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Preface

With the rise of data science and high-performance
computing hardware, programming languages have evolved
as well. Various libraries in different programming languages
have been developed that provide a layer of abstraction over
complex data science tasks. Python programming language
has taken the lead in this regard. More than 50 percent of all
data science-related projects are being developed using
Python programming.

If you ask a data science expert what the two most common
and widely used Python libraries for data science are, the
answer would almost invariably be the NumPy library and the
Pandas library. And this is what the focus of this book is. It
introduces you to the NumPy and Pandas libraries with the
help of different use cases and examples.

Thank you for your decision to purchase this book. I can
assure you that you will not regret your decision.



§ Book Approach

The book follows a very simple approach. The 1st chapter is
introductory and provides information about setting up the
installation environment. The 1st chapter also contains a brief
crash course on Python, which you can skip if you are already
familiar with Python.

Chapter 2 provides a brief introduction to Pandas. Chapter 3
explains how you can manipulate Pandas dataframes, while
the 4th chapter focuses on grouping, aggregating, and
merging data with Pandas. Finally, the 5th and 6th chapters
focus on data visualization and time-series handling with
Pandas, respectively.

Each chapter explains the concepts theoretically, followed by
practical examples. Each chapter also contains exercises that
students can use to evaluate their understanding of the
concepts explained in the chapter. The Python notebook for
each chapter is provided in the Codes Folder that
accompanies this book. It is advised that instead of copying
the code from the book, you write the code yourself, and in
case of an error, you match your code with the corresponding
Python notebook, find and then correct the error. The
datasets used in this book are either downloaded at runtime
or are available in the Resources folder.

Do not copy and paste the code from the PDF notebook, as
you might face an indentation issue. However, if you have to
copy some code, copy it from the Python Notebooks.



§ Who Is This Book For?

The book is aimed ideally at absolute beginners to data
science in specific and Python programming in general. If you
are a beginner-level data scientist, you can use this book as a
first introduction to NumPy and dataframes. If you are already
familiar with Python and data science, you can also use this
book for general reference to perform common tasks with
NumPy and Pandas.

Since this book is aimed at absolute beginners, the only
prerequisites to efficiently use this book are access to a
computer with the internet and basic knowledge of
programming. All the codes and datasets have been provided.
However, you will need the internet to download the data
preparation libraries.



§ How to Use This Book?

In each chapter, try to understand the usage of a specific
concept first and then execute the example code. I would
again stress that rather than copying and pasting code, try to
write codes yourself. Then, in case of any error, you can match
your code with the source code provided in the book as well
as in the Python Notebooks in the Resources folder.

Finally, answer the questions asked in the exercises at the end
of each chapter. The solutions to the exercises have been
given at the end of the book.

To facilitate the reading process, occasionally, the book
presents three types of box-tags in different colors:
Requirements, Further Readings, and Hands-on Time.
Examples of these boxes are shown below.

Requirements

This box lists all requirements needed to be done before
proceeding to the next topic. Generally, it works as a
checklist to see if everything is ready before a tutorial.

Further Readings

Here, you will be pointed to some external reference or
source that will serve as additional content about the
specific Topic being studied. In general, it consists of
packages, documentations, and cheat sheets.

Hands-on Time

Here, you will be pointed to an external file to train and test
all the knowledge acquired about a Tool that has been
studied. Generally, these files are Jupyter notebooks
(.ipynb), Python (.py) files, or documents (.pdf).



The box-tag Requirements lists the steps required by the
reader after reading one or more topics. Further Readings
provides relevant references for specific topics to get to know
the additional content of the topics. Hands-on Time points to
practical tools to start working on the specified topics. Follow
the instructions given in the box-tags to better understand the
topics presented in this book.
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Warning

In Python, indentation is very important. Python indentation is
a way of telling a Python interpreter that the group of
statements belongs to a particular code block. After each loop
or if-condition, be sure to pay close attention to the intent.

Example

To avoid problems during execution, we advise you to
download the codes available on Github by requesting access
from the link below. Please have your order number ready for
access:

www.aipublishing.io/book-pandas-python

http://www.aipublishing.io/book-pandas-python


Introduction

In this chapter, you will briefly see what NumPy and Pandas
libraries are and their advantages. You will also set up the
environment that you will need to run the NumPy and
Pandas scripts in this book. The chapter concludes with an
optional crash course on the Python programming language.



1.1. What Is Pandas?

The Pandas library (https://pandas.pydata.org/) is an open-
source, BSD-licensed Python library providing high-
performance, simple-to-use data structures and data analysis
tools for the versatile Python programming language.

The Pandas library provides data structures that store data in
tabular data structures called series and dataframes. With
these data structures, you can perform tasks like filtering,
merging, and manipulating data based on different criteria.

In Pandas, you can import data from various sources such as
flat files (CSV, Excel, etc.), databases, and even online links.
Pandas also offer data visualization functionalities. With
Pandas, you can plot different types of static plots using a
single line of code.

The following are some of the main advantages of the Pandas
library in Python:

• Pandas provides built-in features to handle a very large
amount of datasets in a fast and memory-optimized
manner.

• The Pandas library comes with a myriad of default
features for data science and machine learning tasks.

• Pandas library can work with a variety of input data
sources.

• Pandas uses labeled indexing for records, which is an
extremely intuitive feature for segmenting and
subsetting large datasets.

Part II of this book (chapter 7 to chapter 11) is dedicated to the
Pandas library, where you will study various components and
use cases of Pandas in detail.

You can install the Pandas package in your Python installation
via the following pip command in your command terminal.

https://pandas.pydata.org/


$ pip install pandas

If you install the Anaconda distribution
(https://bit.ly/3koKSwb) for Python, as you will see in this
chapter, the Pandas library will be installed by default.

https://bit.ly/3koKSwb


1.2. Environment Setup and Installation

1.2.1. Windows Setup

The time has come to install Python on Windows using an IDE.
We will use Anaconda throughout this book, right from
installing Python to writing multithreaded codes. Now let us
get going with the installation.

This section explains how you can download and install
Anaconda on Windows.

Follow these steps to download and install Anaconda.

1. Open the following URL in your browser.
https://www.anaconda.com/products/individual

2. The browser will take you to the following webpage.
Depending on your OS, select the 64-bit or 32- bit
Graphical Installer file for Windows. The file will
download within 2–3 minutes based on the speed of
your internet.

3. Run the executable file after the download is complete.
You will most likely find the downloaded file in your
download folder. The installation wizard will open when
you run the file, as shown in the following figure. Click
the Next button.

https://www.anaconda.com/products/individual


4. Now click I Agree on the License Agreement dialog, as
shown in the following screenshot.



5. Check the Just Me radio button from the Select
Installation Type dialog box. Then, click the Next
button to continue.



6. Now, the Choose Install Location dialog will be
displayed. Change the directory if you want, but the
default is preferred. The installation folder should have
at least 3 GB of free space for Anaconda. Click the Next
button.



7. Go for the second option, Register Anaconda as my
default Python 3.8, in the Advanced Installation
Options dialog box. Click the Install button to start the
installation, which can take some time to complete.



8. Click Next once the installation is complete.



9. Click Skip on the Microsoft Visual Studio Code
Installation dialog box.



10. You have successfully installed Anaconda on your
Windows. Excellent job. The next step is to uncheck
both checkboxes on the dialog box. Now, click on the
Finish button.



1.2.2. Mac Setup

Anaconda’s installation process is almost the same for Mac. It
may differ graphically, but you will follow the same steps you
followed for Windows. The only difference is that you have to
download the executable file, which is compatible with Mac
operating system.

This section explains how you can download and install
Anaconda on Mac.

Follow these steps to download and install Anaconda.

1. Open the following URL in your browser.
https://www.anaconda.com/products/individual

2. The browser will take you to the following webpage.
Depending on your OS, select the 64-bit or 32-bit
Graphical Installer file for macOS. The file will download
within 2–3 minutes based on the speed of your internet.

https://www.anaconda.com/products/individual


3. Run the executable file after the download is complete.
You will most likely find the downloaded file in your
download folder. The name of the file should be similar
to “Anaconda3-5.1.0-Windows-x86_64.” The
installation wizard will open when you run the file, as
shown in the following figure. Click the Continue
button.

4. Now click Continue on the Welcome to Anaconda 3
Installer window, as shown in the following screenshot.



5. The Important Information dialog will pop up. Simply
click Continue to go with the default version, that is,
Anaconda 3.



6. Click Continue on the Software License Agreement
dialog.



7. It is mandatory to read the license agreement and click
the Agree button before you can click the Continue
button again.



8. Simply click Install on the next window that appears.



The system will prompt you to give your password. Use the
same password you use to log in to your Mac computer. Now,
click on Install Software.



9. Click Continue on the next window. You also have the
option to install Microsoft VSCode at this point.



The next screen will display the message that the installation
has been completed successfully. Click on the Close button to
close the installer.



There you have it. You have successfully installed Anaconda
on your Mac computer. Now, you can write Python code in
Jupyter and Spyder the same way you wrote it in Windows.

1.2.3. Linux Setup

We have used Python’s graphical installers for installation on
Windows and Mac. However, we will use the command line to
install Python on Ubuntu or Linux. Linux is also more resource-
friendly, and installation of software is particularly easy as
well.

Follow these steps to install Anaconda on Linux (Ubuntu
distribution).

1. Go to the following link to copy the installer bash script
from the latest available version.
https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual


2. The second step is to download the installer bash
script. Log into your Linux computer and open your
terminal. Now, go to /temp directory and download the
bash you downloaded from Anaconda’s home page
using curl.

$ cd / tmp

$ curl –o https://repo.anaconda.com.archive/Anaconda3-5.2.0-Linux-
x86_64.sh

3. You should also use the cryptographic hash verification
through SHA-256 checksum to verify the integrity of
the installer.

$ sha256sum Anaconda3-5.2.0-Linux-x86_64.sh

You will get the following output.

09f53738b0cd3bb96f5b1bac488e5528df9906be2480fe61df40e0e0d19e3d48
Anaconda3-5.2.0-Linux-x86_64.sh

4. The fourth step is to run the Anaconda Script, as shown
in the following figure.

$ bash Anaconda3-5.2.0-Linux-x86_64.sh

https://repo.anaconda.com.archive/Anaconda3-5.2.0-Linux-x86_64.sh


The command line will produce the following output. You will
be asked to review the license agreement. Keep on pressing
Enter until you reach the end.

Output

Welcome to Anaconda3 5.2.0

In order to continue the installation process, please review the license
agreement.

Please press Enter to continue
>>>
…
Do you approve the license terms? [yes|No]

Type Yes when you get to the bottom of the License
Agreement.

5. The installer will ask you to choose the installation
location after you agree to the license agreement.
Simply press Enter to choose the default location. You
can also specify a different location if you want.

Output

Anaconda3 will now be installed on the following location:
/home/tola/anaconda3

- To confirm the location, press ENTER
- To abort the installation, press CTRL-C
- Otherwise, specify a different location below

[/home/tola/anaconda3] >>>

The installation will proceed once you press Enter. Once again,
you have to be patient as the installation process takes some
time to complete.

6. You will receive the following result when the
installation is complete. If you wish to use the conda
command, type Yes.

Output



…
Installation finished.
Do you wish the installer to prepend the Anaconda3 install location to a

path in your /home/tola/.bashrc? [yes|no]
[no]>>>

You will have the option to download the Visual Studio Code
at this point, as well. Type yes or no to install or decline,
respectively.

7. Use the following command to activate your brand new
installation of Anaconda3.

$ source `/.bashrc

8. You can also test the installation using the conda
command.

$ conda list

Congratulations. You have successfully installed Anaconda on
your Linux system.

1.2.4. Using Google Colab Cloud Environment

In addition to local Python environments such as Anaconda,
you can run deep learning applications on Google Colab as
well, which is Google’s platform for deep learning with GPU
support. All the codes in this book have been run using
Google Colab. Therefore, I would suggest that you use Google
Colab, too.

To run deep learning applications via Google Colab, all you
need is a Google/Gmail account. Once you have a Google/
Gmail account, you can simply go to:

https://colab.research.google.com/

Next, click on File -> New notebook, as shown in the following
screenshot.

https://colab.research.google.com/


Next, to run your code using GPU, from the top menu, select
Runtime -> Change runtime type, as shown in the following
screenshot:



You should see the following window. Here, from the
dropdown list, select GPU, and click the Save button.

To make sure you are running the latest version of
TensorFlow, execute the following script in the Google Colab
notebook cell. The following script will update your
TensorFlow version.

pip install --upgrade tensorflow

To check if you are really running TensorFlow version > 2.0,
execute the following script.

import tensorflow as tf
print(tf.__version__)

With Google Cloud, you can import the datasets from your
Google Drive. Execute the following script. And click on the
link that appears, as shown below:



You will be prompted to allow Google Colab to access your
Google Drive. Click Allow button, as shown below:

You will see a link appear, as shown in the following image
(the link has been blinded here).



Copy the link and paste it in the empty field in the Google
Colab cell, as shown below:

This way, you can import datasets from your Google Drive to
your Google Colab environment.

1.2.5. Writing Your First Program

You have installed Python on your computer now and
established a distinctive environment in the form of Anaconda.
It’s now time to write your first program, i.e., the Hello World!

Start by launching the Anaconda Navigator. First, key in
“Anaconda Navigator” in your Windows search box. Next, as
shown in the following figure, click on the Anaconda
Navigator application icon.



Anaconda’s dashboard will open once you click on the
application. The dashboard offers you an assortment of tools
to write your code. We will use Jupyter Notebook, the most
popular of these tools, to write and explain the code
throughout this book.



Jupyter Notebook is available in the second position from the
top of the dashboard. The key feature of Jupyter Notebook is
you can use it even if you don’t have internet access, as it runs
right in your default browser. Another method to open
Jupyter Notebook is to type Jupyter Notebook in the
Windows search bar. Subsequently, click on the Jupyter
Notebook application. The application will open in a new tab
on your browser.



The top right corner of Jupyter Notebook’s own dashboard
houses a New button, which you have to click to open a new
document. A dropdown containing several options will
appear. Click on Python 3.



A new Python notebook will appear for you to write your
programs. It looks as follows.

Jupyter Notebook consists of cells, as evident from the above
image, making its layout very simple and straightforward. You
will write your code inside these cells. Let us write our first
ever Python program in Jupyter Notebook.



The above script prints a string value in the output using the
print() method. The print() method is used to print any string
passed to it on the console. If you see the following output,
you have successfully run your first Python program.



Output:

Welcome to Data Visualization with Python



1.3. Python Crash Course

In this section, you will see a very brief introduction to various
Python concepts. You can skip this section if you are already
proficient with basic Python concepts. But if you are new to
Python, this section can serve as a basic intro to Python.

Note: Python is a vast language with a myriad of features. This
section doesn’t serve as your complete guide to Python but
merely helps get your feet wet with Python. To learn more
about Python, you may check its official documentation, for
which the link is given at the end of this section.

1.3.1. Python Syntax

Syntax of a language is a set of rules that the developer or the
person writing the code must follow for the successful
execution of code. Just like natural languages such as English
have grammar and spelling rules, programming languages
have their own rules.

Let’s see some basic Python syntax rules.



Keywords

Every programming language has a specific set of words that
perform specific functions and cannot be used as a variable or
identifier. Python has the following set of keywords:

For instance, the keyword class is used to create a new class
in Python (we will see classes in detail in a later chapter).
Furthermore, the If keyword creates an if condition. If you try
to use any of these keywords as variables, you will see errors.

https://www.programiz.com/python-programming/keyword-list


Python Statements

Statements in Python are the smallest unit of executable code.
When you assign a value to an identifier, you basically write a
statement. For example, age = 10 is a Python statement. When
Python executes this statement, it assigns a value of 10 to the
age identifier.

age = 10
print(age)

The script above has two statements. The first statement
assigns a value of 10 to the age identifier. The second
statement prints the age identifier.

If your statements are too long, you can span them by
enclosing them in parenthesis, braces, or brackets, as shown
below:

message = ("This is a message "
"it spans multiple lines")

print(message)



Output:

This is a message it spans multiple lines

Another way to write a statement on multiple lines is by
adding a backslash (\) at the end of the first line. Look at the
following script:

message = "This is a message " \
"it spans multiple lines"

print(message)

The output is the same as that of the previous script.



Indentation

Indentation is one of those features that distinguish Python
from other advanced programming languages such as C++,
Java, and C#. In other programming languages, normally,
braces ({) are used to define a block of code.

Indentation is used to define a new block of code in Python. A
block of code in Python is a set of Python statements that
execute together. You will see blocks in action when you
study loops and conditional statements.

To define a new block, you have to indent the Python code,
one tab (or four spaces) from the left.

age = 8
if age <10:
print("Age is less than 10")

print("You do not qualify")
else:

print("Age is greater than or equal to 10")
print("You do qualify")



Output:

Age is less than 10
You do not qualify

In the above code, we define an identifier age with a value of
8. We then use the if statement and check if the age is less
than or not. If age is less than 10, then the first block of code
executes, which prints two statements on the console. You
can see that code blocks have been indented.



Comments

Comments are used to add notes to a program. Comments do
not execute, and you don’t have to declare them in the form
of statements. Comments are used to explain the code so that
if you take a look at the code after a long time, you
understand what you did.

Comments can be of two types: Single line comments and
double-line comments. To add single line comments, you
simply have to add #, as shown below:

# The following statement adds two numbers

num = 10 + 20# the result is 30

To add multiline comments, you just need to add a # at the
start of every line, as shown below:

#This is comment 1
#This is comment 2
#This is comment 3

1.3.2. Python Variables and Data Types

Data types in a programming language refer to the type of
data that the language is capable of processing. The following
are the major data types supported by Python:

a. Strings

b. Integers

c. Floating Point Numbers

d. Booleans

e. Lists

f. Tuples

g. Dictionaries



A variable is an alias for the memory address where actual
data is stored. The data or the values stored at a memory
address can be accessed and updated via the variable name.
Unlike other programming languages like C++, Java, and C#,
Python is loosely typed, which means that you don’t have to
define the data type while creating a variable. Instead, the
type of data is evaluated at runtime.

The example below demonstrates how to create different data
types and how to store them in their corresponding variables.
The script also prints the type of the variables via the type()
function.



Script 1:

# A string Variable
first_name = "Joseph"
print(type(first_name))

# An Integer Variable
age = 20
print(type(age))

# A floating point variable
weight = 70.35
print(type(weight))

# A Boolean variable
married = False
print(type(married))

#List
cars = ["Honda", "Toyota", "Suzuki"]
print(type(cars))

#Tuples
days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday")
print(type(days))

#Dictionaries
days2 = {1:"Sunday", 2:"Monday", 3:"Tuesday", 4:"Wednesday",
5:"Thursday", 6:"Friday", 7:"Saturday"}
print(type(days2))



Output:

<class 'str'>
<class 'int'>
<class 'float'>
<class 'bool'>
<class 'list'>
<class 'tuple'>
<class 'dict'>

1.3.3. Python Operators

Python programming language contains the following types of
operators:

a. Arithmetic Operators

b. Logical Operators

c. Comparison Operators

d. Assignment Operators

e. Membership Operators

Let’s briefly review each of these types of operators.



Arithmetic Operators

Arithmetic operators are used to execute arithmetic
operations in Python. The following table summarizes the
arithmetic operators supported by Python. Suppose X = 20
and Y = 10.

Here is an example of arithmetic operators with output:



Script 2:

X = 20
Y = 10
print(X + Y)
print(X - Y)
print(X * Y)
print(X / Y)
print(X ** Y)



Output:

30
10
200
2.0
10240000000000



Logical Operators

Logical operators are used to perform logical AND, OR, and
NOT operations in Python. The following table summarizes the
logical operators. Here, X is True, and Y is False.

Here is an example that explains the usage of the Python
logical operators.



Script 3:

X = True
Y = False
print(X and Y)
print(X or Y)
print(not(X and Y))



Output:

False
True
True



Comparison Operators

Comparison operators, as the name suggests, are used to
compare two or more than two operands. Depending upon
the relation between the operands, comparison operators
return Boolean values. The following table summarizes
comparison operators in Python. Here, X is 20, and Y is 35.

The comparison operators have been demonstrated in action
in the following example:



Script 4

X = 20
Y = 35

print(X == Y)
print(X != Y)
print(X > Y)
print(X < Y)
print(X >= Y)
print(X <= Y)



Output:

False
True
False
True
False
True



Assignment Operators

Assignment operators are used to assign values to variables.
The following table summarizes the assignment operators.
Here, X is 20, and Y is equal to 10.





Take a look at the script below to see Python assignment
operators in action.



Script 5:

X = 20; Y = 10
R = X + Y
print(R)

X = 20;
Y = 10
X += Y
print(X)

X = 20;
Y = 10
X -= Y
print(X)

X = 20;
Y = 10
X *= Y
print(X)

X = 20;
Y = 10
X /= Y
print(X)

X = 20;
Y = 10
X %= Y
print(X)

X = 20;
Y = 10
X **= Y
print(X)



Output:

30
30
10
200
2.0
0
10240000000000



Membership Operators

Membership operators are used to find if an item is a member
of a collection of items or not. There are two types of
membership operators: the in operator and the not in
operator. The following script shows an operator in action.



Script 6:

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday")

print('Sunday' in days)



Output:

True

And here is an example of the not in operator.



Script 7:

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday")

print('Xunday' not in days)



Output:

True

1.3.4. Conditional Statements

Conditional statements in Python are used to implement
conditional logic in Python. Conditional statements help you
decide whether to execute a certain code block or not. There
are three main types of conditional statements in Python:

a. If statement

b. If-else statement

c. If-elif statement



IF Statement

If you have to check for a single condition and you do not
concern yourself about the alternate condition, you can use
the if statement. For instance, if you want to check if 10 is
greater than 5 and based on that you want to print a
statement, you can use the if statement. The condition
evaluated by the if statement returns a Boolean value. If the
condition evaluated by the if statement is true, the code block
that follows the if statement executes. It is important to
mention that in Python, a new code block starts at a new line
with a tab indented from the left when compared with the
outer block.

In the following example, the condition 10 > 5 is evaluated,
which returns true. Hence, the code block that follows the if
statement executes, and a message is printed on the console.



Script 8:

# The if statement

if 10 > 5:
print("Ten is greater than 10")



Output:

Ten is greater than 10



IF-Else Statement

The If-else statement comes in handy when you want to
execute an alternate piece of code in case the condition for
the if statement returns false. For instance, in the following
example, the condition 5 < 10 will return false. Hence, the code
block that follows the else statement will execute.



Script 9:

# if-else statement

if 5 > 10:
print("5 is greater than 10")

else:
print("10 is greater than 5")



Output:

10 is greater than 5



IF-Elif Statement

The if-elif statement comes handy when you have to evaluate
multiple conditions. For instance, in the following example, we
first check if 5 > 10, which evaluates to false. Next, an elif
statement evaluates the condition 8 < 4, which also returns
false. Hence, the code block that follows the last else
statement executes.



Script 10:

#if-elif and else

if 5 > 10:
print("5 is greater than 10")

elif 8 < 4:
print("8 is smaller than 4")

else:
print("5 is not greater than 10 and 8 is not smaller than 4")



Output:

5 is not greater than 10 and 8 is not smaller than 4

1.3.5. Iteration Statements

Iteration statements, also known as loops, are used to
iteratively execute a certain piece of code. There are two main
types of iteration statements in Python.

a. For loop

b. While Loop



For Loop

The for loop is used to iteratively execute a piece of code a
certain number of times. You should use for loop when you
exactly know the number of iterations or repetitions for which
you want to run your code. A for loop iterates over a
collection of items. In the following example, we create a
collection of five integers using the range() method. Next, a
for loop iterates five times and prints each integer in the
collection.



Script 11:

items = range(5)
for item in items:

print(item)



Output:

0
1
2
3
4



While Loop

The while loop keeps executing a certain piece of code unless
the evaluation condition becomes false. For instance, the
while loop in the following script keeps executing unless
variable c becomes greater than 10.



Script 12:

c = 0
while c < 10:

print(c)
c = c +1



Output:

0
1
2
3
4
5
6
7
8
9

1.3.6. Functions

Functions, in any programming language, are used to
implement a piece of code that is required to be executed
multiple times at different locations in the code. In such cases,
instead of writing long pieces of code, again and again, you
can simply define a function that contains the piece of code,
and then you can call the function wherever you want in the
code.

To create a function in Python, the def keyword is used,
followed by the name of the function and opening and closing
parenthesis.

Once a function is defined, you have to call it to execute the
code inside a function body. To call a function, you simply
have to specify the name of the function followed by opening
and closing parenthesis. In the following script, we create a
function named myfunc which prints a simple statement on
the console using the print() method.



Script 13:

def myfunc():
print("This is a simple function")

### function call
myfunc()



Output:

This is a simple function

You can also pass values to a function. The values are passed
inside the parenthesis of the function call. However, you must
specify the parameter name in the function definition, too. In
the following script, we define a function named
myfuncparam(). The function accepts one parameter, i.e.,
num. The value passed in the parenthesis of the function call
will be stored in this num variable and will be printed by the
print() method inside the myfuncparam() method.



Script 14:

def myfuncparam(num):
print("This is a function with parameter value: "+num)

### function call
myfuncparam("Parameter 1")



Output:

This is a function with parameter value:Parameter 1

Finally, a function can also return values to the function call.
To do so, you simply have to use the return keyword followed
by the value that you want to return. In the following script,
the myreturnfunc() function returns a string value to the
calling function.



Script 15:

def myreturnfunc():
return "This function returns a value"

val = myreturnfunc()
print(val)



Output:

This function returns a value

1.3.7. Objects and Classes

Python supports object-oriented programming (OOP). In
OOP, any entity that can perform some function and have
some attributes is implemented in the form of an object.

For instance, a car can be implemented as an object since a
car has some attributes such as price, color, model and can
perform some functions such as drive car, change gear, stop
car, etc.

Similarly, a fruit can also be implemented as an object since a
fruit has a price, name and you can eat a fruit, grow a fruit,
and perform functions with a fruit.

To create an object, you first have to define a class. For
instance, in the following example, a class Fruit has been
defined. The class has two attributes name and price and one
method, eat_fruit(). Next, we create an object f of class Fruit
and then call the eat_fruit() method from the f object. We
also access the name and price attributes of the f object and
print them on the console.



Script 16:

class Fruit:

name = "apple"
price = 10

def eat_fruit(self):
print("Fruit has been eaten")

f = Fruit()
f.eat_fruit()
print(f.name)
print(f.price)



Output:

Fruit has been eaten
apple
10

A class in Python can have a special method called a
constructor. The name of the constructor method in Python is
__init__(). The constructor is called whenever an object of a
class is created. Look at the following example to see the
constructor in action.



Script 17:

class Fruit:

name = "apple"
price = 10

def __init__(self, fruit_name, fruit_price):
Fruit.name = fruit_name
Fruit.price = fruit_price

def eat_fruit(self):
print("Fruit has been eaten")

f = Fruit("Orange", 15)
f.eat_fruit()
print(f.name)
print(f.price)



Output:

Fruit has been eaten
Orange
15

Further Readings - Python [1]

To study more about Python, please check Python 3 Official
Documentation (https://bit.ly/3rfaLke). Get used to
searching and reading this documentation. It is a great
resource of knowledge.

Hands-on Time - Exercise

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of the basic Python
concepts. The answers to these questions are given at the
end of the book.

https://bit.ly/3rfaLke


Exercise 1.1

Question 1

Which iteration should be used when you want to repeatedly
execute a code specific number of times?

A. For Loop

B. While Loop

C. Both A & B

D. None of the above

Question 2

What is the maximum number of values that a function can
return in Python?

A. Single Value

B. Double Value

C. More than two values

D. None

Question 3

Which of the following membership operators are supported
by Python?

A. In

B. Out

C. Not In

D. Both A and C



Exercise 1.2

Print the table of integer 9 using a while loop.



Pandas Basics

In this chapter, you will see a brief introduction to the Pandas
series and Dataframes, which are two basic data structures for
storing data in Pandas. Next, you will see how to create these
data structures and some basic functions that you can
perform with Pandas. You will then study how to import
datasets into a Pandas dataframe using various input sources.
Finally, the chapter concludes with an explanation of the
techniques for handling missing data in Pandas dataframes.

Pandas comes installed with default Python installation. You
can also install Pandas via the following PIP command:

pip install pandas



2.1. Pandas Series

A Pandas series is a data structure that stores data in the form
of a column. A series is normally used to store information
about a particular attribute in your dataset. Let’s see how you
can create a series in Pandas.

2.1.1. Creating Pandas Series

There are different ways to create a series with Pandas. The
following script imports the Pandas module and then calls the
Series() class constructor to create an empty series. Here is
how to do that:



Script 1:

# empty series

importpandasaspd

my_series = pd.Series()
print(my_series)

You can also create a series using a NumPy array. But, first,
you need to pass the array to the Series() class constructor, as
shown in the script below.



Script 2:

# series using numpy array

importpandasaspd
importnumpyasnp

my_array = np.array([10, 20, 30, 40, 50])

my_series = pd.Series(my_array)
print(my_series)



Output:

0 10
1 20
2 30
3 40
4 50
dtype: int32

In the above output, you can see that the indexes for a series
start from 0 to 1 less than the number of items in the series.
You can also define custom indexes for your series. To do so,
you need to pass your list of indexes to the index attribute of
the Series class, as shown in the script below:



Script 3:

# series with custom indexes

importpandasaspd
importnumpyasnp

my_array = np.array([10, 20, 30, 40, 50])

my_series = pd.Series(my_array, index = ["num1", "num2", "num3", "num4",
"num5"])

print(my_series)



Output:

num1 10
num2 20
num3 30
num4 40
num5 50
dtype: int32

You can also create a series by directly passing a Python list
to the Series() class constructor.



Script 4:

# series using a list

importpandasaspd
importnumpyasnp

my_series = pd.Series([10, 20, 30, 40, 50], index = ["num1", "num2",
"num3", "num4", "num5"])

print(my_series)



Output:

num1 10
num2 20
num3 30
num4 40
num5 50
dtype: int64

Finally, a scaler value can also be used to define a series. In
case you pass a list of indexes, the scaler value will be
repeated the number of times equal to the items in the index
list. Here is an example:



Script 5:

# series using a scaler

importpandasaspd
importnumpyasnp

my_series = pd.Series(25, index = ["num1", "num2", "num3", "num4",
"num5"])

print(my_series)



Output:

num1 25
num2 25
num3 25
num4 25
num5 25
dtype: int64

Finally, you can also create a series using a dictionary. In this
case, the dictionary keys will become series indexes while the
dictionary values are inserted as series items. Here is an
example:



Script 6:

# series using dictionary

my_dict = {'num1' :6,
'num2' :7,
'num3' :8}

my_series = pd.Series(my_dict)
print(my_series)



Output:

num1 6
num2 7
num3 8
dtype: int64

7.1.2. Useful Operations on Pandas Series

Let’s see some of the useful operations you can perform with
the Pandas series.

You can use square brackets as well as index labels to access
series items, as shown in the following script:



Script 7:

## Accessing Items

importpandasaspd
my_series = pd.Series([10, 20, 30, 40, 50], index = ["num1", "num2",

"num3", "num4", "num5"])
print(my_series[0])
print(my_series['num3'])



Output:

10
30

Using the min() and max() functions from the NumPy module,
you can find the maximum and minimum values, respectively,
from a series. Look at the following script for reference.



Script 8:

## Finding Maximum and Minimum Values

importpandasaspd
importnumpyasnp

my_series = pd.Series([5, 8, 2, 11, 9])

print(np.min(my_series))
print(np.max(my_series))



Output:

2
11

Similarly, the mean() method from the NumPy module can
find the mean of a Pandas series, as shown in the following
script.



Script 9:

## Finding Mean

importpandasaspd
importnumpyasnp

my_series = pd.Series([5, 8, 2, 11, 9])

print(my_series.mean())



Output:

7.0

The following script finds the median value of a Pandas series.



Script 10:

## Finding Median

importpandasaspd
importnumpyasnp

my_series = pd.Series([5, 8, 2, 11, 9])

print(my_series.median())



Output:

8.0

You can also find the data type of a Pandas series using the
dtype attribute. Here is an example:



Script 11:

## Finding Data Type

importpandasaspd
importnumpyasnp

my_series = pd.Series([5, 8, 2, 11, 9])

print(my_series.dtype)



Output:

int64

A Pandas series can also be converted to a Python list using
the tolist() method, as shown in the script below:



Script 12:

## Converting to List

importpandasaspd
importnumpyasnp

my_series = pd.Series([5, 8, 2, 11, 9])

print(my_series.tolist())



Output:

[5, 8, 2, 11, 9]



2.2. Pandas Dataframe

A Pandas dataframe is a tabular data structure that stores
data in the form of rows and columns. As a standard, the rows
correspond to records while columns refer to attributes. In
simplest words, a Pandas dataframe is a collection of series.

2.2.1. Creating a Pandas Dataframe

As is the case with a series, there are multiple ways to create a
Pandas dataframe.

To create an empty dataframe, you can use the DataFrame
class from the Pandas module, as shown below:



Script 13:

# empty pandas dataframe

importpandasaspd

my_df = pd.DataFrame()print(my_df)



Output:

EmptyDataFrame
Columns: []
Index: []

You can create a Pandas dataframe using a list of lists. Each
sublist in the outer list corresponds to a row in a dataframe.
Each item within a sublist becomes an attribute value.

To specify column headers, you need to pass a list of values to
the columns attribute of DataFrame class.

Here is an example of how you can create a Pandas dataframe
using a list.



Script 14:

# dataframe using list of lists

importpandasaspd

scores = [['Mathematics', 85], ['English', 91], ['History', 95]]

my_df = pd.DataFrame(scores, columns = ['Subject', 'Score'])
my_df



Output:

Similarly, you can create a Pandas dataframe using a
dictionary. One of the ways is to create a dictionary where
keys correspond to column headers. In contrast,
corresponding dictionary values are a list, which corresponds
to the column values in the Pandas dataframe.

Here is an example for your reference:



Script 15:

# dataframe using dictionaries

importpandasaspd

scores = {'Subject':["Mathematics", "History", "English", "Science",
"Arts"],

'Score':[98, 75, 68, 82, 99]
}

my_df = pd.DataFrame(scores)
my_df



Output:

Another way to create a Pandas dataframe is using a list of
dictionaries. Each dictionary corresponds to one row. Here is
an example of how to do that.



Script 16:

# dataframe using list of dictionaries

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85},
{'Subject':'History', 'Score':98},
{'Subject':'English', 'Score':76},
{'Subject':'Science', 'Score':72},
{'Subject':'Arts', 'Score':95},
]

my_df = pd.DataFrame(scores)
my_df



Output:

The dictionaries within the list used to create a Pandas
dataframe need not be of the same size.

For example, in the script below, the fourth dictionary in the
list contains only one item, unlike the rest of the dictionaries in
this list. The corresponding dataframe will contain a null value
in place of the second item, as shown in the output of the
script below:



Script 17:

# dataframe using list of dictionaries
# with null items

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85},
{'Subject':'History', 'Score':98},
{'Subject':'English', 'Score':76},
{'Score':72},
{'Subject':'Arts', 'Score':95},
]

my_df = pd.DataFrame(scores)
my_df



Output:

2.2.2. Basic Operations on Pandas Dataframe

Let’s now see some of the basic operations that you can
perform on Pandas dataframes.

To view the top(N) rows of a dataframe, you can call the
head() method, as shown in the script below:



Script 18:

# viewing header

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85},
{'Subject':'History', 'Score':98},
{'Subject':'English', 'Score':76},
{'Subject':'Science', 'Score':72},
{'Subject':'Arts', 'Score':95},
]

my_df = pd.DataFrame(scores)
my_df.head(2)



Output:

To view the last N rows, you can use the tail() method. Here is
an example:



Script 19:

# viewing tail

my_df = pd.DataFrame(scores)

my_df.tail(2)



Output:

You can also get a summary of your Pandas dataframe using
the info() method.



Script 20:

# gettingdataframe info

my_df = pd.DataFrame(scores)

my_df.info()

In the output below, you can see the number of entries in your
Pandas dataframe, the number of columns along with their
column type, and so on.



Output:

Finally, to get information such as mean, minimum, maximum,
standard deviation, etc., for numeric columns in your Pandas
dataframe, you can use the describe() method, as shown in
the script below:



Script 21:

# getting info about numeric columns

my_df = pd.DataFrame(scores)

my_df.describe()



Output:



2.3. Importing Data in Pandas

You can import data from various sources into your Pandas
dataframe. Some of them are discussed in this section.

2.3.1. Importing CSV Files

A CSV file is a type of file where each line contains a single
record, and all the columns are separated from each other via
a comma.

You can read CSV files using the read_csv() function of the
Pandas dataframe, as shown below. The “iris_data.csv” file is
available in the Data folder of the book resources.



Script 22:

importpandasaspd
titanic_data = pd.read_csv(r"D:\Datasets\iris_data.csv")
titanic_data.head()

If you print the dataframe header, you should see that the
header contains five columns that contain different
information about iris plants.



Output:

In some cases, CSV files do not contain any header. In such
cases, the read_csv() method treats the first row of the CSV
file as the dataframe header.

To specify custom headers for your CSV files, you need to
pass the list of headers to the names attribute of the read_
csv() method, as shown in the script below. You can find the
“pima-indians-diabetes.csv” file in the Data folder of the book
resources.



Script 23:

headers = ["Preg", "Glucose", "BP", "skinThick", "Insulin", "BMI", "DPF",
"Age", "Class"]

patient_data = pd.read_csv(r"D:\Datasets\pima-indians- diabetes.csv",
names = headers)

patient_data.head()

In the output below, you can see the custom headers that you
passed in the list to the read_csv() method’s name attribute.



Output:

2.3.2. Importing TSV Files

TSV files are similar to CSV files. But in a TSV file, the delimiter
used to separate columns is a single tab. The read_csv()
function can be used to read a TSV file. However, you have to
pass “\t” as a value for the “sep” attribute, as shown below.

Note: You can find the “iris_data.tsv” file in the Data folder of
the book resources.



Script 24:

importpandasaspd
patients_csv = pd.read_csv(r"D:\Datasets\iris_data.tsv", sep='\t')
patients_csv.head()



Output:

2.3.3. Importing Data from Databases

Oftentimes, you need to import data from different databases
into your Pandas dataframe. In this section, you will see how
to import data from various databases into a Python
application.

Importing Data from SQL Server

To import data from Microsoft’s SQL Server database, you
need to first install the “pyodbc” module for Python. To do so,
execute the following command on your command terminal.

$ pip install pyodbc

Next, you need to create a connection with your SQL server
database. The connect() method of the “pyodbc” module can
be used to create a connection. You have to pass the driver
name, the server name, and the database name to the
connect() method, as shown below.

Note: To run the following script, you need to create a
database named Titanic with a table named records table.
Explaining how to create a database and tables is beyond the
scope of this book. You find further details at the link below.



Further Readings – CRUD Operations with SQL Server

To see how to create databases and tables with SQL Server,
take a look at this link: https://bit.ly/2XwEgAV

In the following script, we connect to the Titanic database.

https://bit.ly/2XwEgAV


Script 25:

importpandasaspd
importpyodbc

sql_conn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};
SERVER=HOARE\SQLEXPRESS; DATABASE=Titanic; Trusted_Connection=yes')

Once the connection is established, you have to write an SQL
SELECT query that fetches the desired record. The following
SQL select query fetches all records from a records table.

In a Pandas dataframe, the query and the connection object
are passed to the pd_read_sql() function to store the records
returned by the query.

Finally, the dataframe header is printed to display the first five
rows of the imported table.



Script 26:

query = "SELECT * FROM records;"
titanic_data = pd.read_sql(query, sql_conn)
titanic_data.head()



Importing Data from PostgreSQL

To import data from PostgreSQL, you will need to download
the SQLAlchemy module. Execute the following pip statement
to do so.

$ pip install SQLAlchemy

Next, you need to create an engine, which serves as a
connection between the PostgreSQL server and the Python
application. The following script shows how to create a
connection engine. You need to replace your server and
database name in the following script.



Script 27:

fromsqlalchemyimportcreate_engine
engine = create_engine('postgresql://postgres:abc123@

localhost:5432/Titanic')

To store the records returned by the query in a Pandas
dataframe, the query and the connection object are passed to
the pd_read_sql() function of the Pandas dataframe. Finally,
the dataframe header is printed to display the first five rows of
the imported table.



Script 28:

importpandasaspd
titanic_data =pd.read_sql_query('select * from "records"',con=engine)
titanic_data.head()



Output:

Further Readings – CRUD Operations with PostgreSQL

To see how to create databases and tables with PostgreSQL,
take a look at this link: https://bit.ly/2XyJr3f

https://bit.ly/2XyJr3f


Importing Data from SQLite

To import data from an SQLite database, you do not need any
external module. You can use the default sqlite3 module.

The first step is to connect to an SQLite database. To do so,
you can use the connect() method of the sqlite3 module, as
shown below.



Script 29:

importsqlite3
importpandasaspd
# Create your connection.
cnx = sqlite3.connect('E:/Titanic.db')

Next, you can call the pd_read_sql() function of the Pandas
dataframe and pass it to the SELECT query and the database
connection. Finally, the dataframe header is printed to display
the first five rows of the imported table.



Script 30:

titanic_data = pd.read_sql_query("SELECT * FROM records", cnx)
titanic_data.head()

Further Readings – CRUD Operations with SQLite

To see how to create databases and tables with SQLite, take
a look at this link: https://bit.ly/2BAXZXL

https://bit.ly/2BAXZXL


2.4. Handling Missing Values in Pandas

Missing values, as the name suggests, are those observations
in the dataset that doesn’t contain any value. Missing values
can change the data patterns, and, therefore, it is extremely
important to understand why missing values occur in the
dataset and how to handle them.

In this section, you will see the different techniques with
examples to handle missing values in your Pandas dataframes.

2.4.1. Handling Missing Numerical Values

To handle missing numerical data, we can use statistical
techniques. The use of statistical techniques or algorithms to
replace missing values with statistically generated values is
called imputation.

In this section, you will see how to do median and mean
imputation. Mean or median imputation is one of the most
commonly used imputation techniques for handling missing
numerical data.

In mean or median imputation, missing values in a column are
replaced by the mean or median of all the remaining values in
that particular column.

For instance, if you have a column with the following data:



In the above Age column, the second value is missing.
Therefore, with mean and median imputation, you can replace
the second value with either the mean or median of all the
other values in the column. For instance, the following column
contains the mean of all the remaining values, i.e., 25 in the
second row. You could also replace this value with the median
if you want.

Let’s see a practical example of mean and median imputation.
First, we will import the Titanic dataset and find the columns
that contain missing values. Then, we will apply mean and
median imputation to the columns containing missing values.
Finally, we will see the effect of applying mean and median
imputation to the missing values.



You do not need to download the Titanic dataset. If you
import the Seaborn library, the Titanic data will be
downloaded with it. The following script imports the Titanic
dataset and displays its first five rows.



Script 31:

importmatplotlib.pyplotasplt
importseabornassns

plt.rcParams["figure.figsize"] = [8,6]
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')

titanic_data.head()



Output:

Let’s filter some of the numeric columns from the dataset and
see if they contain any missing values.



Script 32:

titanic_data = titanic_data[["survived", "pclass", "age", "fare"]]
titanic_data.head()



Output:

To find missing values from the aforementioned columns, you
need to first call the isnull() method on the titanic_data
dataframe, and then you need to call the mean() method, as
shown below.



Script 33:

titanic_data.isnull().mean()



Output:

survived 0.000000
pclass 0.000000
age 0.198653
fare 0.000000
dtype: float64

The above output shows that only the age column contains
missing values. And the ratio of missing values is around 19.86
percent.

Let’s now find out the median and mean values for all the non-
missing values in the age column.



Script 34:

median = titanic_data.age.median()
print(median)

mean = titanic_data.age.mean()
print(mean)



Output:

28.0
29.69911764705882

The age column has a median value of 28 and a mean value of
29.6991.

To plot the kernel density plots for the actual age and median
and mean age, we will add columns to the Pandas dataframe.



Script 35:

importnumpyasnp

titanic_data['Median_Age'] = titanic_data.age.fillna(median)

titanic_data['Mean_Age'] = titanic_data.age.fillna(mean)

titanic_data['Mean_Age'] = np.round(titanic_data['Mean_Age'], 1)

titanic_data.head(20)

The above script adds Median_Age and Mean_Age columns
to the titanic_data dataframe and prints the first 20 records.
Here is the output of the above script:



Output:

The highlighted rows in the above output show that NaN, i.e.,
null values in the age column, have been replaced by the
median values in the Median_Age column and by mean values
in the Mean_Age column.

The mean and median imputation can affect the data
distribution for the columns containing the missing values.
Specifically, the variance of the column is decreased by mean



and median imputation now since more values are added to
the center of the distribution. The following script plots the
distribution of data for the age, Median_Age, and Mean_Age
columns.



Script 36:

fig = plt.figure()
ax = fig.add_subplot(111)

titanic_data['age'] .plot(kind='kde', ax=ax)

titanic_data['Median_Age'] .plot(kind='kde', ax=ax, color='red')

titanic_data['Mean_Age'] .plot(kind='kde', ax=ax, color='green')

lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')

Here is the output of the script above:



Output:

You can see that the default values in the age columns have
been distorted by the mean and median imputation, and the
overall variance of the dataset has also been decreased.



Recommendations

Mean and Median imputation could be used for the missing
numerical data in case the data is missing at random. If the
data is normally distributed, mean imputation is better, or else,
median imputation is preferred in case of skewed
distributions.

2.4.2. Handling Missing Categorical Values



Frequent Category Imputation

One of the most common ways of handling missing values in a
categorical column is to replace the missing values with the
most frequently occurring values, i.e., the mode of the column.
It is for this reason, frequent category imputation is also
known as mode imputation. Let’s see a real-world example of
the frequent category imputation.

We will again use the Titanic dataset. We will first try to find
the percentage of missing values in the age, fare, and
embarked_ town columns.



Script 37:

importmatplotlib.pyplotasplt
importseabornassns

plt.rcParams["figure.figsize"] = [8,6]
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')

titanic_data = titanic_data[["embark_town", "age", "fare"]]
titanic_data.head()
titanic_data.isnull().mean()



Output:

embark_town    0.002245
age    0.198653
fare    0.000000
dtype:  float64

The output shows that embark_town and age columns have
missing values. The ratio of missing values for the embark_
town column is very less.

Let’s plot the bar plot that shows each category in the
embark_town column against the number of passengers.



Script 38:

titanic_data.embark_town.value_counts().sort_values(ascending=False).plot.bar()
plt.xlabel('Embark Town')
plt.ylabel('Number of Passengers')

The output below clearly shows that most of the passengers
embarked from Southampton.



Output:

Let’s make sure if Southampton is the mode value for the
embark_town column.



Script 39:

titanic_data.embark_town.mode()



Output:

0 Southampton
dtype:object

Next, we can simply replace the missing values in the embark
town column by Southampton.



Script 40:

titanic_data.embark_town.fillna('Southampton', inplace=True)

Let’s now find the mode of the age column and use it to
replace the missing values in the age column.



Script 41:

titanic_data.age.mode()



Output:

0 24.0
dtype: float64

The output shows that the mode of the age column is 24.
Therefore, we can use this value to replace the missing values
in the age column.



Script 42:

importnumpyasnp

titanic_data['age_mode'] = titanic_data.age.fillna(24)

titanic_data.head(20)



Output:





Finally, let’s plot the kernel density estimation plot for the
original age column and the age column that contains the
mode of the values in place of the missing values.



Script 43:

plt.rcParams["figure.figsize"] = [8,6]

fig = plt.figure()
ax = fig.add_subplot(111)

titanic_data['age'] .plot(kind='kde', ax=ax)

titanic_data['age_mode'] .plot(kind='kde', ax=ax, color='red')

lines, labels = ax.get_legend_handles_labels()
ax.legend(lines, labels, loc='best')



Output:



Missing Category Imputation

Missing value imputation adds an arbitrary category, e.g.,
missing in place of the missing values. Take a look at an
example of missing value imputation.

Let’s load the Titanic dataset and see if any categorical
column contains missing values.



Script 44:

importmatplotlib.pyplotasplt
importseabornassns

plt.rcParams["figure.figsize"] = [8,6]
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data = titanic_data[["embark_town", "age", "fare"]]
titanic_data.head()
titanic_data.isnull().mean()



Output:

embark_town 0.002245
age 0.198653
fare 0.000000
dtype: float64

The output shows that the embark_town column is a
categorical column that contains some missing values too. We
will apply the missing value imputation to this column.



Script 45:

titanic_data.embark_town.fillna('Missing', inplace=True)

After applying missing value imputation, plot the bar plot for
the embark_town column. You can see that we have a very
small, almost negligible plot for the missing column.



Script 46:

titanic_data.embark_town.value_counts().sort_values(ascending=False).plot.bar()
plt.xlabel('Embark Town')
plt.ylabel('Number of Passengers')



Output:

Further Readings – Basics of Pandas

1. Check the official documentation here
(https://bit.ly/3mQnfOE) to learn more about the Pandas
basics.

2. You can learn more about Matplotlib for data plotting at
this link (https://matplotlib.org/).

https://bit.ly/3mQnfOE
https://matplotlib.org/


Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of Pandas basics that
you learned in this chapter. The answers to these questions
are given at the end of the book.



Exercise 2.1

Question 1:

What is the major disadvantage of mean and median
imputation?

A. Distorts the data distribution

B. Distorts the data variance

C. Distorts the data covariance

D. All of the Above

Question 2:

How do you display the last three rows of a Pandas dataframe
named “my_df”?

A. my_df.end(3)

B. my_df.bottom(3)

C. my_df.top(-3)

D. my_df.tail(3)

Question 3:

You can create a Pandas series using a:

A. NumPy Array

B. List

C. Dictionary

D. All of the Above



Exercise 2.2

Replace the missing values in the “deck” column of the Titanic
dataset with the most frequently occurring categories in that
column. Plot a bar plot for the updated “deck” column. The
Titanic dataset can be downloaded using this Seaborn
command:

import seaborn as sns

sns.load_dataset('titanic')



Manipulating Pandas Dataframes

Once you have loaded data into your Pandas dataframe, you
might need to further manipulate the data and perform a
variety of functions such as filtering certain columns, dropping
the others, selecting a subset of rows or columns, sorting the
data, finding unique values, and so on. You are going to study
all these functions in this chapter.

You will first see how to select data via indexing and slicing,
followed by a section on how to drop unwanted rows or
columns from your data. You will then study how to filter your
desired rows and columns. The chapter concludes with an
explanation of sorting and finding unique values from a
Pandas dataframe.



3.1. Selecting Data Using Indexing and Slicing

Indexing refers to fetching data using index or column
information of a Pandas dataframe. Slicing, on the other hand,
refers to slicing a Pandas dataframe using indexing
techniques.

In this section, you will see the different techniques of
indexing and slicing Pandas dataframes.

You will be using the Titanic dataset for this section, which
you can import via the Seaborn library’s load_dataset()
method, as shown in the script below.



Script 1:

importmatplotlib.pyplotasplt
importseabornassns

# sets the default style for plotting
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data.head()



Output:

3.1.1. Selecting Data Using Brackets []

One of the simplest ways to select data from various columns
is by using square brackets. To get column data in the form of
a series from a Pandas dataframe, you need to pass the
column name inside square brackets that follow the Pandas
dataframe name.

The following script selects records from the class column of
the Titanic dataset.



Script 2:

print(titanic_data["class"])
type(titanic_data["class"])



Output:

0 Third
1 First
2 Third
3 First
4 Third

…
886 Second
887 First
888 Third
889 First
890 Third
Name: class, Length: 891, dtype: category
Categories (3, object): ['First', 'Second', 'Third']
Out[2]:
pandas.core.series.Series

You can select multiple columns by passing a list of column
names inside a string to the square brackets. You will then get
a Pandas dataframe with the specified columns, as shown
below.



Script 3:

print(type(titanic_data[["class", "sex", "age"]]))
titanic_data[["class", "sex", "age"]]



Output:

You can also filter rows based on some column values. For
doing this, you need to pass the condition to the filter inside
the square brackets. For instance, the script below returns all
records from the Titanic dataset where the sex column
contains the value “male.”



Script 4:

my_df = titanic_data[titanic_data["sex"] == "male"]
my_df.head()



Output:

You can specify multiple conditions inside the square
brackets. The following script returns those records where the
sex column contains the string “male,” while the class column
contains the string “First.”



Script 5:

my_df = titanic_data[(titanic_data["sex"] == "male") &
(titanic_data["class"] == "First")]

my_df.head()



Output:

You can also use the isin() function to specify a range of
values to filter records. For instance, the script below filters all
records where the age column contains the values 20, 21, or
22.



Script 6:

ages = [20,21,22]
age_dataset = titanic_data[titanic_data["age"].isin(ages)]
age_dataset.head()



Output:

3.1.2. Indexing and Slicing Using loc Function

The loc function from the Pandas dataframe can also be used
to filter records in the Pandas dataframe.

To create a dummy dataframe used as an example in this
section, run the following script:



Script 7:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

Let’s now see how to filter records. To filter the row at the
second index in the my_dfdataframe, you need to pass 2
inside the square brackets that follow the loc function. Here is
an example:



Script 8:

print(my_df.loc[2])
type(my_df.loc[2])

In the output below, you can see data from the row at the
second index (row 3) in the form of a series.



Output:

Subject English
Score 76
Grade C
Remarks Fair
Name: 2, dtype: object
Out[7]:
pandas.core.series.Series

You can also specify the range of indexes to filter records
using the loc function. For instance, the following script filters
records from index 2 to 4.



Script 9:

my_df.loc[2:4]



Output:

Along with filtering rows, you can also specify which columns
to filter with the loc function.

The following script filters the values in columns Grade and
Score in the rows from index 2 to 4.



Script 10:

my_df.loc[2:4, ["Grade", "Score"]]



Output:

In addition to passing default integer indexes, you can also
pass named or labeled indexes to the loc function.

Let’s create a dataframe with named indexes. Run the
following script to do so:



Script 11:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores, index = ["Student1", "Student2", "Student3",
"Student4", "Student5"])

my_df

From the output below, you can see that the my_dfdataframe
now contains named indexes, e.g., Student1, Student2, etc.



Output:

Let’s now filter a record using Student1 as the index value in
the loc function.



Script 12:

my_df.loc["Student1"]



Output:

Subject Mathematics
Score      85
Grade      B
Remarks    Good
Name: Student1, dtype: object

As shown below, you can specify multiple named indexes in a
list to the loc method. The script below filters records with
indexes Student1 and Student2.



Script 13:

index_list = ["Student1", "Student2"]
my_df.loc[index_list]



Output:

You can also find the value in a particular column while
filtering records using a named index.

The script below returns the value in the Grade column for the
record with the named index Student1.



Script 14:

my_df.loc["Student1", "Grade"]



Output:

'B'

As you did with the default integer index, you can specify a
range of records using the named indexes within the loc
function.

The following function returns values in the Grade column for
the indexes from Student1 to Student2.



Script 15:

my_df.loc["Student1":"Student2", "Grade"]



Output:

Student1 B
Student2 A
Name: Grade, dtype: object

Let’s see another example.

The following function returns values in the Grade column for
the indexes from Student1 to Student4.



Script 16:

my_df.loc["Student1":"Student4", "Grade"]



Output:

Student1 B
Student2 A
Student3 C
Student4 C
Name: Grade, dtype: object

You can also specify a list of Boolean values that correspond
to the indexes to select using the loc method.

For instance, the following script returns only the fourth
record since all the values in the list passed to the loc function
are false, except the one at the fourth index.



Script 17:

my_df.loc[[False, False, False, True, False]]



Output:

You can also pass dataframe conditions inside the loc method.
A condition returns a boolean value which can be used to
index the loc function, as you have already seen in the
previous scripts.

Before you see how loc function uses conditions, let’s see the
outcome of a basic condition in a Pandas dataframe. The
script below returns index names along with True or False
values depending on whether the Score column contains a
value greater than 80 or not.



Script 18:

my_df[«Score»]>80

You can see Boolean values in the output. You can see that
indexes Student1, Student2, and Student5 contain True.



Output:

Student1 True
Student2 True
Student3 False
Student4 False
Student5 True
Name: Score, dtype: bool

Now, let’s pass the condition “my_df["Score"]>80” to the loc
function.



Script 19:

my_df.loc[my_df["Score"]>80]

In the output, you can see records with the indexes Student1,
Student2, and Student5.



Output:

You can pass multiple conditions to the loc function. For
instance, the script below returns those rows where the Score
column contains a value greater than 80, and the Remarks
column contains the string Excellent.



Script 20:

my_df.loc[(my_df["Score"]>80) & (my_df["Remarks"] == "Excellent")]



Output:

Finally, you can also specify column names to fetch values
from, along with a condition.

For example, the script below returns values from the Score
and Grade columns, where the Score column contains a value
greater than 80.



Script 21:

my_df.loc[my_df["Score"]>80, ["Score","Grade"]]



Output:

Finally, you can set values for all the columns in a row using
the loc function. For instance, the following script sets values
for all the columns for the record at index Student4 as 90.



Script 22:

my_df.loc["Student4"] = 90
my_df



Output:

3.1.3. Indexing and Slicing Using iloc Function

You can also use the iloc function for selecting and slicing
records using index values. However, unlike the loc function,
where you can pass both the string indexes and integer
indexes, you can only pass the integer index values to the iloc
function.

The following script creates a dummy dataframe for this
section.



Script 23:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

Let’s filter the record at index 3 (row 4).



Script 24:

my_df.iloc[3]

The script below returns a series.



Output:

Subject Science
Score     72
Grade     C
Remarks   Fair
Name: 3, dtype: object

If you want to select records from a single column as a
dataframe, you need to specify the index inside the square
brackets and then those square brackets inside the square
brackets that follow the iloc function, as shown below.



Script 25:

my_df.iloc[[3]]



Output:

You can pass multiple indexes to the iloc function to select
multiple records. Here is an example:



Script 26:

my_df.iloc[[2,3]]



Output:

You can also pass a range of indexes. In this case, the records
from the lower range to 1 less than the upper range will be
selected.

For instance, the script below returns records from index 2 to
index 3 (1 less than 4).



Script 27:

my_df.iloc[2:4]



Output:

In addition to specifying indexes, you can also pass column
numbers (starting from 0) to the iloc method.

The following script returns values from columns number 0
and 1 for the records at indexes 2 and 3.



Script 28:

my_df.iloc[[2,3], [0,1]]



Output:

You can also pass a range of indexes and columns to select.
The script below selects columns 1 and 2 and rows 2 and 3.



Script 29:

my_df.iloc[2:4, 0:2]



Output:



3.2. Dropping Rows and Columns with the drop()
Method

Apart from selecting columns using the loc and iloc functions,
you can also use the drop() method to drop unwanted rows
and columns from your dataframe while keeping the rest of
the rows and columns.

3.2.1. Dropping Rows

The following script creates a dummy dataframe that you will
use in this section.



Script 30:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

The following script drops records at indexes 1 and 4.



Script 31:

my_df2 = my_df.drop([1,4])
my_df2.head()



Output:

From the output above, you can see that the indexes are not
in sequence since you have dropped indexes 1 and 4.

You can reset dataframe indexes starting from 0, using the
reset_index().

Let’s call the reset_index() method on the my_df2 dataframe.
Here, the value True for the inplace parameter specifies that
you want to remove the records in place without assigning the
result to any new variable.



Script 32:

my_df2.reset_index(inplace=True)
my_df2.head()



Output:

The above output shows that the indexes have been reset.
Also, you can see that a new column index has been added,
which contains the original index. If you only want to reset
new indexes without creating a new column named index, you
can do so by passing True as the value for the drop parameter
of the reset_index method.

Let’s again drop some rows and reset the index using the
reset_index() method by passing True as the value for the
drop attribute. See the following two scripts:



Script 33:

my_df2 = my_df.drop([1,4])
my_df2.head()



Output:



Script 34:

my_df2.reset_index(inplace=True, drop = True)
my_df2.head()



Output:

By default, the drop method doesn’t drop rows in place.
Instead, you have to assign the result of the drop() method to
another variable that contains the records with dropped
results.

For instance, if you drop the records at indexes 1, 3, and 4
using the following script and then print the dataframe
header, you will see that the rows are not removed from the
original dataframe.



Script 35:

my_df.drop([1,3,4])
my_df.head()



Output:

If you want to drop rows in place, you need to pass True as
the value for the inplace attribute, as shown in the script
below:



Script 36:

my_df.drop([1,3,4], inplace = True)
my_df.head()



Output:

3.2.1. Dropping Columns

You can also drop columns using the drop() method.

The following script creates a dummy dataframe for this
section.



Script 37:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

To drop columns via the drop() method, you need to pass the
list of columns to the drop() method, along with 1 as the value
for the axis parameter of the drop method.

The following script drops the columns Subject and Grade
from our dummy dataframe.



Script 38:

my_df2 = my_df.drop(["Subject", "Grade"], axis = 1)
my_df2.head()



Output:

You can also drop the columns inplace from a dataframe using
the inplace = True parameter value, as shown in the script
below.



Script 39:

my_df.drop(["Subject", "Grade"], axis = 1, inplace = True)
my_df.head()



Output:



3.3. Filtering Rows and Columns with Filter Method

The drop() method drops the unwanted records, and the
filter() method performs the reverse tasks. It keeps the
desired records from a set of records in a Pandas dataframe.

3.3.1. Filtering Rows

Run the following script to create a dummy dataframe for this
section.



Script 40:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

To filter rows using the filter() method, you need to pass the
list of row indexes to filter to the filter() method of the Pandas
dataframe. Along with that, you need to pass 0 as the value
for the axis attribute of the filter() method. Here is an
example. The script below filters rows with indexes 1, 3, and 4
from the Pandas dataframe.



Script 41:

my_df2 = my_df.filter([1,3,4], axis = 0)
my_df2.head()



Output:

You can also reset indexes after filtering data using the reset_
index() method, as shown in the following script:



Script 42:

my_df2 = my_df2.reset_index(drop=True)
my_df2.head()



Output:

3.3.2. Filtering Columns

The dummy dataframe for this section is created using the
following script:



Script 43:

importpandasaspd

scores = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Science', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Arts', 'Score':95, 'Grade': 'A','Remarks': 'Excellent'},
]

my_df = pd.DataFrame(scores)
my_df.head()



Output:

To filter columns using the filter() method, you need to pass
the list of column names to the filter method. Furthermore,
you need to set 1 as the value for the axis attribute.

The script below filters the Score and Grade columns from
your dummy dataframe.



Script 44:

my_df2 = my_df.filter(["Score","Grade"], axis = 1)
my_df2.head()



Output:



3.4. Sorting Dataframes

You can also sort records in your Pandas dataframe based on
values in a particular column. Let’s see how to do this.

For this section, you will be using the Titanic dataset, which
you can import using the Seaborn library using the following
script:



Script 45:

importmatplotlib.pyplotasplt
importseabornassns

# sets the default style for plotting
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data.head()



Output:

To sort the Pandas dataframe, you can use the sort_values()
function of the Pandas dataframe. The list of columns used for
sorting needs to be passed to the by attribute of the sort_
values() method.

The following script sorts the Titanic dataset in ascending
order of the passenger’s age.



Script 46:

age_sorted_data = titanic_data.sort_values(by=['age'])
age_sorted_data.head()



Output:

To sort by descending order, you need to pass False as the
value for the ascending attribute of the sort_values()
function.

The following script sorts the dataset by descending order of
age.



Script 47:

age_sorted_data = titanic_data.sort_values(by=['age'], ascending = False)
age_sorted_data.head()



Output:

You can also pass multiple columns to the by attribute of the
sort_values() function. In such a case, the dataset will be
sorted by the first column, and in the case of equal values for
two or more records, the dataset will be sorted by the second
column and so on.

The following script first sorts the data by Age and then by
Fare, both by descending orders.



Script 48:

age_sorted_data = titanic_data.sort_values(by=['age','fare'], ascending =
False)

age_sorted_data.head()



Output:



3.5. Pandas Unique and Count Functions

In this section, you will see how you can get a list of unique
values, the number of all unique values, and records per
unique value from a column in a Pandas dataframe.

You will be using the Titanic dataset once again, which you
download via the following script.



Script 49:

importmatplotlib.pyplotasplt
importseabornassns

# sets the default style for plotting
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data.head()



Output:

To find the number of all the unique values in a column, you
can use the unique() function. The script below returns all the
unique values from the class column from the Titanic dataset.



Script 50:

titanic_data["class"].unique()



Output:

['Third', 'First', 'Second']
Categories (3, object): ['Third', 'First', 'Second']

To get the count of unique values, you can use the nunique()
method, as shown in the script below.



Script 51:

titanic_data["class"].nunique()



Output:

3

To get the count of non-null values for all the columns in your
dataset, you may call the count() method on the Pandas
dataframe. The following script prints the count of the total
number of non-null values in all the columns of the Titanic
dataset.



Script 52:

titanic_data.count()



Output:

survived    891
pclass    891
sex   891
age   714
sibsp   891
parch   891
fare   891
embarked   889
class   891
who   891
adult_male   891
deck   203
embark_town   889
alive   891
alone   891
dtype: int64

Finally, if you want to find the number of records for all the
unique values in a dataframe column, you may use the
value_counts() function.

The script below returns counts of records for all the unique
values in the class column.



Script 53:

titanic_data["class"].value_counts()



Output:

Third   491
First   216
Second  184
Name: class, dtype: int64

Further Readings – Pandas Dataframe Manipulation

Check the official documentation here
(https://bit.ly/3kguKgb) to learn more about the Pandas
dataframe manipulation functions.

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of Pandas dataframe
manipulation techniques that you learned in this chapter.
The answers to these questions are given at the end of the
book.

https://bit.ly/3kguKgb


Exercise 3.1

Question 1:

Which function is used to sort Pandas dataframe by a column
value?

A. sort_dataframe()

B. sort_rows()

C. sort_values()

D. sort_records()

Question 2:

To filter columns from a Pandas dataframe, you have to pass a
list of column names to one of the following methods:

A. filter()

B. filter_columns()

C. apply_filter ()

D. None of the above

Question 3:

To drop the second and fourth rows from a Pandas dataframe
named my_df, you can use the following script:

A. my_df.drop([2,4])

B. my_df.drop([1,3])

C. my_df.delete([2,4])

D. my_df.delete([1,3])



Exercise 3.2

From the Titanic dataset, filter all the records where the fare is
greater than 20 and the passenger traveled alone. You can
access the Titanic dataset using the following Seaborn
command:

import seaborn as sns

titanic_data = sns.load_dataset('titanic')



Data Grouping, Aggregation, and Merging
with Pandas

Often, you need to group data based on a particular column
value. Take the example of the Titanic dataset that you have
seen in previous chapters. What if you want to find the
maximum fare paid by male and female passengers? Or, you
want to find which embarked town had the oldest
passengers? In such cases, you will need to create groups of
records based on the column values. You can then find the
maximum, minimum, mean, or other information within that
group.

Furthermore, you might want to merge or concatenate
dataframes if your dataset is distributed among multiple files.
Finally, you might need to change the orientation of your
dataframe and discretize certain columns.

In this chapter, you will see the answers to all these questions.
You will study how to group, concatenate, and merge your
dataframe. You will also see how to change your dataframe
orientation. The chapter concludes with a brief introduction to
binning and discretization with Pandas dataframes.



4.1. Grouping Data with GroupBy

You will be using the Titanic dataset for various GroupBy
functions in this section. Import the Titanic dataset using the
following script:



Script 1:

importmatplotlib.pyplotasplt
importseabornassns

importpandasaspd

# sets the default style for plotting
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')
titanic_data.head()



Output:

To group data by a column value, you can use the groupby()
function of the Pandas dataframe. You need to pass the
column as the parameter value to the groupby() function.

The script below groups the data in the Titanic dataset by the
class column. Next, the type of object returned by the
groupby() function is also printed.



Script 2:

titanic_gbclass = titanic_data.groupby("class")
type(titanic_gbclass)



Output:

pandas.core.groupby.generic.DataFrameGroupBy

The above output shows that the groupby() function returns
the DataFrameGroupBy object. You can use various attributes
and functions of this object to get various information about
different groups.

For instance, to see the number of groups, you can use the
ngroups attribute, which returns the number of groups
(unique values). Since the number of groups in the class
columns is 3, you will see 3 printed in the output of the script.



Script 3:

titanic_gbclass.ngroups



Output:

3

You can use the size() function to get the number of records
in each group. This is similar to the value_counts() function
that you saw in the previous chapter.



Script 4:

titanic_gbclass.size()



Output:

class
First   216
Second  184
Third   491
dtype: int64

Finally, you can also get the row indexes for records in a
particular group. The script below returns the row indexes for
rows where the class column contains “First.”



Script 5:

titanic_gbclass.groups["First"]



Output:

Int64Index([1, 3, 6, 11, 23, 27, 30, 31, 34, 35,
…
853, 856, 857, 862, 867, 871, 872, 879, 887, 889],

dtype='int64', length=216)

You can also get the first or last record from each group using
the first() and last() functions, respectively.

As an example, the following script returns the last record
from each group in the class column.



Script 6:

titanic_gbclass.last()



Output:

You can also get a dataframe that contains records belonging
to a subgroup using the get_group() function. The following
script returns all records from the group named “Second”
from the class column.



Script 7:

titanic_second_class = titanic_gbclass.get_group("Second")
titanic_second_class.head()



Output:

The DataFrameByGroup object can also be used to perform
aggregate functions. For instance, you can get the maximum
age in all the groups in the class column using the max()
function, as shown in the following script.



Script 8:

titanic_gbclass.age.max()



Output:

class
First    80.0
Second   70.0
Third    74.0
Name: age, dtype: float64

Similarly, you can also get information based on various
aggregate functions bypassing the list of functions to the
agg() method.

For instance, the script below returns the maximum, minimum,
median, and mean, and count of age values in different groups
in the class column.



Script 9:

titanic_gbclass.fare.agg(['max', 'min', 'count', 'median', 'mean'])



Output:



4.2. Concatenating and Merging Data

4.2.1. Concatenating Data

As you did previously, you will be using the Titanic dataset for
this section as well. Run the following script to import the
Titanic dataset.



Script 10:

importmatplotlib.pyplotasplt
importseabornassns

titanic_data = sns.load_dataset('titanic')



Concatenating Rows

Oftentimes, you need to concatenate or join multiple Pandas
dataframes horizontally or vertically. So, let’s first see how to
concatenate or join Pandas dataframes vertically or in row
order.

Using Titanic data, we will create two Pandas dataframes. The
first dataframe consists of rows where the passenger class is
First, while the second dataframe consists of rows where the
passenger class is Second.



Script 11:

titanic_pclass1_data = titanic_data[titanic_data["class"] == "First"]
print(titanic_pclass1_data.shape)

titanic_pclass2_data = titanic_data[titanic_data["class"] == "Second"]
print(titanic_pclass2_data.shape)



Output:

(216, 15)
(184, 15)

The output shows that both the newly created dataframes
have 15 columns. It is important to mention that while
concatenating data vertically, both the dataframes should
have an equal number of columns.

There are two ways to concatenate datasets horizontally. You
can call the append() method via the first dataframe and pass
the second dataframe as a parameter to the append()
method. Look at the following script:



Script 12:

final_data = titanic_pclass1_data.append(titanic_pclass2_data,
ignore_index=True)
print(final_data.shape)

The output now shows that the total number of rows is 400,
which is the sum of the number of rows in the two dataframes
that we concatenated.



Output:

(400, 15)

The other way to concatenate two dataframes is by passing
both the dataframes as parameters to the concat() method of
the Pandas module. The following script shows how to do
that.



Script 13:

final_data = pd.concat([titanic_pclass1_data, titanic_pclass2_data])
print(final_data.shape)



Output:

(400, 15)



Concatenating Columns

To concatenate dataframes horizontally, make sure that the
dataframes have an equal number of rows. You can use the
concat() method to concatenate dataframes horizontally as
well. However, you will need to pass 1 as the value for the axis
attribute. Furthermore, to reset dataset indexes, you need to
pass True as the value for the ignore_index attribute.



Script 14:

df1 = final_data[:200]
print(df1.shape)
df2 = final_data[200:]
print(df2.shape)

final_data2 = pd.concat([df1, df2], axis = 1, ignore_index = True)
print(final_data2.shape)



Output:

(200, 15)
(200, 15)
(400, 30)

4.2.2. Merging Data

You can merge multiple dataframes based on common values
between any columns of the two dataframes.

Let’s create two dataframes: scores1 and scores2.



Script 15:

importpandasaspd

scores1 = [
{'Subject':'Mathematics', 'Score':85, 'Grade': 'B', 'Remarks': 'Good',
},
{'Subject':'History', 'Score':98, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'English', 'Score':76, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Chemistry', 'Score':72, 'Grade': 'C','Remarks': 'Fair'},
]

scores2 = [
{'Subject':'Arts', 'Score':70, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'Physics', 'Score':75, 'Grade': 'C','Remarks': 'Fair'},
{'Subject':'English', 'Score':92, 'Grade': 'A','Remarks':
'Excellent'},
{'Subject':'Chemistry', 'Score':91, 'Grade': 'A','Remarks':
'Excellent'},

]

scores1_df = pd.DataFrame(scores1)
scores2_df = pd.DataFrame(scores2)

The following script prints the header of the scores1
dataframe.



Script 16:

scores1_df.head()



Output:



Script 17:

scores2_df.head()

The following script prints the header of the scores2
dataframe



Output:

You can see that the two dataframes, scores1 and scores2,
have the same columns. You can merge or join two
dataframes on any column. In this section, you will be merging
two dataframes on the Subject column.

The merge() function in Pandas can be used to merge two
dataframes based on common values between columns of the
two dataframes. The merge() is similar to SQL JOIN
operations.



Merging with Inner Join

The script below merges scores1 and scores2 dataframe using
the INNER JOIN strategy.

To merge two dataframes, you call the merge() function on
the dataframe that you want on the left side of the join
operation. The dataframe to be merged on the right is passed
as the first parameter. Next, the column name on which you
want to apply the merge operation is passed to the “on”
attribute. Finally, the merge strategy is passed to the “how”
attribute, as shown in the script below.

With INNER JOIN, only those records from both the
dataframes are returned, where there are common values in
the column used for merging the dataframes.

For instance, in the scores1 and scores2 dataframes, English
and Chemistry are two subjects that exist in the Subject
column of both the dataframes.

Therefore, in the output of the script below, you can see the
merged dataframes containing only these two records. Since
the column names, Score, Grade, and Remarks, are similar in
both the dataframes, the column names from the dataset on
the left (which is scores1 in the following script) have been
appended with “_x”. While the column names in the dataframe
on the right are appended with “_y”.

In case both the dataframes in the merge operation contain
different column names, you will see the original column
names in the merged dataframe.



Script 18:

join_inner_df = scores1_df.merge(scores2_df, on='Subject', how='inner')
join_inner_df.head()



Output:



Merging with Left Join

When you merge two Pandas dataframes using a LEFT join, all
the records from the dataframe to the left side of the merge()
function are returned, whereas, for the right dataframe, only
those records are returned where a common value is found on
the column being merged.



Script 19:

join_inner_df = scores1_df.merge(scores2_df, on='Subject', how='left')
join_inner_df.head()

In the output below, you can see the records for the
Mathematics and History subjects in the dataframe on the left.
But since these records do not exist in the dataframe on the
right, you see null values for columns Score_y, Grade_y, and
Remarks_y. Only those records can be seen for the right
dataframe where there are common values in the Subject
column from both the dataframes.



Output:



Merging with Right Join

In merging with right join, the output contains all the records
from the right dataframe while only those records are
returned from the left dataframe where there are common
values in the merge column.

Here is an example:



Script 20:

join_inner_df = scores1_df.merge(scores2_df, on='Subject', how='right')
join_inner_df.head()



Output:



Merging with Outer Join

With outer join, all the records are returned from both right
and left dataframes. Here is an example:



Script 21:

join_inner_df = scores1_df.merge(scores2_df, on='Subject', how='outer')
join_inner_df.head()



Output:



4.3. Removing Duplicates

Your datasets will often contain duplicate values, and
frequently, you will need to remove these duplicate values. In
this section, you will see how to remove duplicate values from
your Pandas dataframes.

The following script creates a dummy dataframe for this
section.



Script 22:

importpandasaspd

scores = [['Mathematics', 85, 'Science'],
['English', 91, 'Arts'],
['History', 95, 'Chemistry'],
['History', 95, 'Chemistry'],
['English', 95, 'Chemistry'],
]

my_df = pd.DataFrame(scores, columns = ['Subject', 'Score', 'Subject'])
my_df.head()



Output:

From the above output, you can see that there are some
duplicate rows (index 2,3), as well as duplicate columns
(Subject) in our dataset.

4.3.1. Removing Duplicate Rows

To remove duplicate rows, you can call the drop_duplicates()
method, which keeps the first instance and removes all the
duplicate rows.

Here is an example that removes the row at index 3, which is a
duplicate of the row at index 2, from our dummy dataframe.



Script 23:

result = my_df.drop_duplicates()
result.head()



Output:

If you want to keep the last instance and remove the
remaining duplicates, you need to pass the string “last” as the
value for the keep attribute of the drop_duplicates() method.

Here is an example:



Script 24:

result = my_df.drop_duplicates(keep='last')
result.head()



Output:

Finally, if you want to remove all the duplicate rows from your
Pandas dataframe without keeping any instance, you can pass
the Boolean value False as the value for the keep attribute, as
shown in the example below.



Script 25:

result = my_df.drop_duplicates(keep=False)
result.head()



Output:

By default, the drop_duplicates() method only removes
duplicate rows, where all the columns contain duplicate
values. If you want to remove rows based on duplicate values
in a subset of columns, you need to pass the column list to the
subset attribute.

For instance, the script below removes all rows where the
Score column contains duplicate values.



Script 26:

result = my_df.drop_duplicates(subset=['Score'])
result.head()



Output:

4.3.2. Removing Duplicate Columns

There are two main ways to remove duplicate columns in
Pandas. You can remove two columns with the duplicate
name, or you can remove two columns containing duplicate
values for all the rows.

Let’s create a dummy dataset that contains duplicate column
names and duplicate values for all rows for different columns.



Script 27:

importpandasaspd

scores = [['Mathematics', 85, 'Science', 85],
['English', 91, 'Arts', 91],
['History', 95, 'Chemistry', 95],
['History', 95, 'Chemistry', 95],
['English', 95, 'Chemistry', 95],
]

my_df = pd.DataFrame(scores, columns = ['Subject', 'Score', 'Subject',
'Percentage'])

my_df.head()



Output:

You can see that the above dataframe contains two columns
with the name Subject. Also, the Score and Percentage
columns have duplicate values for all the rows.

Let’s first remove the columns with duplicate names. Here is
how you can do that using the duplicated() method.



Script 28:

result = my_df.loc[:,~my_df.columns.duplicated()]
result.head()



Output:

To remove the columns with the same values, you can convert
columns to rows using the “T” attribute and then call drop_
duplicates() on the transposed dataframe. Finally, you can
again transpose the resultant dataframe, which will have
duplicate columns removed. Here is a sample script on how
you can do that.



Script 29:

result = my_df.T.drop_duplicates().T
result.head()



Output:



4.4. Pivot and Crosstab

You can pivot a Pandas dataframe using a specific column or
row. With pivoting, you can set values in columns as index
values, as well as column headers.

The following script imports the Flights dataset from the
seaborn library.



Script 30:

importmatplotlib.pyplotasplt
importseabornassns

flights_data = sns.load_dataset('flights')

flights_data.head()



Output:

You will be pivoting the above dataframe. To pivot a
dataframe, you can use the pivot_table() function.

For instance, the pivot_table() function in the following script
returns a dataframe where rows represent months, columns
represent years from 1949 to 1960, and each cell contains the
number of passengers traveling in a specific month of a
specific year.



Script 31:

flights_data_pivot =flights_data.pivot_table(index='month',
columns='year', values='passengers')

flights_data_pivot.head()



Output:

The crosstab() function is used to plot cross-tabulation
between two columns. Let’s import the Titanic dataset from
the Seaborn library and plot a cross tab matrix between
passenger class and age columns for the Titanic dataset.

Look at the following two scripts on how to do that:



Script 32:

importmatplotlib.pyplotasplt
importseabornassns

importpandasaspd

# sets the default style for plotting
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')



Script 33:

pd.crosstab(titanic_data["class"], titanic_data["age"], margins=True)



Output:



4.5. Discretization and Binning

Discretization or binning refers to creating categories or bins
using numeric data. For instance, based on age, you may want
to assign categories such as toddler, young, adult, and senior
to the passengers in the Titanic dataset. You can do this using
binning.

Let’s see an example. The following script imports the Titanic
dataset.



Script 34:

importmatplotlib.pyplotasplt
importseabornassns

titanic_data = sns.load_dataset('titanic')

You can use the cut method from the Pandas dataframe to
perform binning. First, the column name is passed to the “x”
attribute. Next, a list containing ranges for bin values is passed
to the “bins” attribute, while the bin or category names are
passed to the “labels” parameter.

The following script assigns a category toddler to passengers
between the ages 0–5, young to passengers aged 5–20, adult
to passengers aged 20–60, and senior to passengers aged 60–
100.



Script 35:

titanic_data['age_group']=pd.cut(x = titanic_data['age'], bins =
[0,5,20,60,100], labels = ["toddler", "young", "adult","senior"])

titanic_data['age_group'].value_counts()



Output:

adult    513
young    135
toddler   44
senior    22
Name: age_group, dtype: int64

Further Readings – Pandas Grouping and Aggregation

1. Check the official documentation here
(https://bit.ly/3qnp87I) to learn more about Merging and
Concatenating dataframes.

2. To learn more about the GroupBy statement in Pandas,
check this official documentation link
(https://bit.ly/31zNGzU).

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of Pandas techniques
that you learned in this chapter. The answers to these
questions are given at the end of the book.

https://bit.ly/3qnp87I
https://bit.ly/31zNGzU


Exercise 4.1

Question 1:

To horizontally concatenate two Pandas (pd) dataframes A
and B, you can use the following function:

A. pd.concat([A, B], ignore_index = True)

B. pd.concat([A, B], axis = 1, ignore_index = True)

C. pd.append([A, B] ignore_index = True)

D. pd.join([A, B], axis = 1, ignore_index = True)

Question 2:

To find the number of unique values in column X of Pandas
dataframe df, you can use the groupby clause as follows:

A. df.groupby(«X»).nunique

B. df.groupby(«X»).unique

C. df.groupby(«X»).ngroups

D. df.groupby(«X»).nvalues

Question 3:

To remove all the duplicate rows from a Pandas dataframe df,
you can use the following function:

A. df.drop_duplicates(keep=False)

B. df.drop_duplicates(keep=’None’)

C. df.drop_duplicates(keep=’last’)

D. df.drop_duplicates()



Exercise 4.2

From the Titanic dataset, find the minimum, maximum,
median, and mean values for ages and fare paid by
passengers of different genders. You can access the Titanic
dataset using the following Seaborn command:

import seaborn as sns

titanic_data = sns.load_dataset('titanic')



Pandas for Data Visualization



5.1. Introduction

In the previous chapters, you have seen how the Pandas
library can be used to perform different types of data
manipulation and analysis tasks. Data visualization is another
extremely important data analysis task. Luckily enough for us,
the Pandas library offers data visualization functionalities, as
well, in the form of various charts.

In this chapter, you will see how the Pandas library can be
used to plot different types of visualizations. The Pandas
library is probably the easiest library for data plotting, as you
will see in this chapter.



5.2. Loading Datasets with Pandas

Before you can plot any visualization with the Pandas library,
you need to read data into a Pandas dataframe. The best way
to do so is via the read_csv() method. The following script
shows how to read the Titanic dataset into a dataframe
named titanic_data. You can give any name to the dataframe.

Note: In the previous chapters, you have been importing the
Titanic dataset directly from the Seaborn library. However, for
practice, in this chapter, the Titanic dataset is imported via the
titanic_data.csv file, which you can find in the Data folder of
the book resources.



Script 1:

importpandasaspd
titanic_data = pd.read_csv(r"D:\Datasets\titanic_data.csv")
titanic_data.head()



Output:



5.3. Plotting Histograms with Pandas

Let’s now see how to plot different types of plots with the
Pandas dataframe. The first one we are going to plot is a
Histogram.

There are multiple ways to plot a graph in Pandas. The first
way is to select the dataframe column by specifying the name
of the column in square brackets that follows the dataframe
name and then append the plot name via dot operator.

The following script plots a histogram for the Age column of
the Titanic dataset using the hist() function. It is important to
mention that behind the scenes, the Pandas library makes use
of the Matplotlib plotting functions. Therefore, you need to
import Matplotlib's pyplot module before you can plot Pandas
visualizations.



Script 2:

importmatplotlib.pyplotasplt
importseabornassns

sns.set_style("darkgrid")
titanic_data['Age'].hist()



Output:

The other way to plot a graph via Pandas is by using the plot()
function. The type of plot you want to plot is passed to the
kind attribute of the plot() function. The following script uses
the plot() function to plot a histogram for the Age column of
the Titanic dataset.



Script 3:

importmatplotlib.pyplotasplt
importseabornassns

sns.set_style("darkgrid")
titanic_data['Age'].plot(kind='hist')



Output:

By default, a Pandas histogram divides the data into 10 bins.
You can increase or decrease the number of bins by passing
an integer value to the bins parameter. The following script
plots a histogram for the Age column of the Titanic dataset
with 20 bins.



Script 4:

importmatplotlib.pyplotasplt
importseabornassns

sns.set_style('darkgrid')
titanic_data['Age'].hist(bins = 20)



Output:

Finally, you can change the color of your histogram by
specifying the color name to the color attribute, as shown
below.



Script 5:

titanic_data['Age'].hist(bins = 20, color = 'orange')



Output:



5.4. Pandas Line Plots

To plot line plots via a Pandas dataframe, we will use the
Flights dataset. The following script imports the Flights
dataset from the built-in Seaborn library.



Script 6:

flights_data = sns.load_dataset('flights')

flights_data.head()



Output:

By default, the index serves as the x-axis. In the above script,
the left-most column, i.e., containing 0,1,2 … is the index
column. To plot a line plot, you have to specify the column
names for the x and y axes. If you specify only the column
value for the y-axis, the index is used as the x-axis. The
following script plots a line plot for the passengers column of
the Flights data.



Script 7:

flights_data.plot.line(y='passengers', figsize=(8,6))



Output:

Similarly, you can change the color of the line plot via the
color attribute, as shown below.



Script 8:

flights_data.plot.line( y='passengers', figsize=(8,6), color = 'orange')



Output:

In the previous examples, we didn’t pass the column name for
the x-axis. So let’s see what happens when we specify the year
as the column name for the x-axis.



Script 9:

flights_data.plot.line(x ='year', y='passengers', figsize=(8,6), color =
'orange')



Output:

The output shows that for each year, we have multiple values.
This is because each year has 12 months. However, the overall
trend remains the same, and the number of passengers
traveling by air increases as the years pass.



5.5. Pandas Scatter Plots

To plot scatter plots with Pandas, the scatter() function is
used. The following script plots a scatter plot containing the
year on the x-axis and the number of passengers on the y-axis.



Script 10:

flights_data.plot.scatter(x='year', y='passengers', figsize=(8,6))



Output:

Like a line plot and histogram, you can also change the color
of a scatter plot by passing the color name as the value for the
color attribute. Look at the following script.



Script 11:

flights_data.plot.scatter(x='year', y='passengers', color='red', figsize=
(8,6))



Output:



5.6. Pandas Bar Plots

To plot bar plots with Pandas, you need a list of categories
and a list of values. This list of categories and values must
have the same length. Let’s plot a bar plot that shows the
average age of male and female passengers.

First, we need to calculate the mean age of both male and
female passengers traveling in the unfortunate Titanic ship.
The groupby() method of the Pandas dataframe can be used
to apply aggregate function concerning categorical columns.
The following script returns the mean values for the ages of
male and female passengers on Titanic.



Script 12:

titanic_data = pd.read_csv(r"D:\Datasets\titanic_data.csv")
titanic_data.head()

sex_mean = titanic_data.groupby("Sex")["Age"].mean()

print(sex_mean)
print(type(sex_mean.tolist()))



Output:

Sex
female 27.915709
male   30.726645
Name:  Age, dtype: float64
<class 'list'>

Next, we need to create a new Pandas dataframe with two
columns: Gender and Age. Then, we can simply use the bar()
method to plot a bar plot that displays the average ages of
male and female passengers on Titanic.



Script 13:

df = pd.DataFrame({'Gender':['Female', 'Male'], 'Age':sex_mean.tolist()})
ax = df.plot.bar(x='Gender', y='Age', figsize=(8,6))



Output:

You can also plot horizontal bar plots via the Pandas library.
To do so, you need to call the barh() function, as shown in the
following example.



Script 14:

df = pd.DataFrame({'Gender':['Female', 'Male'], 'Age':sex_
mean.tolist()})

ax = df.plot.barh(x='Gender', y='Age', figsize=(8,6))



Output:

Finally, like all the other Pandas plots, you can change the
color of both vertical and horizontal bar plots by passing the
color name to the color attribute of the corresponding
function.



Script 15:

df = pd.DataFrame({'Gender':['Female', 'Male'], 'Age':sex_
mean.tolist()})

ax = df.plot.barh(x='Gender', y='Age', figsize=(8,6), color = 'orange')



Output:



5.7. Pandas Box Plots

To plot box plots via the Pandas library, you need to call the
box() function. The following script plots box plots for all the
numeric columns in the Titanic dataset.



Script 16:

titanic_data = pd.read_csv(r"D:\Datasets\titanic_data.csv")
titanic_data.plot.box(figsize=(10,8))



Output:



5.8. Pandas Hexagonal Plots

Hexagonal plots are used to plot the density of occurrence of
values for a specific column. The hexagonal plots will be
explained with the help of the Tips dataset. The following
script loads the Tips dataset from the Seaborn library and
then plots a hexagonal plot that shows values from the total_
bill column on the x-axis and values from the tip column on
the y-axis.



Script 17:

tips_data = sns.load_dataset('tips')

tips_data.plot.hexbin(x='total_bill', y='tip', gridsize=20, figsize=
(8,6))

The output shows that most of the time, the tip is between
two and four dollars.



Output:

As always, you can change the color of the hexagonal plot by
specifying the color name for the color attribute, as shown
below.



Script 18:

tips_data.plot.hexbin(x='total_bill', y='tip', gridsize=20,
figsize=(8,6), color = 'blue')



Output:



5.9. Pandas Kernel Density Plots

You can also plot Kernel Density Estimation plots with the
help of the Pandas kde() function. The following script plots a
KDE for the tip column of the Tips dataset.



Script 19:

tips_data.plot.kde( y='tip', figsize=(8,6), color = 'blue')



Output:

To change the color of a KDE plot, all you have to do is pass
the color name to the color attribute of the kde() function, as
shown below.



Script 20:

tips_data.plot.kde( y='total_bill', figsize=(8,6), color = 'red')



Output:



5.10. Pandas Pie Charts

You can also plot a pie chart with Pandas. To do so, you need
to pass “pie” as the value for the kind attribute of the plot()
function. The plot() function is needed to be called via an
object, which contains categories and the number of items per
category.

For instance, the script below plots a pie chart that shows the
distribution of passengers belonging to different classes.



Script 21:

importseabornassns
importpandasaspd

sns.set_style("darkgrid")
sns.set_context("poster")

titanic_data = pd.read_csv(r"D:\Datasets\titanic_data.csv")
titanic_data.head()

titanic_data.groupby('Pclass').size().plot(kind='pie',
y = "PClass",
label = "Class",

autopct='%1.1f%%',
figsize=(10,8))



Output:

Further Readings – Pandas Data Visualization

Check the official documentation here
(https://bit.ly/3EQWwI2) to learn more about data
visualization with Pandas.

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of Pandas data
visualization techniques that you learned in this chapter. The
answers to these questions are given at the end of the book.

https://bit.ly/3EQWwI2


Exercise 5.1

Question 1:

Which attribute is used to change the color of the Pandas
graph?

A. set_color()

B. define_color()

C. color()

D. None of the above

Question 2:

Which Pandas function is used to plot a horizontal bar plot?

A. horz_bar()

B. barh()

C. bar_horizontal()

D. horizontal_bar()

Question 3:

Which attribute is used to define the number of bins in a
Pandas histogram plot?

A. n_bins

B. bins

C. number_bins

D. None of the above



Exercise 5.2

Display a bar plot using the Titanic dataset that displays the
average age of the passengers who survived vs. those who did
not survive.

You can find the “titanic_data.csv” file in the Data folder of the
book resources.



Handling Time-Series Data with Pandas

Time-series data is a type of data that is dependent on time
and changes with time. For instance, the hourly temperature
for a specific place changes after every hour and is dependent
on time. Similarly, the stock prices of a particular company
change with every passing day.

In this chapter, you will see how Pandas handles time-series
data. You will start by creating the TimeStamp data type in
Pandas. Next, you will see how Pandas allows you to perform
time-sampling and time-shifting on time series data. Finally,
you will study rolling window functions on time-series data
with Pandas. Along the way, you will also study how to plot
the time-series data using Pandas.



6.1. Introduction to Time-Series in Pandas

The TimeStamp data type in Pandas is the most basic unit for
storing time-step data. Let’s see this with the help of an
example.

The following script uses the date_range() function to create a
collection that contains dates in the form of time stamps.



Script 1:

importpandasaspd
importnumpyasnp

fromdatetimeimport datetime

dates = pd.date_range(start='1/1/2021', end='6/30/2021')
print(len(dates))
print(dates)



Output:

Let’s check the data type of the first item in our date range.



Script 2:

type(dates[0])

You can see the date range collection stores data in the form
of TimeStamp data type.



Output:

pandas._libs.tslibs.timestamps.Timestamp

Let’s now create a dataframe that contains the date range
that we just created and some random values between 0–50.
The date range column is named as Date, while the column for
random values is named as Temperature.



Script 3:

date_df = pd.DataFrame(dates, columns=['Date'])
date_df['Temperature'] = np.random.

randint(0,50,size=(len(dates)))
date_df.head()



Output:

Most of the time, you will need to convert your TimeStamps
into dates and then set the converted (date type column) as
the index column. Here is how you can do that.



Script 4:

date_df['Date'] = pd.to_datetime(date_df['Date'])
date_df = date_df.set_index('Date')

date_df.head()

In the output below, you can see that your Date column is set
as the index column.



Output:

Finally, you can plot your time-series data (values concerning
some time unit) using one of the Pandas plots that you
studied in the previous chapter.

For instance, the script below plots a line chart that shows the
Temperature against date values in the Date column.



Script 5:

importseabornassns
sns.set_style("darkgrid")
date_df.plot.line( y='Temperature', figsize=(12,8))



Output:



6.2. Time Resampling and Shifting

In this section, you will see how to resample and shift the time
series data with Pandas.

You will work with Google Stock Price data from 6th January
2015 to 7th January 2020. The dataset is available in the Data
folder of the book resources by the name google_data.csv.
The following script reads the data into a Pandas dataframe.



Script 6:

importseabornassns
importpandasaspd

sns.set_style("darkgrid")

google_stock = pd.read_csv(r"D:Datasets\google_data.csv")
google_stock.head()



Output:

If you look at the dataset header, the index column by default
is the left-most column. The x-axis will use the index column
to plot a line plot.

However, we want to plot stock prices concerning the date.
To do so, we first need to set the date as the index column.
The date column currently contains dates in a string format.

We first need to convert values in the date column to date
format. We can use pd.to_datetime() function for that
purpose. Next, to set the Date column as the index column, we
can use the set_index() function, as shown below. We can
then simply use the line() function and pass the column name
to visualize the y parameter.

The following script prints the opening stock prices of Google
stock over five years.



Script 7:

google_stock['Date'] = google_stock['Date'].apply(pd.to_datetime)
google_stock.set_index('Date', inplace=True)
google_stock.plot.line( y='Open', figsize=(12,8))



Output:

Let’s now see how to perform time sampling and time-shifting
with time-series data.

6.2.1. Time Sampling with Pandas

Time sampling refers to grouping data over a certain period
using an aggregate function such as min, max, count, mean,
etc.

To do resampling, you have to use the resample() function.
The timeframe is passed to the rule attribute of the resample()
function. Finally, you have to append the aggregate function
at the end of the resample() function.

The following script shows the average values for all the
columns of Google stock data, grouped by year. In the output,
you can see five rows since our dataset contains five years of
Google stock prices. Here, we pass A as the value for the rule
attribute, which refers to yearly data.



Script 8:

google_stock.resample(rule='A').mean()



Output:

Similarly, to plot the monthly mean values for all the columns
in the Google stock dataset, you will need to pass M as a value
for the rule attribute, as shown below.



Script 9:

google_stock.resample(rule='M').mean()



Output:

In addition to aggregate values for all the columns, you can
resample data concerning a single column. For instance, the
following script prints the yearly mean values for the opening
stock prices of Google stock for five years.



Script 10:

google_stock['Open'].resample('A').mean()



Output:

Date
2015-12-31   602.676217
2016-12-31   743.732459
2017-12-31   921.121193
2018-12-31  1113.554101
2019-12-31  1187.009821
2020-12-31  1346.470011
Freq: A-DEC, Name: Open, dtype: float64

The list of possible values for the rule attribute is given below:

B – business day frequency

C – custom business day frequency (experimental)

D – calendar day frequency

W – weekly frequency

M – month-end frequency

SM – semi-month end frequency (15th and end of the month)

BM – business month-end frequency

CBM – custom business month-end frequency

MS – month start frequency

SMS – semi-month start frequency (1st and 15th)

BMS – business month start frequency

CBMS – custom business month start frequency

Q – quarter-end frequency

BQ – business quarter-end frequency

QS – quarter start frequency

BQS – business quarter start frequency



A – year-end frequency

BA – business year-end frequency

AS – year start frequency

BAS – business year start frequency

BH – business hour frequency

H – hourly frequency

T – minutely frequency

S – secondly frequency

L – milliseonds

U – microseconds

N – nanoseconds

You can also append plot functions with the resample()
function to plot the different types of plots based on
aggregate values. For instance, the following script plots a bar
plot for the opening stock price of Google over five years.



Script 11:

google_stock['Open'].resample('A').mean().plot(kind='bar', figsize=
(8,6))



Output:

Similarly, here is the line plot for the yearly mean opening
stock prices for Google stock over five years.



Script 12:

google_stock['Open'].resample('A').mean().plot(kind='line', figsize=
(8,6))



Output:

6.2.2. Time Shifting with Pandas

Time-shifting refers to shifting rows forward or backward. To
shift rows forward, you can use the shift() function and pass it
a positive value. For instance, the following script shifts three
rows ahead and prints the header of the dataset.



Script 13:

google_stock.shift(3).head()



Output:

You can see that the first three rows now contain null values,
while what previously was the first record has now been
shifted to the 4th row.

In the same way, you can shift rows backward. To do so, you
have to pass a negative value to the shift function.



Script 14:

google_stock.shift(-3).tail()



Output:



6.3. Rolling Window Functions

Rolling window functions are aggregate functions applied on a
set of a specific number of records, which is called the window
for a window function. For instance, with rolling window
functions, you can find the average of values in a specific
column for the previous two rows.

Let’s see some examples of rolling window functions in
Pandas. For this section, you will again be using the
“google_data.csv,” which you can find in the Data folder of the
book resources. The following script imports this file:



Script 15:

google_stock = pd.read_csv(r"D:\Datasets\google_data.csv")

google_stock['Date'] = google_stock['Date'].apply(pd.to_ datetime)
google_stock.set_index('Date', inplace=True)

google_stock.head()



Output:

To apply rolling window functions in Pandas, you can use the
rolling(). You need to pass the window size as a parameter
value to the function. Finally, you need to concatenate the
type of operation that you need to perform, e.g., mean(),
median(), min(), max(), etc., with the rolling() function.

As an example, the script below finds the rolling average
(mean) of the values in the Volume column of the previous
two records in our Google stock price dataframe. Then, the
rolling values are added in a new column named Roll. Volume
Avg.



Script 16:

google_stock['Roll. Volumne Avg'] =
google_stock['Volume'].rolling(2).mean()

google_stock.head()



Output:

From the above output, you can see that the Roll. Volume Avg
column contains the rolling average (mean) of the values in
the Volume column of the previous two records. For instance,
the average of values 289900 and 2065000 is 2482450.

Similarly, you can find the rolling sum of the previous two
records using the sum() function with the rolling(2) function,
as shown in the script below.



Script 17:

google_stock['Roll. Sum Avg'] = google_stock['Volume'].rolling(2).sum()
google_stock.head()



Output:

The min() function can be chained with the rolling() function
to find the rolling minimum values for a range of values, as
shown in the script below.



Script 18:

google_stock['Roll. Min Avg'] = google_stock['Volume'].
rolling(3).min()

google_stock.head()



Output:

Finally, you can find the rolling standard deviation via the
following script.



Script 19:

google_stock['Roll. std Avg'] = google_stock['Volume'].
rolling(3).std() google_stock.head()



Output:

Further Readings – Handling Time-series Data with Pandas

1. Check the official documentation (https://bit.ly/3C2d8us)
to learn more about time-series data handling with
Pandas.

2. To study more about the Pandas time shifting functions
for time-series data analysis, please check Pandas’ official
documentation for the shift() function
(https://bit.ly/3riI8mq).

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises
below to check your understanding of Pandas time-series
handling techniques that you learned in this chapter. The
answers to these questions are given at the end of the book.

https://bit.ly/3C2d8us
https://bit.ly/3riI8mq


Exercise 6.1

Question 1:

In a Pandas dataframe df, how would you add a column “B,”
which contains the rolling sum of the previous three rows in
the column “C”?

A. df[“B”] = df[“C”].roll(3).sum()

B. df[“B”] = df[“C”].rolling(3).add()

C. df[“B”] = df[“C”].rolling(3).sum()

D. df[“C”] = df[“B”].rolling(3).sum()

Question 2:

To resample time-series data by year, you have to use the
following rule in the resample() function:

A. “Year”

B. “Years”

C. “A”

D. “Annual”

Question 3

How to time-shift Pandas dataframe five rows back?

A. shift_back(5)

B. shift(5)

C. shift_behind(-5)

D. shift(-5)



Exercise 6.2

Using the Pandas dataframe, read the “titanic_data.csv” file
from the data folder. Convert the “date” column to the date
type column and then set this column as the index column.

Add a column in the dataframe which displays the maximum
value from the “Open” column for the last 5 days.



Appendix:

Working with Jupyter Notebook
All the scripts in this book are executed via Jupyter Notebook
that comes with Anaconda or via the Colab Environment,
which contains a Jupyter Notebook-like interface of its own.
Therefore, it makes sense to give a brief overview of Jupyter
Notebook.

In chapter 1, you have already seen how to run a very basic
script with the Jupyter Notebook from Anaconda. In this
section, you will see some other common functionalities of the
Jupyter Notebook.



Creating a New Notebook

There are two main ways to create a new Python Jupyter
notebook.

1. From the home page of the Jupyter notebook, click the
New button at the top right corner and then select
Python 3, as shown in the following screenshot.

2. If you have already opened a Jupyter notebook, and
you want to create a new Jupyter notebook, select
“File - > New Notebook” from the top menu. Here is a
screenshot of how to do this.





Renaming a Notebook

To rename a new Jupyter notebook, click on the Jupyter
notebook name from the top left corner of your notebook. A
dialog box will appear containing the old name of your
Jupyter notebook, as shown below (the default name for a
Jupyter notebook will be “Untitled”). Here, you can enter a
new name for your Jupyter notebook.



Running Script in a Cell

To run a script inside a cell, select the cell and then press
“CTRL + Enter” from your keyboard. Your script will execute.
However, a new cell will not be created automatically once the
current cell executes.

If you want to automatically create a new cell with the
execution of a cell, you can select a cell and execute it using
“SHIFT + ENTER” or “ALT + ENTER”. You will see that the
current cell is executed, and a new cell is automatically
created, as shown below:



You can also run a cell by selecting a cell and then by clicking
the Run option from the top menu, as shown below.



Adding a New Cell

The plus “+” symbol from the top menu allows you to add a
new cell below the currently selected cell. Here is an example.

You can also insert cells above or below any selected cells via
the Insert Cell Above and Insert Cell Below commands from
the Insert option in the top menu, as shown below:



Deleting a New Cell

To delete a cell, simply select the cell and then click the
scissor icon from the top menu of your Jupyter notebook, as
shown in the following screenshot.



Moving Cells Up and Down

To move a cell down, select a cell and then click the
downward arrow. Here is an example. Here, cell number 2 is
moved one position below.

In the output, you can see that cell 2 is now below cell 3.



In the same way, you can click on the upward arrow to move a
cell up.



Miscellaneous Kernel Options

To see miscellaneous kernel options, click the Kernel button
from the top menu. A dropdown list will appear, where you
can see options related to interrupting, restarting,
reconnecting, and shutting down the kernel used to run your
script. Clicking “Restart & Run” will restart the kernel and run
all the cells once again.



Miscellaneous Cell Options

Clicking the Cell button from the top menu reveals the
location of options related to running a particular cell in a
Jupyter notebook. Look at the following screenshot for
reference.



Writing Markdown in Jupyter Notebook

Apart from writing Python scripts, you can also write
markdown content in the Jupyter notebook. To do so, you
have to first select a cell where you want to add your
markdown content, and then you have to select the Markdown
option from the dropdown list, as shown in the following
script.

Next, you need to enter the markdown content in the
markdown cell. For instance, in the following screenshot, the
markdown content h2 level heading is added to the third cell.



When you run the 3rd cell in the above script, you will see the
compiled markdown content, as shown below:



Downloading Jupyter Notebooks

To download a Jupyter notebook, click the “File -> Download
as” option from the top menu. You can download Jupyter
notebooks in various formats, e.g., HTML, PDF, Python
Notebook (ipynb), etc.



Uploading an Existing Notebook

Similarly, you can upload an existing notebook to Anaconda
Jupyter. To do so, you need to click the Upload button from
the main Jupyter dashboard. Look at the screenshot below for
reference.



Exercise Solutions



Exercise 2.1

Question 1:

What is the major disadvantage of mean and median
imputation?

A. Distorts the data distribution

B. Distorts the data variance

C. Distorts the data covariance

D. All of the Above

Answer: D

Question 2:

How to display the last three rows of a Pandas dataframe
named “my_df”?

A. my_df.end(3)

B. my_df.bottom(3)

C. my_df.top(-3)

D. my_df.tail(3)

Answer: D

Question 3:

You can create a Pandas series using a:

A. NumPy Array

B. List

C. Dictionary

D. All of the Above

Answer: C



Exercise 2.2

Replace the missing values in the “deck” column of the Titanic
dataset with the most frequently occurring categories in that
column. Plot a bar plot for the updated “deck” column. The
Titanic dataset can be downloaded using this Seaborn
command:

import seaborn as sns

sns.load_dataset('titanic')



Solution:

importmatplotlib.pyplotasplt
importseabornassns

plt.rcParams["figure.figsize"] = [8,6]
sns.set_style("darkgrid")

titanic_data = sns.load_dataset('titanic')

titanic_data =titanic_data[["deck"]]
titanic_data.head()
titanic_data.isnull().mean()

titanic_data.deck.value_counts().sort_values(ascending=False).plot.bar()

plt.xlabel('deck')
plt.ylabel('Number of Passengers')

titanic_data.deck.mode()

titanic_data.deck.fillna('C', inplace=True)

titanic_data.deck.value_counts().sort_values(ascending=False).plot.bar()
plt.xlabel('deck')
plt.ylabel('Number of Passengers')



Exercise 3.1

Question 1:

Which function is used to sort Pandas dataframe by a column
value?

A. sort_dataframe()

B. sort_rows()

C. sort_values()

D. sort_records()

Answer: C

Question 2:

To filter columns from a Pandas dataframe, you have to pass a
list of column names to one of the following method:

A. filter()

B. filter_columns()

C. apply_filter ()

D. None of the above()

Answer: A

Question 3:

To drop the second and fourth rows from a Pandas dataframe
named my_df, you can use the following script:

A. my_df.drop([2,4])

B. my_df.drop([1,3])

C. my_df.delete([2,4])

D. my_df.delete([1,3])



Answer: B



Exercise 3.2

From the Titanic dataset, filter all the records where the fare is
greater than 20 and the passenger traveled alone. You can
access the Titanic dataset using the following Seaborn
command:

import seaborn as sns

titanic_data = sns.load_dataset('titanic')



Solution:

importseabornassns

titanic_data = sns.load_dataset('titanic')

my_df = titanic_data[(titanic_data["fare"] >50) & (titanic_data["alone"]
== True)]

my_df.head()



Exercise 4.1

Question 1:

To horizontally concatenate two Pandas (pd) dataframes A
and B, you can use the following function:

A. pd.concat([A, B], ignore_index = True)

B. pd.concat([A, B], axis = 1, ignore_index = True)

C. pd.append([A, B] ignore_index = True)

D. pd.join([A, B], axis = 1, ignore_index = True)

Answer: B

Question 2:

To find the number of unique values in column X of Pandas
dataframe df, you can use the groupby clause as follows:

A. df.groupby(«X»).nunique

B. df.groupby(«X»).unique

C. df.groupby(“X”).ngroups

D. df.groupby(“X”).nvalues

Answer: C

Question 3:

To remove all the duplicate rows from a Pandas dataframe df,
you can use the following function:

A. df.drop_duplicates(keep=False)

B. df.drop_duplicates(keep=’None’)

C. df.drop_duplicates(keep=’last’)

D. df.drop_duplicates()



Answer: A



Exercise 4.2

From the Titanic dataset, find the minimum, maximum,
median, and mean values for ages and fare paid by
passengers of different genders. You can access the Titanic
dataset using the following Seaborn command:

import seaborn as sns

titanic_data = sns.load_dataset('titanic')



Solution:

Finding max, min, count, median, and mean for “sex” column.

titanic_gbsex= titanic_data.groupby("sex")

titanic_gbsex.age.agg(['max', 'min', 'count', 'median', 'mean'])

Finding max, min, count, median, and mean for the “fare”
column.

titanic_gbsex.fare.agg(['max', 'min', 'count', 'median', 'mean'])



Exercise 5.1

Question 1:

Which attribute is used to change the color of a Pandas
graph?

A. set_color()

B. define_color()

C. color()

D. None of the above

Answer: C

Question 2:

Which Pandas function is used to plot a horizontal bar plot?

A. horz_bar()

B. barh()

C. bar_horizontal()

D. horizontal_bar()

Answer: B

Question 3:

Which attribute is used to define the number of bins in a
Pandas histogram plot?

A. n_bins

B. bins

C. number_bins

D. None of the above

Answer: B



Exercise 5.2

Display a bar plot using the Titanic dataset that displays the
average age of the passengers who survived vs. those who did
not survive.

importseabornassns
importpandasaspd

sns.set_style("darkgrid")
sns.set_context("poster")

titanic_data = pd.read_csv(r"D:Datasets\titanic_data.csv")
titanic_data.head()
surv_mean = titanic_data.groupby("Survived")["Age"].mean()

df = pd.DataFrame({'Survived':['No', 'Yes'], 'Age':surv_mean. tolist()})
ax = df.plot.bar(x='Survived', y='Age', figsize=(8,6))



Exercise 6.1

Question 1:

In a Pandas dataframe df, how would you add a column “B,”
which contains the rolling sum of the previous three rows in
the column “C”?

A. df[“B”] = df[“C”].roll(3).sum()

B. df[“B”] = df[“C”].rolling(3).add()

C. df[“B”] = df[“C”].rolling(3).sum()

D. df[“C”] = df[“B”].rolling(3).sum()

Answer: C

Question 2:

To resample time-series data by year, you have to use the
following rule in the resample() function:

A. “Year”

B. “Years”

C. “A”

D. “Annual”

Answer: C

Question 3

How to time shift Pandas dataframe five rows back?

A. shift_back(5)

B. shift(5)

C. shift_behind(-5)

D. shift(-5)



Answer: D



Exercise 6.2

Using the Pandas dataframe, read the “titanic_data.csv” file
from the data folder. Convert the “date” column to the date
type column and then set this column as the index column.

Add a column in the dataframe which displays the maximum
value from the “Open” column for the last 5 days.



Solution:

google_stock = pd.read_csv(r"D:\Datasets\google_data.csv")
google_stock['Date'] = google_stock['Date'].apply(pd.to_ datetime)
google_stock.set_index('Date', inplace=True)

google_stock['Roll. Max Avg'] = google_stock['Open'].rolling(5).max()
google_stock.head(15)
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