

Enterprise
Automation with

Python

Automate Excel, Web, Documents,
Emails, and Various Workloads with

Easy-to-code Python Scripts

Ambuj Agrawal

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2022 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

Group Product Manager: Marianne Conor
Publishing Product Manager: Eva Brawn
Senior Editor: Connell
Content Development Editor: Melissa Monroe
Technical Editor: Anne Stokes
Copy Editor: Joe Austin
Language Support Editor: Justin Baldwin
Project Coordinator: Tyler Horan
Proofreader: Khloe Styles
Indexer: V. Krishnamurthy
Production Designer: Malcolm D'Souza
Marketing Coordinator: Kristen Kramer

First published: August 2022

Published by BPB Online
WeWork, 119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55511-379

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My beloved Parents:

Anil Agrawal & Saroj Agrawal

About the Author
Ambuj Agrawal is an industry expert in Artificial Intelligence and
Enterprise Automation. He has received numerous innovation awards from
Citibank, Imperial College London, Ministry of Justice UK, Bristol
University, among others. He is also one of the youngest recipients of the
"Exceptional Talent Visa in Digital Technology" by the UK Government for
expertise in Compiler Design and Machine Learning.
He has been one of the youngest Speakers at the Money2020 Europe,
Fin.Techsummit Europe, Future of Work Summit London and Automation
Summit Paris on the topic “Automation and Future of Work”.

About the Reviewer
Akanksha Sinha is an Architect in Intelligent Process Automation team
with 8 years of Automation experience out of her 15 years of journey in
various progressive roles of Software Development in Cognizant. She is
extensively involved in digital transformation of client's landscapes through
automations in domains of Digital Marketing and Technology. Her area of
work revolves in exploring automation potential, identifying automation use
cases, solutioning and developing a suite of bots along with her team in
close collaboration of multiple client stakeholders and eventually providing
digital experience to her clients through a suite of automation solutions.
She has worked with clients like Google, Twitter and Hartford Life. Her
skills are in Javascript, Google Apps Script, Google Cloud, web
development, Unix, NLP, Python, Chatbots, Open Source RPA. Open
Source RPAs and NLP are her areas of interest where she has worked on
several prototypes.
She was one of the founding members of the Tools & Automation team in
Cognizant for Operation Teams working for Tech giants.
She is Google Cloud certified associate and Kore.AI certified Virtual
Assistant developer.
She has a B.E in E&E from RTM Nagpur University, and is working with
Cognizant.

Acknowledgement
First and foremost, I would like to thank my parents who continuously
encouraged me to write this book — I could have never completed this
book without their support.
I would also like to thank my family and friends who provided me with the
continued support during my writing of this book.
I am also grateful to the team at BPB Publications, who provided me the
opportunity to publish this book and for providing valuable feedback
throughout the process of writing this book.

Preface
This book takes the reader through different examples and code samples to
automate repetitive work tasks. This book also gives solutions to common
automation requirements and repetitive tasks faced during the day to day
work environment. After reading this book you will be able to create
automations for business processes using Python. You will also be able to
identify the most common business process for automation.
This book will equip you with the knowledge of creating, reading,
modifying and extract data from Excel documents using Python programs.
You will also be able to extract data from websites, PDF documents and
send and read messages using Gmail, Outlook and WhatsApp. This book
will help readers to create automations to automate their boring work and
increase the efficiency of their organizations by 500%.
This book is divided into 11 chapters. The details are listed below.
In Chapter 1, you will be introduced to the installation steps and setting up
the development environment for Python. We will also cover the
installation of Python packages and libraries required for building
automations.
In Chapter 2, you will be introduced to the installation steps and setting up
the development environment for Python. We will also cover the
installation of Python packages and libraries required for building
automations.
In Chapter 3, we will discuss the mindset needed to be successful in
implementation of automations within your organizations. We will go
through the process of identifying and prioritizing automation opportunities.
We will also discuss the ways to share the developed automations with the
wider organization once they are created.
In Chapter 4, we will discuss ways to automate Excel workflows including
creating, writing, and updating the Excel documents. We will also discuss
the data manipulation techniques with Excel and CSV documents.
In Chapter 5, we will go through automation for websites and web-based
tasks. We will look at how to download data from websites and automate

data extraction from websites by parsing HTML documents. We will also
look at the Selenium framework to automate web actions such as mouse
click and keyboard actions on different websites.
In Chapter 6, we will look at various file-based automations for different
file types in Python. We will discuss some of the Python libraries that are
used to automate different file types. We will also look at ways to extract
data from PDF documents and Word documents type file structure.
In Chapter 7, we would learn to automate email-based tasks using Gmail,
Outlook and other SMTP clients. We will also look at Text message and
WhatsApp automation using the Twilio API.
In Chapter 8, we would learn to automate Graphical User Interface (GUI)
by controlling the Keyboard and Mouse Actions. We will be using the
Python library PyAutoGUI which works with Windows, Mac and Linux
and provides automations for GUI elements within the application.
In Chapter 9, we will look at computer Image fundamentals and the Pillow
Python library for manipulating images. We would also look at the
Tesseract library which can be used to extract text within images and
scanned documents.
In Chapter 10, we will look at scheduling automations using dates and
timers. We would also look at external applications that can allow us to run
automations based on certain events such as receiving a new email or
during the start of an application.
In Chapter 11, we will look at methods to extend your Python scripting
knowledge and develop complex end to end process automations based on
your requirements. We will learn how to work with external libraries and
use external code to build these automations. We would also look at
creating Python web services and using Machine Learning for automation.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/de9f96
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Enterprise-Automation-with-
Python. In case there's an update to the code, it will be updated on the
existing GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/de9f96
https://github.com/bpbpublications/Enterprise-Automation-with-Python
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Setting Up the Automation Environment

Introduction
Structure
Objectives
Installing and getting started with Mu for Python 3
Start Mu
Installing third party packages with Mu
Conclusion
Further reading
Questions

2. Fundamentals of Python
Introduction
Structure
Objectives
Introduction to Python
Decision statements

if statement
if-else
if-elif-else

Loops/repetition
The for loop
while loops
The break statement
The continue statement

Data structures
Lists
Tuples
Dictionaries
Sets

Functions
Libraries, modules, or packages

Conclusion
Further reading
Questions

3. Automation Mindset – Python as a Tool for Automation
Introduction
Structure
Objectives
Mindset for automation
Common processes for automation
Identifying business processes
Conclusion
Further reading
Questions

4. Automating Excel-Based Tasks
Introduction
Structure
Objectives
Installing the library to read/write Excel
Creating Excel documents
Reading Excel documents
Updating a workbook
A sample of Excel-based automation
CSV file automations
Conclusion
Further reading
Questions

5. Automating Web-Based Tasks
Introduction
Structure
Objectives
Downloading files from the Internet
Introduction to HTML, CSS, and JavaScript

HTML
CSS

JavaScript
Extracting data from websites
Controlling the browser with Selenium
Conclusion
Further reading
Questions

6. Automating File-Based Tasks
Introduction
Structure
Objectives
Reading and writing files
PDF documents automation
Word documents automation
Convert a PDF to a Word document
Conclusion
Further reading
Questions

7. Automating Email, Messenger Applications, and Messages
Introduction
Structure
Objectives
Simple Mail Transfer Protocol
Sending emails using Gmail
Outlook email automation
Text and WhatsApp message automation
Conclusion
Further reading
Questions

8. GUI – Keyboard and Mouse Automation
Introduction
Structure
Objectives
Introduction to the PyAutoGUI module
Controlling mouse actions

Controlling keyboard actions
Automation using screenshots
Conclusion
Further reading
Questions

9. Image Based Automations
Introduction
Structure
Objectives
Computer image fundamentals

Pillow for image manipulation
Extracting text from images using OCR
Conclusion
Further reading
Questions

10. Creating Time and Event - Based Automations
Introduction
Structure
Objectives
Scheduling automation

Writing timer programs
Launching programs from Python
Using external tools for triggers

Conclusion
Further reading
Questions

11. Writing Complex Automations
Introduction
Structure
Objectives
Creating APIs with Python
Combining multiple automation scripts
Finding solutions online
Using machine learning for automation

Conclusion
Further reading
Questions

Index

CHAPTER 1
Setting Up the Automation

Environment

Introduction
In this chapter, you will be introduced to the installation steps and setting up
the development environment for Python. We will also cover the installation of
Python packages and libraries required for building automations.

Structure
In this chapter, we will cover the following topics:

Installing and getting started with Mu for Python 3
Installing third party packages with Mu

Objectives
After studying this chapter, you will be able to set the automation environment
on your machine. You will also get an understanding of Python development
environments and be able to run Python on your machine.

Installing and getting started with Mu for Python 3
The code with Mu is a simple Python editor for beginner programmers.
Download Mu installer from https://codewith.mu/en/download. Find the
installer you just downloaded (it’s probably in your Downloads folder). Double
click on the installer to run it. If you get any warning while installing, accept
those warnings and run the installer. Once the installation has completed
successfully, click on Finish to close the installer.

Start Mu

https://codewith.mu/en/download

You can start Mu by clicking on the icon in the Start menu or by typing Mu in
the Search box. The first run will take a bit of time, and it will install and load
all the required modules. Once you have started Mu, the code editor will look
as shown in the following figure:

Figure 1.1: Mu code editor

The button bar in Mu contains buttons for creating and running the Python
code along with the help instructions:

Figure 1.2: Mu code editor toolbar

The following are the button descriptions to help you get started with Mu:

The Mode button is used for changing Mu modes. We will use the Python
3 Mode in this book:

Figure 1.3: Mu change mode view

The New, Load, and Save allow you to interact with files on your
computer’s hard drive:

New: This creates a new blank file.
Load: This opens a file selector to choose a file to load into Mu.
Save: This saves the file to your computer’s hard drive. If the file
has no name, you’ll be asked to give one.

The Run button runs the current script. When the code is running, the Run
button turns into a Stop button. Click on Stop to force your code to exit
in a clean way.
The Debug button will start Mu’s visual debugger allowing you to debug
Python programs.
The REPL button creates a new panel and the code you type here is
evaluated line by line by Python.

You can learn more about the Mu editor from the Mu tutorial page -
https://codewith.mu/en/tutorials/1.1/.

https://codewith.mu/en/tutorials/1.1/

If you are an experienced programmer, then you can also use other Python
code editing tools such as PyCharm, VS Code, Jupyter notebook, or any
other code editor tool that works for you.

Installing third party packages with Mu
In this book, we will use a lot of third party packages to complete our
automation scripts. Packages (sometimes called libraries or modules) are re-
usable code that you can download, install, and use in your programs. They
reduce the development time exponentially as you don’t have to rewrite the
code to achieve the same functionality in your project.
One of the main advantages of Python is that they have a huge collection of
packages that allow you to achieve the desired functionality in your programs.
Mu comes with its own package installer which will download the code from
the Python Package Index pypi.org and install it so that you can use it in
your Mu projects.
To install a package Mu, click on the Mu Administration cog in the bottom
right of the page. It is the Setting shaped button which is used to install Python
packages and change settings for the code editor:

Figure 1.4: Mu code editors settings button

Select the Third Party Packages tab as shown in the following screenshot:

Figure 1.5: Mu package installer page

Enter the name of the package you wish to install and click on OK. The package
will be downloaded and installed.
Advanced users can also install third party packages using pip - the package
installer for Python.

Conclusion
In this chapter, we discussed about the steps to set up the Python development
environment. In the next chapter, we will go through the fundamentals of
Python to get you up and running with automating your day-to-day enterprise
tasks.

Further reading
There are a lot of code editing tools and resources available on the Internet to
get started with Python development. Some popular ones and their tutorials are
given in the table as follows:

Resource name Link

Code with Mu https://codewith.mu/en/

Anaconda for Python https://www.anaconda.com/products/individual

Jupyter notebooks for Python https://jupyter.org/

VS Code for Python https://code.visualstudio.com/docs/languages/pyth
on

PyCharm Python IDE https://www.jetbrains.com/pycharm/

Code with Mu tutorials https://codewith.mu/en/tutorials/

Python code editors guide https://realpython.com/python-ides-code-editors-
guide/

Top Python development editors https://www.simplilearn.com/tutorials/python-
tutorial/python-ide

Table 1.1: Python code editing tools for developing with Python

Questions
1. What are the different Python development editors available?
2. What are the advantages for using Mu for Python?
3. How can you install additional libraries using Mu?

https://codewith.mu/en/
https://www.anaconda.com/products/individual
https://jupyter.org/
https://code.visualstudio.com/docs/languages/python
https://www.jetbrains.com/pycharm/
https://codewith.mu/en/tutorials/
https://realpython.com/python-ides-code-editors-guide/
https://www.simplilearn.com/tutorials/python-tutorial/python-ide

CHAPTER 2
Fundamentals of Python

Introduction
In this chapter, we will introduce you to the Python programming language.
We will cover fundamentals of Python, including decision statements,
functions, and data structures. We will also look at how to import and use
external libraries to achieve the desired goals.

Structure
In this chapter, we will cover the following topics:

Introduction to Python
Decision statements
Data structures
Loops/repetition
Functions
Libraries, modules, or packages

Objectives
After studying this chapter, you will be able to code basic programs in the
Python programming language. You will gain knowledge of programming
to get up and running with building Python programs. You will also have an
understanding of the Python scripting language, syntax and data structures.

Introduction to Python
Python is a general-purpose programming language which has been built on
top of C programming language. Python is also an interpreted language and
can be used interactively (similar to using it as an advanced calculator

executing one command at a time). The Scripting mode in Python allows
you to execute a series of commands in a saved text file, usually with a .py
extension after the name of your file.
You can do just about anything with Python and it is one of the easiest
languages to learn for beginners. Python is widely used all over the world to
build automations, machine learning models, data analysis, and web
development. It can help you build automations for day-to-day work tasks,
create web applications, perform data analysis, and build machine learning
models.
We are using Python version 3.8.5 in this book and the code should work
for minor Python versions updates in the future. To start with a simple
program in Python, open the Mu editor, type print(‘Hello World’), save
the file, and click on Run. You will see the Hello World printed in the
console window as shown in the following figure:

Figure 2.1: Hello World program

With Python, you can easily assign values to variables. Following are some
examples of values of different data types assigned to variables. In Python,

the naming convention for the variables, functions, classes, and code
structure is according to the PEP 8 style guide. Variables are snake cased
and case sensitive as per the following examples:

my_string = “Hello World” # An example of a string
my_number = 12321312 # An example of an integer
my_float = 3.1415 # An example of a float

Here, we’ve assigned data to the my_string, my_number and my_float,
using the assignment operator =. We can use these assigned values by
typing them in the Python interpreter.
Python also supports arithmetic operators to perform mathematical
operations, such as +, -, /, *, %. In the following figure, we see some of the
examples of the mathematical operations performed in Python:

Figure 2.2: Mathematical operations in Python

We can also use comparison and logic operators: <, >, ==, !=, <=, >=, and
statements of identity, such as AND, OR, NOT. The data type returned by
this is called a Boolean (refer to Figure 2.3):

Figure 2.3: Boolean statement in Python

Decision statements
Decision-making statements decide the direction of the flow of program
execution. In Python, if, else, and elif statements are used for decision
making. In Python, indentation is used to indicate a block of code instead
of brackets and it is very important to use consistent indentation in the
Python code. We generally use four spaces per indentation level in Python
as per the PEP 8 style guide.

if statement
The if statement is used to decide whether to execute a certain block of
code or not.

Syntax:
if (condition):
Statements to execute if true

In Figure 2.4, we see the use of the if statement to check whether a variable
is greater than 100 or not. In the case, as the variable value is 1000, the

print statement is executed printing 1000 is greater than 100:

Figure 2.4: If statement

if-else
The else statement allows you to execute the code when the if statement
condition is false.

Syntax:
if (condition):
Executes this block if condition is true

else:
Executes this block if condition is false

In Figure 2.5, the variable value is 10, so the print statement else
statement is executed printing 10 is less than 100:

Figure 2.5: If - else program

if-elif-else
Here, the programmer can decide among multiple options. The if
statements are executed from the top down. As soon as one of the
conditions controlling the if is true, the statement associated with that if is
executed, and the rest of the ladder is bypassed. If none of the conditions is
true, then the final else statement will be executed.

Syntax:
if (condition):
statement

elif (condition):
statement

.

.
else:
statement

In Figure 2.6, the variable value is 10, so the print statement elif
statement is executed printing 10 is greater than 1:

Figure 2.6: If - elif - else program

Loops/repetition
There are two types of loops in Python, for and while.

The for loop
The for loops iterate over a given sequence. We can use the range()
function in Python to loop through a set of code a specified number of
times. The range() function returns a sequence of numbers, starting from 0
by default, and increments by 1 (by default), and ends at a specified
number.
In Figure 2.7, we see a simple for loop being executed printing numbers
from range 0 to 3 using the range function:

Figure 2.7: Simple for loop in Python

while loops
The while loops are similar to for loops and they repeat as long as a certain
Boolean condition is met.
In Figure 2.8, we see a while loop being executed with the initial value of
variable i as 1 and the end condition stating that the loop should run till the
value is less than 4. Inside the loop, we increment the variable by 1 on each
iteration. This loop terminates as soon as the variable value reaches 4:

Figure 2.8: While loop in Python

The break statement
The break statement is used to exit from the for loop or a while loop. With
the break statement, we can stop the loop before it has looped through all
the items.
In Figure 2.9, a break statement is used to exit the loop when the value of
the variable is 2. This loop terminates after printing values 0 and 1, and it
exits the loop as soon as the value reaches 2:

Figure 2.9: Break statement

The continue statement
With the continue statement, we skip the current iteration of the loop and
continue with the next iteration of loop.
In Figure 2.10, the continue statement is used to skip printing of the
variable when the variable value is 2. So, the values 0, 1, and 3 are printed,
and the print statement is skipped using the continue statement when the
variable value is 2:

Figure 2.10: Continue statement

Data structures
Data plays a very important role in the current work environment. Data
structures in Python enable you to store data, retrieve them, and perform
operations on them easily. Lists, tuples, dictionaries, and sets are four
basic types of data structures in Python.

Lists
Lists hold an ordered sequence of elements in Python. Each element can be
accessed by an index. In Python, indexes start with 0 instead of 1, so the
first element of a list is numbered at 0, and the last element for a list with n
elements in numbered n - 1. There is also negative indexing which starts
from -1 enabling you to access elements from the last to first.
Lists are created by placing comma-separated values inside parentheses [].
In the following figure, we see several examples of creating and modifying
a list in Python:

Figure 2.11: Lists in Python

A for loop can be used to access the elements in a list one at a time.
In Figure 2.12, the for loop is used to iterate through each item of the list
and then print the items of this list using a print statement:

Figure 2.12: For loop with lists

Tuples
A tuple is similar to a list and is an ordered sequence of elements.
However, tuples are immutable (they cannot be changed once they are
created).
Tuples are created by placing comma-separated values inside parentheses
(). There is no append method in tuple as it cannot be changed once created.
In the following figure, a tuple is created, and the for loop is used to iterate
through each item of this tuple, and then print them:

Figure 2.13: Tuple in Python

Dictionaries
A dictionary is a data structure that stores key-value pairs. A simple
analogy of a dictionary would be a phone directory where phone numbers
are keys and the names would be the values. You can access the name by
the dictionary’s phone number.
Dictionaries are created by placing comma-separated key:value pairs
inside parentheses {}. Dictionaries work similar to lists (but you index them
with keys).
In the following figure, we see several examples of creating, accessing, and
modifying a dictionary in Python:

Figure 2.14: Dictionaries in Python

A for loop can be used to access the elements in a dictionary using the
following methods:

items(): Loop through the key:value pairs in the dictionary.
values(): Loop through the values in the dictionary.
keys(): Loop through the keys in the dictionary.

In Figure 2.15, we see an example to iterate through a dictionary using
dictionary keys, values, or both:

Figure 2.15: For loops with dictionary

Sets
Sets are a collection of unordered elements that are unique. They only hold
unique values and duplicate values are automatically deleted in the set.
Sets are created by placing comma-separated values inside parentheses {}.
In the following figure, we see an example of creating and looping through
a set in Python. Notice that the duplicate elements are omitted in the set and
a unique set of element list is printed when we loop through this set:

Figure 2.16: Sets in Python

Functions
Functions are used to divide the code into blocks, thus allowing you to
reuse the code over time. It makes the program easier to understand and
allows you to share the code across programs.
Functions in Python are defined using the def keyword, followed by the
function’s name. Functions are called by their name and passing appropriate
arguments in the function definition.

Example syntax is as follows:
def func_name(arguments):
func_operation

In the following figure, we see an example of creating a simple function to
add two numbers in Python. The function is called inside the print
statement with the two numbers we want to add as an argument inside the
function:

Figure 2.17: Simple addition function in Python

Libraries, modules, or packages
A Python library or module is a file containing reusable definitions and
statements. Python libraries are the best way to share the code among
applications. There are thousands of Python libraries created and
maintained by different communities, and companies. The Python Package
Index (https://pypi.org/) provides an extensive collection of reusable
repositories of software for the Python programming language. We will be
frequently using Python libraries to help us build the required work
automation programs throughout this book.
Modules can be added using Mu (installing third-party packages with Mu)
or pip installer. Modules are imported using the import keyword followed
by the module name.
In the following figure, we import a Python library called math. After
importing this library, we can use the functions available within the library.
The function definitions and example of using the function for a library are
found in the library documentation which in this case is the Python math
library documentation (https://docs.python.org/3/library/math.html):

https://pypi.org/
https://docs.python.org/3/library/math.html

Figure 2.18: Importing and using Python math library

Conclusion
In this chapter, we discussed the basics of the Python programming
language with examples of decision statements, data structures, loops,
functions, and Python Libraries. We also went through the syntax of Python
to help you with the basic programming knowledge required for building
and editing work automations.
In the next chapter, we will discuss the automation mindset essential to
identify and automate your daily tasks. We will also discuss how Python
can be used as a tool for building automation and discuss some real-world
scenarios where Python is used for work automation.

Further reading
There are a lot of online Python tutorials and resources available on the
Internet to get started with learning the Python programming language.
Some popular tutorials are given in the following table:

Resource name Link

The official Python tutorial https://docs.python.org/3/tutorial/index.html

Data structures you need to learn in Python https://www.edureka.co/blog/data-structures-
in-python/

Real Python tutorials https://realpython.com/

w3schools Python tutorial https://www.w3schools.com/python/default.asp

Tutorials point Python tutorial https://www.tutorialspoint.com/python/index.ht
m

Short introduction to programming in Python https://datacarpentry.org/python-ecology-
lesson/01-short-introduction-to-Python/

Table 2.1: Tutorials for learning Python

Questions
1. How does a while loop work in Python?
2. What are different data structures in Python?
3. How to you stop a For loop in Python?
4. What is a package in Python?

https://docs.python.org/3/tutorial/index.html
https://www.edureka.co/blog/data-structures-in-python/
https://realpython.com/
https://www.w3schools.com/python/default.asp
https://www.tutorialspoint.com/python/index.htm
https://datacarpentry.org/python-ecology-lesson/01-short-introduction-to-Python/

CHAPTER 3
Automation Mindset – Python as a

Tool for Automation

Introduction
In this chapter, we will discuss the mindset needed to be successful in
implementation of automation within your organizations. We will go
through the process of identifying and prioritizing automation opportunities.
We will also discuss the ways to share the developed automations with the
wider organization once they are created.

Structure
In this chapter, we will cover the following topics:

Mindset for automation
Common processes for automation
Identifying business processes

Objectives
After studying this chapter, you will be able to identify the automation
opportunities in your organization. You will also have the right mindset to
decide when to implement the automation and when to look for other
solutions for optimizing your workflow.

Mindset for automation
Automation mindset involves a way of working where we look for
continuous improvement of existing processes and finding opportunities for
automation. It is a way of reimagining the whole process of doing a task, or
an entire workflow, and finding opportunities to make it more efficient. You

need to be comfortable for change and look for tools and solutions to help
the process run more efficiently.
In the next section, we will discuss some of the common processes and
tasks that can be easily automated with Python.

Common processes for automation
The best starting process for automation are the ones which are highly
repetitive in nature and take a substantial amount of time of your overall
workload.
The most common automations opportunities come from the following
three subsets of categories:

1. Data entry: The data entry process involves tasks which require you
to enter data from one application to another. These tasks are highly
manual in nature and can be easily automated with Python. The main
candidates for data entry automations include:

a. Filling up forms: Any task that requires repetitive filling up of
forms for single or multiple data sources.

b. Sending similar emails: Tasks where you have to send bulk
emails or similar emails to a lot of people.

c. Copying data between two systems: Any task requiring
duplication of data between multiple systems.

d. Maintaining the ERP and CRM systems: Tasks involving data
entry to ERP and CRM systems.

e. Updating legacy systems: Tasks involving working with legacy
systems and updating data into these systems.

f. Entering data to in-house systems: Any task where you have to
work and maintain the in-house proprietary systems.

2. Data extraction: Data extraction processes involve work where you
have to extract data from different file formats to be consumed by
other teams or applications. These tasks can be easily automated
saving a lot of time with day-to-day work tasks. Almost every job
involves some tasks to extract data from different files. The main
candidates for data extraction automations include:

a. Extracting customer details: Tasks involving extracting
customer details from emails, documents, and other systems.

b. Converting PDF data to Excel sheet: Tasks involving extracting
data from PDF documents by converting it to the Excel format.

c. Extracting data from reports: Tasks involving extracting data
from external and internal reports such as financial reports, press
releases, legal reports, and corporate reports.

d. Extracting data from images: Tasks involving data extraction
from scanned or online images.

3. Data gathering: Data gathering processes involve work where you
have to gather data from multiple sources such as websites, files, and
applications. These tasks generally involve collecting, cleaning, and
collating data from multiple sources, and performing some analysis on
them. The main candidates for data gathering automations include:

a. Gathering stock prices: Tasks involving collecting stock prices
data from stock exchange websites and other market data
systems.

b. Performing market research: Tasks involving collecting
particular pieces of information from social media sites,
competitor websites, or media documents.

c. Gathering website data: Any task involving collecting data for
any website on the Internet.

d. Online reports extraction: Tasks involving data extraction from
online HTML-based reports.

There are also process discovery and process mining tools that can help you
with discovering the processes that should be prioritized and automated. We
will discuss some of these tools in the next section.

Identifying business processes
Business process discovery is a common way to identify processes.
Business process discovery involves techniques and ways to manually or
automatically construct the organization’s business processes and their
variations.

The processes can also be identified using process documentation or time-
based analysis of activities performed in the organization. Once the
processes are identified and the steps involved in the process are listed, use
the following checklist as a guide to select best candidates for automation:

Requires more than a couple of hours of manual time to complete.
Processes which have defined steps/rules.
Processes which are repetitive.
Processes running frequently, at least once a month.
Have multiple steps involved in completing the process.
Work involves multiple data files such as Excel, text, PDF files.
Work involves dealing with legacy systems.
High accuracy required on the task.
Process requires high level of documentation.
Process has high risk of human error due to complexity or number of
steps involved.
Process that is expensive in terms of time, resources, and other
intangible assets.
Process can be easily automated.

The following figure shows time-based analysis for work performed to
identify most suitable applications for automation. Further analysis can be
performed based on user interviews to identify the final process for
automation.
Figure 3.1 displays the time-based analysis across different applications
which help with the identification of the most time-consuming tasks
performed by the user:

Figure 3.1: Time spent across applications

Figure 3.2 displays the process map for various processes performed by the
user, the frequency of these processes, and the time taken to perform these
processes:

Figure 3.2: Process map of application

Figure 3.3 displays the time-based analysis across the explorer.exe
application and shows the place where the user spends the most amount of
time in this application. We can do this time based analysis across multiple
teams and the whole organization:

Figure 3.3: Time spent on explorer

There are also process mining and process discovery software that
generates process maps based on recorded steps, documentation, and
existing organizational methods of work. Any data consisting of a unique Id
(helpful in grouping tasks belonging to the same task), name of activity
(description of the tasks taking place), and timestamp (the time the task
took place) are called event logs. The event logs are used to discover the
underlying process model. PM4Py (https://github.com/pm4py/pm4py-
core) is a process mining package for Python and is used extensively to
discover business processes.

Conclusion
In this chapter, we discussed the importance of an automation mindset to be
successful in improving the quality of work. We have gone through the list
of most common processes that can be automated with Python. We also
looked at various tools and techniques available to help us identify the most
likely candidates for automation.
In the next chapter, we will take a look at the various techniques to
implement automation with Excel-based data files and spreadsheets. We
will discuss the Python modules to help with Excel-based dataset
automation and various examples of automations that can be performed for
these types of files.

https://github.com/pm4py/pm4py-core

Further reading
There are few good tools available which can be used to perform process
discovery and process mining to find opportunities for improving the
processes within the organization.

Resource name Link

Process discovery in 2021: what it is and how it
works

https://research.aimultiple.com/process-
discovery/

PM4Py - Process mining for Python https://pm4py.fit.fraunhofer.de/

Introduction to process mining https://towardsdatascience.com/introduction-
to-process-mining-5f4ce985b7e5

Celonis process mining https://www.celonis.com/

Table 3.1: Resources on process discovery and process mining

Questions
1. What is a process discovery tool?
2. What are the processes that you should not automate?
3. How do you find automation opportunities within an organization?
4. What is the mindset required to build automations?

https://research.aimultiple.com/process-discovery/
https://pm4py.fit.fraunhofer.de/
https://towardsdatascience.com/introduction-to-process-mining-5f4ce985b7e5
https://www.celonis.com/

CHAPTER 4
Automating Excel-Based Tasks

Introduction
In this chapter, we will discuss ways to automate Excel workflows, including
creating, writing, and updating the Excel documents. We will also discuss the
data manipulation techniques with Excel and CSV documents.

Structure
In this chapter, we will cover the following topics:

Installing the library to read/write Excel
Creating Excel documents
Reading Excel documents
Updating a workbook
Sample Excel-based automation
CSV file-based automation

Objectives
After studying this chapter, you will gain the knowledge and understanding of
the Python library for manipulating Excel files. You will also be familiar with
code snippets of how to automate Excel-based tasks such as reading, writing,
and updating a workbook. You will see a few common examples of Excel-
based tasks that can be automated using Python.

Installing the library to read/write Excel
We will use openpyxl (the most popular Python library to read/write Excel
files) to automate Excel-based tasks. It allows you to read, write, and update a
workbook in a very simple way:

1. To install openpyxl, use the mu package manager. Type openpyxl and
click on OK, as shown in the following figure. We use 3.0.9 in this book,
so to import the same version, type openpyxl==3.0.9 in the package
manager. Later versions should work as well with the examples in this
chapter:

Figure 4.1: Mu settings option

2. After clicking on the OK button, you will see the message that the
openpyxl package is being installed on the computer as shown in Figure
4.2:

Figure 4.2: Openpyxl being installed in Mu

3. You can verify if the openpyxl is installed properly by importing the
library and printing the library version by using the __version__
property as shown in Figure 4.3:

Figure 4.3: Importing Openpyxl module

Creating Excel documents
In this section, we will look at an example to create a new Excel workbook and
write some data into the workbook.
We can create a new workbook using the Workbook() function in the openpyxl
library. We can add some data to the working book by accessing the active
worksheet, and selecting the row and column by their names. To access row 1
and column 1, use A1 as an index, where A represents column 1 and 1
represents row 1, as shown in the following figure. The location where the file
can be saved for the workbook is in the same folder where the script is residing
by default:

Figure 4.4: Creating new workbook

As soon as you save the new workbook, you can access it from the file
explorer, and open it from the Excel application:

Figure 4.5: New workbook being saved in the code directory

After opening the file in the Excel application, you can see the data Hello
World and the date when the program is executed is added in the worksheet, as
shown in the following figure:

Figure 4.6: Data being added to the new workbook

Reading Excel documents
You can read and loop through the data using the Python openpyxl library.
There are a few different ways to iterate through the data depending on your
needs.
You can slice the data with a combination of columns and rows. To access a
value of a cell, use the .value method. For example, you can access data in
row 1 and column 1 by using the assessor A1, or by using the .cell function
with row and column number as an argument as shown in the following figure:

Figure 4.7: Access cell values from Excel workbook

You can also loop through the whole row or columns by using the range
function in the format of Row or Column 1:Row or Column 2 to get the cells
between columns and rows as shown in the following figure:

Figure 4.8: Printing cell tuples

There are also multiple ways of using normal Python generators to go through
the data. The main methods you can use to achieve this are the .iter_rows() and
.iter_cols() functions. These functions take the arguments min_row for the
starting row number, max_row for the ending row number, min_col for the
starting column number, and max_col for the ending column number. In
Figure 4.9, you can see an example where we are looping through rows and
columns of test_workbook using the .iter_rows() and .iter_cols() functions:

Figure 4.9: Iterating through row and columns on the Excel sheet

In Figure 4.10, you can see an example where we are looping through rows of
test_workbook using the .iter_rows() function and accessing the value with
another for loop and the .value function. This is helpful if you need to
manipulate or read specific rows in the workbook:

Figure 4.10: Iterating through individual row and its value

Updating a workbook
In this section, we will look at ways to update an existing workbook, and add
or remove new data to the workbook.
To update, add, or remove data to an existing cell, use the cell assessor (like
A1) and set its value to the new value as required. In Figure 4.11, we see an
example where we add new data to test_workbook and print the data using the
iter_rows() function:

Figure 4.11: Updating the workbook with new data

You can also add or remove worksheets by using the openpyxl library. To add a
new worksheet, use the create_sheet(sheet_name) function, to copy the
worksheet, use the copy_worksheet(sheet_name) function, and to remove the
worksheet, use the remove(sheet_name) function as shown in the following
figure:

Figure 4.12: Adding new workbooks to the Excel

A sample of Excel-based automation
In this section, we will look at a simple example of Excel automation where
you need to move some data from one Excel file to another Excel file.
In Figure 4.13, we can take a look at an example where we want to copy
columns 1 and 2 from the source workbook to the destination workbook. To
achieve this, we can add the number of rows in the source workbook using the
max_row method (number of columns in a workbook can be found similarly
using the max_column method). Then, we loop through all the rows and
required columns using the for loop function, getting the value from the source
workbook, storing it in the variable, and then storing it in the destination
workbook for the same row and column number. We then save the destination
file using the .save() function:

Figure 4.13: Copying columns 1 and 2 to another workbook

The preceding automation would work when the source and destination
workbook exist and Figure 4.14 shows the data of the source workbook:

Figure 4.14: Source workbook with sample data

Figure 4.15 shows the data of the destination workbook with column 1 and 2
copied from the source workbook when we run the copying data automation:

Figure 4.15: Destination workbook with column 1 and 2 copied from source workbook

CSV file automations
Python also has libraries and functions to manipulate CSV files. A CSV file is
a Comma Separated Values file that contains a list of data where different
elements are separated by a comma. These files are often used for exchanging
data between different applications.
Python has an inbuilt CSV module which can be imported using the import csv
command. This module provides functions to read, write, and update CSV
files. As shown in Figure 4.16, we can use the CSV module to read the
test_file CSV file using the reader() function, and update the file with the new
data using the writer() function. Note, Python also has file I/O functions and
we can open the file using the open() function as shown in the following
figure. The argument a+ in the open() function used in line 10 is used to
denote that we want to open the file to append the new data in it:

Figure 4.16: Using CSV reader and writer to manipulate CSV files

Figure 4.17 shows the CSV file before the csv_automation program was
executed:

Figure 4.17: CSV file before update

Figure 4.18 shows the CSV file after the csv_automation program was
executed adding new data on row number 3:

Figure 4.18: Openpyxl being installed in Mu

You can also create new CSV files, manipulate data inside a CSV file, and
convert a CSV file to JSON format or Python object using the CSV library.

Conclusion
In this chapter, we looked at basic Excel methods to manipulate and automate
Excel-based tasks. We looked at different ways to use the openpyxl library to
read, write, and update Excel files. We also went through the CSV module in
Python to read, write, and update CSV files.

In the next chapter, we will take a look at the various techniques to implement
automation with a variety of online websites. We will discuss the Python
modules to help with website-based dataset automations and various examples
of automations that can be performed for different types of websites.

Further reading
There are a lot of online resources to help you learn more about Excel and
CSV automation with Python. The following table lists some of the best
resources to further improve your learning on Excel and CSV libraries in
Python:

Resource Name Link

openpyxl - A Python library to read/write Excel
files

https://openpyxl.readthedocs.io/en/stable/

A guide to Excel spreadsheets in Python with
openpyxl

https://realpython.com/openpyxl-excel-
spreadsheets-python/

CSV file reading and writing https://docs.python.org/3/library/csv.html

Excel automation with OPENPYXL in Python https://www.topcoder.com/thrive/articles/excel-
automation-with-openpyxl-in-python

Table 4.1: Resources on CSV and Excel libraries in Python

Questions
1. What is the most popular package in Python for Excel automation?
2. How can you create Excel documents in Python?
3. How do you build an automation to transfer data between multiple Excel

sheets?
4. How to you read data from Excel documents into Python data structure?

https://openpyxl.readthedocs.io/en/stable/
https://realpython.com/openpyxl-excel-spreadsheets-python/
https://docs.python.org/3/library/csv.html
https://www.topcoder.com/thrive/articles/excel-automation-with-openpyxl-in-python

CHAPTER 5
Automating Web-Based Tasks

Introduction
In this chapter, we will go through automation for websites and web-based
tasks. We will look at how to download data from websites and automate data
extraction from websites by parsing HTML documents. We will also look at
the Selenium framework to automate web actions such as mouse click and
keyboard actions on different websites.

Structure
In this chapter, we will cover the following topics:

Downloading files from the Internet
Introduction to HTML, CSS, and JavaScript
Extracting data from websites
Controlling the browser with Selenium

Objectives
After studying this chapter, you will be able to automate web-based tasks such
as extracting data from webpages, downloading files, and performing search.
You will also get an understanding of the Python libraries for working with
websites and HTML documents.

Downloading files from the Internet
Python allows you to download web pages, HTML documents, PDF
documents, videos, and other file types from the Internet. We will use
requests which is a Python library that allows you to perform HTTP requests.
One of its applications is to download a file from the web using the file URL.
To install requests, use the mu package manager, type requests, and click on
OK, as shown in the following figure:

Figure 5.1: Mu package manager

Once the library is installed, you can import it using the import statement. The
Requests library allows you to send HTTP requests, and there’s no need to
manually add query strings to your URLs, or to form-encode your POST data.
HTTP defines the methods to indicate the action that needs to be performed on
the web service. The HTTP methods available with the Requests library are as
follows:

GET: This allows you to retrieve data from the given web link.
HEAD: This is similar to the GET request but it does not include a response
body.
POST: This submits data to the specified web link, often causing
something to happen in the server.
PUT: This replaces the current representations on the server with uploaded
data.
DELETE: This deletes the specified data.
CONNECT: This establishes a tunnel to the server identified by the web
link.

OPTIONS: This describes the communication options for the target web
link.
TRACE: This performs a message loop-back test.
PATCH: This applies partial modifications to the data.

To download the files from the Internet, we will use the HTTP GET method. As
shown in Figure 5.2, we can use the requests library with the syntax
requests.get(FILE_LINK) to download the file from the Internet.
We are also using the Python file write in the following figure which allows us
to create a new file or add data to an existing file. Python has the open()
function which is the key function for working with files. The open() function
takes two parameters as arguments which are file location and mode. There are
four different modes for opening a file using the open function:

r: Read – opens a file for reading.
a: Append – opens a file for adding more data and creates a new file if it
does not exist.
w: Write - opens a file for writing and creates a new file if it does not
exist.
x: Create - creates a new file.

Figure 5.2: Downloading simple HTML web page

To download multiple files from the Internet, we can add multiple URLs in a
Python list, and use the for loop to loop through the links, and download the
required files as shown in Figure 5.3:

Figure 5.3: Downloading multiple files from the internet

Unless a save location is specified, the files are downloaded in the folder
where the code file is present as shown in Figure 5.3:

Figure 5.4: Files downloaded in the code folder

To download large files from the Internet, we can set the stream parameter to
True in the requests function. This will download the response headers only
and the connection will remain open. This avoids reading the content all at
once into memory for large responses. A fixed chunk is loaded into memory
each time while r.iter_content is iterated.
As shown in Figure 5.5, we loop through the response and write the large PDF
document in the required file:

Figure 5.5: Downloading large files

In the next section, we will go through the basic introduction of HTML, CSS,
and JavaScript which are used for creating web pages and websites available
on the Internet. A basic knowledge of HTML, CSS, and JavaScript is essential
to be able to successfully automate the web data extraction tasks.

Introduction to HTML, CSS, and JavaScript
In this section, we will go through the building blocks and components of a
web page. When we visit a web page, our web browser makes a GET request to
a web server. The server then sends back files that tell our browser how to
render the page for us. These files typically include:

HTML: The main content of the page to be displayed in the browser.
CSS: This is used to add styling to make the web page look nicer.

JavaScript: JavaScript files add interactivity and additional functionality
to web pages.
Images: Image files such as JPG and PNG allow web pages to show
pictures.
Other files formats: These can be videos, documents, audio files, or any
other file types.

After our browser receives all the files, it renders the page and displays it.

HTML
When we perform web scraping, we are mainly interested in the main content
of the web page which is an HTML document. HTML stands for hypertext
markup language and is the language used for building websites. HTML code
is based on tags that provide instructions for formatting and displaying the
document. A tag starts with the less than sign: < and ends with the greater than
sign >.
For example, to make the word Hello bold, you can use the opening bold tag
 and then the closing bold tag , like this:
Hello

HTML documents can be created using the <html> and </html> tags.
There is a head tag which contains data about the title of the page and other
top-level information, and a body tag which contains the main content of the
page. For web scraping, we will mostly be interested in content within the body
tag of the HTML page.
The commonly used HTML tags are:

<!--...-->: Defines a comment.
<!DOCTYPE>: Defines the document type.
<a>: Defines a hyperlink.
<audio>: Defines embedded sound content.
: Defines bold text.
<body>: Defines the document’s body.

: Defines a single line break.
<button>: Defines a button.
<caption>: Defines a table caption.

<dialog>: Defines a dialog box or window.
<div>: Defines a section in a document.
<footer>: Defines a footer for a document or section.
<form> : Defines an HTML form for user input.
<h1> to <h6>: Defines HTML headings of different sizes with h1 being
the largest.
<head> : Contains metadata/information for the document.
<html>: Defines the root of an HTML document.
: Defines an image.
<input>: Defines an input control.
<label>: Defines a label for an <input> element.
: Defines a list item.
: Defines an ordered list.
<option>: Defines an option in a drop-down list.
<p>: Defines a paragraph.
<pre>: Defines preformatted text.
<select>: Defines a drop-down list.
: Defines a section in a document.
<style>: Defines style information for a document.
<table>: Defines a table.
<tbody>: Groups the body content in a table.
<td>: Defines a cell in a table.
<th>: Defines a header cell in a table.
<title>: Defines a title for the document.
<tr>: Defines a row in a table.
: Defines an unordered list.
<video>: Defines embedded video content.

The HTML document has an id attribute which is used to specify a unique ID
for an HTML element. The id property is particularly useful for automating
web-based tasks. The value of the id is unique within the HTML document. In
the HTML document, id is declared for a particular tag as shown in the
following example:

<h1 id=”myId”>My Id</h1>

The HTML document also has a class attribute that can be used to identify
elements. Multiple elements can have the same class in the HTML document.
In the HTML document, class is declared for a particular tag as shown in the
following example:
<div class=”myClass”> </div>

A simple HTML code snippet is shown as follows which will print Hello
World when it is displayed on the browser:

1. <html>
2. <head>
3. </head>
4. <body>
5. <h1>Hello World<h1>
6. </body>
7. </html>

CSS
CSS is used to style a web page and it stands for Cascading Style Sheets. It
describes how HTML elements are to be displayed on screen, paper, or in other
media. It can be reused across different web pages and are generally stored in
CSS files. CSS documents are generally not useful for web automation
purposes as they just define the style of the webpage and not its content.
The following example is a sample CSS file where all <p> elements are center-
aligned with black text color:

1. p {
2. color: black;
3. text-align: center;
4. }

JavaScript
JavaScript is a programming language similar to Python and is the main
programming language used for designing web pages. JavaScript is used to
change the HTML content and manipulate HTML documents.

In HTML documents, the JavaScript code is added within the script tag
shown as follows where main.js is the name of the JavaScript file containing
the JavaScript code:
<script src=”main.js”></script>

The following is an example of simple JavaScript code that can be used to
change the heading of the HTML document:

1. const docHeading = document.querySelector(‘h1’);
2. docHeading.textContent = ‘New Heading’;

When we add this code to the HTML document, when the code is executed it
will change the heading of the HTML document to the New Heading value.
An in-depth knowledge of JavaScript is not required to perform web-based
automation but the following w3schools tutorial
(https://www.w3schools.com/js/) is a great place to start to learn more about
the language.
In the next section, we will use the basic knowledge of HTML documents to
extract data from web pages and automate web-based tasks.

Extracting data from websites
Extracting data from websites is called web scraping and it involves getting
the HTML page from the web and extracting required data from the HTML
document. In Python, we will use the Beautiful Soup library which makes it
very easy to extract data from HTML documents. Beautiful Soup allows us to
write custom code that filters through the specific elements that we specified
and extracts the required content as instructed.
To install Beautiful Soup, use the mu package manager, type beautifulsoup4,
and click on OK, as shown in the following figure:

https://www.w3schools.com/js/

Figure 5.6: Mu package manager

Once the Beautiful Soup library is installed, you can import it with the
statement from bs4 import BeautifulSoup where bs4 stands for
beautifulsoup4, as shown in Figure 5.7:

Figure 5.7: Using BeautifulSoup library

Beautiful Soup transforms a complex HTML document into a tree of Python
objects. There are four main types of objects that we will use for extracting
data from web pages: Tag, NavigableString, BeautifulSoup, and Comment.
The main properties and objects we will use for data extraction are:

Tag: The tag object corresponds to the HTML tag in the original
document. For example:
soup = BeautifulSoup(‘<b class=”bold”>bold text’,

‘html.parser’)

tag = soup.b

type(tag)

returns <class ‘bs4.element.Tag’> as output

Name: Every HTML tag has a name which can be accessed using .name.
For example:
tag.name

returns ‘b’ as output

Attributes: A tag can have any number of attributes. The <b id=”bold”>
tag has an attribute id whose value is bold. You can access a tag’s
attributes by treating the tag like a dictionary. For example:
tag = BeautifulSoup(‘<b id=”bold”>bold text’,

‘html.parser’)

tag[‘id’]

returns bold as output

You can access that dictionary containing all attributes using the .attrs
function.
NavigableString: A string that contains the text within a tag. For
example:
tag = BeautifulSoup(‘<b id=”bold”>bold text’,

‘html.parser’)

bold = tag .b

bold.string

returns ‘bold text’ string as output

BeautifulSoup: The BeautifulSoup object represents the parsed HTML
document. It is similar to the tag object, and supports the preceding
methods to navigate and search the document.

As shown in Figure 5.8, we are converting the HTML document using the
BeautifulSoup function, and then access its property directly by using the tag
object properties:

Figure 5.8: Extracting HTML elements

We can also download a webpage using the requests library and extract data
by converting the downloaded document into a BeautifulSoup object as

shown in Figure 5.9:

Figure 5.9: Downloading and parsing online documents

To extract elements of a particular type, we can use the find_all() function to
get the elements for that type. We can use this function to extract all the
external links from a particular HTML page as shown in Figure 5.10:

Figure 5.10: Extracting web links from website

To extract elements from the tag ID, we can use the find() function with the
required id value as shown in Figure 5.11:

Figure 5.11: Extracting data via HTML tag ID

To extract elements from the class name, we can use the find_all() function
with the required class and tag values as shown in Figure 5.12:

Figure 5.12: Extracting data via HTML class

We can also use the select_one() function with the class name as a parameter
to extract data as shown in Figure 5.13:

Figure 5.13: Extracting one element data by class name

In this section, we looked at a few examples on how we can use the
beautifulsoup and requests library to extract the required data from the web
pages. In the next section, we will look at the Selenium library that allows you
to automate the browser mouse and keyboard actions.

Controlling the browser with Selenium
Selenium is a library that allows you to automate the browser action. It
provides extensions to emulate the user interaction with browsers and allows
you to write the code to automate all major web browsers.
We will look at automation on the Chrome browser using Selenium but the
automations can be easily imported to other browsers as well. To install
selenium, use the mu package manager, type selenium, and click on OK as
shown in the following figure:

Figure 5.14: Mu package manager

We will also need to download the Chrome driver with the selenium package
to be able to automate Chrome actions as per the following steps:

Download the Chrome driver from the chromium website, and select the
right version and operating system for your Chrome browser as required
(https://chromedriver.chromium.org/downloads).
Extract the downloaded folder using any ZIP extractor tool and copy the
path of the location of the chromedriver.exe file.
You can also move the file to C drive or any other path that is accessible
by the system variables.

After this, we can perform the browser automations by importing the web
driver from the selenium library using the from selenium import webdriver
statement. We will also need to import the Chrome service using from
selenium.webdriver.chrome.service import Service.
To create a selenium service, use the Service() function with the path of the
chromedriver as shown in Figure 5.15:

Figure 5.15: Opening Chrome with Selenium

The selenium has a get() function that takes the argument of the URL of the
page to be opened and opens the requested page as shown in Figures 5.15 and
5.16:

https://chromedriver.chromium.org/downloads

Figure 5.16: Python home page

There are two methods in selenium that we would be using to locate web page
elements and perform mouse or keyboard actions on them. These methods are
find_element and find_elements. They can be used as per the following
example:

1. from selenium.webdriver.common.by import By
2. driver.find_element(By.XPATH, ‘//button[text()=”text”]’)
3. driver.find_elements(By.XPATH, ‘//button’)

These are the attributes available for the By class:

ID = id
XPATH = xpath
LINK_TEXT = link text
PARTIAL_LINK_TEXT = partial link text
NAME = name

TAG_NAME = tag name
CLASS_NAME = class name
CSS_SELECTOR = CSS selector

As shown in Figure 5.17, we can use the find_element() function with the
By.NAME parameter as q and send keys to that element in the Chrome window:

Figure 5.17: Automating keyboard actions in Chrome

Once the script shown in Figure 5.17 is executed, the Chrome driver opens a
Google search page and searches for ChromeDriver automatically using the
send_keys() and submit() functions as shown in Figure 5.18:

Figure 5.18: Performing automated Chrome search

We can also automate tasks involving filling up forms or copying data from in-
house applications to forms using Selenium. To achieve this, you can identify
elements by XPATH, ID or any other tags that are accepted by the By function.
To identify the HTML element’s name, perform the following steps:

1. Right click on the web page that you want to automate and select the
Inspect option as shown in Figure 5.19:

Figure 5.19: Example form page

2. Once you select the Inspect… option, you will see the elements panel that
opens on the right-hand side of the browser as shown in Figure 5.20:

Figure 5.20: Inspecting page data

3. Hover over the required element to get the name for that element
highlighted in the elements panel as shown in Figure 5.21. Take a note of
this name as you would need to use it in your code to automate actions:

Figure 5.21: Getting element tags

4. Once you have identified the element names, you can get the elements by
using the find_element() function and using the send_keys function to
send specific data to this element as shown in Figure 5.22:

Figure 5.22: Filling form data

5. Once the script shown in Figure 5.22 is executed, the Chrome driver
opens a form page and fills up the form with the required data as shown
in Figure 5.23:

Figure 5.23: Output after the form data is automatically filled

6. When we send keys using selenium, it is similar to typing the keys using
your keyboard. Special keys can also be sent using the Keys class
imported from selenium.webdriver.common.keys. For example, to
press Enter, you can use the send_keys(Keys.RETURN) function.

7. Finally, to close the browser window, you can use the driver.close()
function which will close the browser window and end the program.

Conclusion
In this chapter, we covered a lot of content with regards to web automation in
Python. We looked at ways to download files from the Internet, extract data
from websites, and control browser actions with Selenium. We also went
through the basics of HTML, CSS, and JavaScript to help you automate web-
based tasks successfully.
In the next chapter, we will look at various files-based automation with
Python. In particular, we will look at automations involving reading, writing,
and creating PDF documents, Word documents, and other file types.

Further reading
There are a lot of online resources to help you learn more about web
automation with Python. The following table lists some of the best resources to
further improve your learning on web libraries in Python:

Resource name Link

Requests: HTTP for humans https://requests.readthedocs.io/en/latest/

Downloading files from web using Python https://www.geeksforgeeks.org/downloading-
files-web-using-python/

Beautiful Soup documentation https://beautiful-soup-
4.readthedocs.io/en/latest/

Tutorial: Web Scraping with Python Using
Beautiful Soup

https://www.dataquest.io/blog/web-scraping-
python-using-beautiful-soup/

Beautiful Soup: Build a Web Scraper with Python https://realpython.com/beautiful-soup-web-
scraper-python/

Selenium with Python https://selenium-python.readthedocs.io/

Selenium automates browsers https://www.selenium.dev/

ChromeDriver https://chromedriver.chromium.org/getting-
started

Table 5.1: Resources on web automation in Python

Questions
1. What languages are used by a web browser to render a webpage?
2. How can you automate filling up on online forms?

https://requests.readthedocs.io/en/latest/
https://www.geeksforgeeks.org/downloading-files-web-using-python/
https://beautiful-soup-4.readthedocs.io/en/latest/
https://www.dataquest.io/blog/web-scraping-python-using-beautiful-soup/
https://realpython.com/beautiful-soup-web-scraper-python/
https://selenium-python.readthedocs.io/
https://www.selenium.dev/
https://chromedriver.chromium.org/getting-started

3. What is Selenium?
4. How do you build a web scrapper in Python?

CHAPTER 6
Automating File-Based Tasks

Introduction
In this chapter, we will look at various file-based automations for different
file types in Python. We will discuss some of the Python libraries that are
used to automate different file types. We will also look at ways to extract
data from PDF documents and Word documents type file structure.

Structure
In this chapter, we will cover the following topics:

Reading and writing files
PDF documents automation
Word documents automation
Convert a PDF to a Word document

Objectives
After studying this chapter, you will be able to extract the text from PDF
documents and generate new PDF documents. You will also be able to read
and create new Word documents. You will further have the skills and
understanding of Python libraries for working with a variety of file types.

Reading and writing files
A computer file is a contiguous set of bytes that is used to store data. The
data is organized into the required format and can be anything from a
simple text file to a computer application. These byte files are translated
into 1 and 0 to be used by the computer.
Most of the file types contain three main parts:

Header: Metadata containing information about the file such as file
type, size, file name, and so on.
Data: Contents of the file in bytes.
End of file (EOF): A special character indicating the end of the file.

Python has many libraries that will help you work with different types of
files. Some of the popular Python libraries for different file types are as
follows:

wave: Read and write WAV audio files
(https://docs.python.org/3/library/wave.html).
zipfile: Work with ZIP archives
(https://docs.python.org/3/library/zipfile.html).
configparser: Create and read configuration files
(https://docs.python.org/3/library/configparser.html).
xml.etree.ElementTree: Create and read XML-based files
(https://docs.python.org/3/library/xml.etree.elementtree.html).
PyPDF2: PDF toolkit for reading and writing PDF documents
(https://pypi.org/project/PyPDF2/).
openpyxl: Read and write Excel files
(https://openpyxl.readthedocs.io/en/stable/).
Pillow: Reading and manipulating image-based files
(https://pillow.readthedocs.io/en/stable/).

We will use many of these libraries in this book to build work automations.
For working with text files in Python, it has an inbuilt open() function
which is the key function for working with files. The open() function takes
two parameters as arguments which are file location and mode. There are
four different modes for opening a file using the open function:

r: Read - Opens a file for reading.
a: Append - Opens a file for adding more data and creates a new file
if it does not exist.
w: Write - Opens a file for writing and creates a new file if it does not
exist.
x: Create - Creates a new file.

https://docs.python.org/3/library/wave.html
https://docs.python.org/3/library/zipfile.html
https://docs.python.org/3/library/configparser.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://pypi.org/project/PyPDF2/
https://openpyxl.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/

In addition, you can specify if the file should be handled in the binary
mode or text mode:

t: Text mode.
b: Binary mode (for example, for opening images).

As shown in Figure 6.1, we can use the open function to open a file for
writing in the binary mode using the argument wb after the file name. The
default file path is the path where the script is running if no specific file
path is specified:

Figure 6.1: Opening a new file with the binary mode

In the next section, we will take a look at PDF document automations,
including ways to create and extract data from PDF documents.

PDF documents automation
PDF documents are widely used in a day-to-day work environment for a
variety of purposes to present and exchange documents. In this section, we

will look at Python libraries that help with PDF-based task automation such
as extracting PDF data and creating new PDF documents.
For extracting text from PDF documents, Python has two main libraries
Pdfminer.six and PyPDF2. Pdfminer.six is one of the best Python
packages for extracting information from PDF documents and has features
to extract text, images, and tables from PDF documents. PyPDF2 can do
much more than just extracting text from PDF documents such as creating
PDF documents, splitting documents, merging documents, cropping pages,
merging multiple pages into a single page, and encrypting, and decrypting
PDF files.
To install Pdfminer, use the mu package manager, type Pdfminer.six, and
click on OK as shown in the following figure:

Figure 6.2: Mu package manager

PDF miner has the extract_text function which is used for extracting text
from PDF documents. It takes the following parameters to extract the text
data:

pdf_file: PDF file path or file object.
password: For encrypted PDFs, the password to decrypt the document.
page_numbers: The page numbers to extract the text from (index starts
from 0).
maxpages: The maximum number of pages to extract the text from.
caching: If resources should be cached.
codec: Text character encoding (by default, it used UTF-8).
laparams: An LAParams object from pdfminer.layout to send the
layout of the document.

The functions return a string containing all the text data extracted as shown
in Figure 6.3:

Figure 6.3: Extract the text from the PDF document

With the Python library PyPDF2, you can create PDF documents as well. To
install PyPDF2, use the mu package manager, type PyPDF2, and click on OK as
shown in the following figure:

Figure 6.4: Mu package manager

PyPDF2 can allow you to extract useful data from any PDF. For example,
you can extract details like the author of the document, title and subject, and
number of pages. As shown in Figure 6.5, use the getNumPages() function
to get the number of pages in the PDF document and the documentInfo
function to get more information on the PDF document:

Figure 6.5: Extracting the PDF information

PyPDF2 can also be used to extract the text from PDF documents using the
extractText() function as shown in Figure 6.5:

Figure 6.6: Extracting the text using PyPDF2

PyPDF2 supports creation of new PDF documents using the PdfFileWriter
class. PdfFileWriter provides functions to create and add data to the new
PDF documents such as:

addAttachment: This function embeds a file inside the PDF taking in
parameters as the filename and the data to be stored in the file.
addBlankPage: This function appends a blank page to the PDF file and
returns it with width and height as parameters.
appendPagesFromReader: This function copies pages from the
PdfFileReader reader to the writer. It takes the PdfFileReader object
as a parameter.

More functions available for the PdfFileWriter class can be found on the
PyPDF2 documentation
(https://pypdf2.readthedocs.io/en/latest/modules/PdfWriter.html). As
shown in Figure 6.7, we can use the addBlankPage function to create a
blank PDF with the specified width and height:

Figure 6.7: Creating a new PDF document

We can also copy the PDF data from one PDF document to another PDF
document. We can selectively add pages to the PDF document using the
PdfFileWriter.addPage() function as shown in Figure 6.8:

https://pypdf2.readthedocs.io/en/latest/modules/PdfWriter.html

Figure 6.8: Wringing a page from an existing PDF document

In Figure 6.9, we can see the new PDF created by the PdfFileWriter:

Figure 6.9: New PDF document

In the next section, we will look at how to create and read Word documents
in Python.

Word documents automation
Word documents are widely used to generate reports, research material, and
keeping notes in our day-to-day work. Python has a python-docx library to
read and write Microsoft Word (.docx) files.
To install python-docx, use the mu package manager, type python-docx,
and click on OK as shown in the following figure:

Figure 6.10: Mu package manager

The python-docx library has the Document class to create a blank
document. The Document class has the following functions mentioned to
create a new Word document:

add_paragraph(): This function creates a new paragraph at the end of
the document with taking the paragraph text as an argument and an
optional style tag specifying the style for the Word document.
add_heading(): By default, this function adds a top-level heading,
what appears in Word as Heading 1. When you need a heading for a
sub-section, just specify the level you want as an integer between 1
and 9: document.add_heading(‘The role of dolphins’,
level=2). If you specify a level of 0, a Title paragraph is added. This
can be handy to start a relatively short document that doesn’t have a
separate title page.
add_page_break(): This function adds a page break to your
document.

add_table(rows=2, cols=2): With the add_table function, you can
create a new table in Word document. It takes the number of rows and
columns as arguments. To add data to a particular cell, use the cell()
function with the row and column as parameters or a for loop with the
table.rows and row.cells properties.
The following code adds data to the specified table cell:
table.cell(0, 0)

cell.text = ‘My table’

The following code allows you to loop through the rows and cells of
the table:
for row in table.rows:

for cell in row.cells:

cell.text = ‘My Text

document.add_picture(picture path): This function allows you to
add a picture to the Word document with the specified picture path.

In Figure 6.11, we can see an example of creating a new Word document by
using the functions discussed previously:

Figure 6.11: Creating a new Word document

After executing the document creation code, a new Word document is
created with the specified styles as shown in Figure 6.12:

Figure 6.12: New Word document

The python-docx library also has a function to iterate and read the existing
Word documents. To iterate through paragraphs, use the
document.paragraph parameter as shown in Figure 6.13:

Figure 6.13: Reading data from a Word document

In the next section, we will look at a common automation requirement
which is to convert a PDF document to a Word document to be able to
easily read and manipulate the data contained inside the PDF document.

Convert a PDF to a Word document
We can easily convert a PDF document to a Word document using the
Pdfminer and python-docx libraries. If the PDF document text contains
invalid characters, we can remove those characters to support the Word
document encoding format by a custom function. As shown in Figure 6.14,
we will first read the PDF document using the extract_text() function
and then add the extracted string to the Word document using the
add_paragraph() function:

Figure 6.14: PDF to Word document

Figure 6.15 shows the converted PDF document to the Word document by
executing the PDF to Word conversion script:

Figure 6.15: PDF to Word document converted file

Conclusion
In this chapter, we covered a lot of content on file-based automations for
different file types in Python. We looked at ways to extract data from PDF
documents and create new PDF documents. We also looked at ways to
create new Word documents and convert PDF documents to Word
documents.
In the next chapter, we will look at ways to automate email-based tasks
using Gmail, Outlook, and SMTP clients. We will also look at text
message automation using the Twilio API and messaging automation using
Slack APIs.

Further reading
There are a lot of online resources to help you learn more about file
automation with Python. The following table lists some of the best
resources to further improve your learning on File automation in Python:

Resource name Link

Reading and writing files in
Python

https://realpython.com/read-write-files-python/

Python PDF parser https://github.com/euske/pdfminer

Extract text from a PDF
using Python

https://pdfminersix.readthedocs.io/en/latest/tutorial/highlevel.ht
ml

PyPDF2 documentation https://pypdf2.readthedocs.io/en/latest/

Table 6.1: Resources on web automation in Python

Questions
1. How do you read different types of files in Python?
2. How can you extract data from PDF document?
3. What are different Python libraries for working with PDF documents?
4. How can you build an automation to convert a PDF document into

Word document?

https://realpython.com/read-write-files-python/
https://github.com/euske/pdfminer
https://pdfminersix.readthedocs.io/en/latest/tutorial/highlevel.html
https://pypdf2.readthedocs.io/en/latest/

CHAPTER 7
Automating Email, Messenger

Applications, and Messages

Introduction
In this chapter, we will learn how to automate email-based tasks using
Gmail, Outlook, and other SMTP clients. We will also look at text message
and WhatsApp automation using the Twilio API.

Structure
In this chapter, we will cover the following topics:

Simple Mail Transfer Protocol
Sending emails using Gmail
Outlook email automation
Text and WhatsApp message automation

Objectives
After studying this chapter, you will be able to automatically read and send
emails through Gmail and Outlook applications in Python. You will also be
able to automatically send text messages using the Twilio APIs and
WhatsApp messages using the WhatsApp web application.

Simple Mail Transfer Protocol
Simple Mail Transfer Protocol (SMTP) is the protocol system to send
emails on the web. It is used by many email applications to send and
receive emails on the web. The SMTP protocol ensures that the message is
sent to the right receiving server and the receiver server makes sure the
message is delivered to the correct end recipient.

Python has a built-in library called smtplib that is used for sending emails
using the SMTP protocol. The smtplib can be imported using the import
smtplib statement. The smtplib library has an SMTP function to connect
to the server with the parameters as:

1. smtpObj = smtplib.SMTP([host [, port [, local_hostname]]]
)

The parameters used in the SMTP function are as follows:

host: This is the IP address or a domain name of the SMTP server
running your email service.
port: This is the port number required with the host argument to point
to the port where the SMTP server is listening. Generally, this is set to
25.
local_hostname: If your SMTP server is running on your local
machine, then you can specify just local host to refer to the local
server.

The SMTP object has a method called sendmail that is used for sending the
email. It takes the following parameters:

The sender: This is a string with the address of the sender.
The receivers: This is a list of strings, one for each recipient.
The message: This is a message as a formatted string (can be an
HTML string as well).

The smtplib client can communicate with a remote SMTP server by
supplying the outgoing mail server as given in the following statement -
smtplib.SMTP(‘mail.your-domain.com’, 25).
In the next section, we will look at a real-work example of automating the
sending of the emails using Gmail.

Sending emails using Gmail
We will use the ssl library and SMTP library for sending emails using
Gmail. To use these libraries, we need to allow a less secure app option to
be ON (https://myaccount.google.com/lesssecureapps) to allow the use of
these libraries with password-based authentication. This setting is not

available for Gmail accounts with two-step verification enabled. If you do
not want to enable this option in the Gmail account, then you can use the
OAuth2 authorization framework and follow the Gmail API documentation
(https://developers.google.com/gmail/api/quickstart/python).
The ssl library has the create_default_context() function which returns
a new SSLContext object with default settings. The smtplib has
SMTP_SSL() function behaves exactly the same as the SMTP function taking
arguments as per this definition: smtplib.SMTP_SSL(host=’’, port=0,
local_hostname=None, keyfile=None, certfile=None, [timeout,
]context=None, source_address=None). SMTP_SSL is used for situations
where SSL is required from the beginning of the connection. We can create
a connection to Gmail using these functions as shown in Figure 7.1:

Figure 7.1: Establishing a connection with Gmail

Once the connection is established, you can send emails using the
sendmail() function with the sender email, receiver email, and message as
arguments as shown in Figure 7.2:

Figure 7.2: Send emails using Gmail

You can verify that the message is correctly sent with a proper subject and
message by opening Gmail in the browser as shown in Figure 7.3:

Figure 7.3: Gmail message sent by an automation script

The SMTP library has the Multipurpose Internet Mail Extensions
(MIME) object support that is used to send attachments and HTML
messages. We will use MIMEMultipart and MIMEText to send HTML-based
emails. The MIMEMultipart object can be created using the
MIMEMultipart() and the HTML message can be attached using the
MIMEText(html_message, ‘html’) function which takes html_message
and message type as html as arguments. You can attach the MIMEText to the
MIMEMultipart object using the attach function to send HTML-based
emails as shown in Figure 7.4:

Figure 7.4: Sending an HTML email message on Gmail

You can verify that the HTML message is formatted correctly by opening
this email in the browser as shown in Figure 7.5:

Figure 7.5: HTML message sent by an automation bot

You can also send the email with an attachment using the MIME object.
You will need to open the file and attach the file to the
MIMEBase(“application”, “octet-stream”) part using the
set_payload() function. You will also need to encode the file to send by an
email and add a header as key/value pair to the attachment part as shown in
Figure 7.6:

Figure 7.6: Attaching the file in the Gmail

You can verify that the attachment is sent correctly by opening the email in
the browser as shown in Figure 7.7:

Figure 7.7: Attachment received via an automation bot

When you use the Python automation to send emails, Gmail adds all these
emails to the Send folder and you can audit this folder to verify that all the
messages are sent as per the automation requirement as shown in Figure
7.8:

Figure 7.8: List of emails sent by an automation bot

In the next section, we will look at Outlook application email automations.
The Outlook application automation can be used with any email provider as
long as the email is configured in the Outlook application.

Outlook email automation
For automation of Outlook applications, we will use the pywin32 library
which provides access to Windows APIs functions. The Windows API (also
known as Win32) is an application programming interface written by
Microsoft to allow access to Windows features. The main components of
the Windows API are as follows:

WinBase: Windows kernel functions, CreateFile, CreateProcess,
and so on.
WinUser: Windows GUI functions, CreateWindow, RegisterClass,
and so on.
WinGDI: Windows graphics functions, Ellipse, SelectObject, and
so on.

To install pywin32, use the mu package manager, type pywin32, and click on
OK as shown in the following Figure in 7.9:

Figure 7.9: Mu package manager

We will use the win32com.client.DispatchEx() function with
Outlook.Application as an argument which will open the Outlook
application on your computer. The CreateItem method creates and returns
a new Microsoft Outlook item which can be used to create a new email to
send to the desired recipient. You can add mail.To, mail.Subject, and
mail.HtmlBody to the Outlook item, and send the email using the Send
function as shown in Figure 7.10:

Figure 7.10: Send an email using the Outlook application

In the next section, we will look at text and WhatsApp automations. We
will use Twilio APIs for text message automation and the pywhatkit library
for WhatsApp automation.

Text and WhatsApp message automation
Twilio provides communication APIs for sending and receiving SMS
messages, making voice calls, and video calls, and accessing other
communication tools such as chat and emails. They have multiple product
lines to automate a number of communication channels and the platform is
used by businesses worldwide as a customer engagement platform.
In this chapter, we will only use the Twilio APIs for SMS automation. To
install Twilio, use the mu package manager, type twilio, and click on OK as
shown in the following Figure 7.11:

Figure 7.11: Mu package manager

To use the Twilio APIs for SMS automation, you will have to register for a
Twilio account at the Twilio website (https://www.twilio.com/) and create
a trial number for testing the SMS automation as shown in Figure 7.12:

Figure 7.12: Getting a Twilio phone number

You will also get a trial balance when you create a Twilio account which
can be used for testing SMS automations (see Figure 7.13). There are also

https://www.twilio.com/

other API providers which provide SMS automation services and you can
use them as well instead of Twilio if that better suits your requirements:

Figure 7.13: Validating a Twilio number and balance

When you have a Twilio Account, you will get an account SID and Auth
token. These are your API credentials that will allow you to authenticate
and use the Twilio API. Once you are authenticated with the API, you can
send the message with the message.create() function passing the message
text with senders and recipient number as shown in Figure 7.14:

Figure 7.14: Sending a text message using Twilio

Once you run the code, the message would be sent to the desired recipient,
and you can verify by checking this message on the recipient’s phone as
shown in Figure 7.15.

Figure 7.15: Verifying the message received on the mobile

WhatsApp Messenger is another popular messaging application which is
used by users worldwide. We can automate WhatsApp messages using the
Twilio APIs or using the pywhatkit library. PyWhatKit is a Python library
that allows you to easily automate sending messages or images to a
WhatsApp group or contact. It does not require any external API access and
is easy to set up to automate simple messaging tasks on WhatsApp. To
install PyWhatKit, use the mu package manager, type pywhatkit, and click
on OK as shown in the following figure:

Figure 7.16: Mu package manager

Once the library is installed, sign in on the WhatsApp web using your
WhatsApp account on your default browser (https://web.whatsapp.com/).
PyWhatKit uses the WhatsApp web account to automate sending of
WhatsApp messages.
The sendwhatmsg() function is used to send WhatsApp messages to a given
contact at a particular time taking in arguments as the recipient number

https://web.whatsapp.com/

(write the phone number with the international code (+…) of the country you
want to send the automated message.), message, and time. The time is
denoted using the 24 hour format; for example, to send a message at 1:17
pm, you would use arguments as 13:17 as shown in Figure 7.17:

Figure 7.17: Sending a WhatsApp message at 1:17 pm

Once you run the code, the message would be sent to the desired recipient,
and you can verify by clicking on the contact and seeing the message as
sent in your WhatsApp message history. As the WhatsApp application
keeps on updating to newer versions, you may find instances where the
message was typed in the chat but is not sent and you may have to manually
hit the Sent button. You can automate the clicking of the Send button using
the Selenium web automation library discussed in Chapter 5: Automating
Web-Based Tasks.

Figure 7.18: Verifying that the WhatsApp message is sent using the WhatsApp web application

In this chapter, we saw the simple example of sending WhatsApp messages
but there are other tools such as Twilio WhatsApp APIs
(https://www.twilio.com/whatsapp) that can be used to automate more
complex workflows on WhatsApp business accounts. It can be used to
provide customer care, customer service, and notifications.

Conclusion
In this chapter, we learned about different libraries to automate email-based
tasks in Python. We learned the basics of SMTP and Gmail APIs for
sending emails. We also looked at some APIs to automate SMS messaging
and libraries to automate WhatsApp messenger.
In the next chapter, we will look at ways to automate different applications
on your computer using the Graphical User Interface. This will allow you
to automate a wide range of applications and allow you to control keyboard
and mouse actions through a Python program.

Further reading
There are a lot of online resources to help you learn more about emails and
messenger applications automation with Python. The following table lists
some of the best resources to further improve your learning to build more
complex email and messenger application automations:

Resource name Link

Sending emails with Python https://realpython.com/python-send-email/

Programming reference for the
Win32 API

https://docs.microsoft.com/en-us/windows/win32/api/

How to automate mass SMS, push,
and chat notifications

https://www.twilio.com/learn/notifications/automate-
mass-sms-push-and-chat-notifications

Build workflow automation https://www.twilio.com/docs/sms/tutorials/workflow-
automation

How to send a WhatsApp message
in 30 seconds with Python

https://www.twilio.com/blog/send-whatsapp-message-
30-seconds-python

Gmail API Python quick start https://developers.google.com/gmail/api/quickstart/pyth
on

https://www.twilio.com/whatsapp
https://realpython.com/python-send-email/
https://www.twilio.com/learn/notifications/automate-mass-sms-push-and-chat-notifications
https://www.twilio.com/docs/sms/tutorials/workflow-automation
https://www.twilio.com/blog/send-whatsapp-message-30-seconds-python

Table 7.1: Resources on email and messenger automation in Python

Questions
1. What is SMTP?
2. How can you automate the sending of emails?
3. What are different Python libraries for working WhatsApp

application?
4. How can you send a text message using Python?

CHAPTER 8
GUI – Keyboard and Mouse

Automation

Introduction
In this chapter, we would learn to automate the Graphical User Interface
(GUI) by controlling the keyboard and mouse actions. We will use the
Python library PyAutoGUI which works with Windows, Mac, and Linux and
provides automations for GUI elements within the application.

Structure
In this chapter, we will cover the following topics:

Introduction to the PyAutoGUI module
Controlling mouse actions
Controlling keyboard actions
Automation using screenshots

Objectives
After studying this chapter, you will be able to automate all kinds of
applications you use on your work computer. We will go through the
examples on a Windows machine but the automations would work even if
you have a Mac or Linux computer.

Introduction to the PyAutoGUI module
We will use the PyAutoGUI module that allows your Python scripts to
control the mouse and keyboard to automate computer applications.
PyAutoGUI also works across operating systems such as Windows, macOS,
and Linux.

PyAutoGUI provides features stated as follows:

Controlling the mouse movement and clicking on the window (user-
interface) of the required application.
Sending keyboard letters to applications (for example, to fill out data).
Take screenshots and search for buttons and other controls using the
image.
Display message boxes.
Locate an applications window and resize the application (works only
on Windows operating system).

Sometimes, you might want to stop the automation running with
PyAutoGUI due to an error in your code. The PyAutoGUI has a safety
feature called FailSafe that is enabled by default. If you move your mouse
in any of the four corners of your monitor, and if the PyAutoGUI function
is running, it will raise a pyautogui.FailSafeException. There is also a
0.1 second delay after calling every PyAutoGUI function so that you have
the time to slam the mouse in the corner to trigger the fail safe exception.
To install pyautogui, use the mu package manager, type pyautogui, and
click on OK as shown in the following figure:

Figure 8.1: Mu package manager

PyAutoGUI has functions to help you get the screen coordinates and screen
resolution. The location at the top-left corner of the screen is at coordinates
0, 0. The location of the lower right-hand corner depends on your screen’s
resolution (for example, if the screen resolution is 1920 x 1080, then the
location of the lower right corner will be 1919, 1079).
PyAutoGUI has the size() function that returns the screen resolution size,
the position() function that returns the current X and Y coordinates of the
mouse cursor, and the onScreen() function that can check whether the X
and Y coordinates are on the screen as shown in Figure 8.2. The x and y
coordinates that we see in this case are showing the position of the Run
button that we clicked when we ran the code:

Figure 8.2: Using pyautogui basic functions

In the next section, we will look at controlling mouse actions with the
PyAutoGUI library. In particular, we will look at how we can use the
library to automatically click on the application and use the mouse drag
function to drag the mouse pointer on applications.

Controlling mouse actions
PyAutoGUI provides various functions to control different types of mouse
actions. The most commonly used mouse automation functions in
PyAutoGUI are as follows:

moveTo(): The moveTo() function moves the mouse cursor to the X
and Y integer coordinates passed to it. For example,
pyautogui.moveTo(200, 400) will move the mouse cursor to X
coordinates at 200 and Y coordinates at 400. The mouse pointer will
immediately move to these new coordinates.

To add a delay, you can pass a third parameter for the delay (in
seconds).
The move() function moves the mouse to position relative to the
current position.

.

dragTo() and drag(): The dragTo() and drag() take X and Y integer
coordinates similar to the moveTo() and move() functions, but it drags
the mouse pointer instead of moving the mouse pointer. They can also
take a button keyword which can be set to left, middle, and right for
specifyi the mouse button to hold down while dragging.
scroll(): The scroll() function simulates the mouse scroll wheel by
taking the argument as the integer number of clicks to scroll. For
example, pyautogui.scroll(5) will scroll up 5 clicks and
pyautogui.scroll(-5) will scroll down 5 clicks.
click(): The click() function simulates a left-button mouse click
(pushing the button down and releasing it up) at the mouse’s current
position:
You can also specify X and Y integer coordinates to move the mouse
at the location and then click on the left mouse button.

To specify different mouse buttons for click, you can pass
arguments such as left, middle, or right on the button
keyword argument. For example,
pyautogui.click(button=’right’) will use the right-click
button of the mouse.
To do multiple clicks, you can pass an integer to the click
keyword argument. For example, pyautogui.click(clicks=2)
will perform a double-click on the left mouse button.
There are doubleClick() and rightClick() functions as well to
simulate double click and mouse right button clicks as well.

Figure 8.3 shows an example of the moveTo function to move the mouse to
the specified coordinates and the click function to click at the correct
position as required by the automation. When you run this code, the mouse
pointer would move to the specified coordinates in the code, and then
perform click, and double click actions. After this, the mouse pointer would
move to coordinates specified in the moveTo function using the specified
animation which in this case is pyautogui.easeInOutQuad that starts and
ends fast and is slow in the middle:

Figure 8.3: Automating mouse actions

You can also use the os.startfile function to launch a new program
passing in as parameters the program name or the program file location.
Once the program is launched, you can perform the automation on the
newly launched program using the mouse automation functions. Figure 8.4
shows an example of launching the mspaint program and using the drag
function to paint on the MS paint program:

Figure 8.4: Automating the MS Paint application

Figure 8.5 shows the output of running the paint automation shown
previously at two different start locations and creating a square spiral
diagram:

Figure 8.5: Automating paint application

In the next section, we will look at controlling keyboard actions with the
PyAutoGUI library. In particular, we will look at how we can use the
library to automatically type on different applications and use the hot keys
functions to send commands such as copy and paste.

Controlling keyboard actions
PyAutoGUI provides various functions to control different types of
keyboard actions. The most commonly used keyboard automation functions
in PyAutoGUI are stated as follows:

write(): The write() function is the primary keyboard function that
is used to type the characters in the string that is passed. To add delay
between pressing each character key, an interval keyword argument is
passed with the required delay. For example,
pyautogui.write(‘hello from bot’) will write the text hello from
bot on the focused application.
press(): The press() function is used to press a particular key from
pyautogui.KEYBOARD_KEYS such as Enter, esc, F1. For example,
pyautogui.press(‘enter’) will press the Enter key. The press()

function calls the keyDown() and keyUp() functions that simulate
pressing a key down and then releasing it up.
keyDown() and keyUp(): keyDown() is used to simulate pressing a key
down and keyUp() is used to simulate releasing the key up. For
example, pyautogui.keyDown(‘shift’) holds down the Shift key and
pyautogui.keyUp(‘shift’) releases the Shift key. You can add other
key presses in between these functions to keep on holding the shift key
while other keys are typed.
hotkey(): The hotkey() function is used to make the pressing of
hotkeys or keyboard shortcuts convenient. The hotkey() takes key
strings as arguments that will be pressed down in order and then
released in reverse order. For example, pyautogui.hotkey(‘ctrl’,
‘a’) will perform the select all command by pressing ctrl then a, and
then releasing a, then ctrl.

There are multiple valid KEYBOARD_KEYS defined at the PyAutoGUI
documentation
(https://pyautogui.readthedocs.io/en/latest/keyboard.html) that can be
passed to the write(), press(), keyDown(), keyUp(), and hotkey() of the
PyAutoGUI keyboard function. For example, for passing function keys, here
are the following KEYBOARD_KEYS:
[

alt, altleft, altright, backspace, capslock, ctrl, ctrlleft,

ctrlright, delete, enter, esc, escape, insert, numlock, print,

shift, shiftleft, shiftright, tab]

PyAutoGUI also has an alert() function that can be used to display a
message box when an automation has been completed. Furthermore,
PyAutoGUI has the window handling function which is useful during the
application automation as follows:

pyautogui.getWindows(): This gets a dict of window titles mapped
to window IDs.
pyautogui.getWindow(str_title_or_int_id): This gets a Win
object that can be used to perform various operations on the selected
window.
pyautogui.getWindowsWithTitle(): This gets the windows with the
title supplied in the argument.

https://pyautogui.readthedocs.io/en/latest/keyboard.html

win.move(x, y): This moves the window to X and Y location.
win.resize(width, height): This resizes the window to the given
width and height.
win.maximize(): This maximizes the window.
win.minimize(): This minimizes the window.
win.restore(): This restores the window.
win.close(): This closes the window.
win.position(): This gets the X and Y location of the top-left corner
of the window.

Figure 8.6 shows an example of using the
pyautogui.getWindowsWithTitle() to get the current Mu code window
and minimizing it. The keyboard.py specified in this function is the name
of the Mu file. We then write I am automation bot on the Notepad
application which was already opened and then use the hotkey function to
select, copy, and paste the text. After that, we use the alert() function to
alert the user that the automation is completed:

Figure 8.6: Automating keyboard actions

Figure 8.7 shows the output of running the keyboard automation on the
Notepad application:

Figure 8.7: Typing stuff on Notepad using automation

In the next section, we will look at identifying windows and buttons using
the screenshots identification tools in the PyAutoGUI library. In particular,
we will look at how we can use the library to identify different buttons,
areas, and windows where we want our automation to work on.

Automation using screenshots
PyAutoGUI provides functions to identify windows and buttons using the
screenshots. PyAutoGUI has the functionality to take screenshots, save
them to files, and locate images within the screen. You can also use the
Snipping Tool in windows to take a snapshot of the required button or
windows, and save it to be used by the automation program.
The most commonly used screenshot-based functions in PyAutoGUI are as
follows:

screenshot(): The screenshot() function returns an Image object of
the captured screen. You can also pass file path to save the screenshot
to a file. For example,
pyautogui.screenshot(‘automation_screenshot.png’) will
capture the full screen and save it to the current Python folder with the

filename automation_screenshot. You can also provide a region
keyword argument to capture the subset of the screen by passing the
four-integer tuple of the left, top, width, and height of the region to
be captured.
locate functions: There are three main locate functions that are used
to find the location of the captured image on the screen. They are
mentioned as follows:

locateOnScreen(image, grayscale=False): This function
returns the left, top, width, and height coordinates of the first
found instance of the image on the screen. It raises
ImageNotFoundException if not found on the screen.
locateCenterOnScreen(image, grayscale=False): This
function returns the X and Y coordinates of the center of the first
found instance of the image on the screen. It raises
ImageNotFoundException if not found on the screen.
locateAllOnScreen(image, grayscale=False): This function
returns a tuple of left, top, width, and height coordinates for the
images found on the screen.

Figure 8.8 shows an example of using the pyautogui.locateOnScreen() to
get the current location of the load image on the screen. Once we get the
image location, we use the pyautogui.center() function to get the center
of the image location and pass it to X and Y coordinate variables. We can
use these X and Y coordinate variables and call the pyautogui.click() to
click on the load button. The loadImage.png file used in this code should
reside in the same folder as the Python code otherwise you will need to
specify the full file path of the image file. Also, the image file should
contain the image of the location where you want the automation to work
on. Further documentation on using the image location’s function is
available on the PyAutoGUI documentation page
(https://pyautogui.readthedocs.io/en/latest/):

https://pyautogui.readthedocs.io/en/latest/

Figure 8.8: Automating a click using the image screenshot

With PyAutoGUI, you can automate a wide variety of applications in
Windows, Mac, and Linux machines. If you want to just automate
applications in Windows, then pywinauto is another library that provides
functions to automate the Microsoft Windows GUI. It allows you to send
mouse and keyboard actions to windows dialogs and controls, and it also
has support for more complex actions like getting text data from different
applications. To learn more about the pywinauto, see the pywinauto
documentation available online
(https://pywinauto.readthedocs.io/en/latest/).

Conclusion
In this chapter, we learned about the Python library PyAutoGUI to control
mouse and keyboard actions and automation applications using the
Graphical User Interface (GUI). We learned the functions available to
perform click operations, type operations, and identifying controls of
applications using images.

https://pywinauto.readthedocs.io/en/latest/

In the next chapter, we will look at image fundamentals and the pillow
Python library for manipulating images. We would also look at the
Tesseract library which can be used to extract the text within images and
scanned documents.

Further reading
There are a lot of online resources to help you learn more about GUI,
keyboard, and mouse automation with Python. The following table lists
some of the best resources to further improve your learning on GUI
automation in Python:

Resource Name Link

PyAutoGUI’s documentation https://pyautogui.readthedocs.io/en/latest/

Use Snipping Tool to capture screenshots https://support.microsoft.com/en-
us/windows/use-snipping-tool-to-capture-
screenshots-00246869-1843-655f-f220-
97299b865f6b

What is pywinauto? https://pywinauto.readthedocs.io/en/latest/

PyautoGUI: Three Great Uses https://www.youtube.com/watch?
v=o0OySmkZo8g

Table 8.1: Resources on GUI automation in Python

Questions
1. What is the use of PyAutoGUI module?
2. What are the different types of mouse actions in PyAutoGUI module?
3. How do you simulate keyboard actions in Python?
4. How do you run automations using screenshots?

https://pyautogui.readthedocs.io/en/latest/
https://pywinauto.readthedocs.io/en/latest/

CHAPTER 9
Image Based Automations

Introduction
In this chapter, we will look at computer image fundamentals and the
Pillow Python library for manipulating images. We would also look at the
OCR libraries to extract text within images and scanned documents.

Structure
In this chapter, we will cover the following topics:

Computer image fundamentals
Pillow for image manipulation
Extracting text from images using OCR

Objectives
After studying this chapter, you will be able to manipulate and modify
computer images, and extract text from scanned documents and images.
You will also learn about Optical Character Recognition (OCR) which is
a technique used to extract text from saved images.

Computer image fundamentals
A computer image consists of a picture element (pixel) which is the
smallest component of a computer image. When an image is manipulated
by the computer, the pixel is a dot of a single color and the image is made
up of pixels on a rectangular grid. The resolution of the image is the number
of points in the grid; for example, 1920x1080 means that the image is 1920
pixels wide by 1080 pixels high.
There are a large number of formats for storing digital images. Most of the
image formats were developed to be used by particular programs but few of

them have become image format standards and can be used across a variety
of applications. These image formats are also called Bitmap formats where
Bitmap is the memory organization to map pixels for storing images. The
following are the most commonly used image formats by different
applications:

CompuServe Graphics Interchange Format (GIF): This image
format is used for file interchange and it has a good compression
algorithm built into the format.
Tagged Image File Format (TIF/TIFF): This is a flexible image
format with a number of compression algorithms.
Joint Photographic Experts Group (JPG/JPEG): This is an image
format which is developed as a standard by ISO and CCITT. It has a
very good compression algorithm for continuous-tone images. For
most images, this format can compress and reduce the size of the
images to be 20 times smaller. This format does not support
transparency or transparent backgrounds.
Portable Network Graphics (PNG): It is one of the most used image
formats on the Internet. It can display transparent backgrounds and
was created to replace the GIF format. It is an open format with no
copyright limitations and it compresses images without any loss of
image data (also known as lossless compression which involves
reducing the size of the file without any loss of quality). This format
supports transparency and transparent backgrounds.

In the next section, we will look at the Pillow image library that can be used
to manipulate images and modify image properties.

Pillow for image manipulation
Pillow is a Python library used to manipulate images and it is based on the
Python Imaging Library (PIL). The Pillow library adds image processing
capabilities and provides extensive support for converting image files from
one format to another.
To install the Pillow library, use the mu package manager, type pillow, and
click on OK as shown in Figure 9.1:

Figure 9.1: Mu package manager

To import the pillow image library, use the statement from PIL import
Image. Image.open(“loadImage.png”). Once the image is loaded with the
pillow module, you can get the image details such as format, size, and
mode as shown in Figure 9.2:

Figure 9.2: Image properties using pillow

The pillow library can be used to convert images between different image
formats. For example, to convert an image from PNG to JPG, you will first
need to change the color band to Red, Blue, and Green (RGB) from Red,
Green, Blue, and Alpha (RGBA)- Alpha is transparency), and then save
the image with extension as .jpg. Pillow will convert the image as per the
given file extension and save the image in the new format as shown in
Figure 9.3:

Figure 9.3: Converting an image to JPG format

The Pillow library has an ImageEnhance module that has a number of
classes that can be used for image enhancement. The main image
enhancement classes are as follows:

ImageEnhance.Color: This class adjusts the color balance of the
image. You can pass a color enhance factor to the enhance function of
this class where a factor of 1.0 is the original image color and a factor
of 0.0 is the black and white image.
ImageEnhance.Contrast: This class adjusts the contrast of the image.
You can pass a contrast enhance factor to the enhance function of this
class where a factor of 1.0 is the original image color and a factor of
0.0 is a solid gray image.
ImageEnhance.Brightness: This class adjusts the brightness of the
image. You can pass a brightness enhance factor to the enhance
function of this class where a factor of 1.0 is the original image color
and a factor of 0.0 is a black image.
ImageEnhance.Sharpness: This class adjusts the sharpness of the
image. You can pass a sharpness enhance factor to the enhance

function of this class where a factor of 1.0 is the original image color,
a factor of 0.0 is a blurred image, and a factor higher than 1.0 gives a
sharpened image.

Figure 9.4 shows an example of using the ImageEnhance module to
increase the sharpness of the image:

Figure 9.4: Increasing the sharpness of the image

After calling the ImageEnhance.Sharpness enhance function, a new
sharpened image is generated. Figure 9.5 shows the original image on the
left-hand side and a sharpened image on the right-hand side:

Figure 9.5: Original image (left) and sharpened image (right)

In the next section, we will look at the Optical Character Recognition
(OCR) library in Python to extract text from images. This technique is
particularly useful when you are working with scanned documents and
images.

Extracting text from images using OCR
Optical Character Recognition (OCR) is a technique used to extract
machine-encoded text from images or handwritten documents. We will look
at an open-source OCR library called tesseract in this chapter, but there
are a variety of different OCR libraries and APIs which can be used for
extracting text from images and handwritten documents.
Tesseract can be used as a command line program or can be used with
pytesseract library which is a Python wrapper for the tesseract engine.
Pytesseract requires the tesseract library to be installed on your
computer.
To install tesseract on your Windows machine, download the tesseract
installer for Windows (https://github.com/UB-Mannheim/tesseract/wiki)
and follow the installation process as shown in Figure 9.6. For other
operating systems, tesseract can be downloaded from the tesseract
binaries page (https://tesseract-
ocr.github.io/tessdoc/Home.html#binaries):

https://github.com/UB-Mannheim/tesseract/wiki
https://tesseract-ocr.github.io/tessdoc/Home.html#binaries

Figure 9.6: Installing tesseract ocr

After installing the tesseract library, install the pytesseract library by
using the mu package as shown in the following Figure 9.7:

Figure 9.7: Mu package manager

To extract text from an image using the pytesseract library, you can use
the image_to_string() function as shown in Figure 9.8. You will need to
supply the tesseract path to the pytesseract.tesseract_cmd variable (on
Windows, this path is generally, C:\Program Files\Tesseract-OCR):

Figure 9.8: Image to text using tesseract

The Pytesseract library accepts different arguments for the
image_to_data or image_to_string function. The following is the function
signature:
image_to_data(image, lang=None, config=’’, timeout=0)

The different parameters accepted by this function are described below:

image: This can be an object (PIL image/NumPy array) or file path of
the image to be processed by Tesseract.
lang: This is a language string with the default value of eng if no
language string is specified. You can also pass in multiple language
strings as a parameter; for example, eng+fra for English and French.
Before passing the lang string, make sure you have downloaded the
correct tessdata for the desired language
(https://github.com/tesseract-ocr/tessdata).
config: This passes in custom configuration flags such as page
segmentation modes and OCR engine modes

https://github.com/tesseract-ocr/tessdata

(https://manpages.ubuntu.com/manpages/bionic/man1/tesseract.1.
html).
timeout: This passes in a duration in seconds to timeout the OCR
processing engine.

When you pass in a timeout argument, pytesseract raises RuntimeError if
the duration of OCR processing is taking longer. This can be handled within
the try except statement as shown in Figure 9.9:

Figure 9.9: Adding timeout for longer image conversion processes

The Pytesseract library provides a variety of functions for the tesseract
library, which are as follows:

get_languages: This gets all supported languages by the Tesseract
library.
get_tesseract_version: This gets the Tesseract version installed.
image_to_boxes: This gets the box boundaries and returns the
containing characters within these box boundaries.

https://manpages.ubuntu.com/manpages/bionic/man1/tesseract.1.html

image_to_osd: This gets the information about the script detection and
orientation.
image_to_alto_xml: This gets the result in the form of the
Tesseract’s ALTO XML format.
run_and_get_output: This gets the raw output from the Tesseract
OCR.
image_to_string: This gets the output as a string from the Tesseract
OCR.
image_to_data: This gets the result containing the confidence, box
boundaries, line, and page numbers.

Figure 9.10 shows an example of using the image_to_boxes and
image_to_data functions result containing the confidence, box boundaries,
line, and page numbers:

Figure 9.10: Getting image text and confidence level from tesseract

Other popular OCR libraries are Filestack OCR, ABBYY OCR, Anyline
OCR, and so on. There are also Cloud ORC libraries provided by Amazon

Web Services, Microsoft Azure, and Google Cloud Platform which can
provide better accuracy for certain image to text tasks.

Conclusion
In this chapter, we learned about the image fundamentals and the Pillow
Python library for manipulating images. We also looked at the Tesseract
library which can be used to extract text within images and scanned
documents.
In the next chapter, we will look at scheduling automations using dates and
timer’s functions. We would also look at Python hooks which can allow us
to run automations based on certain events such as receiving a new email or
during the start of a new applications.

Further reading
There are a lot of online resources to help you learn more about Pillow for
image manipulation and Tesseract OCR. The following Table 9.1 lists some
of the best resources to further improve your learning on Pillow and OCR
libraries:

Resource name Link

Pillow documentation https://pillow.readthedocs.io/en/stable/index.ht
ml

Python-tesseract is a Python wrapper for
Google’s Tesseract-OCR

https://pypi.org/project/pytesseract/

Detect text in images https://cloud.google.com/vision/docs/ocr

Tesseract OCR https://github.com/tesseract-ocr/tesseract

Amazon Textract https://aws.amazon.com/textract/

Table 9.1: Resources on image automation in Python

Questions
1. What are the functions available in Pillow module for image

manipulation?
2. How can you extract text from images?

https://pillow.readthedocs.io/en/stable/index.html
https://pypi.org/project/pytesseract/
https://github.com/tesseract-ocr/tesseract

3. What is tesseract library?
4. How can you convert images in multiple languages to text in Python?

CHAPTER 10
Creating Time and Event - Based

Automations

Introduction
In this chapter, we will look at scheduling automations using dates and
timers. We will also look at external applications that can allow us to run
automations based on certain events such as receiving a new email or
during the start of an application.

Structure
In this chapter, we will cover the following topics:

Scheduling automation
Writing timer programs
Launching programs from Python
Using external tools for triggers

Objectives
After studying this chapter, you will be able to schedule automations at a
particular time of the day. You will also be able to create workflows based
on triggers and use external tools to help you to run automations with
triggers and interact with web applications.

Scheduling automation
You can schedule automation in Python to run during certain times of the
day or run them based on certain events. Advanced Python Scheduler
(APScheduler) is a Python library that allows you to schedule your
automations in Python. You can add or remove jobs on the fly, and you can

even store these jobs on the database. APScheduler works across operating
systems and offers three main scheduling functionalities which are as
follows:

Cron job like syntax: Cron jobs uses Linux like cron command-line
utility syntax.
Interval-based syntax: This allows jobs to run on specified intervals
with an optional start and end time.
One-off delayed execution: This allows you execute jobs once based
on your set date and time.

To install the APScheduler library, use the mu package manager, type
APScheduler, and click on OK as shown in the following figure:

Figure 10.1: Mu package manager

For Windows operating systems, you can also use Windows Task
Scheduler to schedule tasks at a certain date and time. With the task
schedule, you can schedule tasks such as running the required Python

automation, sending an email message, or starting a new application.
Windows tasks scheduler supports running tasks based on the following
events:

On a specific system event
At a particular time or schedule
When the computer is idle
During the start of the computer
During the user logging action

To start the task scheduler, on the Start menu, search or press Windows + R
keys on your keyboard to launch Run and type taskschd.msc. On the task
scheduler, select the Create Basic Task... option in the Actions section
to create a basic task as shown in Figure 10.2:

Figure 10.2: Task scheduler home page

Once you click on the option to create a basic task, you will see the Create
a Basic Task wizard where you can add a name to your scheduled tasks
and add a description for the task as shown in Figure 10.3:

Figure 10.3: Create a basic task wizard

Once you click on Next >, you can select the trigger you want for your job
such as running the job daily, weekly, monthly, and so on as shown in
Figure 10.4:

Figure 10.4: Selecting the task trigger

Once you click on Next >, you need to specify the trigger parameters such
as when you want to schedule your task as shown in Figure 10.5:

Figure 10.5: One time schedule

Once you click on Next >, you need to specify if you want to Start a
program, Send an email, or Display a message as shown in Figure 10.6:

Figure 10.6: Task manager actions options

In this case, we will select Start a program and click on Next >, we will
specify the Python automation script path as shown in Figure 10.7:

Figure 10.7: Specifying the Python program path

Once you specify the path, click on Next > where you will be presented
with the summary of the task, and you need to click on finish to start the
trigger of your task based on the selected trigger. You can schedule more
complicated tasks using task scheduler using the create task option where
you can have multiple triggers to run the same task. There are task
scheduler applications available for Linux and Mac operating systems as
well such as crontab which uses the Cron style syntax to schedule tasks.
In the next section, we will look at writing timer programs and scheduler
triggers with the Python APScheduler library.

Writing timer programs
APScheduler allows you to write the timer programs to schedule and run
Python programs as discussed in the previous section. APScheduler has a
BlockingScheduler which is a simple scheduler that runs in the
foreground.

You can start the scheduler by calling the start() function. With
BlockingScheduler, you will start the scheduler once you are done with
the initializing steps such as adding the jobs and passing the correct
automation scripts. To add jobs to the scheduler, use the add_job() function
that returns an apscheduler.job.Job instance that can be used to modify
the job or remove it later. A scheduled job can be removed using the
remove() function.
For example, scheduler.add_job(myfunc, ‘interval’, minutes=2)
creates a new job and job.remove() removes the job. You can modify a job
by using the modify() function and reschedule a job using the
reschedule() function.
To shut down the scheduler, there is a shutdown() function, to pause the job
use the pause() function, and to resume it, use the resume() function.
To start a simple scheduler job, you can create a BlockingScheduler, add a
job to this scheduler using the add_job function, and start the scheduler
using the start function as shown in Figure 10.8:

Figure 10.8: Starting a simple APScheduler program

Instead of passing a Lambda function, you can pass any other Python
function to the scheduler, and the scheduler will call the function at the
specified time. APScheduler supports cron-based triggers which is similar
to the UNIX cron scheduler with parameter such as:

year: 4-digit year number
month: Month number (1-12)
day: Day of month (1-31)
week: ISO week (1-53)
day_of_week: Number or name of weekday (0-6 or mon, tue, wed,
thu, fri, sat, sun)
hour: Hour (0-23)
minute: Minute (0-59)
second: Second (0-59)
start_date: Start date/time to start the trigger
end_date: End date/time to end the trigger
timezone: Time zone to use for the date/time calculations (defaults to
scheduler timezone)

For example, you can run a cron-based trigger to run a job every second by
passing the second parameter as * as shown in Figure 10.9:

Figure 10.9: Cron-based scheduler program

In the next section, we will look at libraries to launch other programs and
applications using Python.

Launching programs from Python
You can also launch different programs and applications from Python. This
is particularly useful with timer programs; for example, at every login, you
want certain applications to start on your desktop and be set up
automatically.
A Python script can start other programs on your computer using the
subprocess.Popen() function. The sub process module allows you to
create new processes, connect to the input, and output pipes, and obtain the
return code from external programs.
The subprocess.Popen takes arguments as a sequence of program
arguments or program string. One example of using the launch program is
shown in the following Figure 10.10:

Figure 10.10: Cron-based scheduler to launch program

In the next section, we will look at some of the external tools that can help
you run trigger-based automations. External tools provide the benefit that
they are much easier to use, come with pre-configured workflows, and you
do not have to program the triggers yourself.

Using external tools for triggers
One of the most popular ways to automate workflows based on triggers is to
use external workflow automations tools such as n8n (https://n8n.io/)
which is open source and has its source code available to modify for
customizations (https://github.com/n8n-io/n8n). The n8n tool has a
desktop app and has a lot of workflow templates from which you can
choose a desired workflow to run based on your requirements. The home
screen is shown in Figure 10.11:

https://n8n.io/
https://github.com/n8n-io/n8n

Figure 10.11: Home screen of n8n

For example, one of the workflow automation possible with n8n is to Gmail
- Get emails with a certain label, remove the label, and add a
new one as shown in Figure 10.12. Further documentation on how to
configure the workflow is available on the n8n website and the desktop
application:

Figure 10.12: Cron-based scheduler to launch program

Python also has a Twisted library (https://pypi.org/project/Twisted/)
which can be used for asynchronous programming and event-based
framework for Internet applications to create web automation triggers.

Conclusion
In this chapter, we learned about timer programs, the Python APScheduler
library, and Windows task scheduler. We also looked at the Python
subprocess library to launch new programs and the n8n automation tool to
create web-based automation based on triggers.
In the next chapter, we will look at writing more complicated automations
based on the things we learned in this book. We would also look at creating
Python web services using the Flask API which will allow you to create
web-based automation endpoints that can be deployed to a server and the
APIs can be shared across multiple applications.

Further reading

https://pypi.org/project/Twisted/

There are a lot of online resources to help you learn more about creating
time and event-based automations. The following Table 10.1 lists some of
the best resources to further improve your learning on time and event-based
automations.
Resources on image automation in Python:

Resource name Link

Advanced Python
Scheduler

https://apscheduler.readthedocs.io/en/3.x/

Introduction to
APScheduler

https://betterprogramming.pub/introduction-to-apscheduler-
86337f3bb4a6

How to create an
automated task using
Task Scheduler on
Windows 10

https://www.windowscentral.com/how-create-automated-task-
using-task-scheduler-windows-10

Subprocess management https://docs.python.org/3/library/subprocess.html

Subprocess module https://www.bogotobogo.com/python/python_subprocess_module.p
hp

n8n - Automate without
limits

https://n8n.io/

n8n - Workflow
automation tool

https://github.com/n8n-io/n8n

Twisted library https://www.twistedmatrix.com/trac/

Table 10.1: Resources on timer and event-based automation in Python

Questions
1. How can you schedule to run an automation at 9:00 am every day?
2. What is the library used to write timer programs in Python?
3. What is n8n?
4. How can you create automations based on triggers?

https://apscheduler.readthedocs.io/en/3.x/
https://betterprogramming.pub/introduction-to-apscheduler-86337f3bb4a6
https://www.windowscentral.com/how-create-automated-task-using-task-scheduler-windows-10
https://docs.python.org/3/library/subprocess.html
https://www.bogotobogo.com/python/python_subprocess_module.php
https://n8n.io/
https://github.com/n8n-io/n8n
https://www.twistedmatrix.com/trac/

CHAPTER 11
Writing Complex Automations

Introduction
In this chapter, we will look at methods to extend your Python scripting
knowledge and develop complex end to end process automations based on
your requirements. We will learn how to work with external libraries and
use external code to build these automations. We will also look at creating
Python web services and using machine learning for automation.

Structure
In this chapter, we will cover the following topics:

Creating APIs with Python
Combining multiple automation scripts
Finding solutions online
Using machine learning for automation

Objectives
After studying this chapter, you will be able to build a web server in Python
using the Flask APIs and build complex automations integrating multiple
automation libraries. You will also learn about machine learning techniques
that can be used to build automation programs.

Creating APIs with Python
You can create the Application Programming Interface (API) using the
Flask library in Python. APIs allow you to connect different applications
and are particularly useful when automating applications based on triggers.
For example, you can create an API to check for incoming emails and run
the required automation. In this section, we will mainly look at

Representational State Transfer (REST) APIs that are flexible,
lightweight, and the most common way to connect components and
applications.
The REST APIs use four common HTTP methods, GET (provides read only
access to resources), POST (used for creating new resources), DELETE (used
for removing a resource), and PUT (used for updating an existing resource).
We will use the Flask Python library to create REST APIs based server in
Python. Flask is a micro web framework for Python and can be used to
create web applications from scratch. You can build web pages, applications
like Wikipedia, commercial websites, or even a search engine like Google
using the Flask library. Flask also supports template engines to build
dynamic websites.
To install the Flask library, use the mu package manager, type Flask, and
click on OK as shown in the following figure:

Figure 11.1: Mu package manager

To create a simple Flask application, you will need to import the Flask
class whose instance will allow us to create a Web Server Gateway
Interface (WSGI) application.
To create an instance of the Flask class (instance is a specific realization of
a class), pass the name of the application’s module, or use __name__ as a
convenient shortcut. This is required to let the Flask know the location to
look for resources such as templates and static files.
We then use the route() decorator to specify the URL path to trigger the
function. A decorator in Python is a function that extends the behavior of
another function without explicitly modifying it. We use the @my_decorator
syntax to easily call the decorator function.
After using the route() decorator, we can call any function and return the
data we want to show in the document. The default content type is HTML
so when you pass an HTML string, the HTML data would be rendered by
the browser.
To run a Flask application locally, you call the app.run function inside the
main method and pass in the arguments as:

host: The IP address of the Python webserver; by default we use local
host which is at IP 127.0.0.1.
port: The port to host the Python webserver; by default, we use 8080.
debug: Set True if you want to enable the debug mode, False
otherwise.

Figure 11.2 contains an example of creating a simple flask application that
can return the Automation Bot! string at the default route of /:

Figure 11.2: Simple flask application

Once the webserver is running, you can go to the specified host and port
number; in this case, 127.0.0.1:8080 in your browser, and you will see
Automation Bot! being printed out as shown in Figure 11.3:

Figure 11.3: Output from the Python webserver

Flask provides the ability to create dynamic routes with variables. You can
add the variable sections in the URL route by marking the sections with
<variable_name>. The function then receives the variable_name as a
keyword argument. It is important to note that when returning HTML data
in Flask (which is its default type), if there are any user-provided values,
they must be escaped to protect from injection attacks. The escape()
function from the markup safe provides the functionality to escape the user
provided data.
With the Flask variable route; for example, you can create dynamic routes
such as passing the bot name in the URL route which gets passed on the
function that can use this variable and return it to display it in the browser,
as shown in Figure 11.4:

Figure 11.4: Variable route template in Flask

Once you start the webserver, you can go to the specified host and port
number; in this case, 127.0.0.1:8080 in your browser, and then add

/bot/<any_value> in the URL, and you will see the variable value being
printed out with the prefix User as shown in the browser in Figure 11.5:

Figure 11.5: Output from the Python webserver with the dynamic route

Flask has a url_for() function that is used to build an URL for a specific
function. It takes in the name of the function as the first argument and
keyword arguments corresponding to the variable part of the URL rule.
Unknown variable parts are added to the end of the URL as query
parameters. This URL building method also shows the escaping of special
characters and the paths generated are always absolute paths.
For example, we can use the test_request_context() method to try out
the url_for() function to get the URL for functions as shown in Figure
11.6:

Figure 11.6: Flask url_for function to get URL paths

Flask allows you to create a webserver supporting different HTTP methods
such as GET, POST, DELETE, and PUT requests. By default, the Flask route
allows only GET requests. You need to use the route() decorator to handle
different HTTP methods.
For example, you can specify GET and POST routes for the default URL
using the methods argument such as @app.route(‘/, methods=[‘GET’,
‘POST’]). The Flask library contains the request object which is created by
default whenever a request is made to the URL route. To get the request
method received by the function, the method attribute is available which can
tell you which type of request is made by the user (such as GET, POST,
DELETE, or PUT requests). By specifying the different HTTP methods in the
route() decorator, you can do different tasks based on the request type
received such as a POST request or a GET request.
You can check whether the request.method equals POST, then get the data
from the POST request, and complete the POST request otherwise perform a
GET request. We can create an automation bot endpoint to perform the

automation on the POST request and provide the list of available automation
on the GET request as shown in the example in Figure 11.7:

Figure 11.7: Bot endpoint with GET and POST requests

To get the data from the GET request for the preceding webserver, you can
navigate to the automation bot endpoint in the browser as shown in Figure
11.8:

Figure 11.8: Bot endpoint returning data with the GET request

To get the data from the POST request, you will need to use the Python
request library or tools such as Postman. Postman is an API platform that
allows you to easily test and document APIs, and it can be downloaded
from https://www.postman.com/downloads/. We can easily send a POST

https://www.postman.com/downloads/

request with Postman and check the response of the POST request as shown
in Figure 11.9:

Figure 11.9: Sending POST requests with Postman

Flask can also be used to build dynamic web applications with static files.
The static files will usually include CSS, JavaScript, and other files that are
required for the web application. To generate URLs for these static files,
you can use the url_for function with the special static endpoint name,
such as url_for(‘static’, filename=’style.css’). This file needs to be
stored on the file system as static/style.css. Flask also supports HTML
template engines with Jinja2 as its default template engine. Templating
engines allow you to modify and reuse the common HTML code across
several pieces of view.
In the next section, we will look at an example of combining the Flask
webserver scripts with other automation scripts we learned throughout this
book to build automations for end-to-end processes.

Combining multiple automation scripts
You can build complex automation’s scripts by combining different
automation scripts we learned throughout the book. For end-to-end process

automation, you may need to convert a PDF document to a text file, extract
data from the text file, and add it to the web form, submit the web form, and
record the completed processes in a Word document. This automation
process would require combining the scripts from Chapter 6, Automating
File-Based Tasks and Chapter 5, Automating Web-Based Tasks. You can
also create an API for this automation using Flask web service.
A simple way to create an API for automation is to call the following
automation function the route() decorator and perform the required
automation steps. For example, if we want to create a web service which
opens a new Notepad application using the sub process library, we will call
the subprocess.open to open the Notepad application in the open_notepad
function and return a success message after the process is complete as
shown in Figure 11.10:

Figure 11.10: Creating a web API to open new Notepad application

When you call this web service endpoint, a new Notepad application is
created on the server running the web service, and you will see a

confirmation message New notepad application created on the browser
as shown in Figure 11.11:

Figure 11.11: Response from the web service

If you want this website to be available on the World Wide Web (WWW),
you would need to deploy it on the public IP address of your computer, or
deploy it on a cloud server. One of the best cloud services to deploy APIs is
the Google App Engine that allows you to deploy your code on the fully
managed server less platform. More information on the App Engine is
available on the documentation page at
https://cloud.google.com/appengine.
In this section, we looked at a simple example of combining multiple scripts
learned in this book to create process automation. In the next section, we
will look at some of the online resources that can help with solutions to
common technical problems and discovering new libraries to help with your
automation tasks.

Finding solutions online
One of the most popular websites to get answers to technical questions is
Stack Overflow. Stack Overflow is a question and answer website where
people post questions and solutions for technical problems and it has around
2 million questions tagged with Python as a language as shown in Figure
11.12:

Figure 11.12: Stackoverflow question on Python

Even when you do a Google search for a particular problem, you would get
result links from Stack Overflow which is generally one of the first places to
start with when you are looking for a solution. Another good place to start
looking for interesting automation libraries written in Python is GitHub
which has over 2 million Python programming language repositories as
shown in Figure 11.13:

Figure 11.13: GitHub repositories on Python

If you are more specific in your search and looking for code repository
tagged Python-automation, you will get relevant repositories for this such as
repository and code for sending Python Automated Bulk WhatsApp
Messages, and Python Automation Scripts as shown in the following
figure:

Figure 11.14: GitHub repositories on Python Automation Scripts

In the next section, we will look at the basics of machine learning that
would be useful for creating automations.

Using machine learning for automation
Artificial Intelligence (AI) is a very broad field with many subareas and
involves the study of automated recognition and understanding of signals,
reasoning, planning, and decision-making learning, and adaptation.
Machine Learning (ML) is a type of AI that provides computers with the
ability to learn without being explicitly programmed.
Machine learning can be subdivided into three main categories which are as
follows:

Supervised learning: This involves labeled data and can be used for
classification (grouping similar instances) and regression (learning
what normally happens to draw inferences from datasets). For
example, learning to classify emails as spam and not spam-based on
training data of spam and not spam email messages.
Unsupervised learning: This involves unlabeled data and can be used
to discover patterns in the dataset. For example, learning the patterns
in the English language from the Wikipedia pages.

Reinforcement learning: This involves learning from
experimentation based on rewards and feedback loop and can be used
to train agents in simulated environments. For example, teaching a bot
to play a computer game, and maximize the score, and chances of
winning will use a Reinforcement Learning (RL) algorithm.

Machine learning allows you to learn from data and create automations
without explicitly programming the automations. It can also help you
identify repeatable processes performed in the organizations.
Python has a lot of libraries and scripts to perform ML on datasets with
libraries such PyTorch, TensorFlow, Keras, scikit-learn, and so on.
Training ML models requires a lot of data and computational power. For
our automation requirements, generally a pre-trained ML model would
work most of the time.
We will look at the PyTorch library to perform text summarization with a
pre-built model. Hugging Face (https://huggingface.co/) provides pre-
trained ML models for a variety of tasks audio classification, image
classification, object detection, question answering, summarization, text
classification, translation, and so on.
To install the Hugging Face with the PyTorch library, use the mu package
manager, type transformers[torch], and click on OK as shown in the
following figure. The installation process will take a bit of time as it will
install various dependencies and other ML libraries:

https://huggingface.co/

Figure 11.15: Mu package manager

Once the library is installed, you can use the transformers library to perform
summarization by using the summarization pipeline object with the syntax
as pipeline(“summarization”). On the first run, the pipeline will
download the default model to perform text summarization, and it will take
a bit of time to complete the downloaded process. Once the model is
downloaded, you can call the model on any text data, call the model on the
text data, and you will get the summarized text as shown in Figure 11.16:

Figure 11.16: Mu package manager

You can also perform sentiment analysis on a piece of text using a pre-
trained model. This is particularly useful when you want to analyze
sentiments of customer reviews and feedback. To use the pre-trained model
to perform sentiment-analysis, use pipeline(“sentiment-analysis”) as
shown in Figure 11.17. You can also use a particular trained model by
specifying a model argument to the pipeline function:

Figure 11.17: Mu package manager

There are a lot of other trained machine learning models available in Python
that can be used for your day-to-day automation requirements. These ML
models can help you build automations for converting images to text,
automating message replies, language translations, and a variety of other
tasks.

Conclusion
In this chapter, we learned about the Flask fundamentals and the machine
learning libraries in the Python language. We looked at simple ways to use
pre-trained ML models with few lines of code in Python with the
transformers library. We also looked at some of the ways to build end to end
process automations by combining different automations throughout this
book and online resources to help you find solutions to technical
challenges.

Further reading
There are a lot of online resources to help you improve your learning on
building complex automation machine learning. The following Table 11.1

lists some of the best resources to further improve your learning on Flask
and machine learning:

Resource name Link

Pillow documentation https://flask.palletsprojects.com/en/2.1.x/

An introduction to the
Flask Python web app
framework

https://opensource.com/article/18/4/flask

Developing RESTful APIs
with Python and Flask

https://auth0.com/blog/developing-restful-apis-with-python-and-
flask/

Python machine learning https://www.w3schools.com/python/python_ml_getting_started.a
sp

Your first machine learning
project in Python step-by-
step

https://machinelearningmastery.com/machine-learning-in-
python-step-by-step/

The AI community
building the future

https://huggingface.co/

Hugging Face transformers https://www.kdnuggets.com/2021/02/hugging-face-transformer-
basics.html

PyTorch - open source
machine learning
framework

https://pytorch.org/

An end-to-end open source
machine learning platform

https://www.tensorflow.org/

Keras: the Python deep
learning API

https://keras.io/

Introduction to machine
learning

https://developers.google.com/machine-learning/crash-
course/ml-intro

Table 11.1: Resources on Flask and machine learning in Python

Questions
1. What is Flask application?
2. How can you create APIs with Python?
3. How do you combine multiple automation scripts?
4. What are the most popular machine learning libraries in Python?

https://flask.palletsprojects.com/en/2.1.x/
https://opensource.com/article/18/4/flask
https://auth0.com/blog/developing-restful-apis-with-python-and-flask/
https://www.w3schools.com/python/python_ml_getting_started.asp
https://machinelearningmastery.com/machine-learning-in-python-step-by-step/
https://huggingface.co/
https://www.kdnuggets.com/2021/02/hugging-face-transformer-basics.html
https://pytorch.org/
https://www.tensorflow.org/
https://keras.io/

Index
A
Advanced Python Scheduler (APScheduler) 128

installing 128, 129
App Engine 148
Application Programming Interface (API)

creating, with Python 140-146
Artificial Intelligence (AI) 150
attributes 57
automation

common processes 26
scheduling 128-134

automation mindset 26
automation, with screenshots 110-112

B
Beautiful Soup 56

installing 56
BeautifulSoup object 58
Bitmap formats 116
Boolean 10
break statement 15
browser

automating, with Selenium 61-68
business process discovery 28
business processes

identifying 28, 29

C
Chrome browser

automating, with Selenium 61-68
class attribute 54
Comma Separated Values (CSV) file 43
CompuServe Graphics Interchange Format (GIF) 116
computer file 72
computer file types

data 72
End of file (EOF) 72
header 72

continue statement 16
CSS (Cascading Style Sheets) 52, 55
CSV file automations 43-45

D
data

extracting, from websites 56-61
data entry automations 26
data extraction automations 27
data gathering automations 27
data structures

dictionary 18, 19
lists 16, 17
set 20
tuple 18

decision-making statements 11
if-elif-else statement 12, 13
if-else statement 12
if statement 11

decorator 141
def keyword 20
dictionary 18, 19
Document class 80

add_heading() function 80
add_page_break() function 81
add_paragraph() function 80
add_table(rows=2, cols=2) function 81
document.add_picture(picture path) function 81

E
email automation

emails, sending via Gmail 89-92
Outlook email automation 93, 94

emails
sending, via Gmail 89-92

event logs 30
Excel-based automation

sample 41-43
Excel-based tasks

automating, with openpyxl 34, 35
Excel documents

creating 36
reading 37-39
workbook, updating 40

external tools
using, for triggers 136, 137

F
FailSafe 102
file-based tasks

automating 72

files
binary mode 73
downloading, from Internet 48-51
reading 72, 73
text mode 73
writing 72, 73

Flask library 140
installing 140, 141

for loop 13, 14
functions 20, 21

G
Gmail

emails, sending with 89-92

H
HTML (hypertext markup language) 52

tags 53, 54
HTTP methods 49
Hugging Face 151

I
id attribute 54
image based automations

computer image fundamentals 116
text extraction, with OCR 120-124

image enhancement classes 119
image file formats 52
indentation 11
Internet

files, downloading 48-51

J
JavaScript 52, 55
Joint Photographic Experts Group (JPG/JPEG) 116
Jupyter notebook 4

K
keyboard actions.

automating 107-110
keyboard automation functions

alert() function 108
hotkey() function 108
keyDown() function 108

keyUp() function 108
press() function 107
write() function 107

L
library 4, 21
lists 16, 17
loops in Python

break statement 15
continue statement 16
for loop 13, 14
while loop 14

lossless compression 116

M
Machine Learning (ML) 150

for automation 150-153
reinforcement learning 151
supervised learning 150
unsupervised learning 151

modules 4, 21
mouse actions

automating 104-107
mouse automation functions

click() function 105
drag() function 105
dragTo() function 105
moveTo() function 104
scroll() function 105

Mu 2
starting with 2, 3
third party packages, installing with 4, 5
tutorial page 4

Mu installer
download link 2

multiple automation scripts
combining 147, 148

N
name object 57
NavigableString 58

O
open() function 73
openpyxl

installing 34, 35

using 34
Optical Character Recognition (OCR) 120

for text extraction from images 120-124
Outlook email automation 93, 94

P
PDF documents automation 74-79
PdfFileWriter class 77

addAttachment 78
addBlankPage 78
appendPagesFromReader 78

Pdfminer.six 74
PDF to Word conversion 83, 84
picture element (pixel) 116
Pillow library 115

for image manipulation 117-119
installing 117

PM4Py 30
Portable Network Graphics (PNG) 116
processes for automation

data entry 26
data extraction 27
data gathering 27

process map
of application 29, 30

programs
launching 135

pyautogui
installing 102

PyAutoGUI module
features 102
using 102-104

PyCharm 4
PyPDF2 74

installing 76
using 77

Pytesseract library 122, 123
Python 8-10

data structures 16
decision-making statements 11
functions 20, 21
libraries 21
loops 13
modules 21
packages 22

Python Imaging Library (PIL) 117
Python math library

reference 22
Python Package Index 21

URL 4
PyTorch library 151
pywhatkit library 97

R
range() function 13
Reinforcement Learning (RL) algorithm 151
Representational State Transfer (REST) APIs 140

S
screenshot-based functions

locate functions 111
screenshot() function 110

Selenium 61
browser automating, with 61-68

set 20
Simple Mail Transfer Protocol (SMTP) 88
SMS automation

Twilio APIs used 94-96
SMTP function

parameters 88
Snipping Tool 110
Stack Overflow 148-150

T
Tagged Image File Format (TIF/TIFF) 116
tag object 57
tesseract 120
text extraction, from images

Optical Character Recognition (OCR) used 120-124
third party packages

installing, with Mu 4, 5
triggers

external tools, using for 136
tuple 18
Twilio

installing 94
URL 95

Twilio APIs
for SMS automation 94-96

V
VS Code 4

W

w3schools tutorial 55
web-based tasks

automating 48
web scraping 56-61
Web Server Gateway Interface (WSGI) application 141
WhatsApp message automation 94-98
WhatsApp Messenger 97
while loops 14
window handling function 108, 109
Windows Task Scheduler 129
Word documents automation 80-83
workbook

updating 40
World Wide Web (WWW) 148

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Setting Up the Automation Environment
	Introduction
	Structure
	Objectives
	Installing and getting started with Mu for Python 3
	Start Mu
	Installing third party packages with Mu
	Conclusion
	Further reading
	Questions

	2. Fundamentals of Python
	Introduction
	Structure
	Objectives
	Introduction to Python
	Decision statements
	if statement
	if-else
	if-elif-else

	Loops/repetition
	The for loop
	while loops
	The break statement
	The continue statement

	Data structures
	Lists
	Tuples
	Dictionaries
	Sets

	Functions
	Libraries, modules, or packages
	Conclusion
	Further reading
	Questions

	3. Automation Mindset – Python as a Tool for Automation
	Introduction
	Structure
	Objectives
	Mindset for automation
	Common processes for automation
	Identifying business processes
	Conclusion
	Further reading
	Questions

	4. Automating Excel-Based Tasks
	Introduction
	Structure
	Objectives
	Installing the library to read/write Excel
	Creating Excel documents
	Reading Excel documents
	Updating a workbook
	A sample of Excel-based automation
	CSV file automations
	Conclusion
	Further reading
	Questions

	5. Automating Web-Based Tasks
	Introduction
	Structure
	Objectives
	Downloading files from the Internet
	Introduction to HTML, CSS, and JavaScript
	HTML
	CSS
	JavaScript

	Extracting data from websites
	Controlling the browser with Selenium
	Conclusion
	Further reading
	Questions

	6. Automating File-Based Tasks
	Introduction
	Structure
	Objectives
	Reading and writing files
	PDF documents automation
	Word documents automation
	Convert a PDF to a Word document
	Conclusion
	Further reading
	Questions

	7. Automating Email, Messenger Applications, and Messages
	Introduction
	Structure
	Objectives
	Simple Mail Transfer Protocol
	Sending emails using Gmail
	Outlook email automation
	Text and WhatsApp message automation
	Conclusion
	Further reading
	Questions

	8. GUI – Keyboard and Mouse Automation
	Introduction
	Structure
	Objectives
	Introduction to the PyAutoGUI module
	Controlling mouse actions
	Controlling keyboard actions
	Automation using screenshots
	Conclusion
	Further reading
	Questions

	9. Image Based Automations
	Introduction
	Structure
	Objectives
	Computer image fundamentals
	Pillow for image manipulation

	Extracting text from images using OCR
	Conclusion
	Further reading
	Questions

	10. Creating Time and Event - Based Automations
	Introduction
	Structure
	Objectives
	Scheduling automation
	Writing timer programs
	Launching programs from Python
	Using external tools for triggers

	Conclusion
	Further reading
	Questions

	11. Writing Complex Automations
	Introduction
	Structure
	Objectives
	Creating APIs with Python
	Combining multiple automation scripts
	Finding solutions online
	Using machine learning for automation
	Conclusion
	Further reading
	Questions

	Index

