

The Road to React
The React.js in JavaScript Book (2025 Edition)

Robin Wieruch

This book is available at https://leanpub.com/the-road-to-learn-react

This version was published on 2025-05-21

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2016 - 2025 Robin Wieruch

https://leanpub.com/the-road-to-learn-react
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!
Please help Robin Wieruch by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I am going to learn #ReactJs with The Road to React by @rwieruch Join me on my journey
https://roadtoreact.com

The suggested hashtag for this book is #ReactJs.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

#ReactJs

http://twitter.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/intent/tweet?text=I%20am%20going%20to%20learn%20%23ReactJs%20with%20The%20Road%20to%20React%20by%20@rwieruch%20Join%20me%20on%20my%20journey%20https://roadtoreact.com
https://twitter.com/search?q=%23ReactJs
https://twitter.com/search?q=%23ReactJs

Contents

Foreword . 1
About the Author . 2
FAQ . 3
Who is this book for? . 4
How to read the book? . 5

Fundamentals of React . 6
Hello React . 7
Requirements . 9
Setting up a React Project . 11
Project Structure . 13
npm Scripts . 15
Meet the React Component . 17
React JSX . 21
Lists in React . 26
Meet another React Component . 32
React Component Instantiation . 36
React DOM . 39
React Component Declaration . 41
Handler Function in JSX . 45
React Props . 48
React State . 52
Callback Handlers in JSX . 57
Lifting State in React . 60
React Controlled Components . 66
Props Handling (Advanced) . 69
React Side-Effects . 80
React Custom Hooks (Advanced) . 84
React Fragments . 89
Reusable React Component . 92
React Component Composition . 95
Imperative React . 98
Inline Handler in JSX . 104
React Asynchronous Data . 111

CONTENTS

React Conditional Rendering . 114
React Advanced State . 119
React Impossible States . 124
Data Fetching with React . 129
Data Re-Fetching in React . 132
Memoized Functions in React (Advanced) . 136
Explicit Data Fetching with React . 139
Third-Party Libraries in React . 143
Async/Await in React . 146
Forms in React . 149
Forms with Actions . 153

A Roadmap for React . 155

Styling in React . 159
CSS in React . 162
CSS Modules in React . 168
Styled Components in React . 174
SVGs in React . 180

React Maintenance . 183
Performance in React (Advanced) . 184
TypeScript in React . 195
Testing in React . 208
React Project Structure . 238

Real World React (Advanced) . 244
Sorting . 245
Reverse Sort . 251
Remember Last Searches . 254
Paginated Fetch . 264

Deploying a React Application . 274
Build Process . 275
Deploy to Firebase . 276

Outline . 279

Foreword
I’ve been a React developer since its inception. When I first encountered it, there was an air of
mystery around it, as it distinguished itself from competitors by emphasizing the exclusive use of
components. Over a decade later, I can’t imagine working with any other framework in the near
future. React continues to reinvent itself while pushing other frameworks to evolve as well. As
a freelance web developer collaborating closely with companies, React is my indispensable daily
companion, enhancing my productivity on every project.

“The Road to React” debuted in 2016, and since then, I’ve almost rewritten it annually. This book
teaches the core principles of React, guiding you through building a practical application in pure
React without complex tooling. It covers everything from setting up the project to deploying it on
a server. Each chapter includes additional recommended reading and exercises. By the end, you’ll
have the skills to develop your own React applications.

In The Road to React, I establish a solid foundation before exploring the broader React ecosystem.
The book clarifies general concepts, patterns, and best practices for real-world React applications.
Ultimately, you’ll learn to build a React application from scratch, incorporating features such as
pagination, client-side and server-side searching, and advanced UI interactions like sorting. My hope
is that this book conveys my passion for React and JavaScript, helping you embark on your journey
with confidence.

I hope you enjoy reading this book and that it helps you get started. If you have any feedback, feel
free to reach out to me on Twitter at @rwieruch¹ or LinkedIn². I would love to hear from you!

Since lots of sweat and tears went into writing this book, I would appreciate it if you could share it
with your friends and coworkers. It would mean a lot to me and help me reach more people who
want to learn web development. I dedicate this book to all the aspiring web developers eager to learn
and grow.

Happy coding!

¹https://x.com/rwieruch
²https://tinyurl.com/c2y283mk

https://x.com/rwieruch
https://tinyurl.com/c2y283mk
https://x.com/rwieruch
https://tinyurl.com/c2y283mk

Foreword 2

About the Author

I am a German full-stack developer with a passion for learning and teaching JavaScript. Following
the completion of my Master’s Degree in computer science, I immersed myself in the startup
world, extensively using JavaScript both professionally and in my free time. Collaborating with an
exceptional team of engineers in Berlin/Germany, we developed large-scale JavaScript applications
which sparked my interest in sharing this knowledge with others.

During this time, I regularly authored articles on web development for mywebsite. Positive feedback
from readers seeking to learn frommy articles motivated me to refine my writing and teaching style.
With each article, my ability to effectively educate others continued to grow. Witnessing students
thrive by providing them with clear objectives and quick feedback loops is particularly fulfilling.

Presently, I operate as a freelance developer, closely working with companies on their products
as freelancer or consultant. More information about collaborating with me can be found on my
website³.

³https://www.robinwieruch.de/

https://www.robinwieruch.de/
https://www.robinwieruch.de/

Foreword 3

FAQ

How to get updates?

Stay informed about the latest updates through myNewsletter⁴. Rest assured that I prioritize sharing
only high-quality content.

Is the learning material up-to-date?

Unlike traditional programming books that quickly become outdated, this self-published book allows
for prompt updates whenever new versions of relevant tools or technologies are released. You’ll
always have access to the latest information.

Can I get a digital copy of the book if I’ve purchased it on Amazon?

Did you know that it’s also available on my website? To access the content there, simply send me
an email with proof of your Amazon purchase. I’ll then unlock the content for you on my website
where you’ll always have access to the latest version of the book. I truly appreciate your support, so
a review on Amazon would be fantastic!

Why is the print version so large?

If you’ve acquired the print version of the book, consider making notes directly in its pages. The
deliberate choice to keep the printed book extra-large was made to provide ample space for extensive
code snippets and to afford you sufficient room for your annotations and personal notes. This size
decision was crafted with the intention of enhancing your overall reading and learning experience.

Why is the book written like a long-read tutorial?

The unconventional manner in which this book is written and structured might come as a surprise to
thosemore accustomed to the conventional format of programming texts.When I first started coding,
there was a scarcity of practical, hands-on resources available. As a learner, I found great value
in materials that provided step-by-step instructions, guiding me through not only the ‘what’ and
‘how’ but also the ‘why’ behind each concept. With the goal of replicating this immersive learning
experience, I’ve taken on the task of self-publishing, hoping to extend this valuable knowledge-
sharing opportunity to fellow developers within our community.

Where do I get help?

Should you come across any difficult sections in the code, I encourage you to join the community
on Discord⁵, where you can share your thoughts and feedback with other learners.

⁴https://rwieruch.substack.com/
⁵https://discord.gg/ssE5VMSPkV

https://rwieruch.substack.com/
https://discord.gg/ssE5VMSPkV
https://rwieruch.substack.com/
https://discord.gg/ssE5VMSPkV

Foreword 4

Who is this book for?

JavaScript Beginners

JavaScript beginners with a basic understanding of JS, CSS, and HTML: If you’ve just started web
development and have a basic grasp of JS, CSS, and HTML, this book will provide everything you
need to learn React. However, if you feel there’s a gap in your JavaScript knowledge, don’t hesitate
to review that topic before continuing with the book. You will find many references to fundamental
JavaScript concepts within the book.

JavaScript Veterans

JavaScript veterans coming from jQuery: If you’ve extensively used JavaScript with jQuery,
MooTools, or Dojo in the past, the new JavaScript landscape may seem overwhelming as you get
back on track. However, most of the fundamental concepts haven’t changed–it’s still JavaScript and
HTML under the hood. This book will give you a solid starting point for React.

JavaScript Enthusiasts

JavaScript enthusiasts with knowledge of other modern SPA frameworks: If you’re coming from
Angular or Vue, therewill be differences in howyouwrite applicationswith React. However, all these
frameworks share the same fundamentals of JavaScript and HTML. After adjusting your mindset to
React’s approach, you should have no trouble adopting it.

Non-JavaScript Developers

If you’re coming from another programming language, you’re likely more familiar with the various
aspects of programming. After learning the fundamentals of JavaScript and HTML, you should have
a smooth time picking up React with this book.

Designers and UI/UX Enthusiasts

If your main profession is in design, user interaction, or user experience, don’t hesitate to pick up
this book. You may already be quite familiar with HTML and CSS, which is a plus. After covering
some more JavaScript fundamentals, you’ll be well-equipped to work through the rest of the book.
These days, UI/UX is increasingly intertwined with implementation, and React often handles these
details. Knowing how things work in code will be a valuable asset.

Team Leads, Product Owners, or Product Managers

If you’re a team lead, product owner, or product manager in your development department, this book
will provide a clear breakdown of the essential parts of a React application. Each section explains a
React concept, pattern, or technique that adds a feature or improves the overall architecture. It’s a
well-rounded reference guide for React.

Foreword 5

How to read the book?

Most programming books are high-level and delve into technical details, but they often lack the
ability to get their readers into coding. This book may differ from those you are used to reading in
this domain because it attempts to teach aspiring developers actual programming. I try to strike a
balance between being pragmatic, by providing you with the tools to get the job done, and being
detail-oriented, by giving you the necessary information to understand these tools and how they are
used in practice.

Take Notes

If you have a print version of the book, do not hesitate to underline paragraphs, write notes, or
annotate code snippets. That’s why it has such a large size in the first place. If you don’t have a
print version, keep a notebook on the side for your learnings. Taking notes fortifies what you have
learned, and you can always come back to them. With every new learning, you will get a better
understanding of the big picture and how the smaller pieces fit together, so it’s a great exercise to
write down your learnings on a piece of paper.

Code Code Code

Every section introduces you to a new topic in a pragmatic way. For this reason, just reading through
the section does not suffice to become a developer because there are lots of things going on in one
section alone. So you shouldn’t rush from section to section. Instead, I recommend having a computer
by your side to code along the way.

Do not just copy and paste code; instead, type it yourself. Do not be satisfied when you just use the
code from the book; instead, experiment with it. See what breaks the code and how to fix it. See how
certain changes affect the result. And see how you can extend or even improve the code by adding
a few lines to it. That’s what coding is all about, after all. It does not help you to rush through the
book if you haven’t written a line of code. So get your hands dirty and do more coding than reading!

Anticipate

There will be many coding problems presented in this book. Sometimes, I will give you the option
to solve things yourself before reading about the solution in the next paragraph or code snippet.
However, it breaks the flow of repeating myself, so I keep these encouragements to a minimum.
Instead, I am hoping for your eagerness to jump ahead. Try to solve things before I get the chance
to present you with the solution. Only by trying, failing, and solving a problem will you become a
better developer.

Take Breaks

Since every section introduces you to a new topic, it’s easy to forget the learnings from the previous
section. In addition to coding along with every section, I recommend taking breaks between the
sections to allow the learnings to sink in. Read the section, code along the way, code even a bit more
if you like, and then rest. Think about your learnings while taking a walk outside or speak with
someone about what you have learned, even if this other person is not into coding. After all, taking
breaks is always essential if you want to learn something new.

Fundamentals of React
In the initial phase of this learning journey, we’ll explore the essential foundations of React, guiding
you through the creation of your first React project. As we progress, we’ll dive deeper into React’s
capabilities, implementing practical features such as client- and server-side searching, remote data
fetching, and advanced state management. This hands-on approach mirrors the development of
a real-world web application. By the end, you’ll have a fully functional React application that
seamlessly interacts with real-world data.

Fundamentals of React 7

Hello React

Single-page applications (SPA⁶) have gained popularity with first-generation SPA frameworks like
Angular (byGoogle), Ember, Knockout, and Backbone. These frameworksmade it easier to buildweb
applications that went beyond vanilla JavaScript and jQuery. React, introduced by Facebook in 2013,
emerged as another solution for SPAs, offering a powerful way to build modern web applications in
JavaScript.

Let’s take a trip back in time before SPAs existed. In the past, websites and web applications were
server-rendered. When a user accessed a URL in a browser, a request was sent to a web server, which
returned an HTML file along with its associated CSS and JavaScript files. After some network delay,
the user would see the rendered HTML and could begin interacting with it. Each subsequent page
transition repeated this process. In this model, the server handled most essential tasks, while the
client played a minimal role, primarily rendering pages. Basic HTML and CSS structured and styled
the application, while JavaScript–often in the form of jQuery–enabled interactions (e.g., toggling a
dropdown) or advanced styling (e.g., positioning a tooltip).

In contrast, SPA frameworks shifted the focus from the server to the client. In SPAs, the server
primarily delivers JavaScript over the network, along with a minimal HTML file. The browser
executes the linked JavaScript files, rendering the entire application dynamically using HTML
and CSS while relying on JavaScript for interactions. In its most extreme form, a user visiting a
URL receives a small HTML file and a larger JavaScript file. After a brief network and rendering
delay, JavaScript renders the content in the browser. Subsequent page transitions no longer require
additional server requests for new files; instead, the initially loaded JavaScript dynamically renders
new pages.

React, along with other SPA solutions, played a pivotal role in this transformation. Essentially,
an SPA is a structured bundle of JavaScript, organized into folders and files, forming a complete
application. An SPA framework like React provides the tools to architect this JavaScript-driven
application.When a user visits a web application’s URL, the JavaScript-based application is delivered
once over the network. From that point on, React–or any other SPA framework–takes over, rendering
everything in the browser as HTML and handling user interactions with JavaScript.

With React’s rise, the concept of components became central. Each component encapsulates its
visual and functional aspects using HTML, CSS, and JavaScript. Once defined, components can
be combined into a hierarchy to build a complete application. While React primarily focuses on
components as a library, its flexible ecosystem allows it to function as a framework. With a
streamlined API, a stable yet evolving ecosystem, and a supportive community, React is ready to
welcome you with open arms! :-)

Exercises

• Read more about Websites and Web Applications⁷.

⁶https://bit.ly/3BZOL1o
⁷https://www.robinwieruch.de/web-applications/

https://bit.ly/3BZOL1o
https://www.robinwieruch.de/web-applications/
https://bit.ly/3BZOL1o
https://www.robinwieruch.de/web-applications/

Fundamentals of React 8

• Watch React.js: The Documentary⁸.
• Read more about JavaScript fundamentals needed for React⁹.
• Optionally, if you need a motivational boost:

– Read more about how to learn a framework¹⁰.
– Read more about how to learn React¹¹.

⁸https://bit.ly/3xrvxkI
⁹https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
¹⁰https://www.robinwieruch.de/how-to-learn-framework/
¹¹https://www.robinwieruch.de/learn-react-js/

https://bit.ly/3xrvxkI
https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/learn-react-js/
https://bit.ly/3xrvxkI
https://www.robinwieruch.de/javascript-fundamentals-react-requirements/
https://www.robinwieruch.de/how-to-learn-framework/
https://www.robinwieruch.de/learn-react-js/

Fundamentals of React 9

Requirements

To navigate this book effectively, you should have a basic understanding of web development,
including HTML, CSS, and JavaScript. Familiarity with APIs¹² is helpful, as they will be covered
later. Additionally, you’ll need the following coding tools to follow along.

Editor and Terminal

For this learning experience, I recommend using an IDE¹³, such as Visual Studio Code (VSCode),
especially for beginners. It provides an advanced editor with an integrated terminal and is the most
popular choice among web developers. I’ve created a setup guide¹⁴ to help you get started with
general web development. It includes all the details and is kept separate from this book since it
offers options for both Windows and macOS users. Optionally, you can also check out my complete
macOS setup guide¹⁵.

If you prefer not to set up an editor and terminal on your local machine, CodeSandbox¹⁶ is a viable
online alternative. While CodeSandbox is great for sharing code, a local setup is a better learning
environment for building web applications. If you plan to develop applications professionally, a local
setup will eventually be required.

Throughout this book, I will use command line as a general term for command line tool, terminal, and
integrated terminal. Similarly, editor, text editor, and IDE will be used interchangeably, depending
on your setup.

Additionally, I recommend using GitHub to manage projects as we go through the exercises. I’ve
provided a short guide¹⁷ on using Git and GitHub. Version control is invaluable–it allows you to
track changes, undo mistakes, and follow along more effectively. It’s also a great way to share your
code with others.

Node and NPM

Before we begin, you’ll need to install Node and NPM¹⁸. These tools help manage the libraries (Node
packages) required throughout this book. These packages can range from small utilities to entire
frameworks. We’ll use npm (Node Package Manager) to install them.

To check if Node and npm are installed, run the following commands in your terminal:

¹²https://www.robinwieruch.de/what-is-an-api-javascript/
¹³http://bit.ly/3OWCnan
¹⁴https://www.robinwieruch.de/developer-setup/
¹⁵https://www.robinwieruch.de/mac-setup-web-development/
¹⁶https://codesandbox.io
¹⁷https://www.robinwieruch.de/git-essential-commands/
¹⁸https://nodejs.org/en/

https://www.robinwieruch.de/what-is-an-api-javascript/
http://bit.ly/3OWCnan
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/mac-setup-web-development/
https://codesandbox.io/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/
https://www.robinwieruch.de/what-is-an-api-javascript/
http://bit.ly/3OWCnan
https://www.robinwieruch.de/developer-setup/
https://www.robinwieruch.de/mac-setup-web-development/
https://codesandbox.io/
https://www.robinwieruch.de/git-essential-commands/
https://nodejs.org/en/

Fundamentals of React 10

Command Line

node --version

*vXX.YY.ZZ

npm --version

*vXX.YY.ZZ

If no version numbers appear, you’ll need to install Node and npm. If you already have them installed,
ensure you’re using the latest version. If you’re new to npm or need a refresher, my npm crash
course¹⁹ will get you up to speed.

Exercises:

• Optional: Read more about yarn²⁰ and pnpm²¹. Both can be used as a replacement for npm.
However, I do not recommend using them as a beginner. This exercise should only make sure
that you know about the alternatives.

¹⁹https://www.robinwieruch.de/npm-crash-course/
²⁰https://yarnpkg.com/
²¹https://pnpm.io/

https://www.robinwieruch.de/npm-crash-course/
https://www.robinwieruch.de/npm-crash-course/
https://yarnpkg.com/
https://pnpm.io/
https://www.robinwieruch.de/npm-crash-course/
https://yarnpkg.com/
https://pnpm.io/

Fundamentals of React 11

Setting up a React Project

In The Road to React, we’ll use Vite²² to set up our React application. Vite–a French word meaning
quick–is a modern build tool for contemporary web frameworks (e.g. React). It comes with sensible
defaults (read: built-in configuration) while remaining highly extensible for specific use cases (e.g.
SVGs, linting, TypeScript, server-side rendering).

The core of Vite consists of:

• A development server, which allows you to run your React application locally (read: develop-
ment environment).

• A bundler, which generates highly optimized files for production-ready deployment (read:
production environment).

For React beginners, the key benefit of Vite is that it enables you to focus solely on learning React
without being distracted by complex tooling. This makes Vite the perfect partner for getting started
with React.

There are two ways to create a React project with Vite:

• Using an online template²³ – You can choose either React (recommended for this book) or React
with TypeScript (for advanced users, requiring manual type implementation). This option lets
you work online without setting up a local environment.

• Setting up Vite locally (recommended) – This method involves creating a React project with
Vite on your local machine and working in your preferred IDE (e.g. VSCode).

Since the online template works out of the box, we’ll focus on setting up Vite on your local machine
in this section. In a previous section, you installed Node and npm. The latter allows you to install
third-party dependencies (read: libraries, frameworks, etc.) from the command line.

To get started, open your command line tool and navigate to the folder where you want to create
your React project. Here’s a quick crash course on command-line navigation:

• use pwd (on Windows: cd) to display the current folder
• use ls (on Windows: dir) to display all folders and files in the current folder
• use mkdir <folder_name> to create a folder
• use cd <folder_name> to move into a folder
• use cd .. to move outside of a folder

After navigating to the folder where you want to create your React project, enter the following
command. We’ll refer to this project as hacker-stories, but feel free to choose any name you like.

²²https://bit.ly/3BsG1TH
²³https://bit.ly/3RPAZWz

https://bit.ly/3BsG1TH
https://bit.ly/3RPAZWz
https://bit.ly/3BsG1TH
https://bit.ly/3RPAZWz

Fundamentals of React 12

Command Line

npm create vite@latest hacker-stories -- --template react

Optionally, you can choose a React + TypeScript project if you feel confident. Check Vite’s
installation website for instructions on setting up a React + TypeScript project. This book includes
a TypeScript section later; however, it does not provide step-by-step guidance on converting
JavaScript to TypeScript. Instead, at the end of each section, you’ll find an alternative TypeScript
implementation.

Next, follow the command line instructions to navigate into the project folder, install all third-party
dependencies, and run the project locally on your machine:

Command Line

cd hacker-stories

npm install

npm run dev

The command linewill output a URLwhere your project is running in the browser. Open the browser,
navigate to the provided URL, and verify that the React project is displayed correctly.

Additionally, please check in your package.json file whether you are on the latest React version. At
the time of writing, Vite comes with React 18, but there is already React 19 out there. If you want to
use React 19, you can manually upgrade React in your project.

Command Line

npm install react@latest react-dom@latest

If you are using React with TypeScript, you also need to update the React’s types:

Command Line

npm install --save-dev @types/react@latest @types/react-dom@latest

We will continue developing this project in the next sections; however, for the remainder of this
section, we will explore the project structure and scripts (e.g. npm run dev).

Exercises:

• Read more about how to start a React project²⁴.

²⁴https://www.robinwieruch.de/react-starter/

https://www.robinwieruch.de/react-starter/
https://www.robinwieruch.de/react-starter/

Fundamentals of React 13

Project Structure

First, let’s open the application in an editor/IDE. If you’re using VSCode, simply type code . in the
command line. The following folder structure (or a variation of it, depending on the Vite version)
should be displayed:

Project Structure

hacker-stories/

--node_modules/

--public/

----vite.svg

--src/

----assets/

------react.svg

----App.css

----App.jsx

----index.css

----main.jsx

--.gitignore

--eslint.config.js

--index.html

--package-lock.json

--package.json

--README.md

--vite.config.js

This is a breakdown of the most important folders and files:

• package.json: This file shows you a list of all third-party dependencies (read: node packages
which are located in the node_modules/ folder) and other essential project configurations
related to Node/npm.

• package-lock.json: This file indicates npm how to break down (read: resolve) all node package
versions and their internal third-party dependencies. We’ll not touch this file.

• node_modules/: This folder contains all node packages that have been installed. Since we
used Vite to create our React application, there are various node modules (e.g. React) already
installed for us. We’ll not touch this folder.

• .gitignore: This file indicates all folders and files that shouldn’t be added to your git repository
when using git, as such files and folders should be located only on your local machine. The
node_modules/ folder is one example. It is enough to share the package.json and package-
lock.json files with other developers in the team, so they can install dependencies on their end
with npm install without having to share the entire node_modules/ folder with everybody.

Fundamentals of React 14

• vite.config.js: A file to configure Vite. If you open it, you should see Vite’s React plugin
showing up there. If you would be running Vite with another web framework, the other
framework’s Vite plugin would show up. In the end, there are many more things that can
optionally be set up here.

• public/: This folder holds static assets for the project like a favicon²⁵ which is used for the
browser tab’s thumbnail when starting the development server or building the project for
production.

• index.html: The HTML that is displayed in the browser when starting the project. If you open
it, you shouldn’t see much content though. However, you should see a script tag which links
to your source folder where all the React code is located to output HTML/CSS in the browser.

In the beginning, everything you need is located in the src/ folder. The main focus is on the
src/App.jsx file, where React components are implemented. This file will serve as the foundation
for your application, but later on, you may want to split your React components into multiple files,
with each file managing one or more components. We’ll get to that point eventually.

Additionally, you’ll find a src/main.jsx file, which serves as the entry point to the React world. You’ll
become more familiar with this file in later sections. There are also src/index.css and src/App.css
files to style your overall application and components, both of which come with default styles when
you open them. You’ll modify these later as well.

²⁵https://bit.ly/3QvRupG

https://bit.ly/3QvRupG
https://bit.ly/3QvRupG

Fundamentals of React 15

npm Scripts

After you have learned about the folder and file structure of your React project, let’s go through
the available commands. All your project-specific commands can be found in your package.json file
under the scripts property. They may look similar to these depending on your Vite version:

package.json

"dev": "vite",

"build": "vite build",

"lint": "eslint .",

"preview": "vite preview"

These scripts are executed with the npm run <script> command in an IDE-integrated terminal or
your standalone command line tool. The commands are as follows:

Command Line

Runs the application locally for the browser

npm run dev

Lint the application locally for code style errors

npm run lint

Builds the application for production

npm run build

Another command from the previous npm scripts called preview can be used to run the production-
ready build on your local machine for testing purposes. In order to make it work, you have to execute
npm run build before running npm run preview. Essentially npm run dev and npm run preview (after
npm run build) should give the identical output in the browser. However, the former is not optimized
for production and should exclusively be used for the local development of the application.

Exercises:

• Read more about Vite²⁶.
• Exercise npm scripts:

– Start your React application with npm run dev on the command line and check it out in
the browser.
* Exit the command on the command line by pressing Control + C.

²⁶https://bit.ly/3BsG1TH

https://bit.ly/3BsG1TH
https://bit.ly/3BsG1TH

Fundamentals of React 16

– Run the npm run build script and verify that a dist/ folder was added to your project.
Note that the build folder can be used later on to deploy your application. Afterward, run
npm run preview to see the production-ready application in the browser.

• Every time we change something in our source code throughout the coming sections, make
sure to check the output in your browser for getting visual feedback. Use npm run dev to keep
your application running.

• Optional: If you use git and GitHub, add and commit your changes after every section of the
book.

Fundamentals of React 17

Meet the React Component

Every React application is built on the foundation of React components. In this section, you will
be introduced to your first React component, which is located in the src/App.jsx file. It should look
similar to the example below. Depending on your Vite version, the content of the file may differ
slightly:

src/App.jsx

import { useState } from 'react';

import reactLogo from './assets/react.svg';

import viteLogo from '/vite.svg';

import './App.css';

function App() {

const [count, setCount] = useState(0);

return (

<>

<div>

<img

src={reactLogo}

className="logo react"

alt="React logo"

/>

</div>

<h1>Vite + React</h1>

<div className="card">

<button onClick={() => setCount((count) => count + 1)}>

count is {count}

</button>

<p>

Edit <code>src/App.jsx</code> and save to test HMR

</p>

</div>

<p className="read-the-docs">

Click on the Vite and React logos to learn more

</p>

Fundamentals of React 18

</>

);

}

export default App;

This file will be our focus throughout this book, unless otherwise specified. Even though this file
will grow in size, because we are not splitting it up from the beginning into multiple files, it will
be simpler to understand as a beginner, because everything is at one place. Once you get more
comfortable with React, I will show you how to split your React project with your components into
multiple files.

Let’s start by reducing this React component to a more lightweight version for getting you started
without too much distracting boilerplate code²⁷:

src/App.jsx

function App() {

return (

<div>

<h1>Hello React</h1>

</div>

);

}

export default App;

Optionally I recommend making the src/index.css and src/App.css files blank for starting from a
clean slate style-wise. Next, start your application with npm run dev on the command line and check
what’s displayed in the browser. You should see the headline “Hello React” showing up. Before we
dive deeper into each topic, here comes a quick overview of what’s in your code and what we will
cover more in-depth in the following sections:

• First, this React component, specifically called App component, is just a JavaScript function.
In contrast to traditional JavaScript functions, it’s defined in PascalCase²⁸. A component has
to start with a capital letter, otherwise it isn’t treated as a component in React. The kind of
the App component is commonly called a function component. Function components are the
modern way of using components in React, however, be aware that there are other variations
of React components (see component types in a later section) too.

• Second, the App component doesn’t have any parameters in its function signature yet. In
the upcoming sections, you will learn how to pass information (see props in a later section)
from one component to another component. These props will be accessible via the function’s
signature as parameters then.

²⁷https://bit.ly/3lZzckS
²⁸https://www.robinwieruch.de/javascript-naming-conventions/

https://bit.ly/3lZzckS
https://www.robinwieruch.de/javascript-naming-conventions/
https://bit.ly/3lZzckS
https://www.robinwieruch.de/javascript-naming-conventions/

Fundamentals of React 19

• And third, the App component returns code that resembles HTML. You will see how this new
syntax (see JSX in a later section), allows you to combine JavaScript and HTML for displaying
highly dynamic and interactive content in a browser.

Like any other JavaScript function, a function component can have implementation details between
the function signature and the return statement. You will see this in practice in action throughout
your React journey:

src/App.jsx

function App() {

// you can do something in between

return (

<div>

<h1>Hello React</h1>

</div>

);

}

export default App;

Variables defined in the function’s body will be re-defined each time this function runs, which
shouldn’t be something new if you are familiar with JavaScript and its functions:

src/App.jsx

function App() {

const title = 'React';

return (

<div>

<h1>Hello React</h1>

</div>

);

}

export default App;

The function of a component runs every time a component is displayed in the browser. This happens
for the initial displaying (read: rendering) of the component, but also whenever the component
updates because it has to display something different due to changes (re-rendering). We will learn
more about this later too.

Fundamentals of React 20

Since we do not want to re-define a variable within a function every time this function runs, we
could define this variable outside of the component as well. In this case, the title does not depend on
any information that’s within the function component (e.g. parameters coming from the function’s
signature), hence it’s okay to move it outside. Therefore it will be defined only once and not every
time the function is called:

src/App.jsx

const title = 'React';

function App() {

return (

<div>

<h1>Hello React</h1>

</div>

);

}

export default App;

On your journey as a React developer, and in this learning experience, you will come across both
scenarios: variables (and functions) defined outside and within a component. As a rule of thumb:
If a variable does not need anything from within the function component’s body (e.g. parameters),
then define it outside of the component which avoids re-defining it on every function call.

Exercises:

• Compare your source code against the author’s source code²⁹.
– Recap all the source code changes³⁰ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here³¹.

• Think about ways to display the title variable in your App component’s returned HTML. In
the next section, we’ll put this variable to use.

²⁹https://tinyurl.com/43uekprv
³⁰https://tinyurl.com/n3wujpmu
³¹https://bit.ly/3OvfqLO

https://tinyurl.com/43uekprv
https://tinyurl.com/n3wujpmu
https://bit.ly/3OvfqLO
https://tinyurl.com/43uekprv
https://tinyurl.com/n3wujpmu
https://bit.ly/3OvfqLO

Fundamentals of React 21

React JSX

Everything returned from a React component will be displayed in the browser. Until now, we only
returned HTML from the App component. However, recall that I mentioned the returned output of
the App component not only resembles HTML, but it can also be mixed with JavaScript. In fact, this
output is called JSX (JavaScript XML), which powerfully combines HTML and JavaScript. Let’s see
how this works for displaying the variable from the previous section:

src/App.jsx

const title = 'React';

function App() {

return (

<div>

<h1>Hello {title}</h1>

</div>

);

}

export default App;

Either start your application again with npm run dev (or check whether your application still runs)
and look for the displayed (read: rendered) title in the browser. The output should read “Hello
React”. If you change the variable in the source code, the browser should reflect that change.

Changing the variable in the source code and seeing the change reflected in the browser is not solely
connected to React, but also to the underlying development server when we start our application on
the command line. Any time one of our files changes, the development server notices it and reloads
all affected files for the browser. The bridge between React and the development server which makes
this behavior possible is calledReact Fast Refresh (prior to that it was React Hot Loader) on React’s
side and Hot Module Replacement on the development server’s side.

Next, try to define a HTML input field (read: <input> tag) and a HTML label (read: <label> tag) in
your JSX yourself. It should also be possible to focus the input field when clicking the label either by
nesting the input field in the label or by using dedicated HTML attributes for both. The following
code snippet will show you the book’s implementation of this task and you may be surprised that
HTML slightly differs when used in JSX:

Fundamentals of React 22

src/App.jsx

const title = 'React';

function App() {

return (

<div>

<h1>Hello {title}</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

}

export default App;

For our input field and label combination, we specified three HTML attributes: htmlFor, id, and
type. The type attribute is kinda mandatory and has nothing to do with focusing the input field
when clicking the label. However, while id and type should be familiar from native HTML, htmlFor
might be new to you.

The htmlFor reflects the for attribute in vanilla HTML. You may be wondering why this attribute
differs from native HTML. JSX replaces a handful of internal HTML attributes caused by internal
implementation details of React itself. However, you can find all the supported HTML attributes³² in
React’s documentation. Since JSX is closer to JavaScript than to HTML, React uses the camelCase³³
naming convention. Expect to come across more JSX-specific attributes like className and onClick

instead of class and onclick, as you learn more about React.

When using HTML in JSX, React internally translates all HTML attributes to JavaScript where
certain words such as class or for are reserved during the rendering process. Therefore React came
up with replacements such as className and htmlFor for them. However, once the actual HTML is
rendered for the browser, the attributes get translated back to their native variant.

³²https://bit.ly/2Z42zcK
³³https://bit.ly/3jljQFn

https://bit.ly/2Z42zcK
https://bit.ly/3jljQFn
https://bit.ly/2Z42zcK
https://bit.ly/3jljQFn

Fundamentals of React 23

We will revisit the HTML input field and its label for further implementation details with JavaScript
later. For now, in order to contrast howHTML and JavaScript are used in JSX, let’s use more complex
JavaScript data types in JSX. Instead of defining a JavaScript string primitive like title, define a
JavaScript object called welcome which has a title (e.g. 'React') and a greeting (e.g. 'Hey') as
properties. Afterward, try to render both properties of the object in JSX side by side in the <h1> tag.

The following code snippet will show you the solution to the task. Before we have defined a
JavaScript string primitive to be displayed in the App component. Now, the same can be done with
a JavaScript object by accessing its properties within JSX:

src/App.jsx

const welcome = {

greeting: 'Hey',

title: 'React',

};

function App() {

return (

<div>

<h1>

{welcome.greeting} {welcome.title}

</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

}

export default App;

Fundamentals of React 24

While HTML can be used almost (except for the attributes) in its native way in JSX, everything in
curly braces can be used to interpolate JavaScript in it. For example, you could define a function
that returns the title and execute it within the curly braces:

src/App.jsx

function getTitle(title) {

return title;

}

function App() {

return (

<div>

<h1>Hello {getTitle('React')}</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

}

export default App;

JSX is a syntax extension to JavaScript. In the past, JavaScript files whichmade use of JSXhad to use³⁴
the .jsx instead of the .js extension. However, these days several build tools (read: compiler/bundler)
can be configured to acknowledge JSX in a .js file³⁵. If they are configured this way, theywill transpile
JSX to JavaScript. Tools like Vite embrace the .jsx extension though, because it makes it more explicit
for developers.

Code Playground

const title = 'React';

// JSX ...

const myElement = <h1>Hello {title}</h1>;

// ... gets transpiled to JavaScript

const myElement = React.createElement('h1', null, `Hello ${title}`);

// ... gets rendered as HTML by React

<h1>Hello React</h1>

³⁴https://bit.ly/3tT0DDD
³⁵https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

https://bit.ly/3tT0DDD
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://bit.ly/3tT0DDD
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/

Fundamentals of React 25

JSX enables developers to express what should be rendered by mixing up HTML with JavaScript.
Whereas the previous way of thinking was to decouple markup (read: HTML) from logic (read:
JavaScript), React puts all of it together as one unit in a React component. As you can see from the
last code snippet, React does not require you to use JSX at all, instead it’s possible to use methods
like createElement(). However, most people find it more intuitive to use JSX for its declarative
nature instead of using JavaScript methods (here: methods offered by React) which only allow one
to express the UI imperatively.

Initially invented for React, JSX gained popularity in other modern libraries and frameworks as well.
These days, it’s not strictly coupled to React, but people are usually connecting it to React. Anyway,
JSX is one of my favorite things when being asked about React³⁶. Without any extra templating
syntax (except for the curly braces), we are able to use JavaScript in HTML. Every JavaScript data
structure, from primitive to complex, can be used within HTML with the help of JSX.

Exercises:

• Compare your source code against the author’s source code³⁷.
– Recap all the source code changes³⁸ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here³⁹.

• Beginner: Read more about JavaScript Variables⁴⁰.
– Beginner: Define more primitive and complex JavaScript data types and render them in

JSX.
– Advanced: Try to render a JavaScript array in JSX by using the array’s built-in map()

method to return JSX for each item in the list. If it’s too complicated, don’t worry, because
you will learn more about this in the next section.

Interview Questions:

• Question: What is JSX in React?
– Answer: JSX is a syntax extension for JavaScript recommended by React for describing
what the UI should look like.

• Question: Can JSX be directly rendered by browsers?
– Answer: No, browsers can’t understand JSX. It needs to be transpiled to regular JavaScript

using tools like Babel.
• Question: Is JSX mandatory in React?

– Answer: No, JSX is not mandatory, but it’s a widely used and convenient way to write
React components.

• Question: How do you render a variable in JSX?
– Answer: Use curly braces {} to embed variables in JSX, like {myVariable}.

³⁶https://bit.ly/3aZbdM0
³⁷https://tinyurl.com/apb9nnbj
³⁸https://tinyurl.com/v8zcahje
³⁹https://bit.ly/3SukC3A
⁴⁰https://www.robinwieruch.de/javascript-variable/

https://bit.ly/3aZbdM0
https://tinyurl.com/apb9nnbj
https://tinyurl.com/v8zcahje
https://bit.ly/3SukC3A
https://www.robinwieruch.de/javascript-variable/
https://bit.ly/3aZbdM0
https://tinyurl.com/apb9nnbj
https://tinyurl.com/v8zcahje
https://bit.ly/3SukC3A
https://www.robinwieruch.de/javascript-variable/

Fundamentals of React 26

Lists in React

When working with data in JavaScript, most often the data comes as an array of objects. Therefore,
we will learn how to render a list of items in React next. In order to prepare you for rendering lists
in React, let’s recap one of the most common data manipulation methods: the array’s built-in map()
method⁴¹. It is used to iterate over each item of a list in order to return a new version of each item:

Code Playground

const numbers = [1, 2, 3, 4];

const exponentialNumbers = numbers.map(function (number) {

return number * number;

});

console.log(exponentialNumbers);

// [1, 4, 9, 16]

In React, the array’s built-in map() method is used to transform a list of items into JSX by returning
JSX for each item. In the following, we want to display a list of items (here: JavaScript objects) in
React. First, we will define the array outside of the component. Afterward, try yourself to render
each object with its title property in React by inlining the array’s map() method in JSX:

src/App.jsx

const list = [

{

title: 'React',

url: 'https://react.dev/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

⁴¹https://mzl.la/3B3a7tf

https://mzl.la/3B3a7tf
https://mzl.la/3B3a7tf
https://mzl.la/3B3a7tf

Fundamentals of React 27

function App() { ... }

// note the ... as placeholder

// which is use for source code that didn't change

// and isn't relevant for this code snippet

export default App;

Each item in the list has a title, an url, an author, an identifier (objectID), points – which indicate
the popularity of an item – and a count of comments (num_comments). The property names are chosen
this way, because they resemble real world data that we are going to use later. They don’t fit the
desired naming conventions⁴² for JavaScript though, because one of them uses an underscore for
example.

Next, we’ll render the list inlined in JSX with the array’s built-in map() method. Hence we won’t
map from one JavaScript data type to another, but instead return JSX that renders each item of the
list:

src/App.jsx

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

<hr />

{list.map(function (item) {

return {item.title};

})}

</div>

);

}

Actually, rendering a list of items in React was one of my personal JSX “Aha”-moments. Without
any made up templating syntax, it’s possible to use JavaScript to map from an array of JavaScript

⁴²https://www.robinwieruch.de/javascript-naming-conventions/

https://www.robinwieruch.de/javascript-naming-conventions/
https://www.robinwieruch.de/javascript-naming-conventions/

Fundamentals of React 28

objects to a list of HTML elements. That’s what JSX is for the developer in the end: just JS mixed
with HTML.

Finally React displays each item now. But there is one important piece missing. If you check your
browser’s developer tools, you should see a warning showing up in the “Console”-tab which says
that every React element in a list should have a key assigned to it. The key is an HTML attribute
and should be a stable identifier. Fortunately, our items come with such a stable identifier, because
they have an id (here: objectId):

src/App.jsx

function App() {

return (

<div>

...

{list.map(function (item) {

return <li key={item.objectID}>{item.title};

})}

</div>

);

}

The key attribute is used for one specific reason: Whenever React has to re-render a list, it checks
whether an item has changed. When using keys, React can efficiently exchange the changed items.
When not using keys, React may update the list inefficiently. Take the following example where a
new item gets appended at the start of the list.

Fundamentals of React 29

The key is not difficult to find, because usually when having data in the shape of an array, we can
use each item’s stable identifier (e.g. id property). However, sometimes you do not have an id, so
you need to come up with another identifier (e.g. title if it does not change and if it’s unique in the
array). As last resort, you can use the index of the item in the list too:

Code Playground

{list.map(function (item, index) {

return (

<li key={index}>

{/* only use an index as last resort */}

{/* and by the way: that's how you do comments in JSX */}

{item.title}

);

})}

Usually using an index should be avoided though, because it comes with the same rendering
performance issues from above. In addition, it can cause actual bugs in the UI⁴³ whenever the order
of items changes (e.g. re-ordering, appending or removing items). However, as last resort, if the list
does not change its order in any way, using the index is fine.

So far, we are only displaying the title of each item. Go ahead and render the item’s url, author,
num_comments, and points as well. In the special case of the url, use anHTML anchor HTML element
(read: <a> tag) that surrounds the title. Try it yourself! For guidance, the following solution will
show you how the book implements this to be prepared for the next sections:

⁴³https://www.robinwieruch.de/react-list-key/

https://www.robinwieruch.de/react-list-key/
https://www.robinwieruch.de/react-list-key/

Fundamentals of React 30

src/App.jsx

function App() {

return (

<div>

...

{list.map(function (item) {

return (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

})}

</div>

);

}

The array’s map() method is inlined concisely in your JSX for rendering a list. Within the map()

method, we have access to each object and its properties. The url property of each item is used
as href attribute for the anchor HTML element. Not only can JavaScript in JSX be used to display
elements, but also to assign HTML attributes dynamically. This section only scratches the surface
of how powerful it is to mix JavaScript and HTML, however, using an array’s map() method and
assigning HTML attributes should give you a good first impression.

Exercises:

• Compare your source code against the author’s source code⁴⁴.
– Recap all the source code changes⁴⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁴⁶.

• Recap the standard built-in array methods⁴⁷, especially map, filter, and reduce, which are
available in JavaScript.

• Extend the list with some more items to make the example more realistic.
• Practice using different JavaScript expressions in JSX.
⁴⁴https://tinyurl.com/2rt98u3u
⁴⁵https://tinyurl.com/xj9sakd6
⁴⁶https://bit.ly/484qh6p
⁴⁷https://mzl.la/3b9V9rf

https://tinyurl.com/2rt98u3u
https://tinyurl.com/xj9sakd6
https://bit.ly/484qh6p
https://mzl.la/3b9V9rf
https://tinyurl.com/2rt98u3u
https://tinyurl.com/xj9sakd6
https://bit.ly/484qh6p
https://mzl.la/3b9V9rf

Fundamentals of React 31

Interview Questions:

• Question: How to render a list of items in JSX?
– Answer: Use map() to iterate over the array and return JSX elements for each item.

• Question: What happens if you return null instead of the JSX?
– Answer: Returning null in JSX is allowed. It’s always used if you want to render nothing.

• Question: What does the term “JSX expressions” refer to?
– Answer: JSX expressions are JavaScript expressions embedded within curly braces in JSX,

allowing dynamic content.
• Question: Can you embed HTML directly within JSX?

– Answer: Yes, you can embed HTML directly within JSX, but it’s generally discouraged
due to security risks. Use dangerouslySetInnerHTML cautiously.

• Question: How do you comment in JSX?
– Answer: Use curly braces for JavaScript comments, like {/* Your comment here */}.

Fundamentals of React 32

Meet another React Component

Components are the foundation of every React application. With a growing React project, you
will get more and more components to manage. Each component encapsulates functionalities (e.g.
rendering a list of items). So far we’ve only been using the App component. This will not end
up well, because components should scale with your application’s size. So instead of making one
component larger and more complex over time, we’ll split one component into multiple components
eventually. Therefore, we’ll start with a new List component which extracts functionalities from the
App component:

src/App.jsx

const list = [...];

function App() { ... }

function List() {

return (

{list.map(function (item) {

return (

<li key={item.objectID}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

})}

);

}

Then the new List component can be used in the App component where we have been using the
inlined HTML elements previously:

Fundamentals of React 33

src/App.jsx

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

<hr />

<List />

</div>

);

}

You’ve just created your first React component. With this example in mind, we can see how
components encapsulate meaningful tasks while contributing to the greater good of a larger React
project. Extracting a component is a task that you will perform very often as a React developer,
because it’s always the case that a component will grow in size and complexity. Go ahead and
extract the label and input elements from the App component into their own Search component.
The following code snippet shows how the book would solve this task:

src/App.jsx

function App() {

return (

<div>

<h1>My Hacker Stories</h1>

<Search />

<hr />

<List />

</div>

);

}

function Search() {

return (

<div>

<label htmlFor="search">Search: </label>

Fundamentals of React 34

<input id="search" type="text" />

</div>

);

}

Finally, we have three components in our application: App, List, and Search. Generally speaking, a
React application consists of many hierarchical components; which we can put into the following
categories. The following illustration assumes that we have split out an Item component from the
List component as well – which helps us to clarify the taxonomy.

React applications have component hierarchies (also called component trees). There is usually one
uppermost entry point component (e.g. App) that spans a tree of components below it. The App
is the parent component of the List and Search, so the List and Search are child components of
the App component and sibling components to each other. The illustration takes it one step further
where the Item component is a child component of the List. In a component tree, there is always a
root component (e.g. App), and the components that don’t render any other components are called
leaf components (e.g. List/Search component in our current source code or Item/Search component
from the illustration). All components can have zero, one, or many child components.

You can see how a React application grows in size by creatingmore components which are connected
in one hierarchy. Usually you will start out with the App component from where you grow your
component tree. Either you know the components you wanna create beforehand or you start with
one component and extract components from it eventually. For a beginner, it may be difficult to
know when to create a new component or when to extract a component from another component.
Usually it happens naturally whenever a component gets too big in size/complexity or whenever
you see natural boundaries in domains/functionality (e.g. List component renders a list of items,
Search component renders a search form). In the end, each component represents a single unit in
your application which makes the application maintainable and predictable.

Fundamentals of React 35

Exercises:

• Compare your source code against the author’s source code⁴⁸.
– Recap all the source code changes⁴⁹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁵⁰.

• We can’t extract an Item component from the List component (like in the illustration) yet,
because we don’t know how to pass individual items from the list to each Item component.
Think about a way to do it.

Interview Questions:

• Question: Why is it beneficial to extract components in React?
– Answer: Extracting components promotes reusability, maintainability, and a cleaner

component structure.
• Question: How do you decide when to extract a component?

– Answer: Extract a component when you find repeated UI patterns or functionality within
your code.

• Question: What is the process of extracting a component called in React?
– Answer: It’s called refactoring, specifically extracting a component to improve code

organization.
• Question: Is it possible to extract components across different files?

– Answer: Yes, extracting components into separate files promotes better file organization
and modularity.

⁴⁸https://tinyurl.com/ytecbbxx
⁴⁹https://tinyurl.com/59ctb524
⁵⁰https://bit.ly/3SuMogq

https://tinyurl.com/ytecbbxx
https://tinyurl.com/59ctb524
https://bit.ly/3SuMogq
https://tinyurl.com/ytecbbxx
https://tinyurl.com/59ctb524
https://bit.ly/3SuMogq

Fundamentals of React 36

React Component Instantiation

You have learned how to declare a component (e.g. function List() { ... }) and how to instantiate
(e.g. <List />) it. In this section, we will intensify this learning by going through an analogy and
the terminology. We will start with the analogy by using the JavaScript class. Technically, JavaScript
classes and React components are not related, which is important to note, but it is still a fitting
analogy for you to understand the concept of a component by using something you may have used
in the past.

A class is most often used in object-oriented programming languages. JavaScript as a multi-
paradigm programming language allows functional programming and object-oriented programming
to co-exist side-by-side. To recap JavaScript classes for object-oriented programming, consider the
following Person class:

Code Playground

class Person {

constructor(firstName, lastName) {

this.firstName = firstName;

this.lastName = lastName;

}

getName() {

return this.firstName + ' ' + this.lastName;

}

}

Each class has a constructor that takes arguments and assigns them to the class instance when
instantiating it. A class can also define functions that are associatedwith the instance (e.g. getName())
which are called methods or class methods. Now, declaring the Person class once is just one part;
instantiating it is the other. The class declaration is the blueprint of its capabilities and usage occurs
when an instance is created with the new statement. If a JavaScript class declaration exists, one can
create multiple instances of it:

Code Playground

// class declaration

class Person { ... }

// class instantiation

const robin = new Person('Robin', 'Wieruch');

console.log(robin.getName());

// "Robin Wieruch"

Fundamentals of React 37

// another class instantiation

const dennis = new Person('Dennis', 'Wieruch');

console.log(dennis.getName());

// "Dennis Wieruch"

The concept of a JavaScript class with declaration and instantiation is similar to a React component,
which also has only one component declaration, but can have multiple component instances:

src/App.jsx

// declaration of App component

function App() {

return (

<div>

...

{/* creating an instance of List component */}

<List />

{/* creating another instance of List component */}

<List />

</div>

);

}

// declaration of List component

function List() { ... }

Once we’ve defined a component, we can use it as an element anywhere in our JSX. The element
produces an instance of your component, or in other words, the component gets instantiated. You
can create as many instances of a component as you want as long as you have a component
declaration. It’s not much different from a JavaScript class declaration and instantiation, however,
as mentioned before, technically a JavaScript class and React component are not the same. Just their
usage makes it convenient to demonstrate their similarities.

Exercises:

• Read more about component, element, and instance in React⁵¹.
– Familiarize yourself with the terms component declaration, component instance, and

element.
⁵¹https://www.robinwieruch.de/react-element-component/

https://www.robinwieruch.de/react-element-component/
https://www.robinwieruch.de/react-element-component/

Fundamentals of React 38

• Read more about types of React components⁵².
• Experiment by creating multiple component instances of a List component.
• If we keep treating the list variable as a global variable, every List component would use the
same list. Think about how it could be possible to give each List component its own list

variable.

⁵²https://www.robinwieruch.de/react-component-types/

https://www.robinwieruch.de/react-component-types/
https://www.robinwieruch.de/react-component-types/

Fundamentals of React 39

React DOM

We have learned about component declaration/instantiation and have already seen it in action for
the List and Search components. However, at the very beginning we started with the declaration
of the App component yet never came across its instantiation. It must be there, otherwise the App
component and all of its descendant components in the component hierarchy would not render.

Open the src/main.jsx file to the see App components instantiation with the <App /> element. The
file may differ a bit from your file, however, the following snippet shows all the essential aspects of
it:

src/main.jsx

import { StrictMode } from 'react';

import { createRoot } from 'react-dom/client';

import './index.css';

import App from './App.jsx';

createRoot(document.getElementById('root')).render(

<StrictMode>

<App />

</StrictMode>

);

There are two libraries imported at the beginning of the file: react and react-dom. While React is
used for the day to day business of a React developer, React DOM is usually used once in a React
application to hook React into the native HTML world. Open the index.html file on the side and
spot the HTML element where the id attribute equals "root". That’s exactly the element where
React inserts itself into the HTML to bootstrap the entire React application – starting with the App
component.

In the JavaScript file, the createRoot()method expects the HTML element that is used to instantiate
React. There we are using JavaScript’s built-in getElementById() method to return the HTML
element that we have seen in the index.html file. Once we have the root object, we can call
render() on the returned root object with JSX as parameter which usually represents the entry
point component (also called root component). Normally the entry point component is the instance
of the App component, but it can be any other JSX too:

Fundamentals of React 40

Code Playground

import { createRoot } from 'react-dom/client';

const title = 'React';

createRoot(document.getElementById('root')).render(

<h1>Hello {title}</h1>

);

Essentially React DOM is everything that’s needed to integrate React into any website which uses
HTML. If you start a React application from scratch, there is usually only one ReactDOM.createRoot()
call in your application. However, if you happen to work on a legacy application that used something
else than React before, you may see multiple ReactDOM.createRoot() calls, because only certain
areas of the application are powered by React.

Anyway, do you recall the introduction about the rise of single-page applications that are powered
by only a small HTML file and a large JavaScript file? You can see how everything fits together
now. While one small HTML file (here: index.html) and one large JavaScript file (here: compiled
and bundled src/main.jsx and src/App.jsx files) are transferred from web server to browser, the
JavaScript file(s) are mostly responsible to render all the HTML in the browser. The HTML file is
only there to request the JavaScript file and to render the HTML element where React inserts itself.
From there, React calls all of its needed function components to render itself as component hierarchy.

Exercises:

• Read more about React’s createRoot⁵³.
• Read more about React’s StrictMode⁵⁴.

⁵³https://bit.ly/3vx3uT2
⁵⁴https://bit.ly/48TUA0k

https://bit.ly/3vx3uT2
https://bit.ly/48TUA0k
https://bit.ly/3vx3uT2
https://bit.ly/48TUA0k

Fundamentals of React 41

React Component Declaration

We have declared multiple React components so far. Since these components are so called function
components, we can leverage the different ways of declaring functions in JavaScript for them. So far,
we have used the standard function declaration, though arrow functions can be used more concisely
and therefore can establish a new standard for declaring function components:

Code Playground

// function declaration

function App() { ... }

// arrow function expression

const App = () => { ... }

Equipped with this knowledge, go through your React project and refactor all function declarations
to arrow function expressions. While this refactoring can be applied to function components, it can
also be used for any other functions that are used in the project. Wewill go ahead as well and refactor
all the function component’s function declarations to arrow function expressions:

src/App.jsx

const App = () => {

return (...);

};

const Search = () => {

return (...);

};

const List = () => {

return (...);

};

As said, not only function components can be refactored, but also other functions like the callback
function⁵⁵ that we have used for the array’s map() method:

⁵⁵https://www.robinwieruch.de/javascript-callback-function/

https://www.robinwieruch.de/javascript-callback-function/
https://www.robinwieruch.de/javascript-callback-function/
https://www.robinwieruch.de/javascript-callback-function/

Fundamentals of React 42

src/App.jsx

const List = () => {

return (

{list.map((item) => {

return (

<li key={item.objectID}>

...

);

})}

);

};

Moreover, if an arrow function’s only purpose is to return a value and it doesn’t have any business
logic in between, you can remove the block body (curly braces) of the function. In a concise body,
an implicit return statement is attached, so you can remove the return statement. Check out the
following demonstration:

Code Playground

// with block body

const addOne = (count) => {

// perform any task in between

return count + 1;

};

// with concise body as multi line

const addOne = (count) =>

count + 1;

// with concise body as one line

const addOne = (count) => count + 1;

Let’s see this in action for the Search component:

Fundamentals of React 43

src/App.jsx

const Search = () => (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

This can be done for the App and List components as well, because they only return JSX and don’t
perform any task in between. In addition, it also applies to the arrow function that’s used in the
map() method:

src/App.jsx

const App = () => (

<div>

...

</div>

);

const List = () => (

{list.map((item) => (

<li key={item.objectID}>

...

))}

);

All JSX is more concise now, because it omits the function statement, the curly braces, and the return
statement. However, it’s important to remember this is an optional step and that it’s acceptable to
use function declarations over arrow function expressions and block bodies with curly braces over
concise bodies with implicit returns for arrow functions.

Often block bodies will be necessary to introduce more business logic between function signature
and return statement. Be sure to understand this refactoring concept, because we’ll move quickly
from arrow function components with and without block bodies as we go. Which one we use will
depend on the requirements of the component:

Fundamentals of React 44

Code Playground

const App = () => {

// perform a task in between

return (

<div>

...

</div>

);

};

As a rule of thumb, use either function declarations or arrow function expressions for your
component declarations throughout your application. Both versions are fine to use, but make sure
that you and your team working on the project share the same implementation style. In addition,
while an implicit return statement when using an arrow function expressionsmakes your component
declaration more concise, you may introduce tedious refactorings from concise to block body when
you need to perform tasks between function signature and the return statement. So you may want
to keep your arrow function expression with a block body (like in the last code snippet) all the time.

Exercises:

• Compare your source code against the author’s source code⁵⁶.
– Recap all the source code changes⁵⁷ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁵⁸.

• Familiarize yourself with arrow functions with block body and explicit return and concise body
without return (implicit return).

• Optional: Read more about JavaScript arrow functions⁵⁹.

Interview Questions:

• Question: How do you declare a function component using a function declaration?
– Answer: Use the function keyword, like function MyComponent() {...}.

• Question: How do you declare a function component using an arrow function expression?
– Answer: Use the arrow function syntax, like const MyComponent = () => {...};.

⁵⁶https://tinyurl.com/3pwajd4u
⁵⁷https://tinyurl.com/yve6n2df
⁵⁸https://bit.ly/3SJbE42
⁵⁹https://mzl.la/3BYCOcp

https://tinyurl.com/3pwajd4u
https://tinyurl.com/yve6n2df
https://bit.ly/3SJbE42
https://mzl.la/3BYCOcp
https://tinyurl.com/3pwajd4u
https://tinyurl.com/yve6n2df
https://bit.ly/3SJbE42
https://mzl.la/3BYCOcp

Fundamentals of React 45

Handler Function in JSX

We have learned a lot about React components, but there are no interactions yet. If you happen
to develop an application with React, there will come a time where you have to implement a user
interaction. The best place to get started in our project is the Search component – which already
comes with an input field element.

In native HTML, we can add event handlers⁶⁰ on elements by using the addEventListener()method
programmatically on a DOM node. In React, we are going to discover how to add handlers in JSX
the declarative way. First, refactor the Search component’s function from a concise body to a block
body, so that we can add implementation details prior the return statement:

src/App.jsx

const Search = () => {

// perform a task in between

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" />

</div>

);

};

Next, define a function, which can be either a function declaration or arrow function expression, for
the change event of the input field. In React, this function is called an (event) handler. Afterward,
the function can be passed to the onChange attribute (JSX named attribute) of the HTML input field:

src/App.jsx

const Search = () => {

const handleChange = (event) => {

// synthetic event

console.log(event);

// value of target (here: input HTML element)

console.log(event.target.value);

};

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

⁶⁰https://mzl.la/2ZbTcYZ

https://mzl.la/2ZbTcYZ
https://mzl.la/2ZbTcYZ

Fundamentals of React 46

</div>

);

};

After opening your application in a web browser, open the browser’s developer tools “Console”-tab
to see the logging occur after you type into the input field. What you see is called a synthetic event
as a JavaScript object and the input field’s internal value.

React’s synthetic event is essentially a wrapper around the browser’s native event⁶¹. Since React
started as a library for single-page applications, there was the need for enhanced functionalities
on the event to prevent the native browser behavior⁶². For example, in native HTML submitting a
form triggers a page refresh. However, in React this page refresh should be prevented, because the
developer should take care about what happens next. Anyway, if you happen to need access to the
native HTML event, you could do so by using event.nativeEvent, but after several years of React
development I never ran into this case myself.

After all, this is how we pass HTML elements in JSX handler functions to add listeners for user
interactions. Always pass functions to these handlers, not the return value of the function, except
when the return value is a function again. Knowing this is crucial because it’s a well-known source
for bugs in a React beginner’s application:

Code Playground

// if handleChange is a function

// which does not return a function

// don't do this

<input onChange={handleChange()} />

// do this instead

<input onChange={handleChange} />

As you can see, HTML and JavaScript work well together in JSX. JavaScript in HTML can display
JavaScript variables (e.g. title string in {title}), can pass JavaScript primitives to
HTML attributes (e.g. url string to HTML element), and can pass functions to
an HTML element’s attributes for handling user interactions (e.g. handleChange function to <input

onChange={handleChange} />). When developing React applications, mixing HTML and JavaScript
in JSX will become your bread and butter.

Exercises:

• Compare your source code against the author’s source code⁶³.

⁶¹https://mzl.la/30Dk8kt
⁶²https://www.robinwieruch.de/react-preventdefault/
⁶³https://tinyurl.com/2uamttzd

https://mzl.la/30Dk8kt
https://www.robinwieruch.de/react-preventdefault/
https://tinyurl.com/2uamttzd
https://mzl.la/30Dk8kt
https://www.robinwieruch.de/react-preventdefault/
https://tinyurl.com/2uamttzd

Fundamentals of React 47

– Recap all the source code changes⁶⁴ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁶⁵.

• Read more about React’s event handler⁶⁶.
– Read more about event capturing and bubbling in React⁶⁷.

• In addition to the onChange attribute, add a onBlur attribute with an event handler to your
input field and verify its logging in the browser’s developer tools.

Interview Questions:

• Question: How do you define an event handler in React?
– Answer: Create a function that handles the event, like function handleClick() {...}.

• Question: How do you attach an event handler in JSX?
– Answer: Use the appropriate attribute, like onClick={handleClick}.

• Question: What is the common pattern for naming event handler functions?
– Answer: Prefix the function name with “handle” followed by the event name, like

handleClick for a click event.
• Question: Can you use arrow functions directly in the JSX for event handlers?

– Answer: Yes, using arrow functions directly in JSX is a common pattern for concise event
handlers.

• Question: How do you pass arguments to an event handler in JSX?
– Answer: Use an arrow function to call the handler with arguments, like onClick={() =>

handleClick(arg)}.
• Question: Can you reuse event handlers across multiple elements?

– Answer: Yes, event handlers can be reused for multiple elements with the same event type.
• Question: What is the purpose of the e.target property in an event handler?

– Answer: It refers to the DOM element that triggered the event, allowing you to access its
properties or manipulate it.

• Question: How do you access the event object in an event handler?
– Answer: Include (event) as a parameter in the handler function, like function handleClick(event)
{...}.

• Question: What does event.preventDefault() do in an event handler?
– Answer: It prevents the default behavior of the event, such as submitting a form or

following a link.
• Question: What is the purpose of the e.stopPropagation() method in an event handler?

– Answer: It stops the event from propagating up or down the DOM tree, preventing parent
or child elements from handling the same event.

⁶⁴https://tinyurl.com/yc5fa5v7
⁶⁵https://bit.ly/3UrYARS
⁶⁶https://www.robinwieruch.de/react-event-handler/
⁶⁷https://www.robinwieruch.de/react-event-bubbling-capturing/

https://tinyurl.com/yc5fa5v7
https://bit.ly/3UrYARS
https://www.robinwieruch.de/react-event-handler/
https://www.robinwieruch.de/react-event-bubbling-capturing/
https://tinyurl.com/yc5fa5v7
https://bit.ly/3UrYARS
https://www.robinwieruch.de/react-event-handler/
https://www.robinwieruch.de/react-event-bubbling-capturing/

Fundamentals of React 48

React Props

Currently we are using the list as a global variable in our project. At the beginning, we used it
directly from the global scope in the App component and later in the List component. This could
work if you only had one global variable and only one file with all of the components, but it isn’t
maintainable with multiple variables across multiple components (within multiple folders/files). By
using so-called props in React, we can pass variables as information from one component to another
component even though these components are not placed in the same file at some point. Let’s explore
how this works.

Before using props for the first time, we’ll move the list from the global scope into the App
component and give it a more self-descriptive name. Don’t forget to refactor the App component’s
function from concise to block body in order to declare the list prior to the return statement:

src/App.jsx

const App = () => {

const stories = [

{

title: 'React',

url: 'https://react.dev/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

return (...);

};

Next, we’ll use React props to pass the list of items to the List component. The variable is called
stories in the App component and we pass it under this name to the List component. However, in
the List component’s instantiation, it is assigned to a new list HTML attribute:

Fundamentals of React 49

src/App.jsx

const App = () => {

const stories = [...];

return (

<div>

...

<List list={stories} />

</div>

);

};

Now try yourself to retrieve the list from the List component’s function signature by introducing a
parameter. If you find the solution yourself, congratulations for passing your first information from
one component to another. If not, the following code snippet shows how it works:

src/App.jsx

const List = (props) => (

{props.list.map((item) => (

<li key={item.objectID}>

...

))}

);

Everything that we pass from a parent component to a child component via the component element’s
HTML attribute can be accessed in the child component. The child component receives a parameter
(props) as object in its function signature which includes all the passed attributes as properties (short:
props).

A point to consider regarding ESLint: you might encounter an error stating, “error ‘list’ is missing in
props validation.” In an ideal scenario where React is used without TypeScript, a solution would be
to incorporate prop-types⁶⁸ to provide your component with better insights into the props it receives.
However, it’s worth mentioning that while prop-types serve a similar purpose as TypeScript, they
are considered less robust. If achieving this goal is a prerequisite for your project, it is recommended
to embrace TypeScript in your React development. In cases where JavaScript is the exclusive choice,
my suggestion is to disable this specific ESLint rule in your configuration file to resolve the issue.

⁶⁸https://bit.ly/48Tbn3F

https://bit.ly/48Tbn3F
https://bit.ly/48Tbn3F

Fundamentals of React 50

eslint.config.js

rules: {

...

'react/prop-types': 'off',

},

Another use case for React props is the List component and its potential child component. Previously,
we couldn’t extract an Item component from the List component, because we didn’t know how to
pass each item to the extracted Item component. With this new knowledge about React props, we
can perform the component extraction and pass each item along to the List component’s new child
component.

Before you check the following solution, try it yourself: extract an Item component from the List
component and pass each item in the map() method’s callback function to this new component. If
you don’t come up with a solution yourself after some time, check out how the book implements it:

src/App.jsx

const List = (props) => (

{props.list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = (props) => (

{props.item.title}

{props.item.author}

{props.item.num_comments}

{props.item.points}

);

Don’t forget the key attribute which we introduced in an earlier section. When working with lists
in JSX within a React application, it is essential to remember the significance of the key attribute.
As previously discussed in a dedicated section, the key attribute plays a crucial role in the efficient
rendering and updating of items within a list. By assigning a unique key to each list item, React can
accurately track and manage the elements.

Fundamentals of React 51

At the end, you should see the list rendering again. The most important fact about props: it’s not
allowed to change them, because they should be treated as an immutable data structure. They are
only used to pass information down the component hierarchy. Continuing this thought, information
(props) can only be passed from a parent to a child component and not vice versa. We will learn how
to overcome this limitation later. For now, we have found our vehicle to share information from top
to bottom in a React component tree.

Exercises:

• Compare your source code against the author’s source code⁶⁹.
– Recap all the source code changes⁷⁰ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁷¹.

• Read more about how to use props in React⁷².

Interview Questions:

• Question: What are props in React?
– Answer: Props (short for properties) are a mechanism for passing data from a parent

component to a child component.
• Question: How do you pass props to a component in JSX?

– Answer: Include them as attributes, like <MyComponent prop1={value1} prop2={value2}

/>.
• Question: How do you access props in a function component?

– Answer: Use the function parameters to access props, like function MyComponent(props)

{...}.
• Question: Can you modify the value of props inside a component?

– Answer: No, props are immutable. They should be treated as read-only.

⁶⁹https://tinyurl.com/56wad6rt
⁷⁰https://tinyurl.com/yvhx4nzz
⁷¹https://bit.ly/3SzqclA
⁷²https://www.robinwieruch.de/react-pass-props-to-component/

https://tinyurl.com/56wad6rt
https://tinyurl.com/yvhx4nzz
https://bit.ly/3SzqclA
https://www.robinwieruch.de/react-pass-props-to-component/
https://tinyurl.com/56wad6rt
https://tinyurl.com/yvhx4nzz
https://bit.ly/3SzqclA
https://www.robinwieruch.de/react-pass-props-to-component/

Fundamentals of React 52

React State

While it is not allowed to mutate React props as a developer, because they are only there to pass
information from parent to child components, React state introduces a mutable data structure (read:
stateful values). These stateful values get instantiated in a React component as state, can be passed
with props as vehicle down to child components, but can also get mutated by using a function to
modify the state. When a state gets mutated, the component with the state and all child components
will re-render.

Both concepts, props and state, have cleary defined purposes: While props are used to pass
information down the component hierarchy, state is used to modify information over time. Let’s
start with state in React with the following use case: Whenever a user types text into our HTML
input field element in the Search component, the user wants to see this information (state) displayed
next to it. An intuitive (but not working) approach would be the following:

Fundamentals of React 53

src/App.jsx

const Search = () => {

let searchTerm = '';

const handleChange = (event) => {

searchTerm = event.target.value;

};

return (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={handleChange} />

<p>

Searching for {searchTerm}.

</p>

</div>

);

};

When you try this in the browser, you will see that the output does not appear below the HTML
input field after typing into it. However, this approach is not too far away from the actual solution.
What’s missing is telling React that searchTerm is a stateful value. Fortunately, React offers us a
method called useState for it:

src/App.jsx

import * as React from 'react';

...

const Search = () => {

const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = (event) => {

setSearchTerm(event.target.value);

};

...

};

By using useState, we are telling React that we want to have a stateful value which changes over
time. And whenever this stateful value changes, the affected components (here: Search component)
will re-render to use it (here: to display the recent value).

Fundamentals of React 54

React’s useState method takes an initial state as an argument – in our case it is an empty string.
Furthermore, calling this method will return an array with two entries: The first entry (searchTerm)
represents the current state. The second entry (setSearchTerm) is a function to update this state.
The book will refer to this function as state updater function. Both entries are everything we need
to display the current state (read) and to update it (write).

When the user types into the input field, the input field’s change event uses the event handler. The
handler’s logic uses the event’s value of the target and the state updater function to set the new
state. Afterward, the component re-renders (read: the component function runs). The updated state
becomes the current state (here: searchTerm) and is displayed in the component’s JSX.

As an exercise, put a console.log() into each of your components. For example, the App component
gets a console.log('App renders'), the List component gets a console.log('List renders') and
so on. Now check your browser: For the first rendering, all loggings should appear, however, once
you type into the HTML input field, only the Search component’s logging should appear. React
only re-renders this component (and all of its potential descendant components) after its state has
changed.

Now you have heard the terms rendering and re-rendering in a technical context as well. In essence
every component in a React application has one initial rendering followed by potential re-renderings.
Usually the initial rendering happens when a React component gets displayed in the browser. Then
whenever a side-effect occurs, like a user interaction (e.g. typing into an input field), the change is
captured in React’s state which forces a re-rendering of all the components affected by this change;
meaning the component which manages the state and all its descendant components.

It’s important to note that the useState function is called aReact hook. It’s only one of several hooks
provided by React and this section only scratched the surface of hooks in React. You will learn more
about them throughout the next sections. As for now, you should know that you can have as many

Fundamentals of React 55

useState hooks as you want in one or multiple components whereas state can be anything from a
JavaScript string (like in this case) to a more complex data structure such as an array or object.

It is also important to note that you may see loggings twice in your browser’s developer tools,
a result of React’s StrictMode (refer to the src/main.jsx file). StrictMode, functioning exclusively
in the development environment, conducts extra checks and warnings to identify potential issues.
When applied to the root component, it effectively highlights any problems that may arise. Later in
production, there will be only one rendering.

When the UI is rendered for the first time, every rendered component’s useState hook gets initialized
with an initial state which gets returned as current state. Whenever the UI is re-rendered because of
a state change, the useState hook uses the most recent state from its internal closure⁷³. This might
seem odd, as one would assume the useState gets declared from scratch every time a component’s
function runs. However, next to each component React allocates an object where information like
state is stored in memory. Eventually the memory gets cleaned up once a component is not rendered
anymore through JavaScript’s garbage collection.

Exercises:

• Compare your source code against the author’s source code⁷⁴.
– Recap all the source code changes⁷⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁷⁶.

• Read more about React’s useState Hook⁷⁷.
• Optional: Read more about JavaScript array destructuring⁷⁸.

Interview Questions:

• Question: What is useState in React?
– Answer: useState is a React hook that allows function components to manage and update

state.
• Question: How do you use useState to declare state in a function component?

– Answer: const [state, setState] = useState(initialState);

• Question: What triggers a re-render in React?
– Answer: State changes or prop updates can trigger a re-render in React.

• Question: What is the purpose of the initial state in useState?
– Answer: It sets the initial value of the state variable and only applies during the first render.

• Question: How do you update state using useState?
– Answer: Use the second entry returned by useState to update the state.

⁷³https://www.robinwieruch.de/javascript-closure/
⁷⁴https://tinyurl.com/4dy7s74t
⁷⁵https://tinyurl.com/mryfs8pm
⁷⁶https://bit.ly/4bn9DSm
⁷⁷https://www.robinwieruch.de/react-usestate-hook/
⁷⁸https://mzl.la/3ncC7WI

https://www.robinwieruch.de/javascript-closure/
https://tinyurl.com/4dy7s74t
https://tinyurl.com/mryfs8pm
https://bit.ly/4bn9DSm
https://www.robinwieruch.de/react-usestate-hook/
https://mzl.la/3ncC7WI
https://www.robinwieruch.de/javascript-closure/
https://tinyurl.com/4dy7s74t
https://tinyurl.com/mryfs8pm
https://bit.ly/4bn9DSm
https://www.robinwieruch.de/react-usestate-hook/
https://mzl.la/3ncC7WI

Fundamentals of React 56

• Question: Does calling setState trigger an immediate re-render?
– Answer: No, React batches state updates and performs re-renders asynchronously for

performance reasons.
• Question: What is the difference between using multiple useState calls and a single useState
call with an object?
– Answer: Using multiple calls creates independent state variables, while a single call with

an object allows you to manage multiple state values within one variable.
• Question: Can you directly mutate the state variable obtained from useState?

– Answer: No, you should always use the setState function to update the state in a immutable
way.

• Question: Does updating state always trigger a re-render?
– Answer: Yes, updating state with setState triggers a re-render of the component.

Fundamentals of React 57

Callback Handlers in JSX

While props are passed down as information from parent to child components, state can be used to
change information over time. However, we don’t have all the pieces yet to make our components
talk to each other. When using props as vehicle to transport information, we can only talk to
descendant components. When using state, we can make information stateful, but this information
can also only be passed down by using props.

For example, at themoment, the Search component does not share its statewith other components, so
it’s only used (here: displayed) and updated by the Search component. That’s fine for displaying the
most recent state in the Search component, however, at the end we want to use this state somewhere
else. In this section for example, we want to use the state in the App component to filter the stories
by searchTerm before they get passed to the List component. Sowe know that we could communicate
to a child component via props, but do not know how to communicate the state up to a parent
component (here: from Search to App component).

There is no way to pass information up the component tree, since props are naturally only passed
downwards. However, we can introduce a callback handler instead: A callback handler gets
introduced as event handler (A), is passed as function in props to another component (B), is executed
there as handler (C), and calls back to the place it was introduced (D):

src/App.jsx

const App = () => {

const stories = [...];

// A

const handleSearch = (event) => {

// D

console.log(event.target.value);

};

return (

Fundamentals of React 58

<div>

<h1>My Hacker Stories</h1>

{/* // B */}

<Search onSearch={handleSearch} />

<hr />

<List list={stories} />

</div>

);

};

const Search = (props) => {

const [searchTerm, setSearchTerm] = React.useState('');

const handleChange = (event) => {

setSearchTerm(event.target.value);

// C

props.onSearch(event);

};

return (...);

};

Whenever a user types into the input field now, the function that is passed down from the App
component to the Search component runs. This way, we can notify the App component when a user
types into the input field in the Search component. Essentially a callback handler, which is just a
more specific type of an event handler, becomes our implicit vehicle to communicate upwards the
component tree.

Fundamentals of React 59

The concept of the callback handler in a nutshell: We pass a function from a parent component
(App) to a child component (Search) via props; we call this function in the child component (Search),
but have the actual implementation of the called function in the parent component (App). In other
words, when an (event) handler is passed as props from a parent component to its child component,
it becomes a callback handler. React props are always passed down the component tree and therefore
functions that are passed down as callback handlers in props can be used to communicate up the
component tree.

Exercises:

• Compare your source code against the author’s source code⁷⁹.
– Recap all the source code changes⁸⁰ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁸¹.

• Revisit the concepts of (event) handler and callback handler⁸² as many times as you need.

Interview Questions:

• Question: What is a callback handler in React?
– Answer: A callback handler is a function passed as a prop to a child component, allowing

the child to communicate with the parent.
• Question: How do you pass a callback handler to a child component?

– Answer: Include it as a prop, like <ChildComponent callback={handleCallback} />.
• Question: How do you define a callback handler in a parent component?

– Answer: Create a function in the parent component, e.g., function handleCallback(data)

{...}.
• Question: Can a callback handler receive parameters?

– Answer: Yes, callback handlers can receive parameters passed by the child component.
• Question: Can callback handlers be asynchronous?

– Answer: Yes, callback handlers can be asynchronous, allowing for handling asynchronous
operations.

• Question: Can you pass a callback handler through multiple layers of components?
– Answer: Yes, you can pass callback handlers through multiple layers of components.

• Question: Can a child component have multiple callback handlers from the same parent?
– Answer: Yes, a child component can receive and use multiple callback handlers passed

from the same parent component.
• Question: Is it common to use callback handlers for form submissions in React?

– Answer: Yes, callback handlers are commonly used for handling form submissions and
updating state in parent components.

⁷⁹https://tinyurl.com/bdat6vsa
⁸⁰https://tinyurl.com/4uchxre7
⁸¹https://bit.ly/3UnOJMQ
⁸²https://www.robinwieruch.de/react-event-handler/

https://tinyurl.com/bdat6vsa
https://tinyurl.com/4uchxre7
https://bit.ly/3UnOJMQ
https://www.robinwieruch.de/react-event-handler/
https://tinyurl.com/bdat6vsa
https://tinyurl.com/4uchxre7
https://bit.ly/3UnOJMQ
https://www.robinwieruch.de/react-event-handler/

Fundamentals of React 60

Lifting State in React

In this section, we are confronted with the following task: Use the stateful searchTerm from the
Search component to filter the stories by their title property in the App component before they are
passed as props to the List component. So far, we have learned about how to pass information down
explicitly with props and how to pass information up implicitly with callback handlers. However, if
you look at the callback handler in the App component, it doesn’t come natural to one on how to
apply the searchTerm from the App component’s handleSearch() handler as filter to the stories.

One solution could be establishing another state in the App component which captures the arriving
searchTerm in the App component and then uses it for filtering the stories before they are passed
to the List component as props. However, this adds duplication as a bad practice, because the
searchTerm would have a state in the Search and App components then. So think about it another
way: If the App component is interested in the searchTerm state to filter the stories, why not
instantiate the state in the App component instead of in the Search component in the first place?

We will move the useState hook from the Search component to the App component, use the
state updater function in the provided callback handler, and use the callback handler in the Search
component to pass the event to the parent component. Then, whenever a user types into the input
field, the state in the App component will update. Afterward, we will use the new state in the App
component to filter() the stories before they are passed to the List component. The following
implementation demonstrates the first part of it:

src/App.jsx

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

return (

<div>

<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />

<hr />

<List list={stories} />

</div>

Fundamentals of React 61

);

};

const Search = (props) => (

<div>

<label htmlFor="search">Search: </label>

<input id="search" type="text" onChange={props.onSearch} />

</div>

);

We learned about the callback handler previously, because it helps us to keep an open communi-
cation channel from child component (here: Search component) to parent component (here: App
component). Now, the Search component doesn’t manage the state anymore, but only passes up the
event to the App component via a callback handler after the text is entered into the HTML input field.
From there, the App component updates its state. The process of moving state from one component
to another, like we did in the last code snippet, is called lifting state. Next, you could still display the
searchTerm again in the App component (from state, when using searchTerm) or Search component
(from props, when passing the searchTerm state down as props).

Rule of thumb: Always manage state at a component level where every component that’s interested
in it is one that either manages the state (using information directly from state, e.g. App component)
or a component below the state managing component (using information from props, e.g. List or
Search components). If a component below needs to update the state (e.g. Search), pass a callback
handler down to it which allows this particular component to update the state above in the parent
component. If a component below needs to use the state (e.g. displaying it), pass it down as props.

Finally, by managing the search state in the App component, we can filter the stories with the
stateful searchTerm before passing them as list prop to the List component. Try it yourself by
using the array’s built-in filter() method in combination with the stories and the searchTerm

before consulting the following implementation:

Fundamentals of React 62

src/App.jsx

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

const searchedStories = stories.filter(function (story) {

return story.title.includes(searchTerm);

});

return (

<div>

<h1>My Hacker Stories</h1>

<Search onSearch={handleSearch} />

<hr />

<List list={searchedStories} />

</div>

);

};

Here, the JavaScript array’s built-in filter method⁸³ is used to create a new filtered array. The
filter()method takes a function as an argument, which accesses each item in the array and returns
true or false. If the function returns true, meaning the condition is met, the item stays in the newly
created array; if the function returns false, it’s removed:

⁸³https://mzl.la/3BYFAOR

https://mzl.la/3BYFAOR
https://mzl.la/3BYFAOR

Fundamentals of React 63

Code Playground

const words = [

'spray',

'limit',

'elite',

'exuberant',

'destruction',

'present'

];

const filteredWords = words.filter(function (word) {

return word.length > 6;

});

console.log(filteredWords);

// ["exuberant", "destruction", "present"]

The filter() method could be made more concise by using an arrow function with an immediate
return:

src/App.jsx

const App = () => {

...

const searchedStories = stories.filter((story) =>

story.title.includes(searchTerm)

);

...

};

That’s all to the refactoring steps of the inlined function for the filter() method. There are many
variations to it – and it’s not always simple to keep a good balance between readability and
conciseness – however, I feel like keeping it concise whenever possible keeps it most of the time
readable as well.

What’s not working very well yet: The filter() method checks whether the searchTerm is present
as string in the title property of each story, but it’s case sensitive. If we search for “react”, there
is no filtered “React” story in your rendered list. Try to fix this problem yourself by making the
filter() method’s condition case insensitive with the pure force of JavaScript. The following code
snippet shows you how to achieve it by lower casing the searchTerm and the title of the story:

Fundamentals of React 64

src/App.jsx

const App = () => {

...

const searchedStories = stories.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

...

};

Now you should be able to search for “eact”, “React”, or “react” and see one of two displayed
stories. Congratulations, you have just added your first real interactive feature to your application
by leveraging state – to derive a filtered list of stories – and props – by passing a callback handler
to the Search component.

After all, knowing where to instantiate state in React turns out to be an important skill in every React
developer’s career. The state should always be there where all components which depend on the state
can read (via props) and update (via callback handler) it. These are all descendant components of
the component which instantiates the state.

Fundamentals of React 65

Exercises:

• Compare your source code against the author’s source code⁸⁴.
– Recap all the source code changes⁸⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁸⁶.

• Read more about lifting state in React⁸⁷.

Interview Questions:

• Question: What is lifting state in React?
– Answer: Lifting state refers to the practice of moving the state from a child component to

its parent component.
• Question: Why would you lift state in React?

– Answer: To share and manage state at a higher level, making it accessible to multiple child
components.

• Question: How do you lift state in React?
– Answer: Move the state and related functions to a common ancestor (usually a parent)

component.
• Question: Can multiple child components share the same lifted state?

– Answer: Yes, lifting state allows multiple child components to share the same state.
• Question: What’s the advantage of lifting state over using local state in a component?

– Answer: Lifting state promotes sharing state among components.
• Question: What is the role of callbacks in lifting state?

– Answer: Callback functions are used to pass data from child to parent components when
lifting state.

• Question: Can a child component modify the state of a parent component directly through a
callback handler?
– Answer: No, the child component can invoke the callback to notify the parent, and the

parent can decide how to update its state.
• Question: Is it necessary to lift all state to the top-level parent component?

– Answer: No, only lift state to a level where it needs to be shared among multiple
components.

• Question: How does lifting state contribute to better component reusability?
– Answer: Lifting state allows stateful logic to be concentrated in a common ancestor,

making components more reusable.

⁸⁴https://tinyurl.com/5n77yypj
⁸⁵https://tinyurl.com/3brrw4d6
⁸⁶https://bit.ly/49k1Cf9
⁸⁷https://www.robinwieruch.de/react-lift-state/

https://tinyurl.com/5n77yypj
https://tinyurl.com/3brrw4d6
https://bit.ly/49k1Cf9
https://www.robinwieruch.de/react-lift-state/
https://tinyurl.com/5n77yypj
https://tinyurl.com/3brrw4d6
https://bit.ly/49k1Cf9
https://www.robinwieruch.de/react-lift-state/

Fundamentals of React 66

React Controlled Components

HTML elements come with their internal state which is not coupled to React. Confirm this thesis
yourself by checking how your HTML input field is implemented in your Search component. While
we provide essential attributes like id and type in addition to a handler (here: onChange), we do not
tell the element its value. However, it does show the correct value when a user types into it.

Now try the following: When initializing the searchTerm state in the App component, use 'React'
as initial state instead of an empty string. Afterward, open the application in the browser. Can you
spot the problem? Spend some time on your own figuring out what happens here and how to fix
this problem.

While the stories have been filtered respectively to the new initial searchTerm in the last section,
the HTML input field doesn’t show the value in the browser. Only when we start typing into the
input field do we see the changes reflected in it. That’s because the input field doesn’t know anything
about React’s state (here: searchTerm), it only uses its handler to communicate (see handleSearch())
its internal state to React state. And once a user starts typing into the input field, the HTML element
keeps track of these changes itself. However, if we want to get things right, the HTML should know
about the React state. Therefore, we need to provide the current state as value to it:

src/App.jsx

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = React.useState('React');

...

return (

<div>

<h1>My Hacker Stories</h1>

<Search search={searchTerm} onSearch={handleSearch} />

...

</div>

);

};

const Search = (props) => (

<div>

<label htmlFor="search">Search: </label>

<input

Fundamentals of React 67

id="search"

type="text"

value={props.search}

onChange={props.onSearch}

/>

</div>

);

Now both states are synchronized. Instead of giving the HTML element the freedom of keeping
track of its internal state, it uses React’s state by leveraging the element’s value attribute instead.
Whenever the HTML element emits a change event, the new value is written to React’s state and
re-renders the components. Then the HTML element uses the recent state as value again.

Earlier the HTML element did its own thing, but now we are in control of it by feeding React’s state
into it. Now, while the input field became explicitly a controlled element, the Search component
became implicitly a controlled component. As a React beginner, using controlled components is
important, because you want to enforce a predictable behavior. Later though, there may be cases for
uncontrolled components too.

Exercises:

• Compare your source code against the author’s source code⁸⁸.
– Recap all the source code changes⁸⁹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁹⁰.

• Read more about controlled components in React⁹¹.
⁸⁸https://tinyurl.com/53p67ybt
⁸⁹https://tinyurl.com/5auk52n7
⁹⁰https://bit.ly/3w3A5Ah
⁹¹https://www.robinwieruch.de/react-controlled-components/

https://tinyurl.com/53p67ybt
https://tinyurl.com/5auk52n7
https://bit.ly/3w3A5Ah
https://www.robinwieruch.de/react-controlled-components/
https://tinyurl.com/53p67ybt
https://tinyurl.com/5auk52n7
https://bit.ly/3w3A5Ah
https://www.robinwieruch.de/react-controlled-components/

Fundamentals of React 68

Interview Questions:

• Question: What is a controlled component in React?
– Answer: A controlled component is a component whose form elements are controlled by

React state.
• Question: How do you create a controlled input in React?

– Answer: Set the input value attribute to a state variable and provide an onChange handler
to update the state.

• Question: What is the role of the value prop in a controlled input element?
– Answer: The value prop sets the current value of the input, making it a controlled

component.
• Question: How do you handle a controlled checkbox in React?

– Answer: Use the checked attribute and provide an onChange handler to update the
corresponding state.

• Question: How do you clear the value of a controlled component?
– Answer: Set the state variable to an empty or null value to clear the value of a controlled

component.
• Question: What are the potential downsides of using controlled components?

– Answer: Controlled components can lead to verbose code, especially in forms with many
input elements.

Fundamentals of React 69

Props Handling (Advanced)

Props are passed from parent to child down the component tree. Since we use props to transport
information from component to component frequently, and sometimes via other components which
are in between, it is useful to know a few tricks to make passing props more convenient.

The following refactorings are recommended for you to learn different JavaScript/React patterns,
though you can still build complete React applications without them. Consider these as advanced
props techniques that will make your React code for certain scenarios more concise, readable, and
maintainable.

Props Destructuring via Object Destructuring

React props are just a JavaScript object, otherwise we couldn’t access props.list or props.onSearch
in our React components. Since props is an object which just passes information from one component
to another component, we can apply a couple JavaScript tricks to it. For example, accessing an
object’s properties with modern JavaScript object destructuring⁹²:

Code Playground

const user = {

firstName: 'Robin',

lastName: 'Wieruch',

};

// without object destructuring

const firstName = user.firstName;

const lastName = user.lastName;

⁹²https://mzl.la/30KbXTC

https://mzl.la/30KbXTC
https://mzl.la/30KbXTC

Fundamentals of React 70

// with object destructuring

const { firstName, lastName } = user;

When we need to access various properties of an object, employing a single line of code rather than
multiple lines is often amore straightforward and elegant approach. This is why object destructuring
is commonly utilized in JavaScript. Before delving into the upcoming code snippet, attempt to apply
this understanding to the React props within our Search component.

Now, let’s explore how we can employ props destructuring. Initially, we need to refactor the Search
component’s arrow function from a concise body to a block body. Subsequently, we can implement
the destructuring of the props object within the function body:

src/App.jsx

const Search = (props) => {

const { search, onSearch } = props;

return (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

};

That’s a basic destructuring of the props object in a React component, so that the object’s
properties can be used conveniently in the component. However, we also had to refactor the Search
component’s arrow function from concise body into block body to access the properties of props
with the object destructuring in the component function’s body. This would happen quite often if
we followed this pattern and it wouldn’t make things easier for us, because we would constantly
have to refactor our components. We can take all this one step further by destructuring the props

object right away in the function signature of our component, omitting the function’s block body
of the component again:

Fundamentals of React 71

src/App.jsx

const Search = ({ search, onSearch }) => (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

React’s props are rarely used in components by themselves; rather, all the information that
is contained in the props object is used. By destructuring the props object right away in the
component’s function signature, we can conveniently access all information without dealing with
its props container. The List and Item components can perform the same props destructuring:

src/App.jsx

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = ({ item }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

The use of object destructuring aligns with JavaScript’s best practices and promotes a cleaner and
more efficient React component structure. It allows for a more straightforward extraction of the
required properties, enhancing both the clarity of the code and the overall development experience
in React applications. However, we can take this one step further with some more optional advanced
lessons.

Fundamentals of React 72

Nested Destructuring

The incoming item parameter in the Item component has something in common with the previously
discussed props parameter: they are both JavaScript objects. Also, even though the item object has
already been destructured from the props in the Item component’s function signature, it isn’t directly
used in the Item component. The item object only passes its information (object properties) to the
elements.

The current solution is fine as you will see in the ongoing discussion. However, I want to show you
two more variations of it, because there are many things to learn about JavaScript objects in React
here. Let’s get started with nested destructuring and how it works:

Code Playground

const user = {

firstName: 'Robin',

pet: {

name: 'Trixi',

},

};

// without object destructuring

const firstName = user.firstName;

const name = user.pet.name;

console.log(firstName + ' has a pet called ' + name);

// "Robin has a pet called Trixi"

// with nested object destructuring

const {

firstName,

pet: {

name,

},

} = user;

console.log(firstName + ' has a pet called ' + name);

// "Robin has a pet called Trixi"

The nested destructuring helps us to gather all the needed information of the item object in the
function signature for its immediate usage in the component’s elements. Even though it’s not the
most readable option here, note that it can still be useful in other scenarios:

Fundamentals of React 73

src/App.jsx

// Variation 1: Nested Destructuring

const Item = ({

item: {

title,

url,

author,

num_comments,

points,

},

}) => (

{title}

{author}

{num_comments}

{points}

);

In summary, nested destructuring in React proves to be a powerful and efficient technique when
dealing with complex data structures, especially within nested objects or arrays in props or state.
This approach simplifies the extraction of deeply nested values, making the code more concise
and readable. However, nested destructuring introduces lots of clutter through indentations in the
function signature. While here it’s not the most readable option, it can be useful in other scenarios
though.

Spread and Rest Operators

Let’s take another approach with JavaScript’s spread and rest operators. In order to prepare for it,
we will refactor our List and Item components to the following implementation. Rather than passing
the item as an object from List to Item component, we are passing every property of the item object:

Fundamentals of React 74

src/App.jsx

// Variation 2: Spread and Rest Operators

// 1. Step

const List = ({ list }) => (

{list.map((item) => (

<Item

key={item.objectID}

title={item.title}

url={item.url}

author={item.author}

num_comments={item.num_comments}

points={item.points}

/>

))}

);

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

Now, even though the Item component’s function signature is more concise, the clutter ended up in
the List component instead, because every property is passed to the Item component individually.
We can improve this approach using JavaScript’s spread operator⁹³:

⁹³https://mzl.la/3jetIkn

https://mzl.la/3jetIkn
https://mzl.la/3jetIkn

Fundamentals of React 75

Code Playground

const profile = {

firstName: 'Robin',

lastName: 'Wieruch',

};

const address = {

country: 'Germany',

city: 'Berlin',

};

const user = {

...profile,

gender: 'male',

...address,

};

console.log(user);

// {

// firstName: "Robin",

// lastName: "Wieruch",

// gender: "male"

// country: "Germany,

// city: "Berlin",

// }

JavaScript’s spread operator allows us to literally spread all key/value pairs of an object to another
object. This can also be done in React’s JSX. Instead of passing each property one at a time via
props from List to Item component as before, we can use JavaScript’s spread operator to pass all the
object’s key/value pairs as attribute/value pairs to a JSX element:

src/App.jsx

// Variation 2: Spread and Rest Operators

// 2. Step

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} {...item} />

))}

);

Fundamentals of React 76

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

This refactoring made the process of passing the information from List to Item component more
concise. Finally, we’ll use JavaScript’s rest destructuring as the icing on the cake. The JavaScript rest
operation happens always as the last part of an object destructuring:

Code Playground

const user = {

id: '1',

firstName: 'Robin',

lastName: 'Wieruch',

country: 'Germany',

city: 'Berlin',

};

const { id, country, city, ...userWithoutAddress } = user;

console.log(userWithoutAddress);

// {

// firstName: "Robin",

// lastName: "Wieruch"

// }

console.log(id);

// "1"

console.log(city);

// "Berlin"

Even though both have the same syntax (three dots), the rest operator shouldn’t be mistaken with
the spread operator. Whereas the rest operator happens on the left side of an assignment, the spread

Fundamentals of React 77

operator happens on the right side. The rest operator is always used to separate an object from some
of its properties.

Now it can be used in our List component to separate the objectID from the item, because the
objectID is only used as a key and isn’t used in the Item component. Only the remaining (read: rest)
item gets spread as attribute/value pairs into the Item component (as before):

src/App.jsx

// Variation 2: Spread and Rest Operators

// Final Step

const List = ({ list }) => (

{list.map(({ objectID, ...item }) => (

<Item key={objectID} {...item} />

))}

);

const Item = ({ title, url, author, num_comments, points }) => (

{title}

{author}

{num_comments}

{points}

);

In this final variation, the rest operator is used to destructure the objectID from the rest of the item
object. Afterward, the item is spread with its key/value pairs into the Item component. While this
final variation is very concise, it comes with advanced JavaScript features that may be unknown to
some.

In this section, we have learned about JavaScript object destructuring which can be commonly used
not only for the props object, but also for other objects like the item object which are nested within
the props. We have also seen how nested destructuring can be used (Variation 1), but also how it
didn’t add any benefits in our case because it just made the component bigger. In the future, you are
more likely to find use cases for nested destructuring which are beneficial.

Last but not least, you have learned about JavaScript’s spread and rest operators, which shouldn’t be
confused with each other, to perform operations on JavaScript objects and to pass the props object
from one component to another component in the most concise way. In the end, I want to point out
the initial version again which we will continue to use in the next sections:

Fundamentals of React 78

src/App.jsx

const List = ({ list }) => (

{list.map((item) => (

<Item key={item.objectID} item={item} />

))}

);

const Item = ({ item }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

);

It may not be the most concise, but it is the easiest to understand. Variation 1 with its nested
destructuring didn’t add much benefit and variation 2 added too many advanced JavaScript features
(spread operator, rest operator) which are not familiar to everyone. After all, all these variations have
their pros and cons. When refactoring a component, always aim for readability, especially when
working in a team of people, and make sure everyone is using a common React code style.

Rules of thumb:

• Almost always use object destructuring for props in a function component’s function signature,
because props are rarely used themselves. Exception: When props are only passed through the
component to the next child component (see when to use spread operator).

• Use the spread operator when you want to pass all key/value pairs of an object to a child
component in JSX. For example, often props themselves are not used in a component but
only passed along to the next component. Then it makes sense to just spread the props object
{...props} to the next component.

• Use the rest operator when you only want to split out certain properties from your props object.
• Use nested destructuring only when it improves readability.

Exercises:

• Compare your source code against the author’s source code⁹⁴.

⁹⁴https://tinyurl.com/mwn986w5

https://tinyurl.com/mwn986w5
https://tinyurl.com/mwn986w5

Fundamentals of React 79

– Recap all the source code changes⁹⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here⁹⁶.

• Read more about how to use props in React⁹⁷.
• Optional: Read more about JavaScript’s destructuring assignment⁹⁸.
• Read more about JavaScript’s spread operator⁹⁹ and rest operator¹⁰⁰.
• Get a good sense about JavaScript (e.g. destructuring, spread operator, rest destructuring) and
how it relates to React (e.g. props) from the last lessons.

• Continue to use your favorite way to handle React’s props. If you’re still undecided, consider
the variation used in the previous section.

Interview Questions:

• Question: How do you destructure props in a function component’s parameters?
– Answer: You can destructure props directly in the function parameters, like this: function

MyComponent({ prop1, prop2 }) {...}.
• Question: Can you provide a default value while destructuring props?

– Answer: Yes, you can provide default values during destructuring, such as { prop1 =

'default', prop2 }.
• Question: Is it necessary to destructure all props, or can you choose specific ones?

– Answer: You can choose to destructure specific props based on your component’s needs,
leaving others untouched.

• Question: How is the spread operator (…) used in React props?
– Answer: The spread operator is used to pass all properties of an object as separate props

to a React component, like <MyComponent {...obj} />.
• Question: Can you use the spread operator to combine props with additional ones?

– Answer: Yes, you can combine existing props with additional ones using the spread
operator, like <MyComponent {...props} newProp={value} />.

• Question: Does the spread operator create a shallow or deep copy of an object?
– Answer: The spread operator creates a shallow copy of an object, meaning nested objects

are still references to the original.
• Question: What is the purpose of the rest operator (…rest) in React?

– Answer: The rest operator is used to collect remaining properties into a new object, often
used in combination with props destructuring.

• Question: Why is array destructuring used for React Hooks like useState and object destruc-
turing for props?
– Answer: A React Hook like useState returns an array whereas props are an object; hence
we need to apply the appropriate operation for the underlying data structure. The benefit
of having an array returned from useState is that the values can be given any name in
the destructuring operation.

• Question: What is prop drilling in React?
– Answer: Prop drilling is the process of passing props through multiple layers of compo-

nents to reach a deeply nested child component.

⁹⁵https://tinyurl.com/2j2mhtjd
⁹⁶https://bit.ly/3SL9uRm
⁹⁷https://www.robinwieruch.de/react-pass-props-to-component/
⁹⁸https://mzl.la/30KbXTC
⁹⁹https://mzl.la/3jetIkn
¹⁰⁰https://mzl.la/3GeJbef

https://tinyurl.com/2j2mhtjd
https://bit.ly/3SL9uRm
https://www.robinwieruch.de/react-pass-props-to-component/
https://mzl.la/30KbXTC
https://mzl.la/3jetIkn
https://mzl.la/3GeJbef
https://tinyurl.com/2j2mhtjd
https://bit.ly/3SL9uRm
https://www.robinwieruch.de/react-pass-props-to-component/
https://mzl.la/30KbXTC
https://mzl.la/3jetIkn
https://mzl.la/3GeJbef

Fundamentals of React 80

React Side-Effects

A React component’s returned output is defined by its props and state. Side-effects can affect this
output too, because they are used to interact with third-party APIs (e.g. browser’s localStorage API,
remote APIs for data fetching), with HTML elements for width and height measurements, or with
built-in JavaScript functions such as timers or intervals. These are only a few examples of side-effects
in React components and we will get to apply one of these examples next.

At the moment, whenever you search for a term in our application you will get the result. However,
once you close the browser and open it again, the search term isn’t there anymore. Wouldn’t it be a
great user experience if our Search component could remember the most recent search, so that the
application displays it in the browser whenever it restarts?

Let’s implement this feature by using a side-effect to store the recent search in the browser’s local
storage and retrieve it upon the initial component initialization. First, use the local storage to store
the searchTerm accompanied by an identifier whenever a user types into the HTML input field:

src/App.jsx

const App = () => {

...

const handleSearch = (event) => {

setSearchTerm(event.target.value);

localStorage.setItem('search', event.target.value);

};

...

);

Second, use the stored value, if a value exists, to set the initial state of the searchTerm in React’s
useState Hook. Otherwise, default to our initial state (here: “React”) as before:

src/App.jsx

const App = () => {

...

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || 'React'

);

...

);

Fundamentals of React 81

Good to know: JavaScript’s logical OR operator¹⁰¹ returns the truthy operand in this expression and is
short-circuited if localStorage.getItem('search') returns a truthy value. It’s used as a shorthand
for the following implementation for setting default values:

Code Playground

let hasStored;

if (localStorage.getItem('search')) {

hasStored = true;

} else {

hasStored = false;

}

const initialState = hasStored

? localStorage.getItem('search')

: 'React';

When using the input field and refreshing the browser tab, the browser should remember the latest
search term now. Essentially we synchronized the browser’s local storage with React’s state: While
we initialize the state with the browser’s local storage’s value (or a fallback), we write the new value
when the handler is called to the browser’s storage and the component’s state.

The feature is complete, but there is one flaw that may introduce bugs in the long run: The handler
function should mostly be concerned with updating the state, but it has a side-effect now. The flaw:
If we use the setSearchTerm state updater function somewhere else in our application, we break the
feature because the local storage doesn’t get updated, because it is only updated in the event handler.
Let’s fix this by handling the side-effect at a centralized place and not in a specific handler. We’ll
use React’s useEffect Hook to trigger the desired side-effect each time the searchTerm changes:

src/App.jsx

const App = () => {

...

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || 'React'

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

const handleSearch = (event) => {

setSearchTerm(event.target.value);

¹⁰¹https://mzl.la/3aXxryd

https://mzl.la/3aXxryd
https://mzl.la/3aXxryd

Fundamentals of React 82

};

...

);

React’s useEffect Hook takes two arguments: The first argument is a function that runs our side-
effect. In our case, the side-effect stores searchTerm into the browser’s local storage. The second
argument is a dependency array of variables. If one of these variables changes, the function for the
side-effect is called. In our case, the function is called every time the searchTerm changes (e.g. when
a user types into the HTML input field). In addition, it’s also called initially when the component
renders for the first time.

Leaving out the second argument (the dependency array) wouldmake the function for the side-effect
run on every render (initial render and update renders) of the component. If the dependency array
of React’s useEffect is an empty array, the function for the side-effect is only called once when the
component renders for the first time. After all, the hook lets us opt into React’s component lifecycle
when mounting, updating and unmounting the component. It can be triggered when the component
is first mounted, but also if one of its values (state, props, derived values from state/props) is updated.

In conclusion, using React useEffectHook instead of managing the side-effect in the (event) handler
has made the application more robust. Whenever and wherever the searchTerm state is updated via
setSearchTerm, the browser’s local storage will always be in sync with it.

Exercises:

• Compare your source code against the author’s source code¹⁰².
– Recap all the source code changes¹⁰³ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁰⁴.

• Read more about React’s useEffect Hook¹⁰⁵.
– Give the first argument’s function a console.log() and experiment with React’s useEffect

Hook’s dependency array. Check the logs for an empty dependency array too.
• Read more about using local storage with React¹⁰⁶.
• Try the following scenario: In your browser, backspace the search term from the input field
until nothing is left there. Internally, it should be set to an empty string now. Next, refresh the
browser and check what it displays. You may be wondering why it does show “React” instead
of “”, because “” should be the recent search. That’s because JavaScript’s logical OR evaluates
“” to false and thus takes “React” as the true value. If you want to prevent this and evaluate “”
as true instead, you may want to exchange JavaScript’s logical OR operator || with JavaScript’s
nullish coalescing operator ??¹⁰⁷.

¹⁰²https://tinyurl.com/3m7dzk4f
¹⁰³https://tinyurl.com/56rcmthz
¹⁰⁴https://bit.ly/3HKAv0Y
¹⁰⁵https://www.robinwieruch.de/react-useeffect-hook/
¹⁰⁶https://www.robinwieruch.de/local-storage-react/
¹⁰⁷https://mzl.la/2Z4bsU4

https://tinyurl.com/3m7dzk4f
https://tinyurl.com/56rcmthz
https://bit.ly/3HKAv0Y
https://www.robinwieruch.de/react-useeffect-hook/
https://www.robinwieruch.de/local-storage-react/
https://mzl.la/2Z4bsU4
https://mzl.la/2Z4bsU4
https://tinyurl.com/3m7dzk4f
https://tinyurl.com/56rcmthz
https://bit.ly/3HKAv0Y
https://www.robinwieruch.de/react-useeffect-hook/
https://www.robinwieruch.de/local-storage-react/
https://mzl.la/2Z4bsU4

Fundamentals of React 83

Interview Questions:

• Question: What is useEffect in React?
– Answer: useEffect is a hook in React that allows function components to perform side

effects.
• Question: Can you use multiple useEffect hooks in one component?

– Answer: Yes, you can use multiple useEffect hooks in a single component.
• Question: What does the second argument in useEffect represent?

– Answer: The second argument is an array of dependencies. The effect runs when any of
these dependencies change.

• Question: How do you run useEffect only once (on mount)?
– Answer: Pass an empty dependency array ([]) as the second argument.

• Question: Can useEffect return a cleanup function?
– Answer: Yes, the function returned from useEffect serves as a cleanup function.

• Question: What is the purpose of the cleanup function in useEffect?
– Answer: It handles the cleanup or teardown of resources when the component unmounts

or when the dependencies change.
• Question: How do you perform cleanup in useEffect for each render?

– Answer: Return a function inside the useEffect with the cleanup logic.
• Question: Can you conditionally run useEffect based on a certain condition?

– Answer: Yes, you can use conditional statements inside useEffect to control when it should
run.

• Question: What happens if you omit the second argument in useEffect?
– Answer: It runs the effect after every render, leading to potential performance issues.

• Question: How does useEffect contribute to avoiding race conditions in React?
– Answer: It allows you to handle asynchronous operations and avoid race conditions by

managing the order of execution.

Fundamentals of React 84

React Custom Hooks (Advanced)

Until now, we have delved into two of React’s most popular hooks: useState and useEffect. The
former proves valuable for managing values that undergo changes, while the latter facilitates the
inclusion of side effects in the lifecycle of React components. While there are additional hooks
provided by React, our upcoming focus will be on React custom Hooks, involving the creation
of our own hooks tailored to specific requirements.

To illustrate this concept, we will leverage our understanding of useState and useEffect to craft a
new custom hook dubbed useStorageState. The primary objective of this custom hook is to ensure
the synchronization of a component’s state with the local storage of the browser. We will initiate
our exploration by outlining how we intend to utilize this hook within our App component:

src/App.jsx

const App = () => {

const stories = [...];

const [searchTerm, setSearchTerm] = useStorageState('React');

const handleSearch = (event) => {

setSearchTerm(event.target.value);

};

const searchedStories = stories.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

return (

...

);

};

With this custom hook, we can use it in a manner akin to React’s native useState Hook. It provides
both a state variable and a function for updating the state, taking an initial state as an argument.
The underlying functionality of this hook will be designed to ensure the synchronization of the state
with the local storage of the browser. If you look closely at the App component in the previous code
snippet, you can see that none of the previously introduced local storage features are there anymore.
Instead, we will copy and paste this functionality over to our new custom hook:

Fundamentals of React 85

src/App.jsx

const useStorageState = () => {

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || ''

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

};

const App = () => {

...

};

So far, this custom hook is just a function around the useState and useEffect hooks which we’ve
previously used in the App component. What’s missing is providing an initial state and returning
the values that are needed in our App component as an array:

src/App.jsx

const useStorageState = (initialState) => {

const [searchTerm, setSearchTerm] = React.useState(

localStorage.getItem('search') || initialState

);

React.useEffect(() => {

localStorage.setItem('search', searchTerm);

}, [searchTerm]);

return [searchTerm, setSearchTerm];

};

We are following two conventions of React’s built-in hooks here. First, the naming convention which
puts the “use” prefix in front of every hook name. And second, the returned values are returned as
an array. Another goal of a custom hook should be reusability. All of this custom hook’s internals are
about a certain search domain, however, to make the custom hook reusable and therefore generic,
we have to adjust the internal names:

Fundamentals of React 86

src/App.jsx

const useStorageState = (initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem('value') || initialState

);

React.useEffect(() => {

localStorage.setItem('value', value);

}, [value]);

return [value, setValue];

};

Now we handle an abstracted “value” within the custom hook. Using it in the App component,
we can name the returned current state and state updater function anything domain-related (e.g.
searchTerm and setSearchTerm) with array destructuring.

There is still one problem with this custom hook. Using the custom hook more than once in a React
application leads to an overwrite of the “value”-allocated item in the local storage, because it uses the
same key in the local storage. To fix this, we need to pass in a flexible key. Since the key comes from
outside, the custom hook assumes that it could change, so it needs to be included in the dependency
array of the useEffect hook as well. Without it, the side-effect may run with an outdated key (also
called stale) if the key changed between renders:

src/App.jsx

const useStorageState = (key, initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

const App = () => {

...

const [searchTerm, setSearchTerm] = useStorageState(

'search',

'React'

Fundamentals of React 87

);

...

};

With the key in place, you can use this new custom hook more than once in your application. You
only need to make sure that the first argument, the key you are passing in, is a unique identifier
which allocates the state in the browser’s local storage under a unique key. If you happen to use the
same key more than once for multiple useStorageState hook usages, then all these hooks will work
on the same local storage key/value pair.

You’ve just created your first custom hook. If you’re not comfortable with custom hooks, you can
revert the changes and use the useState and useEffect hook as before in the App component.
However, knowing about custom hooks gives you lots of new options. A custom hook can
encapsulate non-trivial implementation details that should be kept away from a component, can
be used in more than one React component, can be a composition of other hooks, and can even
be open-sourced as an external library. Using your favorite search engine, you’ll notice there are
hundreds of React hooks that could be used in your application without worry over implementation
details.

Exercises:

• Compare your source code against the author’s source code¹⁰⁸.
– Recap all the source code changes¹⁰⁹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹¹⁰.

¹⁰⁸https://tinyurl.com/2j4adp2f
¹⁰⁹https://tinyurl.com/3y9sy3b7
¹¹⁰https://bit.ly/485dY9K

https://tinyurl.com/2j4adp2f
https://tinyurl.com/3y9sy3b7
https://bit.ly/485dY9K
https://tinyurl.com/2j4adp2f
https://tinyurl.com/3y9sy3b7
https://bit.ly/485dY9K

Fundamentals of React 88

• Read more about React Hooks¹¹¹ and custom React Hooks¹¹² to get a good understanding of
them, because they are the bread and butter in React function components.

Interview Questions:

• Question: What are React custom hooks?
– Answer: Custom hooks are JavaScript functions that utilize React hooks to encapsulate

and reuse logic in function components.
• Question: How do you create a custom hook in React?

– Answer: Create a function startingwith “use” and use existing React hooks or other custom
hooks within it.

• Question: Can custom hooks have state?
– Answer: Yes, custom hooks can use hooks like useState.

• Question: What naming convention should custom hooks follow?
– Answer: Custom hooks should be named with the prefix “use” to signal their association
with React hooks.

• Question: Can custom hooks accept parameters?
– Answer: Yes, custom hooks can accept parameters to make them flexible and customizable.

• Question: How do you share stateful logic between components using custom hooks?
– Answer: Extract the shared logic into a custom hook and use it in multiple components.

• Question: Do custom hooks have access to the component’s props?
– Answer: No, custom hooks don’t have direct access to the component’s props. They usually

accept necessary data through arguments.
• Question: Can you use multiple custom hooks in a single component?

– Answer: Yes, you can use multiple custom hooks in a single component to leverage
different pieces of reusable logic.

• Question: What’s the key benefit of using custom hooks?
– Answer: Custom hooks promote code reuse, abstraction of complex logic, and maintain-

ability in React function components.
• Question: Can custom hooks have side effects like data fetching?

– Answer: Yes, custom hooks can encapsulate side effects using hooks like useEffect to
perform tasks such as data fetching.

• Question: Are custom hooks only for state management?
– Answer: No, while custom hooks can manage state, they can encapsulate any reusable

logic, including side effects and computations.

¹¹¹https://www.robinwieruch.de/react-hooks/
¹¹²https://www.robinwieruch.de/react-custom-hook/

https://www.robinwieruch.de/react-hooks/
https://www.robinwieruch.de/react-custom-hook/
https://www.robinwieruch.de/react-hooks/
https://www.robinwieruch.de/react-custom-hook/

Fundamentals of React 89

React Fragments

Youmay have noticed that all of our React components return JSXwith one top-level HTML element.
When we introduced the Search component a while ago, we had to add a <div> tag (read: container
element), because otherwise the label and input elements couldn’t be returned side-by-side without
a wrapping top-level element:

src/App.jsx

const Search = ({ search, onSearch }) => (

<div>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</div>

);

However, there are ways to render multiple top-level elements side-by-side. A rarely used approach
returns all sibling elements as an array. Since this resembles a list of elements, we would have to
give each list item a mandatory key attribute:

src/App.jsx

const Search = ({ search, onSearch }) => [

<label key="1" htmlFor="search">

Search:{' '}

</label>,

<input

key="2"

id="search"

type="text"

value={search}

onChange={onSearch}

/>,

];

Fortunately there exists another way of returning sibling elements side-by-side without a top-level
element, because the last approach with the array doesn’t turn out very readable and becomes
verbose with the additional key attribute. Another solution is to use a React fragment:

Fundamentals of React 90

src/App.jsx

const Search = ({ search, onSearch }) => (

<React.Fragment>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</React.Fragment>

);

A fragment wraps sibling elements into a single top-level element without adding them to the
rendered output. See for yourself by inspecting the elements in your browser’s development tools
after using a fragment in your React component. A more popular alternative these days is using
fragments in their shorthand version:

src/App.jsx

const Search = ({ search, onSearch }) => (

<>

<label htmlFor="search">Search: </label>

<input

id="search"

type="text"

value={search}

onChange={onSearch}

/>

</>

);

Both elements in the Search component - input field and label - should be still visible in your browser
now. After all, whenever you don’t want to introduce an intermediary element that’s only there to
satisfy React, you can use fragments as helper “elements”.

Exercises:

• Compare your source code against the author’s source code¹¹³.
– Recap all the source code changes¹¹⁴ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹¹⁵.

¹¹³https://tinyurl.com/mrf4hc3h
¹¹⁴https://tinyurl.com/3cmv4ump
¹¹⁵https://bit.ly/3HLzrtH

https://tinyurl.com/mrf4hc3h
https://tinyurl.com/3cmv4ump
https://bit.ly/3HLzrtH
https://tinyurl.com/mrf4hc3h
https://tinyurl.com/3cmv4ump
https://bit.ly/3HLzrtH

Fundamentals of React 91

Interview Questions:

• Question: What is a Fragment in React?
– Answer: A Fragment is a way to group multiple React elements without introducing an

additional DOM element.
• Question: How do you use Fragments in JSX?

– Answer: Wrap the elements with <React.Fragment> or its shorthand syntax <>...</>.
• Question: Why use Fragments in React?

– Answer: Fragments allow grouping elements without adding extra nodes to the DOM,
useful when a parent wrapper is not desired.

• Question: Can Fragments have keys?
– Answer: Yes, Fragments can have keys when mapping over a list of elements.

• Question: Are Fragments required in every React component?
– Answer: No, Fragments are optional and are typically used when a component needs to

return multiple elements without a parent wrapper.
• Question: Do Fragments impact the rendered HTML structure?

– Answer: No, Fragments do not introduce any additional nodes to the HTML structure.
• Question: Can Fragments have attributes like class or style?

– Answer: No, Fragments themselves cannot have attributes. Attributes should be applied
to the elements within the Fragment.

• Question: How does using Fragments differ from using div containers?
– Answer: Fragments don’t create an extra DOM node, providing a cleaner HTML structure

compared to using div containers.

Fundamentals of React 92

Reusable React Component

Examine the Search component more closely: Every intricate detail of its implementation is closely
linked to the search feature. However, internally, the component is composed of merely a label and
an input. Why should it be so tightly bound to a singular domain? This narrow association makes the
component less adaptable for other functionalities within the application. Consequently, the Search
component becomes impractical for tasks unrelated to searching.

Moreover, the Search component poses a risk of introducing bugs. If multiple instances of this
Search component are rendered on the same page, their htmlFor/id combination is duplicated. This
duplication disrupts the focus when a user clicks on one of the labels. To rectify these issues, let’s
enhance the Search component’s reusability.

Given that the Search component lacks actual “search” functionality, making it reusable for various
application features involves minimal effort. We can achieve this by introducing dynamic id and
label props to the Search component, renaming the specific value and callback handler to more
generic terms, and consequently, renaming the component itself:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

label="Search"

value={searchTerm}

onInputChange={handleSearch}

/>

...

</div>

);

};

const InputWithLabel = ({ id, label, value, onInputChange }) => (

<>

<label htmlFor={id}>{label}</label>

<input

Fundamentals of React 93

id={id}

type="text"

value={value}

onChange={onInputChange}

/>

</>

);

While it is entirely reusable, its applicability is limited to using an input with text. To broaden its
scope and support additional input types, such as numbers (number) or phone numbers (tel), the
type attribute of the input field needs to be accessible from the outside too:

src/App.jsx

const InputWithLabel = ({

id,

label,

value,

type = 'text',

onInputChange,

}) => (

<>

<label htmlFor={id}>{label}</label>

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

Because we don’t pass a type prop from the App component to the InputWithLabel component,
the default parameter¹¹⁶ from the function signature takes over for the type. Thus, every time the
InputWithLabel component is used without a type prop, the default type will be "text".

With just a few changes we turned a specialized Search component into a more reusable InputWith-
Label component. We generalized the naming of the internal implementation details and gave the
new component a larger API surface to provide all the necessary information from the outside. We
aren’t using the component elsewhere yet, but we increased its ability to handle the task if we do.

¹¹⁶https://mzl.la/3aUefkN

https://mzl.la/3aUefkN
https://mzl.la/3aUefkN

Fundamentals of React 94

It’s always a trade-off between generalization and specialization of components. In this case,
we turned a highly specialized component into a generalized component. While a generalized
component has a better chance of getting reused in the application, a specialized component would
implement business logic for one specific use case and therefore isn’t reusable at all.

Exercises:

• Compare your source code against the author’s source code¹¹⁷.
– Recap all the source code changes¹¹⁸ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹¹⁹.

• Read more about Reusable React Components¹²⁰ and create some of these components yourself:
– Button in React¹²¹, Radio Button in React¹²², Checkbox in React¹²³, Dropdown in React¹²⁴,

Drag-and-Drop List in React (Advanced)¹²⁵, …
• Before we used the text “Search:” with a “:”. How would you deal with it now?Would you pass
it with label="Search:" as prop to the InputWithLabel component or hardcode it after the
<label htmlFor={id}>{label}:</label> usage in the InputWithLabel component? We will
see how to cope with this later.

Interview Questions:

• Question: Why is reusability important in React?
– Answer: Reusability promotes code efficiency, maintainability, and consistency by allow-

ing components to be used across various parts of an application.
• Question: How can you make a React component reusable?

– Answer: Make components more generic by using props for customizable behavior and
ensuring they are not tightly coupled to specific functionalities.

• Question: How do React props contribute to reusability?
– Answer: Props make components adaptable and reusable by allowing dynamic customiza-

tion.
• Question: Can a reusable component have internal state?

– Answer: Yes, a reusable component can have internal state by using a hook like useState.
• Question: Why is component abstraction important for reusability?

– Answer: Abstraction hides unnecessary details, making components more versatile and
easier to reuse without exposing their internal complexities.

• Question: Is it advisable to make all components in a React application reusable?
– Answer: While reusability is beneficial, not all components need to be reusable. Often

there are components which have only a single purpose and are only used once in a React
application.

¹¹⁷https://tinyurl.com/2y5xk95h
¹¹⁸https://tinyurl.com/5n6zzbys
¹¹⁹https://bit.ly/3Oun6hn
¹²⁰https://www.robinwieruch.de/react-reusable-components/
¹²¹https://www.robinwieruch.de/react-button/
¹²²https://www.robinwieruch.de/react-radio-button/
¹²³https://www.robinwieruch.de/react-checkbox/
¹²⁴https://www.robinwieruch.de/react-dropdown/
¹²⁵https://www.robinwieruch.de/react-drag-and-drop/

https://tinyurl.com/2y5xk95h
https://tinyurl.com/5n6zzbys
https://bit.ly/3Oun6hn
https://www.robinwieruch.de/react-reusable-components/
https://www.robinwieruch.de/react-button/
https://www.robinwieruch.de/react-radio-button/
https://www.robinwieruch.de/react-checkbox/
https://www.robinwieruch.de/react-dropdown/
https://www.robinwieruch.de/react-drag-and-drop/
https://tinyurl.com/2y5xk95h
https://tinyurl.com/5n6zzbys
https://bit.ly/3Oun6hn
https://www.robinwieruch.de/react-reusable-components/
https://www.robinwieruch.de/react-button/
https://www.robinwieruch.de/react-radio-button/
https://www.robinwieruch.de/react-checkbox/
https://www.robinwieruch.de/react-dropdown/
https://www.robinwieruch.de/react-drag-and-drop/

Fundamentals of React 95

React Component Composition

Essentially a React application is a bunch of React components arranged in the shape of a tree. When
you learned about initializing components as elements in JSX, you have seen how they are used like
any other HTML element in JSX. However, until now we have only used them as self-closing tags.
What if there could be an opening and closing tag instead for React elements too? Entering the
concept of component composition:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

</div>

);

};

Component composition is one of React’s more powerful features. Essentially we’ll discover how
to use a React element in the same fashion as an HTML element by leveraging its opening and
closing tag. In the previous example, instead of using the label prop from before, we inserted the
text “Search:” between the component’s element’s tags. In the InputWithLabel component, you have
access to this information via React’s children prop now. Instead of using the label prop, use
the children prop to render everything that has been rendered in between the <InputWithLabel>

opening and closing tag:

Fundamentals of React 96

src/App.jsx

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

children,

}) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

Now the React component’s elements behave similarly to native HTML. Everything that’s passed
between a component’s elements can be accessed as children in the component and be rendered.
Sometimes when using a React component, you want to have more freedom from the outside
regarding what to render on the inside of a component:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

Fundamentals of React 97

</div>

);

};

With the React children prop, we can compose React components into each other. We’ve used it with
a string and with a string wrapped in an HTML element, but it doesn’t end here. You can
pass React elements via React children as well – which you should definitely explore more as an
exercise.

Exercises:

• Compare your source code against the author’s source code¹²⁶.
– Recap all the source code changes¹²⁷ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹²⁸.

• Read more about Component Composition in React¹²⁹.

Interview Questions:

• Question: What does “children” refer to in React components?
– Answer: “Children” in React refers to the content placed between the opening and closing

tags of a component.
• Question: How can you access and render the “children” of a React component?

– Answer: Use the props.children property to access and render the content placed within
a component.

• Question: Can a React component have multiple children?
– Answer: Yes, but would use attributes instead, like <MyComponent slotOne={1}

slotTwo={2} />which can then be accessed via props.slotOne and props.slotTwo
in the component.

• Question: Can you pass React components as “children” to another component?
– Answer: Yes, React components can be passed as “children” to other components, allowing

for composability.
• Question: What is the purpose of the React.Children utility in React?

– Answer: The React.Children utility provides methods for working with and manipulating
the “children” of a React component.

• Question: How do you iterate over and manipulate each child in a React component?
– Answer: Use React.Children.map or React.Children.forEach to iterate over and perform

operations on each child of a component.
• Question: Can you have a component without any “children” in React?

– Answer: Yes, a component can exist without any “children” by not placing content between
its opening and closing tags.

• Question: What is the difference between “children” and other props in React?
– Answer: “Children” refers specifically to the content between tags, while other props are

key-value pairs passed to a component.

¹²⁶https://tinyurl.com/4ubprvu6
¹²⁷https://tinyurl.com/5h2svtpk
¹²⁸https://bit.ly/3uvSg0S
¹²⁹https://www.robinwieruch.de/react-component-composition/

https://tinyurl.com/4ubprvu6
https://tinyurl.com/5h2svtpk
https://bit.ly/3uvSg0S
https://www.robinwieruch.de/react-component-composition/
https://tinyurl.com/4ubprvu6
https://tinyurl.com/5h2svtpk
https://bit.ly/3uvSg0S
https://www.robinwieruch.de/react-component-composition/

Fundamentals of React 98

Imperative React

Imperative programming involves providing explicit step-by-step instructions, detailing how a
program should perform a task. In contrast, declarative programming focuses on specifying the
desired outcomewithout specifying every procedural step. Declarative code is often consideredmore
concise, readable, and maintainable.

React uses a declarative programming approach. Instead of manually manipulating the Document
Object Model (DOM) for UI updates, developers declare the desired UI state, and React manages the
rendering process. This declarative approach enhances code readability and scalability, abstracting
away the complexities of DOM manipulation and enabling the creation of dynamic user interfaces
with a higher level of abstraction.

When you implement JSX, you tell React what elements you want to see, not how to create these
elements. When you implement a hook for state, you tell React what you want to manage as a
stateful value and not how to manage it. And when you implement an event handler, you do not
have to assign a listener imperatively:

Code Playground

// imperative JavaScript + DOM API

element.addEventListener('click', () => {

// do something

});

// declarative React

const App = () => {

const handleClick = () => {

// do something

};

return (

<button

type="button"

onClick={handleClick}

>

Click

</button>

);

};

However, there are cases when we will not want everything to be declarative. For example,
sometimes you want to have imperative access to rendered elements, most often as a side-effect,
in cases such as these:

Fundamentals of React 99

• read/write access to elements via the DOM API:
– reading (here: measuring) an element’s width or height
– writing (here: setting) an input field’s focus state

• implementation of more complex animations:
– setting transitions
– orchestrating transitions

• integration of third-party libraries:
– D3¹³⁰ is a popular imperative chart library

Due to the verbosity and counterintuitive nature of imperative programming in React, we will only
explore a brief example illustrating how to imperatively set the focus of an input field. Conversely,
for the declarative approach, you can achieve the same outcome by setting the autoFocus attribute
of the input field:

src/App.jsx

const InputWithLabel = ({ ... }) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

autoFocus

onChange={onInputChange}

/>

</>

);

// note that `autoFocus` is a shorthand for `autoFocus={true}`

// every attribute that is set to `true` can use this shorthand

This works, but only if one of the reusable components is rendered. For example, if the App
component renders two InputWithLabel components, only the last rendered component receives
the autoFocus flag on its render. However, since we have a reusable React component here, we can
pass a dedicated prop which lets the developer decide whether the input field should have an active
autoFocus:

¹³⁰https://d3js.org

https://d3js.org/
https://d3js.org/

Fundamentals of React 100

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearch}

>

Search:

</InputWithLabel>

...

</div>

);

};

Again, using just isFocused as an attribute is equivalent to isFocused={true}. Within the compo-
nent, use the new prop for the input field’s autoFocus attribute:

src/App.jsx

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}) => (

<>

<label htmlFor={id}>{children}</label>

<input

id={id}

type={type}

value={value}

autoFocus={isFocused}

Fundamentals of React 101

onChange={onInputChange}

/>

</>

);

The feature works, yet it’s a declarative implementation.We are telling Reactwhat to do and not how
to do it. Even though it’s possible to do it with the declarative approach (which is the recommended
way), let’s refactor this scenario to an imperative approach. We want to execute the focus()method
programmatically on the input field’s element via the DOM API once it has been rendered:

src/App.jsx

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}) => {

// A

const inputRef = React.useRef();

// C

React.useEffect(() => {

if (isFocused && inputRef.current) {

// D

inputRef.current.focus();

}

}, [isFocused]);

return (

<>

<label htmlFor={id}>{children}</label>

{/* B */}

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

Fundamentals of React 102

);

};

All the essential steps are marked with comments that are explained step by step:

• (A) First, create a ref with React’s useRef Hook. This ref object is a persistent value which
stays intact over the lifetime of a React component. It comes with a property called current,
which, in contrast to the ref object, can be changed.

• (B) Second, the ref is passed to the element’s JSX-reserved ref attribute and thus element
instance gets assigned to the changeable current property.

• (C) Third, opt into React’s lifecycle with React’s useEffect Hook, performing the focus on the
element when the component renders (or its dependencies change).

• (D) And fourth, since the ref is passed to the element’s ref attribute, its current property gives
access to the element. Execute its focus programmatically as a side-effect, but only if isFocused
is set and the current property is existent.

Essentially that’s the whole example of how to move from declarative to imperative programming
in React. In this case, it’s possible to use either the declarative or imperative approach as you
experienced first hand. However, it’s not always possible to use the declarative approach, so the
imperative approach can be performed whenever it’s necessary. Since we didn’t cover ref and
useRef in much detail here, because it is a more rarely used feature in React, I suggest reading
the additional article from the exercises for a more in-depth understanding.

Exercises:

• Compare your source code against the author’s source code¹³¹.
– Recap all the source code changes¹³² from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹³³.

• Read more about refs in React¹³⁴ and optionally check out the following tutorials which are
using refs:
– Create an image from a React component with a ref¹³⁵
– Create a Slider component with a ref¹³⁶
– Create a custom hook with a ref¹³⁷

• Read more about why frameworks matter¹³⁸.
¹³¹https://tinyurl.com/4hz7a5rv
¹³²https://tinyurl.com/y8s3esu2
¹³³https://bit.ly/494zUDw
¹³⁴https://www.robinwieruch.de/react-ref/
¹³⁵https://www.robinwieruch.de/react-component-to-image/
¹³⁶https://www.robinwieruch.de/react-slider/
¹³⁷https://www.robinwieruch.de/react-custom-hook-check-if-overflow/
¹³⁸https://www.robinwieruch.de/why-frameworks-matter/

https://tinyurl.com/4hz7a5rv
https://tinyurl.com/y8s3esu2
https://bit.ly/494zUDw
https://www.robinwieruch.de/react-ref/
https://www.robinwieruch.de/react-component-to-image/
https://www.robinwieruch.de/react-slider/
https://www.robinwieruch.de/react-custom-hook-check-if-overflow/
https://www.robinwieruch.de/why-frameworks-matter/
https://tinyurl.com/4hz7a5rv
https://tinyurl.com/y8s3esu2
https://bit.ly/494zUDw
https://www.robinwieruch.de/react-ref/
https://www.robinwieruch.de/react-component-to-image/
https://www.robinwieruch.de/react-slider/
https://www.robinwieruch.de/react-custom-hook-check-if-overflow/
https://www.robinwieruch.de/why-frameworks-matter/

Fundamentals of React 103

Interview Questions:

• Question: What is useRef in React?
– Answer: useRef is a hook in React that provides a mutable object called a ref, which can

hold a mutable value and persists across renders.
• Question: How is useRef different from useState in React?

– Answer: Unlike useState, useRef doesn’t trigger a re-render when its value changes. It’s
often used for mutable values that don’t affect the rendering.

• Question: Can useRef be used to hold a mutable value that persists across renders?
– Answer: Yes, the primary purpose of useRef is to hold mutable values that persist across

renders without causing re-renders.
• Question: What is the common use case for useRef in React?

– Answer: A common use case is accessing and interacting with the DOM, as useRef can
hold a reference to a DOM element.

• Question: Can useRef be used to trigger re-renders in React?
– Answer: No, changing the value of a ref created with useRef does not trigger a re-render.

• Question: Can useRef be used to persist values between function calls?
– Answer: Yes, useRef values persist across renders, making them suitable for persisting
values between function calls without triggering re-renders.

• Question: How can you access the current value of a ref created with useRef?
– Answer: Use myRef.current to access the current value of a ref created with useRef.

Fundamentals of React 104

Inline Handler in JSX

In this section, you’ll learn about inline handlers as a new fundamental building block in React.
Simultaneously, we’ll implement our next feature that enables the removal of items from the list.
Before delving further, feel free to attempt this task independently, as it can be solved without
prior knowledge of inline handlers. Provided below are step-by-step instructions. If you encounter
difficulties, proceed to read this section for the solution. If you successfully find a solution on your
own, compare it with the book’s solution, which utilizes inline handlers.

Task: The application renders a list of items and allows its users to filter the list via a search feature.
Next the application should render a button next to each list item which allows its users to remove
the item from the list.

Optional Hints:

• The list of items needs to become a stateful value (here: stateful array) with useState in order
to manipulate it (e.g. removing an item) later.

• Every list item renders a button with a click handler. When clicking the button, the item gets
removed from the list by manipulating the state.

• Since the stateful list resides in the App component, one needs to use callback handlers to
enable the Item component to communicate up to the App component for removing an item
by its identifier.

Now we want to check out how to implement this feature step by step. At the moment, the list of
items (here: stories) that we have in our App component is an unstateful variable. We can filter the
rendered list with the search feature, but the list itself stays intact. The filtered list is just a derived
state through a third-party (here: searchTerm), but we do not manipulate the actual list yet. To gain
control over the list, make it stateful by using it as initial state in React’s useState Hook. The returned
values from the array are the current state (stories) and the state updater function (setStories):

src/App.jsx

const initialStories = [

{

title: 'React',

url: 'https://react.dev/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

},

{

title: 'Redux',

url: 'https://redux.js.org/',

Fundamentals of React 105

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

},

];

...

const App = () => {

const [searchTerm, setSearchTerm] = ...

const [stories, setStories] = React.useState(initialStories);

...

};

The application behaves the same because the stories, now returned as a stateful list from React’s
useState Hook, are still filtered into searchedStories and displayed in the List component. Just the
origin where the stories are coming from has changed. But we are not modifying the stories yet.
Next, we will write an event handler which removes an item from the list:

src/App.jsx

const App = () => {

...

const [stories, setStories] = React.useState(initialStories);

const handleRemoveStory = (item) => {

const newStories = stories.filter(

(story) => item.objectID !== story.objectID

);

setStories(newStories);

};

...

return (

<div>

<h1>My Hacker Stories</h1>

...

Fundamentals of React 106

<hr />

<List list={searchedStories} onRemoveItem={handleRemoveStory} />

</div>

);

};

The callback handler in the App component – which will be used in the List/Item components
eventually – receives the item as an argument which should be removed from the list. Based on
this information, the function filters the current stories by removing all items that don’t meet its
condition. The returned stories – where the desired item (story) has been removed – are then set as
a new state and passed to the List component. Since a new state is set, the App component and all
components below (e.g. List/Item components) will render again and thus display the new state of
stories.

However, what’s missing is how the List/Item components are using this new functionality which
modifies the state in the App component. The List component itself does not use this new callback
handler, but only passes it on to the Item component:

src/App.jsx

const List = ({ list, onRemoveItem }) => (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

Finally, the Item component uses the incoming callback handler as a function in a new handler. In
this handler, we will pass the specific item to it. Moreover, an additional button element is needed
to trigger the actual event:

Fundamentals of React 107

src/App.jsx

const Item = ({ item, onRemoveItem }) => {

const handleRemoveItem = () => {

onRemoveItem(item);

};

return (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={handleRemoveItem}>

Dismiss

</button>

);

};

So far in this section, we have made the list of stories stateful with React’s useState Hook, passed
the still searched stories down as props to the List component, and implemented a callback handler
(handleRemoveStory) and handler (handleRemoveItem) to be used in their respective components to
remove a story by clicking on a button. In order to implement this feature, we applied many lessons
learned from before: state, props, handlers, and callback handlers. The feature works and you may
have arrived at the same or a similar solution yourself.

Let’s enter the topic of inline handlers: You may have noticed that we had to introduce an additional
handleRemoveItem handler in the Item component which is in charge of executing the incoming
onRemoveItem callback handler. We had to introduce this extra event handler to pick up the item as
argument for the callback handler.

If you want to make this more elegant though, you can use an inline handler which allows you
to execute the callback handler function in the Item component right in the JSX. There are two
solutions using the incoming onRemoveItem function in the Item component as an inline handler.
First, using JavaScript’s bind method:

Fundamentals of React 108

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={onRemoveItem.bind(null, item)}>

Dismiss

</button>

);

Using JavaScript’s bindmethod¹³⁹ on a function allows us to bind arguments directly to that function
that should be used when executing it. The bind method returns a new function with the bound
argument attached. In contrast, the second and more popular solution is to use an inline arrow
function, which allows us to sneak in arguments like the item:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

While using an inline handler is more concise than using a normal event handler, it can also be more
difficult to debug because JavaScript logic may be hidden in JSX. It becomes even more verbose if

¹³⁹https://mzl.la/3ncEkBu

https://mzl.la/3ncEkBu
https://mzl.la/3ncEkBu

Fundamentals of React 109

the inline arrow function encapsulates more than one line of implementation logic by using a block
body instead of a concise body:

Code Playground

const Item = ({ item, onRemoveItem }) => (

...

<button

type="button"

onClick={() => {

// do something else

// note: avoid using complex logic in JSX

onRemoveItem(item);

}}

>

Dismiss

</button>

);

As a rule of thumb: It’s okay to use inline handlers if they do not obscure critical implementation
details. If inline handlers need to use a block body, because there are more than one line of code
executed, it’s about time to extract them as normal event handlers. After all, in this case all handler
versions are readable and therefore acceptable.

Exercises:

• Compare your source code against the author’s source code¹⁴⁰.
– Recap all the source code changes¹⁴¹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁴².

• Read more about how to add¹⁴³, update¹⁴⁴, remove¹⁴⁵ items in a list.
• Read more about computed properties in React¹⁴⁶.
• Review handlers, callback handlers, and inline handlers¹⁴⁷.

¹⁴⁰https://tinyurl.com/y55aphew
¹⁴¹https://tinyurl.com/ymakpvaw
¹⁴²https://bit.ly/3UwzjWz
¹⁴³https://www.robinwieruch.de/react-add-item-to-list
¹⁴⁴https://www.robinwieruch.de/react-update-item-in-list/
¹⁴⁵https://www.robinwieruch.de/react-remove-item-from-list
¹⁴⁶https://www.robinwieruch.de/react-computed-properties/
¹⁴⁷https://www.robinwieruch.de/react-event-handler/

https://tinyurl.com/y55aphew
https://tinyurl.com/ymakpvaw
https://bit.ly/3UwzjWz
https://www.robinwieruch.de/react-add-item-to-list
https://www.robinwieruch.de/react-update-item-in-list/
https://www.robinwieruch.de/react-remove-item-from-list
https://www.robinwieruch.de/react-computed-properties/
https://www.robinwieruch.de/react-event-handler/
https://tinyurl.com/y55aphew
https://tinyurl.com/ymakpvaw
https://bit.ly/3UwzjWz
https://www.robinwieruch.de/react-add-item-to-list
https://www.robinwieruch.de/react-update-item-in-list/
https://www.robinwieruch.de/react-remove-item-from-list
https://www.robinwieruch.de/react-computed-properties/
https://www.robinwieruch.de/react-event-handler/

Fundamentals of React 110

Interview Questions:

• Question: What is an inline function in React?
– Answer: An inline function in React is often used as a function defined directly within the

JSX.
• Question: What is the advantage of using inline functions for event handlers in React?

– Answer: Inline functions allow you to pass additional parameters easily.
• Question: What is the alternative to using inline functions for event handlers in React?

– Answer: Creating handler functions outside the render method and passing references to
them can be an alternative.

• Question: What is the syntax for creating an inline function in a React JSX event handler?
– Answer: Use arrow function syntax directly within the event handler attribute, like

onClick={() => myFunction()}.

Fundamentals of React 111

React Asynchronous Data

We have two interactions in our application: searching the list and removing items from the list.
While the first interaction is a fluctuant modification through a third-party state (searchTerm)
applied on the list, the second interaction is a non-reversible deletion of an item from the list.
However, the list we are dealing with is still just sample data. What about preparing our application
to deal with real data instead?

Usually, data from a remote backend/database arrives asynchronously for client-side applications
like React. Thus it’s often the case that we must render a component before we can initiate the
data fetching. In the following, we will start by simulating this kind of asynchronous data with our
sample data in the application. Later, we will replace the sample data with real data fetched from
a real remote API. We start off with a function that returns a promise with data in its shorthand
version once it resolves. The resolved object holds the previous list of stories:

src/App.jsx

const initialStories = [...];

const getAsyncStories = () =>

Promise.resolve({ data: { stories: initialStories } });

In the App component, instead of using the initialStories, use an empty array for the initial state.
We want to start off with an empty list of stories and simulate fetching these stories asynchronously.
In a new useEffect hook, call the function and resolve the returned promise as a side-effect. Due
to the empty dependency array, the side-effect only runs once the component renders for the first
time:

src/App.jsx

const App = () => {

...

const [stories, setStories] = React.useState([]);

React.useEffect(() => {

getAsyncStories().then(result => {

setStories(result.data.stories);

});

}, []);

...

};

Fundamentals of React 112

Even though the data should arrive asynchronously when we start the application, it appears to
arrive synchronously, because it’s rendered immediately. Let’s change this by giving it a bit of a
realistic delay, because every network request to a remote API would come with a delay. First,
remove the shorthand version for the promise:

src/App.jsx

const getAsyncStories = () =>

new Promise((resolve) =>

resolve({ data: { stories: initialStories } })

);

And second, when resolving the promise, delay it for 2 seconds:

src/App.jsx

const getAsyncStories = () =>

new Promise((resolve) =>

setTimeout(

() => resolve({ data: { stories: initialStories } }),

2000

)

);

Once you start the application again, you should see a delayed rendering of the list. The initial state
for the stories is an empty array and therefore nothing gets rendered in the List component. After
the App component is rendered, the side-effect hook runs once to fetch the asynchronous data. After
resolving the promise and setting the data in the component’s state, the component renders again
and displays the list of asynchronously loaded stories.

This section was only the first stepping stone to asynchronous data in React. Instead of having the
data there from the beginning, we resolved the data asynchronously from a promise. However, we
only moved our stories from being synchronous to asynchronous data. It’s still sample data though
and we will learn how to fetch real data eventually.

Exercises:

• Compare your source code against the author’s source code¹⁴⁸.
– Recap all the source code changes¹⁴⁹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁵⁰.

• Optional: Read more about JavaScript Promises¹⁵¹.
• Read more about faking a remote API with JavaScript¹⁵².

– Read more about using mock data in React¹⁵³.
¹⁴⁸https://tinyurl.com/jv3xcym3
¹⁴⁹https://tinyurl.com/y4m3j9jb
¹⁵⁰https://bit.ly/3StsfHt
¹⁵¹https://mzl.la/3aTGuQz
¹⁵²https://www.robinwieruch.de/javascript-fake-api/
¹⁵³https://www.robinwieruch.de/react-mock-data/

https://tinyurl.com/jv3xcym3
https://tinyurl.com/y4m3j9jb
https://bit.ly/3StsfHt
https://mzl.la/3aTGuQz
https://www.robinwieruch.de/javascript-fake-api/
https://www.robinwieruch.de/react-mock-data/
https://tinyurl.com/jv3xcym3
https://tinyurl.com/y4m3j9jb
https://bit.ly/3StsfHt
https://mzl.la/3aTGuQz
https://www.robinwieruch.de/javascript-fake-api/
https://www.robinwieruch.de/react-mock-data/

Fundamentals of React 113

Interview Questions:

• Question: Why is handling asynchronous data common in React applications?
– Answer: Client-side React applications often fetch data from remote sources.

• Question:What is the typical approach for rendering components before data fetching in React?
– Answer: Components are often rendered before initiating data fetching, and conditional

rendering or placeholder content is used until the data arrives.
• Question: How can you simulate asynchronous data fetching in React using sample data?

– Answer: Simulating asynchronous data involves using functions that return promises,
resolving with sample data, and later replacing it with real data.

• Question: What is the purpose of promises in handling asynchronous data in React?
– Answer: Promises are used to manage asynchronous operations, allowing components to
wait for data resolution before rendering.

• Question: Why is asynchronous data fetching essential for responsive user interfaces in React?
– Answer: Asynchronous data fetching prevents blocking the UI, ensuring responsiveness,

and enabling the display of updated information when available.
• Question: Can you replace simulated sample data with real data fetched from a remote API in
React?
– Answer: Yes, after simulating asynchronous data with sample data, it can be replaced

seamlessly with real data fetched from a remote API.
• Question: What is the significance of using the useState hook when dealing with asynchronous
data in React?
– Answer: useState allows components to manage state changes, including loading states

and the updated data received asynchronously.
• Question: How does React ensure that components re-render when asynchronous data arrives?

– Answer: React’s state management ensures that when asynchronous data arrives and state
is updated, components re-render to reflect the new data.

Fundamentals of React 114

React Conditional Rendering

We are set to introduce a new feature associated with the recently introduced asynchronous data
handling. In a genuine application, users typically receive feedback, such as a loading spinner, while
data is being loaded. In this section, our goal is to implement this feedback mechanism. Feel free
to attempt implementing it independently, and later, you can refer to the book to compare your
solution with the provided implementation.

Task: It takes some time to load the sample data from the promise. During this time, a user should
be presented with a loading indicator in its simplest form (e.g. text which says “Loading …”). Once
the data arrived asynchronously, hide the loading indicator.

Optional Hints:

• In order to show a loading indicator, one would need to introduce a new stateful value. A
boolean called isLoading may be the best solution.

• When the side-effect which loads the data kicks in, set the stateful boolean to true. Once the
data loaded, set the stateful boolean to false again.

• In JSX, show a “Loading …” text conditionally when the isLoading boolean is set to true.

A conditional rendering in React always happens if we have to render different JSX based on
information (e.g. state, props). Dealing with asynchronous data is a good use case for making use
of conditional rendering. For example, when the application initializes for the first time, there is no
data to start with. Next, we are loading data and eventually, we have the data at our hands to display
it. Sometimes the data fetching fails and we receive an error instead. So there are lots of things to
cover for us as developers.

Fortunately, some aspects are already handled. For example, because the initial state is an empty
list [] instead of null, concerns about breaking the application when filtering or mapping over this
list are alleviated. Yet, certain aspects still need attention. Consider the absence of a loading state to
provide users with feedback on pending data requests. Introducing a new stateful value can address
this, allowing us to set the state accordingly when data is being fetched:

src/App.jsx

const App = () => {

...

const [stories, setStories] = React.useState([]);

const [isLoading, setIsLoading] = React.useState(false);

React.useEffect(() => {

setIsLoading(true);

getAsyncStories().then((result) => {

Fundamentals of React 115

setStories(result.data.stories);

setIsLoading(false);

});

}, []);

...

};

The boolean should be toggled properly now. What’s missing is showing the user the loading
indicator. A straightforward approach would be using an early return in the App component:

src/App.jsx

const App = () => {

...

if (isLoading) {

return <p>Loading ...</p>;

}

return (

<div>

...

</div>

);

};

However, this way only the loading indicator would render and nothing else. Instead, we want to
inline the loading indicator within the JSX to either show the loading indicator or the List component.
Using an if-else statement inlined in JSX is not encouraged though due to JSX’s limitations here.
(You can try it as exercise though.) However, you can use a ternary operator¹⁵⁴ instead and produce
a conditional rendering in JSX this way:

¹⁵⁴https://mzl.la/3vAPKCL

https://mzl.la/3vAPKCL
https://mzl.la/3vAPKCL

Fundamentals of React 116

src/App.jsx

const App = () => {

...

return (

<div>

...

<hr />

{isLoading ? (

<p>Loading ...</p>

) : (

<List

list={searchedStories}

onRemoveItem={handleRemoveStory}

/>

)}

</div>

);

};

That’s already it. You are rendering conditionally a loading indicator or the List component based
on a stateful boolean. Let’s move on by implementing error handling for the asynchronous data too.
An error doesn’t happen in our simulated environment, but there could be errors if we start fetching
data from a remote API. Therefore, introduce another state for error handling and handle it in the
promise’s catch() block when resolving the promise:

src/App.jsx

const App = () => {

...

const [stories, setStories] = React.useState([]);

const [isLoading, setIsLoading] = React.useState(false);

const [isError, setIsError] = React.useState(false);

React.useEffect(() => {

setIsLoading(true);

getAsyncStories()

.then((result) => {

setStories(result.data.stories);

Fundamentals of React 117

setIsLoading(false);

})

.catch(() => setIsError(true));

}, []);

...

};

Next, give the user feedback in case something goes wrong with another conditional rendering. This
time, it’s either rendering something or nothing. So instead of having a ternary operator where one
side returns null, use the logical && operator as shorthand:

src/App.jsx

const App = () => {

...

return (

<div>

...

<hr />

{isError && <p>Something went wrong ...</p>}

{isLoading ? (

<p>Loading ...</p>

) : (

...

)}

</div>

);

};

In JavaScript, a true && 'Hello World' always evaluates to ‘HelloWorld’. A false && 'Hello World'

always evaluates to false. In React, we can use this behaviour to our advantage. If the condition is
true, the expression after the logical && operator will be the output. If the condition is false, React
ignores it and skips the expression. Using expression && JSX is more concise than using expression
? JSX : null.

Conditional rendering is not just for asynchronous data though. The simplest example of conditional
rendering is a boolean state that’s toggled with a button. If the boolean flag is true, render something,
if it is false, don’t render anything. Knowing about this feature in React can be quite powerful,

Fundamentals of React 118

because it gives you the ability to conditionally render JSX. It’s yet another tool in React to make
your UI more dynamic. And as we’ve discovered, it’s often necessary for more complex control
flows like asynchronous data.

Exercises:

• Compare your source code against the author’s source code¹⁵⁵.
– Recap all the source code changes¹⁵⁶ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁵⁷.

• Read more about conditional rendering in React¹⁵⁸.

Interview Questions:

• Question: Why didn’t we need a conditional rendering for the empty stories before they get
fetched from the fake API?
– Answer: The stories are mapped as list in the List component by using the map()method.
When mapping over a list, the map() method returns for every item a modified version
(in our case JSX). If there are no items in the list, the map() method will return nothing.
Therefore we do not need a conditional rendering here.

• Question: What would happen if the initial state of stories would be set to null instead of
[]?
– Answer: Then we would need a conditional rendering in the List component, because

calling map() on null would throw an exception.
• Question: How can you conditionally render content based on state using useState?

– Answer: Use conditional statements (e.g., if or ternary operator) in JSX based on the state
value.

• Question: Can you use useState (or other hooks) inside conditional statements or loops?
– Answer: No, hooks must be used at the top level of a function component, not within

conditions or loops.
• Question: Why is conditional rendering often employed when handling asynchronous data in
React?
– Answer: Conditional rendering helps manage the UI display based on the state of

asynchronous data, showing loading indicators or actual content as needed.
• Question: How do you handle loading states while waiting for asynchronous data in React?

– Answer: Loading states are managed using conditional rendering or state variables,
indicating to users that data is being fetched.

• Question: Can you handle errors during asynchronous data fetching in React?
– Answer: Yes, error handlingmechanisms, such as try…catch blocks or .catchwith promises,

can be implemented to manage errors during data fetching.

¹⁵⁵https://tinyurl.com/4mxfr88j
¹⁵⁶https://tinyurl.com/354u7hrn
¹⁵⁷https://bit.ly/3Ss5RP1
¹⁵⁸https://www.robinwieruch.de/conditional-rendering-react/

https://tinyurl.com/4mxfr88j
https://tinyurl.com/354u7hrn
https://bit.ly/3Ss5RP1
https://www.robinwieruch.de/conditional-rendering-react/
https://tinyurl.com/4mxfr88j
https://tinyurl.com/354u7hrn
https://bit.ly/3Ss5RP1
https://www.robinwieruch.de/conditional-rendering-react/

Fundamentals of React 119

React Advanced State

All state management in this application makes heavy use of React’s useState Hook. On the other
hand, React’s useReducer Hook enables one to use more sophisticated state management for
complex state structures and transitions. Since the knowledge about reducers in JavaScript splits the
community in half, we won’t cover the basics here. However, if you haven’t heard about reducers
before, check out this guide about reducers in JavaScript¹⁵⁹.

In this section, we will move the stateful stories from React’s useState hook to React’s useReducer
hook. Using useReducer over useStatemakes sense as soon as multiple stateful values are dependent
on each other or related to one domain. For example, stories, isLoading, and error are all related
to the data fetching. In a more abstract version, all three could be properties in a complex object (e.g.
data, isLoading, error) managed by a reducer instead. We will cover this in a later section. In this
section, we will start to manage the stories and its state transitions in a reducer.

First, introduce a reducer function outside of your components. A reducer function always receives
a state and an action. Based on these two arguments, a reducer always returns a new state:

src/App.jsx

const getAsyncStories = () =>

new Promise((resolve) => ...);

const storiesReducer = (state, action) => {

if (action.type === 'SET_STORIES') {

return action.payload;

} else {

throw new Error();

}

};

A reducer action is always associated with a type and as a best practice with a payload. If the type
matches a condition in the reducer, return a new state based on incoming state and action. If it isn’t
covered by the reducer, throw an error to remind yourself that the implementation isn’t covered.
The storiesReducer function covers one type and then returns the payload of the incoming action
without using the current state to compute the new state. The new state is therefore simply the
payload.

In the App component, exchange useState for useReducer for managing the stories. The new hook
receives a reducer function and an initial state as arguments and returns an array with two items.
The first item is the current state and the second item is the state updater function (also called
dispatch function):

¹⁵⁹https://www.robinwieruch.de/javascript-reducer/

https://www.robinwieruch.de/javascript-reducer/
https://www.robinwieruch.de/javascript-reducer/

Fundamentals of React 120

src/App.jsx

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

[]

);

...

};

The new dispatch function can be used instead of the setStories function, which was previously
returned from useState. Instead of setting the state explicitly with the state updater function from
useState, the useReducer state updater function sets the state implicitly by dispatching an action
for the reducer. The action comes with a type and an optional payload:

src/App.jsx

const App = () => {

...

React.useEffect(() => {

setIsLoading(true);

getAsyncStories()

.then((result) => {

dispatchStories({

type: 'SET_STORIES',

payload: result.data.stories,

});

setIsLoading(false);

})

.catch(() => setIsError(true));

}, []);

const handleRemoveStory = (item) => {

const newStories = stories.filter(

(story) => item.objectID !== story.objectID

);

dispatchStories({

type: 'SET_STORIES',

Fundamentals of React 121

payload: newStories,

});

};

...

};

The application appears the same in the browser, though a reducer and React’s useReducer hook are
managing the state for the stories now. Let’s bring the concept of a reducer to a minimal version
by handling more than one state transition. If there is only one state transition, a reducer wouldn’t
make sense.

So far, the handleRemoveStory handler computes the new stories. It’s valid to move this logic into
the reducer function and manage the reducer with an action, which is another case for moving from
imperative to declarative programming. Instead of doing it ourselves by saying how it should be
done, we are telling the reducer what to do. Everything else is hidden in the reducer:

src/App.jsx

const App = () => {

...

const handleRemoveStory = (item) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

};

...

};

Now the reducer function has to cover this new case in a new conditional state transition. If the
condition for removing a story is met, the reducer has all the implementation details needed to
remove the story. The action gives all the necessary information (here an item’s identifier) to remove
the story from the current state and return a new list of filtered stories as state:

Fundamentals of React 122

src/App.jsx

const storiesReducer = (state, action) => {

if (action.type === 'SET_STORIES') {

return action.payload;

} else if (action.type === 'REMOVE_STORY') {

return state.filter(

(story) => action.payload.objectID !== story.objectID

);

} else {

throw new Error();

}

};

All these if-else statements will eventually clutter when adding more state transitions into one
reducer function. Refactoring it to a switch statement for all the state transitions makes it more
readable and is seen as a best practice in the React community:

src/App.jsx

const storiesReducer = (state, action) => {

switch (action.type) {

case 'SET_STORIES':

return action.payload;

case 'REMOVE_STORY':

return state.filter(

(story) => action.payload.objectID !== story.objectID

);

default:

throw new Error();

}

};

What we’ve covered is a minimal version of a reducer in JavaScript and its usage in React with the
help of React’s useReducer Hook. The reducer covers two state transitions, shows how to compute
the current state and action into a new state, and uses some business logic (removal of a story)
for a state transition. Now we can set a list of stories as state for the asynchronously arriving
data and remove a story from the list of stories with just one state managing reducer and its
associated useReducer hook. To fully grasp the concept of reducers in JavaScript and the usage
of React’s useReducer Hook, visit the linked resources in the exercises. We will continue expanding
our implementation of a reducer in the next section.

Fundamentals of React 123

Exercises:

• Compare your source code against the author’s source code¹⁶⁰.
– Recap all the source code changes¹⁶¹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁶².

• Read more about reducers and useReducer in React¹⁶³.
• Extract the action types 'SET_STORIES' and 'REMOVE_STORY' as variables and reuse them in the
reducer and the dispatch functions. This way, you will avoid introducing typos in your action
types.

Interview Questions:

• Question: What is useReducer in React?
– Answer: useReducer is a React hook that manages complex state logic in function

components by dispatching actions to update state.
• Question: How does useReducer differ from useState in React?

– Answer: While useState is simpler for managing individual state variables, useReducer is
more suitable for complex state logic where multiple values depend on each other.

• Question: What is the basic structure of the useReducer hook?
– Answer: It returns the current state and a dispatch function for triggering state updates,

taking a reducer function and an initial state as arguments.
• Question: What is a reducer function in useReducer?

– Answer: The reducer function is responsible for specifying how the state should change
in response to dispatched actions, based on the current state and the action.

• Question: How is state updated using useReducer?
– Answer: State is updated by dispatching actions, and the reducer function determines the

new state based on the current state and the action type.
• Question: Can useReducer replace all use cases of useState in React?

– Answer: While useReducer is powerful, it’s not necessary for all scenarios. useState is
simpler and more suitable for managing individual state variables.

¹⁶⁰https://tinyurl.com/5xuuzdj2
¹⁶¹https://tinyurl.com/bdffdft8
¹⁶²https://bit.ly/3OwtVie
¹⁶³https://www.robinwieruch.de/react-usereducer-hook/

https://tinyurl.com/5xuuzdj2
https://tinyurl.com/bdffdft8
https://bit.ly/3OwtVie
https://www.robinwieruch.de/react-usereducer-hook/
https://tinyurl.com/5xuuzdj2
https://tinyurl.com/bdffdft8
https://bit.ly/3OwtVie
https://www.robinwieruch.de/react-usereducer-hook/

Fundamentals of React 124

React Impossible States

Perhaps you’ve noticed a disconnect between the single states in the App component when using
multiple of React’s useState Hooks. Technically, all states related to the asynchronous data belong
together, which doesn’t only include the stories as actual data, but also their loading and error states.
That’s where one reducer and React’s useReducer Hook come into play to manage domain related
states. But why should we care?

There is nothingwrongwithmultiple useState hooks in one React component. Bewary once you see
multiple state updater functions in a row, however. These conditional states can lead to impossible
states and undesired behavior in the UI. Try changing your pseudo data fetching function to the
following implementation to simulate an error and thus our implementation of error handling:

src/App.jsx

const getAsyncStories = () =>

new Promise((resolve, reject) => setTimeout(reject, 2000));

The impossible state happens when an error occurs for the asynchronous data. The state for the error
is set, but the state for the loading indicator isn’t revoked. In the UI, this would lead to an infinite
loading indicator and an error message, though it may be better to show the error message only and
hide the loading indicator. Impossible states are not easy to spot, which makes them infamous for
causing bugs in the UI. You could go on and try yourself to fix this bug.

Fortunately, we can improve our chances of not dealing with such bugs by moving states that belong
together from multiple useState (and useReducer) hooks into a single useReducer hook. Take the
following hooks:

src/App.jsx

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

[]

);

const [isLoading, setIsLoading] = React.useState(false);

const [isError, setIsError] = React.useState(false);

...

};

And merge them into one useReducer hook for a unified state management which encompasses a
more complex state object and eventually more complex state transitions:

Fundamentals of React 125

src/App.jsx

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

...

};

Since we cannot use the state updater functions from React’s useState Hooks anymore, everything
related to asynchronous data fetching must use the new dispatch function for the state transitions.
The most straightforward approach is exchanging the state updater function with the dispatch
function. Then the dispatch function receives a distinct type and a payload. The latter resembles
the same payload that we would have used to update the state with a state updater function:

src/App.jsx

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

React.useEffect(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

getAsyncStories()

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.stories,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

Fundamentals of React 126

...

};

We changed two things for the reducer function. First, we introduced new types when we called the
dispatch function from the outside. Therefore we need to add new cases for state transitions. And
second, we changed the state structure from an array to a complex object. Therefore we need to take
the new complex object into account as incoming state and returned state:

src/App.jsx

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

return {

...state,

isLoading: true,

isError: false,

};

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data: action.payload,

};

case 'STORIES_FETCH_FAILURE':

return {

...state,

isLoading: false,

isError: true,

};

case 'REMOVE_STORY':

return {

...state,

data: state.data.filter(

(story) => action.payload.objectID !== story.objectID

),

};

default:

throw new Error();

}

};

Fundamentals of React 127

For every state transition, we return a new state object which contains all the key/value pairs from
the current state object (via JavaScript’s spread operator) and the new overwriting properties. For
example, STORIES_FETCH_FAILURE sets the isLoading boolean to false and sets the isError boolean
to true, while keeping all the the other state intact (e.g. data alias stories). That’s how we get
around the bug introduced earlier as impossible state since an error should set the loading boolean
to false.

Observe how the REMOVE_STORY action changed as well. It operates on the state.data, and no longer
just on the plain state. The state is a complex object with data, isLoading, and error states rather
than just a list of stories. This has to be solved in the remaining code by addressing the state as object
and not as array anymore:

src/App.jsx

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], isLoading: false, isError: false }

);

...

const searchedStories = stories.data.filter((story) =>

story.title.toLowerCase().includes(searchTerm.toLowerCase())

);

return (

<div>

...

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List

list={searchedStories}

onRemoveItem={handleRemoveStory}

/>

)}

</div>

);

};

Fundamentals of React 128

Try to use the erroneous data fetching function again and check whether everything works as
expected now:

src/App.jsx

const getAsyncStories = () =>

new Promise((resolve, reject) => setTimeout(reject, 2000));

We moved from unreliable state transitions with multiple useState hooks to predictable state
transitions with React’s useReducer Hook. The state object managed by the reducer encapsulates
everything related to the fetching of stories including loading and error states, but also implementa-
tion details like removing a story from the stories.We didn’t get fully rid of impossible states, because
it’s still possible to leave out a crucial boolean flag like before, but we moved one step closer towards
more predictable state management.

Exercises:

• Compare your source code against the author’s source code¹⁶⁴.
– Recap all the source code changes¹⁶⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁶⁶.

• Read more about when to use useState or useReducer in React¹⁶⁷.
• Read more about deriving state from props in React¹⁶⁸.

Interview Questions:

• Question: What are “impossible states” in React?
– Answer: “Impossible states” refer to combinations of state values that should never occur

in a well-designed application.
• Question: Why is it important to handle impossible states in React applications?

– Answer: Handling impossible states ensures that the application remains in a valid and
predictable state, preventing unexpected behavior.

• Question: How can reducers help manage impossible states in React?
– Answer: Reducers provide a controlled way to update state, allowing developers to enforce

rules and avoid transitioning to impossible states.
• Question: How does centralized state management contribute to handling impossible states?

– Answer: Centralized state management through reducers allows for consistent validation
and state updates, reducing the risk of impossible states across components.

¹⁶⁴https://tinyurl.com/u9dx8a3j
¹⁶⁵https://tinyurl.com/38a5rjnc
¹⁶⁶https://bit.ly/42nPpE1
¹⁶⁷https://www.robinwieruch.de/react-usereducer-vs-usestate/
¹⁶⁸https://www.robinwieruch.de/react-derive-state-props/

https://tinyurl.com/u9dx8a3j
https://tinyurl.com/38a5rjnc
https://bit.ly/42nPpE1
https://www.robinwieruch.de/react-usereducer-vs-usestate/
https://www.robinwieruch.de/react-derive-state-props/
https://tinyurl.com/u9dx8a3j
https://tinyurl.com/38a5rjnc
https://bit.ly/42nPpE1
https://www.robinwieruch.de/react-usereducer-vs-usestate/
https://www.robinwieruch.de/react-derive-state-props/

Fundamentals of React 129

Data Fetching with React

We set everything up for asynchronous data fetching React. However, we are still using pseudo
data coming from a promise we set up ourselves for a fake API. Still, all lessons up to now about
asynchronous React and advanced state management were preparing us to fetch data from a real
remote third-party API. In this section, we will use the informative Hacker News API¹⁶⁹ to request
popular tech stories.

If you are familiar how to fetch data in JavaScript, you can try to accomplish the following task
yourself and check later the implementation from the book. However, do not hesitate to continue
with the book, because this is a tough task.

Task: The application uses asynchronous yet pseudo data from a promise (fake API). Instead of using
the getAsyncStories() function, use the Hacker News API to fetch the data.

Optional Hints:

• Use this https://hn.algolia.com/api/v1/search?query=React API endpoint of the Hacker
News API.

• Remove the initialStories variable, because this data will come from the API.
• Use the browser’s native fetch API¹⁷⁰ to perform the request.
• Note: A successful or erroneous request uses the same implementation logic that we already
have in place.

We start with a great foundation for fetching asynchronous data, because everything is already in
place. The only thing that keeps us away from the solution is using sample data instead of real
world data. Therefore, the next code snippet shows everything you need to change to connect to a
remote API. Instead of using the initialStories array and getAsyncStories function, which can
be removed now, we will fetch the data directly from the API:

src/App.jsx

// A

const API_ENDPOINT = 'https://hn.algolia.com/api/v1/search?query=';

const App = () => {

...

React.useEffect(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}react`) // B

.then((response) => response.json()) // C

¹⁶⁹https://hn.algolia.com/api
¹⁷⁰https://mzl.la/2Z1kyjU

https://hn.algolia.com/api
https://mzl.la/2Z1kyjU
https://hn.algolia.com/api
https://mzl.la/2Z1kyjU

Fundamentals of React 130

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits, // D

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

...

};

First, the API_ENDPOINT (A) is used to fetch popular tech stories for a certain query (a search term).
In this case, we fetch stories about React (B). Second, the native browser’s fetch API¹⁷¹ is used to
make this request (B). For the fetch API, the response needs to be translated into JSON (C). Finally,
the returned result has a different data structure (D), which we send as payload to our component’s
state reducer.

In the previous code example, we used JavaScript’s Template Literals¹⁷² for a string interpolation.
When this feature wasn’t available in JavaScript, we’d have used the + operator on strings instead:

Code Playground

const greeting = 'Hello';

// + operator

const welcome = greeting + ' React';

console.log(welcome);

// Hello React

// template literals

const anotherWelcome = `${greeting} React`;

console.log(anotherWelcome);

// Hello React

Check your browser to see stories related to the initial query fetched from the Hacker News API.
Since we used the same data structure for the sample stories, we didn’t need to change anything in
the Item component. It’s still possible to filter the stories after fetching them with the search feature,
because they still have a title property. We will change this behavior in one of the next sections
though.

¹⁷¹https://mzl.la/2Z1kyjU
¹⁷²https://mzl.la/3jlcVfn

https://mzl.la/2Z1kyjU
https://mzl.la/3jlcVfn
https://mzl.la/2Z1kyjU
https://mzl.la/3jlcVfn

Fundamentals of React 131

Exercises:

• Compare your source code against the author’s source code¹⁷³.
– Recap all the source code changes¹⁷⁴ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁷⁵.

• Read through Hacker News¹⁷⁶ and its API¹⁷⁷.
• Optional: Read more about JavaScript’s Template Literals¹⁷⁸.

Interview Questions:

• Question: Why is fetching data from APIs common in React applications?
– Answer: Fetching data from APIs allows React applications to dynamically retrieve and

display information from external sources.
• Question: What is the purpose of the useEffect hook in React when working with APIs?

– Answer: useEffect is used to perform side effects, such as data fetching, in function
components. It ensures that the effect runs after rendering.

• Question: How do you handle asynchronous API calls in React components?
– Answer: Asynchronous API calls are typically handled using async/await syntax or

promises within the useEffect hook.
• Question: Can you perform cleanup operations after API requests using useEffect in React?

– Answer: Yes, useEffect allows for cleanup operations, like canceling pending requests or
clearing subscriptions, by returning a cleanup function.

• Question: What is the purpose of the second argument (dependency array) in useEffect when
working with APIs?
– Answer: The dependency array controls when the effect runs. Specifying dependencies

ensures that the effect is re-executed only when those dependencies change.
• Question: How do you handle errors during API requests in React?

– Answer: Errors during API requests can be handled using try…catch blocks, .catch with
promises, or by setting error state variables.

• Question: What is the significance of state management when working with API data in React?
– Answer: State management allows React components to store and update data retrieved

from APIs, triggering re-renders when necessary.
• Question: Can you explain the concept of debouncing API requests in React?

– Answer: Debouncing involves delaying the execution of API requests to reduce the
number of requests made within a short time, typically to enhance performance and avoid
rate limits.

• Question: Why is it important to handle loading states when making API requests in React?
– Answer: Handling loading states provides feedback to users while data is being fetched,

enhancing the user experience and indicating ongoing background processes.

¹⁷³https://tinyurl.com/ymsrby6u
¹⁷⁴https://tinyurl.com/bdhrpae4
¹⁷⁵https://bit.ly/3SztLZ0
¹⁷⁶https://news.ycombinator.com
¹⁷⁷https://hn.algolia.com/api
¹⁷⁸https://mzl.la/3jlcVfn

https://tinyurl.com/ymsrby6u
https://tinyurl.com/bdhrpae4
https://bit.ly/3SztLZ0
https://news.ycombinator.com/
https://hn.algolia.com/api
https://mzl.la/3jlcVfn
https://tinyurl.com/ymsrby6u
https://tinyurl.com/bdhrpae4
https://bit.ly/3SztLZ0
https://news.ycombinator.com/
https://hn.algolia.com/api
https://mzl.la/3jlcVfn

Fundamentals of React 132

Data Re-Fetching in React

Now, we have data retrieved from a remote API, providing a more engaging environment compared
to sample data. If you launched your application after the previous section, you might have sensed
that it lacks completeness. Since we fetch data with a predefined query (in this case: 'react'), we
consistently see stories related to “React.” Despite having a search feature, it can only filter existing
stories. Therefore, the search feature is termed a client-side search because it operates solely on the
available data, without interacting with the remote API.

While a client-side search only filters the stories that are available on the client (after the initial
data fetching), a server-side search would allow us to get data from the remote API based on the
search term. Essentially client-side and server-side searching differ in where the search operation
takes place. Client-side searching occurs on the user’s device, providing fast responses but may be
less suitable for large datasets. Server-side searching happens on the server, better suited for large
datasets but may result in slower user response times due to server round-trips. The choice depends
on factors like dataset size, search complexity, and performance considerations. In this section, we
want to change the client-side search to a server-side search. Try to tackle the following task yourself
again before continuing to read the book.

Task: The search feature is a client-side search, because it filters only the data that’s already there.
Instead it should be possible to use the search to fetch data related to the search term.

Optional Hints:

• The calculated value searchedStories can be omitted as we anticipate filtered data directly
from the API.

• In the data retrieval process, replace the hardcoded 'react' with the dynamic searchTerm.
• Address the edge case where searchTerm is an empty string.

There are not many steps involved to migrate the application from a client-side to a server-side
search. First, remove searchedStories because we will receive the stories filtered by search term
from the API. Pass only the regular stories to the List component:

src/App.jsx

const App = () => {

...

return (

<div>

...

{stories.isLoading ? (

<p>Loading ...</p>

) : (

Fundamentals of React 133

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

And second, instead of using the hardcoded search term (here: 'react'), use the actual searchTerm
from the component’s state. Afterward, every time a user searches for something via the input field,
the searchTerm will be used to request these kind of stories from the remote API. In addition, you
need to deal with the edge case if searchTerm is an empty string, which means preventing a request
from being fired:

src/App.jsx
const App = () => {

...

React.useEffect(() => {

if (searchTerm === '') return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, []);

...

};

There is one crucial piece missing now. While the initial data fetching respects the searchTerm (here:
'React' which is set as initial state), the searchTerm is not respected when it is changed via a user
typing into the input field. If you inspect the dependency array of our useEffect hook, you will
see that it’s empty. This means the side-effect only renders for the initial rendering of the App
component. If we would want to run the side-effect also when the searchTerm changes, we would
have to include it in the dependency array:

Fundamentals of React 134

src/App.jsx

const App = () => {

...

React.useEffect(() => {

// if `searchTerm` is not present

// e.g. null, empty string, undefined

// do nothing

// more generalized condition than searchTerm === ''

if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [searchTerm]);

...

};

We’ve transitioned the feature from a client-side search to a server-side search. Instead of filtering a
predefined list of stories on the client, the searchTerm is now utilized to retrieve a server-side filtered
list. Server-side searching occurs not only during the initial data fetch but also when the searchTerm
undergoes changes. The search feature is now entirely server-side.

Note: However, re-fetching data with every keystroke isn’t optimal, as this implementation puts
strain on the API with frequent requests. Excessive requests may lead to API errors due to rate
limiting, a measure many APIs employ to protect against a high volume of requests (e.g., allowing
only X requests in 1 minute). We plan to address this issue soon.

Fundamentals of React 135

Exercises:

• Compare your source code against the author’s source code¹⁷⁹.
– Recap all the source code changes¹⁸⁰ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁸¹.

Interview Questions:

• Question: What is client-side searching?
– Answer: Client-side searching involves filtering and manipulating data on the user’s

device or browser.
• Question: How does client-side searching impact performance?

– Answer: It can offer fast response times but may be limited by the amount of data that
needs to be loaded from the server.

• Question: What is server-side searching?
– Answer: Server-side searching entails sending search queries to the server, where the data

is filtered, and the results are returned to the client.
• Question: When is server-side searching preferred?

– Answer: Server-side searching is preferable for large datasets or when complex search
logic and data reside on the server.

• Question: What are potential drawbacks of client-side searching?
– Answer: Limitations may arise with large datasets, slower initial page loads, and the need

to load extensive data to the client.
• Question: What is the impact of frequent API requests in client-side searching?

– Answer: Frequent requests can stress the API, potentially leading to errors, especially if
the API employs rate limiting measures.

• Question: How can the performance issue of frequent API requests be addressed?
– Answer: Implementing debouncing or throttling techniques can mitigate the impact of

frequent API requests and prevent overloading the server.

¹⁷⁹https://tinyurl.com/49maj6rm
¹⁸⁰https://tinyurl.com/ysk8cdpw
¹⁸¹https://bit.ly/492rkVN

https://tinyurl.com/49maj6rm
https://tinyurl.com/ysk8cdpw
https://bit.ly/492rkVN
https://tinyurl.com/49maj6rm
https://tinyurl.com/ysk8cdpw
https://bit.ly/492rkVN

Fundamentals of React 136

Memoized Functions in React (Advanced)

Most often, functions defined in React components serve as event handlers. However, given that a
React component is essentially a function itself, you can also declare functions, function expressions,
and arrow function expressions within a component. This section introduces the concept of a
memoized function using React’s useCallback Hook.

To begin, we’ll proactively refactor the code to incorporate a memoized function, followed by
detailed explanations. The refactoring involves transferring all data fetching logic from the side-
effect into an arrow function expression (A). This new function is then encapsulated within React’s
useCallback hook (B) and subsequently invoked within the useEffect hook (C):

src/App.jsx

const App = () => {

...

// A

const handleFetchStories = React.useCallback(() => { // B

if (!searchTerm) return;

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(`${API_ENDPOINT}${searchTerm}`)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [searchTerm]); // E

React.useEffect(() => {

handleFetchStories(); // C

}, [handleFetchStories]); // D

...

};

At its core, the application behaves the same, because we have only extracted a new function from

Fundamentals of React 137

React’s useEffect Hook. Instead of using the data fetching logic directly in the side-effect, we made
it available as a function for the entire application. The benefit: reusability. The data fetching can be
used by other parts of the application by calling this new function. However, we have used React’s
useCallback Hook to wrap the extracted function, so let’s explore why it’s needed here. React’s
useCallback Hook creates a memoized function every time its dependency array (E) changes. As a
result, the useEffect hook runs again (C), because it depends on the new function (D):

Visualization

1. change: searchTerm (cause: user interaction)

2. change: handleFetchStories (cause: changed searchTerm)

3. run: side-effect (cause: changed handleFetchStories)

If we would leave out React’s useCallback Hook and only define the new handleFetchStories

event handler without it, a new handleFetchStories function would be created each time the App
component re-renders, and would be executed in the useEffect hook to fetch data. The fetched data
is then stored as state in the component. Then, because the state of the component changed, the
component re-renders and creates a new handleFetchStories function. The side-effect would be
triggered to fetch data, and we’d be stuck in an endless loop:

Visualization

1. define: handleFetchStories

2. run: side-effect

3. update: state

4. re-render: component

5. re-define: handleFetchStories

6. run: side-effect

...

You could try this infinite loop yourself by removing React’s useCallback Hook, but be prepared
for a crashing browser. After all, React’s useCallback hook changes the function only when one of
its values in the dependency array changes. That’s when we want to trigger a re-fetch of the data,
because the input field has new input and we want to see the new data displayed in our list.

By moving the data fetching function outside the React’s useEffect Hook, it becomes reusable for
other parts of the application. We won’t use it just yet, but it is a good use case to understand
the memoized functions in React. Now the useEffect hook runs implicitly when the searchTerm

changes, because the handleFetchStories is re-defined each time the searchTerm changes. Since the
useEffect hook depends on the handleFetchStories, the side-effect for data fetching runs again.

Exercises:

• Compare your source code against the author’s source code¹⁸².

¹⁸²https://tinyurl.com/2s4chmah

https://tinyurl.com/2s4chmah
https://tinyurl.com/2s4chmah

Fundamentals of React 138

– Recap all the source code changes¹⁸³ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁸⁴.

• Read more about React’s useCallback Hook¹⁸⁵.

Interview Questions:

• Question: What is the purpose of the useCallback hook in React?
– Answer: useCallback is used to memoize functions in React, preventing unnecessary re-

creations of functions on re-renders.
• Question: When should you use useCallback in a React component?

– Answer: Use useCallback when you want to memoize a function to optimize performance,
especially in scenarios involving callback functions passed to child components.

• Question: What are the arguments of the useCallback hook?
– Answer: The first argument is the function to be memoized, and the second argument is

an array of dependencies that, when changed, trigger the creation of a new memoized
function.

• Question: What happens if the dependencies array in useCallback is empty?
– Answer: If the dependencies array is empty, the memoized function is created only once

and remains the same throughout the component’s lifecycle.

¹⁸³https://tinyurl.com/4e6z282z
¹⁸⁴https://bit.ly/49Fo6Yj
¹⁸⁵https://www.robinwieruch.de/react-usecallback-hook/

https://tinyurl.com/4e6z282z
https://bit.ly/49Fo6Yj
https://www.robinwieruch.de/react-usecallback-hook/
https://tinyurl.com/4e6z282z
https://bit.ly/49Fo6Yj
https://www.robinwieruch.de/react-usecallback-hook/

Fundamentals of React 139

Explicit Data Fetching with React

Re-fetching all data each time someone types in the input field isn’t optimal. Since we’re using a
third-party API to fetch the data, its internals are out of our reach. Eventually, we will be confronted
with rate limiting¹⁸⁶ which returns an error instead of data. To solve this problem, we will change the
implementation details from implicit to explicit data (re-)fetching. In other words, the application
will refetch data only if someone clicks a confirmation button.

Task: The server-side search executes every time a user types into the input field. The new
implementation should only execute a search when a user clicks a confirmation button. As long
as the button is not clicked, the search term can change but isn’t executed as API request.

Optional Hints:

• Add a button element to confirm the search request.
• Create a stateful value for the confirmed search.
• The button’s event handler sets confirmed search as state by using the current search term.
• Only when the new confirmed search is set as state, execute the side-effect to perform a server-
side search.

What’s important with this feature is that we need a state for the fluctuating searchTerm and a
new state for the confirmed search. But first of all, create a new button element which confirms the
search and executes the data request eventually:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearchInput}

>

Search:

</InputWithLabel>

<button

¹⁸⁶https://bit.ly/2ZaJXI8

https://bit.ly/2ZaJXI8
https://bit.ly/2ZaJXI8

Fundamentals of React 140

type="button"

disabled={!searchTerm}

onClick={handleSearchSubmit}

>

Submit

</button>

...

</div>

);

};

Second, we distinguish between the handler of the input field and the button. While the renamed
handler of the input field still sets the stateful searchTerm, the new handler of the button sets the new
stateful value called url which is derived from the current searchTerm and the static API endpoint
as a new state:

src/App.jsx

const App = () => {

const [searchTerm, setSearchTerm] = useStorageState(

'search',

'React'

);

const [url, setUrl] = React.useState(

`${API_ENDPOINT}${searchTerm}`

);

...

const handleSearchInput = (event) => {

setSearchTerm(event.target.value);

};

const handleSearchSubmit = () => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

};

...

};

Third, instead of running the data fetching side-effect on every searchTerm change (which happens

Fundamentals of React 141

each time the input field’s value changes like we have seen before), the new stateful url is used
whenever a user changes it by confirming a search request when clicking the button:

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

fetch(url)

.then((response) => response.json())

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [url]);

React.useEffect(() => {

handleFetchStories();

}, [handleFetchStories]);

...

};

Before the searchTerm was used for two cases: updating the input field’s state and activating the
side-effect for fetching data. Now it’s only used for the former. A second state called url got
introduced for triggering the side-effect that fetches the data which only happens when a user clicks
the confirmation button.

Exercises:

• Compare your source code against the author’s source code¹⁸⁷.
– Recap all the source code changes¹⁸⁸ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁸⁹.

¹⁸⁷https://tinyurl.com/8k7fmj6p
¹⁸⁸https://tinyurl.com/4we2j96f
¹⁸⁹https://bit.ly/42tCHUa

https://tinyurl.com/8k7fmj6p
https://tinyurl.com/4we2j96f
https://bit.ly/42tCHUa
https://tinyurl.com/8k7fmj6p
https://tinyurl.com/4we2j96f
https://bit.ly/42tCHUa

Fundamentals of React 142

Interview Questions:

• Question: Why is useState instead of useStorageState used for the url state management?
– Answer: We do not want to remember the url in the browser’s local storage, because

it’s already derived from a static string (here: API_ENDPOINT) and the searchTerm which
already comes from the browser’s local storage.

• Question: Why is there no check for an empty searchTerm in the handleFetchStories function
anymore?
– Answer: Preventing a server-side search happens in the new button, because it gets

disabled whenever there is no searchTerm.

Fundamentals of React 143

Third-Party Libraries in React

We previously introduced the native fetch API (which the browser provides) to perform requests to
the Hacker News API. However, not all browsers support this, especially the older ones. Also, once
you start testing your application in a headless browser environment¹⁹⁰, issues can arise with the
fetch API, because the actual browser is not there. There are a couple of ways to make fetch work
in older browsers (polyfills¹⁹¹) and in tests (isomorphic fetch), but these concepts are a bit off-task
for the purpose of this learning experience.

One alternative is to substitute the native fetch API with a stable library like axios¹⁹², which performs
asynchronous requests to remote APIs. In this section, we will discover how to substitute a library
– a native API of the browser in this case – with another library from the npm registry.

If you know how to install axios via npm and use it as replacement for the browser’s fetch API, go
ahead and implement it yourself. Otherwise, the book will guide you through the implementation.
First, install axios from the command line:

Command Line

npm install axios

Second, import axios in your App component’s file:

src/App.jsx

import * as React from 'react';

import axios from 'axios';

...

You can use axios instead of fetch. Its usage looks almost identical to the native fetch API: It takes
the URL as an argument and returns a promise. You don’t have to transform the returned response
to JSON anymore, since axios wraps the result into a data object in JavaScript for you. Just make
sure to adapt your code to the returned data structure:

¹⁹⁰https://bit.ly/3ncFfSs
¹⁹¹https://bit.ly/3ASC86Y
¹⁹²https://bit.ly/3jjEupg

https://bit.ly/3ncFfSs
https://bit.ly/3ASC86Y
https://bit.ly/3jjEupg
https://bit.ly/3ncFfSs
https://bit.ly/3ASC86Y
https://bit.ly/3jjEupg

Fundamentals of React 144

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(() => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

axios

.get(url)

.then((result) => {

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

})

.catch(() =>

dispatchStories({ type: 'STORIES_FETCH_FAILURE' })

);

}, [url]);

...

};

In this code, we call axios axios.get() for an explicit HTTP GET request¹⁹³, which is the same
HTTP method we used by default with the browser’s native fetch API. You can use other HTTP
methods such as HTTP POST with axios.post() as well. We can see with these examples that axios
is a powerful library for performing requests to remote APIs. I recommend it over the native fetch
API when requests become complex, working with older browsers, or for testing.

Exercises:

• Compare your source code against the author’s source code¹⁹⁴.
– Recap all the source code changes¹⁹⁵ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here¹⁹⁶.

• Read more about popular libraries in React¹⁹⁷.
• Optional: Read more about axios¹⁹⁸.

¹⁹³https://mzl.la/3n5kUyi
¹⁹⁴https://tinyurl.com/34bm9s62
¹⁹⁵https://tinyurl.com/3hvu5r85
¹⁹⁶https://bit.ly/3Ss6Yyb
¹⁹⁷https://www.robinwieruch.de/react-libraries/
¹⁹⁸https://bit.ly/3jjEupg

https://mzl.la/3n5kUyi
https://tinyurl.com/34bm9s62
https://tinyurl.com/3hvu5r85
https://bit.ly/3Ss6Yyb
https://www.robinwieruch.de/react-libraries/
https://bit.ly/3jjEupg
https://mzl.la/3n5kUyi
https://tinyurl.com/34bm9s62
https://tinyurl.com/3hvu5r85
https://bit.ly/3Ss6Yyb
https://www.robinwieruch.de/react-libraries/
https://bit.ly/3jjEupg

Fundamentals of React 145

Interview Questions:

• Question: What is Axios in the context of React?
– Answer: Axios is a popular JavaScript library for making HTTP requests, commonly used

in React applications for data fetching.
• Question: How does Axios differ from the Fetch API in React?

– Answer: Axios is a third-party library providing additional features and amore convenient
API compared to the native Fetch API.

• Question: Why might you choose Axios over Fetch in a React project?
– Answer: Axios offers features like automatic JSON parsing, request/response interceptors,

and better browser support, making it a preferred choice for many developers.
• Question: How do you make a GET request using Axios in React?

– Answer: Use axios.get(url) to make a GET request in React with Axios.
• Question: How is error handling done in Axios requests in React?

– Answer: Axios provides a .catch() method to handle errors in the request.
• Question: What is the main advantage of using Fetch API in React?

– Answer: The Fetch API is built into modern browsers, eliminating the need for additional
dependencies and making it a lightweight choice for simple scenarios.

Fundamentals of React 146

Async/Await in React

There is no way around asynchronous data when working on real world applications. There will
always be a remote API that gives you data, whether it is on the frontend or backend, so you need
to understand how to work with this data asynchronously. In our React application, we have started
to resolve promises with then/catch blocks. However, in modern JavaScript (and therefore React), a
more popular solution is using async/await.

If you are already familiar with async/await or you want to explore its usage¹⁹⁹ yourself, go ahead
and change the code from using then/catch to async/await. If you have come this far, you could also
consider compensating for the removal of the catch block for the error handling by using a try/catch
block instead.

Let’s continue with the task here. First, you would have to replace the then/catch syntax with the
async/await syntax. The following refactoring of the handleFetchStories() function shows how to
accomplish it without error handling:

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

const result = await axios.get(url);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

}, [url]);

...

};

To use async/await, our function requires the async keyword. Once you start using the await

keyword on returned promises, everything reads like synchronous code. Actions after the await

keyword are not executed until the promise resolves, meaning the code will wait. To include error
handling as before, the try and catch blocks are there to help. If something goes wrong in the try

block, the code will jump into the catch block to handle the error:

¹⁹⁹https://mzl.la/3AWyWaw

https://mzl.la/3AWyWaw
https://mzl.la/3AWyWaw

Fundamentals of React 147

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const result = await axios.get(url);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [url]);

...

};

After all, using async/await with try/catch over then/catch makes it often more readable, because
we avoid using callback functions and instead try to make our code more readable in a synchronous
way. However, using then/catch is fine too. In the end, the whole team working on a project should
agree on one syntax.

Exercises:

• Compare your source code against the author’s source code²⁰⁰.
– Recap all the source code changes²⁰¹ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here²⁰².

• Read more about data fetching in React²⁰³.
• Read more about data fetching in React with Hooks²⁰⁴.

²⁰⁰https://tinyurl.com/32shkr5e
²⁰¹https://tinyurl.com/2fvjcpak
²⁰²https://bit.ly/3wdPFJq
²⁰³https://www.robinwieruch.de/react-fetching-data/
²⁰⁴https://www.robinwieruch.de/react-hooks-fetch-data/

https://tinyurl.com/32shkr5e
https://tinyurl.com/2fvjcpak
https://bit.ly/3wdPFJq
https://www.robinwieruch.de/react-fetching-data/
https://www.robinwieruch.de/react-hooks-fetch-data/
https://tinyurl.com/32shkr5e
https://tinyurl.com/2fvjcpak
https://bit.ly/3wdPFJq
https://www.robinwieruch.de/react-fetching-data/
https://www.robinwieruch.de/react-hooks-fetch-data/

Fundamentals of React 148

Interview Questions:

• Question: What is async/await?
– Answer: async and await are keywords in JavaScript used for handling asynchronous

operations in a synchronous-like manner, making code more readable.
• Question: How do you use async/await with a function in React?

– Answer: Declare the function with the async keyword and use await within the function
to handle promises.

• Question: What is the purpose of async functions in React?
– Answer: async functions allow you to work with asynchronous code in a more readable

and sequential manner, enhancing the handling of promises.
• Question: How do you handle errors with async/await in React?

– Answer: Use a try/catch block to catch and handle errors in an async function.
• Question: How does async/await differ from using .then() with Promises in React?

– Answer: async/await provides a more concise syntax, making asynchronous code look
similar to synchronous code, compared to chaining .then().

• Question: Can you use async/await with the Fetch API in React?
– Answer: Yes, async/await is commonly used with the Fetch API for asynchronous data

fetching in React.
• Question: How do you handle multiple asynchronous operations with async/await in React?

– Answer: Use Promise.all() to handle multiple asynchronous operations concurrently in an
async function.

Fundamentals of React 149

Forms in React

There is no modern application that doesn’t use forms. A form is just a proper vehicle to submit data
via a button from various input controls (e.g. input field, checkbox, radio button, slider). Earlier we
introduced a new button to fetch data explicitly with a button click. We’ll advance its use with a
proper HTML form, which encapsulates the button and input field for the search term with its label.

Forms aren’tmuch different in React’s JSX than inHTML.We’ll implement it in two refactoring steps
with some HTML/JavaScript. First, wrap the input field and button into an HTML form element:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<form onSubmit={handleSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={handleSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

<hr />

...

</div>

);

};

Instead of passing the handleSearchSubmit() handler to the button, it’s used in the new form
element’s onSubmit attribute. The button receives a new type attribute called submit, which indicates

Fundamentals of React 150

that the form element’s onSubmit handles the click and not the button. Next, since the handler is
used for the form event, it executes preventDefault() additionally on React’s synthetic event. This
prevents the HTML form’s native behavior which would lead to a browser reload:

src/App.jsx

const App = () => {

...

const handleSearchSubmit = (event) => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

event.preventDefault();

};

...

};

Now we can execute the search feature with the keyboard’s “Enter” key, because we are using a
form instead of just a standalone button. In the next two steps, we will separate the whole form into
a new SearchForm component. If you want to go ahead yourself, do not hesitate. Anyway, this is
how the form can be extracted into its own component:

src/App.jsx

const SearchForm = ({

searchTerm,

onSearchInput,

onSearchSubmit,

}) => (

<form onSubmit={onSearchSubmit}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

Fundamentals of React 151

The new component is instantiated in the App component. The App component still manages the
state for the form though, because the state triggers the data request in the App component where
the requested data will eventually get passed as props (here: stories.data) to the List component:

src/App.jsx

const App = () => {

...

return (

<div>

<h1>My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

onSearchSubmit={handleSearchSubmit}

/>

<hr />

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

Forms aren’t much different in React than in plain HTML. When we have input fields and a button
to submit data from them, we can give our HTMLmore structure by wrapping it into a form element
with a onSubmit attribute. The button that executes the submission therefore needs the “submit” type
to refer the process to the form element’s handler. After all, it makes it more accessible for keyboard
users as well.

Exercises:

• Compare your source code against the author’s source code²⁰⁵.

²⁰⁵https://tinyurl.com/mra85b3s

https://tinyurl.com/mra85b3s
https://tinyurl.com/mra85b3s

Fundamentals of React 152

– Recap all the source code changes²⁰⁶ from this section.
– Optional: If you are using TypeScript, check out the author’s source code here²⁰⁷.

• Read more about forms in React²⁰⁸.
• Try what happens without using preventDefault.

– Read more about preventDefault for events in React²⁰⁹.

Interview Questions:

• Questions: How do you handle form input in React?
– Answers: In React, form input is typically managed using state. Each input field has a

corresponding state variable, and the value of the input is set to the state.
• Questions: What is the purpose of the onChange event in React forms?

– Answers: The onChange event is used to capture user input in real-time and update the
state accordingly, ensuring the form reflects the latest input.

• Questions: How can you prevent the default form submission behavior in React?
– Answers: Use the e.preventDefault() method within the form’s submit handler to prevent

the default form submission behavior.
• Questions: What is controlled and uncontrolled form input in React?

– Answers: Controlled form input is when React statemanages the input value. Uncontrolled
input is when the DOM handles the input, and React does not track its state.

• Questions: How do you perform form validation in React?
– Answers: Form validation in React is typically done by checking the input values against

certain conditions or using validation libraries. The onSubmit handler is a common place
to implement validation.

• Questions: What is the purpose of the value attribute in form inputs?
– Answers: The value attribute sets the initial value of a form input and ensures that the

input is controlled by React state.
• Questions: How can you handle multiple form inputs with a single onChange handler in React?

– Answers: Use the name attribute on each input field and access the corresponding value
using event.target.name in the onChange handler.

• Questions: What is the role of the onSubmit event in React forms?
– Answers: The onSubmit event is triggered when the form is submitted. It’s where

you handle form validation, data processing, or any other actions related to the form
submission.

²⁰⁶https://tinyurl.com/3ecdcpje
²⁰⁷https://bit.ly/42qnJ18
²⁰⁸https://www.robinwieruch.de/react-form/
²⁰⁹https://www.robinwieruch.de/react-preventdefault/

https://tinyurl.com/3ecdcpje
https://bit.ly/42qnJ18
https://www.robinwieruch.de/react-form/
https://www.robinwieruch.de/react-preventdefault/
https://tinyurl.com/3ecdcpje
https://bit.ly/42qnJ18
https://www.robinwieruch.de/react-form/
https://www.robinwieruch.de/react-preventdefault/

Fundamentals of React 153

Forms with Actions

React forms are a powerful tool to submit data. In the previous section, we introduced a form to
submit a search term to fetch data from an API. We used the onSubmit event handler to trigger the
data fetching process. In this section, we’ll introduce a new concept to the form: the action attribute.
The action attribute is a standard HTML attribute that specifies the URLwhere the form data should
be submitted. When using React, you can pass in an action function to the form component, which
will be executed when the form is submitted:

src/App.jsx

const SearchForm = ({ searchTerm, onSearchInput, searchAction }) => (

<form action={searchAction}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

Instead of passing the submit handler to the form’s onSubmit attribute, we pass a new searchAction

function to the form’s action attribute:

src/App.jsx

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

searchAction={searchAction}

/>

Since we are closer to the native form behavior, we can remove the preventDefault() call from the
submit handler:

Fundamentals of React 154

src/App.jsx

const searchAction = () => {

setUrl(`${API_ENDPOINT}${searchTerm}`);

// event.preventDefault(); <--- we don't need this anymore

};

Moving forward with React 19, the action attribute will be used over the onSubmit attribute to
submit form data, because it takes more advantage of the native form behavior. Optionally the form
action’s function signature would give you access to the form data²¹⁰, which can be useful for form
validation or other form-related tasks.

Exercises:

• Compare your source code against the author’s source code²¹¹.
– Recap all the source code changes²¹² from this section.

• Read more about React and FormData²¹³.
• Read more about Forms and their Loading State²¹⁴.

²¹⁰https://tinyurl.com/bddjd59s
²¹¹https://tinyurl.com/4nchwt46
²¹²https://tinyurl.com/2vnwf7ty
²¹³https://www.robinwieruch.de/react-form-data/
²¹⁴https://www.robinwieruch.de/react-form-loading-pending-action/

https://tinyurl.com/bddjd59s
https://tinyurl.com/4nchwt46
https://tinyurl.com/2vnwf7ty
https://www.robinwieruch.de/react-form-data/
https://www.robinwieruch.de/react-form-loading-pending-action/
https://tinyurl.com/bddjd59s
https://tinyurl.com/4nchwt46
https://tinyurl.com/2vnwf7ty
https://www.robinwieruch.de/react-form-data/
https://www.robinwieruch.de/react-form-loading-pending-action/

A Roadmap for React
So far, you have learned everything you need to know about React’s fundamentals. With this
knowledge, you could take a break from this book and create a React application yourself. Questions
will inevitably arise, but you can always find answers by revisiting the fundamentals covered in
this book. After all, learning React.js (and anything else) is best done by getting your hands dirty.
My favorite approach: learn the fundamentals, learn how to connect to an API, find an API that
delivers data aligned with your personal interests, and build something with it! Strengthening your
knowledge of the fundamentals is key to what comes next.

From here, there are several paths you can take in your learning journey. First, you can continue
reading this book. The next sections primarily cover three aspects: advanced React features,
organizational topics for every React project, and React’s ecosystem. You will learn about topics
such as performance optimizations, folder and file structures in React projects, static typing with
TypeScript, and styling in React. However, I have intentionally kept the selection minimal to avoid
overwhelming you – otherwise, this bookwould become never-ending. If youwish to explore certain
topics more deeply, I recommend the following resources.

React’s ecosystem is vast. Every year, I summarize all the essential yet popular libraries²¹⁵ that can
be used in React for various purposes. You can browse the list and experiment with libraries that
could enhance your project. I have also written dedicated tutorials for some of them.

There is one advanced React feature that I have intentionally excluded from this book: React Context.
The reason is simple – it is an advanced feature that would unnecessarily complicate our minimal
application without clearly demonstrating the problem it solves. To an intermediate developer, it
might seem like premature optimization; to a beginner, it could feel like an obstacle. However, you
will likely encounter it at some point, so I don’t want you to miss it. If you want to learn about it,
I highly recommend reading more about React Context²¹⁶ and React’s useContext Hook²¹⁷, along
with a guide on combining multiple hooks in a real application²¹⁸ (a recommended read).

React also offers various component patterns. You have already learned about component compo-
sition²¹⁹ and reusable components²²⁰. If you haven’t yet explored the referenced tutorials on these
patterns, I encourage you to do so. There are additional patterns, but covering them all in a small
applicationwouldn’t do them justice. That’s why I havewritten about them separately – for example,
React Render Prop Components²²¹ and React Higher-Order Components²²². However, with the rise

²¹⁵https://www.robinwieruch.de/react-libraries
²¹⁶https://www.robinwieruch.de/react-context/
²¹⁷https://www.robinwieruch.de/react-usecontext-hook/
²¹⁸https://www.robinwieruch.de/react-state-usereducer-usestate-usecontext/
²¹⁹https://www.robinwieruch.de/react-component-composition/
²²⁰https://www.robinwieruch.de/react-reusable-components/
²²¹https://www.robinwieruch.de/react-render-props/
²²²https://www.robinwieruch.de/react-higher-order-components/

https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/react-context/
https://www.robinwieruch.de/react-usecontext-hook/
https://www.robinwieruch.de/react-state-usereducer-usestate-usecontext/
https://www.robinwieruch.de/react-component-composition/
https://www.robinwieruch.de/react-component-composition/
https://www.robinwieruch.de/react-reusable-components/
https://www.robinwieruch.de/react-render-props/
https://www.robinwieruch.de/react-higher-order-components/
https://www.robinwieruch.de/react-libraries
https://www.robinwieruch.de/react-context/
https://www.robinwieruch.de/react-usecontext-hook/
https://www.robinwieruch.de/react-state-usereducer-usestate-usecontext/
https://www.robinwieruch.de/react-component-composition/
https://www.robinwieruch.de/react-reusable-components/
https://www.robinwieruch.de/react-render-props/
https://www.robinwieruch.de/react-higher-order-components/

A Roadmap for React 156

of React Hooks, these patterns are used less frequently today, though you may still encounter them
in larger React applications.

Additionally, in this book, you used Vite to bootstrap your project. If you are interested in setting
up a React project from scratch²²³ using tools like Webpack and Babel (which power JavaScript
build pipelines), I encourage you to go through the process. Even though Webpack is no longer as
popular, understanding how it works provides valuable insight into what happens under the hood
in third-party tools like Vite.

Last but not least, I encourage you to check out my course, The Road to Next²²⁴. While React + Vite
follow a client-side library approach, Next.js is a full-fledged framework for React. It comes with
many built-in features such as server-side rendering, routing, and more. The course will guide you
through the fundamentals of Next.js, helping you build a real-world application. It’s a great way
to deepen your understanding of React and its ecosystem while gaining experience in full-stack
development.

Moreover, React includes features such as Server Components²²⁵ and Server Functions²²⁶, which (at
the time of writing) can only be used in a full-stack framework like Next.js. So, I highly recommend
exploring Next.js and its features to gain a broader understanding of React’s ecosystem and how it
is becoming a full-stack framework²²⁷.

Here is how I would prioritize the above resources:

• continue with The Road to React
• explore the React ecosystem
• check out The Road to Next for full-stack development

– including: Server Components and Server Functions

Optionally, you can:

• recap component patterns
• set up a React project from scratch
• learn about React Context and useContext

Now, we’ve reached the middle of The Road to React, and I hope you have enjoyed it so far. If you
liked the book, it would mean a lot to me if you shared it with friends who are interested in learning
React. Also, a review on Amazon²²⁸ or Goodreads²²⁹ would be greatly appreciated.

From this point forward, you can continue reading to learn about an opinionated selection of React’s
ecosystem, organizational recommendations, and more built-in React features (e.g., performance

²²³https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
²²⁴https://www.road-to-next.com/
²²⁵https://tinyurl.com/283wewxw
²²⁶https://tinyurl.com/4en9pmj9
²²⁷https://www.robinwieruch.de/react-full-stack-framework/
²²⁸https://amzn.to/2JHlP42
²²⁹https://tinyurl.com/4bhcssu7

https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.road-to-next.com/
https://tinyurl.com/283wewxw
https://tinyurl.com/4en9pmj9
https://www.robinwieruch.de/react-full-stack-framework/
https://www.robinwieruch.de/react-full-stack-framework/
https://amzn.to/2JHlP42
https://tinyurl.com/4bhcssu7
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.road-to-next.com/
https://tinyurl.com/283wewxw
https://tinyurl.com/4en9pmj9
https://www.robinwieruch.de/react-full-stack-framework/
https://amzn.to/2JHlP42
https://tinyurl.com/4bhcssu7

A Roadmap for React 157

optimizations). Toward the end of the book, you will find additional sections that help you
implement advanced features in your React application. In summary, I hope the knowledge you’ve
gained so far – along with the referenced materials and upcoming chapters – helps you become a
great React developer.

Important: The following chapters do not follow a strictly linear path. While they all build upon the
application you have created, they will diverge in different directions. You can try merging them
into your current project, which usually works – except for styling sections, where you will have to
choose one approach. If this becomes overwhelming, consider these two alternatives:

1. Copy and paste your current application and use separate copies for different paths.
2. Read a chapter (path), apply the changes, and optionally revert them afterward to start fresh

with the next chapter.

Below is a summary of the paths available in this book:

• Styling in React: Each section in this chapter presents an alternative path.
• React Maintenance: This chapter follows a linear path through its sections.
• TypeScript in React: This chapter follows a linear path through its sections.
• Testing in React: This chapter follows a linear path through its sections.
• React Project Structure: This chapter follows a linear path through its sections.
• Real-World React (Advanced): This chapter follows a linear path through its sections.

Each chapter builds upon your current application, but no chapter inherits changes from others.

A Roadmap for React 158

Styling in React
There are many ways to style a React application, and there are lengthy debates about the best
styling strategy and styling approach. We’ll go over a few of these strategies each representing
one approach without giving them too much weight. There will be some pro and con arguments,
but it’s mostly a matter of what fits best for developers and their teams.

We will begin React styling with common CSS in React, but then explore two alternatives for more
advanced CSS-in-CSS (with CSS Modules) and CSS-in-JS (with sStyled Components) strategies.
CSS Modules and Styled Components are only two approaches out of many in both groups of
strategies. We’ll also cover how to include scalable vector graphics (SVGs), such as a logo or icons,
in our React application.

If you don’t want to build common UI components (e.g. button, dialog, dropdown) from scratch,
you can always pick a popular UI library suited for React²³⁰, which provides these components by
default. However, it is better for learning React if you try building these components before using a
pre-built solution. As a result, we won’t use any of the UI component libraries.

²³⁰https://www.robinwieruch.de/react-libraries/

https://www.robinwieruch.de/react-libraries/
https://www.robinwieruch.de/react-libraries/

Styling in React 160

The following styling approaches and SVGs are mostly pre-configured in Vite. If you’re in control of
the build tools (e.g. Webpack) by having a custom setup, they might need to be configured to enable
importing CSS or SVG files. Since we are using Vite, we can use these files right away. For example,
in your src/main.jsx file, make sure to import the src/index.css file:

src/main.jsx

import { StrictMode } from 'react';

import { createRoot } from 'react-dom/client';

import './index.css';

import App from './App.jsx';

createRoot(document.getElementById('root')).render(

<StrictMode>

<App />

</StrictMode>

);

Use the following CSS in the src/index.css file for removing the margin and for using a standardized
font with fallbacks:

src/index.css

body {

margin: 0;

font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', 'Roboto', 'Oxygen',

'Ubuntu', 'Cantarell', 'Fira Sans', 'Droid Sans', 'Helvetica Neue',

sans-serif;

-webkit-font-smoothing: antialiased;

-moz-osx-font-smoothing: grayscale;

}

Essentially you can declare all the CSS that should apply globally for your project in this file.

Styling in React 161

Exercises:

• Compare your source code against the author’s source code²³¹.
– Recap all the source code changes²³² from this section.

• Read more about the different styling strategies and approaches in React²³³.

²³¹https://tinyurl.com/38kw8tkn
²³²https://tinyurl.com/mr2fc836
²³³https://www.robinwieruch.de/react-css-styling/

https://tinyurl.com/38kw8tkn
https://tinyurl.com/mr2fc836
https://www.robinwieruch.de/react-css-styling/
https://tinyurl.com/38kw8tkn
https://tinyurl.com/mr2fc836
https://www.robinwieruch.de/react-css-styling/

Styling in React 162

CSS in React

Common CSS in React is similar to the standard CSS you may have already learned. Each web
application gives HTML elements a class (in React it’s className) attribute that is styled via a CSS
file:

src/App.jsx

const App = () => {

...

return (

<div className="container">

<h1 className="headline-primary">My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

searchAction={searchAction}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

The <hr />was removed because the CSS handles the border in the next steps. We’ll import the CSS
file, which is done with the help of how Vite resolves imports:

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import './App.css';

This CSS file will define the two (andmore) CSS classes we used (andwill use) in the App component.
In your src/App.css file, define them like the following:

Styling in React 163

src/App.css

.container {

height: 100vw;

padding: 20px;

background: #83a4d4; /* fallback for old browsers */

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

}

.headline-primary {

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

}

You should see the first stylings taking effect in your application when you start it again. Next, we
will head over to the Item component. Some of its elements receive the className attribute too,
however, we are also using a new styling technique here:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

<li className="item">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className="button button_small"

>

Dismiss

</button>

);

Styling in React 164

As you can see, we can also use the style attribute for HTML elements. In JSX, style can be passed
as an inline JavaScript object to these attributes. This way we can define dynamic style properties
in JavaScript files rather than mostly static CSS files. This approach is called inline style, which
is useful for quick prototyping and dynamic style definitions. Inline style should be used sparingly,
however, since a separate style definition with a CSS file keeps the JSX more concise.

In your src/App.css file, define the new CSS classes. Basic CSS features are used here, because
advanced CSS features (e.g. nesting) from CSS extensions (e.g. Sass) are not included in this example,
as they are optional configurations²³⁴:

src/App.css

.item {

display: flex;

align-items: center;

padding-bottom: 5px;

}

.item > span {

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

}

.item > span > a {

color: inherit;

}

The button style from the previous component is still missing, so we’ll define a base button style and
two more specific button styles (small and large). One of the button specifications has been already
used, the other will be used in the next steps:

²³⁴https://bit.ly/3E1a2bM

https://bit.ly/3E1a2bM
https://bit.ly/3E1a2bM

Styling in React 165

src/App.css

.button {

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

}

.button:hover {

background: #171212;

color: #ffffff;

}

.button_small {

padding: 5px;

}

.button_large {

padding: 10px;

}

Apart from styling approaches in React, naming conventions (CSS guidelines²³⁵) are a whole other
topic. The last CSS snippet followed BEM rules by defining modifications of a class with an
underscore (_). Choose whatever naming convention suits you and your team. Without further ado,
we will style the next React component:

src/App.jsx

const SearchForm = ({ ... }) => (

<form action={searchAction} className="search-form">

<InputWithLabel ... >

Search:

</InputWithLabel>

<button

type="submit"

disabled={!searchTerm}

className="button button_large"

>

Submit

²³⁵https://mzl.la/3m5avnb

https://mzl.la/3m5avnb
https://mzl.la/3m5avnb

Styling in React 166

</button>

</form>

);

We can also pass the className attribute as a prop to React components. For example, we can
use this option to pass the SearchForm component a flexible style with a className prop from a
range of predefined classes (e.g. button_large or button_small) from a CSS file. Lastly, style the
InputWithLabel component:

src/App.jsx

const InputWithLabel = ({ ... }) => {

...

return (

<>

<label htmlFor={id} className="label">

{children}

</label>

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

className="input"

/>

</>

);

};

In your src/App.css file, add the remaining classes:

Styling in React 167

src/App.css

.search-form {

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

}

.label {

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

}

.input {

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

}

For simplicity, we styled elements like label and input individually in the src/App.css file. However,
in a real application, it may be better to define these elements once in the src/index.css file globally.
As React components are split into multiple files, sharing style becomes a necessity. After all, this
is the basic usage of CSS in React. Without CSS extensions like Sass (Syntactically Awesome Style
Sheets), styling can become more burdensome, though, because features like CSS nesting are not
available in native CSS.

Exercises:

• Compare your source code against the author’s source code²³⁶.
– Recap all the source code changes²³⁷ from this section.

• Try to pass className prop fromApp to SearchForm component, either with the value button_-
small or button_large, and use this as className for the button element.

²³⁶https://tinyurl.com/3uncn45p
²³⁷https://tinyurl.com/2588rxvc

https://tinyurl.com/3uncn45p
https://tinyurl.com/2588rxvc
https://tinyurl.com/3uncn45p
https://tinyurl.com/2588rxvc

Styling in React 168

CSS Modules in React

CSS Modules are an advanced CSS-in-CSS approach. The CSS file stays the same, where you could
apply CSS extensions like Sass, but its use in React components changes. To enable CSS modules in
Vite, rename the src/App.css file to src/App.module.css. This action is performed on the command
line from your project’s directory:

Command Line

mv src/App.css src/App.module.css

In the renamed src/App.module.css, start with the first CSS class definitions, as before:

src/App.module.css

.container {

height: 100vw;

padding: 20px;

background: #83a4d4; /* fallback for old browsers */

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

}

.headlinePrimary {

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

}

Import the src/App.module.css file with a relative path again. This time, import it as a JavaScript
object where the name of the object (here: styles) is up to you:

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import styles from './App.module.css';

Instead of defining the className as a string mapped to a CSS file, access the CSS class directly from
the styles object, and assign it with a JavaScript in JSX expression to your elements.

Styling in React 169

src/App.jsx

const App = () => {

...

return (

<div className={styles.container}>

<h1 className={styles.headlinePrimary}>My Hacker Stories</h1>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

searchAction={searchAction}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</div>

);

};

There are various ways to add multiple CSS classes via the styles object to the element’s single
className attribute. Here, we use JavaScript template literals:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

<li className={styles.item}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className={`${styles.button} ${styles.buttonSmall}`}

Styling in React 170

>

Dismiss

</button>

);

We can also add inline styles as more dynamic styles in JSX again. It’s also possible to add a CSS
extension like Sass to enable advanced features like CSS nesting (see the previous section). We will
stick to native CSS features though:

src/App.module.css

.item {

display: flex;

align-items: center;

padding-bottom: 5px;

}

.item > span {

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

}

.item > span > a {

color: inherit;

}

Then the button CSS classes in the src/App.module.css file:

src/App.module.css

.button {

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

}

Styling in React 171

.button:hover {

background: #171212;

color: #ffffff;

}

.buttonSmall {

padding: 5px;

}

.buttonLarge {

padding: 10px;

}

There is a shift toward pseudo BEM naming conventions here, in contrast to button_small and
button_large from the previous section. If the previous naming convention holds true, we can only
access the style with styles['button_small']which makes it more verbose because of JavaScript’s
limitation with object underscores. The same shortcomings would apply for classes defined with a
dash (-). In contrast, now we can use styles.buttonSmall instead (see: Item component):

src/App.jsx

const SearchForm = ({ ... }) => (

<form action={searchAction} className={styles.searchForm}>

<InputWithLabel ... >

Search:

</InputWithLabel>

<button

type="submit"

disabled={!searchTerm}

className={`${styles.button} ${styles.buttonLarge}`}

>

Submit

</button>

</form>

);

The SearchForm component receives the styles as well. It has to use string interpolation for using
two styles in one element via JavaScript’s template literals. One alternative way is the clsx²³⁸ library,
which is installed via the command line as a project dependency:

²³⁸https://bit.ly/3DNEA3R

https://bit.ly/3DNEA3R
https://bit.ly/3DNEA3R

Styling in React 172

src/App.jsx

import clsx from 'clsx';

...

// somewhere in a className attribute

className={clsx(styles.button, styles.buttonLarge)}

The library offers conditional styling too; whereas the left-hand side of the object’s property must
be used as a computed property name²³⁹ and is only applied if the right-hand side evaluates to true:

src/App.jsx

import clsx from 'clsx';

...

// somewhere in a className attribute

className={clsx(styles.button, { [styles.buttonLarge]: isLarge })}

Finally, continue with the InputWithLabel component:

src/App.jsx

const InputWithLabel = ({ ... }) => {

...

return (

<>

<label htmlFor={id} className={styles.label}>

{children}

</label>

<input

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

className={styles.input}

/>

</>

²³⁹https://mzl.la/2XuN651

https://mzl.la/2XuN651
https://mzl.la/2XuN651

Styling in React 173

);

};

And finish up the remaining style in the src/App.module.css file:

src/App.module.css

.searchForm {

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

}

.label {

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

}

.input {

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

}

The same caution as the last section applies: some of these styles like input and labelmight be more
efficient in a global src/index.css file without CSS modules.

Again, CSS Modules – like any other CSS-in-CSS approach – can use Sass for more advanced CSS
features like nesting. The advantage of CSS modules is that we receive an error in JavaScript each
time a style isn’t defined. In the standard CSS approach, unmatched styles in JavaScript and CSS
files might go unnoticed.

Exercises:

• Compare your source code against the author’s source code²⁴⁰.
– Recap all the source code changes²⁴¹ from this section.

²⁴⁰https://tinyurl.com/3h4j6uhr
²⁴¹https://tinyurl.com/2m4apv8m

https://tinyurl.com/3h4j6uhr
https://tinyurl.com/2m4apv8m
https://tinyurl.com/3h4j6uhr
https://tinyurl.com/2m4apv8m

Styling in React 174

Styled Components in React

With the previous approaches from CSS-in-CSS, Styled Components is one of several approaches
for CSS-in-JS. I picked Styled Components because it’s the most popular. It comes as a JavaScript
dependency, so we must install it on the command line:

Command Line

npm install styled-components

Then import it in your src/App.jsx file:

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import styled from 'styled-components';

As the name suggests, CSS-in-JS happens in your JavaScript file. In your src/App.jsx file, define your
first styled components:

src/App.jsx

const StyledContainer = styled.div`

height: 100vw;

padding: 20px;

background: #83a4d4;

background: linear-gradient(to left, #b6fbff, #83a4d4);

color: #171212;

`;

const StyledHeadlinePrimary = styled.h1`

font-size: 48px;

font-weight: 300;

letter-spacing: 2px;

`;

When using Styled Components, you are using the JavaScript template literals the same way as
JavaScript functions. Everything between the backticks can be seen as an argument and the styled
object gives you access to all the necessaryHTML elements (e.g. div, h1) as functions. Once a function
is called with the style, it returns a React component that can be used in your App component:

Styling in React 175

src/App.jsx

const App = () => {

...

return (

<StyledContainer>

<StyledHeadlinePrimary>My Hacker Stories</StyledHeadlinePrimary>

<SearchForm

searchTerm={searchTerm}

onSearchInput={handleSearchInput}

searchAction={searchAction}

/>

{stories.isError && <p>Something went wrong ...</p>}

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

</StyledContainer>

);

};

This kind of React component follows the same rules as a common React component. Everything
passed between its element tags is passed automatically as React children prop. For the Item
component, we are not using inline styles this time, but defining a dedicated styled component
for it. StyledColumn receives its styles dynamically using a React prop:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

<StyledItem>

<StyledColumn width="40%">

{item.title}

</StyledColumn>

<StyledColumn width="30%">{item.author}</StyledColumn>

<StyledColumn width="10%">{item.num_comments}</StyledColumn>

<StyledColumn width="10%">{item.points}</StyledColumn>

<StyledColumn width="10%">

<StyledButtonSmall

type="button"

Styling in React 176

onClick={() => onRemoveItem(item)}

>

Dismiss

</StyledButtonSmall>

</StyledColumn>

</StyledItem>

);

The flexible width prop is accessible in the styled component’s template literal as an argument of
an inline function. The return value from the function is applied there as a string. Since we can use
immediate returns when omitting the arrow function’s body, it becomes a concise inline function:

src/App.jsx

const StyledItem = styled.li`

display: flex;

align-items: center;

padding-bottom: 5px;

`;

const StyledColumn = styled.span`

padding: 0 5px;

white-space: nowrap;

overflow: hidden;

white-space: nowrap;

text-overflow: ellipsis;

a {

color: inherit;

}

width: ${(props) => props.width};

`;

Advanced features like CSS nesting are available in Styled Components by default. Nested elements
are accessible and the current element can be selected with the & CSS operator:

Styling in React 177

src/App.jsx

const StyledButton = styled.button`

background: transparent;

border: 1px solid #171212;

padding: 5px;

cursor: pointer;

transition: all 0.1s ease-in;

&:hover {

background: #171212;

color: #ffffff;

}

`;

You can also create specialized versions of styled components by passing another component to the
library’s function. The specialized button receives all the base styles from the previously defined
StyledButton component:

src/App.jsx

const StyledButtonSmall = styled(StyledButton)`

padding: 5px;

`;

const StyledButtonLarge = styled(StyledButton)`

padding: 10px;

`;

const StyledSearchForm = styled.form`

padding: 10px 0 20px 0;

display: flex;

align-items: baseline;

`;

When we use a styled component like StyledSearchForm, its underlying form element is used in the
real HTML output. We can continue using the native HTML attributes (onSubmit, type, disabled)
there:

Styling in React 178

src/App.jsx

const SearchForm = ({ ... }) => (

<StyledSearchForm action={searchAction}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<StyledButtonLarge type="submit" disabled={!searchTerm}>

Submit

</StyledButtonLarge>

</StyledSearchForm>

);

Finally, the InputWithLabel decorated with its yet undefined styled components:

src/App.jsx

const InputWithLabel = ({ ... }) => {

...

return (

<>

<StyledLabel htmlFor={id}>{children}</StyledLabel>

<StyledInput

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

};

And its matching styled components are defined in the same file:

Styling in React 179

src/App.jsx

const StyledLabel = styled.label`

border-top: 1px solid #171212;

border-left: 1px solid #171212;

padding-left: 5px;

font-size: 24px;

`;

const StyledInput = styled.input`

border: none;

border-bottom: 1px solid #171212;

background-color: transparent;

font-size: 24px;

`;

CSS-in-JS with styled components shifts the focus of defining styles to actual React components.
Styled Components are styles defined as React components without the intermediate CSS file. If a
styled component isn’t used in a JavaScript, your IDE/editor will tell you. Styled Components are
bundled next to other JavaScript assets in JavaScript files for a production-ready application. There
are no extra CSS files, but only JavaScript when using the CSS-in-JS strategy. Both strategies, CSS-
in-JS and CSS-in-CSS, and their approaches (e.g. Styled Components and CSS Modules) are popular
among React developers. Use what suits you and your team best.

Exercises:

• Compare your source code against the author’s source code²⁴².
– Recap all the source code changes²⁴³ from this section.

• Read more about best practices for Styled Components in React²⁴⁴.
• Usually there is no src/index.css file for global styles when using Styled Components. Find out
how to use global styles when using Styled Components with the help of your favorite search
engine.

²⁴²https://tinyurl.com/2kt94677
²⁴³https://tinyurl.com/4b49zjac
²⁴⁴https://www.robinwieruch.de/styled-components/

https://tinyurl.com/2kt94677
https://tinyurl.com/4b49zjac
https://www.robinwieruch.de/styled-components/
https://tinyurl.com/2kt94677
https://tinyurl.com/4b49zjac
https://www.robinwieruch.de/styled-components/

Styling in React 180

SVGs in React

To create a modern React application, we’ll likely need to use SVGs. Instead of giving every button
element text, for example, we might want to make it lightweight with an icon. In this section, we’ll
use a scalable vector graphic (SVG) as an icon in one of our React components.

Important: This section builds on the “CSS in React” we covered earlier which helps us giving the
SVG icon a good look and feel right away. It’s acceptable to use a different styling approach (e.g.
CSS Modules, Styled Components), or no styling at all, though the SVG might look off without it.

Vite does not come with SVG support. In order to allow SVGs in Vite, we have to install one of Vite’s
plugins with the help of the command line:

Command Line

npm install vite-plugin-svgr --save-dev

Next the new plugin for SVGs can be used for Vite’s configuration:

vite.config.js

import { defineConfig } from 'vite';

import react from '@vitejs/plugin-react';

import svgr from 'vite-plugin-svgr';

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react(), svgr()],

});

That’s it for the general setup. We will use the following SVG²⁴⁵ from Heroicons²⁴⁶ and create a new
src/check.svg file:

src/check.svg

<svg xmlns="http://www.w3.org/2000/svg" fill="none" viewBox="0 0 24 24" stroke-width\

="1.5" stroke="currentColor" class="size-6">

<path stroke-linecap="round" stroke-linejoin="round" d="m4.5 12.75 6 6 9-13.5" />

</svg>

Now we can import SVGs (similar to CSS) as React components right away. In src/App.jsx, use the
following syntax for importing the SVG:

²⁴⁵https://bit.ly/3w4xNRz
²⁴⁶https://heroicons.com/

https://bit.ly/3w4xNRz
https://heroicons.com/
https://bit.ly/3w4xNRz
https://heroicons.com/

Styling in React 181

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import './App.css';

import Check from "./check.svg?react";

Here we are importing an SVG to be used as icon. However, this works for many different uses cases
such as logos and backgrounds. Now, instead of the button “Dismiss” text, pass the SVG component
with a height and width attribute:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

<li className="item">

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button

type="button"

onClick={() => onRemoveItem(item)}

className="button button_small"

>

<Check height="18px" width="18px" />

</button>

);

The Vite plugin makes using SVGs straightforward, with not much extra configuration needed. This
is different if you create a React project from scratch with build tools like Webpack, because you
have to take care of it yourself. Anyway, SVGs make your application more approachable, so use
them whenever it suits you.

Exercises:

• Compare your source code against the author’s source code²⁴⁷.

²⁴⁷https://tinyurl.com/3nf39wy3

https://tinyurl.com/3nf39wy3
https://tinyurl.com/3nf39wy3

Styling in React 182

– Recap all the source code changes²⁴⁸ from this section.
• Integrate the third-party library react-icons²⁴⁹ into your application and use its SVG symbols
by importing them as React components right away.

²⁴⁸https://tinyurl.com/mrsfx32y
²⁴⁹https://bit.ly/3nayoJ7

https://tinyurl.com/mrsfx32y
https://bit.ly/3nayoJ7
https://tinyurl.com/mrsfx32y
https://bit.ly/3nayoJ7

React Maintenance
Once a React application grows, maintenance becomes a priority. To prepare for this eventuality,
we’ll cover performance optimization, type safety, testing, and project structure. Each of these topics
will strengthen your app to take on more functionality without losing quality.

Performance optimization prevents applications from slowing down by assuring efficient use
of available resource. Typed programming languages like TypeScript detect bugs earlier in the
feedback loop. Testing gives us more explicit feedback than typed programming, and provides a
way to understand which actions can break the application. Lastly, a project structure supports the
organized management of assets into folders and files, which is especially useful in scenarios where
team members work in different domains.

React Maintenance 184

Performance in React (Advanced)

This section is just here for the sake of learning about performance improvements in React. We
wouldn’t need optimizations in most React applications, as React is fast out of the box. While more
sophisticated tools exist for performance measurements in JavaScript and React, we will stick to a
simple console.log() and our browser’s developer tools for the logging output.

Strict Mode

Before we can learn about performance in React, we will briefly look at React’s Strict Mode which
gets enabled in the src/main.jsx file:

src/main.jsx

createRoot(document.getElementById('root')).render(

<StrictMode>

<App />

</StrictMode>

);

React’s StrictMode²⁵⁰ is a helper component which notifies developers in the case of something being
wrong in our implementation. For example, using a deprecated²⁵¹ React API (e.g. using a legacy React
hook) would give us a warning in the browser’s developer tools. However, it also ensures that state
and side-effects are implemented well by a developer. Let’s experience what this means in our code.

The App component fetches initially data from a remote API which gets displayed as a list. We
are using React’s useEffect hook for initializing the data fetching. Now I encourage you to add a
console.log() which logs whenever this hook runs:

src/App.jsx

const App = () => {

...

React.useEffect(() => {

console.log('How many times do I log?');

handleFetchStories();

}, [handleFetchStories]);

...

};

²⁵⁰https://bit.ly/48TUA0k
²⁵¹https://bit.ly/3R8ycam

https://bit.ly/48TUA0k
https://bit.ly/3R8ycam
https://bit.ly/48TUA0k
https://bit.ly/3R8ycam

React Maintenance 185

Many would expect seeing the logging only once in the browser’s developer tools, because this side-
effect should only run once (or if the handleFetchStories function changes). However, you will see
the logging twice for the App component’s initial render. To be honest, this is a highly unexpected
behavior (even for seasoned React developers), which makes it difficult to understand for React
beginners. However, the React core team decided that this behavior is needed for surfacing bugs
related to misused side-effects in the application.

So React’s Strict Mode runs React’s useEffect Hooks twice for the initial render. Because this results
in fetching the same data twice, this is not a problem for us. The operation is called idempotent,
which means that the result of a successfully performed request is independent of the number of
times it is executed. After all, it’s only a performance problem, because there are two network
requests, but it doesn’t result in a buggy behavior of the application. In addition to all of this
uncertainty, the Strict Mode is only applied for the development environment, so whenever this
application gets build for production, the Strict Mode gets removed automatically.

Both of these behaviors, running React’s useEffect Hook twice for the initial render and having
different outcomes between development and production, surface many warranted discussions
around React’s Strict Mode.

For the following performance sections, I encourage you to disable the Strict Mode by simply
removing it. This way, we can follow the logging that would happen for this application once it
is build for a production environment:

src/main.jsx

createRoot(document.getElementById('root')).render(<App />);

However, at the end of the performance sections, I encourage you to add the Strict Mode back again,
because it is there to help you after all.

Don’t run on first render

Previously, we have covered React’s useEffect Hook, which is used for side-effects. It runs the first
time a component renders (mounting), and then every re-render (updating). By passing an empty
dependency array to it as a second argument, we can tell the hook to run on the first render only.
Out of the box, there is no way to tell the hook to run only on every re-render (update) and not on
the first render (mount). For example, examine our custom hook for state management with React’s
useState Hook and its semi-persistent state with local storage using React’s useEffect Hook:

React Maintenance 186

src/App.jsx

const useStorageState = (key, initialState) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

console.log('A');

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue];

};

With a closer look at the developer’s tools, we can see the log for the first time when the component
renders using this custom hook. It doesn’t make sense to run the side-effect for the initial rendering
of the component though, because there is nothing to store in the local storage except the initial
value. It’s a redundant function invocation, and should only run for every update (re-rendering) of
the component.

As mentioned, there is no React Hook that runs on every re-render, and there is no way to tell the
useEffect hook in a React idiomatic way to call its function only on every re-render. However, by
using React’s useRef Hook which keeps its ref.current property intact over re-renders, we can keep
amade up state (without re-rendering the component on state updates) with an instance variable of
our component’s lifecycle:

src/App.jsx

const useStorageState = (key, initialState) => {

const isMounted = React.useRef(false);

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

if (!isMounted.current) {

isMounted.current = true;

} else {

console.log('A');

localStorage.setItem(key, value);

}

}, [value, key]);

React Maintenance 187

return [value, setValue];

};

We are exploiting the ref and its mutable current property for imperative state management that
doesn’t trigger a re-render. Once the hook is called from its component for the first time (component
render), the ref’s current property is initialized with a false boolean called isMounted. As a result,
the side-effect function in useEffect isn’t called; only the boolean flag for isMounted is toggled to
true in the side-effect. Whenever the hook runs again (component re-render), the boolean flag is
evaluated in the side-effect. Since it’s true, the side-effect function runs. Over the lifetime of the
component, the isMounted boolean will remain true. It was there to avoid calling the side-effect
function for the first time render that uses our custom hook.

The above was only about preventing the invocation of one simple function for a component
rendering for the first time. But imagine you have an expensive computation in your side-effect,
or the custom hook is used frequently in the application. It’s more practical to deploy this technique
to avoid unnecessary function invocations.

Exercises:

• Read more about running useEffect only on update²⁵².
• Read more about running useEffect only once²⁵³.

Don’t re-render if not needed

Earlier, we have explored React’s re-rendering mechanism. We’ll repeat this exercise for the App
and List components. For both components, add a logging statement:

src/App.jsx

const App = () => {

...

console.log('B:App');

return (...);

};

const List = ({ list, onRemoveItem }) =>

console.log('B:List') || (

{list.map((item) => (

²⁵²https://www.robinwieruch.de/react-useeffect-only-on-update/
²⁵³https://www.robinwieruch.de/react-useeffect-only-once/

https://www.robinwieruch.de/react-useeffect-only-on-update/
https://www.robinwieruch.de/react-useeffect-only-once/
https://www.robinwieruch.de/react-useeffect-only-on-update/
https://www.robinwieruch.de/react-useeffect-only-once/

React Maintenance 188

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

Because the List component has no function body, and developers are lazy folks who don’t want to
refactor the component for a simple logging statement, the List component uses the || operator
instead. This is a neat trick for adding a logging statement to a function component without a
function body. Since the console.log() on the left-hand side of the operator always evaluates to
false, the right-hand side of the operator gets always executed.

Code Playground

function getTheTruth() {

if (console.log('B:List')) {

return true;

} else {

return false;

}

}

console.log(getTheTruth());

// B:List

// false

Let’s focus on the actual logging in the browser’s developer tools when refreshing the page. You
should see a similar output. First, the App component renders, followed by its child components (e.g.
List component).

Visualization

B:App

B:List

B:App

B:App

B:List

Again: If you are seeing more than these loggings, check whether your *src/main.jsx file uses
<React.StrictMode> as a wrapper for your App component. If it’s the case, remove the Strict Mode
and check your logging again. Explanation: In development mode, React’s Strict Mode renders a

React Maintenance 189

component twice to detect problems with your implementation in order to warn you about these.
This Strict Mode is automatically excluded for applications in production. However, if you don’t
want to be confused by the multiple renders, remove Strict Mode from the src/main.jsx file.*

Since a side-effect triggers data fetching after the first render, only the App component renders,
because the List component is replaced by a loading indicator in a conditional rendering. Once the
data arrives, both components render again.

Visualization

// initial render

B:App

B:List

// data fetching with loading instead of List component

B:App

// re-rendering with data

B:App

B:List

So far, this behavior is acceptable, since everything renders on time. Now we’ll take this experiment
a step further, by typing into the SearchForm component’s input field. You should see the changes
with every character entered into the element:

Visualization

B:App

B:List

What’s striking is that the List component shouldn’t re-render, but it does. The search feature isn’t
executed via its button, so the list passed to the List component via the App component remains
the same for every keystroke. This is React’s default behavior, re-rendering everything below a
component (here: the App component) with a state change, which surprises many people. In other
words, if a parent component re-renders, its descendent components re-render as well. React does
this by default, because preventing a re-render of child components could lead to bugs. Because
the re-rendering mechanism of React is often fast enough by default, the automatic re-rendering of
descendent components is encouraged by React.

Sometimes we want to prevent re-rendering, however. For example, huge data sets displayed
in a table (e.g. List component) shouldn’t re-render if they are not affected by an update (e.g.
Search component). It’s more efficient to perform an equality check if something changed for the
component. Therefore, we can use React’s memo API to make this equality check for the props:

React Maintenance 190

src/App.jsx

const List = React.memo(

({ list, onRemoveItem }) =>

console.log('B:List') || (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

)

);

React’s memo API checks whether the props of a component have changed. If not, it does not re-
render even though its parent component re-rendered. However, the output stays the same when
typing into the SearchForm’s input field:

Visualization

B:App

B:List

The list passed to the List component is the same, but the onRemoveItem callback handler isn’t. If
the App component re-renders, it always creates a new version of this callback handler as a new
function. Earlier, we used React’s useCallback Hook to prevent this behavior, by creating a function
only on the initial render (or if one of its dependencies has changed):

src/App.jsx

const App = () => {

...

const handleRemoveStory = React.useCallback((item) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

}, []);

...

React Maintenance 191

console.log('B:App');

return (...);

};

Since the callback handler gets the item passed as an argument in its function signature, it doesn’t
have any dependencies and is declared only once when the App component initially renders. None
of the props passed to the List component should change now. Try it with the combination of React
memo and useCallback, to search via the SearchForm’s input field. The “B:List” logging disappears,
and only the App component re-renders with its “B:App” logging.

While all props passed to a component stay the same, the component renders again if its parent
component is forced to re-render. That’s React’s default behavior, which works most of the
time because the re-rendering mechanism is pretty fast. However, if re-rendering decreases the
performance of a React application, React’s memo API helps prevent re-rendering. As we have seen,
sometimes memo alone doesn’t help, though. Callback handlers are re-defined each time in the parent
component and passed as changed props to the component, which causes another re-render. In
that case, useCallback is used for making the callback handler only change when its dependencies
change.

Exercises:

• Read more about React’s memo API²⁵⁴.
• Read more about React’s useCallback Hook²⁵⁵.

Don’t rerun expensive computations

Sometimes we’ll have performance-intensive computations in our React components – between a
component’s function signature and return block – which run on every render. For this scenario, we

²⁵⁴https://www.robinwieruch.de/react-memo/
²⁵⁵https://www.robinwieruch.de/react-usecallback-hook/

https://www.robinwieruch.de/react-memo/
https://www.robinwieruch.de/react-usecallback-hook/
https://www.robinwieruch.de/react-memo/
https://www.robinwieruch.de/react-usecallback-hook/

React Maintenance 192

must create a use case in our current application first:

src/App.jsx

const getSumComments = (stories) => {

console.log('C');

return stories.data.reduce(

(result, value) => result + value.num_comments,

0

);

};

const App = () => {

...

const sumComments = getSumComments(stories);

return (

<div>

<h1>My Hacker Stories with {sumComments} comments.</h1>

...

</div>

);

};

If all arguments are passed to a function, it’s acceptable to have it outside the component, because it
does not have any further dependency needed from within the component. This prevents creating
the function on every render, so the useCallback hook becomes unnecessary. However, the function
still computes the value of summed comments on every render, which becomes a problem for more
expensive computations.

React Maintenance 193

Each time text is typed in the input field of the SearchForm component, this computation runs again
with an output of “C”. This may be fine for a non-heavy computation like this one, but imagine this
computationwould takemore than 500ms. It would give the re-rendering a delay, because everything
in the component has to wait for this computation. We can tell React to only run a function if one of
its dependencies has changed. If no dependency changed, the result of the function stays the same.
React’s useMemo Hook helps us here:

src/App.jsx

const App = () => {

...

const sumComments = React.useMemo(

() => getSumComments(stories),

[stories]

);

return (...);

};

For every time someone types in the SearchForm, the computation shouldn’t run again. It only runs
if the dependency array, here stories, has changed. After all, this should only be used for cost
expensive computations which could lead to a delay of a (re-)rendering of a component.

Now, after we went through these scenarios for useMemo, useCallback, and memo, remember that
these shouldn’t necessarily be used by default. Apply these performance optimizations only if you
run into performance bottlenecks. Most of the time this shouldn’t happen, because React’s rendering
mechanism is pretty efficient by default. Sometimes the check for utilities like memo can be more
expensive than the re-rendering itself.

Exercises:

• Compare your source code against the author’s source code²⁵⁶.
²⁵⁶https://tinyurl.com/yz2jhjka

https://tinyurl.com/yz2jhjka
https://tinyurl.com/yz2jhjka

React Maintenance 194

– Recap all the source code changes²⁵⁷ from this section.
• Read more about React’s useMemo Hook²⁵⁸.
• Download React Developer Tools as an extension for your browser. Open it for your application
in the browser via the browser’s developer tools and try its various features. For example, you
can use it to visualize React’s component tree and its updating components.

• Does the SearchForm re-render when removing an item from the List with the “Dismiss”-
button? If it’s the case, apply performance optimization techniques (using useCallback and
memo) to prevent re-rendering.

• Does each Item re-render when removing an item from the List with the “Dismiss”-button? If
it’s the case, apply performance optimization techniques to prevent re-rendering.

• Remove all performance optimizations to keep the application simple. Our current application
doesn’t suffer from any performance bottlenecks. Try to avoid premature optimzations²⁵⁹. Use
this section and its further reading material as a reference, in case you run into performance
problems.

²⁵⁷https://tinyurl.com/3423xu4v
²⁵⁸https://www.robinwieruch.de/react-usememo-hook/
²⁵⁹https://bit.ly/3AYktL8

https://tinyurl.com/3423xu4v
https://www.robinwieruch.de/react-usememo-hook/
https://bit.ly/3AYktL8
https://tinyurl.com/3423xu4v
https://www.robinwieruch.de/react-usememo-hook/
https://bit.ly/3AYktL8

React Maintenance 195

TypeScript in React

TypeScript for JavaScript and React has many benefits for developing robust applications. Instead of
getting type errors on runtime on the command line or browser, TypeScript integration presents
them during compile time inside the IDE. It shortens the feedback loop for a developer, while
it improves the developer experience. In addition, the code becomes more self-documenting and
readable, because every variable is defined with a type. Also moving code blocks or performing
a larger refactoring of a codebase becomes much more efficient. Statically typed languages like
TypeScript are trending because of their benefits over dynamically typed languages like JavaScript.
It’s useful to learn more about TypeScript²⁶⁰ whenever possible.

TypeScript Setup

To use TypeScript in React (with Vite), install TypeScript and its dependencies into your application
using the command line:

Command Line

npm install typescript @types/react @types/react-dom --save-dev

npm install @typescript-eslint/eslint-plugin --save-dev

npm install @typescript-eslint/parser --save-dev

Add three TypeScript configuration files; one for the browser environment, one for the Node
environment, and one to merge both configurations:

Command Line

touch tsconfig.json tsconfig.app.json tsconfig.node.json

In the TypeScript file for the browser environment include the following configuration:

tsconfig.app.json

{

"compilerOptions": {

"tsBuildInfoFile": "./node_modules/.tmp/tsconfig.app.tsbuildinfo",

"target": "ES2020",

"useDefineForClassFields": true,

"lib": ["ES2020", "DOM", "DOM.Iterable"],

"module": "ESNext",

"skipLibCheck": true,

/* Bundler mode */

²⁶⁰https://bit.ly/3G0l3vL

https://bit.ly/3G0l3vL
https://bit.ly/3G0l3vL

React Maintenance 196

"moduleResolution": "bundler",

"allowImportingTsExtensions": true,

"isolatedModules": true,

"moduleDetection": "force",

"noEmit": true,

"jsx": "react-jsx",

/* Linting */

"strict": true,

"noUnusedLocals": true,

"noUnusedParameters": true,

"noFallthroughCasesInSwitch": true,

"noUncheckedSideEffectImports": true

},

"include": ["src"]

}

Then In the TypeScript file for the Node environment include some more configuration:

tsconfig.node.json

{

"compilerOptions": {

"tsBuildInfoFile": "./node_modules/.tmp/tsconfig.node.tsbuildinfo",

"target": "ES2022",

"lib": ["ES2023"],

"module": "ESNext",

"skipLibCheck": true,

/* Bundler mode */

"moduleResolution": "bundler",

"allowImportingTsExtensions": true,

"isolatedModules": true,

"moduleDetection": "force",

"noEmit": true,

/* Linting */

"strict": true,

"noUnusedLocals": true,

"noUnusedParameters": true,

"noFallthroughCasesInSwitch": true,

"noUncheckedSideEffectImports": true

},

React Maintenance 197

"include": ["vite.config.ts"]

}

Finally merge both configurations into the main TypeScript configuration file:

tsconfig.json

{

"files": [],

"references": [

{ "path": "./tsconfig.app.json" },

{ "path": "./tsconfig.node.json" }

]

}

If you have a ESLint configuration, you need to adapt it to TypeScript too:

eslint.config.js

import js from "@eslint/js";

import globals from "globals";

import reactHooks from "eslint-plugin-react-hooks";

import reactRefresh from "eslint-plugin-react-refresh";

import tseslint from "typescript-eslint";

export default tseslint.config(

{ ignores: ["dist"] },

{

extends: [js.configs.recommended, ...tseslint.configs.recommended],

files: ["**/*.{ts,tsx}"],

languageOptions: {

ecmaVersion: 2020,

globals: globals.browser,

},

plugins: {

"react-hooks": reactHooks,

"react-refresh": reactRefresh,

},

rules: {

...reactHooks.configs.recommended.rules,

"react/prop-types": "off",

"react-refresh/only-export-components": [

"warn",

{ allowConstantExport: true },

React Maintenance 198

],

},

}

);

Next, rename all JavaScript files (.jsx) to TypeScript files (.tsx).

Command Line

mv src/main.jsx src/main.tsx

mv src/App.jsx src/App.tsx

And in your index.html file, reference the new TypeScript file instead of a JavaScript file:

index.html

<!doctype html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<link rel="icon" type="image/svg+xml" href="/vite.svg" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />

<title>Vite + React</title>

</head>

<body>

<div id="root"></div>

<script type="module" src="/src/main.tsx"></script>

</body>

</html>

You may also need a new vite-env.d.ts file in your project’s root with the following content:

index.html

/// <reference types="vite/client" />

Restart your development server on the command line. You may encounter compile errors in the
browser and editor/IDE. If you don’t see any errors in your editor/IDE when opening the renamed
TypeScript files (e.g. src/App.tsx), try installing a TypeScript plugin for your editor or a TypeScript
extension for your IDE. Usually you should see red lines under all the values where TypeScript
definitions are missing.

Type Safety for Functions and Components

The application should still start, however, we are missing type definitions in the src/main.tsx and
src/App.tsx files. Let’s start with the former one, because this is only a little change:

React Maintenance 199

src/main.tsx

createRoot(document.getElementById("root")!).render(

<StrictMode>

<App />

</StrictMode>

);

Without this change, TypeScript should output us the following error: Argument of type ‘HTMLEle-
ment | null’ is not assignable to parameter of type ‘Element | DocumentFragment’.. It can be translated
as: “The returned HTML element from getElementById() could be null if there is no such HTML
element, but createRoot() expects it to be an Element.” Because we know for sure that there is a
HTML element with this specific identifier in the index.html file, we are replying TypeScript with
“I know better” by using a so called type assertion (here: as keyword) in TypeScript.

Next, we’ll add type safety²⁶¹ for the entire src/App.tsx file. When looking at a custom React
hook plainly from a programming language perspective, it is just another function. In TypeScript
a function’s input (and optionally output) has to be type safe though. Let’s start by making our
useStorageState() hook type safe where we are telling the function to expect two arguments as
string primitives:

src/App.tsx

const useStorageState = (key: string, initialState: string) => {

...

};

Also, we can tell the function to return an array ([]) with a first value (current state) of type string
and a second value (state updater function) that takes a new value (new state) of type string to
return nothing (void):

src/App.tsx

const useStorageState = (

key: string,

initialState: string

): [string, (newValue: string) => void] => {

...

return [value, setValue];

};

Since TypeScript could already infer this type from React’s useState Hook, we could simply remove
the return type again. However, we need to declare the returned array as TypeScript const, because
otherwise the order of the entries in the array would not be known to other parts of the application:

²⁶¹https://bit.ly/3jhm6xi

https://bit.ly/3jhm6xi
https://bit.ly/3jhm6xi

React Maintenance 200

src/App.tsx

const useStorageState = (key: string, initialState: string) => {

const [value, setValue] = React.useState(

localStorage.getItem(key) || initialState

);

React.useEffect(() => {

localStorage.setItem(key, value);

}, [value, key]);

return [value, setValue] as const;

};

Related to React though, considering the previous type safety improvements for the custom hook, we
hadn’t to add types to the internal React hooks in the function’s body. That’s because type inference
works most of the time for React hooks out of the box. If the initial state of a React useState Hook
is a JavaScript string primitive, then the returned current state will be inferred as a string and the
returned state updater function will only take a string as an argument and return nothing:

Code Playground

const [value, setValue] = React.useState('React');

// value is inferred to be a string

// setValue only takes a string as argument

However, if the initial state would be null initially, we would have to tell TypeScript all of React’s
useState Hook potential types (here with a so called union type in TypeScript where |makes a union
of two or more types). A TypeScript generic²⁶² is used to tell the function (here: a React hook) about
it:

Code Playground

const [value, setValue] = React.useState<string | null>(null);

// value has to be either a string or null

// setValue only takes a string or null as argument

If adding type safety becomes an aftermath for a React application and its components, like in our
case, there are multiple ways on how to approach it. We will start with the props and state for the
leaf components of our application. For example, the Item component receives a story (here: item)
and a callback handler function (here: onRemoveItem). Starting out very verbose, we could add the
inlined types for both function arguments as we did before:

²⁶²https://www.robinwieruch.de/typescript-generics/

https://www.robinwieruch.de/typescript-generics/
https://www.robinwieruch.de/typescript-generics/

React Maintenance 201

src/App.tsx

const Item = ({

item,

onRemoveItem,

}: {

item: {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

};

onRemoveItem: (item: {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

}) => void;

}) => (

...

);

There are two problems: the code is verbose, and it has duplicates (see: item). Let’s get rid of both
problems by defining a custom Story type outside the component, at the top of src/App.jsx:

src/App.tsx

type Story = {

objectID: string;

url: string;

title: string;

author: string;

num_comments: number;

points: number;

};

...

React Maintenance 202

const Item = ({

item,

onRemoveItem,

}: {

item: Story;

onRemoveItem: (item: Story) => void;

}) => (

...

);

The item is of type Story and the onRemoveItem function takes an item of type Story as an argument
and returns nothing. Next, clean up the code by defining the props of the Item component as type
outside of it:

src/App.tsx

type ItemProps = {

item: Story;

onRemoveItem: (item: Story) => void;

};

const Item = ({ item, onRemoveItem }: ItemProps) => (

...

);

From here, we can navigate up the component tree into the List component and apply the same type
definitions for the props. First try it yourself and then check out the following implementation:

src/App.tsx

type ListProps = {

list: Story[];

onRemoveItem: (item: Story) => void;

};

const List = ({ list, onRemoveItem }: ListProps) => (

...

);

React Maintenance 203

The onRemoveItem function is typed twice for the ItemProps and ListProps now. To bemore accurate,
you could extract this to a standalone defined OnRemoveItem TypeScript type and reuse it for both
onRemoveItem prop type definitions. Note, however, that development becomes increasingly difficult
as components are split up into different files. That’s why we will keep the duplication here.

Next we can repurpose the Story type for other components. For instance, add the Story type to the
callback handler in the App component:

src/App.tsx

const App = () => {

...

const handleRemoveStory = (item: Story) => {

dispatchStories({

type: 'REMOVE_STORY',

payload: item,

});

};

...

};

The reducer function manages the Story type as well, without really touching it due to state and
action types. As the application’s developer, we know both objects and their shapes that are passed
to this reducer function:

src/App.tsx

type StoriesState = {

data: Story[];

isLoading: boolean;

isError: boolean;

};

type StoriesAction = {

type: string;

payload: any;

};

const storiesReducer = (

state: StoriesState,

action: StoriesAction

) => {

...

};

React Maintenance 204

The Action type with its string and any (TypeScript wildcard) type definitions are still too broad;
and we gain no real type safety through it, because actions are not distinguishable. We can do better
by specifying each action as a TypeScript type and using a union type (here: StoriesAction) for the
final type safety:

src/App.tsx

type StoriesFetchInitAction = {

type: 'STORIES_FETCH_INIT';

}

type StoriesFetchSuccessAction = {

type: 'STORIES_FETCH_SUCCESS';

payload: Story[];

}

type StoriesFetchFailureAction = {

type: 'STORIES_FETCH_FAILURE';

}

type StoriesRemoveAction = {

type: 'REMOVE_STORY';

payload: Story;

}

type StoriesAction =

StoriesFetchInitAction

| StoriesFetchSuccessAction

| StoriesFetchFailureAction

| StoriesRemoveAction;

const storiesReducer = (

state: StoriesState,

action: StoriesAction

) => {

...

};

The reducer’s current state, action, and returned state (inferred) are type safe now. For example, if
you would dispatch an action to the reducer with an action type that’s not defined, you would get
an error from TypeScript. Or if you would pass something else than a story to the action which
removes a story, you would get a type error as well. Now let’s shift our focus to the SearchForm
component, which has callback handlers with events:

React Maintenance 205

src/App.tsx

type SearchFormProps = {

searchTerm: string;

onSearchInput: (event: React.ChangeEvent<HTMLInputElement>) => void;

searchAction: (formData: FormData) => void;

};

const SearchForm = ({

searchTerm,

onSearchInput,

searchAction,

}: SearchFormProps) => (

...

);

Often using React.SyntheticEvent instead of React.ChangeEvent or React.FormEvent is usually
sufficient. However, most often your applications requires a more specific type. Next, going up to
the App component again, we apply the same type for the callback handler there:

src/App.tsx

const App = () => {

...

const handleSearchInput = (

event: React.ChangeEvent<HTMLInputElement>

) => {

setSearchTerm(event.target.value);

};

...

};

All that’s left is the InputWithLabel component. Before handling this component’s props, let’s take
a look at the ref from React’s useRef Hook. Unfortunately, the return value isn’t inferred:

React Maintenance 206

src/App.tsx

const InputWithLabel = ({ ... }) => {

const inputRef = React.useRef<HTMLInputElement>(null);

React.useEffect(() => {

if (isFocused && inputRef.current) {

inputRef.current.focus();

}

}, [isFocused]);

We made the returned ref type safe and typed it as read-only, because we only execute the focus

method on it (read). React takes over for us there, setting the DOM element to the current property.

Lastly, we will apply type safety checks for the InputWithLabel component’s props. Note the
children prop with its React specific type and the optional types are signaled with a question
mark:

src/App.tsx

type InputWithLabelProps = {

id: string;

value: string;

type?: string;

onInputChange: (event: React.ChangeEvent<HTMLInputElement>) => void;

isFocused?: boolean;

children: React.ReactNode;

};

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}: InputWithLabelProps) => {

...

};

Both the type and isFocused properties are optional. Using TypeScript, you can tell the compiler
that these don’t need to be passed to the component as props. The children prop has a lot of
TypeScript type definitions that could be applicable to this concept, the most universal of which
is React.ReactNode from the React library.

React Maintenance 207

Our entire React application is finally typed by TypeScript, making it easy to spot type errors on
compile time. When adding TypeScript to your React application, start by adding type definitions
to your function’s arguments. These functions can be vanilla JavaScript functions, custom React
hooks, or React function components. Only when using React is it important to know specific types
for form elements, events, and JSX.

Exercises:

• Compare your source code against the author’s source code²⁶³.
– Recap all the source code changes²⁶⁴ from this section.

• While you continue with the learning experience in the following sections, remove or keep
your types with TypeScript. If you do the latter, add new types whenever you get a compile
error.

²⁶³https://tinyurl.com/4v7ecp5w
²⁶⁴https://tinyurl.com/8umbbynt

https://tinyurl.com/4v7ecp5w
https://tinyurl.com/8umbbynt
https://tinyurl.com/4v7ecp5w
https://tinyurl.com/8umbbynt

React Maintenance 208

Testing in React

Testing source code is an essential part of programming and should be seen as a mandatory exercise
for serious developers. The goal is to verify our source code’s quality and functionality before using
it in production. The testing pyramid²⁶⁵ will serve as our guide.

The testing pyramid includes end-to-end tests, integration tests, and unit tests. Unit tests are for
small, isolated blocks of code, such as a single function or component. Integration tests help us
figure out how well these blocks of code work together. And end-to-end tests simulate a real-life
scenario, like a user logging into a web application. While unit tests are quick and easy to write and
maintain; end-to-end tests are the opposite.

Many unit tests are required to cover all the functions and components in a working application,
after which several integration tests make sure that the most important units work together. The
final touch give a few end-to-end tests to simulate critical user scenarios. In this section, we will
cover unit and integration tests, in addition to a useful component-specific testing technique called
snapshot tests. E2E tests will be part of the exercise.

Choosing a testing library can be a challenge for React beginners, as there are many options. To
keep things simple, we’ll employ the most popular tools: Vitest²⁶⁶ and React Testing Library²⁶⁷ (RTL).
Vitest is a full-blown testing framework with test runners, test suites, test cases, and assertions. RTL
is used for rendering React components, triggering events like mouse clicks, and selecting HTML
elements from the DOM to perform assertions. We’ll explore both tools step-by-step, from setup to
unit testing to integration testing.

Before we can write our first test, we have to install Vitest and set it up. Start by typing the following
instruction on the command line:

²⁶⁵https://bit.ly/3BYEra1
²⁶⁶https://vitest.dev/
²⁶⁷https://testing-library.com

https://bit.ly/3BYEra1
https://vitest.dev/
https://testing-library.com/
https://bit.ly/3BYEra1
https://vitest.dev/
https://testing-library.com/

React Maintenance 209

Command Line

npm install vitest --save-dev

Then in your package.json file, add another script which will run the tests eventually:

package.json

"dev": "vite",

"build": "vite build",

"test": "vitest",

"lint": "eslint .",

"preview": "vite preview"

Last, create a new file for testing functions and components:

Command Line

touch src/App.test.jsx

From there we will start writing tests for features that come from the src/App.jsx file next to it.

Test Suites, Test Cases, and Assertions

Test suites and test cases are commonly used in JavaScript and many other programming languages.
A test suite groups the individual test cases into one larger subject. Let’s see how this looks with
Vitest in our src/App.test.jsx file:

src/App.test.jsx

import { describe, it, expect } from 'vitest';

describe('something truthy and falsy', () => {

it('true to be true', () => {

expect(true).toBe(true);

});

it('false to be false', () => {

expect(false).toBe(false);

});

});

The “describe” block is our test suite, and the “it” blocks are our test cases. Note that test cases can
be used without test suites:

React Maintenance 210

Code Playground

import { it, expect } from 'vitest';

it('true to be true', () => {

expect(true).toBe(true);

});

it('false to be false', () => {

expect(false).toBe(false);

});

Large subjects like functions or components often require multiple test cases, so it makes sense to
use them with test suites:

Code Playground

describe('App component', () => {

it('removes an item when clicking the Dismiss button', () => {

});

it('requests some initial stories from an API', () => {

});

});

Finally you can run tests using the test script from your package.json on the command line with npm

run test to produce the following output:

Command Line

✓ src/App.test.jsx (2)

✓ something truthy and falsy (2)

✓ true to be true

✓ false to be false

Test Files 1 passed (1)

Tests 2 passed (2)

Start at 13:19:38

Duration 122ms

Whenwe run the test command, the test runnermatches all files with a test.jsx suffix. Successful tests
are displayed in green, failed tests in red. The interactive test script watches your tests and source

React Maintenance 211

code and executes tests when the files change. Vitest also provides a few interactive commands (press
“h” to see all of them), such as pressing “f” to run failed tests and “a” for running all tests. Let’s see
how this looks for a failed test:

src/App.test.jsx

import { describe, it, expect } from 'vitest';

describe('something truthy and falsy', () => {

it('true to be true', () => {

expect(true).toBe(true);

});

it('false to be false', () => {

expect(false).toBe(true);

});

});

The tests run again, and the command line output shows a failed test in red:

Command Line

AssertionError: expected false to be true // Object.is equality

- Expected

+ Received

- true

+ false

src/App.test.jsx:9:19

7|

8| it('false to be false', () => {

9| expect(false).toBe(true);

| ^

10| });

11| });

Test Files 1 failed (1)

Tests 1 failed | 1 passed (2)

Start at 13:20:44

Duration 124ms

FAIL Tests failed. Watching for file changes...

press h to show help, press q to quit

React Maintenance 212

Familiarize yourself with this test output, because it shows all failed tests, as well as information
on why they failed. Using this information, you can fix certain parts of your code until all tests
run green. Next, we’ll cover test assertions, two of which we’ve already used with Vitest’s expect
function. An assertion works by expecting value on the left side (expect) to match a value on the
right side (toBe). toBe is only one of many available assertive functions provided by Vitest.

src/App.test.jsx

import { describe, it, expect } from 'vitest';

describe('something truthy and falsy', () => {

it('true to be true', () => {

expect(true).toBeTruthy();

});

it('false to be false', () => {

expect(false).toBeFalsy();

});

});

Once you start testing, it’s a good practice to keep two command line interfaces open: one for
watching your tests (npm run test) and one for developing your application (npm run dev). If
you are using source control like git, you may want to have even one more command line interface
for adding your source code to the repository.

Exercises:

• Compare your source code against the author’s source code²⁶⁸.
– Recap all the source code changes²⁶⁹ from this section.

• Read more about Vitest²⁷⁰.

Unit Testing: Functions

A unit test is generally used to test components or functions in isolation. For functions, unit tests
are for input and output; for components, we test props, callback handlers communicating to the
outside, or the output of the components. Before we can perform a unit test on our src/App.jsx file,
we must export components and functions like the reducer from our src/App.jsx file with a named
export:

²⁶⁸https://tinyurl.com/bdfyt6bd
²⁶⁹https://tinyurl.com/2zbz4jdh
²⁷⁰https://vitest.dev/

https://tinyurl.com/bdfyt6bd
https://tinyurl.com/2zbz4jdh
https://vitest.dev/
https://tinyurl.com/bdfyt6bd
https://tinyurl.com/2zbz4jdh
https://vitest.dev/

React Maintenance 213

src/App.jsx

...

export default App;

export { storiesReducer, SearchForm, InputWithLabel, List, Item };

The exercises at the end of this chapter will cover all the remaining tests you should consider
performing. For now, we can import all the components and reducers in our src/App.test.jsx file
and we will focus on the reducer test first. We are also importing React here, because we have to
include it whenever we test React components:

src/App.test.jsx

import { describe, it, expect } from 'vitest';

import App, {

storiesReducer,

Item,

List,

SearchForm,

InputWithLabel,

} from './App';

Before we unit test our first React component, we’ll cover how to test just a JavaScript function.
The best candidate for this test use case is the storiesReducer function and one of its actions. Let’s
define some test data and the test suite for the reducer test:

src/App.test.jsx

...

const storyOne = {

title: 'React',

url: 'https://react.dev/',

author: 'Jordan Walke',

num_comments: 3,

points: 4,

objectID: 0,

};

const storyTwo = {

title: 'Redux',

React Maintenance 214

url: 'https://redux.js.org/',

author: 'Dan Abramov, Andrew Clark',

num_comments: 2,

points: 5,

objectID: 1,

};

const stories = [storyOne, storyTwo];

describe('storiesReducer', () => {

it('removes a story from all stories', () => {

});

});

If you extrapolate the test cases, there should be one test case per reducer action. We will focus on
a single action, which you can use to perform the rest as exercise yourself. The reducer function
accepts a state and an action, and then returns a new state, so all reducer tests essentially follow the
same pattern:

src/App.test.jsx

...

describe('storiesReducer', () => {

it('removes a story from all stories', () => {

const action = // TODO: some action

const state = // TODO: some current state

const newState = storiesReducer(state, action);

const expectedState = // TODO: the expected state

expect(newState).toBe(expectedState);

});

});

For our case, we define action, state, and expected state according to our reducer. The expected state
will have one less story, which was removed as it passed to the reducer as action:

React Maintenance 215

src/App.test.jsx

describe('storiesReducer', () => {

it('removes a story from all stories', () => {

const action = { type: 'REMOVE_STORY', payload: storyOne };

const state = { data: stories, isLoading: false, isError: false };

const newState = storiesReducer(state, action);

const expectedState = {

data: [storyTwo],

isLoading: false,

isError: false,

};

expect(newState).toBe(expectedState);

});

});

This test still fails because we are using toBe instead of toStrictEqual. The toBe assertive function
makes a strict comparison like newState === expectedState. The content of the objects are the
same, however, their object references are not the same. We use toStrictEqual instead of toBe to
limit our comparison to the object’s content:

src/App.test.jsx

expect(newState).toStrictEqual(expectedState);

// expect(newState).toBe(expectedState);

There is always the decision to make for JavaScript objects whether you want to make a strict
comparison or just a content comparison. Most often you only want to have a content comparison
here, hence use toStrictEqual. For JavaScript primitives though, like strings or booleans, you can
still use toBe. Also note that there is a toEqual function which works slightly different²⁷¹ than
toStrictEqual.

We continue to make adjustments until the reducer test turns green, which is really testing a
JavaScript function with a certain input and expecting a certain output. We haven’t done any testing
regarding React components yet.

Remember, a reducer function will always follow the same test pattern: given a state and action,
we expect the following new state. Every action of the reducer could be another test case in our
reducer’s test suite, so consider using the exercises as a way to move through your entire source
code.

²⁷¹https://bit.ly/3jlPpii

https://bit.ly/3jlPpii
https://bit.ly/3jlPpii

React Maintenance 216

Exercises:

• Compare your source code against the author’s source code²⁷².
– Recap all the source code changes²⁷³ from this section.

• Continue to write a test case for every reducer action and its state transition.
• Read more about Vitest’s assertive functions²⁷⁴ like toBe and toStrictEqual.

Unit Testing: Components

We tested our first function in JavaScript with Vitest in the previous section. Next, we’ll test our first
React component in isolation with a unit test. Therefore we have to tell Vitest about the headless
browser environment where we want to render React components, because the test will not start an
actual browser for us. However, the HTML that’s getting rendered with a React component has to
end up somewhere (e.g. headless browser) to make it accessible for testing. The most popular way
to perform this task is installing jsdom²⁷⁵ which acts like a headless browser for us:

Command Line

npm install jsdom --save-dev

Then we can include it to the Vite configuration file:

vite.config.js

import { defineConfig } from 'vite';

import react from '@vitejs/plugin-react';

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

test: {

environment: 'jsdom',

},

});

In addition, we will render React components in tests with a library called react-testing-library
(RTL). We need to install it too:

²⁷²https://tinyurl.com/yv78dcyr
²⁷³https://tinyurl.com/4vpp7sbe
²⁷⁴https://bit.ly/3xVJbwZ
²⁷⁵https://bit.ly/3LJrExK

https://tinyurl.com/yv78dcyr
https://tinyurl.com/4vpp7sbe
https://bit.ly/3xVJbwZ
https://bit.ly/3LJrExK
https://tinyurl.com/yv78dcyr
https://tinyurl.com/4vpp7sbe
https://bit.ly/3xVJbwZ
https://bit.ly/3LJrExK

React Maintenance 217

Command Line

npm install @testing-library/react @testing-library/jest-dom --save-dev

Afterward, we create a new file for a general testing setup:

Command Line

mkdir tests

cd tests

touch setup.js

And reference it in Vite’s configuration file:

vite.config.js

import { defineConfig } from 'vite';

import react from '@vitejs/plugin-react';

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

test: {

environment: 'jsdom',

setupFiles: './tests/setup.js',

},

});

Last, include the following implementation details in the new setup file for our tests:

tests/setup.js

import { expect, afterEach } from 'vitest';

import { cleanup } from '@testing-library/react';

import * as matchers from "@testing-library/jest-dom/matchers";

expect.extend(matchers);

afterEach(() => {

cleanup();

});

Essentially Vitest’s expect method gets extended by more methods given from RTL. We will
use these methods (e.g. toBeInTheDocument) in our tests soonish. Now we can finally import the
following functions from React Testing Library which are used for component tests:

React Maintenance 218

src/App.test.jsx

import { describe, it, expect } from 'vitest';

import {

render,

screen,

fireEvent,

waitFor,

} from '@testing-library/react';

...

Start with the Item component, where we assert whether it renders all expected properties based
on its given props. Based on the input (read: props), we are asserting an output (rendered HTML).
We’ll use RTL’s render function in each test to render a React component. In this case, we render
the Item component as an element and pass it an item object – one of our previously defined stories
– as props:

src/App.test.jsx

...

const storyOne = { ... };

const storyTwo = { ... };

const stories = [storyOne, storyTwo];

describe('storiesReducer', () => {

...

});

describe('Item', () => {

it('renders all properties', () => {

render(<Item item={storyOne} />);

});

});

After rendering it, we didn’t do any testing yet (the tests are turning out green though, because
there was no failed test in the test file), so we can use the debug function from RTL’s screen object
to output on the command line what has been rendered in jsdom’s environment:

React Maintenance 219

src/App.test.jsx

describe('Item', () => {

it('renders all properties', () => {

render(<Item item={storyOne} />);

screen.debug();

});

});

Run the tests with npm run test, and you’ll see the output from the debug function. It prints all your
component’s and child component’s HTML elements. The output should be similar to the following:

Command Line

<body>

<div>

<a

href="https://reactjs.org/"

>

React

Jordan Walke

3

4

<button

type="button"

>

Dismiss

</button>

</div>

</body>

React Maintenance 220

Here you should form the habit of using RTL’s debug function whenever you render a new
component in a React component test. The function gives a useful overview of what is rendered
and informs the best way to proceed with testing. Based on the current output, we can start with
our first assertion. RTL’s screen object provides a function called getByText, one of many search
functions:

src/App.test.jsx

describe('Item', () => {

it('renders all properties', () => {

render(<Item item={storyOne} />);

expect(screen.getByText('Jordan Walke')).toBeInTheDocument();

expect(screen.getByText('React')).toHaveAttribute(

'href',

'https://react.dev/'

);

});

});

For the two assertions, we use the two assertive functions toBeInTheDocument and toHaveAttribute

(both needed the expect extension from the tests/setup.js file). These are to verify an element with
the text “Jordan Walke” is in the document, and the presence of an element with the text “React”
with a specific href attribute value. Over time, you will see more of these assertive functions being
used.

RTL’s getByText search function finds the one element with the visible texts “Jordan Walke” and
“React”. We can use the getAllByText equivalent to find more than one element. Similar equivalents
exist for other search functions.

The getByText function returns the element with a text that users can see, which relates to the real-
world use of the application. Note that getByText is not the only search function, though. Another
highly-used search function is the getByRole or getAllByRole function:

src/App.test.jsx

describe('Item', () => {

it('renders all properties', () => {

...

});

it('renders a clickable dismiss button', () => {

render(<Item item={storyOne} />);

expect(screen.getByRole('button')).toBeInTheDocument();

React Maintenance 221

});

});

The getByRole function is usually used to retrieve elements by aria-label attributes²⁷⁶. However,
there are also implicit roles on HTML elements²⁷⁷ – like “button” for a button HTML element. Thus
you can select elements not only by visible text, but also by their (implicit) accessibility role with
React Testing Library. A neat feature of getRoleBy is that it suggests roles if you provide a role that’s
not available²⁷⁸.

src/App.test.jsx

describe('Item', () => {

it('renders all properties', () => {

...

});

it('renders a clickable dismiss button', () => {

render(<Item item={storyOne} />);

screen.getByRole('');

expect(screen.getByRole('button')).toBeInTheDocument();

});

});

Which should output something similar to the following on the command line:

Command Line

TestingLibraryElementError:

Unable to find an accessible element with the role ""

Here are the accessible roles:

listitem:

Name "":

link:

Name "React":

<a

href="https://reactjs.org/"

²⁷⁶https://mzl.la/49oo8U0
²⁷⁷https://mzl.la/3n7SgN7
²⁷⁸https://bit.ly/3pnPXrQ

https://mzl.la/49oo8U0
https://mzl.la/3n7SgN7
https://bit.ly/3pnPXrQ
https://bit.ly/3pnPXrQ
https://mzl.la/49oo8U0
https://mzl.la/3n7SgN7
https://bit.ly/3pnPXrQ

React Maintenance 222

/>

button:

Name "Dismiss":

<button

type="button"

/>

Both, getByText and getByRole are RTL’s most widely used search functions. We can continue here
by asserting not only that everything is in the document, but also by asserting whether our events
work as expected. For example, the Item component’s button element can be clicked and we want
to verify that the callback handler gets called. Therefore, we are using Vitest for creating a mocked
function which we provide as a callback handler to the Item component. Then, after firing a click
event with React Testing Library on the button, we want to assert that the callback handler function
has been called:

src/App.test.jsx

import { describe, it, expect, vi } from 'vitest';

...

describe('Item', () => {

it('renders all properties', () => {

...

});

it('renders a clickable dismiss button', () => {

...

});

it('clicking the dismiss button calls the callback handler', () => {

const handleRemoveItem = vi.fn();

render(<Item item={storyOne} onRemoveItem={handleRemoveItem} />);

fireEvent.click(screen.getByRole('button'));

expect(handleRemoveItem).toHaveBeenCalledTimes(1);

});

});

Vitest lets us pass a test-specific function to the Item component as a prop. These test-specific
functions are called spy, stub, ormock; each is used for different test scenarios. The vi.fn() returns

React Maintenance 223

us a mock for the actual function, which lets us capture when it’s called. As a result, we can use
Vitest’s assertions like toHaveBeenCalledTimes, which lets us assert a number of times the function
has been called; and toHaveBeenCalledWith, to verify arguments that are passed to it.

Every time we want to mock a JavaScript function, whether it has been called or whether it received
certain arguments, we can use Vitest’s helper function to create a mocked function. Then, after
invoking this function with RTL’s fireEvent object’s function, we can assert that the provided
callback handler – which is the mocked function – has been called one time.

In the last exercise we tested the Item component’s input and output via rendering assertions and
callback handler assertions. We are not testing real state changes yet, however, as there is no actual
item removed from the DOM after clicking the “Dismiss”-button. The logic to remove the item from
the list is in the App component, but we are only testing the Item component in isolation. Sometimes
it’s just useful to test whether a single block works, before testing everything all together. We will
test the actual implementation logic for removing an Item when we cover the App component later.

For now, the SearchForm component uses the InputWithLabel component as a child component. We
will make this to our next test case. As before, we will start by rendering the component, here the
parent component, and providing all the essential props:

src/App.test.jsx

...

describe('SearchForm', () => {

const searchFormProps = {

searchTerm: 'React',

onSearchInput: vi.fn(),

searchAction: vi.fn(),

};

it('renders the input field with its value', () => {

render(<SearchForm {...searchFormProps} />);

screen.debug();

});

});

Again, we start with the debugging. After evaluating what renders on the command line, we
can make the first assertion for the SearchForm component. With input fields in place, the
getByDisplayValue search function from RTL is the perfect candidate to return the input field as an
element:

React Maintenance 224

src/App.test.jsx

describe('SearchForm', () => {

const searchFormProps = { ... };

it('renders the input field with its value', () => {

render(<SearchForm {...searchFormProps} />);

expect(screen.getByDisplayValue('React')).toBeInTheDocument();

});

});

Since the HTML input element is rendered with a default value, we can use the default value (here:
“React”), which is the displayed value in our test assertion. If the input element doesn’t have a default
value, the application could show a placeholder with the placeholder HTML attribute on the input
field. Then we’d use another function from RTL called getByPlaceholderText, which is used for
searching an element with a placeholder text.

Because the debug information presented multiple options to query the HTML, we could continue
with one more test to assert the rendered label:

src/App.test.jsx

describe('SearchForm', () => {

const searchFormProps = { ... };

it('renders the input field with its value', () => {

...

});

it('renders the correct label', () => {

render(<SearchForm {...searchFormProps} />);

expect(screen.getByLabelText(/Search/)).toBeInTheDocument();

});

});

The getByLabelText search function allows us to find an element by a label in a form. This is useful
for components that render multiple labels and HTML controls. However, you may have noticed
we used a regular expression²⁷⁹ here. If we used a string instead, the colon for “Search:” must be
included. By using a regular expression, we are matching strings that include the “Search” string,
which makes finding elements much more efficient. For this reason, you may find yourself using
regular expressions instead of strings quite often.

²⁷⁹https://mzl.la/3CdDjiZ

https://mzl.la/3CdDjiZ
https://mzl.la/3CdDjiZ

React Maintenance 225

Anyway, perhaps it would be more interesting to test the interactive parts of the SearchForm
component. Since our callback handlers, which are passed as props to the SearchForm component,
are already mocked with Vitest, we can assert whether these functions get called appropriately:

src/App.test.jsx

describe('SearchForm', () => {

const searchFormProps = {

searchTerm: 'React',

onSearchInput: vi.fn(),

searchAction: vi.fn(),

};

...

it('calls onSearchInput on input field change', () => {

render(<SearchForm {...searchFormProps} />);

fireEvent.change(screen.getByDisplayValue('React'), {

target: { value: 'Redux' },

});

expect(searchFormProps.onSearchInput).toHaveBeenCalledTimes(1);

});

it('calls searchAction on button submit click', () => {

render(<SearchForm {...searchFormProps} />);

fireEvent.click(screen.getByRole('button'));

expect(searchFormProps.searchAction).toHaveBeenCalledTimes(1);

});

});

Similar to the Item component, we tested input (props) and output (callback handler) for the Search-
Form component. The difference is that the SearchForm component renders a child component
called InputWithLabel. If you check the debug output, you’ll likely notice that React Testing Library
just renders the whole component tree for both components. This happens because the end-user
wouldn’t care about the component tree either, but only about the HTML that is getting displayed.
So the React Testing Library outputs all the HTML that matters for the user and thus the test.

All the callback handler tests for Item and SearchForm component verify only whether the functions
have been called. No React re-rendering occurs, because all the components are tested in isolation
without statemanagement, which solely happens in the App component. Real testingwith RTL starts

React Maintenance 226

further up the component tree, where state changes and side-effects can be evaluated. Therefore, let
me introduce integration testing next.

Exercises:

• Compare your source code against the author’s source code²⁸⁰.
– Recap all the source code changes²⁸¹ from this section.

• Read more about React Testing Library²⁸².
– Read more about search functions²⁸³.

• Use toHaveBeenCalledWith next to toHaveBeenCalledTimes to make your assertions more
bullet proof.

• Add tests for your List and InputWithLabel components.

Integration Testing: Component

React Testing Library adheres to a single core philosophy: instead of testing implementation details
of React components, it tests how users interact with the application and if it works as expected.
This becomes especially powerful for integration tests.

We’ll need to provide some data before we test the App component, since it makes requests for data
from a remote API after its initial render. Because we are using axios for the data fetching in the
App component, we’ll have to mock it with Vitest at the top of the testing file:

src/App.test.jsx

...

import axios from 'axios';

...

vi.mock('axios');

...

Next, implement the data you want to be returned from the mocked API request with a JavaScript
Promise, and use it for the axios mock. Afterward, we can render our component and assume the
correct data is mocked for our API request:

²⁸⁰https://tinyurl.com/2tcf5pve
²⁸¹https://tinyurl.com/2kmmzrtv
²⁸²https://bit.ly/30KueQH
²⁸³https://bit.ly/3jjUw2t

https://tinyurl.com/2tcf5pve
https://tinyurl.com/2kmmzrtv
https://bit.ly/30KueQH
https://bit.ly/3jjUw2t
https://tinyurl.com/2tcf5pve
https://tinyurl.com/2kmmzrtv
https://bit.ly/30KueQH
https://bit.ly/3jjUw2t

React Maintenance 227

src/App.test.jsx

...

describe('App', () => {

it('succeeds fetching data', () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

screen.debug();

});

});

Nowwe’ll use React Testing Library’s waitFor helper function towait until the promise resolves after
the component’s initial render. With async/await, we can implement this like synchronous code. The
debug function from RTL is useful because it outputs the App component’s elements before and after
the request:

src/App.test.jsx

describe('App', () => {

it('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

screen.debug();

await waitFor(async () => await promise);

screen.debug();

React Maintenance 228

});

});

In the debug’s output, we see the loading indicator renders for the first debug function, but not the
second. This is because the data fetching and component re-render complete after we resolve the
promise in our test with waitFor. Let’s assert the loading indicator for this case:

src/App.test.jsx

describe('App', () => {

it('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

expect(screen.queryByText(/Loading/)).toBeInTheDocument();

await waitFor(async () => await promise);

expect(screen.queryByText(/Loading/)).toBeNull();

});

});

Because we’re testing for a returned element that is absent, this time we use RTL’s queryByText
instead of the getByText function. Using getByText in this instance would produce an error, because
the element can’t be found; but with queryByText the value just returns null.

Again, we’re using a regular expression /Loading/ instead of a string 'Loading'. To use a string,
we’d have to explicitly use 'Loading ...' instead of 'Loading'. With a regular expression, we
don’t need to provide the whole string, we just need to match a part of it.

Next, we can assert whether or not our fetched data gets rendered as expected:

React Maintenance 229

src/App.test.jsx

describe('App', () => {

it('succeeds fetching data', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

expect(screen.queryByText(/Loading/)).toBeInTheDocument();

await waitFor(async () => await promise);

expect(screen.queryByText(/Loading/)).toBeNull();

expect(screen.getByText('React')).toBeInTheDocument();

expect(screen.getByText('Redux')).toBeInTheDocument();

expect(screen.getAllByText('Dismiss').length).toBe(2);

});

});

The happy path²⁸⁴ for the data fetching is tested now. Similarly, we can test the unhappy path in case
of a failed API request. The promise needs to reject and the error should be caught with a try/catch
block:

src/App.test.jsx

describe('App', () => {

it('succeeds fetching data', async () => {

...

});

it('fails fetching data', async () => {

const promise = Promise.reject();

axios.get.mockImplementationOnce(() => promise);

render(<App />);

²⁸⁴https://bit.ly/3jiAbuB

https://bit.ly/3jiAbuB
https://bit.ly/3jiAbuB

React Maintenance 230

expect(screen.getByText(/Loading/)).toBeInTheDocument();

try {

await waitFor(async () => await promise);

} catch (error) {

expect(screen.queryByText(/Loading/)).toBeNull();

expect(screen.queryByText(/went wrong/)).toBeInTheDocument();

}

});

});

There may be some confusion about when to use getBy or the queryBy search variants. As a rule of
thumb, use getBy for single elements, and getAllBy for multiple elements. If you are checking for
elements that aren’t present, use queryBy (or queryAllBy). In this code, I preferred using queryBy for
the sake of alignment and readability.

Now we know the initial data fetching works for our App component, so we can move to testing
user interactions. We have only tested user actions in the child components thus far, by firing events
without any state and side-effect. Next, we’ll remove an item from the list after the data has been
fetched successfully. Since the item with “Jordan Walke” is the first rendered item in the list, it gets
removed if we click the first “Dismiss”-button:

src/App.test.jsx

describe('App', () => {

...

it('removes a story', async () => {

const promise = Promise.resolve({

data: {

hits: stories,

},

});

axios.get.mockImplementationOnce(() => promise);

render(<App />);

await waitFor(async () => await promise);

expect(screen.getAllByText('Dismiss').length).toBe(2);

expect(screen.getByText('Jordan Walke')).toBeInTheDocument();

React Maintenance 231

fireEvent.click(screen.getAllByText('Dismiss')[0]);

expect(screen.getAllByText('Dismiss').length).toBe(1);

expect(screen.queryByText('Jordan Walke')).toBeNull();

});

});

To test the search feature, we set up the mocking differently, because we’re handling initial request,
plus another request once the user searches for more stories by a specific search term:

src/App.test.jsx

describe('App', () => {

...

it('searches for specific stories', async () => {

const reactPromise = Promise.resolve({

data: {

hits: stories,

},

});

const anotherStory = {

title: 'JavaScript',

url: 'https://en.wikipedia.org/wiki/JavaScript',

author: 'Brendan Eich',

num_comments: 15,

points: 10,

objectID: 3,

};

const javascriptPromise = Promise.resolve({

data: {

hits: [anotherStory],

},

});

axios.get.mockImplementation((url) => {

if (url.includes('React')) {

return reactPromise;

}

React Maintenance 232

if (url.includes('JavaScript')) {

return javascriptPromise;

}

throw Error();

});

});

});

Instead of mocking the request once with Vitest (mockImplementationOnce), now we mock multiple
requests (mockImplementation). Depending on the incoming URL, the request either returns the
initial list (“React”-related stories), or the new list (“JavaScript”-related stories). If we provide an
incorrect URL to the request, the test throws an error for confirmation. As before, let’s render the
App component:

src/App.test.jsx

describe('App', () => {

...

it('searches for specific stories', async () => {

const reactPromise = Promise.resolve({ ... });

const anotherStory = { ... };

const javascriptPromise = Promise.resolve({ ... });

axios.get.mockImplementation((url) => {

...

});

// Initial Render

render(<App />);

// First Data Fetching

await waitFor(async () => await reactPromise);

expect(screen.queryByDisplayValue('React')).toBeInTheDocument();

expect(screen.queryByDisplayValue('JavaScript')).toBeNull();

expect(screen.queryByText('Jordan Walke')).toBeInTheDocument();

React Maintenance 233

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeInTheDocument();

expect(screen.queryByText('Brendan Eich')).toBeNull();

});

});

We are resolving the first promise for the initial render. We expect the input field to render “React”,
and the two items in the list to render the creators of React and Redux. We also make sure that
no stories related to JavaScript are rendered yet. Next, change the input field’s value by firing an
event, and asserting that the new value is rendered from the App component through all its child
components in the actual input field:

src/App.test.jsx

describe('App', () => {

...

it('searches for specific stories', async () => {

...

expect(screen.queryByText('Jordan Walke')).toBeInTheDocument();

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeInTheDocument();

expect(screen.queryByText('Brendan Eich')).toBeNull();

// User Interaction -> Search

fireEvent.change(screen.queryByDisplayValue('React'), {

target: {

value: 'JavaScript',

},

});

expect(screen.queryByDisplayValue('React')).toBeNull();

expect(

screen.queryByDisplayValue('JavaScript')

).toBeInTheDocument();

});

});

React Maintenance 234

Lastly, we can submit this search request by firing a submit event with the button. The new search
term is used from the App component’s state, so the new URL searches for JavaScript-related stories
that we have mocked before:

src/App.test.jsx

describe('App', () => {

...

it('searches for specific stories', async () => {

...

expect(screen.queryByDisplayValue('React')).toBeNull();

expect(

screen.queryByDisplayValue('JavaScript')

).toBeInTheDocument();

fireEvent.click(screen.queryByText('Submit'));

// Second Data Fetching

await waitFor(async () => await javascriptPromise);

expect(screen.queryByText('Jordan Walke')).toBeNull();

expect(

screen.queryByText('Dan Abramov, Andrew Clark')

).toBeNull();

expect(screen.queryByText('Brendan Eich')).toBeInTheDocument();

});

});

Brendan Eich is rendered as the creator of JavaScript, while the creators of React and Redux are
removed. This test depicts an entire test scenario in one test case. We can move through each step –
initial fetching, changing the input field value, submitting the form, and retrieving new data from
the API – with the tools we’ve used.

React Testing Library with Vitest is the most popular library combination for React testing. RTL
provides relevant testing tools, while Vitest has a general testing framework for test suites, test cases,
assertions, and mocking capabilities. If you need an alternative to RTL, consider trying Enzyme²⁸⁵
by Airbnb.

²⁸⁵https://www.robinwieruch.de/react-testing-jest-enzyme/

https://www.robinwieruch.de/react-testing-jest-enzyme/
https://www.robinwieruch.de/react-testing-jest-enzyme/

React Maintenance 235

Exercises:

• Compare your source code against the author’s source code²⁸⁶.
– Recap all the source code changes²⁸⁷ from this section.

• Read more about React Testing Library in React²⁸⁸.
• Read more about E2E tests in React²⁸⁹.
• While you continue with the upcoming sections, keep your tests green and add new tests when
needed.

Snapshot Testing

Snapshot tests as a more lightweight way to test React components and their structure. Essentially
a snapshot test creates an instance of your rendered component’s output as HTML elements and
their structure. This snapshot is compared to the same snapshot in the next test to give more output
on how the rendered component changed and show why any tests failed in the difference. You can
accept or deny any differences in your source code until the component functions as intended.

Snapshot tests are lightweight, with less focus on the implementation details of the component. Let’s
perform a snapshot test for our SearchForm component:

src/App.test.jsx

describe('SearchForm', () => {

...

it('renders snapshot', () => {

const { container } = render(<SearchForm {...searchFormProps} />);

expect(container.firstChild).toMatchSnapshot();

});

});

Run the tests with npm run test and you’ll see a new src/_snapshots_ folder has been created in
your project folder. Similar to RTL’s debug function, there’s a snapshot of your rendered SearchForm
component as an HTML element structure in the file. Next, head to src/App.jsx file and change the
HTML. For example, try removing the bold text from the SearchForm component:

²⁸⁶https://tinyurl.com/mr2udtdx
²⁸⁷https://tinyurl.com/mt8ym9an
²⁸⁸https://www.robinwieruch.de/react-testing-library/
²⁸⁹https://www.robinwieruch.de/react-testing-cypress/

https://tinyurl.com/mr2udtdx
https://tinyurl.com/mt8ym9an
https://www.robinwieruch.de/react-testing-library/
https://www.robinwieruch.de/react-testing-cypress/
https://tinyurl.com/mr2udtdx
https://tinyurl.com/mt8ym9an
https://www.robinwieruch.de/react-testing-library/
https://www.robinwieruch.de/react-testing-cypress/

React Maintenance 236

src/App.jsx

const SearchForm = ({

searchTerm,

onSearchInput,

searchAction,

}) => (

<form action={searchAction}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

After the next test, the command line should look similar to the following:

Command Line

- Expected - 3

+ Received + 1

<label

for="search"

>

-

- Search:

-

+ Search:

</label>

Snapshots 1 failed

This is a typical case for a breaking snapshot test. When a component’s HTML structure is changed
unintentionally, the snapshot test informs us on the command line. To fix it, we would go into

React Maintenance 237

the src/App.jsx file and edit the SearchForm component. For intentional changes, press “u” on the
command line for interactive tests and a new snapshot will be created. Try it and see how the
snapshot file in your src/_snapshots_ folder changes.

Vitest stores snapshots in a folder so it can validate the difference against future snapshot tests. Users
can share these snapshots across teams using version control platforms like git. This is how we make
sure the DOM stays the same.

Snapshot tests are useful for setting up tests quickly in React, though it’s best to avoid using them
exclusively. Instead, use snapshot tests for components that don’t update often, are less complex,
and where it’s easier to compare component results.

Exercises:

• Compare your source code against the author’s source code²⁹⁰.
– Recap all the source code changes²⁹¹ from this section.

• Add one snapshot test for each of all the other components and check the content of your
src/_snapshots_/ folder.

²⁹⁰https://tinyurl.com/nhzuv8by
²⁹¹https://tinyurl.com/y89ru5y9

https://tinyurl.com/nhzuv8by
https://tinyurl.com/y89ru5y9
https://tinyurl.com/nhzuv8by
https://tinyurl.com/y89ru5y9

React Maintenance 238

React Project Structure

With multiple React components in one file, you might wonder why we didn’t put components
into different files from the start. We already have multiple components in the src/App.jsx file that
can be defined in their own files/folders (sometimes also called modules). For learning, it’s more
practical to keep these components in one place. Once your application grows, consider splitting
these components into multiple files/folders/modules so it scales properly. Before we restructure our
React project, recap JavaScript’s import and export statements²⁹², because importing and exporting
files are two fundamental concepts in JavaScript you should learn before React.

It’s important to note that there’s no right way to structure a React application, as they evolve
naturally along with the project’s requirements.We’ll complete a simple refactoring for this project’s
folder/file structure for the sake of learning about the process. Afterward, there will be an important
article as exercise about the folder/file organizations of React projects.

On the command line in your project’s folder, create the following files for all of our components in
the src/ folder:

Command Line

touch src/list.jsx src/input-with-label.jsx src/search-form.jsx

Move every component from the src/App.jsx file in its own file, except for the List component which
has to share its place with the Item component in the src/list.jsx file. Then in every file make sure
to import React and to export the component which needs to be used from the file. For example, in
src/list.jsx file:

src/list.jsx

const List = ({ list, onRemoveItem }) => (

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

const Item = ({ item, onRemoveItem }) => (

²⁹²https://www.robinwieruch.de/javascript-import-export/

https://www.robinwieruch.de/javascript-import-export/
https://www.robinwieruch.de/javascript-import-export/

React Maintenance 239

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

export { List };

Since only the List component uses the Item component, we can keep it in the same file. If this
changes because the Item component is used elsewhere, we can give the Item component its own
file. Next, the InputWithLabel component gets its dedicated file too:

src/input-with-label.jsx

import * as React from 'react';

const InputWithLabel = ({

id,

value,

type = 'text',

onInputChange,

isFocused,

children,

}) => {

const inputRef = React.useRef();

React.useEffect(() => {

if (isFocused && inputRef.current) {

inputRef.current.focus();

}

}, [isFocused]);

return (

<>

<label htmlFor={id}>{children}</label>

<input

React Maintenance 240

ref={inputRef}

id={id}

type={type}

value={value}

onChange={onInputChange}

/>

</>

);

};

export { InputWithLabel };

The SearchForm component in the src/search-form.jsx file must import the InputWithLabel com-
ponent. Like the Item component, we could have left the InputWithLabel component next to the
SearchForm; but our goal is to make InputWithLabel component reusable with other components:

src/search-form.jsx

import { InputWithLabel } from './input-with-label';

const SearchForm = ({ searchTerm, onSearchInput, searchAction }) => (

<form action={searchAction}>

<InputWithLabel

id="search"

value={searchTerm}

isFocused

onInputChange={onSearchInput}

>

Search:

</InputWithLabel>

<button type="submit" disabled={!searchTerm}>

Submit

</button>

</form>

);

export { SearchForm };

The App component has to import all the components it needs to render. It doesn’t need to import
InputWithLabel, because it’s only used for the SearchForm component.

React Maintenance 241

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import { SearchForm } from './search-form';

import { List } from './list';

...

const App = () => {

...

};

export default App;

Components that are used in other components now have their own file. If a component should be
used as a reusable component (e.g. InputWithLabel), it receives its own file. Only if a component
(e.g. Item) is dedicated to another component (e.g. List) do we keep it in the same file. From here,
there are several strategies to structure your folder/file hierarchy. One scenario is to create a folder
for every component:

Project Structure

- list/

-- index.jsx

- search-form/

-- index.jsx

- input-with-label/

-- index.jsx

The index.jsx file holds the implementation details for the component, while other files in the same
folder have different responsibilities like styling, testing, and types:

Project Structure

- list/

-- index.jsx

-- style.css

-- test.js

-- types.js

If using CSS-in-JS, where no CSS file is needed, one could still have a separate style.js file for all the
styled components:

React Maintenance 242

Project Structure

- list/

-- index.jsx

-- style.js

-- test.js

-- types.js

Sometimes we’ll need to move from a technical-oriented folder structure to a domain-oriented
folder structure, especially once the project grows. Universal shared/ folder is shared across domain
specific components:

Project Structure

- messages.jsx

- users.jsx

- shared/

-- button.jsx

-- input.jsx

If you scale this to the deeper level folder structure, each component will have its own folder in a
domain-oriented project structure as well:

Project Structure

- messages/

-- index.jsx

-- style.css

-- test.js

-- types.js

- users/

-- index.jsx

-- style.css

-- test.js

-- types.js

- shared/

-- button/

--- index.jsx

--- style.css

--- test.js

--- types.js

-- input/

--- index.jsx

--- style.css

React Maintenance 243

--- test.js

--- types.js

There are many ways on how to structure your React project from small to large project: simple
to complex folder structure; one-level nested to two-level nested folder nesting; dedicated folders
for styling, types, and testing next to implementation logic. There is no right way for folder/file
structures. However, in the exercises, you will find my 5 steps approach to structure a React project.
After all, a project’s requirements evolve over time and so should its structure. If keeping all assets
in one file feels right, then there is no rule against it.

Exercises:

• Compare your source code against the author’s source code²⁹³.
– Recap all the source code changes²⁹⁴ from this section.

• Read more about React Folder Structures²⁹⁵.
• Read more about Feature-Based React Architectures²⁹⁶.
• Keep the current folder structure if you feel confident. The ongoing sections will omit it, only
using the src/App.jsx file.

²⁹³https://tinyurl.com/3rc7sc86
²⁹⁴https://tinyurl.com/mumvenae
²⁹⁵https://www.robinwieruch.de/react-folder-structure/
²⁹⁶https://www.robinwieruch.de/react-feature-architecture/

https://tinyurl.com/3rc7sc86
https://tinyurl.com/mumvenae
https://www.robinwieruch.de/react-folder-structure/
https://www.robinwieruch.de/react-feature-architecture/
https://tinyurl.com/3rc7sc86
https://tinyurl.com/mumvenae
https://www.robinwieruch.de/react-folder-structure/
https://www.robinwieruch.de/react-feature-architecture/

Real World React (Advanced)
We’ve covered most of React’s fundamentals, its legacy features, and techniques for maintaining
applications. Now it’s time to dive into developing real-world React features. Each of the following
sections will come with a task. Try to tackle these tasks without the optional hints first, but be aware
that these are going to be challenging on your first attempt. If you need help, use the optional hints
or follow the instructions from the section.

Real World React (Advanced) 245

Sorting

Task: Working with a list of items often includes interactions that make data more approachable
by users. So far, every item was listed with each of its properties. To make it explorable, the list
should enable the sorting of each property by title, author, comments, and points in ascending or
descending order. Sorting in only one direction is fine, because sorting in the other direction will be
part of the next task.

Optional Hints:

• Introduce a new sort state in the App or List component.
• For each property (e.g. title, author, points, num_comments) implement an HTML button
which sets the sort state for this property.

• Use the sort state to apply an appropriate sort function on the list.
• Using a utility library like Lodash²⁹⁷ for its sortBy function is encouraged.

Okay, let’s tackle this task! We will treat the list of data like a table. Each row represents an item of
the list and each column represents one property of the item. Introducing headers should provide
the user more guidance about each column:

²⁹⁷https://lodash.com

https://lodash.com/
https://lodash.com/

Real World React (Advanced) 246

src/App.jsx

const List = ({ list, onRemoveItem }) => (

<li style={{ display: 'flex' }}>

Title

Author

Comments

Points

Actions

{list.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

We are using inline style for the most basic layout. To match the layout of the header with the rows,
give the rows in the Item component a layout as well:

src/App.jsx

const Item = ({ item, onRemoveItem }) => (

<li style={{ display: 'flex' }}>

{item.title}

{item.author}

{item.num_comments}

{item.points}

<button type="button" onClick={() => onRemoveItem(item)}>

Dismiss

</button>

);

Real World React (Advanced) 247

In the ongoing implementation, we will remove the style attributes, because it takes up lots of space
and clutters the actual implementation logic (hence extracting it into proper CSS). But I encourage
you to keep it for yourself.

The List component will handle the new sort state. This can also be done in the App component,
but in the end, only the List component needs it, so we can lift the state directly to it. The sort state
initializes with a 'NONE' state, so the list items are displayed in the order they are fetched from the
API. Furthermore, we will add a new handler to set the sort state with a sort-specific key:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState('NONE');

const handleSort = (sortKey) => {

setSort(sortKey);

};

return (

...

);

};

In the List component’s header, buttons can help us to set the sort state for each column/property.
An inline handler is used to sneak in the sort-specific key (sortKey). When the button for the “Title”
column is clicked, 'TITLE' becomes the new sort state:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

...

return (

<button type="button" onClick={() => handleSort('TITLE')}>

Title

</button>

<button type="button" onClick={() => handleSort('AUTHOR')}>

Author

</button>

Real World React (Advanced) 248

<button type="button" onClick={() => handleSort('COMMENT')}>

Comments

</button>

<button type="button" onClick={() => handleSort('POINT')}>

Points

</button>

Actions

{list.map((item) => ...)}

);

};

The state management for the new feature is implemented, but we don’t see anything when our
buttons are clicked yet. This happens because the sorting mechanism hasn’t been applied to the
actual list. Sorting an array with JavaScript isn’t trivial, because every JavaScript primitive (e.g.
string, boolean, number) comes with edge cases when an array is sorted by its properties. We will
use a library called Lodash²⁹⁸ to solve this, which comes with many JavaScript utility functions (e.g.
sortBy). First, install it via the command line:

Command Line

npm install lodash

Second, at the top of your file, import the utility function for sorting:

src/App.jsx

import * as React from 'react';

import axios from 'axios';

import { sortBy } from 'lodash';

...

Third, create a JavaScript object (also called dictionary in this case) with all the possible sortKey and
sort function mappings. Each specific sort key is mapped to a function that sorts the incoming list.
Sorting by 'NONE' returns the unsorted list; sorting by 'POINT' returns a list and its items sorted by
the points property, and so on:

²⁹⁸https://lodash.com

https://lodash.com/
https://lodash.com/

Real World React (Advanced) 249

src/App.jsx

const SORTS = {

NONE: (list) => list,

TITLE: (list) => sortBy(list, 'title'),

AUTHOR: (list) => sortBy(list, 'author'),

COMMENT: (list) => sortBy(list, 'num_comments').reverse(),

POINT: (list) => sortBy(list, 'points').reverse(),

};

const List = ({ list, onRemoveItem }) => {

...

};

With the sort (sortKey) state and all possible sort variations (SORTS) at our disposal, we can sort the
list before mapping it:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState('NONE');

const handleSort = (sortKey) => {

setSort(sortKey);

};

const sortFunction = SORTS[sort];

const sortedList = sortFunction(list);

return (

...

{sortedList.map((item) => (

<Item

key={item.objectID}

item={item}

onRemoveItem={onRemoveItem}

/>

))}

);

};

Real World React (Advanced) 250

Task’s done and here comes the recap: First we extracted the sort function from the dictionary by
its sortKey (state), then we applied the function to the list before mapping it to render each Item
component. Second, we rendered HTML buttons as header columns to give our users interaction.
Then, we added implementation details for each button by changing the sort state. Finally, we used
the sort state to sort the actual list.

Exercises:

• Compare your source code against the author’s source code²⁹⁹.
– Recap all the source code changes³⁰⁰ from this section.

• Read more about Lodash³⁰¹.
• Why did we use numeric properties like points and num_comments for a reverse sort?
• Use your styling skills to give the user feedback about the current active sort. This mechanism
can be as straightforward as giving the active sort button a different color.

²⁹⁹https://tinyurl.com/57ybtsmu
³⁰⁰https://tinyurl.com/2tke4skw
³⁰¹https://lodash.com

https://tinyurl.com/57ybtsmu
https://tinyurl.com/2tke4skw
https://lodash.com/
https://tinyurl.com/57ybtsmu
https://tinyurl.com/2tke4skw
https://lodash.com/

Real World React (Advanced) 251

Reverse Sort

Task: The sort feature works, but the ordering only includes one direction. Implement a reverse sort
when a sort button is clicked twice, so it becomes a toggle between normal (ascending) and reverse
(descending) sort.

Optional Hints:

• Consider that reverse or normal sort could be just another state (e.g. isReverse) next to the
sortKey.

• Set the new state in the handleSort handler based on the previous sort.
• Use the new isReverse state for sorting the list with the sort function from the dictionary with
the optionally applied reverse() function from JavaScript arrays.

Let’s get to the task. The initial sort direction works for strings, as well as numeric sorts like the
reverse sort for JavaScript numbers that arranges them from high to low. Now we need another
state to track whether the sort is reversed or normal:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

...

};

Next, give the sort handler logic to see if the incoming sortKey triggers are a normal or reverse sort.
If the sortKey is the same as the one in the state, it should be a reverse sort, but only if the sort state
wasn’t already reversed:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

const handleSort = (sortKey) => {

const isReverse = sort.sortKey === sortKey && !sort.isReverse;

Real World React (Advanced) 252

setSort({ sortKey: sortKey, isReverse: isReverse });

};

const sortFunction = SORTS[sort.sortKey];

const sortedList = sortFunction(list);

return (

...

);

};

Lastly, depending on the new isReverse state, apply the sort function from the dictionary with or
without the built-in JavaScript reverse method for arrays:

src/App.jsx

const List = ({ list, onRemoveItem }) => {

const [sort, setSort] = React.useState({

sortKey: 'NONE',

isReverse: false,

});

const handleSort = (sortKey) => {

const isReverse = sort.sortKey === sortKey && !sort.isReverse;

setSort({ sortKey, isReverse });

};

const sortFunction = SORTS[sort.sortKey];

const sortedList = sort.isReverse

? sortFunction(list).reverse()

: sortFunction(list);

return (

...

);

};

The reverse sort is now operational! Congratulations, you have a fully sortable list now. And by the
way: For the object passed to the state updater function, we use what is called a shorthand object
initializer notation:

Real World React (Advanced) 253

Code Playground

const firstName = 'Robin';

const user = {

firstName: firstName,

};

console.log(user);

// { firstName: "Robin" }

When the property name in your object is the same as your variable name, you can omit the
key/value pair and just write the name:

Code Playground

const firstName = 'Robin';

const user = {

firstName,

};

console.log(user);

// { firstName: "Robin" }

If necessary, read more about JavaScript Object Initializers³⁰².

Exercises:

• Compare your source code against the author’s source code³⁰³.
– Recap all the source code changes³⁰⁴ from this section.

• Consider the drawback of keeping the sort state in the List instead of the App component. If
you don’t know, sort the list by “Title” and search for other stories afterward. What would be
different if the sort state would be in the App component.

• Use your styling skills to give the user feedback about the current active sort and its reverse
state. It could be an arrow up or arrow down SVG next to each active sort button.

³⁰²https://mzl.la/2XuN651
³⁰³https://tinyurl.com/y96a9sha
³⁰⁴https://tinyurl.com/529w99nz

https://mzl.la/2XuN651
https://tinyurl.com/y96a9sha
https://tinyurl.com/529w99nz
https://mzl.la/2XuN651
https://tinyurl.com/y96a9sha
https://tinyurl.com/529w99nz

Real World React (Advanced) 254

Remember Last Searches

Task: Remember the last five search terms which hit the API, and provide a button to move quickly
between searches. When the buttons are clicked, stories for the search term should be fetched again.

Optional Hints:

• Don’t use a new state for this feature. Instead, reuse the url state and setUrl state updater
function to fetch stories from the API. Adapt them to multiple urls as state, and to set multiple
urlswith setUrls. The last URL from urls can be used to fetch the data, and the last five URLs
from urls can be used to display the buttons.

Let’s get to it. First, we will refactor all url to urls state and all setUrl to setUrls state updater
functions. Instead of initializing the state with an url as a string, make it an array with the initial
url as its only entry:

src/App.jsx
const App = () => {

...

const [urls, setUrls] = React.useState([

`${API_ENDPOINT}${searchTerm}`,

]);

...

};

Second, instead of using the current url state for data fetching, use the last url entry from the urls
array. If another url is added to the list of urls, it is used to fetch data instead:

Real World React (Advanced) 255

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const lastUrl = urls[urls.length - 1];

const result = await axios.get(lastUrl);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: result.data.hits,

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [urls]);

...

};

And third, instead of storing the url string as state with the state updater function, concatenate the
new url using the concat method with the previous urls in an array for the new state:

src/App.jsx

const App = () => {

...

const searchAction = () => {

const url = `${API_ENDPOINT}${searchTerm}`;

setUrls(urls.concat(url));

};

...

};

With each search, another URL is stored in our state of urls. Next, render a button for each of the
last five URLs. We’ll include a new universal handler for these buttons, and each passes a specific
url with a more specific inline handler:

Real World React (Advanced) 256

src/App.jsx

const getLastSearches = (urls) => urls.slice(-5);

...

const App = () => {

...

const handleLastSearch = (url) => {

// do something

};

const lastSearches = getLastSearches(urls);

return (

<div>

<h1>My Hacker Stories</h1>

<SearchForm ... />

{lastSearches.map((url) => (

<button

key={url}

type="button"

onClick={() => handleLastSearch(url)}

>

{url}

</button>

))}

...

</div>

);

};

Next, instead of showing the whole URL of the last search in the button as button text, show only
the search term by replacing the API’s endpoint with an empty string:

Real World React (Advanced) 257

src/App.jsx

const extractSearchTerm = (url) => url.replace(API_ENDPOINT, '');

const getLastSearches = (urls) =>

urls.slice(-5).map((url) => extractSearchTerm(url));

...

const App = () => {

...

const lastSearches = getLastSearches(urls);

return (

<div>

...

{lastSearches.map((searchTerm) => (

<button

key={searchTerm}

type="button"

onClick={() => handleLastSearch(searchTerm)}

>

{searchTerm}

</button>

))}

...

</div>

);

};

The getLastSearches function now returns search terms instead of URLs. The actual searchTerm is
passed to the inline handler instead of the url. By mapping over the list of urls in getLastSearches,
we can extract the search term for each urlwithin the array’s map method. Making it more concise,
it can also look like this:

Real World React (Advanced) 258

src/App.jsx

const getLastSearches = (urls) =>

urls.slice(-5).map(extractSearchTerm);

Now we’ll provide functionality for the new handler used by every button, since clicking one of
these buttons should trigger another search. Since we use the urls state for fetching data, and since
we know the last URL is always used for data fetching, concatenate a new url to the list of urls to
trigger another search request:

src/App.jsx

const App = () => {

...

const handleLastSearch = (searchTerm) => {

const url = `${API_ENDPOINT}${searchTerm}`;

setUrls(urls.concat(url));

};

...

};

If you compare this new handler’s implementation logic to the handleSearchSubmit, you may
see some common functionality. Extract this common functionality to a new handler and a new
extracted utility function:

src/App.jsx

const getUrl = (searchTerm) => `${API_ENDPOINT}${searchTerm}`;

...

const App = () => {

...

const handleSearch = (searchTerm) => {

const url = getUrl(searchTerm);

setUrls(urls.concat(url));

};

const searchAction = () => {

handleSearch(searchTerm);

};

Real World React (Advanced) 259

const handleLastSearch = (searchTerm) => {

handleSearch(searchTerm);

};

...

};

The new utility function can be used somewhere else in the App component. If you extract
functionality that can be used by two parties, always check to see if it can be used by a third-party:

src/App.jsx

const App = () => {

...

// important: still wraps the returned value in []

const [urls, setUrls] = React.useState([getUrl(searchTerm)]);

...

};

The functionality should work, but it complains or breaks if the same search term is used more
than once, because searchTerm is used for each button element as key attribute. Make the key more
specific by concatenating it with the index of the mapped array.

src/App.jsx

const App = () => {

...

return (

<div>

...

{lastSearches.map((searchTerm, index) => (

<button

key={searchTerm + index}

type="button"

onClick={() => handleLastSearch(searchTerm)}

>

{searchTerm}

</button>

))}

Real World React (Advanced) 260

...

</div>

);

};

It’s not the perfect solution, because the index isn’t a stable key (especially when adding items to
the list); however, it doesn’t break in this scenario. The feature works now, but you can add further
UX improvements by following the tasks below.

More Tasks:

• (1) Do not show the current search as a button, only the five preceding searches. Hint: Adapt
the getLastSearches function.

• (2) Don’t show duplicated searches. Searching twice for “React” shouldn’t create two different
buttons. Hint: Adapt the getLastSearches function.

• (3) Set the SearchForm component’s input field value with the last search term if one of the
buttons is clicked.

The source of the five rendered buttons is the getLastSearches function. There, we take the array
of urls and return the last five entries from it. Now we’ll change this utility function to return the
last six entries instead of five by removing the last one, in order to not show the current search as a
button. Afterward, only the five previous searches are displayed as buttons:

src/App.jsx

const getLastSearches = (urls) =>

urls

.slice(-6)

.slice(0, -1)

.map(extractSearchTerm);

If the same search is executed two or more times in a row, duplicate buttons appear, which is likely
not your desired behavior. It would be acceptable to group identical searches into one button if they
followed each other. We will solve this problem in the utility function as well. Before separating the
array into the five previous searches, group the identical searches:

Real World React (Advanced) 261

src/App.jsx

const getLastSearches = (urls) =>

urls

.reduce((result, url, index) => {

const searchTerm = extractSearchTerm(url);

if (index === 0) {

return result.concat(searchTerm);

}

const previousSearchTerm = result[result.length - 1];

if (searchTerm === previousSearchTerm) {

return result;

} else {

return result.concat(searchTerm);

}

}, [])

.slice(-6)

.slice(0, -1);

The reduce function starts with an empty array as its result. The first iteration concatenates the
searchTermwe extracted from the first url into the result. Every extracted searchTerm is compared
to the one before it. If the previous search term is different from the current, concatenate the
searchTerm to the result. If the search terms are identical, return the result without adding anything.

The SearchForm component’s input field should be set with the new searchTerm if one of the last
search buttons is clicked. We can solve this using the state updater function for the specific value
used in the SearchForm component.

src/App.jsx

const App = () => {

...

const handleLastSearch = (searchTerm) => {

setSearchTerm(searchTerm);

handleSearch(searchTerm);

};

...

};

Real World React (Advanced) 262

Lastly, extract the feature’s new rendered content from this section as a standalone component, to
keep the App component lightweight:

src/App.jsx

const App = () => {

...

const lastSearches = getLastSearches(urls);

return (

<div>

...

<SearchForm ... />

<LastSearches

lastSearches={lastSearches}

onLastSearch={handleLastSearch}

/>

<hr />

...

</div>

);

};

const LastSearches = ({ lastSearches, onLastSearch }) => (

<>

{lastSearches.map((searchTerm, index) => (

<button

key={searchTerm + index}

type="button"

onClick={() => onLastSearch(searchTerm)}

>

{searchTerm}

</button>

))}

</>

);

This feature wasn’t an easy one. Lots of fundamental React but also JavaScript knowledge was
needed to accomplish it. If you had no problems implementing it yourself or in following the

Real World React (Advanced) 263

instructions, you are very well set. If you had one or the other issue, don’t worry too much about
it. Maybe you even figured out another way to solve this task and it may have turned out simpler
than the one I showed here.

Exercises:

• Compare your source code against the author’s source code³⁰⁵.
– Recap all the source code changes³⁰⁶ from this section.

• Read more about grouping in JavaScript³⁰⁷.

³⁰⁵https://tinyurl.com/25u4ns35
³⁰⁶https://tinyurl.com/axtabwcj
³⁰⁷https://www.robinwieruch.de/javascript-groupby/

https://tinyurl.com/25u4ns35
https://tinyurl.com/axtabwcj
https://www.robinwieruch.de/javascript-groupby/
https://tinyurl.com/25u4ns35
https://tinyurl.com/axtabwcj
https://www.robinwieruch.de/javascript-groupby/

Real World React (Advanced) 264

Paginated Fetch

Searching for popular stories via Hacker News API is only one step towards a fully functional search
engine, and there are many ways to fine-tune the search. Take a closer look at the data structure
and observe how the Hacker News API³⁰⁸ returns more than a list of hits. Specifically, it returns a
paginated list. The page property, which is 0 in the first response, can be used to fetchmore paginated
lists as results. You only need to pass the next page with the same search term to the API.

The following shows how to implement a paginated fetch with the Hacker News data structure. If
you are used to pagination from other applications, you may have a row of buttons from 1-10 in
your mind – where the currently selected page is highlighted 1-[3]-10 and where clicking one of the
buttons leads to fetching and displaying this subset of data.

In contrast, we will implement the feature as infinite pagination. Instead of rendering a single
paginated list on a button click, we will render all paginated lists as one list with one button to fetch
the next page. Every additional paginated list is concatenated at the end of the one list.

³⁰⁸https://hn.algolia.com/api

https://hn.algolia.com/api
https://hn.algolia.com/api

Real World React (Advanced) 265

Task: Rather than fetching only the first page of a list, extend the functionality for fetching
succeeding pages. Implement this as infinite pagination on button click.

Optional Hints:

• Extend the API_ENDPOINT with the parameters needed for the paginated fetch.
• Store the page from the result as state after fetching the data.
• Fetch the first page (0) of data with every search.
• Fetch the succeeding page (page + 1) for every additional request triggered with a new HTML
button.

Let’s do this! First, extend the API constant so it can deal with paginated data later. We will turn
this one constant:

src/App.jsx

const API_ENDPOINT = 'https://hn.algolia.com/api/v1/search?query=';

const getUrl = (searchTerm) => `${API_ENDPOINT}${searchTerm}`;

Into a composable API constant with its parameters:

Real World React (Advanced) 266

src/App.jsx

const API_BASE = 'https://hn.algolia.com/api/v1';

const API_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

// careful: notice the ? in between

const getUrl = (searchTerm) =>

`${API_BASE}${API_SEARCH}?${PARAM_SEARCH}${searchTerm}`;

Fortunately, we don’t need to adjust the API endpoints at other places of the application, because
we extracted a common getUrl function for it. However, there is one spot where we must address
this logic for the future:

src/App.jsx

const extractSearchTerm = (url) => url.replace(API_ENDPOINT, '');

In the next steps, it won’t be sufficient to replace the base of our API endpoint, which is no longer
in our code. With more parameters for the API endpoint, the URL becomes more complex. It will
change from X to Y:

Code Playground

// X

https://hn.algolia.com/api/v1/search?query=react

// Y

https://hn.algolia.com/api/v1/search?query=react&page=0

It’s better to extract the search term by extracting everything between ? and &. Also consider that
the query parameter is directly after the ? and all other parameters like page follow it:

src/App.jsx

const extractSearchTerm = (url) =>

url.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'));

The key (query=) also needs to be replaced, leaving only the value (searchTerm):

Real World React (Advanced) 267

src/App.jsx

const extractSearchTerm = (url) =>

url

.substring(url.lastIndexOf('?') + 1, url.lastIndexOf('&'))

.replace(PARAM_SEARCH, '');

Essentially, we’ll trim the string until we leave only the search term:

Code Playground.jsx

// url

https://hn.algolia.com/api/v1/search?query=react&page=0

// url after substring

query=react

// url after replace

react

Next, the returned result from the Hacker News API delivers us the page data:

src/App.jsx

const App = () => {

...

const handleFetchStories = React.useCallback(async () => {

dispatchStories({ type: 'STORIES_FETCH_INIT' });

try {

const lastUrl = urls[urls.length - 1];

const result = await axios.get(lastUrl);

dispatchStories({

type: 'STORIES_FETCH_SUCCESS',

payload: {

list: result.data.hits,

page: result.data.page,

},

});

} catch {

dispatchStories({ type: 'STORIES_FETCH_FAILURE' });

}

}, [urls]);

Real World React (Advanced) 268

...

};

We need to store this data to make paginated fetches later:

src/App.jsx

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

...

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data: action.payload.list,

page: action.payload.page,

};

case 'STORIES_FETCH_FAILURE':

...

case 'REMOVE_STORY':

...

default:

throw new Error();

}

};

const App = () => {

...

const [stories, dispatchStories] = React.useReducer(

storiesReducer,

{ data: [], page: 0, isLoading: false, isError: false }

);

...

};

Extend the API endpoint with the new page parameter. This change was supported by our premature
optimizations earlier, when we extracted the search term from the URL:

Real World React (Advanced) 269

src/App.jsx

const API_BASE = 'https://hn.algolia.com/api/v1';

const API_SEARCH = '/search';

const PARAM_SEARCH = 'query=';

const PARAM_PAGE = 'page=';

// careful: notice the ? and & in between

const getUrl = (searchTerm, page) =>

`${API_BASE}${API_SEARCH}?${PARAM_SEARCH}${searchTerm}&${PARAM_PAGE}${page}`;

Next, we must adjust all getUrl invocations by passing the page argument. Since the initial search
and the last search always fetch the first page (0), we pass this page as an argument to the function
for retrieving the appropriate URL:

src/App.jsx

const App = () => {

...

const [urls, setUrls] = React.useState([getUrl(searchTerm, 0)]);

...

const handleSearch = (searchTerm, page) => {

const url = getUrl(searchTerm, page);

setUrls(urls.concat(url));

};

const searchAction = () => {

handleSearch(searchTerm, 0);

};

const handleLastSearch = (searchTerm) => {

setSearchTerm(searchTerm);

handleSearch(searchTerm, 0);

};

...

};

To fetch the next page when a button is clicked, we’ll need to increment the page argument in this
new handler:

Real World React (Advanced) 270

src/App.jsx

const App = () => {

...

const handleMore = () => {

const lastUrl = urls[urls.length - 1];

const searchTerm = extractSearchTerm(lastUrl);

handleSearch(searchTerm, stories.page + 1);

};

...

return (

<div>

...

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<List list={stories.data} onRemoveItem={handleRemoveStory} />

)}

<button type="button" onClick={handleMore}>

More

</button>

</div>

);

};

We’ve implemented data fetching with the dynamic page argument. The initial and last searches
always use the first page, and every fetch with the new “More”-button uses an incremented page.
There is one crucial bug when trying the feature, though: the new fetches don’t extend the previous
list, but completely replace it.

Real World React (Advanced) 271

We solve this in the reducer by avoiding the replacement of current data with new data, concate-
nating the paginated lists:

src/App.jsx

const storiesReducer = (state, action) => {

switch (action.type) {

case 'STORIES_FETCH_INIT':

...

case 'STORIES_FETCH_SUCCESS':

return {

...state,

isLoading: false,

isError: false,

data:

action.payload.page === 0

? action.payload.list

: state.data.concat(action.payload.list),

page: action.payload.page,

};

case 'STORIES_FETCH_FAILURE':

...

case 'REMOVE_STORY':

...

default:

throw new Error();

}

};

The displayed list grows after fetching more data with the new button. However, there is still a

Real World React (Advanced) 272

flicker straining the UX. When fetching paginated data, the list disappears for a moment because
the loading indicator appears and reappears after the request resolves.

The desired behavior is to render the list – which is an empty list in the beginning – and replace the
“More”-button with the loading indicator only for the next requests. This is a common UI refactoring
for conditional rendering when the task evolves from a single list to paginated lists:

src/App.jsx

const App = () => {

...

return (

<div>

...

<List list={stories.data} onRemoveItem={handleRemoveStory} />

{stories.isLoading ? (

<p>Loading ...</p>

) : (

<button type="button" onClick={handleMore}>

More

</button>

)}

</div>

);

};

It’s possible to fetch ongoing data for popular stories now. When working with third-party APIs, it’s
always a good idea to explore its API surface. Every remote API returns different data structures, so
its features may vary.

Real World React (Advanced) 273

Exercises:

• Compare your source code against the author’s source code³⁰⁹.
– Recap all the source code changes³¹⁰ from this section.

• Revisit the Hacker News API documentation³¹¹: Is there a way to fetch more items in a list for
a page by just adding further parameters to the API endpoint?

• Revisit the beginning of this section which speaks about pagination and infinite pagination.
Howwould you implement a normal pagination component with buttons from 1-[3]-10, where
each button fetches and displays only one page of the list?

• Instead of having one “More”-button, how would you implement infinite pagination with an
infinite scroll technique? Rather than clicking a button for fetching the next page explicitly, the
infinite scroll could fetch the next page once the viewport of the browser hits the bottom of
the displayed list.

³⁰⁹https://tinyurl.com/yb86rh32
³¹⁰https://tinyurl.com/ypjw5ny4
³¹¹https://hn.algolia.com/api

https://tinyurl.com/yb86rh32
https://tinyurl.com/ypjw5ny4
https://hn.algolia.com/api
https://tinyurl.com/yb86rh32
https://tinyurl.com/ypjw5ny4
https://hn.algolia.com/api

Deploying a React Application
Now it’s time to get out into the world with your React application. There are many ways to deploy
a React application to production, and many competing providers that offer this service. We’ll keep
it simple here by narrowing it down on one provider, after which you’ll be equipped to check out
other hosting providers on your own.

Deploying a React Application 275

Build Process

So far, everything we’ve done has been the development stage of the application, when the
development server handles everything: packaging all files to one application and serving it on
localhost on your local machine. As a result, our code isn’t available for anyone else.

The next step is to take your application to the production stage by hosting it on a remote server,
called deployment, making it accessible for users of your application. Before an application can
go public, it needs to be packaged as one essential application. Redundant code, testing code, and
duplications are removed. There is also a process called minification at work which reduces the code
size once more.

Fortunately, optimizations and packaging, also called bundling, comes with the build tools in Vite.
First, build your application on the command line:

Command Line

npm run build

This creates a new dist/ folder in your project with the bundled application. You could take this
folder and deploy it on a hosting provider now, but we’ll use a local server to mimic this process
before engaging in the real thing. On the command line, serve your application with this Vite’s local
HTTP server:

Command Line

npm run preview

A URL is presented that provides access to your optimized, packaged and hosted application. It’s
sent through a local IP address that can be made available over your local network, meaning we’re
hosting the application on our local machine.

Deploying a React Application 276

Deploy to Firebase

After we’ve built a full-fledged application in React, the final step is deployment. It is the tipping
point of getting your ideas into the world, from learning how to code to producing applications. We
will use Firebase Hosting for deployment.

Firebase works for React, as well as most libraries and frameworks like Angular and Vue. First, install
the Firebase CLI globally to the node modules:

Command Line

npm install -g firebase-tools

Using a global installation of the Firebase CLI lets us deploy applications without concern over
project dependency. For any globally-installed node package, remember to update it to a newer
version with the same command whenever needed:

Command Line

npm install -g firebase-tools

If you don’t have a Firebase project yet, sign up for a Firebase account³¹² and create a new project
there. Then you can associate the Firebase CLI with the Firebase account (Google account):

Command Line

firebase login

A URL will display on the command line that you can open in a browser, or the Firebase CLI opens
it. Choose a Google account to create a Firebase project, and give Google the necessary permissions.
Return to the command line to verify a successful login. Next, move to the project’s folder and
execute the following command, which initializes a Firebase project for the Firebase hosting features:

Command Line

firebase init

Then choose the Hosting option. If you’re interested in using another tool next to Firebase Hosting,
add other options:

³¹²https://console.firebase.google.com

https://console.firebase.google.com/
https://console.firebase.google.com/

Deploying a React Application 277

Command Line

? Which Firebase features do you want to set up for this directory?

� Firestore: Configure security rules and indexes files for Firestore

� Functions: Configure a Cloud Functions directory and its files

�� Hosting: Configure files for Firebase Hosting ...

� Hosting: Set up GitHub Action deploys

� Storage: Configure a security rules file for Cloud Storage

Google becomes aware of all Firebase projects associated with an account after login. However, for
this project we will start with a new project on the Firebase platform:

Command Line

First, let's associate this project directory with a Firebase project.

You can create multiple project aliases by running firebase use --add,

but for now we'll just set up a default project.

? Please select an option:

Use an existing project

� Create a new project

Add Firebase to an existing Google Cloud Platform project

Don't set up a default project

There are a few other configuration steps to define. Instead of using the default public/ folder, we
want to use the dist/ folder from Vite. Alternatively if you set up the bundling with a tool like
Webpack yourself, you can choose the appropriate name for the build folder:

Command Line

? What do you want to use as your public directory? dist

? Configure as a single-page app (rewrite all urls to /index.html)? Yes

? Set up automatic builds and deploys with GitHub? No

� Wrote dist/index.html

The Vite application creates a dist/ folder after we perform the npm run build for the first time. The
folder contains all the merged content from the public/ folder and the src/ folder. Since it is a single
page application, we want to redirect the user to the index.html file, so the React router can handle
client-side routing.

Now your Firebase initialization is complete. This step created a few configuration files for Firebase
Hosting in your project’s folder. You can read more about them in Firebase’s documentation³¹³ for
configuring redirects, a 404 page, or headers. Finally, deploy your React application with Firebase
on the command line:

³¹³https://bit.ly/3DVgbpG

https://bit.ly/3DVgbpG
https://bit.ly/3DVgbpG

Deploying a React Application 278

Command Line

firebase deploy

After a successful deployment, you should see a similar output with your project’s identifier:

Command Line

Project Console: https://console.firebase.google.com/project/my-react-project-abc123\

/overview

Hosting URL: https://my-react-project-abc123.firebaseapp.com

Visit both pages to observe the results. The first link navigates to your Firebase project’s dashboard,
where you’ll see a new panel for the Firebase Hosting. The second link navigates to your deployed
React application.

If you see a blank page for your deployed React application, make sure the public key/value pair in
the firebase.json is set to dist (or whichever name you chose for this folder). Second, verify you’ve
run the build script for your React appwith npm run build. Finally, check out the official troubleshoot
area for deploying Vite applications to Firebase³¹⁴. Try another deployment with firebase deploy.

Exercises:

• Read more about Firebase Hosting³¹⁵.
– Connect your domain to your Firebase deployed application³¹⁶.

• Optional: If you want to have a managed cloud server, check out DigitalOcean³¹⁷ or Hetzner³¹⁸.
It’s more work, but it allows more control. You can also connect it to something like Coolify³¹⁹
to get a better user experience.

³¹⁴https://bit.ly/3Sp2Xsn
³¹⁵https://bit.ly/3lXypAC
³¹⁶https://bit.ly/3phFxdp
³¹⁷https://m.do.co/c/fb27c90322f3
³¹⁸https://www.hetzner.com/
³¹⁹https://coolify.io/

https://bit.ly/3Sp2Xsn
https://bit.ly/3Sp2Xsn
https://bit.ly/3lXypAC
https://bit.ly/3phFxdp
https://m.do.co/c/fb27c90322f3
https://www.hetzner.com/
https://coolify.io/
https://bit.ly/3Sp2Xsn
https://bit.ly/3lXypAC
https://bit.ly/3phFxdp
https://m.do.co/c/fb27c90322f3
https://www.hetzner.com/
https://coolify.io/

Outline
We’ve reached the end of The Road to React, and I hope you enjoyed reading it and that it helped
you gain traction in React. If you liked the book, feel free to share it with friends who are interested
in learning more about React. Also, a review on Amazon³²⁰ or Goodreads³²¹ would be greatly
appreciated.

From here, I recommend you extend the application to create your own React projects before
engaging another book, course, or tutorial. Try it for a week, take it to production by deploying
it, and reach out to me or others to showcase it. I am always interested in seeing what my readers
built, and learning how I can help them along.

If you’re looking for extensions for your application, I recommend several learning paths after you’ve
mastered the fundamentals:

• Framework: Explore Next.js³²² to build more sophisticated React applications. It includes React
Server Components and Server Functions, server-side rendering (SSR), file-based routing, and
more. It’s a natural next step after mastering React as a library. If you choose this path, check
out my course, The Road to Next³²³.

• Routing: Implement routing in your application with React Router³²⁴. So far, we’ve only built
a single-page application, but as your project grows, React Router will help manage multiple
pages across different URLs – all without requiring additional server requests.

• Code Organization: If you haven’t already, revisit the chapter on code organization and apply
those best practices³²⁵. Structuring your components properly will help with maintainability,
reusability, and scalability as your application grows.

• Tooling withWebpack and Babel:We used Vite to set up the project in this book, but at some
point, you may want to understand the tooling behind it to create projects without relying
on Vite. I recommend starting with a minimal Webpack³²⁶ setup before exploring additional
configurations.

• Connecting to a Database and/or Authentication: As your React applications grow, persis-
tent data storage becomes essential. A database allows you to retain data across sessions and
share it between users. Firebase is one of the easiest ways to introduce a database without
writing a backend application. My book, “The Road to Firebase”³²⁷, provides a step-by-step
guide on using Firebase authentication and database integration in React.

³²⁰https://amzn.to/2JHlP42
³²¹https://tinyurl.com/4bhcssu7
³²²https://nextjs.org/
³²³https://www.road-to-next.com/
³²⁴https://www.robinwieruch.de/react-router/
³²⁵https://www.robinwieruch.de/react-folder-structure/
³²⁶https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
³²⁷https://www.roadtofirebase.com/

https://amzn.to/2JHlP42
https://tinyurl.com/4bhcssu7
https://nextjs.org/
https://www.road-to-next.com/
https://www.robinwieruch.de/react-router/
https://www.robinwieruch.de/react-folder-structure/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.roadtofirebase.com/
https://amzn.to/2JHlP42
https://tinyurl.com/4bhcssu7
https://nextjs.org/
https://www.road-to-next.com/
https://www.robinwieruch.de/react-router/
https://www.robinwieruch.de/react-folder-structure/
https://www.robinwieruch.de/minimal-react-webpack-babel-setup/
https://www.roadtofirebase.com/

Outline 280

• Connecting to a Backend: So far, we’ve only requested data from a third-party API. You
can take it further by building your own backend that connects to a database and manages
authentication and authorization. In “The Road to GraphQL”³²⁸, I teach how to use GraphQL
for client-server communication, connect a backend to a database, handle user sessions, and
interact with a backend via a GraphQL API.

• State Management: In this book, we’ve managed local state within React components, which
is sufficient for many applications. However, larger applications may benefit from external
state management solutions. I cover the most popular one in my book, “The Road to Redux”³²⁹.

• Testing:We only scratched the surface of testing in this book. If you’re unfamiliar with testing
web applications, dive deeper³³⁰ into unit and integration testing, especially using React Testing
Library for component testing and Cypress for end-to-end testing.

• Type Checking: Earlier, we briefly used TypeScript in React. TypeScript helps prevent bugs
and improves the developer experience. Consider diving deeper into it to make your JavaScript
applications more robust – you might even decide to switch to TypeScript entirely.

• UI Components:Many beginners introduce UI component libraries (likeMaterial UI) too early.
It’s better to first learn how to build essential UI elements – dropdowns, checkboxes, dialogs –
using standard HTML elements and React state. Once you master these basics, adopting a UI
component library will be much easier.

• React Native: React Native³³¹ allows you to build mobile applications for iOS and Android
using React. Once you’re comfortable with React, transitioning to React Native is relatively
smooth since they share core concepts. The main differences lie in mobile layout components,
build tools, and platform-specific APIs.

I invite you to visit my website³³² for more topics on web development and software engineering.
You can also subscribe to my Newsletter³³³ for updates on new articles, books, and courses. If you
have only read the book and want to explore more, check out the official course website³³⁴.

Thank you for reading The Road to React.

Best regards, Robin Wieruch

³²⁸https://www.roadtographql.com/
³²⁹https://www.roadtoredux.com/
³³⁰https://www.robinwieruch.de/react-testing-tutorial/
³³¹https://reactnative.dev/
³³²https://www.robinwieruch.de
³³³https://rwieruch.substack.com/
³³⁴https://www.roadtoreact.com/

https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/react-testing-tutorial/
https://reactnative.dev/
https://www.robinwieruch.de/
https://rwieruch.substack.com/
https://www.roadtoreact.com/
https://www.roadtographql.com/
https://www.roadtoredux.com/
https://www.robinwieruch.de/react-testing-tutorial/
https://reactnative.dev/
https://www.robinwieruch.de/
https://rwieruch.substack.com/
https://www.roadtoreact.com/

	Table of Contents
	Foreword
	About the Author
	FAQ
	Who is this book for?
	How to read the book?

	Fundamentals of React
	Hello React
	Requirements
	Setting up a React Project
	Project Structure
	npm Scripts
	Meet the React Component
	React JSX
	Lists in React
	Meet another React Component
	React Component Instantiation
	React DOM
	React Component Declaration
	Handler Function in JSX
	React Props
	React State
	Callback Handlers in JSX
	Lifting State in React
	React Controlled Components
	Props Handling (Advanced)
	React Side-Effects
	React Custom Hooks (Advanced)
	React Fragments
	Reusable React Component
	React Component Composition
	Imperative React
	Inline Handler in JSX
	React Asynchronous Data
	React Conditional Rendering
	React Advanced State
	React Impossible States
	Data Fetching with React
	Data Re-Fetching in React
	Memoized Functions in React (Advanced)
	Explicit Data Fetching with React
	Third-Party Libraries in React
	Async/Await in React
	Forms in React
	Forms with Actions

	A Roadmap for React
	Styling in React
	CSS in React
	CSS Modules in React
	Styled Components in React
	SVGs in React

	React Maintenance
	Performance in React (Advanced)
	TypeScript in React
	Testing in React
	React Project Structure

	Real World React (Advanced)
	Sorting
	Reverse Sort
	Remember Last Searches
	Paginated Fetch

	Deploying a React Application
	Build Process
	Deploy to Firebase

	Outline

