

Data Visualization with Python
and JavaScript

Scrape, Clean, Explore, and Transform Your Data

SECOND EDITION

With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

Kyran Dale

Data Visualization with Python and JavaScript
by Kyran Dale

Copyright © 2023 Kyran Dale Limited. All rights reserved.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Acquisitions Editor: Michelle Smith

Development Editor: Shira Evans

Production Editor: Greg Hyman

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

July 2016: First Edition

December 2022: Second Edition

Revision History for the Early Release

2021-09-29: First Release

2021-12-02: Second Release

2022-01-26: Third Release

2022-02-25: Fourth Release

http://oreilly.com/

See http://oreilly.com/catalog/errata.csp?isbn=9781098111878 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Data
Visualization with Python and JavaScript, the cover image, and related
trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the author disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the
use of or reliance on this work. Use of the information and instructions
contained in this work is at your own risk. If any code samples or other
technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility
to ensure that your use thereof complies with such licenses and/or rights.

978-1-098-11180-9

http://oreilly.com/catalog/errata.csp?isbn=9781098111878

Chapter 1. A Language-Learning Bridge
Between Python and JavaScript

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the author’s raw and unedited content as
they write—so you can take advantage of these technologies long before the official release of these titles.

This will be the second chapter of the final book.

If you have comments about how we might improve the content and/or examples in this book, or if you
notice missing material within this chapter, please reach out to the editor at sevans@oreilly.com.

Probably the most ambitious aspect of this book is that it deals with two programming languages. Moreover, it
only requires that you are competent in one of these languages. This is only possible because Python and
JavaScript (JS) are fairly simple languages with much in common. The aim of this chapter is to draw out those
commonalities and use them to make a learning bridge between the two languages such that core skills acquired
in one can easily be applied to the other.

After showing the key similarities and differences between the two languages, I’ll show how to set up a
learning environment for Python and JS. The bulk of the chapter will then deal with core syntactical and
conceptual differences, followed by a selection of patterns and idioms that I use often while doing data
visualization work.

Similarities and Differences
Syntax differences aside, Python and JavaScript actually have a lot in common. After a short while, switching
between them can be almost seamless. Let’s compare the two from a data visualizer’s perspective:

These are the chief similarities:

They both work without needing a compilation step (i.e., they are interpreted).

You can use both with an interactive interpreter, which means you can type in lines of code and see the
results right away.

Both have garbage collection.

Neither language has header files, package boilerplate, and so on.

Both are primarily developed with a text editor—not an IDE.

In both, functions are first-class citizens, which can be passed as arguments.

These are the key differences:

Possibly the biggest difference is that JavaScript is single-threaded and non-blocking, using
asynchronous I/O. This means that simple things like file access involve the use of a callback function.

JS is used essentially in web development and until relatively recently was browser-bound, but
Python is used almost everywhere.

JS is the only first-class language in web browsers, Python being excluded.

1

2

mailto:sevans@oreilly.com
http://bit.ly/1tADn8E

Python has a comprehensive standard library, whereas JS has a limited set of utility objects (e.g.,
JSON, Math).

Python has fairly classical object-oriented classes, whereas JS uses prototypes.

JS lacks heavyweight general-purpose data-processing libs.

The differences here emphasize the need for this book to be bi-lingual. JavaScript’s monopoly of browser
dataviz needs the complement of a conventional data-processing stack. And Python has the best there is.

Interacting with the Code
One of the great advantages of Python and JavaScript is that because they are interpreted on the fly, you can
interact with them. Python’s interpreter can be run from the command line, whereas JavaScript’s is generally
accessed from the web browser through a console, usually available from the built-in development tools. In this
section, we’ll see how to fire up a session with the interpreter and start trying out your code.

Python
By far, the best command-line Python interpreter is IPython, which comes in three shades: the basic terminal
version, an enhanced graphical version, and a browser-based notebook. Since version 4.0 the latter two have
been spun out into project Jupyter. The Jupyter notebook is a rather brilliant and fairly recent innovation,
providing a browser-based interactive computational environment. There are pros and cons to the different
versions. The command line is fastest to scratch a problematic itch but lacks some bells and whistles,
particularly embedded plotting courtesy of Matplotlib and friends. The makes it suboptimal for Pandas-based
data-processing and data visualization work. Of the other two, both are better for multiline coding (e.g., trying
out functions) than the basic interpreter, but I find the graphical Qt console more intuitive, having a familiar
command line rather than executable cells. The great boon of the Notebook is session persistence and the
possibility of web access. The ease with which one can share programming sessions, complete with embedded
data visualizations, makes the notebook a fantastic teaching tool as well as a great way to recover programming
context. That’s why the Python chapters of this book have accompanying Jupyter notebooks.

You can start an ipython session at the command-line like this:

$ ipython

To start a Jupyter notebook just run jupyter at the command-line.

$ jupyter notebook
[I 15:27:44.553 NotebookApp] Serving notebooks from local
directory:
...
[I 15:27:44.553 NotebookApp] http://localhost:8888/?token=5e09...

Then open a browser tab at the URL specified (+http://localhost:8888 in the case) and start reading or writing
Python notebooks.

JavaScript
There are lots of options for trying out JavaScript code without starting a server, though the latter isn’t that
difficult. Because the JavaScript interpreter comes embedded in all modern web browsers, there are a number
of sites that let you try out bits of JavaScript along with HTML and CSS and see the results. Codepen is a good
option. These sites are great for sharing code and trying out snippets, and usually allow you to add libraries
such as D3.js with a few mouse-clicks.

3

4
5

http://ipython.org/
https://jupyter.org/
http://matplotlib.org/
http://pandas.pydata.org/
https://codepen.io/accounts/signup/user/free

If you want to try out code one-liners or quiz the state of live code, browser-based consoles are your best bet.
With Chrome, you can access the console with the key combo Ctrl-Shift-J. As well as trying little JS snippets,
the console allows you to drill down into any objects in scope, revealing their methods and properties. This is a
great way to quiz the state of a live object and search for bugs.

One disadvantage of using online JavaScript editors is losing the power of your favorite editing environment,
with linting, familiar keyboard shortcuts, and the like (see [Link to Come]). Online editors tend to be
rudimentary, to say the least. If you anticipate an extensive JavaScript session and want to use your favorite
editor, the best bet is to run a local server.

First, create a project directory—called sandpit, for example—and add a minimal HTML file that includes a JS
script:

sandpit
├── index.html
└── script.js

The index.html file need only be a few lines long, with an optional div placeholder on which to start building
your visualization or just trying out a little DOM manipulation.

<!-- index.html -->
<!DOCTYPE html>
<meta charset="utf-8">

<div id='viz'></div>

<script type="text/javascript" src="script.js" async></script>

You can then add a little JavaScript to your script.js file:

// script.js
var data = [3, 7, 2, 9, 1, 11];
var sum = 0;
data.forEach(function(d){
 sum += d;
});

console.log('Sum = ' + sum);
// outputs 'Sum = 33'

Start your development server in the project directory using Python’s http module:

$ python -m http.server 8000
Serving HTTP on 0.0.0.0 port 8000 ...

Then open your browser at http://localhost:8000, press Ctrl-Shift-J (Cmd-Opt-J on OS X) to access the console
and you should see Figure 1-1, showing the logged output of the script (see [Link to Come] for further details).

Figure 1-1. Outputting to the Chrome console

Now that we’ve established how to run the demo code, let’s start building a bridge between Python and
JavaScript. First, we’ll cover the basic differences in syntax. As you’ll see, they’re fairly minor and easily

http://localhost:8000/

absorbed.

Basic Bridge Work
In this section, I’ll contrast the basic nuts and bolts of programming in the two languages.

Style Guidelines, PEP 8, and use strict
Where JavaScript style guidelines are a bit of a free-for-all (with people often defaulting to those used by a big
library like React), Python has a Python Enhancement Proposal (PEP) dedicated to it. I’d recommend getting
acquainted with PEP-8 but not submitting totally to its leadership. It’s right about most things, but there’s room
for some personal choice here. There’s a handy online checker here, which will pick up any infractions of PEP-
8.

In Python, you should use four spaces to indent a code block. JavaScript is less strict, but two spaces is the most
common indent.

One recent addition to JavaScript (Ecmascript 5) is the 'use strict' directive, which imposes strict mode.
This mode enforces some good JavaScript practice, which includes catching accidental global declarations, and
I thoroughly recommend its use. To use it, just place the string at the top of your function or module:

(function(foo){
 'use strict';
 // ...
}(window.foo = window.foo || {});

CamelCase Versus Underscore
JS conventionally uses CamelCase (e.g., processStudentData) for its variables, whereas Python, in
accordance with PEP-8, uses underscores (e.g., process_student_data) in its variable names (see
Section B in Examples 1-3 and 1-4). By convention (and convention is more important in the Python ecosystem
than JS), Python uses capitalized CamelCase for class declarations (see the following example), uppercase for
constants, and underscores for everything else:

FOO_CONST = 10
class FooBar(object): # ...
def foo_bar():
 baz_bar = 'some string'

Importing Modules, Including Scripts
Using other libraries in your code, either your own or third-party, is fundamental to modern programming,
which makes it all the more surprising that until relatively recently JavaScript didn’t have a dedicated way of
doing it. Python has a simple import system that, on the whole, works pretty well.

The good news on the JavaScript front is that since Ecmascript 6, JavaScript has addressed this issue, with the
addition of import and export statements for encapsulated modules. Ecmascript 6 will be getting browser
support soon but as of late 2021, for cross-browser support you need a converter to Ecmascript 5, such as
Babel.js. Meanwhile, although there have been many attempts to create a reasonable client-side modular
system, none have really achieved critical mass and all are a little awkward to use. For now, I recommend using
the well-established HTML <script> tag to include scripts. So to include the D3 visualization library, you
would add this tag to your main HTML file, conventionally index.html:

<!DOCTYPE html>
<meta charset="utf-8">

6

http://pep8online.com/
https://babeljs.io/

...
 <script src="http://d3js.org/d3.v7.min.js"></script>

You can include the script anywhere in your HTML file, but it’s best practice to add scripts after the body (div
tags, etc.) section. Note that the order of the <script> tags is important. If a script is dependent on a module
(e.g., it uses the D3 library), its <script> tag must be placed after that of the module. In other words, big
library scripts, such as jQuery and D3, will be included first.

Python comes with “batteries included,” a comprehensive set of libraries covering everything from extended
data containers (collections) to working with the family of CSV files (csv). If you want to use one of
these, just import it using the import keyword:

In [1]: import sys

In [2]: sys.platform
Out[2]: 'linux'

If you don’t want to import the whole library or want to use an alias, you can use the as and from keywords
instead:

import pandas as pd
from csv import DictWriter, DictReader
from numpy import *

df = pd.read_json('data.json')
reader = DictReader('data.csv')
md = median([12, 56, 44, 33])

This imports all the variables from the module into the current namespace and is almost always a bad idea.
One of the variables could mask an existing one, and it goes against the Python best practice of explicit
being better than implicit. One exception to this rule is if you are using the Python interpreter interactively.
In this limited context, it may make sense to import all functions from a library to cut down on key presses;
for example, importing all the math functions (from math import *) if doing some Python math
hacking.

If you import a nonstandard library, Python uses sys.path to try to find it. sys.path consists of:

The directory containing the importing module (current directory)

The PYTHOPATH variable, containing a list of directories

The installation-dependent default, where libraries installed using pip or easy_install will
usually be placed

Big libraries are often packaged, divided into submodules. These submodules are accessed by dot notation:

import matplotlib.pyplot as plt

Packages are constructed from the filesystem via __init__.py files, usually empty, as shown in Example 1-1.
The presence of an init file makes the directory visible to Python’s import system.

Example 1-1. Building a Python package
mypackage
├── __init__.py
...
├── core
│ └── __init__.py
│ ...
...

└

7

└── io
 ├── __init__.py
 └── api.py
 ...
 └── tests
 └── __init__.py
 └── test_data.py
 └── test_excel.py
 ...
...You would import this module using from mypackage.io.tests import test_excel.

You can access packages on sys.path from the root directory (that’s mypackage in Example 1-1) using dot
notation. A special case of import is intrapackage references. The test_excel.py submodule in Example 1-1
can import submodules from the mypackage package both absolutely and relatively:

from mypackage.io.tests import test_data
from . import test_data
import test_data
from ..io import api

Imports the test_data.py module absolutely, from the package’s head directory.An explicit (. import) and implicit relative import.A relative import from a sibling package of tests.

Keeping Your Namespaces Clean
The variables defined in Python modules are encapsulated, which means that unless you import them explicitly
(e.g., from foo import baa), you will be accessing them from the imported module’s namespace using
dot notation (e.g., foo.baa). This modularization of the global namespace is quite rightly seen as a very good
thing and plays to one of Python’s key tenets: the importance of explicit statements over implicit. When
analyzing someone’s Python code you should be able to see exactly where a class, function, or variable has
come from. Just as importantly, preserving the namespace limits the chance of conflicting or masking variables
—a big potential problem as code bases get larger.

One of the main criticisms of JavaScript, and a fair one, is that it plays fast and loose with namespace
conventions. The most egregious example of this is that variables declared outside of functions or missing the
var keyword are global rather than confined to the script in which they are declared. If you can deal with the
overhead of setting up a modern, modular JavaScript you get Python like encapsulation with imported and
exported variables. While keeping things simple and using JavaScript scripts, there are various ways to rectify
this situation, but the one I use and recommend is to make each of your scripts a self-calling function. This
makes all variables declared via var local to the script/function, preventing them from polluting the global
namespace. A new JavaScript let keyword, which is block-scoped, is pretty much always preferable to var.
Any objects, functions, and variables you want to make available to other scripts can be attached to an object
that is part of the global namespace.

Example 1-2 demonstrates a module pattern. The boilerplate head and tail (labeled and) effectively create
an encapsulated module. This pattern is far from a perfect solution to modular JavaScript but is the best
compromise I know until Ecmascript 6 and a dedicated import system for the browser becomes standard. One
obvious disadvantage is that the module is part of the global namespace, which means, unlike in Python, there
is no need to explicitly import it.

Example 1-2. A module pattern for JavaScript
(function(nbviz) {
 'use strict';
 // ...
 nbviz.updateTimeChart = function(data) {
 // ...
}(window.nbviz = window.nbviz || {})); Receives the global nbviz object.

8

https://stackoverflow.com/questions/762011/whats-the-difference-between-using-let-and-var

Attaches the updateTimeChart method to the global nbviz object, effectively exporting it.If an nbviz object exists in the global (window) namespace, pass it into the module function; otherwise,
add it to the global namespace.

Outputting “Hello World!”
By far the most popular initial demonstration of any programming language is getting it to print or
communicate “Hello World!” in some form, so let’s start with getting output from Python and JavaScript.

Python’s output couldn’t be much simpler, but version 3 sees a change to the print statement, making it a
proper function:

In Python 2*
print 'Hello World!'

In Python 3+
print('Hello World!')

You can use Python 3’s print function in Python 2 by importing it from the __future__ module:

from __future__ import print_function

If you’re not using Python 3, then this is a sensible approach but I would strongly recommend moving to the
newer Python.

JavaScript has no print function, but you can log output to the browser console:

console.log('Hello World!);

Simple Data Processing
A good way to get an overview of the language differences is to see the same function written in both.
Examples 1-3 and 1-4 show a small, contrived example of data munging in Python and JavaScript, respectively.
We’ll use these to compare Python and JS syntax.

Example 1-3. Simple data munging with Python
A
student_data = [
 {'name': 'Bob', 'id':0, 'scores':[68, 75, 56, 81]},
 {'name': 'Alice', 'id':1, 'scores':[75, 90, 64, 88]},
 {'name': 'Carol', 'id':2, 'scores':[59, 74, 71, 68]},
 {'name': 'Dan', 'id':3, 'scores':[64, 58, 53, 62]},
]

B
def process_student_data(data, pass_threshold=60,
 merit_threshold=75):
 """ Perform some basic stats on some student data. """

 # C
 for sdata in data:
 av = sum(sdata['scores'])/float(len(sdata['scores']))
 sdata['average'] = av

 if av > merit_threshold:
 sdata['assessment'] = 'passed with merit'
 elif av > pass_threshold:
 sdata['assessment'] = 'passed'
 else:
 sdata['assessment'] = 'failed'
 # D
 print("%s's (id: %d) final assessment is: %s"%(

9

 sdata['name'], sdata['id'], sdata['assessment'].upper()))

E
if __name__ == '__main__':
 process_student_data(student_data)

Example 1-4. Simple data munging with JavaScript
// A (note deliberate and valid inconsistency in keys: some quoted
// and some unquoted)
var studentData = [
 {name: 'Bob', id:0, 'scores':[68, 75, 76, 81]},
 {name: 'Alice', id:1, 'scores':[75, 90, 64, 88]},
 {'name': 'Carol', id:2, 'scores':[59, 74, 71, 68]},
 {'name': 'Dan', id:3, 'scores':[64, 58, 53, 62]},
];

// B
function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?\
 passThreshold: 60;
 meritThreshold = typeof meritThreshold !== 'undefined'?\
 meritThreshold: 75;

 // C
 data.forEach(function(sdata){
 var av = sdata.scores.reduce(function(prev, current){
 return prev+current;
 },0) / sdata.scores.length;
 sdata.average = av;

 if(av > meritThreshold){
 sdata.assessment = 'passed with merit';
 }
 else if(av > passThreshold){
 sdata.assessment = 'passed';
 }
 else{
 sdata.assessment = 'failed';
 }
 // D
 console.log(sdata.name + "'s (id: " + sdata.id +
 ") final assessment is: " +
 sdata.assessment.toUpperCase());
 });

}

// E
processStudentData(studentData);

String Construction
Section D in Examples 1-3 and 1-4 show the standard way to print output to the console or terminal. JavaScript
has no print statement but will log to the browser’s console through the console object.

console.log(sdata.name + "'s (id: " + sdata.id +
 ") final assessment is: " + sdata.assessment.toUpperCase());

Note that the integer variable id is coerced to a string, allowing concatenation. Python doesn’t perform this
implicit coercion, so attempting to add a string to an integer in this way gives an error. Instead, explicit
conversion to string form is achieved through one of the str or repr functions.

In section A of Example 1-3, the output string is constructed with C type formatting. String (%s) and integer
(%d) placeholders are provided by a final tuple (%(…)):

print("%s's (id: %d) final assessment is: %s"
 %(sdata['name'], sdata['id'], sdata['assessment'].upper()))

These days, I rarely use Python’s print statement, opting for the much more powerful and flexible logging
module, which is demonstrated in the following code block. It takes a little more effort to use, but it is worth it.
Logging gives you the flexibility to direct output to a file and/or the screen, adjusting the logging level to
prioritize certain information, and a whole load of other useful things. Check out the details here.

import logging
logger = logging.getLogger(__name__)
//...
logger.debug('Some useful debugging output')
logger.info('Some general information')

// IN INITIAL MODULE
logging.basicConfig(level=logging.DEBUG)

Creates a logger with the name of this module.You can set the logging level, an output file as opposed to the default to screen.

Significant Whitespace Versus Curly Brackets
The syntactic feature most associated with Python is significant whitespace. Whereas languages like C and
JavaScript use whitespace for readability and could easily be condensed into one line, in Python leading
spaces are used to indicate code blocks and removing them changes the meaning of the code. The extra effort
required to maintain correct code alignment is more than compensated for by increased readability—you spend
far longer reading than writing code and the easy reading of Python is probably the main reason why the
Python library ecosystem is so healthy. Four spaces is pretty much mandatory (see PEP 8) and my personal
preference is for what is known as soft tabs, where your editor inserts (and deletes) multiple spaces instead of a
tab character.

In the following code, the indentation of the return statement must be four spaces by convention:

def doubler(x):
 return x * 2
|<-this spacing is important

JavaScript doesn’t care about the number of spaces between statements and variables, using curly brackets to
demark code blocks, the two doubler functions in this code being equivalent:

let doubler = function(x){
 return x * 2;
}

let doubler=function(x){return x*2;}

Much is made of Python’s whitespace, but most good coders I know set up their editors to enforce indented
code blocks and a consistent look and feel. Python merely enforces this good practice. And, to reiterate, I
believe the extreme readability of Python code contributes as much to Python’s supremely healthy ecosystem as
its simple syntax.

Comments and doc-strings
To add comments to code, Python uses hashes, #:

ex.py, a single informative comment

data = {} # Our main data-ball

10

11

12

https://docs.python.org/3/howto/logging.html

By contrast, JavaScript uses the C language convention of double backslashes (//) or /* … */ for multiline
comments:

// script.js, a single informative comment
/* A multiline comment block for
function descriptions, library script
headers, and the like */
let data = {}; // Our main data-ball

In addition to comments, and in keeping with its philosophy of readability and transparency, Python has
documentation strings (docstrings) by convention. The process_student_data function in Example 1-3
has a triple-quoted line of text at its top that will automatically be assigned to the function’s __doc__
attribute. You can also use multiline doc-strings.

def doubler(x):
 """This function returns double its input."""
 return 2 * x

def sanitize_string(s):
 """This function replaces any string spaces
 with '-' after stripping any whitespace
 """
 return s.strip().replace(' ', '-')

Doc-strings are a great habit to get into, particularly if you are working collaboratively. They are understood by
most decent Python editing toolsets and are also used by such automated documentation libraries as Sphinx.
The string-literal doc-string is accessible as the doc property of a function or class.

Declaring Variables, let, var
JavaScript uses let or var to declare variables. Generally speaking, let is almost always the right choice.

Strictly speaking, JS statements should be terminated with a semicolon as opposed to Python’s newline. You
will see examples where the semicolon is dispensed with, and modern browsers will usually do the right thing
here. There are few edge-cases that could necessitate the use of a semi-colon (e.g., it can trip up code minifiers
and compressors that remove whitespace) but generally I find that the loss of clutter and improvement in
readablity are a worthwhile compromise to coding without the semi-colons.

TIP
JavaScript has variable hoisting, which means variables declared with var are processed before any other code. This means declaring
them anywhere in the function is equivalent to declaring them at the top. This can result in weird errors and confusion. Explicitly
placing vars at the top avoids this but it’s better to use the modern let and have scoped declarations.

Strings and Numbers
The name strings used in the student data (see Section A of Examples 1-3 and 1-4) will be interpreted as UCS-2
(the parent of unicode UTF-16) in JavaScript, and Unicode (UTF-8 by default) in Python 3.

Both languages allow single and double quotes for strings. If you want to include a single or double quote in
the string, then enclose with the alternative, like so:

pub_name = "The Brewer's Tap"

The scores in Section A of Example 1-4 are stored as JavaScript’s one numeric type, double-precision 64-bit
(IEEE 754) floating-point numbers. Although JavaScript has a parseInt conversion function, when used

13 14

http://sphinx-doc.org/

with floats, it is really just a rounding operator, similar to floor. The type of the parsed number is still
number:

var x = parseInt(3.45); // 'cast' x to 3
typeof(x); // "number"

Python has three numeric types: the 32-bit int,to which the student scores are cast, a float equivalent (IEE
754) to JS’s number, and a long for arbitrary precision integer arithmetic. This means that Python can
represent any integer, whereas JavaScript is more limited. Python’s casting changes type:

foo = 3.4 # type(foo) -> float
bar = int(3.4) # type(bar) -> int

The nice thing about Python and JavaScript numbers is that they are easy to work with and usually do what you
want. If you need something more efficient, Python has the NumPy library, which allows fine-grained control of
your numeric types (you’ll learn more about NumPy in [Link to Come]). In JavaScript, aside from some
cutting-edge projects, you’re pretty much stuck with 64-bit floats.

Booleans
Python differs from the JavaScript and the C class languages in using named boolean operators. Other than that,
they work pretty much as expected. This table gives a comparison:

Python bool True False not and or

JavaScript boolean true false ! && +`

Python’s capitalized True and False is an obvious trip-up for any JavaScripter and vice versa, but any decent
syntax highlighting should catch that, as should your code linter.

Rather than always returning boolean true or false, both Python and JavaScript and/or expressions return the
result of one of the arguments, which may of course be a boolean value. Table 1-1 shows how this works, using
Python to demonstrate.

15

16

T
a
b
l
e

1
-
1
.
P
y
t
h
o
n
’
s

b
o
o
l
e
a
n

o
p
e
r
a
t
o
r
s

Operation Result

x or y if x is false, then y, else x

x and y if x is false, then x, else y

not x if x is false, then True, else False

This fact allows for some occasionally useful variable assignments:

rocket_launch = True
(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:

'All OK'

rocket_launch = False
(rocket_launch == True and 'All OK') or 'We have a problem!'
Out:
'We have a problem!'

Data Containers: Dicts, Objects, Lists, Arrays
Roughly speaking, JavaScript objects can be used like Python dicts, and Python lists like JavaScript
arrays. Python also has a tuple container, which functions like an immutable list. Here are some examples:

Python
d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}
l = ['Harpo', 'Groucho', 99]
t = ('an', 'immutable', 'container')

// JavaScript
d = {'name': 'Groucho', 'occupation': 'Ruler of Freedonia'}
l = ['Harpo', 'Groucho', 99]

As shown in Section A of Examples 1-3 and 1-4, while Python’s dict keys must be quote-marked strings (or
hashable types), JavaScript allows you to omit the quotes if the property is a valid identifier (i.e., not containing
special characters such as spaces and dashes). So in our studentData objects, JS implicitly converts the
property 'name' to string form.

The student data declarations look pretty much the same and, in practice, are used pretty much the same, too.
The key difference to note is that while the curly-bracketed containers in the JS studentData look like
Python dicts, they are actually a shorthand declaration of JS objects, a somewhat different data container.

In JS data visualization, we tend to use arrays of objects as the chief data container and here, JS objects
function much as a Pythonista would expect. In fact, as demonstrated in the following code, we get the
advantage of both dot notation and key-string access, the former being preferred where applicable (keys with
spaces or dashes needing quoted strings):

var foo = {bar:3, baz:5};
foo.bar; // 3
foo['baz']; // 5, same as Python

It’s good to be aware that although they can be used like Python dictionaries, JavaScript objects are much more
than just containers (aside from primitives like strings and numbers, pretty much everything in JavaScript is an
object). But in most dataviz examples you see, they are used very much like Python dicts.

Table 1-2 converts basic list operations.

17

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects

T
a
b
l
e
1
-
2
.
L
i
s
t
s
a
n
d
a
r
r
a
y
s

JavaScript array (a) Python list (l)

a.length len(l)

a.push(item) l.append(item)

a.pop() l.pop()

a.shift() l.pop(0)

a.unshift(item) l.insert(0, item)

a.slice(start, end) l[start:end]

a.splice(start, howMany, i1, …) l[start:end] = [i1, …]

Functions
Section B of Examples 1-3 and 1-4 shows a function declaration. Python uses def to indicate a function:

def process_student_data(data, pass_threshold=60,
 merit_threshold=75):
 """ Perform some basic stats on some student data. """
 ...

whereas JavaScript uses function:

function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?
 passThreshold: 60;
 meritThreshold = typeof meritThreshold !== 'undefined'?
 meritThreshold: 75;
 ...
}

Both have a list of parameters. With JS, the function code block is indicated by the curly brackets { … }; with
Python, the code block is defined by a colon and indentation.

JS has an alternative way of defining a function called the function expression, which you may see in examples:

let processStudentData = function(...){

There is now a shortened form , which is becoming more popular:

let processStudentData = (...) => {

The differences are subtle enough not to worry about for now.

Function parameters is an area where Python’s handling is a great deal more sophisticated than JavaScript’s. As
you can see in process_student_data (Section B in Example 1-3), Python allows default arguments for
the parameters. In JavaScript, all parameters not used in the function call are declared as undefined.

Until recently, in order to set a default value for these, we had to perform a distinctly hacky conditional
(ternary) expression. You may see this in older libraries or code-examples:

function processStudentData(data, passThreshold, meritThreshold){
 passThreshold = typeof passThreshold !== 'undefined'?
 passThreshold: 60;
 ...

The good news for JavaScripters is that recent versions of JavaScript, based on Ecmascript 6, allows Python-
like default parameters:

function processStudentData(data, passThreshold=60,
 meritThreshold=75){
...

Iterating: for Loops and Functional Alternatives
Section C in Examples 1-3 and 1-4 shows our first major departure, demonstrating JavaScript’s functional
chops.

Python’s for loops are simple, intuitive, and effective on any iterator, such as arrays and dicts. One gotcha
with dicts is that standard iteration is by key, not items. For example:

foo = {'a':3, 'b':2}
for x in foo:
 print(x)
outputs 'a' 'b'

To iterate over the key-value pairs, use the dict’s items method like so:

for x in foo.items():
 print(x)
outputs key-value tuples ('a', 3) ('b' 2)

18

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/default_parameters

You can assign the key/values in the for statement for convenience. For example:

for key, value in foo.items():

Because Python’s for loop works on anything with the correct iterator plumbing, you can do cool things like
loop over file lines:

for line in open('data.txt'):
 print(line)

Coming from Python, JS’s for loop is a pretty horrible, unintuitive thing. Here’s an example:

for(var i in ['a', 'b', 'c']){
 console.log(i)
}
outputs 1, 2, 3

JS’s for .. in returns the index of the array’s items, not the items themselves. To compound matters, for
the Pythonista, the order of iteration is not guaranteed, so the indices could be returned in non-consecutive
order.

Shifting between Python and JS for loops is hardly seamless, demanding you keep on the ball. The good news
is that you hardly need to use JS for loops these days. In fact, I almost never find the need. That’s because JS
has recently acquired some very powerful first-class functional abilities, which have more expressive power
and less scope for confusion with Python and, once you get used to them, quickly become indispensable.

Section C in Example 1-4 demonstrates forEach(), one of the functional methods available to modern
JavaScript arrays. forEach() iterates over the array’s items, sending them in turn to an anonymous
callback function defined in the first argument, where they can be processed. The true expressive power of
these functional methods comes from chaining them (maps, filters, etc.), but already we have a cleaner, more
elegant iteration with none of the awkward bookkeeping of old.

The callback function receives index and the original array as an optional second argument.

data.forEach(function(currentValue, index){//---

Until recently even iterating over an object’s key-value pairs was fairly tricky. Unlike Python’s dicts, objects
could have inherited properties from the prototyping chain, so you had to use a hasOwnProperty guard to
filter these out. You may well come across code like this:

var obj = {a:3, b:2, c:4};
for (var prop in obj) {
 if(obj.hasOwnProperty(prop)) {
 console.log("o." + prop + " = " + obj[prop]);
 }
}
// out: o.a = 3, o.b = 2, o.c = 4

Whereas JS arrays have a set of native functional iterator methods (map, reduce, filter, every, sum,
reduceRight), Objects—in their guise as pseudo-dictionaries—don’t. The good news is that the Object
class has recently acquired some useful additional methods which fill this gap. So you can iterate through the
key-value pairs using the entries method:

var obj = {a:3, b:2, c:4};
for (const [key, value] of Object.entries(object1)) {
 console.log(`${key}: ${value}`);
}

19

20

// out: a: 3
 b: 2 ...

note the string template form ${foo} for printing variables.

Conditionals: if, else, elif, switch
Section C in Examples 1-3 and 1-4 shows Python and JavaScript conditionals in action. Aside from
JavaScript’s bracket fetish, the statements are very similar; the only real difference being Python’s extra elif
keyword, a convenient conjunction of else if.

Though much requested, Python does not have the switch statement found in most high-level languages. JS
does, allowing you to do this:

switch(expression){
 case value1:
 // execute if expression === value1
 break; // optional end expression
 case value2:
 //...
 default:
 // if other matches fail

File Input and Output
Browser-based JavaScript has no real equivalent of file input and output (I/O), but Python’s is as simple as
could be:

READING A FILE
f = open("data.txt") # open file for reading

for line in f: # iterate over file lines
 print(line)

lines = f.readlines() # grab all lines in file into array
data = f.read() # read all of file as single string

WRITING TO A FILE
f = open("data.txt", 'w')
use 'w' to write, 'a' to append to file
f.write("this will be written as a line to the file")
f.close() # explicitly close the file

One much recommended best practice is to use Python’s with, as context manager when opening files. This
ensures they are closed automatically when leaving the block, essentially providing syntactic sugar for a try,
except, finally block. Here’s how to open a file using with, as:

with open("data.txt") as f:
 lines = f.readlines()
 ...

JavaScript does, however, have the roughtly analagous fetch method for fetching a resource from the
network, based on its URL. So to fetch a dataset from the web-site’s server, in the static/data directory you do
this:

fetch('/static/data/nobel_winners.json')
 .then(function(response) {
 console.log(response.json())
})
Out:
[{name: 'Albert Einstein', category: 'Physics'...

The Fetch API is thoroughly documented at Mozilla.

Classes and Prototypes
Possibly the cause of more confusion that any other topic is JavaScript’s choice of prototypes rather than
classical classes as its chief object-oriented programming (OOP) element. I have come to appreciate the
concept of prototypes, if not its JS implementation, which could have been cleaner. Nevertheless, once you get
the basic principle, you may find that it is actually a better mental model for much of what we do as
programmers than classical OOP paradigms.

I remember, when I first started my forays into more advanced languages like C++, falling for the promise of
OOP, particularly class-based inheritance. Polymorphism was all the rage and Shape classes were being
subclassed to rectangles and ellipses, which were in turn subclassed to more specialized squares and circles.

It didn’t take long to realize that the clean class divisions found in the textbooks were rarely found in real
programming and that trying to balance generic and specific APIs quickly became fraught. In this sense, I find
composition and mix-ins much more useful as a programming concept than attempts at extended subclassing
and often avoid all these by using functional programming techniques, particularly in JavaScript. Nevertheless,
the class/prototype distinction is an obvious difference between the two languages, and the more you
understand its nuances, the better you’ll code.

Python’s classes are fairly simple affairs and, as with most of the language, easy to use. I tend to think of them
these days as a handy way to encapsulate data with a convenient API, and rarely extend sub-classing beyond
one generation. Here’s a simple example:

class Citizen(object):

 def __init__(self, name, country):
 self.name = name
 self.country = country

 def __str__(self):
 return 'Citizen %s from %s'%(self.name, self.country)

 def print_details(self):
 print('Citizen %s from %s'%(self.name, self.country))

groucho = Citizen('Groucho M.', 'Freedonia')
print(groucho) # or groucho.print_details()
Out:
Citizen Groucho M. from Freedonia

Python classes have a number of double-underscored special methods, __init__ being the most
common, called when the class instance is created. All instance methods have a first, explicit self
argument (you could name it something else, but it’s a very bad idea), which refers to the instance. In this
case, we use it to set name and country properties.You can override the class’s string method, which is used when the print function is called on an
instance.Creates a new Citizen instance, initialized with name and country.

Python follows a fairly classical pattern of class inheritance. It’s easy to do, which is probably why Pythonistas
make a lot of use of it. Let’s customize the Citizen class to create a (Nobel Prize) Winner class with a
couple of extra properties:

class Winner(Citizen):

 def __init__(self, name, country, category, year):
 super(Winner, self).__init__(name, country)
 self.category = category

21

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

 self.year = year

 def __str__(self):
 return 'Nobel winner %s from %s, category %s, year %s'\
 %(self.name, self.country, self.category,\
 str(self.year))

w = Winner('Albert E.', 'Switzerland', 'Physics', 1921)
w.print_details()
Out:
Nobel prize-winner Albert E. from Switzerland, category Physics,
year 1921

We want to reuse the superclass Citizen’s __init__ method, using this Winner instance as self.
The super method scales the inheritance tree one branch from its first argument, supplying the second as
instance to the class-instance method.

I think the best article I have read on the key difference between JavaScript’s prototypes and classical classes is
Reginald Braithwaite’s “OOP, JavaScript, and so-called Classes”. This quote sums up the difference between
classes and prototypes as nicely as any I’ve found:

The difference between a prototype and a class is similar to the difference between a model home and a
blueprint for a home.

When you instantiate a C++ or Python class, a blueprint is followed, creating an object and calling its various
constructors in the inheritance tree. In other words, you start from scratch and build a nice, pristine new class
instance.

With JavaScript prototypes, you start with a model home (object) that has rooms (methods). If you want a new
living room, you can just replace the old one with something in better colors. If you want a new conservatory,
then just make an extension. But rather than building from scratch with a blueprint, you’re adapting and
extending an existing object.

With that necessary theory out of the way and the reminder that object inheritance is useful to know but hardly
ubiquitous in dataviz, let’s see a simple JavaScript prototype object in Example 1-5.

Example 1-5. A simple JavaScript object
var Citizen = function(name, country){
 this.name = name;
 this.country = country;
};

Citizen.prototype = {
 logDetails: function(){
 console.log(`Citizen ${this.name} from ${this.country}`);
 }
};

var c = new Citizen('Groucho M.', 'Freedonia');

c.logDetails();
Out:
Citizen Groucho M. from Freedonia

typeof(c) # objectThis function is essentially an initialiser, invoked by the new operator.

this is an implicit reference to the calling context of the function. For now, it behaves as you would
expect and even though it looks a little like Python’s self, the two are quite different, as we’ll see.The methods specified here will both override any prototypical methods up the inheritance chain and be
inherited by any objects derived from Citizen.
new is used to create a new object, set its prototype to that of the Citizen constructor function, and then
call the Citizen constructor function on the new object.

http://raganwald.com/2015/05/11/javascript-classes.html

JavaScript has recently acquired some syntactic sugar allowing classes to be declared. This essentially wraps
the Object based form (see Example 1-5) in something more familiar to programmers coming from class
based languages like Java and C#. I think it’s fair to say that classes haven’t really taken off in frontend,
browser-based JavaScript, having been usurped somewhat by new frameworks with an emphasis on reusable
components (e.g. React, Vue, Svelte). Here’s how we would implement the Citizen Object shown in
Example 1-5:

class Citizen {
 constructor(name, country) {
 this.name = name
 this.country = country
 }

 logDetails() {
 console.log(`Citizen ${this.name} from ${this.country}`)
 }
}

const c = new Citizen('Groucho M.', 'Freedonia')

SELF VERSUS THIS
At first glance, it would be easy enough to assume that Python’s self and JavaScript’s this are
essentially the same, the latter being an implicit version of the former, which is supplied to all class instance
methods. Actually, this and self are significantly different. Let’s use our bilingual Citizen class to
demonstrate.

Python’s self is a variable supplied to each class method (you can call it anything you like, but it’s not
advisable), representing the class instance. But this is a keyword that refers to the object calling the
method. This calling object can be different from the method’s object instance, and JavaScript provides the
call, bind, and apply function methods to allow you to exploit this fact.

Let’s use the call method to change the calling object of a print_details method and therefore the
reference for this, used in the method to get the citizen’s name:

let groucho = new Citizen('Groucho M.', 'Freedonia');
let harpo = new Citizen('Harpo M.', 'Freedonia');

groucho.logDetails.call(harpo);
Out:
"Citizen Harpo M. from Freedonia"

So JavaScript’s this is a much more malleable proxy than Python’s self, offering more freedom but
also the responsibility of tracking calling context and, should you use it, making sure new is always used in
creating objects.

I included Example 1-5, which shows new in JavaScript object instantiation, because you will run into its use a
fair deal. But the syntax is already a little awkward and gets quite a bit worse when you try to do inheritance.
Ecmascript 5 introduced the Object.create method, a better way to create objects and to implement
inheritance. I’d recommend using it in your own code, but new will probably crop up in some third-party
libraries.

Let’s use Object.create to create a Citizen and its Winner inheritor. To emphasize, JavaScript has
many ways to do this, but Example 1-6 shows the cleanest I have found and my personal pattern.

Example 1-6. Prototypical inheritance with Object.create

22

https://en.wikipedia.org/wiki/Syntactic_sugar
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function

var Citizen = {
 setCitizen: function(name, country){
 this.name = name;
 this.country = country;
 return this;
 },
 printDetails: function(){
 console.log('Citizen ' + this.name + ' from ',\
 + this.country);
 }
};

let Winner = Object.create(Citizen);

Winner.setWinner = function(name, country, category, year){
 this.setCitizen(name, country);
 this.category = category;
 this.year = year;
 return this;
};

Winner.logDetails = function(){
 console.log('Nobel winner ' + this.name + ' from ' +
 this.country + ', category ' + this.category + ', year ' +
 this.year);
};

let albert = Object.create(Winner)
 .setWinner('Albert Einstein', 'Switzerland', 'Physics', 1921);

albert.logDetails();
Out:
Nobel winner Albert Einstein from Switzerland, category
Physics, year 1921Citizen is now an object rather than a constructor function. Think of this as the base house for any new

buildings such as Winner.

To reiterate, prototypical inheritance is not seen that often in JavaScript dataviz, particularly the 800-pound
gorilla D3 with its emphasis on declarative and functional patterns, with raw unencapsulated data being used to
stamp its impression on the web page.

The tricky class/prototype comparison concludes this section on basic syntactic differences. Now let’s look at
some common patterns seen in dataviz work with Python and JS.

Differences in Practice
The syntactic differences between JS and Python are important to know and thankfully outweighed by their
syntactic similarities. The meat and potatoes of imperative programming, loops, conditionals, data declaration,
and manipulation is much the same. This is all the more so in the specialized domain of data processing and
data visualization where the languages’ first-class functions allow common idioms.

What follows is a less-than-comprehensive list of some important patterns and idioms seen in Python and
JavaScript, from the perspective of a data visualizer. Where possible, a translation between the two languages is
given.

Method Chaining
A common JavaScript idiom is method chaining, popularized by its most popular library, jQuery, and much
used in D3. Method chaining involves returning an object from its own method in order to call another method
on the result, using dot notation:

let sel = d3.select('#viz')
 .attr('width', '600px')
 .attr('height', '400px')
 .style('background', 'lightgray');

The attr method returns the D3 selection that called it, which is then used to call another attr method.

Method chaining is not much seen in Python, which generally advocates one statement per line in keeping with
simplicity and readability.

Enumerating a List
Often it’s useful to iterate through a list while keeping track of the item’s index. Python has the very handy
built-in enumerate function for just this reason:

names = ['Alice', 'Bob', 'Carol']

for i, n in enumerate(names):
 print('%d: %s'%(i, n))

Out:
0: Alice
1: Bob
2: Carol

JavaScript’s list methods, such as forEach and the functional map, reduce, and filter, supply the
iterated item and its index to the callback function:

let names = ['Alice', 'Bob', 'Carol'];

names.forEach(function(n, i){
 console.log(i + ': ' + n);
});

Out:
0: Alice
1: Bob
2: Carol

Tuple Unpacking
One of the first cool tricks Python initiates come across uses tuple unpacking to switch variables:

(a, b) = (b, a)

Note that the brackets are optional. This can be put to more practical purpose as a way of reducing the
temporary variables, such as in a Fibonacci function:

def fibonacci(n):
 x, y = 0, 1
 for i in range(n):
 print(x)
 x, y = y, x + y
fibonacci(6) -> 0, 1, 1, 2, 3, 5

If you want to ignore one of the unpacked variables, use an underscore:

winner = 'Albert Einstein', 'Physics', 1921, 'Swiss'

name, _, _, nationality = winner

The JavaScript language is adapting rapidly and has recently acquired some very powerful destructuring
abilities. With the addition of the spread operator (...) this enables some very succinct data manipulation:

let a, b, rem

[a, b] = [1, 2]
swap variables
[a, b] = [b, a]
using the spread-operator
[a, b, ...rem] = [1, 2, 3, 4, 5, 6,] # rem = [3, 4, 5, 6]

Unlike in Python you still need to declare any variables you are going to use.

Collections
One of the most useful Python “batteries” is the collections module. This provides some specialized
container datatypes to augment Python’s standard set. It has a deque, which provides a list-like container with
fast appends and pops at either end; an OrderedDict, which remembers the order entries were added; a
defaultdict, which provides a factory function to set the dictionary’s default; and a Counter container
for counting hashable objects, among others. I find myself using the last three a lot. Here are a few examples:

from collections import Counter, defaultdict, OrderedDict

items = ['F', 'C', 'C', 'A', 'B', 'A', 'C', 'E', 'F']

cntr = Counter(items)
print(cntr)
cntr['C'] -=1
print(cntr)
Out:
Counter({'C': 3, 'A': 2, 'F': 2, 'B': 1, 'E': 1})
Counter({'A': 2, 'C': 2, 'F': 2, 'B': 1, 'E': 1})

d = defaultdict(int)

for item in items:
 d[item] += 1

d
Out:
defaultdict(<type 'int'>, {'A': 2, 'C': 3, 'B': 1, 'E': 1, 'F': 2})

OrderedDict(sorted(d.items(), key=lambda i: i[1]))
Out:
OrderedDict([('B', 1), ('E', 1), ('A', 2), ('F', 2), ('C', 3)])

Sets the dictionary default to an integer, with value 0 by default.If the item-key doesn’t exist, its value is set to the default of 0 and 1 added to that.Gets the list of items in the dictionary d as key-value tuple pairs, sorts using the integer value, and then
creates an OrderedDict with the sorted list.The OrderedDict remembers the (sorted) order of the items as they were added to it.

You can get more details on the collections module from here.

If you want to replicate some of Python’s collections function using more conventional JavaScript
libraries, underscore (or its functionally identical replacement lodash) is a good place to start. These libraries
offer some enhanced functional programming utilities. Let’s take a quick look at this very handy tool.

Underscore

23

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://docs.python.org/3/library/collections.html

Underscore is probably the most popular JavaScript library after the ubiquitous jQuery and offers a bevy of
functional programming utilities for the JavaScript dataviz programmer. The easiest way to use underscore is to
use a content delivery network (CDN) to load it remotely (these loads will be cached by your browser, making
things very efficient for common libraries), like so:

<script src="https://cdnjs.cloudflare.com/ajax/libs/
 underscore.js/1.13.1/underscore-min.js"></script>

Underscore has loads of useful functions. There is, for example, a countBy method, which serves the same
purpose as the Python’s collections counter just discussed:

var items = ['F', 'C', 'C', 'A', 'B', 'A', 'C', 'E', 'F'];

_.countBy(items)
Out:
Object {F: 2, C: 3, A: 2, B: 1, E: 1}

Now you see why the library is called underscore.

As we’ll now see, the inclusion in modern JavaScript of native functional methods (map, reduce, filter)
and a forEach iterator for arrays has made underscore slightly less indispensable, but it still has some great
utilities to augment vanilla JS. With a little chaining, you can produce extremely terse but very powerful code.
Underscore was my gateway drug to functional programming in JavaScript, and the idioms are just as addictive
today. Check out underscore’s repertoire of utilities here.

Let’s have a look at underscore in action, tackling a more involved task:

journeys = [
 {period:'morning', times:[44, 34, 56, 31]},
 {period:'evening', times:[35, 33],},
 {period:'morning', times:[33, 29, 35, 41]},
 {period:'evening', times:[24, 45, 27]},
 {period:'morning', times:[18, 23, 28]}
];

var groups = _.groupBy(journeys, 'period');
var mTimes = _.pluck(groups['morning'], 'times');
mTimes = _.flatten(mTimes);
var average = function(l){
 var sum = _.reduce(l, function(a,b){return a+b},0);
 return sum/l.length;
};
console.log('Average morning time is ' + average(mTimes));
Out:
Average morning time is 33.81818181818182

Our array of morning times arrays ([[44, 34, 56, 31], [33…]]) needs to be flattened into a a single array of
numbers.

Functional Array Methods and List Comprehensions
I find myself using underscore a lot less since the addition, with Ecmascript 5, of functional methods to
JavaScript arrays. I don’t think I’ve used a conventional for loop since then, which, given the ugliness of JS
for loops, is a very good thing.

Once you get used to processing arrays functionally, it’s hard to consider going back. Combined with JS’s
anonymous functions, it makes for very fluid, expressive programming. It’s also an area where method chaining
seems very natural. Let’s look at a highly contrived example:

http://underscorejs.org/

let nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

let sum = nums.filter(function(o){ return o%2 })
 .map(function(o){ return o * o})
 .reduce(function(total, current){return total + next});

console.log('Sum of the odd squares is ' + sum);

Filters the list for odd numbers (i.e., returning 1 for the modulus (%) 2 operation).
map produces a new list by applying a function to each member (i.e., [1, 3, 5…] → [1, 9, 25…]).
reduce processes the resultant mapped list in sequence, providing the current (in this case, summed) value
(total) and the item value (next). By default, the initial value of the first argument (total) is 0.

Python’s powerful list comprehensions can emulate the previous example easily enough:

nums = range(10)

odd_squares = [x * x for x in nums if x%2]
sum(odd_squares)
Out:
165

Python has a handy built-in range function, which can also take a start, end, and step (e.g., range(2, 8, 2)
→ [2, 4, 6])The if condition tests for oddness of x, and any numbers passing this filter are squared and inserted into
the list.Python also has a built-in and often used sum statement.

TIP
Python’s list comprehensions can use recursive control structures, such as applying a second for/if expression to the iterated items.
Although this can create terse and powerful lines of code, it goes against the grain of Python’s readability and I discourage its use. Even
simple list comprehensions are less than intuitive and, as much as it appeals to the leet hacker in all of us, you risk creating
incomprehensible code.

Python’s list comprehensions work well for basic filtering and mapping. They do lack the convenience of
JavaScript’s anonymous functions (which are fully fledged, with their own scope, control blocks, exception
handling, etc.), but there are arguments against the use of anonymous functions. For example, they are not
reusable and, being unnamed, they make it hard to follow exceptions and debug. See here for some persuasive
arguments. Having said that, for libraries like D3, replacing the small, throwaway anonymous functions used to
set DOM attributes and properties with named ones would be far too onerous and would just add to the
boilerplate.

Python does have functional lambda expressions, which we’ll look at in the next section, but for full functional
processing in Python by necessity and JavaScript for best practice, we can use named functions to increase our
control scope. For our simple odd-squares example, named functions are a contrivance—but note that they
increase the first-glance readability of the list comprehension, which becomes much more important as your
functions get more complex.

items = [1, 2, 3, 4, 5]

def is_odd(x):
 return x%2

def sq(x):
 return x * x

sum([sq(x) for x in items if is_odd(x)])

With JavaScript, a similar contrivance can also increase readability and facilitate DRY code:24

http://bit.ly/1Yxkej3

var isOdd = function(x){ return x%2; };

sum = l.filter(isOdd)
...

Map, Reduce, and Filter with Python’s Lambdas
Although Python lacks anonymous functions, it does have lambdas, which are nameless expressions that take
arguments. Though lacking the bells and whistles of JavaScript’s anonymous functions, these are a powerful
addition to Python’s functional programming repertoire, especially when combined with its functional methods.

NOTE
Python’s functional built-ins (map, reduce, filter methods, and lambda expressions) have a checkered past. It’s no secret that the
creator of Python wanted to remove them from the language. The clamor of disapproval led to their reluctant preservation. With the
recent trend toward functional programming, this looks like a very good thing. They’re not perfect but are far better than nothing. And
given JavaScript’s strong functional emphasis, they’re a good way to leverage skills acquired in that language.

Python’s lambdas take a number of parameters and return an operation on them, using a colon separator to
define the function block, in much the same way that standard Python functions only pared to the bare
essentials and with an implicit return. The following example shows a few lambdas employed in functional
programming:

from functools import reduce # if using Python 3+

nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

odds = filter(lambda x: x % 2, nums)
odds_sq = map(lambda x: x * x, odds)
reduce(lambda x, y: x + y, odds_sq)
Out:
165

Here, the reduce method provides two arguments to the lambda, which uses them to return the expression
after the colon.

JavaScript Closures and the Module Pattern
One of the key concepts in JavaScript is that of the closure, which is essentially a nested function declaration
that uses variables declared in an outer (but not global) scope that are kept alive after the function is returned.
Closures allow for a number of very useful programming patterns and are a common feature of the language.

Let’s look at possibly the most common usage of closures and one we’ve already seen exploited in our module
pattern (Example 1-2): exposing a limited API while having access to essentially private member variables.

A simple example of a closure is this little counter:

function Counter(inc) {
 let count = 0;
 let add = function() {
 count += inc;
 console.log('Current count: ' + count);
 }
 return add;
}

let inc2 = Counter(2);
inc2();
Out:
Current count: 2

inc2();
Out:
Current count: 4

The add function gets access to the essentially private, outer-scope count and inc variables.This returns an add function with the closure variables, count (0) and inc (2).Calling inc2 calls add, updating the closed count variable.

We can extend the Counter to add a little API. This technique is the basis of JavaScript modules and many
simple libraries, particularly when using script-based JavaScript . In essence, it selectively exposes public
methods while hiding private methods and variables, which is generally seen as good practice in the
programming world:

function Counter(inc) {
 let count = 0;
 let api = {};
 api.add = function() {
 count += inc;
 console.log('Current count: ' + count);
 }
 api.sub = function() {
 count -= inc;
 console.log('Current count: ' + count)
 }
 api.reset = function() {
 count = 0;
 console.log('Count reset to 0')
 }

 return api;
}

cntr = Counter(3);
cntr.add() // Current count: 3
cntr.add() // Current count: 6
cntr.sub() // Current count: 3
cntr.reset() // Count reset to 0

Closures have all sorts of uses in JavaScript and I’d recommend getting your head around them—you’ll see
them a lot as you start investigating other people’s code. These are three particularly good web articles that
provide a lot of good use cases for closures:

Mozilla’s introduction

“JavaScript Module Pattern: In-Depth” by Ben Cherry

“Use Cases for JavaScript Closures” by Juriy Zaytsev

Python has closures, but they are not used nearly as much as JavaScript’s, perhaps because of a few quirks that,
though surmountable, make for some slightly awkward code. To demonstrate, Example 1-7 tries to replicate the
previous JavaScript counter.

Example 1-7. A first-pass attempt at a Python counter closure
def get_counter(inc):
 count = 0
 def add():
 count += inc
 print('Current count: ' + str(count))
 return add

If you create a counter with get_counter (Example 1-7) and try to run it, you’ll get an
UnboundLocalError:

25

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
https://msdn.microsoft.com/en-us/magazine/ff696765.aspx

cntr = get_counter(2)
cntr()
Out:
...
UnboundLocalError: local variable 'count' referenced before
assignment

Interestingly, although we can read the value of count within the add function (comment out the count +=
inc line to try it), attempts to change it throw an error. This is because attempts to assign a value to something
in Python assume it is local in scope. There is no count local to the add function and so an error is thrown.

In Python 3, we can get around the error in Example 1-7 by using the nonlocal keyword to tell Python that
count is in a nonlocal scope:

...
def add():
 nonlocal count
 count += inc
...

If you are obliged to use Python 2+ (please try and upgrade), we can use a little dictionary hack to allow
mutation of our closed variables:

def get_counter(inc):
 vars = {'count': 0}
 def add():
 vars['count'] += inc
 print('Current count: ' + str(vars['count']))
 return add

This hack works because we are not assigning a new value to vars but are instead mutating an existing
container, which is perfectly valid even if it is out of local scope.

As you can see, with a bit of effort, JavaScripters can transfer their closure skills to Python. The use cases are
similar, but Python, being a richer language with lots of useful batteries included, has more options to apply to
the same problem. Probably the most common use of closures is in Python’s decorators.

Decorators are essentially function wrappers that extend the function’s utility without having to alter the
function itself. They’re a relatively advanced concept, but you can find a user-friendly introduction on The
Code Ship website.

This Is That
One JavaScript hack you’ll see a lot of is a consequence of closures and the slippery this keyword. If you
wish to refer to the outer-scoped this in a child function, you must use a proxy because the child’s this will
be bound according to context. The convention is to use that to refer to this. The code is less confusing
than the explanation:

function outer(bar){
 this.bar = bar;
 var that = this;
 function inner(baz){
 this.baz = baz * that.bar;
 // ...

that refers to the outer function’s this.

This concludes my cherry-picked selection of patterns and hacks that I find myself using a lot in dataviz work.
You’ll doubtless acquire your own, but I hope these give you a leg up.

http://thecodeship.com/patterns/guide-to-python-function-decorators/

A Cheat Sheet
As a handy reference guide, Figures 1-2 to 1-7 include a set of cheat sheets to translate basic operations
between Python and JavaScript.

Figure 1-2. Some basic syntax

Figure 1-3. Booleans

Figure 1-4. Loops and iterations

Figure 1-5. Conditionals

Figure 1-6. Containers

Figure 1-7. Classes and prototypes

Summary
I hope this chapter has shown that JavaScript and Python have a lot of common syntax and that most common
idioms and patterns from one of the languages can be expressed in the other without too much fuss. The meat
and potatoes of programming, iteration, conditionals, and basic data manipulation is simple in both languages,
and the translation of functions is straightforward. If you can program in one to any degree of competency, the
threshold to entry for the other is low. That’s the huge appeal of these simple scripting languages, which have a
lot of common heritage.

I provided a list of patterns, hacks, and idioms I find myself using frequently in dataviz work. I’m sure this list
has its idiosyncrasies, but I’ve tried to tick the obvious boxes.

Treat this as part tutorial, part reference for the chapters to come. Anything not covered here will be dealt with
when introduced.

1 One particularly annoying little gotcha is that while Python uses pop to remove a list item, it uses append—not push—to add an item.
JavaScript uses push to add an item, whereas append is used to concatenate arrays.

2 The ascent of node.js has extended JavaScript to the server.

3 This is changing with libraries like TensorFlowJS and DanfoJS (a JavaScript Pandas-alike based on TensorFlow), but JS is still well behind
Python, R, and others.

4 This version is based on the Qt GUI library.

5 At the cost of a running a Python interpreter on the server.

6 The constraint of having to deliver JS scripts over the Web via HTTP is largely responsible for this.

7 This means any blocking-script-loading calls occur after the page’s HTML has rendered.

8 You can eliminate the possibility of a missing var by using the Ecmascript 5 'use strict' directive.

9 This is a good thing for reasons outlined in PEP 3105.

10 This is actually done by JavaScript compressors to reduce the file size of downloaded web pages.

11 The soft versus hard tab debate generates controversy, with much heat and little light. PEP 8 stipulates spaces, which is good enough for me.

12 It could be two or even three spaces, but this number must be consistent throughout the module.

https://nodejs.org/en/
https://github.com/tensorflow/tfjs
https://github.com/opensource9ja/danfojs
http://www.qt.io/
https://www.python.org/dev/peps/pep-3105/

13 The quite fair assumption that JavaScript uses UTF-16 has been the cause of much bug-driven misery. See here for an interesting analysis.

14 The change to Unicode strings in Python 3 is a big one. Given the confusion that often attends Unicode de/encoding, it’s worth reading a little
bit about it. Python 2 used strings of bytes.

15 parseInt can do quite a bit more than round. For example, parseInt(12.5px) gives 12, first removing the px and then casting the
string to a number. It also has a second radix argument to specify the base of the cast. See here for the specifics.

16 Because all numbers in JavaScript are floating point, it can only support 53-bit integers. Using larger integers (such as the commonly used 64
bit) can result in discontinuous integers. See http://www.2ality.com/2012/07/large-integers.html for further information.

17 This makes iterating over their properties a little trickier than it might be. See here for more details.

18 For the curious, there’s a nice summation here.

19 This is one area where JS beats Python hands down and which finds many of us wishing for similar functionality in Python.

20 Added with Ecmascript 5 and available on all modern browsers.

21 I mentioned to a talented programmer friend that I was faced with the challenge of explaining prototypes to Python programmers and he
pointed out that most JavaScripters could probably do with some pointers too. There’s a lot of truth in this and many JSers do manage to be
productive by using prototypes in a classy way, hacking their way around the edge cases.

22 This is another reason to use Ecmascript 5’s 'use strict;' injunction, which calls attention to such mistakes.

23 My personal choice for performance reasons.

24 Don’t Repeat Yourself (DRY) is a solid coding convention.

25 Modern JavaScript has proper modules which can import and export encapsulated variables. There is an overhead to using these as they
currently require a build-phase to make ready for the browser.

https://mathiasbynens.be/notes/javascript-encoding
https://docs.python.org/3/howto/unicode.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/parseInt
http://www.2ality.com/2012/07/large-integers.html
http://stackoverflow.com/questions/8312459/iterate-through-object-properties
https://javascriptweblog.wordpress.com/2010/07/06/function-declarations-vs-function-expressions/

Chapter 2. Reading and Writing
Data with Python

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the third chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sevans@oreilly.com.

One of the fundamental skills of any data visualizer is the ability to move
data around. Whether your data is in an SQL database, a comma-separated-
value (CSV) file, or in some more esoteric form, you should be comfortable
reading the data, converting it, and writing it into a more convenient form if
need be. One of Python’s great strengths is how easy it makes manipulating
data in this way. The focus of this chapter is to bring you up to speed with
this essential aspect of our dataviz toolchain.

This chapter is part tutorial, part reference, and sections of it will be
referred to in later chapters. If you know the fundamentals of reading and
writing Python data, you can cherry-pick parts of the chapter as a refresher.

Easy Does It
I remember when I started programming back in the day (using low-level
languages like C) how awkward data manipulation was. Reading from and

mailto:sevans@oreilly.com

writing to files was an annoying mixture of boilerplate code, hand-rolled
kludges, and the like. Reading from databases was equally difficult, and as
for serializing data, the memories are still painful. Discovering Python was
a breath of fresh air. It wasn’t a speed demon, but opening a file was pretty
much as simple as it could be:

file = open('data.txt')

Back then, Python made reading from and writing to files refreshingly easy,
and its sophisticated string processing made parsing the data in those files
just as easy. It even had an amazing module called Pickle that could
serialize pretty much any Python object.

In the years since, Python has added robust, mature modules to its standard
library that make dealing with CSV and JSON files, the standard for web
dataviz work, just as easy. There are also some great libraries for interacting
with SQL databases such as SQLAlchemy, my thoroughly recommended
go-to. The newer NoSQL databases are also well served. MongoDB is the
most popular of these newer document-based databases, and Python’s
pymongo library, which is demonstrated later in the chapter, makes
interacting with it a relative breeze.

Passing Data Around
A good way to demonstrate how to use the key data-storage libraries is to
pass a single data packet among them, reading and writing it as we go. This
will give us an opportunity to see in action the key data formats and
databases employed by data visualizers.

The data we’ll be passing around is probably the most commonly used in
web visualizations, a list of dictionary-like objects (see Example 2-1). This
dataset is transferred to the browser in JSON form, which is, as we’ll see,
easily converted from a Python dictionary.

Example 2-1. Our target list of data objects

https://en.wikipedia.org/wiki/JSON

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 {'category': 'Physics',
 'name': 'Paul Dirac',
 'nationality': 'British',
 'sex': 'male',
 'year': 1933},
 {'category': 'Chemistry',
 'name': 'Marie Curie',
 'nationality': 'Polish',
 'sex': 'female',
 'year': 1911}
]

We’ll start by creating a CSV file from the Python list shown in Example 2-
1 as a demonstration of reading (opening) and writing system files.

The following sections assume you’re in a work directory with a data
subdirectory at hand. You can run the code from a Python interpreter or file.

Working with System Files
In this section, we’ll create a CSV file from a Python list of dictionaries
(Example 2-1). Typically, you would do this using the csv module, which
we’ll demonstrate after this section, so this is just a way of demonstrating
basic Python file manipulation.

First let’s open a new file, using w as a second argument to indicate we’ll be
writing data to it.

f = open('data/nobel_winners.csv', 'w')

Now we’ll create our CSV file from the nobel_winners dictionary
(Example 2-1):

cols = nobel_winners[0].keys()
cols = sorted(cols)

with open('data/nobel_winners.csv', 'w') as f:
 f.write(','.join(cols) + '\n')

 for o in nobel_winners:
 row = [str(o[col]) for col in cols]
 f.write(','.join(row) + '\n')

Gets our data columns from the keys of the first object (i.e.,
['category', 'name', ...]).Sorts the columns in alphabetical order.Uses Python’s with statement to guarantee the file is closed on leaving
the block or if any exceptions occur.
join creates a concatenated string from a list of strings (cols here),
joined by the initial string (i.e., “category,name,..”).Creates a list using the column keys to the objects in
nobel_winners.

Now that we’ve created our CSV file, let’s use Python to read it and make
sure everything is correct:

with open('data/nobel_winners.csv') as f:
 for line in f.readlines():
 print(line)

Out:
category,name,nationality,sex,year
Physics,Albert Einstein,Swiss,male,1921
Physics,Paul Dirac,British,male,1933
Chemistry,Marie Curie,Polish,female,1911

As the previous output shows, our CSV file is well formed. Let’s use
Python’s built-in csv module to first read it and then create a CSV file the
right way.

CSV, TSV, and Row-Column Data Formats
Comma-separated values (CSV) or their tab-separated cousins (TSV) are
probably the most ubiquitous file-based data formats and, as a data
visualizer, these will often be the forms you’ll receive to work your magic
with. Being able to read and write CSV files and their various quirky

variants, such as pipe- or semicolon-separated or those using ` in place of
the standard double quotes, is a fundamental skill; Python’s csv module is
capable of doing pretty much all your heavy lifting here. Let’s put it
through its paces reading and writing our nobel_winners data:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Writing our nobel_winners data (see Example 2-1) to a CSV file is a
pretty simple affair. csv has a dedicated DictWriter class that will turn
our dictionaries into CSV rows. The only piece of explicit bookkeeping we
have to do is write a header to our CSV file, using the keys of our
dictionaries as fields (i.e., “category, name, nationality, sex”):

import csv

with open('data/nobel_winners.csv', 'w') as f:
 fieldnames = nobel_winners[0].keys()
 fieldnames = sorted(fieldnames)
 writer = csv.DictWriter(f, fieldnames=fieldnames)
 writer.writeheader()
 for w in nobel_winners:
 writer.writerow(w)

You need to explicitly tell the writer which fieldnames (in this case,
the 'category', 'name', etc., keys) to use.We’ll sort the CSV header fields alphabetically for readability.Writes the CSV-file header (“category,name,…”).

You’ll probably be reading CSV files more often than writing them. Let’s
read back the nobel_winners.csv file we just wrote.

If you just want to use csv as a superior and eminently adaptable file line-
reader, a couple of lines will produce a handy iterator, which can deliver
your CSV rows as lists of strings:

1

with open('data/nobel_winners.csv') as f:
 reader = csv.reader(f)
 for row in reader:
 print(row)

Out:
['category', 'name', 'nationality', 'sex', 'year']
['Physics', 'Albert Einstein', 'Swiss', 'male', '1921']
['Physics', 'Paul Dirac', 'British', 'male', '1933']
['Chemistry', 'Marie Curie', 'Polish', 'female', '1911']

Iterates over the reader object, consuming the lines in the file.

Note that the numbers are read in string form. If you want to manipulate
them numerically, you’ll need to convert any numeric columns to their
respective type, which is integer years in this case.

A more convenient way to consume CSV data is to convert the rows into
Python dictionaries. This record form is also the one we are using as our
conversion target (a list of dicts). csv has a handy DictReader for
just this purpose:

import csv

with open('data/nobel_winners.csv') as f:
 reader = csv.DictReader(f)
 nobel_winners = list(reader)

nobel_winners

Out:
[{'category': 'Physics', 'nationality': 'Swiss', \
 'year': '1921', 'name': 'Albert Einstein', 'sex': 'male'},
{'category': 'Physics', 'nationality': 'British', \
 'year': '1933', 'name': 'Paul Dirac', 'sex': 'male'},
{'category': 'Chemistry', 'nationality': 'Polish', \
 'year': '1911', 'name': 'Marie Curie', 'sex': 'female'}]

Inserts all of the reader items into a list.

As the output shows, we just need to cast the dicts year attributes to
integers to make nobel_winners conform to the chapter’s target data
(Example 2-1), thus:

for w in nobel_winners:
 w['year'] = int(w['year'])

The csv readers don’t infer datatypes from your file, and instead interpret
everything as a string. Pandas, Python’s preeminent data-hacking library,
will try to guess the correct type of the data columns, usually successfully.
We’ll see this in action in the later dedicated Pandas chapters.

csv has a few useful arguments to help parse members of the CSV family:

dialect

By default, 'excel'; specifies a set of dialect-specific parameters.
excel-tab is a sometimes used alternative.

delimiter

Files are usually comma-separated, but they could use |, : or ' '
instead.

quotechar

By default, double quotes are used, but you occasionally find | or `
instead.

You can find the full set of csv parameters in the online Python docs.

Now that we’ve successfully written and read our target data using the csv
module, let’s pass on our CSV-derived nobel_winners dict to the
json module.

JSON
In this section we’ll write and read our nobel_winners data using
Python’s json module. Let’s remind ourselves of the data we’re using:

nobel_winners = [
 {'category': 'Physics',

https://docs.python.org/3/library/csv.html#csv-fmt-params

 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

For data primitives such as strings, integers, and floats, Python dictionaries
are easily saved (or dumped, in the JSON vernacular) into JSON files, using
the json module. The dump method takes a Python container and a file
pointer, saving the former to the latter:

import json

with open('data/nobel_winners.json', 'w') as f:
 json.dump(nobel_winners, f)

open('data/nobel_winners.json').read()

Out: '[{"category": "Physics", "name": "Albert Einstein",
"sex": "male", "person_data": {"date of birth": "14th March
1879", "date of death": "18th April 1955"}, "year": 1921,
"nationality": "Swiss"}, {"category": "Physics",
"nationality": "British", "year": 1933, "name": "Paul Dirac",
"sex": "male"}, {"category": "Chemistry", "nationality":
"Polish", "year": 1911, "name": "Marie Curie", "sex":
"female"}]'

Reading (or loading) a JSON file is just as easy. We just pass the opened
JSON file to the json module’s load method:

import json

with open('data/nobel_winners.json') as f:
 nobel_winners = json.load(f)

nobel_winners
Out:
[{u'category': u'Physics',
 u'name': u'Albert Einstein',
 u'nationality': u'Swiss',
 u'sex': u'male',
 u'year': 1921},
...

Note that, unlike in our CSV file conversion, the integer type of the year
column is preserved.

json has the methods loads and dumps, which are counterparts to the
file access methods, loading JSON strings to Python containers and
dumping Python containers to JSON strings.

Dealing with Dates and Times
Trying to dump a datetime object to json produces a TypeError:

from datetime import datetime

json.dumps(datetime.now())
Out:
...
TypeError: datetime.datetime(2021, 9, 13, 10, 25, 52, 586792)
is not JSON serializable

When serializing simple datatypes such as strings or numbers, the default
json encoders and decoders are fine. But for more specialized data such as
dates, you will need to do your own encoding and decoding. This isn’t as
hard as it sounds and quickly becomes routine. Let’s first look at encoding
your Python datetimes into sensible JSON strings.

The easiest way to encode Python data containing datetimes is to create
a custom encoder like the one shown in Example 2-2, which is provided to
the json.dumps method as a cls argument. This encoder is applied to
each object in your data in turn and converts dates or datetimes to their
ISO-format string (see “Dealing with Dates, Times, and Complex Data”).

Example 2-2. Encoding a Python datetime to JSON
import datetime
from dateutil import parser
import json

class JSONDateTimeEncoder(json.JSONEncoder):
 def default(self, obj):

https://docs.python.org/3/library/datetime.html#datetime-objects

 if isinstance(obj, (datetime.date, datetime.datetime)):
 return obj.isoformat()
 else:
 return json.JSONEncoder.default(self, obj)

def dumps(obj):
 return json.dumps(obj, cls=JSONDateTimeEncoder) Subclasses a JSONEncoder in order to create customized date-

handling one.Tests for a datetime object and if true, returns the isoformat of
any dates or datetimes (e.g., 2021-11-16T16:41:14.650802).Uses the cls argument to set a custom date encoder.

Let’s see how our new dumps method copes with some datetime data:

now_str = dumps({'time': datetime.datetime.now()})
now_str
Out:
'{"time": "2021-11-16T16:41:14.650802"}'

The time field is correctly converted into an ISO-format string, ready to be
decoded into a JavaScript Date object (see “Dealing with Dates, Times,
and Complex Data” for a demonstration).

While you could write a generic decoder to cope with date strings in
arbitrary JSON files, it’s probably not advisable. Date strings come in so
many weird and wonderful varieties that this is a job best done by hand on
what is pretty much always a known dataset.

The venerable strptime method, part of the datetime.datetime
package, is good for the job of turning a time string in a known format into
a Python datetime instance:

In [0]: from datetime import datetime

In [1]: time_str = '2021/01/01 12:32:11'

In [2]: dt = datetime.strptime(time_str, '%Y/%m/%d %H:%M:%S')

In [3]: dt
Out[2]: datetime.datetime(2021, 1, 1, 12, 32, 11)

2

strptime tries to match the time string to a format string using
various directives such as %Y (year with century) and %H (hour as a
zero-padded decimal number). If successful, it creates a Python
datetime instance. See the Python docs for a full list of the directives
available.

If strptime is fed a time string that does not match its format, it throws a
handy ValueError:

dt = datetime.strptime('1/2/2021 12:32:11', '%Y/%m/%d %H:%M:%S')

ValueError Traceback (most recent call last)
<ipython-input-111-af657749a9fe> in <module>()
----> 1 dt = datetime.strptime('1/2/2021 12:32:11',\
 '%Y/%m/%d %H:%M:%S')
...
ValueError: time data '1/2/2021 12:32:11' does not match
 format '%Y/%m/%d %H:%M:%S'

So to convert date fields of a known format into datetimes for a data
list of dictionaries, you could do something like this:

data = [
 {'id': 0, 'date': '2020/02/23 12:59:05'},
 {'id': 1, 'date': '2021/11/02 02:32:00'},
 {'id': 2, 'date': '2021/23/12 09:22:30'},
]

for d in data:
 try:
 d['date'] = datetime.strptime(d['date'],\
 '%Y/%m/%d %H:%M:%S')
 except ValueError:
 print('Oops! - invalid date for ' + repr(d))
Out:
Oops! - invalid date for {'id': 2, 'date': '2021/23/12 09:22:30'}

Now that we’ve dealt with the two most popular data file formats, let’s shift
to the big guns and see how to read our data from and write our data to SQL
and NoSQL databases.

https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior

SQL
For interacting with an SQL database, SQLAlchemy is the most popular
and, in my opinion, best Python library. It allows you to use raw SQL
instructions if speed and efficiency is an issue, but also provides a powerful
object-relational mapping (ORM) that allows you to operate on SQL tables
using a high-level, Pythonic API, treating them essentially as Python
classes.

Reading and writing data using SQL while allowing the user to treat that
data as a Python container is a complicated process, and though
SQLAlchemy is considerably more user-friendly than a low-level SQL
engine, it is still a fairly complex library. I’ll cover the basics here, using
our data as a target, but encourage you to spend a little time reading some of
the rather excellent documentation on SQLAlchemy. Let’s remind ourselves
of the nobel_winners dataset we’re aiming to write and read:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Let’s first write our target data to an SQLite file using SQLAlchemy,
starting by creating the database engine.

Creating the Database Engine
The first thing you need to do when starting an SQLAlchemy session is to
create a database engine. This engine will establish a connection with the
database in question and perform any conversions needed to the generic
SQL instructions generated by SQLAlchemy and the data being returned.

There are engines for pretty much every popular database, as well as a
memory option, which holds the database in RAM, allowing fast access for

http://www.sqlalchemy.org/library.html#reference

testing. The great thing about these engines is that they are
interchangeable, which means you could develop your code using the
convenient file-based SQLite database and then switch during production to
something a little more industrial, such as Postgresql, by changing a single
config string. Check SQLAlchemy for the full list of engines available.

The form for specifying a database URL is:

dialect+driver://username:password@host:port/database

So, to connect to a 'nobel_winners' MySQL database running on
localhost requires something like the following. Note that
create_engine does not actually make any SQL requests at this point,
but merely sets up the framework for doing so.

engine = create_engine(\
 'mysql://kyran:mypsswd@localhost/nobel_winners')

We’ll use a file-based SQLite database, setting the echo argument to
True, which will output any SQL instructions generated by SQLAlchemy.
Note the use of three backslashes after the colon:

from sqlalchemy import create_engine

engine = create_engine(\
 'sqlite:///data/nobel_winners.db', echo=True)

SQLAlchemy offers various ways to engage with databases, but I
recommend using the more recent declarative style unless there are good
reasons to go with something more low-level and fine-grained. In essence,
with declarative mapping, you subclass your Python SQL-table classes
from a base, and SQLAlchemy introspects their structure and relationships.
See SQLAlchemy for more details.

Defining the Database Tables

3

4

https://docs.sqlalchemy.org/en/14/core/engines.html
http://bit.ly/1tu8qlU

We first create a Base class using declarative_base. This base will
be used to create table classes, from which SQLAlchemy will create the
database’s table schemas. You can use these table classes to interact with
the database in a fairly Pythonic fashion:

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

Note that most SQL libraries require you to formally define table schemas.
This is in contrast to such schema-less NoSQL variants as MongoDB. We’ll
take a look at the Dataset library later in this chapter, which enables
schemaless SQL.

Using this Base, we define our various tables—in our case, a single
Winner table. Example 2-3 shows how to subclass Base and use
SQLAlchemy’s datatypes to define a table schema. Note the
__tablename__ member, which will be used to name the SQL table and
as a keyword to retrieve it, and the optional custom __repr__ method,
which will be used when printing a table row.

Example 2-3. Defining an SQL database table
from sqlalchemy import Column, Integer, String, Enum
// ...

class Winner(Base):
 __tablename__ = 'winners'
 id = Column(Integer, primary_key=True)
 category = Column(String)
 name = Column(String)
 nationality = Column(String)
 year = Column(Integer)
 sex = Column(Enum('male', 'female'))
 def __repr__(self):
 return "<Winner(name='%s', category='%s', year='%s')>"\
%(self.name, self.category, self.year)

Having declared our Base subclass in Example 2-3, we supply its
metadata create_all method with our database engine to create our
database. Because we set the echo argument to True when creating the5

engine, we can see the SQL instructions generated by SQLAlchemy from
the command line:

Base.metadata.create_all(engine)

2021-11-16 17:58:34,700 INFO sqlalchemy.engine.Engine BEGIN
(implicit)
...
CREATE TABLE winners (
 id INTEGER NOT NULL,
 category VARCHAR,
 name VARCHAR,
 nationality VARCHAR,
 year INTEGER,
 sex VARCHAR(6),
 PRIMARY KEY (id)
)...
2021-11-16 17:58:34,742 INFO sqlalchemy.engine.Engine COMMIT

With our new winners table declared, we can start adding winner
instances to it.

Adding Instances with a Session
Now that we have created our database, we need a session to interact with:

from sqlalchemy.orm import sessionmaker

Session = sessionmaker(bind=engine)
session = Session()

We can now use our Winner class to create instances and table rows and
add them to the session:

albert = Winner(**nobel_winners[0])
session.add(albert)
session.new
Out:
IdentitySet([<Winner(name='Albert Einstein', category='Physics',
 year='1921')>])

Python’s handy ** operator unpacks our first nobel_winners
member into key-value pairs: (name='Albert Einstein',
category='Physics'...).
new is the set of any items that have been added to this session.

Note that all database insertions and deletions take place in Python. It’s only
when we use the commit method that the database is altered.

TIP
Use as few commits as possible, allowing SQLAlchemy to work its magic behind the
scenes. When you commit, your various database manipulations should be summarized
by SQLAlchemy and communicated in an efficient fashion. Commits involve
establishing a database handshake and negotiating transactions, which is often a slow
process and one you want to limit as much as possible, leveraging SQLAlchemy’s
bookkeeping abilities to full advantage.

As the new method shows, we have added a Winner to the session. We
can remove the object using expunge, leaving an empty IdentitySet:

session.expunge(albert)
session.new
Out:
IdentitySet([])

Remove the instance from the session (there is an expunge_all
method that removes all new objects added to the session).

At this point, no database insertions or deletions have taken place. Let’s add
all the members of our nobel_winners list to the session and commit
them to the database:

winner_rows = [Winner(**w) for w in nobel_winners]
session.add_all(winner_rows)
session.commit()
Out:
INFO:sqlalchemy.engine.base.Engine:BEGIN (implicit)
...
INFO:sqlalchemy.engine.base.Engine:INSERT INTO winners (name,

category, year, nationality, sex) VALUES (?, ?, ?, ?, ?)
INFO:sqlalchemy.engine.base.Engine:(u'Albert Einstein',
u'Physics', 1921, u'Swiss', u'male')
...
INFO:sqlalchemy.engine.base.Engine:COMMIT

Now that we’ve committed our nobel_winners data to the database,
let’s see what we can do with it and how to recreate the target list in
Example 2-1.

Querying the Database
To access data, you use the session’s query method, the result of which
can be filtered, grouped, and intersected, allowing the full range of standard
SQL data retrieval. You can check out available querying methods in the
SQLAlchemy docs. For now, I’ll quickly run through some of the most
common queries on our Nobel dataset.

Let’s first count the number of rows in our winners’ table:

session.query(Winner).count()
Out:
3

Next, let’s retrieve all Swiss winners:

result = session.query(Winner).filter_by(nationality='Swiss')
list(result)
Out:
[<Winner(name='Albert Einstein', category='Physics',\
 year='1921')>]

filter_by uses keyword expressions; its SQL expressions
counterpart is filter—for example,
filter(Winner.nationality == Swiss).

Now let’s get all non-Swiss Physics winners:

result = session.query(Winner).filter(\
 Winner.category == 'Physics', \

http://docs.sqlalchemy.org/en/rel_1_0/orm/query.html

 Winner.nationality != 'Swiss')
list(result)
Out:
[<Winner(name='Paul Dirac', category='Physics', year='1933')>]

Here’s how to get a row based on ID number:

session.query(Winner).get(3)
Out:
<Winner(name='Marie Curie', category='Chemistry', year='1911')>

Now let’s retrieve winners ordered by year:

res = session.query(Winner).order_by('year')
list(res)
Out:
[<Winner(name='Marie Curie', category='Chemistry',\
year='1911')>,
 <Winner(name='Albert Einstein', category='Physics',\
year='1921')>,
 <Winner(name='Paul Dirac', category='Physics', year='1933')>]

To reconstruct our target list requires a little effort converting the Winner
objects returned by our session query into Python dicts. Let’s write a little
function to create a dict from an SQLAlchemy class. We’ll use a little
table introspection to get the column labels (see Example 2-4).

Example 2-4. Converts an SQLAlchemy instance to a dict
def inst_to_dict(inst, delete_id=True):
 dat = {}
 for column in inst.__table__.columns:
 dat[column.name] = getattr(inst, column.name)
 if delete_id:
 dat.pop('id')
 return datAccesses the instance’s table class to get a list of column objects.If delete_id is true, remove the SQL primary ID field.

We can use Example 2-4 to reconstruct our nobel_winners target list:

winner_rows = session.query(Winner)
nobel_winners = [inst_to_dict(w) for w in winner_rows]
nobel_winners

Out:
[{'category': u'Physics',
 'name': u'Albert Einstein',
 'nationality': u'Swiss',
 'sex': u'male',
 'year': 1921},
 ...
]

You can update database rows easily by changing the property of their
reflected objects:

marie = session.query(Winner).get(3)
marie.nationality = 'French'
session.dirty
Out:
IdentitySet([<Winner(name='Marie Curie', category='Chemistry',
year='1911')>])

Fetches Marie Curie, nationality Polish.
dirty shows any changed instances not yet committed to the database.

Let’s commit Marie’s changes and check that her nationality has changed
from Polish to French:

session.commit()
Out:
INFO:sqlalchemy.engine.base.Engine:UPDATE winners SET
nationality=? WHERE winners.id = ?
INFO:sqlalchemy.engine.base.Engine:('French', 3)
...

session.dirty
Out:
IdentitySet([])

session.query(Winner).get(3).nationality
Out:
'French'

In addition to updating database rows, you can delete the results of a query:

session.query(Winner).filter_by(name='Albert Einstein').delete()
Out:

INFO:sqlalchemy.engine.base.Engine:DELETE FROM winners WHERE
winners.name = ?
INFO:sqlalchemy.engine.base.Engine:('Albert Einstein',)
1

list(session.query(Winner))
Out:
[<Winner(name='Paul Dirac', category='Physics', year='1933')>,
 <Winner(name='Marie Curie', category='Chemistry',\
 year='1911')>]

You can also drop the whole table if required, using the declarative class’s
__table__ attribute:

Winner.__table__.drop(engine)

In this section, we’ve dealt with a single winners table, without any foreign
keys or relationship to any other tables, akin to a CSV or JSON file.
SQLAlchemy adds the same level of convenience in dealing with many-to-
one, one-to-many, and other database table relationships as it does to basic
querying using implicit joins, by supplying the query method with more
than one table class or explicitly using the query’s join method. Check out
the examples in the SQLAlchemy docs for more details.

Easier SQL with Dataset
One library I’ve found myself using a fair deal recently is Dataset, a module
designed to make working with SQL databases a little easier and more
Pythonic than existing powerhouses like SQLAlchemy. Dataset tries to
provide the same degree of convenience you get when working with
schema-less NoSQL databases such as MongoDB by removing a lot of the
formal boilerplate, such as schema definitions, which are demanded by the
more conventional libraries. Dataset is built on top of SQLAlchemy, which
means it works with pretty much all major databases and can exploit the
power, robustness, and maturity of that best-of-breed library. Let’s see how
it deals with reading and writing our target dataset (from Example 2-1).

6

http://docs.sqlalchemy.org/en/rel_1_0/orm/tutorial.html#querying-with-joins
https://dataset.readthedocs.org/en/latest/

Let’s use the SQLite nobel_winners.db database we’ve just created to put
Dataset through its paces. First we connect to our SQL database, using the
same URL/file format as SQLAlchemy:

import dataset

db = dataset.connect('sqlite:///data/nobel_winners.db')

To get our list of winners, we grab a table from our db database, using its
name as a key, and then use the find method without arguments to return
all winners:

wtable = db['winners']
winners = wtable.find()
winners = list(winners)
winners
Out:
[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
 (u'category', u'Physics'), (u'year', 1921), (u'nationality',
 u'Swiss'), (u'sex', u'male')]), OrderedDict([(u'id', 2),
 (u'name', u'Paul Dirac'), (u'category', u'Physics'),
 (u'year', 1933), (u'nationality', u'British'), (u'sex',
 u'male')]), OrderedDict([(u'id', 3), (u'name', u'Marie
 Curie'), (u'category', u'Chemistry'), (u'year', 1911),
 (u'nationality', u'Polish'), (u'sex', u'female')])]

Note that the instances returned by Dataset’s find method are
OrderedDicts. These useful containers are an extension of Python’s
dict class and behave just like dictionaries except that they remember the
order in which items were inserted, meaning you can guarantee the result of
iteration, pop the last item inserted, and more. This is a very handy
additional functionality.

TIP
One of the most useful Python “batteries” for data-mungers is collections, which is
where Dataset’s OrderedDicts come from. The defaultdict and Counter
classes are particularly useful. Check out what’s available in the Python docs.

https://docs.python.org/3/library/collections.html

Let’s recreate our winners table with Dataset, first dropping the existing
one:

wtable = db['winners']
wtable.drop()

wtable = db['winners']
wtable.find()
Out:
[]

To recreate our dropped winners table, we don’t need to define a schema as
with SQLAlchemy (see “Defining the Database Tables”). Dataset will infer
that from the data we add, doing all the SQL creation implicitly. This is the
kind of convenience one is used to when working with collection-based
NoSQL databases. Let’s use our nobel_winners dataset (Example 2-1)
to insert some winner dictionaries. We use a database transaction and the
with statement to efficiently insert our objects and then commit them.

with db as tx:
 tx['winners'].insert_many(nobel_winners)

Use the with statement to guarantee the transaction tx is committed to
the database.

Let’s check that everything has gone well:

list(db['winners'].find())
Out:
[OrderedDict([(u'id', 1), (u'name', u'Albert Einstein'),
(u'category', u'Physics'), (u'year', 1921), (u'nationality',
u'Swiss'), (u'sex', u'male')]),
...
]

The winners have been correctly inserted and their order of insertion
preserved by the OrderedDict.

Dataset is great for basic SQL-based work, particularly retrieving data you
might wish to process or visualize. For more advanced manipulation, it

7

allows you to drop down into SQLAlchemy’s core API using the query
method.

Now that we’ve covered the basics of working with SQL databases, let’s
see how Python makes working with the most popular NoSQL database just
as painless.

MongoDB
Document-centric datastores like MongoDB offer a lot of convenience to
data wranglers. As with all tools, there are good and bad use cases for
NoSQL databases. If you have data that has already been refined and
processed and don’t anticipate needing SQL’s powerful query language
based on optimized table joins, MongoDB will probably prove easier to
work with initially. MongoDB is a particularly good fit for web dataviz
because it uses binary JSON (BSON) as its data format. An extension of
JSON, BSON can deal with binary data and datetime objects, and plays
very nicely with JavaScript.

Let’s remind ourselves of the target dataset we’re aiming to write and read:

nobel_winners = [
 {'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'sex': 'male',
 'year': 1921},
 ...
]

Creating a MongoDB collection with Python is the work of a few lines:

from pymongo import MongoClient

client = MongoClient()
db = client.nobel_prize
coll = db.winners

Creates a Mongo client, using the default host and ports.

Creates or accesses the nobel_prize database.If a winners collection exists, this will retrieve it; otherwise (as in our
case), it creates it.

USING CONSTANTS FOR MONGODB ACCESS
Accessing and creating a MongoDB database with Python involves the
same operation, using dot notation and square-bracket key access:

db = client.nobel_prize
db = client['nobel_prize']

This is all very convenient, but it means a single spelling mistake, such
as noble_prize, could both create an unwanted database and cause
future operations to fail to update the correct one. For this reason, I
advise using constant strings to access your MongoDB databases and
collections:

DB_NOBEL_PRIZE = 'nobel_prize'
COLL_WINNERS = 'winners'

db = client[DB_NOBEL_PRIZE]
coll = db[COLL_WINNERS]

MongoDB databases run on localhost port 27017 by default but could be
anywhere on the Web. They also take an optional username and password.
Example 2-5 shows how to create a simple utility function to access our
database, with standard defaults.

Example 2-5. Accessing a MongoDB database
from pymongo import MongoClient

def get_mongo_database(db_name, host='localhost',\
 port=27017, username=None, password=None):
 """ Get named database from MongoDB with/out authentication """
 # make Mongo connection with/out authentication
 if username and password:
 mongo_uri = 'mongodb://%s:%s@%s/%s'%\

 (username, password, host, db_name)
 conn = MongoClient(mongo_uri)
 else:
 conn = MongoClient(host, port)

 return conn[db_name]We specify the database name in the MongoDB URI (Uniform Resource
Identifier) as the user may not have general privileges for the database.

We can now create a Nobel Prize database and add our target dataset
(Example 2-1). Let’s first get a winners collection, using the string
constants for access:

db = get_mongo_database(DB_NOBEL_PRIZE)
coll = db[COLL_WINNERS]

Inserting our Nobel Prize dataset is then as easy as can be:

coll.insert_many(nobel_winners)
coll.find()
Out:
[{'_id': ObjectId('61940b7dc454e79ffb14cd25'),
 'category': 'Physics',
 'name': 'Albert Einstein',
 'nationality': 'Swiss',
 'year': 1921,
 'sex': 'male'},
 {'_id': ObjectId('61940b7dc454e79ffb14cd26'),
 ...

The resulting array of ObjectIds can be used for future retrieval, but
MongoDB has already left its stamp on our nobel_winners list, adding
a hidden id property.8

TIP
MongoDB’s ObjectIds have quite a bit of hidden functionality, being a lot more than
a simple random identifier. You can, for example, get the generation time of the
ObjectId, which gives you access to a handy timestamp:

import bson
oid = bson.ObjectId()
oid.generation_time
Out: datetime.datetime(2015, 11, 4, 15, 43, 23...

Find the full details in the MongoDB BSON documentation.

Now that we’ve got some items in our winners collection, MongoDB makes
finding them very easy, with its find method taking a dictionary query:

res = coll.find({'category':'Chemistry'})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d6'),
 u'category': u'Chemistry',
 u'name': u'Marie Curie',
 u'nationality': u'Polish',
 u'sex': u'female',
 u'year': 1911}]

There are a number of special dollar-prefixed operators that allow for
sophisticated querying. Let’s find all the winners after 1930 using the $gt
(greater-than) operator:

res = coll.find({'year': {'$gt': 1930}})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d5'),
 u'category': u'Physics',
 u'name': u'Paul Dirac',
 u'nationality': u'British',
 u'sex': u'male',
 u'year': 1933}]

https://www.mongodb.com/basics/bson

You can also use Boolean expression, for instance, to find all winners after
1930 or all female winners:

res = coll.find({'$or':[{'year': {'$gt': 1930}},\
{'sex':'female'}]})
list(res)
Out:
[{u'_id': ObjectId('55f8326f26a7112e547879d5'),
 u'category': u'Physics',
 u'name': u'Paul Dirac',
 u'nationality': u'British',
 u'sex': u'male',
 u'year': 1933},
 {u'_id': ObjectId('55f8326f26a7112e547879d6'),
 u'category': u'Chemistry',
 u'name': u'Marie Curie',
 u'nationality': u'Polish',
 u'sex': u'female',
 u'year': 1911}]

You can find the full list of available query expressions in the MongoDB
documentation.

As a final test, let’s turn our new winners collection back into a Python list
of dictionaries. We’ll create a utility function for the task:

def mongo_coll_to_dicts(dbname='test', collname='test',\
 query={}, del_id=True, **kw):

 db = get_mongo_database(dbname, **kw)
 res = list(db[collname].find(query))

 if del_id:
 for r in res:
 r.pop('_id')

 return res

An empty query dict {} will find all documents in the collection.
del_id is a flag to remove MongoDB’s ObjectIds from the items
by default.

We can now create our target dataset:

http://bit.ly/1Yxn5c1

mongo_coll_to_dicts(DB_NOBEL_PRIZE, COLL_WINNERS)
Out:
[{u'category': u'Physics',
 u'name': u'Albert Einstein',
 u'nationality': u'Swiss',
 u'sex': u'male',
 u'year': 1921},
 ...
]

MongoDB’s schema-less databases are great for fast prototyping in solo
work or small teams. There will probably come a point, particularly with
large code bases, when a formal schema becomes a useful reference and
sanity check; and when you are choosing a data model, the ease with which
document forms can be adapted is a bonus. Being able to pass Python
dictionaries as queries to PyMongo and having access to client-side
generated ObjectIds are a couple of other conveniences.

We’ve now passed the nobel_winners data in Example 2-1 through all
our required file formats and databases. Let’s consider the special case of
dealing with dates and times before summing up.

Dealing with Dates, Times, and Complex
Data
The ability to deal comfortably with dates and times is fundamental to
dataviz work but can be quite tricky. There are many ways to represent a
date or datetime as a string, each one requiring a separate encoding or
decoding. For this reason it’s good to settle on one format in your own work
and encourage others to do the same. I recommend using the International
Standard Organization (ISO) 8601 time format as your string representation
for dates and times, and using the Coordinated Universal Time (UTC)
form. Here’s a few examples of ISO 8601 date and datetime strings:9

http://bit.ly/1OcC731
http://bit.ly/1rtmDOT

2021-09-23 A date (Python/C format code '%Y-%m-%d')

2021-09-23T16:32:35Z A UTC (Z after time) date and time ('T%H:%M:%S')

2021-09-
23T16:32+02:00

A positive two-hour (+02:00) offset from UTC (e.g., Central European
Time)

Note the importance of being prepared to deal with different time zones.
These are not always on lines of longitude (see Wikipedia’s Time Zone
entry), and often the best way to derive an accurate time is by using UTC
time plus a geographic location.

ISO 8601 is the standard used by JavaScript and is easy to work with in
Python. As web data visualizers, our key concern is in creating a string
representation that can be passed between Python and JavaScript using
JSON and encoded and decoded easily at both ends.

Let’s take a date and time in the shape of a Python datetime, convert it
into a string, and then see how that string can be consumed by JavaScript.

First we produce our Python datetime:

from datetime import datetime

d = datetime.now()
d.isoformat()
Out:
'2021-11-16T22:55:48.738105'

This string can then be saved to JSON or CSV, read by JavaScript, and used
to create a Date object:

d = new Date('2021-11-16T22:55:48.738105')
> Tue Nov 16 2021 22:55:48 GMT+0000 (Greenwich Mean Time)

https://en.wikipedia.org/wiki/Time_zone

We can return the datetime to ISO 8601 string form with the
toISOString method:

d.toISOString()
> '2021-11-16T22:55:48.738Z'

Finally, we can read the string back into Python.

If you know that you’re dealing with an ISO-format time string, Python’s
dateutil module should do the job. But you’ll probably want to
sanity-check the result:

from dateutil import parser

d = parser.parse('2021-11-16T22:55:48.738Z')
d
Out:
datetime.datetime(2021, 11, 16, 22, 55, 48, 738000,\
tzinfo=tzutc())

Note that we’ve lost some resolution in the trip from Python to JavaScript
and back again, the latter dealing in milliseconds, not microseconds. This is
unlikely to be an issue in any dataviz work but is good to bear in mind just
in case some strange temporal errors occur.

Summary
This chapter aimed to make you comfortable using Python to move data
around the various file formats and databases that a data visualizer might
expect to bump into. Using databases effectively and efficiently is a skill
that takes a while to learn, but you should now be comfortable with basic
reading and writing for the large majority of dataviz use cases.

Now that we have the vital lubrication for our dataviz toolchain, let’s get up
to scratch on the basic web development skills you’ll need for the chapters
ahead.

10

1 I recommend using JSON over CSV as your preferred data format.

2 The Python module dateutil has a parser that will parse most dates and times sensibly,
and might be a good basis for this.

3 On a cautionary note, it is probably a bad idea to use different database configurations for
testing and production.

4 See details on SQLAlchemy of this lazy initialization.

5 This assumes the database doesn’t already exist. If it does, Base will be used to create new
insertions and to interpret retrievals.

6 Dataset’s official motto is “databases for lazy people.” It is not part of the standard Anaconda
package, so you’ll want to install it using pip from the command line: $ pip install
dataset.

7 See this documentation for further details of how to use transactions to group updates.

8 One of the cool things about MongoDB is that the ObjectIds are generated on the client
side, removing the need to quiz the database for them.

9 To get the actual local time from UTC, you can store a time zone offset or, better still, derive
it from a geocoordinate; this is because time zones do not follow lines of longitude very
exactly.

10 To install, just run pip install python-dateutil. dateutil is a pretty powerful
extension of Python’s datetime; check it out on Read the Docs.

http://docs.sqlalchemy.org/en/latest/core/engines.html
https://dataset.readthedocs.org/en/latest/quickstart.html#using-transactions
https://dateutil.readthedocs.org/en/latest/

Chapter 3. Getting Data off the
Web with Python

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the fifth chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sevans@oreilly.com.

A fundamental part of the data visualizer’s skill set is getting the right
dataset in as clean a form as possible. Sometimes you will be given a nice,
clean dataset to analyse but often you will be tasked with either finding the
data and/or cleaning the data supplied.

And more often than not these days getting data involves getting it off the
Web. There are various ways you can do this, and Python provides some
great libraries that make sucking up the data easy.

The main ways to get data off the Web are:

Get a raw data file in a recognized data format (e.g., JSON or
CSV) over HTTP

Use a dedicated API to get the data

Scrape the data by getting web pages via HTTP and parsing them
locally for the required data

mailto:sevans@oreilly.com

This chapter will deal with these ways in turn, but first let’s get acquainted
with the best Python HTTP library out there: requests.

Getting Web Data with the requests Library
As we saw in [Link to Come], the files that are used by web browsers to
construct web pages are communicated via the Hypertext Transfer Protocol
(HTTP), first developed by Tim Berners-Lee. Getting web content in order
to parse it for data involves making HTTP requests.

Negotiating HTTP requests is a vital part of any general-purpose language,
but getting web pages with Python used to be a rather irksome affair. The
venerable urllib2 library was hardly user-friendly, with a very clunky
API. requests, courtesy of Kennith Reitz, changed that, making HTTP a
relative breeze and fast establishing itself as the go-to Python HTTP library.

requests is not part of the Python standard library but is part of the
Anaconda package (see [Link to Come]). If you’re not using Anaconda, the
following pip command should do the job:

$ pip install requests
Downloading/unpacking requests
...
Cleaning up...

If you’re using a Python version prior to 2.7.9 (I strongly recommend using
Python 3+ whereever possible), then using requests may generate some
Secure Sockets Layer (SSL) warnings. Upgrading to newer SSL libraries
should fix this:

$ pip install --upgrade ndg-httpsclient

Now that you have requests installed, you’re ready to perform the first
task mentioned at the beginning of this chapter and grab some raw data files
off the Web.

1

2

https://en.wikipedia.org/wiki/Tim_Berners-Lee
http://docs.python-requests.org/en/latest/
http://docs.continuum.io/anaconda/pkg-docs
https://en.wikipedia.org/wiki/SSL

Getting Data Files with requests
A Python interpreter session is a good way to put requests through its
paces, so find a friendly local command line, fire up IPython, and import
requests:

$ ipython
Python 3.8.9 (default, Apr 3 2021, 01:02:10)
...

In [1]: import requests

To demonstrate, let’s use the library to download a Wikipedia page. We use
the requests library’s get method to get the page and, by convention,
assign the result to a response object.

response = requests.get(\
"https://en.wikipedia.org/wiki/Nobel_Prize")

Let’s use Python’s dir method to get a list of the response object’s
attributes:

dir(response)
Out:
...
 'content',
 'cookies',
 'elapsed',
 'encoding',
 'headers',
 ...
 'iter_content',
 'iter_lines',
 'json',
 'links',
 ...
 'status_code',
 'text',
 'url']

https://docs.python.org/3/library/functions.html#dir

Most of these attributes are self-explanatory and together provide a lot of
information about the HTTP response generated. You’ll use a small subset
of these attributes generally. Firstly, let’s check the status of the response:

response.status_code
Out: 200

As all good minimal web developers know, 200 is the HTTP status code for
OK, indicating a successful transaction. Other than 200, the most common
codes are:

401 (Unauthorized)

Attempting unauthorized access

400 (Bad Request)

Trying to access the web server incorrectly

403 (Forbidden)

Similar to 401 but no login opportunity was available

404 (Not Found)

Trying to access a web page that doesn’t exist

500 (Internal Server Error)

A general-purpose, catch-all error

So, for example, if we made a spelling mistake with our request, asking to
see the SNoble_Prize page, we’d get a 404 (Not Found) error:

not_found_response = requests.get(\
"http://en.wikipedia.org/wiki/SNobel_Prize")
not_found_response.status_code
Out: 404

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

With our 200 OK response, from the correctly spelled request, let’s look at
some of the info returned. A quick overview can be had with the headers
property:

response.headers
Out: {
 'Date': 'Sat, 23 Oct 2021 23:58:49 GMT',
 'Server': 'mw1435.eqiad.wmnet',
 'Content-Length': '87144', ...
 'Content-Encoding': 'gzip', ...
 'Last-Modified': 'Sat, 23 Oct 2021 17:14:09 GMT', ...
 'Date': 'Mon, 23 Nov 2015 21:33:52 GMT',
 'Content-Type': 'text/html; charset=UTF-8'...
 }

This shows, among other things, that the page returned was gzip-encoded
and 87 KB in size with Content-Type of text/html, encoded with
Unicode UTF-8.

Since we know text has been returned, we can use the text property of the
response to see what it is:

response.text
Out: u'<!DOCTYPE html>\n<html lang="en"
dir="ltr" class="client-nojs">\n<head>\n<meta charset="UTF-8"
/>\n<title>Nobel Prize - Wikipedia, the free
encyclopedia</title>\n<script>document.documentElement... =

This shows that we do indeed have our Wikipedia HTML page, with some
inline JavaScript. As we’ll see in “Scraping Data”, in order to make sense
of this content, we’ll need a parser to read the HTML and provide the
content blocks.

requests can be a convenient way of getting web data into your program
or Python session. For example, we can grab one of the datasets from the
huge US government catalog, which often has the choice of various file
formats (e.g., JSON or CSV). Picking randomly, here’s the data from a
2006–2010 study on food affordability, in JSON format. Note that we check
that it has been fetched correctly, with a status_code of 200:

https://data.gov/

response = requests.get(
"https://chhs.data.ca.gov/api/views/pbxw-hhq8/rows.json?\
accessType=DOWNLOAD")

response.status_code
Out: 200

WARNING
Unfortunately, access to datasets from data.gov is a little unreliable. If the example
dataset shown is not available, I recommend choosing another and making sure you can
access its data using requests.

For JSON data, requests has a convenience method, allowing us to
access the response data as a Python dictionary. This contains meta-data
and a list of data items:

data = response.json()
data.keys()
Out:
[u'meta', u'data']

data['meta']['view']['description']
Out: u'This table contains data on the average cost of a
market basket of nutritious food items relative to income for
female-headed households with children, for California, its
regions, counties, and cities/towns. The ratio uses data from
the U.S. Department of Agriculture...

data['data'][0]
Out:
[1,
 u'4303993D-76F7-4A5C-914E-FDEA4EAB67BA',
 ...
 u'Food affordability for female-headed household with
 children under 18 years',
 u'2006-2010',
 u'1',
 u'AIAN',
 u'CA',
 u'06',
 u'California', ...

Now that we’ve grabbed a raw page and a JSON file off the Web, let’s see
how to use requests to consume a web data API.

Using Python to Consume Data from a Web
API
If the data file you need isn’t on the Web, there may well be an Application
Programming Interface (API) serving the data you need. Using this will
involve making a request to the appropriate server to retrieve your data in a
fixed format or one you get to specify in the request.

The most popular data formats for web APIs are JSON and XML, though a
number of esoteric formats exist. For the purposes of the JavaScripting data
visualizer, JavaScript Object Notation (JSON) is obviously preferred (see
[Link to Come]). Lucky for us, it is also starting to predominate.

There are different approaches to creating a web API, and for a few years
there was a little war of the architectures among the three main types of
APIs inhabiting the Web:

REST

Short for REpresentational State Transfer, using a combination of HTTP
verbs (GET, POST, etc.) and Uniform Resource Identifiers (URIs; e.g.,
/user/kyran) to access, create, and adapt data.

XML-RPC

A remote procedure call (RPC) protocol using XML encoding and
HTTP transport.

SOAP

Short for Simple Object Access Protocol, using XML and HTTP.

This battle seems to be resolving in a victory for RESTful APIs, and this is
a very good thing. Quite apart from RESTful APIs being more elegant, and

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/XML-RPC
https://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_state_transfer

easier to use and implement (see [Link to Come]), some standardization
here makes it much more likely that you will recognize and quickly adapt to
a new API that comes your way. Ideally, you will be able to reuse existing
code.

Most access and manipulation of remote data can be summed up by the
acronym CRUD (create, retrieve, update, delete), originally coined to
describe all the major functions implemented in relational databases. HTTP
provides CRUD counterparts with the POST, GET, PUT, and DELETE
verbs and the REST abstraction builds on this use of these verbs, acting on
a Universal Resource Identifier (URI).

Discussions about what is and isn’t a proper RESTful interface can get quite
involved, but essentially the URI (e.g., http://example.com/api/items/2)
should contain all the information required in order to perform a CRUD
operation. The particular operation (e.g., GET or DELETE) is specified by
the HTTP verb. This excludes architectures such as SOAP, which place
stateful information in metadata on the requests header. Imagine the URI as
the virtual address of the data and CRUD all the operations you can perform
on it.

As data visualizers keen to lay our hands on some interesting datasets, we
are avid consumers here, so our HTTP verb of choice is GET and the
examples that follow will focus on the fetching of data with various well-
known web APIs. Hopefully, some patterns will emerge.

Although the two constraints of stateless URIs and the use of the CRUD
verbs is a nice constraint on the shape of RESTful APIs, there still manage
to be many variants on the theme.

Consuming a RESTful Web API with requests
requests has a fair number of bells and whistles based around the main
HTTP request verbs. For a good overview, see the requests quickstart. For
the purposes of getting data, you’ll use GET and POST pretty much
exclusively, with GET being by a long way the most used verb. POST
allows you to emulate web forms, including login details, field values, etc.

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://example.com/api/items/2
http://docs.python-requests.org/en/latest/user/quickstart/

in the request. For those occasions where you find yourself driving a web
form with, for example, lots of options selectors, requests makes
automation with POST easy. GET covers pretty much everything else,
including the ubiquitous RESTful APIs, which provide an increasing
amount of the well-formed data available on the Web.

The Worldbank’s climate change APIs
The Worldbank provides global climate modelling data from a
comprehensive range of climate models. These canonical datasets can be
retrieved from a freely available RESTful API. Let’s see how to use Python
and requests to make the process more user-friendly and check for well
formed requests.

The main documentation for the API can be found here. We are interested
in getting country specific data so the first thing to note is that all such API
calls will have this root URL:

CLIMATE_API_URL =\
"http://climatedataapi.worldbank.org/climateweb/rest/v1/country/"

Types of data are available with slightly confusing codes. Let’s make them
a bit more user-friendly by using a Python dictionary to translate them:

TYPES = {'monthly':'mavg', 'yearly': 'annualavg',\
 'monthly_change': 'manom', 'yearly_change':
'annualanom'}

We’ll do the same thing with the variables available:

VARS = {'rainfall': 'pr', 'temp': 'tas'}

There are a limited number of valid start years, separated by twenty years.
Let’s store them in a list for validation:

VALID_START_YEARS = [1920, 1940, 1960, 1980, 2020, 2040, 2060,
2080]

http://bit.ly/1a1kVX5
https://datahelpdesk.worldbank.org/knowledgebase/articles/902061-climate-data-api

And finally we’ll do the same for valid data-type extenstions and provide
some frindlier keys for the main models we’re interested in:

VALID_EXTS = ['json', 'csv', 'xml']
MODELS = {'BCM2': 'bccr_bcm2_0', 'CSIRO': 'csiro_mk3_5',\
 'UKMOCM': 'ukmo_hadcm3', 'UKMOGEM': 'ukmo_hadgem1'}

With these definitions in place we can construct a function which will take a
set of the API’s variables and return the requested data, assuming the
request is valid. get_climate_data is defined by the following
arguments:

def get_climate_data(country='USA', typ='monthly', var='temp',\
 start=2020, model='BCM2', ext='json'):

The first thing get_climate_data does is check that the variables are
valid. If not a Python Exception is raised:

 if not typ in TYPES.keys():
 raise Exception('invalid type: %s'%typ)

 if not var in VARS.keys():
 raise Exception('invalid variable: %s'%var)

 if start not in VALID_START_YEARS:
 raise Exception('The start date must be one of '\
 + repr(VALID_START_YEARS))

 if model not in MODELS.keys():
 raise Exception('Model must be one of '\
 + repr(MODELS.keys()))

If the variables are valid we can construct our request URL, appending a
formatted string to the API’s root url. We then get a response from the API
using requests:

 url = CLIMATE_API_URL +\
 f'/{TYPES[typ]}/{VARS[var]}/{start}/{start+19}/{country}.
{ext}'
 response = requests.get(url)

One more check to make sure this request succeeded:

 if not response.status_code == 200:
 raise Exception('Request failed with status code '\
 + str(response.status_code))

And finally we filter the resulting json data array (one dictionary for each
model type) for the model type requested and return the result:

 data = {}
 for model_data in response.json():
 if model_data['gcm'] == MODELS[model]:
 data = model_data
 break

 return data

We can now use our helper function to retrieve specific data of interest. For
example, to find China’s average annual temp, predicted by Australia’s
https://www.csiro.au/CSIRO institute, for the period 2020-2019:

get_climate_data(typ='yearly', start=2020, country="CHN",\
 model='CSIRO')
url: http://climatedataapi.worldbank.org/climateweb/rest/v1/
 country/annualavg/tas/2020/2039/CHN.json

Out:
{'scenario': 'a2',
 'gcm': 'csiro_mk3_5',
 'variable': 'tas',
 'fromYear': 2020,
 'toYear': 2039,
 'annualData': [8.869213305023123]}

We can use our API calling function to do a little dataviz sketch. We’ll use
Matplotlib’s Pyplot module to demonstrate the difference in predicted
monthly temperatures for India, comparing 1980-1999 with 2020-2019.
First we’ll grab the necessary data and store it in a couple of variables:

ind_1980 = get_climate_data(typ='monthly', start=1980,\
 country="IND", model='UKMOCM')

https://www.csiro.au/
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.plot.html

ind_2020 = get_climate_data(typ='monthly', start=2020,\
 country="IND", model='UKMOCM')

Each of the ind_* dictionaries contains a monthVals array of monthly
data. We can plot this against a numeric array of 12 (months) and use
compare the two lines, clearly showing an estimated increase in India’s
temperature:

import matplotlib.pyplot as plt

months = range(12) # x values to plot against

plt.figure(figsize=(8, 4))
plt.plot(months, ind_1980['monthVals'])
plt.plot(months, ind_2020['monthVals'], linestyle='--')

The resulting plot can be seen in Figure 3-1 with the dashed line showing
the increased 2020 temperatures.

Figure 3-1. Fetching climate data from the Worldbank’s API

Getting Country Data for the Nobel Dataviz
There are some national statistics that will come in handy for the Nobel
Prize visualization we’re using our toolchain to build. Population sizes,
three-letter international codes (e.g., GDR, USA), and geographic centers
are potentially useful when you are visualizing an international prize and its
distribution. REST countries is a handy RESTful web resource with various
international stats. Let’s use it to grab some data.

Requests to REST countries take the following form:

https://restcountries.eu/rest/v1/<field>/<name>?<params>

As with the OECD API (see [Link to Come]), we can make a simple calling
function to allow easy access to the API’s data, like so:

REST_EU_ROOT_URL = "http://restcountries.eu/rest/v1"

def REST_country_request(field='all', name=None, params=None):

 headers={'User-Agent': 'Mozilla/5.0'}

 if not params:
 params = {}

 if field == 'all':
 response = requests.get(REST_EU_ROOT_URL + '/all')
 return response.json()

 url = '%s/%s/%s'%(REST_EU_ROOT_URL, field, name)
 print('Requesting URL: ' + url)
 response = requests.get(url, params=params, headers=headers)

 if not response.status_code == 200:
 raise Exception('Request failed with status code ' \
 + str(response.status_code))

 return response.json() # JSON encoded data

It’s usually a good idea to specify a valid User-Agent in the header
of your request. Some sites will reject the request otherwise.Before returning the response, make sure it has an OK (200) HTTP
code; otherwise, raise an exception with a helpful message.

https://restcountries.eu/

With the REST_country_request function in hand, let’s get a list of
all the countries using the US dollar as currency:

response = REST_country_request('currency', 'usd')
response
Out:
[{u'alpha2Code': u'AS',
 u'alpha3Code': u'ASM',
 u'altSpellings': [u'AS',
 ...
 u'capital': u'Pago Pago',
 u'currencies': [u'USD'],
 u'demonym': u'American Samoan',
 ...
 u'latlng': [12.15, -68.266667],
 u'name': u'Bonaire',
 ...
 u'name': u'British Indian Ocean Territory',
 ...
 u'name': u'United States Minor Outlying Islands',
 ...

The full dataset at REST countries is pretty small, so for convenience we’ll
store a copy as a JSON file. We’ll be using this in later chapters in both
exploratory and presentational dataviz:

import json

country_data = REST_country_request() # all world data

with open('data/world_country_data.json', 'w') as json_file:
 json.dump(country_data, json_file)

Now that we’ve rolled a couple of our own API consumers, let’s take a look
at some dedicated libraries that wrap some of the larger web APIs in an
easy-to-use form.

Using Libraries to Access Web APIs

requests is capable of negotiating with pretty much all web APIs and
often a little function like the one demonstrated in “The Worldbank’s
climate change APIs” is all you need. But as the APIs start adding
authentication and the data structures become more complicated, a good
wrapper library can save a lot of hassle and reduce the tedious bookkeeping.
In this section, I’ll cover a couple of the more popular wrapper libraries to
give you a feel for the workflow and some useful starting points.

Using Google Spreadsheets
It’s becoming more common these days to have live datasets in the cloud.
So, for example, you might find yourself required to visualize aspects of a
Google spreadsheet that is the shared data pool for a group. My preference
is to get this data out of the Google-plex and into Pandas to start exploring
it (see Chapter 5), but a good library will let you access and adapt the data
in-place, negotiating the web traffic as required.

Gspread is the best known Python library for accessing Google
spreadsheets and makes doing so a relative breeze.

You’ll need OAuth 2.0 credentials to use the API. The most up-to-date
guide can be found here. Following those instructions should provide a
JSON file containing your private key.

You’ll need to install gspread and the latest google-auth client
library. Here’s how to do it with pip.

$ pip install gspread
$ pip install --upgrade google-auth

Depending on your system, you may also need PyOpenSSL:

$ pip install PyOpenSSL

See Read the Docs for more details and troubleshooting.

3

https://en.wikipedia.org/wiki/Wrapper_library
https://github.com/burnash/gspread
https://en.wikipedia.org/wiki/OAuth
http://bit.ly/292nobI
http://bit.ly/28W0XqK

NOTE
Google’s API assumes that the spreadsheets you are trying to access are owned or
shared by your API account, not your personal one. The email address to share the
spreadsheet with is available at your Google developers console and in the JSON
credentials key needed to use the API. It should look something like account-1@My
Project…iam.gserviceaccount.com.

With those libraries installed, you should be able to access any of your
spreadsheets with just a few lines. I’m using the Microbe-scope
spreadsheet, which you can see here. Example 3-1 shows how to load the
spreadsheet.

Example 3-1. Opening a Google spreadsheet
import gspread

gc = gspread.service_account(\
 filename='data/google_credentials.json')

ss = gc.open("Microbe-scope") The JSON credentials file is the one provided by Google services,
usually of the form My Project-b8ab5e38fd68.json.Here we’re opening the spreadsheet by name. Alternatives are
open_by_url or open_by_id. See here for details.

Now that we’ve got our spreadsheet, we can see the worksheets it contains:

ss.worksheets()
Out:
[<Worksheet 'bugs' id:0>,
 <Worksheet 'outrageous facts' id:430583748>,
 <Worksheet 'physicians per 1,000' id:1268911119>,
 <Worksheet 'amends' id:1001992659>]

ws = ss.worksheet('bugs')

With the worksheet bugs selected from the spreadsheet, gspread allows
you to access and change column, row, and cell values (assuming the sheet
isn’t read-only). So we can get the values in the second column with the
col_values command:

http://bit.ly/28SSIbd
http://bit.ly/1UgxdpH
http://gspread.readthedocs.org/en/latest/index.html#gspread.Client

ws.col_values(1)
Out: [None,
 'grey = not plotted',
 'Anthrax (untreated)',
 'Bird Flu (H5N1)',
 'Bubonic Plague (untreated)',
 'C.Difficile',
 'Campylobacter',
 'Chicken Pox',
 'Cholera',...

TIP
If you get a BadStatusLine error while accessing a Google spreadsheet with
gspread, it is probably because the session has expired. Reopening the spreadsheet
should get things working again. This outstanding gspread issue provides more
information.

Although you can use gspread’s API to plot directly, using a plot library
like Matplotlib, I prefer to send the whole sheet to Pandas, Python’s
powerhouse programmatic spreadsheet. This is easily achieved with
gspread’s get_all_records, which returns a list of item dictionaries.
This list can be used directly to initialize a Pandas DataFrame (see [Link
to Come]):

df = pd.DataFrame(ws.get_all_records())
df.info()
Out:
<class 'pandas.core.frame.DataFrame'>
Int64Index: 41 entries, 0 to 40
Data columns (total 23 columns):
 41 non-null object
average basic reproductive rate 41 non-null object
case fatality rate 41 non-null object
infectious dose 41 non-null object
...
upper R0 41 non-null object
viral load in acute stage 41 non-null object
yearly fatalities 41 non-null object
dtypes: object(23)
memory usage: 7.5+ KB

http://bit.ly/291Vlch

In Chapter 5 we’ll see how to interactively explore a DataFrame’s data.

Using the Twitter API with Tweepy
The advent of social media has generated a lot of data and an interest in
visualizing the social networks, trending hashtags, and media storms
contained in them. Twitter’s broadcast network is probably the richest
source of cool data visualizations and its API provides tweets filtered by
user, hashtag, date, and the like.

Python’s Tweepy is an easy-to-use Twitter library that provides a number of
useful features, such as a StreamListener class for streaming live
Twitter updates. To start using it, you’ll need a Twitter access token, which
you can acquire by following the instructions at the Twitter docs to create
your Twitter application. Once this application is created you can get the
keys and access tokens for your app by clicking on the link at your Twitter
app page.

Tweepy typically requires the four authorization elements shown here:

The user credential variables to access Twitter API
access_token = "2677230157-Ze3bWuBAw4kwoj4via2dEntU86...TD7z"
access_token_secret = "DxwKAvVzMFLq7WnQGnty49jgJ39Acu...paR8ZH"
consumer_key = "pIorGFGQHShuYQtIxzYWk1jMD"
consumer_secret = "yLc4Hw82G0Zn4vTi4q8pSBcNyHkn35BfIe...oVa4P7R"

With those defined, accessing tweets could hardly be easier. Here we create
an OAuth auth object using our tokens and keys and use it to start an API
session. We can then grab the latest tweets from our timeline:

In [0]: import tweepy

 auth = tweepy.OAuthHandler(consumer_key,\
 consumer_secret)
 auth.set_access_token(access_token, access_token_secret)

 api = tweepy.API(auth)

 public_tweets = api.home_timeline()

4

https://dev.twitter.com/oauth/overview/application-owner-access-tokens
https://apps.twitter.com/

 for tweet in public_tweets:
 print(tweet.text)

RT @Glinner: Read these tweets https://t.co/QqzJPsDxUD
Volodymyr Bilyachat https://t.co/VIyOHlje6b +1 bmeyer
#javascript
RT @bbcworldservice: If scientists edit genes to
make people healthier does it change what it means to be
human? https://t.co/Vciuyu6BCx h…
RT @ForrestTheWoods:
Launching something pretty cool tomorrow. I'm excited. Keep
...

Tweepy’s API class offers a lot of convenience methods, which you can
check out in the Tweepy docs. A common visualization is using a network
graph to show patterns of friends and followers among Twitter
subpopulations. The Tweepy method followers_ids (get all users
following) and friends_ids (get all users being followed) can be used
to construct such a network:

my_follower_ids = api.get_follower_ids()

followers_tree = {'followers': []}
for id in my_follower_ids:
 # get the followers of your followers
 try:
 follower_ids = api.get_follower_ids(user_id=id)
 except tweepy.errors.Unauthorized:
 print("Unauthorized to access user %d's followers"\
 %(id))

 followers_tree['followers'].append(\
 {'id': id, 'follower_ids': follower_ids})

Gets a list of your followers’ ids (e.g., [1191701545,
1554134420, …]).The first argument to follower_ids can be a user id or screen name.

Note that you will probably run into rate limit errors if you try and construct
a network for anyone with more than a hundred followers (see here for an
explanation). To overcome this you will need to implement some basic rate-

http://docs.tweepy.org/en/v3.2.0/api.html#api-reference
https://stackoverflow.com/questions/61278571/understanding-twitter-api-rate-limits-using-sandbox-environment-and-searchtweets

limiting to reduce your request count to 180 per 15 minutes. Alternatively
you can pay Twitter for a premium account.

By mapping followers of followers, you can create a network of
connections that might just reveal something interesting about groups and
subgroups clustered about a particular individual or subject. There’s a nice
example of just such a Twitter analysis on Gabe Sawhney’s blog.

One of the coolest features of Tweepy is its StreamListener class,
which makes it easy to collect and process filtered tweets in real time. Live
updates of Twitter streams have been used by many memorable
visualizations, such as tweetping. Let’s set up a little stream to record
tweets mentioning Python, JavaScript, and Dataviz. We’ll just print the
results to the screen (in on_data) here but you would normally cache
them in a file or database (or do both with SQLite)

import json

class MyStream(tweepy.Stream):
 """ Customized tweet stream """

 def on_data(self, tweet):
 """Do something with the tweet data..."""
 print(tweet)

 def on_error(self, status):
 return True # keep stream open

stream = MyStream(consumer_key, consumer_secret,\
 access_token, access_token_secret)
Start the stream with track list of keywords
stream.filter(track=['python', 'javascript', 'dataviz'])

Now that we’ve had a taste of the kind of APIs you might run into during
your search for interesting data, let’s look at the primary technique you’ll
use if, as is often the case, no one is providing the data you want in a neat,
user-friendly form: scraping data with Python.

http://gabesawhney.com/visualizing-twitter-clusters-with-gephi-update/
http://tweetping.net/

Scraping Data
Scraping is the chief metaphor used for the practice of getting data that
wasn’t designed to be programmatically consumed off the Web. It is a
pretty good metaphor because scraping is often about getting the balance
right between removing too much and too little. Creating procedures that
extract just the right data, as cleanly as possible, from web pages is a craft
skill and often a fairly messy one at that. But the payoff is access to
visualizable data that often cannot be acquired in any other way.
Approached in the right way, scraping can even have an intrinsic
satisfaction.

Why We Need to Scrape
In an ideal virtual world, online data would be organized in a library, with
everything cataloged through a sophisticated Dewey Decimal System for
the web page. Unfortunately for the keen data hunter, the Web has grown
organically, often unconstrained by considerations of easy data access for
the budding data visualizer. So, in reality, the Web resembles a big mound
of data, some of it clean and usable (and thankfully this percentage is
increasing) but much of it poorly formed and designed for human
consumption. And humans are able to parse the kind of messy, poorly
formed data that our relatively dumb computers have problems with.

Scraping is about fashioning selection patterns that grab the data we want
and leave the rest behind. If we’re lucky, the web pages containing the data
will have helpful pointers, like named tables, specific identities in
preference to generic classes, and so on. If we’re unlucky, then these
pointers will be missing and we will have to resort to using other patterns
or, in the worst case, ordinal specifiers such as third table in the main div.
These are obviously pretty fragile, and will break if somebody adds a table
above the third.

In this section, we’ll tackle a little scraping task, to get the some Nobel
Prize winners data. We’ll use Python’s best-of-breed BeautifulSoup for this

5

lightweight scraping foray, saving the heavy guns of Scrapy for the next
chapter.

NOTE
The fact that data and images are on the Web does not mean that they are necessarily
free to use. For our scraping examples we’ll be using Wikipedia, which allows full reuse
under the Creative Commons license. It’s a good idea to make sure anything you scrape
is available and, if in doubt, contact the site maintainer. You may be required to at least
cite the original author.

BeautifulSoup and lxml
Python’s key lightweight scraping tools are BeautifulSoup and lxml. Their
primary selection syntax is different but, confusingly, each can use the
other’s parsers. The consensus seems to be that lxml’s parser is
considerably faster, but BeautifulSoup’s might be more robust when dealing
with poorly formed HTML. Personally, I’ve found lxml to be robust enough
and its syntax, based on xpaths, more powerful and often more intuitive. I
think for someone coming from web development, familiar with CSS and
jQuery, selection based on CSS selectors is much more natural. Depending
on your system, lxml is usually the default parser for BeautifulSoup. We’ll
be using it in the following sections.

BeautifulSoup is part of the Anaconda packages (see [Link to Come]) and
easily installed with pip:

$ pip install beautifulsoup4
$ pip install lxml

A First Scraping Foray
Armed with requests and BeautifulSoup, let’s give ourselves a little task to
get the names, years, categories, and nationalities of all the Nobel Prize
winners. We’ll start at the main Wikipedia Nobel Prize page. Scrolling

https://en.wikipedia.org/wiki/Creative_Commons_license
https://en.wikipedia.org/wiki/XPath
http://en.wikipedia.org/wiki/List_of_Nobel_laureates

down shows a table with all the laureates by year and category, which is a
good start to our minimal data requirements.

Some kind of HTML explorer is pretty much a must for web scraping and
the best I know is Chrome’s web developer’s Elements tab (see [Link to
Come]). Figure 3-2 shows the key elements involved in quizzing a web
page’s structure. We need to know how to select the data of interest, in this
case a Wikipedia table, while avoiding other elements on the page. Crafting
good selector patterns is the key to effective scraping, and highlighting the
DOM element using the element inspector gives us both the CSS pattern
and, with a right-click, the xpath. The latter is a particularly powerful
syntax for DOM element selection and the basis of our industrial-strength
scraping solution, Scrapy.

Figure 3-2. Wikipedia’s main Nobel Prize Page: A and B show the wikitable’s CSS selector. Right-
clicking and selecting C (Copy XPath) gives the table’s xpath (//*[@id="mw-content-

text"]/table[1]). D shows a thead tag generated by jQuery.

Getting the Soup
The first thing you need to do before scraping the web page of interest is to
parse it with BeautifulSoup, converting the HTML into a tag tree hierarchy
or soup:

from bs4 import BeautifulSoup
import requests

BASE_URL = 'http://en.wikipedia.org'
Wikipedia will reject our request unless we add
a 'User-Agent' attribute to our http header.
HEADERS = {'User-Agent': 'Mozilla/5.0'}

def get_Nobel_soup():
 """ Return a parsed tag tree of our Nobel prize page """
 # Make a request to the Nobel page, setting valid headers
 response = requests.get(
 BASE_URL + '/wiki/List_of_Nobel_laureates',
 headers=HEADERS)
 # Return the content of the response parsed by BeautifulSoup
 return BeautifulSoup(response.content, "lxml")

The second argument specifies the parser we want to use, namely
lxml’s.

With our soup in hand, let’s see how to find our target tags.

Selecting Tags
BeautifulSoup offers a few ways to select tags from the parsed soup, with
subtle differences that can be confusing. Before demonstrating the selection
methods, let’s get the soup of our Nobel Prize page:

soup = get_Nobel_soup()

Our target table (see Figure 3-2) has two defining classes, wikitable and
sortable (there are some unsortable tables on the page). We can use
BeautifulSoup’s find method to find the first table tag with those classes.
find takes a tag name as its first argument and a dictionary with class, id,
and other identifiers as its second:

In[3]: soup.find('table', {'class':'wikitable sortable'})
Out[3]:
<table class="wikitable sortable">
<tr>
<th>Year</th>
...

Although we have successfully found our table by its classes, this method is
not very robust. Let’s see what happens when we change the order of our
CSS classes:

In[4]: soup.find('table', {'class':'sortable wikitable'})
nothing returned

So find cares about the order of the classes, using the class string to find
the tag. If the classes were specified in a different order—something that
might well happen during an HTML edit, then the find fails. This fragility
makes it difficult to recommend the BeautifulSoup selectors, such as find
and find_all. When doing quick hacking, I find lxml’s CSS selectors
easier and more intuitive.

Using the soup’s select method (available if you specified the lxml
parser when creating it), you can specify an HTML element using its CSS
class, id, and so on. This CSS selector is converted into the xpath syntax
lxml uses internally.

To get our wikitable, we just select a table in the soup, using the dot
notation to indicate its classes:

In[5]: soup.select('table.sortable.wikitable')
Out[5]:
[<table class="wikitable sortable">

6

http://lxml.de/cssselect.html

 <tr>
 <th>Year</th>
 ...
]

Note that select returns an array of results, finding all the matching tags
in the soup. lxml provides the select_one convenience method if you
are selecting just one HTML element. Let’s grab our Nobel table and see
what headers it has:

In[8]: table = soup.select_one('table.sortable.wikitable')

In[9]: table.select('th')
Out[9]:
[<th>Year</th>,
 <th width="18%"><a href="/wiki/..._in_Physics..</th>,
 <th width="16%"><a href="/wiki/..._in_Chemis..</th>,
 ...
]

As a shorthand for select, you can call the tag directly on the soup; so
these two are equivalent:

table.select('th')
table('th')

With lxml’s parser, BeautifulSoup provides a number of different filters for
finding tags, including the simple string name we’ve just used, searching by
regular expression, using a list of tag names, and more. See this
comprehensive list for more details.

As well as lxml’s select and select_one, there are 10 BeautfulSoup
convenience methods for searching the parsed tree. These are essentially
variants on find and find_all that specify which parts of the tree they
search. For example, find_parent and find_parents, rather than
looking for descendents down the tree, look for parent tags of the tag being
searched. All 10 methods are available in the BeautifulSoup official docs.

https://en.wikipedia.org/wiki/Regular_expression
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#kinds-of-filters
http://www.crummy.com/software/BeautifulSoup/bs4/doc/#find-parents-and-find-parent

Now that we know how to select our Wikipedia table and are armed with
lxml’s selection methods, let’s see how to craft some selection patterns to
get the data we want.

Crafting Selection Patterns
Having successfully selected our data table, we now want to craft some
selection patterns to scrape the required data. Using the HTML explorer,
you can see that the individual winners are contained in <td> cells, with an
href <a> link to Wikipedia’s bio-pages (in the case of individuals). Here’s a
typical target row with CSS classes that we can use as targets to get the data
in the <td> cells.

 <tr>
 <td align="center">
 1901
 </td>
 <td>

 Röntgen, Wilhelm

 <a href="/wiki/Wilhelm_R%C3%B6ntgen" \
 title="Wilhelm Röntgen">
 Wilhelm Röntgen

 </td>
 <td>
 ...
</tr>

If we loop through these data cells, keeping track of their row (year) and
column (category), then we should be able to create a list of winners with
all the data we specified except nationality.

The following get_column_titles function scrapes our table for the
Nobel category column headers, ignoring the first Year column. Often the

header cell in a Wikipedia table contains a web-linked 'a' tag; all the
Nobel categories fit this model, pointing to their respective Wikipedia
pages. If the header is not clickable, we store its text and a null href:

def get_column_titles(table):
 """ Get the Nobel categories from the table header """
 cols = []
 for th in table.select_one('tr').select('th')[1:]:
 link = th.select_one('a')
 # Store the category name and any Wikipedia link it has
 if link:
 cols.append({'name':link.text,\
 'href':link.attrs['href']})
 else:
 cols.append({'name':th.text, 'href':None})
 return cols

We loop through the table head, ignoring the first Year column ([1:]).
This selects the column headers shown in Figure 3-3.

Let’s make sure get_column_titles is giving us what we want:

get_column_titles(table)
Out:
[{'name': 'Physics', \
 'href': '/wiki/List_of_Nobel_laureates_in_Physics'},
 {'name': 'Chemistry',\
 'href': '/wiki/List_of_Nobel_laureates_in_Chemistry'},...

Figure 3-3. Wikipedia’s table of Nobel Prize winners

def get_Nobel_winners(table):
 cols = get_column_titles(table)
 winners = []
 for row in table.select('tr')[1:-1]:
 year = int(row.select_one('td').text) # Gets 1st <td>
 for i, td in enumerate(row.select('td')[1:]):
 for winner in td.select('a'):
 href = winner.attrs['href']
 if not href.startswith('#endnote'):
 winners.append({
 'year':year,
 'category':cols[i]['name'],
 'name':winner.text,
 'link':winner.attrs['href']
 })
 return winners

Gets all the Year rows, starting from the second, corresponding to the
rows in Figure 3-3.Finds the <td> data cells shown in Figure 3-3.

Iterating through the year rows, we take the first Year column and then
iterate over the remaining columns, using enumerate to keep track of our
index, which will map to the category column names. We know that all the
winner names are contained in an <a> tag but that there are occasional
extra <a> tags beginning with #endnote, which we filter for. Finally we
append a year, category, name, and link dictionary to our data array. Note
that the winner selector has an attrs dictionary containing, among other
things, the <a> tag’s href.

Let’s confirm that get_Nobel_winners delivers a list of Nobel Prize
winner dictionaries:

In [0]: get_Nobel_winners(table)

[{'year': 1901,
 'category': 'Physics',
 'name': 'Wilhelm Röntgen',
 'link': '/wiki/Wilhelm_R%C3%B6ntgen'},
 {'year': 1901,

 'category': 'Chemistry',
 'name': "Jacobus Henricus van 't Hoff",
 'link': '/wiki/Jacobus_Henricus_van_%27t_Hoff'},
 {'year': 1901,
 'category': 'Physiologyor Medicine',
 'name': 'Emil Adolf von Behring',
 'link': '/wiki/Emil_Adolf_von_Behring'},
 {'year': 1901,
 ...

Now that we have the full list of Nobel Prize winners and links to their
Wikipedia pages, we can use these links to scrape data from the individuals’
biographies. This will involve making a largish number of requests, and it’s
not something we really want to do more than once. The sensible and
respectful thing is to cache the data we scrape, allowing us to try out
various scraping experiments without returning to Wikipedia.

Caching the Web Pages
It’s easy enough to rustle up a quick cacher in Python, but as often as not
it’s easier still to find a better solution written by someone else and kindly
donated to the open source community. requests has a nice plugin called
requests-cache that, with a few lines of configuration, will take care
of all your basic caching needs.

First we install the plugin using pip:

$ pip install --upgrade requests-cache

requests-cache uses monkey-patching to dynamically replace parts of
the requests API at runtime. This means it can work transparently. You
just have to install its cache and then use requests as usual, with all the
caching being taken care of. Here’s the simplest way to use requests-
cache:

import requests
import requests_cache

7

http://stackoverflow.com/questions/5626193/what-is-a-monkey-patch

requests_cache.install_cache()
use requests as usual...

The install_cache method has a number of useful options, including
allowing you to specify the cache backend (sqlite, memory, mongdb,
or redis) or set an expiry time (expiry_after) in seconds on the
caching. So the following creates a cache named nobel_pages with an
sqlite backend and pages that expire in two hours (7,200 s).

requests_cache.install_cache('nobel_pages',\
 backend='sqlite', expire_after=7200)

requests-cache will serve most of your caching needs and couldn’t be
much easier to use. For more details, see the official docs where you’ll also
find a little example of request throttling, which is a useful technique when
doing bulk scraping.

Scraping the Winners’ Nationalities
With caching in place, let’s try getting the winners’ nationalities, using the
first 50 for our experiment. A little get_winner_nationality()
function will use the winner links we stored earlier to scrape their page and
then use the infobox shown in Figure 3-4 to get the Nationality
attribute.

https://requests-cache.readthedocs.org/en/latest/user_guide.html

Figure 3-4. Scraping a winner’s nationality

NOTE
When scraping, you are looking for reliable patterns and repeating elements with useful
data. As we’ll see, the Wikipedia infoboxes for individuals are not such a reliable
source, but clicking on a few random links certainly gives that impression. Depending
on the size of the dataset, it’s good to perform a few experimental sanity checks. You
can do this manually, but, as mentioned at the start of the chapter, this won’t scale or
improve your craft skills.

Example 3-2 takes one of the winner dictionaries we scraped earlier and
returns a name-labeled dictionary with a Nationality key if one is
found. Let’s run it on the first 50 winners and see how often a
Nationality attribute is missing:

Example 3-2. Scraping the winner’s country from their biography page
HEADERS = {'User-Agent': 'Mozilla/5.0'}

def get_winner_nationality(w):
 """ scrape biographic data from the winner's wikipedia page """
 response = requests.get('http://en.wikipedia.org' \
 + w['link'], headers=HEADERS)
 content = response.content.decode('utf-8')
 soup = BeautifulSoup(content)
 person_data = {'name': w['name']}
 attr_rows = soup.select('table.infobox tr')
 for tr in attr_rows:
 try:
 attribute = tr.select_one('th').text
 if attribute == 'Nationality':
 person_data[attribute] = tr.select_one('td').text
 except AttributeError:
 pass

 return person_dataWe use a CSS selector to find all the <tr> rows of the table with class
infobox.Cycles through the rows looking for a Nationality field.

Example 3-3 shows that 14 of the 50 first winners failed our attempt to
scrape their nationality. In the case of the Institut de Droit International,
national affiliation may well be moot, but Theodore Roosevelt is about as
American as they come. Clicking on a few of the names shows the problem
(see Figure 3-5). The lack of a standardized biography format means
synonyms for Nationality are often employed, as in Marie Curie’s
Citizenship; sometimes no reference is made, as with Niels Finsen; and
Randall Cremer has nothing but a photograph in his infobox. We can
discard the infoboxes as a reliable source of winners’ nationalities but, as
they appeared to be the only regular source of potted data, this sends us
back to the drawing board. In the next chapter, we’ll see a successful
approach using Scrapy and a different start page.

Example 3-3. Testing for scraped nationalities
wdata = []
test first 50 winners
for w in winners[:50]:
 wdata.append(get_winner_nationality(w))
missing_nationality = []
for w in wdata:
 # if missing 'Nationality' add to list
 if not w.get('Nationality'):
 missing_nationality.append(w)
output list
missing_nationality

[{'name': 'Theodor Mommsen'},
 {'name': 'Élie Ducommun'},
 {'name': 'Charles Albert Gobat'},
 {'name': 'Pierre Curie'},
 {'name': 'Marie Curie'},
 {'name': 'Niels Ryberg Finsen'},
 ...
 {'name': 'Theodore Roosevelt'}, ...

Figure 3-5. Winners without a recorded nationality

Although Wikipedia is a relative free-for-all, production-wise, where data is
designed for human consumption, you can expect a lack of rigor. Many
sites have similar gotchas and as the datasets get bigger, more tests may be
needed to find the flaws in a collection pattern.

Although our first scraping exercise was a little artificial in order to
introduce the tools, I hope it captured something of the slightly messy spirit
of web scraping. The ultimately abortive pursuit of a reliable Nationality
field for our Nobel dataset could have been forestalled by a bit of web
browsing and manual HTML-source trawling. However, if the dataset were
significantly larger and the failure rate a bit smaller, then programmatic
detection, which gets easier and easier as you become acquainted with the
scraping modules, really starts to deliver.

This little scraping test was designed to introduce BeautifulSoup, and shows
that collecting the data we set ourselves requires a little more thought,
which is often the case with scraping. In the next chapter, we’ll wheel out
the big gun, Scrapy, and, with what we’ve learned in this section, harvest
the data we need for our Nobel Prize visualization.

Summary
In this chapter, we’ve seen examples of the most common ways in which
data can be sucked out of the Web and into Python containers, databases, or
Pandas datasets. Python’s requests library is the true workhorse of
HTTP negotiation and a fundamental tool in our dataviz toolchain. For
simpler, RESTful APIs, consuming data with requests is a few lines of
Python away. For the more awkward APIs, such as those with potentially
complicated authorization, a wrapper library like Tweepy (for Twitter) can
save a lot of hassle. Decent wrappers can also keep track of access rates
and, where necessary, throttle your requests. This is a key consideration,
particularly when there is the possibility of blacklisting unfriendly
consumers.

We also started our first forays into data scraping, which is often a
necessary fallback where no API exists and the data is for human
consumption. In the next chapter, we’ll get all the Nobel Prize data needed
for the book’s visualization using Python’s Scrapy, an industrial-strength
scraping library.

1 This is actually a deliberate policy of the developers.

2 There are some platform dependencies that might still generate errors. This Stack Overflow
thread is a good starting point if you still have problems.

3 OAuth1 access has been deprecated recently.

4 The free API is currently limited to around 350 requests per hour.

5 Much of modern Machine Learning and Artificial Intelligence (AI) research is dedicated to
creating computer software that can cope with messy, noisy, fuzzy, informal data but, as of this
book’s publication, there’s no off-the-shelf solution I know of.

6 This CSS selection syntax should be familiar to anyone who’s used JavaScript’s jQuery
library and is also similar to that used by D3.

7 When scraping, you’re using other people’s web bandwidth, which ultimately costs them
money. It’s just good manners to try to limit your number of requests.

http://docs.python-requests.org/en/latest/dev/philosophy/#standard-library
http://stackoverflow.com/questions/29099404/ssl-insecureplatform-error-when-using-requests-package
https://dev.twitter.com/rest/public/rate-limiting
https://jquery.com/
https://d3js.org/

Chapter 4. Visualizing Data with
Matplotlib

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 10th chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sevans@oreilly.com.

As a data visualizer, one of the best ways to come to grips with your data is
to visualize it interactively, using the full range of charts and plots that have
evolved to summarize and refine datasets. Conventionally, the fruits of this
exploratory phase are then presented as static figures, but increasingly they
are used to construct more engaging interactive web-based charts, such as
the cool D3 visualizations you have probably seen (one of which we’ll be
building in [Link to Come]).

Python’s Matplotlib and its family of extensions (such as the statistically
focused Seaborn) form a mature and very customizable plotting ecosystem.
Matplotlib plots can be used interactively by IPython (the Qt and Notebook
versions), providing a very powerful and intuitive way of finding interesting
nuggets in your data. In this chapter we’ll introduce Matplotlib and one of
its great extensions, Seaborn.

mailto:sevans@oreilly.com

Pyplot and Object-Oriented Matplotlib
Matplotlib can be more than a little confusing, especially if you start
randomly sampling examples online. The main complicating factor is that
there are two main ways to create plots, which are similar enough to be
confused but different enough to lead to a lot of frustrating errors. The first
way uses a global state machine to interact directly with Matplotlib’s
pyplot module. The second, object-oriented approach uses the more
familiar notion of figure and axes classes to provide a programmatic
alternative. I’ll clarify their differences in the sections ahead, but as a rough
rule of thumb, if you’re working interactively with single plots, pyplot’s
global state is a convenient shortcut. For all other occasions, it makes sense
to explicitly declare your figures and axes using the object-oriented
approach.

Starting an Interactive Session
We will be using a Jupyter notebook for our interactive visualization. Use
the following command to start a session:

$ jupyter notebook

You can then use one of the Matplotlib magic commands within the IPython
session to enable interactive Matplotlib. On its own, %matplotlib will
use the default GUI backend to create a plotting window, but you can
specify the backend directly. The following should work on standard and Qt
console IPython:

%matplotlib [qt | osx | wx ...]

To get inline graphics in the Notebook or Qt console, you can use the
inline directive. Note that with inline plots, you can’t amend them after
creation, unlike the standalone Matplotlib window:

%matplotlib inline

1

http://jupyter.org/
http://bit.ly/1UAH8on

Whether you are using Matplotlib interactively or in Python programs,
you’ll use similar imports:

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

NOTE
You will find many examples of Matplotlib using pylab. Pylab is a convenience
module that bulk-imports matplotlib.pyplot (for plotting) and NumPy in a single
namespace. Pylab is pretty much deprecated now, but even were it not, I’d still
recommend avoiding this namespace and merging and importing pyplot and numpy
explicitly.

While NumPy and Pandas are not mandatory, Matplotlib is designed to play
well with them, handling NumPy arrays and, by association, Pandas
Series.

The ability to create inline plots is key to enjoyable interaction with
Matplotlib, and we achieve this in IPython with the following “magic”
injunction:

In [0]: %matplotlib inline

Your Matplotlib plots will now be inserted into your IPython workflow.
This works with Qt and Notebook versions. In the Notebooks, the plots are
incorporated into the active cell.

AMENDING PLOTS
In inline mode, after an IPython cell or (multi-line) input has been run, the drawing
context is flushed. This means you cannot change the plot from a previous cell or input
using the gcf (get current figure) method but have to repeat all the plot commands with
any additions or amendments in a new input/cell.

2

Interactive Plotting with Pyplot’s Global State
The pyplot module provides a global state that you can manipulate
interactively. This is intended for use in interactive data exploration and is
best when you are creating simple plots, usually containing single figures.
pyplot is convenient and many of the examples you’ll see use it, but for
more complex plotting Matplotlib’s object-oriented API (which we’ll see
shortly) comes into its own. Before demoing use of the global plot, let’s
create some random data to display, courtesy of Panda’s useful
period_range method:

from datetime import datetime

x = pd.period_range(datetime.now(), periods=200, freq='d')
x = x.to_timestamp().to_pydatetime()
y = np.random.randn(200, 3).cumsum(0)

Creates a Pandas datetime index with 200 day (d) elements, starting
from the current time (datetime.now()).Converts datetime index to Python datetimes.Creates three 200-element random arrays summed along the 0 axis.

We now have a y-axis with 200 time slots and three random arrays for the
complementary x values. These are provided as separate arguments to the
(line)plot method:

plt.plot(x, y)

This gives us the not particularly inspiring chart shown in Figure 4-1. Note
how Matplotlib deals naturally with a multidimensional NumPy line array.

3

Figure 4-1. Default line plot

Although Matplotlib’s defaults are, by general consensus, less than ideal,
one of its strengths is the sheer amount of customization you can perform.
This is why there is a rich ecosystem of chart libraries that wrap Matplotlib
with better defaults, more attractive color schemes, and more. Let’s see
some of this customization in action by using vanilla Matplotlib to tailor
our default plot.

Configuring Matplotlib
Matplotlib provides a wide range of configurations, which can be specified
in a matplotlibrc file or dynamically, through the dictionary-like
rcParams variable. Here we change the width and default color of our
plot lines:

import matplotlib as mpl
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.color'] = 'r' # red

You can find a sample matplotlibrc file at the main site.

As well as using the rcParams variable, you can use the gcf (get current
figure) method to grab the currently active figure and manipulate it directly.

Let’s see a little example of configuration, setting the current figure’s size.

Setting the Figure’s Size
If your plot’s default readability is poor or the width-to-height ratio
suboptimal, you will want to change its size. By default, Matplotlib uses
inches for its plotting size. This makes sense when you consider the many
backends (often vector-graphic-based) that Matplotlib can save to. Here we
use pyplot to set the figure size to eight by four inches, using rcParams
and gcf:

http://bit.ly/1ZWSMKA
http://bit.ly/1UTaxJ1
http://bit.ly/21r1YHF

set figure size to 8 by 4 inches
plt.rcParams['figure.figsize'] = (8,4)
plt.gcf().set_size_inches(8, 4)

Points, Not Pixels
Matplotlib uses points, not pixels, to measure the size of its figures. This is
the accepted measure for print-quality publications, and Matplotlib is used
to deliver publication-quality images.

By default a point is approximately 1/72 of an inch wide, but Matplotlib
allows you to adjust this by changing the dots-per-inch (dpi) for any figures
generated. The higher this number, the better the quality of the image. For
the purpose of the inline figures shown interactively during IPython
sessions, the resolution is usually a product of the backend engine being
used to generate the plots (e.g., Qt, WXAgg, tkinter). See here for an
explanation of backends.

Labels and Legends
Figure 4-1 needs, among other things, to tell us what the lines mean.
Matplotlib has a handy legend box for line labeling, which, like most things
Matplotlib, is heavily configurable. Labeling our three lines involves a little
indirection as the plot method only takes one label, which it applies to all
lines generated. Usefully, the plot command returns all Line2D objects
created. These can be used by the legend method to set individual labels.

plots = plt.plot(x,y)
plots
Out:
[<matplotlib.lines.Line2D at 0x9b31a90>,
 <matplotlib.lines.Line2D at 0x9b4da90>,
 <matplotlib.lines.Line2D at 0x9b4dcd0>]

The legend method can set labels, suggest a location for the legend box,
and configure a number of other things:

https://matplotlib.org/stable/tutorials/introductory/usage.html#backend
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

plt.legend(plots, ('foo', 'bar', 'baz'),
 loc='best',
 framealpha=0.5,
 prop={'size':'small', 'family':'monospace'})

Sets the labels for our three plots.Using the best location should avoid obscuring lines.Sets the legend’s transparency.Here we adjust the font properties of the legend.

Titles and Axes Labels
Adding a title and label for your axes is as easy as can be:

plt.title('Random trends')
plt.xlabel('Date')
plt.ylabel('Cum. sum')

You can add some text with the figtext method:

plt.figtext(0.995, 0.01,
 u'© Acme designs 2021',
 ha='right', va='bottom')

The location of the text proportionate to figure size.Horizontal (ha) and vertical (va) alignment.

The complete code is shown in Example 4-1 and the resulting chart in
Figure 4-2.

Example 4-1. Customized line chart
plots = plt.plot(x, y)
plt.legend(plots, ('foo', 'bar', 'baz'), loc='best,
 framealpha=0.25,
 prop={'size':'small', 'family':'monospace'})
plt.gcf().set_size_inches(8, 4)
plt.title('Random trends')
plt.xlabel('Date')
plt.ylabel('Cum. sum')
plt.grid(True)
plt.figtext(0.995, 0.01, u'\u00a9 Acme Designs 2021',
ha='right', va='bottom')
plt.tight_layout() This will add a dotted grid to the figure, marking the axis ticks.The tight_layout method should guarantee that all your plot

elements are within the figure box. Otherwise, you might find tick-

4

5

http://bit.ly/1Qc75KX

labels or legends truncated.

Figure 4-2. Customized line chart

We used the tight_layout method in Example 4-1 to prevent plot
elements from being obscured or truncated. tight_layout has been
known to cause problems with some systems, particularly OS X. If you
have any problems, this issue thread may help. As of now, the best advice is
to use the set_tight_layout method on the current figure:

plt.gcf().set_tight_layout(True)

Saving Your Charts
One area where Matplotlib shines is in saving your plots, providing many
output formats. The available formats depend on the backends available,
but generally PNG, PDF, PS, EPS, and SVG are supported.

Saving is as simple as this:

plt.tight_layout() # force plot into figure dimensions
plt.savefig('mpl_3lines_custom.svg')

You can set the format explicitly using format="svg", but Matplotlib
understands the .svg suffix. To avoid truncated labels, use the
tight_layout method.

Figures and Object-Oriented Matplotlib
As just shown, interactively manipulating Pyplot’s global state works fine
for quick data sketching and single-plot work. However, if you want to have
more control over your charts, Matplotlib’s figure and axes OOP
approach is the way to go. Most of the more advanced plotting demos you
see will be done this way.

In essence, with OOP Matplotlib we are dealing with a figure, which you
can think of as a drawing area with one or more axes (or plots) embedded in
it. Both figures and axes have properties that can be independently

6

7

https://github.com/matplotlib/matplotlib/issues/1852

specified. In this sense, the interactive pyplot route discussed earlier was
plotting to a single axis of a global figure.

We can create a figure by using Pyplot’s figure method:

fig = plt.figure(
 figsize=(8, 4), # figure size in inches
 dpi=200, # dots per inch
 tight_layout=True, # fit axes, labels, etc. to canvas
 linewidth=1, edgecolor='r' # 1 pixel wide, red border
)

As you can see, figures share a subset of properties with the global
pyplot module. These can be set on creation of the figure or through
similar methods (i.e., fig.text() as opposed to plt.fig_text()).
Each figure can have multiple axes, each of which is analogous to the
single, global plot state but with the considerable advantage that multiple
axes can exist on one figure, each with independent properties.

Axes and Subplots
The figure.add_axes method allows precise control over the position
of axes within a figure (e.g., enabling you to embed a smaller plot within
the main). Positioning of plot elements uses a 0 → 1 coordinate system,
where 1 is the width or height of the figure. You can specify the position
using a four-element list or tuple to set bottom-left and top-right bounds
[bottom(h*0.2), left(w*0.2), top(h*0.8), right(w*0.8)]:

fig.add_axes([0.2, 0.2, 0.8, 0.8])

Example 4-2 shows the code needed to insert smaller axes into larger ones,
using our random test data. The result is shown in Figure 4-3.

Example 4-2. A plot insert with figure.axes
fig = plt.figure(figsize=(8,4))
--- Main Axes
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8])
ax.set_title('Main Axes with Insert Child Axes')
ax.plot(x, y[:,0])

ax.set_xlabel('Date')
ax.set_ylabel('Cum. sum')
--- Inserted Axes
ax = fig.add_axes([0.15, 0.15, 0.3, 0.3])
ax.plot(x, y[:,1], color='g') # 'g' for green
ax.set_xticks([]); This selects the first column of our random NumPy y-data.Removes the x ticks and labels from our embedded plot.

Figure 4-3. Inserted plot with figure.add_axes

Although add_axes gives us a lot of scope for fine-tuning the appearance
of our charts, most of the time Matplotlib’s built-in grid-layout system
makes life much easier. The simplest option is to use
figure.subplots, which allows you to specify row-column layouts of
equal-sized plots. If you want a grid with different-sized plots, the
gridspec module is your go-to.

Calling subplots without arguments returns a figure with single axes.
This is closest in use to using the Pyplot state machine. Example 4-3 shows
the figure and axes equivalent to the pyplot demo in Example 4-1,
producing the chart in Figure 4-2. Note the use of “setter” methods for
figure and axes.

Example 4-3. Plotting with single figure and axes
figure, ax = plt.subplots()
plots = ax.plot(x, y, label='')
figure.set_size_inches(8, 4)
ax.legend(plots, ('foo', 'bar', 'baz'), loc='best',
framealpha=0.25,
prop={'size':'small', 'family':'monospace'})
ax.set_title('Random trends')
ax.set_xlabel('Date')
ax.set_ylabel('Cum. sum')
ax.grid(True)
figure.text(0.995, 0.01, u'\u00a9 Acme Designs 2021',
ha='right', va='bottom')
figure.tight_layout()

Calling subplots with arguments for number of rows (nrows) and
columns (ncols) (as shown in Example 4-4) allows multiple plots to be
placed on a grid layout (see the results in Figure 4-4). The call to
subplots returns the figure and an array of axes, in row-column order. In
the example, we specify one column so axes is a single array of three
stacked axes. We make use of Python’s handy zip method to produce three
dictionaries with line data. zip takes lists or tuples of length n and returns
n lists, formed by matching the elements by order:

8

https://docs.python.org/3.3/library/functions.html#zip

letters = ['a', 'b']
numbers = [1, 2]
zip(letters, numbers)
Out:
[('a', 1), ('b', 2)]

In the for loop, we use enumerate to supply an index i, which we use
to select an axis by row, using our zipped labelled_data to provide the
plot properties.

Note the shared x- and y-axes specified in the subplots call. This allows
easy comparison of the three charts, particularly on the now normalized y-
axis. To avoid redundant x labels, we only call set_xlabel on the last
row, using Python’s handy negative indexing.

Example 4-4. Using subplots
fig, axes = plt.subplots(
 nrows=3, ncols=1,
 sharex=True, sharey=True,
 figsize=(8, 8))
labelled_data = zip(y.transpose(),
 ('foo', 'bar', 'baz'), ('b', 'g', 'r'))
fig.suptitle('Three Random Trends', fontsize=16)
for i, ld in enumerate(labelled_data):
 ax = axes[i]
 ax.plot(x, ld[0], label=ld[1], color=ld[2])
 ax.set_ylabel('Cum. sum')
 ax.legend(loc='upper left', framealpha=0.5,
 prop={'size':'small'})
axes[-1].set_xlabel('Date') Specifies a subplot grid of three rows by one column.We want to share x- and y-axes, automatically adjusting limits for easy

comparison.Switch y to row-column and zip the line data, labels, and line colors
together.Labels the last of the shared x-axes.

Now that we’ve covered the two ways in which IPython and Matplotlib
engage interactively, using the global state (accessed through plt) and the
object-oriented API, let’s look at a few of the common plot types you’ll use
to explore your datasets.

Figure 4-4. Three subplots

Plot Types
As well as the line plot just demonstrated, Matplotlib has a number of plot
types available. I’ll now demonstrate a few of the ones commonly used in
exploratory data visualization.

Bar Charts
The humble bar chart is a staple for a lot of visual data exploration. As with
most of Matplotlib charts, there’s a good deal of customization possible.
We’ll now run through a few variants to give you the gist.

The code in Example 4-5 produces the bar chart in Figure 4-5. Note that
you have to specify your own bar and label locations. This kind of
flexibility is beloved by hardcore Matplotlibbers and is pretty easy to get
the hang of. Nevertheless, it’s the sort of thing that can get tedious. It’s
trivial to write some helper methods here, and there are many libraries that
wrap Matplotlib and make things a little more user-friendly. As we’ll see in
Chapter 5, Panda’s built-in Matplotlib-based plots are quite a bit simpler to
use.

Example 4-5. A simple bar chart
labels = ["Physics", "Chemistry", "Literature", "Peace"]
foo_data = [3, 6, 10, 4]

bar_width = 0.5
xlocations = np.array(range(len(foo_data))) + bar_width
plt.bar(xlocations, foo_data, width=bar_width)
plt.yticks(range(0, 12))
plt.xticks(xlocations, labels)
plt.title("Prizes won by Fooland")
plt.gca().get_xaxis().tick_bottom()
plt.gca().get_yaxis().tick_left()
plt.gcf().set_size_inches((8, 4))Here we create the middle bar locations, two bar_width’s apart.This places tick labels at the middle of the bars.

Figure 4-5. A simple bar chart

Bar charts with multiple groups are particularly useful. In Example 4-6, we
add some more country data (for a mythical Barland) and use the
subplots method to produce grouped bar charts (see Figure 4-6). Once
again we specify the bar locations manually, adding two bar groups—this
time with ax.bar. Note that our axes’ x-limits are automatically rescaled
in a sensible fashion, at increments of 0.5:

ax.get_xlim()
Out: (-0.5, 3.5)

Use the respective setter methods (set_xlim, in this case) if autoscaling
doesn’t achieve the desired look.

Example 4-6. Creating a grouped bar chart
labels = ["Physics", "Chemistry", "Literature", "Peace"]
foo_data = [3, 6, 10, 4]
bar_data = [8, 3, 6, 1]

fig, ax = plt.subplots(figsize=(8, 4))
bar_width = 0.4
xlocs = np.arange(len(foo_data))
ax.bar(xlocs-bar_width, foo_data, bar_width,
 color='#fde0bc', label='Fooland')
ax.bar(xlocs, bar_data, bar_width, color='peru', label='Barland')
#--- ticks, labels, grids, and title
ax.set_yticks(range(12))
ax.set_xticks(ticks=range(len(foo_data)))
ax.set_xticklabels(labels)
ax.yaxis.grid(True)
ax.legend(loc='best')
ax.set_ylabel('Number of prizes')
fig.suptitle('Prizes by country')
fig.tight_layout(pad=2)
fig.savefig('mpl_barchart_multi.png', dpi=200) With a width of 1 for our two-bar groups, this bar width gives 0.1 bar

padding.Matplotlib supports standard HTML colors, taking hex values or a
name.We use the pad argument to specify padding around the figure as a
fraction of the font size.

This saves the figure at the high resolution of 200 dots per inch.

Figure 4-6. Grouped bar charts

It’s often useful to use horizontal bars, particularly if there are a lot of them
and/or you are using tick labels, which are likely to run into one another if
placed on the same line. Turning Figure 4-6 on its side is easy enough,
requiring only that we replace the bar method with its horizontal
counterpart barh and switch the axis labels and limits (see Figure 4-7).

Example 4-7. Converting Example 4-6 to horizontal bars
...
ylocs = np.arange(len(foo_data))
ax.barh(ylocs-bar_width, foo_data, bar_width, color='#fde0bc',
 label='Fooland')
ax.barh(ylocs, bar_data, bar_width, color='peru', label='Barland')
--- labels, grids and title, then save
ax.set_xticks(range(12))
ax.set_yticks(ticks=ylocs-bar_width/2)
ax.set_yticklabels(labels)
ax.xaxis.grid(True)
ax.legend(loc='best')
ax.set_xlabel('Number of prizes')
...To create a horizontal bar chart, we use barh in place of bar.A horizontal chart necessitates swapping the horizontal and vertical

axes.

Figure 4-7. Turning the bars on their side

Stacked bars are easy to achieve in Matplotlib. Example 4-8 converts
Figure 4-6 to a stacked form; Figure 4-8 shows the result. The trick is to use
the bottom argument to bar to set the bottom of the raised bars as the top
of the previous group.

Example 4-8. Converting Example 4-6 to stacked bars
...
bar_width = 0.8
xlocs = np.arange(len(foo_data))
ax.bar(xlocs, foo_data, bar_width, color='#fde0bc',
 label='Fooland')
ax.bar(xlocs, bar_data, bar_width, color='peru',
 label='Barland', bottom=foo_data)
--- labels, grids and title, then save
ax.set_yticks(range(18))
ax.set_xticks(ticks=xlocs)
ax.set_xticklabels(labels)
...The foo_data and bar_data bar groups share the same x-locations.The bottom of the bar_data group is the top of the foo_data,

providing stacked bars.

9

Figure 4-8. Stacked bar chart

Scatter Plots
Another useful chart is the scatter plot, which takes 2D arrays of points with
options for point size, color, and more.

Example 4-9 shows the code for a quick scatter plot, using Matplotlib
autoscaling for x and y limits. We create a noisy line by adding normally
distributed random numbers (sigma of 10). Figure 4-9 shows the resulting
chart.

Example 4-9. A simple scatter plot
num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
ax.scatter(x, y)

fig.suptitle('A Simple Scatterplot')randn gives normally distributed random numbers, which we scale to
be within 0 and 10 and to which we then add an x-dependent value.The equally sized x and y arrays provide the point coordinates.

Figure 4-9. A simple scatter plot

We can adjust the size and color of individual points by passing an array of
marker sizes and color indices to the current default colormap. One thing to
note, which can be confusing, is that we are specifying the area of the
markers’ bounding boxes, not the circles’ diameters. This means if we want
points to double the diameter of the circles, we must increase the size by a
factor of four. In Example 4-10, we add size and color information to our
simple scatter plot, producing Figure 4-10.

Example 4-10. Adjusting point size and color
num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
colors = np.random.rand(num_points)
size = np.pi * (2 + np.random.rand(num_points) * 8) ** 2
ax.scatter(x, y, s=size, c=colors, alpha=0.5)
fig.suptitle('Scatterplot with Color and Size Specified')This produces 100 random color values between 0 and 1 for the default

colormap.We use the power notation ** to square values between 2 and 10, the
width range for our markers.We use the alpha argument to make our markers half-transparent.

10

Figure 4-10. Adjusting point size and color

MATPLOTLIB COLORMAPS
Matplotlib has a huge variety of colormaps available, the choice of which can
significantly improve the quality of your visualization. See the colormap docs for
details.

Adding a regression line
A regression line is a simple predictive model of the correlation between
two variables, in this case the x and y coordinates of our scatter plot. The
line is essentially a best fit through the points of the plot, and adding one to
a scatter plot is a useful dataviz technique and a good way to demo
Matplotlib, NumPy interaction.

In Example 4-11 NumPy’s very useful polyfit function is used to
generate the gradient and constant of a best-fit line for the points defined by
the x and y arrays. We then plot this line on the same axes as the scatter plot
(see Figure 4-11).

Example 4-11. Scatter plot with regression line
num_points = 100
gradient = 0.5
x = np.array(range(num_points))
y = np.random.randn(num_points) * 10 + x*gradient
fig, ax = plt.subplots(figsize=(8, 4))
ax.scatter(x, y)
m, c = np.polyfit(x, y ,1)
ax.plot(x, m*x + c)
fig.suptitle('Scatterplot With Regression-line')We use NumPy’s polyfit in 1D to get a line gradient (m) and

constant (c) for a best-fit line through our random points.Use the gradient and constant to plot a line on the scatter plot’s axes (y
= mx + c).

https://matplotlib.org/stable/tutorials/colors/colormaps.html

Figure 4-11. Scatter plot with regression line

It’s generally a good idea to plot confidence intervals when doing line
regression. This gives an idea of how reliable the line fit is, based on the
number and distribution of the points. Confidence intervals can be achieved
with Matplotlib and NumPy, but it is a little awkward. Luckily, there is a
library built on Matplotlib that has extra, specialized functions for statistical
analysis and data visualization and, in the opinion of many, looks a lot
better than Matplotlib’s defaults. That library is Seaborn, which we are
going to take a quick look at now.

Seaborn
There are a number of libraries that wrap the powerful plotting abilities of
Matplotlib in a more user-friendly guise and, as important for us data
visualizers, play nicely with Pandas:

Bokeh is an interactive visualization library with the Web in mind,
producing browser-rendered output and therefore playing very
nicely with IPython Notebook. It’s a great achievement, with a
design philosophy similar to D3’s.

But for the kind of interactive, exploratory dataviz necessary to get a feel
for your data and suggest visualizations, I recommend Seaborn. Seaborn
extends Matplotlib with some powerful statistical plots and is well
integrated with the PyData stack, playing nicely with NumPy, Pandas, and
the statistical routines found in Scipy and Statsmodels.

One of the nice things about Seaborn is that it doesn’t hide the Matplotlib
API, allowing you to tweak your charts with Matplotlib’s extensive tools. In
this sense, it’s not a replacement for Matplotlib and the relevant skills, but a
very impressive extension.

To work with Seaborn, simply extend your standard Matplotlib imports:

import numpy as np
import pandas as pd

11

12

http://bokeh.pydata.org/en/latest/
http://stanford.edu/~mwaskom/software/seaborn/index.html
http://statsmodels.sourceforge.net/stable/

import seaborn as sns # relies on matplotlib
import matplotlib as mpl
import matplotlib.pyplot as plt

Matplotlib provides a number of plotting styles which can be invoked by
calling a use method with a style key. Let’s set the current style to
Seaborn’s default, which will provide a subtle gray grid to the charts:

matplotlib.style.use('seaborn')

You can checkout all available styles and their visual effects here.

Many of Seaborn’s functions are designed to accept a Pandas DataFrame,
allowing you to specify, for example, the column values describing 2D
scattered points. Let’s take our existing x and y arrays from Example 4-9
and use them to make some dummy data.

data = pd.DataFrame({'dummy x':x, 'dummy y':y})

We now have some data with columns of x ('dummy_x') and y
('dummy_y') values. Example 4-12 demonstrates the use of Seaborn’s
dedicated linear regression plot lmplot, which produces the chart in
Figure 4-12. Note that for some Seaborn plots, to adjust figure size we pass
a size (height) in inches and an aspect ratio (width/height). Note also that
Seaborn shares pyplot’s global context.

Example 4-12. Linear regression plot with Seaborn
data = pd.DataFrame({'dummy x':x, 'dummy y':y})
sns.lmplot(data=data, x='dummy x', y='dummy y',
 height=4, aspect=2)
plt.tight_layout()
plt.savefig('mpl_scatter_seaborn.png') The x and y arguments specify the column names of the DataFrame

data which define the coordinates of the plot points.To set figure size, we provide the height in inches and an aspect ratio of
width/height.Seaborn shares the pyplot global context, allowing you to save its
plots as you would Matplotlib’s.

https://matplotlib.org/stable/gallery/style_sheets/style_sheets_reference.html

Figure 4-12. Linear regression plot with Seaborn

As you would expect from a library that places an emphasis on attractive-
looking plots, Seaborn allows a lot of visual customization. Let’s make a
few changes to the look of Figure 4-12 and adjust the confidence interval to
the standard error estimate of 68% (see Figure 4-13 for the result):

sns.lmplot(data=data, x='dummy x', y='dummy y', height=4,
aspect=2,
 scatter_kws={"color": "slategray"},
 line_kws={"linewidth": 2, "linestyle":'--',
 "color": "seagreen"},
 markers='D',
 ci=68)

Provide the scatter plot component’s keyword arguments, setting our
points’ color to slate gray.Provide the line plot component’s keyword arguments, setting line
width and style.Sets the plot markers to diamonds using Matplotlib marker code D.We set a confidence interval of 68%, the standard error estimate.

https://en.wikipedia.org/wiki/Standard_error

Figure 4-13. Customizing the Seaborn scatter plot

Seaborn offers a number of useful plots beyond Matplotlib’s basic set. Let’s
take a look at one of the most interesting, using Seaborn’s FacetGrid to
plot reflections of multidimensional data.

FacetGrids
Often referred to as “lattice” or “trellis” plotting, the ability to draw
multiple instances of the same plot on different subsets of your dataset is a
good way to get a bird’s-eye view of your data. Large amounts of
information can be presented in one plot, and relationships between the
different dimensions can be quickly apprehended. This technique is related
to the small multiples popularized by Edward Tufte.

FacetGrids require the data to be in the form of a Pandas DataFrame
(see [Link to Come]) and in a form referred to by Hadley Whickam, creator
of ggplot, as “tidy,” meaning each column in the DataFrame should be a
variable and each row an observation.

Let’s use Tips, one of Seaborn’s test datasets, to show a FacetGrid in
action. Tips is a small set of data showing the distribution of tips by various
dimensions, such as day of the week or whether the customer was a smoker.
First let’s load our Tips dataset into a Pandas DataFrame using the
load_dataset method:

In [0]: tips = sns.load_dataset('tips')
Out[0]:
 total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
...

To create a FacetGrid, we specify the tips DataFrame and a column
of interest, such as the smoking status of the customer. This column will be
used to create our plot groups; in this case, 'smoker=Yes' and

13

https://en.wikipedia.org/wiki/Small_multiple

'smoker=No'. We then use the grid’s map method to create multiple
scatter plots of tip size against total bill.

g = sns.FacetGrid(tips, col="smoker", height=4, aspect=1)
g.map(plt.scatter, "total_bill", "tip")

map takes a plot class, in this case scatter, and two (tips)
dimensions required for this scatter plot.

This produces the two scatter plots shown in Figure 4-14, one for each
smoker status, with tips and total bills correlated.

Figure 4-14. A Seaborn FacetGrid using scatter plots

We can include another dimension of the tips data by specifying the
marker to be used in our scatter plots. Let’s make it a red diamond for
females and a blue square for males:

pal = dict(Female='red', Male='blue')
g = sns.FacetGrid(tips, col="smoker",
 hue="sex", hue_kws={"marker": ["D", "s"]},
 palette=pal, height=4, aspect=1,)
g.map(plt.scatter, "total_bill", "tip", alpha=.4)
g.add_legend();

Adds a marker color (hue) for the sex dimension with diamond (D)
and square (s) shapes, and uses our color palette (pal) to make them
red and blue.

Figure 4-15. Scatter plot with diamond and square markers for sex

We can use rows as well as columns to create subsets of the data by
dimension. Combining the two allows, with the help of a regplot, five
dimensions to be explored:

pal = dict(Female='red', Male='blue')
g = sns.FacetGrid(tips, col="smoker", row="time",
 hue="sex", hue_kws={"marker": ["D", "s"]},
 palette=pal, height=4, aspect=1,)
g.map(sns.regplot, "total_bill", "tip", alpha=.4)
g.add_legend();

Adds a time row to separate tips by lunch and dinner.

Figure 4-16 shows four regplots producing a linear-regression model fit
with confidence intervals for Female and Male hue-groups. The plot titles
show the data subset being used, each row having the same time and
smoker status.

14

Figure 4-16. Visualizing five dimensions

We can achieve the same effect using the lmplot we saw in Example 4-
12, which wraps the functionality of FacetGrid and regplot for
convenience. The following code produces Figure 4-16.

pal = dict(Female='red', Male='blue')
sns.lmplot(x="total_bill", y="tip", hue="sex",\
markers=["D", "s"],
 col="smoker", row="time", data=tips, palette=pal,
 height=4, aspect=1
);

Note the use of a markers keyword as opposed to the kws_hue
dictionary we used with the FacetGrid plot.

lmplot offers a nice shortcut to producing FacetGrid regplots, but
FacetGrid’s map allows you to use the full panoply of Seaborn and
Matplotlib charts to create plots on dimensional subsets. It’s a very
powerful technique and a great way to drill down into your data.

Pairgrids
Pairgrids are another rather cool Seaborn plot type that provide a way to
quickly assess multidimensional data. Unlike with FacetGrids, you don’t
divide the dataset into subsets that are then compared by designated
dimensions. With Pairgrids, the dataset’s dimensions are all compared pair-
wise in a square grid. By default all dimensions are compared, but you can
specify which ones get plotted by providing a list to the vars parameter
when declaring the Pairgrid.

Let’s demonstrate the utility of this pair-wise comparison by using the
classic Iris dataset, showing some vital statistics for a set containing
members of three Iris species. First we’ll load the example dataset:

In [0]: iris = sns.load_dataset('iris')
In [1]: iris.head()
Out[1]:
 sepal_length sepal_width petal_length petal_width species

15

0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
...

To capture the relationship between petal and sepal dimensions by species,
we first create a PairGrid object, set its hue to species, and then use
its mapping methods to create plots on and off the diagonal of the pair-wise
grid, producing the charts in Figure 4-17.

sns.set_theme(font_scale=1.5)
g = sns.PairGrid(iris, hue="species")
g.map_diag(plt.hist)
g.map_offdiag(plt.scatter)
g.add_legend();

Tweaks the font size using Seaborn’s set_theme method (see here to
see the full list of available tweaks).Sets the markers and subbars to be colored by species.Places histograms of the species’ dimensions on the grid’s diagonal.Uses standard scatter plots to compare the dimensions of the diagonal.

As you can see in Figure 4-17, a few lines of Seaborn goes a long way in
creating a richly informative set of plots correlating the different Iris
metrics. This plot is known as a scatter-plot matrix and is a great way of
finding linear correlations between pairs of variables in a multivariate set.
As it stands, there is redundancy in the grid: for example, plots for
sepal_width-petal_length and petal_length-
septal_width. PairGrid gives you the opportunity to use the
redundant plots above or below the main diagonal to provide a different
reflection of the data. Check out some of the examples at the Seaborn docs
for more info.

I’ve covered a few of the Seaborn plots in this section, and you’ll be seeing
a few more when we explore our Nobel Prize dataset in the next chapter.
But Seaborn has a lot of other very handy and very powerful plotting tools,
mainly of a statistical nature. For further investigation, I’d recommend
starting with the main Seaborn documentation. There are some nice

16

https://seaborn.pydata.org/generated/seaborn.set_theme.html#seaborn.set_theme
http://bit.ly/1XuexDu
http://stanford.io/1YydS2V
http://stanford.io/28L8ezk

examples, a well-documented API, and some good tutorials that should
complement what you’ve learned in this chapter.

Figure 4-17. Pairgrid summation of Iris measures

Summary
This chapter introduced Matplotlib, Python’s plotting powerhouse. It’s a
big, mature library with lots of documentation and an active community. If
you have a particular customization in mind, chances are there’s an example
out there somewhere. I’d recommend firing up a Jupyter Notebook and
playing around with a dataset.

We saw how Seaborn extends Matplotlib with some useful statistical
methods and that it has what many consider to be superior aesthetics. It also
allows access to the Matplotlib figure and axes internals, allowing full
customization if required.

In the next chapter we’ll use Matplotlib along with Pandas to explore our
freshly scraped and cleaned Nobel dataset. We’ll use some of the plot types
demonstrated in this chapter and see a few useful new ones.

1 If you have errors trying to start a GUI session, try changing the backend setting (e.g., if using
OS X and %matplotlib qt doesn’t work, try %matplotlib osx).

2 IPython has a large number of such functions to enable a whole slew of useful extras to the
vanilla Python interpreter. Check them out on the IPython website.

3 This was inspired by Matlab.

4 See the docs for more details.

5 See the Matplotlib website for details.

6 As well as providing many formats, it also understands LaTex math mode, which means you
can use mathematical symbols in the titles, legends, and the like. This is one of the reasons
Matplotlib is much beloved by academics, as it is quite capable of journal-quality images.

7 More details are available on the Matplotlib website.

8 The handy tight_layout option assumes grid-layout subplots.

9 It’s questionable whether stacked bar charts are a particularly good way of appreciating
groups of data. See Solomon Messing’s blog for a nice discussion and one example of “good”
use.

http://jupyter.org/
https://ipython.org/ipython-doc/dev/interactive/tutorial.html
http://uk.mathworks.com/products/matlab/
https://matplotlib.org/stable/api/font_manager_api.html
http://bit.ly/1YyaMMr
https://www.latex-project.org/
https://matplotlib.org/stable/tutorials/intermediate/tight_layout_guide.html
https://solomonmg.github.io/post/whento-use-stacked-barcharts/

10 Setting marker size, rather than width or radius, is actually a good default, making it
proportional to whatever value we are trying to reflect.

11 It’s generally agreed that Matplotlib’s defaults aren’t that great and making them better is an
easy win for any wrapper.

12 Both D3 and Bokeh tip their hats to the classic visualization text, Leland Wilkinson’s The
Grammar of Graphics (Springer).

13 Seaborn has a number of handy datasets, which you can find on GitHub.

14 regplot is equivalent to lmplot, used in Example 4-12. The latter combines regplot
and FacetGrid for convenience.

15 There are also x_vars and y_vars parameters enabling you to specify nonsquare grids.

16 For the curious, there’s a D3 example which builds a scatter-plot matrix at the bl.ocks.org site.

https://github.com/mwaskom/seaborn-data
https://bl.ocks.org/mbostock/3213173

Chapter 5. Exploring Data with
Pandas

A NOTE FOR EARLY RELEASE READERS
With Early Release ebooks, you get books in their earliest form—the
author’s raw and unedited content as they write—so you can take
advantage of these technologies long before the official release of these
titles.

This will be the 11th chapter of the final book.

If you have comments about how we might improve the content and/or
examples in this book, or if you notice missing material within this
chapter, please reach out to the editor at sevans@oreilly.com.

In the previous chapter, we cleaned the Nobel Prize dataset that we scraped
from Wikipedia in [Link to Come]. Now it’s time to start exploring our
shiny new dataset, looking for interesting patterns, stories to tell, and
anything else that could form the basis for an interesting visualization.

First off, let’s try to clear our minds and take a long, hard look at the data to
hand to get a broad idea of the visualizations suggested. Example 5-1 shows
the form of the Nobel dataset, with categorical, temporal, and geographical
data.

Example 5-1. Our cleaned Nobel Prize dataset
[{
 'category': u'Physiology or Medicine',
 'date_of_birth': u'8 October 1927',
 'date_of_death': u'24 March 2002',
 'gender': 'male',
 'link': u'http://en.wikipedia.org/wiki/C%C3%A9sar_Milstein',
 'name': u'C\xe9sar Milstein',
 'country': u'Argentina',

mailto:sevans@oreilly.com

 'place_of_birth': u'Bah\xeda Blanca , Argentina',
 'place_of_death': u'Cambridge , England',
 'year': 1984,
 'born_in': NaN
 },
 ...
 }]

The data in Example 5-1 suggests a number of stories we might want to
investigate, among them:

Gender disparities among the prize winners

National trends (e.g., which country has most prizes in Economics)

Details about individual winners, such as their average age on
receiving the prize or life expectancy

Geographical journey from place of birth to adopted country using
the born_in and country fields

These investigative lines form the basis for the coming sections, which will
probe the dataset by asking questions of it, such as “How many women
other than Marie Curie have won the Nobel Prize for Physics?,” “Which
countries have the most prizes per capita rather than absolute?,” and “Is
there a historical trend to prizes by nation, a changing of the guard from old
(science) world (big European nations) to new (US and upcoming
Asians)?” Before beginning our explorations, let’s ready our tools and load
our Nobel Prize dataset.

Starting to Explore
To start our exploration, let’s fire up a Jupyter notebook from the command
line:

$ jupyter notebook

We’ll use the magic matplotlib command to enable inline plotting:

%matplotlib inline

Then import the standard set of data exploration modules:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
import matplotlib
import seaborn as sns

Now we’ll make a few adjustments to the plotting parameters and the
general look and feel of the charts. Make sure to change the style before
adjusting figure sizes, fonts and the rest:

matplotlib.style.use('seaborn')

plt.rcParams['figure.figsize'] = (8, 4)
plt.rcParams['font.size'] = '12'

We’ll use the seaborn theming for our charts, arguably more attractive
than Matplotlib’s default.Sets the default plotting size to eight inches by four.

At the end of [Link to Come], we saved our clean dataset as a json file.
Let’s load the clean data into a Pandas DataFrame, ready to begin
exploring.

df = pd.read_json(open('data/nobel_winners_cleaned.json'))

Let’s get some basic information about our dataset’s structure:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 858 entries, 0 to 857
Data columns (total 13 columns):
 # Column Non-Null Count Dtype
--- ------ -------------- -----
 0 category 858 non-null object
 1 country 858 non-null object

 2 date_of_birth 858 non-null datetime64[ns, UTC]
 3 date_of_death 559 non-null datetime64[ns, UTC]
 4 gender 858 non-null object
 5 link 858 non-null object
 6 name 858 non-null object
 7 place_of_birth 831 non-null object
 8 place_of_death 524 non-null object
 9 text 858 non-null object
 10 year 858 non-null int64
 11 award_age 858 non-null int64
 12 born_in 102 non-null object
dtypes: datetime64[ns, UTC](2), int64(2), object(9)
memory usage: 87.3+ KB

Note that our dates of birth and death columns have the standard Pandas
datatype of object. In order to make date comparisons, we’ll need to
convert those to the datetime type, datetime64. We can use Pandas’
to_datetime method to achieve this conversion:

df.date_of_birth = pd.to_datetime(df.date_of_birth)
df.date_of_death = pd.to_datetime(df.date_of_death)

Running df.info() should now show two datetime columns:

df.info()

...
date_of_birth 858 non-null datetime64[ns, UTC]
date_of_death 559 non-null datetime64[ns, UTC]
...

UTC is the primary time standard by which the world regulates clocks
and time. It’s almost always desirable to work to this standard.

to_datetime usually works without needing extra arguments, but it’s
worth checking the converted columns to make sure. In the case of our
Nobel Prize dataset, everything checks out.

Plotting with Pandas

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_datetime.html
https://en.wikipedia.org/wiki/Coordinated_Universal_Time

Both Pandas Series and DataFrames have integrated plotting, which
wraps the most common Matplotlib charts, a few of which we explored in
the last chapter. This makes it easy to get quick visual feedback as you
interact with your DataFrame. And if you want to visualize something a
little more complicated, the Pandas containers will play nicely with vanilla
Matplotlib. You can also adapt the plots produced by Pandas using standard
Matplotlib customizations.

Let’s look at an example of Pandas’ integrated plotting, starting with a basic
plot of gender disparity in Nobel Prize wins. Notoriously, the Nobel Prize
has been distributed unequally among the sexes. Let’s get a quick feel for
that disparity by using a bar plot on the gender category. Example 5-2
produces Figure 5-1, showing the huge difference, with men receiving 811
of the 858 prizes in our dataset.

Example 5-2. Using Pandas’ integrated plotting to see gender disparities
by_gender = df.groupby('gender')
by_gender.size().plot(kind='bar')

Figure 5-1. Prize counts by gender

In Example 5-2, the Series produced by the gender group’s size
method has its own integrated plot method, which turns the raw numbers
into a chart:

by_gender.size()
Out:
gender
female 47
male 811
dtype: int64

In addition to the default line plot, the Pandas plot method takes a kind
argument to select among other possible plots. Among the more commonly
used are:

bar or barh (h for horizontal) for bar plots

hist for a histogram

box for a box plot

scatter for scatter plots

You can find a full list of Pandas’ integrated plots in the docs as well as
some Pandas plotting functions that take DataFrames and Series as
arguments.

Let’s extend our investigation into gender disparities and start extending our
plotting know-how.

Gender Disparities
Let’s break down the gender numbers shown in Figure 5-1 by category of
prize. Pandas’ groupby method can take a list of columns to group by,
with each group being accessed by multiple keys.

http://pandas.pydata.org/pandas-docs/stable/visualization.html#other-plots

by_cat_gen = df.groupby(['category','gender'])

by_cat_gen.get_group(('Physics', 'female'))[['name', 'year']]
Out:
 name year
269 Maria Goeppert-Mayer 1963
612 Marie Skłodowska-Curie 1903

Gets a group using a category and gender key.

Using the size method to get the size of these groups returns a Series
with a MultiIndex that labels the values by both category and gender:

by_cat_gen.size()
Out:
category gender
Chemistry female 4
 male 167
Economics female 1
 male 74
...
Physiology or Medicine female 11
 male 191
dtype: int64

We can plot this multi-indexed Series directly, using hbar as the kind
argument to produce a horizontal bar chart. This code produces Figure 5-2:

by_cat_gen.size().plot(kind='barh')

Figure 5-2. Plotting multikey groups

Figure 5-2 is a little crude and makes comparing gender disparities harder
than it should be. Let’s go about refining our charts to make those
disparities clearer.

Unstacking Groups
Figure 5-2 isn’t the easiest chart to read, even were we to improve the
sorting of the bars. Handily, Pandas Series have a cool unstack
method that takes the multiple indices—in this case, gender and category—
and uses them as columns and indices, respectively, to create a new
DataFrame. Plotting this DataFrame gives a much more usable plot, as
it compares prize wins by gender. The following code produces Figure 5-3:

by_cat_gen.size().unstack().plot(kind='barh')

Figure 5-3. Unstacked Series of group sizes

Let’s improve Figure 5-3 by ordering the bar groups by number of female
winners (low to high) and adding a total winners bar group for comparison.
Example 5-3 produces the chart in Figure 5-4.

Example 5-3. Sorting and summing our gender groups
cat_gen_sz = by_cat_gen.size().unstack()
cat_gen_sz['total'] = cat_gen_sz.sum(axis=1)
cat_gen_sz = cat_gen_sz.sort_values(by='female', ascending=True)
cat_gen_sz[['female', 'total', 'male']].plot(kind='barh')Sums the male and female totals. The axis argument is 0 for index

sum, 1 for columns.Sorts the rows using the female field, from low to high.

Figure 5-4. Bars ordered by number of female winners

Ignoring Economics, a recent and contentious addition to the Nobel Prize
categories, Figure 5-4 shows that the largest discrepancy in the number of
male and female prize winners is in Physics, with only two female winners.
Let’s remind ourselves who they are:

df[(df.category == 'Physics') & (df.gender == 'female')]\
 [['name', 'country','year']]

Out:
 name country year
269 Maria Goeppert-Mayer United States 1963
612 Marie Skłodowska-Curie Poland 1903

While most people will have heard of Marie Curie, who is actually one of
the four illustrious winners of two Nobel Prizes, few have heard of Maria
Goeppert-Mayer. This ignorance is surprising, given the drive to
encourage women into science. I would want my visualization to enable
people to discover and learn a little about Maria Goeppert-Mayer.

Historical Trends
It would be interesting to see if there has been any increase in female prize
allocation in recent years. One way to visualize this would be as grouped
bars over time. Let’s run up a quick plot, using unstack as in Figure 5-3
but using the year and gender columns.

by_year_gender = df.groupby(['year','gender'])
year_gen_sz = by_year_gender.size().unstack()
year_gen_sz.plot(kind='bar', figsize=(16,4))

Figure 5-5, the hard-to-read plot produced, is only functional. The trend of
female prize distributions can be observed, but the plot has many problems.
Let’s use Matplotlib’s and Pandas’ eminent flexibility to fix them.

1

Figure 5-5. Prizes by year and gender

The first thing we need to do is reduce the number of x-axis labels. By
default, Matplotlib will label each bar or bar group of a bar plot, which in
the case of our hundred years of prizes creates a mess of labels. What we
need is the ability to thin out the number of axis labels as desired. There are
various ways to do this in Matplotlib; I’ll demonstrate the one I’ve found to
be most reliable. It’s the sort of thing you’re going to want to reuse, so it
makes sense to stick it in a dedicated function. Example 5-4 shows a
function to reduce the number of ticks on our x-axis.

Example 5-4. Reducing the number of x-axis labels
def thin_xticks(ax, tick_gap=10, rotation=45):
 """ Thin x-ticks and adjust rotation """
 ticks = ax.xaxis.get_ticklocs()
 ticklabels = [l.get_text()\
 for l in ax.xaxis.get_ticklabels()]
 ax.xaxis.set_ticks(ticks[::tick_gap])
 ax.xaxis.set_ticklabels(ticklabels[::tick_gap],\
 rotation=rotation)
 ax.figure.show()Gets the existing locations and labels of the x-ticks, currently one per

bar.Sets the new tick locations and labels at an interval of tick_gap
(default 10).Rotates the labels for readability, by default on an upward diagonal.

As well as needing to reduce the number of ticks, the x-axis in Figure 5-5
has a discontinuous range, missing the years 1939–1945 of WWII, during
which no Nobel Prizes were presented. We want to see such gaps, so we
need to set the x-axis range manually to include all years from the start of
the Nobel Prize to the current day.

The current unstacked group sizes use an automatic year index:

by_year_gender = df.groupby(['year', 'gender'])
by_year_gender.size().unstack()
Out:
gender female male
year
1901 NaN 6.0
1902 NaN 7.0

...
2014 2.0 11.0
[111 rows x 2 columns]

In order to see any gaps in the prize distribution, all we have to do is
reindex this Series with one containing the full range of years:

new_index = pd.Index(np.arange(1901, 2015), name='year')
by_year_gender = df.groupby(['year','gender'])
year_gen_sz = by_year_gender.size().unstack()
 .reindex(new_index)

Here we create a full-range index named year, covering all the Nobel
Prize years.We replace our discontinuous index with the new continuous one.

Another problem with Figure 5-5 is the excessive number of bars. Although
we do get male and female bars side by side, it looks messy and has aliasing
artifacts too. It’s better to have dedicated male and female plots but stacked
so as to allow easy comparison. We can achieve this using the subplotting
method we saw in “Axes and Subplots”, using the Pandas data but
customizing the plot using our Matplotlib know-how. Example 5-5 shows
how to do this, producing the plot in Figure 5-6.

Example 5-5. Stacked gender prizes by year
new_index = pd.Index(np.arange(1901, 2015), name='year')
by_year_gender = df.groupby(['year','gender'])

year_gen_sz = by_year_gender.size().unstack().reindex(new_index)

fig, axes = plt.subplots(nrows=2, ncols=1,
 sharex=True, sharey=True, figsize=(16, 8))

ax_f = axes[0]
ax_m = axes[1]

fig.suptitle('Nobel Prize-winners by gender', fontsize=16)

ax_f.bar(year_gen_sz.index, year_gen_sz.female)
ax_f.set_ylabel('Female winners')

ax_m.bar(year_gen_sz.index, year_gen_sz.male)
ax_m.set_ylabel('Male winners')

ax_m.set_xlabel('Year')Creates two axes, on a two (row) by one (column) grid.We’ll share the x- and y-axes, which will make comparisons between
the two plots sensible.We provide the axis’s bar chart (bar) method with the continuous year
index and the unstacked gender columns.

Figure 5-6. Prizes by year and gender, on two stacked axes

So the take-home from our investigation into gender distributions is that
there is a huge discrepancy but, as shown by Figure 5-6, a slight
improvement in recent years. Moreover, with Economics being an outlier,
the difference is greatest in the sciences. Given the fairly small number of
female prize winners, there’s not a lot more to be seen here.

Let’s now take a look at national trends in prize wins and see if there are
any interesting nuggets for visualization.

National Trends
The obvious starting point in looking at national trends is to plot the
absolute number of prize winners. This is easily done in one line of Pandas,
broken up here for ease of reading:

df.groupby('country').size().order(ascending=False)\
 .plot(kind='bar', figsize=(12,4))

This produces Figure 5-7, showing the United States with the lion’s share of
prizes.

The absolute number of prizes will be bound to favor countries with large
populations. Let’s look at a fairer comparison, visualizing prizes per capita.

Figure 5-7. Absolute prize wins by country

Prize Winners per Capita
The absolute number of prize winners is bound to favor larger countries,
which raises the question, how do the numbers stack up if we account for
population sizes? In order to test prize haul per capita, we need to divide the
absolute prize numbers by population size. In “Getting Country Data for the
Nobel Dataviz”, we downloaded some country data from the Web and
stored it to MongoDB. Let’s retrieve it now and use it to produce a plot of
prizes relative to population size.

First let’s get the national group sizes, with country names as index labels:

nat_group = df.groupby('country')
ngsz = nat_group.size()
ngsz.index
Out:
Index([u'Argentina', u'Australia', u'Austria', u'Azerbaijan',...

Now let’s load our country data into a DataFrame and remind ourselves
of the data it contains:

df_countries = pd.read_json('data/winning_country_data.json',\
 orient='index')

df_countries.loc['Japan'] # coutries indexed by name

Out:
gini 38.1
name Japan
alpha3Code JPN
area 377930.0
latlng [36.0, 138.0]
capital Tokyo
population 127080000
Name: Japan, dtype: object

Our country dataset is already indexed to its name column. If we add to it
the ngsz national group-size Series, which also has a country name

index, the two will combine on the shared indices, giving our country data a
new nobel_wins column. We can then use this new column to create a
nobel_wins_per_capita by dividing it by population size:

df_countries = df_countries.set_index('name')
df_countries['nobel_wins'] = ngsz
df_countries['nobel_wins_per_capita'] =\
 df_countries.nobel_wins / df_countries.population

We now need only sort the df_countries DataFrame by its new
nobel_wins_per_cap column and plot the Nobel Prize wins per
capita, producing Figure 5-8.

df.countries.sort_values(by='nobel_wins_per_capita',\
 ascending=False).nobel_per_capita.plot(kind='bar',\
 figsize=(12, 4))

Figure 5-8. National prize numbers per capita

This shows the Caribbean Island of Saint Lucia taking top place. Home to
the Nobel Prize–winning poet Derek Walcott, its small population of
175,000 gives it a high Nobel Prizes per capita.

Let’s see how things stack up with the larger countries by filtering the
results for countries that have won more than two Nobel Prizes:

df_countries[df_countries.nobel_wins > 2]\
 .sort_values(by='nobel_wins_per_capita',
ascending=False)\
 .nobel_wins_per_capita.plot(kind='bar')

The results in Figure 5-9 show the Scandinavian countries and Switzerland
punching above their weight.

https://en.wikipedia.org/wiki/Derek_Walcott

Figure 5-9. National prize numbers per capita, filtered for three or more wins

Changing the metric for national prize counts from absolute to per capita
makes a big difference. Let’s now refine our search a little and focus on the
prize categories, looking for interesting nuggets there.

Prizes by Category
Let’s drill down a bit into the absolute prize data and look at wins by
category. This will require grouping by country and category columns,
getting the size of those groups, unstacking the resulting Series and then
plotting the columns of the resulting DataFrame. First we get our
categories with country group sizes:

nat_cat_sz = df.groupby(['country', 'category']).size()
.unstack()
nat_cat_sz
Out:
category Chemistry Economics Literature Peace \...
country
Argentina 1 NaN NaN 2
Australia NaN 1 1 NaN
Austria 3 1 1 2
Azerbaijan NaN NaN NaN NaN
Bangladesh NaN NaN NaN 1

We then use the nat_cat_sz DataFrame to produce subplots for the
six Nobel Prize categories:

COL_NUM = 2
ROW_NUM = 3

fig, axes = plt.subplots(ROW_NUM, COL_NUM, figsize=(12,12))

for i, (label, col) in enumerate(nat_cat_sz.iteritems()):
 ax = axes[int(i/COL_NUM), i%COL_NUM]
 col = col.order(ascending=False)[:10]
 col.plot(kind='barh', ax=ax)
 ax.set_title(label)

plt.tight_layout()

iteritems returns an iterator for the DataFrames columns in form
of (column_label, column) tuples.
order orders the column’s Series by first making a copy. It is the
equivalent of sort(inplace=False).
tight_layout should prevent label overlaps among the subplots. If
you have any problems with tight_layout, see the end of “Titles
and Axes Labels”.

This produces the plots in Figure 5-10.

A couple of interesting nuggets from Figure 5-10 are the United States’
overwhelming dominance of the Economics prize, reflecting a post-WWII
economic consensus, and France’s leadership of the Literature prize.

Figure 5-10. Prizes by country and category

Historical Trends in Prize Distribution
Now that we know the aggregate prize stats by country, are there any
interesting historical trends to the prize distribution? Let’s explore this with
some line plots.

First, let’s increase the default font size to 20 points to make the plot labels
more legible:

plt.rcParams['font.size'] = 20

We’re going to be looking at prize distribution by year and country, so we’ll
need a new unstacked DataFrame based on these two columns. As
previously, we add a new_index to give continuous years:

new_index = pd.Index(np.arange(1901, 2015), name='year')

by_year_nat_sz = df.groupby(['year', 'country'])\
 .size().unstack().reindex(new_index)

The trend we’re interested in is the cumulative sum of Nobel Prizes by
country over its history. We can further explore trends in individual
categories, but for now we’ll look at the total for all. Pandas has a handy
cumsum method for just this. Let’s take the United States column and plot
it:

by_year_nat_sz['United States'].cumsum().plot()

This produces the chart in Figure 5-11.

Figure 5-11. Cumulative sum of US prize winners over time

The gaps in the line plot are where the fields are NaN, years when the US
won no prizes. The cumsum algorithm returns NaN here. Let’s fill those in
with a zero to remove the gaps:

by_year_nat_sz['United States'].fillna(0)
 .cumsum().plot()

This produces the cleaner chart shown in Figure 5-12.

Figure 5-12. Cumulative sum of US prize winners over time

Let’s compare the US prize rate with that of the rest of the world:

by_year_nat_sz = df.groupby(['year', 'country'])
 .size().unstack().fillna(0)

not_US = by_year_nat_sz.columns.tolist()
not_US.remove('United States')

by_year_nat_sz['Not US'] = by_year_nat_sz[not_US].sum(axis=1)
ax = by_year_nat_sz[['United States', 'Not US']]\
 .cumsum().plot()

Gets the list of country column names and removes United States.Uses our list of non-US country names to create a 'Not_US' column,
the sum of all the prizes for countries in the not_US list.

This code produces the chart shown in Figure 5-13.

Figure 5-13. United States versus rest of world prize hauls

Where the 'Not_US' haul shows a steady increase over the years of the
prize, the US shows a rapid increase around the end of World War II. Let’s
investigate that further, looking at regional differences. We’ll focus on the
two or three largest winners for North America, Europe, and Asia:

by_year_nat_sz = df.groupby(['year', 'country'])\
 .size().unstack().reindex(new_index).fillna(0)

regions = [
 {'label':'N. America',
 'countries':['United States', 'Canada']},
 {'label':'Europe',
 'countries':['United Kingdom', 'Germany', 'France']},
 {'label':'Asia',
 'countries':['Japan', 'Russia', 'India']}
]

for region in regions:
 by_year_nat_sz[region['label']] =\
 by_year_nat_sz[region['countries']].sum(axis=1)

by_year_nat_sz[[r['label'] for r in regions]].cumsum()\
 .plot()

Our continental country list created by selecting the biggest two or three
winners in the three continents compared.Creates a new column with a region label for each dict in the
regions list, summing its countries members.Plots the cumulative sum of all the new region columns.

This gives us the plot in Figure 5-14. The rate of Asia’s prize haul has
increased slightly over the years, but the main point of note is North
America’s huge increase in prizes around the mid-1940s, overtaking a
declining Europe in total prizes around the mid-1980s.

Figure 5-14. Historical prize trends by region

Let’s improve the resolution of the previous national plots by summarizing
the prize rates for the 16 biggest winners, excluding the outlying United
States:

COL_NUM = 4
ROW_NUM = 4

by_nat_sz = df.groupby('country').size()
by_nat_sz.sort_values(ascending=False,\
 inplace=True)

fig, axes = plt.subplots(COL_NUM, ROW_NUM,\
 sharex=True, sharey=True,
 figsize=(12,12))

for i, nat in enumerate(by_nat.index[1:17]):
 ax = axes[i/COL_NUM, i%ROW_NUM]
 by_year_nat_sz[nat].cumsum().plot(ax=ax)
 ax.set_title(nat)

Sorts our country groups from highest to lowest win hauls.Gets a 4×4 grid of axes with shared x- and y-axes for normalized
comparison.Enumerates over the sorted index from second row (1), excluding the
US (0).Selects the nat country name column and plots its cumulative sum of
prizes on the grid axis ax.

This produces Figure 5-15, which shows some nations like Japan, Australia,
and Israel on the rise historically, while others flatten off.

Figure 5-15. Prize rates for the 16 largest national winners after the US

Another good way to summarize national prize rates over time is by using a
heatmap and dividing the totals by decade. The Seaborn library provides a
good heatmap. Let’s import it and use its set method to increase the font
size of its labels by scaling them:

import seaborn as sns

sns.set(font_scale = 1.3)

The division of data into chunks is also known as binning, as it creates bins
of data. Pandas has a handy cut method for just this job, taking a column
of continuous values—in our case, Nobel Prize years—and returning ranges
of a specified size. You can supply the DataFrame’s groupby method
with the result of cut and it will group by the range of indexed values. The
following code produces Figure 5-16.

bins = np.arange(df.year.min(), df.year.max(), 10)

by_year_nat_binned = df.groupby('country',\
 [pd.cut(df.year, bins, precision=0)])\
 .size().unstack().fillna(0)

plt.figure(figsize=(8, 8))

sns.heatmap(\
 by_year_nat_binned[by_year_nat_binned.sum(axis=1) > 2],\
 cmap='rocket_r')

Gets our bin ranges for the decades from 1901 (1901, 1911, 1921…).Cuts our Nobel Prize years into decades using the bins ranges with
precision set to 0, to give integer years.Before heatmapping, we filter for those countries with over two Nobel
Prizes.We use the continuous rocket_r heatmap to highlight the differences.
Check out all the Pandas color palettes here.

Figure 5-16 captures some interesting trends, such as Russia’s brief
flourishing in the 1950s, which petered out around the 1980s.

https://en.wikipedia.org/wiki/Data_binning
https://seaborn.pydata.org/tutorial/color_palettes.html

Now that we’ve investigated the Nobel Prize nations, let’s turn our attention
to the individual winners. Are there any interesting things we can discover
about them using the data at hand?

Figure 5-16. Nations’ Nobel Prize hauls by decade

Age and Life Expectancy of Winners
We have the date of birth for all our winners and the date of death for 559
of them. Combined with the year in which they won their prizes, we have a
fair amount of individual data to mine. Let’s investigate the age distribution
of winners and try to glean some idea of the winners’ longevity.

Age at Time of Award
In [Link to Come] we added an 'award_age' column to our Nobel Prize
dataset by subtracting the winners’ ages from their prize years. A quick and
easy win is to use Pandas’ histogram plot to assess this distribution:

df['award_age'].hist(bins=20)

Here we require that the age data be divided into 20 bins. This produces
Figure 5-17, showing that the early 60s is a sweet spot for the prize and if
you haven’t achieved it by 100, it probably isn’t going to happen. Note the
outlier around 20, which is the recently awarded 17-year-old recipient of the
Peace Prize, Malala Yousafzai.

https://en.wikipedia.org/wiki/Malala_Yousafzai

Figure 5-17. Distribution of ages at time of award

We can use Seaborn’s displot to get a better feel for the distribution,
adding a kernel density estimate (KDE) to the histogram. The following
one-liner produces Figure 5-18, showing that our sweet spot is around 60
years of age:

sns.displot(df['award_age'], kde=True, height=4, aspect=2)

2

Figure 5-18. Distribution of ages at time of award with KDE superimposed

A box plot is a good way of visualizing continuous data, showing the
quartiles, the first and third marking the edges of the box and the second
quartile (or median average) marking the line in the box. Generally, as in
Figure 5-19, the horizontal end lines (known as the whisker ends) indicate
the max and min of the data. Let’s use a Seaborn box plot and divide the
prizes by gender:

sns.boxplot(df, x='gender', y='award_age')

This produces Figure 5-19, which shows that the distributions by gender are
similar, with women having a slightly lower average age. Note that with far
fewer female prize winners, their statistics are subject to a good deal more
uncertainty.

https://en.wikipedia.org/wiki/Box_plot

Figure 5-19. Ages of prize winners by gender

Seaborn’s rather nice violinplot combines the conventional box plot with a
kernel density estimation to give a more refined view of the breakdown by
age and gender. The following code produces Figure 5-20.

sns.violinplot(data=df, x='gender', y='award_age')

Figure 5-20. Violinplots of prize-age distribution by gender

Life Expectancy of Winners
Now let’s look at the longevity of Nobel Prize winners, by subtracting the
available dates of death from their respective dates of birth. We’ll store this
data in a new 'age_at_death' column:

df['age_at_death'] = (df.date_of_death - df.date_of_birth)\
 .dt.days/365

datetime64 data can be added and subtracted in a sensible fashion,
producing a Pandas timedelta column. We can use its dt method to
get the interval in days, dividing this by 365 to get the age at death as a
float.

We make a copy of the 'age_at_death' column, removing all empty
NaN rows. This can then be used to make the histogram and KDE shown in
Figure 5-21.

age_at_death = df[df.age_at_death.notnull()].age_at_death

sns.displot(age_at_death, bins=40, kde=True, aspect=2, height=4)

Removes all NaNs to clean the data and reduce plotting errors (e.g.,
distplot fails with NaNs).

3

Figure 5-21. Life expectancy of the Nobel Prize winners

Figure 5-21 shows the Nobel Prize winners to be a remarkably long-lived
bunch, with an average age in the early 80s. This is all the more impressive
given that the large majority of winners are men, who have considerably
lower average life expectancies in the general population than women. One
contributary factor to this longevity is the selection bias we saw earlier.
Nobel Prize winners aren’t generally honored until they’re in their late 50s
and 60s, which removes the subpopulation who died before having the
chance to be acknowledged, pushing up the longevity figures.

Figure 5-21 shows some centenarians among the prize winners. Let’s find
them:

df[df.age_at_death > 100][['name', 'category', 'year']]
Out:
 name category year
101 Ronald Coase Economics 1991
328 Rita Levi-Montalcini Physiology or Medicine 1986

Now let’s superimpose a couple of KDEs to show differences in mortality
for male and female recipients:

df_temp = df_temp[df.age_at_death.notnull()]
sns.kdeplot(df_temp[df_temp.gender == 'male']
 .age_at_death, shade=True, label='male')
sns.kdeplot(df_temp[df_temp.gender == 'female']
 .age_at_death, shade=True, label='female')

plt.legend()

Creates a DataFrame with only valid 'age_at_death' fields.

This produces Figure 5-22, which, allowing for the small number of female
winners and flatter distribution, shows the male and female averages to be
close. Female Nobel Prize winners seem to live relatively shorter lives than
their counterparts in the general population.

Figure 5-22. Nobel Prize winner life expectancies by gender

A violinplot provides another perspective, shown in Figure 5-23.

sns.violinplot(data=df, x='gender', y='age_at_death',\
 aspect=2, height=4)

Figure 5-23. Winner life expectancies by gender

Increasing Life Expectancies over Time
Let’s do a little historical demographic analysis by seeing if there’s a
correlation between the date of birth of our Nobel Prize winners and their
life expectancy. We’ll use one of Seaborn’s lmplots to provide a scatter
plot and line-fitting with confidence intervals (see “Seaborn”).

df_temp = df[df.age_at_death.notnull()]
data = pd.DataFrame(
 {'age at death':df_temp.age_at_death,
 'date of birth':df_temp.date_of_birth.dt.year})
sns.lmplot(data=data, x='date of birth', y='age at death',
 height=6, aspect=1.5)

Creates a temporary DataFrame, removing all the rows with no
'age_at_death' field.Creates a new DataFrame with only the two columns of interest from
the refined df_temp. We grab only the year from the
date_of_birth, using its dt accessor.

This produces Figure 5-24, showing an increase in life expectancy of a
decade or so over the prize’s duration.

http://pandas.pydata.org/pandas-docs/stable/basics.html#basics-dt-accessors

Figure 5-24. Correlating date of birth with age at death

The Nobel Diaspora
While cleaning our Nobel Prize dataset in [Link to Come], we found
duplicate entries recording the winner’s place of birth and country at time of
winning. We preserved these, giving us 104 winners whose country at time
of winning was different from their country of birth. Is there a story to tell
here?

A good way to visualize the movement patterns from the winners’ country
of birth to their adopted country is by using a heatmap to show all
born_in/country pairs. The following code produces the heatmap in
Figure 5-25:

by_bornin_nat = df[df.born_in.notnull()].groupby(\
 ['born_in', 'country']).size().unstack()
by_bornin_nat.index.name = 'Born in'
by_bornin_nat.columns.name = 'Moved to'
plt.figure(figsize=(12, 12))

ax = sns.heatmap(by_bornin_nat, vmin=0, vmax=8, cmap="crest",\
 linewidth=0.5)
ax.set_title('The Nobel Diaspora')

Selects all rows with a 'born_in' field, and forms groups on this and
the country column.We rename the row index and column names to make them more
descriptive.Seaborn’s heatmap attempts to set the correct bounds for the data, but
in this case, we must manually adjust the limits (vmin and vmax) to
see all the cells.

Figure 5-25 shows some interesting patterns, which tell a tale of persecution
and sanctuary. First, the United States is the overwhelming recipient of
relocated Nobel winners, followed by the United Kingdom. Note that the
biggest contingents for both (except cross-border traffic from Canada) are
from Germany. Italy, Hungary, and Austria are the next largest groups.

Examining the individuals in these groups shows that the majority were
displaced as a result of the rise of antisemitic fascist regimes in the run-up
to World War II and the increasing persecution of Jewish minorities.

Figure 5-25. The Nobel Prize diaspora

To take an example, all four of the Nobel winners who moved from
Germany to the United Kingdom were German research scientists with
Jewish ancestry who moved in response to the Nazis’ rise to power:

df[(df.born_in == 'Germany') & (df.country == 'United Kingdom')]
 [['name', 'date_of_birth', 'category']]

Out:
 name date_of_birth category
119 Ernst Boris Chain 1906-06-19 Physiology or Medicine
484 Hans Adolf Krebs 1900-08-25 Physiology or Medicine
486 Max Born 1882-12-11 Physics
503 Bernard Katz 1911-03-26 Physiology or Medicine

Ernst Chain pioneered the industrial production of penicillin. Hans Krebs
discovered the Krebs cycle, one of the most important discoveries in
biochemistry, which regulates the energy production of cells. Max Born was
one of the pioneers of quantum mechanics, and Bernard Katz uncovered the
fundamental properties of synaptic junctions in neurons.

There are many such illustrious names among the winning emigrants. One
interesting discovery is the number of prize winners who were part of the
famous Kindertransport, an organized rescue effort that took place nine
months before the outbreak of WWII and saw 10,000 Jewish children from
Germany, Austria, Czechoslovakia, and Poland transported to the United
Kingdom. Of these children, four went on to win a Nobel Prize.

Summary
In this chapter, we explored our Nobel Prize dataset, probing the key fields
of gender, category, country, and year (of prize) looking for interesting
trends and stories we can tell or enable visually. We used a fair number of
Matplotlib (by way of Pandas) and Seaborn’s plots, from basic bar charts to
more complicated statistical summaries like violinplots and heatmaps.
Mastery of these tools and the others in the Python chart armory will allow

https://en.wikipedia.org/wiki/Kindertransport

you to quickly get the feel of your datasets, which is a prerequisite to
building a visualization around them. We found more than enough stories in
the data to suggest a web visualization. In the next chapter we will imagine
and design just such a Nobel Prize winner visualization, cherry-picking the
nuggets gained in this chapter.

1 Anecdotally, no one I have asked in person or in talk audiences has known the name of the
other female Nobel Prize winner for Physics.

2 See Wikipedia for details. Essentially the data is smoothed and a probability density function
derived.

3 We are ignoring leap years and other subtle, complicating factors in deriving years from days.

https://en.wikipedia.org/wiki/Kernel_density_estimation

About the Author
Kyran Dale is a jobbing programmer, ex-research scientist, recreational
hacker, independent researcher, occasional entrepreneur, cross-country
runner and improving jazz pianist. During 15 odd years as a research
scientist he hacked a lot of code, learned a lot of libraries and settled on
some favorite tools. These days he finds Python, JavaScript, and a little
C++ goes a long way to solving most problems out there. He specializes in
fast-prototyping and feasibility studies, with an algorithmic bent but is
happy to just build cool things.

	1. A Language-Learning Bridge Between Python and JavaScript
	Similarities and Differences
	Interacting with the Code
	Python
	JavaScript

	Basic Bridge Work
	Style Guidelines, PEP 8, and use strict
	CamelCase Versus Underscore
	Importing Modules, Including Scripts
	Keeping Your Namespaces Clean
	Outputting “Hello World!”
	Simple Data Processing
	String Construction
	Significant Whitespace Versus Curly Brackets
	Comments and doc-strings
	Declaring Variables, let, var
	Strings and Numbers
	Booleans
	Data Containers: Dicts, Objects, Lists, Arrays
	Functions
	Iterating: for Loops and Functional Alternatives
	Conditionals: if, else, elif, switch
	File Input and Output
	Classes and Prototypes

	Differences in Practice
	Method Chaining
	Enumerating a List
	Tuple Unpacking
	Collections
	Underscore
	Functional Array Methods and List Comprehensions
	Map, Reduce, and Filter with Python’s Lambdas
	JavaScript Closures and the Module Pattern
	This Is That

	A Cheat Sheet
	Summary

	2. Reading and Writing Data with Python
	Easy Does It
	Passing Data Around
	Working with System Files
	CSV, TSV, and Row-Column Data Formats
	JSON
	Dealing with Dates and Times

	SQL
	Creating the Database Engine
	Defining the Database Tables
	Adding Instances with a Session
	Querying the Database
	Easier SQL with Dataset

	MongoDB
	Dealing with Dates, Times, and Complex Data
	Summary

	3. Getting Data off the Web with Python
	Getting Web Data with the requests Library
	Getting Data Files with requests
	Using Python to Consume Data from a Web API
	Consuming a RESTful Web API with requests
	The Worldbank’s climate change APIs
	Getting Country Data for the Nobel Dataviz

	Using Libraries to Access Web APIs
	Using Google Spreadsheets
	Using the Twitter API with Tweepy

	Scraping Data
	Why We Need to Scrape
	BeautifulSoup and lxml
	A First Scraping Foray

	Getting the Soup
	Selecting Tags
	Crafting Selection Patterns
	Caching the Web Pages
	Scraping the Winners’ Nationalities

	Summary

	4. Visualizing Data with Matplotlib
	Pyplot and Object-Oriented Matplotlib
	Starting an Interactive Session
	Interactive Plotting with Pyplot’s Global State
	Configuring Matplotlib
	Setting the Figure’s Size
	Points, Not Pixels
	Labels and Legends
	Titles and Axes Labels
	Saving Your Charts

	Figures and Object-Oriented Matplotlib
	Axes and Subplots

	Plot Types
	Bar Charts
	Scatter Plots

	Seaborn
	FacetGrids
	Pairgrids

	Summary

	5. Exploring Data with Pandas
	Starting to Explore
	Plotting with Pandas
	Gender Disparities
	Unstacking Groups
	Historical Trends

	National Trends
	Prize Winners per Capita
	Prizes by Category
	Historical Trends in Prize Distribution

	Age and Life Expectancy of Winners
	Age at Time of Award
	Life Expectancy of Winners
	Increasing Life Expectancies over Time

	The Nobel Diaspora
	Summary

	About the Author

