

RxJS Cookbook for
Reactive Programming

Discover 40+ real-world solutions for building async,
event-driven web apps

Nikola Mitrović

RxJS Cookbook for Reactive Programming
Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

The author acknowledges the use of cutting-edge AI, such as ChatGPT to enhance language and clarity,
and Gemini to create the illustrations within the book, all with the aim of ensuring a smooth reading
experience. It’s important to note that the content itself is crafted by the author and edited by a professional
publishing team.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Ashwin Nair

Relationship Lead: Bhavya Rao

Project Manager: Aparna Nair

Content Engineer: Adrija Mitra

Technical Editor: Sweety Pagaria

Copy Editor: Safis Editing

Indexer: Pratik Shirodkar

Production Designer: Jyoti Kadam

Growth Lead: Anamika Singh

First published: March 2025

Production reference: 1180325

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-78862-405-3

www.packtpub.com

http://www.packtpub.com

To my mom for her tireless dedication and sacrifices that paved the way for everything I have today.

Thank you for believing in me and supporting my dreams, even when it meant

putting my needs before your own. There are no words to describe how grateful

I am for your love and everything you have done for me. You are the real MVP.

- Nikola Mitrović

Foreword

I met Nikola in 2023 during my visit to Belgrade for a conference, where we both shared the stage

for the first time. Nikola was talking about browser web APIs and gave an amazing talk. He is

a well-known person in the community for sharing knowledge on web technologies and their

ecosystem. Nikola is the best person to write this book as he has great knowledge of working on

web APIs, Angular, and NestJS.

This is a great guide if you want to get comfortable with reactive concepts using RxJS. The first two

chapters cover the real-time usage of various RxJS operators, and then we learn about animation,

testing, and how you can improve performance using RxJS.

I really like how the state management topic was covered. NgRx is a widely adopted solution for

state management, but it’s important to understand how we can do it using RxJS, and the book

covers that part really well.

Toward the end, the book covers real-time communication using RxJS, where RxJS really shines.

It also demonstrates how to effectively use RxJS with NestJS by building microservices.

Santosh Yadav

Google Developer Expert for Angular | GitHub Star | Nx Champion | Developer Advocate

Contributors

About the author
Nikola Mitrović is a seasoned software engineer and consultant with experience that spans

nearly a decade, with technical expertise in micro-frontend architecture and web performance,

as well as technologies such as Angular, React, Next.js, Node.js, NestJS, NX, and AWS. He is an

enthusiastic public speaker and has presented at some of the world’s largest tech conferences,

sharing his passion for crafting exceptional web experiences. He has business domain expertise

in EdTech, HealthTech, and Digital Identity.

For the last couple of years, Nikola has been in leadership roles, inspiring a culture of technical

excellence, continuous learning, collaboration, and psychological safety within the organization.

He strongly believes in leading with empathy, honesty, and passion, empowering teams with

trust and autonomy.

Prior to this, Nikola was a partner, technical architect, and development lead at Vega IT, where

he was recognized as the company’s MVP for three consecutive years (2022-2024).

About the reviewers
Aleksandar Makarić is a passionate, self-taught developer with a strong focus on performance

optimization and accessibility. Proactive and detail-oriented, he excels in UI/UX, SEO, and refining

team processes. Aleksandar believes in the power of knowledge-sharing and values soft skills,

which foster team cohesion and productivity. More than just a coder, he thrives as a problem

solver, always aiming to create meaningful impact through his work. And when it comes to RxJS,

he relishes the challenge of picking the perfect operator—why settle for throttleTime when a

well-timed auditTime could be the secret to optimal throttling in high-frequency streams?

I extend my heartfelt gratitude to my family and colleagues for their unwavering support during my transition

to software engineering. Your encouragement has been invaluable. Special thanks to the author of this book,

whose work has inspired and guided my growth in both my career and my life. His insights have profoundly

shaped my approach to programming – thank you for being a mentor and role model.

Sunil Raj Thota is a seasoned software engineer with extensive experience in web development

and AI applications. Currently working in the Amazon QuickSight team, Sunil has previously

contributed to significant projects at Yahoo Inc., enhancing user engagement and satisfaction

through innovative features at Yahoo and AOL Mail. He has also worked at Northeastern University

as a research assistant and at MOURI Tech as a senior software engineer, optimizing multiple

websites and leading successful project deployments. Sunil co-founded ISF Technologies, where

he has championed user-centric design and agile methodologies. He has also contributed to the

books AI Strategies for Web Development and The Art of Micro Frontends. His academic background

includes a master’s in analytics from Northeastern University and a bachelor’s in electronics and

communications engineering from Andhra University.

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/RxJSCookbook

https://packt.link/RxJSCookbook

Table of Contents

Preface � xxi

Chapter 1: Handling Errors and Side Effects in RxJS � 1

Technical requirements ��� 2

Handling DOM updates ��� 2

How to do it… • 2

Step 1 – Handling one search input • 3

Step 2 – Handling two search inputs • 5

See also • 7

Handling network requests �� 8

How to do it… • 8

Step 1 – Handling requests in sequence • 8

Step 2 – Handling requests in parallel • 10

Step 3 – Handling concurrent requests • 12

See also • 14

Handling network errors ��� 14

How to do it… • 14

Step 1 – Catching errors • 14

Step 2 – Using the retry pattern • 15

Step 3 – Using the exponential back off pattern • 17

Step 4 – Using the circuit breaker pattern • 18

There’s more… • 21

See also • 22

Table of Contentsx

Debugging RxJS streams �� 22

How to do it… • 22

Step 1 – Logging successful responses • 22

Step 2 – Logging network errors • 23

Understanding HTTP polling ��� 26

How to do it… • 26

Step 1 – Standard HTTP polling • 26

Step 2 – Long HTTP polling • 27

See also • 30

Handling WebSocket connections ��� 30

How to do it… • 30

Step 1 – Connecting to the socket • 30

Step 2 – Implementing a WebSocket heartbeat • 33

See also • 34

Learn more on Discord • 34

Chapter 2: Building User Interfaces with RxJS � 35

Technical requirements ��� 35

Unlocking a phone with precision using RxJS-powered swipe gestures ����������������������������� 36

How to do it… • 36

Step 1 – Creating number pads • 36

Step 2 – Identifying user touch events • 37

Step 3 – Marking selected number pads • 38

Step 4 – Creating a trail • 40

Step 5 – Checking the result • 41

See also • 41

Learning indications with the progress bar ��� 42

How to do it… • 42

Step 1 – Creating a progress loading stream • 42

Step 2 – Merging progress and request streams • 42

See also • 43

Table of Contents xi

Streaming image loading seamlessly with Progressive Image �� 44

How to do it… • 44

Step 1 – Defining image sources • 44

Step 2 – Creating a progress stream • 44

Step 3 – Subscribing to the image stream in the template • 45

See also • 47

Optimizing loading tab content ��� 47

How to do it… • 47

Step 1 – Defining a tab group and an active tab • 47

Step 2 – Loading tab content • 48

See also • 51

Reacting to drag-and-drop events ��� 51

Getting ready • 51

How to do it… • 51

Step 1 – Defining a dropzone • 51

Step 2 – Validating files • 53

Step 3 – Uploading files and tracking progress • 54

Step 4 – Showing file uploads in the UI • 57

Step 5 – Handling file upload errors • 58

See also • 60

Crafting your perfect audio player using flexible RxJS controls �� 60

How to do it… • 61

Step 1 – Creating audio player events • 61

Step 2 – Managing song state • 62

Step 3 – Playing/pausing a song • 63

Step 4 – Controlling the song’s volume • 63

Step 5 – Switching songs • 64

Step 6 – Skipping to the middle of a song • 66

See also • 67

Streamlining real-time updates with RxJS-powered notifications ������������������������������������� 68

How to do it… • 68

Table of Contentsxii

Step 1 – Stacking incoming notifications • 68

Step 2 – Reacting to a user action and displaying notifications • 69

Step 3 – Automatic notification dismissal • 71

See also • 72

Fetching data with the Infinite Scroll Timeline component ��� 72

How to do it… • 72

Step 1 – Detecting the end of a list • 72

Step 2 – Controlling the next page and loading the state of the list • 73

Step 3 – Checking for new recipes • 75

See also • 76

Chapter 3: Understanding Reactive Animation Systems with RxJS � 77

Technical requirements ��� 77

Simulating realistic ball-bouncing physics using RxJS ��� 78

How to do it… • 78

Step 1 – Animating a ball falling • 78

Step 2 – Bouncing off the ground • 79

Step 3 – Stopping and repeating the animation • 80

See also • 82

Creating mesmerizing fluid particle effects using RxJS �� 82

How to do it… • 82

Step 1 – Drawing particles • 82

Step 2 – Detecting wall collision • 85

Step 3 – Drawing connections • 87

Step 4 – Moving particles with a hover effect • 88

See also • 92

Adding subtle elegance to components with RxJS transitions �� 92

How to do it… • 92

Step 1 – Increasing the upload progress • 92

Step 2 – Animating the upload progress • 92

See also • 94

Table of Contents xiii

Chapter 4: Testing RxJS Applications � 95

Technical requirements ��� 96

Mastering time-based RxJS operators with marble testing �� 96

Getting ready • 97

How to do it… • 97

Step 1 – Setting up TestScheduler • 97

Step 2 – Testing simple RxJS streams • 98

Step 3 – Testing complex RxJS streams • 100

See also • 102

Mocking HTTP dependencies with Observables in Angular ��� 102

Getting ready • 102

How to do it… • 103

Step 1 – Setting up TestBed • 103

Step 2 – Testing a simple HTTP request • 104

Step 3 – Testing multiple requests in sequence • 105

Step 4 – Testing multiple requests in parallel • 107

Step 5 – Testing errors • 108

See also • 109

Mocking API calls with MSW ��� 109

Getting ready • 109

How to do it… • 110

Step 1 – Setting up TestBed • 110

Step 2 – Testing a simple HTTP request • 111

Step 3 – Testing multiple requests in sequence • 111

Step 4 – Testing multiple requests in parallel • 113

Step 5 – Testing errors • 114

See also • 114

Testing complex state management with NgRx �� 114

Getting ready • 114

How to do it… • 115

Table of Contentsxiv

Step 1 – Setting up a mock store • 115

Step 2 – Testing store selectors • 116

Step 3 – Setting up integration test and mock actions • 117

Step 4 – Testing effects and dispatching actions • 118

Step 5 – Testing effect errors • 119

See also • 120

Learn more on Discord • 120

Chapter 5: Performance Optimizations with RxJS � 121

Technical requirements �� 121

Optimizing RxJS streams with strategic operator selection �� 122

How to do it… • 122

Step 1 – Creating a stream of events • 122

Step 2 – Transforming the data stream for efficiency • 123

Step 3 – Filtering to reduce data flow • 123

Step 4 – Canceling unnecessary requests • 123

Step 5 – Caching the results • 124

Step 6 – Preventing memory leaks • 125

Step 7 – Measuring RxJS stream performance • 127

See also • 128

Creating a custom Core Web Vitals performance monitoring system �������������������������������� 129

How to do it… • 129

Step 1 – Setting up Performance Observer • 129

Step 2 – Observing performance entries • 130

See also • 131

Using Web Workers alongside RxJS ��� 131

How to do it… • 132

Step 1 – Setting up a web worker in Angular • 132

Step 2 – Subscribing to web worker messages • 132

Step 3 – Optimizing the worker messages stream • 133

See also • 134

Table of Contents xv

Chapter 6: Building Reactive State Management Systems with RxJS � 135

Technical requirements �� 136

Building custom client-side state management �� 136

How to do it… • 137

Step 1 – Defining the state • 137

Step 2 – Dispatching actions • 138

Step 3 – Applying the reducer function for state transitions • 140

Step 4 – Handling side effects • 141

Step 5 – Slicing the state • 143

Step 6 – Creating composable reducers • 145

Step 7 - Creating meta-reducers • 146

See also • 147

Using NgRx for state management in Angular �� 148

How to do it… • 149

Step 1 – Configuring a NgRx store • 149

Step 2 – Handling side effects • 151

Step 3 – Defining selectors • 152

Step 4 – Extending app state with NgRx Router State • 153

Step 5 – Creating meta-reducers • 155

See also • 157

TanStack Query, meet RxJS – building your own TanStack query with Angular and RxJS � 158

How to do it… • 158

Step 1 – Setting up declarative queries • 159

Step 2 – Caching queries with Map • 159

Step 3 – Caching with the stale-while-revalidate mechanism • 162

Step 4 – Background updates • 163

Step 5 – Automatic garbage collection • 164

See also • 165

Table of Contentsxvi

Chapter 7: Building Progressive Web Apps with RxJS � 167

Technical requirements �� 167

Delivering real-time food order updates with RxJS push notifications ���������������������������� 168

How to do it… • 168

Step 1 – Generating VAPID keys • 168

Step 2 – Setting up a public key endpoint • 169

Step 3 – Requesting push notification subscription • 169

Step 4 – Sending reactive push notifications from the API • 171

Step 5 – Reacting to incoming push notifications • 172

See also • 173

Implementing reactive background data sync �� 173

How to do it… • 174

Step 1 – Intercepting the recipe request • 174

Step 2 – Establishing background sync with API • 174

Step 3 – Setting up Dexie.js • 175

Step 4 – Storing sync data in IndexedDB • 176

Building offline-ready applications seamlessly with RxDB �� 178

Getting ready • 178

How to do it… • 178

Step 1 – Defining the recipe schema • 179

Step 3 – Subscribing to ChangeEvent • 181

Step 4 – Searching for a recipe with RxQuery • 182

There’s more... • 183

See also • 184

Chapter 8: Building Offline-First Applications with RxJS � 185

Technical requirements ��� 188

Implementing seamless RxJS offline-first apps using a Cache-First strategy ������������������� 188

How to do it… • 189

Step 1 – Extracting data from the Cache API • 189

Table of Contents xvii

Step 2 – Falling back to the network • 190

Step 3 – Going offline • 191

Prioritizing fresh data with RxJS network-first strategy ��� 193

How to do it… • 193

Step 1 – Sending a network request when online • 193

Step 2 – Falling back to the cache • 194

Step 3 – Going offline • 195

Optimizing data freshness and performance with the Stale-While-Revalidate strategy �� 196

How to do it… • 197

Step 1 – Extracting data from the cache • 197

Step 2 – Checking for the fresh data in the background • 198

Step 3 – Going offline • 198

Racing Cache and Network strategy �� 200

How to do it… • 200

Step 1 – Extracting data from the cache • 200

Step 2 – Sending a network request • 201

Step 3 – Network & cache race • 202

Step 4 – Going offline • 202

See also • 203

Implementing the optimistic update pattern �� 204

How to do it… • 204

Step 1 – Creating a custom operator • 204

Step 2 – Applying the optimistic update operator • 205

Step 3 – Going offline • 206

Learn more on Discord • 207

Chapter 9: Going Real-Time with RxJS � 209

Technical requirements ��� 210

Implementing real-time data visualization charts ��� 210

How to do it… • 210

Step 1 – Connecting to RxJS WebSocket • 210

Table of Contentsxviii

Step 2 – Reconnecting to WebSocket after losing connection • 211

Step 3 – Subscribing to socket data and visualizing data • 212

See also… • 214

Crafting a modern chat application �� 215

How to do it… • 215

Step 1 – Creating a NestJS WebSocket gateway • 215

Step 2 – Connecting to RxJS WebSocket from the frontend app • 218

Step 3 – Handling chat topic messages • 219

Step 4 – Handling the event when a user is typing • 223

Step 7 – Handling client disconnection • 225

Step 8 – Handling WebSocket disconnection • 227

Step 9 – Sending voice messages • 228

See also… • 231

Playing real-time multiplayer Tic-Tac-Toe ��� 231

How to do it… • 232

Step 1 – Handling multiplayer • 232

Step 2 – Playing a move • 234

Step 3 – Checking the winner • 237

See also… • 239

Chapter 10: Building Reactive NestJS Microservices with RxJS � 241

Technical requirements �� 241

Crafting resilient REST API microservices in NestJS ��� 242

Getting ready • 242

How to do it... • 242

Step 1 – Establishing communication between services • 242

Step 2 – Applying an exponential backoff strategy • 243

Step 3 – Implementing the bulkhead resiliency strategy • 243

See also... • 246

Table of Contents xix

Mastering reactive event streaming with Kafka ��� 246

Getting ready • 247

How to do it... • 248

Step 1 – Setting up the Kafka producer • 248

Step 2 – Setting up the Kafka consumer • 249

Step 3 – Going reactive with the Kafka producer • 250

Step 4 – Reacting to producer connection events • 251

Step 5 – Buffering messages when the producer is disconnected • 253

Step 6 – Handling backpressure on the producer • 254

Step 7 – Going reactive with the Kafka consumer • 255

Step 8 – Handling backpressure on the consumer • 257

Step 9 – Implementing the dead-letter queue pattern • 258

See also • 260

Going real time with gRPC streaming in NestJS ��� 260

Getting ready • 261

How to do it... • 261

Step 1 – Defining a .proto file • 261

Step 2 – Configuring a gRPC microservice • 262

Step 3 – Creating a gRPC controller • 263

Step 4 – Streaming food order reactive updates • 264

Step 5 – Streaming a courier’s geolocation updates • 266

See also... • 268

Learn more on Discord • 268

Index � 269

Other Books You May Enjoy � 278

Preface

RxJS or Reactive Extensions for JavaScript is a JavaScript library designed to simplify working

with asynchronous data flows, orchestrating events and sequences of data over time.

However, there is a belief in the community that RxJS has a steep learning curve, despite its

amazing capabilities. One reason why RxJS has this reputation is that most tutorials, books, and

online materials focus heavily on RxJS operators. These resources explain how each operator works

in depth, with accompanying visuals. While these resources are really helpful and essential when

starting to learn RxJS, developers may still face challenges such as debugging and optimizing

RxJS streams, testing RxJS streams effectively, managing reactive state, fully adopting a reactive

paradigm, and identifying the correct RxJS operator for real-world scenarios.

RxJS Cookbook for Reactive Programming takes a slightly different approach. This is a full stack

book that emphasizes building modern web applications using RxJS techniques, patterns, and

operators that naturally fit specific scenarios. Each chapter is composed of practical recipes

that offer solutions to a wide range of challenges, spanning from handling side effects and error

resiliency patterns in client apps to creating real-time chat applications and event-driven backend

microservices.

As you progress through the book, you will develop a profound understanding of the potential

of reactive programming in complex real-life scenarios. This book empowers developers to

seamlessly integrate RxJS with popular web development frameworks and libraries such as

Angular and NestJS, serving as an invaluable guide for developing web applications that are

modern, progressive, resilient, responsive, performant, and interactive.

By the end of the book, you will have mastered the art of reactive programming principles, the

RxJS library, and working with Observables, while crafting code that reacts to changes in data

and events in a declarative and asynchronous manner.

Prefacexxii

Who this book is for
This book is ideal for intermediate-to-advanced JavaScript developers who want to adopt reactive

programming principles using RxJS. Whether you’re working with Angular or NestJS, you’ll

find recipes and real-world examples that help you leverage RxJS for managing asynchronous

operations and reactive data flows across both your frontend and backend.

What this book covers
Chapter 1, Handling Errors and Side Effects in RxJS, equips you with essential techniques to gracefully

handle errors and maintain stream integrity, including implementing powerful resiliency patterns

such as exponential backoff and circuit breaker, ensuring your application remains responsive

and resilient.

You’ll also delve into the art of side effect management, learning how to seamlessly perform

tasks such as logging, API calls, and DOM updates without disrupting your data flows. Finally,

you’ll explore the fascinating world of WebSockets as side effects and discover how to implement

heartbeat techniques to ensure connection integrity in a truly reactive way.

Chapter 2, Building User Interfaces with RxJS, shows you how to craft components such as reactive

audio players, infinite scroll experiences that captivate users, intuitive drag-and-drop interfaces,

responsive phone swipe components, and many more.

By harnessing RxJS to handle user input, create event streams, and connect to asynchronous

data, you’ll unlock the full potential of reactive UI components, enabling you to create seamless

user experiences.

Chapter 3, Understanding Reactive Animation Systems with RxJS, teaches you how RxJS can be used

to craft dynamic and interactive animations that captivate users.

You will learn how to model animation logic as streams of values, transforming and combining

them to achieve fluid, performant animations that run at 60 fps. You’ll explore techniques for

creating smooth transitions, choreographing complex sequences, and synchronizing animations

with other application events. You’ll also build engaging animation components, such as a

bouncing ball animation, animate loading button state transitions, and recreate the mesmerizing

effects of particles.js.

Preface xxiii

Chapter 4, Testing RxJS Applications, guides you through various techniques for testing your reactive

code effectively, including a deep dive into using Mock Service Worker (MSW) for seamless

integration testing and exploring NgRx state unit testing.

You will discover how to handle asynchronous data streams in your tests, master marble testing

for complex scenarios to confidently verify complex scenarios and prevent regressions, and

learn how to simulate time-based operations with ease. You’ll also explore practical examples

of using MSW to mock API responses and streamline your integration testing workflow, delve

into the intricacies of NgRx state management, and learn how to write effective unit tests for

your state management logic. By the end of this chapter, you’ll be equipped to create a reliable

and maintainable RxJS code base.

Chapter 5, Performance Optimizations with RxJS, delves into managing data flow and strategically

using operators to streamline asynchronous operations. You will discover how to choose the right

operators to minimize redundant calculations and reduce rendering overhead.

This chapter also explores building a custom performance monitoring system to track Core Web

Vitals, gaining valuable insights into an application’s performance, and identifying areas for

improvement. You will learn how to leverage Web Workers alongside RxJS streams to offload

heavy calculations from the browser’s main thread, further enhancing performance. You will also

discover how to transform performance bottlenecks into optimized, efficient streams.

Chapter 6, Building Reactive State Management Systems with RxJS, explores how RxJS provides

a reactive approach to managing application state, promoting predictability, testability, and

reactive updates. This foundation will then enable you to build custom reactive state management

solutions from scratch.

You will learn how to navigate the complexities of state management in Angular applications

using powerful libraries such as NgRx, mastering even the most intricate state interactions.

You will learn about TanStack Query by building your own custom version of it, gaining deep

insights into asynchronous state management, and discovering how the async nature of

Observables fits perfectly into this paradigm.

Chapter 7, Building Progressive Web Apps with RxJS, explores how RxJS can be leveraged to enhance

your Angular apps with key progressive web app (PWA) features, including push notifications,

background synchronization, and offline capabilities.

Prefacexxiv

You will learn how to use RxJS to manage push notifications effectively, delivering timely and

relevant updates to your users. You will implement background synchronization with Dexie.js

and RxJS to keep data up to date without interrupting the user’s workflow. Finally, you will learn

how to leverage RxDB and RxJS to provide a seamless user experience even when the network is

unavailable, ensuring your application remains accessible and functional at all times.

Chapter 8, Building Offline-First Applications with RxJS, delves into the crucial world of offline-first

applications and demonstrates how RxJS empowers you to achieve seamless offline experiences.

You will gain fine-grained control over offline data synchronization by mastering various strategies,

including cache-first, network-first, stale-while-revalidate, and cache-network race, and learn

how each strategy impacts user experience and data reliability and choose the best approach for

your specific needs.

Beyond basic synchronization, you will explore advanced techniques for handling data updates

with the optimistic update pattern. You will also learn how to provide an immediate response to

user actions, even before confirming with the server, while ensuring data integrity and a smooth

transition when the connection is restored.

Chapter 9, Going Real-Time with RxJS, dives into the world of WebSockets and demonstrates how

RxJS empowers you to create seamless real-time features in your Angular and NestJS applications.

You will learn how to use WebSockets to establish persistent client-server connections for

bidirectional communication and instant data updates, and explore practical examples such as

crafting a real-time dashboard that dynamically tracks and visualizes data updates. Then, you

will dive into building smooth gameplay for a multiplayer tic-tac-toe game. Finally, you will

craft a chat application with voice messaging capabilities for a truly immersive chat experience.

Chapter 10, Building Reactive NestJS Microservices with RxJS, explores how RxJS can bring reactive

programming elegance to building NestJS APIs.

You will learn how to model real-time data flows and build fault-tolerant microservices with RxJS’s

sophisticated error handling and resiliency patterns. You will expand your toolkit by integrating

asynchronous messaging platforms such as Kafka, enabling event-driven architectures and

handling high-volume data streams for seamless communication between services.

Finally, you will delve into gRPC, leveraging its efficiency for high-performance remote procedure

calls in your microservices architecture.

Preface xxv

To get the most out of this book
You should be experienced with JavaScript and web concepts in general. It would be good to have

experience with frameworks and libraries such as Angular and NestJS on the server side. It would

be an advantage to have strong fundamentals in the asynchronous programming area, functional

programming, and reactive programming basics. You will get the most out of this book if you are

already familiar with core RxJS concepts such as Observer and Iterator patterns, Observables,

Subscriptions, operators, Subjects, and Schedulers.

Software/hardware covered in the book Operating system requirements

RxJS v7 Windows, macOS, or Linux

Angular v19+

Node.js v22+

npm v11+

pnpm v10+

NestJS v11+

In Chapter 10, you will need to run a local Kafka server for one of the recipes. You can find detailed

information on this in the Kafka documentation https://kafka.apache.org/quickstart.

If you are using the digital version of this book, we advise you to type the code yourself or

access the code from the book’s GitHub repository (a link is available in the next section).

Doing so will help you avoid any potential errors related to the copying and pasting of code.

Note

This book does not use Angular’s Resource API, as it was still in the experimental

phase at the time of publication.

https://kafka.apache.org/quickstart

Prefacexxvi

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/

PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main. If there’s an update

to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://

github.com/PacktPublishing/. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and X/Twitter handles. Here is an example:

“Notice one more important change from the previous example with distinctUntilChange.”

A block of code is set as follows:

combineLatest({

 searchName: searchNameInputValue$,

 searchIngredient: searchIngredientInputValue$

}

Any command-line input or output is written as follows:

npm run build && http-server ${build-location} -c-1 –o

Bold: Indicates a new term, an important word, or words that you see onscreen. For instance,

words in menus or dialog boxes appear in bold. Here is an example: “RxJS marble diagrams are

a powerful tool for visualizing and understanding the behavior of Observables and operators in

reactive programming.”

Tips or important notes

Appear like this.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xxvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@

packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you would report this

to us. Please visit www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and

you are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts
Once you’ve read RxJS Cookbook for Reactive Programming, we’d love to hear your thoughts! Please

click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re

delivering excellent quality content.

https://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com/
https://packt.link/r/178862405X

Prefacexxviii

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781788624053

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781788624053

1
Handling Errors and Side
Effects in RxJS

Welcome to the RxJS Cookbook for Reactive Programming!

After working with RxJS for a while, and learning all about every operator in RxJS docs, have you

ever felt stuck or didn’t know how to get your RxJS game to the next level? This book is Packt(ed)

with advanced recipes and practical use cases to take you to that next level and make you ready

for any real-life challenge in the web development world. Buckle up, it’s going to be a fun ride!

This chapter explores techniques to manage the inevitable complexities of real-world reactive

programming. We’ll learn how to gracefully handle errors and maintain stream integrity. We will

delve into side effect management to perform tasks such as logging, API calls, and DOM updates

without disrupting data flows. Also, we will master strategies to isolate side effects and ensure

predictable, testable RxJS code. Finally, we will understand the role of WebSockets as side effects

and explore heartbeat techniques to ensure connection integrity in a Reactive way.

Handling Errors and Side Effects in RxJS2

In this chapter, we will cover the following recipes:

•	 Handling DOM updates

•	 Handling network requests

•	 Handling network errors

•	 Debugging RxJS streams

•	 Understanding HTTP polling

•	 Handling WebSocket connections

Technical requirements
To follow along in this chapter, you’ll need the following:

•	 Angular v19+

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for recipes in this chapter is placed in the GitHub repository:

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/
main/Chapter01

Handling DOM updates
Due to its declarative and reactive nature, RxJS provides a way to efficiently take care of DOM

updates and react to UI updates without directly manipulating DOM elements.

How to do it…
In this example, we will build a small cooking recipe app, where we will load a list of recipes

from the mocked BE (using MSW) and show them in the list. After that, we will implement two

search fields to find desired recipes by name and ingredient. We will do this by handling input

updates from both filters in a declarative way, then combining the query results and providing

filtered results in the end.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01

Chapter 1 3

Here’s how the app would look in its initial state:

Figure 1.1: Recipe app – initial state

Step 1 – Handling one search input
Let’s start easy by implementing search by name filter first. In our Angular component, we will

have a searchNameInput DOM element reference and a fromEvent operator:

@ViewChild('searchNameInput')

 searchNameInputElement!: ElementRef;

ngAfterViewInit() {

 fromEvent<InputEvent>(

 this.searchNameInputElement.nativeElement,'input')

 .pipe(

 map((searchInput: InputEvent) =>

 (searchInput.target as HTMLInputElement)

 .value),

Handling Errors and Side Effects in RxJS4

 startWith(''), debounceTime(500),

 distinctUntilChanged(),

 switchMap((searchName: string) =>

 this.recipesService.searchRecipes$(searchName)))

 .subscribe((recipes) => this.recipes = recipes);

}

Here’s a breakdown of what we are doing:

1.	 With the map operator, we will extract the value of the input and state that the starting

value should be an empty string with the startWith operator.

2.	 To prevent sending unnecessary requests and increasing load on the server, we will

debounce every user keystroke up to 500 milliseconds. Also, we will check whether the

search query has changed from the previous one (e.g., if we wanted to search for lasagna,

we would type the query "lasag", get the result, and then delete “g" and put “g" back in

the query within 500 milliseconds; we won’t send another request, because the query

hasn’t changed).

3.	 In the end, once we get the search query, we will use switchMap to take the query value

and send the request to the BE API.

Why switchMap?

The main reason we are using switchMap here is the cancellation effect. This is what

it means. Assume that a user types a search query, and we have an ongoing request.

Now, if the user changes the query to a new one, the previous request will be cancelled

automatically, since we are no longer interested in the previous result.

Chapter 1 5

Now, when we type a search query for recipes, we might see the results in the UI:

Figure 1.2: Search recipe by name

Step 2 – Handling two search inputs
Now let’s add a second search input for ingredients. Again, we will create a stream of search input

events from the second input, but this time, we want to combine results with the first input as

well. The way we can achieve that is by using the combineLatest function that will create a stream

of events from multiple sources.

Here the startWith operator comes in handy as well, since combineLatest won’t emit any values

until both inputs emit at least once. That would mean that we would see the empty recipes list

initially without using startWith. This is what our code looks like after adding the second input:

const searchNameInputValue$ = fromEvent<InputEvent>(

 this.searchNameInputElement.nativeElement, 'input')

 .pipe(

 map((searchInput: InputEvent) =>

 (searchInput.target as HTMLInputElement) .value),

 startWith('')

Handling Errors and Side Effects in RxJS6

);

 const searchIngredientInputValue$ = fromEvent<InputEvent>(

 this.searchIngredientInputElement.nativeElement, 'input')

 .pipe(

 map((searchInput: InputEvent) =>

 (searchInput.target as HTMLInputElement) .value),

 startWith('')

);

 combineLatest({

 searchName: searchNameInputValue$,

 searchIngredient: searchIngredientInputValue$

 })

 .pipe(debounceTime(500),

 distinctUntilChanged(

 (prev, curr) => prev.searchName ===

 curr.searchName && prev.searchIngredient ===

 curr.searchIngredient),

 switchMap(({ searchName, searchIngredient }) =>

 this.recipesService.searchRecipes$(

 searchName, searchIngredient)))

 .subscribe((recipes) => this.recipes = recipes);

Notice one more important change from the previous example with distinctUntilChange. One of

the most common mistakes when using operator is assuming it does figure out on its own when

the stream has changed, but that only works for primitive values coming out of a stream as a result.

Previously, we emitted string values from the first search input, but now since we are combining

the results of two search inputs, we have a stream of object values. Therefore, we must do a deep

check on previous and current object properties, in our case, searchName and searchIngredient.

Alternatively, we could use the distinctUntilKeyChanged operator.

Chapter 1 7

If we open our app in the browser, now we can search recipes not only by name but also by

ingredient:

Figure 1.3: Search recipe by name and ingredient

See also
•	 MSW: https://mswjs.io/

•	 fromEvent operator: https://rxjs.dev/api/index/function/fromEvent

•	 map: https://rxjs.dev/api/operators/map

•	 startWith operator: https://rxjs.dev/api/operators/startWith

•	 switchMap: https://rxjs.dev/api/operators/switchMap

•	 combineLatest function: https://rxjs.dev/api/index/function/combineLatest

•	 distinctUntilKeyChanged operator: https://rxjs.dev/api/operators/distinct
UntilKeyChanged

Handling Errors and Side Effects in RxJS8

Handling network requests
The area where RxJS really excels is in handling side-effects. Given that an Observable is a stream

of values that arrive over time, this implies asynchronicity. That makes RxJS a perfect fit for

managing async state and data flows, such as complex network communication. In this recipe,

we’re going to explore the most advanced and sophisticated ways of handling different network

request scenarios.

How to do it…
In this example, we will build a small cooking recipe app, where we will load a list of recipes from

the mocked BE (using MSW) and show them in the list. Then after clicking on a specific recipe,

we will show that recipe on a new page with more details, which will require another layer of

communication with the BE to fetch those details.

Step 1 – Handling requests in sequence
Let’s say we have two different endpoints. One that holds information about the recipe, and the

other one only contains details for a recipe with the same ID. This is how the async data flow

would look:

1.	 We would send the request to the https://super-recipes.com/api/recipes?id=1

endpoint, which would return basic information about the recipe.

2.	 Then we would take the id of a specific recipe from the response and send a new sequential

request to the https://super-recipes.com/api/recipes/details?id=1 endpoint:

getRecipeById$(id: number): Observable<Recipe> {

 return this.httpClient.get<Recipe>(

 `/api/recipes?id=${id}`

);

}

getRecipeDetails$(

 id: number

): Observable<{

 recipe: Recipe,

 details: RecipeDetails

}> {

 return this.getRecipeById$(id).pipe(

Chapter 1 9

 switchMap((recipe: Recipe) => {

 return this.httpClient

 .get<RecipeDetails>(

 `/api/recipes/details?id=${id}`

)

 .pipe(map((details) => ({

 recipe,

 details

 })

));

 })

);

}

3.	 In the end, we will use the map operator to combine the results from both endpoints, since

we’re going to need all that information in our details component.

If we click on one of the recipes, that will navigate us to the RecipeDetails page, with some

specific nutrient info for each recipe:

Figure 1.4: Recipe Details page with nutrition info

Handling Errors and Side Effects in RxJS10

Step 2 – Handling requests in parallel
Imagine that we have a high resolution, size-heavy images for our recipes. We want to reduce

initial response payload size and offload that initial load for the RecipeListComponent. To improve

the performance of the app, we have separated loading of images to a different endpoint, so

initially, we show the recipe list data from one endpoint. After that, we send multiple requests in

parallel to fetch all corresponding images. In our example, first we send a request to the https://

super-recipes.com/api/recipes endpoint to fetch the list of cooking recipes. In the response,

we will have the list of all recipe ids, based on which we can send parallel request to the https://

super-recipes.com/api/recipes/images endpoint. In the meantime, we will have a loading

indicator for each image.

Also, we will leverage the power of the forkJoin operator to send image requests in parallel:

getRecipesWithImageInParallel$(): Observable<ImageUrl[]> {

 return this.getRecipes$().pipe(

 tap((recipes: Recipe[]) =>

 this.recipes.next(recipes)),

 switchMap((recipes: Recipe[]) => {

 const imageRequests = recipes.map((recipe) =>

 this.httpClient.get<ImageUrl>(

 `/api/recipes/images?id=${recipe.id}`

)

);

 return forkJoin(imageRequests);

 }),

);

}

Now when we open our recipe in the browser, we can see placeholders instead of images, and in

the Network tab, we can see images being downloaded in parallel:

https://super-recipes.com/api/recipes
https://super-recipes.com/api/recipes
https://super-recipes.com/api/recipes/images
https://super-recipes.com/api/recipes/images

Chapter 1 11

Figure 1.5: Recipe images before (first) and after (second)

Handling Errors and Side Effects in RxJS12

Step 3 – Handling concurrent requests
In our example so far, we have been sending multiple requests in parallel, but the drawback of

that approach is that we must wait for all image requests to be completed before we show results.

Since our images can be a few MBs in size and can overwhelm the server, we can additionally

improve the performance of our recipe app by batching image requests concurrently:

1.	 First, we can load images for the first three recipes.

2.	 Then, after we get a response for those, we can send request for the remaining images.

The way we can achieve this effect is by using the RxJS mergeMap concurrent mode:

public recipes = new BehaviorSubject<Recipe[]>([]);

getRecipesWithConcurrentImage$(): Observable<ImageUrl> {

 return this.getRecipes$().pipe(

 tap((recipes: Recipe[]) => this.recipes.next(recipes)),

 switchMap((recipes: Recipe[]) => {

 const imageIds = recipes.map(

 (recipe) => recipe.id);

 return from(imageIds).pipe(

 mergeMap((id) => this.httpClient.get(

 `/api/recipes/images?id=${id}`), 3

);

 })

);

}

By extracting ids of all images from the first request, we can create a new inner Observable from

that array of IDs and send concurrent requests with mergeMap. Note the second parameter of

mergeMap: that parameter will help us to fine-tune how many concurrent requests can go at the

same time. By doing so, we can rate-limit the number of requests and prevent our server from

having an overwhelming number of ongoing requests. This means that we will load the list of

images three by three, which is something we can observe in our Dev Tools.

Chapter 1 13

Figure 1.6: Concurrent image requests

Handling Errors and Side Effects in RxJS14

See also
•	 forkJoin operator: https://rxjs.dev/api/index/function/forkJoin

•	 mergeMap operator: https://rxjs.dev/api/operators/mergeMap

Handling network errors
So far, we have handled the happy path of dealing with network requests. However, what if things

don’t go so smoothly? We still need to build robust and resilient apps, which will react to those

special events (or to exceptions).

How to do it…
In this example, we are going to discover sophisticated resiliency patterns and learn how to deal

with network errors.

Step 1 – Catching errors
The simplest way to react to network error is just to use the catchError operator from RxJS:

getRecipes$(): Observable<Recipe[]> {

 return this.httpClient.get<Recipe[]>(

 'https://super-recipes.com/api/recipes'

).pipe(

 catchError((error) => {

 this._snackBar.open(

 'Recipes could not be fetched.',

 'Close'

);

 return EMPTY;

 })

);

}

The strategy here is pretty simple. If there is a request error, catch the error, display a notification

in the UI, and gracefully complete the stream. We might also want in some instances to re-throw

the error, if we need it later in the stream chain:

throwError(() => new Error('Recipes could not be fetched.'))

Chapter 1 15

In our browser, we can open Dev Tools, disable network request and see this behavior in action,

alongside an error notification when requests fail:

Figure 1.7: Error notification

Step 2 – Using the retry pattern
However, what if there was a just slight hiccup at the server, so this error was a one-time thing?

After we close the error notification this way, there is no way to know whether everything is okay

a few seconds later but to refresh the page and start over. That’s why we need the retry strategy.

The way we can achieve that is with the RxJS retry operator.

 If we just pass a number as a parameter, this indicates the number of retries that would happen

immediately one after the other.

The way we can apply this operator is by chaining it after the catchError operator:

getRecipes$(): Observable<Recipe[]> {

 return this.httpClient.get<Recipe[]>('/api/recipes')

 .pipe(

 catchError((error) => {

 this._snackBar.open(

Handling Errors and Side Effects in RxJS16

 'Recipes could not be fetched.', 'Close');

 return throwError(() => new Error(

 'Recipes could not be fetched.'));

 }),

 retry(3)

);

}

Implementing the retry pattern would lead to the following:

Figure 1.8: Error with number of retries

However, ideally, we would like to leave some time in between two retry attempts for our server

to recover. That leads us to the next pattern.

Chapter 1 17

Step 3 – Using the exponential back off pattern
This is a retry pattern whereby we gradually increase the delay between retry attempts, until

either we get a successful response, or give up eventually and conclude that the system has an

issue at the moment:

 getRecipesWithBackoffStrategy$(): Observable<Recipe[]> {

 return this.httpClient.get<Recipe[]>('/api/recipes')

 .pipe(

 catchError((error) => {

 this._snackBar.open(

 'Recipes could not be fetched.',

 'Close'

);

 return throwError(() => new Error(error));

 }),

 retry({

 count: 3,

 delay: (error, retryCount) => {

 return timer(Math.pow(2, retryCount) * 1000);

 },

 }),

);

}

To implement this pattern, we will introduce a delay as part of the retry configuration. It’s a

callback function that has error and retryCount parameters. With the help of RxJS timer function,

we will emit a new notification for a delay, exponentially increasing the time in between two

retry attempts. As a result, we will end up with four failed requests in the Network Dev Tools

(one original, and three retried requests).

Handling Errors and Side Effects in RxJS18

Figure 1.9: Exponential back off strategy

Step 4 – Using the circuit breaker pattern
Imagine an electrical circuit breaker in your home. If there’s a power surge or overload, the circuit

breaker trips, cutting off the power to protect your appliances and prevent further damage. The

circuit breaker pattern in software works similarly.

If we experience several cascading errors in the system, we will open the circuit. In this OPEN state,

we will immediately reject any new request to the server for a certain period. After that period,

we enter the HALF_OPEN state, where we allow several test requests to check whether the system

has recovered in the meantime. If the system has recovered and the request is successful, we close

the circuit. Otherwise, we open it again for a certain period.

First, let’s have methods to represent these states and transitions to these states:

private state: 'CLOSED' | 'OPEN' | 'HALF_OPEN' = 'CLOSED';

private openCircuit() {

 if (this.state === 'OPEN') return;

 this.state = 'OPEN';

 timer(15000)

Chapter 1 19

 .subscribe(() => this.halfOpenCircuit());

}

private halfOpenCircuit() {

 this.state = 'HALF_OPEN';

}

private closeCircuit() {

 this.state = 'CLOSED';

}

Now we are ready to react to these states in case of network failures. In our recipe.service.ts,

we will start off by checking whether we should throw an error if we are in the OPEN state:

sendRequestIfCircuitNotOpen() {

 if (this.state === 'OPEN') {

 console.error('Circuit is open, aborting request');

 return throwError(() =>

 new Error('Circuit is open'));

 }

 return this.httpClient.get<Recipe[]>('/api/recipes');

}

getRecipesWithCircuitBreakerStrategy$():

 Observable<Recipe[]> {

 return defer(() =>

 this.sendRequestIfCircuitNotOpen());

 }

Here’s a breakdown of what we’ve done:

1.	 First, with the help of the defer function, we defer the execution of the request until we

figure out the current state of circuit.

2.	 We check whether the state of circuit is OPEN:

•	 If it is, we immediately throw an error and set up a timer for 15 seconds to enter

the HALF_OPEN state, so we can try again after that period

•	 If not, we will allow at least one request

Handling Errors and Side Effects in RxJS20

Now let’s check what we have in our pipe operator sequence:

getRecipesWithCircuitBreakerStrategy$():

 Observable<Recipe[]> {

 return defer(() =>

 this.sendRequestIfCircuitNotOpen()

).pipe(

 catchError((error) => {this._snackBar.open(

 'Recipes could not be fetched.', 'Close');

 return throwError(() => new Error(

 'Recipes could not be fetched.'));

 }),

 retry({

 count: this.state === 'HALF_OPEN' ? 1 : 3,

 delay: (error, retryCount) => {

 if(this.state === 'HALF_OPEN' ||

 retryCount === 3)

 {

 this.openCircuit();

 return throwError(() =>

 new Error('Circuit is open'));

 }

 return timer(2000);

 },

 }),

);

}

As part of the retry mechanism, here, we can notice that based on a circuit state, we control the

number of retries to be one or three. Also, if the current state was HALF_OPEN and we failed again,

or initially when we exceed three retries, we enter the OPEN state and throw an error. We enter

the retry block every two seconds to check whether there were any changes until the system

eventually recovers or we give up and show the error notification.

Chapter 1 21

Figure 1.10: Circuit breaker pattern

Once we enter HALF_OPEN state, we can play around in our browser by blocking network request

and verify circuit behavior in action.

At the end, if the response was successful, we would simply close the circuit by calling the

closeCircuit method and show the recipes list.

There’s more…
•	 Exponential back off pattern: The benefit of this approach is that we reduce the load to

the server during error cases and give the whole system time to recover in between. It also

improves the success rate by allowing transient errors to resolve quickly.

•	 Circuit breaker pattern: The benefit of this approach might be improving system

responsiveness. Since we know that there are services unavailable, we will fail fast and

let users know about it. Also, it can help us with self-healing and monitoring of the system

resiliency. The logic when we enter OPEN and HALF_OPEN states might defer from use case

to use case or based on personal preference. We might keep track of the number of success

and error requests, and based on a success rate, let the circuit go into an OPEN state or not.

•	 Fallback strategy: One more thing to keep in mind here is the fallback strategy, or what

should happen when requests are rejected. Should we return cached data, default values,

or something else? It’s totally up to you to decide what fits your needs best.

Handling Errors and Side Effects in RxJS22

See also
•	 catchError operator: https://rxjs.dev/api/operators/catchError

•	 retry operator: https://rxjs.dev/api/operators/retry

•	 timer function: https://rxjs.dev/api/index/function/timer

•	 defer function: https://rxjs.dev/api/index/function/defer

•	 How to implement retry logic like a Pro article: https://dev.to/officialanurag/
javascript-secrets-how-to-implement-retry-logic-like-a-pro-g57

•	 How to implement an exponential backoff retry strategy in Javascript article: https://
advancedweb.hu/how-to-implement-an-exponential-backoff-retry-strategy-in-
javascript/

Debugging RxJS streams
There are a lot of great tools to debug RxJS streams that can really help us be productive, reproduce

issues that may occur, and identify bugs easily. However, what if we don’t need to go through

the setup of those tools and can rather have a simple network traffic log to observe what is going

on in the network?

How to do it…
In this recipe, we will implement a simple network logger to observe the ongoing network traffic

in the browser console. For that purpose, we will leverage Angular interceptors. Also, after each

error, we will send the error information to our custom analytics endpoint, to increase our system

Observability and Error Tracking.

Step 1 – Logging successful responses
In our network-logger.interceptor.ts, we will start intercepting ongoing network requests:

export const networkLogger: HttpInterceptorFn = (

 req, next) => {

 const started = Date.now();

 const httpClient = inject(HttpClient);

 const errorSubject = new Subject<HttpErrorResponse>();

 function logSuccessfulResponse(event: any) {

 if (event instanceof HttpResponse) {

 const elapsed = Date.now() - started;

https://dev.to/officialanurag/javascript-secrets-how-to-implement-retry-logic-like-a-pro-g57
https://dev.to/officialanurag/javascript-secrets-how-to-implement-retry-logic-like-a-pro-g57

Chapter 1 23

 console.log(

 `Request took %c${elapsed} ms`, 'color: #ffc26e');

 console.log('%cResponse:', 'color: #d30b8e',

 event);

 }

 }

 return next(req).pipe(

 tap(() => console.log(

 '-----------------'

 `\nRequest for ${req.urlWithParams} started...`

)

),

 tap((event) => logSuccessfulResponse(event)),

 finalize(() => console.log('-----------------'))

);

};

Here’s a breakdown of what we are doing:

1.	 First, we log when each request has started.

2.	 Then, after we get the response, in the logSuccessfulResponse function, we display how

long the request took alongside the response itself.

Step 2 – Logging network errors
In case of network error, we can use the catchError operator to handle network errors and log the

time elapsed and cause of an error:

function logFailedResponse(error: HttpErrorResponse):

 Observable<never> {

 const elapsed = Date.now() - started;

 console.log(`Request for ${

 req.urlWithParams} failed after %c${elapsed}

 ms`,'color: #ffc26e'

);

 console.log('%cError:', 'color: #d30b8e', error);

 errorSubject.next(error);

 throw error;

}

Handling Errors and Side Effects in RxJS24

return next(req).pipe(

 tap(() =>

 console.log(

 ' ----------------- ',

 `\nRequest for ${req.urlWithParams} started...`

)

),

 tap((event) => logSuccessfulResponse(event)),

 catchError((error) => logFailedResponse(error)),

 finalize(() => console.log(' ----------------- '))

);

Also, we might notice that whenever an error happens, we are sending that error to errorSubject.

Now, whenever a new error has been emitted to the Subject, we may notify our analytics service

and have our own custom error reporting mechanism within our system:

errorSubject

 .pipe(

 concatMap((error: HttpErrorResponse) =>

 httpClient.post('/api/analytics', error)

)

).subscribe();

Now, when we open our browser console, we can observe network traffic and improve the

debugging experience. Also, note how in the case of an error, we would get one Error Response

from an endpoint, and one Successful Response from our analytics endpoint.

Chapter 1 25

Figure 1.11: Console logger service

Handling Errors and Side Effects in RxJS26

Understanding HTTP polling
HTTP polling is one of the most common techniques to keep your data fresh by fetching the data

in regular intervals. By doing so, we can get real time updates from a server, monitor the progress

of a long-running tasks, or check for frequent data changes. This is a way to simulate a real-time

connection with a server over HTTP, which is a stateless protocol.

How to do it…
In this recipe, we are going to explore a reactive approach to the standard HTTP polling, as well

as long polling by building a small cooking recipe app. First, we will load a list of recipes from the

mocked BE (using MSW) and show them in the list. Then, we will implement a polling mechanism

to check continuously whether there are new recipe data to refresh the list with new data.

Step 1 – Standard HTTP polling
In our http-polling.service.ts, based on a configurable interval, we set the timer for that

interval. After each of these intervals, we will send a new request to get the latest data:

private stopPolling$ = new Subject<void>();

startPolling<T>(url: string, interval: number = 5000):

 Observable<T> {return timer(0, interval).pipe(

 switchMap(() => this.httpClient.get<T>(url)),

 takeUntil(this.stopPolling$),

 shareReplay({ bufferSize: 1, refCount: true })

);

}

Chapter 1 27

If we open our console in the browser, we can observe network request being sent every five

seconds:

Figure 1.12: HTTP Polling

Step 2 – Long HTTP polling
Long polling is a bit different from standard polling. Instead of sending a request after an interval,

which can be wasted bandwidth if the data hasn’t changed, the client sends a request and the

server holds the connection open until new data becomes available or a timeout occurs:

startLongPolling<T>(

 url: string,

 interval: number = 5000

): Observable<T> {

 return timer(0, interval).pipe(

 switchMap(() => this.httpClient.get<T>(url)

 .pipe(timeout(interval))

),

 retry({

 count: 3,

Handling Errors and Side Effects in RxJS28

 delay: (error, retryCount) => {

 console.log(

 `Attempt ${retryCount}:

 Error occurred during polling,retrying...`

);

 this._snackBar.open(

 'Retrying to establish connection...', 'Close'

);

 return timer(interval);

 },

 }),

 catchError(error => {

 console.error('Long polling error:', error);

 this._snackBar.open(error.message, 'Close');

 return throwError(() => new Error(error));

 }),

 takeUntil(this.stopPolling$),

 shareReplay({ bufferSize: 1, refCount: true }),

);

}

Compared to the standard polling example, note here that we added a timer at the end of our

request:

switchMap(() => this.httpClient.get<T>(url).pipe(

 timeout(interval),

)),

This means that if we establish connection with the server, and the response doesn’t arrive before

that interval, the request will time out, and then we will go into the retry mechanism.

If we open our browser console, we may observe this behavior in action. If the response hasn’t

arrived within a defined interval (in our case, five seconds), we will retry the same request three

times, until we eventually throw an error.

Chapter 1 29

Figure 1.13: HTTP Long Polling retry

How to play around with polling recipes

 In the mocks/handlers.ts file, there is a delay function from MSW that delays the

HTTP response for a certain amount of time, so we can play around with this delay.

If we set the delay to be under five seconds, in our example, we will see the list of

recipes being refreshed every five seconds. If we set the delay to over five seconds, we

can simulate slow network responses from BE services and see how our app would

behave in the case of the error retry mechanism.

Handling Errors and Side Effects in RxJS30

See also
•	 interval function: https://rxjs.dev/api/index/function/interval

•	 timeout operator: https://rxjs.dev/api/operators/timeout

•	 retry operator: https://rxjs.dev/api/operators/retry

•	 delay operator: https://rxjs.dev/api/operators/delay

Handling WebSocket connections
WebSocket is a communication protocol that provides us with real-time communication with

client and server. The difference between WebSocket and HTTP is that the former is a two-way

communication, where both sides can continuously send data, which is perfect for real-time

applications such as chat apps, multiplayer gives, live notifications, IoT apps, and so on.

RxJS provides us with a webSocket factory function, a wrapper around the W3C-compatible

WebSocket object provided by the browser.

How to do it…
In this recipe, we are going to explore a reactive approach for handling real-time updates over

WebSocket by building a small cooking recipe app. We will load a list of recipes from the mocked BE

(using MSW) over a WebSocket connection and show them in the list. Also, we will automatically

update the list over WebSocket if there is a new data entry. Additionally, we will implement a

heartbeat mechanism, which is essential when we lose connection with WebSocket.

Step 1 – Connecting to the socket
In our recipe-list.component.ts, we call the connect method to establish the connection to

the WebSocket:

export class RecipesListComponent {

 constructor(private recipesService: RecipesService) {}

 ngOnInit() {

 this.recipesService.connect();

 }

 ngOnDestroy() {

 this.recipesService.close();

 }

}

https://rxjs.dev/api/index/function/interval
https://rxjs.dev/api/operators/timeout
https://rxjs.dev/api/operators/retry
https://rxjs.dev/api/operators/delay

Chapter 1 31

In our recipes.service.ts, we can see the implementation behind the connect method:

import {

 webSocket, WebSocketSubject } from 'rxjs/webSocket';

export interface Message<T> {

 type: string;

 payload?: T;

}

export class RecipesService {

 private socket$!: WebSocketSubject<Message<any>>;

 connect() {

 if (!this.socket$ || this.socket$.closed) {

 this.socket$ = webSocket<Message<any>>({

 url: 'wss://recipes.example.com',

 deserializer: (e) =>

 JSON.parse(e.data) as Message,

 });

 this.recipes$ = this.socket$.multiplex(

 () => ({ subscribe: 'recipes' }),

 // Subscription message

 () => ({ unsubscribe: 'recipes' }),

 // Unsubscription message

 (message) => message.type === 'recipes'

 // Filter function

);

 }

 }

 close() {

 this.socket$.complete();

 }

}

After successfully connecting to the socket and gaining the ability to parse the messages that

come over the TCP connection, we can subscribe to the specific channel of topic, which in

WebSocket terms is called multiplexing. This is often done for efficiency, to reduce the overhead

Handling Errors and Side Effects in RxJS32

of establishing and maintaining multiple connections, or when constraints limit the number of

possible connections. In our case, we are interested in the list of recipes, so we will subscribe to

that channel.

The way we can communicate over a WebSocket connection between client and a server is by

implementing the sendMessage method:

sendMessage(message: Message) {

 this.socket$.next(message);

}

Now, back in our component, we can send a message with a "recipe" type, which will fetch us

the list of recipes:

this.recipesService.sendMessage({ type: 'recipes' });

this.recipesSubscription = this.recipesService.recipes$.subscribe(

 (message: Message) => this.recipes = message.payload);

In our browser, when we open the console, we may observe the incoming messages from the

Websocket connection:

Figure 1.14: WebSocket connection

Chapter 1 33

Step 2 – Implementing a WebSocket heartbeat
When we lose connection to the WebSockets, there are similar retry mechanisms that we can

apply as we did for HTTP requests. However, WebSocket has a well-known retry strategy called

heartbeat. It is a mechanism used to keep the connection alive and ensure that client and the

server are still responsive.

In our recipe.service.ts, after a retry fails, we can send a heartbeat to our server:

this.socket$
 .pipe(
 retry({
 count: 1,
 delay: (error, retryCount) => {
 console.log(`Attempt ${retryCount}:
 Error occurred during websocket
 connection, retrying...`
);
 return of(error).pipe(delay(1000));
 },
 }),
 catchError((err) => {
 console.error('Error occurred during websocket
 connection:', err);
 this.sendHeartbeat();
 return of(null);
 })
).subscribe();

This is the implementation behind the sendHeartbeat method:

 sendHeartbeat() {
 timer(0, 5000)
 .pipe(
 tap(() => this.sendMessage({ type: 'heartbeat' })),
 switchMap(() =>
 this.socket$.pipe(
 filter((msg) => msg.type === 'heartbeat'),
 timeout(5000 * 2),
 // Allow double the heartbeat interval for
 //response
 catchError(() => {

Handling Errors and Side Effects in RxJS34

 this._snackBar.open(
 'Lost connection to the WebSocket',
 'Close');
 this.close();

 return EMPTY;
 // Return null to stop retry attempts after
 //closing
 })
)
),
).subscribe();
}

Now we can see that every five seconds, we will send a heartbeat message to the server to check

whether we were able to establish the connection again. In case of no luck, we throw an error

eventually and show an error notification that states that we have lost connection. The logic

around the time interval and retry strategies can be all up to the specific use case or personal

preference. Additionally, the same resiliency strategies for building robust web apps in RxJS

from the Handling network errors recipe in this chapter can be applied to the WebSockets as well.

See also
•	 WebSocket: https://rxjs.dev/api/webSocket/webSocket

•	 MDN WebSocket API: https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/RxJSCookbook

https://rxjs.dev/api/webSocket/webSocket
https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://packt.link/RxJSCookbook

2
Building User Interfaces
with RxJS

One of the areas where RxJS excels is handling user interactions and orchestrating events in

the browser. In this chapter, we’re going to explore how to build awesome and interactive UI

components that handle any interaction or side effect seamlessly.

In this chapter, we’ll cover the following recipes:

•	 Unlocking a phone with precision using RxJS-powered swipe gestures

•	 Learning indications with the progress bar

•	 Streaming image loading seamlessly with Progressive Image

•	 Optimizing loading tab content

•	 Reacting to drag-and-drop events

•	 Crafting your perfect audio player using flexible RxJS controls

•	 Streamlining real-time updates with RxJS-powered notifications

•	 Fetching data with the Infinite Scroll Timeline component

Technical requirements
To complete this chapter, you’ll need the following:

•	 Angular v19+

•	 Angular Material

Building User Interfaces with RxJS36

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for the recipes in this chapter can be found in this book’s GitHub repository: https://
github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/
Chapter02.

Unlocking a phone with precision using RxJS-
powered swipe gestures
How cool would it be to have a phone unlock pattern component? In this recipe, we’re going to

build a component like that so that we can seamlessly react to every user touch swipe, orchestrate

all user events, and unlock the phone once a correct combination of numbers is entered.

How to do it…
To create a phone unlock component, we’ll create UI controls representing number pads and

identify key events to react to user actions. Once the user lifts their finger off the screen, we’ll

compare the result with the correct pattern to unlock our phone.

Step 1 – Creating number pads
Our swipe-unlock.component.html file must contain the following markup for the swipe area

and all phone buttons:

<div #swipeArea class="swipe-area">

 <button #one class="number">1</button>

 <button #two class="number">2</button>

 <button #three class="number">3</button>

 <button #four class="number">4</button>

 <button #five class="number">5</button>

 <button #six class="number">6</button>

 <button #seven class="number">7</button>

 <button #eight class="number">8</button>

 <button #nine class="number">9</button>

 <button #zero class="number">0</button>

</div>

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02

Chapter 2 37

With a little bit of CSS magic, we can see the component in the UI:

Figure 2.1: Phone swipe component

Meanwhile, in our swipe-unlock.component.ts file, we can reference various elements of the

number pad’s UI so that we can manipulate any events that are performed on them:

@ViewChild('swipeArea')

swipeArea!: ElementRef;

@ViewChildren('one, two, three, four, five, six, seven,

 eight, nine, zero')

numbers!: QueryList<ElementRef>;

Step 2 – Identifying user touch events
What we’re interested in are the events where a user touches the screen, moves (swipes), and lifts

their finger off the screen. We can create those streams of events like so:

const touchStart$ = fromEvent<TouchEvent>(

 this.swipeArea.nativeElement,

 'touchstart'

);

Building User Interfaces with RxJS38

const touchMove$ = fromEvent<TouchEvent>(

 this.swipeArea.nativeElement,

 'touchmove'

);

const touchEnd$ = fromEvent<TouchEvent>(

 this.swipeArea.nativeElement,

 'touchend'

);

From here, we can react to these events and figure out the coordinates of a touch event, check if

it’s intersecting with the number pad area, and highlight it in the UI:

const swipe$ = touchStart$.pipe(

 switchMap(() =>

 touchMove$.pipe(

 takeUntil(touchEnd$),

 map((touchMove) => ({

 x: touchMove.touches[0].clientX,

 y: touchMove.touches[0].clientY,

 }))

)

),

);

Now, when we subscribe to those swipe coordinates, we can perform the required actions in

sequence, such as selecting the number pad and creating a dot trail:

swipe$.pipe(

 tap((dot) => this.selectNumber(dot)),

 mergeMap((dot) => this.createTrailDot(dot)),

).subscribe();

Step 3 – Marking selected number pads
After getting the coordinates from each swipe, we can easily check whether it’s intersecting the

area surrounding the number pad:

private selectNumber(dot: PixelCoordinates): void {

 this.numbersElement.forEach((number) => {

 if (

Chapter 2 39

 dot.y > number.getBoundingClientRect().top &&

 dot.y < number.getBoundingClientRect().bottom &&

 dot.x > number.getBoundingClientRect().left &&

 dot.x < number.getBoundingClientRect().right

) {

 number.classList.add('selected');

 this.patternAttempt.push(parseInt(

 number.innerText)

);

 }

 });

}

By adding a selected class to each intersecting element, we can visually represent the selected

number pads:

Figure 2.2: Marking the selected number pads

Building User Interfaces with RxJS40

Step 4 – Creating a trail
With the help of the mergeMap operator, we can assemble all swipe events and their coordinates,

create a dot in the DOM representing the trail of user action, and, after a certain delay, remove

the trail from the DOM. Additionally, a nice performance consideration might be grouping many

swipe events into one buffer. We can do this by using bufferCount, an operator that helps us to

ensure optimal memory usage and computational efficiency:

private createTrailDot(

 dotCoordinates: PixelCoordinates

): Observable<string[]> {

 const dot = document.createElement('div');

 dot.classList.add('trail-dot');

 dot.style.left = `${dotCoordinates.x}px`;

 dot.style.top = `${dotCoordinates.y}px`;

 this.swipeArea.nativeElement.appendChild(dot);

 return of('').pipe(

 delay(1000),

 bufferCount(100, 50),

 finalize(() => dot.remove())

);

}

Chapter 2 41

Now, in our browser’s Dev Tools, we can inspect the creation of the trail by looking at the DOM:

Figure 2.3: Swipe trail

Step 5 – Checking the result
Finally, at the end of the stream in the showMessage method, we must check whether the

patternAttempt array, which was filled with each selected number pad, matches our pattern for

unlocking the phone, which is 1 2 5 8 7.

See also
•	 The fromEvent function: https://rxjs.dev/api/index/function/fromEvent

•	 The switchMap operator: https://rxjs.dev/api/operators/switchMap

•	 The takeUntil operator: https://rxjs.dev/api/operators/takeUntil

Pattern matching

Since this is pattern matching and not exact password matching, the phone can be

unlocked by inputting those buttons in any order, so long as those numbers in the

pattern are included.

Building User Interfaces with RxJS42

•	 The finalize operator: https://rxjs.dev/api/operators/finalize

•	 The mergeMap operator: https://rxjs.dev/api/operators/mergeMap

•	 The bufferCount operator: https://rxjs.dev/api/operators/bufferCount

Learning indications with the progress bar
Providing feedback to the user while performing actions when using web applications is one of

the key aspects of a good user experience. A component like this helps users understand how

long they need to wait and reduces uncertainty if the system is working. Progress bars can be

also useful for gamification purposes, to make the overall UX more engaging and motivating.

How to do it…
In this recipe, we’ll simulate upload progress to the backend API by implementing a progress

indicator that produces a random progress percentage until we get a response. If we still haven’t

received a response after we get to the very end of the progress bar, we’ll set its progress to 95%

and wait for the request to be completed.

Step 1 – Creating a progress loading stream
Inside our recipes.service.ts service, we’ll start a stream of random numbers at a given interval.

This will be stopped after we get a response from the backend:

private complete$ = new Subject<void>();

private randomProgress$ = interval(800).pipe(

 map(() => Number((Math.random() * 25 + 5))),

 scan((acc, curr) =>

 +Math.min(acc + curr, 95).toFixed(2), 0),

 takeUntil(this.complete$)

);

With the help of the scan operator, we can decide whether we should produce the next increment

of a progress percentage or whether we shouldn’t go over 95%.

Step 2 – Merging progress and request streams
Now, we can combine the randomProgress$ stream with the HTTP request and notify the progress

indicator component whenever we get either random progress or complete the request:

postRecipe(recipe: Recipe): Observable<number> {

 return merge(

 this.randomProgress$,

Chapter 2 43

 this.httpClient.post<Recipe>(

 '/api/recipes',

 recipe

).pipe(

 map(() => 100),

 catchError(() => of(-1)),

 finalize(() => this.unsubscribe$.next())

)

)

}

Once we call the postRecipe service method inside a component, we can track the request progress:

Figure 2.4: Progress indicator

See also
•	 The interval function: https://rxjs.dev/api/index/function/interval

•	 The takeUntil operator: https://rxjs.dev/api/operators/takeUntil

•	 The scan operator: https://rxjs.dev/api/operators/scan

https://rxjs.dev/api/index/function/interval
https://rxjs.dev/api/operators/takeUntil
https://rxjs.dev/api/operators/scan

Building User Interfaces with RxJS44

•	 The finalize operator: https://rxjs.dev/api/operators/finalize

•	 The merge operator: https://rxjs.dev/api/operators/merge

Streaming image loading seamlessly with
Progressive Image
In the modern web, we must handle resources that are MBs in size. One such resource is images.

Large images can harm performance since they have slower load times, something that could

lead to a negative user experience and frustration. To address these issues, one of the common

patterns to use is the LowQualityImagePlaceholder pattern, also known as Progressive Image,

where we load an image in stages. First, we show the lightweight version of an image (placeholder

image). Then, in the background, we load the original image.

How to do it…
In this recipe, we’ll learn how to handle the Progressive Image pattern with ease with the help

of RxJS magic.

Step 1 – Defining image sources
Inside our pro-img.component.ts file, we must define paths to our local image and a placeholder/

blurry version of the same image from our assets folder:

src = 'image.jpg';

placeholderSrc = 'blurry-image.jpeg';

const img = new Image();

img.src = this.src;

const placeholderImg = new Image();

placeholderImg.src = this.placeholderSrc;

Step 2 – Creating a progress stream
While the image is loading, every 100 milliseconds, we’ll increase the progress percentage, until

the load event is triggered. This indicates that the image has been fully loaded. If an error occurs,

we’ll say that the progress is at –1:

const loadProgress$ = timer(0, 100);

const loadComplete$ = fromEvent(img, 'load')

 .pipe(map(() => 100));

const loadError$ = fromEvent(img, 'error')

 .pipe(map(() => -1));

https://rxjs.dev/api/operators/finalize
https://rxjs.dev/api/operators/merge

Chapter 2 45

Now, we can merge these load events and stream them into the Progressive Image load:

loadingProgress$ = new BehaviorSubject<number>(0);

this.imageSrc$ = merge(loadProgress$, loadComplete$,loadError$).pipe(

 tap((progress) => this.loadingProgress$.next(progress)),

 map((progress) => (progress === 100 ?img.src :placeholderImg.src)),

 startWith(placeholderImg.src),

 takeWhile((src) => src === placeholderImg.src, true),

 catchError(() => of(placeholderImg.src)),

 shareReplay({ bufferSize: 1, refCount: true })

);

We’ll use startWith on the placeholder image and show it immediately in the UI while continuously

tracking the progress of the original image load. Once we get 100%, we’ll replace the placeholder

image source with the original image.

Step 3 – Subscribing to the image stream in the template
Meanwhile, in the component template, pro-img.component.html, we can subscribe to the

progress that’s been made while the image is loading in the background:

<div class="pro-img-container">

 @if ((loadingProgress$ | async) !== 100) {

 <div class="progress">

 {{ loadingProgress$ | async }}%

 </div>

 }

 <img

 [src]="imageSrc$ | async"

 alt="Progressive image"

 class="pro-img"

 >

</div>

Building User Interfaces with RxJS46

Finally, if we open our browser, we may see this behavior in action:

Figure 2.5: Progressive Image

Chapter 2 47

See also
•	 The Ultimate LQIP Technique, by Harry Roberts: https://csswizardry.com/2023/09/

the-ultimate-lqip-lcp-technique/

•	 The HTML load event: https://developer.mozilla.org/en-US/docs/Web/API/Window/
load_event

•	 The takeWhile operator: https://rxjs.dev/api/operators/takeWhile

•	 The startWith operator: https://rxjs.dev/api/operators/startWith

Optimizing loading tab content
When tabs contain complex data or media-rich content, it’s beneficial to load the content of tabs

lazily. By doing so, we aim to minimize initial page load times, conserve bandwidth, and ensure

a smooth and responsive interface. So, let’s create a component like that.

How to do it…
In this recipe, we’ll have a simple tab group of two tabs. Only when a tab is selected will we lazy-

load the component representing the contents of that tab. Each tab is represented in the URL, so

whenever we change tabs, we’re navigating to a separate page.

Step 1 – Defining a tab group and an active tab
In our tabs.component.html file, we’ll use the Angular Material tab to represent a tab group

in the UI:

<mat-tab-group

 [selectedIndex]="(activeTab$ | async)?.index"

 (selectedTabChange)="selectTab($event)"

>

 <ng-container *ngFor="let tab of tabs">

Common gotcha

In this recipe, for simplicity, we’ve chosen to artificially increase the download

progress of an image. The obvious drawback is that we don’t get the actual progress

of the image download. There’s a way to achieve this effect: by converting the request

of an image’s responseType into a blob. More details can be found here: https://
stackoverflow.com/questions/14218607/javascript-loading-progress-
of-an-image.

https://csswizardry.com/2023/09/the-ultimate-lqip-lcp-technique/
https://csswizardry.com/2023/09/the-ultimate-lqip-lcp-technique/
https://stackoverflow.com/questions/14218607/javascript-loading-progress-of-an-image
https://stackoverflow.com/questions/14218607/javascript-loading-progress-of-an-image
https://stackoverflow.com/questions/14218607/javascript-loading-progress-of-an-image

Building User Interfaces with RxJS48

 <mat-tab [label]="tab.label"></mat-tab>

 </ng-container>

</mat-tab-group>

Now, inside tabs.component.ts, we need to define the activeTab and loading states, as well as

the content of a tab stream that we can subscribe to:

activeTab$ = new BehaviorSubject<TabConfig | null>(null);

activeTabContent$!: Observable<

 typeof TabContentComponent |

 typeof TabContent2Component |

 null

>;

loadingTab$ = new BehaviorSubject<boolean>(false);

Now, we can hook into Angular Router events, filter events when navigation ends, and, based

on an active URL, mark the corresponding tab as active:

this.router.events.pipe(

 filter((event) => event instanceof NavigationEnd),

 takeUntil(this.destroy$)

).subscribe({

 next: () => {

 const activeTab = this.tabs.find(

 (tab) => tab.route === this.router.url.slice(1)

);

 this.activeTab$.next(activeTab || null);

 },

});

Step 2 – Loading tab content
Since we know which tab is active, we can start loading the content of that tab:

private loadTabContent(tab: TabConfig) {

 const content$ = tab.route === 'tab1'

 ? of(TabContentComponent)

 : of(TabContent2Component);

Chapter 2 49

 return content$.pipe(delay(1000));

}

this.activeTabContent$ = this.activeTab$.pipe(

 tap(() => this.loadingTab$.next(true)),

 switchMap((tab) =>

 this.loadTabContent(tab!).pipe(

 startWith(null),

 catchError((error) => {

 this.errors$.next(error);

 return of(null);

 }),

 finalize(() => this.loadingTab$.next(false))

)

),

 shareReplay({ bufferSize: 1, refCount: true })

);

Inside the loadTabContent method, we’ll create an Observable out of the Angular component

that’s matched based on the current route. Once we’ve done this, we’re ready to stream into the tab

content whenever the active tab changes. We can do this by starting the loading state, switching

to the stream that’s loading content, and resetting the loading state once the content has arrived.

Now, all we need to do is represent the content in the UI. Back in our tabs.component.html file,

we can simply add the following code:

@if (loadingTab$ | async) {

 <p>Loading...</p>

}

<ng-container

 *ngComponentOutlet="activeTabContent$ | async"

></ng-container>

Now, by going to our browser, we’ll see that the content of a tab will only be loaded when we

click on that specific tab:

Building User Interfaces with RxJS50

Figure 2.6: Loading tabs

Chapter 2 51

See also
•	 The of function: https://rxjs.dev/api/index/function/of

•	 The startWith operator: https://rxjs.dev/api/operators/startWith

•	 Angular’s Router’ NavigationEnd event: https://angular.dev/api/router/
NavigationEnd

•	 The Angular Material tab component: https://material.angular.io/components/tabs/
overview

Reacting to drag-and-drop events
Creating a drag-and-drop component for file uploads is quite a common task for a web developer.

If you’ve ever worked on such a component, you may already know that it isn’t a trivial task and

that there’s a lot of hidden complexity behind a component like this. Luckily for us, we have

RxJS to help us streamline the experience of reacting to drag-and-drop events in a reactive and

declarative way.

Getting ready
In this recipe, to provide support for tracking image upload progress, we need to run a small Node.

js server application located in the server folder. We can run this server application by using the

following command:

node index.js

After that, we’re ready to go to the client folder and dive into the reactive drag-and-drop

component.

How to do it…
In this recipe, we’ll define a drag-and-drop area for .png images. Then, we’ll add support for

multiple uploads to be made at the same time, show the upload progress of each image, and display

error messages if the format of the image isn’t correct. We’ll also implement a retry mechanism

in case a file upload fails over the network.

Step 1 – Defining a dropzone
In our dnd-file-upload.component.html file, we must place markup for the dropzone area:

<div #dropzoneElement class="drop-zone-element">

 <p>Drag and drop png image into the area below</p>

</div>

https://angular.dev/api/router/NavigationEnd
https://angular.dev/api/router/NavigationEnd

Building User Interfaces with RxJS52

After getting the dropzoneElement reference with @ViewChild(), we can start reacting to the

drag-and-drop events in the dropzone area:

@ViewChild('dropzoneElement') dropzoneElement!: ElementRef;

ngAfterViewInit(): void {

 const dropzone = this.dropzoneElement.nativeElement;

 const dragenter$ = fromEvent<DragEvent>(

 dropzone,

 'dragenter'

);

 const dragover$ = fromEvent<DragEvent>(

 dropzone,

 'dragover'

).pipe(

 tap((event: DragEvent) => {

 event.preventDefault();

 event.dataTransfer!.dropEffect = 'copy';

 (event.target as Element).classList.add('dragover');

 })

);

 const dragleave$ = fromEvent<DragEvent>(

 dropzone,

 'dragleave'

).pipe(

 tap((event: DragEvent) => {

 (event.target as Element).classList.remove('dragover');

 })

);

 const drop$ = fromEvent<DragEvent>(

 dropzone,

 'drop'

).pipe(

 tap((event: DragEvent) => {

 (event.target as Element).classList.remove('dragover');

Chapter 2 53

 })

);

 const droppable$ = merge(

 dragenter$.pipe(map(() => true)),

 dragover$.pipe(map(() => true)),

 dragleave$.pipe(map(() => false))

);

}

While creating these events, we can track when the file(s) have entered the dropzone and when

they’re leaving. Based on this, we can style the component by adding the corresponding classes.

We’ve also defined all droppable even so that we know when to stop reacting to the stream of

new images that’s being dragged over.

Step 2 – Validating files
Now, we can hook into a stream of drop events and validate the format of each image; if the format

is OK, we can start uploading each image to the backend API:

drop$.pipe(

 tap((event) => event.preventDefault()),

 switchMap((event: DragEvent) => {

 const files$ = from(Array.from(

 event.dataTransfer!.files));

 return this.fileUploadService.validateFiles$(

 files$);

 }),

 ...the rest of the stream

Back in our FileUploadService service, we have a validation method that checks whether we’ve

uploaded a .png image:

validateFiles$(files: Observable<File>): Observable<{

 valid: boolean,

 file: FileWithProgress

}> {

Building User Interfaces with RxJS54

 return files.pipe(

 map((file File) => {

 const newFile: FileWithProgress = new File(

 [file],

 file.name,

 { type: file.type }

);

 if (file.type === 'image/png') {

 newFile.progress = 0;

 } else {

 newFile.error = 'Invalid file type';

 }

 return newFile;

 }),

 map((file: FileWithProgress) => {

 return of({

 valid: !file.error,

 file

 });

 }),

 mergeAll()

);

}

Here, we check the file type. If it’s expected, we set the progress to 0 and start the upload. Otherwise,

we set the error message for that specific file upload.

Step 3 – Uploading files and tracking progress
Once we’ve validated each file, we can start upload them to the backend:

drop$.pipe(

 // validation steps from Step 1

 map((file: FileWithProgress) =>

 this.fileUploadService.handleFileValidation(file)

),

 mergeAll(),

 takeUntil(droppable$

 .pipe(filter((isDroppable) => !isDroppable))

Chapter 2 55

),

 repeat()

)

handleFileValidation$(file: FileWithProgress):

 Observable<FileWithProgress | never> {

 if (!file.valid) {

 this._snackBar.open(

 `Invalid file ${file.name} upload.`,

 'Close',

 { duration: 4000 }

);

 return EMPTY;

 }

 return this.fileUploadService

 .uploadFileWithProgress$(file);

}

If the file is invalid, we’ll immediately return that file and show the error in the UI:

Figure 2.7: Invalid file format upload

Building User Interfaces with RxJS56

If it’s a valid file upload, then we initiate an upload request to our API. In Angular, if we want to

track the actual progress of a request, there are a few things we must do:

1.	 We need to send the request payload as FormData.

2.	 We need to set responseType to 'blob'.

3.	 We need to set the reportProgress flag to true.

After applying all these steps, our uploadFiles$ method should look like this:

uploadFile$(file: File): Observable<number> {

 const formData = new FormData();

 formData.append('upload', file);

 const req = new HttpRequest(

 'POST', '/api/recipes/upload', formData, {

 reportProgress: true,

 responseType: 'blob'

 }

);

 return this.httpClient.request(req).pipe(

 map((event: HttpEvent<Blob>) =>

 this.getFileUploadProgress(event)),

 filter(progress => progress < 100),

);

}

Now, when we send this request, we’ll get a series of HTTP events that we can react to. If we check

the getFileUploadProgress method, we’ll see this in action:

getFileUploadProgress(event: HttpEvent<Blob>): number {

 const { type } = event;

 if (type === HttpEventType.Sent) {

 return 0;

 }

 if (type === HttpEventType.UploadProgress) {

 const percentDone = Math.round(

 100 * event.loaded / event.total!);

 return percentDone;

 }

 if (type === HttpEventType.Response) {

Chapter 2 57

 return 100;

 }

 return 0;

}

With this approach, we know the exact progress of the file upload due to the UploadProgress event.

Finally, we can call the uploadFileWithProgress$ method from our service and return each file

with progress information attached to each corresponding file:

uploadFileWithProgress$(file: FileWithProgress):
Observable<FileWithProgress> {

 return this.uploadFile$(file).pipe(

 map((progress: number) =>

 this.createFileWithProgress(file, progress)),

 endWith(this.createFileWithProgress(file, 100))

);

}

After emitting a progress value, we’ll return the file with information attached about its progress

so that we can display it in the UI.

Step 4 – Showing file uploads in the UI
Finally, once we subscribe to this whole stream of file upload events inside of our component, we

can show the list of all the files that are being uploaded with corresponding progress bars. This

also allows us to show an error message if an error has occurred:

drop$.pipe(

 // validation steps from Step 1

 // file upload steps from Step 2

).subscribe({

 next: (file) => {

 if (file.valid) {

 this.validFiles.set(file.name, file);

 return;

 }

 if (!file.valid) {

 this._snackBar.open(

 'Invalid file upload.',

 'Close',

Building User Interfaces with RxJS58

 {}

);

 }

 }

});

Once we open our browser and drag multiple valid .png images, we can handle those uploads

concurrently and observe their progress:

Figure 2.8: A reactive drag-and-drop file upload

Step 5 – Handling file upload errors
Imagine that, in the middle of our image upload, the network fails. One of the key aspects of a

component like this is that it must be resilient to these kinds of errors and provide a recovery or

retry mechanism. We can do this by catching that network error in the file upload stream and

showing a retry button in the UI next to the failed upload. We can extend our service method by

adding an error catch mechanism:

uploadFileWithProgress$(file: FileWithProgress):
Observable<FileWithProgress> {

 return this.uploadFile$(file).pipe(

 map((progress: number) =>

Chapter 2 59

 this.createFileWithProgress(file, progress)),

 endWith(this.createFileWithProgress(file, 100)),

 catchError(() => {

 const newFile: FileWithProgress =

 this.createFileWithProgress(

 file,

 -1,

 'Upload failed'

);

 return of(newFile);

 })

);

}

Back in our component template, dnd-file-upload.component.html, we can add a retry button

if the file’s upload progress is at –1, meaning that it failed previously:

@if (file.value.progress !== -1) {

 {{ file.value.progress }}%

} @else {

 <button

 mat-icon-button

 (click)="retryUpload(file.value)"

 >

 <mat-icon aria-hidden="false" fontIcon="redo">

 </mat-icon>

 </button>

}

retryUpload(file: FileWithProgress): void {

 this.recipeService.uploadFileWithProgress$(

 file).subscribe({ next: (file: FileWithProgress) =>

 this.validFiles.set(file.name, file),

 error: (err) => console.error(err),

 });

}

Building User Interfaces with RxJS60

If we open our browser, if an upload error has occurred, we may notice the retry button in the UI.

If the network recovers, we can trigger another upload request for the failed uploads:

Figure 2.9: Retry on file upload

See also
•	 The HTML input file: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/

input/file

•	 The interval function: https://rxjs.dev/api/index/function/interval

•	 The repeat operator: https://rxjs.dev/api/operators/repeat

•	 The scan operator: https://rxjs.dev/api/operators/scan

•	 The finalize operator: https://rxjs.dev/api/operators/finalize

•	 The merge operator: https://rxjs.dev/api/operators/merge

•	 The mergeAll operator: https://rxjs.dev/api/operators/mergeAll

•	 The endWith operator: https://rxjs.dev/api/operators/endWith

Crafting your perfect audio player using flexible
RxJS controls
Everybody likes music. Whether you use Spotify, Deezer, YouTube, or something else to listen to

your favorite jams, having control over your playlist with a sophisticated audio player is one of

the essential conditions for providing an awesome user experience. In this recipe, we’ll create a

lightweight RxJS audio player with reactive controls for playing and pausing songs, controlling

volume, as well as skipping to the next song in the playlist.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file

Chapter 2 61

How to do it…
The essential thing to understand in this recipe is the native HTMLAudioElement and, based on

that, which events are the most important to react to.

Step 1 – Creating audio player events
In our audio-player.component.html file, we must implement markup for the audio player:

<audio #audio></audio>

Concerning that audio HTML element, in the component audio-player.component.ts file, we’ll

define all the key events for that element:

@ViewChild('audio') audioElement!:

 ElementRef<HTMLAudioElement>;

ngAfterViewInit(): void {

 const audio = this.audioElement.nativeElement;

 const duration$ = fromEvent(audio,

 'loadedmetadata').pipe(map(() => (

 { duration: audio.duration }))

);

 const playPauseClick$ = fromEvent(audio, 'play').pipe(

 map(() => ({ isPlaying: true }))

);

 const pauseClick$ = fromEvent(audio, 'pause').pipe(

 map(() => ({ isPlaying: false }))

);

 const volumeChange$ = fromEvent(audio,

 'volumechange').pipe(

 map(() => ({ volume: audio.volume })),

);

 const time$ = fromEvent(audio, 'timeupdate').pipe(

 map(() => ({ time: audio.currentTime }))

);

 const error$ = fromEvent(audio, 'error');

}

Building User Interfaces with RxJS62

Using the audio element, we can react to play, pause, volumechange, and timeupdate events, as

well as metadata that holds information about the duration value of a song. Also, in case network

interruptions occur when we fetch the audio file or corrupted audio files, we can subscribe to the

error event from the audio element.

Now, we can combine all those events and hold the state of a song in a centralized place:

merge(

 duration$,

 playPauseClick$,

 pauseClick$,

 volumeChange$

).subscribe((state) =>

 this.audioService.updateState(state));

Step 2 – Managing song state
In our audio.service.ts file, we’ll store the state of the current song:

public audioState$ = new BehaviorSubject<AudioState>({

 isPlaying: false,

 volume: 0.5,

 currentTrackIndex: 0,

 duration: 0,

 tracks: []

});

updateState(state: Partial<AudioState>): void {

 this.audioState$.next({

 ...this.audioState$.value,

 ...state

 });

}

Now, we can subscribe to all state changes in the component and have reactive audio player

controls over user actions.

Chapter 2 63

Step 3 – Playing/pausing a song
Back in our audio-player.component.ts file, whenever play or pause events are being emitted,

the state will update, at which point we can subscribe to the state change:

this.audioService.audioState$.subscribe(({ isPlaying }) =>

 this.isPlaying = isPlaying;

);

Now, in the audio-player.component.html file, we can present either a play or pause icon based

on the following condition:

<button mat-fab class="play-pause-btn" (click)="playPause()">

 @if (isPlaying) {

 <mat-icon>pause</mat-icon>

 } @else {

 <mat-icon>play_arrow</mat-icon>

 }

</button>

We can also control the audio when playing a song:

playPause(): void {

 if (!this.isPlaying) {

 this.audioElement.nativeElement.play();

 } else {

 this.audioElement.nativeElement.pause();

 }

}

Step 4 – Controlling the song’s volume
By subscribing to the audio player state, we also have information about the volume based on

the previously emitted volumechange event:

this.audioService.audioState$.subscribe(({ volume }) => {

 this.volume = volume;

});

Building User Interfaces with RxJS64

We can represent this state in the UI like so:

<div class="volume">

 @if (volume === 0) {

 <mat-icon>volume_off</mat-icon>

 } @else {

 <mat-icon>volume_up</mat-icon>

 }

 <input

 type="range"

 [value]="volume"

 min="0"

 max="1"

 step="0.01"

 (input)="changeVolume($event)"

 />

</div>

Now, we can emit the same event by changing the volume of the audio player by invoking the

changeVolume() method:

changeVolume({ target: { value } }): void {

 this.audioElement.nativeElement.volume = value;

}

This will automatically update the volume state reactively on the audio player element.

Step 5 – Switching songs
Back in our audio.service.ts file, we’ve implemented methods for changing the current song

index in the list of tracks:

previousSong(): void {

 let prevIndex =

 this.audioState$.value.currentTrackIndex - 1;

 const tracks = this.audioState$.value.tracks;

 if (prevIndex < 0) {

 prevIndex = tracks.length - 1; // Loop back to the

 // end

 }

Chapter 2 65

 this.updateState({

 isPlaying: false,

 currentTrackIndex: prevIndex

 });

}

nextSong(): void {

 let nextIndex =

 this.audioState$.value.currentTrackIndex + 1;

 const tracks = this.audioState$.value.tracks;

 if (nextIndex >= tracks.length) {

 nextIndex = 0; // Loop back to the beginning

 }

 this.updateState({

 isPlaying: false,

 currentTrackIndex: nextIndex

 });

}

Also, when we come to the end of the list, we’ll loop to the beginning of the playlist.

Inside the audio-player.component.ts component, we can subscribe to this state change and

change the song using the audio element:

this.audioService.audioState$.subscribe(({

 currentTrackIndex,

 tracks

}) => {

 if (

 tracks[currentTrackIndex].title !==

 this.currentTrack.title

) {

 this.audioElement.nativeElement.src =

 tracks[currentTrackIndex].song;

 this.currentTrack = tracks[currentTrackIndex];

 }

});

Building User Interfaces with RxJS66

This means that we have all the information we need about the current song, which means we

can display that data in our audio-player.component.html template.

Step 6 – Skipping to the middle of a song
In our audio element, there’s a timeupdate event that lets us track and update the current time

of a song:

const time$ = fromEvent(audio, 'timeupdate').pipe(

 map(() => ({ time: audio.currentTime }))

);

time$.subscribe(({ time }) => this.currentTime = time);

In the UI, we can combine this current time information with the previous song metadata, show

it in a slider, and watch the song progress:

<p>{{ currentTime | time }}</p>

<audio #audio></audio>

<mat-slider [max]="duration" class="song">

 <input matSliderThumb

 [value]="currentTime"

 (dragEnd)="skip($event)"

 >

</mat-slider>

<p>{{ duration | time }}</p>

Chapter 2 67

Finally, if we open our browser, we can inspect all these features and play our favorite jam:

Figure 2.10: Reactive audio player

See also
•	 The BehaviorSubject class: https://rxjs.dev/api/index/class/BehaviorSubject

•	 The fromEvent function: https://rxjs.dev/api/index/function/fromEvent

•	 The map operator: https://rxjs.dev/api/operators/map

•	 The HTML audio tag: https://developer.mozilla.org/en-US/docs/Web/HTML/Element/
audio

https://rxjs.dev/api/index/class/BehaviorSubject
https://rxjs.dev/api/index/function/fromEvent
https://rxjs.dev/api/operators/map
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio

Building User Interfaces with RxJS68

Streamlining real-time updates with RxJS-powered
notifications
Notifications are one of the main ways we can prompt users about relevant events or changes

within the system. By utilizing Observables and operators, RxJS provides a powerful framework

for managing these asynchronous notifications efficiently and effectively.

How to do it…
In this recipe, we’ll have an array of notifications to represent incoming notifications based on a

user action, store them by ID, and remove them after a certain period. We’ll also provide support

to manually remove notifications from a stack.

Step 1 – Stacking incoming notifications
To streamline the stack of notifications efficiently, inside NotificationService, we’ll use

BehaviorSubject to represent all the notifications that may arrive over time asynchronously.

We’ll also have a Subject that triggers an event when we want to add a new notification to the

stack and another for dismissal:

private notifications$ = new BehaviorSubject<Notification[]>([]);

private addNotification$ = new Subject<Notification>();

private removeNotification$ = new Subject<string>();

addNotification(notification: Notification) {

 this.addNotification$.next(notification);

}

removeNotification(id: string) {

 this.removeNotification$.next(id);

}

So, whenever there’s an ongoing request for posting new data, we’ll combine these two actions

with the latest state of the notification stack with the help of the withLatestFrom operator and

update its state:

get notifications(): Observable<Notification[]> {

 return merge(

 this.addNotification$,

 this.removeNotification$

Chapter 2 69

).pipe(

 withLatestFrom(this.notifications$),

 map(([changedNotification, notifications]) => {

 if (changedNotification instanceof Object) {

 this.notifications$.next([

 ...notifications,

 changedNotification

]);

 } else {

 this.notifications$.next(notifications.filter

 (notification =>

 notification.id !== changedNotification)

);

 }

 return this.notifications$.value;

 })

)

}

Based on the latest emitted value’s type, we can decide whether a new notification needs to be

added or filtered from the stack.

Step 2 – Reacting to a user action and displaying notifications
In our app.component.html file, we have a simple button that will trigger a POST request to add

a new random cooking recipe:

<button (click)="sendRequest()">Add recipe</button>

Clicking that button will invoke a function:

sendRequest() {

 this.recipeService.postRecipes();

}

Building User Interfaces with RxJS70

In RecipeService, we must implement the service method for sending the request to the BE API.

If we get a successful response, we’ll perform a side effect to add a notification to the stack. If we

get an error, we’ll display a notification that’s of the error type:

getRecipes(): void {

 this.httpClient.get<Recipe[]>('/api/recipes').pipe(

 tap(() => {

 this.notificationService.addNotification({

 id: crypto.randomUUID(),

 message: 'Recipe added successfully.',

 type: 'success'

 });

 }),

 catchError((error) => {

 this.notificationService.addNotification({

 id: crypto.randomUUID(),

 message: 'Recipe could not be added.',

 type: 'error'

 });

 return throwError(() =>

 new Error('Recipe could not be added.'));

 }),

).subscribe();

}

Finally, in NotificationComponent, we can subscribe to the changes on notifications$ and

display notifications:

<div class="container">

 <div

 *ngFor="let notification of notifications | async"

 class="notification {{ notification.type }}"

 >

 {{ notification.message }}

 <mat-icon

 (click)="removeNotification(notification.id)"

 class="close">

 Close

 </mat-icon>

Chapter 2 71

 </div>

</div>

Now, when we open our browser, we’ll see incoming notifications stacked on each other:

Figure 2.11: A reactive stack of notifications

Step 3 – Automatic notification dismissal
Previously, we could manually remove notifications from the stack by clicking the close button.

Now, after a certain period, we want a notification to be automatically removed from the stack.

Back in NotificationService, when adding a notification to the stack initially, we’ll simply

define a timer, after which we’ll call the removeNotification method:

addNotification(

 notification: Notification,

 timeout = 5000

) {

 this.addNotification$.next(notification);

 timer(timeout).subscribe(() =>

 this.removeNotification(notification.id));

}

Building User Interfaces with RxJS72

See also
•	 The BehaviorSubject class: https://rxjs.dev/api/index/class/BehaviorSubject

•	 The Subject class: https://rxjs.dev/api/index/class/Subject

•	 The withLatesFrom operator: https://rxjs.dev/api/operators/withLatestFrom

•	 Web API Crypto’s randomUUID method: https://developer.mozilla.org/en-US/docs/

•	 Web/API/Crypto/randomUUID

Fetching data with the Infinite Scroll Timeline
component
Imagine going through your favorite cooking web application and getting the latest updates on

delicious new recipes. To show this latest news, one of the common UX patterns is to show this

recipe news in a timeline component (such as Facebook’s news feed). While you scroll, if there

are new recipes, you’ll be updated that there are fresh new recipes so that you can scroll back to

the top and start over.

How to do it…
In this recipe, we’re going to build a timeline component that shows the list of your favorite latest

cooking recipes. Since there are a lot of delicious recipes out there, this would be a huge list to

fetch initially. To increase the performance of the application and to improve the general UX, we

can implement an infinite scroll list so that once the user scrolls to the end of a list of 5 initial

recipes, we can get a set of 5 new recipes. After some time, we can send a new request to check

whether there are new recipes and refresh our timeline of recipe news.

Step 1 – Detecting the end of a list
In our RecipesList component, we’ll create a stream of scroll events. On each emission, we’ll

check whether we’re near the end of the list in the UI based on a certain threshold:

private isNearBottom(): boolean {

 const threshold = 100; // Pixels from bottom

 const position = window.innerHeight + window.scrollY;

 const height = document.documentElement.scrollHeight;

 return position > height - threshold;

}

const isNearBottom$ = fromEvent(window, 'scroll').pipe(

 startWith(null),

https://developer.mozilla.org/en-US/docs/Web/API/Crypto/randomUUID
https://developer.mozilla.org/en-US/docs/Web/API/Crypto/randomUUID

Chapter 2 73

 auditTime(10), // Prevent excessive event triggering

 observeOn(animationFrameScheduler),

 map(() => this.isNearBottom()),

 distinctUntilChanged(), // Emit only when near-bottom

 //state changes

)

As you can imagine, with the scroll event emissions, there’s the potential for performance

bottlenecks. We can limit the number of scroll events that are processed by the stream using

the auditTime operator. This is especially useful since we want to ensure that we are always

processing the latest scroll event, and auditTime will always emit the most recent value within

the specified time frame. Also, with observeOn(animationFrameScheduler), we can schedule

tasks to be executed just before the browser’s next repaint. This can be beneficial for animations

or any updates that cause a repaint as it can help to prevent jank and make the application feel

smoother.

Once we know we’re getting near the end of a list, we can trigger a loading state and the next

request with a new set of data.

Step 2 – Controlling the next page and loading the state of the
list
At the top of our RecipesList component, we’ll define the necessary states to control the whole

flow and know when we require the next page, when to show the loader, and when we’ve reached

the end of the list:

private page = 0;

public loading$ = new BehaviorSubject<boolean>(false);

public noMoreData$ = new Subject<void>();

private destroy$ = new Subject<void>();

auditTime versus throttleTime

You might be wondering why we used auditTime in our scroll stream and not

throttleTime. The key difference between these two operators is that auditTime

emits the last value in a time window, whereas throttleTime emits the first value

in a time window. Common use cases for throttleTime might include rate-limiting

API calls, handling button clicks to prevent accidental double clicks, and controlling

the frequency of animations.

Building User Interfaces with RxJS74

Now, we can continue our isNearBottom$ stream, react to the next page, and specify when to

show the loader:

isNearBottom$.pipe(

 filter((isNearBottom) =>

 isNearBottom && !this.loading$.value),

 tap(() => this.loading$.next(true)),

 switchMap(() =>

 this.recipesService.getRecipes(++this.page)

 .pipe(

 tap((recipes) => {

 if (recipes.length === 0)

 this.noMoreData$.next();

 }),

 finalize(() => this.loading$.next(false))

)

),

 takeUntil(merge(this.destroy$, this.noMoreData$))

)

 .subscribe((recipes) => (

 this.recipes = [...this.recipes, ...recipes])

);

}

Here’s a breakdown of what we’ve done:

1.	 First, we check whether we’re near the bottom of the page or whether there’s already an

ongoing request.

2.	 We start a new request by showing a loading spinner.

3.	 We send a new request with the next page as a parameter.

4.	 When we get a successful response, we can check whether there’s no more data or we can

continue scrolling down the timeline.

Chapter 2 75

5.	 Once the stream has finished, we remove the loading spinner:

Figure 2.12: Reactive infinite scroll

Step 3 – Checking for new recipes
In our recipes.service.ts file, we’ve implemented a method that will check whether there are

new recipes periodically and whether we should scroll to the top of the timeline and refresh it

with new data:

checkNumberOfNewRecipes(): Observable<number> {

 return interval(10000).pipe(

 switchMap(() =>

 this.httpClient.get<number>(

 '/api/new-recipes'))

);

}

Building User Interfaces with RxJS76

Once we receive several new recipes, we can subscribe to that information inside

NewRecipesComponent and display it in the UI:

Figure 2.13: Reactive timeline updates

Now, once we click the 2 new recipes button, we can scroll to the top of the timeline and get

the newest data.

See also
•	 The fromEvent function: https://rxjs.dev/api/index/function/fromEvent

•	 The auditTime operator: https://rxjs.dev/api/operators/auditTime

•	 The animationFrameScheduler operator: https://rxjs.dev/api/index/const/
animationFrameScheduler

•	 The observeOn operator: https://rxjs.dev/api/operators/observeOn

•	 The distinctUntilChanged operator: https://rxjs.dev/api/operators/
distinctUntilChanged

•	 The switchMap operator: https://rxjs.dev/api/operators/switchMap

•	 The takeUntil operator: https://rxjs.dev/api/operators/takeUntil

https://rxjs.dev/api/index/function/fromEvent
https://rxjs.dev/api/operators/auditTime
https://rxjs.dev/api/index/const/animationFrameScheduler
https://rxjs.dev/api/index/const/animationFrameScheduler
https://rxjs.dev/api/operators/observeOn
https://rxjs.dev/api/operators/distinctUntilChanged
https://rxjs.dev/api/operators/distinctUntilChanged
https://rxjs.dev/api/operators/switchMap
https://rxjs.dev/api/operators/takeUntil

3
Understanding Reactive
Animation Systems with RxJS

Animations in web apps are much more than just decorative elements. When used thoughtfully,

they can significantly enhance the user experience (UX) and create a wow effect for the end users.

When it comes to animations, RxJS can really become handy when creating complex animations

because of its superpower to orchestrate multiple events.

In this chapter, we are about to explore some of the coolest ways to add visual delight for our

users with RxJS animations by implementing the following recipes:

•	 Simulating realistic ball-bouncing physics using RxJS

•	 Creating mesmerizing fluid particle effects using RxJS

•	 Adding subtle elegance to components with RxJS transitions

Technical requirements
To follow along in this chapter, you’ll need the following:

•	 Angular v19+

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for the recipes in this chapter is placed in the GitHub repository here: https://github.
com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter03

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Developers/tree/main/Chapter03

Understanding Reactive Animation Systems with RxJS78

Simulating realistic ball-bouncing physics using RxJS
Grab your physics textbook, and let’s bounce into the world of realistic ball physics with RxJS!

We’re about to find out how to translate real-world physics principles into a reactive RxJS stream

of events that simulates smooth ball movement in the UI.

How to do it…
In this recipe, we’re going to implement a reactive bouncing ball animation, ensuring that it runs

60 frames per second. We are striving to be as realistic as possible with the physics of a bouncing

ball, applying gravity, falling velocity, and energy loss on each bounce.

Step 1 – Animating a ball falling
Isn’t it just annoying when you see janky animation on the web? In order to avoid that, and

provide the best possible user experience, the first thing we’re going to do is to ensure that our

animation runs at 60 fps. We can achieve this by using RxJS’s animationFrameScheduler, which

will perform a browser task when requestAnimationFrame fires.

In bouncing-ball.component.ts, we are going to start off by defining an Observable stream for

animation frames:

const ballLoop$ = interval(0, animationFrameScheduler);

Now we can pipe into the animationFrame$ stream and update the ball position on every new

animation frame:

const initialHeight = 0;

ngAfterViewInit() {

 const initialHeight = 0;

 this.ballLoop$ = animationFrame$.pipe(

 scan(({ y, dy}, velocity) => {

 dy += gravity;

 y += dy;

 return { y, dy };

 }, { y: initialHeight, dy: 0 }),

 tap(({ y }) => {

 ball.style.top = `${y}px`;

 }),

Chapter 3 79

);

 this.ballLoop$.subscribe();

}

At this point, we will see an animation where we update the ball’s y position on each frame, where

dy is the direction of movement of the ball.

Anybody who paid attention to physics class in high school will know about gravity laws. They

essentially say that if we have gravity acceleration of 9.81m/s^2, it means that each second the ball

is falling, it is going to get additional velocity of 9.81m/s. In our recipe, if we map one animation

frame as a second in real life, it means that we can achieve a similar effect if we just accumulate

gravity value to dy. By saying dy += gravity, we can simulate how the ball would gain velocity

over time.

Step 2 – Bouncing off the ground
What we want now is for the ball to recognize the ground and bounce off it each time:

@ViewChild('ball', { static: true }) ballRef!: ElementRef;

bounceCount = 0;

ngAfterViewInit() {

 const ball = this.ballRef.nativeElement;

 const container = document.documentElement;

 let energyLoss = 0.8;

 this.ballLoop$ = animationFrame$.pipe(

 scan(({ y, dy}, velocity) => {

 dy += gravity;

 y += dy;

 // Bounce off the ground

 if (y + ball.offsetHeight >

 container.clientHeight) {

 y = container.clientHeight –

 ball.offsetHeight;

 dy = -dy * energyLoss;

 // Reverse direction and reduce energy

 this.bounceCount++;

 }

 return { y, dy };

Understanding Reactive Animation Systems with RxJS80

 }, { y: initialHeight, dy: 0 }),

 tap(({ y }) => {

 ball.style.top = `${y}px`;

 }),

);

Here, we can see that we have updated the logic so that we know when the ball is hitting the

ground (has reached the end of a viewport), bouncing off it by reverting the direction and factoring

in the energy loss on each bounce.

Step 3 – Stopping and repeating the animation
To prevent memory leaks, complete the stream when the ball stops falling, and have control over

the animation, we are going to apply the RxJS takeWhile operator:

private bounceRepeat$ = new Subject<void>();

message = signal<string>('');

ngAfterViewInit() {

 this.ballLoop$ = interval(

 0,

 animationFrameScheduler

).pipe(

 // the rest of the stream

 takeWhile(

 ({ y, dy }) =>

 y < this.container.clientHeight -

 ball.offsetHeight - 10 ||

 Math.abs(dy) > 5

),

 finalize(() => {

 this.message.set(`Bouncing stopped after ${

 this.bounceCount} bounces`);

 }),

 repeat({ delay: () => this.bounceRepeat$ })

);

}

Chapter 3 81

startBouncing() {

 this.bounceRepeat$.next();

}

Here, we are simply saying that the stream should stop whenever we are 10 px away from the

ground and the current movement of the ball is not larger than 5 px, up or down.

Also, whenever we click on the START BOUNCING button, we will trigger the animation again

by leveraging the RxJS repeat operator. One more great thing about the repeat operator is that

it won’t trigger new animations if we repeatedly click on a button, since it will only re-subscribe

to the stream once the initial stream is completed.

Figure 3.1: RxJS bouncing ball

Understanding Reactive Animation Systems with RxJS82

See also
•	 RxJS animationFrameScheduler: https://rxjs.dev/api/index/const/animation

FrameScheduler

•	 RxJS repeat operator: https://rxjs.dev/api/operators/repeat

Creating mesmerizing fluid particle effects using
RxJS
Prepare to be captivated! One of the most beautiful and mesmerizing UI effects is provided by the

particles.js library. Although it looks like a visual symphony, crafting such an effect can be really

challenging. Luckily for us, RxJS can help us out by orchestrating the movement, interaction, and

behavior of individual particles, resulting in a fluid, organic, and truly captivating visual experience.

How to do it…
In this recipe, we are going to re-create the default version of the particles.js animation, only

this time with the power and elegance of RxJS.

Step 1 – Drawing particles
When working with complex animations like this, the crucial step is to break the animations into

a lot of small, manageable tasks. We’re going to start off easy by generating and drawing static

particles on a canvas. In particles.component.html, we will have the following:

<canvas #canvas class="canvas" width="2300" height="1200">

</canvas>

To increase the resolution of canvas elements, the dimensions of the canvas are higher than

the dimensions of the screen. Increasing the width and height of a canvas element increases its

resolution because it increases the number of pixels available for rendering. This results in more

detailed, higher-quality graphics, but it also requires more resources to process and render the

additional pixels.

In the particles.component.ts component, we can set up a canvas element reference and

generate a particles array:

@ViewChild('canvas', { static: true })

canvas!: ElementRef<HTMLCanvasElement>;

private ctx!: CanvasRenderingContext2D;

private particles$!: Observable<Particle[]>;

https://rxjs.dev/api/index/const/animationFrameScheduler
https://rxjs.dev/api/index/const/animationFrameScheduler
https://rxjs.dev/api/operators/repeat

Chapter 3 83

private generateParticle(): Particle {

 return {

 x: Math.random() * this.canvas.nativeElement.width,

 y: Math.random() * this.

 canvas.nativeElement.height,

 radius: Math.random() * 0.5 + 2.5,

 vx: Math.random() < 0.5

 ? (Math.random() + 0.8)

 : -(Math.random() + 0.8),

 vy: Math.random() < 0.5

 ? (Math.random() + 0.8)

 : -(Math.random() + 0.8),

 color: `rgba(255,255,255,0.5)`

 }

};

When generating particles, we will have the following properties:

•	 Particle coordinates x and y

•	 The size and color of the particle

•	 The direction of particle movement, defined with vx and vy

Now we can call the generateParticles() method and draw particles on the canvas:

ngOnInit() {

this.ctx = this.canvas.nativeElement.getContext('2d')!;

const initialParticles: Particle[] = Array.from(

 { length: 123 },

 this.generateParticle,

 this

);

const animationFrame$ = animationFrames();

this.particles$ = animationFrame$.pipe(

 scan((particles: Particle[], event: IAnimationFrame) =>

 {

 return particles.map(particle => {

 let newX = particle.x + particle.vx;

 let newY = particle.y + particle.vy;

Understanding Reactive Animation Systems with RxJS84

 return {

 ...particle,

 x: newX,

 y: newY,

 vx: particle.vx,

 vy: particle.vy

 };

 });

 }, initialParticles),

 tap(particles => this.drawParticles(particles))

);

Here, you may notice that we are using the RxJS animationFrames function to ensure smooth

animation and render particles within the browser rendering cycle. Whenever we enter a

new rendering cycle, we can update the position of each particle on the canvas, and call the

drawParticles() method:

drawParticles(particles: Particle[]) {

 this.ctx.clearRect(

 0,

 0,

 this.canvas.nativeElement.width,

 this.canvas.nativeElement.height

);

 particles.forEach(particle =>

 this.drawParticle(particle));

}

drawParticle(particle: Particle) {

 this.ctx.beginPath();

 this.ctx.arc(

 particle.x,

 particle.y,

 particle.radius,

 0,

 Math.PI * 2

);

Chapter 3 85

 this.ctx.fillStyle = particle.color;

 this.ctx.fill();

}

Step 2 – Detecting wall collision
With the current state of our particle’s recipe, we may notice that, after a certain period, all

particles fly away from the screen. This happens because we are not detecting the border of the

canvas container we are observing. We can use the checkWallCollision() method to check

whether the particles are hitting the wall and change the direction of movement for each particle:

detectWallCollision(

 particle: Particle,

 newX: number,

 newY: number

): Particle {

 if (newX + particle.radius >

 this.canvas.nativeElement.width ||

 newX - particle.radius < 0

) {

 particle.vx = -particle.vx;

 particle.x = newX + particle.radius >

 this.canvas.nativeElement.width

 ? this.canvas.nativeElement.width - particle.radius

 : particle.radius;

 }

 if (newY + particle.radius >

 this.canvas.nativeElement.height

 || newY - particle.radius < 0

) {

 particle.vy = -particle.vy;

 particle.y = newY + particle.radius >

 this.canvas.nativeElement.height

 ? this.canvas.nativeElement.height –

 particle.radius

 : particle.radius;

 }

Understanding Reactive Animation Systems with RxJS86

 return particle;

}

Once we have implemented the checkWallCollision() method, we can detect wall collision for

each particle in the stream:

this.particles$ = animationFrame$.pipe(

 scan((particles: Particle[],

 event: IAnimationFrame) => {

 return particles.map(particle => {

 let newX = particle.x + particle.vx;

 let newY = particle.y + particle.vy;

 return {

 ...particle,

 x: newX,

 y: newY,

 vx: particle.vx,

 vy: particle.vy

 };

 });

 }, initialParticles),

 map(particles => particles.map(particle =>

 this.detectWallCollision(

 particle,

 particle.x + particle.vx,

 particle.y + particle.vy))

),

);

Chapter 3 87

Step 3 – Drawing connections
After drawing and animating the movement of all particles, we can calculate the distance between

them and draw a connection. The connection line will increase its opacity each time it gets closer

and closer to another particle:

this.particles$ = animationFrame$.pipe(

 // the rest of the stream

 tap(particles => this.drawParticles(particles)),

 tap(particles => this.drawConnections(particles)),

);

drawConnections(particles: Particle[]) {

 for (let i = 0; i < particles.length; i++) {

 for (let j = i + 1; j < particles.length; j++) {

 const particle1 = particles[i];

 const particle2 = particles[j];

 const distance = Math.sqrt(

 (particle1.x - particle2.x) ** 2 +

 (particle1.y - particle2.y) ** 2

);

 if (distance <= 250) {

 const opacity = 1 - distance / 250;

 this.drawLine(particle1, particle2, opacity);

 }

 }

 }

}

Who said we won’t need the Pythagorean theorem ever in our lives? In the drawConnections()

method, we are calculating the distance between two particles based on their coordinates. If

they are in a radius of 250 px, we will call the drawLine() method, which will draw a connection

between particles on the canvas.

Understanding Reactive Animation Systems with RxJS88

Figure 3.2: RxJS particles

Step 4 – Moving particles with a hover effect
In this step, we will match the interaction with particles in the same way as the particles.js

library does:

const mouseMove$ = fromEvent<MouseEvent>(

 this.canvas.nativeElement,

 'mousemove'

).pipe(

 throttleTime(5),

 map((event: MouseEvent) => {

 const rect =

 this.canvas.nativeElement.getBoundingClientRect();

 return {

 x: (event.clientX - rect.left) *

 (this.canvas.nativeElement.width / rect.width),

 y: (event.clientY - rect.top) *

 (this.canvas.nativeElement.height / rect.height),

Chapter 3 89

 };

 }),

 takeUntil(

 merge(

 fromEvent(this.canvas.nativeElement,

 'mouseout'),

 fromEvent(this.canvas.nativeElement,

 'mouseleave')

)

)

);

Since the dimensions of the canvas are scaled compared to screen dimensions, we need to

transform mouse coordinates proportionally. After doing that, we can include the mouseMove$

stream in the main particles$ stream:

this.particles$ = merge(mouseMove$, animationFrame$).pipe(scan(

 (particles: Particle[],

 event: { x: number, y: number } | IAnimationFrame

) => {

 if ('x' in event && 'y' in event) {

 this.mouseX = event.x;

 this.mouseY = event.y;

 return particles;

 }

 return particles.map(particle => {

 const mouseMoveCoordinates =

 this.handleMouseInteraction(particle);

 let newX = mouseMoveCoordinates?.newX ||

 particle.x + particle.vx;

 let newY = mouseMoveCoordinates?.newY ||

 particle.y + particle.vy;

return {

 particle,

 x: newX,

 y: newY,

 vx: particle.vx,

 vy: particle.vy

Understanding Reactive Animation Systems with RxJS90

};

 });

}, initialParticles));

Finally, we can call the handleMouseInteraction() method and move the particles away from

the hover radius:

handleMouseInteraction(

 particle: Particle

): { newX: number; newY: number } | undefined {

 // Mouse hover radius avoidance

 const distanceToMouse = Math.sqrt(

 (this.mouseX - particle.x) ** 2 +

 (this.mouseY - particle.y) ** 2

);

 if (distanceToMouse > 200) return;

 // Calculate angle between particle and mouse

 const angle = Math.atan2(

 particle.y - this.mouseY,

 particle.x - this.mouseX

);

 const normalX = Math.cos(angle);

 const normalY = Math.sin(angle);

 const influenceFactor = Math.max(

 0, 1 - distanceToMouse / 200);

 particle.vx += normalX * influenceFactor * 2;

 // Adjust the factor as needed

 particle.vy += normalY * influenceFactor * 2;

 // Adjust the factor as needed

 particle.x = this.mouseX + 200 * normalX + particle.vx;

 particle.y = this.mouseY + 200 * normalY + particle.vy;

 return {

 newX: particle.x,

 newY: particle.y,

 };

}

Chapter 3 91

Another day in life not using trigonometry’s sin, co.... oh wait. Math professors were right all

along! Here is how we know where to move particles if the distance between the particle and the

mouse hover radius is less than 200 px:

•	 Math.atan2 calculates the angle (in radians) between the particle and the mouse. This

angle is measured counterclockwise from the positive x axis to the line connecting the

particle and the mouse.

•	 Math.cos(angle) and Math.sin(angle) give the x and y components of the unit vector

pointing from the mouse to the particle. This vector is normalized, meaning it has a length

of 1.

•	 The dot product of the particle’s velocity vector and the normalized direction vector is

calculated. This measures how much of the particle’s velocity is in the direction of the

mouse.

•	 The new position of the particle is calculated by moving it 200 units away from the mouse

in the direction opposite to the angle, plus the adjusted velocity.

The trigonometry behind the particle movement involves calculating the angle and direction

from the particle to the mouse, determining the influence of the mouse on the particle’s velocity,

and then updating the particle’s position to move it away from the mouse. By doing so, we are

able to avoid the mouse cursor and adjust particle velocities based on their relative positions.

Figure 3.3: RxJS particles hover effect

Understanding Reactive Animation Systems with RxJS92

See also
•	 Particles.js: https://vincentgarreau.com/particles.js/

Adding subtle elegance to components with RxJS
transitions
The way we can improve the user experience of our UI components is by adding clear and visually

appealing feedback. And what could be a better way to do so, than adding a sophisticated reactive

animation to a component? Let’s imagine that, for our brand-new design system, we need to

create an upload button with a visually appealing progress indicator that gracefully updates.

How to do it…
In this recipe, we are going to be creative and craft a recipe for an upload button where we are

gradually going to increase the progress and control animation states in between until the upload

is fully over.

Step 1 – Increasing the upload progress
As the first step, we are going to define a random progress stream that emits values from 0 to 100:

const uploadProgress$ = range(0, 101).pipe(

 zipWith(interval(50)),

 map(([value, _]) => value),

 take(101)

);

Here, we could get creative in how we generate the upload progress or retrieve the actual progress

from a server. The current approach is just a simulation, and the focus of this recipe is on animating

the upload progress.

Step 2 – Animating the upload progress
After we effectively manage different button upload progress, we can leverage RxJS BehaviorSubject

state transitions, and animate button upload progress accordingly:

const clickStream$ = this.upload$.pipe(

 tap(() => this.btnState$.next(EBtnStates.LOADING)),

 switchMap(() => animationFrames()),

 withLatestFrom(uploadProgress$, this.btnState$),

 distinctUntilChanged(

https://vincentgarreau.com/particles.js/

Chapter 3 93

 ([_, progress], [__, prevProgress]) =>

 progress === prevProgress),

 tap(([_, progress]) => {

 if (progress === 100) {

 this.btnState$.next(EBtnStates.DONE);

 }

 }),

 takeWhile(([_, __, btnState]) =>

 btnState !== EBtnStates.DONE, true)

);

Whenever we click a button, we are going to switch to the animationFrames() stream, which gives

us a timeframe to update and render performant animations. We are going to take the animation

frames stream as long as we are not in the DONE state. After that, we are going to combine that

stream with the latest stream from uploadProgress$ and increase the progress background

width of the button.

In the template of button-upload.component.html, we can bind the buttonWidth signal value

to the upload background effect:

<button #button id="submitButton" (click)="startUpload()">

<span

 class="upload"

 [style.width.px]="buttonProgressWidth()"

>

 @if ((btnState$ | async) === 'loading') {

 } @else if ((btnState$ | async) === 'done') {

 } @else {

 Upload

 }

</button>

Understanding Reactive Animation Systems with RxJS94

Finally, when we open our browser, we can see this animation in action:

Figure 3.4: Animated upload progress

See also
•	 RxJS animationFrame: https://rxjs.dev/api/index/function/animationFrames

https://rxjs.dev/api/index/function/animationFrames

4
Testing RxJS Applications

Code testing is one of the best and most vital practices in modern software development.

Establishing code testing as a practice ensures the reliability and correctness of our code, improves

code quality, makes our code more resilient to errors, and acts as a safety net when we want to

introduce a change in our code. We can use unit testing to verify that all components are working

as expected in isolation. Then, we can write integration tests to verify that components in our

system work together in certain scenarios or to check if they are well integrated with external

systems, such as backend APIs. Tests can also serve us as documentation of the expected behavior

of the code. All these benefits apply to testing RxJS code as well, especially for complex streams.

By testing Observables, subscriptions, and operators, we can verify that data flows as expected

and asynchronous operations are handled correctly.

Testing can be challenging, especially with RxJS, because of its asynchronous nature, where

operations execute over time and not in a predictable, linear fashion. That’s why we have a lot of

cool testing tools and libraries to make our lives easier when dealing with async code and event

coordination. Key elements in RxJS unit testing include the following:

•	 TestScheduler: A virtual time environment to control and simulate time-based operations,

making testing asynchronous code deterministic

•	 Marble diagrams: A visual representation to describe the expected behavior of Observables

and operators over time, aiding in test case design

•	 Assertion libraries: Utilize libraries such as Jasmine or Jest to define expectations and

verify that the actual output matches the desired outcome

Testing RxJS Applications96

In this chapter, we’ll cover the following recipes:

•	 Mastering time-based RxJS operators with marble testing

•	 Mocking HTTP dependencies with Observables in Angular

•	 Mocking API calls with Mock Service Worker (MSW)

•	 Testing complex state management with NgRx

Technical requirements
To follow along in this chapter, you’ll need the following:

•	 Angular v19+

•	 Karma

•	 Jasmine

•	 Jest

•	 RxJS v7

•	 MSW

•	 Node.js v22+

•	 npm v11++ or pnpm v10+

The code for recipes in this chapter is placed in the GitHub repository here: https://github.com/
PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter04

Mastering time-based RxJS operators with marble
testing
RxJS marble diagrams are a powerful tool for visualizing and understanding the behavior

of Observables and operators in reactive programming. They provide a clear, timeline-based

representation of how values, events, and errors flow through Observable streams. By using

intuitive symbols and a visual timeline, marble diagrams simplify the communication and

comprehension of RxJS concepts, aiding in the design, debugging, and documentation of reactive

code. That can help us understand how complex reactive systems work and make testing of reactive

code way easier, especially when dealing with asynchronous operations and state transitions.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter04
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter04

Chapter 4 97

Getting ready
To demonstrate the power of RxJS marbles, we are going to write a marble unit test for the

Streamlining real-time updates with RxJS-powered notifications recipe from Chapter 2 (https://
github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/

Chapter02/rxjs-notification).

To understand the marble diagram syntax and help us follow along with this recipe, here is a

quick cheat sheet:

•	 -: Represents a single frame of virtual time passing

•	 [a-z0-9]: Represents a value emitted by the Observable.

•	 (abc): Groups multiple values emitted in the same frame

•	 |: Represents the completion of the Observable

•	 #: Represents an error thrown by the Observable

•	 ^: Represents the point at which a subscription starts

•	 !: Represents the point at which a subscription ends (unsubscribes)

•	 [0-9]+(ms|s|m): Represents a specific duration of time (milliseconds, seconds, minutes)

How to do it…
In this recipe, we will test the stream of notifications that are incoming asynchronously over time

and stacking in the UI. To accomplish this, we will present incoming notifications with marble

diagrams and then assert the given sequence of events to make sure we get timely state transitions,

which will be represented in the UI.

Step 1 – Setting up TestScheduler
At the beginning of the test, we’ll set up TestScheduler. We’ll need TestScheduler to execute

our Observable streams in a controlled, virtual time environment:

describe('NotificationService', () => {

 let service: NotificationService;

 let testScheduler: TestScheduler;

 beforeEach(() => {

 TestBed.configureTestingModule({

 providers: [NotificationService]

 });

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02/rxjs-notification
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02/rxjs-notification
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter02/rxjs-notification

Testing RxJS Applications98

 testScheduler = new TestScheduler(

 (actual, expected) => {

 expect(actual).toEqual(expected);

 });

 service = TestBed.inject(NotificationService);

});

Step 2 – Testing simple RxJS streams
In this step, for the simplicity of the test, we will comment out the automatic dismissal of

notifications inside of the addNotification$() method, just for now:

addNotification$(

 notification: Notification,

 autodismiss = true,

 timeout = 5000

) {

 this.addNotification$.next(notification);

 // if (autodismiss) {

 // timer(timeout).subscribe(() =>

 this.removeNotification(notification.id));

 // }

}

Here, we will demonstrate how notifications are added to the stack over time and how we can

represent that timeline with RxJS marble diagrams:

it('should add notifications', fakeAsync(() => {

 testScheduler.run(({ cold, expectObservable,

 expectSubscriptions }) => {

 const notification1:

 Notification = { id: '1',

 message: 'Recipe added successfully.',

 type: 'success' };

 const notification2:

 Notification = { id: '2',

 message: 'Recipe added successfully.',

 type: 'success' };

 const add1$ = cold('a', { a: notification1 });

Chapter 4 99

 const add2$ = cold('--a', { a: notification2 });

 const expected$ = 'a-b';

 const expectedValues = {

 a: [notification1],

 b: [notification1, notification2]

 };

 add1$.subscribe(notification =>

 service.addNotification(notification));

 add2$.subscribe(notification =>

 service.addNotification(notification));

 service.notifications.subscribe();

 // Delay the subscription to notifications$ to

 //ensure addNotification has been called

 testScheduler.schedule(() =>

 expectObservable(service.notifications$)

 .toBe(expected$, expectedValues));

 });

}));

Let’s break down the example a bit:

1.	 First, we create a cold Observable for the first notification at the first frame of time. The

reason for that is that compared to hot Observables, cold Observables offer us better

control and predictability for testing asynchronous behavior since they start emitting

values only when we subscribe to the stream.

2.	 For the second notification, nothing will happen at the first two frames, then we will wait

at the third frame and finally emit a value.

Imagine this as a timeline of events that we can visually represent in our code, where each '-'

instance in the timeline represents 1 ms. We emit the first notification immediately. Meanwhile,

the second notification waits for two frames and then emits a value. When we look at a timeline

of events, we can clearly see that the order was as follows:

1.	 First frame – The first notification emits a value; the second notification waits. At this

point, we are expecting to have one notification in the stack.

2.	 Second frame – Nothing happens, we still have one notification in the stack.

3.	 Third frame – The second notification emits a value. Once we emit the second notification,

we expect to have two notifications in the stack.

Testing RxJS Applications100

Step 3 – Testing complex RxJS streams
Now that we understand the basics of marble testing, we are ready to test more complex

streams, such as auto-dismissing notifications after varying delays. We are about to see how this

functionality affects a timeline where we are adding multiple notifications but also dismissing

them in between. After uncommenting the code from the addNotification$() method we did

in step 2, our test might look like this:

it('should add and remove notification after 5 seconds',

fakeAsync(() => {

 testScheduler.run(({ cold, expectObservable }) => {

 const notification1: Notification = { id: '1',

 message: 'Recipe added successfully.',

 type: 'success' };

 const notification2: Notification = { id: '2',

 message: 'Recipe could not be added.',

 type: 'error' };

 const notification3: Notification = { id: '3',

 message: 'Recipe could not be added.',

 type: 'error' };

 const add1$ = cold('a', { a: notification1 });

 const add2$ = cold('1500ms a', { a: notification2

 });

 const add3$ = cold('4000ms a', { a: notification3 });

 const expected$ =

 'a 1499ms b 2499ms c 999ms d 3999ms e';

 const expectedValues = {

 a: [notification1],

 b: [notification1, notification2],

 c: [notification1, notification2, notification3],

 d: [notification2, notification3],

 e: [notification2]

 };

 add1$.subscribe(notification =>

 service.addNotification(notification));

 add2$.subscribe(notification =>

 service.addNotification(notification, false));

 add3$.subscribe(notification =>

Chapter 4 101

 service.addNotification(notification));

 service.notifications.subscribe();

 testScheduler.schedule(() => {

 expectObservable(service.notifications$).toBe(

 expected$,

 expectedValues

);

 });

 });

}));

Let’s break down this example as well to reinforce understanding:

1.	 We create a cold Observable for the first notification, which we emit right away.

2.	 After 1500 ms, we emit the second notification, which won’t be auto dismissible. That

means that the notification will stay in the stack until we remove it manually.

3.	 After 4000 ms, we emit the third notification.

Now, the fun part starts. At first, by looking at the expected timeline, some values might seem

strange, but there is a good reason behind these values. Every emission of a value takes 1 ms of

virtual time. That means that if we want to create a 1500 ms gap between two emitted values,

we can describe this timeline as with marble diagrams: 'a 1499ms b'. Now, if we look closely at

the expected timeline, 'a 1499ms b 2499ms c 999ms d 3999ms e', things start to make sense:

1.	 First, we emit a value for the first notification, which will be dismissed after 5000 ms. At

that point, we have the first notification in the stack.

2.	 We wait 1499 ms, then we emit the second notification that takes 1 ms, which won’t be

auto-dismissed from the stack. At that point, we have the first two notifications in the stack.

3.	 The third notification should be emitted 4000 ms after the first notification. So far, 1500

ms have passed in virtual time. That means we must wait 2499 ms to emit a value for the

third notification. At that point, we have all three notifications in the stack.

4.	 So far, 4000 ms have passed in the timeline after we emitted the first value. That means

we wait for 999 ms until the first notification is auto-dismissed from the stack. Once that

happens, we have the second and third notifications left in the stack.

Testing RxJS Applications102

5.	 At this point in virtual time, since we emitted the third notification, 1000 ms have passed.

We wait for 3999 ms more and remove the third notification from the stack. Finally, we

are left with only the second notification in the stack.

Wasn’t that hard as it seemed at first, right? These marble diagrams are fun! By following this

pattern, with marble diagrams, we can describe any asynchronous stream of events, which can

help us be more descriptive about our test.

See also
•	 Marble syntax: https://rxjs.dev/guide/testing/marble-testing#marble-syntax

•	 RxJS marble testing blog: https://betterprogramming.pub/rxjs-testing-write-unit-
tests-for-observables-603af959e251

•	 Getting Started with Marble Tests course: https://rxjs-course.dev/course/testing/
getting-started-with-marble-tests

•	 Ben Lesh’s article Hot vs Cold Observables: https://benlesh.medium.com/hot-vs-cold-
observables-f8094ed53339

•	 Testing asynchronous RxJs operators article: https://medium.com/angular-in-depth/
testing-asynchronous-rxjs-operators-5495784f249e

•	 How to test Observables article: https://medium.com/angular-in-depth/how-to-test-
observables-a00038c7faad

•	 Marble testing helpers for RxJS and Jasmine: https://www.npmjs.com/package/jasmine-
marbles

Mocking HTTP dependencies with Observables in
Angular
In Angular, every HTTP call is represented as an Observable. That means whenever we are writing

an integration test with an external service, we have to mock HTTP dependencies as we don’t

want the real request being triggered from a test itself.

Getting ready
In this recipe, we’re going to test network request services that we implemented in Chapter 1

(https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/

main/Chapter01/network-requests).

https://rxjs.dev/guide/testing/marble-testing#marble-syntax
https://betterprogramming.pub/rxjs-testing-write-unit-tests-for-observables-603af959e251
https://betterprogramming.pub/rxjs-testing-write-unit-tests-for-observables-603af959e251
https://rxjs-course.dev/course/testing/getting-started-with-marble-tests
https://rxjs-course.dev/course/testing/getting-started-with-marble-tests
https://benlesh.medium.com/hot-vs-cold-observables-f8094ed53339
https://benlesh.medium.com/hot-vs-cold-observables-f8094ed53339
https://medium.com/angular-in-depth/testing-asynchronous-rxjs-operators-5495784f249e
https://medium.com/angular-in-depth/testing-asynchronous-rxjs-operators-5495784f249e
https://medium.com/angular-in-depth/how-to-test-observables-a00038c7faad
https://medium.com/angular-in-depth/how-to-test-observables-a00038c7faad
https://www.npmjs.com/package/jasmine-marbles
https://www.npmjs.com/package/jasmine-marbles
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01/network-requests
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01/network-requests

Chapter 4 103

How to do it…
In order to mock HTTP calls to external services, we will take the help of the @angular/common/

http/testing module and learn how to test requests being sent in sequence as well as in parallel.

Step 1 – Setting up TestBed
To be able to mock HTTP communication with external services, we first need to set up the TestBed

module at the beginning of each test. In our recipe.service.spec.ts file, we will have the

following configuration in place:

beforeEach(() => {

 TestBed.configureTestingModule({

 providers: [

 provideHttpClient(),

 provideHttpClientTesting(),

 RecipesService

],

 });

 service = TestBed.inject(RecipesService);

 httpMock = TestBed.inject(HttpTestingController);

});

afterEach(() => {

 httpMock.verify();

});

Now, when we run our tests, instead of hitting the real backend, a request will be sent to our test

mock backend. We can also notice that we are injecting HttpTestingController, which helps

us to interact with the mocked backend, send requests to it, and assert responses that come back

from the mocked backend.

After each test execution, we call the httpMock.verify() function to confirm that all mocked HTTP

requests within the test have been properly handled and asserted, thus preventing accidental

omissions and maintaining test integrity.

Testing RxJS Applications104

Step 2 – Testing a simple HTTP request
In our recipe.service.ts file, we have a getRecipes$ service method that is sending an HTTP

request:

getRecipes$(): Observable<Recipe[]> {

 return this.httpClient.get<Recipe[]>('/api/recipes');

}

The response from an HTTP call such as this would look something like this:

const mockResponse = [

 {

 "id": 1,

 "name": "Spaghetti Aglio e Olio",

 "description": "Simple yet flavorful pasta with garlic,

 olive oil, and chili flakes",

 "ingredients": ["spaghetti", "garlic", "olive oil",

 "chili flakes", "parmesan cheese",

 "parsley"]

 },

 {

 "id": 2,

 "name": "Chicken Tikka Masala",

 "description": "Creamy, spiced Indian curry with tender

 chicken pieces.",

 "ingredients": ["chicken breasts", "yogurt",

 "garam masala", "turmeric", "cumin",

 "tomatoes", "onion", "ginger",

 "garlic", "heavy cream"]

 },

];

Now, we can assert this response by calling the getRecipes$ method within the test.

In our integration test, we will define a test-case scenario for fetching a list of recipes:

it('should fetch a list of recipes', fakeAsync(async () => {

 const recipes$ = service.getRecipes$();

 const recipes = firstValueFrom(recipes$);

Chapter 4 105

 const request = httpMock.expectOne('/api/recipes');

 request.flush(mockResponse);

 expect(await recipes).toEqual(mockResponse);

}));

Let’s break down what we did here:

1.	 First, we assign an HTTP call to the recipes$ variable.

2.	 Then, we use the firstValueFrom function from RxJS, which subscribes automatically to

an Observable, sends the HTTP request, and converts the value into a Promise.

3.	 Next, we assert the request with HttpTestingController and check if the correct request

has been sent.

4.	 Then, we deliver the mock response with the flush method.

5.	 Finally, we assert the response.

Step 3 – Testing multiple requests in sequence
In our recipe.service.ts file, we have a getRecipeDetails$() method that sends two requests

in sequence, one after the other:

getRecipeById$(id: number): Observable<Recipe> {

 return this.httpClient

 .get<Recipe>(`/api/recipes?id=${id}`);

}

getRecipeDetails$(

 id: number

): Observable<{ recipe: Recipe; details: RecipeDetails }> {

 return this.getRecipeById$(id).pipe(

 switchMap((recipe: Recipe) => {

 return this.httpClient

 .get<RecipeDetails>(`/api/recipes/details?id=

 ${id}`)

 .pipe(

 map((details) => ({ recipe, details }))

);

 })

);

}

Testing RxJS Applications106

This means that in our test, we must assert both ongoing requests and responses since we are

combining them as the result of the whole stream.

Our mocked response will look something like this:

const dummyRecipe = {

 "id": 1,

 "name": "Spaghetti Aglio e Olio",

 "description": "Simple yet flavorful pasta with garlic,

 olive oil, and chili flakes",

 "ingredients": ["spaghetti", "garlic", "olive oil",

 "chili flakes", "parmesan cheese",

 "parsley"]

};

const dummyDetails = {

 "id": 1,

 "prepTime": 7200000,

 "cuisine": "Italian",

 "diet": "Vegetarian",

 "url": "/assets/images/spaghetti.jpg",

 "nutrition": {

 "calories": 450,

 "fat": 15,

 "carbs": 70,

 "protein": 10

 }

};

Now, let’s test fetching recipe details:

it('should fetch recipe details', async () => {

 const recipeDetails$ = service

 .getRecipeDetails$(dummyRecipe.id);

 const recipeDetails = firstValueFrom(recipeDetails$);

 const req1 = httpMock.expectOne(`/api/recipes?id=${dummyRecipe.id}');

 req1.flush(dummyRecipe);

 const req2 = httpMock.expectOne(

 `/api/recipes/details?id=${dummyRecipe.id}');

 req2.flush(dummyDetails);

Chapter 4 107

 expect((await recipeDetails).recipe)

 .toEqual(dummyRecipe);

 expect((awaitrecipeDetails).details)

 .toEqual(dummyDetails);

});

Here, we can notice that we are asserting ongoing requests as well as the responses from both.

Step 4 – Testing multiple requests in parallel
In our service, we have a getRecipesWithImageInParallel$ method that sends multiple image

requests in parallel:

getRecipesWithImageInParallel$(): Observable<Object[]> {

 return this.getRecipes$().pipe(

 tap((recipes: Recipe[]) => this.recipes.next(

 recipes)),

 switchMap((recipes: Recipe[]) => {

 const imageRequests = recipes.map((recipe) =>

 this.httpClient.get(`/api/recipes/images? id=${recipe.id}`

));

 return forkJoin(imageRequests);

 }),

);

}

The getRecipes$ service will return the same response as we had in step 3. Once we get a list of

recipes, we will send multiple requests in parallel for each recipe’s image:

const dummyImages = [

 {

 "id": 1,

 "url": "/assets/images/spaghetti.jpg"

 },

 {

 "id": 2,

 "url": "/assets/images/chicken_tikka_masala.jpg"

 },

];

Testing RxJS Applications108

Now, when we test this HTTP call, we should be able to assert the image responses for each recipe:

it('should fetch recipes with images in parallel', async () => {

 const recipeImages$ = service

 .getRecipesWithImageInParallel$();

 const recipeImages = firstValueFrom(recipeImages$);

 const req = httpMock.expectOne('/api/recipes');

 expect(req.request.method).toBe('GET');

 req.flush(dummyRecipes);

 dummyRecipes.forEach((recipe, index) => {

 const imgReq = httpMock.expectOne(

 `/api/recipes/images?id=${recipe.id}');

 expect(imgReq.request.method).toBe('GET');

 imgReq.flush(dummyImages[index]);

 });

 expect(await recipeImages).toEqual(dummyImages);

});

Note that in this test, we are using forEach to iterate through each recipe that we’re about to

send a request to and extract images for each individual recipe.

Step 5 – Testing errors
In our service, let’s extend the getRecipes$ method to handle the error case:

getRecipes$(): Observable<Recipe[]> {

 return this.httpClient.get<Recipe[]>('/api/recipes'

).pipe(

 catchError(

 () => of(new Error('Error fetching recipes'))

)

);

}

Chapter 4 109

The way we can test this error scenario is by flushing the error to httpMock and asserting the error

instance and message in the end:

it('should handle error when fetching recipes', async () => {

 const recipes$ = service.getRecipes$();

 const recipes = firstValueFrom(recipes$);

 const req = httpMock.expectOne('/api/recipes');

 expect(req.request.method).toBe('GET');

 req.flush('Failed!', {

 status: 500,

 statusText: 'Error fetching recipes'

 });

 const recipesResponse = await recipes;

 expect(recipesResponse).toBeInstanceOf(Error);

 expect(recipesResponse.message).toEqual(

 'Error fetching recipes');

});

See also
•	 Angular docs guide on testing: https://angular.dev/guide/http/testing#expecting-

and-answering-requests

•	 Angular docs guide on testing services: https://angular.dev/guide/testing/servic
es#httpclienttestingmodule

Mocking API calls with MSW
In the preceding recipe, we have seen how Angular’s HttpTestingController class helped us

mock integration with external services and prevent real HTTP requests from being triggered.

In this recipe, we’re going to explore how we can simplify this process even further with the

Mock Service Worker (MSW) library. In general, MSW is like a proxy between the browser and

external services, so it is ideal to intercept all ongoing requests and return what we desire instead

of pinging the real backend service. This is especially useful for writing integration tests.

Getting ready
In this recipe, we’re going to test network request services that we implemented in Chapter 1

(https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/

main/Chapter01/network-requests).

https://angular.dev/guide/testing/services#httpclienttestingmodule
https://angular.dev/guide/testing/services#httpclienttestingmodule
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01/network-requests
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter01/network-requests

Testing RxJS Applications110

How to do it…
Since MSW works only with Jest, we first need to set up the test configuration in the Angular

project to use Jest, and not default testing frameworks Jasmine and Karma. The way we can do it

is by using the jest-preset-angular library. We’ll go through the same test-case scenarios we

looked at in the preceding recipe, but this time, we will see the power of MSW and how we can

simplify the testing process of RxJS side effects such as network requests and errors.

Step 1 – Setting up TestBed
To be able to mock HTTP communication with external services, we first need to start MSW

before each test by importing the server from the mocks/node.ts file. After that, we will set up

the TestBed module at the beginning of each test.

In our recipe.service.spec.ts file, we have the following configuration in place:

beforeEach(() => {

 TestBed.configureTestingModule({

 providers: [

 provideHttpClient(),

 RecipesService

],

 });

 service = TestBed.inject(RecipesService);

});

beforeAll (() => {

 server.listen();

});

Jest setup

To keep the focus of the recipe on writing tests, we will skip the Jest setup part. But if you

need more info on how to do it, you can check this fantastic blog from Tim Deschryver on

how to integrate Jest into an Angular application and library: https://timdeschryver.

dev/blog/integrate-jest-into-an-angular-application-and-library#.

https://timdeschryver.dev/blog/integrate-jest-into-an-angular-application-and-library#
https://timdeschryver.dev/blog/integrate-jest-into-an-angular-application-and-library#

Chapter 4 111

Now, the difference from the preceding recipe is that we omitted the need to put

provideHttpClientTesting into the providers array as well as injecting HttpTestingController.

Also, note that before running all tests, we need to call the listen() method on a mocked server

provided by MSW. This will start MSW and intercept all API calls to the real backend service.

Step 2 – Testing a simple HTTP request
In our recipe.service.ts file, we have the getRecipes$ service method that sends an HTTP

request, so the integration test for that external communication would look like this:

test('should fetch a list of recipes', async () => {

 const recipes$ = service.getRecipes$()

 const response = await firstValueFrom(recipes$)

 expect(response).toStrictEqual([{

 "id": 1,

 "name": "Spaghetti Aglio e Olio",

 "description": "Simple yet flavorful pasta with

 garlic, olive oil, and chili

 flakes",

 "ingredients": ["spaghetti", "garlic", "olive oil",

 "chili flakes", "parmesan cheese",

 "parsley"]

 }])

});

Let’s see what we did in the preceding test:

1.	 We call the getRecipes$ method to trigger a request.

2.	 Then, the request is automatically intercepted by MSW and a mocked response is returned.

3.	 Next, with the firstValueFrom operator, we extract the response value.

4.	 Finally, we do Jest assertion to check if the response is indeed the one that we are expecting

to have.

Step 3 – Testing multiple requests in sequence
In our recipe.service.ts file, we have the getRecipeDetails$() method that sends two requests

in sequence, one after the other.

Testing RxJS Applications112

This means that in our test, we must assert both ongoing requests and responses since we are

combining them as the result of the whole stream:

test('should fetch recipe details', (done) => {

 const dummyRecipe = {

 id: 1,

 name: 'Spaghetti Aglio e Olio',

 description: 'Simple yet flavorful pasta with

 garlic, olive oil, and chili flakes',

 ingredients: ['spaghetti', 'garlic']

 };

 const dummyDetails = {

 id: 1,

 prepTime: 7200000,

 cuisine:: 'Italian',

 diet: 'Vegetarian',

 url: '/assets/images/spaghetti.jpg',

 nutrition: {

 calories: 450,

 fat: 15,

 carbs: 70,

 protein: 10

 }

 };

 const recipes$ = service.getRecipeDetails$(

 dummyRecipe.id)

 const {

 recipe,

 details

 } = await firstValueFrom(recipes$)

 expect(recipe).toEqual(dummyRecipe);

 expect(details).toEqual(dummyDetails);

Chapter 4 113

Let’s see what we did in the preceding test:

1.	 We call the getRecipesDetails$ method to trigger two requests in sequence, one after

the other.

2.	 The requests are automatically intercepted by MSW, and a mocked response is returned.

3.	 With the firstValueFrom operator, we extract the response value.

4.	 We do Jest assertion to check if both responses are the ones we expect to have.

Step 4 – Testing multiple requests in parallel
In our service, we have the getRecipesWithImageInParallel$ method that sends multiple image

requests in parallel.

Here’s how we can test these requests:

test('should fetch recipes with images in parallel', (done) => {

 const dummyRecipes = // same value as in previous step

 const dummyImages = [

 {

 "id": 1,

 "url": "/assets/images/spaghetti.jpg"

 },

 {

 "id": 2,

 "url": "/assets/images/chicken_tikka_masala.jpg"

 },

]

 const recipes$ = service.getRecipesWithImageInParallel$()

 const images = await firstValueFrom(recipes$)

 expect(images).toStrictEqual(dummyImages);

});

}

Comparing this approach to that in the preceding recipe, note how simplified our integration test

looks, thanks to the power of MSW.

Testing RxJS Applications114

Step 5 – Testing errors
In our service, we have the getRecipes$ method that sends simple HTTP requests but also has

a catchError handler in case of an error:

test('request error', waitForAsync(async () => {

 server.use([

 http.get('/api/recipes', async ({ request }) => {

 return HttpResponse.error()

 })

])

 const recipes$ = service.getRecipes$()

 const errorResponse = await firstValueFrom(recipes$)

 expect(errorResponse.message).toStrictEqual(

 'Something went wrong.');

}));

Here is where it gets a little bit tricky with MSW. There is no way to have both success and error

cases within the same MSW handler, so if we want to simulate an error within the test, we must

override the original handler with the error one to return a mocked error response.

After that, the process is standard to the previous approach: we call the service method, extract

the response with the firstValueFrom operator, and assert the error message.

See also
•	 jest-preset-angular library: https://www.npmjs.com/package/jest-preset-angular

•	 MSW docs: https://mswjs.io/

Testing complex state management with NgRx
NgRx is a powerful state management library built on the principles of Redux, tailored for Angular

applications. With its emphasis on structured state management, NgRx is a popular choice for

large-scale Angular applications where state complexity can easily become overwhelming.

Getting ready
In Chapter 6, we will use NgRx as state management in Angular. Here, we will use the same recipe

and write unit tests for the provided functionality (https://github.com/PacktPublishing/

RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06/ngrx-state-management).

https://www.npmjs.com/package/jest-preset-angular
https://mswjs.io/
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06/ngrx-state-management
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06/ngrx-state-management

Chapter 4 115

How to do it…
In this recipe, we will go over the cooking recipe app example and write unit and integration tests

for different parts of NgRx, such as the following:

•	 Store

•	 Selectors

•	 Actions

•	 Effects

Step 1 – Setting up a mock store
To test if the selector is slicing the correct piece of a state that we can subscribe to within our

component, we first need to set up a mock store inside of our unit test. We can do that easily with

the provideMockStore method from the ngrx/store/testing package:

describe('RecipesSelectors', () => {

 const initialState: AppState = {

 recipesState: {

 recipes: [

 {

 "id": 1,

 "name": "Spaghetti Aglio e Olio",

 "description": "Simple yet flavorful pasta

 with garlic, olive oil, and

 chili flakes",

 "ingredients": ["spaghetti", "garlic", "olive

 oil", "chili flakes",

 "parmesan cheese",

 "parsley"],

 "image": "/assets/images/spaghetti.jpg"

 },

],

 selectedRecipe: null,

 error: null,

 loading: false

 }

 };

 let store: MockStore;

Testing RxJS Applications116

 beforeEach(() => {

 TestBed.configureTestingModule({

 providers: [provideMockStore()]

 });

 store = TestBed.inject(MockStore);

 });

});

Step 2 – Testing store selectors
After we have the mock store in place, we can call the projector function on that selector and

pass the slice of state we want to unit test:

it('should select the recipes state', () => {

 const result = selectRecipesState.projector(

 initialState.recipesState

);

 expect(result.recipes.length).toEqual(1);

 expect(result.recipes[0].id).toEqual(1);

});

An alternative way to do the same thing is to provide a selector state through provideMockStore

as follows:

provideMockStore({

 selectors: [

 {

 selector: selectRecipesState,

 value: [

 {

 "id": 1,

 "name": "Spaghetti Aglio e Olio",

 "description": "Simple yet flavorful pasta with

 garlic, olive oil, and chili

 flakes",

 "ingredients": ["spaghetti", "garlic", "olive

 oil", "chili flakes",

 "parmesan cheese", "parsley"],

 "image": "/assets/images/spaghetti.jpg"

Chapter 4 117

 },

]

 },

]

}),

After that, we can subscribe to the store selector within the test. In that case, our test would look

like this:

it('should select the recipes state', (done) => {

 store.select(selectRecipesState).subscribe(

 (mockBooks) => {

 expect(mockBooks).toEqual([

 {

 id: 'mockedId',

 volumeInfo: {

 title: 'Mocked Title',

 authors: ['Mocked Author'],

 },

 },

]);

 done();

 });

});

Step 3 – Setting up integration test and mock actions
In our recipes.store.spec.ts file, we’ll start off by configuring the test suite:

describe('RecipesEffects', () => {

 let actions$: Observable<Action>;

 let effects: RecipesEffects;

 let recipesService: RecipesService;

 let testScheduler: TestScheduler;

 beforeEach(() => {

 TestBed.configureTestingModule({

 imports: [],

 providers: [

 RecipesService,

Testing RxJS Applications118

 RecipesEffects,

 provideHttpClient(),

 provideHttpClientTesting(),

 provideMockActions(() => actions$)

]

 });

 effects = TestBed.inject(RecipesEffects);

 recipesService = TestBed.inject(RecipesService);

});

Let’s break down what we have done here:

1.	 We are calling the TestBed.configureTestingModule() method before each test execution.

2.	 We then pass the necessary dependencies for TestBed.

3.	 We finally inject the services and effects we want to test.

Step 4 – Testing effects and dispatching actions
Now, we are ready to write our integration test. In the recipes.effects.ts file, we can notice that

the loadRecipe$ effect is going to observe whether loadRecipesAction() is being dispatched. The

getRecipes$ service method will be called with an HTTP request, which will return a response of

a recipes list and dispatch loadRecipesActionSuccess() with the payload of that list:

it('should dispatch loadRecipesActionSuccess when the service responds
with recipes', async () => {

 // list of recipes, check mocks/mock.json file

 const mockRecipes = []

 spyOn(

 recipesService,

 'getRecipes$'

).and.returnValue(of([mockRecipes]));

 actions$ = of(loadRecipesAction());

 const effectResult =

 await firstValueFrom(effects.loadRecipes$);

 expect(effectResult).toEqual(

 loadRecipesActionSuccess({ recipes })

);

});

Chapter 4 119

When writing tests, it is always good practice to check the reverse error case, where we cause

the test to fail on purpose, just to be sure if the test is working properly:

spyOn(recipesService, 'getRecipes$').and.returnValue(of([
 ...recipes,
 {
 "id": 6,
 "name": "Spaghetti Carbonara",
 "description": "Rich and creamy pasta with
 pancetta, eggs, and cheese.",
 "ingredients": ["spaghetti", "pancetta", "eggs",
 "parmesan cheese", "black pepper"],
 "image": "/assets/images/spaghetti_carbonara"
 }
]));

So, if we add, let’s say, one more recipe as a return value of a service, our test should fail with the

following error:

Figure 4.1: Failing test error

Now, we can safely say that our test is working as expected and not producing false positive test cases.

Step 5 – Testing effect errors
In this step, we are going to test the scenario when the service returns an error. First, we would

mock an error response, then dispatch the loadRecipesAction() action, and finally check if our

effect will catch that error and the dispatched loadRecipesActionError() action:

it('should dispatch loadRecipesActionError when the service responds with
an error', async () => {
 const error = new Error('Error loading recipes');

Testing RxJS Applications120

 spyOn(recipesService, 'getRecipes$').and.returnValue(
 throwError(() => 'error')
);
 actions$ = of(loadRecipesAction());

 const effectResult =
 await firstValueFrom(effects.loadRecipes$);
 expect(effectResult).toEqual(loadRecipesActionError({
 error: error.message
 }));
});

See also
•	 NgRx testing strategies: https://ngrx.io/guide/effects/testing#testing-practices

•	 NgRx effect testing: https://ngrx.io/guide/effects/testing#examples

•	 NgRx testing selectors: https://ngrx.io/guide/store/testing#testing-selectors

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/RxJSCookbook

Testing practices

As per the NgRx documentation, there are multiple strategies to write unit and

integration tests, such as marble diagrams, TestScheduler, and ReplaySubject.

The strategy that has been chosen in this recipe is Observables, but we can

accommodate our tests to any strategy of preference.

https://ngrx.io/guide/effects/testing#testing-practices
https://ngrx.io/guide/effects/testing#examples
https://ngrx.io/guide/store/testing#testing-selectors
https://packt.link/RxJSCookbook

5
Performance Optimizations
with RxJS

One of the key aspects of having amazing user experiences across the web is web performance.

Performance optimization in RxJS involves carefully managing data flow and strategically

using operators to streamline asynchronous operations within your applications. Key techniques

include filtering unnecessary emissions, asynchronous handling, efficient data combination,

and preventing memory leaks. By employing these strategies, you can minimize redundant

calculations, reduce rendering overhead, and create a more responsive and smooth user experience.

In this chapter, we’ll cover the following recipes:

•	 Optimizing RxJS streams with strategic operator selection

•	 Creating a custom Core Web Vitals performance monitoring system

•	 Using Web Workers alongside RxJS

Technical requirements
To complete this chapter, you’ll need the following:

•	 Angular v19+

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

Performance Optimizations with RxJS122

The code for the recipes in this chapter can be found in this book’s GitHub repository: https://
github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/
Chapter05.

Optimizing RxJS streams with strategic operator
selection
Although RxJS is considered a very performant library, if we aren’t careful, we can introduce

performance bottlenecks within our system. To prevent this scenario from happening, we need

to understand what might lead to inefficient RxJS streams:

•	 Over-subscription and memory leaks

•	 Inefficient operators and complex pipelines

•	 Complex data flows

•	 Misunderstanding cold and hot Observables

How to do it…
In this recipe, we’re going to address and prevent most of the potential performance bottlenecks

in one simple RxJS stream, such as search input that sends HTTP requests based on a search query.

We’ll also create a simple custom RxJS operator to benchmark the speed of stream execution.

Step 1 – Creating a stream of events
First, we’ll define a simple input in the UI and create a stream of user input events. In app.

component.html, input the following:

<input #input type="text" />

Then, in the app.component.ts file, we can use the fromEvent operator to create a stream of events:

@ViewChild('input') input!: ElementRef;

ngAfterViewInit(): void {

 const input$ = fromEvent<KeyboardEvent>(

 this.input.nativeElement, 'input');

}

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter05
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter05
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter05

Chapter 5 123

Step 2 – Transforming the data stream for efficiency
If we subscribe to the current stream, we’ll get an Observable stream of InputEvent values. But

we’re only interested in the input value, nothing else. Also, we don’t want to send the request if

the input is empty, in which case we know that the result should be an empty list. We can achieve

this by using RxJS’s map and filter operators:

input$.pipe(

 map((event: Event) =>

 (event.target as HTMLInputElement).value),

 filter((value) => value.trim().length > 0),

)

Step 3 – Filtering to reduce data flow
At the moment, whenever the user types something, a new value will be emitted. This isn’t efficient

since the new request will be sent to the API on each emission. Also, we want to prevent our

application from reacting too quickly to every single change so that we get a smoother and more

responsive user experience. We can narrow down the data and optimize the stream further by

rate-limiting events with debounceTime and distinctUntilChanged:

input$.pipe(

 debounceTime(300),

 map((event:Event) =>

 (event.target as HTMLInputElement).value),

 distinctUntilChanged(),

 filter((value) => value.trim().length > 0),

)

Step 4 – Canceling unnecessary requests
While the user types the search query and we get the latest, filtered queries, we want to send an

HTTP request to the API to get the result based on that query. To ensure that only the latest search

term triggers an API request and all previous ones are canceled when the user types quickly, we

can use the higher-order switchMap Observable. By doing this, we can optimize how we deliver

results from the API to the user:

input$.pipe(
 debounceTime(300),
 map((event: Event) =>
 (event.target as HTMLInputElement).value),
 distinctUntilChanged(),

Performance Optimizations with RxJS124

 filter((value) => value.trim().length > 0),
 switchMap((value) =>
 this.recipesService.getRecipes$(value)),
)

Here are some of the ways switchMap can help us:

•	 Prevents memory leaks: It prevents potential memory leaks that could occur if multiple

inner Observables remain subscribed and active concurrently, consuming resources even

when they’re no longer needed.

•	 Prevents resource accumulation: Without switchMap, you might end up with multiple

pending asynchronous operations accumulating if the source Observable emits values

quickly. The switchMap Observable ensures only the latest operation is active, preventing

resource wastage.

•	 Simplifies nested subscriptions: In complex data flows, you might need to subscribe to

multiple Observables in a nested fashion. The switchMap Observable flattens this nesting,

making the code more readable and maintainable.

•	 Avoids subscription management overhead: Manual subscription management in nested

scenarios can be error-prone and lead to memory leaks if it’s not handled meticulously.

The switchMap Observable automates this process, reducing the risk of leaks.

Step 5 – Caching the results
Let’s imagine a scenario where multiple components want the same result that we got when

the user searches for a term. Each of these new subscriptions will trigger an Observable stream

again, which might be inefficient because of unnecessary execution. To ensure that multiple

subscribers receive the same values and also cache and replay a portion of the emitted values to

new subscribers, we can use the shareReplay operator:

input$.pipe(

 map((event: Event) =>

 (event.target as HTMLInputElement).value),

 debounceTime(300),

 distinctUntilChanged(),

 filter((value) => value.trim().length > 0),

 switchMap((value) =>

 this.recipesService.getRecipes$(value)),

 shareReplay(1)

)

Chapter 5 125

In this case, shareReplay creates a hot Observable out of a cold one.

Step 6 – Preventing memory leaks
Ironically, usage of the shareReplay operator can cause memory leaks across our application.

The way we used it here will cause the stream to always be active, even when the component is

destroyed. We can control this by passing refCount as an argument to the shareReplay operator:

input$.pipe(
 map((event: Event) =>
 (event.target as HTMLInputElement).value),
 debounceTime(300),
 distinctUntilChanged(),
 filter((value) => value.trim().length > 0),
 switchMap((value) =>
 this.recipesService.getRecipes$(value)),
 shareReplay({ bufferSize: 1, refCount: true }),
 takeUntil(this.destroy$)
)

Let’s take a closer look at this code, step by step:

1.	 We keep bufferSize set to 1 so that we only replay the latest cached value.

2.	 We pass refCount to keep track of the number of active subscribers. When the subscriber

count drops to 0, the underlying Observable is automatically unsubscribed, and its

resources are cleaned up.

Hot versus cold Observables

Understanding the difference between hot and cold Observables is crucial for man-

aging resources and data flows effectively, as well as avoiding unexpected behaviors

in your RxJS applications. We can think of cold Observables as a factory that creates

a product line each time someone wants a product. Cold Observables are more re-

source-efficient in simple scenarios, since they produce data only when needed and

execute once per subscription. We refer to cold Observables as unicast as each sub-

scriber receives an independent sequence of data. We can think of hot Observables as

a radio station that’s always broadcasting, whether someone is listening or not. Hot

Observables are more performant on a larger scale and when implementing caching

mechanisms. That’s why we refer to hot Observables as multicast – the stream will

be executed once, and all subscribers will get the same value.

Performance Optimizations with RxJS126

3.	 Finally, we unsubscribe from the stream with takeUntil once the component has been

destroyed.

Another commonly used technique is to use the takeUntil operator, which helps us manage the

life cycle of Observable subscriptions gracefully. While it’s often used for component destruction,

it can have broader applications for controlling the flow of data based on external events or

conditions.

How does shareReplay work under the hood?

Under the hood, the shareReplay operator leverages ReplaySubject to be

able to manage multicast values that are emitted from the source Observable to

multiple subscribers. By default, shareReplay will cache the number of passed

buffer values forever. Even when the number of subscribers drops to zero, it won’t

unsubscribe from ReplaySubject. If we aren’t careful, this might cause memory

leaks in our application, but we might want to do this when we want to avoid

expensive computations for Observables that are frequently used. If we want to

have programmatic control over this behavior, shareReplay provides a configuration

object that can be passed as an argument. Also, if we would like un-subscriptions

to be automatically handled by RxJS, we might consider using the share operator.

takeUntil – a common pitfall

One of the most common misconceptions about the takeUntil operator is its place-

ment within the stream. Order matters! The position of takeUntil determines which

operators are affected by the notifier and in what order. The most common and

straightforward placement is at the end of the operator chain. This allows the en-

tire stream of operators to process values until the notifier Observable emits. If we

place takeUntil in the middle of a stream, we can selectively control which parts

of the stream are affected by the notifier. It can also be placed within a higher-order

Observable such as switchMap, mergeMap, or concatMap to control the lifespan of

inner Observables. Being able to place the takeUntil operator flexibly gives us

fine-grained control over our Observable streams and helps manage their life cycle

effectively.

Chapter 5 127

Step 7 – Measuring RxJS stream performance
In the same way that we can measure performance with the built-in Performance API, we can

create something similar in RxJS to mark the start and the end of a stream. For this purpose, we’ll

create custom operators that we’ll carefully place within the stream we want to monitor:

export function startMeasurePerformance<T>() {

 return (source$: Observable<T>) => new Observable<T>(

 observer => {

 const subscription = source$.pipe(

 skipUntil(source$)

).subscribe({

 next(value) {

 performance.mark('start')

 observer.next(value);

 },

 error(err) { observer.error(err); },

 complete() { observer.complete(); }

 });

 return subscription;

});

}

Once we place the startMeasurePerformance operator at the beginning of the stream and mark

the start of Performance Monitor, we can place measurePerformance at the end of the stream:

export function measurePerformance<T>() {

 return (source$: Observable<T>) => new Observable<T>(

 observer => {

 const subscription = source$.subscribe({

 next(value) {

 observer.next(value);

 performance.mark('end');

 performance.measure(

 'Measure between start and end',

 'start',

 'end'

);

Performance Optimizations with RxJS128

 const measure = performance

 .getEntriesByName(

 'Measure between start and end')

 [0];

 console.log(`

 Duration between start and end:

 ${measure.duration} milliseconds.

 `);

 performance.clearMarks();

 performance.clearMeasures();

 },

 error(err) { observer.error(err); },

 complete() { observer.complete(); }

 });

 return subscription;

 });

}

See also
•	 Dmytro Mezhenskyi’s video about the hidden pitfalls of shareReplay: https://www.

youtube.com/watch?v=mVKAzhlqTx8&t

•	 Joshua Morony’s fantastic video about improved performance with the share and

shareReplay operators: https://www.youtube.com/watch?v=H542ZSyubrE

•	 Dominic Elm’s advanced caching mechanism blog: https://blog.thoughtram.io/
angular/2018/03/05/advanced-caching-with-rxjs.html

•	 The shareReplay operator: https://rxjs.dev/api/index/function/shareReplay

•	 The share operator: https://rxjs.dev/api/index/function/share

•	 Mastering RxJS Memory Leaks: The Leak Detective Handbook: https://hackernoon.com/
mastering-rxjs-memory-leaks-the-leak-detective-handbook

•	 Async Pipe in Angular: https://medium.com/@softwaretechsolution/async-pipe-in-
angular-bf0c691faaf2

https://www.youtube.com/watch?v=mVKAzhlqTx8&t
https://www.youtube.com/watch?v=mVKAzhlqTx8&t
https://www.youtube.com/watch?v=H542ZSyubrE
https://blog.thoughtram.io/angular/2018/03/05/advanced-caching-with-rxjs.html
https://blog.thoughtram.io/angular/2018/03/05/advanced-caching-with-rxjs.html
https://rxjs.dev/api/index/function/shareReplay
https://rxjs.dev/api/index/function/share
https://hackernoon.com/mastering-rxjs-memory-leaks-the-leak-detective-handbook
https://hackernoon.com/mastering-rxjs-memory-leaks-the-leak-detective-handbook
https://medium.com/@softwaretechsolution/async-pipe-in-angular-bf0c691faaf2
https://medium.com/@softwaretechsolution/async-pipe-in-angular-bf0c691faaf2

Chapter 5 129

Creating a custom Core Web Vitals performance
monitoring system
As part of the Web API specification, one of the functionalities that’s included in web browsers

as part of their runtime is PerformanceObserver. This observer can measure performance events

that are recorded in the browser’s performance timeline and helps us to track the most important

performance metrics of our web application.

How to do it…
In this recipe, we’ll build a small custom performance analytics observer to track the Core Web

Vitals metrics and improve the performance of our web application, something we’ll do once

we’ve identified performance bottlenecks. Once we’ve gathered the necessary metric information,

we can send that data to our API analytics service.

Step 1 – Setting up Performance Observer
Since the PerformanceObserver Web API doesn’t follow the standard addEventListener/

removeEventListener pattern for registering events, we can’t use RxJS’s fromEvent operator.

Instead, we’ll have to use the fromEventPattern operator, which helps us emit events based on

a custom event pattern and create an RxJS wrapper around PerformanceObserver.

First, inside the service/web-vitals-observer.ts service, we’ll set up PerformanceObserver:

public observePerformanceEntry(

 entryType: string

): Observable<PerformanceObserverEntryList> {

 this.performanceObserver$ =

 fromEventPattern<PerformanceObserverEntryList>(

 (handler) => {

 const observer = new PerformanceObserver(

 (list) =>handler(list.getEntries()));

 observer.observe({

 entryTypes: [entryType],

 buffered: true

 });

 return observer;

 },

 (handler, observer) => observer.disconnect()

Performance Optimizations with RxJS130

);

 return this.performanceObserver$;

}

Let’s break down what we’ve done so far:

1.	 First, we instantiated PerformanceObserver and passed the handler callback function

that will be called once we call the observe() method and performance entry is recorded

for one of the entryType properties.

2.	 Then, we specified the set of performance entries to be observed by the browser. Here are

the values that we may pass as entryType properties:

•	 largest-contentful-paint

•	 layout-shift

•	 first-input

•	 paint

3.	 Finally, we returned performanceObserver$ so that we can subscribe to it from any

component wish.

Step 2 – Observing performance entries
In our app.component.ts file, we must define different performance streams based on different

entry types:

private firstInputPaint$ =

 this.webVitalsObserverService

 .observePerformanceEntry('paint');

private firstContentfulPaint$ =

 this.webVitalsObserverService

 .observePerformanceEntry('first-input');

private cumulativeLayoutShift$ =

 this.webVitalsObserverService

 .observePerformanceEntry('layout-shift');

private largestContentfulPaint$ =

 this.webVitalsObserverService

 .observePerformanceEntry(

 'largest-contentful-paint');

Chapter 5 131

Now, we can merge all these streams, gather performance metrics for our custom analytics, and

gain important insights about our web application’s page load times, cumulative layout shifts,

user timing interactions, and more:

loading = true;

ngOnInit(): void {

 setTimeout(() => {

 // Simulate Cummulative Layout Shift

 this.loading = false;

 }, 2000);

 merge(

 this.firstInputPaint$,

 this.largestContentfulPaint$,

 this.firstContentfulPaint$,

 this.cumulativeLayoutShift$

).subscribe((entry) => console.log(entry));

}

See also
•	 The PerformanceObserver Web API: https://developer.mozilla.org/en-US/docs/

Web/API/PerformanceObserver

•	 Web Vitals articles: https://web.dev/articles/vitals

•	 RxJS’s fromEventPattern operator: https://rxjs.dev/api/index/function/
fromEventPattern

Using Web Workers alongside RxJS
We all know that JavaScript is a single-threaded language, at least in the browser runtime

environment. This means that browsers can process one operation at a time. So, if we have a

long-running task, it can block the main thread, meaning that the browser would freeze and block

the whole user experience. Usually, on the client side, we don’t have to deal with computationally

intensive or long-running tasks, but when we do, we can offload heavy workloads to the separate

thread that runs in the background, similar to Web Workers, which can help us prevent UI freezes

and ensure smooth interactions, even when we’re performing resource-intensive operations.

https://developer.mozilla.org/en-US/docs/Web/API/PerformanceObserver
https://developer.mozilla.org/en-US/docs/Web/API/PerformanceObserver
https://rxjs.dev/api/index/function/fromEventPattern
https://rxjs.dev/api/index/function/fromEventPattern

Performance Optimizations with RxJS132

How to do it…
In this recipe, we’ll simulate computationally intensive operations by creating a web worker and

running one million iterations of some simple transformations.

Step 1 – Setting up a web worker in Angular
If we want our web worker to be located in src/app/app.component.ts, we can simply run the

following command in our terminal:

ng generate web-worker app

In our example, the web worker will run one million iterations. To simulate some form of data

processing, we’ll do the following:

1.	 On every fifth iteration, we’ll return null as a result.

2.	 On every tenth iteration, we’ll return the previous result, not the current one.

3.	 Otherwise, we’ll double the iteration number as a result.

4.	 We’ll call the postMessage() method to get the result from the web worker and send it

back to the main thread.

Step 2 – Subscribing to web worker messages
To get to the worker file, we must instantiate a new Worker class and provide the path to our worker.

Then, we can start the worker by sending a message where we provide the number of iterations:

ngOnInit(): void {

 const worker = new Worker(new URL(

 './app.worker',

 import.meta.url

));

 worker.postMessage({ iterations: 1_000_000 });

 const message$ = fromEvent<MessageEvent>(

 worker,

 'message'

);

 message$.subscribe((data) => {

 console.log('Received message from worker:', data);

 });

}

Chapter 5 133

After that, we’re ready to create a stream of message events and react to them. But if we open Dev

Tools and start using the application, after some time, the application will get slower and slower,

even though we’re processing a long task in the background.

This means that we can take message subscriptions and apply additional performance

optimizations.

Step 3 – Optimizing the worker messages stream
At the moment, we can see room for improvement in several areas:

•	 We get the whole MessageEvent interface as a result of the stream, but we’re only interested

in data.

•	 Null values are included in the result.

•	 There are duplicated successive values.

•	 The number of events is causing the console to break due to memory overload.

We can address and fix these issues by applying certain RxJS operators:

const message$ = fromEvent<MessageEvent>(

 worker,

 'message'

).pipe(

 filter(({ data }) => data !== null),

 map(({ data }) => data),

 distinctUntilChanged(),

 bufferCount(1000),

 throttleTime(10),

 share()

);

Let’s break down what we’ve done here:

1.	 First, we used the filter operator to exclude null values.

2.	 Then, we transformed the stream by mapping data values, not the whole event from the

web worker.

3.	 We filtered out duplicate values with the distinctUntilChanged operator.

4.	 Then, we collected 1,000 events and placed them into a buffer with bufferCount. We

significantly improved memory usage by doing so.

Performance Optimizations with RxJS134

5.	 By using throttleTime, we skipped collecting messages every 10 milliseconds since not

all messages are that important, and we’re looking to round up the result.

6.	 Finally, we used share to return the cached result immediately to multiple subscribers.

Now, our message stream is much more efficient and performant in delivering worker messages.

See also
•	 Angular docs guide about Web Workers: https://angular.dev/ecosystem/web-

workers#adding-a-web-worker

•	 MDN Web Workers docs: https://developer.mozilla.org/en-US/docs/Web/API/Web_
Workers_API/Using_web_workers

•	 RxJS’s bufferCount operator: https://rxjs.dev/api/operators/bufferCount

•	 RxJS’s throttleTime operator: https://rxjs.dev/api/operators/throttleTime

•	 RxJS’s share operator: https://rxjs.dev/api/operators/share

https://angular.dev/ecosystem/web-workers#adding-a-web-worker
https://angular.dev/ecosystem/web-workers#adding-a-web-worker
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://rxjs.dev/api/operators/bufferCount
https://rxjs.dev/api/operators/throttleTime
https://rxjs.dev/api/operators/share

6
Building Reactive State
Management Systems with RxJS

State management is hard, and for good reason. If we imagine the perfect state management library,

the main features of that library would be scalability, predictability, performance, maintainability,

developer experience, and flexibility. RxJS can help us with all of that. It can make our state more

scalable by efficiently managing the complexity of data flows and user interactions throughout

our app. We can model state changes as streams of events in a structured way, so it is easier to

reason about state complexity. Also, RxJS enables us to express state changes declaratively and

react to state changes in a natural way, where changes are propagated automatically throughout

the system as they occur, which can lead to more efficient state updates, performance-wise. All

of this makes state changes more predictable and testable, as well as easier to debug.

In this chapter, we’re going to cover some of the most advanced and sophisticated ways of

managing RxJS state:

•	 Building custom client-side state management

•	 Using NgRx for state management in Angular

•	 TanStack Query, meet RxJS – building your own TanStack query with Angular and RxJS

Building Reactive State Management Systems with RxJS136

Technical requirements
To follow along with this chapter, you’ll need the following:

•	 Angular v19+

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for the recipes in this chapter can be found in the GitHub repository here: https://
github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/
Chapter06

Building custom client-side state management
Imagine the perfect state management we mentioned in the introduction. What features would

that state manager have? It would likely combine the best features from the best-known existing

libraries. We would expect features such as the following:

•	 Global state access: Effortless access to the state from any component

•	 Predictable state updates: Without unwanted side effects

•	 Scalability: Easily grow your app to an infinite number of new modules/features, managing

data flow complexity with ease

•	 Reactivity: Carry out an automatic component state refresh whenever there is a state

update

•	 Granular control: The ability to create slices of smaller, more manageable states, each

responsible for a specific domain

•	 Performance: Targeted re-renders for efficient state updates, providing the best possible

user experience

•	 Handling errors and side effects: Gracefully handling network requests and creating

resilient error handling

•	 Developer experience: Clear and concise usage, easy mental model when thinking about

state changes, and integrated debugging tools

We know that there are a lot of libraries that solve these problems, but to truly appreciate a

library, let’s try to create our very own minimum Redux-like state management from scratch and

understand the underlying complexity behind a system like this.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06

Chapter 6 137

This is how Redux data flow usually looks like:

Figure 6.1: Redux mental model

How to do it…
In this example, we will build a small Cooking Recipes app, where we will load a list of recipes

from the mocked data (using MockServiceWorker) and show them in the list. Also, we will have

the ability to know which recipe is selected at the moment, and we will represent that in a separate

state. For this recipe, we are not using any library for state management, but rather building our

own custom one.

Step 1 – Defining the state
We’ll start off by creating a recipes-store.service.ts file that will act as a state manager.

First, we will put our state into a BehaviorSubject class. It can provide a solid foundation

to build a simple, flexible, and reactive state. With BehaviorSubject, we can easily notify all

subscribers about state changes by pushing new values, but also pulling the latest state value,

since BehaviorSubject maintains and provides a current state value to all subscribers:

import { BehaviorSubject } from "rxjs";

export class RecipesStoreService {

 private initialState: AppState = {

 recipesState: {

 recipes: [],

 selectedRecipe: null,

 error: null,

 loading: false,

 },

 ordersState: {

Building Reactive State Management Systems with RxJS138

 orders: [],

 }

 };

 private state$ = new BehaviorSubject<AppState>(

 this.initialState

);

}

Step 2 – Dispatching actions
Now we need to somehow provide the ability to dispatch an action that can change the state, in

an immutable way. For this, we can use an RxJS Subject to establish one-way communication

and broadcast events that happened within the system:

export class RecipesStoreService {

 public actions$ = new Subject<Action>();

 constructor() {

 this.actions$.pipe(

 withLatestFrom(this.state$),

 map(([action, state]) => rootReducer(

 state, action))

).subscribe((state: AppState) => {

 this.state$.next(state);

 });

 }

 dispatch({ type, payload }: Action): void {

 this.actions$.next({

 type,

 payload

 });

 }

}

After dispatching an action, we will notify all the subscribers and start reacting to this new

action, based on its type. In the following code, we combine the dispatched action with the

withLatestFrom state that we have already defined in Step 1 and apply a pure reducer function

to make that state transition in an immutable way.

Chapter 6 139

Let’s say that in our recipes.actions.ts, we have action creators like so:

export interface Action<T = any> {

 type: string;

 payload?: T;

 error?: Error

}

export const LOAD_RECIPES = 'LOAD_RECIPES';

export const LOAD_RECIPES_SUCCESS = 'LOAD_RECIPES_SUCCESS';

export const LOAD_RECIPES_ERROR = 'LOAD_RECIPES_ERROR';

export const loadRecipesAction = (): Action => ({

 type: LOAD_RECIPES

});

export const loadRecipesActionSuccess = (payload:

 Recipe[]): Action => ({

 type: LOAD_RECIPES_SUCCESS,

 payload

});

export const loadRecipesActionError = (error: Error):

 Action => ({

 type: LOAD_RECIPES_ERROR,

 error

});

We will dispatch loadRecipesAction initially when the component mounts. As a result, a root

reducer will react to a corresponding action and apply state transition changes. We define our

on function as follows:

export function on(

 actionType: string,

 reducerFn: Reducer<AppState, Action>

) {

 return { actionType, reducerFn };

}

Building Reactive State Management Systems with RxJS140

Step 3 – Applying the reducer function for state transitions
In our recipes.reducer.ts file, we’ll create a reducer that will catch dispatched actions and

make a state transition based on an action type and its payload:

function createReducer(

 ...ons: Record<string, any>[]

): Reducer<AppState, Action> {

 return function (state: AppState, action: Action) {

 for (let on of ons) {

 if (action.type === on.actionType) {

 return on.reducerFn(state, action);

 }

 }

 return state;

 };

}

export const recipesReducer = createReducer(

 on(LOAD_RECIPES, (state: AppState) => Object.assign(

 {},

 structuredClone(state),

 { loading: true }

 })),

 on(LOAD_RECIPES_SUCCESS, (

 state: AppState,

 { payload }: Action

) => Object.assign(

 {},

 structuredClone(state),

 { recipes: payload ?? [], loading: false }

 })),

 on(LOAD_RECIPES_ERROR, (

 state: AppState,

 { payload }: Action) => Object.assign(

Chapter 6 141

 {},

 structuredClone(state),

 { error: payload, loading: false }

 })),

)

We have created a reducer function by going through all possible actions, filtering out the action

that actually happened, and applying a reducer function on the action that was dispatched.

For now, there is a way for us to dispatch a synchronous action and transition state, but what

about handling a network request that loadRecipesAction should trigger?

Step 4 – Handling side effects
Back in our RecipeStoreService class, we will add a simple method that will handle effect creation

and map it to the corresponding action that needs to happen after the effect is triggered:

createEffect(handler: () => Observable<Action>) {

 return handler().pipe(

 map(({ type, payload, error }) => this.dispatch({

 type,

 payload: payload ?? error

 })),

);

}

Now we are ready to handle side effect in RecipeService, which is responsible for communication

with the backend:

export class RecipesService {

 loadRecipes$ = this.recipeStore.createEffect(() => {

 return this.recipeStore.actions$

 .pipe(

 ofType(LOAD_RECIPES),

 exhaustMap(() => this.getRecipes().pipe(

 map(res => loadRecipesActionSuccess(res)),

 catchError((error: Error) =>

 // gracefully error exit and continue stream

 of(loadRecipesActionError(

Building Reactive State Management Systems with RxJS142

 error.message ?? error

))

)

))

);

 });

 getRecipes(): Observable<Recipe[]> {

 return this.http.get<Recipe[]>('/api/recipes');

 }

 loadRecipes(): void {

 this.recipeStore.dispatch(loadRecipesAction());

 }

}

In the preceding code, we have a small utility function, ofType, similar to NgRx, which will filter

incoming actions, and handle a side effect for a specific action:

export function ofType(type: string) {

 return (source: Observable<Action>) => source.pipe(

 filter(action => action.type === type)

);

}

What might be of interest here is the usage of the RxJS exhaustMap operator, which can help us

with the following:

•	 Preventing redundant actions

•	 Rate limiting – new request won’t be initiated until the previous one finishes

•	 Sequential requests – if you have a series of operations that need to be performed in

sequence, and each operation depends on the result of the previous one, exhaustMap can

ensure that each operation completes before the next one starts

Chapter 6 143

Great, now our reducer will pick up the LOAD_RECIPES_SUCCESS action, extract the response

data payload, and update the state. In case of an error, the LOAD_RECIPES_ERROR action will be

dispatched, and the state will be updated with the error message.

Step 5 – Slicing the state
Now that we can dispatch an action, transition to the desired state, and handle side effects, we

can subscribe to the slice of the store inside of our component and display data from the backend.

Inside our recipes-store.service.ts, we will create a selector, with the ability to derive a

specific piece of data from the app state:

selectState$(

 selector?: (state: AppState) => Partial<AppState>,

 cachedValues = 1

): Observable<Partial<AppState>> {

 return this.state$.asObservable().pipe(

 map((selector || ((state) => state))),

 shareReplay(cachedValues),

);

}

What might be interesting here is the usage of the shareReplay operator, which is especially

useful in scenarios where we want to multicast the same cached value to multiple subscribers.

What this means in our case is that whenever we call the same selector in any different part of the

application, those late-state subscribers would catch up on the previously emitted values. This

way, we optimize app performance by returning the latest cached value immediately, without

the need to calculate this slice of the same state again.

exhaustMap versus switchMap

When handling concurrent requests in our effect, we can achieve almost the same

result with the switchMap operator. The only difference is that if the same request is

triggered before an ongoing request has finished, it will cancel the previous one and

start the new request. On the other hand, exhaustMap will wait for the first request

to resolve, and it will ignore new incoming requests. The approach we choose here

might vary between different product use cases or personal preference.

Building Reactive State Management Systems with RxJS144

Finally, in our recipes-list.component.ts component, we can subscribe to a specific slice of

a state:

export class RecipesListComponent {

 recipes: Recipe[] = [];

 constructor(

 private recipeStore: RecipesStoreService,

 private recipesService: RecipesService

) { }

 ngOnInit() {

 this.recipesService.loadRecipes();

 this.recipeStore.selectState$((

 state: Partial<AppState>

) => state.recipesState?.recipes).subscribe(

 (recipes: Partial<AppState>) => {

 this.recipes = recipes as Recipe[];

 }

);

 }

}

How shareReplay works under the hood

Under the hood, this operator leverages ReplaySubject, and in that way man-

ages to multicast emitted values from the source Observable to the multiple sub-

scribers. By default, shareReplay will cache the number of passed buffer values

forever. Even when the number of subscribers drops to 0, it will not unsubscribe

from ReplaySubject. If we are not careful, this might cause memory leaks in our

application, but we might want to do this in cases when we want to avoid expensive

computations for Observables that are frequently used, such as state selectors. If

we want to have programmatic control over this behavior, shareReplay provides

a configuration object that can be passed as an argument. Also, if would like un-

subscriptions to be automatically handled by RxJS, we might consider using the

share operator.

Chapter 6 145

And voilà!

Figure 6.2: Cooking Recipes app

Now, if we open our app in a browser, we can see the list of cooking recipes that represent the

client state.

Step 6 – Creating composable reducers
Often, we want to combine multiple reducers and compose them in a declarative, functional way.

For these purposes, we will create a custom function that will combine the state and actions of

two different reducers:

function combineReducers<S, A extends Action>(

 reducers: { [K in keyof S]: Reducer<S[K], A> }

): Reducer<S, A> {

 return (state: S | undefined, action: A): S => {

 if (! state) return {} as S;

 const newState = { ...state } as S;

Building Reactive State Management Systems with RxJS146

 for (let key in reducers) {

 newState[key] = reducers[key](state[key],

 action);

 }

 return newState;

 };

}

Now, our rootReducer looks as follows:

export const rootReducer = combineReducers({

 recipesState: recipesReducer,

 ordersState: recipeOrderReducer

});

Step 7 - Creating meta-reducers
Developer experience is one of the most essential considerations when using state management

libraries. It is important that we detect bugs quickly and effectively react to state changes. For

these purposes, we will create a custom logging meta-reducer:

export function logMetaReducer(

 target: Function,

 context: any

) {

 return function (...args: any[]) {

 const [,{ type, payload }] = args;

 console.log(`%cCalling Action: ${type}\n`,

 'color: #d30b8e', payload);

 const result = target.apply(context, args);

 console.log(`%cAction ${type} state:\n`,

 'color: #ffc26e', result);

 return result;

 };

}

Chapter 6 147

To apply a meta-reducer to each reducer, we will wrap it around rootReducer, so it becomes the

following:

export const rootReducer = logMetaReducer(combineReducers({

 recipesState: recipesReducer,

 ordersState: recipeOrderReducer

}), this);

In our console, we can see our meta-reducer in action and observe all dispatched actions and

state transitions!

Figure 6.3: Meta-reducer logger

See also
•	 MSW: https://mswjs.io/

•	 The shareReplay operator: https://rxjs.dev/api/index/function/shareReplay

•	 The share operator: https://rxjs.dev/api/index/function/share

•	 The exhaustMap operator: https://rxjs.dev/api/operators/exhaustMap

•	 The switchMap operator: https://rxjs.dev/api/operators/switchMap

•	 The structuredClone global browser function: https://developer.mozilla.org/en-
US/docs/Web/API/structuredClone

https://mswjs.io/
https://rxjs.dev/api/index/function/shareReplay
https://rxjs.dev/api/index/function/share
https://rxjs.dev/api/operators/exhaustMap
https://rxjs.dev/api/operators/switchMap
https://developer.mozilla.org/en-US/docs/Web/API/structuredClone
https://developer.mozilla.org/en-US/docs/Web/API/structuredClone

Building Reactive State Management Systems with RxJS148

Using NgRx for state management in Angular
NgRx is a framework for building reactive applications with Angular, inspired by Redux. The

following diagram from the NgRx docs provides a more visual overview of the key components

of NgRx:

Figure 6.4: NgRx overview

With NgRx, we can do the following:

•	 Define the global and local stores

•	 Write side effects for handling async operations

•	 Dispatch actions

•	 Define reducers as pure functions for predictable state changes

•	 Write selectors for more granular control over the state

•	 Carry out time-travel debugging

•	 Normalize entity data

•	 Integrate with Angular router state

•	 Create a reactive store with Signals support

Chapter 6 149

Now that we have a high overview of NgRx, let’s dive into a practical example of how we can deal

with state management challenges.

How to do it…
In this example, we will build a small Cooking Recipes app, where we will load a list of recipes

from the mocked BE (using MockServiceWorker) and show them in the list. Also, we will have

the ability to know which recipe is selected at the moment. The recipe is pretty much the same

as the previous one, but this time, we are leveraging NgRx as a solution for state management, so

we can compare the reduced code complexity and edge cases we have to pay attention to, once

we have a full production-ready state management solution. Also, we will explore some of the

additional features that NgRx offers us, to make our code even more scalable, robust, and up to

the latest trends. In the end, we will connect our store to Angular Router, so we are aware of all

navigations and router states.

Step 1 – Configuring a NgRx store
In our global config, app.config.ts, first we need to provide a store from NgRx so that the store

is available globally throughout our application:

import { RootStoreConfig } from '@ngrx/store';

export const appConfig: ApplicationConfig = {

 providers: [

 provideStore(reducers as RootStoreConfig<AppState,

 Action>)

]

}

Important note

At the time of writing this recipe, the latest Angular and NgRx versions were v18. In

the examples, we are using the standalone approach to writing components and

providing services with appConfig. If you are using the older module approach, the

code may vary a bit, but the main approach and concepts relating to state manage-

ment should stay the same.

Building Reactive State Management Systems with RxJS150

AppState is an interface where we will define the structure of our global state:

export interface RecipesState {

 recipes: Recipe[];

 selectedRecipe: Recipe | null;

 error: Error | null;

 loading: boolean;

}

export interface AppState {

 recipesState: RecipesState;

}

In our recipes.reducers.ts, we can now define our feature reducer, which will control how the

state would transition depending on dispatched actions:

import { map, catchError, of, exhaustMap } from "rxjs";

import { Actions, createEffect, ofType } from "@ngrx/effects";

export const initialState: State = {

 recipes: [],

 selectedRecipe: null,

 error: null,

 loading: false,

}

export const recipeReducer = createReducer(

 initialState,

 on(RecipesActions.loadRecipesAction, state => ({

 ...state,

 loading: true,

 })),

 on(RecipesActions.loadRecipesActionSuccess, (state, { recipes }) => ({

 ...state,

 recipes,

 loading: false,

 })),

Chapter 6 151

);

export const recipesFeature = createFeature({

 name: 'recipesState',

 reducer: recipeReducer,

});

In the preceding code, we defined the initial app state, created recipeReducer, which will handle

state transitions, and in the end, connected our reducer to the feature state. Also, we can notice

that if we dispatch loadRecipesActions, we will change the loading state to show the loader,

and once the request has completed, we will set loading back to false to hide the spinner and

set the received data as the response. A list of actions that we can dispatch is declared in recipes.

actions.ts, and it looks like this:

import { createAction, props } from "@ngrx/store";

export const loadRecipesAction = createAction('[Recipes] Load Recipes');

export const loadRecipesActionSuccess = createAction(

 '[Recipes] Load Recipes Success', props<{ recipes: Recipe[] }>()

);

export const loadRecipesActionError = createAction(

 '[Recipes] Load Recipes Error', props<{ error: string }>()

);

Now we are ready to dispatch actions from our components. In RecipeListComponent, after

injecting the store from @ngrx/store components, we can just call the action that will start

fetching recipes:

this.store.dispatch(loadRecipesAction());

Step 2 – Handling side effects
Sending an HTTP request and loading data is an external interaction or side effect, so we must

define that as an async action. In our recipes.effects.ts, we have the following:

import { map, catchError, of, exhaustMap } from "rxjs";

import { Actions, createEffect, ofType } from "@ngrx/effects";

export class RecipesEffects {

 loadRecipes$ = createEffect(() =>

Building Reactive State Management Systems with RxJS152

 this.actions$.pipe(

 ofType(loadRecipesAction),

 exhaustMap(() => this.recipesService.getRecipes$().pipe(

 map(recipes => loadRecipeActionSuccess({

 recipes

 })),

 catchError((error: Error) =>

 of(loadRecipeActionError({

 error: error.message

 }))

)

))

)

);

}

In this effect, we may observe that when an action of a certain type happens, we can trigger a

corresponding side effect. NgRx has a built-in action filter with the ofType operator that matches

actions being triggered and reacting upon them. So, when loadRecipesAction happens, we call

our BE service and react to success and error cases. Like in the preceding recipe, note the use of

the RxJS exhaustMap operator.

Step 3 – Defining selectors
NgRx offers us a really nice ability for granular control over the state by defining selectors that

can create slices of our state. You can think of a selector as a query for a specific part of the state

that you want to display within your components. There are multiple benefits of this approach:

•	 Readability and maintainability: We can extract logic for extracting the slices of state

we need outside of a component

•	 Memoization: All selectors are cached by default, so we can have performance improvements,

especially with complex state structures

•	 Composability: Selectors can be combined to have even more granular control

Chapter 6 153

•	 Testability: Since selectors are pure functions and have no side effects, they can easily

be tested

•	 Type safety: This helps us with intelligent code completion and early error detection,

improving the overall developer experience

In our recipes.selector.ts, we have a slice of a state called selectRecipesState. This means

that we can create a feature selector for that piece of state and create composable selectors for

sub-pieces of feature state:

import { createFeatureSelector } from '@ngrx/store';

import * as fromRecipes from './recipes.reducer';

export const selectRecipesState =

 createFeatureSelector<fromRecipes.State>('recipesState');

export const selectRecipesWithSelectedRecipes =

 createSelector(

 selectRecipesState,

 (state: fromRecipes.State>) => state.selectedRecipe

);

At this point, we have already managed to reproduce the same behavior from our previous recipe.

Talking about reduced complexity, right?

Now, let’s explore additional features of NgRx, and additionally improve our Cooking Recipes app.

Step 4 – Extending app state with NgRx Router State
With Router State, we can seamlessly integrate Angular’s router with our app state to have all

the benefits we already have (such as time-travel debugging, selectors, and improved testability)

also for routing and navigation events. First, in our store config, we provide the Router store and

add routerReducer to be part of AppState:

import { RootStoreConfig } from '@ngrx/store';

import { provideRouterStore, routerReducer } from '@ngrx/router-store';

export const appConfig: ApplicationConfig = {

 providers: [

 provideStore(reducers, {

 router: routerReducer

Building Reactive State Management Systems with RxJS154

 } as RootStoreConfig<AppState, Action>),

 provideRouterStore()

]

}

Back in reducers/index.ts, we will add a router state to be part of AppState:

import * as fromRouter from '@ngrx/router-store';

export interface AppState {

 recipesState: RecipesState;

 router: fromRouter.RouterReducerState;

}

A nice addition to this is the router selectors, which we can use right out of the box:

export const {

 selectCurrentRoute, // select the current route

 selectFragment, // select the current route fragment

 selectQueryParams, // select the current route query params

 selectQueryParam, // factory function to select a query param

 selectRouteParams, // select the current route params

 selectRouteParam, // factory function to select a route param

 selectRouteData, // select the current route data

 selectRouteDataParam, // factory function to select a route data param

 selectUrl, // select the current url

 selectTitle, // select the title if available

} = getRouterSelectors();

export const selectRecipesWithCurrentRoute = createSelector(

 selectRecipesState,

 selectCurrentRoute,

 (recipesState, routerState) => ({

 recipesState,

 routerState

 })

);

Chapter 6 155

Now, in our recipes-list.component.ts, we can subscribe to this slice of state:

import { select } from '@ngrx/store';

this.store.pipe(select(

 fromRecipes.selectRecipesWithCurrentRoute

)).subscribe(({ recipesState: { recipes } }) => {

 this.recipes = recipes;

});

Also, if we open NgRx Dev Tools, we can see router events being dispatched while we are navigating

around the app.

Figure 6.5: NgRx Store DevTools

Step 5 – Creating meta-reducers
Sometimes, we want to intercept the action before it modifies a state and do some work in between.

Some of the use cases might be logging for debugging purposes, state persistence to local storage,

and performance monitoring. In our example, we have implemented a simple logging system.

First, we define a meta-reducer as part of the store config:

import { RootStoreConfig } from '@ngrx/store';

import { provideRouterStore, routerReducer } from '@ngrx/router-store';

import { metaReducers } from './reducers/recipes.meta-reducer';

Building Reactive State Management Systems with RxJS156

export const appConfig: ApplicationConfig = {

 providers: [

 provideStore(reducers, {

 metaReducers,

 router: routerReducer

 } as RootStoreConfig<AppState, Action>),

]

}

Now, in our recipes.meta-reducer.ts, we can implement our custom debug function that will

act as middleware between an action and a reducer.

Note that we are running this middleware only in dev mode, not in production:

import { isDevMode } from '@angular/core';

import { ActionReducer, MetaReducer } from '@ngrx/store';

export function debug<T>(reducer: ActionReducer<T>): ActionReducer<T> {

 return function (state, action) {

 console.log(`%cState:\n`, 'color: #ffc26e', state);

 console.log(`%cCalling Action: ${action.type}\n`,

 'color: #d30b8e');

 return reducer(state, action);

 };

}

export const metaReducers: MetaReducer<AppState>[] =

 isDevMode() ? [debug] : [];

After applying metaReducer in the app config, we may observe in the browser console all actions

being dispatched with the payload and current state.

Chapter 6 157

Figure 6.6: Logging the meta-reducer

See also
•	 NgRx docs: https://ngrx.io/docs

•	 Redux DevTools: https://chromewebstore.google.com/detail/redux-devtools/lmh
kpmbekcpmknklioeibfkpmmfibljd?pli=1

https://ngrx.io/docs
https://chromewebstore.google.com/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?pli=1
https://chromewebstore.google.com/detail/redux-devtools/lmhkpmbekcpmknklioeibfkpmmfibljd?pli=1

Building Reactive State Management Systems with RxJS158

TanStack Query, meet RxJS – building your own
TanStack query with Angular and RxJS
TanStack Query has taken over our community by storm as a go-to async state management library,

and for good reason. There are many benefits to using TanStack Query, such as the following:

•	 Declarative data fetching

•	 Automatic caching and re-fetching

•	 Robust error-handling mechanisms – gracefully manage failures and automatically retry

failed requests

•	 Automatic garbage collection

•	 Excellent developer experience – dedicated Dev Tools that make it easier to debug and

inspect your queries

One thing that we may notice from the first usage when working with TanStack Query is that it

only supports promises and not Observables. But asynchronous programming and handling side

effects are where RxJS can really excel. So, let’s build our very own custom, minimalistic version

of TanStack Query, but this time with the help of RxJS for managing async data flow.

How to do it…
In this example, we will build a small Cooking Recipes app in Angular, where we will load a list

of recipes from the mocked BE (using MSW) and show them in the list. The way we are going

to manage the state is by replicating a small set of features of TanStack Query, and we will call

it RxJS-Query.

The features we will replicate are the following:

•	 Declarative queries

•	 Automatic caching by query keys

•	 Smart background re-fetches – on window focus, network regain, or query key change

•	 The Stale-while-revalidate caching strategy

•	 Composable query keys

•	 Request cancelation

•	 Deduplication of request

•	 Retry mechanism on request failures

Chapter 6 159

•	 Garbage collection

•	 Small dev tools component to visualize cache store

Step 1 – Setting up declarative queries
If we look at TanStack’s documentation in Angular, we can see what one query would look like.

Let’s try to replicate the same dev experience and behavior. In our RecipesListComponent, we’ll

write our first query that will retrieve the list of recipes using the recipes query key:

export class RecipesListComponent {

 recipes$: Observable<QueryState<Recipe[]>>

 constructor(

 private queryClient: QueryClientService,

 private recipesService: RecipesService

) {}

 ngOnInit(): void {

 this.queryClient.injectQuery(

 ['recipes'],

 () => this.recipesService.getRecipes$(),

 { staleTime: 1000 * 5 }

);

 }

}

Step 2 – Caching queries with Map
Now we’ll check out QueryClientService and the implementation behind the injectQuery

function:

export class QueryClientService {

 private cache = new Map<

 string,

 { state$: BehaviorSubject<any>; lastFetched: number }

 >();

 private query<T>(

 key: string[],

 queryFn: () => Observable<T>,

 options: QueryOptions,

Building Reactive State Management Systems with RxJS160

): Observable<QueryState<T>> {

 const compositeKey = JSON.stringify(key);

 let cachedValue = this.cache.get(compositeKey);

 const { staleTime = 0, retryNo = 3, gcTime = 30000 } = options;

 let { state$ } = cachedValue || {};

 if (!state$) {

 // start a new state stream

 }

 return state$.asObservable();

 }

 public injectQuery<T>(

 queryKey: string[],

 queryFn: () => Observable<T>,

 queryOptions: QueryOptions,

): Observable<QueryState<T>> {

 return this.query<T>(queryKey, queryFn, queryOptions);

 }

}

Let’s break down this example and what we have so far:

1.	 First, we will create a Map cache, which will store our queries and Observable streams by

an array of query keys (or one big composable key). Each time we call a query function,

first we will check whether there is a cache value already there, and if it is, then we will

simply return an Observable value from the cache.

2.	 Now, let’s check what happens if there is no previous cached value, and we need to trigger

a new request (the code inside the !state$ if block):

state$ = new BehaviorSubject<QueryState<T>>({

 isLoading: true,

 isFetching: true,

});

this.cache.set(

 compositeKey,

 { state$, lastFetched: 0 }

Chapter 6 161

);

return state$.pipe(

 filter((state: QueryState<T>) => state.isFetching),

 switchMap((val) =>

 merge(

 of(val),

 queryFn().pipe(

 retry(retryNo),

 map((data) => {

 this.cache.set(compositeKey, {

 state$,

 lastFetched: Date.now() + staleTime,

 });

 return {

 data,

 isFetching: false,

 isLoading: false

 };

 }),

)

),

),

 shareReplay(1),

);

Let’s look at what we did here:

1.	 First, we set a new state with initial loading values. If you were wondering why we

need both the isLoading and isFetching states, it’s because we need isLoading

to represent when the data is loading for the first time, and we need to display a

spinner in the UI. We use isFetching when we do have data, but we are doing

smart background re-fetches to revalidate stale data.

2.	 Then, we set the cache immediately, and not when the request has finished. By

doing so, we deduplicate multiple of the same requests (if multiple components

are calling the same query). Also, the switchMap operator will cancel the previous

request if there is a new inbound request.

Building Reactive State Management Systems with RxJS162

3.	 Then, we merge the loading state with queryFn, in order not to lose the previous

loading state to show in the UI and to run in parallel queryFn, which sends the

request. After the request has been completed, we will extract the response data

payload, update the cache with values, and set staleTime (how long we consider

data to be fresh from that point on).

4.	 In the end, we cache all previous values with the shareReplay operator.

Step 3 – Caching with the stale-while-revalidate mechanism
This is a popular caching mechanism that is used by TanStack Query, inspired by HTTP Cache-

Control Header.

This means that whenever we request data by a query key, first we would check whether that

data is fresh, and if it is, we would return data immediately. But if it is stale, we would still display

the data, and do a background update to fetch fresh data, without disrupting the current user

flow. Once the background revalidation completes and fresh data is available, TanStack Query

seamlessly updates the UI to reflect the latest information. Key benefits of this approach are the

following:

•	 Improved perceived performance: Users experience faster initial load times because they

receive cached data immediately

•	 Reduced Server load: Fewer unnecessary requests are made to the server since cached

data is utilized

•	 Always up-to-date data: The background revalidation ensures that the displayed data is

eventually updated without requiring user interaction

In our example, we are going to achieve the same effect by defining staleTime in a number of

milliseconds as QueryOption:

type QueryOptions = {

 refetchOnWindowFocus?: boolean;

 refetchOnReconnect?: boolean;

The stale-while-revalidate response directive indicates that the cache could reuse

a stale response while it revalidates it to a cache.

– MDN docs

Chapter 6 163

 staleTime?: number;

 retryNo?: number;

 gcTime?: number;

 // ... other options

};

Now, our condition for returning the state value from the Map cache might be the following:

if (!state$ || Date.now() > cachedValue.lastFetched)

Step 4 – Background updates
TanStack Query does smart background re-fetches based on certain triggers:

•	 Window focus

•	 Network regain after lost connection

•	 Component mount

•	 Change of a query key

If there is a query key change, then we will simply treat that as a new entry and store it under

the new key in our Map cache. Component mount is also straightforward; once the component

is mounted, we will call the query function. But the missing parts are the first two triggers. Let’s

react to those events in an RxJS way:

private queryTriggers(

 key: string[],

 { refetchOnWindowFocus = true, refetchOnReconnect = true }:
QueryOptions,

): void {

 const focus$ = refetchOnWindowFocus

 ? fromEvent(window, 'focus')

 : from([]);

 const networkReconnect$ = refetchOnReconnect

 ? fromEvent(window, 'online')

 : from([]);

 merge(focus$, networkReconnect$).subscribe(

 () => this.refetch(key));

}

Building Reactive State Management Systems with RxJS164

We are using the RxJS fromEvent operator to create a stream of events; specifically, whenever we

focus inside of our app or regain network, a new event will be emitted, and we will be notified

about that. Once that happens, we call our RxJS-Query to do a background re-fetch and get us

fresh data. Also, we could opt out of that default behavior by passing the refetchOnWindowFocus

and refetchOnReconnect parameters:

public refetch(key: string[]): void {

 const compositeKey = JSON.stringify(key);

 const cachedValue = this.cache.get(compositeKey);

 let { state$, lastFetched } = cachedValue;

 if (state$ && Date.now() > lastFetched) {

 state$.next({ ...state$.value, isFetching: true });

 }

}

Since our state is BehaviourSubject, we can trigger a new HTTP request by calling the next

method and setting a new fetching state to true.

Step 5 – Automatic garbage collection
Based on gcTime, defined as part of QueryOptions, we can automatically track a query by key and

remove it from memory, to prevent memory leaks. gcTime can be infinite by default (we presume

that we’re going to need all data that has been fetched), but if we choose that we want to have a

smaller time frame to store the data under a query key, we can do so as well. Once we define that

time as, let’s say, 30 seconds, we can have a function in charge of removing the cached query:

public removeQuery(key: string[]): void {

 const compositeKey = JSON.stringify(key);

 const cachedValue = this.cache.get(compositeKey);

 let { state$ } = cachedValue;

 if (state$) {

 this.cache.delete(compositeKey);

 }

}

The way we can call this function after that gcTime period is by leveraging the power of RxJS

schedulers.

Chapter 6 165

In our example, at the end of our state stream, we can use the finalize operator and call

asyncScheduler (time-based scheduler):

finalize(() =>

 asyncScheduler.schedule(

 () => this.removeQuery(key),

 gcTime

),

)

Now that we have covered the main features of our RxJS Query, take a glance at the full example

in its full power here: https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-

Programming/tree/main/Chapter06/rxjs-query.

After this solid foundation, we could easily replicate the rest of TanStack Query’s functionality and

scale our RxJS Query, such as with mutations, optimistic updates, parallel requests, dependent

requests, pagination support, or offline support.

See also
•	 TanStack’s documentation: https://tanstack.com/query/latest/docs/framework/

angular/overview

•	 merge: https://rxjs.dev/api/index/function/merge

•	 The catchError operator: https://rxjs.dev/api/operators/catchError

•	 The shareReplay operator: https://rxjs.dev/api/index/function/shareReplay

•	 HTTP Cache-Control Header: https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Cache-Control

•	 The fromEvent operator: https://rxjs.dev/api/index/function/fromEvent

•	 RxJS schedulers: https://rxjs.dev/guide/scheduler

What is a scheduler?

An RxJS scheduler can help us with controlling the timing and execution of asynchro-

nous operations within streams. They provide fine-grained control over concurrency

and resource management, by letting us define an execution context in which an

Observable can notify Observers.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06/rxjs-query
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter06/rxjs-query
https://tanstack.com/query/latest/docs/framework/angular/overview
https://tanstack.com/query/latest/docs/framework/angular/overview
https://rxjs.dev/api/index/function/merge
https://rxjs.dev/api/operators/catchError
https://rxjs.dev/api/index/function/shareReplay
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://rxjs.dev/api/index/function/fromEvent
https://rxjs.dev/guide/scheduler

7
Building Progressive
Web Apps with RxJS

Progressive Web Apps (PWAs) are web applications that use modern web capabilities to deliver

a native app experience to users. They combine the best of web and mobile apps, providing a

seamless, reliable, and engaging user experience across different devices. What makes PWAs

special are features such as push notifications, offline access, background data sync, native app

experiences, and so on.

In this chapter, we will implement some of the core PWA features by covering the following recipes:

•	 Delivering real-time food order updates with RxJS push notifications

•	 Implementing reactive background data sync

•	 Building offline-ready applications seamlessly with RxDB

Technical requirements
To follow along in this chapter, you’ll need the following:

•	 Angular v19+

•	 RxJS v7

•	 Node.js v22+ and npm v11+

•	 RxDB

Building Progressive Web Apps with RxJS168

•	 NestJS v11+

•	 Dexie.js

The code for the recipes in this chapter is placed in the GitHub repository here: https://github.
com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter07.

To convert an Angular application to a PWA, we can run one simple command that will add all

the necessary configurations and a basic service worker to our project:

ng add @angular/pwa

Since service workers are one of the requirements for an app to be a PWA and enabled only in

production mode, we must build our app and serve it locally to observe each recipe in action. In

each recipe, we will use the simple http-server library to host the client app locally and observe

the offline mode in the browser by running the following command in the terminal:

npm run build && http-server ${build-location} -c-1 –o

Delivering real-time food order updates with RxJS
push notifications
Push notifications have become an important aspect of how users interact with our web and

mobile applications. With push notifications, we can get timely updates and important reminders

and alerts, drive user interaction, and increase conversions.

How to do it…
In order to deliver timely food order push notifications to our clients, we will combine RxJS power

both in the Angular client app and in the NestJS backend app. In this recipe, we need a backend

app as well because we need to deliver push notifications in a secure, authenticated way. The

common practice in the industry to achieve a web server identifying itself to the push service is

by leveraging Voluntary Application Server Identification (VAPID) keys.

Step 1 – Generating VAPID keys
Since VAPID keys act as a digital signature for push notifications, first, we need to generate a pair

of public and private VAPID keys. The way we can do that is by installing the web-push library

globally on our system, and calling the generate-vapid-keys command in the terminal:

npm install web-push -g

web-push generate-vapid-keys –json

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter07
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter07

Chapter 7 169

After that, we can pick the results from the console and use the keys on the backend side (or load

them from environment variables or a secure secret manager):

const vapidKeys = {

 publicKey: '//your public key',

 privateKey: '//your private key',

};

const options = {

 vapidDetails: {

 subject: 'mailto:example_email@example.com',

 publicKey: vapidKeys.publicKey,

 privateKey: vapidKeys.privateKey,

 },

};

Step 2 – Setting up a public key endpoint
Since we want to keep public and private keys on the server side, we will have an endpoint to get

a public key. Now, the client app can send a request and get a public key, which we will need for

sending push notifications to that client:

@Get('/api/publicKey')

getPublicKey() {

 return { publicKey: vapidKeys.publicKey };

}

Step 3 – Requesting push notification subscription
After the client gets a public key, we can request user permission to allow notifications in our

browser. Angular’s SwPush module takes away all the complexity behind interacting with the

browser’s Push API, by exposing the requestSubscription() method:

import { SwPush } from '@angular/service-worker';

interface PublicKeyResponse {

 publicKey: string;

}

@Injectable({ providedIn: 'root' })

export class PushNotificationService {

 constructor(private swPush: SwPush, private http: HttpClient) {}

Building Progressive Web Apps with RxJS170

 subscribeToNotifications() {

 this.http.get<PublicKeyResponse>(

 'http://localhost:3000/api/publicKey').pipe(

 switchMap((res: PublicKeyResponse) => {

 return this.swPush.requestSubscription({

 serverPublicKey: res.publicKey

 });

 }),

 catchError(err => {

 console.error(

 'Could not subscribe to notifications', err);

 return EMPTY;

 })

)

 .subscribe();

 }

}

After calling requestSubscription(), we will notice in our browser that we are asking the user

to allow push notifications:

Figure 7.1: Notification user permission

Chapter 7 171

Step 4 – Sending reactive push notifications from the API
At this point, we have user permission to show notifications in the browser. Now, we are ready

to send push notifications from the server. First, we define a notification payload object that we

are about to send to the client at a certain interval:

export const orderNotification = {

 [OrderStatus.ACCEPTED]: {

 "notification": {

 "title": "Order Accepted",

 "body": "Your order has been accepted and is

 being prepared.",

 "icon": "http://localhost:3000/assets/burger.jpg”,

 }

 },

 [OrderStatus.COURIER_ON_THE_WAY]: {

 "notification": {

 "title": "Courier on the way",

 "body": "Your order is out for delivery. Track

 your order in real-time.",

 "actions": [{"action": "location",

 "title": "Check Location"}],

 "data": {"onActionClick": {

 "default": {"operation": "openWindow",

 "url": "http://127.0.0.1:8080/

 geolocation?lat=12.9716&long=77.5946"},

 "rate": {"operation": "openWindow",

 "url": "http://127.0.0.1:8080/

 geolocation?lat=12.9716&long=77.5946"}

 }

 }

 }

 },

}

Building Progressive Web Apps with RxJS172

In this object, we will define what information each notification will have, and what user actions

will offer. We can notice that when a food order is being accepted, we will have a notification title,

body, and an icon. When the courier is on the way, we will have an action button, which will lead

to the PWA geolocation page to see the current location of our food delivery.

In our backend endpoint that should deliver the notifications, we can define the RxJS stream that

is calling the sendNotifications() method from the webpush package:

@Post('/api/subscriptions')

async addSubscription(@Body()sub:NotificationSubscription){

 return of(orderNotification[OrderStatus.ACCEPTED])

 .pipe(switchMap((notification) =>

 webpush.sendNotification(sub, JSON.stringify(

 notification), options)),

 delayWhen(() => this.

 foodOrderService.processOrder()),

 switchMap(() => webpush.sendNotification(sub,

 JSON.stringify(orderNotification[

 OrderStatus.COURIER_ON_THE_WAY]),

 options)),

 delay(4000),

 switchMap(() => webpush.sendNotification(sub,

 JSON.stringify(orderNotification[

 OrderStatus.DELIVERED]), options)),

);

}

Step 5 – Reacting to incoming push notifications
Finally, now that we have a backend endpoint that is sending us timely notifications, we can call

that endpoint from a client app and subscribe to the incoming push notification:

subscribeToNotifications() {

 this.http.get<PublicKeyResponse>(

 '/api/publicKey').pipe(

 switchMap((res: PublicKeyResponse) => {

 return this.swPush.requestSubscription({

 serverPublicKey: res.publicKey

 });

 }),

Chapter 7 173

 switchMap((sub: PushSubscription) =>

 this.http.post('/api/subscriptions', sub)),

 catchError(err => {

 console.error('Could not subscribe to

 notifications', err);

 return EMPTY;

 })

)

 .subscribe();

}

When we open our browser, we can observe incoming push notifications:

Figure 7.2: Food order push notifications

See also
•	 Angular University’s complete guide on push notifications: https://blog.angular-

university.io/angular-push-notifications/

•	 Angular documentation on push notifications: https://angular.dev/ecosystem/
service-workers/push-notifications

•	 The SwPush class documentation: https://angular.dev/api/service-worker/SwPush

•	 Firebase cloud messaging: https://firebase.google.com/docs/cloud-messaging

Implementing reactive background data sync
Background data sync in PWAs allows our application to synchronize data in the background,

even when the app is not actively being used. This ensures that the app’s data is always up to

date and provides a seamless user experience. This feature comes in handy, especially in offline

use cases, since it will keep data fresh and we can have access to fresh data in offline mode.

https://blog.angular-university.io/angular-push-notifications/
https://blog.angular-university.io/angular-push-notifications/
https://angular.dev/ecosystem/service-workers/push-notifications
https://angular.dev/ecosystem/service-workers/push-notifications
https://angular.dev/api/service-worker/SwPush
https://firebase.google.com/docs/cloud-messaging

Building Progressive Web Apps with RxJS174

How to do it…
In this recipe, we will simulate the PWA’s background sync of data by leveraging Angular’s

interceptors and Dexie.js, a small wrapper around the browser’s IndexedDB database.

Step 1 – Intercepting the recipe request
In services/recipes.service.ts, we have a simple HTTP request to our server:

getRecipes() {

 return this.http.get('/api/recipes');}

The way we can intercept each recipe request is by using Angular’s interceptors. In interceptors/

background-sync.interceptor.ts, we have generated a starting point for our background sync:

import { HttpInterceptorFn } from '@angular/common/http';

export const backgroundSyncInterceptor: HttpInterceptorFn =

 (req, next) => {

 return next(req);

};

Step 2 – Establishing background sync with API
Whenever there is an ongoing recipe request, we can set up a timer that will periodically send a

request in the background to check whether there are any data updates. By doing so every five

seconds, we will make sure that we have the latest fresh data in our web app:

import { HttpInterceptorFn } from '@angular/common/http';

import { exhaustMap, tap, timer } from 'rxjs';

export const backgroundSyncInterceptor: HttpInterceptorFn =

 (req, next) => {

 if (req.url.includes('/recipes')) {

 console.log(

 'Background sync request detected. Retrying

 request...');

 return timer(0, 5000).pipe(

 take(5),

 exhaustMap(() => next(req)),

);

Chapter 7 175

 }

 return next(req);

};

Step 3 – Setting up Dexie.js
One of the main features of PWAs is the ability to work offline. The perfect time to prepare for

offline conditions is when we are actually online. What we want here is to store the latest fresh

data on the client, so that we have access to the latest possible data, even when we go offline. We

will use the Dexie.js library to store data in IndexedDB after each background sync:

import Dexie from 'dexie';

export interface Recipe {

 id?: number;

 lastUpdated: number;

 data: {

 title: string;

 ingredients: string[];

 instructions: string;

 };

}

export class RecipesDB extends Dexie {

 recipes: Dexie.Table<Recipe, number>;

 constructor() {

 super('RecipesDB');

 this.version(1).stores({

 recipes: '++id'

 });

 this.recipes = this.table('recipes');

 }

}

export const db = new RecipesDB();

Building Progressive Web Apps with RxJS176

Let’s explore this code:

1.	 By calling the parent Dexie constructor, we create the RecipesDB database.

2.	 We specify the database schema version and store the recipes table with an auto-

incrementing primary key.

3.	 We reference the recipes table from RecipesDB.

Step 4 – Storing sync data in IndexedDB
Once we have the IndexedDB setup done, we can store data whenever we have fresh data gathered

from a background sync:

return timer(2000, 5000).pipe(

 take(5),

 exhaustMap(() => next(req)),

 switchMap((response) => {

 if (response instanceof HttpResponse) {

 return response.body as RecipeResponse[];

 }

 return EMPTY;

 }),

 concatMap(async ({ id, ...data }: RecipeResponse) => {console.log(id);

 const existingRecipe = await db.recipes.get(id);

 const isRecipeStale = existingRecipe &&

 existingRecipe.lastUpdated < data.timestamp;

 if (!existingRecipe) {

 console.log(`Adding recipe with id ${

 id} in IndexedDB.`);

 return db.recipes.add({ id, data,

 lastUpdated: data.timestamp });

 }

 if (isRecipeStale) {

 console.log(`Updating recipe with id ${

 id} in IndexedDB.`);

Chapter 7 177

 return db.recipes.update(id, { data,

 lastUpdated: data.timestamp });

 }

 console.log(`Recipe with id ${

 id} already exists in IndexedDB.`);

 return EMPTY;

 }),

 catchError((error) => {

 console.error('Error while syncing data:', error);

 return EMPTY;

 })

);

When we get a backend response, we will check whether the specific food recipe already exists in

IndexedDB. If not, we can add that recipe to the database. However, if it does exist, then we are

going to check whether the recipe data is stale so that we know whether we need to update that

recipe. Finally, if the recipe exists in the database and the data is fresh, we will gracefully exit and

continue the stream since no changes need to be made in the database.

When we open our browser and inspect DevTools, we can check out the results:

Figure 7.3: Recipes IndexedDB

Building Progressive Web Apps with RxJS178

Now that we have data stored in IndexedDB, we can create reactive queries on our IndexedDB

database. In app.component.rs, we can create a reactive query and display recipes data in the UI:

import { liveQuery } from 'dexie';

recipes$ = liveQuery(() => db.recipes.toArray());

Finally, when we run the application build and open our browser in offline mode, we will still

see the recipes data retrieved from IndexedDB.

Building offline-ready applications seamlessly with
RxDB
RxDB is a powerful reactive NoSQL database. What makes RxDB so powerful is its ability to

create efficient real-time apps, its offline-first approach, automatic background data updates,

and many more.

Since it’s built on top of RxJS, RxDB is reactive by default. We can write reactive database queries

that will update automatically whenever the underlying data changes. RxDB provides Observables

that act as change streams, allowing us to listen to any data modifications such as document

insertions, updates, and deletes.

By combining RxJS with its change streams, RxDB enables you to build applications that react to

data changes in real time, keeping the UI always in sync. Besides offline capabilities, this makes

RxDB a perfect fit to build a PWA.

Getting ready
Since RxDB provides a wide range of possibilities, its documentation is a great learning resource

for exploring all features. You can check it out here if your needs go beyond building a PWA:

https://rxdb.info/quickstart.html.

How to do it…
In this recipe, we will keep the scope to how to set up RxDB and leverage RxJS as much as we can.

We will build a small offline-first cooking app that keeps data in sync.

https://rxdb.info/quickstart.html

Chapter 7 179

Step 1 – Defining the recipe schema
With RxDB, we can create a schema of a database object. This might be important because the

schema can be used with RxDB to validate recipe objects, ensuring they have the correct structure

and required properties before being stored or processed in the database:

export const recipeSchema = {

 title: 'recipe schema',

 description: 'describes a simple recipe',

 primaryKey: 'id',

 type: 'object',

 version: 0,

 properties: {

 id: {

 type: 'string',

 },

 title: {

 type: 'string',

 primary: true,

 },

 ingredients: {

 type: 'array',

 items: {

 type: 'string',

 },

 },

 instructions: {

 type: 'string',

 },

 },

 required: ['title', 'ingredients', 'instructions'],

};

Building Progressive Web Apps with RxJS180

When we break down this schema, we might notice key parts:

•	 Schema metadata provides information about the schema, including its title, description,

primary key, type, and version

•	 The properties definition specifies the structure and types of the properties in the recipe

object

•	 The required property lists the properties that are mandatory for a valid recipe object

Step 2 – Creating RxDatabase
When we have our recipe schema in place, we can create a food recipes client database. In

services/rxdb.service.ts, we will have the following code:

import { RxDatabase, createRxDatabase } from 'rxdb';

import { getRxStorageDexie } from 'rxdb/plugins/storage-dexie';

async initDatabase(): Promise<RxDatabase> {

 const db = await createRxDatabase({

 name: 'recipesdatabase',

 storage: getRxStorageDexie()

 });

 await recipesDatabase.addCollections({

 recipes: {

 schema: recipeSchema

 }

 });

 return db;

}

First, we call the createRxDatabase method where we pass the database name and storage. We

use the Dexie.js plugin, which is a wrapper around the browser’s IndexedDB database.

After the database creation, we add a recipes collection with data schema. Now, we are ready

to store recipe data in IndexedDB.

Chapter 7 181

Step 3 – Subscribing to ChangeEvent
After the database and collection creation, we can perform CRUD operations on the recipe entity:

db.recipes.insert({

 id: crypto.randomUUID(),

 title: 'Spaghetti Carbonara',

 ingredients: ['spaghetti', 'eggs', 'bacon', 'parmesan

 cheese'],

 instructions: 'Cook spaghetti. Fry bacon. Mix eggs and

 cheese. Combine all ingredients.'

});

After inserting data into the RxDB collection, we can subscribe to ChangeEvent and track all

changes in our client database:

db.$.subscribe((changeEvent:

 ChangeStreamEvent<RxDocument) => {

 console.dir(changeEvent)

});

Also, in rxdb.service.ts, we can create an RxJS stream whenever we want to add a new recipe

and call the RxDB insert() method:

export class RxDBService {

 db$: Observable<RxDatabase> = from(this.initDatabase())

 .pipe(

 catchError((error) => {

 console.error('Error initializing database:',

 error);

 return EMPTY;

 }), retry(3),

 shareReplay({ bufferSize: 1, refCount: true })

);

 addRecipe$ = new Subject<Recipe>();

 constructor() {

 this.addRecipe$

 .pipe(

Building Progressive Web Apps with RxJS182

 withLatestFrom(this.db$),

 switchMap(([recipe, db]) =>

 db.collections['recipes'].insert(recipe)),

 catchError((error) => {

 console.error('Error inserting recipe:', error);

 return EMPTY;

 })

)

 .subscribe();

}

addRecipe(data: Recipe): void {

 this.addRecipe$.next(data);

}

}

Since the recipe title is the database’s primary key, we will get an error if we add the recipe with

the same title.

Step 4 – Searching for a recipe with RxQuery
To create a query with RxQuery, first, we need to include the RxQuery builder plugin in our app’s

main.ts file:

import { RxDBQueryBuilderPlugin } from 'rxdb/plugins/query-builder';

addRxPlugin(RxDBQueryBuilderPlugin);

After that, back in rxdb.service.ts, we can call the find() method on a collection and pass a

variety of selectors with Query Builder to search for the desired recipe by title:

recipes$ = new BehaviorSubject<Recipe[]>([]);

findRecipe$ = new Subject<string>();

constructor() {

 this.findRecipe$

 .pipe(

 withLatestFrom(this.db$),

 switchMap(

Chapter 7 183

 ([recipeTitle, db]) =>

 db.collections['recipes'].find().where(

 'title').eq(recipeTitle).$

),

 map((recipes: RxDocument[]) => recipes.map((r) =>

 r.toJSON()))

)

 .subscribe((recipes) => this.recipes$.next(recipes as

 Recipe[]));

}

findRecipe(recipeTitle: string): void {

 this.findRecipe$.next(recipeTitle);

}

Here, we can notice that we have searched the recipes collection to find a recipe whose title is an

exact match with the desired recipe. After that, with $, we can observe query results and update

the UI accordingly.

There’s more...
Here are a few points to note:

•	 Database migrations: As your application grows and your data schema evolves, RxDB

provides tools to manage these changes gracefully. You can define migration strategies

that automatically update your existing data to match the new schema, preventing data

loss and ensuring a smooth transition for your users. This also extends to the underlying

storage engine. If you need to switch from one storage type to another, RxDB allows you

to migrate all your data without any hiccups.

•	 Real-time replication: RxDB allows your application to seamlessly synchronize data with

various backends such as GraphQL, CouchDB, and even other RxDB instances, making

real-time collaboration a breeze. It achieves this through a simple, yet powerful replication

protocol that ensures data consistency across all connected clients. Even better, RxDB

excels in offline scenarios. Your app can continue to modify data while offline, and RxDB

will automatically synchronize those changes with the server once a connection is re-

established.

•	 Conflict resolution: RxDB acts as a safety net for your data when multiple users or offline

devices make changes to the same information. This ensures that your data stays consistent

even with many simultaneous edits, preventing data loss and confusion.

Building Progressive Web Apps with RxJS184

•	 Backup mechanism: In case of unexpected problems or data migrations, it can be a safety

net. RxDB makes this process easy by writing the backup to the computer’s filesystem

in a format that’s easy to understand and use. This gives us peace of mind knowing

that valuable data is secure and can be recovered if needed, like having an extra copy of

important files.

See also
•	 RxDB as a database for PWAs: https://rxdb.info/articles/progressive-web-app-

database.html

•	 RxDB as offline first: https://rxdb.info/offline-first.html

•	 RxQuery: https://rxdb.info/rx-query.html

•	 RxDB conflict resolution: https://rxdb.info/transactions-conflicts-revisions.
html#conflicts

https://rxdb.info/articles/progressive-web-app-database.html
https://rxdb.info/articles/progressive-web-app-database.html
https://rxdb.info/offline-first.html
https://rxdb.info/rx-query.html
https://rxdb.info/transactions-conflicts-revisions.html#conflicts
https://rxdb.info/transactions-conflicts-revisions.html#conflicts

8
Building Offline-First
Applications with RxJS

We live in an increasingly connected world, and because of this, it’s easy to overlook the

significance of offline functionality. However, the reality is that internet connectivity isn’t always

guaranteed. Whether it’s due to limited network coverage, or simply being in a remote location,

there are countless scenarios where users might find themselves without an internet connection.

This is where offline-first web apps come into play.

Offline-first web apps are designed to function seamlessly, even when users are offline. They

prioritize providing core functionality and data access without relying on a constant internet

connection. This approach has numerous benefits:

•	 Enhanced user experience: By ensuring that users can interact with an app regardless of

network availability, offline-first apps deliver a smoother and more consistent experience.

This eliminates the frustration of waiting for content to load or being unable to perform

basic tasks when offline.

•	 Increased accessibility: Offline capabilities make web apps more inclusive, especially in

areas with unreliable or limited internet access. This expands the potential user base and

ensures that everyone can benefit from the app’s features.

•	 Improved performance: Offline-first apps often load faster and respond more quickly,

as they leverage cached data and resources. This leads to a more efficient and enjoyable

user experience.

Building Offline-First Applications with RxJS186

•	 Reduced data costs: For users with metered or expensive data plans, offline functionality

can help minimize data usage. This is particularly valuable in regions where data costs

are high.

•	 Data synchronization: Offline-first apps typically implement mechanisms to synchronize

data with servers when connectivity is restored. This ensures that user data remains up

to date and consistent across devices.

In order to deal with the complexity of designing offline web apps, we can use different offline

strategies, carefully tailored for specific use cases:

Strategy Use Cases

Cache-First

Visuals that rarely change: Website logos, icons, background images, and

so on

App shell: The basic framework of a single-page application for instant

loading

Offline-accessible content: Documentation, help files, user manuals

Infrequently updated product images: E-commerce product photos that

remain static for a while

Network-First

Time-sensitive news articles: Breaking news, live updates, current events

Real-time social media feeds: Posts, comments, and interactions requiring

immediate updates

Constantly changing financial data: Stock prices, currency rates, market

information, game leaderboards

Dynamic user-generated content: New comments, forum posts, user

reviews

Productivity and collaboration tools: Shared documents, project

management boards, and communication platforms where real-time

updates are essential for effective teamwork

Chapter 8 187

Strategy Use Cases

Stale-While-

Revalidate

E-commerce product pages: Show a cached version first, then update price

and availability

Blog posts with occasional edits: Display the cached post while fetching

potential updates

Dashboards with live data: Show cached metrics initially, then refresh

with live server data

Content with moderate update frequency: Articles that might get minor

edits or updates

Cache-Network-

Race

Websites with mixed content: Static elements (header, footer) alongside

dynamic content (articles, comments).

Applications with real-time features: Display cached data instantly while

fetching live updates

Situations prioritizing speed above all: When the fastest possible response

is crucial, regardless of initial content freshness

Optimistic Update

Interactive forms and input fields: Provide immediate feedback by

updating the UI before server confirmation (e.g., adding a comment,

sending a message)

Simple actions with high user expectations for speed: Liking a post, adding

an item to a cart, favoring an item

Table 9.1: Offline strategies

In this chapter, we will cover the following recipes:

•	 Implementing seamless RxJS offline-first apps using a Cache-First strategy

•	 Prioritizing fresh data with RxJS network-first strategy

•	 Optimizing data freshness and performance with Stale-While-Revalidate Strategy

•	 Racing Cache and Network strategy

•	 Implementing the optimistic update pattern

Building Offline-First Applications with RxJS188

Technical requirements
To complete this chapter, you’ll need:

•	 Angular v19+

•	 Angular Material

•	 RxJS v7

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for recipes in this chapter is placed in the GitHub repository at https://github.com/

PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter08.

To make Angular applications work offline, we can run one simple command, which will add all

the necessary configurations and a basic service worker to our project:

ng add @angular/pwa

Since service workers are enabled only in production mode, to observe each recipe in action, we

must build our app and serve it locally. In each recipe, we will use the simple http-server library

to host the client app locally and observe offline mode in the browser by running the following

command in the terminal:

npm run build && http-server ${build-location} -c-1 –o

What is in common for all the recipes in this chapter is that whenever we have a step called Going

offline, it is a necessary step to do in order to check offline behavior.

Also, what is in common for all strategies in this chapter (except the optimistic update pattern)

is that we will need to generate an Angular interceptor. All of our logic to simulate offline mode

will be in a file offline.interceptor.ts.

In Angular, we can simply use the following command to generate our request interceptor:

ng generate interceptor interceptors/offline

Implementing seamless RxJS offline-first apps using a
Cache-First strategy
In this recipe, we’re going to explore how to implement an offline strategy where we first check

whether we have data inside the cache, then we fall back to the network.

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter08
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter08

Chapter 8 189

How to do it…
We are going to leverage Angular’s interceptors and simulate the same behavior as if we were

implementing the Cache-First offline strategy inside a service worker.

Step 1 – Extracting data from the Cache API
Usually, on the modern web, we store data for the offline mode inside a browser’s Cache API.

When we use offline mode, the Cache-first strategy says:

1.	 First, try to get the data from the Cache API.

2.	 If there is data in the cache, return it immediately to the interceptor as a response.

3.	 If the data is not matched by the request’s URL key, then we proceed to the network and

check whether we are back online.

The implementation of a strategy like this would be as follows:

export const offlineInterceptor: HttpInterceptorFn = (req:

 HttpRequest<unknown>, next: HttpHandlerFn) => {

 return openCache$.pipe(

 switchMap((cache: Cache) =>

 from(cache.match(req.url))),

 switchMap((cacheResponse: Response | undefined) => {

 if (cacheResponse) {

 return from(cacheResponse.json());

 }

 return continueRequest$;

 }),

 map((response: unknown) => {

 return new HttpResponse({

 status: 200,

 body: response

 })

 })

);

}

Building Offline-First Applications with RxJS190

Step 2 – Falling back to the network
When we have network access, everything runs smoothly because our data is just one HTTP

network request away. But we must not take this for granted, and this is a perfect time to prepare

for offline events by caching the latest fresh data:

const openCache$ = from(caches.open('my-app-cache'));

const continueRequest$ = next(req).pipe(

 withLatestFrom(openCache$),

 map(([response, cache]) => {

if (response instanceof HttpResponse) {

 cache.put(req.url, new Response(JSON.stringify(response.body)));

 return response.body;

 }

 return EMPTY;

 }),

 // exponential backoff if request fails (check Chapter01)

);

Let’s break down what we are doing here:

1.	 First, we create an Observable stream out of values returned from cache storage with

the my-app-cache key. Then, we combine that stream with the intercepted request

continueRequest$.

2.	 Then, we check whether we are online.

3.	 If that is the case, once we get the response from the network, we will open our cache

storage and put the latest fresh values there by the key to the corresponding request URL.

Now, we are ready for offline mode!

Chapter 8 191

Step 3 – Going offline
First, we would serve the application from a local server:

npm run build && http-server ./dist/rxjs-offline-cache-first/browser -c-1
–o

Now, if we open a browser and Dev Tools, we can start playing around:

Figure 8.1: Online request

On the Network tab, we can observe that there is an ongoing network request when we are online,

which is expected. What we also might notice is that on the Application tab, the cache storage

is visually represented. We can also see our cache entry, my-app-cache:

Building Offline-First Applications with RxJS192

Figure 8.2: Cache storage

Finally, if we go into offline mode, we will see that there is no ongoing or failing network request,

but the data is still there, and the whole app works as when it was back online.

Figure 8.3: Cache-first offline mode

Chapter 8 193

Prioritizing fresh data with RxJS network-first
strategy
In this recipe, we’re going to follow the opposite approach to the preceding recipe. Here, we’re

going to send a network request first, and if we are offline and the request fails, then we’ll fall

back to the cache. In this way, we can always have the latest fresh values in our cache, even when

we go offline.

How to do it…
We are going to leverage Angular’s interceptors and simulate the same behavior as if we were

implementing a network-first offline strategy inside a service worker.

Step 1 – Sending a network request when online
When we have our interceptor ready, we can intercept each HTTP request, update the cache

storage to keep the data fresh in the cache, and continue with the request:

const openCache$ = from(caches.open('my-app-cache'));

const continueRequest$ = next(req);

return continueRequest$.pipe(

 withLatestFrom(openCache$),

 map(([response, cache]) => {

 if (response instanceof HttpResponse) {

 cache.put(

 req.url,

 new Response(JSON.stringify(response.body)));

 }

 return response;

 }),

 catchError(() => cacheFallback(req, openCache$))

);

Let’s break down what we are doing here:

1.	 First, we create an Observable stream out of the values returned from the cache storage

with the my-app-cache key. Then, we combine that stream with the intercepted request,

continueRequest$.

Building Offline-First Applications with RxJS194

2.	 We send the request, and once we get the response from the network, we will open our

cache storage and put the latest fresh values there by the key to the corresponding request

URL.

3.	 When we go offline, the request will fail, and then we will fall back to the cache.

Step 2 – Falling back to the cache
If there is a network error, we will catch that error and implement cacheFallback:

const cacheFallback = (

 req: HttpRequest<unknown>,

 openCache$: Observable<Cache>

) => {

 return openCache$.pipe(

 switchMap((cache: Cache) =>

 from(cache.match(req.url))),

 switchMap((cacheResponse: Response | undefined) => {

 if (cacheResponse) {

 return from(cacheResponse.json());

 }

 return EMPTY;

 }),

 map((response: unknown) => {

 return new HttpResponse({

 status: 200,

 body: response

 })

 })

);

}

Chapter 8 195

When we experience the offline mode and network request fails, we do the following:

1.	 First, we open Cache API.

2.	 Then we check if there is a match in the cache with the current request URL.

3.	 If there is a match, we return cached data as a response.

4.	 If there is no match from the cache, we gracefully exit the stream.

Step 3 – Going offline
First, we would serve application from a local server:

npm run build && http-server ./dist/rxjs-offline-network-first/browser
-c-1 –o

Now, if we open a browser and Dev Tools, we can start playing around:

Figure 8.4: Online mode

Building Offline-First Applications with RxJS196

When we are online, we can see that the network request is being sent. The network response will

refresh our cache data so that we can have the latest possible values once we go offline.

Figure 8.5: Network-first offline mode

Once we go offline, we can see that the network request fails, but since we have a cache fallback,

everything works as expected, and we show the latest data from the cache.

An obvious drawback of this approach might be use cases where the network is slow. We would

wait for the slow network response, although we might have data from the cache ready to be

shown in the UI. The next two strategies aim to resolve that challenge.

Optimizing data freshness and performance with the
Stale-While-Revalidate strategy
Stale-While-Revalidate is a common strategy when we want to always show some data to the user,

even if the data might be out of date. After that, we send the network request in the background

and refresh the data afterward. This can also help us if we go offline since we can show the old

data first, then retry and check in the background if we are back online.

Chapter 8 197

How to do it…
We are going to leverage Angular’s interceptors and simulate the same behavior as if we were

implementing the Stale-While-Revalidate offline strategy inside a service worker. The strategy

here is to create two streams that will emit values in order, first for the cache data, and the second

for the network response data.

Step 1 – Extracting data from the cache
Now that our interceptor is ready, we can intercept each HTTP request, and show cached data

while we are offline:

const openCache$ = from(caches.open('my-app-cache'));

const dataFromCache$ = openCache$.pipe(

 switchMap((cache: Cache) => from(cache.match(req.url))),

 switchMap((cacheResponse: Response | undefined) => {

 if (cacheResponse) {

 return from(cacheResponse.json());

 }

 return EMPTY;

 }),

 map((response: unknown) => new HttpResponse({

 body: response

 })),

);

Let’s break down what we are doing here:

1.	 First, we open the cache, my-app-cache, and create an Observable stream from it.

2.	 Then, we check whether there is a match in the cache with the current request URL.

3.	 If there is cache data, we return it as a response.

4.	 If there is no cache data, we gracefully complete the stream without the result.

Building Offline-First Applications with RxJS198

Step 2 – Checking for the fresh data in the background
When we complete the stream from the cache storage, we will send the network request to check

for fresh data:

const continueRequest$ = next(req).pipe(

 withLatestFrom(openCache$),

 map(([response, cache]) => {

 if (response instanceof HttpResponse) {

 cache.put(

 req.url,

 new Response(JSON.stringify(response.body))

);

 }

 return response;

 }),

 // exponential backoff if request fails (check Chapter01)

);

Now, we can use the RxJS concat operator to control the sequence of events for the Stale-While-

Revalidate offline strategy:

return concat(

 dataFromCache$,

 continueRequest$

);

This means that if we experience offline conditions, first we show the cache data to the user, and

after we do that, we send a request in the background to check whether we are back online and

refresh the data.

Step 3 – Going offline
First, we will serve application from a local server:

npm run build && http-server ./dist/rxjs-offline-stale-while-revalidate/
browser -c-1 –o

Chapter 8 199

If we open a browser and Dev Tools, we can see this strategy in action:

Figure 8.6: Online request

On the Network tab, we can see that there is an ongoing network request when we are online,

which is expected. This is when we prepare for offline conditions and fill in our cache with the

latest data:

Figure 8.7: Stale-While-Revalidate offline mode

Building Offline-First Applications with RxJS200

Once we go into the offline mode, we can observe the Stale-While-Revalidate strategy in action.

We show cache data immediately, but we are checking in the background if we are back online.

Once we are back online, we are going to see fresh data from the server.

Racing Cache and Network strategy
We can think of this strategy as the winner takes all. We try to get the data from the cache and

from the network at the same time, and whoever is faster, we show their response. The strategy

aims to display data as quickly as possible, prioritizing the first available source. This strategy

ensures that users see content quickly, even if they are offline or have a slow network connection.

How to do it…
We are going to leverage Angular’s interceptors and simulate the same behavior as if we were

implementing Racing Cache and Network offline strategy inside of a service worker.

Step 1 – Extracting data from the cache
First, we are going to define a stream for extracting data from the cache:

let dataFromCache$: Observable<HttpEvent<unknown>>;

const openCache$ = from(caches.open('my-app-cache'));

dataFromCache$ = openCache$.pipe(

 switchMap((cache: Cache) => from(cache.match(req.url))),

 switchMap((cacheResponse: Response | undefined) => {

 if (cacheResponse) {

 return from(cacheResponse.json());

 }

 return NEVER;

 }),

 map((response: unknown) => {

 return new HttpResponse({

 status: 200,

 body: response

 })

 })

);

Chapter 8 201

Let’s break down what we are doing here:

1.	 First, we open the cache, my-app-cache, and create an Observable stream from it.

2.	 Then, we check whether there is a match in the cache with the current request URL.

3.	 If there is a match, we return cached data as a response.

4.	 If there is cache data, we return it as a response.

5.	 If there is no cache data, we simply continue the stream without emitting any value

(without completion of the stream). We can achieve this effect by using NEVER operator

that keeps the observable open indefinitely without emitting values. This is intended to

prevent premature stream completion when no cache is available.

Step 2 – Sending a network request
This is sending” the way we can define a network request stream:

let continueRequestWithCacheSave$: Observable<HttpEvent<unknown>>;

continueRequestWithCacheSave$ = next(req).pipe(

 withLatestFrom(openCache$),

 map(([response, cache]) => {

 if (response instanceof HttpResponse) {

 cache.put(

 req.url,

 new Response(JSON.stringify(response.body)));

 }

 return response;

 }),

 catchError(() => dataFromCache$),

);

Let’s break down what we are doing here:

1.	 We create an Observable stream of our interceptor’s next function and combine it with

a promise that we get as a result of opening cache storage.

2.	 We send the request, and once we get the response from the network, we open our Cache

storage and put the latest fresh values there by the key to the corresponding request URL.

3.	 If the request fails when we go offline, we will refer to the cached value.

Building Offline-First Applications with RxJS202

Step 3 – Network & cache race
Now once we have defined both streams, we are ready for the race. To achieve that effect, we can

leverage RxJS raceWith operator. This means that if we return the following stream:

return dataFromCache$.pipe(

 raceWith(continueRequestWithCacheSave$),

);

We would end up with a response from whoever wins the race. Since we have a two-second delay

inside of our MSW network handler, it is obvious that the cache will win in every case except

initially, when there is no cache data. We can test this and play around with it by putting a delay

of more than two seconds at the beginning of dataFromCache$ stream.

Step 4 – Going offline
First, we serve the application from a local server:

npm run build && http-server ./dist/rxjs-offline-race-network-cache/
browser -c-1 –o

If we open a browser and Dev Tools, we can start the race:

Figure 8.8: Network wins

Chapter 8 203

Initially, we can see that network request wins, since we had nothing in the cache storage. But if

we refresh the page and look at Dev Tools, we can see that reading from the cache is faster than

a network request, so this time, the cache wins:

Figure 8.9: Racing the cache and the network in offline mode

Finally, if we go into offline mode, we can see the Racing Cache and Network strategy in action.

First, we will try to send the request, see that the request is failing, and then go to the cache.

See also
•	 Http-server library: https://github.com/http-party/http-server#readme

•	 Big thank you to Jake Archibald for the inspiration for this chapter with his blog Offline

Cookbook: https://jakearchibald.com/2014/offline-cookbook/

•	 MDN Cache API docs: https://developer.mozilla.org/en-US/docs/Web/API/Cache

•	 Angular Service Worker guide: https://angular.dev/ecosystem/service-workers/
getting-started

https://github.com/http-party/http-server#readme
https://jakearchibald.com/2014/offline-cookbook/
https://developer.mozilla.org/en-US/docs/Web/API/Cache
https://angular.dev/ecosystem/service-workers/getting-started
https://angular.dev/ecosystem/service-workers/getting-started

Building Offline-First Applications with RxJS204

Implementing the optimistic update pattern
The optimistic update pattern is a user interface design strategy that enhances user experience

by immediately reflecting changes made by the user, even before those changes are confirmed by

the server. This approach creates a sense of responsiveness and fluidity, reducing the perception

of lag and improving overall user satisfaction. This pattern can come in handy, especially in

situations when we go offline.

How to do it…
In this recipe, we are going to implement a custom operator called optimisticUpdate, which

will handle a POST request in a way that we immediately show the result to the user, then in the

background continue with the network request. If we are offline and the request fails, we will

do a retry after a certain period of time. If the request fails the second time, then we will provide

a rollback option, which in most cases would be that we remove the item from the list that we

added optimistically.

Step 1 – Creating a custom operator
In our operators/optimistic-update.operator.ts file, we will place our custom RxJS operator

for handling optimistic POST requests:

import { Observable, concat, of, throwError } from 'rxjs';

import { catchError, ignoreElements, retry } from 'rxjs/operators';

export function optimisticUpdate<T, E = any>(

 originalValue: T,

 rollback: (value: T, error: E) => void,

 retryConfig: { count: number, delay: number } =

 { count: 1, delay: 3000 }

): (source: Observable<T>) => Observable<T> {

 return (source: Observable<T>) => {

 return concat(

 of(originalValue),

 source.pipe(

 ignoreElements(),

 retry(retryConfig),

 catchError((error) => {

 rollback(originalValue, error);

 return throwError(() => error);

Chapter 8 205

 })

)

);

 };

}

Let’s break down what we are doing here:

1.	 First, as operator arguments, we provide a recipe object that we are about to send to the

backend, and a rollback function (what should we do if the request fails).

2.	 Then, with the concat operator, we combine two streams that should execute in order,

one stream being the optimistic original value of the original object value we are about

to post, the other stream being the actual request to the backend.

3.	 We immediately return the original value of the original object value as the first emitted

value and show that recipe in the UI optimistically.

4.	 After that, we start dealing with the ongoing request. In case of request failure, we define

the retry mechanism by desire: in this case, we will have one retry within three seconds.

5.	 If we are offline, and the request fails, then we catch that error and provide a rollback

option.

Step 2 – Applying the optimistic update operator
In recipes.service.ts, we have the postRecipe method for posting one new recipe:

public recipes$ = new Subject<Recipe | Error>();

postRecipe(): void {

 this.http.post<Recipe>('/api/recipes', this.recipe).pipe(

 optimisticUpdate(

 this.recipe,

 (originalItem: Recipe, error: Error) => {

 // Rollback UI changes here

 this.recipes$.next(error);

 }

),

 filter((recipe) => !!recipe)

).subscribe(

 (recipe: Recipe) => this.recipes$.next(recipe)

);

}

Building Offline-First Applications with RxJS206

Here, we can see that in case of a postRecipe method call, we immediately put the new potential

recipe value inside of a Subject. If there’s an error, we have a rollback option to show the error

message, instead of a recipe.

Step 3 – Going offline
First, we would serve application from a local server:

npm run build && http-server ./dist/rxjs-optimistic-update/browser -c-1 –o

If we open a browser and Dev Tools, we can start playing around with this strategy. We immediately

see the new recipe in the list, although we are offline:

Figure 8.10: Optimistic update

Chapter 8 207

After three seconds and a retry, the request still fails, so we remove the recipe item from the list:

Figure 8.11: Optimistic update rollback

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/RxJSCookbook

https://packt.link/RxJSCookbook

9
Going Real-Time with RxJS

We live in a world of technology, where we want to always feel connected, and where information

changes quickly. That is why it is an important requirement for modern web apps to provide us

with dynamic and engaging experiences, without the need for manual browser refresh. Instant

live sports event updates, smooth chat experiences, online multiplayer games, and tools where

we can collaborate easily: these are all examples of real-time web apps.

One of the main technologies we can use to achieve real-time magic is WebSocket. WebSocket is

a powerful technology that enables real-time, two-way communication between a web browser

and a server. This persistent connection allows for instant data transfer, making it ideal for appli-

cations that require live updates and interactions. In this chapter, we will see in action WebSocket’s

efficiency, low latency, and full-duplex communication capabilities, which make it a powerful tool.

But what about developer experience when building these kinds of user experiences? That is where

RxJS fits in, to orchestrate real-time data effectively, in an elegant, asynchronous, and reactive way.

In this chapter, we will cover the following recipes:

•	 Implementing real-time data visualization charts

•	 Crafting a modern chat application

•	 Playing real-time multiplayer Tic-Tac-Toe

Going Real-Time with RxJS210

Technical requirements
To follow along with this chapter, you’ll need:

•	 RxJS v7

•	 Angular v19+

•	 NestJS v11+

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

The code for the recipes in this chapter can be found in the GitHub repository here: https://
github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/

Chapter09.

Implementing real-time data visualization charts
We are living in a world of data, and by visualizing data within our system and enabling interaction

and exploration, we enable our users to get a deeper understanding of complex datasets. One

of the ways we can achieve this is by using charts. Charts can empower users to uncover hidden

patterns and insights within their data.

How to do it…
In this recipe, we will visualize food recipe orders over a period of a year, by subscribing to the

WebSocket connection, and observe live changes as data arrives.

Step 1 – Connecting to RxJS WebSocket
In our RecipesService class, we will establish a connection to WebSocket and open a topic for

orders data that we can subscribe to:

import { webSocket, WebSocketSubject } from ‘rxjs/webSocket’;

export class RecipesService {

 private socket$!: WebSocketSubject<Message>;

 public orders$!: Observable<Message>;

 constructor() {}

 connect() {

 if (!this.socket$ || this.socket$.closed) {

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter09
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter09
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter09

Chapter 9 211

 this.socket$ = webSocket<Message>({

 url: environment.wsEndpoint,

 deserializer: (e) => JSON.parse(e.data) as Message,

 });

 this.orders$ = this.socket$.multiplex(

 () => ({ subscribe: ‘orders’ }),

 () => ({ unsubscribe: ‘orders’ }),

 (message) => message.type === ‘orders’

);

 }

 }

}

Step 2 – Reconnecting to WebSocket after losing connection
After we have successfully established the connection with WebSocket, we must take into con-

sideration scenarios where we lose connection or there is a server issue. This might be critical in

real-time applications to maintain data flow reliability and build resilient WebSocket connections.

In operators/retry-connection.ts, we have defined a custom RxJS operator to handle resil-

iency scenarios for us:

import { catchError, Observable, of, OperatorFunction, retry, timer } from
‘rxjs’;

type TRetryOptions = {

 count: number;

 delayTime: number;

}

type TMessage = {

 type: string;

 payload?: unknown;

}

export function retryConnection<T>({ count, delayTime }: TRetryOptions):
OperatorFunction<T, T | TMessage> {

 return (source: Observable<T>) =>

 source.pipe(

Going Real-Time with RxJS212

 retry({

 count,

 delay: (err, retryAttempt) => {

 console.error(‘Socket connection failed:’, err);

 return timer(retryAttempt * delayTime);

 },

 }),

 catchError((err: Error) => {

 console.error(‘Socket connection failed:’, err);

 return of({ type: ‘error’, payload: err } as TMessage);

 })

);

}

Now we can pipe into the orders$ WebSocket stream and apply the retryConnection operator:

this.orders$ = this.socket$.multiplex(

 () => ({ subscribe: ‘orders’ }), // Subscription message

 () => ({ unsubscribe: ‘orders’ }), // Unsubscription message

 (message) => message.type === ‘orders’ // Filter function

).pipe(

 retryConnection<Message>({

 count: 5,

 delayTime: 1000,

 }),

);

This will ensure users experience uninterrupted real-time updates.

Step 3 – Subscribing to socket data and visualizing data
Back in our component recipes-chart.component.ts, with the help of the ApexCharts library,

we have already set up the component and configuration for 12 data slots for each month of the

year. Now, all that is left to be done is to provide the data to the component by subscribing to the

orders$ Observable from our service:

@ViewChild(ChartComponent, { static: false }) chart!: ChartComponent;

ngOnInit() {

 this.recipesService.connect();

Chapter 9 213

}

ngAfterViewInit(): void {

 this.recipesService.orders$.subscribe((message: Message) => {

 this.orders = [...this.orders, ...message.payload];

 this.chart.updateSeries([{

 name: ‘Orders’,

 data: this.orders,

 }]);

 });

}

ngOnDestroy() {

 this.recipesService.close();

}

Finally, if we open our browser, we can observe all data as it arrives over a socket.

Going Real-Time with RxJS214

Figure 9.1: Real-time RxJS chart

See also…
•	 The ApexCharts library: https://apexcharts.com/

•	 The WebSocket function: https://rxjs.dev/api/webSocket/webSocket

https://apexcharts.com/
https://rxjs.dev/api/webSocket/webSocket

Chapter 9 215

Crafting a modern chat application
Chat applications are essential in today’s world to stay connected with your work colleagues,

friends, and family. They have revolutionized how people connect, fostering personal relation-

ships and facilitating efficient collaboration in professional settings. But carefully crafting such

real-time apps can be challenging, with a lot of things to consider, like on-time message delivery,

reliability, handling chat events like reply, sending voice messages and images, etc.

How to do it…
In this recipe, we’re going to build a minimalistic clone of the Instagram chat app. We will be able

to communicate with our friends using this chat, check if our friends are typing, and check friends’

online status. We are going to use Angular and NestJS to handle all WebSocket events, since both

frameworks have first-class support with RxJS. We will use NestJS to handle server-side handling

of WebSocket communication, and, of course, Angular for the client side.

Step 1 – Creating a NestJS WebSocket gateway
In our server app, we are going to leverage the NestJS WebSocket gateway feature to create a

real-time chat connection. NestJS provides support for two WebSocket platforms out of the box:

socket. io and ws. Since RxJS WebSocket is built upon the ws module, we’re going to use that

one as well. We will install dependencies for the ws platform:

npm i --save @nestjs/websockets @nestjs/platform-ws

After installation, we can use the WebSocket adapter on application startup:

import { WsAdapter } from ‘@nestjs/platform-ws’;

async function bootstrap() {

 const app = await NestFactory.create(AppModule);

 app.useWebSocketAdapter(new WsAdapter(app));

 await app.listen(3000);

}

bootstrap();

Going Real-Time with RxJS216

Now, we are ready to create our WebSocket gateway. When we go to chat.gateway.ts, we can

see how to handle new, incoming connections:

import {

 ConnectedSocket,

 OnGatewayConnection,

 OnGatewayDisconnect,

 WebSocketGateway,

 WebSocketServer

} from ‘@nestjs/websockets’;

import * as WebSocket from ‘ws’;

@WebSocketGateway(8080)

export class ChatGateway implements OnGatewayConnection,
OnGatewayDisconnect {

 @WebSocketServer()

 server: WebSocket.Server;

 constructor(

 private chatConnectionService: ChatConnectionService,

 private chatService: ChatService,

) {}

 handleConnection(@ConnectedSocket() client: WebSocket): void {

 this.chatConnectionService.handleClientConnection(client);

 }

}

We are using the @WebSocketGateway decorator to say that class ChatGateway will handle WebSock-

et connections on port 8080. The ChatGateway class also implements the OnGatewayConnection

interface, which provides a lifecycle hook that allows us to execute code whenever a new client

connects to our WebSocket server. With the @ConnectedSocket decorator, we get access to the

client socket.

In chat-conection.service.ts, we will handle new client connections and disconnections

from WebSocket:

import { Injectable, OnModuleInit } from ‘@nestjs/common’;

import { BehaviorSubject, tap } from ‘rxjs’;

import * as WebSocket from ‘ws’;

Chapter 9 217

import { Message } from ‘../chat.type’;

@Injectable()

export class ChatConnectionService implements OnModuleInit {

 private clients$ = new BehaviorSubject<WebSocket[]>([]);

 private clientOneId = ‘b9ec382c-a624-40ba-9865-a81be0d390a8’;

 private clientTwoId = ‘e1426280-0169-4647-b7d1-5e061a23a0d8’;

 handleClientConnection(client: WebSocket): void {

 const clients = this.clients$.getValue();

 if (clients.length >= 2) {

 // only 2 people in chat

 client.close();

 return;

 }

 client.id = !clients.map((c: WebSocket) => c.id).includes(

 this.clientOneId)

 ? this.clientOneId

 : this.clientTwoId;

 this.clients$.next([...clients, client]);

 }

 handleDisconnect(client: WebSocket): void {

 const clients = this.clients$.getValue();

 this.clients$.next(clients.filter((c: WebSocket) =>

 c.id !== client.id));

 }

}

In the clients$ BehaviorSubject, we keep track of all client connections to WebSocket. Whenever

there is a new connection, we will check if we already have two chat participants. Otherwise, we

will assign a new random ID to each new client, since the ws module doesn’t have a native way

to track client IDs.

Going Real-Time with RxJS218

Now we can subscribe and react to new connection events:

onModuleInit() {

 this.clients$

 .pipe(

 tap((clients: WebSocket[]) => {

 clients.forEach((client) => {

 client.send(

 JSON.stringify({

 event: ‘connect’,

 data: {

 clientId: client.id,

 otherClientId:

 client.id === this.clientOneId

 ? this.clientTwoId

 : this.clientOneId,

 },

 }),

);

 });

 }),

)

 .subscribe();

}

In this way, we can broadcast a new event connect to all clients, with messages containing in-

formation about the connection.

Step 2 – Connecting to RxJS WebSocket from the frontend app
In our Angular app, we will have a ChatService to handle our WebSocket connection logic:

import { Injectable } from ‘@angular/core’;

import { Observable } from ‘rxjs’;

import { webSocket, WebSocketSubject } from ‘rxjs/webSocket’;

export interface IWsMessage<T> {

 event: string;

 data?: T;

Chapter 9 219

}

@Injectable({

 providedIn: ‘root’

})

export class ChatService {

 private socket$: WebSocketSubject<Message>;

 public clientId$!: Observable<Message>;

 constructor() {

 this.connect();

 }

 connect() {

 if (!this.socket$ || this.socket$.closed) {

 this.socket$ = webSocket<IWsMessage<IMessage>>({

 url: ‘ws://localhost:8080’,

 deserializer: (e) => JSON.parse(e.data) as IWsMessage<IMessage>,

 });

 this.clientConnection$ = this.socket$.multiplex(

 () => ({ subscribe: ‘connect’ }),

 () => ({ unsubscribe: ‘connect’ }),

 (message) => message.event === ‘connect’

);

 }

Initially, we will establish a WebSocket connection and subscribe to the connect topic. After a

successful connection, here we would get all relevant events regarding ongoing client connections.

Step 3 – Handling chat topic messages
When we type something in the input chat field and click the send button, we call the service

method sendChatMessage:

sendChatMessage(message: string, clientId: string) {

this.socket$.next({

 event: ‘message’,

 data: {

 topic: ‘chat’,

 message,

Going Real-Time with RxJS220

 clientId

 }});

}

By doing so, we are sending a message event to our WebSocket for processing. Back in our back-

end chat.gateway.ts, we can subscribe to the message event by defining a new event handler:

import {

 MessageBody,

 SubscribeMessage,

} from ‘@nestjs/websockets’;

@WebSocketGateway(8080, { pingTimeout: 2000 })

export class ChatGateway implements OnGatewayConnection,
OnGatewayDisconnect {

 @SubscribeMessage(‘message’)

 handleMessage(

 @MessageBody() data: { topic: string; message: string;

 clientId: string },

): void {

 const { topic, message, clientId } = data;

 this.chatService.sendTopicMessage(topic, {

 id: crypto.randomUUID(),

 message,

 clientId,

 timestamp: new Date(),

 });

 }

}

With the @MessageBody decorator, we extract the data we have sent over the socket from the

client, in our case, the chat topic key.

Whenever there is a new message, we want to send that message to the chat topic. It is time to

create a reactive stream of incoming messages assigned to that topic in chat.service.ts:

private topics: {

 [topicKey: string]: ReplaySubject<Message | { typing: string } | any>;

} = {

Chapter 9 221

 chat: new ReplaySubject(100),

};

onModuleInit() {

 const chatTopic$ = this.topics[‘chat’].pipe(

 shareReplay({ bufferSize: 1, refCount: true }),

);

 const messages$ = chatTopic$.pipe(

 filter((data: WsMessage<string>) => ‘message’ in data),

 scan((acc, message) => [...acc, message], []),

 map((messages) => ({ event: ‘chat’, data: messages })),

);

 messages$.subscribe(

 (response: { event: string; data: Message[] }) => {

 this.chatConnectionService.broadcastMessage(response);

 },

);

}

sendTopicMessage(topic: string, message: Message | ChatEvent): void {

 if (this.topics[topic]) {

 this.topics[topic].next(message);

 }

}

The perfect way to have a chat history is by leveraging RxJS’s ReplaySubject, since every new

connection can see all previous events. Also, we can leverage the shareReplay operator to multi-

cast chat history to all connected clients. Now we can broadcast incoming messages to all clients

and show them to all chat participants.

Back in our frontend app, in chat.service.ts, we can multiplex RxJS WebSocket to subscribe

to our chat topic:

public chat$!: Observable<Message>;

 this.chat$ = this.socket$.multiplex(

 () => ({ subscribe: ‘chat’ }),

 () => ({ unsubscribe: ‘chat’ }),

Going Real-Time with RxJS222

 (message) => message.event === ‘chat’

);

getChatSocket$(): Observable<Message> {

 return this.chat$;

}

Finally, in our component chat.component.ts, we can subscribe to the message history:

messages: Array<Message> = [];

ngOnInit(): void {

 this.chatService

 .getChatSocket$()

 .subscribe(({ data }: WsMessage) => {

 this.messages = data;

);

 }

}

We can then open two client browsers next to each other and start chatting:

Figure 9.2: Reactive chat messages

Chapter 9 223

Step 4 – Handling the event when a user is typing
Whenever a user is typing something in the chat, if there is something in the input, we can emit

the typing event from the frontend app:

sendIsTyping(clientId: string, isTyping: boolean = true) {

 this.socket$.next({ event: ‘typing’, data: { topic: ‘chat’, clientId,

 isTyping } });

}

Now we need to handle this event from the backend:

@SubscribeMessage(‘typing’)

handleTyping(

 @MessageBody() data: { topic: string; clientId: string;

 isTyping: boolean },

): void {

 const { topic, isTyping, clientId } = data;

 this.chatService.sendTopicMessage(topic, {

 clientId,

 isTyping,

 });

}

Since we are sending new data to the same topic we have set up in step 3, our chat.service.ts

lifecycle hook finally looks like this:

onModuleInit() {

 const chatTopic$ = this.topics[‘chat’].pipe(

 shareReplay({ bufferSize: 1, refCount: true }),

);

 const messages$ = chatTopic$.pipe(

 filter((data: WsMessage<string>) => ‘message’ in data),

 scan((acc, message) => [...acc, message], []),

 map((messages) => ({ event: ‘chat’, data: messages })),

);

 const typing$ = chatTopic$.pipe(

Going Real-Time with RxJS224

 filter((data: ChatEvent) => ‘isTyping’ in data),

 distinctUntilKeyChanged(‘isTyping’),

 map(({ clientId, isTyping }: ChatEvent) => ({

 event: ‘chat’,

 data: { clientId, isTyping },

 })),

);

 merge(messages$, typing$).subscribe(

 (response: { event: string; data: Message[] }) => {

 this.latestMessages$.next(response.data);

 this.chatConnectionService.broadcastMessage(response);

 },

);

}

What is different from what we had in step 3 is that we are merging the typing$ stream with chat

messages. Now we have information when the other client has started typing, and we can have

that information show on the frontend:

isTyping = false;

ngOnInit(): void {

 this.chatService.getChatSocket$().pipe(

 filter(({ data }: IWsMessage<IChatEvent | IMessage[]>) => (

 data as IChatEvent).clientId !== this.clientId),

).subscribe(({ data }) => {

 if (‘isTyping’ in data) {

 this.isTyping = data.isTyping;

 return;

 }

 this.messages = data as IMessage[];

 });

}

Chapter 9 225

Now, when we open two browsers side by side and start typing in one application, the other client

will see that the first client has started typing.

Figure 9.3: User is typing event

Step 7 – Handling client disconnection
You have probably noticed the green online indicator next to each chat participant. But what if

one of them leaves the chat? Then, we would expect that indicator to change to offline, right?

To achieve this effect, we can leverage the OnGatewayDisconnect lifecycle hook from NestJS:

handleDisconnect(@ConnectedSocket() client: WebSocket): void {

 this.chatConnectionService.handleDisconnect(client);

}

Whenever a client disconnects from a socket, we can call the handleDisconnect() method from

chat-connection.service.ts:

handleDisconnect(client: WebSocket): void {

 const clients = this.clients$.getValue();

 this.clients$.next(clients.filter((c: WebSocket) => c.id !== client.
id));

}

Going Real-Time with RxJS226

Here, we simply filter out the disconnected client and notify the clients$ ReplaySubject about

this change. Now, we can extend the message that we are broadcasting with the isOnline property:

client.send(

 JSON.stringify({

 event: ‘connect’,

 data: {

 clientId: client.id,

 otherClientId:

 client.id === this.clientOneId

 ? this.clientTwoId

 : this.clientOneId,

 isOnline: clients.length === 2,

 },

 }),

);

We can easily test this behavior by closing the window of one of the clients.

Figure 9.4: Online indicator

Chapter 9 227

Step 8 – Handling WebSocket disconnection
There is one more use case that is critical in real-time applications to maintain data flow reliability,

and that is the case when WebSocket connection is temporarily unavailable.

In this step, we are going to introduce an error-handling mechanism to queue messages during

connection outages and attempt to resend them once the connection is re-established. We will

use an RxJS ReplaySubject to store messages and replay historical messages once we establish

a connection again.

Back in our chat.service.ts, we are going to extend the sendChatMessage() method to handle

the case when the socket is closed:

private socketOfflineMessages$ = new
ReplaySubject<IWsMessage<IMessage>>(100);

sendChatMessage(message: string, clientId: string) {

 if (this.socket$.closed) {

 this.socketOfflineMessages$.next({ event: ‘message’,

 data: { topic: ‘chat’, message, clientId }});

 this.connect();

 return;

}

 this.socket$.next({ event: ‘message’, data: { topic: ‘chat’, message,

 clientId }});

}

Now that we have messages stored in socketOfflineMessages$, we can observe when we estab-

lish a WebSocket connection again in the connect() method:

this.socket$ = webSocket<IWsMessage<IMessage>>({

 url: ‘ws://localhost:8080’,

 deserializer: (e) => JSON.parse(e.data) as IWsMessage<IMessage>,

 openObserver: {

 next: () => {

 this.socketOfflineMessages$.subscribe(

 (message: IWsMessage<IMessage>) => {this.socket$.next(message);

 });

Going Real-Time with RxJS228

 },

 },

});

We can notice that the RxJS webSocket function accepts openObserver as part of a configuration

object, which we can leverage to resend all messages while the server is down.

For more information about WebSocket reconnection strategies, take a look at the Implementing

real- time data visualization charts recipe.

Step 9 – Sending voice messages
In the client app chat.service.ts, we will add a separate method, sendVoiceMethod(), which

will be called once we press the mic button in the UI:

const constraints = { audio: true };

const audioChunks: BlobPart[] = [];

const micRecording$ = from(navigator.mediaDevices.
getUserMedia(constraints));

const audioChunkEvent$ = micRecording$.pipe(

 switchMap((stream: MediaStream) => {

 const mediaRecorder = new MediaRecorder(stream);

 mediaRecorder.start();

 setTimeout(() => {

 mediaRecorder.stop();

 }, 5000); // Record for 5 seconds

 return merge(

 fromEvent(mediaRecorder, ‘dataavailable’),

 fromEvent(mediaRecorder, ‘stop’),

);

 })

);

Here, we can observe that we are using the MediaDevices Web API by requesting permission to

use the microphone on our device and creating the Observable stream micRecording$. Once we

allow microphone permission in our browser, we can create a new MediaRecorder, start recording,

and stop the recording after 5 seconds.

Chapter 9 229

Now once we have MediaRecorder available, we can create event streams from the dataavailable

and stop events:

return audioChunkEvent$.pipe(

 map((audioEvent: BlobEvent | Event) => {

 if (‘data’ in audioEvent) {

 audioChunks.push(audioEvent.data);

 return EMPTY;

 }

 const audioBlob = new Blob(audioChunks, { type: ‘audio/wav’ });

 const reader = new FileReader();

 reader.readAsDataURL(audioBlob);

 return fromEvent<BlobEvent>(reader, ‘loadend’);

 }),

 switchAll(),

 tap((progressEvent: Event) =>

 this.sendVoiceMessageToServer(progressEvent, clientId)),

 catchError((error: Error) => {

 console.error(‘Error accessing media devices.’, error);

 return EMPTY;

 })

).subscribe();

If the dataavailable event happens, we will update new audio chunks. If the recording stops, we

will gather the reordered audio by creating a new file blob out of the recorded content, encoding

the result into Base64 format as a data URL, and returning the loadend stream event down the

Observable pipeline.

Now, at the end of the stream, we have the result available as a data URL that we can send as a

voice message through our chat topic to the WebSocket gateway:

sendVoiceMessageToServer(progressEvent: Event, clientId: string) {

 if (!progressEvent) return;

 const reader = progressEvent.target as FileReader;

 const base64AudioMessage = reader.result as string;

Going Real-Time with RxJS230

 this.socket$.next({ event: ‘message’, data: { topic: ‘chat’, clientId,
message: base64AudioMessage } });

}

Our backend will store the voice message in the same ReplaySubject as the rest of the messages,

which means that we would get new WebSocket messages the same way as before, with just a

little modification in the chat messages subscription:

this.chatService.getChatSocket$().pipe(

 filter(({ data }: IWsMessage<IChatEvent | IMessage[]>) =>

 (data as IChatEvent).clientId !== this.clientId),

).subscribe(({ data }) => {

 if (‘isTyping’ in data) {

 this.isTyping = data.isTyping;

 return;

 }

this.messages = data.map((chatMessage: IMessage) => {

 if (chatMessage.message.startsWith(‘data:audio’)) {

 return { ...chatMessage, isVoice: true };

 }

 return chatMessage;

 });

});

Here, we will check whether the message starts with data:audio, which indicates that we are

dealing with a data URL or voice message. Now, we can differentiate between a regular message

and voice message, and in the case of a voice message, pass the source to the HTML audio element.

Chapter 9 231

Finally, when we open our browser, we can record a voice message to our friend:

Figure 9.5: Voice message

See also…
•	 NestJS gateways: https://docs.nestjs.com/websockets/gateways

•	 RxJS webSocket function: https://rxjs.dev/api/webSocket/webSocket

•	 MDN MediaRecorder Web API: https://developer.mozilla.org/en-US/docs/Web/API/
MediaRecorder

•	 MDN data URLs: https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data

•	 MDN HTML audio element: https://developer.mozilla.org/en-US/docs/Web/HTML/
Element/audio

Playing real-time multiplayer Tic-Tac-Toe
Tic-Tac-Toe must be one of the most well-known games in the world. It seems like a simple game

to learn, but don’t let that fool you. It’s a game of wit and strategy. In this recipe, we will re-create

Tic-Tac-Toe as a real-time multiplayer online game. Let the games begin!

https://docs.nestjs.com/websockets/gateways
https://rxjs.dev/api/webSocket/webSocket
https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder
https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder
https://developer.mozilla.org/en-US/docs/Web/URI/Schemes/data
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio

Going Real-Time with RxJS232

How to do it…
To build this online game, we are going to use Angular and NestJS to handle all WebSocket events,

since both frameworks have first-class support for RxJS. We will use NestJS to handle the server

side of handling a player’s moves, and Angular as a client app for showing the 3x3 grid for the

game, handling user interaction, and sending WebSocket events to our API.

We will also need to follow the instructions for creating a NestJS WebSocket gateway and con-

necting to WebSocket from the client app described in steps 1 and 2 of the Crafting a modern chat

application recipe.

Step 1 – Handling multiplayer
Whenever we have a new WebSocket connection, it means that we have a new player joining the

game. Since Tic-Tac-Toe can be played by only two players, we will limit the game to two players.

If there are more connections, they will be in spectator mode:

@WebSocketGateway(8080)

export class GameGateway implements OnGatewayConnection, OnModuleInit {

 private clients$ = new BehaviorSubject<WebSocket[]>([]);

 handleConnection(@ConnectedSocket() client: WebSocket): void {

 if (this.clients$.getValue().length >= 2) {

 client.send(

 JSON.stringify({ event: ‘join’, data: ‘Game has already started.’
}),

);

 client.close();

 return;

 }

 const clients = this.clients$.getValue();

 const clientId = crypto.randomUUID();

 client.id = clientId;

 client.player = !clients.map(

 (c) => c.player).includes(‘X’) ? ‘X’ : ‘O’;

 this.clients$.next([...clients, client]);

 }

}

Chapter 9 233

In the case of spectators, we will just notify them that the game has started. Otherwise, we will

assign X to the first player and O to the second one:

onModuleInit(): void {

 this.clients$

 .pipe(

 tap((clients) => {

 clients.forEach((client) => {

 client.send(

 JSON.stringify({

 event: ‘join’,

 data: {

 player: client.player,

 board: this.board,

 nextPlayer: this.currentPlayer,

 },

 }),

);

 });

 }),

)

 .subscribe();

}

Going Real-Time with RxJS234

Finally, it’s game time! If we put two browser windows next to each other, we can see that both

players have joined the match.

Figure 9.6: Players have joined

Step 2 – Playing a move
Once both players have joined, we can start playing the game! When we click on a board field, we

will send an event to the WebSocket gateway. In the client app game.service.ts, we will define

the move() method:

move(field: number, player: string, currentPlayerTurn: string): void {

 if (player !== currentPlayerTurn) {

 return;

 }

 this.send({ event: ‘move’, data: field });

}

We can notice that we are preventing the same player from playing twice in a row. If it’s the correct

player’s turn to play, we will send the index of the clicked field on the board game.

In our game.gateway.ts, we will create an event handler for the move event:

@SubscribeMessage(‘move’)

handleMove(@MessageBody() data: number): void {

Chapter 9 235

 this.moves$.next(data);

}

Whenever we have a new move from a player, our system will react by updating the board state

and switching the player’s turn:

const playerMoves$ = this.moves$.pipe(

 withLatestFrom(this.clients$),

 filter(([move]) => this.board[move] === null),

 map(([move, clients]) => {

 const nextPlayer = this.currentPlayer === ‘X’ ? ‘O’ : ‘X’;

 this.board[move] = this.currentPlayer;

 clients.forEach(client => {

 client.send(JSON.stringify({ event: ‘boardUpdate’,

 data: { move, currentPlayer: this.currentPlayer, nextPlayer } }));

 });

 this.currentPlayer = nextPlayer;

 return clients;

 }),

 shareReplay({ bufferSize: 1, refCount: true }),

).subscribe();

By sending the boardUpdate event, our frontend app can accept that event and react to the latest

player move. We would send the information about the move field, which player played that

move, and the next player’s turn. Back in our client app game.service.ts:

public boardUpdate$!: Observable<WsMessage>;

 this.boardUpdate$ = this.socket$.multiplex(

 () => ({ subscribe: ‘boardUpdate’ }),

 () => ({ unsubscribe: ‘boardUpdate’ }),

 (message) => message.event === ‘boardUpdate’

);

getBoardUpdate$() {

 return this.boardUpdate$;

}

Going Real-Time with RxJS236

Now, we can subscribe to the latest board state in game-board.component.ts and update the UI:

currentPlayerTurn = ‘X’;

board = Array(9).fill(null);

constructor(private wsService: WebSocketService) { }

ngOnInit() {

 this.wsService.getBoardUpdate$().subscribe(({ data }: WsMessage) => {

 const { move, currentPlayer, nextPlayer } = data;

 this.board[move] = currentPlayer;

 this.currentPlayerTurn = nextPlayer;

 });

}

When we open two separate browser tabs and start playing moves, we can see real-time updates

in the UI:

Figure 9.7: Player move

Chapter 9 237

Step 3 – Checking the winner
At the end of each move, we can check whether the game is over. The game will be over in two

scenarios – if we have a winner or if there is a draw:

playerMoves$.pipe(

 tap((clients) => this.handleCheckWinner()),

 tap((clients) => this.handleCheckDraw()),

 shareReplay({ bufferSize: 1, refCount: true }),

).subscribe();

private handleCheckWinner(clients: WebSocket[]): void {

 const winner = this.gameService.checkWinner(this.board);

 if (winner) {

 this.moves$.complete();

 clients.forEach((client) => {

 client.send(JSON.stringify({ event: ‘winner’, data: winner }));

 });

 this.resetGame();

 }

}

In the backend app game.service.ts, we have implemented these two checks:

checkWinner(): string | undefined {

 const winningScenarios = [

 [0, 1, 2], // Top row

 [3, 4, 5], // Middle row

 [6, 7, 8], // Bottom row

 [0, 3, 6], // Left column

 [1, 4, 7], // Middle column

 [2, 5, 8], // Right column

 [0, 4, 8], // Diagonal \

 [2, 4, 6] // Diagonal /

];

 for (const scenario of winningScenarios) {

 const [a, b, c] = scenario;

Going Real-Time with RxJS238

 if (this.board[a] && this.board[a] === this.board[b]

 && this.board[a] === this.board[c]) {

 this.moves$.complete();

 return this.board[a];

 }

 }

}

The way we are doing this winner check is by having all winning scenarios upfront and simply

seeing whether the current state of the board matches one of the winning cases. Also, we are

completing player the moves$ subject to prevent memory leaks after ending the game.

Figure 9.8: Player wins

In case of a draw, we can send all clients the draw event and show the restart game button. Back

in our game.service.ts, we can simply check for a draw:

checkDraw(board: Array<string>): boolean {

 return board.every(cell => cell !== null) && !this.checkWinner(board);

}

Chapter 9 239

Once we open the UI, we can see the restart button, and we can start the game over:

Figure 9.9: Draw game

See also…
•	 NestJS gateways: https://docs.nestjs.com/websockets/gateways

•	 RxJS webSocket function: https://rxjs.dev/api/webSocket/webSocket

https://docs.nestjs.com/websockets/gateways
https://rxjs.dev/api/webSocket/webSocket

10
Building Reactive NestJS
Microservices with RxJS

With NestJS, we can build scalable, responsive, message-driven, and resilient server-side

applications efficiently. Since NestJS has first-class support for RxJS, this can take our reactive

game to a whole new level. RxJS can help us enhance responsiveness by handling large volumes of

concurrent requests and gracefully handling failures and recovery mechanisms. It can also help us

with handling asynchronous operations, which can be especially useful in an event-driven system.

In this chapter, we will cover the following recipes:

•	 Crafting resilient REST API microservices in NestJS

•	 Mastering reactive event streaming with Kafka

•	 Going real time with gRPC streaming in NestJS

Technical requirements
To follow along with this chapter, you’ll need:

•	 RxJS v7

•	 NestJS v11+

•	 Kafka v2.13-3.8.0

•	 KafkaJS v2.2.4

•	 grpc-js v1.12.2

•	 Node.js v22+

•	 npm v11+ or pnpm v10+

Building Reactive NestJS Microservices with RxJS242

The code for recipes in this chapter can be found in the GitHub repository here: https://github.

com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter10.

Crafting resilient REST API microservices in NestJS
Resilient REST API microservices are essential for creating robust and dependable systems, since

they are designed to handle unexpected traffic surges gracefully. They help prevent cascading

failures by isolating problems, ensuring that if one service has an issue, it doesn’t bring down

the whole application. This isolation also contributes to high availability, as other services can

continue operating even when one is down.

Getting ready
Check out Chapter 1 for more HTTP communication strategies in RxJS.

How to do it...
In this recipe, we are going to have two NestJS microservices, namely recipes-api and orders-

api, communicating with each other synchronously, and will delve deep into resiliency patterns.

We are going to explore different techniques for how we can create REST APIs that are robust

and reliable.

Step 1 – Establishing communication between services
Once we have both services running, we can easily establish communication between them over

HTTP. From the recipes-api service, we will send a request to orders-api running on localhost

on port 3000. Once we get the response from orders-api, we can simply extract data about the

latest recipe orders from the response:

getOrders(): Observable<string> {

 return this.httpService.get<string>('/orders')

 .pipe(

 map(({ data }) => data),

);

}

https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter10
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter10
https://github.com/PacktPublishing/RxJS-Cookbook-for-Reactive-Programming/tree/main/Chapter10

Chapter 10 243

Step 2 – Applying an exponential backoff strategy
In our recipes.service.ts, we have a getOrder() method:

getOrder(): Observable<string> {

 return this.httpService.get<string>('http://localhost:3000/orders')

 .pipe(

 map(({ data }) => data),

 catchError(error => {

 return of(error);

 }),

 retry({

 count: 3,

 delay: (error, retryCount) => {

 console.log(

 `Attempt ${retryCount}: Error occurred during network

 request, retrying in ${Math.pow(2, retryCount)}

 seconds...`

);

 return timer(Math.pow(2, retryCount) * 1000);

 },

 }),

);

}

If orders-api is unavailable, or there is a transient error, we will implement the exponential

backoff strategy. The strategy says that we have a certain number of retries to the failed service,

but the time between retry attempts gradually increases.

Step 3 – Implementing the bulkhead resiliency strategy
Bulkhead is a resiliency strategy where we isolate resources of one service and control concurrent

requests for those resources. The benefit of this approach is that in case of an error, we prevent

cascading errors so that other microservices continue working as expected without affecting the

general stability of a system.

In step 2, we described how to handle an individual service method when handling HTTP

communication. But what if we want to have the same resiliency strategy across the whole

microservice?

Building Reactive NestJS Microservices with RxJS244

In that case, we can leverage NestJS interceptors. In our bulkhead.interceptor.ts, we will

implement the bulkhead resiliency strategy:

@Injectable()

export class BulkheadInterceptor implements NestInterceptor {

 private readonly MAX_CONCURRENT_REQUESTS = 3;

 private activeRequests = 0;

 private requestQueue: (() => Observable<any>)[] = [];

 intercept<T>(context: ExecutionContext, next: CallHandler):

 Observable<T> {

 const request$ = next.handle().pipe(

 catchError((err) => of(err)),

 finalize(() => {

 this.activeRequests--;

 this.processQueue();

 }),

);

 if (this.activeRequests < this.MAX_CONCURRENT_REQUESTS) {

 this.activeRequests++;

 return request$;

 }

 const queueRequest$: Observable<T> = new Observable((observer) => {});

 return queueRequest$;

 }

}

We can notice that if we have available resources, we will process the request immediately.

Otherwise, if there are more ongoing requests to the microservice than allowed concurrency, we

put those requests into a queue, and schedule processing of those requests when the service has

more resources available:

const queueRequest$: Observable<T> = new Observable((observer) => {

 this.requestQueue.push(() => {

 return next.handle().pipe(

Chapter 10 245

 catchError((err) => {

 observer.error(err);

 return of(err);

 }),

 map((result) => {

 observer.next(result);

 return result;

 }),

);

 });

 // try to process the queue right away

 this.processQueue();

});

return queueRequest$;

Finally, when we check the queue, we can put the first request that went into the queue and

complete the request task:

private processQueue() {

 if (

 this.requestQueue.length > 0 &&

 this.activeRequests < this.MAX_CONCURRENT_REQUESTS

) {

 const task = this.requestQueue.shift()!;

 this.activeRequests++;

 task().subscribe({

 complete: () => {

 this.activeRequests--;

 this.processQueue();

 },

 });

 }

}

Building Reactive NestJS Microservices with RxJS246

Another approach is to leverage the power of the RxJS mergeMap operator, which has built-in

concurrency support. In that case, we could simply use this pattern, and our interceptor would

look like this:

import { Observable, Subject, mergeMap } from 'rxjs';

@Injectable()

export class BulkheadInterceptor implements NestInterceptor {

 private readonly MAX_CONCURRENT_REQUESTS = 3;

 private requestQueue = new Subject<Observable<any>>();

 constructor() {

 this.requestQueue

 .pipe(mergeMap((task) => task, this.MAX_CONCURRENT_REQUESTS))

 .subscribe();

 }

 intercept(context: ExecutionContext, next: CallHandler):

 Observable<any> {

 this.requestQueue.next(next.handle());

 return this.requestQueue.asObservable();

 }

}

See also...
•	 Resiliency patterns on the NestJS blog: https://medium.com/@ali-chishti/

resiliencypatterns-nestjs-b39351f8dea8

•	 Resiliency best practices: https://dev.to/lucasnscr/resilience-and-best-patterns-
4mo

Mastering reactive event streaming with Kafka
Apache Kafka is a distributed event-streaming platform used by thousands of companies for high-

performance pipelines of real-time data, delivered with low latency. Apache Kafka was originally

developed at LinkedIn, and later became open source. What is so powerful about Kafka is that it

is easily accessible and resilient to system crashes.

https://medium.com/%40ali-chishti/resiliencypatterns-nestjs-b39351f8dea8
https://medium.com/%40ali-chishti/resiliencypatterns-nestjs-b39351f8dea8
https://medium.com/%40ali-chishti/resiliencypatterns-nestjs-b39351f8dea8
https://dev.to/lucasnscr/resilience-and-best-patterns-4mo
https://dev.to/lucasnscr/resilience-and-best-patterns-4mo

Chapter 10 247

Kafka’s real-time data processing makes it perfect for many use cases, like:

•	 User activity tracking – companies like Uber, Netflix, and Spotify use Kafka to monitor

user interactions, clicks, and page views.

•	 Event bus for microservices – Kafka can act as a message queue and help multiple

microservices communicate and stay synchronized.

•	 Observability – Kafka can be easily integrated with observability tools to track the health

and performance of the system, as well as process and analyze error data. Cloudflare uses

Kafka for analytics purposes.

•	 Real-time apps – Kafka can process payments, stock trades, geolocation, or any other

data in real time. It can also easily be integrated with data analytic tools like Apache Spark.

•	 IoT sensor data – Kafka can be used to collect and analyze data from sensors in devices

like smart home appliances.

Getting ready
To follow along with this recipe efficiently, we will cover some basic terms and definitions when

it comes to Kafka.

•	 Topic – immutable log of events kept in order. A topic stores information by key, so we

can access values by the key. Also, the timestamp and metadata are included.

•	 Producer – sources of data that are publishing/writing records of data to Kafka topics.

•	 Consumer – subscribes to the topic and processes data. Consumers can group and

aggregate data.

•	 Broker – a Kafka server that hosts Kafka topics and handles data storage and message

delivery.

•	 Cluster – a group of brokers working together to provide fault tolerance and scalability.

•	 Partition – topics are separated into divided partitions, ordered sequences of records that

can be distributed across different brokers. This enables load balancing and fault tolerance.

•	 ZooKeeper – a centralized service that manages the coordination and state of the Kafka

cluster. It helps with things like electing leaders for partitions and managing broker

registrations.

Also, in Kafka’s official documentation, there is a Quickstart on how to download and start a Kafka

server locally https://kafka.apache.org/quickstart.

Now we are ready to tackle real-time data processing with KafkaJS.

https://kafka.apache.org/quickstart
https://kafka.apache.org/quickstart

Building Reactive NestJS Microservices with RxJS248

How to do it...
In this recipe, we will create a reactive Kafka producer and consumer. We will leverage the power

of RxJS to process the stream of data, and to craft a resiliency mechanism that will be useful in

a distributed system.

Step 1 – Setting up the Kafka producer
In our message-broker.service.ts, we’re going to start off by creating a Kafka instance and

connecting our producer to the Kafka server:

private readonly kafka: Kafka;

private readonly producer: Producer;

constructor() {

 this.kafka = new Kafka({

 brokers: ['localhost:9092'],

 retry: {

 retries: 0

 }

 });

 this.producer = this.kafka.producer({

 allowAutoTopicCreation: true

 });

}

In the broker array, we list all Kafka brokers running in the background.

Also, we got access to the Kafka producer. Now, if we call the connect() method on a producer,

we will be connected to the Kafka broker, and we can produce the first messages.

Kafka retry mechanism

You may notice that we have disabled Kafka’s built-in retry mechanism. You might

want to do this when there is a need for a custom backoff retry pattern. The reason

we are doing it here is for learning purposes when implementing resilient Kafka

connections with RxJS. More info about KafkaJS’s default retry mechanism can be

found in the documentation: https://kafka.js.org/docs/retry-detailed.

Chapter 10 249

Step 2 – Setting up the Kafka consumer
In the constructor of rxjs-message-consumer.ts, we are going to carry out the process of Kafka

instantiation, the same as we did with the producer:

private readonly consumers: Consumer[] = [];

constructor() {

 this.kafka = new Kafka({

 brokers: ['localhost:9092'], // Replace with your Kafka broker

 //address

 retry: {

 retries: 0

 }

 });

}

async consume(topics: string[], config?: ConsumerConfig) {

 const consumer = this.kafka.consumer({ groupId: 'my-group' });

 await consumer.connect();

 await consumer.subscribe({ topics, fromBeginning: true });

 await consumer.run({

 eachMessage: async ({ topic, partition, message }) => {

 // consume messages

 console.log({

 topic,

 partition,

 offset: message.offset,

 value: message.value.toString()

 });

 },

 });

 this.consumers.push(consumer);

}

async onApplicationShutdown() {

Building Reactive NestJS Microservices with RxJS250

 await Promise.all(this.consumers.map(consumer => consumer.

 disconnect()));

}

Now, whenever we call a consumer method from different services, we are going to take several

crucial steps:

1.	 Get access to a Kafka consumer, as per groupId.

2.	 Connect to the Kafka broker.

3.	 Subscribe to certain topics that we pass as part of the parameters.

4.	 Run our consumer and process messages in the eachMessage callback.

5.	 Push the current consumer to the list of consumers, to keep track of all of them.

Now that we have done the very basic setup of the Kafka message broker, we are ready to add a

little bit of reactivity with the magic of RxJS!

Step 3 – Going reactive with the Kafka producer
Whenever we send an HTTP request to our NestJS API controller AppController, we will call a

produce method from our MessageBrokerService:

public kafkaMessage$ = new ReplaySubject<KafkaMessage>();

async produce(topic: string, message: string) {

 this.kafkaMessage$.next({

 topic,

 compression: CompressionTypes.GZIP,

 messages: [{ value: message }],

 });

}

The request body payload that we are sending as each message would look something like this:

{

"message": "{ \"id\": 3, \"name\": \"Pasta alla Gricia\", \"description\":
\"A Roman pasta dish featuring guanciale (cured pork jowl), pecorino
romano cheese, and black pepper.\", \"ingredients\": [\"pasta (rigatoni or
bucatini)\", \"guanciale\", \"pecorino romano cheese\", \"black pepper\"]
}"

}

Chapter 10 251

Now, when we have all incoming messages stored in an RxJS subject, we can send new messages

to the Kafka broker, in a reactive way. In the service’s message-broker.ts init lifecycle hook, we

can subscribe to the new messages:

this.kafkaMessage$.pipe(

 concatMap((kafkaMessage) => from(this.producer.send(kafkaMessage))),

).subscribe();

Here, we are creating an Observable stream from the return value of the producer’s send method.

By utilizing the concatMap operator, we will not only send all incoming messages to the Kafka

broker but also keep the order of messages.

This is a basic example of sending new messages to the Kafka broker, but with the producer

connected. What about making a reactive producer that is resilient to connection errors?

Step 4 – Reacting to producer connection events
At the beginning of our producer service, we are going to simulate what would happen if our

producer got disconnected:

public producerActiveState$ = new Subject<boolean>();

async onModuleInit() {

 setTimeout(() => {

 console.log('Disconnecting producer...');

 this.producer.disconnect();

 }, 40000);

 setTimeout(() => {

 console.log('Connecting producer...');

 this.producer.connect();

 }, 50000);

 this.handleBrokerConnection();

}

In a scenario like this, it is crucial that the producer stays resilient and keeps collecting incoming

messages. Once it is connected back to the broker, the producer should send all messages and

continue accepting the new ones.

Building Reactive NestJS Microservices with RxJS252

In the handleBrokerConnection method, we have the following:

handleBrokerConnection(): void {

 const producerConnect$ = from(this.producer.connect()).pipe(

 retry({

 count: 3,

 delay: (error, retryCount) => {

 console.log(

 `Attempt ${retryCount}: Error occurred during network

 request, retrying in ${Math.pow(2, retryCount)}

 seconds...`

);

 return timer(Math.pow(2, retryCount) * 1000);

 },

 }),

 catchError(error => {

 console.error(`Error connecting to Kafka: ${error}`);

 this.producerActiveState$.next(false);

 return EMPTY;

 }),

);

 producerConnect$.subscribe();

}

Here, we have a few things going on:

1.	 The producerConnect$ stream is created from the this.producer.connect() Promise

response.

2.	 In case of transient errors, we apply an exponential backoff reconnection strategy until

our producer gets the connection back.

After we are successfully connected to the producer, we can listen to the producer’s CONNECT and

DISCONNECT events. When the connection status changes, we will keep track of the active state

of a producer in a separate subject:

this.producer.on(this.producer.events.CONNECT, () => {

 this.producerActiveState$.next(true);

});

Chapter 10 253

const producerDisconnect$ = fromEventPattern(

 (handler) => this.producer.on(this.producer.events.DISCONNECT

 handler),

);

Also, whenever there is a producer disconnection, we will switch to the producerConnect$ stream,

as part of our reconnection strategy.

producerDisconnect$.pipe(

 switchMap(() => producerConnect$)

).subscribe(() => this.producerActiveState$.next(false));

Step 5 – Buffering messages when the producer is disconnected
Since we are already keeping track of the producer’s active state, we can separate active and

inactive states as follows:

const producerActive$ = this.producerActiveState$.asObservable().pipe(

 filter(activeState => activeState));

const producerInactive$ = this.producerActiveState$.asObservable().pipe(

 filter(activeState => !activeState));

Now the RxJS magic starts! Based on these states, we can decide what we want to do with the

incoming messages:

const acceptIncomingMessages$ = this.kafkaMessage$.pipe(windowToggle(

 producerActive$, () => producerInactive$));

const bufferIncomingMessages$ = this.kafkaMessage$.pipe(bufferToggle(

 producerInactive$, () => producerActive$));

With the help of the windowToggle operator, we get fine-grained control over toggling between

when we want to collect new stream events and when to stop. If the producer is disconnected,

we will stop the regular emissions of the message. However, at that point, we want to collect all

incoming messages in a buffer, in order not to lose them once the producer is reconnected. For

those purposes, we can leverage the bufferToggle operator, which will keep track of all messages

while we are in the producerInactive$ state. After that, we can merge those two streams and

send messages to the broker in both cases:

merge(

 acceptIncomingMessages$,

 bufferIncomingMessages$

Building Reactive NestJS Microservices with RxJS254

).pipe(

 mergeAll(),

 concatMap((kafkaMessage) => from(this.producer.send(kafkaMessage))),

 catchError(() => of('Error sending messages to Kafka!')),

).subscribe();

Step 6 – Handling backpressure on the producer
In cases where our API is overwhelmed with new incoming messages, our producer might not be

able to send all messages one by one. This might lead to performance issues like latency, memory

leaks in our API, or even server crashes. What might be handy in those situations is applying the

backpressure pattern. There are two main backpressure strategies: lossy and lossless backpressure.

Depending on the use case, we might choose which strategy to implement by using different

RxJS operators.

•	 Lossy backpressure: throttle, throttleTime, debounce, debounceTime, sample,

sampleTime, skip, skipLast, skipUntil, skipWhile

•	 Lossless backpressure: delay, buffer, bufferCount, bufferTime, bufferToogle,

bufferWhen, window, windowCount, windowTime, windowToggle, windowWhen

The lossy backpressure strategy has a simpler form where the consumer starts dropping messages

when overwhelmed. This strategy might be useful in situations where receiving the latest data is

more important than processing every single message, e.g., real-time stock prices.

In our use case, we have decided that we will go with lossless backpressure, since we don’t want

to lose any messages:

merge(

 acceptIncomingMessages$,

 bufferIncomingMessages$

).pipe(

 mergeAll(),

 bufferTime(2000),

 filter(messages => messages.length > 0),

 concatMap((kafkaMessage) => from(this.producer.sendBatch(

 { topicMessages: kafkaMessage }

))),

 catchError(() => of('Error sending messages to Kafka!')),

).subscribe();

Chapter 10 255

Note the few changes that we have applied to the stream:

1.	 We are using the bufferTime operator for lossless backpressure, and every two seconds,

we are collecting all messages into a buffer.

2.	 We are filtering time frames without any messages, meaning empty buffers.

3.	 Instead of producing one message, we are going to send a batch of messages with the

method sendBatch().

Now, when we send a few HTTP requests, we can observe in the console that messages are

successfully being sent to the Kafka broker and the consumer is being notified.

Figure 10.1: Kafka messages

But as we can see now, we get messages asynchronously under the same topic. Wouldn’t it be nice if

could collect all of them under the same topic, and have an array of messages that we can process?

Step 7 – Going reactive with the Kafka consumer
In our consumer’s run() method, we were previously logging the incoming messages. Now, let’s

process them in a reactive way:

private readonly messages$ = new Subject<KafkaMessage>();

await consumer.run({

 eachMessage: async ({ topic, partition, message }) => {

 const kafkaMessage = {

Building Reactive NestJS Microservices with RxJS256

 topic,

 compression: CompressionTypes.GZIP,

 offset: message.offset,

 messages: [{ value: message.value.toString() }]

 };

 this.messages$.next(kafkaMessage);

 },

});

Whenever there is a new message, our messages$ subject will be notified about it. We can consume

those messages reactively by doing the following:

consumeMessages(): void {

 this.messages$.asObservable().pipe(

 groupBy(person => person.topic, {

 connector: () => new ReplaySubject(100) }),

 concatMap(group$ => group$.pipe(

 scan((acc, cur) => ({

 topic: group$.key,

 messages: acc.messages ? cur.messages.concat(acc.messages)
:

 cur.messages,

 }), {} as KafkaConsumedMessage))

),

 catchError((error) => {

 console.log('Error consuming messages from Kafka!');

 return EMPTY;

 }),

 tap(console.log),

).subscribe();

Here, we can see that with the help of the groupBy operator, we can collect all messages under the

same topic. After that, we use concatMap to have messages in order, while also transforming the

inner stream to put all the messages into the same array with the scan operator. An alternative

approach might be to use the mergeScan operator alongside the map operator.

Chapter 10 257

When we send new POST requests to our API, we will see that messages are efficiently grouped

into the array under the same topic and ready for processing.

Figure 10.2: Grouping Kafka messages

We might also notice the order of the messages, where the most recent ones are at the beginning

of the array.

Step 8 – Handling backpressure on the consumer
As we have already done for the producer, we are going to apply lossless backpressure to the

consumer part. At the beginning of the stream, we would add the bufferTime operator to handle

lossless backpressure. Finally, our stream looks like this:

this.messages$.asObservable().pipe(

 bufferTime(1000),

 concatMap(messages => messages),

 groupBy(person => person.topic, {

 connector: () => new ReplaySubject(100) }),

 concatMap(group$ => group$.pipe(

 scan((acc, cur) => ({

 topic: group$.key,

 messages: acc.messages

 ? cur.messages.concat(acc.messages)

 : cur.messages,

Building Reactive NestJS Microservices with RxJS258

 }), {} as KafkaConsumedMessage)

)

),

 catchError((error) => {

 console.log('Error consuming messages from Kafka!');

 return EMPTY;

 }),

 tap(console.log),

).subscribe();

Step 9 – Implementing the dead-letter queue pattern
At this point, consumption of our messages can run smoothly. We can process messages or connect

our consumers to Apache Spark: anything we want. But what about the deserialization of the

messages over the Kafka event bus? What if there is an error in processing the message? For those

instances, we will send a message with an invalid format. We will use the same stringified request

payload as before; we’re just going to delete one comma, so that parsing of this message fails.

In a real-life scenario, if the processing of a message fails, we want to keep track of all failed

processing events, send those events to the monitoring service, and schedule them to reinitiate

re-processing or additional checks.

For those purposes, we will implement the dead-letter queue pattern. This is a mechanism for

handling messages that failed to be processed by the consumer and sent to a separate topic. We

will extend the previous implementation of the consumer’s run() method from step 7:

private readonly dlq$ = new ReplaySubject<KafkaMessage>();

await consumer.run({

 eachMessage: async ({ topic, partition, message }) => {

 const kafkaMessage = {

 topic,

 compression: CompressionTypes.GZIP,

 offset: message.offset,

 messages: [{ value: message.value.toString() }]

 };

 let parsedMessage = null;

 try {

Chapter 10 259

 parsedMessage = this.deserializeMessage(kafkaMessage);

 } catch (error) {

 this.dlq$.next({

 topic: 'dlq',

 compression: CompressionTypes.GZIP,

 messages: [{ value: message.value.toString() }],

 error

 });

 return;

 }

 this.messages$.next(parsedMessage);

 },

});

What the deserializeMessage() method will do is basically try to call JSON.parse() for every

message. If deserialization fails, we will send that message to the dlq topic, with information

about the message and the error that happened.

Whenever we have a new message sent to the dlq subject, we can react to that event by scheduling

a new value emission:

async onModuleInit() {

 this.dlq$.pipe(

 delay(5000),

 // send DLQ error to monitoring service every night at 2am

 subscribeOn(asyncScheduler),

 materialize(),

 tap(console.log)

).subscribe();

}

Building Reactive NestJS Microservices with RxJS260

Finally, when we try to send a message that contains the error for processing, we would see the

following log in the console:

Figure 10.3: Dead-letter queue pattern

See also
•	 Apache Kafka in 6 minutes: https://www.youtube.com/watch?v=Ch5VhJzaoaI

•	 What is Kafka? by IBM: https://www.youtube.com/watch?v=aj9CDZm0Glc

•	 Kafka in 100 Seconds by Fireship: https://www.youtube.com/watch?v=uvb00oaa3k8

•	 System Design: Apache Kafka In 3 Minutes by ByteByteGo: https://www.youtube.com/
watch?v=HZklgPkboro

•	 Kafka Deep Dive w/ a Ex-Meta Staff Engineer: https://www.youtube.com/watch?v=DU8o-
OTeoCc

Going real time with gRPC streaming in NestJS
gRPC is an open-source remote procedure call framework, created by Google in 2016. Remote

procedure call means that with the gRPC protocol, built upon HTTP/2, we can execute a method

from another machine or computer, as if we were running it locally. The fact that it is using

HTTP/2 instead of HTTP/1.1 makes a significant performance boost, since it allows multiple

streams of messages over a single long-lived TCP connection, and provides support for features

like multiplexing, headers compression, and bi-directional streaming. This leads to reduced

latency when communicating between different services.

https://www.youtube.com/watch?v=Ch5VhJzaoaI
https://www.youtube.com/watch?v=Ch5VhJzaoaI
https://www.youtube.com/watch?v=Ch5VhJzaoaI
https://www.youtube.com/watch?v=aj9CDZm0Glc
https://www.youtube.com/watch?v=aj9CDZm0Glc
https://www.youtube.com/watch?v=uvb00oaa3k8
https://www.youtube.com/watch?v=uvb00oaa3k8
https://www.youtube.com/watch?v=HZklgPkboro
https://www.youtube.com/watch?v=HZklgPkboro
https://www.youtube.com/watch?v=HZklgPkboro
https://www.youtube.com/watch?v=HZklgPkboro
https://www.youtube.com/watch?v=DU8o-OTeoCc
https://www.youtube.com/watch?v=DU8o-OTeoCc

Chapter 10 261

gRPC uses Protocol Buffers as a language-agnostic mechanism for serializing structured data,

offering efficient and compact data encoding. Compared to JSON, as a standard way of exchanging

data on the web, Protocol Buffers are much faster and easier to decode and store on a server. Also,

gRPC can help us when building type-safe APIs that scale, since Protocol Buffers enforce type-

checking, which leads to reduced errors and improved code quality.

Use cases where we can leverage gRPC protocol are communication between microservices, real-

time applications like chat apps and video streaming, IoT applications, etc.

Getting ready
If you haven’t used gRPC before, their official documentation might be a great starting point:

https://grpc.io/docs/what-is-grpc/introduction/. Also, NestJS provides documentation

on how to set up a gRPC microservice: https://docs.nestjs.com/microservices/grpc.

How to do it...
Ever wondered how food delivery apps like Wolt or Uber Eats give us real-time information

about the location of a courier who is delivering our order? Well, now it’s time to find out how

that works under the hood. In this recipe, we are going to build a gRPC microservice in a NestJS

server app that accepts the food order and, with a little bit of RxJS magic, streams to the client

the results of different states of food preparation.

Step 1 – Defining a .proto file
A .proto file is like a blueprint that defines the structure of communication between a client and

a server. By defining this Protocol Buffers structure in a .proto/order.proto file, we can serialize

data in a more efficient way than JSON and send food order data over the network:

syntax = "proto3";

package order;

service FoodOrderService {

 rpc CreateOrder (stream OrderRequest)

 returns (stream OrderResponse);

}

message OrderRequest {

 string item = 1;

 int32 quantity = 2;

https://grpc.io/docs/what-is-grpc/introduction/
https://docs.nestjs.com/microservices/grpc
https://docs.nestjs.com/microservices/grpc

Building Reactive NestJS Microservices with RxJS262

}

message OrderResponse {

 string id = 1;

 string item = 2;

 int32 quantity = 3;

 string status = 4;

}

Here’s a quick breakdown of the .proto file definition:

1.	 We are using version 3 syntax for Protocol Buffers: https://protobuf.dev/reference/

protobuf/proto3-spec/.

2.	 The package helps us avoid naming conflicts between different Protocol Buffers files.

3.	 The service definition includes the service name, RPC method, and request and response

types. The CreateOrder method handles a stream of OrderRequest messages and returns

a stream of OrderResponse messages.

4.	 We define messages that we will send over the network. You can think of messages as

Data Transfer Objects (DTOs) in the REST protocol. A message defines the structure of

the data that is exchanged between the client and the server in a gRPC service.

Step 2 – Configuring a gRPC microservice
In our main.ts file, we will set up our food order microservice that communicates over the gRPC

protocol:

import { MicroserviceOptions, Transport } from '@nestjs/microservices';

import { NestFactory } from '@nestjs/core';

import { join } from 'path';

import { ReflectionService } from '@grpc/reflection';

import { AppModule } from './app.module';

async function bootstrap() {

 const app = await NestFactory

 .createMicroservice<MicroserviceOptions>(

 AppModule,

 {

 transport: Transport.GRPC,

 options: {

https://protobuf.dev/reference/protobuf/proto3-spec/
https://protobuf.dev/reference/protobuf/proto3-spec/
https://protobuf.dev/reference/protobuf/proto3-spec/
https://protobuf.dev/reference/protobuf/proto3-spec/
https://protobuf.dev/reference/protobuf/proto3-spec/

Chapter 10 263

 package: 'order',

 protoPath: join(__dirname, './proto/order.proto'),

 url: 'localhost:5000',

 onLoadPackageDefinition: (pkg, server) => {

 new ReflectionService(pkg).addToServer(server);

 },

 },

 });

 await app.listen();

}

bootstrap();

Here, we define all the necessary options for effective gRPC communication, like transport, package

name, path to .proto file, and server URL. Also, what you may notice is that we set up a gRPC

server reflection. This allows clients to discover the available services and their methods on the

server without needing the Protocol Buffers file. The benefit of this approach is easier developer

experience; it is also easier to test and debug gRPC services.

Step 3 – Creating a gRPC controller
In our order.controller.ts, we can define the gRPC method, which will handle the creation

of new food orders:

@Controller()

export class OrderController {

 constructor(private readonly orderService: OrderService) { }

 @GrpcStreamMethod('FoodOrderService', 'CreateOrder')

 createOrder(

 stream: Observable<OrderRequest>

): Observable<OrderResponse> {

 return stream.pipe(mergeMap((data: OrderRequest) =>

 this.orderService.createOrder(data), 3));

 }

}

Building Reactive NestJS Microservices with RxJS264

Here, we can notice a few important things:

1.	 With the @GrpcStreamMethod decorator, we can match the service and RPC method from

our .proto file.

2.	 The controller accepts a new OrderRequest as an Observable stream, which means that

we can pipe into that stream and leverage RxJS.

3.	 We can also return OrderResponse as an Observable stream.

4.	 With the power of the RxJS mergeMap operator, we can handle the concurrency of incoming

requests. This means that no more than three orders can be processed at the same time,

and other requests will be queued and processed when we have three or fewer ongoing

requests.

Step 4 – Streaming food order reactive updates
In our order.service.ts, we will define a method, createOrder, that accepts new orders and

returns the latest status of the specific order:

@Injectable()

export class OrderService {

 createOrder(orderRequest: OrderRequest): Observable<OrderResponse> {

 const id = crypto.randomUUID();

 const newOrder: OrderResponse = { orderRequest,

 status: OrderStatus.PENDING };

 }

 const currentOrder$ = new BehaviorSubject<OrderResponse>(newOrder);

 return currentOrder$.asObservable();

}

Once we accept a new order, we immediately change its status to PENDING and notify the client

that the order is being processed. Over time, we will switch this status over the gRPC stream to

other statuses, like ACCEPTED, PREPARING, COURIER_ON_THE_WAY, or CANCELLED.

Now, once we have gRPC streaming in place, we can use the power of RxJS to simulate reactive

stream changes over time, update the order status, and notify the client about the changes:

const id = crypto.randomUUID();

const newOrder: OrderResponse = { orderRequest, id,

 status: OrderStatus.PENDING };

const orderStatus$ = new BehaviorSubject<OrderResponse>(newOrder);

Chapter 10 265

createOrder(orderRequest: OrderRequest): Observable<OrderResponse> {

 const id = crypto.randomUUID();

 const newOrder: OrderResponse = { ...orderRequest, id,

 status: OrderStatus.PENDING };

 const orderStatus$ = new BehaviorSubject<OrderResponse>(newOrder);

 of(newOrder)

 .pipe(

 delay(1000),

 map((order: OrderResponse) => {

 order.status = OrderStatus.ACCEPTED;

 orderStatus$.next(order);

 return order;

 }),

 delay(1000),

 map((order: OrderResponse) => {

 order.status = OrderStatus.PREPARING;

 orderStatus$.next(order);

 return order;

 }),

 delay(10000),

 map((order: OrderResponse) => {

 order.status = OrderStatus.DELIVERED;

 orderStatus$.next(order);

 return order;

 }),

 tap(() => orderStatus$.complete()),

 takeUntil(this.stop$),

)

 .subscribe();

 return orderStatus$.asObservable();

 }

}

Building Reactive NestJS Microservices with RxJS266

Here, we are simulating the food preparation process by simply delaying the notifications about

the order status changes. At the end of a stream, we will complete the orderStatus$ stream,

because we want to notify the controller that the request has completed, and we can move on to

the next concurrent requests.

Step 5 – Streaming a courier’s geolocation updates
In between the PREPARING and DELIVERED statuses, we will have one more status, when the

courier is delivering the food order from the venue to the customer. The way we can simulate

this is simply by attaching geolocation coordinates at a certain interval:

switchMap((order: OrderResponse) => {

 order.status = OrderStatus.COURIER_ON_THE_WAY;

 return interval(2000).pipe(

 map(i => {

 const orderWithLocation = {

 order,

 location: { lat: 40.7128 + i * 0.1, lng: -74.0060 + i * 0.1

 }

 };

 this.orderStatus$.next(orderWithLocation);

 return orderWithLocation;

 }),

 startWith({ ...order, location: { lat: 40.7128, lng: -74.0060 } }),

 takeUntil(merge(timer(10001), this.stop$),

);

}),

We can see that every two seconds, we will update the location of the courier and notify the gRPC

client about the change. Also, since we have an inner Observable that we have created with the

interval operator, we need to be careful about memory leaks. In cases where we need fine-grained

control over when an Observable stream should end, we can use operators like takeUntil, which

will automatically unsubscribe any observers on a given signal (in our case, emission from the

timer operator after 10,001 milliseconds, or when we stop the service).

Chapter 10 267

Finally, when we test our gRPC controller using an API testing tool like Postman, we can see how

we are streaming data efficiently and giving clients timely notifications about changes within

the system.

Figure 10.4: Postman gRPC request

After sending the request message, we can track our food orders in real time and know exactly

when to expect our delicious meals.

Figure 10.5: gRPC streaming

https://www.youtube.com/watch?v=cSGBbwvW1y4%20

Building Reactive NestJS Microservices with RxJS268

See also...
•	 Getting started with gRPC from Google: https://www.youtube.com/watch?v=cSGBbwvW1y4

•	 What is RPC? gRPC Introduction. from ByteByteGo: https://www.youtube.com/
watch?v=gnchfOojMk4

•	 How LinkedIn Improved Latency by 60%: https://www.linkedin.com/pulse/how-
linkedin-improved-latency-60-deep-dive-power-google-syed-vln8c/

•	 Why top companies are switching to gRPC: https://www.youtube.com/shorts/
t0ONFCY6NWI

•	 Prime Reacts on gRPC: https://www.youtube.com/watch?v=9IxE2UQqJCw

•	 NestJS documentation on gRPC streaming: https://docs.nestjs.com/microservices/
grpc#grpc-streaming

•	 Guide on how to use Postman to test gRPC endpoints: https://learning.postman.com/
docs/sending-requests/grpc/grpc-request-interface/

•	 gRPC web: https://github.com/grpc/grpc-web

Learn more on Discord
To join the Discord community for this book – where you can share feedback, ask questions to

the author, and learn about new releases – follow the QR code below:

https://packt.link/RxJSCookbook

https://www.youtube.com/watch?v=cSGBbwvW1y4%20
https://www.youtube.com/watch?v=cSGBbwvW1y4%20
https://www.youtube.com/watch?v=cSGBbwvW1y4
https://www.youtube.com/watch?v=gnchfOojMk4%20
https://www.youtube.com/watch?v=gnchfOojMk4%20
https://www.youtube.com/watch?v=gnchfOojMk4
https://www.youtube.com/watch?v=gnchfOojMk4
https://www.linkedin.com/pulse/how-linkedin-improved-latency-60-deep-dive-power-google-syed-vln8c/
https://www.linkedin.com/pulse/how-linkedin-improved-latency-60-deep-dive-power-google-syed-vln8c/
https://www.linkedin.com/pulse/how-linkedin-improved-latency-60-deep-dive-power-google-syed-vln8c/
https://www.youtube.com/shorts/t0ONFCY6NWI
https://www.youtube.com/shorts/t0ONFCY6NWI
https://www.youtube.com/shorts/t0ONFCY6NWI
https://www.youtube.com/shorts/t0ONFCY6NWI
https://www.youtube.com/watch?v=9IxE2UQqJCw
https://www.youtube.com/watch?v=9IxE2UQqJCw
https://docs.nestjs.com/microservices/grpc#grpc-streaming
https://docs.nestjs.com/microservices/grpc#grpc-streaming
https://learning.postman.com/docs/sending-requests/grpc/grpc-request-interface/
https://learning.postman.com/docs/sending-requests/grpc/grpc-request-interface/
https://learning.postman.com/docs/sending-requests/grpc/grpc-request-interface/
https://github.com/grpc/grpc-web
https://github.com/grpc/grpc-web
https://github.com/grpc/grpc-web
https://packt.link/RxJSCookbook

Index

A
Angular

NgRx for state management, using 148, 149
used, for building TanStack Query 158

Angular Material 47

Angular Observable
used, for mocking HTTP dependencies 102

Angular Router 149

Angular Router events 48

animationFrame
reference link 94

ApexCharts library
reference link 214

API calls
errors, testing 114
mocking, with MSW 109
multiple requests, testing in parallel 113
multiple requests, testing in

sequence 111, 113
simple HTTP request, testing 111
TestBed, setting up 110, 111

auditTime
versus throttleTime 73

B
broker 247

bulkhead resiliency strategy
implementing 243, 244

C
Cache-First strategy 189

used, for implementing seamless RxJS
offline-first apps 188

circuit breaker pattern 18, 21

cluster 247

code testing 95

cold Observables
versus hot Observables 125

complex state management
testing, with NgRx 114

concatMap 126

consumer 247

cooking recipe app
building 2
one search input, handling 3, 4

Cooking Recipes app
actions, dispatching 138, 139
building 137
composable reducers, creating 145, 146
meta-reducers, creating 146, 147
reducer function, applying for state

transitions 140, 141
side effects, handling 141, 142
state, defining 137
state, slicing 143, 145

custom client-side state management
building 136, 137

Index270

custom Core Web Vitals performance
monitoring system

creating 129
performance entries, observing 130
Performance Observer, setting up 129, 130

D
data

prioritizing, with RxJS network-first
strategy 193

data fetching
with Infinite Scroll Timeline component 72

data freshness and performance
optimizing, with Stale-While-Revalidate

strategy 196, 197

Data Transfer Objects (DTOs) 262

data visualization charts
connecting, to RxJS WebSocket 210
implementing 210
reconnecting, to WebSocket 211, 212
subscribing, to socket data 212, 213
subscribing, to visualizing data 212, 213

dead-letter queue pattern
implementing 258-260

DOM updates
cooking recipe app, building 2
handling 2
search inputs, handling 5, 6

drag-and-drop events
dropzone, defining 52, 53
files and tracking progress, uploading 54, 56
files, validating 53, 54
file upload errors, handling 58, 59
file uploads, displaying in UI 57
reacting 51

E
exponential back off pattern 21

F
fallback strategy 21

forkJoin operator
reference link 14

G
gRPC streaming, in NestJS 260, 261

courier’s geolocation updates,
streaming 266-268

food order reactive updates,
streaming 264, 266

gRPC controller, creating 263, 264
gRPC microservice, configuring 262, 263
proto file, defining 261, 262

H
hot Observables

versus cold Observables 125

HTTP Cache-Control Header 162

HTTP dependencies
errors, testing 108
mocking, with Angular Observable 102
multiple requests, testing in

parallel 107, 108
multiple requests, testing

in sequence 105-107
simple HTTP request, testing 104, 105
TestBed, setting up 103

HTTP polling 26
long polling 27, 28
standard polling 26

Index 271

I
image loading

streaming, with Progressive Image 44

IndexedDB
sync data, storing 176-178

indications
learning, with progress bar 42

Infinite Scroll Timeline component
list, detecting 72, 73
new recipes, checking 75, 76
next page, controlling 73, 74
state list, loading 73, 74
used, for data fetching 72

J
jest-preset-angular library

reference link 114

K
Kafka

retry mechanism 248
used, for enhancing reactive

event streaming 246, 247

Kafka consumer
setting up 249

Kafka producer
setting up 248

L
loading tab content 48, 49

active tab, defining 47, 48
optimizing 47
tab group, defining 47, 48

long polling 27, 28

LowQualityImagePlaceholder pattern 44

M
marble syntax

reference link 102

marble testing
used, for mastering time-based

RxJS operators 96, 97

mergeMap 126

mergeMap operator
reference link 14

mesmerizing fluid particle effects
connections, drawing 87
creating, with RxJS 82
particles, drawing 82-84
particles, moving with hover effect 88-91
wall collision, detecting 85, 86

Mock Service Worker (MSW) 96
reference link 114
used, for mocking API calls 109

modern chat application
chat topic messages, handling 219-222
client disconnection, handling 225
crafting 215
event handling 223, 225
NestJS WebSocket gate, creating 215-218
RxJS WebSocket, connecting from

frontend app 218, 219
voice messages, sending 228, 230
WebSocket disconnection,

handling 227, 228

multiplexing 31
retry strategy, implementing 33, 34

Index272

N
native HTMLAudioElement 61

NestJS
gRPC streaming 260, 261
REST API microservices, crafting 242

network errors
catching 14
circuit breaker pattern, using 18-21
exponential back off pattern, using 17
handling 14
retry pattern, using 15, 16

network-first offline strategy 193

network requests
concurrent requests, handling 12
handling 8
handling, in parallel 10
handling, in sequence 8, 9

NgRx 114, 148
actions, dispatching 118, 119
effect errors, testing 120
effects, testing 118, 119
integration test, setting up 117
mock actions, setting up 117
mock store, setting up 115
store selectors, testing 116
used, for testing complex state

management 114

NgRx docs
reference link 157

NgRx effect testing
reference link 120

NgRx for state management
app state, extending with NgRx

Router State 153, 155
meta-reducers, creating 155, 156

NgRx store, configuring 149-151
selectors, defining 152, 153
side effects, handling 151, 152
using, in Angular 148, 149

NgRx Router State
used, for extending app state 153

NgRx testing selectors
reference link 120

NgRx testing strategies
reference link 120

O
observables 68

offline-first apps 185
benefits 185, 186
strategy 186, 187

offline-ready applications
building, with RxDB 178

offline-ready applications, RxDB
recipe schema, defining 179, 180
recipe, searching with RxQuery 182, 183
RxDatabase, creating 180
subscribing, to ChangeEvent 181, 182

operators 68

optimistic update pattern 204
custom operator, applying 205, 206
custom operator, creating 204, 205
implementing 204
offline mode 206, 207

P
particles.js library 82

partition 247

pattern matching 41

Index 273

PerformanceObserver Web API
reference link 131

phone unlock pattern component
number pads, creating 36, 37
selected number pads, marketing 38, 39
trail, creating 40, 41
user touch events, identifying 37, 38
with RxJS-powered swipe gestures 36

producer 247

progress bar
progress and request streams, merging 42
progress loading stream, creating 42
used, for learning indications 42

Progressive Image 44
image sources, defining 44
image stream, subscribing 45, 47
progress stream, creating 44, 45
used, for streaming image loading 44

Push API 169

Pythagorean theorem 87

Q
Query Builder 182

R
Racing Cache and Network offline

strategy 200
cache data, extracting 200
implementing 200
network request, sending 201
offline mode 202, 203
raceWith operator, using 202

reactive background data sync
implementing 173

reactive controls
used, for creating RxJS audio player 60

reactive event streaming,
with Kafka 246, 247

backpressure, handling on consumer 257
backpressure, handling on

producer 254, 255
consumer, setting up 249, 250
dead-letter queue pattern,

implementing 258-260
messages, buffering on producer

disconnection 253
producer 248
producer connection events,

reacting to 251, 253
reactivity, with consumer 255, 256
reactivity, with producer 250, 251

realistic ball-bouncing physics
animation, repeating 80, 81
animation, stopping 80, 81
bouncing ball, animating 78, 79
bouncing off ground 79, 80
with RxJS 78

real-time food order updates
background sync, establishing

with API 174, 176
delivering, with RxJS push notifications 168
public key endpoint, setting up 169
push notification subscription,

requesting 169, 170
reacting, to incoming push

notifications 172, 173
reactive push notifications, sending

from API 171, 172
recipe request, intercepting 174
sync data, storing in IndexedDB 176-178
VAPID keys, generating 168

Index274

real-time updates
streamlining, with RxJS-powered

notifications 68

Redux DevTools
reference link 157

REST API microservices, crafting
in NestJS 242

bulkhead resiliency strategy,
implementing 243-246

communication, establishing between
services 242

exponential backoff strategy, applying 243

Router State 153

RxDatabase
creating 180

RxDB
used, for building offline-ready

applications 178

RxJS
used, for building TanStack Query 158
used, for creating mesmerizing fluid

particle effects 82
used, for realistic ball-bouncing physics 78

RxJS audio player
creating, with reactive controls 60
events, creating 61, 62
play/pause event 63
songs, skipping 66, 67
songs, switching 64, 65
song state, managing 62
song’s volume, controlling 63
songs volume, controlling 64

RxJS marble diagrams 96

RxJS marble testing blog
reference link 102

RxJS mergeMap concurrent mode 12

RxJS network-first strategy
cacheFallback, implementing 194, 195
offline mode 195, 196
online network request, sending 193
used, for prioritizing data 193

RxJS-powered notifications
automatic notification dismissal 71
incoming notifications, stacking 68, 69
notifications, displaying 69, 70
used, for streamlining real-time updates 68
user action, reacting to 69, 70

RxJS-powered swipe gestures
used, for phone unlock pattern

component 36

RxJS push notifications
used, for delivering real-time food

order updates 168

RxJS scheduler 165

RxJS streams
debugging 22
network errors, logging 23, 24
successful responses, logging 22

RxJS streams, strategic operator selection
data stream, transforming 123
events stream, creating 122
memory leaks, preventing 125, 126
optimizing 122
performance, measuring 127
reduce data flow, filtering 123
results, caching 124
unnecessary requests, canceling 123

RxJS transitions
upload progress, animating 92, 94
upload progress, defining 92
used, for adding subtle elegance

to UI components 92

Index 275

RxJS unit testing, key elements
assertion libraries 95
marble diagrams 95
TestScheduler 95

RxJS Web Workers
messages stream, optimizing 133
messages, subscribing 132
setting up, in Angular 132
using 131

RxQuery 182

S
seamless RxJS offline-first apps

data, extracting from Cache API 189
implementing, with Cache-First

strategy 188
network access 190
offline mode 191, 192

shareReplay operator 126

Stale-While-Revalidate 158, 196
cahe data, extracting 197
data background, checking 198
offline mode 198-200
used, for optimizing data freshness and

performance 196, 197

standard polling 26

subtle elegance
adding, to UI components with RxJS

transitions 92

switchMap 4, 126
features 124

T
takeUntil operator 126

TanStack Query 158
automatic garbage collection 164
background updates 163, 164
benefits 158
building, with Angular 158
building, with RxJS 158
declarative queries, setting up 159
features 158
queries, caching with Map 159-161
stale-while-revalidate mechanism,

caching 162

throttleTime
versus auditTime 73

Tic-Tac-Toe game
building 231, 232
multiplayer, handling 232, 234
player move, handling 234, 236
winner, checking 237, 238

time-based RxJS operators
complex RxJS streams, testing 100, 101
mastering, with marble testing 96, 97
simple RxJS streams, testing 98, 99
TestScheduler, setting up 97

U
user experience (UX) 77

V
Voluntary Application Server Identification

(VAPID) keys 168

Index276

W
W3C-compatible 30

WebSocket 30
reference link 34

WebSocket connections
connect method 30, 31
handling 30

WebSocket function
reference link 215

Z
ZooKeeper 247

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from

over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books You May Enjoy

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Reactive Patterns with RxJS and Angular Signals

Lamis Chebbi

ISBN: 978-1-83508-770-1

•	 Get to grips with RxJS core concepts such as Observables, subjects, and operators

•	 Use the marble diagram in reactive patterns

•	 Delve into stream manipulation, including transforming and combining them

•	 Understand memory leak problems using RxJS and best practices to avoid them

•	 Build reactive patterns using Angular Signals and RxJS

•	 Explore different testing strategies for RxJS apps

•	 Discover multicasting in RxJS and how it can resolve complex problems

•	 Build a complete Angular app reactively using the latest features of RxJS and Angular

https://www.amazon.com/Reactive-Patterns-RxJS-Angular-Signals/dp/1835087701/

Other Books You May Enjoy 279

Effective Angular

Roberto Heckers

ISBN: 978-1-80512-553-2

•	 Create Nx monorepos ready to handle hundreds of Angular applications

•	 Reduce complexity in Angular with the standalone API, inject function, control flow, and

Signals

•	 Effectively manage application state using Signals, RxJS, and NgRx

•	 Build dynamic components with projection, TemplateRef, and defer blocks

•	 Perform end-to-end and unit testing in Angular with Cypress and Jest

•	 Optimize Angular performance, prevent bad practices, and automate deployments

https://www.amazon.com/Effective-Angular-Develop-applications-effectively/dp/1805125532/

Other Books You May Enjoy

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and apply

today. We have worked with thousands of developers and tech professionals, just like you, to help

them share their insight with the global tech community. You can make a general application,

apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished RxJS Cookbook for Reactive Programming, we’d love to hear your thoughts! If

you purchased the book from Amazon, please click here to go straight to the Amazon review page

for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/178862405X

Other Books You May Enjoy 281

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical

books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free

content in your inbox daily.

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below:

https://packt.link/free-ebook/9781788624053

2.	 Submit your proof of purchase.

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly.

https://packt.link/free-ebook/9781788624053

	Cover
	Copyright
	Foreword
	Contributors
	Table of Contents
	Preface
	Chapter 1: Handling Errors and Side Effects in RxJS
	Technical requirements
	Handling DOM updates
	How to do it…
	Step 1 – Handling one search input
	Step 2 – Handling two search inputs

	See also

	Handling network requests
	How to do it…
	Step 1 – Handling requests in sequence
	Step 2 – Handling requests in parallel
	Step 3 – Handling concurrent requests

	See also

	Handling network errors
	How to do it…
	Step 1 – Catching errors
	Step 2 – Using the retry pattern
	Step 3 – Using the exponential back off pattern
	Step 4 – Using the circuit breaker pattern

	There’s more…
	See also

	Debugging RxJS streams
	How to do it…
	Step 1 – Logging successful responses
	Step 2 – Logging network errors

	Understanding HTTP polling
	How to do it…
	Step 1 – Standard HTTP polling
	Step 2 – Long HTTP polling

	See also

	Handling WebSocket connections
	How to do it…
	Step 1 – Connecting to the socket
	Step 2 – Implementing a WebSocket heartbeat

	See also
	Learn more on Discord

	Chapter 2: Building User Interfaces with RxJS
	Technical requirements
	Unlocking a phone with precision using RxJS-powered swipe gestures
	How to do it…
	Step 1 – Creating number pads
	Step 2 – Identifying user touch events
	Step 3 – Marking selected number pads
	Step 4 – Creating a trail
	Step 5 – Checking the result

	See also

	Learning indications with the progress bar
	How to do it…
	Step 1 – Creating a progress loading stream
	Step 2 – Merging progress and request streams

	See also

	Streaming image loading seamlessly with Progressive Image
	How to do it…
	Step 1 – Defining image sources
	Step 2 – Creating a progress stream
	Step 3 – Subscribing to the image stream in the template

	See also

	Optimizing loading tab content
	How to do it…
	Step 1 – Defining a tab group and an active tab
	Step 2 – Loading tab content

	See also

	Reacting to drag-and-drop events
	Getting ready
	How to do it…
	Step 1 – Defining a dropzone
	Step 2 – Validating files
	Step 3 – Uploading files and tracking progress
	Step 4 – Showing file uploads in the UI
	Step 5 – Handling file upload errors

	See also

	Crafting your perfect audio player using flexible RxJS controls
	How to do it…
	Step 1 – Creating audio player events
	Step 2 – Managing song state
	Step 3 – Playing/pausing a song
	Step 4 – Controlling the song’s volume
	Step 5 – Switching songs
	Step 6 – Skipping to the middle of a song

	See also

	Streamlining real-time updates with RxJS-powered notifications
	How to do it…
	Step 1 – Stacking incoming notifications
	Step 2 – Reacting to a user action and displaying notifications
	Step 3 – Automatic notification dismissal

	See also

	Fetching data with the Infinite Scroll Timeline component
	How to do it…
	Step 1 – Detecting the end of a list
	Step 2 – Controlling the next page and loading the state of the list
	Step 3 – Checking for new recipes

	See also

	Chapter 3: Understanding Reactive Animation Systems with RxJS
	Technical requirements
	Simulating realistic ball-bouncing physics using RxJS
	How to do it…
	Step 1 – Animating a ball falling
	Step 2 – Bouncing off the ground
	Step 3 – Stopping and repeating the animation

	See also

	Creating mesmerizing fluid particle effects using RxJS
	How to do it…
	Step 1 – Drawing particles
	Step 2 – Detecting wall collision
	Step 3 – Drawing connections
	Step 4 – Moving particles with a hover effect

	See also

	Adding subtle elegance to components with RxJS transitions
	How to do it…
	Step 1 – Increasing the upload progress
	Step 2 – Animating the upload progress

	See also

	Chapter 4: Testing RxJS Applications
	Technical requirements
	Mastering time-based RxJS operators with marble testing
	Getting ready
	How to do it…
	Step 1 – Setting up TestScheduler
	Step 2 – Testing simple RxJS streams
	Step 3 – Testing complex RxJS streams

	See also

	Mocking HTTP dependencies with Observables in Angular
	Getting ready
	How to do it…
	Step 1 – Setting up TestBed
	Step 2 – Testing a simple HTTP request
	Step 3 – Testing multiple requests in sequence
	Step 4 – Testing multiple requests in parallel
	Step 5 – Testing errors

	See also

	Mocking API calls with MSW
	Getting ready
	How to do it…
	Step 1 – Setting up TestBed
	Step 2 – Testing a simple HTTP request
	Step 3 – Testing multiple requests in sequence
	Step 4 – Testing multiple requests in parallel
	Step 5 – Testing errors

	See also

	Testing complex state management with NgRx
	Getting ready
	How to do it…
	Step 1 – Setting up a mock store
	Step 2 – Testing store selectors
	Step 3 – Setting up integration test and mock actions
	Step 4 – Testing effects and dispatching actions
	Step 5 – Testing effect errors

	See also
	Learn more on Discord

	Chapter 5: Performance Optimizations with RxJS
	Technical requirements
	Optimizing RxJS streams with strategic operator selection
	How to do it…
	Step 1 – Creating a stream of events
	Step 2 – Transforming the data stream for efficiency
	Step 3 – Filtering to reduce data flow
	Step 4 – Canceling unnecessary requests
	Step 5 – Caching the results
	Step 6 – Preventing memory leaks
	Step 7 – Measuring RxJS stream performance

	See also

	Creating a custom Core Web Vitals performance monitoring system
	How to do it…
	Step 1 – Setting up Performance Observer
	Step 2 – Observing performance entries

	See also

	Using Web Workers alongside RxJS
	How to do it…
	Step 1 – Setting up a web worker in Angular
	Step 2 – Subscribing to web worker messages
	Step 3 – Optimizing the worker messages stream

	See also

	Chapter 6: Building Reactive State Management Systems with RxJS
	Technical requirements
	Building custom client-side state management
	How to do it…
	Step 1 – Defining the state
	Step 2 – Dispatching actions
	Step 3 – Applying the reducer function for state transitions
	Step 4 – Handling side effects
	Step 5 – Slicing the state
	Step 6 – Creating composable reducers
	Step 7 - Creating meta-reducers

	See also

	Using NgRx for state management in Angular
	How to do it…
	Step 1 – Configuring a NgRx store
	Step 2 – Handling side effects
	Step 3 – Defining selectors
	Step 4 – Extending app state with NgRx Router State
	Step 5 – Creating meta-reducers

	See also

	TanStack Query, meet RxJS – building your own TanStack query with Angular and RxJS
	How to do it…
	Step 1 – Setting up declarative queries
	Step 2 – Caching queries with Map
	Step 3 – Caching with the stale-while-revalidate mechanism
	Step 4 – Background updates
	Step 5 – Automatic garbage collection

	See also

	Chapter 7: Building Progressive Web Apps with RxJS
	Technical requirements
	Delivering real-time food order updates with RxJS push notifications
	How to do it…
	Step 1 – Generating VAPID keys
	Step 2 – Setting up a public key endpoint
	Step 3 – Requesting push notification subscription
	Step 4 – Sending reactive push notifications from the API
	Step 5 – Reacting to incoming push notifications

	See also

	Implementing reactive background data sync
	How to do it…
	Step 1 – Intercepting the recipe request
	Step 2 – Establishing background sync with API
	Step 3 – Setting up Dexie.js
	Step 4 – Storing sync data in IndexedDB

	Building offline-ready applications seamlessly with RxDB
	Getting ready
	How to do it…
	Step 1 – Defining the recipe schema
	Step 3 – Subscribing to ChangeEvent
	Step 4 – Searching for a recipe with RxQuery

	There’s more...
	See also

	Chapter 8: Building Offline-First Applications with RxJS
	Technical requirements
	Implementing seamless RxJS offline-first apps using a Cache-First strategy
	How to do it…
	Step 1 – Extracting data from the Cache API
	Step 2 – Falling back to the network
	Step 3 – Going offline

	Prioritizing fresh data with RxJS network-first strategy
	How to do it…
	Step 1 – Sending a network request when online
	Step 2 – Falling back to the cache
	Step 3 – Going offline

	Optimizing data freshness and performance with the Stale-While-Revalidate strategy
	How to do it…
	Step 1 – Extracting data from the cache
	Step 2 – Checking for the fresh data in the background
	Step 3 – Going offline

	Racing Cache and Network strategy
	How to do it…
	Step 1 – Extracting data from the cache
	Step 2 – Sending a network request
	Step 3 – Network & cache race
	Step 4 – Going offline

	See also

	Implementing the optimistic update pattern
	How to do it…
	Step 1 – Creating a custom operator
	Step 2 – Applying the optimistic update operator
	Step 3 – Going offline

	Learn more on Discord

	Chapter 9: Going Real-Time with RxJS
	Technical requirements
	Implementing real-time data visualization charts
	How to do it…
	Step 1 – Connecting to RxJS WebSocket
	Step 2 – Reconnecting to WebSocket after losing connection
	Step 3 – Subscribing to socket data and visualizing data

	See also…

	Crafting a modern chat application
	How to do it…
	Step 1 – Creating a NestJS WebSocket gateway
	Step 2 – Connecting to RxJS WebSocket from the frontend app
	Step 3 – Handling chat topic messages
	Step 4 – Handling the event when a user is typing
	Step 7 – Handling client disconnection
	Step 8 – Handling WebSocket disconnection
	Step 9 – Sending voice messages

	See also…

	Playing real-time multiplayer Tic-Tac-Toe
	How to do it…
	Step 1 – Handling multiplayer
	Step 2 – Playing a move
	Step 3 – Checking the winner

	See also…

	Chapter 10: Building Reactive NestJS Microservices with RxJS
	Technical requirements
	Crafting resilient REST API microservices in NestJS
	Getting ready
	How to do it...
	Step 1 – Establishing communication between services
	Step 2 – Applying an exponential backoff strategy
	Step 3 – Implementing the bulkhead resiliency strategy

	See also...

	Mastering reactive event streaming with Kafka
	Getting ready
	How to do it...
	Step 1 – Setting up the Kafka producer
	Step 2 – Setting up the Kafka consumer
	Step 3 – Going reactive with the Kafka producer
	Step 4 – Reacting to producer connection events
	Step 5 – Buffering messages when the producer is disconnected
	Step 6 – Handling backpressure on the producer
	Step 7 – Going reactive with the Kafka consumer
	Step 8 – Handling backpressure on the consumer
	Step 9 – Implementing the dead-letter queue pattern

	See also

	Going real time with gRPC streaming in NestJS
	Getting ready
	How to do it...
	Step 1 – Defining a .proto file
	Step 2 – Configuring a gRPC microservice
	Step 3 – Creating a gRPC controller
	Step 4 – Streaming food order reactive updates
	Step 5 – Streaming a courier’s geolocation updates

	See also...
	Learn more on Discord

	Index
	Other Books You May Enjoy

