
This copy of the TypeScript handbook was
created on Wednesday, September 28, 2022
against commit c3f0d8 with TypeScript 4.8.

https://github.com/microsoft/TypeScript-Website/tree/c3f0d8
https://www.typescriptlang.org/https://devblogs.microsoft.com/typescript/announcing-typescript-4-8/

Table of Contents

The TypeScript Handbook Your first step to learn TypeScript

The Basics Step one in learning TypeScript: The basic types.

Everyday Types The language primitives.

Narrowing
Understand how TypeScript uses JavaScript knowledge
to reduce the amount of type syntax in your projects.

More on Functions Learn about how Functions work in TypeScript.

Object Types
How TypeScript describes the shapes of JavaScript
objects.

Creating Types from Types
An overview of the ways in which you can create more
types from existing types.

Generics Types which take parameters

Keyof Type Operator Using the keyof operator in type contexts.

Typeof Type Operator Using the typeof operator in type contexts.

Indexed Access Types Using Type['a'] syntax to access a subset of a type.

Conditional Types
Create types which act like if statements in the type
system.

Mapped Types Generating types by re-using an existing type.

Template Literal Types
Generating mapping types which change properties via
template literal strings.

Classes How classes work in TypeScript

Modules
How JavaScript handles communicating across file
boundaries.

The TypeScript Handbook

About this Handbook
Over 20 years after its introduction to the programming community, JavaScript is now one of the
most widespread cross-platform languages ever created. Starting as a small scripting language for
adding trivial interactivity to webpages, JavaScript has grown to be a language of choice for both
frontend and backend applications of every size. While the size, scope, and complexity of programs
written in JavaScript has grown exponentially, the ability of the JavaScript language to express the
relationships between different units of code has not. Combined with JavaScript's rather peculiar
runtime semantics, this mismatch between language and program complexity has made JavaScript
development a difficult task to manage at scale.

The most common kinds of errors that programmers write can be described as type errors: a
certain kind of value was used where a different kind of value was expected. This could be due to
simple typos, a failure to understand the API surface of a library, incorrect assumptions about
runtime behavior, or other errors. The goal of TypeScript is to be a static typechecker for JavaScript
programs - in other words, a tool that runs before your code runs (static) and ensures that the types
of the program are correct (typechecked).

If you are coming to TypeScript without a JavaScript background, with the intention of TypeScript
being your first language, we recommend you first start reading the documentation on either the
Microsoft Learn JavaScript tutorial or read JavaScript at the Mozilla Web Docs. If you have
experience in other languages, you should be able to pick up JavaScript syntax quite quickly by
reading the handbook.

How is this Handbook Structured
The handbook is split into two sections:

The Handbook

The TypeScript Handbook is intended to be a comprehensive document that explains TypeScript
to everyday programmers. You can read the handbook by going from top to bottom in the left-
hand navigation.

You should expect each chapter or page to provide you with a strong understanding of the given
concepts. The TypeScript Handbook is not a complete language specification, but it is intended to
be a comprehensive guide to all of the language's features and behaviors.

https://docs.microsoft.com/javascript/
https://developer.mozilla.org/docs/Web/JavaScript/Guide

A reader who completes the walkthrough should be able to:

Read and understand commonly-used TypeScript syntax and patterns

Explain the effects of important compiler options

Correctly predict type system behavior in most cases

In the interests of clarity and brevity, the main content of the Handbook will not explore every
edge case or minutiae of the features being covered. You can find more details on particular
concepts in the reference articles.

Reference Files

The reference section below the handbook in the navigation is built to provide a richer
understanding of how a particular part of TypeScript works. You can read it top-to-bottom, but
each section aims to provide a deeper explanation of a single concept - meaning there is no aim
for continuity.

Non-Goals

The Handbook is also intended to be a concise document that can be comfortably read in a few
hours. Certain topics won't be covered in order to keep things short.

Specifically, the Handbook does not fully introduce core JavaScript basics like functions, classes, and
closures. Where appropriate, we'll include links to background reading that you can use to read up
on those concepts.

The Handbook also isn't intended to be a replacement for a language specification. In some cases,
edge cases or formal descriptions of behavior will be skipped in favor of high-level, easier-to-
understand explanations. Instead, there are separate reference pages that more precisely and
formally describe many aspects of TypeScript's behavior. The reference pages are not intended for
readers unfamiliar with TypeScript, so they may use advanced terminology or reference topics you
haven't read about yet.

Finally, the Handbook won't cover how TypeScript interacts with other tools, except where
necessary. Topics like how to configure TypeScript with webpack, rollup, parcel, react, babel, closure,
lerna, rush, bazel, preact, vue, angular, svelte, jquery, yarn, or npm are out of scope - you can find
these resources elsewhere on the web.

Get Started
Before getting started with The Basics, we recommend reading one of the following introductory
pages. These introductions are intended to highlight key similarities and differences between

https://www.typescriptlang.org/docs/handbook/2/basic-types.html

TypeScript and your favored programming language, and clear up common misconceptions
specific to those languages.

TypeScript for New Programmers

TypeScript for JavaScript Programmers

TypeScript for OOP Programmers

TypeScript for Functional Programmers

Otherwise, jump to The Basics or grab a copy in Epub or PDF form.

https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes-oop.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes-func.html
https://www.typescriptlang.org/docs/handbook/2/basic-types.html
https://www.typescriptlang.org/assets/typescript-handbook.epub
https://www.typescriptlang.org/assets/typescript-handbook.pdf

The Basics

Each and every value in JavaScript has a set of behaviors you can observe from running different
operations. That sounds abstract, but as a quick example, consider some operations we might run
on a variable named message .

If we break this down, the first runnable line of code accesses a property called toLowerCase and
then calls it. The second one tries to call message directly.

But assuming we don't know the value of message - and that's pretty common - we can't reliably
say what results we'll get from trying to run any of this code. The behavior of each operation
depends entirely on what value we had in the first place.

Is message callable?

Does it have a property called toLowerCase on it?

If it does, is toLowerCase even callable?

If both of these values are callable, what do they return?

The answers to these questions are usually things we keep in our heads when we write JavaScript,
and we have to hope we got all the details right.

Let's say message was defined in the following way.

As you can probably guess, if we try to run message.toLowerCase() , we'll get the same string
only in lower-case.

// Accessing the property 'toLowerCase'
// on 'message' and then calling it
message.toLowerCase();

// Calling 'message'
message();

const message = "Hello World!";

What about that second line of code? If you're familiar with JavaScript, you'll know this fails with an
exception:

It'd be great if we could avoid mistakes like this.

When we run our code, the way that our JavaScript runtime chooses what to do is by figuring out
the type of the value - what sorts of behaviors and capabilities it has. That's part of what that
TypeError is alluding to - it's saying that the string "Hello World!" cannot be called as a
function.

For some values, such as the primitives string and number , we can identify their type at runtime
using the typeof operator. But for other things like functions, there's no corresponding runtime
mechanism to identify their types. For example, consider this function:

We can observe by reading the code that this function will only work if given an object with a
callable flip property, but JavaScript doesn't surface this information in a way that we can check
while the code is running. The only way in pure JavaScript to tell what fn does with a particular
value is to call it and see what happens. This kind of behavior makes it hard to predict what code
will do before it runs, which means it's harder to know what your code is going to do while you're
writing it.

Seen in this way, a type is the concept of describing which values can be passed to fn and which
will crash. JavaScript only truly provides dynamic typing - running the code to see what happens.

The alternative is to use a static type system to make predictions about what code is expected
before it runs.

Static type-checking
Think back to that TypeError we got earlier from trying to call a string as a function. Most
people don't like to get any sorts of errors when running their code - those are considered bugs!
And when we write new code, we try our best to avoid introducing new bugs.

TypeError: message is not a function

function fn(x) {
 return x.flip();
}

If we add just a bit of code, save our file, re-run the code, and immediately see the error, we might
be able to isolate the problem quickly; but that's not always the case. We might not have tested the
feature thoroughly enough, so we might never actually run into a potential error that would be
thrown! Or if we were lucky enough to witness the error, we might have ended up doing large
refactorings and adding a lot of different code that we're forced to dig through.

Ideally, we could have a tool that helps us find these bugs before our code runs. That's what a static
type-checker like TypeScript does. Static types systems describe the shapes and behaviors of what
our values will be when we run our programs. A type-checker like TypeScript uses that information
and tells us when things might be going off the rails.

Running that last sample with TypeScript will give us an error message before we run the code in
the first place.

Non-exception Failures
So far we've been discussing certain things like runtime errors - cases where the JavaScript runtime
tells us that it thinks something is nonsensical. Those cases come up because the ECMAScript
specification has explicit instructions on how the language should behave when it runs into
something unexpected.

For example, the specification says that trying to call something that isn't callable should throw an
error. Maybe that sounds like "obvious behavior", but you could imagine that accessing a property
that doesn't exist on an object should throw an error too. Instead, JavaScript gives us different
behavior and returns the value undefined :

const message = "hello!";

message();

This expression is not callable.
 Type 'String' has no call signatures.
This expression is not callable.
 Type 'String' has no call signatures.

const user = {
 name: "Daniel",
 age: 26,
};

user.location; // returns undefined

https://tc39.github.io/ecma262/

Ultimately, a static type system has to make the call over what code should be flagged as an error in
its system, even if it's "valid" JavaScript that won't immediately throw an error. In TypeScript, the
following code produces an error about location not being defined:

While sometimes that implies a trade-off in what you can express, the intent is to catch legitimate
bugs in our programs. And TypeScript catches a lot of legitimate bugs.

For example: typos,

uncalled functions,

or basic logic errors.

const user = {
 name: "Daniel",
 age: 26,
};

user.location;

Property 'location' does not exist on type '{ name: string; age:
number; }'.
Property 'location' does not exist on type '{ name: string; age: number;
}'.

const announcement = "Hello World!";

// How quickly can you spot the typos?
announcement.toLocaleLowercase();
announcement.toLocalLowerCase();

// We probably meant to write this...
announcement.toLocaleLowerCase();

function flipCoin() {
 // Meant to be Math.random()
 return Math.random < 0.5;

Operator '<' cannot be applied to types '() => number' and 'number'.

}

Operator '<' cannot be applied to types '() => number' and 'number'.

Types for Tooling
TypeScript can catch bugs when we make mistakes in our code. That's great, but TypeScript can
also prevent us from making those mistakes in the first place.

The type-checker has information to check things like whether we're accessing the right properties
on variables and other properties. Once it has that information, it can also start suggesting which
properties you might want to use.

That means TypeScript can be leveraged for editing code too, and the core type-checker can
provide error messages and code completion as you type in the editor. That's part of what people
often refer to when they talk about tooling in TypeScript.

TypeScript takes tooling seriously, and that goes beyond completions and errors as you type. An
editor that supports TypeScript can deliver "quick fixes" to automatically fix errors, refactorings to
easily re-organize code, and useful navigation features for jumping to definitions of a variable, or
finding all references to a given variable. All of this is built on top of the type-checker and is fully
cross-platform, so it's likely that your favorite editor has TypeScript support available.

const value = Math.random() < 0.5 ? "a" : "b";
if (value !== "a") {
 // ...
} else if (value === "b") {

This condition will always return 'false' since the types '"a"' and
'"b"' have no overlap.

 // Oops, unreachable
}

This condition will always return 'false' since the types '"a"' and '"b"'
have no overlap.

import express from "express";
const app = express();

app.get("/", function (req, res) {
 res.sen

});

app.listen(3000);

send

sendDate

sendfile

sendFile

https://github.com/Microsoft/TypeScript/wiki/TypeScript-Editor-Support

tsc , the TypeScript compiler
We've been talking about type-checking, but we haven't yet used our type-checker. Let's get
acquainted with our new friend tsc , the TypeScript compiler. First we'll need to grab it via npm.

This installs the TypeScript Compiler tsc globally. You can use npx or similar tools if you'd prefer to

run tsc from a local node_modules package instead.

Now let's move to an empty folder and try writing our first TypeScript program: hello.ts :

Notice there are no frills here; this "hello world" program looks identical to what you'd write for a
"hello world" program in JavaScript. And now let's type-check it by running the command tsc
which was installed for us by the typescript package.

Tada!

Wait, "tada" what exactly? We ran tsc and nothing happened! Well, there were no type errors, so
we didn't get any output in our console since there was nothing to report.

But check again - we got some file output instead. If we look in our current directory, we'll see a
hello.js file next to hello.ts . That's the output from our hello.ts file after tsc compiles
or transforms it into a plain JavaScript file. And if we check the contents, we'll see what TypeScript
spits out after it processes a .ts file:

npm install -g typescript

// Greets the world.
console.log("Hello world!");

tsc hello.ts

// Greets the world.
console.log("Hello world!");

In this case, there was very little for TypeScript to transform, so it looks identical to what we wrote.
The compiler tries to emit clean readable code that looks like something a person would write.
While that's not always so easy, TypeScript indents consistently, is mindful of when our code spans
across different lines of code, and tries to keep comments around.

What about if we did introduce a type-checking error? Let's rewrite hello.ts :

If we run tsc hello.ts again, notice that we get an error on the command line!

TypeScript is telling us we forgot to pass an argument to the greet function, and rightfully so. So
far we've only written standard JavaScript, and yet type-checking was still able to find problems
with our code. Thanks TypeScript!

Emitting with Errors
One thing you might not have noticed from the last example was that our hello.js file changed
again. If we open that file up then we'll see that the contents still basically look the same as our
input file. That might be a bit surprising given the fact that tsc reported an error about our code,
but this is based on one of TypeScript's core values: much of the time, you will know better than
TypeScript.

To reiterate from earlier, type-checking code limits the sorts of programs you can run, and so there's
a tradeoff on what sorts of things a type-checker finds acceptable. Most of the time that's okay, but
there are scenarios where those checks get in the way. For example, imagine yourself migrating
JavaScript code over to TypeScript and introducing type-checking errors. Eventually you'll get
around to cleaning things up for the type-checker, but that original JavaScript code was already
working! Why should converting it over to TypeScript stop you from running it?

So TypeScript doesn't get in your way. Of course, over time, you may want to be a bit more
defensive against mistakes, and make TypeScript act a bit more strictly. In that case, you can use the

// This is an industrial-grade general-purpose greeter function:
function greet(person, date) {
 console.log(`Hello ${person}, today is ${date}!`);
}

greet("Brendan");

Expected 2 arguments, but got 1.

noEmitOnError compiler option. Try changing your hello.ts file and running tsc with that
flag:

You'll notice that hello.js never gets updated.

Explicit Types
Up until now, we haven't told TypeScript what person or date are. Let's edit the code to tell
TypeScript that person is a string , and that date should be a Date object. We'll also use the
toDateString() method on date .

What we did was add type annotations on person and date to describe what types of values
greet can be called with. You can read that signature as " greet takes a person of type
string , and a date of type Date ".

With this, TypeScript can tell us about other cases where greet might have been called incorrectly.
For example...

Huh? TypeScript reported an error on our second argument, but why?

tsc --noEmitOnError hello.ts

function greet(person: string, date: Date) {
 console.log(`Hello ${person}, today is ${date.toDateString()}!`);
}

function greet(person: string, date: Date) {
 console.log(`Hello ${person}, today is ${date.toDateString()}!`);
}

greet("Maddison", Date());

Argument of type 'string' is not assignable to parameter of type
'Date'.
Argument of type 'string' is not assignable to parameter of type 'Date'.

https://www.typescriptlang.org/tsconfig#noEmitOnError

Perhaps surprisingly, calling Date() in JavaScript returns a string . On the other hand,
constructing a Date with new Date() actually gives us what we were expecting.

Anyway, we can quickly fix up the error:

Keep in mind, we don't always have to write explicit type annotations. In many cases, TypeScript can
even just infer (or "figure out") the types for us even if we omit them.

Even though we didn't tell TypeScript that msg had the type string it was able to figure that out.
That's a feature, and it's best not to add annotations when the type system would end up inferring
the same type anyway.

Note: The message bubble inside the previous code sample is what your editor would show if you had

hovered over the word.

Erased Types
Let's take a look at what happens when we compile the above function greet with tsc to output
JavaScript:

greet("Maddison", new Date());

function greet(person: string, date: Date) {
 console.log(`Hello ${person}, today is ${date.toDateString()}!`);
}

let msg = "hello there!";

 let msg: string

"use strict";
function greet(person, date) {
 console.log("Hello ".concat(person, ", today is ").concat(date.toDateS
}
greet("Maddison", new Date());

Notice two things here:

1. Our person and date parameters no longer have type annotations.
2. Our "template string" - that string that used backticks (the ` character) - was converted to

plain strings with concatenations.

More on that second point later, but let's now focus on that first point. Type annotations aren't part
of JavaScript (or ECMAScript to be pedantic), so there really aren't any browsers or other runtimes
that can just run TypeScript unmodified. That's why TypeScript needs a compiler in the first place -
it needs some way to strip out or transform any TypeScript-specific code so that you can run it.
Most TypeScript-specific code gets erased away, and likewise, here our type annotations were
completely erased.

Remember: Type annotations never change the runtime behavior of your program.

Downleveling
One other difference from the above was that our template string was rewritten from

to

Why did this happen?

Template strings are a feature from a version of ECMAScript called ECMAScript 2015 (a.k.a.
ECMAScript 6, ES2015, ES6, etc. - don't ask). TypeScript has the ability to rewrite code from newer
versions of ECMAScript to older ones such as ECMAScript 3 or ECMAScript 5 (a.k.a. ES3 and ES5).
This process of moving from a newer or "higher" version of ECMAScript down to an older or
"lower" one is sometimes called downleveling.

By default TypeScript targets ES3, an extremely old version of ECMAScript. We could have chosen
something a little bit more recent by using the target option. Running with --target es2015
changes TypeScript to target ECMAScript 2015, meaning code should be able to run wherever
ECMAScript 2015 is supported. So running tsc --target es2015 hello.ts gives us the
following output:

`Hello ${person}, today is ${date.toDateString()}!`;

"Hello " + person + ", today is " + date.toDateString() + "!";

https://www.typescriptlang.org/tsconfig#target

While the default target is ES3, the great majority of current browsers support ES2015. Most developers

can therefore safely specify ES2015 or above as a target, unless compatibility with certain ancient

browsers is important.

Strictness
Different users come to TypeScript looking for different things in a type-checker. Some people are
looking for a more loose opt-in experience which can help validate only some parts of their
program, and still have decent tooling. This is the default experience with TypeScript, where types
are optional, inference takes the most lenient types, and there's no checking for potentially
null / undefined values. Much like how tsc emits in the face of errors, these defaults are put in
place to stay out of your way. If you're migrating existing JavaScript, that might be a desirable first
step.

In contrast, a lot of users prefer to have TypeScript validate as much as it can straight away, and
that's why the language provides strictness settings as well. These strictness settings turn static
type-checking from a switch (either your code is checked or not) into something closer to a dial. The
further you turn this dial up, the more TypeScript will check for you. This can require a little extra
work, but generally speaking it pays for itself in the long run, and enables more thorough checks
and more accurate tooling. When possible, a new codebase should always turn these strictness
checks on.

TypeScript has several type-checking strictness flags that can be turned on or off, and all of our
examples will be written with all of them enabled unless otherwise stated. The strict flag in the
CLI, or "strict": true in a tsconfig.json toggles them all on simultaneously, but we can
opt out of them individually. The two biggest ones you should know about are noImplicitAny
and strictNullChecks.

noImplicitAny

Recall that in some places, TypeScript doesn't try to infer types for us and instead falls back to the
most lenient type: any . This isn't the worst thing that can happen - after all, falling back to any is
just the plain JavaScript experience anyway.

function greet(person, date) {
 console.log(`Hello ${person}, today is ${date.toDateString()}!`);
}
greet("Maddison", new Date());

https://www.typescriptlang.org/tsconfig#strict
https://www.typescriptlang.org/docs/handbook/tsconfig-json.html
https://www.typescriptlang.org/tsconfig#noImplicitAny
https://www.typescriptlang.org/tsconfig#strictNullChecks

However, using any often defeats the purpose of using TypeScript in the first place. The more
typed your program is, the more validation and tooling you'll get, meaning you'll run into fewer
bugs as you code. Turning on the noImplicitAny flag will issue an error on any variables whose
type is implicitly inferred as any .

strictNullChecks

By default, values like null and undefined are assignable to any other type. This can make
writing some code easier, but forgetting to handle null and undefined is the cause of countless
bugs in the world - some consider it a billion dollar mistake! The strictNullChecks flag makes
handling null and undefined more explicit, and spares us from worrying about whether we
forgot to handle null and undefined .

https://www.typescriptlang.org/tsconfig#noImplicitAny
https://www.youtube.com/watch?v=ybrQvs4x0Ps
https://www.typescriptlang.org/tsconfig#strictNullChecks

Everyday Types

In this chapter, we'll cover some of the most common types of values you'll find in JavaScript code,
and explain the corresponding ways to describe those types in TypeScript. This isn't an exhaustive
list, and future chapters will describe more ways to name and use other types.

Types can also appear in many more places than just type annotations. As we learn about the types
themselves, we'll also learn about the places where we can refer to these types to form new
constructs.

We'll start by reviewing the most basic and common types you might encounter when writing
JavaScript or TypeScript code. These will later form the core building blocks of more complex types.

The primitives: string , number , and boolean

JavaScript has three very commonly used primitives: string , number , and boolean . Each has a
corresponding type in TypeScript. As you might expect, these are the same names you'd see if you
used the JavaScript typeof operator on a value of those types:

string represents string values like "Hello, world"

number is for numbers like 42 . JavaScript does not have a special runtime value for integers,
so there's no equivalent to int or float - everything is simply number

boolean is for the two values true and false

The type names String , Number , and Boolean (starting with capital letters) are legal, but refer to

some special built-in types that will very rarely appear in your code. Always use string , number , or

boolean for types.

Arrays
To specify the type of an array like [1, 2, 3] , you can use the syntax number[] ; this syntax
works for any type (e.g. string[] is an array of strings, and so on). You may also see this written
as Array<number> , which means the same thing. We'll learn more about the syntax T<U> when
we cover generics.

Note that [number] is a different thing; refer to the section on Tuples.

https://developer.mozilla.org/en-US/docs/Glossary/Primitive
https://www.typescriptlang.org/docs/handbook/2/objects.html#tuple-types

any

TypeScript also has a special type, any , that you can use whenever you don't want a particular
value to cause typechecking errors.

When a value is of type any , you can access any properties of it (which will in turn be of type
any), call it like a function, assign it to (or from) a value of any type, or pretty much anything else
that's syntactically legal:

The any type is useful when you don't want to write out a long type just to convince TypeScript
that a particular line of code is okay.

noImplicitAny

When you don't specify a type, and TypeScript can't infer it from context, the compiler will typically
default to any .

You usually want to avoid this, though, because any isn't type-checked. Use the compiler flag
noImplicitAny to flag any implicit any as an error.

Type Annotations on Variables
When you declare a variable using const , var , or let , you can optionally add a type annotation
to explicitly specify the type of the variable:

let obj: any = { x: 0 };
// None of the following lines of code will throw compiler errors.
// Using `any` disables all further type checking, and it is assumed
// you know the environment better than TypeScript.
obj.foo();
obj();
obj.bar = 100;
obj = "hello";
const n: number = obj;

let myName: string = "Alice";

https://www.typescriptlang.org/tsconfig#noImplicitAny

TypeScript doesn't use "types on the left"-style declarations like int x = 0; Type annotations will

always go after the thing being typed.

In most cases, though, this isn't needed. Wherever possible, TypeScript tries to automatically infer
the types in your code. For example, the type of a variable is inferred based on the type of its
initializer:

For the most part you don't need to explicitly learn the rules of inference. If you're starting out, try
using fewer type annotations than you think - you might be surprised how few you need for
TypeScript to fully understand what's going on.

Functions
Functions are the primary means of passing data around in JavaScript. TypeScript allows you to
specify the types of both the input and output values of functions.

Parameter Type Annotations

When you declare a function, you can add type annotations after each parameter to declare what
types of parameters the function accepts. Parameter type annotations go after the parameter name:

When a parameter has a type annotation, arguments to that function will be checked:

// No type annotation needed -- 'myName' inferred as type 'string'
let myName = "Alice";

// Parameter type annotation
function greet(name: string) {
 console.log("Hello, " + name.toUpperCase() + "!!");
}

// Would be a runtime error if executed!
greet(42);

Argument of type 'number' is not assignable to parameter of type
'string'.
Argument of type 'number' is not assignable to parameter of type 'string'.

Even if you don't have type annotations on your parameters, TypeScript will still check that you passed the

right number of arguments.

Return Type Annotations

You can also add return type annotations. Return type annotations appear after the parameter list:

Much like variable type annotations, you usually don't need a return type annotation because
TypeScript will infer the function's return type based on its return statements. The type
annotation in the above example doesn't change anything. Some codebases will explicitly specify a
return type for documentation purposes, to prevent accidental changes, or just for personal
preference.

Anonymous Functions

Anonymous functions are a little bit different from function declarations. When a function appears
in a place where TypeScript can determine how it's going to be called, the parameters of that
function are automatically given types.

Here's an example:

function getFavoriteNumber(): number {
 return 26;
}

Even though the parameter s didn't have a type annotation, TypeScript used the types of the
forEach function, along with the inferred type of the array, to determine the type s will have.

This process is called contextual typing because the context that the function occurred within
informs what type it should have.

Similar to the inference rules, you don't need to explicitly learn how this happens, but
understanding that it does happen can help you notice when type annotations aren't needed. Later,
we'll see more examples of how the context that a value occurs in can affect its type.

Object Types
Apart from primitives, the most common sort of type you'll encounter is an object type. This refers
to any JavaScript value with properties, which is almost all of them! To define an object type, we
simply list its properties and their types.

For example, here's a function that takes a point-like object:

// No type annotations here, but TypeScript can spot the bug
const names = ["Alice", "Bob", "Eve"];

// Contextual typing for function
names.forEach(function (s) {
 console.log(s.toUppercase());

Property 'toUppercase' does not exist on type 'string'. Did you mean
'toUpperCase'?

});

// Contextual typing also applies to arrow functions
names.forEach((s) => {
 console.log(s.toUppercase());

Property 'toUppercase' does not exist on type 'string'. Did you mean
'toUpperCase'?

});

Property 'toUppercase' does not exist on type 'string'. Did you mean
'toUpperCase'?

Property 'toUppercase' does not exist on type 'string'. Did you mean
'toUpperCase'?

Here, we annotated the parameter with a type with two properties - x and y - which are both of
type number . You can use , or ; to separate the properties, and the last separator is optional
either way.

The type part of each property is also optional. If you don't specify a type, it will be assumed to be
any .

Optional Properties

Object types can also specify that some or all of their properties are optional. To do this, add a ?
after the property name:

In JavaScript, if you access a property that doesn't exist, you'll get the value undefined rather than
a runtime error. Because of this, when you read from an optional property, you'll have to check for
undefined before using it.

// The parameter's type annotation is an object type
function printCoord(pt: { x: number; y: number }) {
 console.log("The coordinate's x value is " + pt.x);
 console.log("The coordinate's y value is " + pt.y);
}
printCoord({ x: 3, y: 7 });

function printName(obj: { first: string; last?: string }) {
 // ...
}
// Both OK
printName({ first: "Bob" });
printName({ first: "Alice", last: "Alisson" });

Union Types
TypeScript's type system allows you to build new types out of existing ones using a large variety of
operators. Now that we know how to write a few types, it's time to start combining them in
interesting ways.

Defining a Union Type

The first way to combine types you might see is a union type. A union type is a type formed from
two or more other types, representing values that may be any one of those types. We refer to each
of these types as the union's members.

Let's write a function that can operate on strings or numbers:

function printName(obj: { first: string; last?: string }) {
 // Error - might crash if 'obj.last' wasn't provided!
 console.log(obj.last.toUpperCase());

Object is possibly 'undefined'.

 if (obj.last !== undefined) {
 // OK
 console.log(obj.last.toUpperCase());
 }

 // A safe alternative using modern JavaScript syntax:
 console.log(obj.last?.toUpperCase());
}

Object is possibly 'undefined'.

function printId(id: number | string) {
 console.log("Your ID is: " + id);
}
// OK
printId(101);
// OK
printId("202");
// Error
printId({ myID: 22342 });

Argument of type '{ myID: number; }' is not assignable to parameter of
type 'string | number'.
Argument of type '{ myID: number; }' is not assignable to parameter of
type 'string | number'.

Working with Union Types

It's easy to provide a value matching a union type - simply provide a type matching any of the
union's members. If you have a value of a union type, how do you work with it?

TypeScript will only allow an operation if it is valid for every member of the union. For example, if
you have the union string | number , you can't use methods that are only available on string :

The solution is to narrow the union with code, the same as you would in JavaScript without type
annotations. Narrowing occurs when TypeScript can deduce a more specific type for a value based
on the structure of the code.

For example, TypeScript knows that only a string value will have a typeof value "string" :

Another example is to use a function like Array.isArray :

function printId(id: number | string) {
 console.log(id.toUpperCase());

Property 'toUpperCase' does not exist on type 'string | number'.
 Property 'toUpperCase' does not exist on type 'number'.

}

Property 'toUpperCase' does not exist on type 'string | number'.
 Property 'toUpperCase' does not exist on type 'number'.

function printId(id: number | string) {
 if (typeof id === "string") {
 // In this branch, id is of type 'string'
 console.log(id.toUpperCase());
 } else {
 // Here, id is of type 'number'
 console.log(id);
 }
}

Notice that in the else branch, we don't need to do anything special - if x wasn't a string[] ,
then it must have been a string .

Sometimes you'll have a union where all the members have something in common. For example,
both arrays and strings have a slice method. If every member in a union has a property in
common, you can use that property without narrowing:

It might be confusing that a union of types appears to have the intersection of those types' properties. This

is not an accident - the name union comes from type theory. The union number | string is

composed by taking the union of the values from each type. Notice that given two sets with corresponding

facts about each set, only the intersection of those facts applies to the union of the sets themselves. For

example, if we had a room of tall people wearing hats, and another room of Spanish speakers wearing

hats, after combining those rooms, the only thing we know about every person is that they must be

wearing a hat.

Type Aliases
We've been using object types and union types by writing them directly in type annotations. This is
convenient, but it's common to want to use the same type more than once and refer to it by a single
name.

A type alias is exactly that - a name for any type. The syntax for a type alias is:

function welcomePeople(x: string[] | string) {
 if (Array.isArray(x)) {
 // Here: 'x' is 'string[]'
 console.log("Hello, " + x.join(" and "));
 } else {
 // Here: 'x' is 'string'
 console.log("Welcome lone traveler " + x);
 }
}

// Return type is inferred as number[] | string
function getFirstThree(x: number[] | string) {
 return x.slice(0, 3);
}

You can actually use a type alias to give a name to any type at all, not just an object type. For
example, a type alias can name a union type:

Note that aliases are only aliases - you cannot use type aliases to create different/distinct "versions"
of the same type. When you use the alias, it's exactly as if you had written the aliased type. In other
words, this code might look illegal, but is OK according to TypeScript because both types are aliases
for the same type:

Interfaces

type Point = {
 x: number;
 y: number;
};

// Exactly the same as the earlier example
function printCoord(pt: Point) {
 console.log("The coordinate's x value is " + pt.x);
 console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });

type ID = number | string;

type UserInputSanitizedString = string;

function sanitizeInput(str: string): UserInputSanitizedString {
 return sanitize(str);
}

// Create a sanitized input
let userInput = sanitizeInput(getInput());

// Can still be re-assigned with a string though
userInput = "new input";

An interface declaration is another way to name an object type:

Just like when we used a type alias above, the example works just as if we had used an anonymous
object type. TypeScript is only concerned with the structure of the value we passed to printCoord
- it only cares that it has the expected properties. Being concerned only with the structure and
capabilities of types is why we call TypeScript a structurally typed type system.

Differences Between Type Aliases and Interfaces

Type aliases and interfaces are very similar, and in many cases you can choose between them freely.
Almost all features of an interface are available in type , the key distinction is that a type
cannot be re-opened to add new properties vs an interface which is always extendable.

Interface Type

Extending an interface Extending a type via intersections

interface Point {
 x: number;
 y: number;
}

function printCoord(pt: Point) {
 console.log("The coordinate's x value is " + pt.x);
 console.log("The coordinate's y value is " + pt.y);
}

printCoord({ x: 100, y: 100 });

Adding new fields to an existing interface A type cannot be changed after being created

You'll learn more about these concepts in later chapters, so don't worry if you don't understand all
of these right away.

Prior to TypeScript version 4.2, type alias names may appear in error messages, sometimes in
place of the equivalent anonymous type (which may or may not be desirable). Interfaces will
always be named in error messages.

Type aliases may not participate in declaration merging, but interfaces can.

Interfaces may only be used to declare the shapes of objects, not rename primitives.

interface Animal {

 name: string

}

interface Bear extends Animal {

 honey: boolean

}

const bear = getBear()

bear.name

bear.honey

type Animal = {

 name: string

}

type Bear = Animal & {

 honey: boolean

}

const bear = getBear();

bear.name;

bear.honey;

interface Window {

 title: string

}

interface Window {

 ts: TypeScriptAPI

}

const src = 'const a = "Hello World"';

window.ts.transpileModule(src, {});

type Window = {

 title: string

}

type Window = {

 ts: TypeScriptAPI

}

 // Error: Duplicate identifier 'Windo

https://www.typescriptlang.org/play?#code/PTAEGEHsFsAcEsA2BTATqNrLusgzngIYDm+oA7koqIYuYQJ56gCueyoAUCKAC4AWHAHaFcoSADMaQ0PCG80EwgGNkALk6c5C1EtWgAsqOi1QAb06groEbjWg8vVHOKcAvpokshy3vEgyyMr8kEbQJogAFND2YREAlOaW1soBeJAoAHSIkMTRmbbI8e6aPMiZxJmgACqCGKhY6ABGyDnkFFQ0dIzMbBwCwqIccabcYLyQoKjIEmh8kwN8DLAc5PzwwbLMyAAeK77IACYaQSEjUWZWhfYAjABMAMwALA+gbsVjoADqgjKESytQPxCHghAByXigYgBfr8LAsYj8aQMUASbDQcRSExCeCwFiIQh+AKfAYyBiQFgOPyIaikSGLQo0Zj-aazaY+dSaXjLDgAGXgAC9CKhDqAALxJaw2Ib2RzOISuDycLw+ImBYKQflCkWRRD2LXCw6JCxS1JCdJZHJ5RAFIbFJU8ADKC3WzEcnVZaGYE1ABpFnFOmsFhsil2uoHuzwArO9SmAAEIsSFrZB-GgAjjA5gtVN8VCEc1o1C4Q4AGlR2AwO1EsBQoAAbvB-gJ4HhPgB5aDwem-Ph1TCV3AEEirTp4ELtRbTPD4vwKjOfAuioSQHuDXBcnmgACC+eCONFEs73YAPGGZVT5cRyyhiHh7AAON7lsG3vBggB8XGV3l8-nVISOgghxoLq9i7io-AHsayRWGaFrlFauq2rg9qaIGQHwCBqChtKdgRo8TxRjeyB3o+7xAA
https://www.typescriptlang.org/play?#code/PTAEEEDtQS0gXApgJwGYEMDGjSfdAIx2UQFoB7AB0UkQBMAoEUfO0Wgd1ADd0AbAK6IAzizp16ALgYM4SNFhwBZdAFtV-UAG8GoPaADmNAcMmhh8ZHAMMAvjLkoM2UCvWad+0ARL0A-GYWVpA29gyY5JAWLJAwGnxmbvGgALzauvpGkCZmAEQAjABMAMwALLkANBl6zABi6DB8okR4Jjg+iPSgABboovDk3jjo5pbW1d6+dGb5djLwAJ7UoABKiJTwjThpnpnGpqPBoTLMAJrkArj4kOTwYmycPOhW6AR8IrDQ8N04wmo4HHQCwYi2Waw2W1S6S8HX8gTGITsQA
https://www.typescriptlang.org/play?#code/PTAEAkFMCdIcgM6gC4HcD2pIA8CGBbABwBtIl0AzUAKBFAFcEBLAOwHMUBPQs0XFgCahWyGBVwBjMrTDJMAshOhMARpD4tQ6FQCtIE5DWoixk9QEEWAeV37kARlABvaqDegAbrmL1IALlAEZGV2agBfampkbgtrWwMAJlAAXmdXdy8ff0Dg1jZwyLoAVWZ2Lh5QVHUJflAlSFxROsY5fFAWAmk6CnRoLGwmILzQQmV8JmQmDzI-SOiKgGV+CaYAL0gBBdyy1KCQ-Pn1AFFplgA5enw1PtSWS+vCsAAVAAtB4QQWOEMKBuYVUiVCYvYQsUTQcRSBDGMGmKSgAAa-VEgiQe2GLgKQA

Interface names will always appear in their original form in error messages, but only when they
are used by name.

For the most part, you can choose based on personal preference, and TypeScript will tell you if it
needs something to be the other kind of declaration. If you would like a heuristic, use interface
until you need to use features from type .

Type Assertions
Sometimes you will have information about the type of a value that TypeScript can't know about.

For example, if you're using document.getElementById , TypeScript only knows that this will
return some kind of HTMLElement , but you might know that your page will always have an
HTMLCanvasElement with a given ID.

In this situation, you can use a type assertion to specify a more specific type:

Like a type annotation, type assertions are removed by the compiler and won't affect the runtime
behavior of your code.

You can also use the angle-bracket syntax (except if the code is in a .tsx file), which is equivalent:

Reminder: Because type assertions are removed at compile-time, there is no runtime checking associated

with a type assertion. There won't be an exception or null generated if the type assertion is wrong.

TypeScript only allows type assertions which convert to a more specific or less specific version of a
type. This rule prevents "impossible" coercions like:

const myCanvas = document.getElementById("main_canvas") as HTMLCanvasEleme

const myCanvas = <HTMLCanvasElement>document.getElementById("main_canvas")

const x = "hello" as number;

Conversion of type 'string' to type 'number' may be a mistake because
neither type sufficiently overlaps with the other. If this was
intentional, convert the expression to 'unknown' first.

Conversion of type 'string' to type 'number' may be a mistake because
neither type sufficiently overlaps with the other. If this was
intentional, convert the expression to 'unknown' first.

https://www.typescriptlang.org/play?#code/PTAEGEHsFsAcEsA2BTATqNrLusgzngIYDm+oA7koqIYuYQJ56gCueyoAUCKAC4AWHAHaFcoSADMaQ0PCG80EwgGNkALk6c5C1EtWgAsqOi1QAb06groEbjWg8vVHOKcAvpokshy3vEgyyMr8kEbQJogAFND2YREAlOaW1soBeJAoAHSIkMTRmbbI8e6aPMiZxJmgACqCGKhY6ABGyDnkFFQ0dIzMbBwCwqIccabcYLyQoKjIEmh8kwN8DLAc5PzwwbLMyAAeK77IACYaQSEjUWY2Q-YAjABMAMwALA+gbsVjNXW8yxySoAADaAA0CCaZbPh1XYqXgOIY0ZgmcK0AA0nyaLFhhGY8F4AHJmEJILCWsgZId4NNfIgGFdcIcUTVfgBlZTOWC8T7kAJ42G4eT+GS42QyRaYbCgXAEEguTzeXyCjDBSAAQSE8Ai0Xsl0K9kcziExDeiQs1lAqSE6SyOTy0AKQ2KHk4p1V6s1OuuoHuzwArMagA

Sometimes this rule can be too conservative and will disallow more complex coercions that might
be valid. If this happens, you can use two assertions, first to any (or unknown , which we'll
introduce later), then to the desired type:

Literal Types
In addition to the general types string and number , we can refer to specific strings and numbers
in type positions.

One way to think about this is to consider how JavaScript comes with different ways to declare a
variable. Both var and let allow for changing what is held inside the variable, and const does
not. This is reflected in how TypeScript creates types for literals.

By themselves, literal types aren't very valuable:

const a = (expr as any) as T;

let changingString = "Hello World";
changingString = "OlÃ¡ Mundo";
// Because `changingString` can represent any possible string, that
// is how TypeScript describes it in the type system
changingString;

 let changingString: string

const constantString = "Hello World";
// Because `constantString` can only represent 1 possible string, it
// has a literal type representation
constantString;

 const constantString: "Hello World"

It's not much use to have a variable that can only have one value!

But by combining literals into unions, you can express a much more useful concept - for example,
functions that only accept a certain set of known values:

Numeric literal types work the same way:

Of course, you can combine these with non-literal types:

let x: "hello" = "hello";
// OK
x = "hello";
// ...
x = "howdy";

Type '"howdy"' is not assignable to type '"hello"'.Type '"howdy"' is not assignable to type '"hello"'.

function printText(s: string, alignment: "left" | "right" | "center") {
 // ...
}
printText("Hello, world", "left");
printText("G'day, mate", "centre");

Argument of type '"centre"' is not assignable to parameter of type
'"left" | "right" | "center"'.
Argument of type '"centre"' is not assignable to parameter of type '"left"
| "right" | "center"'.

function compare(a: string, b: string): -1 | 0 | 1 {
 return a === b ? 0 : a > b ? 1 : -1;
}

There's one more kind of literal type: boolean literals. There are only two boolean literal types, and
as you might guess, they are the types true and false . The type boolean itself is actually just
an alias for the union true | false .

Literal Inference

When you initialize a variable with an object, TypeScript assumes that the properties of that object
might change values later. For example, if you wrote code like this:

TypeScript doesn't assume the assignment of 1 to a field which previously had 0 is an error.
Another way of saying this is that obj.counter must have the type number , not 0 , because
types are used to determine both reading and writing behavior.

The same applies to strings:

interface Options {
 width: number;
}
function configure(x: Options | "auto") {
 // ...
}
configure({ width: 100 });
configure("auto");
configure("automatic");

Argument of type '"automatic"' is not assignable to parameter of type
'Options | "auto"'.
Argument of type '"automatic"' is not assignable to parameter of type
'Options | "auto"'.

const obj = { counter: 0 };
if (someCondition) {
 obj.counter = 1;
}

const req = { url: "https://example.com", method: "GET" };
handleRequest(req.url, req.method);

Argument of type 'string' is not assignable to parameter of type '"GET"
| "POST"'.
Argument of type 'string' is not assignable to parameter of type '"GET" |
"POST"'.

In the above example req.method is inferred to be string , not "GET" . Because code can be
evaluated between the creation of req and the call of handleRequest which could assign a new
string like "GUESS" to req.method , TypeScript considers this code to have an error.

There are two ways to work around this.

1. You can change the inference by adding a type assertion in either location:

Change 1 means "I intend for req.method to always have the literal type "GET" ",
preventing the possible assignment of "GUESS" to that field after. Change 2 means "I know
for other reasons that req.method has the value "GET" ".

2. You can use as const to convert the entire object to be type literals:

The as const suffix acts like const but for the type system, ensuring that all properties are
assigned the literal type instead of a more general version like string or number .

null and undefined

JavaScript has two primitive values used to signal absent or uninitialized value: null and
undefined .

TypeScript has two corresponding types by the same names. How these types behave depends on
whether you have the strictNullChecks option on.

strictNullChecks off

With strictNullChecks off, values that might be null or undefined can still be accessed
normally, and the values null and undefined can be assigned to a property of any type. This is

// Change 1:

const req = { url: "https://example.com", method: "GET" as "GET" };

// Change 2

handleRequest(req.url, req.method as "GET");

const req = { url: "https://example.com", method: "GET" } as const;

handleRequest(req.url, req.method);

https://www.typescriptlang.org/tsconfig#strictNullChecks
https://www.typescriptlang.org/tsconfig#strictNullChecks

similar to how languages without null checks (e.g. C#, Java) behave. The lack of checking for these
values tends to be a major source of bugs; we always recommend people turn
strictNullChecks on if it's practical to do so in their codebase.

strictNullChecks on

With strictNullChecks on, when a value is null or undefined , you will need to test for
those values before using methods or properties on that value. Just like checking for undefined
before using an optional property, we can use narrowing to check for values that might be null :

Non-null Assertion Operator (Postfix !)

TypeScript also has a special syntax for removing null and undefined from a type without
doing any explicit checking. Writing ! after any expression is effectively a type assertion that the
value isn't null or undefined :

Just like other type assertions, this doesn't change the runtime behavior of your code, so it's
important to only use ! when you know that the value can't be null or undefined .

Enums
Enums are a feature added to JavaScript by TypeScript which allows for describing a value which
could be one of a set of possible named constants. Unlike most TypeScript features, this is not a
type-level addition to JavaScript but something added to the language and runtime. Because of this,

function doSomething(x: string | null) {
 if (x === null) {
 // do nothing
 } else {
 console.log("Hello, " + x.toUpperCase());
 }
}

function liveDangerously(x?: number | null) {
 // No error
 console.log(x!.toFixed());
}

https://www.typescriptlang.org/tsconfig#strictNullChecks
https://www.typescriptlang.org/tsconfig#strictNullChecks

it's a feature which you should know exists, but maybe hold off on using unless you are sure. You
can read more about enums in the Enum reference page.

Less Common Primitives
It's worth mentioning the rest of the primitives in JavaScript which are represented in the type
system. Though we will not go into depth here.

bigint

From ES2020 onwards, there is a primitive in JavaScript used for very large integers, BigInt :

You can learn more about BigInt in the TypeScript 3.2 release notes.

symbol

There is a primitive in JavaScript used to create a globally unique reference via the function
Symbol() :

You can learn more about them in Symbols reference page.

// Creating a bigint via the BigInt function
const oneHundred: bigint = BigInt(100);

// Creating a BigInt via the literal syntax
const anotherHundred: bigint = 100n;

const firstName = Symbol("name");
const secondName = Symbol("name");

if (firstName === secondName) {

This condition will always return 'false' since the types 'typeof
firstName' and 'typeof secondName' have no overlap.

 // Can't ever happen
}

This condition will always return 'false' since the types 'typeof
firstName' and 'typeof secondName' have no overlap.

https://www.typescriptlang.org/docs/handbook/enums.html
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-3-2.html#bigint
https://www.typescriptlang.org/docs/handbook/symbols.html

Narrowing

Imagine we have a function called padLeft .

If padding is a number , it will treat that as the number of spaces we want to prepend to input . If
padding is a string , it should just prepend padding to input . Let's try to implement the logic
for when padLeft is passed a number for padding .

Uh-oh, we're getting an error on padding . TypeScript is warning us that adding a number |
string to a number might not give us what we want, and it's right. In other words, we haven't
explicitly checked if padding is a number first, nor are we handling the case where it's a string ,
so let's do exactly that.

If this mostly looks like uninteresting JavaScript code, that's sort of the point. Apart from the
annotations we put in place, this TypeScript code looks like JavaScript. The idea is that TypeScript's

function padLeft(padding: number | string, input: string): string {
 throw new Error("Not implemented yet!");
}

function padLeft(padding: number | string, input: string) {
 return " ".repeat(padding) + input;

Argument of type 'string | number' is not assignable to parameter of
type 'number'.
 Type 'string' is not assignable to type 'number'.

}

Argument of type 'string | number' is not assignable to parameter of type
'number'.
 Type 'string' is not assignable to type 'number'.

function padLeft(padding: number | string, input: string) {
 if (typeof padding === "number") {
 return " ".repeat(padding) + input;
 }
 return padding + input;
}

type system aims to make it as easy as possible to write typical JavaScript code without bending
over backwards to get type safety.

While it might not look like much, there's actually a lot going under the covers here. Much like how
TypeScript analyzes runtime values using static types, it overlays type analysis on JavaScript's
runtime control flow constructs like if/else , conditional ternaries, loops, truthiness checks, etc.,
which can all affect those types.

Within our if check, TypeScript sees typeof padding === "number" and understands that as a
special form of code called a type guard. TypeScript follows possible paths of execution that our
programs can take to analyze the most specific possible type of a value at a given position. It looks
at these special checks (called type guards) and assignments, and the process of refining types to
more specific types than declared is called narrowing. In many editors we can observe these types
as they change, and we'll even do so in our examples.

There are a couple of different constructs TypeScript understands for narrowing.

typeof type guards
As we've seen, JavaScript supports a typeof operator which can give very basic information about
the type of values we have at runtime. TypeScript expects this to return a certain set of strings:

"string"

"number"

"bigint"

"boolean"

function padLeft(padding: number | string, input: string) {
 if (typeof padding === "number") {
 return " ".repeat(padding) + input;

 (parameter) padding: number

 }
 return padding + input;

 (parameter) padding: string

}

"symbol"

"undefined"

"object"

"function"

Like we saw with padLeft , this operator comes up pretty often in a number of JavaScript libraries,
and TypeScript can understand it to narrow types in different branches.

In TypeScript, checking against the value returned by typeof is a type guard. Because TypeScript
encodes how typeof operates on different values, it knows about some of its quirks in JavaScript.
For example, notice that in the list above, typeof doesn't return the string null . Check out the
following example:

In the printAll function, we try to check if strs is an object to see if it's an array type (now
might be a good time to reinforce that arrays are object types in JavaScript). But it turns out that in
JavaScript, typeof null is actually "object" ! This is one of those unfortunate accidents of
history.

Users with enough experience might not be surprised, but not everyone has run into this in
JavaScript; luckily, TypeScript lets us know that strs was only narrowed down to string[] |
null instead of just string[] .

This might be a good segue into what we'll call "truthiness" checking.

Truthiness narrowing

function printAll(strs: string | string[] | null) {
 if (typeof strs === "object") {
 for (const s of strs) {

Object is possibly 'null'.

 console.log(s);
 }
 } else if (typeof strs === "string") {
 console.log(strs);
 } else {
 // do nothing
 }
}

Object is possibly 'null'.

Truthiness might not be a word you'll find in the dictionary, but it's very much something you'll
hear about in JavaScript.

In JavaScript, we can use any expression in conditionals, && s, || s, if statements, Boolean
negations (!), and more. As an example, if statements don't expect their condition to always
have the type boolean .

In JavaScript, constructs like if first "coerce" their conditions to boolean s to make sense of them,
and then choose their branches depending on whether the result is true or false . Values like

0

NaN

"" (the empty string)

0n (the bigint version of zero)

null

undefined

all coerce to false , and other values get coerced true . You can always coerce values to
boolean s by running them through the Boolean function, or by using the shorter double-
Boolean negation. (The latter has the advantage that TypeScript infers a narrow literal boolean type
true , while inferring the first as type boolean .)

It's fairly popular to leverage this behavior, especially for guarding against values like null or
undefined . As an example, let's try using it for our printAll function.

function getUsersOnlineMessage(numUsersOnline: number) {
 if (numUsersOnline) {
 return `There are ${numUsersOnline} online now!`;
 }
 return "Nobody's here. :(";
}

// both of these result in 'true'
Boolean("hello"); // type: boolean, value: true
!!"world"; // type: true, value: true

You'll notice that we've gotten rid of the error above by checking if strs is truthy. This at least
prevents us from dreaded errors when we run our code like:

Keep in mind though that truthiness checking on primitives can often be error prone. As an
example, consider a different attempt at writing printAll

We wrapped the entire body of the function in a truthy check, but this has a subtle downside: we
may no longer be handling the empty string case correctly.

function printAll(strs: string | string[] | null) {
 if (strs && typeof strs === "object") {
 for (const s of strs) {
 console.log(s);
 }
 } else if (typeof strs === "string") {
 console.log(strs);
 }
}

TypeError: null is not iterable

function printAll(strs: string | string[] | null) {
 // !!!!!!!!!!!!!!!!
 // DON'T DO THIS!
 // KEEP READING
 // !!!!!!!!!!!!!!!!
 if (strs) {
 if (typeof strs === "object") {
 for (const s of strs) {
 console.log(s);
 }
 } else if (typeof strs === "string") {
 console.log(strs);
 }
 }
}

TypeScript doesn't hurt us here at all, but this is behavior worth noting if you're less familiar with
JavaScript. TypeScript can often help you catch bugs early on, but if you choose to do nothing with
a value, there's only so much that it can do without being overly prescriptive. If you want, you can
make sure you handle situations like these with a linter.

One last word on narrowing by truthiness is that Boolean negations with ! filter out from negated
branches.

Equality narrowing
TypeScript also uses switch statements and equality checks like === , !== , == , and != to
narrow types. For example:

function multiplyAll(
 values: number[] | undefined,
 factor: number
): number[] | undefined {
 if (!values) {
 return values;
 } else {
 return values.map((x) => x * factor);
 }
}

When we checked that x and y are both equal in the above example, TypeScript knew their types
also had to be equal. Since string is the only common type that both x and y could take on,
TypeScript knows that x and y must be a string in the first branch.

Checking against specific literal values (as opposed to variables) works also. In our section about
truthiness narrowing, we wrote a printAll function which was error-prone because it
accidentally didn't handle empty strings properly. Instead we could have done a specific check to
block out null s, and TypeScript still correctly removes null from the type of strs .

function example(x: string | number, y: string | boolean) {
 if (x === y) {
 // We can now call any 'string' method on 'x' or 'y'.
 x.toUpperCase();

 (method) String.toUpperCase(): string

 y.toLowerCase();

 (method) String.toLowerCase(): string

 } else {
 console.log(x);

 (parameter) x: string | number

 console.log(y);

 (parameter) y: string | boolean

 }
}

JavaScript's looser equality checks with == and != also get narrowed correctly. If you're
unfamiliar, checking whether something == null actually not only checks whether it is specifically
the value null - it also checks whether it's potentially undefined . The same applies to ==
undefined : it checks whether a value is either null or undefined .

function printAll(strs: string | string[] | null) {
 if (strs !== null) {
 if (typeof strs === "object") {
 for (const s of strs) {

 (parameter) strs: string[]

 console.log(s);
 }
 } else if (typeof strs === "string") {
 console.log(strs);

 (parameter) strs: string

 }
 }
}

interface Container {
 value: number | null | undefined;
}

function multiplyValue(container: Container, factor: number) {
 // Remove both 'null' and 'undefined' from the type.
 if (container.value != null) {
 console.log(container.value);

 (property) Container.value: number

 // Now we can safely multiply 'container.value'.
 container.value *= factor;
 }
}

The in operator narrowing
JavaScript has an operator for determining if an object has a property with a name: the in
operator. TypeScript takes this into account as a way to narrow down potential types.

For example, with the code: "value" in x . where "value" is a string literal and x is a union
type. The "true" branch narrows x 's types which have either an optional or required property
value , and the "false" branch narrows to types which have an optional or missing property
value .

To reiterate optional properties will exist in both sides for narrowing, for example a human could
both swim and fly (with the right equipment) and thus should show up in both sides of the in
check:

type Fish = { swim: () => void };
type Bird = { fly: () => void };

function move(animal: Fish | Bird) {
 if ("swim" in animal) {
 return animal.swim();
 }

 return animal.fly();
}

instanceof narrowing
JavaScript has an operator for checking whether or not a value is an "instance" of another value.
More specifically, in JavaScript x instanceof Foo checks whether the prototype chain of x
contains Foo.prototype . While we won't dive deep here, and you'll see more of this when we get
into classes, they can still be useful for most values that can be constructed with new . As you might
have guessed, instanceof is also a type guard, and TypeScript narrows in branches guarded by
instanceof s.

type Fish = { swim: () => void };
type Bird = { fly: () => void };
type Human = { swim?: () => void; fly?: () => void };

function move(animal: Fish | Bird | Human) {
 if ("swim" in animal) {
 animal;

 (parameter) animal: Fish | Human

 } else {
 animal;

 (parameter) animal: Bird | Human

 }
}

function logValue(x: Date | string) {
 if (x instanceof Date) {
 console.log(x.toUTCString());

 (parameter) x: Date

 } else {
 console.log(x.toUpperCase());

 (parameter) x: string

 }
}

Assignments
As we mentioned earlier, when we assign to any variable, TypeScript looks at the right side of the
assignment and narrows the left side appropriately.

Notice that each of these assignments is valid. Even though the observed type of x changed to
number after our first assignment, we were still able to assign a string to x . This is because the
declared type of x - the type that x started with - is string | number , and assignability is
always checked against the declared type.

If we'd assigned a boolean to x , we'd have seen an error since that wasn't part of the declared
type.

let x = Math.random() < 0.5 ? 10 : "hello world!";

 let x: string | number

x = 1;

console.log(x);

 let x: number

x = "goodbye!";

console.log(x);

 let x: string

Control flow analysis
Up until this point, we've gone through some basic examples of how TypeScript narrows within
specific branches. But there's a bit more going on than just walking up from every variable and
looking for type guards in if s, while s, conditionals, etc. For example

padLeft returns from within its first if block. TypeScript was able to analyze this code and see
that the rest of the body (return padding + input;) is unreachable in the case where padding
is a number . As a result, it was able to remove number from the type of padding (narrowing
from string | number to string) for the rest of the function.

This analysis of code based on reachability is called control flow analysis, and TypeScript uses this
flow analysis to narrow types as it encounters type guards and assignments. When a variable is

let x = Math.random() < 0.5 ? 10 : "hello world!";

 let x: string | number

x = 1;

console.log(x);

 let x: number

x = true;

Type 'boolean' is not assignable to type 'string | number'.

console.log(x);

 let x: string | number

Type 'boolean' is not assignable to type 'string | number'.

function padLeft(padding: number | string, input: string) {
 if (typeof padding === "number") {
 return " ".repeat(padding) + input;
 }
 return padding + input;
}

analyzed, control flow can split off and re-merge over and over again, and that variable can be
observed to have a different type at each point.

Using type predicates
We've worked with existing JavaScript constructs to handle narrowing so far, however sometimes
you want more direct control over how types change throughout your code.

To define a user-defined type guard, we simply need to define a function whose return type is a type
predicate:

function example() {
 let x: string | number | boolean;

 x = Math.random() < 0.5;

 console.log(x);

 let x: boolean

 if (Math.random() < 0.5) {
 x = "hello";
 console.log(x);

 let x: string

 } else {
 x = 100;
 console.log(x);

 let x: number

 }

 return x;

 let x: string | number

}

pet is Fish is our type predicate in this example. A predicate takes the form parameterName
is Type , where parameterName must be the name of a parameter from the current function
signature.

Any time isFish is called with some variable, TypeScript will narrow that variable to that specific
type if the original type is compatible.

Notice that TypeScript not only knows that pet is a Fish in the if branch; it also knows that in
the else branch, you don't have a Fish , so you must have a Bird .

You may use the type guard isFish to filter an array of Fish | Bird and obtain an array of
Fish :

function isFish(pet: Fish | Bird): pet is Fish {
 return (pet as Fish).swim !== undefined;
}

// Both calls to 'swim' and 'fly' are now okay.
let pet = getSmallPet();

if (isFish(pet)) {
 pet.swim();
} else {
 pet.fly();
}

const zoo: (Fish | Bird)[] = [getSmallPet(), getSmallPet(), getSmallPet()]
const underWater1: Fish[] = zoo.filter(isFish);
// or, equivalently
const underWater2: Fish[] = zoo.filter(isFish) as Fish[];

// The predicate may need repeating for more complex examples
const underWater3: Fish[] = zoo.filter((pet): pet is Fish => {
 if (pet.name === "sharkey") return false;
 return isFish(pet);
});

In addition, classes can use this is Type to narrow their type.

Discriminated unions
Most of the examples we've looked at so far have focused around narrowing single variables with
simple types like string , boolean , and number . While this is common, most of the time in
JavaScript we'll be dealing with slightly more complex structures.

For some motivation, let's imagine we're trying to encode shapes like circles and squares. Circles
keep track of their radiuses and squares keep track of their side lengths. We'll use a field called
kind to tell which shape we're dealing with. Here's a first attempt at defining Shape .

Notice we're using a union of string literal types: "circle" and "square" to tell us whether we
should treat the shape as a circle or square respectively. By using "circle" | "square" instead
of string , we can avoid misspelling issues.

We can write a getArea function that applies the right logic based on if it's dealing with a circle or
square. We'll first try dealing with circles.

interface Shape {
 kind: "circle" | "square";
 radius?: number;
 sideLength?: number;
}

function handleShape(shape: Shape) {
 // oops!
 if (shape.kind === "rect") {

This condition will always return 'false' since the types '"circle" |
"square"' and '"rect"' have no overlap.

 // ...
 }
}

This condition will always return 'false' since the types '"circle" |
"square"' and '"rect"' have no overlap.

https://www.typescriptlang.org/docs/handbook/2/classes.html#this-based-type-guards

Under strictNullChecks that gives us an error - which is appropriate since radius might not
be defined. But what if we perform the appropriate checks on the kind property?

Hmm, TypeScript still doesn't know what to do here. We've hit a point where we know more about
our values than the type checker does. We could try to use a non-null assertion (a ! after
shape.radius) to say that radius is definitely present.

But this doesn't feel ideal. We had to shout a bit at the type-checker with those non-null assertions
(!) to convince it that shape.radius was defined, but those assertions are error-prone if we start
to move code around. Additionally, outside of strictNullChecks we're able to accidentally
access any of those fields anyway (since optional properties are just assumed to always be present
when reading them). We can definitely do better.

The problem with this encoding of Shape is that the type-checker doesn't have any way to know
whether or not radius or sideLength are present based on the kind property. We need to
communicate what we know to the type checker. With that in mind, let's take another swing at
defining Shape .

function getArea(shape: Shape) {
 return Math.PI * shape.radius ** 2;

Object is possibly 'undefined'.

}

Object is possibly 'undefined'.

function getArea(shape: Shape) {
 if (shape.kind === "circle") {
 return Math.PI * shape.radius ** 2;

Object is possibly 'undefined'.

 }
}

Object is possibly 'undefined'.

function getArea(shape: Shape) {
 if (shape.kind === "circle") {
 return Math.PI * shape.radius! ** 2;
 }
}

https://www.typescriptlang.org/tsconfig#strictNullChecks
https://www.typescriptlang.org/tsconfig#strictNullChecks

Here, we've properly separated Shape out into two types with different values for the kind
property, but radius and sideLength are declared as required properties in their respective
types.

Let's see what happens here when we try to access the radius of a Shape .

Like with our first definition of Shape , this is still an error. When radius was optional, we got an
error (with strictNullChecks enabled) because TypeScript couldn't tell whether the property
was present. Now that Shape is a union, TypeScript is telling us that shape might be a Square ,
and Square s don't have radius defined on them! Both interpretations are correct, but only the
union encoding of Shape will cause an error regardless of how strictNullChecks is
configured.

But what if we tried checking the kind property again?

interface Circle {
 kind: "circle";
 radius: number;
}

interface Square {
 kind: "square";
 sideLength: number;
}

type Shape = Circle | Square;

function getArea(shape: Shape) {
 return Math.PI * shape.radius ** 2;

Property 'radius' does not exist on type 'Shape'.
 Property 'radius' does not exist on type 'Square'.

}

Property 'radius' does not exist on type 'Shape'.
 Property 'radius' does not exist on type 'Square'.

https://www.typescriptlang.org/tsconfig#strictNullChecks
https://www.typescriptlang.org/tsconfig#strictNullChecks

That got rid of the error! When every type in a union contains a common property with literal types,
TypeScript considers that to be a discriminated union, and can narrow out the members of the
union.

In this case, kind was that common property (which is what's considered a discriminant property
of Shape). Checking whether the kind property was "circle" got rid of every type in Shape
that didn't have a kind property with the type "circle" . That narrowed shape down to the
type Circle .

The same checking works with switch statements as well. Now we can try to write our complete
getArea without any pesky ! non-null assertions.

The important thing here was the encoding of Shape . Communicating the right information to
TypeScript - that Circle and Square were really two separate types with specific kind fields -
was crucial. Doing that let us write type-safe TypeScript code that looks no different than the

function getArea(shape: Shape) {
 if (shape.kind === "circle") {
 return Math.PI * shape.radius ** 2;

 (parameter) shape: Circle

 }
}

function getArea(shape: Shape) {
 switch (shape.kind) {
 case "circle":
 return Math.PI * shape.radius ** 2;

 (parameter) shape: Circle

 case "square":
 return shape.sideLength ** 2;

 (parameter) shape: Square

 }
}

JavaScript we would've written otherwise. From there, the type system was able to do the "right"
thing and figure out the types in each branch of our switch statement.

As an aside, try playing around with the above example and remove some of the return keywords. You'll

see that type-checking can help avoid bugs when accidentally falling through different clauses in a

switch statement.

Discriminated unions are useful for more than just talking about circles and squares. They're good
for representing any sort of messaging scheme in JavaScript, like when sending messages over the
network (client/server communication), or encoding mutations in a state management framework.

The never type
When narrowing, you can reduce the options of a union to a point where you have removed all
possibilities and have nothing left. In those cases, TypeScript will use a never type to represent a
state which shouldn't exist.

Exhaustiveness checking
The never type is assignable to every type; however, no type is assignable to never (except
never itself). This means you can use narrowing and rely on never turning up to do exhaustive
checking in a switch statement.

For example, adding a default to our getArea function which tries to assign the shape to
never will raise when every possible case has not been handled.

type Shape = Circle | Square;

function getArea(shape: Shape) {
 switch (shape.kind) {
 case "circle":
 return Math.PI * shape.radius ** 2;
 case "square":
 return shape.sideLength ** 2;
 default:
 const _exhaustiveCheck: never = shape;
 return _exhaustiveCheck;
 }
}

Adding a new member to the Shape union, will cause a TypeScript error:

interface Triangle {
 kind: "triangle";
 sideLength: number;
}

type Shape = Circle | Square | Triangle;

function getArea(shape: Shape) {
 switch (shape.kind) {
 case "circle":
 return Math.PI * shape.radius ** 2;
 case "square":
 return shape.sideLength ** 2;
 default:
 const _exhaustiveCheck: never = shape;

Type 'Triangle' is not assignable to type 'never'.

 return _exhaustiveCheck;
 }
}

Type 'Triangle' is not assignable to type 'never'.

More on Functions

Functions are the basic building block of any application, whether they're local functions, imported
from another module, or methods on a class. They're also values, and just like other values,
TypeScript has many ways to describe how functions can be called. Let's learn about how to write
types that describe functions.

Function Type Expressions
The simplest way to describe a function is with a function type expression. These types are
syntactically similar to arrow functions:

The syntax (a: string) => void means "a function with one parameter, named a , of type
string, that doesn't have a return value". Just like with function declarations, if a parameter type isn't
specified, it's implicitly any .

Note that the parameter name is required. The function type (string) => void means "a function

with a parameter named string of type any "!

Of course, we can use a type alias to name a function type:

function greeter(fn: (a: string) => void) {
 fn("Hello, World");
}

function printToConsole(s: string) {
 console.log(s);
}

greeter(printToConsole);

type GreetFunction = (a: string) => void;
function greeter(fn: GreetFunction) {
 // ...
}

Call Signatures
In JavaScript, functions can have properties in addition to being callable. However, the function type
expression syntax doesn't allow for declaring properties. If we want to describe something callable
with properties, we can write a call signature in an object type:

Note that the syntax is slightly different compared to a function type expression - use : between
the parameter list and the return type rather than => .

Construct Signatures
JavaScript functions can also be invoked with the new operator. TypeScript refers to these as
constructors because they usually create a new object. You can write a construct signature by
adding the new keyword in front of a call signature:

Some objects, like JavaScript's Date object, can be called with or without new . You can combine
call and construct signatures in the same type arbitrarily:

type DescribableFunction = {
 description: string;
 (someArg: number): boolean;
};
function doSomething(fn: DescribableFunction) {
 console.log(fn.description + " returned " + fn(6));
}

type SomeConstructor = {
 new (s: string): SomeObject;
};
function fn(ctor: SomeConstructor) {
 return new ctor("hello");
}

interface CallOrConstruct {
 new (s: string): Date;
 (n?: number): number;
}

Generic Functions
It's common to write a function where the types of the input relate to the type of the output, or
where the types of two inputs are related in some way. Let's consider for a moment a function that
returns the first element of an array:

This function does its job, but unfortunately has the return type any . It'd be better if the function
returned the type of the array element.

In TypeScript, generics are used when we want to describe a correspondence between two values.
We do this by declaring a type parameter in the function signature:

By adding a type parameter Type to this function and using it in two places, we've created a link
between the input of the function (the array) and the output (the return value). Now when we call it,
a more specific type comes out:

Inference

Note that we didn't have to specify Type in this sample. The type was inferred - chosen
automatically - by TypeScript.

function firstElement(arr: any[]) {
 return arr[0];
}

function firstElement<Type>(arr: Type[]): Type | undefined {
 return arr[0];
}

// s is of type 'string'
const s = firstElement(["a", "b", "c"]);
// n is of type 'number'
const n = firstElement([1, 2, 3]);
// u is of type undefined
const u = firstElement([]);

We can use multiple type parameters as well. For example, a standalone version of map would look
like this:

Note that in this example, TypeScript could infer both the type of the Input type parameter (from
the given string array), as well as the Output type parameter based on the return value of the
function expression (number).

Constraints

We've written some generic functions that can work on any kind of value. Sometimes we want to
relate two values, but can only operate on a certain subset of values. In this case, we can use a
constraint to limit the kinds of types that a type parameter can accept.

Let's write a function that returns the longer of two values. To do this, we need a length property
that's a number. We constrain the type parameter to that type by writing an extends clause:

function map<Input, Output>(arr: Input[], func: (arg: Input) => Output): O
 return arr.map(func);
}

// Parameter 'n' is of type 'string'
// 'parsed' is of type 'number[]'
const parsed = map(["1", "2", "3"], (n) => parseInt(n));

There are a few interesting things to note in this example. We allowed TypeScript to infer the return
type of longest . Return type inference also works on generic functions.

Because we constrained Type to { length: number } , we were allowed to access the .length
property of the a and b parameters. Without the type constraint, we wouldn't be able to access
those properties because the values might have been some other type without a length property.

The types of longerArray and longerString were inferred based on the arguments.
Remember, generics are all about relating two or more values with the same type!

Finally, just as we'd like, the call to longest(10, 100) is rejected because the number type
doesn't have a .length property.

Working with Constrained Values

Here's a common error when working with generic constraints:

function longest<Type extends { length: number }>(a: Type, b: Type) {
 if (a.length >= b.length) {
 return a;
 } else {
 return b;
 }
}

// longerArray is of type 'number[]'
const longerArray = longest([1, 2], [1, 2, 3]);
// longerString is of type 'alice' | 'bob'
const longerString = longest("alice", "bob");
// Error! Numbers don't have a 'length' property
const notOK = longest(10, 100);

Argument of type 'number' is not assignable to parameter of type '{
length: number; }'.
Argument of type 'number' is not assignable to parameter of type '{
length: number; }'.

It might look like this function is OK - Type is constrained to { length: number } , and the
function either returns Type or a value matching that constraint. The problem is that the function
promises to return the same kind of object as was passed in, not just some object matching the
constraint. If this code were legal, you could write code that definitely wouldn't work:

Specifying Type Arguments

TypeScript can usually infer the intended type arguments in a generic call, but not always. For
example, let's say you wrote a function to combine two arrays:

Normally it would be an error to call this function with mismatched arrays:

function minimumLength<Type extends { length: number }>(
 obj: Type,
 minimum: number
): Type {
 if (obj.length >= minimum) {
 return obj;
 } else {
 return { length: minimum };

Type '{ length: number; }' is not assignable to type 'Type'.
 '{ length: number; }' is assignable to the constraint of type 'Type',
but 'Type' could be instantiated with a different subtype of constraint
'{ length: number; }'.

 }
}

Type '{ length: number; }' is not assignable to type 'Type'.
 '{ length: number; }' is assignable to the constraint of type 'Type',
but 'Type' could be instantiated with a different subtype of constraint '{
length: number; }'.

// 'arr' gets value { length: 6 }
const arr = minimumLength([1, 2, 3], 6);
// and crashes here because arrays have
// a 'slice' method, but not the returned object!
console.log(arr.slice(0));

function combine<Type>(arr1: Type[], arr2: Type[]): Type[] {
 return arr1.concat(arr2);
}

If you intended to do this, however, you could manually specify Type :

Guidelines for Writing Good Generic Functions

Writing generic functions is fun, and it can be easy to get carried away with type parameters.
Having too many type parameters or using constraints where they aren't needed can make
inference less successful, frustrating callers of your function.

Push Type Parameters Down

Here are two ways of writing a function that appear similar:

These might seem identical at first glance, but firstElement1 is a much better way to write this
function. Its inferred return type is Type , but firstElement2 's inferred return type is any
because TypeScript has to resolve the arr[0] expression using the constraint type, rather than
"waiting" to resolve the element during a call.

Rule: When possible, use the type parameter itself rather than constraining it

const arr = combine([1, 2, 3], ["hello"]);

Type 'string' is not assignable to type 'number'.Type 'string' is not assignable to type 'number'.

const arr = combine<string | number>([1, 2, 3], ["hello"]);

function firstElement1<Type>(arr: Type[]) {
 return arr[0];
}

function firstElement2<Type extends any[]>(arr: Type) {
 return arr[0];
}

// a: number (good)
const a = firstElement1([1, 2, 3]);
// b: any (bad)
const b = firstElement2([1, 2, 3]);

Use Fewer Type Parameters

Here's another pair of similar functions:

We've created a type parameter Func that doesn't relate two values. That's always a red flag,
because it means callers wanting to specify type arguments have to manually specify an extra type
argument for no reason. Func doesn't do anything but make the function harder to read and
reason about!

Rule: Always use as few type parameters as possible

Type Parameters Should Appear Twice

Sometimes we forget that a function might not need to be generic:

We could just as easily have written a simpler version:

function filter1<Type>(arr: Type[], func: (arg: Type) => boolean): Type[]
 return arr.filter(func);
}

function filter2<Type, Func extends (arg: Type) => boolean>(
 arr: Type[],
 func: Func
): Type[] {
 return arr.filter(func);
}

function greet<Str extends string>(s: Str) {
 console.log("Hello, " + s);
}

greet("world");

Remember, type parameters are for relating the types of multiple values. If a type parameter is only
used once in the function signature, it's not relating anything.

Rule: If a type parameter only appears in one location, strongly reconsider if you actually need it

Optional Parameters
Functions in JavaScript often take a variable number of arguments. For example, the toFixed
method of number takes an optional digit count:

We can model this in TypeScript by marking the parameter as optional with ? :

Although the parameter is specified as type number , the x parameter will actually have the type
number | undefined because unspecified parameters in JavaScript get the value undefined .

You can also provide a parameter default:

function greet(s: string) {
 console.log("Hello, " + s);
}

function f(n: number) {
 console.log(n.toFixed()); // 0 arguments
 console.log(n.toFixed(3)); // 1 argument
}

function f(x?: number) {
 // ...
}
f(); // OK
f(10); // OK

Now in the body of f , x will have type number because any undefined argument will be
replaced with 10 . Note that when a parameter is optional, callers can always pass undefined , as
this simply simulates a "missing" argument:

Optional Parameters in Callbacks

Once you've learned about optional parameters and function type expressions, it's very easy to
make the following mistakes when writing functions that invoke callbacks:

What people usually intend when writing index? as an optional parameter is that they want both
of these calls to be legal:

What this actually means is that callback might get invoked with one argument. In other words,
the function definition says that the implementation might look like this:

function f(x = 10) {
 // ...
}

declare function f(x?: number): void;
// cut
// All OK
f();
f(10);
f(undefined);

function myForEach(arr: any[], callback: (arg: any, index?: number) => voi
 for (let i = 0; i < arr.length; i++) {
 callback(arr[i], i);
 }
}

myForEach([1, 2, 3], (a) => console.log(a));
myForEach([1, 2, 3], (a, i) => console.log(a, i));

In turn, TypeScript will enforce this meaning and issue errors that aren't really possible:

In JavaScript, if you call a function with more arguments than there are parameters, the extra
arguments are simply ignored. TypeScript behaves the same way. Functions with fewer parameters
(of the same types) can always take the place of functions with more parameters.

When writing a function type for a callback, never write an optional parameter unless you intend to call the

function without passing that argument

Function Overloads
Some JavaScript functions can be called in a variety of argument counts and types. For example,
you might write a function to produce a Date that takes either a timestamp (one argument) or a
month/day/year specification (three arguments).

In TypeScript, we can specify a function that can be called in different ways by writing overload
signatures. To do this, write some number of function signatures (usually two or more), followed by
the body of the function:

function myForEach(arr: any[], callback: (arg: any, index?: number) => voi
 for (let i = 0; i < arr.length; i++) {
 // I don't feel like providing the index today
 callback(arr[i]);
 }
}

myForEach([1, 2, 3], (a, i) => {
 console.log(i.toFixed());

Object is possibly 'undefined'.

});

Object is possibly 'undefined'.

In this example, we wrote two overloads: one accepting one argument, and another accepting three
arguments. These first two signatures are called the overload signatures.

Then, we wrote a function implementation with a compatible signature. Functions have an
implementation signature, but this signature can't be called directly. Even though we wrote a
function with two optional parameters after the required one, it can't be called with two
parameters!

Overload Signatures and the Implementation Signature

This is a common source of confusion. Often people will write code like this and not understand
why there is an error:

Again, the signature used to write the function body can't be "seen" from the outside.

function makeDate(timestamp: number): Date;
function makeDate(m: number, d: number, y: number): Date;
function makeDate(mOrTimestamp: number, d?: number, y?: number): Date {
 if (d !== undefined && y !== undefined) {
 return new Date(y, mOrTimestamp, d);
 } else {
 return new Date(mOrTimestamp);
 }
}
const d1 = makeDate(12345678);
const d2 = makeDate(5, 5, 5);
const d3 = makeDate(1, 3);

No overload expects 2 arguments, but overloads do exist that expect
either 1 or 3 arguments.
No overload expects 2 arguments, but overloads do exist that expect either
1 or 3 arguments.

function fn(x: string): void;
function fn() {
 // ...
}
// Expected to be able to call with zero arguments
fn();

Expected 1 arguments, but got 0.Expected 1 arguments, but got 0.

The signature of the implementation is not visible from the outside. When writing an overloaded function,

you should always have two or more signatures above the implementation of the function.

The implementation signature must also be compatible with the overload signatures. For example,
these functions have errors because the implementation signature doesn't match the overloads in a
correct way:

Writing Good Overloads

Like generics, there are a few guidelines you should follow when using function overloads.
Following these principles will make your function easier to call, easier to understand, and easier to
implement.

Let's consider a function that returns the length of a string or an array:

function fn(x: boolean): void;
// Argument type isn't right
function fn(x: string): void;

This overload signature is not compatible with its implementation
signature.

function fn(x: boolean) {}

This overload signature is not compatible with its implementation
signature.

function fn(x: string): string;
// Return type isn't right
function fn(x: number): boolean;

This overload signature is not compatible with its implementation
signature.

function fn(x: string | number) {
 return "oops";
}

This overload signature is not compatible with its implementation
signature.

function len(s: string): number;
function len(arr: any[]): number;
function len(x: any) {
 return x.length;
}

This function is fine; we can invoke it with strings or arrays. However, we can't invoke it with a value
that might be a string or an array, because TypeScript can only resolve a function call to a single
overload:

Because both overloads have the same argument count and same return type, we can instead write
a non-overloaded version of the function:

This is much better! Callers can invoke this with either sort of value, and as an added bonus, we
don't have to figure out a correct implementation signature.

Always prefer parameters with union types instead of overloads when possible

Declaring this in a Function

TypeScript will infer what the this should be in a function via code flow analysis, for example in
the following:

len(""); // OK
len([0]); // OK
len(Math.random() > 0.5 ? "hello" : [0]);

No overload matches this call.
 Overload 1 of 2, '(s: string): number', gave the following error.
 Argument of type 'number[] | "hello"' is not assignable to
parameter of type 'string'.
 Type 'number[]' is not assignable to type 'string'.
 Overload 2 of 2, '(arr: any[]): number', gave the following error.
 Argument of type 'number[] | "hello"' is not assignable to
parameter of type 'any[]'.
 Type 'string' is not assignable to type 'any[]'.

No overload matches this call.
 Overload 1 of 2, '(s: string): number', gave the following error.
 Argument of type 'number[] | "hello"' is not assignable to parameter
of type 'string'.
 Type 'number[]' is not assignable to type 'string'.
 Overload 2 of 2, '(arr: any[]): number', gave the following error.
 Argument of type 'number[] | "hello"' is not assignable to parameter
of type 'any[]'.
 Type 'string' is not assignable to type 'any[]'.

function len(x: any[] | string) {
 return x.length;
}

TypeScript understands that the function user.becomeAdmin has a corresponding this which is
the outer object user . this , heh, can be enough for a lot of cases, but there are a lot of cases
where you need more control over what object this represents. The JavaScript specification states
that you cannot have a parameter called this , and so TypeScript uses that syntax space to let you
declare the type for this in the function body.

This pattern is common with callback-style APIs, where another object typically controls when your
function is called. Note that you need to use function and not arrow functions to get this
behavior:

const user = {
 id: 123,

 admin: false,
 becomeAdmin: function () {
 this.admin = true;
 },
};

interface DB {
 filterUsers(filter: (this: User) => boolean): User[];
}

const db = getDB();
const admins = db.filterUsers(function (this: User) {
 return this.admin;
});

interface DB {
 filterUsers(filter: (this: User) => boolean): User[];
}

const db = getDB();
const admins = db.filterUsers(() => this.admin);

The containing arrow function captures the global value of 'this'.
Element implicitly has an 'any' type because type 'typeof globalThis'
has no index signature.

The containing arrow function captures the global value of 'this'.
Element implicitly has an 'any' type because type 'typeof globalThis' has
no index signature.

Other Types to Know About
There are some additional types you'll want to recognize that appear often when working with
function types. Like all types, you can use them everywhere, but these are especially relevant in the
context of functions.

void

void represents the return value of functions which don't return a value. It's the inferred type any
time a function doesn't have any return statements, or doesn't return any explicit value from
those return statements:

In JavaScript, a function that doesn't return any value will implicitly return the value undefined .
However, void and undefined are not the same thing in TypeScript. There are further details at
the end of this chapter.

void is not the same as undefined .

object

The special type object refers to any value that isn't a primitive (string , number , bigint ,
boolean , symbol , null , or undefined). This is different from the empty object type { } , and
also different from the global type Object . It's very likely you will never use Object .

object is not Object . Always use object !

Note that in JavaScript, function values are objects: They have properties, have
Object.prototype in their prototype chain, are instanceof Object , you can call
Object.keys on them, and so on. For this reason, function types are considered to be object s in
TypeScript.

unknown

// The inferred return type is void
function noop() {
 return;
}

The unknown type represents any value. This is similar to the any type, but is safer because it's
not legal to do anything with an unknown value:

This is useful when describing function types because you can describe functions that accept any
value without having any values in your function body.

Conversely, you can describe a function that returns a value of unknown type:

never

Some functions never return a value:

The never type represents values which are never observed. In a return type, this means that the
function throws an exception or terminates execution of the program.

never also appears when TypeScript determines there's nothing left in a union.

function f1(a: any) {
 a.b(); // OK
}
function f2(a: unknown) {
 a.b();

Object is of type 'unknown'.

}

Object is of type 'unknown'.

function safeParse(s: string): unknown {
 return JSON.parse(s);
}

// Need to be careful with 'obj'!
const obj = safeParse(someRandomString);

function fail(msg: string): never {
 throw new Error(msg);
}

Background Reading:

Rest Parameters

Spread Syntax

Function

The global type Function describes properties like bind , call , apply , and others present on
all function values in JavaScript. It also has the special property that values of type Function can
always be called; these calls return any :

This is an untyped function call and is generally best avoided because of the unsafe any return
type.

If you need to accept an arbitrary function but don't intend to call it, the type () => void is
generally safer.

Rest Parameters and Arguments

Rest Parameters

In addition to using optional parameters or overloads to make
functions that can accept a variety of fixed argument counts, we can
also define functions that take an unbounded number of arguments using rest parameters.

A rest parameter appears after all other parameters, and uses the ... syntax:

function fn(x: string | number) {
 if (typeof x === "string") {
 // do something
 } else if (typeof x === "number") {
 // do something else
 } else {
 x; // has type 'never'!
 }
}

function doSomething(f: Function) {
 return f(1, 2, 3);
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

In TypeScript, the type annotation on these parameters is implicitly any[] instead of any , and any
type annotation given must be of the form Array<T> or T[] , or a tuple type (which we'll learn
about later).

Rest Arguments

Conversely, we can provide a variable number of arguments from an array using the spread syntax.
For example, the push method of arrays takes any number of arguments:

Note that in general, TypeScript does not assume that arrays are immutable. This can lead to some
surprising behavior:

The best fix for this situation depends a bit on your code, but in general a const context is the
most straightforward solution:

function multiply(n: number, ...m: number[]) {
 return m.map((x) => n * x);
}
// 'a' gets value [10, 20, 30, 40]
const a = multiply(10, 1, 2, 3, 4);

const arr1 = [1, 2, 3];
const arr2 = [4, 5, 6];
arr1.push(...arr2);

// Inferred type is number[] -- "an array with zero or more numbers",
// not specifically two numbers
const args = [8, 5];
const angle = Math.atan2(...args);

A spread argument must either have a tuple type or be passed to a rest
parameter.
A spread argument must either have a tuple type or be passed to a rest
parameter.

Background Reading:

Destructuring Assignment

Using rest arguments may require turning on downlevelIteration when targeting older
runtimes.

Parameter Destructuring
You can use parameter destructuring to conveniently unpack
objects provided as an argument into one or more local variables in
the function body. In JavaScript, it looks like this:

The type annotation for the object goes after the destructuring syntax:

This can look a bit verbose, but you can use a named type here as well:

Assignability of Functions

// Inferred as 2-length tuple
const args = [8, 5] as const;
// OK
const angle = Math.atan2(...args);

function sum({ a, b, c }) {
 console.log(a + b + c);
}
sum({ a: 10, b: 3, c: 9 });

function sum({ a, b, c }: { a: number; b: number; c: number }) {
 console.log(a + b + c);
}

// Same as prior example
type ABC = { a: number; b: number; c: number };
function sum({ a, b, c }: ABC) {
 console.log(a + b + c);
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://www.typescriptlang.org/tsconfig#downlevelIteration

Return type void

The void return type for functions can produce some unusual, but expected behavior.

Contextual typing with a return type of void does not force functions to not return something.
Another way to say this is a contextual function type with a void return type (type vf = () =>
void), when implemented, can return any other value, but it will be ignored.

Thus, the following implementations of the type () => void are valid:

And when the return value of one of these functions is assigned to another variable, it will retain the
type of void :

This behavior exists so that the following code is valid even though Array.prototype.push
returns a number and the Array.prototype.forEach method expects a function with a return
type of void .

type voidFunc = () => void;

const f1: voidFunc = () => {
 return true;
};

const f2: voidFunc = () => true;

const f3: voidFunc = function () {
 return true;
};

const v1 = f1();

const v2 = f2();

const v3 = f3();

const src = [1, 2, 3];
const dst = [0];

src.forEach((el) => dst.push(el));

There is one other special case to be aware of, when a literal function definition has a void return
type, that function must not return anything.

For more on void please refer to these other documentation entries:

v1 handbook

v2 handbook

FAQ - "Why are functions returning non-void assignable to function returning void?"

function f2(): void {
 // @ts-expect-error
 return true;
}

const f3 = function (): void {
 // @ts-expect-error
 return true;
};

https://www.typescriptlang.org/docs/handbook/basic-types.html#void
https://www.typescriptlang.org/docs/handbook/2/functions.html#void
https://github.com/Microsoft/TypeScript/wiki/FAQ#why-are-functions-returning-non-void-assignable-to-function-returning-void

Object Types

In JavaScript, the fundamental way that we group and pass around data is through objects. In
TypeScript, we represent those through object types.

As we've seen, they can be anonymous:

or they can be named by using either an interface

or a type alias.

In all three examples above, we've written functions that take objects that contain the property
name (which must be a string) and age (which must be a number).

function greet(person: { name: string; age: number }) {
 return "Hello " + person.name;
}

interface Person {
 name: string;
 age: number;
}

function greet(person: Person) {
 return "Hello " + person.name;
}

type Person = {
 name: string;
 age: number;
};

function greet(person: Person) {
 return "Hello " + person.name;
}

Property Modifiers
Each property in an object type can specify a couple of things: the type, whether the property is
optional, and whether the property can be written to.

Optional Properties

Much of the time, we'll find ourselves dealing with objects that might have a property set. In those
cases, we can mark those properties as optional by adding a question mark (?) to the end of their
names.

In this example, both xPos and yPos are considered optional. We can choose to provide either of
them, so every call above to paintShape is valid. All optionality really says is that if the property is
set, it better have a specific type.

We can also read from those properties - but when we do under strictNullChecks, TypeScript
will tell us they're potentially undefined .

interface PaintOptions {
 shape: Shape;
 xPos?: number;
 yPos?: number;
}

function paintShape(opts: PaintOptions) {
 // ...
}

const shape = getShape();
paintShape({ shape });
paintShape({ shape, xPos: 100 });
paintShape({ shape, yPos: 100 });
paintShape({ shape, xPos: 100, yPos: 100 });

https://www.typescriptlang.org/tsconfig#strictNullChecks

In JavaScript, even if the property has never been set, we can still access it - it's just going to give us
the value undefined . We can just handle undefined specially.

Note that this pattern of setting defaults for unspecified values is so common that JavaScript has
syntax to support it.

function paintShape(opts: PaintOptions) {
 let xPos = opts.xPos;

 (property) PaintOptions.xPos?: number | undefined

 let yPos = opts.yPos;

 (property) PaintOptions.yPos?: number | undefined

 // ...
}

function paintShape(opts: PaintOptions) {
 let xPos = opts.xPos === undefined ? 0 : opts.xPos;

 let xPos: number

 let yPos = opts.yPos === undefined ? 0 : opts.yPos;

 let yPos: number

 // ...
}

Here we used a destructuring pattern for paintShape 's parameter, and provided default values for
xPos and yPos . Now xPos and yPos are both definitely present within the body of
paintShape , but optional for any callers to paintShape .

Note that there is currently no way to place type annotations within destructuring patterns. This is because

the following syntax already means something different in JavaScript.

In an object destructuring pattern, shape: Shape means "grab the property shape and redefine
it locally as a variable named Shape . Likewise xPos: number creates a variable named number
whose value is based on the parameter's xPos .

Using mapping modifiers, you can remove optional attributes.

readonly Properties

Properties can also be marked as readonly for TypeScript. While it won't change any behavior at
runtime, a property marked as readonly can't be written to during type-checking.

function paintShape({ shape, xPos = 0, yPos = 0 }: PaintOptions) {
 console.log("x coordinate at", xPos);

 (parameter) xPos: number

 console.log("y coordinate at", yPos);

 (parameter) yPos: number

 // ...
}

function draw({ shape: Shape, xPos: number = 100 /*...*/ }) {
 render(shape);

Cannot find name 'shape'. Did you mean 'Shape'?

 render(xPos);

Cannot find name 'xPos'.

}

Cannot find name 'shape'. Did you mean 'Shape'?

Cannot find name 'xPos'.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Default_values
https://www.typescriptlang.org/docs/handbook/2/mapped-types.html#mapping-modifiers

Using the readonly modifier doesn't necessarily imply that a value is totally immutable - or in
other words, that its internal contents can't be changed. It just means the property itself can't be re-
written to.

It's important to manage expectations of what readonly implies. It's useful to signal intent during
development time for TypeScript on how an object should be used. TypeScript doesn't factor in

interface SomeType {
 readonly prop: string;
}

function doSomething(obj: SomeType) {
 // We can read from 'obj.prop'.
 console.log(`prop has the value '${obj.prop}'.`);

 // But we can't re-assign it.
 obj.prop = "hello";

Cannot assign to 'prop' because it is a read-only property.

}

Cannot assign to 'prop' because it is a read-only property.

interface Home {
 readonly resident: { name: string; age: number };
}

function visitForBirthday(home: Home) {
 // We can read and update properties from 'home.resident'.
 console.log(`Happy birthday ${home.resident.name}!`);
 home.resident.age++;
}

function evict(home: Home) {
 // But we can't write to the 'resident' property itself on a 'Home'.
 home.resident = {

Cannot assign to 'resident' because it is a read-only property.

 name: "Victor the Evictor",
 age: 42,
 };
}

Cannot assign to 'resident' because it is a read-only property.

whether properties on two types are readonly when checking whether those types are
compatible, so readonly properties can also change via aliasing.

Using mapping modifiers, you can remove readonly attributes.

Index Signatures

Sometimes you don't know all the names of a type's properties ahead of time, but you do know the
shape of the values.

In those cases you can use an index signature to describe the types of possible values, for example:

interface Person {
 name: string;
 age: number;
}

interface ReadonlyPerson {
 readonly name: string;
 readonly age: number;
}

let writablePerson: Person = {
 name: "Person McPersonface",
 age: 42,
};

// works
let readonlyPerson: ReadonlyPerson = writablePerson;

console.log(readonlyPerson.age); // prints '42'
writablePerson.age++;
console.log(readonlyPerson.age); // prints '43'

https://www.typescriptlang.org/docs/handbook/2/mapped-types.html#mapping-modifiers

Above, we have a StringArray interface which has an index signature. This index signature states
that when a StringArray is indexed with a number , it will return a string .

An index signature property type must be either 'string' or 'number'.

It is possible to support both types of indexers...

While string index signatures are a powerful way to describe the "dictionary" pattern, they also
enforce that all properties match their return type. This is because a string index declares that
obj.property is also available as obj["property"] . In the following example, name 's type
does not match the string index's type, and the type checker gives an error:

However, properties of different types are acceptable if the index signature is a union of the
property types:

interface StringArray {
 [index: number]: string;
}

const myArray: StringArray = getStringArray();
const secondItem = myArray[1];

 const secondItem: string

interface NumberDictionary {
 [index: string]: number;

 length: number; // ok
 name: string;

Property 'name' of type 'string' is not assignable to 'string' index
type 'number'.

}

Property 'name' of type 'string' is not assignable to 'string' index type
'number'.

Finally, you can make index signatures readonly in order to prevent assignment to their indices:

You can't set myArray[2] because the index signature is readonly .

Extending Types
It's pretty common to have types that might be more specific versions of other types. For example,
we might have a BasicAddress type that describes the fields necessary for sending letters and
packages in the U.S.

In some situations that's enough, but addresses often have a unit number associated with them if
the building at an address has multiple units. We can then describe an AddressWithUnit .

interface NumberOrStringDictionary {
 [index: string]: number | string;
 length: number; // ok, length is a number
 name: string; // ok, name is a string
}

interface ReadonlyStringArray {
 readonly [index: number]: string;
}

let myArray: ReadonlyStringArray = getReadOnlyStringArray();
myArray[2] = "Mallory";

Index signature in type 'ReadonlyStringArray' only permits reading.Index signature in type 'ReadonlyStringArray' only permits reading.

interface BasicAddress {
 name?: string;
 street: string;
 city: string;
 country: string;
 postalCode: string;
}

This does the job, but the downside here is that we had to repeat all the other fields from
BasicAddress when our changes were purely additive. Instead, we can extend the original
BasicAddress type and just add the new fields that are unique to AddressWithUnit .

The extends keyword on an interface allows us to effectively copy members from other
named types, and add whatever new members we want. This can be useful for cutting down the
amount of type declaration boilerplate we have to write, and for signaling intent that several
different declarations of the same property might be related. For example, AddressWithUnit
didn't need to repeat the street property, and because street originates from BasicAddress ,
a reader will know that those two types are related in some way.

interface s can also extend from multiple types.

interface AddressWithUnit {
 name?: string;
 unit: string;
 street: string;
 city: string;
 country: string;
 postalCode: string;
}

interface BasicAddress {
 name?: string;
 street: string;
 city: string;
 country: string;
 postalCode: string;
}

interface AddressWithUnit extends BasicAddress {
 unit: string;
}

Intersection Types
interface s allowed us to build up new types from other types by extending them. TypeScript
provides another construct called intersection types that is mainly used to combine existing object
types.

An intersection type is defined using the & operator.

Here, we've intersected Colorful and Circle to produce a new type that has all the members of
Colorful and Circle .

interface Colorful {
 color: string;
}

interface Circle {
 radius: number;
}

interface ColorfulCircle extends Colorful, Circle {}

const cc: ColorfulCircle = {
 color: "red",
 radius: 42,
};

interface Colorful {
 color: string;
}
interface Circle {
 radius: number;
}

type ColorfulCircle = Colorful & Circle;

Interfaces vs. Intersections
We just looked at two ways to combine types which are similar, but are actually subtly different.
With interfaces, we could use an extends clause to extend from other types, and we were able to
do something similar with intersections and name the result with a type alias. The principle
difference between the two is how conflicts are handled, and that difference is typically one of the
main reasons why you'd pick one over the other between an interface and a type alias of an
intersection type.

Generic Object Types
Let's imagine a Box type that can contain any value - string s, number s, Giraffe s, whatever.

Right now, the contents property is typed as any , which works, but can lead to accidents down
the line.

We could instead use unknown , but that would mean that in cases where we already know the type
of contents , we'd need to do precautionary checks, or use error-prone type assertions.

function draw(circle: Colorful & Circle) {
 console.log(`Color was ${circle.color}`);
 console.log(`Radius was ${circle.radius}`);
}

// okay
draw({ color: "blue", radius: 42 });

// oops
draw({ color: "red", raidus: 42 });

Argument of type '{ color: string; raidus: number; }' is not assignable
to parameter of type 'Colorful & Circle'.
 Object literal may only specify known properties, but 'raidus' does
not exist in type 'Colorful & Circle'. Did you mean to write 'radius'?

Argument of type '{ color: string; raidus: number; }' is not assignable to
parameter of type 'Colorful & Circle'.
 Object literal may only specify known properties, but 'raidus' does not
exist in type 'Colorful & Circle'. Did you mean to write 'radius'?

interface Box {
 contents: any;
}

One type safe approach would be to instead scaffold out different Box types for every type of
contents .

But that means we'll have to create different functions, or overloads of functions, to operate on
these types.

interface Box {
 contents: unknown;
}

let x: Box = {
 contents: "hello world",
};

// we could check 'x.contents'
if (typeof x.contents === "string") {
 console.log(x.contents.toLowerCase());
}

// or we could use a type assertion
console.log((x.contents as string).toLowerCase());

interface NumberBox {
 contents: number;
}

interface StringBox {
 contents: string;
}

interface BooleanBox {
 contents: boolean;
}

That's a lot of boilerplate. Moreover, we might later need to introduce new types and overloads. This
is frustrating, since our box types and overloads are all effectively the same.

Instead, we can make a generic Box type which declares a type parameter.

You might read this as â€œA Box of Type is something whose contents have type Type â€�.
Later on, when we refer to Box , we have to give a type argument in place of Type .

Think of Box as a template for a real type, where Type is a placeholder that will get replaced with
some other type. When TypeScript sees Box<string> , it will replace every instance of Type in
Box<Type> with string , and end up working with something like { contents: string } . In
other words, Box<string> and our earlier StringBox work identically.

function setContents(box: StringBox, newContents: string): void;
function setContents(box: NumberBox, newContents: number): void;
function setContents(box: BooleanBox, newContents: boolean): void;
function setContents(box: { contents: any }, newContents: any) {
 box.contents = newContents;
}

interface Box<Type> {
 contents: Type;
}

let box: Box<string>;

Box is reusable in that Type can be substituted with anything. That means that when we need a
box for a new type, we don't need to declare a new Box type at all (though we certainly could if we
wanted to).

This also means that we can avoid overloads entirely by instead using generic functions.

interface Box<Type> {
 contents: Type;
}
interface StringBox {
 contents: string;
}

let boxA: Box<string> = { contents: "hello" };
boxA.contents;

 (property) Box<string>.contents: string

let boxB: StringBox = { contents: "world" };
boxB.contents;

 (property) StringBox.contents: string

interface Box<Type> {
 contents: Type;
}

interface Apple {
 //
}

// Same as '{ contents: Apple }'.
type AppleBox = Box<Apple>;

function setContents<Type>(box: Box<Type>, newContents: Type) {
 box.contents = newContents;
}

https://www.typescriptlang.org/docs/handbook/2/functions.html#generic-functions

It is worth noting that type aliases can also be generic. We could have defined our new Box<Type>
interface, which was:

by using a type alias instead:

Since type aliases, unlike interfaces, can describe more than just object types, we can also use them
to write other kinds of generic helper types.

We'll circle back to type aliases in just a little bit.

The Array Type

Generic object types are often some sort of container type that work independently of the type of
elements they contain. It's ideal for data structures to work this way so that they're re-usable across
different data types.

interface Box<Type> {
 contents: Type;
}

type Box<Type> = {
 contents: Type;
};

type OrNull<Type> = Type | null;

type OneOrMany<Type> = Type | Type[];

type OneOrManyOrNull<Type> = OrNull<OneOrMany<Type>>;

 type OneOrManyOrNull<Type> = OneOrMany<Type> | null

type OneOrManyOrNullStrings = OneOrManyOrNull<string>;

 type OneOrManyOrNullStrings = OneOrMany<string> | null

It turns out we've been working with a type just like that throughout this handbook: the Array
type. Whenever we write out types like number[] or string[] , that's really just a shorthand for
Array<number> and Array<string> .

Much like the Box type above, Array itself is a generic type.

Modern JavaScript also provides other data structures which are generic, like Map<K, V> ,
Set<T> , and Promise<T> . All this really means is that because of how Map , Set , and Promise
behave, they can work with any sets of types.

function doSomething(value: Array<string>) {
 // ...
}

let myArray: string[] = ["hello", "world"];

// either of these work!
doSomething(myArray);
doSomething(new Array("hello", "world"));

interface Array<Type> {
 /**
 * Gets or sets the length of the array.
 */
 length: number;

 /**
 * Removes the last element from an array and returns it.
 */
 pop(): Type | undefined;

 /**
 * Appends new elements to an array, and returns the new length of the a
 */
 push(...items: Type[]): number;

 // ...
}

The ReadonlyArray Type

The ReadonlyArray is a special type that describes arrays that shouldn't be changed.

Much like the readonly modifier for properties, it's mainly a tool we can use for intent. When we
see a function that returns ReadonlyArray s, it tells us we're not meant to change the contents at
all, and when we see a function that consumes ReadonlyArray s, it tells us that we can pass any
array into that function without worrying that it will change its contents.

Unlike Array , there isn't a ReadonlyArray constructor that we can use.

Instead, we can assign regular Array s to ReadonlyArray s.

Just as TypeScript provides a shorthand syntax for Array<Type> with Type[] , it also provides a
shorthand syntax for ReadonlyArray<Type> with readonly Type[] .

function doStuff(values: ReadonlyArray<string>) {
 // We can read from 'values'...
 const copy = values.slice();
 console.log(`The first value is ${values[0]}`);

 // ...but we can't mutate 'values'.
 values.push("hello!");

Property 'push' does not exist on type 'readonly string[]'.

}

Property 'push' does not exist on type 'readonly string[]'.

new ReadonlyArray("red", "green", "blue");

'ReadonlyArray' only refers to a type, but is being used as a value
here.
'ReadonlyArray' only refers to a type, but is being used as a value here.

const roArray: ReadonlyArray<string> = ["red", "green", "blue"];

One last thing to note is that unlike the readonly property modifier, assignability isn't
bidirectional between regular Array s and ReadonlyArray s.

Tuple Types

A tuple type is another sort of Array type that knows exactly how many elements it contains, and
exactly which types it contains at specific positions.

Here, StringNumberPair is a tuple type of string and number . Like ReadonlyArray , it has no
representation at runtime, but is significant to TypeScript. To the type system, StringNumberPair
describes arrays whose 0 index contains a string and whose 1 index contains a number .

function doStuff(values: readonly string[]) {
 // We can read from 'values'...
 const copy = values.slice();
 console.log(`The first value is ${values[0]}`);

 // ...but we can't mutate 'values'.
 values.push("hello!");

Property 'push' does not exist on type 'readonly string[]'.

}

Property 'push' does not exist on type 'readonly string[]'.

let x: readonly string[] = [];
let y: string[] = [];

x = y;
y = x;

The type 'readonly string[]' is 'readonly' and cannot be assigned to
the mutable type 'string[]'.
The type 'readonly string[]' is 'readonly' and cannot be assigned to the
mutable type 'string[]'.

type StringNumberPair = [string, number];

If we try to index past the number of elements, we'll get an error.

We can also destructure tuples using JavaScript's array destructuring.

function doSomething(pair: [string, number]) {
 const a = pair[0];

 const a: string

 const b = pair[1];

 const b: number

 // ...
}

doSomething(["hello", 42]);

function doSomething(pair: [string, number]) {
 // ...

 const c = pair[2];

Tuple type '[string, number]' of length '2' has no element at index
'2'.

}

Tuple type '[string, number]' of length '2' has no element at index '2'.

function doSomething(stringHash: [string, number]) {
 const [inputString, hash] = stringHash;

 console.log(inputString);

 const inputString: string

 console.log(hash);

 const hash: number

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment#Array_destructuring

Tuple types are useful in heavily convention-based APIs, where each element's meaning is "obvious". This

gives us flexibility in whatever we want to name our variables when we destructure them. In the above

example, we were able to name elements 0 and 1 to whatever we wanted.

However, since not every user holds the same view of what's obvious, it may be worth reconsidering

whether using objects with descriptive property names may be better for your API.

Other than those length checks, simple tuple types like these are equivalent to types which are
versions of Array s that declare properties for specific indexes, and that declare length with a
numeric literal type.

Another thing you may be interested in is that tuples can have optional properties by writing out a
question mark (? after an element's type). Optional tuple elements can only come at the end, and
also affect the type of length .

interface StringNumberPair {
 // specialized properties
 length: 2;
 0: string;
 1: number;

 // Other 'Array<string | number>' members...
 slice(start?: number, end?: number): Array<string | number>;
}

type Either2dOr3d = [number, number, number?];

function setCoordinate(coord: Either2dOr3d) {
 const [x, y, z] = coord;

 const z: number | undefined

 console.log(`Provided coordinates had ${coord.length} dimensions`);

(property) length: 2 | 3

}

Tuples can also have rest elements, which have to be an array/tuple type.

StringNumberBooleans describes a tuple whose first two elements are string and number
respectively, but which may have any number of boolean s following.

StringBooleansNumber describes a tuple whose first element is string and then any
number of boolean s and ending with a number .

BooleansStringNumber describes a tuple whose starting elements are any number of
boolean s and ending with a string then a number .

A tuple with a rest element has no set "length" - it only has a set of well-known elements in
different positions.

Why might optional and rest elements be useful? Well, it allows TypeScript to correspond tuples
with parameter lists. Tuples types can be used in rest parameters and arguments, so that the
following:

is basically equivalent to:

type StringNumberBooleans = [string, number, ...boolean[]];
type StringBooleansNumber = [string, ...boolean[], number];
type BooleansStringNumber = [...boolean[], string, number];

const a: StringNumberBooleans = ["hello", 1];
const b: StringNumberBooleans = ["beautiful", 2, true];
const c: StringNumberBooleans = ["world", 3, true, false, true, false, tru

function readButtonInput(...args: [string, number, ...boolean[]]) {
 const [name, version, ...input] = args;
 // ...
}

function readButtonInput(name: string, version: number, ...input: boolean[
 // ...
}

https://www.typescriptlang.org/docs/handbook/2/functions.html#rest-parameters-and-arguments

This is handy when you want to take a variable number of arguments with a rest parameter, and
you need a minimum number of elements, but you don't want to introduce intermediate variables.

readonly Tuple Types

One final note about tuple types - tuples types have readonly variants, and can be specified by
sticking a readonly modifier in front of them - just like with array shorthand syntax.

As you might expect, writing to any property of a readonly tuple isn't allowed in TypeScript.

Tuples tend to be created and left un-modified in most code, so annotating types as readonly
tuples when possible is a good default. This is also important given that array literals with const
assertions will be inferred with readonly tuple types.

function doSomething(pair: readonly [string, number]) {
 // ...
}

function doSomething(pair: readonly [string, number]) {
 pair[0] = "hello!";

Cannot assign to '0' because it is a read-only property.

}

Cannot assign to '0' because it is a read-only property.

let point = [3, 4] as const;

function distanceFromOrigin([x, y]: [number, number]) {
 return Math.sqrt(x ** 2 + y ** 2);
}

distanceFromOrigin(point);

Argument of type 'readonly [3, 4]' is not assignable to parameter of
type '[number, number]'.
 The type 'readonly [3, 4]' is 'readonly' and cannot be assigned to
the mutable type '[number, number]'.

Argument of type 'readonly [3, 4]' is not assignable to parameter of type
'[number, number]'.
 The type 'readonly [3, 4]' is 'readonly' and cannot be assigned to the
mutable type '[number, number]'.

Here, distanceFromOrigin never modifies its elements, but expects a mutable tuple. Since
point 's type was inferred as readonly [3, 4] , it won't be compatible with [number,
number] since that type can't guarantee point 's elements won't be mutated.

Creating Types from Types

TypeScript's type system is very powerful because it allows expressing types in terms of other
types.

The simplest form of this idea is generics, we actually have a wide variety of type operators
available to use. It's also possible to express types in terms of values that we already have.

By combining various type operators, we can express complex operations and values in a succinct,
maintainable way. In this section we'll cover ways to express a new type in terms of an existing type
or value.

Generics - Types which take parameters

Keyof Type Operator - Using the keyof operator to create new types

Typeof Type Operator - Using the typeof operator to create new types

Indexed Access Types - Using Type['a'] syntax to access a subset of a type

Conditional Types - Types which act like if statements in the type system

Mapped Types - Creating types by mapping each property in an existing type

Template Literal Types - Mapped types which change properties via template literal strings

https://www.typescriptlang.org/docs/handbook/2/generics.html
https://www.typescriptlang.org/docs/handbook/2/keyof-types.html
https://www.typescriptlang.org/docs/handbook/2/typeof-types.html
https://www.typescriptlang.org/docs/handbook/2/indexed-access-types.html
https://www.typescriptlang.org/docs/handbook/2/conditional-types.html
https://www.typescriptlang.org/docs/handbook/2/mapped-types.html
https://www.typescriptlang.org/docs/handbook/2/template-literal-types.html

Generics

A major part of software engineering is building components that not only have well-defined and
consistent APIs, but are also reusable. Components that are capable of working on the data of today
as well as the data of tomorrow will give you the most flexible capabilities for building up large
software systems.

In languages like C# and Java, one of the main tools in the toolbox for creating reusable
components is generics, that is, being able to create a component that can work over a variety of
types rather than a single one. This allows users to consume these components and use their own
types.

Hello World of Generics
To start off, let's do the "hello world" of generics: the identity function. The identity function is a
function that will return back whatever is passed in. You can think of this in a similar way to the
echo command.

Without generics, we would either have to give the identity function a specific type:

Or, we could describe the identity function using the any type:

While using any is certainly generic in that it will cause the function to accept any and all types for
the type of arg , we actually are losing the information about what that type was when the function
returns. If we passed in a number, the only information we have is that any type could be returned.

Instead, we need a way of capturing the type of the argument in such a way that we can also use it
to denote what is being returned. Here, we will use a type variable, a special kind of variable that

function identity(arg: number): number {
 return arg;
}

function identity(arg: any): any {
 return arg;
}

works on types rather than values.

We've now added a type variable Type to the identity function. This Type allows us to capture the
type the user provides (e.g. number), so that we can use that information later. Here, we use Type
again as the return type. On inspection, we can now see the same type is used for the argument and
the return type. This allows us to traffic that type information in one side of the function and out the
other.

We say that this version of the identity function is generic, as it works over a range of types.
Unlike using any , it's also just as precise (i.e., it doesn't lose any information) as the first
identity function that used numbers for the argument and return type.

Once we've written the generic identity function, we can call it in one of two ways. The first way is to
pass all of the arguments, including the type argument, to the function:

Here we explicitly set Type to be string as one of the arguments to the function call, denoted
using the <> around the arguments rather than () .

The second way is also perhaps the most common. Here we use type argument inference -- that is,
we want the compiler to set the value of Type for us automatically based on the type of the
argument we pass in:

Notice that we didn't have to explicitly pass the type in the angle brackets (<>); the compiler just
looked at the value "myString" , and set Type to its type. While type argument inference can be a

function identity<Type>(arg: Type): Type {
 return arg;
}

let output = identity<string>("myString");

 let output: string

let output = identity("myString");

 let output: string

helpful tool to keep code shorter and more readable, you may need to explicitly pass in the type
arguments as we did in the previous example when the compiler fails to infer the type, as may
happen in more complex examples.

Working with Generic Type Variables
When you begin to use generics, you'll notice that when you create generic functions like
identity , the compiler will enforce that you use any generically typed parameters in the body of
the function correctly. That is, that you actually treat these parameters as if they could be any and all
types.

Let's take our identity function from earlier:

What if we want to also log the length of the argument arg to the console with each call? We
might be tempted to write this:

When we do, the compiler will give us an error that we're using the .length member of arg , but
nowhere have we said that arg has this member. Remember, we said earlier that these type
variables stand in for any and all types, so someone using this function could have passed in a
number instead, which does not have a .length member.

Let's say that we've actually intended this function to work on arrays of Type rather than Type
directly. Since we're working with arrays, the .length member should be available. We can
describe this just like we would create arrays of other types:

function identity<Type>(arg: Type): Type {
 return arg;
}

function loggingIdentity<Type>(arg: Type): Type {
 console.log(arg.length);

Property 'length' does not exist on type 'Type'.

 return arg;
}

Property 'length' does not exist on type 'Type'.

You can read the type of loggingIdentity as "the generic function loggingIdentity takes a
type parameter Type , and an argument arg which is an array of Type s, and returns an array of
Type s." If we passed in an array of numbers, we'd get an array of numbers back out, as Type
would bind to number . This allows us to use our generic type variable Type as part of the types
we're working with, rather than the whole type, giving us greater flexibility.

We can alternatively write the sample example this way:

You may already be familiar with this style of type from other languages. In the next section, we'll
cover how you can create your own generic types like Array<Type> .

Generic Types
In previous sections, we created generic identity functions that worked over a range of types. In this
section, we'll explore the type of the functions themselves and how to create generic interfaces.

The type of generic functions is just like those of non-generic functions, with the type parameters
listed first, similarly to function declarations:

 console.log(arg.length);
function loggingIdentity<Type>(arg: Type[]): Type[] {

 return arg;
}

 console.log(arg.length); // Array has a .length, so no more error
function loggingIdentity<Type>(arg: Array<Type>): Array<Type> {

 return arg;
}

function identity<Type>(arg: Type): Type {
 return arg;
}

let myIdentity: <Type>(arg: Type) => Type = identity;

We could also have used a different name for the generic type parameter in the type, so long as the
number of type variables and how the type variables are used line up.

We can also write the generic type as a call signature of an object literal type:

Which leads us to writing our first generic interface. Let's take the object literal from the previous
example and move it to an interface:

In a similar example, we may want to move the generic parameter to be a parameter of the whole
interface. This lets us see what type(s) we're generic over (e.g. Dictionary<string> rather than
just Dictionary). This makes the type parameter visible to all the other members of the interface.

function identity<Type>(arg: Type): Type {
 return arg;
}

let myIdentity: <Input>(arg: Input) => Input = identity;

function identity<Type>(arg: Type): Type {
 return arg;
}

let myIdentity: { <Type>(arg: Type): Type } = identity;

interface GenericIdentityFn {
 <Type>(arg: Type): Type;
}

function identity<Type>(arg: Type): Type {
 return arg;
}

let myIdentity: GenericIdentityFn = identity;

Notice that our example has changed to be something slightly different. Instead of describing a
generic function, we now have a non-generic function signature that is a part of a generic type.
When we use GenericIdentityFn , we now will also need to specify the corresponding type
argument (here: number), effectively locking in what the underlying call signature will use.
Understanding when to put the type parameter directly on the call signature and when to put it on
the interface itself will be helpful in describing what aspects of a type are generic.

In addition to generic interfaces, we can also create generic classes. Note that it is not possible to
create generic enums and namespaces.

Generic Classes
A generic class has a similar shape to a generic interface. Generic classes have a generic type
parameter list in angle brackets (<>) following the name of the class.

This is a pretty literal use of the GenericNumber class, but you may have noticed that nothing is
restricting it to only use the number type. We could have instead used string or even more

interface GenericIdentityFn<Type> {
 (arg: Type): Type;
}

function identity<Type>(arg: Type): Type {
 return arg;
}

let myIdentity: GenericIdentityFn<number> = identity;

class GenericNumber<NumType> {
 zeroValue: NumType;
 add: (x: NumType, y: NumType) => NumType;
}

let myGenericNumber = new GenericNumber<number>();
myGenericNumber.zeroValue = 0;
myGenericNumber.add = function (x, y) {
 return x + y;
};

complex objects.

Just as with interface, putting the type parameter on the class itself lets us make sure all of the
properties of the class are working with the same type.

As we cover in our section on classes, a class has two sides to its type: the static side and the
instance side. Generic classes are only generic over their instance side rather than their static side,
so when working with classes, static members can not use the class's type parameter.

Generic Constraints
If you remember from an earlier example, you may sometimes want to write a generic function that
works on a set of types where you have some knowledge about what capabilities that set of types
will have. In our loggingIdentity example, we wanted to be able to access the .length
property of arg , but the compiler could not prove that every type had a .length property, so it
warns us that we can't make this assumption.

Instead of working with any and all types, we'd like to constrain this function to work with any and
all types that alsoÂ have the .length property. As long as the type has this member, we'll allow it,
but it's required to have at least this member. To do so, we must list our requirement as a constraint
on what Type can be.

To do so, we'll create an interface that describes our constraint. Here, we'll create an interface that
has a single .length property and then we'll use this interface and the extends keyword to

let stringNumeric = new GenericNumber<string>();
stringNumeric.zeroValue = "";
stringNumeric.add = function (x, y) {
 return x + y;
};

console.log(stringNumeric.add(stringNumeric.zeroValue, "test"));

function loggingIdentity<Type>(arg: Type): Type {
 console.log(arg.length);

Property 'length' does not exist on type 'Type'.

 return arg;
}

Property 'length' does not exist on type 'Type'.

https://www.typescriptlang.org/docs/handbook/2/classes.html

denote our constraint:

Because the generic function is now constrained, it will no longer work over any and all types:

Instead, we need to pass in values whose type has all the required properties:

Using Type Parameters in Generic Constraints
You can declare a type parameter that is constrained by another type parameter. For example, here
we'd like to get a property from an object given its name. We'd like to ensure that we're not
accidentally grabbing a property that does not exist on the obj , so we'll place a constraint between
the two types:

interface Lengthwise {
 length: number;
}

function loggingIdentity<Type extends Lengthwise>(arg: Type): Type {
 console.log(arg.length); // Now we know it has a .length property, so no
 return arg;
}

loggingIdentity(3);

Argument of type 'number' is not assignable to parameter of type
'Lengthwise'.
Argument of type 'number' is not assignable to parameter of type
'Lengthwise'.

loggingIdentity({ length: 10, value: 3 });

Using Class Types in Generics
When creating factories in TypeScript using generics, it is necessary to refer to class types by their
constructor functions. For example,

A more advanced example uses the prototype property to infer and constrain relationships between
the constructor function and the instance side of class types.

function getProperty<Type, Key extends keyof Type>(obj: Type, key: Key) {
 return obj[key];
}

let x = { a: 1, b: 2, c: 3, d: 4 };

getProperty(x, "a");
getProperty(x, "m");

Argument of type '"m"' is not assignable to parameter of type '"a" |
"b" | "c" | "d"'.
Argument of type '"m"' is not assignable to parameter of type '"a" | "b" |
"c" | "d"'.

function create<Type>(c: { new (): Type }): Type {
 return new c();
}

This pattern is used to power the mixins design pattern.

class BeeKeeper {
 hasMask: boolean = true;
}

class ZooKeeper {
 nametag: string = "Mikle";
}

class Animal {
 numLegs: number = 4;
}

class Bee extends Animal {
 keeper: BeeKeeper = new BeeKeeper();
}

class Lion extends Animal {
 keeper: ZooKeeper = new ZooKeeper();
}

function createInstance<A extends Animal>(c: new () => A): A {
 return new c();
}

createInstance(Lion).keeper.nametag;
createInstance(Bee).keeper.hasMask;

https://www.typescriptlang.org/docs/handbook/mixins.html

Keyof Type Operator

The keyof type operator
The keyof operator takes an object type and produces a string or numeric literal union of its keys.
The following type P is the same type as "x" | "y":

If the type has a string or number index signature, keyof will return those types instead:

Note that in this example, M is string | number -- this is because JavaScript object keys are
always coerced to a string, so obj[0] is always the same as obj["0"] .

keyof types become especially useful when combined with mapped types, which we'll learn more
about later.

type Point = { x: number; y: number };
type P = keyof Point;

 type P = keyof Point

type Arrayish = { [n: number]: unknown };
type A = keyof Arrayish;

 type A = number

type Mapish = { [k: string]: boolean };
type M = keyof Mapish;

 type M = string | number

Typeof Type Operator

The typeof type operator
JavaScript already has a typeof operator you can use in an expression context:

TypeScript adds a typeof operator you can use in a type context to refer to the type of a variable
or property:

This isn't very useful for basic types, but combined with other type operators, you can use typeof
to conveniently express many patterns. For an example, let's start by looking at the predefined type
ReturnType<T> . It takes a function type and produces its return type:

If we try to use ReturnType on a function name, we see an instructive error:

// Prints "string"
console.log(typeof "Hello world");

let s = "hello";
let n: typeof s;

 let n: string

type Predicate = (x: unknown) => boolean;
type K = ReturnType<Predicate>;

 type K = boolean

Remember that values and types aren't the same thing. To refer to the type that the value f has, we
use typeof :

Limitations

TypeScript intentionally limits the sorts of expressions you can use typeof on.

Specifically, it's only legal to use typeof on identifiers (i.e. variable names) or their properties. This
helps avoid the confusing trap of writing code you think is executing, but isn't:

function f() {
 return { x: 10, y: 3 };
}
type P = ReturnType<f>;

'f' refers to a value, but is being used as a type here. Did you mean
'typeof f'?
'f' refers to a value, but is being used as a type here. Did you mean
'typeof f'?

function f() {
 return { x: 10, y: 3 };
}
type P = ReturnType<typeof f>;

type P = {
 x: number;
 y: number;
}

// Meant to use = ReturnType<typeof msgbox>
let shouldContinue: typeof msgbox("Are you sure you want to continue?");

',' expected.',' expected.

Indexed Access Types

We can use an indexed access type to look up a specific property on another type:

The indexing type is itself a type, so we can use unions, keyof , or other types entirely:

You'll even see an error if you try to index a property that doesn't exist:

type Person = { age: number; name: string; alive: boolean };
type Age = Person["age"];

 type Age = number

type I1 = Person["age" | "name"];

 type I1 = string | number

type I2 = Person[keyof Person];

 type I2 = string | number | boolean

type AliveOrName = "alive" | "name";
type I3 = Person[AliveOrName];

 type I3 = string | boolean

type I1 = Person["alve"];

Property 'alve' does not exist on type 'Person'.Property 'alve' does not exist on type 'Person'.

Another example of indexing with an arbitrary type is using number to get the type of an array's
elements. We can combine this with typeof to conveniently capture the element type of an array
literal:

You can only use types when indexing, meaning you can't use a const to make a variable
reference:

However, you can use a type alias for a similar style of refactor:

const MyArray = [
 { name: "Alice", age: 15 },
 { name: "Bob", age: 23 },
 { name: "Eve", age: 38 },
];

type Person = typeof MyArray[number];

type Person = {
 name: string;
 age: number;
}

type Age = typeof MyArray[number]["age"];

 type Age = number

// Or
type Age2 = Person["age"];

 type Age2 = number

const key = "age";
type Age = Person[key];

Type 'key' cannot be used as an index type.

'key' refers to a value, but is being used as a type here. Did you mean
'typeof key'?

Type 'key' cannot be used as an index type.

'key' refers to a value, but is being used as a type here. Did you mean
'typeof key'?

type key = "age";
type Age = Person[key];

Conditional Types

At the heart of most useful programs, we have to make decisions based on input. JavaScript
programs are no different, but given the fact that values can be easily introspected, those decisions
are also based on the types of the inputs. Conditional types help describe the relation between the
types of inputs and outputs.

Conditional types take a form that looks a little like conditional expressions (condition ?
trueExpression : falseExpression) in JavaScript:

When the type on the left of the extends is assignable to the one on the right, then you'll get the
type in the first branch (the "true" branch); otherwise you'll get the type in the latter branch (the
"false" branch).

From the examples above, conditional types might not immediately seem useful - we can tell
ourselves whether or not Dog extends Animal and pick number or string ! But the power of
conditional types comes from using them with generics.

interface Animal {
 live(): void;
}
interface Dog extends Animal {
 woof(): void;
}

type Example1 = Dog extends Animal ? number : string;

 type Example1 = number

type Example2 = RegExp extends Animal ? number : string;

 type Example2 = string

 SomeType extends OtherType ? TrueType : FalseType;

For example, let's take the following createLabel function:

These overloads for createLabel describe a single JavaScript function that makes a choice based on
the types of its inputs. Note a few things:

1. If a library has to make the same sort of choice over and over throughout its API, this
becomes cumbersome.

2. We have to create three overloads: one for each case when we're sure of the type (one for
string and one for number), and one for the most general case (taking a string |
number). For every new type createLabel can handle, the number of overloads grows
exponentially.

Instead, we can encode that logic in a conditional type:

We can then use that conditional type to simplify our overloads down to a single function with no
overloads.

interface IdLabel {
 id: number /* some fields */;
}
interface NameLabel {
 name: string /* other fields */;
}

function createLabel(id: number): IdLabel;
function createLabel(name: string): NameLabel;
function createLabel(nameOrId: string | number): IdLabel | NameLabel;
function createLabel(nameOrId: string | number): IdLabel | NameLabel {
 throw "unimplemented";
}

type NameOrId<T extends number | string> = T extends number
 ? IdLabel
 : NameLabel;

Conditional Type Constraints

Often, the checks in a conditional type will provide us with some new information. Just like with
narrowing with type guards can give us a more specific type, the true branch of a conditional type
will further constrain generics by the type we check against.

For example, let's take the following:

In this example, TypeScript errors because T isn't known to have a property called message . We
could constrain T , and TypeScript would no longer complain:

function createLabel<T extends number | string>(idOrName: T): NameOrId<T>
 throw "unimplemented";
}

let a = createLabel("typescript");

 let a: NameLabel

let b = createLabel(2.8);

 let b: IdLabel

let c = createLabel(Math.random() ? "hello" : 42);

let c: NameLabel | IdLabel

type MessageOf<T> = T["message"];

Type '"message"' cannot be used to index type 'T'.Type '"message"' cannot be used to index type 'T'.

However, what if we wanted MessageOf to take any type, and default to something like never if a
message property isn't available? We can do this by moving the constraint out and introducing a
conditional type:

Within the true branch, TypeScript knows that T will have a message property.

As another example, we could also write a type called Flatten that flattens array types to their
element types, but leaves them alone otherwise:

type MessageOf<T extends { message: unknown }> = T["message"];

interface Email {
 message: string;
}

type EmailMessageContents = MessageOf<Email>;

 type EmailMessageContents = string

type MessageOf<T> = T extends { message: unknown } ? T["message"] : never;

interface Email {
 message: string;
}

interface Dog {
 bark(): void;
}

type EmailMessageContents = MessageOf<Email>;

 type EmailMessageContents = string

type DogMessageContents = MessageOf<Dog>;

 type DogMessageContents = never

When Flatten is given an array type, it uses an indexed access with number to fetch out
string[] 's element type. Otherwise, it just returns the type it was given.

Inferring Within Conditional Types

We just found ourselves using conditional types to apply constraints and then extract out types.
This ends up being such a common operation that conditional types make it easier.

Conditional types provide us with a way to infer from types we compare against in the true branch
using the infer keyword. For example, we could have inferred the element type in Flatten
instead of fetching it out "manually" with an indexed access type:

Here, we used the infer keyword to declaratively introduce a new generic type variable named
Item instead of specifying how to retrieve the element type of T within the true branch. This frees
us from having to think about how to dig through and probing apart the structure of the types
we're interested in.

We can write some useful helper type aliases using the infer keyword. For example, for simple
cases, we can extract the return type out from function types:

type Flatten<T> = T extends any[] ? T[number] : T;

// Extracts out the element type.
type Str = Flatten<string[]>;

 type Str = string

// Leaves the type alone.
type Num = Flatten<number>;

 type Num = number

type Flatten<Type> = Type extends Array<infer Item> ? Item : Type;

When inferring from a type with multiple call signatures (such as the type of an overloaded
function), inferences are made from the last signature (which, presumably, is the most permissive
catch-all case). It is not possible to perform overload resolution based on a list of argument types.

Distributive Conditional Types
When conditional types act on a generic type, they become distributive when given a union type.
For example, take the following:

type GetReturnType<Type> = Type extends (...args: never[]) => infer Return
 ? Return
 : never;

type Num = GetReturnType<() => number>;

 type Num = number

type Str = GetReturnType<(x: string) => string>;

 type Str = string

type Bools = GetReturnType<(a: boolean, b: boolean) => boolean[]>;

 type Bools = boolean[]

declare function stringOrNum(x: string): number;
declare function stringOrNum(x: number): string;
declare function stringOrNum(x: string | number): string | number;

type T1 = ReturnType<typeof stringOrNum>;

 type T1 = string | number

type ToArray<Type> = Type extends any ? Type[] : never;

If we plug a union type into ToArray , then the conditional type will be applied to each member of
that union.

What happens here is that StrArrOrNumArr distributes on:

and maps over each member type of the union, to what is effectively:

which leaves us with:

Typically, distributivity is the desired behavior. To avoid that behavior, you can surround each side of
the extends keyword with square brackets.

type ToArray<Type> = Type extends any ? Type[] : never;

type StrArrOrNumArr = ToArray<string | number>;

 type StrArrOrNumArr = string[] | number[]

 string | number;

 ToArray<string> | ToArray<number>;

 string[] | number[];

type ToArrayNonDist<Type> = [Type] extends [any] ? Type[] : never;

// 'StrArrOrNumArr' is no longer a union.
type StrArrOrNumArr = ToArrayNonDist<string | number>;

 type StrArrOrNumArr = (string | number)[]

Mapped Types

When you don't want to repeat yourself, sometimes a type needs to be based on another type.

Mapped types build on the syntax for index signatures, which are used to declare the types of
properties which have not been declared ahead of time:

A mapped type is a generic type which uses a union of PropertyKey s (frequently created via a
keyof) to iterate through keys to create a type:

In this example, OptionsFlags will take all the properties from the type Type and change their
values to be a boolean.

type OnlyBoolsAndHorses = {
 [key: string]: boolean | Horse;
};

const conforms: OnlyBoolsAndHorses = {
 del: true,
 rodney: false,
};

type OptionsFlags<Type> = {
 [Property in keyof Type]: boolean;
};

https://www.typescriptlang.org/docs/handbook/2/indexed-access-types.html

Mapping Modifiers

There are two additional modifiers which can be applied during mapping: readonly and ? which
affect mutability and optionality respectively.

You can remove or add these modifiers by prefixing with - or + . If you don't add a prefix, then +
is assumed.

type FeatureFlags = {
 darkMode: () => void;
 newUserProfile: () => void;
};

type FeatureOptions = OptionsFlags<FeatureFlags>;

type FeatureOptions = {
 darkMode: boolean;
 newUserProfile: boolean;
}

// Removes 'readonly' attributes from a type's properties
type CreateMutable<Type> = {
 -readonly [Property in keyof Type]: Type[Property];
};

type LockedAccount = {
 readonly id: string;
 readonly name: string;
};

type UnlockedAccount = CreateMutable<LockedAccount>;

type UnlockedAccount = {
 id: string;
 name: string;
}

Key Remapping via as

In TypeScript 4.1 and onwards, you can re-map keys in mapped types with an as clause in a
mapped type:

You can leverage features like template literal types to create new property names from prior ones:

// Removes 'optional' attributes from a type's properties
type Concrete<Type> = {
 [Property in keyof Type]-?: Type[Property];
};

type MaybeUser = {
 id: string;
 name?: string;
 age?: number;
};

type User = Concrete<MaybeUser>;

type User = {
 id: string;
 name: string;
 age: number;
}

type MappedTypeWithNewProperties<Type> = {
 [Properties in keyof Type as NewKeyType]: Type[Properties]
}

https://www.typescriptlang.org/docs/handbook/2/template-literal-types.html

You can filter out keys by producing never via a conditional type:

You can map over arbitrary unions, not just unions of string | number | symbol , but unions of
any type:

type Getters<Type> = {
 [Property in keyof Type as `get${Capitalize<string & Property>}`]: ()
};

interface Person {
 name: string;
 age: number;
 location: string;
}

type LazyPerson = Getters<Person>;

type LazyPerson = {
 getName: () => string;
 getAge: () => number;
 getLocation: () => string;
}

// Remove the 'kind' property
type RemoveKindField<Type> = {
 [Property in keyof Type as Exclude<Property, "kind">]: Type[Property]
};

interface Circle {
 kind: "circle";
 radius: number;
}

type KindlessCircle = RemoveKindField<Circle>;

type KindlessCircle = {
 radius: number;
}

Further Exploration

Mapped types work well with other features in this type manipulation section, for example here is a
mapped type using a conditional type which returns either a true or false depending on
whether an object has the property pii set to the literal true :

type EventConfig<Events extends { kind: string }> = {
 [E in Events as E["kind"]]: (event: E) => void;
}

type SquareEvent = { kind: "square", x: number, y: number };
type CircleEvent = { kind: "circle", radius: number };

type Config = EventConfig<SquareEvent | CircleEvent>

type Config = {
 square: (event: SquareEvent) => void;
 circle: (event: CircleEvent) => void;
}

type ExtractPII<Type> = {
 [Property in keyof Type]: Type[Property] extends { pii: true } ? true :
};

type DBFields = {
 id: { format: "incrementing" };
 name: { type: string; pii: true };
};

type ObjectsNeedingGDPRDeletion = ExtractPII<DBFields>;

type ObjectsNeedingGDPRDeletion = {
 id: false;
 name: true;
}

https://www.typescriptlang.org/docs/handbook/2/conditional-types.html

Template Literal Types

Template literal types build on string literal types, and have the ability to expand into many strings
via unions.

They have the same syntax as template literal strings in JavaScript, but are used in type positions.
When used with concrete literal types, a template literal produces a new string literal type by
concatenating the contents.

When a union is used in the interpolated position, the type is the set of every possible string literal
that could be represented by each union member:

For each interpolated position in the template literal, the unions are cross multiplied:

type World = "world";

type Greeting = `hello ${World}`;

 type Greeting = "hello world"

type EmailLocaleIDs = "welcome_email" | "email_heading";
type FooterLocaleIDs = "footer_title" | "footer_sendoff";

type AllLocaleIDs = `${EmailLocaleIDs | FooterLocaleIDs}_id`;

type AllLocaleIDs = "welcome_email_id" | "email_heading_id" | "footer_tit

https://www.typescriptlang.org/docs/handbook/2/everyday-types.html#literal-types
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

We generally recommend that people use ahead-of-time generation for large string unions, but this
is useful in smaller cases.

String Unions in Types

The power in template literals comes when defining a new string based on information inside a
type.

Consider the case where a function (makeWatchedObject) adds a new function called on() to a
passed object. In JavaScript, its call might look like: makeWatchedObject(baseObject) . We can
imagine the base object as looking like:

The on function that will be added to the base object expects two arguments, an eventName (a
string) and a callBack (a function).

The eventName should be of the form attributeInThePassedObject + "Changed" ; thus,
firstNameChanged as derived from the attribute firstName in the base object.

The callBack function, when called:

Should be passed a value of the type associated with the name
attributeInThePassedObject ; thus, since firstName is typed as string , the callback for
the firstNameChanged event expects a string to be passed to it at call time. Similarly events
associated with age should expect to be called with a number argument

type AllLocaleIDs = `${EmailLocaleIDs | FooterLocaleIDs}_id`;
type Lang = "en" | "ja" | "pt";

type LocaleMessageIDs = `${Lang}_${AllLocaleIDs}`;

type LocaleMessageIDs = "en_welcome_email_id" | "en_email_heading_id" | "

const passedObject = {
 firstName: "Saoirse",
 lastName: "Ronan",
 age: 26,
};

Should have void return type (for simplicity of demonstration)

The naive function signature of on() might thus be: on(eventName: string, callBack:
(newValue: any) => void) . However, in the preceding description, we identified important type
constraints that we'd like to document in our code. Template Literal types let us bring these
constraints into our code.

Notice that on listens on the event "firstNameChanged" , not just "firstName" . Our naive
specification of on() could be made more robust if we were to ensure that the set of eligible event
names was constrained by the union of attribute names in the watched object with "Changed"
added at the end. While we are comfortable with doing such a calculation in JavaScript i.e.
Object.keys(passedObject).map(x => `${x}Changed`) , template literals inside the type
system provide a similar approach to string manipulation:

With this, we can build something that errors when given the wrong property:

const person = makeWatchedObject({
 firstName: "Saoirse",
 lastName: "Ronan",
 age: 26,
});

// makeWatchedObject has added `on` to the anonymous Object

person.on("firstNameChanged", (newValue) => {
 console.log(`firstName was changed to ${newValue}!`);
});

type PropEventSource<Type> = {
 on(eventName: `${string & keyof Type}Changed`, callback: (newValue: an
};

/// Create a "watched object" with an 'on' method
/// so that you can watch for changes to properties.
declare function makeWatchedObject<Type>(obj: Type): Type & PropEventSourc

Inference with Template Literals

Notice that we did not benefit from all the information provided in the original passed object. Given
change of a firstName (i.e. a firstNameChanged event), we should expect that the callback will
receive an argument of type string . Similarly, the callback for a change to age should receive a
number argument. We're naively using any to type the callBack 's argument. Again, template
literal types make it possible to ensure an attribute's data type will be the same type as that
attribute's callback's first argument.

The key insight that makes this possible is this: we can use a function with a generic such that:

1. The literal used in the first argument is captured as a literal type
2. That literal type can be validated as being in the union of valid attributes in the generic
3. The type of the validated attribute can be looked up in the generic's structure using Indexed

Access
4. This typing information can then be applied to ensure the argument to the callback function is

of the same type

const person = makeWatchedObject({
 firstName: "Saoirse",
 lastName: "Ronan",
 age: 26
});

person.on("firstNameChanged", () => {});

// Prevent easy human error (using the key instead of the event name)
person.on("firstName", () => {});

Argument of type '"firstName"' is not assignable to parameter of type
'"firstNameChanged" | "lastNameChanged" | "ageChanged"'.

// It's typo-resistant
person.on("frstNameChanged", () => {});

Argument of type '"frstNameChanged"' is not assignable to parameter of
type '"firstNameChanged" | "lastNameChanged" | "ageChanged"'.

Argument of type '"firstName"' is not assignable to parameter of type
'"firstNameChanged" | "lastNameChanged" | "ageChanged"'.

Argument of type '"frstNameChanged"' is not assignable to parameter of
type '"firstNameChanged" | "lastNameChanged" | "ageChanged"'.

Here we made on into a generic method.

When a user calls with the string "firstNameChanged" , TypeScript will try to infer the right type
for Key . To do that, it will match Key against the content prior to "Changed" and infer the string
"firstName" . Once TypeScript figures that out, the on method can fetch the type of firstName
on the original object, which is string in this case. Similarly, when called with "ageChanged" ,
TypeScript finds the type for the property age which is number .

Inference can be combined in different ways, often to deconstruct strings, and reconstruct them in
different ways.

Intrinsic String Manipulation Types

type PropEventSource<Type> = {
 on<Key extends string & keyof Type>
 (eventName: `${Key}Changed`, callback: (newValue: Type[Key]) => vo
};

declare function makeWatchedObject<Type>(obj: Type): Type & PropEventSourc

const person = makeWatchedObject({
 firstName: "Saoirse",
 lastName: "Ronan",
 age: 26
});

person.on("firstNameChanged", newName => {

 (parameter) newName: string

 console.log(`new name is ${newName.toUpperCase()}`);
});

person.on("ageChanged", newAge => {

 (parameter) newAge: number

 if (newAge < 0) {
 console.warn("warning! negative age");
 }
})

To help with string manipulation, TypeScript includes a set of types which can be used in string
manipulation. These types come built-in to the compiler for performance and can't be found in the
.d.ts files included with TypeScript.

Uppercase<StringType>

Converts each character in the string to the uppercase version.

Example

Lowercase<StringType>

Converts each character in the string to the lowercase equivalent.

Example

type Greeting = "Hello, world"
type ShoutyGreeting = Uppercase<Greeting>

 type ShoutyGreeting = "HELLO, WORLD"

type ASCIICacheKey<Str extends string> = `ID-${Uppercase<Str>}`
type MainID = ASCIICacheKey<"my_app">

 type MainID = "ID-MY_APP"

type Greeting = "Hello, world"
type QuietGreeting = Lowercase<Greeting>

 type QuietGreeting = "hello, world"

type ASCIICacheKey<Str extends string> = `id-${Lowercase<Str>}`
type MainID = ASCIICacheKey<"MY_APP">

 type MainID = "id-my_app"

Capitalize<StringType>

Converts the first character in the string to an uppercase equivalent.

Example

Uncapitalize<StringType>

Converts the first character in the string to a lowercase equivalent.

Example

Technical details on the intrinsic string manipulation types

type LowercaseGreeting = "hello, world";
type Greeting = Capitalize<LowercaseGreeting>;

 type Greeting = "Hello, world"

type UppercaseGreeting = "HELLO WORLD";
type UncomfortableGreeting = Uncapitalize<UppercaseGreeting>;

 type UncomfortableGreeting = "hELLO WORLD"

Classes

Background Reading:

Classes (MDN)

TypeScript offers full support for the class keyword introduced in
ES2015.

As with other JavaScript language features, TypeScript adds type
annotations and other syntax to allow you to express relationships between classes and other types.

Class Members
Here's the most basic class - an empty one:

This class isn't very useful yet, so let's start adding some members.

Fields

A field declaration creates a public writeable property on a class:

As with other locations, the type annotation is optional, but will be an implicit any if not specified.

Fields can also have initializers; these will run automatically when the class is instantiated:

class Point {}

class Point {
 x: number;
 y: number;
}

const pt = new Point();
pt.x = 0;
pt.y = 0;

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes

Just like with const , let , and var , the initializer of a class property will be used to infer its type:

--strictPropertyInitialization

The strictPropertyInitialization setting controls whether class fields need to be
initialized in the constructor.

class Point {
 x = 0;
 y = 0;
}

const pt = new Point();
// Prints 0, 0
console.log(`${pt.x}, ${pt.y}`);

const pt = new Point();
pt.x = "0";

Type 'string' is not assignable to type 'number'.Type 'string' is not assignable to type 'number'.

class BadGreeter {
 name: string;

Property 'name' has no initializer and is not definitely assigned in
the constructor.

}

Property 'name' has no initializer and is not definitely assigned in the
constructor.

class GoodGreeter {
 name: string;

 constructor() {
 this.name = "hello";
 }
}

https://www.typescriptlang.org/tsconfig#strictPropertyInitialization

Note that the field needs to be initialized in the constructor itself. TypeScript does not analyze
methods you invoke from the constructor to detect initializations, because a derived class might
override those methods and fail to initialize the members.

If you intend to definitely initialize a field through means other than the constructor (for example,
maybe an external library is filling in part of your class for you), you can use the definite assignment
assertion operator, ! :

readonly

Fields may be prefixed with the readonly modifier. This prevents assignments to the field outside
of the constructor.

Constructors

class OKGreeter {
 // Not initialized, but no error
 name!: string;
}

class Greeter {
 readonly name: string = "world";

 constructor(otherName?: string) {
 if (otherName !== undefined) {
 this.name = otherName;
 }
 }

 err() {
 this.name = "not ok";

Cannot assign to 'name' because it is a read-only property.

 }
}
const g = new Greeter();
g.name = "also not ok";

Cannot assign to 'name' because it is a read-only property.

Cannot assign to 'name' because it is a read-only property.

Cannot assign to 'name' because it is a read-only property.

Background Reading:

Constructor (MDN)

Class constructors are very similar to functions. You can add
parameters with type annotations, default values, and overloads:

There are just a few differences between class constructor signatures and function signatures:

Constructors can't have type parameters - these belong on the outer class declaration, which
we'll learn about later

Constructors can't have return type annotations - the class instance type is always what's
returned

Super Calls

Just as in JavaScript, if you have a base class, you'll need to call super(); in your constructor
body before using any this. members:

class Point {
 x: number;
 y: number;

 // Normal signature with defaults
 constructor(x = 0, y = 0) {
 this.x = x;
 this.y = y;
 }
}

class Point {
 // Overloads
 constructor(x: number, y: string);
 constructor(s: string);
 constructor(xs: any, y?: any) {
 // TBD
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/constructor

Background Reading:

Method definitions

Forgetting to call super is an easy mistake to make in JavaScript, but TypeScript will tell you when
it's necessary.

Methods

A function property on a class is called a method. Methods can use all
the same type annotations as functions and constructors:

Other than the standard type annotations, TypeScript doesn't add anything else new to methods.

Note that inside a method body, it is still mandatory to access fields and other methods via this. .
An unqualified name in a method body will always refer to something in the enclosing scope:

class Base {
 k = 4;
}

class Derived extends Base {
 constructor() {
 // Prints a wrong value in ES5; throws exception in ES6
 console.log(this.k);

'super' must be called before accessing 'this' in the constructor of a
derived class.

 super();
 }
}

'super' must be called before accessing 'this' in the constructor of a
derived class.

class Point {
 x = 10;
 y = 10;

 scale(n: number): void {
 this.x *= n;
 this.y *= n;
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Method_definitions

Getters / Setters

Classes can also have accessors:

Note that a field-backed get/set pair with no extra logic is very rarely useful in JavaScript. It's fine to

expose public fields if you don't need to add additional logic during the get/set operations.

TypeScript has some special inference rules for accessors:

If get exists but no set , the property is automatically readonly

If the type of the setter parameter is not specified, it is inferred from the return type of the getter

Getters and setters must have the same Member Visibility

Since TypeScript 4.3, it is possible to have accessors with different types for getting and setting.

let x: number = 0;

class C {
 x: string = "hello";

 m() {
 // This is trying to modify 'x' from line 1, not the class property
 x = "world";

Type 'string' is not assignable to type 'number'.

 }
}

Type 'string' is not assignable to type 'number'.

class C {
 _length = 0;
 get length() {
 return this._length;
 }
 set length(value) {
 this._length = value;
 }
}

https://devblogs.microsoft.com/typescript/announcing-typescript-4-3/

Index Signatures

Classes can declare index signatures; these work the same as Index Signatures for other object
types:

Because the index signature type needs to also capture the types of methods, it's not easy to
usefully use these types. Generally it's better to store indexed data in another place instead of on
the class instance itself.

Class Heritage

class Thing {
 _size = 0;

 get size(): number {
 return this._size;
 }

 set size(value: string | number | boolean) {
 let num = Number(value);

 // Don't allow NaN, Infinity, etc

 if (!Number.isFinite(num)) {
 this._size = 0;
 return;
 }

 this._size = num;
 }
}

class MyClass {
 [s: string]: boolean | ((s: string) => boolean);

 check(s: string) {
 return this[s] as boolean;
 }
}

https://www.typescriptlang.org/docs/handbook/2/objects.html#index-signatures

Like other languages with object-oriented features, classes in JavaScript can inherit from base
classes.

implements Clauses

You can use an implements clause to check that a class satisfies a particular interface . An error
will be issued if a class fails to correctly implement it:

Classes may also implement multiple interfaces, e.g. class C implements A, B { .

Cautions

It's important to understand that an implements clause is only a check that the class can be
treated as the interface type. It doesn't change the type of the class or its methods at all. A common
source of error is to assume that an implements clause will change the class type - it doesn't!

interface Pingable {
 ping(): void;
}

class Sonar implements Pingable {
 ping() {
 console.log("ping!");
 }
}

class Ball implements Pingable {

Class 'Ball' incorrectly implements interface 'Pingable'.
 Property 'ping' is missing in type 'Ball' but required in type
'Pingable'.

 pong() {
 console.log("pong!");
 }
}

Class 'Ball' incorrectly implements interface 'Pingable'.
 Property 'ping' is missing in type 'Ball' but required in type
'Pingable'.

Background Reading:

extends keyword (MDN)

In this example, we perhaps expected that s 's type would be influenced by the name: string
parameter of check . It is not - implements clauses don't change how the class body is checked
or its type inferred.

Similarly, implementing an interface with an optional property doesn't create that property:

extends Clauses

Classes may extend from a base class. A derived class has all the
properties and methods of its base class, and also define additional
members.

interface Checkable {
 check(name: string): boolean;
}

class NameChecker implements Checkable {
 check(s) {

Parameter 's' implicitly has an 'any' type.

 // Notice no error here
 return s.toLowercse() === "ok";

 any

 }
}

Parameter 's' implicitly has an 'any' type.

interface A {
 x: number;
 y?: number;
}
class C implements A {
 x = 0;
}
const c = new C();
c.y = 10;

Property 'y' does not exist on type 'C'.Property 'y' does not exist on type 'C'.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/extends

Background Reading:

super keyword (MDN)

Overriding Methods

A derived class can also override a base class field or property. You can
use the super. syntax to access base class methods. Note that
because JavaScript classes are a simple lookup object, there is no
notion of a "super field".

TypeScript enforces that a derived class is always a subtype of its base class.

For example, here's a legal way to override a method:

class Animal {
 move() {
 console.log("Moving along!");
 }
}

class Dog extends Animal {
 woof(times: number) {
 for (let i = 0; i < times; i++) {
 console.log("woof!");
 }
 }
}

const d = new Dog();
// Base class method
d.move();
// Derived class method
d.woof(3);

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/super

It's important that a derived class follow its base class contract. Remember that it's very common
(and always legal!) to refer to a derived class instance through a base class reference:

What if Derived didn't follow Base 's contract?

class Base {
 greet() {
 console.log("Hello, world!");
 }
}

class Derived extends Base {
 greet(name?: string) {
 if (name === undefined) {
 super.greet();
 } else {
 console.log(`Hello, ${name.toUpperCase()}`);
 }
 }
}

const d = new Derived();
d.greet();
d.greet("reader");

// Alias the derived instance through a base class reference
const b: Base = d;
// No problem
b.greet();

If we compiled this code despite the error, this sample would then crash:

Type-only Field Declarations

When target >= ES2022 or useDefineForClassFields is true , class fields are initialized
after the parent class constructor completes, overwriting any value set by the parent class. This can
be a problem when you only want to re-declare a more accurate type for an inherited field. To
handle these cases, you can write declare to indicate to TypeScript that there should be no
runtime effect for this field declaration.

class Base {
 greet() {
 console.log("Hello, world!");
 }
}

class Derived extends Base {
 // Make this parameter required
 greet(name: string) {

Property 'greet' in type 'Derived' is not assignable to the same
property in base type 'Base'.
 Type '(name: string) => void' is not assignable to type '() => void'.

 console.log(`Hello, ${name.toUpperCase()}`);
 }
}

Property 'greet' in type 'Derived' is not assignable to the same property
in base type 'Base'.
 Type '(name: string) => void' is not assignable to type '() => void'.

const b: Base = new Derived();
// Crashes because "name" will be undefined
b.greet();

https://www.typescriptlang.org/tsconfig#useDefineForClassFields

Initialization Order

The order that JavaScript classes initialize can be surprising in some cases. Let's consider this code:

interface Animal {
 dateOfBirth: any;
}

interface Dog extends Animal {
 breed: any;
}

class AnimalHouse {
 resident: Animal;
 constructor(animal: Animal) {
 this.resident = animal;
 }
}

class DogHouse extends AnimalHouse {
 // Does not emit JavaScript code,
 // only ensures the types are correct
 declare resident: Dog;
 constructor(dog: Dog) {
 super(dog);
 }
}

class Base {
 name = "base";
 constructor() {
 console.log("My name is " + this.name);
 }
}

class Derived extends Base {
 name = "derived";
}

// Prints "base", not "derived"
const d = new Derived();

What happened here?

The order of class initialization, as defined by JavaScript, is:

The base class fields are initialized

The base class constructor runs

The derived class fields are initialized

The derived class constructor runs

This means that the base class constructor saw its own value for name during its own constructor,
because the derived class field initializations hadn't run yet.

Inheriting Built-in Types

Note: If you don't plan to inherit from built-in types like Array , Error , Map , etc. or your compilation

target is explicitly set to ES6 / ES2015 or above, you may skip this section

In ES2015, constructors which return an object implicitly substitute the value of this for any
callers of super(...) . It is necessary for generated constructor code to capture any potential
return value of super(...) and replace it with this .

As a result, subclassing Error , Array , and others may no longer work as expected. This is due to
the fact that constructor functions for Error , Array , and the like use ECMAScript 6's
new.target to adjust the prototype chain; however, there is no way to ensure a value for
new.target when invoking a constructor in ECMAScript 5. Other downlevel compilers generally
have the same limitation by default.

For a subclass like the following:

you may find that:

class MsgError extends Error {
 constructor(m: string) {
 super(m);
 }
 sayHello() {
 return "hello " + this.message;
 }
}

methods may be undefined on objects returned by constructing these subclasses, so calling
sayHello will result in an error.

instanceof will be broken between instances of the subclass and their instances, so (new
MsgError()) instanceof MsgError will return false .

As a recommendation, you can manually adjust the prototype immediately after any super(...)
calls.

However, any subclass of MsgError will have to manually set the prototype as well. For runtimes
that don't support Object.setPrototypeOf, you may instead be able to use __proto__.

Unfortunately, these workarounds will not work on Internet Explorer 10 and prior. One can
manually copy methods from the prototype onto the instance itself (i.e. MsgError.prototype
onto this), but the prototype chain itself cannot be fixed.

Member Visibility
You can use TypeScript to control whether certain methods or properties are visible to code outside
the class.

public

The default visibility of class members is public . A public member can be accessed anywhere:

class MsgError extends Error {
 constructor(m: string) {
 super(m);

 // Set the prototype explicitly.
 Object.setPrototypeOf(this, MsgError.prototype);
 }

 sayHello() {
 return "hello " + this.message;
 }
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/setPrototypeOf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/proto
https://msdn.microsoft.com/en-us/library/s4esdbwz(v=vs.94).aspx

Because public is already the default visibility modifier, you don't ever need to write it on a class
member, but might choose to do so for style/readability reasons.

protected

protected members are only visible to subclasses of the class they're declared in.

Exposure of protected members

class Greeter {
 public greet() {
 console.log("hi!");
 }
}
const g = new Greeter();
g.greet();

class Greeter {
 public greet() {
 console.log("Hello, " + this.getName());
 }
 protected getName() {
 return "hi";
 }
}

class SpecialGreeter extends Greeter {
 public howdy() {
 // OK to access protected member here
 console.log("Howdy, " + this.getName());
 }
}
const g = new SpecialGreeter();
g.greet(); // OK
g.getName();

Property 'getName' is protected and only accessible within class
'Greeter' and its subclasses.
Property 'getName' is protected and only accessible within class 'Greeter'
and its subclasses.

Derived classes need to follow their base class contracts, but may choose to expose a subtype of
base class with more capabilities. This includes making protected members public :

Note that Derived was already able to freely read and write m , so this doesn't meaningfully alter
the "security" of this situation. The main thing to note here is that in the derived class, we need to be
careful to repeat the protected modifier if this exposure isn't intentional.

Cross-hierarchy protected access

Different OOP languages disagree about whether it's legal to access a protected member
through a base class reference:

class Base {
 protected m = 10;
}
class Derived extends Base {
 // No modifier, so default is 'public'
 m = 15;
}
const d = new Derived();
console.log(d.m); // OK

class Base {
 protected x: number = 1;
}
class Derived1 extends Base {
 protected x: number = 5;
}
class Derived2 extends Base {
 f1(other: Derived2) {
 other.x = 10;
 }
 f2(other: Base) {
 other.x = 10;

Property 'x' is protected and only accessible through an instance of
class 'Derived2'. This is an instance of class 'Base'.

 }
}

Property 'x' is protected and only accessible through an instance of class
'Derived2'. This is an instance of class 'Base'.

Java, for example, considers this to be legal. On the other hand, C# and C++ chose that this code
should be illegal.

TypeScript sides with C# and C++ here, because accessing x in Derived2 should only be legal
from Derived2 's subclasses, and Derived1 isn't one of them. Moreover, if accessing x through
a Derived1 reference is illegal (which it certainly should be!), then accessing it through a base
class reference should never improve the situation.

See also Why Canâ€™t I Access A Protected Member From A Derived Class? which explains more of
C#'s reasoning.

private

private is like protected , but doesn't allow access to the member even from subclasses:

Because private members aren't visible to derived classes, a derived class can't increase its
visibility:

class Base {
 private x = 0;
}
const b = new Base();
// Can't access from outside the class
console.log(b.x);

Property 'x' is private and only accessible within class 'Base'.Property 'x' is private and only accessible within class 'Base'.

class Derived extends Base {
 showX() {
 // Can't access in subclasses
 console.log(this.x);

Property 'x' is private and only accessible within class 'Base'.

 }
}

Property 'x' is private and only accessible within class 'Base'.

https://blogs.msdn.microsoft.com/ericlippert/2005/11/09/why-cant-i-access-a-protected-member-from-a-derived-class/

Cross-instance private access

Different OOP languages disagree about whether different instances of the same class may access
each others' private members. While languages like Java, C#, C++, Swift, and PHP allow this,
Ruby does not.

TypeScript does allow cross-instance private access:

Caveats

Like other aspects of TypeScript's type system, private and protected are only enforced during
type checking.

This means that JavaScript runtime constructs like in or simple property lookup can still access a
private or protected member:

class Base {
 private x = 0;
}
class Derived extends Base {

Class 'Derived' incorrectly extends base class 'Base'.
 Property 'x' is private in type 'Base' but not in type 'Derived'.

 x = 1;
}

Class 'Derived' incorrectly extends base class 'Base'.
 Property 'x' is private in type 'Base' but not in type 'Derived'.

class A {
 private x = 10;

 public sameAs(other: A) {
 // No error
 return other.x === this.x;
 }
}

class MySafe {
 private secretKey = 12345;
}

https://www.typescriptlang.org/play?removeComments=true&target=99&ts=4.3.4#code/PTAEGMBsEMGddAEQPYHNQBMCmVoCcsEAHPASwDdoAXLUAM1K0gwQFdZSA7dAKWkoDK4MkSoByBAGJQJLAwAeAWABQIUH0HDSoiTLKUaoUggAW+DHorUsAOlABJcQlhUy4KpACeoLJzrI8cCwMGxU1ABVPIiwhESpMZEJQTmR4lxFQaQxWMm4IZABbIlIYKlJkTlDlXHgkNFAAbxVQTIAjfABrAEEC5FZOeIBeUAAGAG5mmSw8WAroSFIqb2GAIjMiIk8VieVJ8Ar01ncAgAoASkaAXxVr3dUwGoQAYWpMHBgCYn1rekZmNg4eUi0Vi2icoBWJCsNBWoA6WE8AHcAiEwmBgTEtDovtDaMZQLM6PEoQZbA5wSk0q5SO4vD4-AEghZoJwLGYEIRwNBoqAzFRwCZCFUIlFMXECdSiAhId8YZgclx0PsiiVqOVOAAaUAFLAsxWgKiC35MFigfC0FKgSAVVDTSyk+W5dB4fplHVVR6gF7xJrKFotEk-HXIRE9PoDUDDcaTAPTWaceaLZYQlmoPBbHYx-KcQ7HPDnK43FQqfY5+IMDDISPJLCIuqoc47UsuUCofAME3Vzi1r3URvF5QV5A2STtPDdXqunZDgDaYlHnTDrrEAF0dm28B3mDZg6HJwN1+2-hg57ulwNV2NQGoZbjYfNrYiENBwEFaojFiZQK08C-4fFKTVCozWfTgfFgLkeT5AUqiAA

private also allows access using bracket notation during type checking. This makes private -
declared fields potentially easier to access for things like unit tests, with the drawback that these
fields are soft private and don't strictly enforce privacy.

Unlike TypeScripts's private , JavaScript's private fields (#) remain private after compilation and
do not provide the previously mentioned escape hatches like bracket notation access, making them
hard private.

// In a JavaScript file...
const s = new MySafe();
// Will print 12345
console.log(s.secretKey);

class MySafe {
 private secretKey = 12345;
}

const s = new MySafe();

// Not allowed during type checking
console.log(s.secretKey);

Property 'secretKey' is private and only accessible within class
'MySafe'.

// OK
console.log(s["secretKey"]);

Property 'secretKey' is private and only accessible within class 'MySafe'.

class Dog {
 #barkAmount = 0;
 personality = "happy";

 constructor() {}
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Private_class_fields

Background Reading:

Static Members (MDN)

When compiling to ES2021 or less, TypeScript will use WeakMaps in place of # .

If you need to protect values in your class from malicious actors, you should use mechanisms that
offer hard runtime privacy, such as closures, WeakMaps, or private fields. Note that these added
privacy checks during runtime could affect performance.

Static Members
Classes may have static members. These members aren't
associated with a particular instance of the class. They can be
accessed through the class constructor object itself:

"use strict";
class Dog {
 #barkAmount = 0;
 personality = "happy";
 constructor() { }
}

"use strict";
var _Dog_barkAmount;
class Dog {
 constructor() {
 _Dog_barkAmount.set(this, 0);
 this.personality = "happy";
 }
}
_Dog_barkAmount = new WeakMap();

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/static

Static members can also use the same public , protected , and private visibility modifiers:

Static members are also inherited:

Special Static Names

It's generally not safe/possible to overwrite properties from the Function prototype. Because
classes are themselves functions that can be invoked with new , certain static names can't be
used. Function properties like name , length , and call aren't valid to define as static
members:

class MyClass {
 static x = 0;
 static printX() {
 console.log(MyClass.x);
 }
}
console.log(MyClass.x);
MyClass.printX();

class MyClass {
 private static x = 0;
}
console.log(MyClass.x);

Property 'x' is private and only accessible within class 'MyClass'.Property 'x' is private and only accessible within class 'MyClass'.

class Base {
 static getGreeting() {
 return "Hello world";
 }
}
class Derived extends Base {
 myGreeting = Derived.getGreeting();
}

Why No Static Classes?

TypeScript (and JavaScript) don't have a construct called static class the same way as, for
example, C# does.

Those constructs only exist because those languages force all data and functions to be inside a
class; because that restriction doesn't exist in TypeScript, there's no need for them. A class with only
a single instance is typically just represented as a normal object in JavaScript/TypeScript.

For example, we don't need a "static class" syntax in TypeScript because a regular object (or even
top-level function) will do the job just as well:

static Blocks in Classes
Static blocks allow you to write a sequence of statements with their own scope that can access
private fields within the containing class. This means that we can write initialization code with all the
capabilities of writing statements, no leakage of variables, and full access to our class's internals.

class S {
 static name = "S!";

Static property 'name' conflicts with built-in property 'Function.name'
of constructor function 'S'.

}

Static property 'name' conflicts with built-in property 'Function.name' of
constructor function 'S'.

// Unnecessary "static" class
class MyStaticClass {
 static doSomething() {}
}

// Preferred (alternative 1)
function doSomething() {}

// Preferred (alternative 2)
const MyHelperObject = {
 dosomething() {},
};

Generic Classes
Classes, much like interfaces, can be generic. When a generic class is instantiated with new , its type
parameters are inferred the same way as in a function call:

Classes can use generic constraints and defaults the same way as interfaces.

Type Parameters in Static Members

This code isn't legal, and it may not be obvious why:

class Foo {
 static #count = 0;

 get count() {
 return Foo.#count;
 }

 static {
 try {
 const lastInstances = loadLastInstances();
 Foo.#count += lastInstances.length;
 }
 catch {}
 }
}

class Box<Type> {
 contents: Type;
 constructor(value: Type) {
 this.contents = value;
 }
}

const b = new Box("hello!");

 const b: Box<string>

Background Reading:

this keyword (MDN)

Remember that types are always fully erased! At runtime, there's only one Box.defaultValue
property slot. This means that setting Box<string>.defaultValue (if that were possible) would
also change Box<number>.defaultValue - not good. The static members of a generic class
can never refer to the class's type parameters.

this at Runtime in Classes
It's important to remember that TypeScript doesn't change the runtime
behavior of JavaScript, and that JavaScript is somewhat famous for
having some peculiar runtime behaviors.

JavaScript's handling of this is indeed unusual:

Long story short, by default, the value of this inside a function depends on how the function was
called. In this example, because the function was called through the obj reference, its value of
this was obj rather than the class instance.

class Box<Type> {
 static defaultValue: Type;

Static members cannot reference class type parameters.

}

Static members cannot reference class type parameters.

class MyClass {
 name = "MyClass";
 getName() {
 return this.name;
 }
}
const c = new MyClass();
const obj = {
 name: "obj",
 getName: c.getName,
};

// Prints "obj", not "MyClass"
console.log(obj.getName());

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/this

Background Reading:

Arrow functions (MDN)

This is rarely what you want to happen! TypeScript provides some ways to mitigate or prevent this
kind of error.

Arrow Functions

If you have a function that will often be called in a way that loses its
this context, it can make sense to use an arrow function property
instead of a method definition:

This has some trade-offs:

The this value is guaranteed to be correct at runtime, even for code not checked with
TypeScript

This will use more memory, because each class instance will have its own copy of each function
defined this way

You can't use super.getName in a derived class, because there's no entry in the prototype chain
to fetch the base class method from

this parameters

In a method or function definition, an initial parameter named this has special meaning in
TypeScript. These parameters are erased during compilation:

class MyClass {
 name = "MyClass";
 getName = () => {
 return this.name;
 };
}
const c = new MyClass();
const g = c.getName;
// Prints "MyClass" instead of crashing
console.log(g());

// TypeScript input with 'this' parameter
function fn(this: SomeType, x: number) {
 /* ... */
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

TypeScript checks that calling a function with a this parameter is done so with a correct context.
Instead of using an arrow function, we can add a this parameter to method definitions to
statically enforce that the method is called correctly:

This method makes the opposite trade-offs of the arrow function approach:

JavaScript callers might still use the class method incorrectly without realizing it

Only one function per class definition gets allocated, rather than one per class instance

Base method definitions can still be called via super .

this Types
In classes, a special type called this refers dynamically to the type of the current class. Let's see
how this is useful:

// JavaScript output
function fn(x) {
 /* ... */
}

class MyClass {
 name = "MyClass";
 getName(this: MyClass) {
 return this.name;
 }
}
const c = new MyClass();
// OK
c.getName();

// Error, would crash
const g = c.getName;
console.log(g());

The 'this' context of type 'void' is not assignable to method's 'this'
of type 'MyClass'.
The 'this' context of type 'void' is not assignable to method's 'this' of
type 'MyClass'.

Here, TypeScript inferred the return type of set to be this , rather than Box . Now let's make a
subclass of Box :

You can also use this in a parameter type annotation:

This is different from writing other: Box -- if you have a derived class, its sameAs method will
now only accept other instances of that same derived class:

class Box {
 contents: string = "";
 set(value: string) {

 (method) Box.set(value: string): this

 this.contents = value;
 return this;
 }
}

class ClearableBox extends Box {
 clear() {
 this.contents = "";
 }
}

const a = new ClearableBox();
const b = a.set("hello");

 const b: ClearableBox

class Box {
 content: string = "";
 sameAs(other: this) {
 return other.content === this.content;
 }
}

this -based type guards

You can use this is Type in the return position for methods in classes and interfaces. When
mixed with a type narrowing (e.g. if statements) the type of the target object would be narrowed
to the specified Type .

class Box {
 content: string = "";
 sameAs(other: this) {
 return other.content === this.content;
 }
}

class DerivedBox extends Box {
 otherContent: string = "?";
}

const base = new Box();
const derived = new DerivedBox();
derived.sameAs(base);

Argument of type 'Box' is not assignable to parameter of type
'DerivedBox'.
 Property 'otherContent' is missing in type 'Box' but required in type
'DerivedBox'.

Argument of type 'Box' is not assignable to parameter of type
'DerivedBox'.
 Property 'otherContent' is missing in type 'Box' but required in type
'DerivedBox'.

class FileSystemObject {
 isFile(): this is FileRep {
 return this instanceof FileRep;
 }
 isDirectory(): this is Directory {
 return this instanceof Directory;
 }
 isNetworked(): this is Networked & this {
 return this.networked;
 }
 constructor(public path: string, private networked: boolean) {}
}

class FileRep extends FileSystemObject {
 constructor(path: string, public content: string) {
 super(path, false);
 }
}

class Directory extends FileSystemObject {
 children: FileSystemObject[];
}

interface Networked {
 host: string;
}

const fso: FileSystemObject = new FileRep("foo/bar.txt", "foo");

if (fso.isFile()) {
 fso.content;

 const fso: FileRep

} else if (fso.isDirectory()) {
 fso.children;

 const fso: Directory

} else if (fso.isNetworked()) {
 fso.host;

 const fso: Networked & FileSystemObject

}

A common use-case for a this-based type guard is to allow for lazy validation of a particular field.
For example, this case removes an undefined from the value held inside box when hasValue
has been verified to be true:

Parameter Properties
TypeScript offers special syntax for turning a constructor parameter into a class property with the
same name and value. These are called parameter properties and are created by prefixing a
constructor argument with one of the visibility modifiers public , private , protected , or
readonly . The resulting field gets those modifier(s):

class Box<T> {
 value?: T;

 hasValue(): this is { value: T } {
 return this.value !== undefined;
 }
}

const box = new Box();
box.value = "Gameboy";

box.value;

 (property) Box<unknown>.value?: unknown

if (box.hasValue()) {
 box.value;

 (property) value: unknown

}

Background Reading:

Class expressions (MDN)

Class Expressions
Class expressions are very similar to class declarations. The only
real difference is that class expressions don't need a name, though
we can refer to them via whatever identifier they ended up bound
to:

abstract Classes and Members

class Params {
 constructor(
 public readonly x: number,
 protected y: number,
 private z: number
) {
 // No body necessary
 }
}
const a = new Params(1, 2, 3);
console.log(a.x);

 (property) Params.x: number

console.log(a.z);

Property 'z' is private and only accessible within class 'Params'.Property 'z' is private and only accessible within class 'Params'.

const someClass = class<Type> {
 content: Type;
 constructor(value: Type) {
 this.content = value;
 }
};

const m = new someClass("Hello, world");

 const m: someClass<string>

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/class

Classes, methods, and fields in TypeScript may be abstract.

An abstract method or abstract field is one that hasn't had an implementation provided. These
members must exist inside an abstract class, which cannot be directly instantiated.

The role of abstract classes is to serve as a base class for subclasses which do implement all the
abstract members. When a class doesn't have any abstract members, it is said to be concrete.

Let's look at an example:

We can't instantiate Base with new because it's abstract. Instead, we need to make a derived class
and implement the abstract members:

Notice that if we forget to implement the base class's abstract members, we'll get an error:

abstract class Base {
 abstract getName(): string;

 printName() {
 console.log("Hello, " + this.getName());
 }
}

const b = new Base();

Cannot create an instance of an abstract class.Cannot create an instance of an abstract class.

class Derived extends Base {
 getName() {
 return "world";
 }
}

const d = new Derived();
d.printName();

Abstract Construct Signatures

Sometimes you want to accept some class constructor function that produces an instance of a class
which derives from some abstract class.

For example, you might want to write this code:

TypeScript is correctly telling you that you're trying to instantiate an abstract class. After all, given
the definition of greet , it's perfectly legal to write this code, which would end up constructing an
abstract class:

Instead, you want to write a function that accepts something with a construct signature:

class Derived extends Base {

Non-abstract class 'Derived' does not implement inherited abstract
member 'getName' from class 'Base'.

 // forgot to do anything
}

Non-abstract class 'Derived' does not implement inherited abstract member
'getName' from class 'Base'.

function greet(ctor: typeof Base) {
 const instance = new ctor();

Cannot create an instance of an abstract class.

 instance.printName();
}

Cannot create an instance of an abstract class.

// Bad!
greet(Base);

Now TypeScript correctly tells you about which class constructor functions can be invoked -
Derived can because it's concrete, but Base cannot.

Relationships Between Classes
In most cases, classes in TypeScript are compared structurally, the same as other types.

For example, these two classes can be used in place of each other because they're identical:

Similarly, subtype relationships between classes exist even if there's no explicit inheritance:

function greet(ctor: new () => Base) {
 const instance = new ctor();
 instance.printName();
}
greet(Derived);
greet(Base);

Argument of type 'typeof Base' is not assignable to parameter of type
'new () => Base'.
 Cannot assign an abstract constructor type to a non-abstract
constructor type.

Argument of type 'typeof Base' is not assignable to parameter of type 'new
() => Base'.
 Cannot assign an abstract constructor type to a non-abstract constructor
type.

class Point1 {
 x = 0;
 y = 0;
}

class Point2 {
 x = 0;
 y = 0;
}

// OK
const p: Point1 = new Point2();

This sounds straightforward, but there are a few cases that seem stranger than others.

Empty classes have no members. In a structural type system, a type with no members is generally a
supertype of anything else. So if you write an empty class (don't!), anything can be used in place of
it:

class Person {
 name: string;
 age: number;
}

class Employee {
 name: string;
 age: number;
 salary: number;
}

// OK
const p: Person = new Employee();

class Empty {}

function fn(x: Empty) {
 // can't do anything with 'x', so I won't
}

// All OK!
fn(window);
fn({});
fn(fn);

Modules

JavaScript has a long history of different ways to handle modularizing code. TypeScript having been
around since 2012, has implemented support for a lot of these formats, but over time the
community and the JavaScript specification has converged on a format called ES Modules (or ES6
modules). You might know it as the import / export syntax.

ES Modules was added to the JavaScript spec in 2015, and by 2020 had broad support in most web
browsers and JavaScript runtimes.

For focus, the handbook will cover both ES Modules and its popular pre-cursor CommonJS
module.exports = syntax, and you can find information about the other module patterns in the
reference section under Modules.

How JavaScript Modules are Defined
In TypeScript, just as in ECMAScript 2015, any file containing a top-level import or export is
considered a module.

Conversely, a file without any top-level import or export declarations is treated as a script whose
contents are available in the global scope (and therefore to modules as well).

Modules are executed within their own scope, not in the global scope. This means that variables,
functions, classes, etc. declared in a module are not visible outside the module unless they are
explicitly exported using one of the export forms. Conversely, to consume a variable, function, class,
interface, etc. exported from a different module, it has to be imported using one of the import
forms.

Non-modules
Before we start, it's important to understand what TypeScript considers a module. The JavaScript
specification declares that any JavaScript files without an export or top-level await should be
considered a script and not a module.

Inside a script file variables and types are declared to be in the shared global scope, and it's
assumed that you'll either use the outFile compiler option to join multiple input files into one
output file, or use multiple <script> tags in your HTML to load these files (in the correct order!).

If you have a file that doesn't currently have any import s or export s, but you want to be treated
as a module, add the line:

https://www.typescriptlang.org/docs/handbook/modules.html
https://www.typescriptlang.org/tsconfig#outFile

Additional Reading:

Impatient JS (Modules)

MDN: JavaScript Modules

which will change the file to be a module exporting nothing. This syntax works regardless of your
module target.

Modules in TypeScript
There are three main things to consider when writing module-
based code in TypeScript:

Syntax: What syntax do I want to use to import and export
things?

Module Resolution: What is the relationship between module names (or paths) and files on
disk?

Module Output Target: What should my emitted JavaScript module look like?

ES Module Syntax

A file can declare a main export via export default :

This is then imported via:

In addition to the default export, you can have more than one export of variables and functions via
the export by omitting default :

export {};

// @filename: hello.ts
export default function helloWorld() {
 console.log("Hello, world!");
}

import helloWorld from "./hello.js";
helloWorld();

https://exploringjs.com/impatient-js/ch_modules.html#overview-syntax-of-ecmascript-modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules

These can be used in another file via the import syntax:

Additional Import Syntax

An import can be renamed using a format like import {old as new} :

You can mix and match the above syntax into a single import :

// @filename: maths.ts
export var pi = 3.14;
export let squareTwo = 1.41;
export const phi = 1.61;

export class RandomNumberGenerator {}

export function absolute(num: number) {
 if (num < 0) return num * -1;
 return num;
}

import { pi, phi, absolute } from "./maths.js";

console.log(pi);
const absPhi = absolute(phi);

 const absPhi: number

import { pi as Ï€ } from "./maths.js";

console.log(Ï€);

(alias) var Ï€: number
import Ï€

You can take all of the exported objects and put them into a single namespace using * as name :

You can import a file and not include any variables into your current module via import
"./file" :

// @filename: maths.ts
export const pi = 3.14;
export default class RandomNumberGenerator {}

// @filename: app.ts
import RandomNumberGenerator, { pi as Ï€ } from "./maths.js";

RandomNumberGenerator;

(alias) class RandomNumberGenerator
import RandomNumberGenerator

console.log(Ï€);

(alias) const Ï€: 3.14
import Ï€

// @filename: app.ts
import * as math from "./maths.js";

console.log(math.pi);
const positivePhi = math.absolute(math.phi);

 const positivePhi: number

// @filename: app.ts
import "./maths.js";

console.log("3.14");

In this case, the import does nothing. However, all of the code in maths.ts was evaluated, which
could trigger side-effects which affect other objects.

TypeScript Specific ES Module Syntax

Types can be exported and imported using the same syntax as JavaScript values:

TypeScript has extended the import syntax with two concepts for declaring an import of a type:

import type

Which is an import statement which can only import types:

// @filename: animal.ts
export type Cat = { breed: string; yearOfBirth: number };

export interface Dog {
 breeds: string[];
 yearOfBirth: number;
}

// @filename: app.ts
import { Cat, Dog } from "./animal.js";
type Animals = Cat | Dog;

// @filename: animal.ts
export type Cat = { breed: string; yearOfBirth: number };

'createCatName' cannot be used as a value because it was imported using
'import type'.

export type Dog = { breeds: string[]; yearOfBirth: number };
export const createCatName = () => "fluffy";

// @filename: valid.ts
import type { Cat, Dog } from "./animal.js";
export type Animals = Cat | Dog;

// @filename: app.ts
import type { createCatName } from "./animal.js";
const name = createCatName();

'createCatName' cannot be used as a value because it was imported using
'import type'.

Inline type imports

TypeScript 4.5 also allows for individual imports to be prefixed with type to indicate that the
imported reference is a type:

Together these allow a non-TypeScript transpiler like Babel, swc or esbuild to know what imports
can be safely removed.

ES Module Syntax with CommonJS Behavior

TypeScript has ES Module syntax which directly correlates to a CommonJS and AMD require .
Imports using ES Module are for most cases the same as the require from those environments,
but this syntax ensures you have a 1 to 1 match in your TypeScript file with the CommonJS output:

You can learn more about this syntax in the modules reference page.

CommonJS Syntax
CommonJS is the format which most modules on npm are delivered in. Even if you are writing
using the ES Modules syntax above, having a brief understanding of how CommonJS syntax works
will help you debug easier.

Exporting

Identifiers are exported via setting the exports property on a global called module .

// @filename: app.ts
import { createCatName, type Cat, type Dog } from "./animal.js";

export type Animals = Cat | Dog;
const name = createCatName();

import fs = require("fs");
const code = fs.readFileSync("hello.ts", "utf8");

https://www.typescriptlang.org/docs/handbook/modules.html#export--and-import--require

Then these files can be imported via a require statement:

Or you can simplify a bit using the destructuring feature in JavaScript:

CommonJS and ES Modules interop

There is a mis-match in features between CommonJS and ES Modules regarding the distinction
between a default import and a module namespace object import. TypeScript has a compiler flag to
reduce the friction between the two different sets of constraints with esModuleInterop.

TypeScript's Module Resolution Options

function absolute(num: number) {
 if (num < 0) return num * -1;
 return num;
}

module.exports = {
 pi: 3.14,
 squareTwo: 1.41,
 phi: 1.61,
 absolute,
};

const maths = require("maths");
maths.pi;

 any

const { squareTwo } = require("maths");
squareTwo;

 const squareTwo: any

https://www.typescriptlang.org/tsconfig#esModuleInterop

Module resolution is the process of taking a string from the import or require statement, and
determining what file that string refers to.

TypeScript includes two resolution strategies: Classic and Node. Classic, the default when the
compiler option module is not commonjs , is included for backwards compatibility. The Node
strategy replicates how Node.js works in CommonJS mode, with additional checks for .ts and
.d.ts .

There are many TSConfig flags which influence the module strategy within TypeScript:
moduleResolution, baseUrl, paths, rootDirs.

For the full details on how these strategies work, you can consult the Module Resolution.

TypeScript's Module Output Options
There are two options which affect the emitted JavaScript output:

target which determines which JS features are downleveled (converted to run in older
JavaScript runtimes) and which are left intact

module which determines what code is used for modules to interact with each other

Which target you use is determined by the features available in the JavaScript runtime you
expect to run the TypeScript code in. That could be: the oldest web browser you support, the lowest
version of Node.js you expect to run on or could come from unique constraints from your runtime -
like Electron for example.

All communication between modules happens via a module loader, the compiler option module
determines which one is used. At runtime the module loader is responsible for locating and
executing all dependencies of a module before executing it.

For example, here is a TypeScript file using ES Modules syntax, showcasing a few different options
for module:

ES2020

import { valueOfPi } from "./constants.js";

export const twoPi = valueOfPi * 2;

https://www.typescriptlang.org/tsconfig#module
https://www.typescriptlang.org/tsconfig#moduleResolution
https://www.typescriptlang.org/tsconfig#baseUrl
https://www.typescriptlang.org/tsconfig#paths
https://www.typescriptlang.org/tsconfig#rootDirs
https://www.typescriptlang.org/docs/handbook/module-resolution.html
https://www.typescriptlang.org/tsconfig#target
https://www.typescriptlang.org/tsconfig#module
https://www.typescriptlang.org/tsconfig#target
https://www.typescriptlang.org/tsconfig#module
https://www.typescriptlang.org/tsconfig#module

CommonJS

UMD

Note that ES2020 is effectively the same as the original index.ts .

You can see all of the available options and what their emitted JavaScript code looks like in the
TSConfig Reference for module.

import { valueOfPi } from "./constants.js";
export const twoPi = valueOfPi * 2;

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.twoPi = void 0;
const constants_js_1 = require("./constants.js");
exports.twoPi = constants_js_1.valueOfPi * 2;

(function (factory) {
 if (typeof module === "object" && typeof module.exports === "object")
 var v = factory(require, exports);
 if (v !== undefined) module.exports = v;
 }
 else if (typeof define === "function" && define.amd) {
 define(["require", "exports", "./constants.js"], factory);
 }
})(function (require, exports) {
 "use strict";
 Object.defineProperty(exports, "__esModule", { value: true });
 exports.twoPi = void 0;
 const constants_js_1 = require("./constants.js");
 exports.twoPi = constants_js_1.valueOfPi * 2;
});

https://www.typescriptlang.org/tsconfig#module

TypeScript namespaces
TypeScript has its own module format called namespaces which pre-dates the ES Modules
standard. This syntax has a lot of useful features for creating complex definition files, and still sees
active use in DefinitelyTyped. While not deprecated, the majority of the features in namespaces exist
in ES Modules and we recommend you use that to align with JavaScript's direction. You can learn
more about namespaces in the namespaces reference page.

https://www.typescriptlang.org/dt
https://www.typescriptlang.org/docs/handbook/namespaces.html

	Table of Contents
	The TypeScript Handbook
	The Basics
	Everyday Types
	Narrowing
	More on Functions
	Object Types
	Type Manipulation
	Creating Types from Types
	Generics
	Keyof Type Operator
	Typeof Type Operator
	Indexed Access Types
	Conditional Types
	Mapped Types
	Template Literal Types

	Classes
	Modules

