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Preface

With the rise of data science and high-performance computing hardware,
programming languages have evolved as well. Various libraries in different
programming languages have been developed that provide a layer of
abstraction over complex data science tasks. Python programming language
has taken the lead in this regard. More than 50 percent of all data science-
related projects are being developed using Python programming.

If you ask a data science expert what the two most common and widely used
Python libraries for data science are, the answer would almost invariably be
the NumPy library and the Pandas library. And this is what the focus of this
book is. It introduces you to the NumPy and Pandas libraries with the help of
different use cases and examples.

Thank you for your decision to purchase this book. I can assure you that you
will not regret your decision.



§ Book Approach

The book follows a very simple approach. The 1st chapter is introductory and
provides information about setting up the installation environment. The 1st
chapter also contains a brief crash course on Python, which you can skip if
you are already familiar with Python.

The rest of the book contain five chapters. Chapter 2 provides a brief
introduction to the NumPy array. You will study how to create NumPy arrays
and add, remove, and print items in NumPy arrays. Chapter 3 focuses on
NumPy arrays manipulation concepts such as sorting, reshaping, and
indexing. Chapter 4 provides miscellaneous tips and tricks for the NumPy
library. The 5th chapter explains how you can perform mathematical
operations with NumPy, while the 6th chapter explains the process of creating
an artificial neural network with NumPy from scratch.

Each chapter explains the concepts theoretically, followed by practical
examples. Each chapter also contains exercises that students can use to
evaluate their understanding of the concepts explained in the chapter. The
Python notebook for each chapter is provided in the Codes Folder that
accompanies this book. It is advised that instead of copying the code from the
book, you write the code yourself, and in case of an error, you match your
code with the corresponding Python notebook, find and then correct the error.
The datasets used in this book are either downloaded at runtime or are
available in the Resources folder.

Do not copy and paste the code from the PDF notebook or Kindle version, as
you might face an indentation issue. However, if you have to copy some
code, copy it from the Python Notebooks.



§ Who Is This Book For?

The book is aimed ideally at absolute beginners to data science in specific
and Python programming in general. If you are a beginner-level data
scientist, you can use this book as a first introduction to NumPy. If you are
already familiar with Python and data science, you can also use this book for
general reference to perform common tasks with NumPy.

Since this book is aimed at absolute beginners, the only prerequisites to
efficiently use this book are access to a computer with the internet and basic
knowledge of programming. All the codes and datasets have been provided.
However, you will need the internet to download the data preparation
libraries.



§ How to Use This Book?

In each chapter, try to understand the usage of a specific concept first and
then execute the example code. I would again stress that rather than copying
and pasting code, try to write codes yourself. Then, in case of any error, you
can match your code with the source code provided in the book as well as in
the Python Notebooks in the Resources folder.

Finally, answer the questions asked in the exercises at the end of each
chapter. The solutions to the exercises have been given at the end of the
book.

To facilitate the reading process, occasionally, the book presents three types
of box-tags in different colors: Requirements, Further Readings, and
Hands-on Time. Examples of these boxes are shown below.

Requirements

This box lists all requirements needed to be done before proceeding to the
next topic. Generally, it works as a checklist to see if everything is ready
before a tutorial.

Further Readings

Here, you will be pointed to some external reference or source that will
serve as additional content about the specific Topic being studied. In
general, it consists of packages, documentations, and cheat sheets.

Hands-on Time

Here, you will be pointed to an external file to train and test all the
knowledge acquired about a Tool that has been studied. Generally, these
files are Jupyter notebooks (.ipynb), Python (.py) files, or documents
(.pdf).



The box-tag Requirements lists the steps required by the reader after reading
one or more topics. Further Readings provides relevant references for
specific topics to get to know the additional content of the topics. Hands-on
Time points to practical tools to start working on the specified topics. Follow
the instructions given in the box-tags to better understand the topics presented
in this book.
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Warning

In Python, indentation is very important. Python indentation is a way of
telling a Python interpreter that the group of statements belongs to a
particular code block. After each loop or if-condition, be sure to pay close
attention to the intent.

Example

To avoid problems during execution, we advise you to download the codes
available on Github by requesting access from the link below. Please have
your order number ready for access:

www.aipublishing.io/book-Numpy-python

http://www.aipublishing.io/book-Numpy-python


Introduction

In this chapter, you will briefly see what NumPy and Pandas libraries
are and their advantages. You will also set up the environment that you
will need to run the NumPy and Pandas scripts in this book. The chapter
concludes with an optional crash course on the Python programming
language.



1.1. What Is NumPy?

NumPy (https://numpy.org/) is one of the most commonly used libraries for
numeric and scientific computing. The word NumPy is a portmanteau of two
words: Numerical and Python. NumPy is extremely fast and contains support
for multiple mathematical domains such as linear algebra, geometry, etc.
Therefore, it is extremely important to learn NumPy in case you plan to make
a career in data science and data preparation.

The NumPy library stores data in the form of NumPy arrays, which provide
extremely fast and memory-efficient data storage. Many advanced data
science and machine learning libraries require data to be in the form of
NumPy arrays before it can be processed.

A NumPy array has many advantages over regular Python lists. Some of
them are listed below:

• NumPy arrays are much faster for insertion, deletion, updating, and
reading of data.

• NumPy arrays contain advanced broadcasting functionalities
compared with regular Python arrays.

• NumPy arrays come with a lot of methods that support advanced
arithmetic and linear algebra options.

• NumPy provides advanced multi-dimensional array slicing
capabilities.

In Part I of this book (chapter 2 to chapter 6), you will study various
components and use cases of the NumPy library in detail.

You can install the NumPy package in your Python installation via the
following pip command.

$ pip install numpy

https://numpy.org/
https://numpy.org/


If you install the Anaconda distribution (https://bit.ly/3koKSwb) for Python,
as you will see in this chapter, the NumPy library will be installed by default.

https://bit.ly/3koKSwb
https://bit.ly/3koKSwb


1.2. Environment Setup and Installation

1.2.1. Windows Setup

The time has come to install Python on Windows using an IDE. We will use
Anaconda throughout this book, right from installing Python to writing
multithreaded codes. Now let us get going with the installation.

This section explains how you can download and install Anaconda on
Windows.

Follow these steps to download and install Anaconda.

1. Open the following URL in your browser.
https://www.anaconda.com/products/individual

2. The browser will take you to the following webpage. Depending on
your OS, select the 64-bit or 32-bit Graphical Installer file for
Windows. The file will download within 2–3 minutes based on the
speed of your internet.

3. Run the executable file after the download is complete. You will
most likely find the downloaded file in your download folder. The
installation wizard will open when you run the file, as shown in the
following figure. Click the Next button.

https://www.anaconda.com/products/individual


4. Now click I Agree on the License Agreement dialog, as shown in
the following screenshot.



5. Check the Just Me radio button from the Select Installation Type
dialog box. Then, click the Next button to continue.

6. Now, the Choose Install Location dialog will be displayed. Change
the directory if you want, but the default is preferred. The
installation folder should have at least 3 GB of free space for
Anaconda. Click the Next button.



7. Go for the second option, Register Anaconda as my default Python
3.8, in the Advanced Installation Options dialog box. Click the
Install button to start the installation, which can take some time to
complete.



8. Click Next once the installation is complete.



9. Click Skip on the Microsoft Visual Studio Code Installation dialog
box.



10. You have successfully installed Anaconda on your Windows.
Excellent job. The next step is to uncheck both checkboxes on the
dialog box. Now, click on the Finish button.



1.2.2. Mac Setup

Anaconda’s installation process is almost the same for Mac. It may differ
graphically, but you will follow the same steps you followed for Windows.
The only difference is that you have to download the executable file, which is
compatible with Mac operating system.

This section explains how you can download and install Anaconda on Mac.

Follow these steps to download and install Anaconda.

1. Open the following URL in your browser.
https://www.anaconda.com/products/individual

2. The browser will take you to the following webpage. Depending on
your OS, select the 64-bit or 32-bit Graphical Installer file for
macOS. The file will download within 2–3 minutes based on the
speed of your internet.

https://www.anaconda.com/products/individual


3. Run the executable file after the download is complete. You will
most likely find the downloaded file in your download folder. The
name of the file should be similar to "Anaconda3-5.1.0-Windows-
x86_64." The installation wizard will open when you run the file, as
shown in the following figure. Click the Continue button.

4. Now click Continue on the Welcome to Anaconda 3 Installer
window, as shown in the following screenshot.



5. The Important Information dialog will pop up. Simply click
Continue to go with the default version, that is, Anaconda 3.



6. Click Continue on the Software License Agreement dialog.



7. It is mandatory to read the license agreement and click the Agree
button before you can click the Continue button again.

8. Simply click Install on the next window that appears.



The system will prompt you to give your password. Use the same password
you use to log in to your Mac computer. Now, click on Install Software.



9. Click Continue on the next window. You also have the option to
install Microsoft VSCode at this point.



The next screen will display the message that the installation has been
completed successfully. Click on the Close button to close the installer.



There you have it. You have successfully installed Anaconda on your Mac
computer. Now, you can write Python code in Jupyter and Spyder the same
way you wrote it in Windows.

1.2.3. Linux Setup

We have used Python’s graphical installers for installation on Windows and
Mac. However, we will use the command line to install Python on Ubuntu or
Linux. Linux is also more resource-friendly, and installation of software is
particularly easy as well.

Follow these steps to install Anaconda on Linux (Ubuntu distribution).

1. Go to the following link to copy the installer bash script from the
latest available version.
https://www.anaconda.com/products/individual

https://www.anaconda.com/products/individual


2. The second step is to download the installer bash script. Log into
your Linux computer and open your terminal. Now, go to /temp
directory and download the bash you downloaded from Anaconda’s
home page using curl.

$ cd / tmp

$ curl –o https://repo.anaconda.com.archive/Anaconda3-5.2.0-Linux-x86_64.sh

3. You should also use the cryptographic hash verification through
SHA-256 checksum to verify the integrity of the installer.

$ sha256sum Anaconda3-5.2.0-Linux-x86_64.sh

You will get the following output.

09f53738b0cd3bb96f5b1bac488e5528df9906be2480fe61df40e0 e0d19e3d48 Anaconda3-5.2.0-
Linux-x86_64.sh

4. The fourth step is to run the Anaconda Script, as shown in the
following figure.

$ bash Anaconda3-5.2.0-Linux-x86_64.sh

The command line will produce the following output. You will be
asked to review the license agreement. Keep on pressing Enter until
you reach the end.

https://repo.anaconda.com.archive/Anaconda3-5.2.0-Linux-x86_64.sh


Output

Welcome to Anaconda3 5.2.0

In order to continue the installation process, please review the license agreement.
Please press Enter to continue
>>>
…
Do you approve the license terms? [yes|No]

Type Yes when you get to the bottom of the License Agreement.

5. The installer will ask you to choose the installation location after you
agree to the license agreement. Simply press Enter to choose the
default location. You can also specify a different location if you
want.

Output

Anaconda3 will now be installed on the following location: /home/tola/anaconda3

- To confirm the location, press ENTER
- To abort the installation, press CTRL-C
- Otherwise, specify a different location below

[/home/tola/anaconda3] >>>

The installation will proceed once you press Enter. Once again, you
have to be patient as the installation process takes some time to
complete.

6. You will receive the following result when the installation is
complete. If you wish to use the conda command, type Yes.

Output
…
Installation finished.
Do you wish the installer to prepend the Anaconda3 install location to a path in your /home/tola/.

bashrc? [yes|no]
[no]>>>

You will have the option to download the Visual Studio Code at this
point, as well. Type yes or no to install or decline, respectively.



7. Use the following command to activate your brand new installation
of Anaconda3.

$ source `/.bashrc

8. You can also test the installation using the conda command.

$ conda list

Congratulations. You have successfully installed Anaconda on your Linux
system.

1.2.4. Using Google Colab Cloud Environment

In addition to local Python environments such as Anaconda, you can run deep
learning applications on Google Colab as well, which is Google’s platform
for deep learning with GPU support. All the codes in this book have been run
using Google Colab. Therefore, I would suggest that you use Google Colab,
too.

To run deep learning applications via Google Colab, all you need is a
Google/Gmail account. Once you have a Google/ Gmail account, you can
simply go to:

https://colab.research.google.com/

Next, click on File -> New notebook, as shown in the following screenshot.

https://colab.research.google.com/


Next, to run your code using GPU, from the top menu, select Runtime ->
Change runtime type, as shown in the following screenshot:



You should see the following window. Here, from the dropdown list, select
GPU, and click the Save button.



To make sure you are running the latest version of TensorFlow, execute the
following script in the Google Colab notebook cell. The following script will
update your TensorFlow version.

pip install --upgrade tensorflow

To check if you are really running TensorFlow version > 2.0, execute the
following script.

import tensorflow as tf
print(tf.__version__)

With Google Cloud, you can import the datasets from your Google Drive.
Execute the following script. And click on the link that appears, as shown
below:



You will be prompted to allow Google Colab to access your Google Drive.
Click Allow button, as shown below:



You will see a link appear, as shown in the following image (the link has
been blinded here).

Copy the link and paste it in the empty field in the Google Colab cell, as
shown below:

This way, you can import datasets from your Google Drive to your Google
Colab environment.

1.2.5. Writing Your First Program

You have installed Python on your computer now and established a
distinctive environment in the form of Anaconda. It’s now time to write your
first program, i.e., the Hello World!

Start by launching the Anaconda Navigator. First, key in “Anaconda
Navigator” in your Windows search box. Next, as shown in the following
figure, click on the Anaconda Navigator application icon.



Anaconda’s dashboard will open once you click on the application. The
dashboard offers you an assortment of tools to write your code. We will use
Jupyter Notebook, the most popular of these tools, to write and explain the
code throughout this book.



Jupyter Notebook is available in the second position from the top of the
dashboard. The key feature of Jupyter Notebook is you can use it even if you
don’t have internet access, as it runs right in your default browser. Another
method to open Jupyter Notebook is to type Jupyter Notebook in the
Windows search bar. Subsequently, click on the Jupyter Notebook
application. The application will open in a new tab on your browser.

The top right corner of Jupyter Notebook’s own dashboard houses a New
button, which you have to click to open a new document. A dropdown
containing several options will appear. Click on Python 3.



A new Python notebook will appear for you to write your programs. It looks
as follows.

Jupyter Notebook consists of cells, as evident from the above image, making
its layout very simple and straightforward. You will write your code inside
these cells. Let us write our first ever Python program in Jupyter Notebook.



The above script prints a string value in the output using the print() method.
The print() method is used to print any string passed to it on the console. If
you see the following output, you have successfully run your first Python
program.



Output:

Welcome to Data Visualization with Python



1.3. Python Crash Course

In this section, you will see a very brief introduction to various Python
concepts. You can skip this section if you are already proficient with basic
Python concepts. But if you are new to Python, this section can serve as a
basic intro to Python.

Note: Python is a vast language with a myriad of features. This section
doesn’t serve as your complete guide to Python but merely helps get your feet
wet with Python. To learn more about Python, you may check its official
documentation, for which the link is given at the end of this section.

1.3.1. Python Syntax

Syntax of a language is a set of rules that the developer or the person writing
the code must follow for the successful execution of code. Just like natural
languages such as English have grammar and spelling rules, programming
languages have their own rules.

Let’s see some basic Python syntax rules.

Keywords

Every programming language has a specific set of words that perform
specific functions and cannot be used as a variable or identifier. Python has
the following set of keywords:



For instance, the keyword class is used to create a new class in Python (we
will see classes in detail in a later chapter).

Furthermore, the If keyword creates an if condition. If you try to use any of
these keywords as variables, you will see errors.



Python Statements

Statements in Python are the smallest unit of executable code. When you
assign a value to an identifier, you basically write a statement. For example,
age = 10 is a Python statement. When Python executes this statement, it
assigns a value of 10 to the age identifier.

age = 10
print(age)

The script above has two statements. The first statement assigns a value of 10
to the age identifier. The second statement prints the age identifier.

If your statements are too long, you can span them by enclosing them in
parenthesis, braces, or brackets, as shown below:

message = ("This is a message "
"it spans multiple lines")

print(message)



Output:

This is a message it spans multiple lines

Another way to write a statement on multiple lines is by adding a backslash
(\) at the end of the first line. Look at the following script:

message = "This is a message " \
"it spans multiple lines"

print(message)

The output is the same as that of the previous script.



Indentation

Indentation is one of those features that distinguish Python from other
advanced programming languages such as C++, Java, and C#. In other
programming languages, normally, braces ({) are used to define a block of
code.

Indentation is used to define a new block of code in Python. A block of code
in Python is a set of Python statements that execute together. You will see
blocks in action when you study loops and conditional statements.

To define a new block, you have to indent the Python code, one tab (or four
spaces) from the left.

age = 8
if age <10:
print("Age is less than 10")

print("You do not qualify")
else:

print("Age is greater than or equal to 10")
print("You do qualify")



Output:

Age is less than 10
You do not qualify

In the above code, we define an identifier age with a value of 8. We then use
the if statement and check if the age is less than or not. If age is less than 10,
then the first block of code executes, which prints two statements on the
console. You can see that code blocks have been indented.



Comments

Comments are used to add notes to a program. Comments do not execute, and
you don’t have to declare them in the form of statements. Comments are used
to explain the code so that if you take a look at the code after a long time, you
understand what you did.

Comments can be of two types: Single line comments and double-line
comments. To add single line comments, you simply have to add #, as shown
below:

# The following statement adds two numbers

num = 10 + 20# the result is 30

To add multiline comments, you just need to add a # at the start of every line,
as shown below:

#This is comment 1
#This is comment 2
#This is comment 3

1.3.2. Python Variables and Data Types

Data types in a programming language refer to the type of data that the
language is capable of processing. The following are the major data types
supported by Python:

a. Strings

b. Integers

c. Floating Point Numbers

d. Booleans

e. Lists

f. Tuples



g. Dictionaries

A variable is an alias for the memory address where actual data is stored. The
data or the values stored at a memory address can be accessed and updated
via the variable name. Unlike other programming languages like C++, Java,
and C#, Python is loosely typed, which means that you don’t have to define
the data type while creating a variable. Instead, the type of data is evaluated
at runtime.

The example below demonstrates how to create different data types and how
to store them in their corresponding variables. The script also prints the type
of the variables via the type() function.



Script 1:

# A string Variable
first_name = "Joseph"
print(type(first_name))

# An Integer Variable
age = 20
print(type(age))

# A floating point variable
weight = 70.35
print(type(weight))

# A Boolean variable
married = False
print(type(married))

#List
cars = ["Honda", "Toyota", "Suzuki"]
print(type(cars))

#Tuples
days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
print(type(days))

#Dictionaries
days2 = {1:"Sunday", 2:"Monday", 3:"Tuesday", 4:"Wednesday", 5:"Thursday", 6:"Friday",
7:"Saturday"}
print(type(days2))



Output:

<class 'str'>
<class 'int'>
<class 'float'>
<class 'bool'>
<class 'list'>
<class 'tuple'>
<class 'dict'>

1.3.3. Python Operators

Python programming language contains the following types of operators:

a. Arithmetic Operators

b. Logical Operators

c. Comparison Operators

d. Assignment Operators

e. Membership Operators

Let’s briefly review each of these types of operators.



Arithmetic Operators

Arithmetic operators are used to execute arithmetic operations in Python. The
following table summarizes the arithmetic operators supported by Python.
Suppose X = 20 and Y = 10.

Here is an example of arithmetic operators with output:



Script 2:

X = 20
Y = 10
print(X + Y)
print(X - Y)
print(X * Y)
print(X / Y)
print(X ** Y)



Output:

30
10
200
2.0
10240000000000



Logical Operators

Logical operators are used to perform logical AND, OR, and NOT operations
in Python. The following table summarizes the logical operators. Here, X is
True, and Y is False.

Here is an example that explains the usage of the Python logical operators.



Script 3:

X = True
Y = False
print(X and Y)
print(X or Y)
print(not(X and Y))

Output:
False
True
True



Comparison Operators

Comparison operators, as the name suggests, are used to compare two or
more than two operands. Depending upon the relation between the operands,
comparison operators return Boolean values. The following table summarizes
comparison operators in Python. Here, X is 20, and Y is 35.

The comparison operators have been demonstrated in action in the following
example:



Script 4

X = 20
Y = 35

print(X == Y)
print(X != Y)
print(X > Y)
print(X < Y)
print(X >= Y)
print(X <= Y)



Output:

False
True
False
True
False
True



Assignment Operators

Assignment operators are used to assign values to variables. The following
table summarizes the assignment operators. Here, X is 20, and Y is equal to
10.

Take a look at the script below to see Python assignment operators in action.



Script 5:

X = 20; Y = 10
R = X + Y
print(R)

X = 20;
Y = 10
X += Y
print(X)

X = 20;
Y = 10
X -= Y
print(X)

X = 20;
Y = 10
X *= Y
print(X)

X = 20;
Y = 10
X /= Y
print(X)

X = 20;
Y = 10
X %= Y
print(X)

X = 20;
Y = 10
X **= Y
print(X)



Output:

30
30
10
200
2.0
0
10240000000000



Membership Operators

Membership operators are used to find if an item is a member of a collection
of items or not. There are two types of membership operators: the in operator
and the not in operator. The following script shows an operator in action.



Script 6:

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
print('Sunday' in days)



Output:

True

And here is an example of the not in operator.



Script 7:

days = ("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday")
print('Xunday' not in days)



Output:

True

1.3.4. Conditional Statements

Conditional statements in Python are used to implement conditional logic in
Python. Conditional statements help you decide whether to execute a certain
code block or not. There are three main types of conditional statements in
Python:

a. If statement

b. If-else statement

c. If-elif statement



IF Statement

If you have to check for a single condition and you do not concern yourself
about the alternate condition, you can use the if statement. For instance, if
you want to check if 10 is greater than 5 and based on that you want to print a
statement, you can use the if statement. The condition evaluated by the if
statement returns a Boolean value. If the condition evaluated by the if
statement is true, the code block that follows the if statement executes. It is
important to mention that in Python, a new code block starts at a new line
with a tab indented from the left when compared with the outer block.

In the following example, the condition 10 > 5 is evaluated, which returns
true. Hence, the code block that follows the if statement executes, and a
message is printed on the console.



Script 8:

# The if statement

if 10 > 5:
print("Ten is greater than 10")



Output:

Ten is greater than 10



IF-Else Statement

The If-else statement comes in handy when you want to execute an alternate
piece of code in case the condition for the if statement returns false. For
instance, in the following example, the condition 5 < 10 will return false.
Hence, the code block that follows the else statement will execute.



Script 9:

# if-else statement

if 5 > 10:
print("5 is greater than 10")

else:
print("10 is greater than 5")



Output:

10 is greater than 5



IF-Elif Statement

The if-elif statement comes handy when you have to evaluate multiple
conditions. For instance, in the following example, we first check if 5 > 10,
which evaluates to false. Next, an elif statement evaluates the condition 8 < 4,
which also returns false. Hence, the code block that follows the last else
statement executes.



Script 10:

#if-elif and else

if 5 > 10:
print("5 is greater than 10")

elif 8 < 4:
print("8 is smaller than 4")

else:
print("5 is not greater than 10 and 8 is not smaller than 4")



Output:

5 is not greater than 10 and 8 is not smaller than 4

1.3.5. Iteration Statements

Iteration statements, also known as loops, are used to iteratively execute a
certain piece of code. There are two main types of iteration statements in
Python.

a. For loop

b. While Loop



For Loop

The for loop is used to iteratively execute a piece of code a certain number of
times. You should use for loop when you exactly know the number of
iterations or repetitions for which you want to run your code. A for loop
iterates over a collection of items. In the following example, we create a
collection of five integers using the range() method. Next, a for loop iterates
five times and prints each integer in the collection.



Script 11:

items = range(5)
for item in items:

print(item)



Output:

0
1
2
3
4



While Loop

The while loop keeps executing a certain piece of code unless the evaluation
condition becomes false. For instance, the while loop in the following script
keeps executing unless variable c becomes greater than 10.



Script 12:

c = 0
while c < 10:

print(c)
c = c +1



Output:

0
1
2
3
4
5
6
7
8
9

1.3.6. Functions

Functions, in any programming language, are used to implement a piece of
code that is required to be executed multiple times at different locations in the
code. In such cases, instead of writing long pieces of code, again and again,
you can simply define a function that contains the piece of code, and then you
can call the function wherever you want in the code.

To create a function in Python, the def keyword is used, followed by the
name of the function and opening and closing parenthesis.

Once a function is defined, you have to call it to execute the code inside a
function body. To call a function, you simply have to specify the name of the
function followed by opening and closing parenthesis. In the following script,
we create a function named myfunc which prints a simple statement on the
console using the print() method.



Script 13:

def myfunc():
print("This is a simple function")

### function call
myfunc()



Output:

This is a simple function

You can also pass values to a function. The values are passed inside the
parenthesis of the function call. However, you must specify the parameter
name in the function definition, too. In the following script, we define a
function named myfuncparam(). The function accepts one parameter, i.e.,
num. The value passed in the parenthesis of the function call will be stored in
this num variable and will be printed by the print() method inside the
myfuncparam() method.



Script 14:

def myfuncparam(num):
print("This is a function with parameter value: "+num)

### function call
myfuncparam("Parameter 1")



Output:

This is a function with parameter value: Parameter 1

Finally, a function can also return values to the function call. To do so, you
simply have to use the return keyword followed by the value that you want to
return. In the following script, the myreturnfunc() function returns a string
value to the calling function.



Script 15:

def myreturnfunc():
return "This function returns a value"

val = myreturnfunc()
print(val)



Output:

This function returns a value

1.3.7. Objects and Classes

Python supports object-oriented programming (OOP). In OOP, any entity that
can perform some function and have some attributes is implemented in the
form of an object.

For instance, a car can be implemented as an object since a car has some
attributes such as price, color, model and can perform some functions such as
drive car, change gear, stop car, etc.

Similarly, a fruit can also be implemented as an object since a fruit has a
price, name and you can eat a fruit, grow a fruit, and perform functions with a
fruit.

To create an object, you first have to define a class. For instance, in the
following example, a class Fruit has been defined. The class has two
attributes name and price and one method, eat_fruit(). Next, we create an
object f of class Fruit and then call the eat_fruit() method from the f object.
We also access the name and price attributes of the f object and print them
on the console.



Script 16:

class Fruit:

name = "apple"
price = 10

def eat_fruit(self):
print("Fruit has been eaten")

f = Fruit()
f.eat_fruit()
print(f.name)
print(f.price)



Output:

Fruit has been eaten
apple
10

A class in Python can have a special method called a constructor. The name
of the constructor method in Python is __init__(). The constructor is called
whenever an object of a class is created. Look at the following example to see
the constructor in action.



Script 17:

class Fruit:

name = "apple"
price = 10

def __init__(self, fruit_name, fruit_price):
Fruit.name = fruit_name
Fruit.price = fruit_price

def eat_fruit(self):
print("Fruit has been eaten")

f = Fruit("Orange", 15)
f.eat_fruit()
print(f.name)
print(f.price)



Output:

Fruit has been eaten
Orange
15

Further Readings - Python [1]

To study more about Python, please check Python 3 Official
Documentation (https://bit.ly/3rfaLke). Get used to searching and reading
this documentation. It is a great resource of knowledge.

Hands-on Time – Exercise

Now, it is your turn. Follow the instructions in the exercises below to
check your understanding of the basic Python concepts. The answers to
these questions are given at the end of the book.

https://bit.ly/3rfaLke
https://bit.ly/3rfaLke


Exercise 1.1

Question 1:

Which iteration should be used when you want to repeatedly execute a code
specific number of times?

A. For Loop

B. While Loop

C. Both A & B

D. None of the above

Question 2:

What is the maximum number of values that a function can return in Python?

A. Single Value

B. Double Value

C. More than two values

D. None

Question 3:

Which of the following membership operators are supported by Python?

A. In

B. Out

C. Not In

D. Both A and C



Exercise 1.2

Print the table of integer 9 using a while loop.



NumPy Basics



2.1. Introduction to NumPy Arrays

The main data structure in the NumPy library is the NumPy array, which is
an extremely fast and memory-efficient data structure. The NumPy array is
much faster than the common Python list and provides vectorized matrix
operations.

In this chapter, you will see the different data types that you can store in a
NumPy array, the different ways to create the NumPy arrays, how you can
access items in a NumPy array, and how to add or remove items from a
NumPy array.



2.2. NumPy Data Types

The NumPy library supports all the default Python data types in addition to
some of its intrinsic data types. This means that the default Python data types,
e.g., strings, integers, floats, Booleans, and complex data types, can be stored
in NumPy arrays.

You can check the data type in a NumPy array using the dtypeprperty. You
will see the different ways of creating NumPy arrays in detail in the next
section.

Here, we will show you the array() function and then print the type of the
NumPy array using the dtype property. Here is an example:



Script 1:

importnumpyasnp

my_array = np.array([10,12,14,16,20,25])

print(my_array)
print(my_array.dtype)
print(my_array.dtype.itemsize)

The script above defines a NumPy array with six integers. Next, the array
type is displayed via the dtype attribute. Finally, the size of each item in the
array (in bytes) is displayed via the itemsize attribute.

The output below prints the array and the type of the items in the array, i.e.,
int32 (integer type), followed by the size of each item in the array, which is 4
bytes (32 bits).



Output:

[10 12 14 16 20 25]
int32
4

The Python NumPy library supports the following data types including the
default Python types.

• i – integer

• b – boolean

• u – unsigned integer

• f – float

• c – complex float

• m – timedelta

• M – datetime

• o – object

• S – string

• U – Unicode string

• V – fixed chunk of memory for other type ( void )

Let’s see another example of how Python stores text. The following script
creates a NumPy array with three text items and displays the data type and
size of each item.



Script 2:

importnumpyasnp

my_array = np.array(["Red", "Green", "Orange"])

print(my_array)
print(my_array.dtype)
print(my_array.dtype.itemsize)

The output below shows that NumPy stores text in the form of Unicode string
data type denoted by U. Here, the digit 6 represents the item with the most
number of characters.



Output:

['Red' 'Green' 'Orange']
<U6
24

Though the NumPy array is intelligent enough to guess the data type of items
stored in it, this is not always the case. For instance, in the following script,
you store some dates in a NumPy array. Since the dates are stored in the form
of texts (enclosed in double quotations), by default, the NumPy array treats
the dates as text. Hence, if you print the data type of the items stored, you
will see that it will be a Unicode string (U10).



Script 3:

importnumpyasnp

my_array = np.array(["1990-10-04", "1989-05-06", "1990-11-04"])

print(my_array)
print(my_array.dtype)
print(my_array.dtype.itemsize)



Output:

['1990-10-04' '1989-05-06' '1990-11-04']
<U10
40

You can convert data types in the NumPy array to other data types via the
astype() method. But first, you need to specify the target data type in the
astype() method.

For instance, the following script converts the array you created in the
previous script to the datetime data type. You can see that “M” is passed as a
parameter value to the astype() function. “M” stands for the datetime data
type as aforementioned.



Script 4:

my_array3 = my_array.astype("M")

print(my_array3.dtype)
print(my_array3.dtype.itemsize)



Output:

datetime64[D]
8

In addition to converting arrays from one type to another, you can also
specify the data type for a NumPy array at the time of definition via the dtype
parameter.

For instance, in the following script, you specify “M” as the value for the
dtype parameter, which tells the Python interpreter that the items must be
stored as datatime values.



Script 5:

importnumpyasnp

my_array = np.array(["1990-10-04", "1989-05-06", "1990-11-04"], dtype = "M")

print(my_array)
print(my_array.dtype)
print(my_array.dtype.itemsize)



Output:

['1990-10-04' '1989-05-06' '1990-11-04']
datetime64[D]
8



2.3. Creating NumPy Arrays

Depending on the type of data you need inside your NumPy array, different
methods can be used to create a NumPy array.

2.3.1. Using Array Method

To create a NumPy array, you can pass a list to the array() method of the
NumPy module, as shown below:



Script 6:

importnumpyasnp
nums_list = [10,12,14,16,20]
nums_array = np.array(nums_list)
type(nums_array)



Output:

numpy.ndarray

You can also create a multi-dimensional NumPy array. To do so, you need to
create a list of lists where each internal list corresponds to the row in a two-
dimensional array. Here is an example of how to create a two-dimensional
array using the array() method.



Script 7:

row1 = [10,12,13]
row2 = [45,32,16]
row3 = [45,32,16]

nums_2d = np.array([row1, row2, row3])
nums_2d.shape



Output:

(3, 3)

2.3.2. Using Arrange Method

With the arrange () method, you can create a NumPy array that contains a
range of integers. The first parameter to the arrange method is the lower
bound, and the second parameter is the upper bound. The lower bound is
included in the array. However, the upper bound is not included. The
following script creates a NumPy array with integers 5 to 10.



Script 8:

nums_arr = np.arange(5,11)
print(nums_arr)



Output:

[5 6 7 8 9 10]

You can also specify the step as a third parameter in the arrange() function.
A step defines the distance between two consecutive points in the array. The
following script creates a NumPy array from 5 to 11 with a step size of 2.



Script 9:

nums_arr = np.arange(5,12,2)
print(nums_arr)



Output:

[5 7 9 11]

2.3.3. Using Ones Method

The ones() method can be used to create a NumPy array of all ones. Here is
an example.



Script 10:

ones_array = np.ones(6)
print(ones_array)



Output:

[1. 1. 1. 1. 1. 1.]

You can create a two-dimensional array of all ones by passing the number of
rows and columns as the first and second parameters of the ones() method, as
shown below:



Script 11:

ones_array = np.ones((6,4))
print(ones_array)



Output:

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

2.3.4. Using Zeros Method

The zeros() method can be used to create a NumPy array of all zeros. Here is
an example.



Script 12:

zeros_array = np.zeros(6)
print(zeros_array)



Output:

[0. 0. 0. 0. 0. 0.]

You can create a two-dimensional array of all zeros by passing the number of
rows and columns as the first and second parameters of the zeros() method,
as shown below:



Script 13:

zeros_array = np.zeros((6,4))
print(zeros_array)



Output:

[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

2.3.5. Using Eyes Method

The eye() method is used to create an identity matrix in the form of a two-
dimensional NumPy array. An identity matrix contains 1s along the diagonal,
while the rest of the elements are 0 in the array.



Script 14:

eyes_array = np.eye(5)
print(eyes_array)



Output:

[[1. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 1. 0. 0.]
[0. 0. 0. 1. 0.]
[0. 0. 0. 0. 1.]]

2.3.6. Using Random Method

The random.rand() function from the NumPy module can be used to create
a NumPy array with uniform distribution.



Script 15:

uniform_random = np.random.rand(4, 5)
print(uniform_random)



Output:

[[0.36728531 0.25376281 0.05039624 0.96432236 0.08579293]
[0.29194804 0.93016399 0.88781312 0.50209692 0.63069239]
[0.99952044 0.44384871 0.46041845 0.10246553 0.53461098]
[0.75817916 0.36505441 0.01683344 0.9887365 0.21490949]]

The random.randn() function from the NumPy module can be used to create
a NumPy array with normal distribution, as shown in the following example.



Script 16:

normal_random = np.random.randn(4, 5)
print(uniform_random)



Output:

[[0.36728531 0.25376281 0.05039624 0.96432236 0.08579293]
[0.29194804 0.93016399 0.88781312 0.50209692 0.63069239]
[0.99952044 0.44384871 0.46041845 0.10246553 0.53461098]
[0.75817916 0.36505441 0.01683344 0.9887365 0.21490949]]

Finally, the random.randint() function from the NumPy module can be used
to create a NumPy array with random integers between a certain range. The
first parameter to the randint() function specifies the lower bound, the
second parameter specifies the upper bound, and the last parameter specifies
the number of random integers to generate between the range. The following
example generates five random integers between 5 and 50.



Script 17:

integer_random = np.random.randint(10, 50, 5)
print(integer_random)



Output:

[25 49 21 35 17]



2.4. Printing NumPy Arrays

Depending on the dimensions, there are various ways to display the NumPy
arrays.

The simplest way to print a NumPy array is to pass the array to the print
method, as you have already seen in the previous section. An example is
given below:



Script 18:

importnumpyasnp

my_array = np.array([10,12,14,16,20,25])
print(my_array)



Output:

[10 12 14 16 20 25]

You can also use loops to display items in a NumPy array. It is a good idea to
know the dimensions of a NumPy array before printing the array on the
console. To see the dimensions of a NumPy array, you can use the ndim
attribute, which prints the number of dimensions for a NumPy array. To see
the shape of your NumPy array, you can use the shape attribute.



Script 19:

print(my_array.ndim)
print(my_array.shape)

The script shows that our array is one-dimensional. The shape is (6,), which
means our array is a vector with 6 items.



Output:

1
(6,)

To print items in a one-dimensional NumPy array, you can use a single
foreach loop, as shown below:



Script 20:

foriinmy_array:
print(i)



Output:

10
12
14
16
20
25

Now, let’s see another example of how you can use the foreach loop to print
items in a two-dimensional NumPy array.

The following script creates a two-dimensional NumPy array with four rows
and five columns. The array contains random integers between 1 and 10. The
array is then printed on the console.



Script 21:

integer_random = np.random.randint(1,11, size=(4, 5))
print(integer_random)

In the output below, you can see your newly created array.



Output:

[[ 7 7 10 9 8]
[ 6 10 2 5 9]
[ 2 9 2 10 2]
[ 9 6 3 2 1]]

Let’s now try to see the number of dimensions and shape of our NumPy
array.



Script 22:

print(integer_random.ndim)
print(integer_random.shape)

The output below shows that our array has two dimensions and the shape of
the array is (4,5), which refers to four rows and five columns.



Output:

2
(4, 5)

To traverse through items in a two-dimensional NumPy array, you need two
foreach loops: one for each row and the other for each column in the row.

Let’s first use one for loop to print items in our two-dimensional NumPy
array.



Script 23:

foriinmy_array:
print(i)

The output shows all the rows from our two-dimensional NumPy array.



Output:

[7 7 10 9 8]
[6 10 2 5 9]
[2 9 2 10 2]
[9 6 3 2 1]

To traverse through all the items in the two-dimensional array, you can use
the nested foreach loop, as follows:



Script 24:

for rows ininteger_random:
for column in rows:
print(column)



Output:

7
7
10
9
8
6
10
2
5
9
2
9
2
10
2
9
6
3
2
1

In the next section, you will see how to add, remove, and sort elements in a
NumPy array.



2.5. Adding Items in a NumPy Array

To add the items into a NumPy array, you can use the append() method from
the NumPy module. First, you need to pass the original array and the item
that you want to append to the array to the append() method. The append()
method returns a new array that contains newly added items appended to the
end of the original array.

The following script adds a text item “Yellow” to an existing array with three
items.



Script 25:

importnumpyasnp

my_array = np.array(["Red", "Green", "Orange"])
print(my_array)

extended = np.append(my_array, "Yellow")
print(extended)



Output:

['Red' 'Green' 'Orange']
['Red' 'Green' 'Orange' 'Yellow']

In addition to adding one item at a time, you can also append an array of
items to an existing array. The method remains similar to appending a single
item. You just have to pass the existing array and the new array to the
append() method, which returns a concatenated array where items from the
new array are appended at the end of the original array.



Script 26:

importnumpyasnp

my_array = np.array(["Red", "Green", "Orange"])
print(my_array)

extended = np.append(my_array, ["Yellow", "Pink"])
print(extended)



Output:

['Red' 'Green' 'Orange']
['Red' 'Green' 'Orange' 'Yellow' 'Pink']

To add items in a two-dimensional NumPy array, you have to specify
whether you want to add the new item as a row or as a column. To do so, you
can take the help of the axis attribute of the append method.

Let’s first create a 3 x 3 array of all zeros.



Script 27:

zeros_array = np.zeros((3,3))
print(zeros_array)

The output shows all the rows from our two-dimensional NumPy array.



Output:

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

To add a new row in the above 3 x 3 array, you need to pass the original array
to the new array in the form of a row vector and the axis attribute to the
append() method. To add a new array in the form of a row, you need to set 0
as the value for the axis attribute.

Here is an example script.



Script 28:

zeros_array = np.zeros((3,3))
print(zeros_array)
print("Extended Array")
extended = np.append(zeros_array, [[1, 2, 3]], axis = 0)
print(extended)

In the output below, you can see that a new row has been appended to our
original 3 x 3 array of all zeros.



Output:

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

Extended Array
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]
[1. 2. 3.]]

To append a new array as a column in the existing 2-D array, you need to set
the value of the axis attribute to 1.



Script 29:

zeros_array = np.zeros((3,3))
print(zeros_array)
print("Extended Array")
extended = np.append(zeros_array, [[1],[2],[3]], axis = 1)
print(extended)



Output:

[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]

Extended Array
[[0. 0. 0. 1.]
[0. 0. 0. 2.]
[0. 0. 0. 3.]]



2.6. Removing Items from a NumPy Array

To delete an item from an array, you may use the delete() method. You need
to pass the existing array and the index of the item to be deleted to the
delete() method. The following script deletes an item at index 1 (second item)
from the my_array array.



Script 30:

importnumpyasnp

my_array = np.array(["Red", "Green", "Orange"])
print(my_array)

print("After deletion")
updated_array = np.delete(my_array, 1)
print(updated_array)

The output shows that the item at index 1, i.e., “Green,” is deleted.



Output:

['Red' 'Green' 'Orange']
After deletion
['Red' 'Orange']

If you want to delete multiple items from an array, you can pass the item
indexes in the form of a list to the delete() method. For example, the
following script deletes the items at index 1 and 2 from the NumPy array
named my_array.



Script 31:

importnumpyasnp

my_array = np.array(["Red", "Green", "Orange"])
print(my_array)

print("After deletion")
updated_array = np.delete(my_array, [1,2])
print(updated_array)



Output:

['Red' 'Green' 'Orange']
After deletion
['Red']

You can delete a row or column from a 2-D array using the delete method.
However, just as you did with the append() method for adding items, you
need to specify whether you want to delete a row or column using the axis
attribute.

The following script creates an integer array with four rows and five
columns. Next, the delete() method is used to delete the row at index 1
(second row). Notice here that to delete the array, the value of the axis
attribute is set to 0.



Script 32:

integer_random = np.random.randint(1,11, size=(4, 5))
print(integer_random)

print("After deletion")
updated_array = np.delete(integer_random, 1, axis = 0)
print(updated_array)

The output shows that the second row is deleted from the input 2-D array.



Output:

[[ 2 3 3 3 4]
[ 1 7 6 7 10]
[ 7 1 6 6 8]
[ 3 7 8 10 7]]
Afterdeletion
[[ 2 3 3 3 4]
[ 7 1 6 6 8]
[ 3 7 8 10 7]]

Finally, to delete a column, you can set the value of the axis attribute to 1, as
shown below:



Script 33:

integer_random = np.random.randint(1,11, size=(4, 5))
print(integer_random)

print("After deletion")
updated_array = np.delete(integer_random, 1, axis = 1)
print(updated_array)

The output shows all the rows from our two-dimensional NumPy array.



Output:

[[ 9 10 10 5 5]
[ 5 1 2 4 2]
[ 5 1 3 7 8]
[ 5 1 8 2 5]]
Afterdeletion
[[ 9 10 5 5]
[ 5 2 4 2]
[ 5 3 7 8]
[ 5 8 2 5]]

Further Readings - Basics of NumPy

Check the official documentation here (https://bit.ly/3oJRxE3) to learn
more about NumPy.

Hands-on Time – Exercise

Now, it is your turn. Follow the instructions in the exercises below to
check your understanding of basic NumPy operations. The answers to these
questions are given at the end of the book.

https://bit.ly/3oJRxE3
https://bit.ly/3oJRxE3


Exercise 2.1

Question 1:

To generate an identity matrix of four rows and four columns, which of the
following functions can be used?

A. np.identity(4,4)

B. np.id(4,4)

C. np.eye(4,4)

D. All of the above

Question 2:

To delete a column from a two-dimensional NumPy array, the value of the
axis attribute of the delete method should be set to:

A. 0

B. 1

C. column_number

D. All of the above

Question 3:

How to create the array of numbers 4,7,10,13,16 with NumPy?

A. np.arange(3, 16, 3)

B. np.arange(4, 16, 3)

C. np.arange(4, 15,3)

D. None of the above



Exercise 2.2

Create a random NumPy array of five rows and four columns.



NumPy Array Manipulation

In this chapter, you will learn about some of the most common array
manipulation functions in NumPy. So, let’s begin without much ado.



3.1. Sorting NumPy Arrays

You can sort NumPy arrays of various types. Numeric arrays are sorted by
default in ascending order of numbers. On the other hand, text arrays are
sorted alphabetically.

3.1.1. Sorting Numeric Arrays

To sort an array in NumPy, you may call the np.sort() function and pass it to
your NumPy array. The following script shows how to sort a NumPy array of
10 random integers between 1 and 20.



Script 1:

importnumpyasnp

print("unsorted array")
my_array = np.random.randint(1,20,10)
print(my_array)

print("\nsorted array")
sorted_array = np.sort(my_array)
print(sorted_array)



Output:

unsortedarray
[17 9 5 2 12 16 8 12 12 7]

sortedarray
[ 2 5 7 8 9 12 12 12 16 17]

3.1.2. Sorting Text Arrays

As mentioned earlier, text arrays are sorted in alphabetical order. Here is an
example of how you can sort a text array with the NumPy sort() method.



Script 2:

importnumpyasnp

print("unsorted array")
my_array = np.array(["Red", "Green", "Blue", "Yello"])
print(my_array)

print("\nsorted array")
sorted_array = np.sort(my_array)
print(sorted_array)



Output:

unsorted array
['Red' 'Green' 'Blue' 'Yello']

sorted array
['Blue' 'Green' 'Red' 'Yello']

3.1.3. Sorting Boolean Arrays

Finally, Boolean arrays are sorted in a way that all the False values appear
first in an array. Here is an example of how you can sort the Boolean arrays
in NumPy.



Script 3:

importnumpyasnp

print("unsorted array")
my_array = np.array([False, True, True, False, False, True, False, True])
print(my_array)

print("\nSorted array")
sorted_array = np.sort(my_array)
print(sorted_array)



Output:

unsorted array
[False TrueTrue False False True False True]

Sorted array
[False FalseFalseFalse TrueTrueTrue True]

3.1.4. Sorting 2-D Arrays

NumPy also allows you to sort two-dimensional arrays. In two-dimensional
arrays, each item itself is an array. The sort() function sorts an item in each
individual array in a two-dimensional array.

The script below creates a two-dimensional array of shape (4,6) containing
random integers between 1 to 20. The array is then sorted via the np.sort()
method.



Script 4:

importnumpyasnp

print("unsorted array")
my_array = np.random.randint(1,20, size = (4,6))
print(my_array)

print("\Sorted array")
sorted_array = np.sort(my_array)
print(sorted_array)



Output:

unsortedarray
[[12 2 8 5 1 14]
[ 6 17 7 13 6 4]
[ 5 6 6 2 6 19]
[ 2 12 14 12 4 9]]

Sortedarray
[[ 1 2 5 8 12 14]
[ 4 6 6 7 13 17]
[ 2 5 6 6 6 19]
[ 2 4 9 12 12 14]]

3.1.5. Sorting in Descending Order

You can also sort an array in descending order. To do so, you can first sort an
array in ascending order via the sort() method. Next, you can pass the sorted
array to the flipud() method, which reverses the sorted array and returns the
array sorted in descending order. Here is an example of how you can sort an
array in descending order.



Script 5:

importnumpyasnp

print("unsorted array")
my_array = np.random.randint(1,20,10)
print(my_array)

print("\nsorted array")
sorted_array = np.sort(my_array)
reverse_sorted = np.flipud(sorted_array)
print(reverse_sorted)



Output:

unsortedarray
[15 18 16 3 2 1 4 16 2 3]

sortedarray
[18 16 16 15 4 3 3 2 2 1]



3.2. Reshaping NumPy Arrays

You can also modify the shape of a NumPy array. To do so, you can use the
reshape() method and pass it the new shape for your NumPy array.

In this section, you will see how to reshape a NumPy array from lower to
higher dimensions and vice versa.

3.2.1. Reshaping from Lower to Higher Dimensions

The following script defines a one-dimensional array of 10 random integers
between 1 and 20. The reshape() function reshapes the array into the shape
(2,5).



Script 6:

importnumpyasnp

print("one-dimensional array")
one_d_array = np.random.randint(1,20,10)
print(one_d_array)

print("\ntwo-dimensional array")
two_d_array = one_d_array.reshape(2,5)
print(two_d_array)



Output:

one-dimensional array
[ 4 14 12 17 18 17 2 19 18 11]

two-dimensional array
[[4 14 12 17 18]
[17 2 19 18 11]]

It is important to mention that the product of the rows and columns of the
original array must match the value of the product of rows and columns of
the reshaped array. For instance, the shape of the original array in the last
script was (10,) with product 10. The product of the rows and columns in the
reshaped array was also 10 (2 x 5)

You can also call the reshape() function directly from the NumPy module and
pass it the array to be reshaped as the first argument and the shape tuple as
the second argument. Here is an example which converts an array of shape
(10,) to (2,5).



Script 7:

importnumpyasnp

print("one-dimensional array")
one_d_array = np.random.randint(1,20,10)
print(one_d_array)

print("\ntwo-dimensional array")
two_d_array = np.reshape(one_d_array,(2,5))
print(two_d_array)



Output:

one-dimensional array
[ 9 17 19 16 8 15 6 6 13 17]

two-dimensional array
[[ 9 17 19 16 8]
[15 6 6 13 17]]

Let’s see another example of reshaping a NumPy array from lower to higher
dimensions.

The following script defines a NumPy array of shape (4,6). The original array
is then reshaped to a three-dimensional array of shape (3, 4, 2). Notice here
again that the product of dimensions of the original array (4 x 6) and the
reshaped array (3 x 4 x 2) is the same, i.e., 24.



Script 8:

importnumpyasnp

print("two-dimensional array")
two_d_array = np.random.randint(1,20, size = (4,6))
print(one_d_array)

print("\nthree-dimensional array")
three_d_array = np.reshape(two_d_array,(3,4,2))
print(two_d_array)



Output:

two-dimensional array
[ 9 17 19 16 8 15 6 6 13 17]

three-dimensional array
[[17 17 3 11 9 5]
[ 6 18 7 5 14 7]
[14 5 4 9 11 1]
[16 8 9 7 16 16]]

Let’s try to reshape a NumPy array in a way that the product of dimensions
does not match.

In the script below, the shape of the original array is (4,6). Next, you try to
reshape this array to the shape (1,4,2). In this case, since the product of
dimensions of the original and the reshaped array don’t match, you will see
an error in the output.



Script 9:

importnumpyasnp

print("two-dimensional array")
two_d_array = np.random.randint(1,20, size = (4,6))
print(one_d_array)

print("\nthree-dimensional array")
three_d_array = np.reshape(two_d_array,(1,4,2))
print(two_d_array)



Output:

ValueError: cannot reshape array of size 24 into shape (1,4,2)

3.2.2. Reshaping from Higher to Lower Dimensions

Let’s now see a few examples of reshaping NumPy arrays from higher to
lower dimensions.

In the script below, the original array is of shape (4,6) while the new array is
of shape (24). The reshaping, in this case, will be successful since the product
of dimensions for original and reshaped arrays is the same.



Script 10:

importnumpyasnp

print("two-dimensional array")
two_d_array = np.random.randint(1,20, size = (4,6))
print(two_d_array)

print("\none-dimensional array")
one_d_array = two_d_array.reshape(24)
print(one_d_array)



Output:

two-dimensional array
[[ 6 6 15 3 11 14]
[14 4 8 17 10 6]
[ 5 14 3 5 15 14]
[12 3 15 15 5 16]]

one-dimensional array
[ 6 6 15 3 11 14 14 4 8 17 10 6 5 14 3 5 15 14 12 3 15 15 5 16]

Finally, to convert an array of any dimensions to a flat, one-dimensional
array, you will need to pass —1 as the argument for the reshaped function, as
shown in the script below, which converts a two-dimensional array to a one-
dimensional array.



Script 11:

importnumpyasnp

print("two-dimensional array")
two_d_array = np.random.randint(1,20, size = (4,6))
print(two_d_array)

print("\none-dimensional array")
one_d_array = two_d_array.reshape(-1)
print(one_d_array)



Output:

two-dimensional array
[[5 10 10 11 18 12]
[12 3 4 7 5 2]
[ 5 11 3 6 19 9]
[16 2 7 6 4 4]]

one-dimensional array
[ 5 10 10 11 18 12 12 3 4 7 5 2 5 11 3 6 19 9 16 2 7 6 4 4]

Similarly, the following script converts a three-dimensional array to a one-
dimensional array.



Script 12:

importnumpyasnp

print("two-dimensional array")
three_d_array = np.random.randint(1,20, size = (4,2,6))
print(three_d_array)

print("\non-dimensional array")
one_d_array = three_d_array .reshape(-1)
print(one_d_array)



Output:

two-dimensionalarray
[[[14 2 2 18 19 4]
[16 3 14 6 5 15]]

[[3 16 10 14 14 8]
[12 15 1 5 16 11]]

[[9 5 1 12 13 8]

[5 11 18 10 19 5]]

[[13 18 6 19 3]
[19 1 6 15 12 3]]]

one-dimensionalarray
[14 2 2 18 19 4 16 3 14 6 5 15 3 16 10 14 14 8 12 15 1 5 16 11 9 5 1 12 13 8 5 11 18 10 19 5 13 1 8

6 19 3 19 1 6 15 12 3]



3.3. Indexing and Slicing NumPy Arrays

NumPy arrays can be indexed and sliced. Slicing an array means dividing an
array into multiple parts.

NumPy arrays are indexed just like normal lists. Indexes in NumPy arrays
start from 0, which means that the first item of a NumPy array is stored at the
0th index.

The following script creates a simple NumPy array of the first 10 positive
integers.



Script 13:

importnumpyasnp
s = np.arange(1,11)
print(s)



Output:

[ 1 2 3 4 5 6 7 8 9 10]

The item at index one can be accessed as follows:



Script 14:

print(s[1])



Output:

2

To slice an array, you have to pass the lower index, followed by a colon and
the upper index. The items from the lower index (inclusive) to the upper
index (exclusive) will be filtered. The following script slices the array “s”
from the 1st index to the 9th index. The elements from index 1 to 8 are
printed in the output.



Script 15:

print(s[1:9])



Output:

[2 3 4 5 6 7 8 9]

If you specify only the upper bound, all the items from the first index to the
upper bound are returned. Similarly, if you specify only the lower bound, all
the items from the lower bound to the last item of the array are returned.



Script 16:

print(s[:5])
print(s[5:])



Output:

[1 2 3 4 5]
[6 7 8 9 10]

Array slicing can also be applied on a two-dimensional array. To do so, you
have to apply slicing on arrays and columns separately. A comma separates
the rows and columns slicing.

In the following script, the rows from the first and second indexes are
returned, while all the columns are returned. You can see the first two
complete rows in the output.



Script 17:

row1 = [10,12,13]
row2 = [45,32,16]
row3 = [45,32,16]

nums_2d = np.array([row1, row2, row3])
print(nums_2d[:2,:])



Output:

[[10 12 13]
[45 32 16]]

Similarly, the following script returns all the rows but only the first two
columns.



Script 18:

row1 = [10,12,13]
row2 = [45,32,16]
row3 = [45,32,16]

nums_2d = np.array([row1, row2, row3])

print(nums_2d[:,:2])



Output:

[[10 12]
[45 32]
[45 32]]

Let’s see another example of slicing. Here, we will slice the rows from row
one to the end of rows and column one to the end of columns. (Remember,
row and column numbers start from 0.) In the output, you will see the last
two rows and the last two columns.



Script 19:

row1 = [10,12,13]
row2 = [45,32,16]
row3 = [45,32,16]

nums_2d = np.array([row1, row2, row3])
print(nums_2d[1:,1:])



Output:

[[32 16]
[32 16]]



3.4. Broadcasting NumPy Arrays

Broadcasting allows you to perform various operations between NumPy
arrays of different shapes. This is best explained with the help of an example.

In the script below, you define two arrays: a one-dimensional array of three
items and another scaler array that contains only one item. Next, the two
arrays are added. Finally, in the output, you will see that the scaler value, i.e.,
10 is added to all the items in the array that contains three items. This is an
amazing ability and is extremely useful in many scenarios, such as machine
learning and artificial neural networks.



Script 20:

importnumpyasnp

array1 = np.array ([14,25,31])
array2 = np.array([10])
result = array1 + array2
print(result)



Output:

[24 35 41]

Let’s see another example of broadcasting. In the script below, you add a
two-dimensional array with three rows and four columns to a scaler array
with one item. In the output, you will see that the scaler value, i.e., 10, will be
added to all the 12 items in the first array, which contains three rows and four
columns.



Script 21:

array1 = np.random.randint(1,20, size = (3,4))
print(array1)

array2 = np.array([10])

print("after bradcasting")
result = array1 + array2
print(result)



Output:

[[2 11 16 19]
[14 15 13 19]

[9 6 18 4]]
afterbradcasting
[[12 21 26 29]
[24 25 23 29]
[19 16 28 14]]

You can also use broadcasting to perform operations between two-
dimensional and one-dimensional arrays.

For example, the following script creates two arrays: a two-dimensional array
of three rows and four columns and a one-dimensional array of one row and
four columns. If you perform addition between these two rows, you will see
that the values in a one-dimensional array will be added to the corresponding
columns’ values in all the rows in the two-dimensional array.

For instance, the first row in the two-dimensional array contains values 4, 6,
1, and 2. When you add the one-dimensional array with values 5, 10, 20, and
25 to it, the first row of the two-dimensional array becomes 9, 16, 21, and 27.



Script 22:

array1 = np.random.randint(1,20, size = (3,4))
print(array1)

array2 = np.array([5,10,20,25])

print("after bradcasting")
result = array1 + array2
print(result)



Output:

[[4612]
[19 2 16 7]
[19 7 19 6]]

afterbradcasting
[[9 16 21 27]
[24 12 36 32]
[24 17 39 31]]

Finally, let’s see an example where an array with three rows and one column
is added to another array with three rows and four columns. Since, in this
case, the values of row match, therefore, in the output, for each column in the
two-dimensional array, the values from the one- dimensional array are added
row-wise. For instance, the first column in the two-dimensional array
contains the values 10, 19, and 11. When you add the one-dimensional array
(5, 10, 20) to it, the new column value becomes 15, 29, and 31.



Script 23:

array1 = np.random.randint(1,20, size = (3,4))
print(array1)

array2 = np.array([[5],[10],[20]])

print("after bradcasting")
result = array1 + array2
print(result)



Output:

[[10 17 7 3]
[19 9 14 17]
[11 15 11 10]]

afterbradcasting
[[15 22 12 8]
[29 19 24 27]
[31 35 31 30]]



3.5. Copying NumPy Arrays

There are two main ways to copy an array in NumPy. You can either copy
the contents of the original array, or you can copy the reference to the
original array into another array.

To copy the contents of the original array into a new array, you can call the
copy() function on the original array. Now, if you modify the contents of the
new array, the contents of the original array are not modified.

For instance, in the script below, in the copied array2, the item at index 1 is
updated. However, when you print the original array, you see that the index
one for the original array is not modified.



Script 24:

importnumpyasnp
array1 = np.array([10,12,14,16,18,20])

array2 = array1.copy()
array2[1] = 20

print(array1)
print(array2)



Output:

[10 12 14 16 18 20]
[10 20 14 16 18 20]

The other method to copy an array in Python is via the view() method.
However, with the view method, if the contents of a new array are modified,
the original array is also modified. Here is an example:



Script 25:

array1 = np.array([10,12,14,16,18,20])

array2 = array1.view()
array2[1] = 20

print(array1)
print(array2)



Output:

[10 20 14 16 18 20]
[10 20 14 16 18 20]



3.6. NumPy I/O Operations

You can save and load NumPy arrays to and from your local drive.

3.6.1. Saving a NumPy Array

To save a NumPy array, you need to call the save() method from the NumPy
module and pass it the file name for your NumPy as the first argument, while
the array object itself as the second argument. Here is an example:



Script 26:

importnumpyasnp
array1 = np.array([10,12,14,16,18,20])

np.save("D:\Datasets\my_array", array1)

The save() method saves a NumPy array in “NPY” file format. You can also

save a NumPy array in the form of a text file, as shown in the following
script:



Script 27:

importnumpyasnp
array1 = np.array([10,12,14,16,18,20])

np.savetxt("D:\Datasets\my_array.txt", array1)

3.6.2. Loading a NumPy Array

To load a NumPy array in the “NPY” format, you can use the load() method,
as shown in the following example.



Script 28:

importnumpyasnp
loaded_array = np.load("D:\Datasets\my_array.npy")
print(loaded_array)



Output:

[10 12 14 16 18 20]

On the other hand, if your NumPy array is stored in the text form, you may
use the loadtxt() method to load such a NumPy array.



Script 29:

importnumpyasnp
loaded_array = np.loadtxt("D:\Datasets\my_array.txt")
print(loaded_array)



Output:

[10. 12. 14. 16. 18. 20.]

Further Readings – Basics of NumPy

Check the official documentation here (https://bit.ly/3oJRxE3) to learn
more about NumPy.

Hands-on Time – Exercise

Now, it is your turn. Follow the instructions in the exercises below to
check your understanding of the basics of NumPy array manipulation. The
answers to these questions are given at the end of the book.

https://bit.ly/3oJRxE3
https://bit.ly/3oJRxE3


Exercise 3.1

Question 1:

Which function is used to convert a multi-dimensional NumPy array into a
flat array of 1-dimension?

A. np.reshape(0)

B. np.reshape(–1)

C. np.reshape(1)

D. None of the Above

Question 2:

Which function is used to save a NumPy array in text format?

A. np.savetext()

B. np.saveText()

C. np.saveTxt()

D. np.savetxt()

Question 3:

To sort a NumPy array in descending order, you can use the following
function:

A. np.flipud(np.sort(my_array))

B. np.sort(np.flip(my_array))

C. np.sort()

D. np.flip()



Exercise 3.2

Create a random NumPy array of 4 rows and 5 columns. Then, using array
indexing and slicing, display the items from row 3 to end and column 2 to
end.



NumPy Tips and Tricks

In the previous chapter, you saw some of the most common ways to
manipulate NumPy arrays. In this chapter, you will be introduced to a few
common tips and tricks that will come in handy while working with NumPy
arrays.



4.1. Statistical Operations with NumPy

NumPy arrays contain various functionalities for performing statistical
operations, such as finding the mean, median, and standard deviations of
items in a NumPy array.

4.1.1. Finding the Mean

To find the mean or average of all the items in a NumPy array, you need to
pass the array to the mean() method of the NumPy module. Here is an
example:



Script 1:

importnumpyasnp

my_array = np.array([2,4,8,10,12])
print(my_array)
print("mean:")
print(np.mean(my_array))



Output:

[2 4 8 10 12]
mean:
7.2

You can also find the mean in a two-dimensional NumPy array across rows
and columns. To find the mean across columns, you need to pass 1 as the
value for the axis parameter of the mean method. Similarly, to find the mean
across rows, you need to pass 0 as the parameter value.

The following script finds the mean of a two-dimensional array containing
two rows and three columns across rows and columns.



Script 2:

importnumpyasnp

my_array = np.random.randint(1,20, size = (2,3))
print(my_array)
print("mean:")
print(np.mean(my_array, axis = 1))
print(np.mean(my_array, axis = 0))



Output:

[[10 13 18]
[19 18 1]]

mean:
[13.66666667 12.66666667]
[14.5 15.5 9.5]

4.1.2. Finding the Median

The median() method from the NumPy module is used to find the median
value in a NumPy array. Here is an example.



Script 3:

importnumpyasnp

my_array = np.array([2,4,8,10,12])
print(my_array)
print("median:")
print(np.median(my_array))



Output:

[2 4 8 10 12]
median:
8.0

Similarly, to find the median values across columns and rows in a two-
dimensional array, you need to pass 1 and 0, respectively, as the values for
the axis attribute of the median method.

The following script finds the median values across rows and columns for a
two-dimensional array with three rows and five columns.



Script 4:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,5))
print(my_array)
print("median:")
print(np.median(my_array, axis = 1))
print(np.median(my_array, axis = 0))



Output:

[[18 15 8 15 17]
[8 8 5 4 9]
[11 12 14 2 6]]

median:
[15. 8. 11.]
[11. 12. 8. 4. 9.]

4.1.3. Finding the Max and Min Values

The max() function returns the maximum value from the array, while the
min() function returns the minimum value.

The following script returns the minimum value in a NumPy array using the
min() method.



Script 5:

importnumpyasnp

my_array = np.array([2,4,8,10,12])
print(my_array)
print("min value:")
print(np.amin(my_array))



Output:

[2 4 8 10 12]
min value:
2

You can get the minimum values across all rows or columns in a two-
dimensional NumPy array by passing 0 or 1 as values for the axis attribute of
the min() method. The value of 1 for the axis attribute returns the minimum
values across all columns, whereas a value of 0 returns the minimum values
across all rows.



Script 6:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,4))
print(my_array)
print("min:")
print(np.amin(my_array, axis = 1))
print(np.amin(my_array, axis = 0))



Output:

[[15 7 18 6]
[13 15 19 13]

[1 11 17 2]]
min:
[6 13 1]
[1 7 17 2]

To get the maximum value from a NumPy array, you may use the max()
method, as shown in the script below:



Script 7:

importnumpyasnp

my_array = np.array([2,4,8,10,12])
print(my_array)
print("max value:")
print(np.amax(my_array))



Output:

[ 2 4 8 10 12]
max value:
12

Like the min() method, which returns the minimum value, you can get the
maximum values across all rows or columns in a two-dimensional NumPy
array by passing 0 or 1 as values for the axis attribute of the max() method.
The value of 1 for the axis attribute returns the minimum values across all
columns, whereas a value of 0 returns the minimum values across all rows.



Script 8:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,4))
print(my_array)
print("max:")
print(np.amax(my_array, axis = 1))
print(np.amax(my_array, axis = 0))



Output:

[[17 14 9 7]
[9 11 18 2]
[18 12 14 16]]

max:
[17 18 18]
[18 14 18 16]

4.1.4. Finding Standard Deviation

The standard deviation of a NumPy array can be found via the std() method.

Here is an example:



Script 9:

importnumpyasnp

my_array = np.array([2,4,8,10,12])
print(my_array)
print("std value:")
print(np.std(my_array))



Output:

[2 4 8 10 12]
std value:
3.7094473981982814

To find the standard deviation across rows and columns in a two-dimensional
NumPy array, you need to call the std() method. The value of 1 for the axis
attribute returns the minimum list of minimum values across all columns,
whereas a value of 0 returns minimum values across all rows.



Script 10:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,4))
print(my_array)
print("std-dev:")
print(np.std(my_array, axis = 1))
print(np.std(my_array, axis = 0))



Output:

[[16 13 16 8]
[5 12 2 6]
[14 12 4 11]]

std-dev:
[3.26917421 3.63145976 3.76662979]
[4.78423336 0.47140452 6.18241233 2.05480467]

4.1.5. Finding Correlations

Finally, to find correlations, you can use the correlation() method and pass it
the two NumPy arrays between which you want to find the correlation.



Script 11:

importnumpyasnp

a1 = np.array([1, 3, 0, 0.9, 1.2])
a2 = np.array([-1, 0.5, 0.2, 0.6, 5])

print(a1)
print(a2)
print(«correlation value:»)
print(np.correlate(a1, a2))



Output:

[1. 3. 0. 0.9 1.2]
[-1. 0.5 0.2 0.6 5.]
correlation value:
[7.04]



4.2. Getting Unique Items and Counts

Oftentimes, you would need to find unique values within a NumPy array and
to find the count of every unique value in a NumPy array.

To find unique values in a NumPy array, you need to pass the array to the
unique() method from the NumPy module. Here is an example:



Script 12:

importnumpyasnp

my_array =np.array([5,8,7,5,9,3,7,7,1,1,8,4,6,9,7,3])
unique_items = np.unique(my_array)

print(unique_items)



Output:

[1 3 4 5 6 7 8 9]

To find the count of every unique item in a NumPy array, you need to pass
the array to the unique() method and pass True as the value for the
return_counts attribute. The unique() method in this case returns a tuple,
which contains a list of all unique items and a corresponding list of counts for
each unique item. Here is an example:



Script 13:

importnumpyasnp

my_array =np.array([5,8,7,5,9,3,7,7,1,1,8,4,6,9,7,3])
unique_items, counts = np.unique(my_array, return_counts=True)

print(unique_items)
print(counts)



Output:

[1 3 4 5 6 7 8 9]
[2 2 1 2 1 4 2 2]

One way to get the count value against every unique item is to create an array
of arrays where the first item is the list of unique items and the second item is
the list of counts, as shown in the script below:



Script 14:

frequencies = np.asarray((unique_items, counts))
print(frequencies)



Output:

[[1 3 4 5 6 7 8 9]
[2 2 1 2 1 4 2 2]]

Next, you can transpose the array that contains the list of unique items and
their counts. In the output, you will get an array where each item is a list. The
first item in the list is the unique item itself, while the second is the count of
the item. For instance, in the output of the script below, you can see that item
1 occurs twice in the input array, item 3 also occurs twice, and so on.



Script 15:

frequencies = np.asarray((unique_items, counts)).T
print(frequencies)



Output:

[[1 2]
[3 2]
[4 1]
[5 2]
[6 1]
[7 4]
[8 2]
[9 2]]



4.3. Reversing a NumPy Array

There are two main methods to reverse a NumPy array: flipud() and fliplr().
The flipud() method is used to reverse a one-dimensional NumPy array, as
shown in the script below:



Script 16:

importnumpyasnp

print("original")
my_array = np.random.randint(1,20,10)
print(my_array)

print("reversed")
reversed_array = np.flipud(my_array)
print(reversed_array)



Output:

original
[2 12 7 1 6 7 18 14 2 1]
reversed
[1 2 14 18 7 6 1 7 12 2]

On the other hand, to reverse a two-dimensional NumPy array, you can use
the fliplr() method, as shown below:



Script 17:

importnumpyasnp

print("original")
my_array = np.random.randint(1,20, size = (3,4))
print(my_array)

print("reversed")
reversed_array = np.fliplr(my_array)
print(reversed_array)



Output:

original
[[10 3 4 3]
[14 13 18 19]

[2 5 11 1]]
reversed
[[3 4 3 10]
[19 18 13 14]

[1 11 5 2]]



4.4. Importing and Exporting CSV Files

CSV files are an important source of data. The NumPy library contains
functions that allow you to store NumPy arrays in the form of CSV files. The
NumPy module also allows you to load CSV files into NumPy arrays.

4.4.1. Saving a NumPy File as CSV

To save a NumPy array in the form of a CSV file, you can use the tofile()
method and pass it your NumPy array.

The following script stores a two-dimensional array of three rows and four
columns to a CSV file. You can see that you need to pass a comma “,” as the
value for the sep parameter.



Script 18:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,4))
print(my_array)
my_array.tofile('D:\Datasets\my_array.csv', sep = ',')

The following NumPy array will be stored in the form of a CSV file.



Output:

[[ 4 17 8 14]
[ 9 18 4 4]
[ 8 6 7 2]]

If you open the CSV file, you will see the following data:

You can see from the above output that though the NumPy array you stored
had two dimensions, it is flattened and stored as a single row in your CSV
file. This is the default behavior of the tofile() function.

To store a two-dimensional NumPy array in the form of multiple rows in a
CSV file, you can use the savetxt() method from the NumPy module, as
shown in the following script.



Script 19:

importnumpyasnp

my_array = np.random.randint(1,20, size = (3,4))
print(my_array)

np.savetxt('D:\Datasets\my_array2.csv', my_array, delimiter = “,”)



Output:

[[ 5 2 5 4]
[16 3 3 16]
[19 10 15 1]]

If you open your newly created CSV file now, you should see the following
information:

4.4.2. Loading CSV Files into NumPy Arrays

To load a CSV file into a NumPy array, you can use the genfromtxt() method
and pass it the CSV file along with a comma “,” as the value for the delimiter
attribute of the genfromtxt() method. Here is an example:



Script 20:

importnumpyasnp

loaded_array = np.genfromtxt('D:\Datasets\my_array2.csv', delimiter=',')
print(loaded_array)



Output:

[[5. 2. 5. 4.]
[16. 3. 3. 16.]
[19. 10. 15. 1.]]



4.5. Plotting NumPy Arrays with Matplotlib

You can use NumPy arrays along with Matplotlib plotting functionalities to
plot various types of graphs. You will see some examples in this section.

The following script creates two NumPy arrays. The first array contains 20
equidistant numbers between 0 and 20, and the second array contains the
square of these values. Next, the plot() method from the pyplot module of the
Matplotlib library is used to plot a line plot using the two input arrays.



Script 21:

importnumpyasnp
importmatplotlib.pyplotasplt
%matplotlib inline

importmatplotlib.pyplotasplt
importnumpyasnp
importmath

x_vals = np.linspace(0, 20, 20)
print(x_vals)
y_vals = [math.sqrt(i) foriinx_vals]
plt.plot(x_vals, y_vals)



Output:

[0.  1.05263158 2.10526316 3.15789474 4.21052632
5.26315789 6.31578947 7.36842105 8.42105263 9.47368421
10.52631579 11.57894737 12.63157895 13.68421053
14.73684211 15.78947368 16.84210526 17.89473684
18.94736842 20.  ]

Similarly, you can draw graphs using multiple NumPy arrays. The following
script plots a line plot that displays squares and cubes of 20 equidistant
numbers between 0 and 20.



Script 22:

importmatplotlib.pyplotasplt
importnumpyasnp
importmath

x_vals = np.linspace(0, 20, 20)
y_vals = [math.sqrt(i) foriinx_vals]
y2_vals = x_vals ** 3
plt.xlabel('X Values')
plt.ylabel('Y Values')
plt.title('square Roots')
plt.plot(x_vals, y_vals, 'r', label = 'square Root')
plt.plot(x_vals, y2_vals, 'b', label = 'Cube')
plt.legend(loc='upper center')



Output:

Finally, you can also plot heatmaps using a two-dimensional NumPy array by
passing the array to the imshow() method of the pyplot module of the
Matplotlib library.



Script 23:

importnumpyasnp
importmatplotlib.pyplotasplt

my_array = np.random.randint(1,20, size = (4,4))
print(my_array)

plt.imshow(my_array)
plt.show()



Output:

[[ 7 19 12 1]
[ 8 2 2 14]
[ 4 6 7 15]
[15 3 17 17]]

Further Readings – Basics of NumPy

1. Check the official documentation here (https://bit.ly/3oJRxE3) to learn
more about NumPy.

2. You can learn more about Matplotlib at this link
(https://matplotlib.org/)

Hands-on Time – Exercise

Now, it is your turn. Follow the instructions in the exercises below to
check your understanding of Python tips and tricks that you learned in this
chapter. The answers to these questions are given at the end of the book.

https://bit.ly/3oJRxE3
https://bit.ly/3oJRxE3
https://matplotlib.org/
https://matplotlib.org/




Exercise 4.1

Question 1:

Which function is used to find the mean across columns in a two-dimensional
NumPy array?

A. np.mean(my_array, axis = 0)

B. np.mean(my_array, axis = 1)

C. np.mean(my_array, axis = 'col')

D. np.mean(my_array, axis = 'c')

Question 2:

Which function is used to find the frequency of each unique item in a NumPy
array?

A. np.unique(my_array, return_counts=1)

B. np.unique(my_array, return_freq=1)

C. np.unique(my_array, return_counts=True)

D. np.unique(my_array, return_freq=True)

Question 3:

Which of the following functions can be used to load a CSV file into a
NumPy array?

A. genfromtxt()

B. loadtxt()

C. loadcsv()

D. genfromcsv()



Exercise 4.2

Generate a NumPy array of shape 5 x 7, containing random integers between
1 and 50. Find the mean, median, and minimum and maximum values across
columns and rows.



Arithmetic and Linear Algebra Operations with
NumPy



5.1. Arithmetic Operations with NumPy

NumPy arrays provide a variety of functions to perform arithmetic
operations. Some of these functions are explained in this section.

5.1.1. Finding Square Roots

The sqrt() function is used to find the square roots of all the elements in a
list, as shown below:



Script 1:

importnumpyasnp

nums = [10,20,30,40,50]
np_sqr = np.sqrt(nums)
print(np_sqr)



Output:

[3.16227766 4.47213595 5.47722558 6.32455532 7.07106781]

5.1.2. Finding Logs

The log() function is used to find the logs of all the elements in a list, as
shown below:



Script 2:

importnumpyasnp

nums = [10,20,30,40,50]
np_log = np.log(nums)
print(np_log)



Output:

[2.30258509 2.99573227 3.40119738 3.68887945 3.91202301]

5.1.3. Finding Exponents

The exp() function takes the exponents of all the elements in a list, as shown
below:



Script 3:

importnumpyasnp

nums = [10,20,30,40,50]
np_exp = np.exp(nums)
print(np_exp)



Output:

[2.20264658e+04 4.85165195e+08 1.06864746e+13 2.35385267e+17 5.18470553e+21]

5.1.4. Finding Sine and Cosine

You can find the sines and cosines of items in a list using the sine and cosine
function, respectively, as shown in the following script.



Script 4:

importnumpyasnp

nums = [10,20,30,40,50]
np_sine = np.sin(nums)
print(np_sine)

nums = [10,20,30,40,50]
np_cos = np.cos(nums)
print(np_cos)



Output:

[-0.54402111 0.91294525 -0.98803162 0.74511316 -0.26237485]
[-0.83907153 0.40808206 0.15425145 -0.66693806 0.96496603]



5.2. NumPy for Linear Algebra Operations

Data science makes extensive use of linear algebra. The support for
performing advanced linear algebra functions quickly and efficiently makes
NumPy one of the most routinely used libraries for data science. In this
section, you will perform some of the most linear algebraic operations with
NumPy.

5.2.1. Finding the Matrix Dot Product

To find a matrix dot product, you can use the dot() function. To find the dot
product, the number of columns in the first matrix must match the number of
rows in the second matrix. Here is an example.



Script 5:

importnumpyasnp

A = np.random.randn(4,5)
B = np.random.randn(5,4)

Z = np.dot(A,B)
print(Z)



Output:

[[-0.4214615 0.16727233 0.81098999 -0.38015071]
[-1.45721887 -0.42227335 -1.24713671 3.88470664]
[-1.7216635 0.14865297 0.00539785 1.32007889]

[0.40891083 -0.53476366 1.00328983 -1.88270972]]

5.2.2. Element-wise Matrix Multiplication

In addition to finding the dot product of two matrices, you can element-wise
multiply two matrices. To do so, you can use the multiply() function.
However, the dimensions of the two matrices must match.



Script 6:

importnumpyasnp

row1 = [10,12,13]
row2 = [45,32,16]
row3 = [45,32,16]

nums_2d = np.array([row1, row2, row3])
multiply = np.multiply(nums_2d, nums_2d)
print(multiply)



Output:

[[100 144 169]
[2025 1024 256]
[2025 1024 256]]

5.2.3. Finding the Matrix Inverse

You find the inverse of a matrix via the linalg.inv() function, as shown
below:



Script 7:

importnumpyasnp

row1 = [1,2,3]
row2 = [5,2,8]
row3 = [9,1,10]

nums_2d = np.array([row1, row2, row3])

inverse = np.linalg.inv(nums_2d)
print(inverse)



Output:

[[0.70588235 -1. 0.58823529]
[1.29411765 -1. 0.41176471]
[-0.76470588 1. -0.47058824]]

5.2.4. Finding the Matrix Determinant

Similarly, the determinant of a matrix can be found using the linalg.det()
function, as shown below:



Script 8:

importnumpyasnp

row1 = [1,2,3]
row2 = [5,2,8]
row3 = [9,1,10]

nums_2d = np.array([row1, row2, row3])

determinant = np.linalg.det(nums_2d)
print(determinant)



Output:

17.0

5.2.5. Finding the Matrix Trace

The trace of a matrix refers to the sum of all the elements along the diagonal
of a matrix. To find the trace of a matrix, you can use the trace() function, as
shown below:



Script 9:

importnumpyasnp

row1 = [1,2,3]
row2 = [4,5,6]
row3 = [7,8,9]

nums_2d = np.array([row1, row2, row3])

trace = np.trace(nums_2d)
print(trace)



Output:

15

5.2.6. Solving a System of Linear Equations with Python

Now that you know how to use the NumPy library to perform various linear
algebra functions, let’s try to solve a system of linear equations, which is one
of the most basic problems in linear algebra.

A system of linear equations refers to a collection of equations with some
unknown variables. Solving a system of linear equations refers to finding the
values of the unknown variables in equations. One of the ways to solve a
system of linear equations is via matrices. Let’s see how to do this.

Let’s try to solve the following system of linear equations:

6x + 3y = 42
2x + 4y = 32

You have to convert the above equations into matrix and vector form. Let’s
name our matrix as A and the vector as B.

The number of rows in matrix A will be equal to the number of equations,
and the number of columns will be equal to the number of variables. In our
case, matrix A will consist of two rows and two columns. Therefore, the
values in matrix A will be the constant terms on the left side of the equality
symbol in the above equations, as shown below:

The vector B will be a vector of size N, where N is the number of equations
in the system of linear equations. The values in the vector B will be the
values on the right side of the equals operator in the system of linear
equations. The vector B will look like this:



Finally, you need to create another vector that contains the values for your
unknown variables. Let’s name that Vector X, which looks like this:

The system of linear equations can now be written as:

And to find the value of the unknown variables, you can use the following
equation:

X = (A-1) dot (B)

The above equation states that when you take the inverse of matrix A and
then take its dot product with matrix B, the resultant matrix X will contain the
values of the unknown variables.

Let’s see how you can do this with the NumPy array.

The following script creates the NumPy arrays A and B for our matrices A
and B, respectively.



Script 10:

importnumpyasnp

A = np.array([[6, 3],
[2, 4]])

B = np.array([42, 32])

Next, the script below finds the inverse of the matrix A using the inv()
method from the linalg submodule from the NumPy module.



Script 11:

A_inv = np.linalg.inv(A)
print(A_inv)



Output:

[[0.22222222 -0.16666667]
[-0.11111111 0.33333333]]

Finally, the script below takes the dot product of the inverse of matrix A with
matrix B (which is a vector in our case).



Script 12:

X = np.dot(A_inv, B)
print(X)



Output:

[4. 6.]

The output shows that in our system of linear equations, the values of the
unknown variables x and y are 4 and 6, respectively. You can put these
values in the above equations and see if you get the correct answers.

Further Readings – Basics of NumPy

1. Check the official documentation here (https://bit.ly/3oJRxE3) to learn
more about NumPy.

2. To learn more about the linalg submodule, check this link:
https://bit.ly/3GsIIF1.

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises below to
check your understanding of NumPy arithmetic and linear algebra
functionalities. The answers to these questions are given at the end of the
book.

https://bit.ly/3oJRxE3
https://bit.ly/3oJRxE3
https://bit.ly/3GsIIF1
https://bit.ly/3GsIIF1


Exercise 5.1

Question 1:

How do you find the dot product between two numpy arrays, A and B?

A. numpy.dot(A,B)

B. A.dot(B)

C. Both A and B

D. None of the above

Question 2:

How do you find the determinant of a matrix A?

A. numpy.linalg.det(A)

B. numpy.det(A)

C. linalg.det(A)

D. All of the above

Question 3:

How do you find the sine of an item in a NumPy array?

A. numpy.sine()

B. numpy.sin()

C. numpy.linalg.sin()

D. None of the above



Exercise 5.2

Solve the following system of three linear equations and find the values of
the variables x, y, and z:

3x + 4y + 2z = 17

5x + 2y + 3z = 23

4x + 3y + 2z = 19



Implementing a Deep Neural Network with NumPy

In this chapter, you will briefly study the theory behind the different types of
neural networks. You will study a simple densely connected neural network
(DNN), a convolutional neural network (CNN), a recurrent neural network
(RNN), and LSTM (which is a type of recurrent neural network).

In chapters 9, 10, and 11, you will see the practical implementation of deep
neural networks for natural language processing.



6.1. Neural Network with a Single Output

In this section, you will implement a densely connected neural network with
a single output from scratch. In addition, you will be learning how to find a
non-linear boundary to separate two classes.

Let’s start by defining our dataset first:



Script 1:

fromsklearnimport datasets
importnumpyasnp
importmatplotlib.pyplotasplt
%matplotlib inline

np.random.seed(0)
X, y = datasets.make_moons(100, noise=0.10)
x1 = X[:,0]
x2 = X[:,1]

plt.figure(figsize=(10,7))
plt.scatter(x1, x2, c= y, cmap=plt.cm.coolwarm)



Output:

Our dataset has 100 records with two features and one output. You will need
to reshape the output so that it has the same structure as the input features.



Script 2:

y = y.reshape(y.shape[0],1)

We can now check the shape of our input features and output labels.



Script 3:

print(X.shape)
print(y.shape)



Output:

(100, 2)
(100, 1)

Before we move forward, let’s define the structure of our neural network. Our
neural network will look like this:

In a neural network, we have an input layer, one or multiple hidden layers,
and an output layer. In our neural network, we have two nodes in the input
layer (since there are two features in the input), one hidden layer with four
nodes, and one output layer with one node since we are doing binary
classification. The number of hidden layers and the number of neurons per
hidden layer depend upon you.

In the above neural network, x1 and x2 are the input features, and ao is the
output of the network. Here, the only thing we can control is the weights w1,
w2, w3, … w12. The idea is to find the values of weights for which the



difference between the predicted output, ao in this case, and the actual output
(labels) is minimum.

A neural network works in two steps:

1. Feed Forward

2. BackPropagation

I will explain both these steps in the context of our neural network.

6.1.1. Feed Forward

In the feed forward step, the final output of a neural network is created. So
let’s try to find the final output of our neural network.

In our neural network, we will first find the value of zh1, which can be
calculated as follows:

zh1 = x1w1 + x2w2 + b ---------- (1)

Using zh1, we can find the value of ah1, which is:

ah1 = sigmoid(zh1) ---------- (2)

In the same way, you find the values of ah2, ah3, and ah4.

To find the value of zo, you can use the following formula:

zo = ah1w9 + ah2w10 + ah3w11 + ah4w12 --------- (3)

Finally, to find the output of the neural network ao, use the following
formula:

ao = sigmoid(zo) ---------- (4)

6.1.2. Backpropagation



The purpose of backpropagation is to minimize the overall loss by finding the
optimum values of weights. The loss function we are going to use in this
section is the mean squared error, which is, in our case, represented as:

Here, ao is the predicted output from our neural network, and y is the actual
output.

Our weights are divided into two parts. We have weights that connect input
features to the hidden layer and the hidden layer to the output node. We call
the weights that connect the input to the hidden layer collectively as wh (w1,
w2, w3 … w8), and the weights connecting the hidden layer to the output as
wo (w9, w10, w11, w12).

The backpropagation will consist of two phases. In the first phase, we will
find dcost_dwo (which refers to the derivative of the total cost with respect to
wo (weights in the output layer)). By the chain rule, dcost_dwo can be
represented as the product of dcost_dao * dao_dzo * dzo_dwo. (d here refers
to derivative.) Mathematically:

dcost_dwo = dcost_dao * dao_dzo * dzo_dwo ------ (5)
dcost_dao = 1/m (ao – y) ------- (6)
dao_dzo = sigmoid(zo) * (1 – sigmoid(zo)) ------- (7)
dzo_dwo = ah.T ------ 8

In the same way, you find the derivative of cost with respect to bias in the
output layer, i.e., dcost_dbo, which is given as:

dcost_dbo = dcost_dao * dao_dzo

Putting 6, 7, and 8 in equation 5, we can get the derivative of cost with
respect to the output weights.

The next step is to find the derivative of cost with respect to hidden layer
weights, wh, and bias bh. Let’s first find the derivative of cost with respect to



hidden layer weights:

dcost_dwh =dcost_dah * dah_dzh * dzh_dwh ….. (9)

dcost_dah= dcost_dao * dao_dzo * dzo_dah ……. (10)

The values of dcost_dao and dao_dzo can be calculated from equations 6 and
7, respectively. The value of dzo_dah is given as:

dzo_dah = wo.T …… (11)

Putting the values of equations 6, 7, and 11 in equation 11, you can get the
value of equation 10.

Next, let’s find the value of dah_dzh:

dah_dzh = sigmoid(zh)*(1-sigmoid(zh) ….. (12)
and,
dzh_dwh = X.T (13)

Using equations 10, 12, and 13 in equation 9, you can find the value of
dcost_dwh.

Finally, you can update the weights of the output and hidden layers as:

wo = wo – (lr *dcost_dwo)
wh = wh– (lr * dcost_dwh)

In the above equations, wo refers to all the weights in the output layer,
whereas wh refers to the weights in the hidden layers.

6.1.3. Implementation with NumPy Library

In this section, you will implement the neural network that we saw earlier
from scratch in Python. Let’s define a function that defines the parameters:



Script 4:

defdefine_parameters(weights):
weight_list = []
bias_list = []
foriinrange(len(weights) - 1):

w = np.random.randn(weights[i], weights[i+1])
b = np.random.randn()

weight_list.append(w)
bias_list.append(b)

returnweight_list, bias_list

Now, since we have multiple sets of weights, the defined parameters function
will return the list of weights connecting the input and hidden layer and the
hidden and output layer.

Next, we define the sigmoid function and its derivative:



Script 5:

defsigmoid(x):
return1/(1+np.exp(-x))



Script 6:

defsigmoid_der(x):
return sigmoid(x)*(1-sigmoid(x))

The feed forward part of the algorithm is implemented by the prediction()
method, as shown below:



Script 7:

defpredictions(w, b, X):
zh = np.dot(X,w[0]) + b[0]

ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = sigmoid(zo)
returnao

The following script defines the cost function:



Script 8:

deffind_cost(ao,y):
m = y.shape[0]

total_cost = (1/m) * np.sum(np.square(ao - y))
returntotal_cost

Finally, to implement the backpropagation, we define a find_derivatives()
function, as follows:



Script 9:

deffind_derivatives(w, b, X):

zh = np.dot(X,w[0]) + b[0]
ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = sigmoid(zo)

# Backpropagation phase 1
m = y.shape[0]
dcost_dao = (1/m)*(ao-y)
dao_dzo = sigmoid_der(zo)
dzo_dwo = ah.T

dwo= np.dot(dzo_dwo, dcost_dao * dao_dzo)
dbo = np.sum(dcost_dao * dao_dzo)
# Backpropagation phase 2

# dcost_wh = dcost_dah * dah_dzh * dzh_dwh
# dcost_dah = dcost_dzo * dzo_dah

dcost_dzo = dcost_dao * dao_dzo
dzo_dah = w[1].T

dcost_dah = np.dot(dcost_dzo, dzo_dah)

dah_dzh = sigmoid_der(zh)
dzh_dwh = X.T
dwh = np.dot(dzh_dwh, dah_dzh * dcost_dah)
dbh = np.sum(dah_dzh * dcost_dah)

returndwh, dbh, dwo, dbo

And to update weights by subtracting the gradient, we define the
update_weights() function.



Script 10:

defupdate_weights(w,b,dwh, dbh, dwo, dbo, lr):
w[0] = w[0] - lr * dwh
w[1] = w[1] - lr * dwo

b[0] = b[0] - lr * dbh
b[1] = b[1] - lr * dbo

return w, b

Here is the my_neural_network class, which is used to train the neural
network by implementing the feed forward and backward propagation steps.



Script 11:

defmy_neural_network(X, y, lr, epochs):
error_list = []
input_len = X.shape[1]
output_len = y.shape[1]
w,b = define_parameters([input_len, 4, output_len])

foriinrange(epochs):
ao = predictions(w, b, X)

cost = find_cost(ao, y)
error_list.append(cost)
dwh, dbh, dwo, dbo = find_derivatives (w, b, X)

w, b = update_weights(w, b, dwh, dbh, dwo, dbo, lr)
ifi % 50 == 0 :
print(cost)

return w, b, error_list

Let’s train our neural network now to see the error reducing:



Script 12:

lr = 0.5
epochs = 2000
w, b, error_list = my_neural_network(X,y,lr,epochs)



Output:



In the output, you can see that the error is reducing. Let’s plot the error value
on a plot:



Script 13:

plt.plot(error_list)



Output:

You can see that the error is decreasing with each epoch.

The process of implementing a neural network with one output from scratch
in Python is very similar to logistic regression. However, in this case, we had
to update two sets of weights, one in the hidden layer and one in the output
layer.



6.2. Neural Network with Multiple Outputs

In the previous section, you did a binary classification where you predicted
whether a point is red or blue. However, in most real-world applications, you
have to classify between more than two objects. For instance, you might be
given an image, and you have to guess the single digit in the image. In that
case, the number of possible outputs will be 0–9 = 10. The types of problems
where you have more than two possible outputs are called multiclass
classification problems.

To implement multiclass classification problems, you have to make three
changes in the neural network with a single output. The changes are as
follows:

1. The number of nodes in the output layer should be equal to the
number of possible outputs.

2. The Softmax activation function should be used in the final output
layer.

3. To reduce the cost, a negative log-likelihood function should be used
as the loss function.

We will not go into the details of the Softmax and negative log-likelihood
functions in this chapter. Here is a very good blog to understand the Softmax
function: https://bit.ly/3dXPWSY

And here is a very good blog to understand the negative log likelihood:
https://bit.ly/2BYlOc7

In this section, we will develop a neural network with three possible outputs.
Let’s first create the dataset for that.

Execute the following script:

https://bit.ly/3dXPWSY
https://bit.ly/2BYlOc7


Script 14:

importnumpyasnp
importmatplotlib.pyplotasplt

np.random.seed(42)

cat1 = np.random.randn(800, 2) + np.array([0, -3])
cat2 = np.random.randn(800, 2) + np.array([3, 3])
cat3 = np.random.randn(800, 2) + np.array([-3, 3])

X = np.vstack([cat1, cat2, cat3])

labels = np.array([0]*800 + [1]*800 + [2]*800)

y = np.zeros((2400, 3))

foriinrange(2400):
y[i, labels[i]] = 1

Let’s check the shape of our dataset.



Script 15:

print(X.shape)
print(y.shape)



Output:

(2400, 2)
(2400, 3)

The output shows that we have 2,400 records in our dataset. The input
contains two features, and the output contains three possible labels. (Each
row in the output contains three columns, one column for each label.)

Next, we will plot our dataset to see the three classes:



Script 16:

x1 = X[:,0]
x2 = X[:,1]

plt.figure(figsize=(10,7))
plt.scatter(x1, x2, c= y, cmap=plt.cm.coolwarm)



Output:

From the output, you can see that our dataset records can either be
represented by a red, green, or blue dot, which means that we have three
possible labels in the output. Also, these labels cannot be separated by a
straight line. Hence, we will be using a neural network with multiple outputs.
The architecture of the neural network will look like this:



You can see that this neural network is very similar to the neural network that
we saw earlier. Except, now we have three nodes in the output, and hence, a
greater number of weights in the output layer. Let’s see the feed forward
process for the above neural network:

6.2.1. Feed Forward

Let’s briefly review the feed forward step for a neural network with multiple
steps. To calculate the value of zh1, the following equation is used:

zh1 = x1w1 + x2w2 + b ---------- (14)

Using zh1, we can find the value of ah1, which is:

ah1 = sigmoid(zh1) ---------- (15)



In the same way, you find the values of ah2, ah3, and ah4.

To find the value of zo, you can use the following formula:

zo1 = ah1w9 + ah2w10 + ah3w11 + ah4w12 --------- (16)

In the same way, you can calculate the values for zo2 and zo3. The output
will be a vector of the form [3,1]. This vector will be passed to the Softmax
function, which also returns a vector of [3,1], which will be our final output
ao. Hence,

ao = softmax(vector [zo]) ---------- (17)

6.2.2. Backpropagation

In the backpropagation step, you have to find the derivative of the cost
function with respect to the weights in different layers. Let’s first find
dcost_dwo:

dcost_dwo = dcost_dzo * dzo_dwo ------ (18)

The derivative of a negative log-likelihood function with respect to the values
in the zo vector is:

dcost_dzo = ao – y -------- (19)

In equation 19, y is the actual output. Similarly, we can find dzo_dwo, as
follows:

dzo_dwo = ah.T ----- (20)

Putting equations 19 and 20 in equations 18, you can get the derivate of cost
with respect to the weights in the output layer, i.e., wo.

Similarly, dcost_dbo is equal to:

dcost_dbo = dcost_dzo ---- (21)



Next, we need to find the dcost_dwh, which is given as:

dcost_dwh = dcost_dah* dah_dzh * dzh_dwh ------ (22)

dcost_dah = dcost_dzo * dzo_dah ---- (23)

dzo_dah = wo.T -------- (24)

Putting the value of equations 19 and 24 in equation 23, you can get the value
of dcost_dah.

Next,

dah_dzh = sigmoid(zh) * (1- sigmoid(zh) ------- (25)

dzh_dwh = ah.T ------------ (26)

Putting the value of equations 23, 25, and 26 in equation 22, you can find the
value of dost_dwh.

Finally, as previously, you can update the weights of the output and hidden
layers as:

wo = wo – (lr *dcost_dwo)

wh = wh– (lr * dcost_dwh)

In the above equations, wo refers to all the weights in the output layer,
whereas wh refers to the weights in the hidden layers.

6.2.3. Implementation with NumPy Library

Let’s now see the Python implementation of a neural network with multiple
outputs:



Script 17:

importnumpyasnp
importmatplotlib.pyplotasplt

np.random.seed(42)

cat1 = np.random.randn(800, 2) + np.array([0, -3])
cat2 = np.random.randn(800, 2) + np.array([3, 3])
cat3 = np.random.randn(800, 2) + np.array([-3, 3])

X = np.vstack([cat1, cat2, cat3])

labels = np.array([0]*800 + [1]*800 + [2]*800)

y = np.zeros((2400, 3))

foriinrange(2400):
y[i, labels[i]] = 1

defdefine_parameters(weights):
weight_list = []
bias_list = []
foriinrange(len(weights) - 1):

w = np.random.randn(weights[i], weights[i+1])
b = np.random.randn()

weight_list.append(w)
bias_list.append(b)

returnweight_list, bias_list

defsoftmax(X):
expX = np.exp(X)
returnexpX / expX.sum(axis=1, keepdims=True)

defsigmoid(x):
return1/(1+np.exp(-x))
defsigmoid_der(x):
return sigmoid(x)*(1-sigmoid(x))

defpredictions(w, b, X):
zh = np.dot(X,w[0]) + b[0]

ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = softmax(zo)
returnao



deffind_cost(ao,y):

total_cost = np.sum(-y * np.log(ao))
returntotal_cost

deffind_derivatives(w, b, X):

zh = np.dot(X,w[0]) + b[0]
ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = softmax(zo)

# Backpropagation phase 1

dcost_dzo = (ao-y)
dzo_dwo = ah.T

dwo= np.dot(dzo_dwo, dcost_dzo)
dbo = np.sum(dcost_dzo)

# Backpropagation phase 2

# dcost_wh = dcost_dah * dah_dzh * dzh_dwh
# dcost_dah = dcost_dzo * dzo_dah

dzo_dah = w[1].T

dcost_dah = np.dot(dcost_dzo, dzo_dah)

dah_dzh = sigmoid_der(zh)
dzh_dwh = X.T
dwh = np.dot(dzh_dwh, dah_dzh * dcost_dah)
dbh = np.sum(dah_dzh * dcost_dah)

returndwh, dbh, dwo, dbo

defupdate_weights(w,b,dwh, dbh, dwo, dbo, lr):
w[0] = w[0] - lr * dwh
w[1] = w[1] - lr * dwo

b[0] = b[0] - lr * dbh
b[1] = b[1] - lr * dbo

return w, b

defmy_multiout_neural_network(X, y, lr, epochs):
error_list = []
input_len = X.shape[1]
output_len = y.shape[1]
w,b = define_parameters([input_len, 4, output_len])



foriinrange(epochs):
ao = predictions(w, b, X)

cost = find_cost(ao, y)
error_list.append(cost)
dwh, dbh, dwo, dbo = find_derivatives (w, b, X)

w, b = update_weights(w, b, dwh, dbh, dwo, dbo, lr)
ifi % 50 == 0 :
print(cost)

return w, b, error_list

lr = 0.0005
epochs = 1000
w, b, error_list = my_multiout_neural_network(X,y,lr,epochs)



Output:

The output shows that the error is decreasing. You might get slightly different
error values since weights are randomly initialized. Let’s plot the error
against the epochs:



Script 18:

plt.plot(error_list)



Output:

You can see the error decreasing quickly initially and then very slowly.

In this chapter, you saw how the NumPy library can be used to implement an
artificial neural network from scratch, which is the foundation of various
advanced artificial intelligence applications. From the next chapter, you will
be introduced to Pandas, which is an extremely useful library for data
manipulation, visualization, and analysis.

Further Readings – Basics of NumPy

1. Check the official documentation here (https://bit.ly/3oJRxE3) to learn
more about NumPy.

2. You can learn more about neural networks and deep learning at this
link (https://bit.ly/2SMpztU).

Hands-on Time – Exercises

Now, it is your turn. Follow the instructions in the exercises below to

https://bit.ly/3oJRxE3
https://bit.ly/2SMpztU
https://bit.ly/2SMpztU


check your understanding of implementing Neural Networks with NumPy.
The answers to these questions are given at the end of the book.



Exercise 6.1

Question 1:

In a neural network with three input features, one hidden layer of five nodes,
and an output layer with three possible values, what will be the dimensions of
weights that connect the input to the hidden layer? Remember, the
dimensions of the input data are (m,3), where m is the number of records.

A. [5,3]

B. [3,5]

C. [4,5]

D. [5,4]

Question 2 :

Which activation function do you use in the output layer in case of multiclass
classification problems?

A. Sigmoid

B. Negative log likelihood

C. Relu

D. Softmax

Question 3:

Neural networks with hidden layers are capable of finding:

A. Linear Boundaries

B. Non-linear Boundaries

C. All of the above

D. None of the Above



Exercise 6.2

Try to classify the following dataset with three classes by implementing a
multiclass classification neural network from scratch using the NumPy
library in Python:

importnumpyasnp
importmatplotlib.pyplotasplt

np.random.seed(42)

cat1 = np.random.randn(800, 2) + np.array([0, -2])
cat2 = np.random.randn(800, 2) + np.array([2, 2])
cat3 = np.random.randn(800, 2) + np.array([-3, -3])

X = np.vstack([cat1, cat2, cat3])

labels = np.array([0]*800 + [1]*800 + [2]*800)

y = np.zeros((2400, 3))

foriinrange(2400):
y[i, labels[i]] = 1

x1 = X[:,0]
x2 = X[:,1]

plt.figure(figsize=(10,7))
plt.scatter(x1, x2, c= y, cmap=plt.cm.coolwarm)





Appendix:

Working with
Jupyter Notebook

All the scripts in this book are executed via Jupyter Notebook that comes
with Anaconda or via the Colab Environment, which contains a Jupyter
Notebook-like interface of its own. Therefore, it makes sense to give a brief
overview of Jupyter Notebook.

In chapter 1, you have already seen how to run a very basic script with the
Jupyter Notebook from Anaconda. In this section, you will see some other
common functionalities of the Jupyter Notebook.



Creating a New Notebook

There are two main ways to create a new Python Jupyter notebook.

1. From the home page of the Jupyter notebook, click the New button
at the top right corner and then select Python 3, as shown in the
following screenshot.

2. If you have already opened a Jupyter notebook, and you want to
create a new Jupyter notebook, select "File - > New Notebook" from
the top menu. Here is a screenshot of how to do this.





Renaming a Notebook

To rename a new Jupyter notebook, click on the Jupyter notebook name from
the top left corner of your notebook. A dialog box will appear containing the
old name of your Jupyter notebook, as shown below (the default name for a
Jupyter notebook will be “Untitled”). Here, you can enter a new name for
your Jupyter notebook.



Running Script in a Cell

To run a script inside a cell, select the cell and then press “CTRL + Enter”
from your keyboard. Your script will execute. However, a new cell will not
be created automatically once the current cell executes.

If you want to automatically create a new cell with the execution of a cell,
you can select a cell and execute it using “SHIFT + ENTER” or “ALT +
ENTER”. You will see that the current cell is executed, and a new cell is
automatically created, as shown below:



You can also run a cell by selecting a cell and then by clicking the Run
option from the top menu, as shown below.



Adding a New Cell

The plus “+” symbol from the top menu allows you to add a new cell below
the currently selected cell. Here is an example.

You can also insert cells above or below any selected cells via the Insert Cell
Above and Insert Cell Below commands from the Insert option in the top
menu, as shown below:



Deleting a New Cell

To delete a cell, simply select the cell and then click the scissor icon from the
top menu of your Jupyter notebook, as shown in the following screenshot.



Moving Cells Up and Down

To move a cell down, select a cell and then click the downward arrow. Here
is an example. Here, cell number 2 is moved one position below.

In the output, you can see that cell 2 is now below cell 3.

In the same way, you can click on the upward arrow to move a cell up.



Miscellaneous Kernel Options

To see miscellaneous kernel options, click the Kernel button from the top
menu. A dropdown list will appear, where you can see options related to
interrupting, restarting, reconnecting, and shutting down the kernel used to
run your script. Clicking “Restart & Run” will restart the kernel and run all
the cells once again.



Miscellaneous Cell Options

Clicking the Cell button from the top menu reveals the location of options
related to running a particular cell in a Jupyter notebook. Look at the
following screenshot for reference.



Writing Markdown in Jupyter Notebook

Apart from writing Python scripts, you can also write markdown content in
the Jupyter notebook. To do so, you have to first select a cell where you want
to add your markdown content, and then you have to select the Markdown
option from the dropdown list, as shown in the following script.

Next, you need to enter the markdown content in the markdown cell. For
instance, in the following screenshot, the markdown content h2 level heading
is added to the third cell.



When you run the 3rd cell in the above script, you will see the compiled
markdown content, as shown below:



Downloading Jupyter Notebooks

To download a Jupyter notebook, click the “File -> Download as” option
from the top menu. You can download Jupyter notebooks in various formats,
e.g., HTML, PDF, Python Notebook (ipynb), etc.



Uploading an Existing Notebook

Similarly, you can upload an existing notebook to Anaconda Jupyter. To do
so, you need to click the Upload button from the main Jupyter dashboard.
Look at the screenshot below for reference.



Exercise Solutions



Exercise 1.1

Question 1

Which iteration should be used when you want to repeatedly execute a code a
specific number of times?

A. For Loop

B. While Loop

C. Both A & B

D. None of the above

Answer: A

Question 2

What is the maximum number of values that a function can return in Python?

A. Single Value

B. Double Value

C. More than two values

D. None

Answer: C

Question 3

Which of the following membership operators are supported by Python?

A. In

B. Out

C. Not In

D. Both A and C

Answer: D



Exercise 1.2
Print the table of integer 9 using a while loop:

j=1
while j< 11:

print("9 x "+str(j)+ " = "+ str(9*j))
j=j+1



Exercise 2.1

Question 1:

To generate an identity matrix of 4 rows and 4 columns, which of the
following functions can be used?

A. np.identity(4,4)

B. np.id(4,4)

C. np.eye(4,4)

D. All of the above

Answer: C

Question 2:

To delete a column from a two-dimensional NumPy array, the value of the
axis attribute of the delete method should be set to:

A. 0

B. 1

C. column_number

D. All of the above

Answer: B

Question 3:

How to create the array of numbers 4,7,10,13,16 with NumPy?

A. np.arange(3, 16, 3)

B. np.arange(4, 16, 3)

C. np.arange(4, 15,3)

D. None of the above



Answer: D



Exercise 2.2

Create a random NumPy array of 5 rows and 4 columns.



Solution:

importnumpyasnp
uniform_random = np.random.rand(4, 5)
print(uniform_random)



Exercise 3.1

Question 1:

Which function is used to convert a multi-dimensional NumPy array into a
flat array of 1-dimension?

A. np.reshape(0)

B. np.reshape(-1)

C. np.reshape(1)

D. None of the Above

Answer: B

Question 2:

Which function is used to save a NumPy array in text format?

A. np.savetext()

B. np.saveText()

C. np.saveTxt()

D. np.savetxt()

Answer: D

Question 3:

To sort a NumPy array in descending order, you can use the following
function:

A. np.flipud(np.sort(my_array))

B. np.sort(np.flip(my_array))

C. np.sort()

D. np.flip()



Answer: A



Exercise 3.2

Create a random NumPy array of 4 rows and 5 columns. Then, using array
indexing and slicing, display the items from row 3 to end and column 2 to
end.



Solution:

uniform_random = np.random.rand(4, 5)
print(uniform_random)
print("Result")
print(uniform_random[2:,1:])



Exercise 4.1

Question 1:

Which function is used to find the mean across columns in a two-dimensional
NumPy array?

A. np.mean(my_array, axis = 0)

B. np.mean(my_array, axis = 1)

C. np.mean(my_array, axis = 'col')

D. np.mean(my_array, axis = 'c')

Answer: B

Question 2:

Which function is used to find the frequency of each unique item in a NumPy
array?

A. np.unique(my_array, return_counts=1)

B. np.unique(my_array, return_freq=1)

C. np.unique(my_array, return_counts=True)

D. np.unique(my_array, return_freq=True)

Answer: C

Question 3:

Which of the following functions can be used to load a CSV file into a
NumPy array?

A. genfromtxt()

B. loadtxt()

C. loadtxt()

D. genfromcsv()



Answer: A



Exercise 4.2

Generate a NumPy array of shape 5 x 7 containing random integers between
1 and 50. Find the mean, median, minimum, and maximum values across
columns and rows.



Solution:

importnumpyasnp
my_array = np.random.randint(1,50, size = (5,7))

print("Original")
print(my_array)

print("mean:")
print(np.mean(my_array, axis = 1))
print(np.mean(my_array, axis = 0))

print("median:")
print(np.median(my_array, axis = 1))
print(np.median(my_array, axis = 0))

print("min:")
print(np.amin(my_array, axis = 1))
print(np.amin(my_array, axis = 0))

print("max:")
print(np.amax(my_array, axis = 1))
print(np.amax(my_array, axis = 0))



Exercise 5.1

Question 1:

How to find the dot product between two numpy arrays, A and B?

A. numpy.dot(A,B)

B. A.dot(B)

C. Both A and B

D. None of the above

Answer: C

Question 2:

How to find the determinant of a Matrix A?

A. numpy.linalg.det(A)

B. numpy.det(A)

C. linalg.det(A)

D. All of the above

Answer: A

Question 3:

How to find the sine of an item in a NumPy array?

A. numpy.sine()

B. numpy.sin()

C. numpy.linalg.sin()

D. None of the above

Answer: B



Exercise 5.2

Solve the following system of of three linear equations and find the values of
variables x, y, and z:

3x + 4y + 2z = 17

5x + 2y + 3z = 23

4x + 3y + 2z = 19



Solution:

importnumpyasnp

A = np.array([[3, 4, 2],
[5, 2, 3],
[4, 3, 2]])

B = np.array([17, 23, 19])

X = np.linalg.inv(A).dot(B)
print(X)



Exercise 6.1

Question 1:

In a neural network with three input features, one hidden layer of five nodes,
and an output layer with three possible values, what will be the dimensions of
weight that connect the input to the hidden layer? Remember, the dimensions
of the input data are (m,3), where m is the number of records.

A. [5,3]

B. [3,5]

C. [4,5]

D. [5,4]

Answer: B

Question 2 :

Which activation function do you use in the output layer in case of multiclass
classification problems?

A. Sigmoid

B. Negative log likelihood

C. Relu

D. Softmax

Answer: D

Question 3:

Neural networks with hidden layers are capable of finding:

A. Linear Boundaries

B. Non-linear Boundaries

C. All of the above



D. None of the Above

Answer: C



Exercise 6.2

Try to classify the following dataset with three classes by implementing a
multiclass classification neural network from scratch using the NumPy
library in Python:

importnumpyasnp
importmatplotlib.pyplotasplt

np.random.seed(42)

cat1 = np.random.randn(800, 2) + np.array([0, -2])
cat2 = np.random.randn(800, 2) + np.array([2, 2])
cat3 = np.random.randn(800, 2) + np.array([-3, -3])

X = np.vstack([cat1, cat2, cat3])

labels = np.array([0]*800 + [1]*800 + [2]*800)

y = np.zeros((2400, 3))

foriinrange(2400):
y[i, labels[i]] = 1

x1 = X[:,0]
x2 = X[:,1]

plt.figure(figsize=(10,7))
plt.scatter(x1, x2, c= y, cmap=plt.cm.coolwarm)





Solution:

defdefine_parameters(weights):
weight_list = []
bias_list = []
foriinrange(len(weights) - 1):

w = np.random.randn(weights[i], weights[i+1])
b = np.random.randn()

weight_list.append(w)
bias_list.append(b)

returnweight_list, bias_list

defsoftmax(X):
expX = np.exp(X)
returnexpX / expX.sum(axis=1, keepdims=True)

defsigmoid(x):
return1/(1+np.exp(-x))

defsigmoid_der(x):
return sigmoid(x)*(1-sigmoid(x))

defpredictions(w, b, X):
zh = np.dot(X,w[0]) + b[0]

ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = softmax(zo)
returnao

deffind_cost(ao,y):

total_cost = np.sum(-y * np.log(ao))
returntotal_cost

deffind_derivatives(w, b, X):

zh = np.dot(X,w[0]) + b[0]
ah = sigmoid(zh)

zo = np.dot(ah, w[1]) + b[1]
ao = softmax(zo)

# Backpropagation phase 1

dcost_dzo = (ao-y)



dzo_dwo = ah.T

dwo= np.dot(dzo_dwo, dcost_dzo)
dbo = np.sum(dcost_dzo)

# Backpropagation phase 2

# dcost_wh = dcost_dah * dah_dzh * dzh_dwh
# dcost_dah = dcost_dzo * dzo_dah

dzo_dah = w[1].T

dcost_dah = np.dot(dcost_dzo, dzo_dah)

dah_dzh = sigmoid_der(zh)
dzh_dwh = X.T
dwh = np.dot(dzh_dwh, dah_dzh * dcost_dah)
dbh = np.sum(dah_dzh * dcost_dah)

returndwh, dbh, dwo, dbo

defupdate_weights(w,b,dwh, dbh, dwo, dbo, lr):
w[0] = w[0] - lr * dwh
w[1] = w[1] - lr * dwo
b[0] = b[0] - lr * dbh
b[1] = b[1] - lr * dbo

return w, b

defmy_multiout_neural_network(X, y, lr, epochs):
error_list = []
input_len = X.shape[1]
output_len = y.shape[1]
w,b = define_parameters([input_len, 10, output_len])

foriinrange(epochs):
ao = predictions(w, b, X)

cost = find_cost(ao, y)
error_list.append(cost)
dwh, dbh, dwo, dbo = find_derivatives (w, b, X)

w, b = update_weights(w, b, dwh, dbh, dwo, dbo, lr)
ifi % 50 == 0 :
print(cost)

return w, b, error_list

lr = 0.005
epochs = 1000
w, b, error_list = my_multiout_neural_network(X,y,lr,epochs)
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