2
O'REILLY" %

Learning PHP,

MySQL &
JavasScrip

A Step-by-Step Guide to
Creating Dynamic Websites

Robin Nixon

Learning PHP, MySQL &
JavaScript

SEVENTH EDITION

A Step-by-Step Guide to Creating Dynamic
Websites

Robin Nixon

OREILLY"

Learning PHP, MySQL & JavaScript

by Robin Nixon

Copyright © 2025 Robin Nixon. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or
sales promotional use. Online editions are also available for
most titles (http://oreilly.com). For more information, contact
our corporate/institutional sales department: 800-998-9938 or
corporate(@oreilly.com.

Acquisitions Editors: Amanda Quinn & Louise
Corrigan

Development Editors: Rita Fernando & Michele
Cronin

Production Editor: Elizabeth Faerm
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: Kim Cofer

Indexer: Sue Klefstad

Interior Designer: David Futato

Cover Designer: Karen Montgomery

[Mlustrator: Kate Dullea

January 2025: Seventh Edition

http://oreilly.com/

Revision History for the Seventh Edition
e 2025-01-10: First Release

See oreilly.com/catalog/errata.csp?isbn=0636920912620 for
release details.

The O’Reilly logo is a registered trademark of O’Reilly
Media, Inc. Learning PHP, MySQL & JavaScript, the cover
image, and related trade dress are trademarks of O’Reilly
Media, Inc.

The views expressed in this work are those of the author, and
do not represent the publisher’s views. While the publisher
and the author have used good faith efforts to ensure that the
information and instructions contained in this work are
accurate, the publisher and the author disclaim all
responsibility for errors or omissions, including without
limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or
describes is subject to open source licenses or the intellectual
property rights of others, it is your responsibility to ensure that
your use thereof complies with such licenses and/or rights.

978-1-098-15235-2
[LST]

http://oreilly.com/catalog/errata.csp?isbn=0636920912620

Dedication

This book is dedicated to all the readers who have contributed
ideas, suggestions, errata, and otherwise generally helped keep
its contents fresh and relevant throughout seven editions since
2009. I salute your dedication to PHP and the associated
technologies covered in this book—please always keep your
feedback coming,.

Preface

The combination of PHP and MySQL is the most convenient
approach to dynamic, database-driven web design, holding its
own in the face of challenges from some other integrated
frameworks that are harder to learn. Due to its open source
roots, it 1s free to implement and is therefore an extremely
popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows
platform will need to master these technologies. And,
combined with the partner technologies of JavaScript, React,
CSS, and HTMLS5, you will be able to create websites of the
caliber of industry standards like Facebook, Reddit, TikTok,
and Gmail.

Audience

This book is for people who wish to learn how to create
effective and dynamic websites. This may include webmasters
or graphic designers who have already mastered creating static
websites, or a CMS such as WordPress but wish to take their
skills to the next level, as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind
responsive web design will obtain a thorough grounding in the
core technologies of PHP, MySQL, JavaScript, CSS, and
HTMLS, and you’ll learn the basics of the React library and
how to use Node.js to support backend development using
JavaScript.

Assumptions This Book Makes

This book assumes that you have a basic understanding of
HTML and can at least put together a simple, static website
but does not assume that you have any prior knowledge of
PHP, MySQL, JavaScript, and CSS—although if you do, your
progress through the book will be even quicker.

Organization of This Book

The chapters in this book are written in a specific order, first
introducing all of the core technologies it covers and then
walking you through their installation on a web development
server so that you will be ready to work through the examples.

In the first section, you will gain a grounding in the PHP
programming language, covering the basics of syntax, arrays,
functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an
introduction to the MySQL database system, where you will
learn everything from how MySQL databases are structured to
how to generate complex queries.

After that, you will learn how you can combine PHP and
MySQL to start creating your own dynamic web pages by
integrating forms and other HTML features. You will then get
down to the nitty-gritty practical aspects of PHP and MySQL
development by learning a variety of useful functions and how
to manage cookies and sessions, as well as how to maintain a
high level of security.

In the next few chapters, you will gain a thorough grounding
in JavaScript, from simple functions and event handling to
accessing the Document Object Model, in-browser validation,
and error handling. You’ll also get a comprehensive primer on
using the popular React library for JavaScript.

With an understanding of all three of these core technologies,
you will then learn how to make behind-the-scenes Ajax calls

and turn your websites into highly dynamic environments.

Next, you’ll learn all about using CSS to dynamically style
and lay out your web pages, before discovering how the React
libraries can make your development job a great deal easier,
and how you can use Node.js instead of PHP and the Apache
web server to write your backend code in JavaScript. Finally
you’ll put together everything you’ve learned in a complete set
of programs that together constitute a fully functional social
networking website.

Along the way, you’ll find plenty of advice on good
programming practices and tips that can help you find and
solve hard-to-detect programming errors. There are also plenty
of links to websites containing further details on the topics
covered.

Conventions Used in This Book

The following typographical conventions are used in this
book:

Plain text

Indicates menu titles, options, and buttons.

Italic

Indicates new terms, URLSs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utilities.

Also used for database, table, and column names.

Constant width

Indicates commands and command-line options, variables
and other code elements, HTML tags, the contents of files,

as well as user input.

Constant width bold

Shows program output and is used to highlight sections of

code that are discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied

values.

NOTE

This element signifies a general note.

WARNING

This element indicates a warning or caution.

Using Code Examples

A range of supplementary material is available online (along
with all the examples from the book) in a GitHub repository,
comprising the following extra chapters in PDF format:

e Supplemental Chapter 1, “Introduction to CSS”
e Supplemental Chapter 2, “Introduction to jQuery”

e Supplemental Chapter 3, “Introduction to jQuery
Mobile”

e Supplemental Chapter 4, “Introduction to HTMLS5”

e Supplemental Chapter 5, “The HTMLS5 Canvas”

e Supplemental Chapter 6, “HTMLS5 Audio and Video”
e Supplemental Chapter 7, “Other HTMLS5 Features”

e Supplemental Chapter 8, “What’s New in PHP 8 and
MySQL 8”

If you have a technical question or a problem using the code
examples, please send email to support@oreilly.com.

https://github.com/RobinNixon/lpmj7
https://oreil.ly/H9YTV
https://oreil.ly/bfjgQ
https://oreil.ly/OAZ65
https://oreil.ly/kFP8K
https://oreil.ly/Dwr0y
https://oreil.ly/LWijz
https://oreil.ly/fDzNZ
https://oreil.ly/wR_XH
mailto:support@oreilly.com

This book is here to help you get your job done. In general, if
example code is offered with this book, you may use it in your
programs and documentation. You do not need to contact us
for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several
chunks of code from this book does not require permission.
Selling or distributing examples from O’Reilly books does
require permission. Answering a question by citing this book
and quoting example code does not require permission.
Incorporating a significant amount of example code from this
book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An
attribution usually includes the title, author, publisher, and
ISBN. For example: “Learning PHP. MySOL & JavaScript, T
Edition by Robin Nixon (O’Reilly). Copyright 2025 Robin
Nixon, 978-1-098-15235-2.”

If you feel your use of code examples falls outside fair use or
the permission given above, feel free to contact us at
permissions@oreilly.com.

O’Reilly Online Learning

NOTE

For more than 40 years, O Reilly Media has provided technology and
business training, knowledge, and insight to help companies succeed.

Our unique network of experts and innovators share their
knowledge and expertise through books, articles, and our
online learning platform. O’Reilly’s online learning platform
gives you on-demand access to live training courses, in-depth
learning paths, interactive coding environments, and a vast
collection of text and video from O’Reilly and 200+ other
publishers. For more information, visit Attps://oreilly.com.

mailto:permissions@oreilly.com
https://oreilly.com/
https://oreilly.com/

How to Contact Us

Please address comments and questions concerning this book
to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com

https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata,
examples, and any additional information. You can access this
page at https.//oreil.ly/learning-php-mysql-js-7e.

For news and information about our books and courses, visit
https.//oreilly.com.

Find us on LinkedIn: Attps://linkedin.com/company/oreilly-
media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments

I would like to thank Senior Content Acquisitions Editor
Amanda Quinn, Content Development Editors Rita Fernando
and Michele Cronin, and everyone who worked so hard on this
book, including Michal Spaéek and David Mackey for their

mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/learning-php-mysql-js-7e
https://oreilly.com/
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

comprehensive technical reviews, Michal Spacek for his
excellent help during production, Elizabeth Faerm for
overseeing production, Beth Richards for copy editing, Kim
Cofer for proofreading, Sue Klefstad for creating the index,
Karen Montgomery for the original sugar glider front cover
design, Susan Brown for the latest book cover, my original
editor, Andy Oram, for overseeing the first five editions, and
everyone else too numerous to name who submitted errata and
offered suggestions for this new edition.

Chapter 1. Introduction to
Dynamic Web Content

The World Wide Web is a constantly evolving network that
has already traveled far beyond its conception in the early
1990s, when it was created to solve a specific problem. State-
of-the-art experiments at CERN (the European Laboratory for
Particle Physics, now best known as the operator of the Large
Hadron Collider) were producing incredible amounts of data—
so much that the data was proving unwieldy to distribute to the
participating scientists, who were spread out across the world.

At this time, the internet was already in place, connecting
several hundred thousand computers, so Tim Berners-Lee (a
CERN fellow) devised a method of navigating between them
using a hyperlinking framework, which came to be known as
Hypertext Transfer Protocol, or HTTP. He also created a
markup language called Hypertext Markup Language, or
HTML. To bring these together, he wrote the first web browser
and web server.

THE ADVENT OF WEB 1.0

Web 1.0 was given its name only when the term Web 2.0 was
coined. During the 1.0 era, most users were content consumers, and
although there were some personal web pages, there were no social
networks. Guestbooks were used instead of comment sections. Some
sites had already used databases but server resources and bandwidth
were very limited. Navigation and layout in Web 1.0 was managed
with simple buttons and graphics, while interaction was very limited.

Today we take these simple tools for granted, but back then,
the concept was revolutionary. The most connectivity
experienced by at-home modem users at that time was dialing
up and connecting to a bulletin board where you could
communicate and swap data only with other users of that
service. Consequently, you needed to be a member of many

bulletin board systems in order to effectively communicate
electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the
mid-1990s, three major graphical web browsers were
competing for the attention of five million users. It soon
became obvious, though, that something was missing. Yes,
pages of text and graphics with hyperlinks to take you to other
pages was a brilliant concept, but the results didn’t reflect the
instantaneous potential of computers and the internet to meet
the particular needs of each user with dynamically changing
content. Using the web was a very dry, plain experience, even
if we did have scrolling text and animated GIFs!

Shopping carts, search engines, and social networks have
clearly altered how we use the web. In this chapter, we’ll look
briefly at the various components that make up the web and
the software that helps make using it a rich, dynamic
experience.

NOTE

It is necessary to start using some acronyms more or less right away. |
have tried to clearly explain them before proceeding, but don’t worry
too much about what they stand for or what these names mean,
because the details will become clear as you read on.

HTTP and HTML: Berners-Lee’s
Basics

HTTP is a communication standard governing the requests and
responses that are sent between the browser running on the
end user’s computer and the web server. The server’s job is to
accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page
—that’s why the term server is used. The natural counterpart
to a server is a client, so that term is applied both to the web
browser and the computer on which it’s running.

Between the client and the server there can be several other
devices, such as routers, proxies, gateways, and so on. They
serve different roles in ensuring that the requests and
responses are correctly transferred between the client and
server. Typically, they use the internet to send this information.
Some of these in-between devices can also help speed up the
internet by storing pages or information locally in what is
called a cache and then serving this content up to clients
directly from the cache rather than fetching it all the way from
the source server.

A web server can usually handle multiple simultaneous
connections, and when not communicating with a client, it
spends its time listening for an incoming connection. When
one arrives, the server sends back a response.

The Request/Response Procedure

At its most basic level, the request/response process consists
of a web browser or other client asking the web server to send
it a web page and the server sending back the page. The
browser then takes care of displaying or rendering the page
(see Figure 1-1).

Web The Web server Disk drive

browser internet at server.com at server.com
1 User enters:
http://server.com |~
Look up IP
2 P —— address of
server.com
Request
3 Serveﬁcom MAIN [rerererrmrerermmremmmnnrmnsnnnimssannnes :
page using IP :
Receive
4 _TE I.IESt f{)r :
index page :
Fetch
5 oremsanasesees index.html
: from hard disk
6 e e Return
! index page
7 Receive and
display page

Figure 1-1. The basic client/server request/response sequence

The steps in the request and response sequence are:

1. You enter http://server.com into your browser’s
address bar.

2. Your browser looks up the Internet Protocol (IP)
address for server.com.

3. Your browser issues a request for the home page at
server.com.

4. The request crosses the internet and arrives at the
server.com web server.

5. The web server, having received the request, looks for
the web page on its disk.

6. The web server retrieves the page and returns it to the
browser.

7. Your browser displays the web page.

For an average web page, this process also takes place once
for each object within the page such as a graphic, an
embedded video, or a CSS stylesheet.

In step 2, notice that the browser looks up the IP address of
server.com. Every machine attached to the internet has an IP
address—your computer included—but we generally access
web servers by name, such as google.com. The browser
consults an additional internet service called the Domain
Name System (DNS) to find the server’s associated IP address
and then uses it to communicate with the computer.

For dynamic web pages, the procedure is a little more
involved, because it may bring both PHP and MySQL into the
mix. For instance, you may click a picture of a raincoat. Then
PHP will put together a request using the standard database
language, SQL—many of whose commands you will learn in
this book—and send the request to the MySQL server. The
MySQL server will return information about the raincoat you
selected, and the PHP code will wrap it all up in some HTML,
which the server will send to your browser (see Figure 1-2).

Web The Web PHP Disk MysSQL
browser internet server processor drive database

Enter |........
1 URL
Look u
2 IPaddrepss
3 Request
main page H
4 L ——
request :
. Fetch
$ page
Contains -
6 PHP
Process
Execute
Receive
9 e FE
Return
10 T
Display
n page

Figure 1-2. A dynamic client/server request/response sequence

The steps in the dynamic sequence are:

1. You enter http.//server.com into your browser’s
address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the
web server’s home page.

4. The request crosses the internet and arrives at the
server.com web server.

5. The web server, having received the request, fetches
the home page from its hard disk.

6. With the home page now in memory, the web server
notices that it is a file incorporating PHP scripting and
passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains SQL statements, which the
PHP interpreter now passes to the MySQL database
engine.

9. The MySQL database returns the results of the
statements to the PHP interpreter.

10. The PHP interpreter returns the results of the
executed PHP code, along with the results from the
MySQL database, to the web server.

11. The web server returns the page to the requesting
client, which displays it.

Although it’s helpful to be aware of this process so that you
know how the three elements work together, in practice you
don’t really need to concern yourself with these details,
because they all happen automatically.

The HTML pages returned to the browser in each example
may contain JavaScript, which will be interpreted locally by
the client, and which could initiate another request.

The Benefits of PHP, MySQL,
JavaScript, CSS, and HTML

At the start of this chapter, I introduced the world of Web 1.0,
but it wasn’t long before the rush was on to create Web 1.1,
with the development of such browser enhancements as Java,
JavaScript, Flash, and ActiveX. On the server side, progress
was being made on the Common Gateway Interface (CGI)
using scripting languages such as Perl (an alternative to the
PHP language) and server-side scripting—inserting the
contents of one file (or the output of running a local program)
into another one dynamically.

Once the dust had settled, three main technologies stood head
and shoulders above the others. Although Perl was still a

popular scripting language with a strong following, PHP’s
simplicity and built-in links to the MySQL database program
had earned it more than double the number of users. And
JavaScript, which had become an essential part of the equation
for dynamically manipulating HTML, now took on the even
more muscular task of handling the client side of
asynchronous communication (exchanging data between a
client and server after a web page has loaded). Using
asynchronous communication, web pages perform data
handling and send requests to web servers in the background
—without the web user being aware that this is going on.

No doubt the symbiotic nature and the open source licenses of
PHP and MySQL helped propel them both forward, but what
attracted developers to them in the first place? The simple
answer 1is the ease with which you can use them to quickly
create dynamic elements on websites. MySQL is a fast and
powerful yet easy-to-use database system that offers just about
anything a website would need to find and serve up data to
browsers.

And when you bring JavaScript and CSS into the mix, you
have a recipe for building highly dynamic and interactive
websites—especially as there is now a wide range of
sophisticated frameworks of JavaScript functions you can call
on to speed up web development. These include the well-
known jQuery, which until recently was one of the most
common ways programmers accessed asynchronous
communication features.

The more recent React JavaScript library has also been
growing quickly in popularity, and is now one of the most
widely downloaded and implemented frameworks, so much so
that at the time of writing the Indeed job site lists many more
positions for React developers than for jQuery.

React provides state-of-the-art functionality for building
complex Ul interactions that communicate with the server in
real time with JavaScript-driven pages. It lets you create

components that are the building blocks of the React
application.

A React component can be anything in your web application.
It can be as simple as a Button, Text, Label, or Grid, or even as
complex as a Login widget or a popup modal with control
buttons. React also supports server rendering of its
components using tools like Next.js. You can even use React
in your existing apps (it was designed with this in mind). You
can change a small part of your existing application by using
React, and if that change works, then you can start converting
your whole application over to React.js. However, other
frameworks such as Vue.js may be more suitable for this sort
of iterative implementation.

MariaDB: The MySQL Clone

After Oracle (the database management

corporation) purchased Sun Microsystems (the owners of
MySQL), the community became wary that MySQL might not
remain fully open source, so MariaDB was forked from it to
keep it free under the GNU GPL, the software license that
guarantees users the freedom to run, study, share, and modify
the software. Development of MariaDB is led by some of the
original developers of MySQL, and it retains exceedingly
close compatibility with MySQL. Therefore, you may well
encounter MariaDB on some servers in place of MySQL—but
not to worry, everything in this book works equally well on
both MySQL and MariaDB. For all intents and purposes, you
can swap one with the other and notice no difference.

Fortunately, many of the initial fears appear to have been
allayed as MySQL remains open source, with Oracle simply
charging for support and for editions that provide additional
features such as geo-replication and automatic scaling.
However, unlike MariaDB, MySQL is no longer community
driven, so knowing that MariaDB will always be there if

https://oreil.ly/iyLLS
https://nextjs.org/

needed will reassure many developers and likely ensure that
MySQL itself will remain open source.

Using PHP

With PHP, it’s a simple matter to embed dynamic activity in
web pages. When you give pages the .php extension, they have
instant access to the scripting language. From a developer’s
point of view, all you have to do is write code such as:

<?php
echo "Today is " . date("1") . ". ";

?>

Here's the latest news.

The opening <?php tells the web server to allow the PHP
program to interpret all of the following code up to the ?> tag.
Outside of this construct, everything is sent to the client as
direct HTML. So, the text Here's the latest news. is
simply output to the browser; within the PHP tags, the built-in
date function displays the current day of the week according
to the server’s system time.

The final output of the two parts looks like this:
Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place
the PHP construct directly next to PHP code, like this:

Today is <?php echo date("1"); ?>. Here's the latest news.

There are even more ways of formatting and outputting
information, which I’ll explain in the chapters on PHP. The
point is that with PHP, web developers have a scripting
language that, although not as fast as compiling your code in C
or a similar language, is incredibly speedy and also integrates
seamlessly with HTML markup.

NOTE

If you intend to enter the PHP examples in this book into a program
editor to follow along with me, you must remember to add <?php in
front and ?> after them to ensure that the PHP interpreter processes
them. To facilitate this, you may wish to prepare a file called
example.php with those tags in place.

Using PHP, you have unlimited control over your web server.
Whether you need to modify HTML on the fly, process a
credit card, add user details to a database, or fetch information
from a third-party website, you can do it all from within the
same PHP files in which the HTML itself resides.

Using MySQL

Of course, there’s not much point in being able to change
HTML output dynamically unless you also have a means to
track the information users provide to your website as they use
it. In the early days of the web, many sites used “flat” text files
to store data such as usernames and passwords. But this
approach could cause problems if the file wasn’t correctly
locked against corruption from multiple simultaneous
accesses. Also, a flat file can get only so big before it becomes
unwieldy to manage—not to mention the difficulty of trying to
merge files and perform complex searches in a reasonable
time.

That’s where relational databases with structured querying
become essential. And MySQL, being free to use and installed
on vast numbers of internet web servers, rises superbly to the
occasion. It is a robust, exceptionally fast database
management system that uses English-like commands.

The highest level of MySQL structure is a database, within
which you can have one or more tables that contain your data.
This 1s similar to let’s say an Excel spreadsheet file that
consists of multiple sheets: the spreadsheet file can be viewed
as a database and the individual sheets as tables.

Let’s suppose you are working on a table called users, within
which you have created columns for surname, firstname, and
email, and you now wish to add another user. One command
you might use to do this is:

INSERT INTO users VALUES 'Smith', 'John', 'jsmith@mysite.com');

You will previously have issued other commands to create the
database and table and to set up all the correct fields, but the
SQL INSERT command here shows how simple it can be to
add new data to a database.

It’s equally easy to look up data. Let’s assume that you have a
user’s email address and need to look up that person’s name.
To do this, you could issue a MySQL query such as:

SELECT surname,firstname FROM users WHERE
email="'jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of
names associated with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with
MySQL than just simple INSERT and SELECT commands. For
example, you can combine related data sets to bring related
pieces of information together, ask for results in a variety of
orders, make partial matches when you know only part of the
string that you are searching for, return only the nth result, and
a lot more.

Using PHP, you can make all these calls to MySQL without
having to directly access the MySQL command-line interface.
This means you can save the results in arrays for processing
and perform multiple lookups, each dependent on the results
returned from earlier ones, to drill down to the item of data
you need.

For even more power, as you’ll see later, additional functions
are built right into MySQL so you can call up to efficiently run

common operations within MySQL, rather than creating them
out of multiple PHP calls to MySQL.

Using JavaScript

JavaScript was created to enable scripting access to all the
elements of an HTML document. In other words, it provides a
means for dynamic user interaction such as checking email
address validity in input forms and displaying prompts such as
“Did you really mean that?” (although it cannot be relied upon
for security, which should always be performed on the web
server).

Combined with CSS (see “Using CSS”), JavaScript is the
power behind dynamic web pages that change in front of your
eyes rather than when a new page is returned by the server.

However, JavaScript used to be tricky to use, due to the way
the language was initially designed and to some major
differences in how different browsers have chosen to
implement it. This came about when some manufacturers tried
to put additional functionality into their browsers at the
expense of compatibility with their rivals.

Thankfully, the language evolves, and the browser developers
have mostly come to their senses, realizing the need for full
compatibility with one another, so it is less necessary these
days to have to optimize your code for different browsers.

For now, let’s look at how to use basic JavaScript, accepted by
all browsers:

<script>
document.write("Today is " + Date());
</[script>

This code snippet tells the web browser to interpret everything
within the <script> tags as JavaScript, which the browser
does by writing the text Today is to the current document,

along with the date, using the JavaScript function Date. The
result will look something like this:

Today is Wed Jan 01 2025 01:23:45

WALKING BEFORE RUNNING

The document.write function is deliberately being used here in the
way it was originally intended, for the sake of simplicity in very small
code snippets. However, there are better ways to write into web pages
and for issuing feedback while debugging, all of which will be
revealed at the right times in this book, as well as explanations for
when and why the other options will work better for you.

As previously mentioned, JavaScript was originally developed
to offer dynamic control over the various elements within an
HTML document, and that is still its main use. But
increasingly, JavaScript is being used as the primary language
for web application development, with features such as A4jax,
the process of accessing the web server in the background.

Asynchronous communication allows web pages to begin to
resemble standalone programs, because they don’t have to be
reloaded in their entirety to display new content. Instead, an
asynchronous call can pull in and update a single element on a
web page, such as changing your photograph on a social
networking site or replacing a button that you click with the

answer to a question. This subject is fully covered in
Chapter 17.

Using CSS

CSS is the crucial companion to HTML, ensuring that the
HTML text and embedded images are laid out consistently and
appropriately for the user’s screen. With the emergence of the
CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript.
For example, not only can you style any HTML element to
change its dimensions, colors, borders, spacing, and so on, but

now you can also add animated transitions and transformations
to your web pages, using only a few lines of CSS.

By the way, the numbering standard for CSS releases (such as
CSS2 or CSS3) has now been dropped, so Cascading Style
Sheets are now referred to as simply CSS, but various
submodules have their own numbering such as CSS Selectors
Level 4 and CSS Images Level 3.

Using CSS can be as simple as inserting a few rules between
<style> and </style> tags in the head of a web page, like
this:

<style>

p
text-align: justify;
font-family:Helvetica;

}
</style>

These rules change the default text alignment of the <p> tag so
that paragraphs contained in it are justified, the content exactly
fills the box, and paragraphs use the Helvetica font.

The many different ways you can lay out CSS rules are
discussed in Supplemental Chapter 1, “Introduction to CSS”,
and you can also include them directly within tags or save a
set of rules to an external file to be loaded in separately. This
flexibility not only lets you style your HTML precisely but can
also (for example) provide built-in hover functionality to
animate objects as the mouse passes over them. You will also
learn how to access all of an element’s CSS properties from
JavaScript as well as HTML.

In the main body of the book you’ll also learn all the new,
more advanced features that come with CSS, such as borders,
shadows, text effects, transitions, transformations, and the
tremendous power of the flexbox and CSS Grid technologies.

And Then There’s HTML5

https://oreil.ly/H9YTV

As useful as all these additions to the web standards became,
they were not enough for ever-more ambitious developers. For
example, there was still no simple way to manipulate graphics
in a web browser without resorting to plug-ins such as Flash
(which is now no longer supported or widely used). And the
same went for inserting audio and video into web pages. Plus,
several annoying inconsistencies had crept into HTML during
its evolution.

To clear all this up and take the internet beyond Web 2.0 and
Into its next iteration, a new standard for HTML was created
to address all these shortcomings: HTMLS. Its development
began as long ago as 2004, when the first draft was drawn up
by the Mozilla Foundation and Opera Software, developers of
two popular web browsers. Today, the HTMLS5 standard is
maintained by WHATWG (Web Hypertext Application
Technology Working Group) and is officially called HTML
Living Standard.

It’s a never-ending cycle of development, though, and more
functionality is sure to be built into it over time. Some of the
best features in HTMLS for handling and displaying media
include the <audio>, <video>, and <canvas> elements, which
add sound, video, and advanced graphics. Everything you need
to know about these and all other aspects of HTMLYS is
covered in detail starting in the PDF of Supplemental Chapter
4, “Introduction to HTMLS5”, available in the book’s GitHub
repository.

https://oreil.ly/kFP8K
https://github.com/RobinNixon/lpmj7

NOTE

One of the little things I like about the HTMLS5 specification is that
XHTML syntax is no longer required for self-closing elements. In the

past, you could display a line break using the
 element. Then, to
ensure future compatibility with XHTML (the planned replacement for

HTML that never happened), this was changed to
, in which a
closing / character was added (since all elements were expected to
include a closing tag featuring this character). But now things have
gone full circle, and you can use either version of these types of
elements. In this book I have reverted to the former style of
,

<hr>, and so on, as this is also what the HTML standard now
recommends. Do note, however, that frameworks such as React use an
extension to JavaScript called JSX, which does require the

preceding / character, and where such examples occur in this book,
the preceding / is used.

The Apache Web Server

In addition to PHP, MySQL, JavaScript, CSS, and HTML,
there’s a sixth hero in the dynamic web: the web server. For
this book, that means the Apache web server. We’ve discussed
a little of what a web server does during the HTTP
server/client exchange, but it does much more behind the
scenes.

For example, Apache doesn’t serve up just HTML files—it
handles a wide range of files, from images to MP3 audio files,
RSS (Really Simple Syndication) feeds, and so on. And these
objects don’t have to be static files such as GIF images. They
can all be generated by programs such as PHP scripts. That’s
right: PHP can even create images and other files for you,
either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into
Apache or PHP or called up at runtime. One such module is
the GD (Graphics Draw) library, which PHP uses to create and
handle graphics.

Apache also supports a huge range of modules of its own. In
addition to the PHP module, the most important for your
purposes as a web programmer are the modules that handle

security. Other examples are the Rewrite module, which
enables the web server to handle a range of URL types and
rewrite them to its own internal requirements, and the Proxy
module, which you can use to serve up often-requested pages
from a cache to ease the load on the server.

Later in the book, you’ll see how to use some of these modules
to enhance the features provided by the three core
technologies.

Node.js: An Alternative to Apache

In 2009 developer Ryan Dahl was dissatistfied with Apache
and its difficulties with handling large numbers of concurrent
connections, and came up with a solution he called Node.js,
which uses Google’s V8 JavaScript engine to allow developers
to use JavaScript for server-side scripting. Shortly after, a
package manager was introduced for the Node.js environment
called npm, which made it easier for programmers to publish
and share source code of Node.js packages, simplifying
installation, updating, and uninstallation of packages.

As of 2024 Node.js has reached version 22.6.0 and has
become a fully mainstream alternative to the Apache web
server. This book’s new edition would be remiss to not detail
its benefits and provide enough information to get you up and
running with it, if you choose. You might make that choice, for
the three reasons discussed next.

Node.js uses an event-driven, nonblocking I/O model,
allowing it to handle a large number of concurrent connections
efficiently. This nonblocking nature enables scalable and high-
performance applications, making it ideal for building real-
time web applications, chat applications, and streaming
services, for example.

It allows developers to use JavaScript on both the frontend and
backend, making it a full-stack development environment.
This eliminates the need to switch between different

programming languages, enabling better code reusability and
streamlining the development process. Yes, that means you
won’t have to keep up-to-date with PHP if you make the
switch, and indeed Node.js will not be able to run your PHP
scripts. However, a rather complex app can still use both
Node.js and Apache with PHP each for different parts or tasks.

Being built on the V8 JavaScript engine, Node.js provides
exceptional performance, executing JavaScript code quickly
and efficiently, resulting in faster response times and improved
overall application performance. Additionally, Node.js has a
small memory footprint, making it resource efficient and
suitable for deploying on cloud platforms.

As you will learn, there are many other solid reasons for using
Node.js, but just these few are already highly persuasive. PHP
remains a very important language prevalent across the
internet, 1s actively developed, has active communities and is
often used together with other languages and environments
such as Node.js.

About Open Source

The technologies in this book are open source: anyone is
allowed to read and change the code. Whether this status is the
reason these technologies are so popular has often been
debated, but PHP, MySQL, and Apache are the three most
commonly used tools in their categories. What can be said
definitively, though, is that their being open source means that
they have been developed in the community by teams of
programmers writing the features they themselves want and
need, with the original code available for all to see and change.
Bugs can be found quickly, and security breaches can be
prevented before they happen.

There’s another benefit: all of these programs are usually free
to use, although it depends on the particular license. There’s
no worry about having to purchase additional licenses if you

have to scale up your website and add more servers, and you
don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together

The real beauty of PHP, MySQL, JavaScript, CSS, and HTML
is the wonderful way they all work together to produce
dynamic web content: PHP handles all the main work on the
web server, MySQL manages all the data, and the combination
of CSS and JavaScript looks after web page presentation.
JavaScript can also talk with your PHP code on the web server
whenever it needs to update something (either on the server or
on the web page). And with powerful HTML features like the
canvas, audio and video, and geolocation, you can make your
web pages highly dynamic, interactive, and multimedia-
packed.

Without using program code, let’s summarize the contents of
this chapter by looking at the process of combining some of
these technologies into an everyday asynchronous
communication feature that many websites use: checking
whether a desired username already exists on the site when a
user is signing up for a new account. A good example of this
can be seen with Gmail (see Figure 1-3).

Google

How you'll sign in

Create a Gmail address for signing in to your
Google Account

Username
{ arthurjohnson @gmail.com

o That username is taken. Try another,

Available: aj8245778

Figure 1-3. Gmail uses asynchronous communication to check the availability of
usernames

The steps involved in this asynchronous process will be
similar to these:

1. The server outputs the HTML to create the web form,
which asks for the necessary details, such as
username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript
to the HTML to monitor the username input box and
check for two things: whether some text has been
typed into it, and whether the input has been
deselected because the user has clicked another input
box or tabbed away.

3. Once the text has been entered and the field
deselected, in the background the JavaScript code
passes the username that was entered back to a
software on the web server and awaits a response.

4. The web server looks up the username and replies to
the JavaScript about whether that name has been

taken.

5. The JavaScript then places an indication next to the
username input box to show whether the name is
available to the user—perhaps a green checkmark or a
red cross graphic, along with some text.

6. If the username is not available and the user still
submits the form, the JavaScript interrupts the
submission and reemphasizes (perhaps with a larger
graphic and/or an alert box) that the user needs to
choose another username.

7. Optionally, an improved version of this process could
look at the username requested by the user and
suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for
a comfortable and seamless user experience. Without
asynchronous communication, the entire form would have to
be submitted to the server, which would then send back
HTML, highlighting any mistakes. It would be a workable
solution but nowhere near as tidy or pleasurable as on-the-fly
form field processing.

Asynchronous communication can be used for a lot more than
simple input verification and processing, though; we’ll explore
many additional things that you can do with it later in this
book.

In this chapter, you have read an introduction to the core
technologies of PHP, MySQL, JavaScript, CSS, and HTML (as
well as Apache) and have learned how they work together. In
Chapter 2, we’ll look at how you can install your own web
development server on which to practice everything that you
will be learning. Now, as in all this book’s chapters, |
recommend you see whether you can answer the following
questions to check that you have absorbed its contents.

Questions

1. What four components (at the minimum) are needed
to create a fully dynamic web page?

2. What does HTML stand for?
3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages
that generate dynamic results for web pages. What is
their main difference, and why would you use both?

5. What does CSS stand for?
6. List three major new elements introduced in HTML5.

7. If you encounter a bug (which is rare) in one of the

open source tools, how do you think you could get it
fixed?

8. Why is a framework such as jQuery or React so
important for developing modern websites and web

apps?

9. Why is the event-driven model of Node.js superior to
the Apache web server?

See “Chapter 1 Answers” in the Appendix A for the answers to
these questions.

Chapter 2. Setting Up a
Development Server

If you wish to develop internet applications but don’t have
your own development server, you will have to upload every
modification you make to a server somewhere else on the web
before you can test it.

Even on a fast broadband connection, this can represent a
significant slowdown in development time. On a local
computer, however, testing can be as easy as saving an update
(usually just a matter of clicking once on an icon) and then
hitting the Refresh button in your browser.

Another advantage of a development server is that you don’t
have to worry about embarrassing errors or security problems
while you’re writing and testing, whereas you need to be
aware of what people may see or do with your application
when it’s on a public website. It’s best to iron everything out
while you’re still on a home or small office system,
presumably protected by firewalls and other safeguards.

Once you have your own development server, you’ll wonder
how you ever managed without one, and it’s easy to set one
up. Just follow the steps in the following sections, using the
appropriate instructions for a PC, a Mac, or a Linux system.

In this chapter, we cover just the server side of the web
experience, as described in Chapter 1. But to test the results of
your work—particularly when we start using JavaScript, CSS,
and HTML later in this book—you should ideally have an
instance of every major web browser running on some system
convenient to you. Sometimes, testing on two different
browsers may be sufficient but whenever possible, the list of

browsers should include at least Mozilla Firefox, Safari, and
Google Chrome.

Even though there are multiple other browsers based on the
Google Chromium browser there may still be minor
differences in their implementation that make it worthwhile
testing your code on all possible browsers before final release.
You may need all these once you have a product ready to
release, just to ensure everything runs as expected on all
browsers and platforms.

If you plan to ensure that your sites look good on mobile
devices too, you should try to arrange access to a wide range
of 10S and Android devices, and services like BrowserStack
will help you with that. Browser developer tools also offer
mobile device emulation to help you verify the site is
responsive and viewable on those smaller screens.

What Is a WAMP, MAMP, or LAMP?

WAMP, MAMP, and LAMP are abbreviations for “Windows,
Apache, MySQL, PHP,” “Mac, Apache, MySQL, and PHP,”
and “Linux, Apache, MySQL, PHP.” These abbreviations each
describe a fully functioning setup used for developing
dynamic internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of packages
that bind the bundled programs together so that you don’t have
to install and set them up separately. This means you can
simply download and install a single program and follow a
few easy prompts to get your web development server up and
running fast, with minimal hassle.

During installation, several default settings are created for you.
The security configurations of such an installation will not be
as tight as on a production web server, because it is optimized
for local use. For these reasons, you should never install such a
setup as a production server.

However, for developing and testing websites and
applications, one of these installations should be entirely
sufficient.

WARNING

If you choose not to go the WAMP/MAMP/LAMP route for building
your own development system, you should know that downloading
and integrating the various parts yourself can be very time-consuming
and may require a lot of research to configure everything fully. But if
you already have all the components installed and integrated with one
another, they should work with the examples in this book.

Installing AMPPS on Windows

There are several available WAMP servers, each offering
slightly different configurations. Different editions of this
book have recommended different WAMP products according
to which seems to offer the best features and appears the most
reliable at the time. Currently AMPPS looks like the best
option (although you could choose other alternatives if you
preferred and still be able to follow the examples in this book).
You can download AMPPS by clicking the download button
on the website’s home page. (There are also Mac and Linux
versions available; see “Installing AMPPS on macOS” and
“Installing a LAMP on Linux”.)

I recommend that you always download the latest stable
release (as I write this, it’s 4.4, the installer for which is about
46 MB in size). The various Windows, macOS, and Linux
installers are listed on the download page.

Once you’ve downloaded the installer, run it to bring up the
window shown in Figure 2-1. Before arriving at that window,
though, if you use an antivirus program or have User Account
Control activated on Windows, you may first be shown one or
more advisory notices and will have to click Yes and/or OK to
continue with the installation.

Click Next, after which you must accept the agreement. Click
Next once again, and then once more to move past the

https://ampps.com/

information screen. You will now need to confirm the
installation location. This will probably be suggested as
something like the following, depending on the letter of your
main hard drive, but you can change this if you wish:

C:\Program Files\Ampps

r]

1 Setup - Ampps = X

-

Welcome to the Ampps Setup
Wizard
This will install Ampps 4.4 on your computer.

It is recommended that you close all other applications before
continuing.

Click Next to continue, or Cancel to exit Setup.

ampps

About... Mext Cancel

Figure 2-1. The opening window of the installer

NOTE

During the lifetime of this edition, some of the screens and options
shown in the following walk-through may change. If so, just use your
common sense to proceed as similarly as possible to the sequence of
actions described.

You must accept the agreements in the following screen and
click Next, then after reading the information summary click
Next once more and you will be asked which folder you wish
to install AMPPS into.

Once you have decided where to install AMPPS, click Next,
decide where shortcuts should be saved (the default shown is
usually just fine), and click Next again to choose which icons

you wish to install, as shown in Figure 2-2. On the screen that
follows, click the Install button to start the process.

-

1 Setup - Ampps =

Which additional tasks should be performed?

X
it —)
Select Additional Tasks i ,

Select the additional tasks you would like Setup to perform while installing Ampps, then
click Next.

Additional shortcuts:

B Create a desktop shortcut
B Create a quicklaunch icon
B Create a startmenu icon
Create Environment Variable:

B Add Ampps to PATH

About... Back Mext Cancel
Figure 2-2. Choose which icons to install

Installation will take a few minutes, after which you should

see the completion screen in Figure 2-3, and you can click
Finish.

1 Setup - Ampps —

Completing the Ampps Setup

A Wizard
Setup has finished installing Ampps on your computer. The

application may be launched by selecting the installed
shortouts.

Click Finish to exit Setup.

B Launch Ampps

ampps
Aboi...

Figure 2-3. AMPPS is now installed

The final thing you must do is install Microsoft Visual C++
Redistributable, if you haven’t already. A window will pop up
to prompt you, as shown in Figure 2-4. Click Install to start the
installation and if you already have it you will be told whether
you need to reinstall it, which you can skip.

ﬂ Microsoft Visual C++ 2015-2019 Redistributable (x64) - 1... = X

Microsoft Visual C++ 2015-2019
Redistributable (x64) - 14.29.30133

MICROSOFT SOFTWARE LICENSE TERMS l

MICROSOFT VISUAL C++ 2019 RUNTIME

These license terms are an agreement between Microsoft Corporation (or
based on where you live, one of its affiliates) and you. They apply to the

enfhuara namard ahmimia Tha tarme alen annhs tn anu Mirrnenft convirae nr

[] agree to the license terms and conditions

Install Close

Figure 2-4. Install the Visual C++ Redistributable if you don t already have it

If you choose to go ahead and install, you will have to agree to
the terms and conditions in the pop-up window that appears

and then click Install. Installation of this should be fairly fast.
Click Close to finish.

Once AMPPS is installed, the control window shown in
Figure 2-5 should appear at the bottom right of your desktop.
You can also call up this window using the AMPPS
application shortcut in the Start menu or on the desktop, if you
allowed these icons to be created.

Before proceeding, if you have any further questions, |
recommend you acquaint yourself with the AMPPS
documentation; otherwise, you are set to go—there’s always a
Support link at the bottom of the control window that will take
you to the AMPPS website, where you can open a trouble
ticket if needed.

¢ ampps

Powered By Softaculous

Apal:he G Hunning

MySQL 0 Stopped
PHP 8.2 O Running

C:/Program Files/Ampps
Apache Started

Support et Pro version

Figure 2-5. The AMPPS control window

https://ampps.com/docs

You may notice that the default version of PHP in AMPPS is
8.2. If you wish to try other versions for any reason, click the
Options button (nine white boxes in a square) within the
AMPPS control window and then select Change PHP Version;
a new menu will appear from which you can choose to install
a different version.

Testing the Installation

The first thing to do at this point is verify that everything is
working correctly. To do this, enter the following URL into the
address bar of your browser:

http://localhost

This will call up an introductory screen, where you can secure
AMPPS by giving it a password (see Figure 2-6). It is up to
you now whether or not to secure the program. If only you will
have access to the PC you may choose not to. But if there
could be any security implications then you probably should
password protect the installation.

¢ Sacure AMPPS - Powered by Sof X 4

« & 0 @ localhost o 1T L Y ’? H

N ampps Z s b * BE DO 0 o

Welcome soft

f Secure AMPPS

‘ Blogs >
& Micro Blogs
S y Do you want your AMPPS to a
E=) Portals/CMs 2
. e be secured?
" Forums » Your AMPPS is currently

Unsecured
[Ea) image Galleries

@ Wikis

Note: If you want your AMPPS to be secured, you must set a password. 5o
£ Social Networking =y ’ Y P

everytime you visit the AMPPS Panel, it will ask for a password.

¥ Ad Management ?
- Submit
& Calendars »

B Gaming

[e BT

Figure 2-6. The initial security setup screen

Once this has been completed you will be taken to the main
control page at http.//localhost/ampps/. From here you can
configure and control all aspects of the AMPPS stack, so note
this for future reference or set a bookmark in your browser.

Next, type the following to view the document root (described
in the following section) of your new Apache web server:

http://localhost

This time, rather than seeing the initial screen about setting up
security, you should see something similar to Figure 2-7,
although the files shown may be different.

¢ Indexof/ x

< C € @ localhost

Index of /

Name Last modified Size Description

2023-06-04 10:50 -
2023-06-04 10:39

@ favicon.ico 2018-03-27 18:00 1.1K
phpinfo.php 2021-12-22 11:42 46
test.html 2023-06-04 11:44 137

I

19
]

=

117

=

= b o
=]

I~

L) (! (1 O 0

Figure 2-7. Viewing the document root

Accessing the Document Root (Windows)

The document root is the directory that contains the main web
documents for a domain. This directory is the one that the
server uses when a basic URL without a path is typed into a
browser, such as http://yahoo.com or, for your local server,
http://localhost.

By default AMPPS will use the following location as the
document root:

C:\Program Files\Ampps\www

To ensure that you have everything correctly configured, you
should now create the obligatory “Hello World™ file. So, create
a small HTML file along the following lines using a plain-text
editor such as Windows Notepad (which will work just fine,
although better suited applications called code editors are
discussed later in this chapter):

<!DOCTYPE html>
<html lang="en">
<head
<title title
</head
<body
Hello World!
</body
</html

Once you have typed this, save the file into the document root
directory, using the filename test.html.

You can now call up this page in your browser by entering the
following URL in its address bar (see Figure 2-8):

http://localhost/test.html

l"_' A quick test x +

€ > C O @ localhost/testhtml 12 ¥r ®* O &

Hello World!

Figure 2-8. Your first web page

Remember that serving a web page from the document root (or
a subfolder) is different from loading one into a web browser
from your computer’s filesystem. The former will ensure
access to PHP, MySQL, and all the features of a web server,
while the latter will simply load the file into the browser,
which will do its best to display it but will be unable to process
any PHP or other server instructions. So, you should generally
run examples using the localhost preface from your browser’s
address bar, unless you are certain that the file doesn’t rely on
web server functionality.

Alternative WAMPs

When software is updated, it sometimes works differently
from how you expect, and bugs can even be introduced. So, if
you encounter difficulties that you cannot resolve in AMPPS,
you may prefer one of the other solutions available on the
web.

You will still be able to use all the examples in this book, but
you’ll have to follow the instructions supplied with each
WAMP, which may not be as easy to follow as the preceding
guide.

Here’s a selection of some of the best alternatives, in my
opinion:

e FasyPHP
e XAMPP
e WAMPServer

https://easyphp.org/
https://apachefriends.org/
https://oreil.ly/CIrSe

NOTE

Over the life of this edition of the book, it is very likely that the
developers of AMPPS will improve the software, and therefore the
installation screens and method of use may evolve over time, as may
versions of Apache, PHP, or MySQL. So, please don’t assume
something is wrong if the screens and operation look different. The
AMPPS developers take every care to ensure it is easy to use, so just
follow any prompts given and refer to the documentation on the
AMPPS website.

Installing AMPPS on macOS

AMPPS is also available on macOS, and you can download it
from the AMPPS website (as I write, the current version is 4.3,
and the installer size is around 38 MB).

If your browser doesn’t open it automatically once it has
downloaded, double-click the .dmg file, and then drag the
AMPPS folder over to your Applications folder (see Figure 2-
9).

12ampps

To install, drag AMPPS folder to Applications folder.

AMPPS Applications

Figure 2-9. Drag the AMPPS folder to Applications

Open your Applications folder as usual, and double-click the
AMPPS program. If your security settings prevent the file
being opened, hold down the Control key and click the icon
once. A new window will pop up asking if you are sure you

https://ampps.com/
https://ampps.com/

wish to open it. Click Open to do so. When the app starts, you
may have to enter your macOS password to proceed.

Once AMPPS is up and running, a control window similar to
the one shown in Figure 2-5 will appear at the bottom left of
your desktop.

NOTE

You may notice that the default version of PHP in AMPPS is 8.2. If
you wish to try a different version for any reason, click the Options
button (nine white boxes in a square) within the AMPPS control
window, then select Change PHP. A new menu will appear in which
you can choose to install other versions of PHP.

By default, AMPPS will use the following location as the
document root:

/Applications/Ampps/www

To ensure that you have everything correctly configured, you
should now create the obligatory “Hello World” file. So, create
a small HTML file along the following lines using the
TextEdit program (which will work just fine, although better
suited applications called code editors are discussed later in
this chapter):

<!DOCTYPE html>
<html lang="en">
<head
<title title
</head
<body
Hello World!
</body
</html

Once you have typed this, save the file into the document root
directory using the filename test.html.

You can now call up this page in your browser by entering the
following URL in its address bar (to see a similar result to
Figure 2-8):

http://localhost/test.html

NOTE

Remember that serving a web page from the document root (or a
subfolder) is different from loading one into a web browser from your
computer’s filesystem. The former will ensure access to PHP, MySQL,
and all the features of a web server, while the latter will simply load
the file into the browser, which will do its best to display it but will be
unable to process any PHP or other server instructions. So, you should
generally run examples using the /ocalhost preface from your
browser’s address bar, unless you are certain that the file doesn’t rely
on web server functionality.

Installing a LAMP on Linux

This book is aimed mostly at PC and Mac users, but its
contents will work equally well on a Linux computer.
However, there are dozens of popular flavors of Linux, and
each may require installing a LAMP in a slightly different
way, so I can’t cover them all in this book.

That said, some Linux versions come preinstalled with a web
server and MySQL, and chances are that you may already be
all set. To find out, try entering the following into a browser
and see whether you get a default document root web page:

http://localhost

If this works, you probably have the Apache server installed
and may well have MySQL up and running too; check with
your system administrator to be sure.

Working Remotely

If you have access to a web server already configured with
PHP and MySQL, you can always use that for your web
development. But unless you have a high-speed connection, it
is not always your best option. Developing locally allows you
to test modifications with little or no upload delay.

Accessing MySQL remotely may not be easy either. You
should use the secure SSH protocol to log in to your server to
manually create databases and set permissions from the
command line. Your web hosting company will advise you on
how best to do this and provide you with any password it has
set for your MySQL access (as well as, of course, for getting
into the server in the first place).

Logging In

I recommend that Windows users should install a program
such as PuTTY for SSH access (SSH is much more secure
than the Telnet protocol). Although modern Windows come
with SSH preinstalled, PuTTY’s user interface may be a bit
easier to use especially if you’re a beginner.

On a Mac, you already have SSH available as well. Just select
the Applications folder, followed by Utilities, and then launch
Terminal. In the Terminal window, log in to a server using
SSH like this:

ssh mylogin@server.com

where server.comis the name of the server you wish to log in
to and mylogin is the username you will log in under. You will
then be prompted for the correct password for that username
and, if you enter it correctly, you will be logged in.

Transferring Files

To transfer files to and from your web server, you will need a
file transfer program that implements an FTPS or SFTP
protocol, to ensure proper security on your web server. If you
go searching the web for a good client, you’ll find so many
that it could take you quite a while to locate one with all the
right features for you.

https://putty.org/

DON’T USE FTP

FTP is insecure and should not be used. There are far safer methods
than FTP for transferring files, such as SSH-based SFTP (SSH File
Transfer Protocol or Secure File Transfer Protocol) and SCP (Secure
Copy Protocol) are gaining traction. Good FTP programs, however,
will also support SFTP and FTPS (FTP-SSL). Often the means of file
transfer you use will be determined by the policies of the company you
work for, but for personal use an FTP program such as FileZilla
(discussed next) will provide most (if not all) of the functionality and

security you require.

My preferred SFTP program is the open source FileZilla, for

Windows, Linux, and macOS 10.5 or newer (see Figure

2-10).

Full instructions on how to use FileZilla are available on the

FileZilla Wikai.
File Edit View Transfer Server Bookmarks Help
Eratus: Dereciory listing of fpmjnet” successiul »
Seatun: Retrieving directory lsting of */Tprjnet/Tstedition”..,
Seatisi: Deectony lniting of " Mpimjsetl| fefition” suecessul -
Local sie: | W penget] eirtion’, w | Remte ste: | Mpmjnet’ stedition »
= lpenynet - T Trancans -
Intedticn 7, named_sample
L] A rebinsnest
n | T styses
1 !.I 9 Indedition
13 I 7| Jidedition
H T, Shedtion -
5 7. images L
1] 7 named_emmples
L1 T scepas
8 = 7 styes o
Filenasne = Hilesce Filetype = | | Flergme = Fesize Fletype Last masdified [———
& 1.php L33 PHP File & aptp 1032 PHE File VEOT0IR 1TIEIT adfrw (0544
L:'ww 3085 PHP File = 3574 PHE File ISOTI0IE 173738 acdfow (0644
& 1ere 1571 PHP File o aptp 2435 PHP Fin 1EITI003 173736 adfrw (0544
B 12pme 138 PHP File o e 3265 PHF R 1EDTZ003 17:38:43 adivw (D644
[~ REE L0M PHP File o b 3778 PHP Fe TR0 1TERIT adfow (0644
jm REPCR 2017 PHP File [T | @ ot 3243 PHP Fle ROTR0N3 1RITAT s (0644
B 1spep L0 PHP File |®{| ® cetonstnem 9 FeelorHT. 16OUZII1T3RIS adivw (064
e AT 1522 PHP File | et 1687 PP e RIS TTARAT s (0644
B 1reee 1376 PHP File [examgles.php. 1TTT P e 1GOT201E 1TIT36 adfow (065447
& 1agre 1553 PHP File (& index.php: SEN PHE File L0 TTARNS aciow (0540 B
L:'ww 1484 PHP File - & template htm AME FeeboHT.. 1ZML20M 14509 adfrw (0640
A ° m . BE <[] I B
26 filed and 23 dwectoned. Total sise: 185,381 byted 26 filei and 23 ductonsd. Total ire 185,331 byted
ServeiLocal file Derectacn Ramobe filg Sexg | Prcelty Statuni
| Queued fles | Faded baeaters | Successful ransters |
B0 Queue empty e

Figure 2-10. FileZilla is a full-featured SFTP program

Another well-known tool is WinSCP which, despite its name,
also supports SFTP and FTP. Of course, if you already have an
FTPS or SFTP program, all the better—stick with what you

know.

Using a Code Editor

https://oreil.ly/AKKQN
https://oreil.ly/yVpXK
https://winscp.net/

Although a plain-text editor works for editing HTML, PHP,
and JavaScript, there have been some tremendous
improvements in dedicated code editors, which now
incorporate very handy features such as colored syntax
highlighting. Today’s program editors are smart and can show
your syntax errors before you even run a program. Once
you’ve used a modern editor, you’ll wonder how you ever
managed without one.

There are a number of good programs available, but I have
settled on Visual Studio Code (VSC) from Microsoft because
it’s powerful; runs on all of Windows, Mac, and Linux; and is
free (see Figure 2-11). It is also a comprehensive developing
environment and is becoming ever more standard in the
industry.

] File Edit Selection View - - 2 IpmiT [Administrator] Doomw - a X
@ EXFLORER s+ W functions.php X
~ LPMUT robinsnest > ® functions.php
/O w 19 1 <Pphp // Example @1: functions.php |
£ 10htrn 2 ghost = ‘lacalhest’'; //f Change as necessary =
= apple.png 3 $data = 'robinsnest”; // Change as necessary -
g‘v % orange.png 4 Suser = ‘robinsnest”; /f Change as necessary
L
5 OS] 5 $pass = ‘password’'; // Change as necessary
g [$chrs = ‘utfambs’';
& . . -
7 fattr = "mysql:host=8host;dbnameé=3data;charset=8chrs”;
Al 21 8 Septs =
H5 » 22 9 [
w fobinsnest 1@ PDO: ATTR_ERRMODE =» PDO; ;ERRMODE_EXCEPTION,
> images 11 PDO: :ATTR_DEFAULT_FETCH_MODE => PDO::FETCH_ASSOC,
- =3 £
" checkuser.php 12 PDO: :ATTR_EMULATE_PREPARES = false,
13 1:
=™ friends.ph
= Php 14
= functions.php 15 try
" header.php 16 {
= indexphp 17 Spdo = new PDO(Rattr, Buser, $pass, fopts);
J5 javascriptjs 18 ¥
55 jouery-2.24 minjs 19 catch (PDOException Se)
S 18 ;
¥ jquery.mobile-1.4.5mincs i . .
3 i o 21 throw new PDOException{$e-»getMessage(), (int)Se->getcCade());
5 jquery.mobile-1.4.5minjs 22 }
jquery.mabile-1.4.5.min.map 23
" login.php 24 function createTable($name, Squeéry)
@ = logout.php 25 {
" members php 6 queryMysql ("CREATE TABLE IF WOT EXISTS Sname(Squery)™);
27 echo “Table ‘$name’ created or already exists.<bro™;
{gé > OUTLINE 28 ¥
* TIMELINE 24
Elceoao wo ln1,Col1 Spaces? UTF-8 LF PHP Q0 |

Figure 2-11. Program editors (like Visual Studio Code) are superior to plain-
text editors

As you can see in Figure 2-11, VSC highlights the syntax
appropriately, using colors to help clarify what’s going on.
What’s more, you can place the cursor next to brackets or
braces, and it will highlight the matching ones so that you can
check whether you have too many or too few. In fact, VSC

does a lot more in addition, which you will discover and enjoy
as you use it. You can download a copy from the Visual Studio
website.

Again, if you have a different preferred program editor, use
that; it’s always a good idea to use programs you’re already
familiar with. However, you will be hard pressed to find
something better than the now industry standard VSC, and you
should know how to use this product as many job positions
will require it.

Having reached the end of this chapter you will have
everything set up and installed, ready to commence your
journey into mastering the various development technologies
in this book, beginning with a solid introduction to PHP in the
following chapter. But before you go, take a couple of minutes
to answer the following questions to ensure you have
remembered the main points.

Questions

1. What is the difference between a WAMP, a MAMP,
and a LAMP?

2. What is the purpose of an SFTP program?

3. Name the main disadvantage of working on a remote
web server.

4. Why is it better to use a code editor instead of a plain-
text editor?

See “Chapter 2 Answers” in the Appendix A for the answers to
these questions.

https://oreil.ly/QY2AS

Chapter 3. Introduction to
PHP

In Chapter 1, I explained that PHP 1s the language you use to
make the server generate dynamic output—output that is
potentially different each time a browser requests a page. In
this chapter, you’ll start learning this simple but powerful
language; it will be the topic of the following chapters through
Chapter 7.

In production, your web pages will be a combination of
HTML, CSS, JavaScript, PHP, and SQL. Furthermore, each
page can lead to other pages to provide users with ways to
click through links and fill out forms.

We can avoid all that complexity while learning each
language, though. Let’s focus, for now, on just writing PHP
code and making sure that you get the output you expect—or
at least that you understand the output you actually get!

Incorporating PHP Within HTML

By default, PHP documents end with the extension .php.
When a web server encounters this extension in a requested
file, it automatically passes it to the PHP processor. Of course,
web servers are highly configurable, and some web developers
choose to force files ending with .Atm or .html to also get
parsed by the PHP processor, usually because they want to
hide their use of PHP.

Your PHP program is responsible for passing back a clean file
suitable for display in a web browser. At its very simplest, a
PHP document will output only HTML. To prove this, you can
take any normal HTML document and save it as a PHP
document (for example, saving index.html as index.php), and it

will display identically to the original (as long as the file is
being served with Apache and not directly from your
filesystem).

To trigger the PHP commands, you need to learn a new tag.
Here is the first part:

<?php

The first thing you may notice is that the tag has not been
closed. This is because entire sections of PHP can be placed
inside this tag, and they finish only when the closing part is
encountered, which looks like this:

7>

A small PHP “Hello World” program might look like
Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
?>

Use of this tag can be quite flexible. Some programmers open
the tag at the start of a document and close it right at the end,
outputting any HTML directly from PHP commands. Others,
however, choose to insert only the smallest possible fragments
of PHP within these tags wherever dynamic scripting is
required, leaving the rest of the document in standard HTML.

The latter type of programmer generally argues that their style
of coding results in faster code, while the former says that the
speed increase is so minimal that it doesn’t justify the
additional complexity of dropping in and out of PHP many
times in a single document.

As you learn more, you will discover your preferred style of
PHP development, but for the sake of making the examples in
this book easier to follow, I have adopted the approach of

keeping the number of transfers between PHP and HTML to a
minimum—generally only once or twice in a document.

By the way, there 1s a slight variation to the PHP syntax. If you
browse the internet for PHP examples, you may also encounter
code where the opening and closing syntax looks like this:

<?
echo "Hello world";
?>

Although it’s not as obvious that the PHP parser is being
called, this is a valid, alternative syntax that also works. But I
discourage its use, as it is incompatible with XML and is now
deprecated (meaning that it is no longer recommended and
support could be removed in future versions).

NOTE

If you have only PHP code in a file, you may omit the closing ?>. This
can be a good practice, as it will ensure that you have no excess
whitespace leaking from your PHP files. It is especially important
when you’re writing and including object-oriented code; otherwise, a
trailing newline character inserted after the closing part may be sent to
the browser when it’s not expected.

This Book’s Examples

To save you the time it would take to type them all in, you can
find all the examples from this book in the repo at GitHub.

In addition to listing all the examples by chapter and example
number, some of the examples may require explicit filenames,
in which case copies of the example(s) are also saved using the
filename(s) in the same folder (such as the upcoming

Example 3-4, which should be saved as testl.php).

The Structure of PHP

We’re going to cover a lot of ground in this section, and I
recommend that you work your way through it carefully, as it

https://github.com/RobinNixon/lpmj7

lays the foundation for everything else in this book. As
always, there are some useful questions at the end of the
chapter that you can use to test how much you’ve learned.

Using Comments

There are two ways to add comments to your PHP code. The
first turns a single line into a comment by preceding it with a
pair of forward slashes:

// This is a comment

This version of the comment feature is a great way to
temporarily remove a line of code from a program that is
giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals Sx";

You can also use this type of comment directly after a line of
code to describe its action, like this:

Sx += 10; // Move 10 pixels for visual separation

SINGLE-LINE # COMMENTS

As well as using // to signify the start of a single-line comment, you
can use the # symbol. However, this is less common and, as of PHP
version 8, single-line comments starting with #[now have a special
meaning (being treated as attributes). Consequently I prefer to stick
with the // style.

When you need to use multiple lines, there’s a second type of
comment, which looks like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section
of multiline comments
which will not be

interpreted */

?>

You can use the /* and */ pairs of characters to open and
close comments almost anywhere you like inside your code.
Most programmers use this construct to temporarily comment
out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

WARNING

A common error is to use /* and */ to comment out a large section of
code that already contains a commented-out section that uses those
characters. You can’t nest comments this way; the PHP interpreter
won’t know where a comment ends and will display an error message.
However, if you use an editor or IDE with syntax highlighting, this
type of error is easier to spot.

Basic Syntax

PHP is quite a simple language with roots in C and Perl (if you
have ever come across these), yet it looks more like Java. It is
also very flexible, but you need to learn a few rules about its
syntax and structure.

Semicolons
You may have noticed in the previous examples that the PHP
commands ended with a semicolon, like this:

SX += 10;

One of the most common causes of errors you will encounter
with PHP is forgetting this semicolon. This causes PHP to
treat multiple statements like one statement, which it is unable
to understand, prompting it to produce a Parse error
message.

The $ symbol

The $ symbol is used in many different ways by different
programming languages. For example, in the BASIC

language, it was used to terminate variable names to denote
them as strings.

In PHP, however, you must place a $ in front of al/ variables.
This is required to make the PHP parser faster, as it instantly
knows whenever it comes across a variable. Whether your
variables are numbers, strings, or arrays, they should all look
something like those in Example 3-3.

Example 3-3. Three different types of variable assignment

$mycounter = 1;
Smystring = "Hello";
$myarray = array "One", "Two", "Three");

That’s pretty much all the syntax you have to remember.
Unlike languages such as Python, which are very strict about
how you indent and lay out your code, PHP leaves you
completely free to use (or not use) all the indenting and
spacing you like. In fact, sensible use of whitespace is
generally encouraged (along with comprehensive
commenting) to help you understand your code when you
come back to it. It also helps other programmers when they
have to maintain your code.

Variables

A simple metaphor will help you understand what PHP
variables are all about. Just think of them as little (or big)
matchboxes! That’s right—matchboxes that you’ve painted
over and written names on.

String variables

Imagine you have a matchbox on which you have written the
word username. You then write Fred Smith on a piece of paper
and place it into the box (see Figure 3-1). That’s the same
process as assigning a string value to a variable, like this:

Susername = "Fred Smith";

The quotation marks indicate that “Fred Smith” is a string of
characters. You must enclose each string in either quotation
marks or apostrophes (single quotes), although there is a subtle
difference between the two types of quote, as explained later.
When you want to see what’s in the box, you open it, take out
the piece of paper, and read it. In PHP, doing so looks like this
(which displays the contents of the variable):

echo Susername;

Or you can assign it to another variable (photocopy the paper
and place the copy in another matchbox), like this:

Scurrent_user = $Susername;

Figure 3-1. You can think of variables as matchboxes containing items

Let’s bring all these variables together to form a complete
program, as in Example 3-4.

Example 3-4. Your first PHP program

<?php // testi.php
Susername = "Fred Smith";
echo Susername;

echo "
";
Scurrent_user = $username;
echo Scurrent_user;

?>

Now you can call it up by entering the following into your
browser’s address bar:

http://localhost/testl.php

NOTE

In the unlikely event that during the installation of your web server (as
detailed in Chapter 2) you changed the port assigned to the server to
anything other than 80, then you must place that port number within
the URL in this and all other examples in this book. So, for example, if
you changed the port to 8080, the preceding URL would become this:

http://localhost:8080/test1.php

I won’t mention this again, so just remember to use the port number (if
required) when trying examples or writing your own code.

The result of running this code should be two occurrences of
the name Fred Smith: the first is the result of the echo
Susername command and the second is the result of the echo
Scurrent_user command.

Numeric variables

Variables don’t have to contain just strings—they also can
contain numbers. If we return to the matchbox analogy, to

store the number 17 in the variable $count, the equivalent
would be placing, say, 17 beads in a matchbox on which you
have written the word count:

Scount = 17;

You could also use a floating-point number (containing a
decimal point). The syntax is the same:

Scount = 17.5;

If you want to use the number in PHP, you can assign the
value of $count to another variable or perhaps just echo it to
the web browser. Either of those would be the equivalent to
opening the matchbox and counting the beads.

Arrays

You can think of arrays as several matchboxes glued together.
For example, say we want to store the player names for a five-
person soccer team in an array called $team. To do this, we
could glue five matchboxes side by side and write the names
of all the players on separate pieces of paper, placing one in
each matchbox.

Across the top of the whole matchbox assembly we would
write the word team (see Figure 3-2). The equivalent of this in
PHP would be:

$team = array 'Bill', 'Mary', 'Mike', 'Chris', 'Anne');

Figure 3-2. An array is like several matchboxes glued together

This syntax is more complicated than the examples you’ve
seen so far. The array-building code consists of the following
construct:

array

with five strings inside. Each string is enclosed in apostrophes
or quotes, and strings must be separated with commas.

SHORT ARRAY SYNTAX

An alternative short array syntax uses [. ..] instead of the
array(...) construct. The previous array could also be written as:

$team = ['Bill', 'Mary', 'Mike', 'Chris', 'Anne'];

If we then wanted to know who player 4 is, we could use this
command:

echo Steam[3]; // Displays the name Chris

The reason the previous statement has the number 3, not 4, is
that the first element of a PHP array is actually the zeroth
element, so the player numbers will therefore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example,
instead of being single-dimensional lines of matchboxes, they
can be two-dimensional matrixes or have even more
dimensions.

As an example of a two-dimensional array, say we want to
keep track of a game of tic-tac-toe, which requires a data
structure of nine cells arranged in a 3 % 3 square. To represent
this with matchboxes, imagine nine of them glued to one
another in a matrix of three rows by three columns using an

array named $oxo (see Figure 3-3).

Figure 3-3. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an x or an o on
it in the correct matchbox for each move played. To do this in
PHP code, you have to set up an array containing three more
arrays, as in Example 3-5, in which the array is set up with a
game already in progress.

Example 3-5. Defining a two-dimensional array

<?php
$oxo = array array 'x', ' ', 'o'),
array 'o', 'o', 'x'),
array 'x', ‘o', ' '));

?>

Once again, we’ve moved up a step in complexity, but it’s easy
to understand if you grasp the basic array syntax. There are
three array() constructs nested inside the outer array()
construct. We’ve filled each row with an array consisting of
just one character: an x, an o, or a blank space. (We use a

blank space so that all the cells will be the same width when
they are displayed.)

To then return the third element in the second row of this
array, you would use the following PHP command, which will

display an x:
echo Soxo[1][2];

NOTE

Remember that array indexes (pointers at elements within an array)
start from zero, not one, so the [1] in the previous command refers to
the second of the three arrays, and the [2] references the third position
within that array. This command will return the contents of the
matchbox three along and two down.

As mentioned, we can support arrays with even more
dimensions by simply creating more arrays within arrays.
However, we will not be covering arrays of more than two
dimensions in this book.

And don’t worry if you’re still having difficulty coming to
grips with using arrays, as the subject is explained in detail in
Chapter 6.

Variable-naming rules

When creating PHP variables, you must follow these four
rules:

e Variable names, after the dollar sign, must start with a
letter of the alphabet or the (underscore) character.

e Variable names can contain only the characters a—z,
A-Z, 09, and _ (underscore).

e Variable names may not contain spaces. If a variable
name must comprise more than one word, separate

the words with the _ (underscore) character (e.g.,
Suser_name).

e Variable names are case-sensitive. The variable
SHigh_Score is not the same as the variable
Shigh_score.

NOTE

To allow extended ASCII characters that include accents, PHP also
supports the bytes from 127 through 255 in variable names as well as
Unicode characters. However, be aware that programmers using
English keyboards will have difficulty accessing any you use.

Operators

Operators let you specify mathematical operations to perform,
such as addition, subtraction, multiplication, and division. But
several other types of operators also exist, such as the string,
comparison, and logical operators. Math in PHP looks a lot
like plain arithmetic—for instance, the following statement
outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, let’s take
a moment to examine the various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect—they are
used to perform mathematics. You can use them for the main
four operations (add, subtract, multiply, and divide) as well as
to find a modulus (the remainder after a division) and to
increment or decrement a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example
+ Addition $5+1
- Subtraction $j-6
* Multiplication $j* 11
/ Division $i /4
% Modulus (the remainder $j %9
after a division is
performed)
++ Increment ++$]
Decrement --$3
** Exponentiation (or $3**2
power)

Assignment operators

Assignment operators assign values to variables. They start
with the very simple = and move on to +=, -=, and so on (see
Table 3-2). The operator += adds the value on the right side to
the variable on the left, instead of totally replacing the value

on the left. Thus, if Scount starts with the value 5, the
statement:

Scount += 1;

sets Scount to 6, just like the more familiar assignment
statement:

Scount = Scount + 1;

The /= and *= operators are similar, but for division and
multiplication, the .= operator concatenates variables, such

that Sa .= "." will append a period to the end of $Sa:
Sa = "Hello";
Sa .= "."; // Equivalent to writing $a = Sa . ".";

echo $a; // The output is Hello.
The %= operator assigns the modulus:

Snumber = 12;
Snumber %= 10; // Equivalent to writing Snumber = Snumber % 10;
echo $number; // Echoes 2, the remainder of 12 divided by 10.

Table 3-2. Assignment operators

Operator Example Equivalent to
= $j = 15 $3 = 15

+= $3 4= 5 5 =%+ 5

= $j -= 3 $3 =% -3

*= $3 *= 8 $3=%j * 8

/= $j /= 16 $i =93/ 16

.= $j .= Sk $3 =%j . sk

%= $j %= 4 $]=%%4

Comparison operators

Comparison operators are generally used inside a construct
such as an if statement in which you need to compare two
items. For example, you may wish to know whether a variable
you have been incrementing has reached a specific value, or

whether another variable is less than a set value, and so on (see
Table 3-3).

Table 3-3. Comparison operators

Operator Description Example
== Is equal to $j==4
I= Is not equal to $3 1= 21
> Is greater than $3 >3
< Is less than $j < 100
>= Is greater than or equal ~ $3 > 15
to
<= Is less than or equal to $j <= 8
<> Is not equal to $j < 23
== Is identical to $3 === "987"
t== Is not identical to $J 1= "1.2e3"

Note the difference between = and ==. The first is an
assignment operator, and the second is a comparison operator.
Also remember that == compares the two values for being
equivalent, while === requires them to be identical. Even
advanced programmers can sometimes confuse the use of
these when coding hurriedly, so be careful.

Logical operators

If you haven’t used them before, logical operators may at first
seem a little daunting. But just think of them the way you
would use logic in English. For example, you might say to
yourself, “If the time 1s later than 12 p.m. and earlier than 2
p.m., have lunch.” In PHP, the code for this might look
something like this (using military, twenty-four-hour time):

if Shour > 12 && Shour < 14) dolunch();

Here we have moved the set of instructions for actually going
to lunch into a function that we will have to create later called
dolunch.

As the previous example shows, you generally use a logical
operator to combine the results of two of the comparison
operators shown in “Comparison operators”. A logical
operator can also be input to another logical operator: “If the
time is later than 12 p.m. and earlier than 2 p.m., or if the
smell of a roast is permeating the hallway and there are plates
on the table.” As a rule, if something has a TRUE or FALSE
value, it can be input to a logical operator. A logical operator
takes two true or false inputs and produces a true or false
result.

Table 3-4 shows the logical operators according to precedence,
which is discussed in Chapter 4.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 3 && $k == 2
and Low-precedence and $3j == 3 and $k == 2
[Or $3 <511 %3 >10
or Low-precedence or $j < 5 or $j > 10

! Not P (8] == $k)

xor Exclusive or $3 xor $k

Note that && is usually interchangeable with and; the same is

true for | | and or. However, because and and or have a lower
precedence, you should avoid using them except when they

are the only option, as in the following statement, which must

use the or operator (| | cannot be used to force a second
statement to execute if the first fails):

Shtml = file_get_contents($Ssite) or die "Cannot download from
Ssite");

Operator precedence

Operator precedence determines how particular expressions
are grouped together. The concept is also used in common
math as illustrated by the following statement:

5+2*3

The result is 11, because multiplication has a higher
precedence than addition, so the result is computed as 2
multiplied by 3, which equals to 6, plus 5. It can be rewritten
as:

5+ (2 * 3)

The parentheses in this case are optional but they help to
illustrate the precedence. In other cases, parentheses can be
used to change or force precedence, for example the result of
the following statement 1s 21:

(5+2)*3

You’ll learn more about operator precedence in Chapter 4.

The most unusual of these operators is xor, which stands for
exclusive or and returns a TRUE value if either value is TRUE
but a FALSE value if both inputs are TRUE or both inputs are
FALSE. To understand this, imagine that you want to concoct
your own cleaner for household items. Ammonia makes a
good cleaner and so does bleach, so you want your cleaner to
have one of these. But the cleaner must not have both, because
the combination is hazardous. In PHP, you could represent this

as follows (using parentheses because xor has a lower
precedence than =):

$ammonia = true

$bleach = false

$safe = (Sammonia xor $bleach);

echo $safe; // output 1 which is true

In this example, if either $ammonia or $bleach is TRUE, $safe
will also be set to TRUE. But if both are TRUE or both are
FALSE, $safe will be set to FALSE.

Variable Assignment

The syntax to assign a value to a variable is always Svariable
= value. Or, to reassign the value to another variable, it 1s
Sother_variable = Svariable, remembering to preface
variable names with $ symbols in PHP.

There are a couple of other assignment operators that you will
find useful. For example, we’ve already seen this:

Sx += 10;

which tells the PHP parser to add the value on the right (in this

instance, the value 10) to the variable $x. Likewise, we could
subtract:

Sy -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 (known as incrementing and
decrementing) is such a common operation that PHP provides
special operators for it. You can use one of the following in

place of the += and -= operators:

++5X;
--%y;

In conjunction with a test (an i1f statement), you could use this
code:

if ++$x == 10) echo $x;

which tells PHP to first increment the value of $x and then to
test whether it has the value 10 and, if it does, to output its
value. But you can also require PHP to increment (or, as in the
following example, decrement) a variable after it has tested
the value, like this:

if $y-- == 0) echo Sy;

which gives a subtly different result. Suppose Sy starts out as 0
before the statement is executed. The comparison will return a
TRUE result, but Sy will be set to -1 after the comparison is
made. So what will the echo statement display: 0 or -1? Try to
guess, and then try out the statement in a PHP processor to
confirm. Because this combination of statements is confusing,
it should be taken as an educational example and not as a
guide to good programming style.

In short, a variable is incremented or decremented before the
test if the operator is placed before the variable, whereas the
variable is incremented or decremented after the test if the
operator is placed after the variable.

By the way, the correct answer to the previous question is that
the echo statement will display the result -1, because Sy was
decremented right after it was accessed in the if statement,
and before the echo statement.

String concatenation

Concatenation is a somewhat arcane term for putting
something after another thing. So, in PHP, string concatenation
uses the period (.) to append one string of characters to
another. The simplest way to do this is:

echo "You have . Smsgs . messages.";
Assuming that the variable Smsgs is set to the value 5, the

output from this line of code will be:
You have 5 messages.

Just as you can add a value to a numeric variable with the +=

operator, you can append one string to another using .=, like
this:

S$bulletin = "This 1s a test of the broadcast system.";
Snewsflash "Houston, we have a problem.";

Sbulletin . " . Snewsflash;

echo $bulletin;

In this case, if Sbulletin contains a news bulletin and
Snewsflash has a news flash, the command appends the news

flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type
of quotation mark that you use. If you wish to assign a literal
string, preserving the exact contents, you should use single
quotation marks (apostrophes), like this:

Sinfo = 'Preface variables with a § like this: Svariable';

In this case, every character within the single-quoted string is
assigned to $info. If you had used double quotes, PHP would
have attempted to evaluate Svariable as a variable.

On the other hand, when you want to include the value of a
variable inside a string, you do so by using double-quoted

strings. You can wrap the variable name in curly braces { and
} to explicitly specify the end of the variable name:

echo "This week {$count} people have viewed your profile";

As you can see, this syntax also offers a simpler option to
concatenation in which you don’t need to use a period, or
close and reopen quotes, to append one string to another. This
is called variable substitution or variable interpolation, and
some programmers use it extensively, whereas others don’t use
it at all.

Escaping characters

Sometimes a string needs to contain characters with special
meanings that might be interpreted incorrectly. For example,
the following line of code will not work, because the second
quotation mark encountered in the word spelling s will tell the
PHP parser that the string’s end has been reached.
Consequently, the rest of the line will be rejected as an error:

Stext = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the
offending quotation mark to tell PHP to treat the character
literally and not to interpret it:

Stext = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in
which PHP would otherwise return an error by trying to
interpret a character. For example, the following double-
quoted string will be correctly assigned:

Stext = "She wrote upon it, \"Return to sender\".";

Additionally, you can use escape characters to insert various
special characters into strings, such as tabs, newlines, and
carriage returns. These are represented, as you might guess, by
\t, \n, and \r. Here is an example using tabs to lay out a
heading—it is included here merely to illustrate escapes,
because in web pages there are always better ways to do
layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in
double-quoted strings. In single-quoted strings, the preceding
string would be displayed with the ugly \t sequences instead
of tabs. Within single-quoted strings, only the escaped
apostrophe (\ ') and escaped backslash itself (\\) are
recognized as escaped characters.

Multiline Strings

There are times when you need to output quite a lot of text
from PHP, and using several echo (or print) statements
would be time-consuming and messy. To overcome this, PHP
offers two conveniences. The first is just to put multiple lines
between quotes, as in Example 3-6. Variables can also be
assigned, as in Example 3-7.

Example 3-6. A multiline string echo statement

<?php
Sauthor = "Steve Ballmer";

echo "Developers, developers, developers, developers,
developers,

developers, developers, developers, developers!

- Sauthor.";
?>

Example 3-7. A multiline string assignment

<?php
Sauthor = "Bill Gates";

Stext = "Measuring programming progress by lines of code 1is
like
Measuring aircraft building progress by weight.

- Sauthor.";
?>

PHP also offers a multiline sequence using the <<< operator—
commonly referred to as a here-document or heredoc—as a
way of specifying a string literal, preserving the line breaks
and other whitespace (including indentation) in the text. Its use
can be seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
Sauthor = "Brian W. Kernighan";

echo <<< END

Debugging is twice as hard as writing the code in the first
place.

Therefore, if you write the code as cleverly as possible, you
are,

by definition, not smart enough to debug it.

- Sauthor.
_END;

?>

This code tells PHP to output everything between the two
_END tags as if it were a double-quoted string (except that
quotes in a heredoc do not need to be escaped). This means it’s
possible, for example, for a developer to write entire sections
of HTML directly into PHP code and then just replace specific
dynamic parts with PHP variables.

It is important to remember that the closing _END; must appear
right at the start of a new line, and it must be the only thing on
that line—not even a comment is allowed to be added after it
(nor even a single space). Once you have closed a multiline
block, you are free to use the same tag name again.

NOTE

Remember: using the <<<_END..._END; heredoc construct, you don’t
have to add \n linefeed characters to send a linefeed—just press
Return and start a new line. Also, unlike in either a double-quote-
delimited or single-quote-delimited string, you are free to use all the
single and double quotes you like within a heredoc, without escaping
them by preceding them with a backslash ().

Example 3-9 shows how to use the same syntax to assign
multiple lines to a variable.

Example 3-9. A multiline string variable assignment

<?php
Sauthor = "Scott Adams";

Sout = <<< END

Normal people believe that if it ain't broke, don't fix it.

Engineers believe that if it ain't broke, it doesn't have
enough

features yet.

- Sauthor.
_END;
echo $out;
?>

The variable $out will then be populated with the contents
between the two tags. If you were appending, rather than
assigning, you also could have used .= in place of = to append
the string to Sout.

Be careful not to place a semicolon directly after the first
occurrence of _END, as that would terminate the multiline

block before it had even started and cause a Parse error
message.

By the way, the _END tag is simply one I chose for these
examples because it is unlikely to be used anywhere else in
PHP code and is therefore unique. You can use any tag you
like, such as _SECTION1 or _OUTPUT and so on. Also, to help
differentiate tags such as this from variables or functions, the
general practice is to preface them with an underscore.

Using a nowdoc

If you wish to prevent PHP from parsing any variables
encountered within a heredoc, you can use a nowdoc instead.
It works in almost the same way, except that the name you
choose for your end tag should be enclosed in single quotes at

the start of the nowdoc, as in Example 3-10, where the
difference between it and Example 3-9 is shown in bold.

Example 3-10. A nowdoc multiline assignment

<?php
Sauthor = "Scott Adams";

Sout = <<<'_END'

Normal people believe that if it ain't broke, don't fix it.
Engineers believe that if it ain't broke, it doesn't have enough
features yet.

- Sauthor.
_END;
echo $out;
?>

In this instance $author will not be replaced with the string
Scott Adams and will simply remain displayed as $Sauthor.

NOTE

Laying out text over multiple lines is usually just a convenience to
make your PHP code easier to read, because once it is displayed in a
web page, HTML formatting rules take over and whitespace is

suppressed (but in a heredoc, $author in our example will still be
replaced with the variable’s value, unlike in a nowdoc).

So, for example, if you load these multiline output examples into a
browser, they will not display over several lines, because all browsers
treat newlines just like spaces. However, if you use the browser’s View
Source feature, you will find that the newlines are correctly placed and
that PHP preserved the line breaks.

Variable Typing

PHP is a loosely typed language. This means variables do not
have to be declared before they are used and PHP always
converts variables to the type required by their context when
they are accessed.

For example, you can create a multiple-digit number and
extract the nth digit from it simply by assuming it to be a

string. In Example 3-11, the numbers 12345 and 67890 are
multiplied together, returning a result of 838102050, which is
then placed in the variable Snumber.

Example 3-11. Automatic conversion from a number to a
string

<?php
Snumber = 12345 * 67890;
echo substr($number, 3, 1);
?>

At the point of the assignment, $Snumber is a numeric variable.
But on the second line, a call is placed to the PHP function

substr, which asks for one character to be returned from
Snumber, starting at the fourth position (remember that PHP
offsets start from zero). To do this, PHP turns $number into a
nine-character string so that substr can access it and return
the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In
Example 3-12, the variable $pi is set to a string value, which
is then automatically turned into a floating-point number in the
third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-12. Automatically converting a string to a number

<?php

S$pi = "3.1415927";

$radius = 5;

echo $pi * (Sradius * $radius);
?>

In practice, what this means is that you don’t have to worry
too much about your variable types, although it is possible for
type declarations to be added to function arguments, return
values, and (as of PHP 7.4.0) class properties, ensuring that
the value is of the specified type at call time; otherwise, a
TypeError is thrown.

Assuming type declarations are not being used, just assign
them values that make sense to you, and PHP will convert
them 1f necessary. Then, when you want to retrieve values, just

https://oreil.ly/bobD5

ask for them—for example, with an echo statement, but do
remember that sometimes automatic conversions do not
operate quite as you might expect.

If type declarations are being used to make the code behave
more predictably, you can change the type of the variable by
prefixing it with the chosen type in parentheses, like this:

$string = (string)Snumber;
S$number = (int)S$string;
Sboolean = (bool)$integer;

Sometimes, it may not be clear at the first sight how the type
conversion (sometimes called type casting) will go and what
will be the result. The PHP manual has all the conversion
rules nicely documented.

Constants

Constants are similar to variables, holding information to be
accessed later, except that they are what they sound like—
constant. In other words, once you have defined a constant, its
value is set for the remainder of the program and cannot be
altered.

For example, you can use a constant to hold the location of
your server root (the folder with the main files of your
website). You would define such a constant like this:

define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable, you just refer to it
like a regular variable (but it isn’t preceded by a dollar sign):

Sdirectory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different
server with a different folder configuration, you have only a
single line of code to change.

https://oreil.ly/SQhND

NOTE

The two things you have to remember about constants are that they
must not be prefaced with a $ (unlike regular variables) and that you
can define them only using the define function.

It is standard practice to use only uppercase letters for constant
variable names, especially if other people will also read your
code.

Predefined Constants

PHP comes ready-made with dozens of predefined constants
that you won’t generally use as a beginner. However, there are
a few—known as the magic constants—that you will find
useful. The names of the magic constants always have two
underscores at the beginning and two at the end so that you
won’t accidentally try to name one of your own constants with
a name that 1s already taken. These are detailed in Table 3-5.
The concepts referred to in the table will be introduced in
future chapters.

Table 3-5. PHP s magic constants

Magic
constant Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If
used inside an include, the name of the
included file is returned. Some operating
systems allow aliases for directories,
called symbolic links; in __F1Le__ these are
always changed to the actual directories.

_DIR__ The directory of the file. If used inside an
include, the directory of the included file is
returned. This is equivalent to dirname(__FIL
E__). This directory name does not have a
trailing slash unless it is the root directory.

__FUNCTION__ The function name. Returns the function
name as it was declared (case-sensitive).

__CLASS__ The class name. Returns the class name as
it was declared (case-sensitive).

__METHOD__ The class method name. The method name
1s returned as it was declared (case-
sensitive).

__NAMESPACE__ The name of the current namespace. This
constant is defined at compile time (case-
sensitive).

One handy use of these variables 1s for debugging, when you
need to insert a line of code to see whether the program flow
reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This prints the current program line in the current file
(including the path) to the web browser.

The Difference Between the echo and print
Commands

So far, you have seen the echo command used in a number of
ways to output text from the server to your browser. In some
cases, a string literal has been output. In others, strings have
first been concatenated or variables have been evaluated. I've
also shown output spread over multiple lines.

But there is an alternative to echo: print. The two commands
are quite similar, but print is a function-like construct that
takes a single parameter and has a return value (which is

always 1), whereas echo is purely a PHP language construct.
Since both commands are constructs, neither requires
parentheses.

By and large, the echo command will be a tad faster than
print, because it doesn’t set a return value. On the other hand,
because it isn’t implemented like a function, echo cannot be
used as part of a more complex expression, whereas print
can. Here’s an example to output whether the value of a

variable is TRUE or FALSE using print—something you could
not perform in the same manner with echo, because it would

display a Parse error message as the ternary operator
expects an expression that returns a value and while for

example echo "TRUE" doesn’t, print "TRUE" returns 1:
$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether
variable $b is TRUE or FALSE. Whichever command is on the
left of the following colon is executed if $b is TRUE, whereas

the command to the right of the colon is executed if $b is
FALSE.

Generally, though, the examples in this book use echo, and I
recommend that you do so as well until you reach the point in
your PHP development that you discover the need for using

print.

Functions

Functions separate out and encapsulate sections of code that
perform a particular task more than once. For example, maybe
you often need to look up a date and return it in a certain
format. That would be a good example to turn into a function.
The code doing it might be only three lines long, but if you
have to paste it into your program a dozen times, you’re
making your program unnecessarily large and complex if you
don’t use a function. And if you decide to change the date
format later, putting it in a function means having to change it
in only one place.

Placing code into a function not only shortens your program
and makes it more readable but also adds extra functionality
(pun intended), because functions can be passed parameters to
make them perform differently. They can also return values to
the calling code.

To create a function, declare it as shown in Example 3-13.

Example 3-13. A simple function declaration

<?php
function longdate(Stimestamp)
{
return date("L F jS Y", Stimestamp);
}

?>

This function returns a date in the format Sunday May 2nd
2027. Any number of parameters can be passed between the
initial parentheses; we have chosen to accept just one. The

curly braces enclose all the code that is executed when you
later call the function. Note that the first letter within the date
function call in this example is a lowercase letter L, not to be
confused with the number 1.

To output today’s date using this function, place the following
call in your code:

echo longdate(time());

If you need to print out the date 17 days ago, you now just
have to issue this call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to Longdate the current time less the number of
seconds since 17 days ago (17 days % 24 hours x 60 minutes X
60 seconds).

Functions can also accept multiple parameters and return
multiple results, using techniques that I’1l introduce over the
following chapters.

Variable Sco