1|.
500 \
BOO l
1
700 4 \
600 1
\
500 - ol
20 27 ' 04 11
Oct
2021
Multi-Layered Perceptron (MLF)
— test data
1400 4 === test predicti_onl
—-= Future prediction
12004
1000 4
800 4
— ——— ""‘-.‘ =
T o S —_— —
e
-
600 4 ;
20 27 04 11
Oct
2021

Figure 16.9 — The test data, test prediction, and future prediction of the linear regression, decision tree, and MLP
models
Comparing the performance of these three models on the test data is rather difficult due to the way
the preceding figure is set up. The following figure shows the prediction of all three models on the
test data and also the test data itself in one chart. The following visualization will allow us to find the

best algorithm for the job:

—— test data
—=— Regression test prediction
1400 1 === DT test prediction
—— mlp prediction
1200 A
1000 +
800 -
600 4 .
19 20 21 22 23 24 25 2b 27 28 29 30 01 02
Oct
2021

Figure 16.10 — Comparing the performance of the linear regression, decision tree, and MLP models on the test set

In the preceding figure, we can see that while the MLP model performs slightly better than the other

two, the three models are largely comparable in performance, and they are all successful.

Well done, we were able to complete the prediction task and also validate it. Let's wrap up this

chapter with a summary.

Summary

In this chapter, we got to see the real value of data preprocessing in enabling us to perform predictive
analytics. As you saw in this chapter, what empowered our prediction was not an all-singing, all-
dancing algorithm — it was our creativity in using what we learned during this chapter to come to a
dataset that could be used by standard prediction algorithms for prediction. Furthermore, we got to

practice different kinds of data cleaning, data reduction, data integration, and data transformation.

In the next chapter, we will get to practice data preprocessing on another case study. In this case
study, the general goal of the analysis was prediction; however, the preprocessing in the next case

study will be done to enable clustering analysis.

Chapter 17. Case Study 3: United States Counties
Clustering Analysis

This chapter is going to provide another excellent learning opportunity to showcase the process of
data preprocessing for high-stakes clustering analysis. We will practice all the four major steps of
data preprocessing in this chapter—namely, data integration, data reduction, data transformation,
and data cleaning. In a nutshell, in this part of the book, we are going to form meaningful groups of
United States (US) counties based on different sources of information and data. By the end of this
chapter, we are going to have a much better understanding of the different types of counties that are
in the US.

In this chapter, we're going to extract information from this case study using the following main
subchapters:

o Introducing the case study

« Preprocessing the data

¢ Analyzing the data

Technical requirements

You will be able to find all of the code and the dataset that is used in this book in a GitHub repository
exclusively created for this book. To find the repository, click on this link:

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17. In

this repository, you will find chapter17 folder from which you can download the code and the data

for better learning.

Introducing the case study

During the 2020 US presidential election, the world and America alike were reminded that where an
individual lives can best predict what they will decide for their future (that is, how they vote). This
may be a sobering realization at an individual level, but this is a billion-dollar understanding for
national businesses such as Starbucks, Walmart, and Amazon. Furthermore, for federal, state, and
local politicians, this realization can be monumentally useful both at election time and when drafting

legislation.

All these benefits may be available to these entities if they are capable of doing meaningful locational
analyses of groups of people. In this case study, we are going to analyze the differences and the

similarities between US counties. In the following screenshot, we can see that the US has many

https://github.com/PacktPublishing/Hands-On-Data-Preprocessing-in-Python/tree/main/Chapter17

counties; there are 3,006, to be exact. The color-coded map shows the county-level relative

population density:

Figure 17.1 — US demographic data map at a county level

NOTE!

The source of the US demographic data map at a county level can be found at the following link: https.//mtgis-
portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb?7.

What is the first step in being able to meaningfully analyze the differences and similarities between
all the counties shown in the preceding screenshot? The answer is, of course, data preprocessing. I

hope you didn't hesitate to give this answer at this point in the book.

In this chapter, specifically, we are going to integrate a few sources of data, and then perform the
necessary data reduction and data transformation before the analysis. There will be lots of data
cleaning that needs to be done across different steps of data preprocessing; however, at this point in
your learning about data preprocessing, your skillset for data cleaning should have sufficiently

developed that you will not need reminding to recognize these steps.

Now that we have a general understanding of this case study, let's get to know the datasets that will

be used for this clustering analysis.

Introduction to the source of the data

https://mtgis-portal.geo.census.gov/arcgis/apps/MapSeries/index.html?appid=2566121a73de463995ed2b2fd7ff6eb7

We will use the following two sources of data to create a dataset that allows us to perform county
clustering analysis:
« The four files Education.x1s, PopulationEstimates.xls, PovertyEstimates.x1ls, and

Unemployment . x1sx from the US Department of Agriculture Economic Research Service (USDA ERS)

(https://www.ers.usda.gov/data-products/county-level-data-sets/)

o US election results from Massachusetts Institute of Technology (MIT) election data
(https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/VOQCHQ)

Across the preceding two sources, we've got five different files that we need to integrate. The files
from the first source are easily downloaded; however, the one file from the second source will need
to be unzipped after being downloaded. After downloading dataverse_files.zip file from the second

source, and unzipping it, you will get countypres_2000-2020.csv, which is the file we want to use.

We will eventually integrate all this data into a county_df pandas DataFrame; however, we will need
to read them into their own Pandas DataFrames first and then go about the data preprocessing. The

following list shows the names we will use for those Pandas DataFrames per file:
« Education.xls: edu_df
. PopulationEstimates.xls: pop_df
« PovertyEstimates.xls: pov_df
« Unemployment.xlsx: employ df

« countypres_2000-2020.csv: election_df

ATTENTION!

I highly encourage you to open each of these datasets on your own and scroll through them to get to know them
before continuing to read on, as this will enhance your learning.

Now that we know the data sources, we need to go through some meaningful data preprocessing

before we get to the data analytics part. Let's dive in.

Preprocessing the data

The very first step in preprocessing for clustering analysis is to be clear about which data objects will
be clustered, and that is clear here: counties. So, at the end of the data preprocessing, we will need to
have a dataset whose rows are counties, and with columns based on how we want to group the
counties. As shown in the following screenshot, which is a summary of the data preprocessing that
we will perform during this chapter, we will get to county_df, which has the characteristics that were

just described.

https://www.ers.usda.gov/data-products/county-level-data-sets/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/VOQCHQ

[Column1 [cColumn2 |. . I. [Column m
Row 1
Row 2

I

Rown |

Data
Transformation

Column 1 Column 2

[Column1 | Column2 |. | Is Column m

Row 1
Row 2

Rown | | | | | | |

Figure 17.2 — Schematic of the data preprocessing

As shown in the preceding summarizing screenshot, we will first transform election_df into
partisan_df, and then integrate the partisan_df, edu_df, pov_df, pop_df, and employ df DataFrames.
Of course, there will be more detail to all of these steps than the preceding screenshot shows;

however, this serves as a great summary and a general map for our understanding.

Let's roll up our sleeves, then. We will start by transforming election_df into partisan_df.

Transforming election_df to partisan_df

With a first glance at the election_df dataset, we should realize that the definition of data objects for
this dataset is not counties, and instead, it is the county-candidate-election-mode in each presidential
election. While counties are indeed a part of the definition, we only need to have county as the
definition of the data object. This very fact can be our guiding principle in the data transformation

process.

Let's work our way back from mode to county. Mode refers to the different ways that individuals had
been able to participate in the election. By recognizing the fact that election_df also has the mode of
'ToTAL', which is the sum of all the other modes, we can simply drop all the other rows that have

modes other than 'ToTAL' to simplify the definition of data objects to county-candidate-election.

To simplify from county-candidate-election to county for the definition of data objects, we will first

use attribute construction, and then functional data analysis (FDA).

Constructing the partisanism attribute

The partisanism attribute is meant to capture the level of uniformity in individuals' votes in electing
a democrat or a republican in each election. The following formula shows how this constructed

attribute can be calculated:

votes for Republicans — votes for Democrats

partisanism = -
votes for Republicans + votes for Democrats

If a county in an election has a large positive partisanism value, it shows the county in that election
has swung largely toward republicans; if it has a large negative value, it shows a great swing toward

democrats.

The following screenshot shows a small portion of the partisanElection_df DataFrame, which is the

result of calculating a partisan value for each election and county:

partisanism

state_po county_name vyear

AK DISTRICT 1 2000 0.510367
2004 0.253528
2008 0.222669
2012 0.56734
2016 0.0914432

WY WESTON 2004 0.636498
2008 0.574107
2012 0.714201
2016 0.775383
2020 0.771629

18050 rows x 1 columns

Figure 17.3 — A portion of partisanElection_df

By constructing the new partisanism attribute and calculating it for every county and election, we
managed to move from the definition of data objects being county-candidate-election to county-

election. Next, we will use FDA to have the definition of data objects as only county.

FDA to calculate the mean and slope of partisanism

Looking at Figure 17.3, you may notice that we have the partisanism value of presidential elections
2000, 2004, 2008, 2012, 2016, and 2e2e for every county—in other words, for every county, we have a
time series of partisanism values. Therefore, instead of having to deal with 6 values, we can use

FDA to calculate the mean and slope of partisanism across elections over 20 years.

After doing this FDA transformation and creating a partisan_df DataFrame whose definition of data
objects is county, we will make sure to also perform a necessary data cleaning step. Specifically, we
will transform the county_Name column so that its characters are presented in lowercase. This data
cleaning is performed for future data integration purposes. As the name of counties may have been
written in different formats that are understandable for human comprehension but not for a computer,
we thus need to make sure the county names are all in lowercase in all of the data sources so that the

data integration will go smoothly.

The following screenshot shows the partisan_df attribute:

Mean_Partisanism Slope_Partisanism
State County_Name
AK district 1 0.274999 -0.0762906
district 10 0.404606 0.0388433
district 11 0.429907 0.00906478
district 12 0.417909 0.0196095
district 13 0.28947 0.00391493
WY sweetwater OEST9i23 0.0557874
teton -0.155271 -0.086146
uinta 0.540841 0.0254894
washakie 0.573747 0.0170218
weston 0.69149 0.0294079

3151 rows x 2 columns

Figure 17.4 — A portion of partisan_df

Note that the definition of data objects for the DataFrame shown in Figure 17.4 is county. If you go
back to the beginning of this subchapter (Transforming election_df to partisan_df), our goal was to
transform the election_df dataset, whose definition of data objects is county-candidate-election-

mode, into partisan_df. We saw that the definition of data objects for partisan_df is county.

Next, we will perform the necessary data cleaning on edu_df, employ_df, pop_df, and pov_df.

Cleaning edu_df, employ_df, pop_df, and pov_df

To take another step toward the preprocessed county_df dataset, we will need to perform some data
cleaning on edu_df, employ_df, pop_df, and pov_df. The steps will be very similar for all these
datasets. These include removing unwanted columns, transforming the index attributes, and renaming

the attribute titles for brevity and intuitiveness.

Data integration

By the time we arrive at this step, the hardest part of data integration—preparing the DataFrames for
integration—has already been done. Because we took our time preparing each one of the
DataFrames, doing the data integration is as simple as one line of code, as shown in the following

snippet:
county_df = pop_df.join(edu_df).join(pov_df).join(employment_df).join(partisan_df)

Once the code is successfully run, we will get the following DataFrame that is almost ready for

analysis:

Population HigherEdPercent PovertyPercentage i income L ploy MedHHIncome_Percent_of_State_Total Mean_Parti: it Slope_P

State County_Name

autauga 54571 26.5716 121 58233 27 112.482 0.467068 0.00184533

baldwin 182265 31.8625 10.1 59871 2.8 115.646 0.532724 0.0128458

AL barbour 27457 11.5787 271 35972 38 69.4829 0.0342589 0.00718466
bibb 22915 10.3785 20.3 47918 31 92.5576 0.453212 0.0603812

blount 57322 13.0934 16.3 52902 278 102.185 0.683058 0.0702235

sweetwater 43806 22.4984 8.3 80639 4 121.9 0.379123 0.0557874

teton 21294 57.0051 6 98837 28 149.409 -0.155271 -0.086146

wy uinta 21118 16.029 8.5 70756 4 106.96 0.540841 0.0254894
washakie 8533 23.3862 1.1 55122 4.1 83.3263 0.573747 0.0170218

weston 7208 19.9725 10.5 59410 3 89.8083 0.69149 0.0294079

3007 rows x 8 columns
Figure 17.5 — A portion of preprocessed county_df

Now, we need to perform the next important data preprocessing steps: Level I1I data cleaning—

missing values, errors, and outliers.

Data cleaning level Il — missing values, errors, and
outliers

After investigation, we realize that there are a handful of missing values under seven out of eight of
the attributes in county_df. If this were a real government project, these missing values would need to
be tracked down before we moved forward with the analysis; however, as this is practice analysis and

there are not too many missing values, we adopt a strategy of dropping the missing values.

Furthermore, when investigating outliers, we will see that all of the attributes in county_df have fliers
in their boxplots. However, the extreme values under the Population and unemploymentRate attributes
are too different than the rest of the population, so much so that the extreme values can easily impact
the clustering analysis. To mitigate their impact, we will use log transformation on these two

attributes.

Regarding the possibility of having errors in the data, there are two matters we need to pay attention
to, as follows:
« First, as all of the attributes do have actual extreme values, our tools for possibly detecting univariate errors become ineffective.
« Second, the clustering analysis that we will be doing eventually will show us the outliers, and at that point, we can investigate

whether those outliers are possible errors.

One last data preprocessing step and we will then be set for the analysis—we need to check for data

redundancy.

Checking for data redundancy

Data redundancy is very possible for county_df as we have brought together different sources of data
to create this dataset. As clustering analysis is very prone to be heavily impacted by data redundancy,
this step becomes very important. We will use two effective tools for this goal: a scatter matrix and

correlation analysis.

The following screenshot shows a scatter matrix, which is very useful for seeing the possible
relationship between the attributes and assessing whether the assuming linear relationship between

the attributes is reasonable:

HigherEd3srcert
&

E

Pve-LyPercentage

Zeooo -
20000 -

Lannaz

.
#ouuD -

E0000

MeciarHH ncome

affe "

Pmsarism

Mea

15 i 1 >
29 Ulemp aymentate

L U ECIE U 500N CoChOT 1S60%0 S0 160 1S6 240
H pherkc ercent iowerty berce -tage MeciankHincome MesHHIncome_irercent_of_State_lotal

23 oo oS —51 an @1 ez 1
Hean_ltarizanisr Sleoe_ffartisanism I23_fop Jlation

Figure 17.6 — Scatter matrix of county_df

In the preceding screenshot, we can see that while there is somewhat of a non-linear relationship
between PovertyPercentage and MedianHHIncome, assuming a linear relationship between the rest of

the attributes does sound reasonable.

The following screenshot shows a correlation matrix of county_df:

H gl EdPercent

0.3

PoverlyPeroentage -

MadlarHHIFR™E

MegHHInEoME_Percent_of_Stats_Total

Moan_Particaniun = <31

Slope_Partisanism - <3.61

leq_Peplation

0.45 .39

e

og_UnemrploymertRate - 37

log_Pogiu alion

MghertdPercent =
MediasHH nEeme -
Mean_Parisanism -
Slope_Partisarism

FovwemyPerceniage

29_L pemple et Rate

FedHHIiroerme Percent oF State Tetal -

Figure 17.7 — Correlation matrix of county_df

We can see in the preceding screenshot that MedianHHIncome has a strong relationship with

PovertyPercentage and MedianHHIncome Percent_of_State_ Total. This is a concerning data

0.2

- ~04

= <06

redundancy for clustering analysis as there seems to be a repetition of information in these three

attributes. To rectify this, we will remove MedianHHIncome from the clustering analysis.

Now, we are set to begin the analysis part of this case study.

Analyzing the data

In this part, we will do two types of unsupervised data analysis. We first use principal component
analysis (PCA) to create a high-level visualization of the whole data. Next, after having been
informed how many clusters are possibly among the data objects, we will use K-Means to form the
clusters and study them. Let's start with PCA.

Using PCA to visualize the dataset

As we already know, PCA can transform the dataset, so most of the information is presented in the
first few principal components (PCs). Our investigation showed that the majority of relationships
between the attributes, including county_df, is linear, which is allowing us to be able to use PCA;
however, we won't forget about the few non-linear relationships as we move ahead with PCA, and we

will not rely too much on the results of the PCA.

The following screenshot shows a three-dimensional (3D) scatterplot of PC1, PC2, and PC3. PC1
and PC2 are visualized using the x and y axes, whereas PC3 is visualized using color. From the PCA
analysis, we learned that PC1 to PC3 account for almost 80% of the variations in the whole data, so
the following screenshot is illustrating 80% of the information in the data. To get a better insight into
what we see in this scatterplot, the counties that are at the extreme end of PC1 and PC2 are

annotated.

(TX', loving)

4 s . . d'NM, 'log alamos')
e o . J'VA!, 'loudpun’)

PC2
PC3

bR

CKY, "apfnjaye’y R LaTasHRdron)) o
(KY elliott], © 5 °
5 kY, 'magoffip) .
(SO, ‘ziebach) <1
(9R'; ‘RYHRIRha")
—4
® o et B g =3
(5D, "oglala HfRa:)claiborme’)
—6
- - - - . . -
-4 -2 0 2 4 6 8

PC1
Figure 17.8 — 3D scatterplot of PC1, PC2, PC3 PCA for transformed county_df

Now, let's look at our K-Means clustering analysis. Pay attention to the fact that we standardize the

data before performing PCA and normalize the data before performing clustering analysis.

K-Means clustering analysis

After our investigation of Figure 17.8, which shows a 3D scatterplot of the PCs and some
computational experimentations, we will conclude that the best K value for K-Means clustering is 5.
The computational experimentation method to find K is not covered in this book; however, the code
that is used for this step is included in the file dedicated to this chapter in the book's GitHub
repository.

The following screenshot shows the result of the K-Means clustering (K=5) using PC1 and PC2.
This screenshot is advantageous for two reasons—first, we can see the relationship between the

clusters, and second, the dispersion between the members of the clusters is depicted.

6 - * % Cluster 0
® Clusterl
4 e Cluster 2
A Cluster 3
+ Cluster4
27 A
0 : “
‘ Ay
=24 [
-4 4
_6 L T T T T T T T
-4 -2 0 2 4 6 8

Figure 17.9 — Visualization of the result of clustering county _df using PC1 and PC2

To understand the patterns among the data objects and also know more about the relationship

between the clusters, we can view the following centroid analysis using heatmaps:

08
HigherEdPercent - 027 0.2 031 022

PovertyPercentage - 021 033 019 0.16
MedHHIncome_Percent_of State_Total - 025 021 0.28 0.15 0.6

on_Popuaton - NCENN K I

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster4

Cluster size -NELENNN INECEN IET
Population - 11le+04 26e+04 69e+04
HigherEdPercent - 21 15

1
PovertyPercentage - 12 “

MedianHHIncome -ERS=20 8 4 6e2+04

]
|
o
¥

-mm aletos [000

tnemploymenthate - 3 [0S | 54| F?
MedHHIncome_Percent_of State_Total “ 80 _ 69 ':6%?
Mean_Partisanism _ 0.043 0.11 oo
Slope_Partisanism 0.026 0.027 0.0015 F883
' : : D
log_Population- 87 0

log_UnemploymentRate - 11
] [}
Cluster0 Clusterl Cluster2 Cluster3 Cluster4

Figure 17.10 — Heatmaps of the clusters' centroid for centroid analysis
From studying Figure 17.9 and Figure 17.10, we can see the following patterns and relationships:

e Clusters 0, 1, and 2 are Republican-leaning, and clusters 3 and 4 are Democrat-leaning.

o Cluster 2 is the one that has the most in common with all the rest of the clusters. This cluster is the best characterized to be the

most moderate and affluent among all the Republican-leaning counties.

o Cluster 0 only has a relationship with clusters 2 and 3 and is completely cut off from clusters 4 and 5, which are the only
Democrat-leaning clusters. This cluster is best characterized by the most Republican-leaning cluster with the lowest

unemployment rate and population among all the clusters.

o Cluster 1 has a relationship with all the clusters except cluster 3. This cluster is best characterized as having the lowest
HigherEdPercent value among all the clusters, and the lowest MedianHHIncome and highest PovertyPercentage

and UnemploymentRate values among the Republican-leaning clusters.

« Another interesting pattern about cluster 1 is that this cluster has the fastest movement toward becoming more Republican-leaning

among all the clusters.

o Cluster 4, which is a Democrat-learning cluster, has more in common with two Republican-leaning clusters, clusters 1 and 2. This
cluster is best characterized as having the highest PovertyPercentage and UnemploymentRate values and the lowest

MedianHHIncome value among all clusters.

« Another interesting pattern about cluster 4 is that while this cluster is the most Democrat-leaning cluster, it is the only cluster that

has been moving in the opposite direction in terms of partisanism.

e Cluster 3 has more of a relationship with cluster 2, which is a Republican-leaning cluster, than cluster 4, which is the only other
Democrat-leaning cluster. Among all the clusters, this cluster seems to be a unique one. This cluster is best characterized by the

highest Population and HigherEdPercent values and the lowest PovertyPercentage value.

« Another interesting pattern about cluster 3 is that it is the only cluster that has a movement toward becoming more Democrat-

leaning; however, its movement is the slowest among all the clusters:

Well done! We were able to complete the clustering analysis and visualize very interesting and
meaningful patterns. What enabled this visualization was partly the existence of great tools such as
PCA and K-Means; however, what made this analysis happen was our ingenuity during the data
preprocessing step that allowed us to create a dataset that would lead to the presented meaningful

outcome.

Summary

In this chapter, we got to experience the essential role of effective data preprocessing in enabling us
to perform meaningful clustering analytics. Furthermore, we got to practice different kinds and types

of data cleaning, data reduction, data integration, and data transformation situations.

This was the last case study that we have in this book. The next and final chapter will provide some

directions for more learning and some practice case studies.

Chapter 18. Summary, Practice Case Studies, and
Conclusions

This chapter will provide a summary of the book, some practice case studies, and lastly offer some
concluding remarks.
In this chapter, we're going to cover the following main subchapters:

o A summary of the book

o Practice case studies

« Conclusions

A summary of the book

Congratulations on your excellent journey of learning through the course of this book; you've
acquired invaluable skills. You learned various skills in the four parts of this book. In the following

subchapter, we will go over what we learned in each part of this book.

Part 1 — Technical requirements

In this part of the book, which lasted from Chapter 1, Review of the Core Modules of NumPy and
Pandas through Chapter 4, Databases, we covered all the technical and foundational concepts,
techniques, and technologies that you will need for effective data preprocessing. Specifically, in
Chapter 1, Review of the Core Modules of NumPy and Pandas, and Chapter 2, Review of Another
Core Module — Matplotlib, we picked up all the foundation Python programming skills that we will
need for data preprocessing. In Chapter 3, Data — What Is It Really? we acquired a fundamental
understanding of data and the different analytics paths that have implications for our data
preprocessing. Finally, in Chapter 4, Databases, we learned about the technological backbone of data
analytics, which is databases, and got to understand their role in effective analytics and

preprocessing.

Part 2 — Analytics goals

While the first part of the book was meant to give you a technological and foundational background
for effective data preprocessing, the second part of the book, which we will cover next, was meant to

provide a deep enough understanding of data analytics goals.

It may sound counterintuitive for The preprocessing, which is the third part of the book to come after
Analytics goals, but that is actually a common misunderstanding regarding data preprocessing and
data cleaning. In many resources, data cleaning is presented as a stage of data analytics that can be
done in isolation; however, as you have experienced in this book, most of the data cleaning and the
rest of the data preprocessing steps must be done to support the analytics. That is to say, without a
proper understanding of what the analytics goals are, we cannot prepare the data through effective

data preprocessing.

To best prepare you for your hands-on learning of data preprocessing, this part of the book provided
learning opportunities for you to know the four most data analytics goals: data visualization,
prediction, classification, and clustering analysis. These goals are the titles of Chapters 5 through 8.
Under each chapter and through examples, we formed a deeper understanding of each of these

analytics goals and we got to employ various analytics tools to realize these goals.

In this stage of your learning, the datasets that you worked on were mostly cleaned and prepared to
best support your learning. However, the datasets you used after that had different issues and
challenges that you learned how to deal with. You learned most of this in Part 3 and Part 4 of the

book. Let's now go over our learning in Part 3.

Part 3 — The preprocessing

This part of the book is indeed the meat of our learning. Our learning happened in six chapters. The
first three chapters, Chapters 9 through 11, covered data cleaning. Specifically, in these three
chapters, we learned about three different levels of data cleaning. In Chapter 12, Data Fusion and
Data Integration, we covered data integration. As you experienced, data integration is one of the
simplest data preprocessing steps to understand but one of the most challenging parts to implement.
In Chapter 13, Data Reduction, we got to learn about data reduction, which is a necessary step for
many analytics projects, for many reasons. Lastly, Chapter 14, Data Transformation and Massaging
provided a learning opportunity about data transformation, which can be thought of as the very last

step of data preprocessing.

So, the four major data preprocessing steps that we learned during the course of this part of the book
are data cleaning, data integration, data reduction, and data transformation. While we went about
learning them in isolation in these six chapters, in real practice, you will more often perform some of

them at once.

Let me use an analogy to explain that better. Imagine we wanted to learn how to effectively play
soccer. In this scenario, we would have to know how to kick the ball, pass the ball, control the ball,
and so on; our coach would probably give us lessons and let us practice each skill. However, when
you are put to play in a real soccer game, you would not be allowed to just show your competence in
one skill but would have to be relatively good at all skills to be considered a decent soccer player.
Moreover, at some points during a game, you might have to combine skills and perform them either

at the same time or one after the other in a split second.

The same is true regarding data preprocessing skills: data cleaning, data integration, data reduction,
and data transformation. We learned them first in isolation, but real learning happens when you can
perform them at the same time, in tandem, or in a smooth sequence. The next part of the book, Part 4

— Case studies, provides just that learning opportunity.

Part 4 — Case studies

In this part of the book, including the current chapter, we have culminating experiences so that we
can see how the data preprocessing tools that we picked up in the previous parts of the book are used

in concert with each other.

Specifically, the first three chapters, Chapters 15 through 17, were three complete case studies that
showcased three real analytics examples that required significant data preprocessing. As you
experienced in these three chapters, the order in which we performed the preprocessing steps was
very different. Not only that—the steps were not done in complete isolation, and some data

preprocessing was performed at the same time too.

In this current chapter, which is the last chapter of Part 4 of the book, besides a book summary and
conclusion, you will also be provided with more culminating experiences and learning opportunities.
In the next subchapter, you will be introduced to 10 case studies that can be used for more practice.
As we discussed, learning each skill in isolation is great but your data preprocessing will become

more effective when they are performed in tandem with one another.

Practice case studies

This subchapter introduces 10 practice case studies. Each case study introduces a dataset and
provides an analytics goal that can be achieved by preprocessing and analyzing the dataset. While
each case study comes with a few analytics questions (AQs), don't allow them to close your mind to

other possibilities. The suggested AQs are only meant to get you started.

We will start with a very meaningful and valuable case study that can provide real value to many

levels of decision makers.

Google Covid-19 mobility dataset

Since the beginning of the recent COVID 19 pandemic, the United States (US) had various
responses to combat Covid-19, varying from state to state. Each state implemented different health
and safety precautions and followed different timeframes when shutting down the state. Many factors
contributed to each state's health regulations, such as the number of Covid-19 cases, population
density, and healthcare systems; however, most states issued stay-at-home orders, asking citizens to

stay in their houses.

To aid public health officials in combating the virus and learn whether techniques such as social
distancing were working, Google put forth a database called the Global Mobility Report. The data

was put together to give insights into how different regions of the world were responding to the
Covid-19 crisis. The report breaks down changes in people's movements in parks, grocery stores, and
pharmacies; retail and recreation; and workplaces. For instance, the following screenshot portrays
changes in people's behavior in San Luis Obispo County, California from the baseline during

September 12 to October 24, 2021, for each movement category:

Retail & recreation Grocery & pharmacy Parks
-7% compared to baseline -2% compared to baseline -16% compared to baseline
+80% +80% +80%
+40% +40% +40%
Baseline o~ o~nn Baseling emaman s~ Baseline ,\’\'_/"\.»W’\,.,V\
-40% -40% -40%
-80% -80% -80%
Sun, Sep 12 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24
Transit stations Workplaces Residential
-42% compared to baseline -19% compared to baseline +3% compared to baseline
+80% +80% +80%
+40% +40% +40%
Baseline Baseline Baseline ———————————
SrevressrrSwew ey
40% A A~ AN -40% -40%
-80% -80% -80%
Sun, Sep 12 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24 Sun, Sep 12 Sun, Oct 3 Sun, Oct 24

Figure 18.1 — Sample from Global Mobility Report: San Luis Obispo County, California

This data was collected from the users of Google Maps by using aggregated, anonymized data, and
seeing how frequently people traveled around during the ongoing pandemic. To ensure the privacy of
all users of Google Maps, the company used an anonymization technology called differential
privacy. This technology adds artificial noise to datasets to not allow the system to identify an

individual.

The latest version of the dataset can be accessed at https://www.google.com/covid19/mobility/. We

could define many analytics questions that can be answered using this rich dataset; however, to get

you started, please see the following two AQs:

« AQ1: Did people's behavior change after the government's stay-at-home order? This can be answered at different levels: counties,

state, country.

o AQ2: Was the degree of change to stay-at-home orders different state by state and county by county?

https://www.google.com/covid19/mobility/

The next practice case study is also going to be very meaningful for federal, state, and even

individual decision makers.

Police killings in the US

There are a lot of debates, discussions, dialogues, and protests happening in the US surrounding
police killings. In the past 5 years, The Washington Post has been collecting the data of all fatal
police shootings in the US. The dataset available to the government and the public alike has data
regarding age, gender, race, location, and other situational information of these fatal police shootings.

You can download the dataset from https://github.com/washingtonpost/data-police-shootings.

Again, while the dataset has the potential to answer many valuable questions, the following two AQs
are provided to get you started:
o AQ1: Would the suspect's race increase the chance of being fatally shot at?

e AQ2: Can wearing a body camera help decrease the number of fatal police shootings?

The next case study will feature a dataset regarding automobile accidents in the US.

US accidents

Not all roads are the same; there is a much higher risk of weather conditions causing an accident
during winter in Chicago versus a summer in San Jose. Data analysis can shed so much light on
hazardous roads and weather conditions—for instance, in the following screenshot, we can see that
the frequency of accidents varies significantly across states. However, we must pay attention to the
fact that the population of the states might be causing this variation more than the difference in

driving habits and road conditions:

https://github.com/washingtonpost/data-police-shootings

Frequency Distribution of US-Accidents (Dec 2020)
(Hover for breakdown)

Total Frequency

800k

600k

400k

200k

Figure 18.2 — Sample visualization from the US-Accidents dataset

NOTE

The preceding screenshot is sourced from htips://smoosavi.org/datasets/us accidents.

You can download the dataset from the following link: https://www.kaggle.com/sobhanmoosavi/us-
accidents. The following list provides two possible AQs that can get you started:
e AQ1: Is there a discernable difference between the frequency of accidents per capita across different states?

« AQ2: Does a specific type of road become more prone to a fatal accident in rainy weather conditions?

The next case study will be another form of data analytics for the greater good; we will use the power

of data analytics to investigate crime patterns.

San Francisco crime

San Francisco experiences a somewhat higher crime rate than other parts of the US. On average, 19
crimes happen per 100,000 people, and in a year, every person has a 1 in 15 chance of being mugged.
While these statistics are staggering, data analytics might be able to help by showing crime patterns.
These patterns can help decision makers to first understand the cause of the much higher crime rate

and then try to address them using sustainable measures.

https://smoosavi.org/datasets/us_accidents
https://www.kaggle.com/sobhanmoosavi/us-accidents

The following screenshot shows that data analytics is already being used in the San Francisco Police
Department. It is greatly encouraging to see that the tools you know are being actively used and that

you could be contributing to these efforts.

SAN FRANCISCO POLICE DEPARTMENT
Crime Data

Comparing a Date Range within One Year to Its Prior Year

Please select: All
District 1/1/2020 - 12/30/2020

(All)

Bayview HUMAN 4 mian MOTOR LARCENY
caniral HOMICIDE RAPE ROBBERY ASSAULT TRA;;)I(C:?G— TRAFFIC BURGLARY VEHICLE THEFT ARSON THEFT
gleside

ission 41,936
Northern 40,000
Park

Richmond
Southern

Taraval
Tenderloin
Courtesy Reports

30,000

20,000

Number Of Incidents

Type Of Crime) 7,537
(All)

4,951 | 6066 4,434
2,398 3093 5472 2540
[¥] PART 1 PROPERTY CRIMES 48 41 221 39 e BN mmm Emm@ 2 51 1 - - 318 227
PART 1 VIOLENT CRIMES

Crime Selected Date Range Selected Date Range, Prior Year Year-to-Year % Decrease or Increase
Start Date (1/1/2017 onward)
[/1/2020 | HOMICIDE 48 a1 17.1%
RAPE 221 399 -44.6%
End Date ROBBERY 2,398 3,093 -22.5%
|12/30/2020 | ASSAULT 2,172 2,540 -14.5%
HUMAN TRAFFICKING - SEX ACT 24 51 -52.9%
=z::z::: :;:I: ::3:’ ortor Vear HUMAN TRAFFICKING - INV SERV 1 100.0%
BURGLARY 7,537 4,951 52.2%
MOTOR VEHICLE THEFT 6,066 4,434 36.8%
Crime data updated weekly and ARSON 318 227 40.1%
valid through October 24, 2021 LARCENY THEFT 25,610 41,936 -38.9%
TOTAL 44,394 57,673 -23.0%

Figure 18.3 — San Francisco Police Department Crime dashboard

NOTE

The preceding screenshot is sourced from htips.//www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard.

You can access a rather large dataset that is ripe for data preprocessing practice via
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset. This dataset includes the records
of crimes in San Francisco in 2016. The following two AQs can get you started:

o AQ1: Are there times of the day during which the frequency of assaults increases?

o AQ2: Are there locations in the city that see more theft?

In the last four case studies, we focused on the greater good by studying cases that can benefit
society. Let's shift gear and look at a case study that can empower an individual—in this case, to

become smarter in the data analytics job market.

Data analytics job market

https://www.sanfranciscopolice.org/stay-safe/crime-data/crime-dashboard
https://www.kaggle.com/roshansharma/sanfranciso-crime-dataset

The job market for data analysts and data science has not yet taken a stable shape. There is a wide
range of variations experienced by people who try to find jobs in this market. This dataset provides
an opportunity to discover some of the patterns in the job market. The dataset can be downloaded via

https://www.kaggle.com/andrewmvd/data-analyst-jobs. The following two AQs can get you started:

» AQ1: Does the location of the data analytics job influence the amount of compensation?

o AQ2: Does the company rating influence the amount of compensation?

The next two practice case studies relate to sports analytics. I am glad you are already excited.

FIFA 2018 player of the match

20 minutes after each international soccer game, the player of the match is recognized. For instance,
the following screenshot shows a YouTube video honoring Antoine Greizmann who was recognized
as the player of the match for the 2018 FIFA World Cup™ final after helping his team to beat Croatia
and become the 2018 FIFA World Cup champions:

CI} 7. Antoine GRIEZMANN

Figure 18.4 — Player of the Match: 2018 FIFA World Cup™ final

NOTE

The preceding screenshot is sourced from https://youtu.be/-5k-vgqHOZ2I.

While knowing the player of the match is peripheral to the main soccer competition, knowing who

will be the winner beforehand can be of much value to gambling professionals. This dataset contains

https://www.kaggle.com/andrewmvd/data-analyst-jobs
https://youtu.be/-5k-vgqHO2I

the data of all of the games in FIFA 2018. You can access the data via
https://www.kaggle.com/mathan/fifa-2018-match-statistics. The following two AQs can get you

started to preprocess and analyze this exciting dataset:

« AQ1: Can the ball position predict the team from which the man of the match will be selected?

e AQ2: Can a combination of the number of attempts and passing accuracy predict the team from which the man of the match will

be selected?

The next practice case study is going to relate to sports analytics too, but this time, the sport is going
to be basketball.

Hot hands in basketball

Basketball is a very exciting game in that the winning and losing teams may switch places in a matter
of seconds, and there is a lot of common sense and theories around this captivating game. One of
them is the Hot Hand theory, which is about a successful sequence of three-point shots. As the theory
goes, if a player has a hot hand, if they have made some consecutive successful shots, they will
continue to make more successful shots. While behavioral economists have long rejected the Hot
Hand theory, citing representativeness heuristic bias, I bet it will be fun to let the data speak and see
whether the historical data supports the theory. I am more excited for you to do an analysis using the

dataset on this Kaggle page: https://www.kaggle.com/dansbecker/nba-shot-logs. The following two

AQs can get you started on preprocessing and analyzing this dataset:

¢ AQ1: Does the historical data support the Hot Hand theory?

¢ AQ2: Does being against a "good" defender dampen the success rate of a "good" shooter?

After having some fun with sports analytics, let's turn our attention to more high-stakes analysis. The
next case study is going to have both environmental and societal analysis value. We are going to

analyze wildfires in California.

Wildfires in California

California saw two of its worst wildfire seasons in 2020 and 2021, and the ecological predictions all
point to the hypothesis that these are not just some outliers in the historical data but are long-term
shifts in trend. This dataset provides the opportunity for you to analyze firsthand the pattern of
California wildfires from 2013 to 2020. You can access this dataset from the Kaggle web page:
https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020.

This dataset can both support data visualization and clustering analysis. An example of data
visualization is used by BLM California Wildfire Dashboard (Public), and the following screenshot

https://www.kaggle.com/mathan/fifa-2018-match-statistics
https://www.kaggle.com/dansbecker/nba-shot-logs
https://www.kaggle.com/ananthu017/california-wildfire-incidents-20132020

shows the dashboard information collected on October 28, 2021:

¥’ B California Wildfire Dashboard (Public)

This product is designed to show real-time fire information and aggregate data.

3.26
~ acrels)

ONGOING INCIDENTS

2 185,861

Large Fires Total Acres
Current Large Fires*

Selectto Zoom In / Deselect to Zoom Back
Out

* Contaw‘\ed.

& Coained

’}&}}}}@}}‘—_.

. Phoeny 3
300 km Sa = New Starts - Last 24 Hours
*Only Displays Fires over 100 Acres 100 mi .
GS, EPA | Sources: E h ¢ S, Ce NASA,
"

Figure 18.5 — BLM California Wildfire Dashboard (Public)

NOTE

The preceding screenshot was sourced from
https.//www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486 on October 28, 2021.

I highly suggest practicing data preprocessing for the purpose of clustering analysis on this dataset
first, and then turn your attention to more data visualization. The first AQ listed here can only be

answered using clustering analysis:
« AQ1: Do the fires from 2013 to 2020 form meaningful clusters? What are their patterns?

e AQ2: Are there more large fires in specific years?

We are going to see some more societally meaningful data analysis next. The following case study is
going to provide an opportunity to analyze the diversity profile of 23 top tech companies in Silicon
Valley.

Silicon Valley diversity profile

This Kaggle web page, https://www.kaggle.com/rtatman/silicon-valley-diversity-data, has three

datasets, and you want to focus on Reveal EE01 for_2016.csv for this case study. Many meaningful
AQs can be designed that this dataset can help provide an answer to; however, the following two

AQs are meant to get you started.

The first AQ listed here can only be answered using clustering analysis:

https://www.arcgis.com/apps/dashboards/1c4565c092da44478befc12722cf0486
https://www.kaggle.com/rtatman/silicon-valley-diversity-data

« AQ1: Is there a relationship between the attribute gender and job category? In other words, does the gender of an individual

influence their job category?

o AQ2: Is there a noticeable difference between the Silicon Valley companies concerning employee diversity profiles?

In the next case study, we are going to have an opportunity to practice our preprocessing for

prediction models.

Recognizing fake job posting

There is nothing worse than spending hours on a job application only to realize the job posting is
fake. In this practice case study, you will get to see whether prediction models can help us weed out

fake job postings. Furthermore, we can see which characteristics tend to give away a fake posting.

The dataset that provides this learning opportunity is accessible on the Kaggle web page at

https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction. This dataset supports

many possible AQs; however, the following will get you started:

¢ AQ1: Can Decision Tree meaningfully predict fake postings?

e AQ2: What are the characteristics that fake posts share?

The 10 listed practice case studies in this chapter of the book are excellent sources to continue
learning; however, there are more potential learning opportunities out on the internet that you can
find on your own. Before ending this subchapter, we will go over a list of possible resources that you
may use to hunt for more datasets.

Hunting more practice case studies

The following two resources are excellent for finding datasets to practice your newly acquired data
preprocessing and analytics skills.
Kaggle.com

This website is the best resource for finding more case study projects. Throughout this book, you
may have noticed that most of the datasets we used were sourced from this website. The Kaggle
website has done a great job of creating a community of developers with different skill levels who
have come together to share knowledge and datasets. I highly encourage you to join this community

to find more learning and practice resources.

The next resource is not as vibrant a community as Kaggle; however, it is the oldest most well-known

machine learning (ML) dataset repository.

University of California Irvine Machine Learning Repository

https://www.kaggle.com/shivamb/real-or-fake-fake-jobposting-prediction

Very well known by the term UCI ML Repository, this repository has been collecting datasets for
research purposes since 1987. A great feature of this repository is that you can see datasets based on
the analytics goals; all the datasets are filterable by four associated tasks: classification, regression
(prediction), clustering, and others. You can access this repository at

https://archive.ics.uci.edu/ml/index.php.

In this subchapter, you were introduced to 10 possible case studies and 2 sources that have many
more possible practice case studies. The next subchapter offers some conclusions to this chapter and
the whole book.

Conclusions

Allow me to start concluding this book by congratulating you on having gone through this journey of
learning about data analytics and data preprocessing. I am confident that your learning about data

analytics and data preprocessing does not end here, and you are already planning to learn more useful
tools and pick up valuable skills. So, how about we conclude this book by examining a few routes for

learning and improvement?

My first suggestion would be to cover your base and take advantage of all of the learning resources
that this book has to offer so that you can deepen your learning and bring your skill level closer to
second nature. The end of most chapters provides exercises for exactly this purpose. Furthermore, the
three case studies in Chapters 15 through 17 can be expanded upon and improved; doing that would
be a great way to improve your learning. Lastly, this current chapter provided many starting points
and case studies to practice the skills you've picked up during your journey in this book and make

them second nature.

Besides solidifying what you learned in this book, there are a few distinct learning routes you may
consider. For organization, I call these routes data visualization and storytelling, algorithms,

technology, and mathematics. Let's go over these routes one by one.

Chapter 5, Data Visualization, provided a brief but fundamental understanding of data visualization.
The material was provided to support our learning for data preprocessing. There is much more to
learn about data visualization as far as techniques and technology go, but also from the perspective of
storytelling. You might be good at the technical aspect of coming up with visualization, but this
visualization must be prescribed before you can create it. In other words, if you are the one deciding
what kind of visualization is needed to convince an audience, you might not be the best person to go
to. If that's the case, I'd highly recommend that you consider reading Storytelling with Data: A Data
Visualization Guide for Business Professionals, by Cole Nussbaumer Knaflic, and Effective Data

Visualization: The Right Chart for the Right Data, by Stephanie Evergreen. Not only do these books

https://archive.ics.uci.edu/ml/index.php

help to kindle your curiosity and creativity regarding data visualization, but they will also guide you

through the actual storytelling part that is bound to come with effective data visualization.

In this book, we only scratched the surface of algorithmic analytics. In Chapters 6 through 8, we
briefly learned about some classification, prediction, and clustering algorithms. Not only are there
more algorithms for each of the three mentioned data analytics tasks, but there are also more
analytics tasks that need an algorithmic approach for effective solutions. You may want to invest in
these to deepen your learning and pick up more skills in this area, and if you become proficient with

all these algorithms, you'd become a highly attractive hire for ML engineer roles.

While this route of learning sounds very promising, I would like to offer a few notes of caution. First,
for this route, you want to have good programming skills or at least enjoy programming; I am not
talking about the type of programming we did during this book. In this book, we only learned enough
programming to use modules and functions created by real programmers. I mean that you need
enough programming skills so that you would be able to create those modules and functions. My
second note of caution regards the future of algorithmic analytics. I surmise that out of all the four
routes of learning that I am discussing here, this route is the one that is the most automatable. That
means in the near future, the cost of hiring an ML engineer to develop an algorithmic solution
becomes higher than subscribing to Artificial Intelligence as a Service (AlaaS) or Machine
Learning as a Service (MLaaS) solutions provided by tech giants such as Amazon (Amazon Web
Services (AWS)), Microsoft (Azure), and Google (Google Cloud Platform (GCP)). Unless you are
the best of the best in these areas and hirable by these companies, you might end up needing to
reskill.

Next, let's talk about the technology route of learning and improvement. For better or worse, many
organizations and companies think of effective data analytics as visualization dashboards that are
effectively connected to their relevant databases. For these organizations, the skill in drafting
effective queries that pull the appropriate data from the databases that create and enliven the graphics
on the dashboard is what they will look for in their analytics professionals. This is the simple reality
of the data analytics job market: companies are not looking for hires that have more technical and
conceptual knowledge, but they are looking to hire people who can work most effectively with the
technologies that they have already adopted. Granted—being able to work with those technologies

requires its own specific knowledge and skillset, but they may be rather different.

If today's most adopted technology that allows survival and competitiveness is databases, in the near
future, it is my humble prediction that most companies will take the next technological leap and
adopt cloud computing. This exciting trend in technological improvement is a world in itself. Not
only has it streamlined and improved database technologies and the current mass technological
adoption, but it also has a lot more to offer, including Platform as Service (PaaS), Supply Chain as
Service (SCaaS), MLaaS, AlaaS technologies, and more.

While cloud computing platforms such as Amazon's AWS, Microsoft's Azure, and Google's GCP will
provide all these solutions under various payment schemes, these services will have many variations
that are designed for different needs and companies. Knowing these variations and being able to
select the correct one for a company can save a meaningful amount of money for companies. Not
only that—to be able to adopt AlaaS solutions such as natural language translators, the solution needs
to be appropriately linked to the databases of the companies. Being able to effectively put together

these pieces of technologies and cater them to the needs of a company will be a very valuable skill.

We are already seeing pioneer companies having developed roles such as development-operations
(DevOps) engineer, cloud engineer, and cloud architect whose responsibilities are to recognize and
adapt different pieces of cloud technology and streamline them for their needs. It is my humble
prediction that for a good while, we will see a rise in the demand for these roles, while we will see a
decline in demand for roles that were meant to develop analytics, Al, and ML solutions from scratch,
such as data scientists and ML engineers. This trend will continue until the cloud computing adoption
rate becomes high enough that companies cannot remain competitive and survive just by being able
to use this technology, and they will need to adopt the new hot one. So, right now, it lays before us as
a golden opportunity to break into a high-paying future tech role. Granted—you would still need to
understand the business, computer programing, data preprocessing, and algorithmic data analytics to
some extent, but in these roles, you would most contribute by knowing the ins and outs of the

solutions that cloud computing has to offer.

Last but not least, let's talk about the learning route of mathematics. Toward the end of this book—
specifically, in Chapter 13, Data Reduction, and Chapter 14, Data Transformation and Massaging—
we started to talk about functional data Analysis (FDA). As you experienced during these two
chapters, FDA can be a very powerful analytics and preprocessing tool if you have a solid
mathematical understanding of various functions. Improving your understanding of various
mathematical functions can give you an untouchable edge when it comes to the effectiveness of data
preprocessing. After all, if other analysts don't know the mathematical function that can capture the
most important information in the data, they are reduced to using a noisy dataset whose patterns are

not brought to the surface and hope the algorithm will be able to pick up on them.

All of the four learning routes that I have provided here could be the right one for you, and the
correct decision as to which one hinges on your personality and the types of daily activities you
would enjoy doing. If you are more interested in inspiring people and would like to be more effective
at persuading people, data visualization and storytelling may be the right route for you. If you enjoy
computer programming and take pleasure from the thrill of zoning out into the third or fourth nested
loop, the algorithms route might be it. If you enjoy being up to date with technology and enjoy

debating what will happen if a new piece of technology is adopted, the technology route could be for

you. Lastly, if you are good at math and can envision functions in your mind, and are fast at

simulating data with various functions, the FDA route could help you in your tech career.

Lastly, I would like to say that I hope you learned many things of value in this book. I enjoyed the

journey of writing this book, and I hope you enjoyed it as much as I did. Happy learning, everyone!

Pack®h

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more

information, please visit our website.

Why subscribe?

o Spend less time learning and more time coding with practical eBooks and Videos from over 4,000 industry professionals
« Improve your learning with Skill Plans built especially for you

o Get a free eBook or video every month

« Fully searchable for easy access to vital information

o Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packt.com and as a print book customer, you are

entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.com for

more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

http://packt.com/
http://packt.com/
mailto:customercare@packtpub.com
http://www.packt.com/

Amazon SageMaker

Julien Siman

Learn Amazon SageMaker - Second Edition
Julien Simon

ISBN: 978-1-80181-795-0

« Become well-versed with data annotation and preparation techniques

o Use AutoML features to build and train machine learning models with AutoPilot

« Create models using built-in algorithms and frameworks and your own code

o Train computer vision and natural language processing (NLP) models using real-world examples

« Cover training techniques for scaling, model optimization, model debugging, and cost optimization

o Automate deployment tasks in a variety of configurations using SDK and several automation tools

https://www.packtpub.com/product/learn-amazon-sagemaker-second-edition/9781801817950

ANTHONY 50 | THOMAS V. JOSEPH
ROBERT THAS JOHN | ANDREW WORSLEY
OR, SAMUEL ASARE

THE

DATA
SGIENG

WORKSHOP

SECOND EDITION

LEARN HOW YOU CAN BUILD MACHIME LEARNING MODELS AND
CEEATE YOLIR OWN REAL-WORLD DATA, SCIENCE PROJECTS

Packt>

The Data Science Workshop - Second Edition
Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

ISBN: 978-1-80056-692-7

« Explore the key differences between supervised learning and unsupervised learning
« Manipulate and analyze data using scikit-learn and pandas libraries

« Understand key concepts such as regression, classification, and clustering

« Discover advanced techniques to improve the accuracy of your model

« Understand how to speed up the process of adding new features

« Simplify your machine learning workflow for production

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and apply
today. We have worked with thousands of developers and tech professionals, just like you, to help
them share their insight with the global tech community. You can make a general application, apply

for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share Your Thoughts

https://www.packtpub.com/product/the-data-science-workshop-second-edition/9781800566927
http://authors.packtpub.com/

Now you've finished Hands-On Data Preprocessing in Python, we'd love to hear your thoughts! If

you purchased the book from Amazon, please click here to go straight to the Amazon review page for

this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're delivering

excellent quality content.

https://packt.link/r/1-801-07213-2

	Hands-On Data Preprocessing in Python
	Contributors
	About the author
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts

	Part 1:Technical Needs
	Chapter 1: Review of the Core Modules of NumPy and Pandas
	Technical requirements
	Overview of the Jupyter Notebook
	Are we analyzing data via computer programming?
	Overview of the basic functions of NumPy
	The np.arange() function
	The np.zeros() and np.ones() functions
	The np.linspace() function

	Overview of Pandas
	Pandas data access
	Boolean masking for filtering a DataFrame
	Pandas functions for exploring a DataFrame
	Pandas applying a function
	The Pandas groupby function
	Pandas multi-level indexing
	Pandas pivot and melt functions

	Summary
	Exercises

	Chapter 2: Review of Another Core Module – Matplotlib
	Technical requirements
	Drawing the main plots in Matplotlib
	Summarizing numerical attributes using histograms or boxplots
	Observing trends in the data using a line plot
	Relating two numerical attributes using a scatterplot

	Modifying the visuals
	Adding a title to visuals and labels to the axis
	Adding legends
	Modifying ticks
	Modifying markers

	Subplots
	Resizing visuals and saving them
	Resizing
	Saving

	Example of Matplotilb assisting data preprocessing
	Summary
	Exercises

	Chapter 3: Data – What Is It Really?
	Technical requirements
	What is data?
	Why this definition?
	DIKW pyramid
	Data preprocessing for data analytics versus data preprocessing for machine learning

	The most universal data structure – a table
	Data objects
	Data attributes

	Types of data values
	Analytics standpoint
	Programming standpoint

	Information versus pattern
	Understanding everyday use of the word "information"
	Statistical use of the word "information"
	Statistical meaning of the word "pattern"

	Summary
	Exercises
	References

	Chapter 4: Databases
	Technical requirements
	What is a database?
	Understanding the difference between a database and a dataset

	Types of databases
	The differentiating elements of databases
	Relational databases (SQL databases)
	Unstructured databases (NoSQL databases)
	A practical example that requires a combination of both structured and unstructured databases
	Distributed databases
	Blockchain

	Connecting to, and pulling data from, databases
	Direct connection
	Web page connection
	API connection
	Request connection
	Publicly shared

	Summary
	Exercises

	Part 2: Analytic Goals
	Chapter 5: Data Visualization
	Technical requirements
	Summarizing a population
	Example of summarizing numerical attributes
	Example of summarizing categorical attributes

	Comparing populations
	Example of comparing populations using boxplots
	Example of comparing populations using histograms
	Example of comparing populations using bar charts

	Investigating the relationship between two attributes
	Visualizing the relationship between two numerical attributes
	Visualizing the relationship between two categorical attributes
	Visualizing the relationship between a numerical attribute and a categorical attribute

	Adding visual dimensions
	Example of a five-dimensional scatter plot

	Showing and comparing trends
	Example of visualizing and comparing trends

	Summary
	Exercise

	Chapter 6: Prediction
	Technical requirements
	Predictive models
	Forecasting
	Regression analysis

	Linear regression
	Example of applying linear regression to perform regression analysis

	MLP
	How does MLP work?
	Example of applying MLP to perform regression analysis

	Summary
	Exercises

	Chapter 7: Classification
	Technical requirements
	Classification models
	Example of designing a classification model
	Classification algorithms

	KNN
	Example of using KNN for classification

	Decision Trees
	Example of using Decision Trees for classification

	Summary
	Exercises

	Chapter 8: Clustering Analysis
	Technical requirements
	Clustering model
	Clustering example using a two-dimensional dataset
	Clustering example using a three-dimensional dataset

	K-Means algorithm
	Using K-Means to cluster a two-dimensional dataset
	Using K-Means to cluster a dataset with more than two dimensions
	Centroid analysis

	Summary
	Exercises

	Part 3: The Preprocessing
	Chapter 9: Data Cleaning Level I – Cleaning Up the Table
	Technical requirements
	The levels, tools, and purposes of data cleaning – a roadmap to chapters 9, 10, and 11
	Purpose of data analytics
	Tools for data analytics
	Levels of data cleaning
	Mapping the purposes and tools of analytics to the levels of data cleaning

	Data cleaning level I – cleaning up the table
	Example 1 – unwise data collection
	Example 2 – reindexing (multi-level indexing)
	Example 3 – intuitive but long column titles

	Summary
	Exercises

	Chapter 10: Data Cleaning Level II – Unpacking, Restructuring, and Reformulating the Table
	Technical requirements
	Example 1 – unpacking columns and reformulating the table
	Unpacking FileName
	Unpacking Content
	Reformulating a new table for visualization
	The last step – drawing the visualization

	Example 2 – restructuring the table
	Example 3 – level I and II data cleaning
	Level I cleaning
	Level II cleaning
	Doing the analytics – using linear regression to create a predictive model

	Summary
	Exercises

	Chapter 11: Data Cleaning Level III – Missing Values, Outliers, and Errors
	Technical requirements
	Missing values
	Detecting missing values
	Example of detecting missing values
	Causes of missing values
	Types of missing values
	Diagnosis of missing values
	Dealing with missing values

	Outliers
	Detecting outliers
	Dealing with outliers

	Errors
	Types of errors
	Dealing with errors
	Detecting systematic errors

	Summary
	Exercises

	Chapter 12: Data Fusion and Data Integration
	Technical requirements
	What are data fusion and data integration?
	Data fusion versus data integration
	Directions of data integration

	Frequent challenges regarding data fusion and integration
	Challenge 1 – entity identification
	Challenge 2 – unwise data collection
	Challenge 3 – index mismatched formatting
	Challenge 4 – aggregation mismatch
	Challenge 5 – duplicate data objects
	Challenge 6 – data redundancy

	Example 1 (challenges 3 and 4)
	Example 2 (challenges 2 and 3)
	Example 3 (challenges 1, 3, 5, and 6)
	Checking for duplicate data objects
	Designing the structure for the result of data integration
	Filling songIntegrate_df from billboard_df
	Filling songIntegrate_df from songAttribute_df
	Filling songIntegrate_df from artist_df
	Checking for data redundancy
	The analysis
	Example summary

	Summary
	Exercise

	Chapter 13: Data Reduction
	Technical requirements
	The distinction between data reduction and data redundancy
	The objectives of data reduction

	Types of data reduction
	Performing numerosity data reduction
	Random sampling
	Stratified sampling
	Random over/undersampling

	Performing dimensionality data reduction
	Linear regression as a dimension reduction method
	Using a decision tree as a dimension reduction method
	Using random forest as a dimension reduction method
	Brute-force computational dimension reduction
	PCA
	Functional data analysis

	Summary
	Exercises

	Chapter 14: Data Transformation and Massaging
	Technical requirements
	The whys of data transformation and massaging
	Data transformation versus data massaging

	Normalization and standardization
	Binary coding, ranking transformation, and discretization
	Example one – binary coding of nominal attribute
	Example two – binary coding or ranking transformation of ordinal attributes
	Example three – discretization of numerical attributes
	Understanding the types of discretization
	Discretization – the number of cut-off points
	A summary – from numbers to categories and back

	Attribute construction
	Example – construct one transformed attribute from two attributes

	Feature extraction
	Example – extract three attributes from one attribute
	Example – Morphological feature extraction
	Feature extraction examples from the previous chapters

	Log transformation
	Implementation – doing it yourself
	Implementation – the working module doing it for you

	Smoothing, aggregation, and binning
	Smoothing
	Aggregation
	Binning

	Summary
	Exercise

	Part 4: Case Studies
	Chapter 15: Case Study 1 – Mental Health in Tech
	Technical requirements
	Introducing the case study
	The audience of the results of analytics
	Introduction to the source of the data

	Integrating the data sources
	Cleaning the data
	Detecting and dealing with outliers and errors
	Detecting and dealing with missing values

	Analyzing the data
	Analysis question one – is there a significant difference between the mental health of employees across the attribute of gender?
	Analysis question two – is there a significant difference between the mental health of employees across the Age attribute?
	Analysis question three – do more supportive companies have mentally healthier employees?
	Analysis question four – does the attitude of individuals toward mental health influence their mental health and their seeking of treatments?

	Summary

	Chapter 16: Case Study 2 – Predicting COVID-19 Hospitalizations
	Technical requirements
	Introducing the case study
	Introducing the source of the data

	Preprocessing the data
	Designing the dataset to support the prediction
	Filling up the placeholder dataset
	Supervised dimension reduction

	Analyzing the data
	Summary

	Chapter 17: Case Study 3: United States Counties Clustering Analysis
	Technical requirements
	Introducing the case study
	Introduction to the source of the data

	Preprocessing the data
	Transforming election_df to partisan_df
	Cleaning edu_df, employ_df, pop_df, and pov_df
	Data integration
	Data cleaning level III – missing values, errors, and outliers
	Checking for data redundancy

	Analyzing the data
	Using PCA to visualize the dataset
	K-Means clustering analysis

	Summary

	Chapter 18: Summary, Practice Case Studies, and Conclusions
	A summary of the book
	Part 1 – Technical requirements
	Part 2 – Analytics goals
	Part 3 – The preprocessing
	Part 4 – Case studies

	Practice case studies
	Google Covid-19 mobility dataset
	Police killings in the US
	US accidents
	San Francisco crime
	Data analytics job market
	FIFA 2018 player of the match
	Hot hands in basketball
	Wildfires in California
	Silicon Valley diversity profile
	Recognizing fake job posting
	Hunting more practice case studies

	Conclusions
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts

