
Jonathan Wexler

Node.js
Projects
Building Real-World
Web Applications and
Backend APIs

ISBN: 978-1-098-17314-2
US $59.99	 CAN $74.99

WEB DEVELOPMENT

Whether you’re a JavaScript beginner ready to build your first backend app or a self-taught developer
looking to grow beyond tutorials, Node.js Projects gives you the hands-on experience you need. Through
a series of self-contained projects ranging from content aggregators to secure password managers, web
scrapers, ML-backed analysis, and an AI-powered learning assistant, you’ll apply modern tools like Fastify,
MongoDB, Redis, JWT, and Google’s Gemini API in practical, job-relevant ways.

With each chapter, author Jonathan Wexler challenges you to think like an engineer, emphasizing
architectural thinking, clean coding, and iterative design. You’ll build confidence solving real-world
problems while deepening your understanding of asynchronous programming, API design, security
practices, and scalable deployment patterns.

•	 Confidently master async programming
with async/await and the Node.js event loop

•	 Effectively design scalable APIs using Fastify
and modular routing patterns

•	 Reliably manage data with the filesystem,
MongoDB, and CSV output

•	 Securely implement authentication flows
with JWTs and environment-based configs

•	 Seamlessly integrate third-party APIs like
OpenAI and Google Gemini

•	 Efficiently build real-time features with Redis,
schedulers, and event-driven logic

•	 Smoothly transition from prototype to production
with modern Node.js workflows

Jonathan Wexler, author of
Get Programming with Node.js,
combines real-world engineering
experience with a passion for
teaching to create practical,
approachable Node.js content.

Node.js Projects

“Even if you’re a JavaScript novice, this book will help you quickly get
up to speed in building your own server-side applications using Node.js.”
Charlotte M. Ellett, C63 Industries

“This is an excellent book that covers advanced Node.js concepts and
techniques, and it will help you to move your work to the next level.”
Pankaj Gajjar, principal solution architect at Datastax, Inc.

Jonathan Wexler

Node.js Projects
Building Real-World Web Applications

and Backend APIs

978-1-098-17314-2

[LSI]

Node.js Projects
by Jonathan Wexler

Copyright © 2025 Jon Wexler. All rights reserved.

Published by O’Reilly Media, Inc., 141 Stony Circle, Suite 195, Santa Rosa, CA 95401.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Amanda Quinn
and Aaron Black
Development Editor: Michele Cronin
Production Editor: Gregory Hyman
Copyeditor: Dwight Ramsey
Proofreader: Sonia Saruba

Indexer: Ellen Troutman-Zaig
Cover Designer: Susan Brown
Interior Designer: David Futato
Cover Illustrator: Monica Kamsvaag
Interior Illustrator: Kate Dullea

August 2025: First Edition

Revision History for the First Edition
2025-07-31: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098173142 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Node.js Projects, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098173142

Table of Contents

Preface. vii

1. Introduction and Setup. 1
Installing VS Code 1

Mac Installation 2
Windows Installation 3
Linux Installation 3

Understanding Node 4
Why Node Stands Out 5
What’s Happening Under the Hood? 5
Installing Node 5

Mac Installation 7
Windows Installation 7
Linux Installation 7

Becoming a Node Developer 8
Mastering the Craft 8
Using Fastify in This Book 10
Summary 14

2. Practical Application. 15
Your Prompt 16
Get Planning 16
Get Programming 17
Translating User Input to CSV 21
Working with External Packages 28
Summary 32

iii

3. Building a Node Web Server. 35
Your Prompt 36
Get Planning 36
Building the Application Skeleton 39

Working with Fastify 39
Adding Routes and Data 43

Building Your UI 47
Sprucing Up the UI 52
Summary 55

4. Build a Secure Local Password Manager. 57
Your Prompt 58
Get Planning 58
Building a Local Command-Line Manager 59
Saving Passwords with MongoDB 68
Summary 75

5. Content Aggregation Feed. 77
Your Prompt 78
Get Planning 78
Reading and Parsing a Feed 82
Building an Aggregator 84
Adding Custom Items to Your Aggregator 88
Summary 90

6. Library API. 91
Your Prompt 92
Get Planning 92
Get Programming with an API Layout 96
Adding Routes and Actions to Your App 99
Connecting a Database to Your App 105
Summary 112

7. Natural Language Processor Sentiment Analysis. 113
Your Prompt 114
Get Planning 114
Get Programming with String Processing Packages 117
Analyzing Sentiment 123
Connecting a Database and Visualization 126
Summary 138

iv | Table of Contents

8. Marketing Mailer. 139
Your Prompt 140
Get Planning 140
Get Programming 142
Adding a Framework for Your Mailer Service 148
Connecting a Database 153
Implementing a Marketing Pixel for Email Engagement 158
Integrating a Task Scheduler 160
Summary 163

9. Web Scraper. 165
Your Prompt 166
Get Planning 166
Get Programming 167
Parsing with HTML-Friendly Tools 173
Scraping Web Pages with a Headless Browser 175
Summary 180

10. App Authentication. 181
Your Prompt 182
Get Planning 182
Get Programming 184
Building a Login Form 188
Saving and Securing User Accounts 196
Using JWTs for API Authentication 213
Summary 218

11. Coffee Order Manager. 219
Your Prompt 220
Get Planning 220
Get Programming 223
Adding a Redis Server 229
Integrating a Robust Messaging System 233
Summary 244

12. Music Label Blockchain Market. 245
Your Prompt 246
Get Planning 246
Get Programming 249

Coding the Blockchain 257
Running the Real-World Example 270

Summary 272

Table of Contents | v

13. Building an AI-Powered Learning Assistant with Google’s Gemini API. 273
Your Prompt 274
Get Planning 274
Get Programming 276
Customizing the AI Assistant for Learning Assistance 280
Setting Up the Fastify Server 282
Setting Up Your Database and User Authentication 285
Summary 299

A. Node Cheat Sheet and Project Initialization. 301

B. Setting Up Your Development Tools. 311

C. Working with Databases in Node Projects. 317

D. Working with the Code Examples and Containerizing Projects. 331

E. Setting Up Developer Accounts and API Credentials. 337

Index. 345

vi | Table of Contents

Preface

When I began writing this book in 2022, I saw just how much the tech community
had evolved since Get Programming with Node.js (Manning). While many founda‐
tional concepts remained, the approach to development had advanced significantly.
Node.js had long passed its 10-year mark since Ryan Dahl’s initial release, and the
internet was flooded with tutorials on building “simple web servers.” The truth is,
most projects still rely on web servers—but the expectations for how we build and use
them have changed. Today, a server isn’t just a server; it’s the centerpiece of complex,
resilient, and scalable applications. Likewise, the way we use JavaScript has deepened,
opening up a wide array of tools and techniques to explore.

Node.js Projects is crafted to showcase these new techniques and empower you to
grow as a developer by focusing on five key principles: a practical learning approach,
modular learning, diverse use cases, incremental skill building, and immediate feed‐
back and gratification. Each project is designed to provide hands-on, real-world
experience, enabling you to apply Node.js in modular, digestible steps. This approach
not only supports gradual skill development but also ensures that each chapter deliv‐
ers a satisfying sense of accomplishment, reinforcing your growth as you progress
through varied and increasingly challenging applications.

Programming newcomers quickly grasp how to piece together an application, but
building an app is more than code—it’s about understanding architecture and design.
Each chapter places you in the role of an engineer making real-world decisions. I
believe practical experience isn’t copying and pasting code but developing the mind‐
set, problem-solving skills, and communication required to build products with
impact.

The scope of software challenges varies: some projects unfold over months, while
others involve quick, focused problem-solving. This book provides a balance, offering
both bite-sized coding exercises and larger, more complex projects. This modular
structure encourages you to complete sections at your own pace, allowing you to
pause, shift focus, or dive into chapters that align with your interests and skill level.

vii

JavaScript, and by extension Node.js, has experienced incredible growth over the past
15 years. This evolution has allowed Node.js to become a go-to tool for creating
everything from high-performance web apps to real-time notification systems and
video streaming platforms. Learning Node.js today means understanding a wide
range of potential applications. Each chapter offers you not only technical skills but a
mindset for approaching real-world scenarios you’re likely to encounter on the job.
This way, you’ll develop the versatility to apply Node.js to diverse projects, enhancing
both your confidence and your adaptability.

You might wonder, with so many free online resources, why choose a book on
Node.js? And in a world where AI tools are taking on more and more development
tasks, why should an engineer devote time to deep, structured learning? It’s true that
learning Node.js has become more accessible than ever, but with that accessibility
comes a challenge: finding resources that simulate the thought process and structure
of real-world development. Node.js Projects builds skills incrementally, guiding you
toward tangible accomplishments with each project. This structured path is designed
to help you gain confidence and skill with each chapter.

Ultimately, I didn’t want to write “just another” Node.js book. This is a collection of
the most valuable lessons and techniques I’ve encountered as the industry has
evolved. My goal is to help you achieve long-term growth through incremental, satis‐
fying progress. Each chapter introduces concepts that go beyond Node.js and reflect
the standards of today’s developer community. Whether it takes a week or a year to
complete these projects, I’m confident that this journey will make you a stronger,
more versatile engineer.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

viii | Preface

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/node-projects-code.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Node.js Projects by Jona‐
than Wexler (O’Reilly). Copyright 2025 Jon Wexler, 978-1-098-17314-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning

Preface | ix

https://oreil.ly/node-projects-code
mailto:support@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com

platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
141 Stony Circle, Suite 195
Santa Rosa, CA 95401
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/node-projects.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Writing Node.js Projects has been a journey of late nights, deep debugging sessions,
and real-world experiments, and it wouldn’t have been possible without the support
and insight of many people.

First and foremost, thank you to the team at O’Reilly for championing this book from
idea to finished product. Your thoughtful guidance, editorial expertise, and commit‐
ment to quality helped shape this into something truly useful for developers at all
levels.

To the technical reviewers and early readers: your attention to detail, generous feed‐
back, and willingness to challenge assumptions made this book sharper and more
accurate. Thank you for helping me catch bugs, unclear examples, and unnecessary
complexity before they reached print.

To the broader Node.js community: your open-source contributions, blog posts, Git‐
Hub discussions, and Stack Overflow threads provided inspiration, solutions, and
sometimes just the reassurance that I wasn’t the only one stuck on a problem. This
book is built on the ecosystem you’ve created.

x | Preface

https://oreilly.com
mailto:support@oreilly.com
https://oreilly.com/about/contact.html
https://oreil.ly/node-projects
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

To the students, colleagues, and fellow developers I’ve worked with over the years:
many of the ideas and patterns in this book were born out of our shared projects and
conversations. Thank you for the collaboration and curiosity.

To my family and friends: your encouragement and patience during long writing
sprints kept me going. I’m deeply grateful for your support.

Finally, to you, the reader: thank you for choosing this book. I hope it empowers you
to build, break, fix, and create confidently with Node.js.

Preface | xi

CHAPTER 1

Introduction and Setup

This chapter is your guide to setting up a development environment for Node.js. It
covers the core tools needed, such as VS Code, Node.js, and Fastify, along with
optional components to enhance your workflow. While tools like Fastify are more
specialized, feel free to skip their setup for now and revisit those sections when they
are covered in later chapters.

You’ll find various installation methods explained, including using a graphical user
interface (GUI), third-party tools, or binary packages. Binary installations, while
sometimes precompiled, may require extra steps for extraction and configuration,
making them particularly useful for servers without a graphical interface. Although
the provided instructions are tailored to the tools recommended for this book, you’re
welcome to use alternatives that meet your development needs. The goal is to equip
you with a solid foundation to start coding and running your Node.js applications
effectively.

For the sake of economy, throughout the remainder of this book,
we’ll refer to Node.js simply as Node.

Before writing your first line of code, it’s important to choose a text editor that sup‐
ports modern JavaScript development and integrates well with Node tooling.

Installing VS Code
Visual Studio Code (VS Code) is a popular open source text editor, widely recom‐
mended for Node development due to its robust features, flexibility, and extensive

1

customization options. This section will guide you through installing VS Code on
macOS, Windows, and Linux.

AI-powered code editors are becoming increasingly popular, and
one such tool is Cursor, an AI-enhanced editor built on VS Code
that can assist with code suggestions and explanations. While help‐
ful, beginners should balance its use with learning core concepts
independently.

The easiest way to install VS Code is by visiting the VS Code download page.
Figure 1-1 displays the installation options for each operating system.

Figure 1-1. VS Code installation page

The image provides options for installing VS Code on Mac, Windows, and Linux sys‐
tems. The following sections break down how to proceed on each operating system.

Mac Installation
Make sure to identify the type of Mac you have (Intel or Apple Silicon).

1. Download the appropriate installer for your Mac.
2. Open the downloaded file and drag the VS Code icon to the Applications folder.

2 | Chapter 1: Introduction and Setup

https://cursor.com
https://oreil.ly/BIrFY

3. Open VS Code from the Applications folder.

You may need to allow the application to run in System Preferences
under Security & Privacy if you encounter any issues.

Windows Installation
To install VS Code on a Windows machine, follow these steps:

1. Download the installer for Windows.
2. Open the downloaded file and follow the installation wizard steps.
3. Once installed, you can launch VS Code from the Start Menu.

During installation, ensure you select the option to add VS Code to
your PATH for easy command-line access.

Linux Installation
The installation for Linux machines is a bit different, as it requires command-line
steps. For the standard Debian/Ubuntu machine setup, run the following commands
in your command-line window:

sudo apt update
sudo apt install software-properties-common apt-transport-https wget
wget -q https://packages.microsoft.com/keys/microsoft.asc -O- | \
 sudo apt-key add -
sudo add-apt-repository \
 "deb [arch=amd64] https://packages.microsoft.com/repos/vscode
stable main"
sudo apt update
sudo apt install code

Updates the package lists to ensure you get the latest version and dependencies.

Installs required tools for adding repositories and handling HTTPS.

Downloads and adds the Microsoft GPG key to verify packages.

Adds the official Microsoft VS Code repository.

Installing VS Code | 3

Updates the package lists again to include the new VS Code repository.

Installs VS Code.

For other distributions, refer to the official documentation.

To improve your development experience, consider installing VS Code extensions
such as Prettier for formatting, ESLint for catching bugs early, and npm Intellisense
for smart autocomplete when importing packages.

With your editor ready to go, let’s take a moment to understand what Node is and
why it’s the core technology behind everything you’ll build in this book.

Understanding Node
Node is an open source tool, which means anyone can view, modify, and share its
code for free. It’s also cross-platform, so it works on different operating systems like
Windows, macOS, and Linux. Node is a runtime, meaning it provides an environ‐
ment for running JavaScript code outside the browser—normally, JavaScript is only
used inside web browsers for things like interactive buttons or animations. With
Node, developers can use JavaScript to build server-side applications, like websites or
APIs.

Node is built on Chrome’s V8 JavaScript engine, a technology that converts JavaScript
into machine code, which is the language your computer understands. This process
makes JavaScript run faster and more efficiently. Because of this speed, Node is
described as lightweight (it doesn’t require a lot of resources) and efficient (it gets a
lot done with minimal overhead). It’s particularly great for creating scalable applica‐
tions, which means programs that can handle more users or data without slowing
down.

One of Node’s standout features is its nonblocking, event-driven architecture. In sim‐
ple terms, it doesn’t wait for one task to finish before starting another. Imagine you’re
folding laundry and boiling water at the same time. Instead of waiting by the stove,
you fold clothes until the water boils. Similarly, Node switches between tasks, maxi‐
mizing productivity. This is why Node is ideal for real-time applications like chat
apps, online games, or tools where users collaborate live: everything stays responsive,
even with many users.

4 | Chapter 1: Introduction and Setup

https://oreil.ly/MfEaG

Why Node Stands Out
Node has become a popular choice for developers due to its unique features and
advantages:

Unified development
Uses JavaScript on both the client and server sides, eliminating the need for mul‐
tiple programming languages across your stack and simplifying development
workflows.

Vast ecosystem
Includes npm, a massive package repository with millions of prebuilt tools, mak‐
ing it faster and easier to build applications.

Industry adoption
Trusted by leading companies like Netflix, LinkedIn, and PayPal for its ability to
handle high traffic and real-time demands.

Scalability and efficiency
Designed to handle thousands of simultaneous connections without slowing
down, thanks to its event-driven, nonblocking architecture.

Smooth operations
Node ensures requests flow efficiently, even under heavy workloads. Imagine a
highway with no traffic jams.

What’s Happening Under the Hood?
Underneath, Node uses the V8 engine, which makes JavaScript fast by converting it
directly into machine code. The magic of handling thousands of simultaneous tasks
comes from Node’s event loop and Libuv library. The event loop is like a receptionist
managing multiple customers at once: while one waits for a response (e.g., fetching
data), the receptionist moves on to help others. Libuv is like the behind-the-scenes
team that takes care of time-consuming tasks, such as reading files from a disk or
resolving domain names (DNS lookups). While Node focuses on quickly switching
between tasks, Libuv ensures that these slower operations happen in the background
without blocking the main thread. Think of it like a chef in a busy kitchen—while the
head chef keeps preparing quick dishes, Libuv is the team working on slow-cooking
the stew. This allows Node to keep moving to the next task without getting stuck
waiting for one operation to finish.

Installing Node
You’re about to install Node, a powerful and versatile platform that allows you to run
JavaScript code on your computer, outside of a web browser. With Node, you can

Installing Node | 5

build everything from simple websites to complex server-side applications, automate
tasks, and much more.

As you get started, keep in mind that installing Node is a straightforward process, but
there are a few things to watch out for. Depending on your operating system, you
might need to adjust some settings or install additional tools, like version managers
or build essentials. Follow each step below, including tips for troubleshooting com‐
mon issues.

For all installations, visit the Node download page, where you’ll be able to choose the
Node installation for your machine setup (Figure 1-2).

nvm (Node Version Manager) lets you easily install and switch
between multiple versions of Node, which is ideal for testing
projects across environments. Learn more by visiting the project’s
GitHub repo.

Figure 1-2. Node installation page

6 | Chapter 1: Introduction and Setup

https://oreil.ly/Gj_m8
https://oreil.ly/1pJQF

Ensure you select the option to install npm (Node Package Man‐
ager) during installation.

Mac Installation
Make sure to identify the type of Mac you have (Intel or Apple Silicon). Then:

1. Download the appropriate installer for your Mac. As of the writing of this book,
you should choose Node version 22.16.0 or later.

2. Open the downloaded file and follow the on-screen instructions to install Node.

You may also use Homebrew for installation by running brew
install node in a new terminal window.

Windows Installation
Make sure you are using a Windows system with administrative privileges to install
software. Then:

1. Download the installer for Windows. As of the writing of this book, you should
choose Node version 22.16.0 or later.

2. Open the downloaded file and follow the on-screen instructions to install Node.

Linux Installation
The installation for Linux machines requires command-line steps. For the standard
Debian/Ubuntu machine setup, run the following commands in your command-line
window:

sudo apt update
sudo apt install nodejs npm

Updates the package lists to ensure you get the latest version of the packages.

Installs Node and npm (Node Package Manager).

Installing Node | 7

For other distributions, refer to the official documentation.

Becoming a Node Developer
To start, you’ll need to understand the core modules (fs for file handling, http for
servers, and events for custom logic). A foundational skill is asynchronous program‐
ming, which lets you perform tasks in the background without freezing the app.
Imagine you’re ordering pizza while doing homework—promises and async/await are
the delivery updates that let you know when the pizza arrives, so you don’t have to
stop working.

You’ll also want to learn how to build APIs using frameworks like Express.js or Fas‐
tify, where you define “routes” like paths in a map to determine how your app
responds to users. From there, working with databases like MongoDB or PostgreSQL
comes next, allowing you to store and retrieve data efficiently.

Mastering the Craft
To become an expert, focus on real-world projects. For example, build a chat app to
practice real-time communication or a task manager with data persistence to hone
database skills. Dive into performance optimization by profiling your app, like identi‐
fying slow database queries or excessive memory usage. Imagine fine-tuning a car
engine for peak performance where every little improvement counts.

Stay connected with the Node community through forums, open source contribu‐
tions, and newsletters like Node Weekly. The key to mastery is continuous learning,
experimenting, and engaging with others who share your passion for development.

By understanding Node from its fundamentals to its advanced capabilities, you’ll not
only gain a tool for development but also a versatile skill set that’s highly valued in the
industry. To inspire your journey, let’s explore some advanced concepts that make
Node unique and powerful.

8 | Chapter 1: Introduction and Setup

https://oreil.ly/7Qm6M

Advanced Node Concepts
Before we dive deeper into how Node handles tasks behind the scenes, it’s essential to
understand Node’s core mechanism for managing asynchronous operations.

Event Loop
The event loop in Node is like a factory manager who divides tasks into phases to
ensure everything runs smoothly and efficiently. Each phase handles a specific type of
job:

Timers
For scheduled tasks (e.g., alarms)

I/O operations
For input/output tasks (e.g., reading files)

Callbacks
For responses that need immediate attention

The event loop processes these phases in order, ensuring tasks are completed without
one blocking another.

Imagine you’re running a restaurant:

• The chef prepares food (timers).
• The server delivers it (I/O operations).
• The cashier processes payments (callbacks).

All this happens seamlessly, keeping the workflow smooth.

Streams and Buffers
Streams and buffers in Node manage data efficiently in chunks, making it easier to
handle large files or continuous data flows:

Streams
Like water pipes, delivering small, manageable amounts of data over time

Buffers
Temporarily store data until it’s ready to be used

Watching a movie online uses streams. The video plays as it’s being downloaded. If
you had to download the entire video before watching, it would take much longer.
Streams enable faster and more efficient handling of tasks like video streaming or
real-time file uploads.

Mastering the Craft | 9

Scalability with Clustering
Node can handle larger workloads by using clustering, which spawns multiple instan‐
ces of the application to share the load:

• Each instance runs independently but shares the same application logic.
• A load balancer distributes incoming requests among these instances.

Think of clustering like opening multiple checkout counters in a busy supermarket:

• Each counter (Node instance) serves customers (requests) independently.
• The manager (load balancer) directs each customer to the next available counter.

This setup ensures more users can be served simultaneously, optimizing perfor‐
mance.

For a deeper look at Node.js setup, project initialization, and modern syntax patterns,
refer to Appendix A. For additional tools and practices that enrich your development
environment—like formatters, debuggers, and using Git, refer to Appendix B. Appen‐
dix C provides context and step-by-step guidance for working with databases and
queue systems, which are used in later chapters. Appendix D covers how to set up
and run your projects using Docker for a consistent development environment.
Appendix E explains how to create and configure third-party accounts, such as cloud
providers and API platforms, required for some of the projects in this book.

What follows is a high-level overview to help you understand what Node is and why
it matters. Node has become a core part of modern web development thanks to its
speed, scalability, and thriving ecosystem. This makes Node a natural foundation for
exploring powerful web frameworks like Fastify.

Using Fastify in This Book
Fastify is a high-performance, low-overhead Node web framework designed to be
extremely fast and lightweight. That means it can do a lot of work without slowing
down or using too many of your computer’s resources.

It is optimized for creating APIs and web services that require rapid response times,
making it ideal for both small projects and large-scale applications. Fastify excels at
processing HTTP requests and delivering responses with minimal latency, which is
crucial for web applications where fast response times enhance user experience and
system efficiency. Additionally, Fastify can handle a large number of requests per sec‐
ond (RPS), making it an excellent choice for applications that need to serve many
users simultaneously, such as APIs or microservices.

10 | Chapter 1: Introduction and Setup

Under the Hood
Fastify achieves its high performance through a combination of efficient design prin‐
ciples and smart architectural decisions (Figure 1-3). It uses Node’s low-level HTTP
module, a built-in feature written in C++ that handles incoming requests and outgo‐
ing responses efficiently, without the need for extra libraries. This keeps the core of
Fastify lightweight and fast. Fastify also employs schema-based validation and seriali‐
zation using AJV, a powerful JSON schema validator.

Figure 1-3. Diagram of Fastify’s low-overhead architecture

This means that when data is sent to your application, Fastify ensures it matches the
expected format (validation), and when data is sent back to the user, it formats the
output efficiently (serialization). Precompiling these processes ahead of time further
reduces the workload during each request.

Fastify’s asynchronous, nonblocking architecture is another key to its scalability.
Node operates using an event loop, which allows multiple tasks (like handling HTTP
requests, querying a database, or reading files) to happen concurrently without creat‐
ing multiple threads. This means that even if one operation is slow, such as waiting
for a database to respond, other requests can continue being processed without delay.
Fastify builds on this core behavior of Node to handle many simultaneous requests
with ease.

Another strength of Fastify is its modular plug-in system. Plug-ins are reusable pieces
of functionality (like authentication or logging) that can be added to your application.
Fastify’s plug-in system ensures these features are isolated and don’t interfere with
one another. For example, if you’re adding a new feature to one route, it won’t

Using Fastify in This Book | 11

unintentionally affect another. This makes Fastify not only scalable but also easier to
maintain as your application grows.

Fastify also includes Pino, a high-performance logging library, which records impor‐
tant application events without adding unnecessary load. Logs are essential for
debugging and monitoring, and Pino’s optimized design ensures that logging doesn’t
slow down your application. For more information on Pino, see the Pino website.

This book uses Fastify over Express.js because of these performance benefits and its
developer-friendly features. While Express is versatile and widely used, Fastify offers
built-in support for JSON-based APIs, a focus on high-speed request handling, and
optimizations that make it particularly well suited for building modern web services.
With Fastify, you’ll gain hands-on experience with efficient design patterns that are
ideal for high-performance applications, especially those that need to scale effectively
as they grow.

Table 1-1 compares Fastify with three other popular Node frameworks: Express, Koa,
and Hapi. Each column gives a quick overview of the core strengths and differences
of each framework, which you can use to help decide which is best suited for your
project.

Table 1-1. Node frameworks

Framework Performance Schema-based
validation

Built-in plug-ins Ideal use case HTTP/2 support

Fastify High Yes (JSON Schema) Limited;
lightweight

High-performance APIs
and microservices

Yes

Express Medium No (requires
additional libraries)

Extensive
middleware
ecosystem

General-purpose web
applications

Yes (with
middleware)

Koa Medium No (requires
middleware)

Minimal, modular Flexible, customizable
applications

Yes (with
middleware)

Hapi Medium-High Yes (Joi) Rich plug-in
ecosystem

Enterprise-level
applications, APIs with
complex needs

Yes

In a nutshell, Fastify excels in performance and is ideal for high-speed APIs and
microservices due to its schema-based validation and minimal overhead. Express
remains a versatile choice with a large plug-in ecosystem, suitable for general-
purpose web applications.

Throughout this book, Fastify will serve as the foundational framework for your
Node applications, helping you build scalable, responsive, and high-performance
services. As you work through the chapters, you’ll learn how to harness Fastify’s
strengths while gaining a deeper understanding of how to create efficient, modern
web applications.

12 | Chapter 1: Introduction and Setup

https://getpino.io

Chapter Exercises
1. Verify your Node and VS Code setup:

a. After completing the installations, confirm everything is working properly by
opening your command line and running node -v and npm -v. You should
see the version numbers for both Node and npm, indicating they are installed
correctly.

b. Launch VS Code and open a new folder named hello-node.
c. Inside the folder, create a file named index.js with the following code:

console.log("Node is working!");

d. Navigate to your project’s root directory in your command line and run the
file by running node index.js.

e. You should see the message Node is working! printed to your console.

If anything doesn’t work, revisit the installation steps in this
chapter and double-check the instructions specific to your
operating system.

2. Explore Fastify’s starter template:
a. Get your hands dirty with Fastify by generating a basic project. In your com‐

mand line, run npm init fastify@latest fastify-test-app and follow the
prompts to create a new project. This command uses the Fastify CLI to set up
a new project with all the necessary files and dependencies.

b. Navigate into the new project directory in your command line and run npm
install to install dependencies.

c. Run npm run dev to start the development server, open your browser, and go
to http://localhost:3000. You should see a JSON message like { "root":

true }. This indicates your Fastify server is running properly.

These exercises ensure your development environment is ready and introduce you to
running code with Node and launching a Fastify-based web server.

Using Fastify in This Book | 13

http://localhost:3000

Summary
In this chapter, you:

• Set up your Node development environment by installing essential tools like VS
Code and Node on macOS, Windows, and Linux

• Learned the role of Node as a fast event-driven JavaScript runtime built on the
V8 engine

• Explored the fundamentals of Fastify’s architecture for building APIs and web
services

14 | Chapter 1: Introduction and Setup

CHAPTER 2

Practical Application

This chapter covers the following:

• Getting started with a Node app
• Reading user input on the command line
• Writing data to a CSV

Whether you are new to programming or a seasoned engineer, you probably opened
this chapter to get started with Node. Many Node projects span thousands of lines of
code, but some of the most useful and practical applications can be written in only a
handful of lines. Let’s skip the part where you get overwhelmed and jump into the
practical application.

In this chapter, you’ll get a first glance at what Node can offer out of the box and off
the grid. You will learn to build a simple program that can run on anyone’s computer
and save real people real time and money. By the end of the chapter, you’ll have Node
locked and loaded on your computer with a development environment ready to build
practically anything.

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node, Fastify, and VS Code are
provided in Chapter 1, while project initialization steps, such as setting up your direc‐
tory structure, configuring package.json, and using modern syntax, are covered in
Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

15

Your Prompt
A travel agent wants to hire you to convert their Rolodex (physical information cards)
into some digital format. They just bought a few new computers and want to start
importing data. They don’t need anything fancy like a website or mobile application,
just a computer prompt to create a tabular format, or comma-separated values (CSV),
of data.

Get Planning
Luckily, you just started building Node applications and you see this as a great oppor‐
tunity to use some of Node’s default, out-of-the-box libraries. This business only
wants to manually enter data that can be written to a .csv file. So you start diagram‐
ming the requirements of the project, and your result is shown in Figure 2-1. The dia‐
gram details the following steps:

1. Physical information cards are collected by the user.
2. Open the command line and start the application by running node index.
3. Enter the name, phone number, and email address in the command-line prompt.
4. After each entry, contact data is saved through your application to a CSV file on

your computer.

Each contact has a full name, phone number, and email address listed on their card.
You decide to build a simple Node command-line application so users can manually
enter these three data values for each contact card.

When you’re finished, the user should be able to open their command line, run node
index.js, and follow the prompts to enter contact information. After each contact is
entered, it will be saved to a CSV file as a comma-delimited string.

.csv is a precursor to many of the mainstream database tables used
today. While not ideal for storing long-term data, it’s a great way to
visualize rows of data for viewing and processing without a
database.

16 | Chapter 2: Practical Application

https://oreil.ly/3kNLV

Figure 2-1. Diagramming the project blueprint and flow of information

Get Programming
With Node set up, you begin setting up your project. Choose a location where you’d
like to store your project code for this chapter and run mkdir csv_app in your com‐
mand line to create the project folder.

To keep your coding projects separate from other work on your
computer, you can dedicate a directory for coding. Creating a
directory called src at the root level of your computer’s user direc‐
tory is a good place. That location is /Users/<USERNAME>/src for
Macs (~/src), and C:\Users\<USERNAME>\src for Windows
computers.

Next, you’ll follow steps to initialize your Node app. When complete, your project
directory structure should look like Figure 2-2.

These steps are also described in Appendix B.

Get Programming | 17

Within the csv_app folder, run npm init to start the process of creating a new Node
application configuration file. You will see a prompt and can fill out your responses as
in Example 2-1.

Figure 2-2. Project directory structure

Example 2-1. Prompt for npm init

package name: (csv_app)
version: (1.0.0)
description: An app to write contact information to a csv file.
entry point: (index.js)
test command:
git repository:
keywords:
author: Jon Wexler
license: (ISC)

This is the name of your project.

index.js is where your application will start.

This process has created a new file for you: package.json (Example 2-2). This is your
application’s configuration file, where you’ll instruct your computer on how to run
your Node app.

18 | Chapter 2: Practical Application

What’s package.json?
Every Node project has a special file called package.json. Think of it as your app’s
instruction manual and toolkit. It explains what your app needs to work, what tasks it
can do, and even details about the project itself. If you’re new to Node, understanding
this file is crucial, so let’s break it down.

Why is package.json important? Imagine you’re baking a cake. You need ingredients,
tools, and step-by-step instructions. Similarly, a Node app needs specific libraries
(ingredients), configurations (tools), and scripts (steps) to work. The package.json file
organizes all of this in one place, making it easy to share your project with others or
set it up on a new computer.

Key parts of package.json include the following:

Dependencies
These are the “ingredients” your app needs: third-party libraries or packages it
relies on. For example, if your app uses Google Maps, you’d include the @google/
maps package here. This tells others (and their computers) what to install to
make the app work.

Scripts
These are commands that automate tasks for your app, like starting it, testing it,
or building it. For example, the most common script is npm start, which starts
your app. You can also add custom scripts like npm run build to prepare files for
deployment.

Version
This tracks the app’s version, which is helpful as you make updates. Versions fol‐
low a format like 1.0.0, where the numbers represent major changes, minor
updates, or small fixes (called “patches”).

Name and description
These fields describe your project. The name field gives your app a unique identi‐
fier, and the description explains what it does.

License
This tells others the terms for using, sharing, or modifying your app. For exam‐
ple, you might allow open use with an MIT license or set stricter terms.

If you’re working on a team or sharing your code, package.json ensures everyone is on
the same page. It automates setup, lists required libraries, and saves you from man‐
ually explaining how to run your app.

For more information, visit the Node documentation.

Get Programming | 19

https://oreil.ly/AdqHu

Your first step is to add "type": "module" to your package.json. This enables ES6
module syntax (import/export) in your Node project. Starting from Node v13.2.0,
stable support for ES6 modules was introduced, making them increasingly popular in
Node projects. Many developers now prefer ES6 modules over the older CommonJS
syntax (require/module.exports) for cleaner and more modern code.

Example 2-2. Contents of package.json

{
 "name": "csv_app",
 "version": "1.0.0",
 "type": "module",
 "description": "An app to write contact information to a csv file.",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Jon Wexler",
 "license": "ISC"
}

This addition allows for module import syntax in your application.

Next, you create the entry point to your application, a file titled index.js. This is where
the guts of your application will go.

For this project, you realize that Node comes prepackaged with everything you need
already. You can make use of the fs module—a library that helps your application
interact with your computer’s filesystem—to create the CSV file. Within index.js you
add the writeFileSync function from the fs module by writing import { write
FileSync } from "fs".

You now have access to functions that can create files on your computer. Now you
can make use of the writeFileSync function to test that your Node app can success‐
fully create (or overwrite) files and add text to them. Add the code in Example 2-3 to
index.js. Here you are creating a variable called content with some placeholder text.
Then, within a try/catch block, you run writeFileSync, a synchronous, blocking
function, to create a new file called test.txt within your project’s directory. If the file is
created with your added content, you will see a message logged to your command-
line window with the text Success! Otherwise, if an error occurs, you’ll see the stack‐
trace and contents of that error logged to your command-line window.

20 | Chapter 2: Practical Application

With ES6 module import syntax you may make use of destructur‐
ing assignment. Instead of importing an entire library, you may
import the functions or modules you need only through destruc‐
turing. For more information, read Mozilla’s JavaScript reference
pages.

Example 2-3. Contents of index.js

import { writeFileSync } from "fs";

const content = "Test content!";

try {
 writeFileSync("./test.txt", content);
 console.log("Success!");
} catch (err) {
 console.error(err);
}

Destructure the fs module to import its writeFileSync function.

Assign the content variable to a string.

Add a try/catch block to wrap your call.

Write to a new file called test.txt.

Log success upon file write.

Log an error if writeFileSync fails.

You’re ready to test this by navigating to your csv_app project folder within your ter‐
minal window and running node index.js. Now, check to see if a new file called
test.txt was created. If so, open it up to see Test content! within. Now you’re ready
to move to the next step and cater this app to handle user input and write to a CSV
file.

Translating User Input to CSV
Now that your app is set up to save content to a file, you begin writing the logic to
accept user input in the command line. Node comes with a module called readline
that does just that. By importing the createInterface function, you can map the
application’s standard input and output to the readline functionality, as seen in
Example 2-4. Like the fs module, no additional installations are required other than
the default out-of-the-box Node installation on your computer.

Translating User Input to CSV | 21

https://oreil.ly/c5oaZ
https://oreil.ly/c5oaZ

In this code, process.stdin and process.stdout are ways that your Node app’s
process streams data to and from the command line, enabling interaction with the
user directly through the terminal.

Example 2-4. Mapping input and output to readline in index.js

import { createInterface } from "readline";

const readline = createInterface({
 input: process.stdin,
 output: process.stdout
});

Destructure the readline module to import createInterface.

Call createInterface() with stdin and stdout to configure terminal-based
user input and output for your Node app.

Next, you make use of this mapping by using the question function in your read
line interface. This function takes a message, or prompt you’ll display to the user on
the command line, and will return the user’s input as a return value.

Because this function is asynchronous, you can wrap its return
value in a Promise to make use of the async/await syntax from ES6.
If you need a refresher on JavaScript Promises, visit Mozilla’s Java‐
Script reference pages.

Create a function called readLineAsync that waits for the user to reply and press
Enter before the string value is resolved (Example 2-5). In this way, your custom read
LineAsync function will eventually resolve with a response containing the user’s input
without holding up the Node app.

Example 2-5. Promise wrapped readLineAsync function in index.js

const readLineAsync = (message) =>
 new Promise((resolve) => readline.question(message, resolve));

Declares an asynchronous function readLineAsync that takes a message as input.

Wraps readline.question in a Promise to enable async/await usage, resolving
with the user’s input.

22 | Chapter 2: Practical Application

https://oreil.ly/DRTvA
https://oreil.ly/DRTvA

Using promisify to Wrap Your Synchronous Functions
Using promisify from Node’s built-in util module is a powerful technique to con‐
vert traditional callback-based functions into promise-based ones, allowing for easier
and cleaner asynchronous code using async/await. In many Node APIs, especially
older ones, asynchronous functions rely on a callback where the first argument is an
error (if any), and the second is the result. This approach can lead to “callback hell”
and less readable code. By using promisify, you can transform these callback func‐
tions into promises, simplifying your asynchronous flow and reducing the complexity
of error handling.

For example, using promisify to convert a function like fs.readFile or read
line.question into a promise allows you to seamlessly integrate these functions into
modern JavaScript code. This makes the code more maintainable, as you can use
async/await instead of deeply nested callbacks, resulting in a cleaner, more
synchronous-like structure. promisify is particularly useful when you are working
with legacy Node modules or want to upgrade your codebase incrementally to use
more modern patterns without significant refactoring. See Example 2-6 for how to
use promisify with readline.question.

This code sets up a CLI using Node’s readline module, allowing for asynchronous
input from the user with the help of promisify. The key parts include converting the
callback-based question method into a promise (using promisify), enabling the use
of async/await to prompt the user for their name, and then closing the interface once
the interaction is complete.

Example 2-6. Promise wrapped readLineAsync function in index.js

import { promisify } from 'util';
...

const readLineAsync = promisify(readline.question).bind(rl);
(async () => {
 try {

 const name = await readLineAsync('What is your name? ');
 console.log(`Hello, ${name}!`);
 } catch (err) {

 console.error('Error:', err.message);
 } finally {

 readline.close();
 }
})();
...

Import the promisify function from the util module.

Translating User Input to CSV | 23

The readLineAsync method is wrapped with promisify to convert it into a
promise-based function.

Prompt for user input using async/await.

Add a try/catch block to handle any potential errors that occur.

Adding a finally block ensures that the readline interface is closed.

With these functions in place, all you need is to call readLineAsync for your applica‐
tion to start retrieving user input. Because your prompt has three specific data values
to save, you can create a class to encapsulate that data for each contact. As seen in
Example 2-7, within index.js you import appendFileSync from the fs module, which
will create and append to a given filename. Then you define a Person class which
takes name, number, and email as arguments in its constructor. Finally, you add a save
ToCSV method to the Person class to save each contact’s information in a comma-
delimited format suitable for CSV to a file called contacts.csv.

Example 2-7. Defining the Person class in index.js

import { appendFileSync } from "fs";

class Person {
 constructor(name = "", number = "", email = "") {
 this.name = name;
 this.number = number;
 this.email = email;
 }
 saveToCSV() {
 const content = `${this.name},${this.number},${this.email}\n`;
 try {
 appendFileSync("./contacts.csv", content);
 console.log(`${this.name} Saved!`);
 } catch (err) {
 console.error(err);
 }
 }
}

Destructure the fs module to import appendFileSync.

Define the Person class.

Define a constructor with name, number, and email.

24 | Chapter 2: Practical Application

Add a saveToCSV method for saving contact information to CSV.

Use string interpolation to separate each contact’s information with commas.

Save and append the content string into a file called contacts.csv in your project’s
directory.

If you want to ensure that the contacts.csv file exists before you try
to append to it, you may also import the existsSync function from
the fs module and check if the file exists before appending to it
using existsSync("./contacts.csv"). This way, you can avoid
errors if the file does not exist.

The last step is to instantiate a new Person object for each new contact you’re man‐
ually entering into your application. To do this, you create an async startApp func‐
tion that uses a while loop controlled by a shouldContinue variable. Initially set to
true, this variable determines whether the loop continues.

Within the loop, the function collects the user’s input for name, number, and email
using the readLineAsync function. Each input is gathered in sequence, ensuring that
the function waits for the user to provide each value before proceeding.

Once all the required values are collected, a new Person object is instantiated with the
input values, and the saveToCSV() method is called on the person instance to save
the data to a file. After saving, the user is prompted to decide whether to continue
entering more data by typing y. If the user enters y, the loop continues; otherwise,
shouldContinue is set to false, and the readline interface is closed, ending the
application (Example 2-8).

Example 2-8. Collecting user input within startApp in index.js

const startApp = async () => {
 let shouldContinue = true;
 while (shouldContinue) {
 const name = await readLineAsync("Contact Name: ");
 const number = await readLineAsync("Contact Number: ");
 const email = await readLineAsync("Contact Email: ");

 const person = new Person(name, number, email);
 person.saveToCSV();

 const response = await readLineAsync("Continue? [y to continue]: ");
 shouldContinue = response.toLowerCase() === "y";
 }

Translating User Input to CSV | 25

 readline.close();
};

Declares an asynchronous startApp function to manage the app’s flow.

Uses a while loop controlled by the shouldContinue variable for repeated
prompts.

Creates a Person instance with the collected name, number, and email inputs.

Asks the user if they want to continue entering data.

Updates shouldContinue based on the user’s response (y to continue).

Closes the readline interface, ending the application.

Then add startApp() at the bottom of index.js to start the app when the file is run.
Your final index.js file should look like Example 2-9.

Example 2-9. Complete index.js

import { appendFileSync } from "fs";
import { createInterface } from "readline";

const readline = createInterface({
 input: process.stdin,
 output: process.stdout,
});

const readLineAsync = (message) =>
 new Promise((resolve) => readline.question(message, resolve));

class Person {
 constructor(name = "", number = "", email = "") {
 this.name = name;
 this.number = number;
 this.email = email;
 }
 saveToCSV() {
 const content = `${this.name},${this.number},${this.email}\n`;
 try {
 appendFileSync("./contacts.csv", content);
 console.log(`${this.name} Saved!`);
 } catch (err) {
 console.error(err);
 }
 }
}

26 | Chapter 2: Practical Application

const startApp = async () => {
 let shouldContinue = true;
 while (shouldContinue) {
 const name = await readLineAsync("Contact Name: ");
 const number = await readLineAsync("Contact Number: ");
 const email = await readLineAsync("Contact Email: ");

 const person = new Person(name, number, email);
 person.saveToCSV();

 const response = await readLineAsync("Continue? [y to continue]: ");
 shouldContinue = response.toLowerCase() === "y";
 }
 readline.close();
};

startApp();

In the project folder on your command line, run node index to start seeing text
prompts, as seen in Figure 2-3.

Figure 2-3. Command-line prompts for user input

When you are done entering all the contact’s details, you can then see that the infor‐
mation has been saved to a file called contacts.csv in the same folder. Each line of that
file should be comma-delimited, looking like Jon Wexler,2155550123,Jon@jonwex
ler.com.

This should be just what the travel agency needs to convert their physical contact
cards into a CSV file they can use in many other ways. In the next section, you’ll
explore how third-party libraries can simplify your code even further.

Translating User Input to CSV | 27

Working with External Packages
It didn’t take much code to build an application that is as functional and effective as
csv_app. The good news is your work is done. There’s even better news! While Node
offers built-in modules for a variety of tasks, there are plenty of external libraries
(npm packages) you can install to reduce your written code even further.

To improve the readability of your written code so far, you can install the prompt
and csv-writer packages by running npm install "csv-writer@^1.6.0"

"prompt@^1.3.0" in your project folder on your command line. This command will
also list these two packages in your package.json file.

Refer to the npm website for more information about prompt and
csv-writer.

In your index.js file, import prompt and use it to replace your readLineAsync calls, as
shown in Example 2-10. Start by initializing prompt with prompt.start() and setting
the prompt.message to an empty string to remove unnecessary prefixes in the termi‐
nal. You can now remove the readLineAsync function, readline interface mappings,
and readline module imports from your code.

prompt.get is used to collect the user’s input for multiple prompts at once, returning
an object where each prompt’s name corresponds to its response. These responses are
directly passed to a new Person constructor.

After saving the person’s values to a CSV file using the saveToCSV method, the pro‐
gram prompts the user to decide if they want to continue. The user’s response is des‐
tructured and assigned to the again variable, which determines whether the program
recursively calls itself to collect additional inputs or exits.

Example 2-10. Replacing readLineAsync with prompt in index.js

import prompt from "prompt";
prompt.start();
prompt.message = "";
...
const startApp = async () => {
 const questions = [
 { name: "name", description: "Contact Name" },
 { name: "number", description: "Contact Number" },
 { name: "email", description: "Contact Email" },
];

28 | Chapter 2: Practical Application

https://oreil.ly/xEcxI
https://oreil.ly/D6Fby

 const responses = await prompt.get(questions);
 const person = new Person(responses.name, responses.number, responses.email);
 await person.saveToCSV();

 const { again } = await prompt.get([
 { name: "again", description: "Continue? [y to continue]" },
]);

 if (again.toLowerCase() === "y") await startApp();
};

Defines the startApp function as asynchronous to allow for await usage.

Creates an array of questions for collecting name, number, and email inputs.

Prompts the user for the questions and collects the responses.

Instantiates a Person object with the collected responses.

Asks the user if they want to continue adding contacts.

Recursively calls startApp if the user opts to continue; otherwise, the program
ends.

Similar to how the external prompt package displaced the readline module, csv-
writer replaces the need of your fs module imports and defines a more structured
approach for writing to your CSV by including a header, as shown in Example 2-11.
Place this code at the top of your index.js file, just below the prompt import and
initialization.

Example 2-11. Importing and setting up csv-writer in index.js

import { createObjectCsvWriter } from "csv-writer";
...
const csvWriter = createObjectCsvWriter({
 path: "./contacts.csv",
 append: true,
 header: [
 { id: "name", title: "NAME" },
 { id: "number", title: "NUMBER" },
 { id: "email", title: "EMAIL" },
],
});

Working with External Packages | 29

Use a named import to bring in createObjectCsvWriter from csv-writer.

Configure csvWriter to write to contacts.csv, append to the file, and include
headers.

Finally, you modify your saveToCSV method on the Person class to use
csvWriter.writeRecords instead (Example 2-12).

Example 2-12. Update saveToCSV in Person class to use csvWriter.writeRecords in
index.js

...
async saveToCSV() {
 try {
 const { name, number, email } = this;
 await csvWriter.writeRecords([{ name, number, email }]);
 console.log(`${name} Saved!`);
 } catch (err) {
 console.error(err);
 }
}
...

Destructure your Person instance variables.

Use csvWriter.writeRecords to write a row of values to your CSV file.

With these two changes in place, your new index.js file should look like
Example 2-13.

Example 2-13. Using external packages in index.js

import { createObjectCsvWriter } from "csv-writer";
import prompt from "prompt";

prompt.start();
prompt.message = "";

const csvWriter = createObjectCsvWriter({
 path: "./contacts.csv",
 append: true,
 header: [
 { id: "name", title: "NAME" },
 { id: "number", title: "NUMBER" },
 { id: "email", title: "EMAIL" },
],
});

30 | Chapter 2: Practical Application

class Person {
 constructor(name = "", number = "", email = "") {
 this.name = name;
 this.number = number;
 this.email = email;
 }

 async saveToCSV() {
 try {
 const { name, number, email } = this;
 await csvWriter.writeRecords([{ name, number, email }]);
 console.log(`${name} Saved!`);
 } catch (err) {
 console.error("Error saving contact:", err);
 }
 }
}

const startApp = async () => {
 const questions = [
 { name: "name", description: "Contact Name" },
 { name: "number", description: "Contact Number" },
 { name: "email", description: "Contact Email" },
];

 const responses = await prompt.get(questions);
 const person = new Person(responses.name, responses.number, responses.email);
 await person.saveToCSV();

 const { again } = await prompt.get([
 { name: "again", description: "Continue? [y to continue]" },
]);

 if (again.toLowerCase() === "y") await startApp();
};

startApp();

Now when you run node index, the application’s behavior should be exactly the same
as in the previous section. This time your contacts.csv file should list headers at the
top of the file. This is a great example of how you can use Node out of the box to
solve a real-world problem, then refactor and improve your code by using external
packages built by the thriving online Node community!

Working with External Packages | 31

Chapter Exercises
1. Add input validation for email and phone number:

a. Update your CLI application so that it only accepts valid email addresses and
phone numbers.

b. Use a regular expression to check that the email contains a valid format like
example@domain.com, and that the phone number contains only digits.

c. If the input is invalid, show an error message and prompt the user to enter the
value again.

d. After implementing this, try running the app and attempt to enter incorrect
data (e.g., abc@, 123abc456) to make sure it correctly asks again.

For a basic email check, you can use /\\S+@\\S+\\.\\S+/, but
feel free to improve it!

2. Include a timestamp for each contact entry:
a. Modify the Person class or your CSV writer code to include a createdAt

field.
b. When the user submits a contact, automatically add the current date and time

in ISO format using new Date().toISOString().
c. Update your CSV logic to include a CREATED_AT header and write this new

field alongside the contact’s name, number, and email.
d. Run your application, enter a few contacts, and confirm that each row now

includes the timestamp in the final column.

These exercises will help solidify your understanding of input validation, formatting,
and data enrichment—all common tasks in real-world Node applications.

Summary
In this chapter, you:

• Developed a Node application to automate the conversion of contact data from
physical cards into a CSV format.

• Learned how to read user input from the command line using both built-in Node
libraries and external packages.

32 | Chapter 2: Practical Application

• Efficiently stored contact information in a CSV file with structured headers using
the csv-writer package.

• Enhanced your project by integrating external libraries, improving both code
readability and functionality.

• Established a foundational workflow for building command-line tools that solve
real-world problems with minimal code.

Summary | 33

CHAPTER 3

Building a Node Web Server

This chapter covers the following:

• Using Node as a web interface
• Building a Node web app with Fastify
• Serving static pages with dynamic content

Node is about using JavaScript on the server. JavaScript itself is already an asynchro‐
nous language by nature, but not until 2009 was it used outside your standard web
browser. As dependence on the internet grew worldwide, businesses demanded new
innovative development strategies that also took into account hirable skill sets already
in the market. Thereafter, JavaScript took off for frontend and backend development,
setting up new application design patterns with Node’s single-threaded event loop.

In this chapter, you’ll explore the most common use case for Node, a web application,
and how the event loop plays a role. By the end of this chapter, you’ll be able to use
Node’s most popular project framework, Fastify, to build both simple web servers and
more extensive applications.

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

35

Your Prompt
The owners of a local restaurant, What’s Fare is Fair, have decided to invest some
money into a homegrown web application to better serve their customers. They’ve
reached out to you, an eager software engineer, to help craft a lightweight application
that can display their landing page, static menu, and operating hours.

Get Planning
After careful consideration, you realize this business needs only a simple web server
to serve static content to its customers. In this case you only need to support three
web pages of content. Being an experienced Node engineer, you know that you may
use the built-in http module, but find it more flexible to work with a popular exter‐
nal library called Fastify. Before you get programming, you diagram the requirements
of the project and your result, as shown in Figure 3-1.

Figure 3-1. Project blueprint

A Word on Web Servers
Node’s runtime environment is versatile enough to create applications that communi‐
cate over the internet using standard protocols, with HTTP being the most common.
While Node’s built-in http module allows you to build web servers, setting up even a
basic website can require significant code and configuration.

To streamline this process, frameworks like fastify provide a more comprehensive
solution. Fastify not only simplifies the implementation of http for handling web
requests and responses, but also introduces a structured approach to organizing your

36 | Chapter 3: Building a Node Web Server

application’s files, integrating third-party packages, and building web applications
more efficiently. In fact, many other Node frameworks build upon Fastify as a foun‐
dation for their additional tools and features. For more details on Fastify and its capa‐
bilities, visit the Fastify website.

As customers visit the restaurant’s site, your Fastify app will efficiently route them to
the requested pages. Leveraging Node’s single-threaded event loop, Fastify handles
incoming requests asynchronously. Each request represents a customer’s attempt to
access a specific page via a URL. Despite running on a single thread, Node’s non‐
blocking architecture allows it to handle multiple requests concurrently by offloading
tasks (like database queries or file reads) to the background. This means your app can
quickly process each customer’s request without being held up by others, as long as
no heavy, CPU-bound operations (like calculating the 50th Fibonacci number) are
blocking the event loop. Thanks to this approach, Fastify ensures fast, scalable perfor‐
mance even under load. You visualize how Node’s event loop manages and prioritizes
incoming requests.

Blocking the Event Loop
The Node event loop is the heart of how every Node application runs. Since Java‐
Script in Node operates on a single thread, it’s crucial to allow this thread to handle as
many tasks as possible without delays. Figure 3-2 illustrates some common ways the
event loop can be blocked.

Figure 3-2. How to block the event loop

Although Node uses a single thread, it can create additional threads from a “thread
pool,” often referred to as “worker threads.” These worker threads are typically

Get Planning | 37

https://fastify.dev

assigned more resource-intensive tasks, such as filesystem operations, database quer‐
ies (I/O), or cryptographic functions. The purpose of these worker threads is to off‐
load heavy tasks from the main event loop, allowing it to stay responsive. However, if
the event loop itself is busy handling complex or slow-running tasks, your app’s per‐
formance can suffer.

The main thread is responsible for coordinating asynchronous tasks and processing
their callbacks when they’re ready. However, if those callbacks include operations like
nested loops, processing large datasets, or other CPU-heavy computations, the event
loop gets “blocked.” This means it can’t handle other incoming tasks until it finishes
the current one, leading to slower responses.

In the context of a web server, each event loop cycle corresponds to handling requests
from clients. If the event loop is blocked by one client’s request—like generating a web
page with complex processing—other clients will have to wait until that task is com‐
plete. As you build your web servers, it’s important to differentiate between tasks that
run in constant time (quick operations) versus tasks that run in exponential time (like
nested loops or CPU-intensive algorithms) and could block the event loop.

For more information, visit the Node website.

Figure 3-3 illustrates how web requests are processed within your Fastify-powered
web application. Similar to Figure 3-1, customers access the restaurant’s website
without any predictability regarding the number of visitors or the rate at which
requests arrive. Each request, however, is processed individually as it enters your
application. Node’s event loop efficiently queues incoming requests, assigning respon‐
ses while simultaneously managing new ones. Thanks to the queue system, the event
loop handles each request as soon as resources are available. For example, when a
customer requests the restaurant’s menu, Fastify routes them to a static web page dis‐
playing the business hours, ensuring that all requests are handled smoothly, even
under varying load conditions.

For more information about Node’s event loop, see the official doc‐
umentation page or Mozilla’s JavaScript reference pages.

With the big picture captured, it’s time to get programming.

38 | Chapter 3: Building a Node Web Server

https://oreil.ly/MbnEj
https://oreil.ly/_6ork
https://oreil.ly/_6ork
https://oreil.ly/NZdpc

Figure 3-3. Development workflow

Building the Application Skeleton
While this project can be relatively straightforward, it’s often helpful to break tasks
down into more manageable segments. To start, you create an application skeleton
that contains the Fastify framework and some of your application logic.

Working with Fastify
Initialize a new Node application by creating a new folder called restaurant
_web_server, entering the folder on your command line, and running npm init
(Example 3-1).

Example 3-1. Prompt for npm init

package name: (restaurant_web_server)
version: (1.0.0)
description: An web application for a local restaurant.
entry point: (index.js)
test command:
git repository:
keywords:
author: Jon Wexler
license: (ISC)

Building the Application Skeleton | 39

This is the name of your project.

index.js is where your application will start from.

After running through the prompt, your package.json file will appear in the project’s
folder. This file contains both the application’s general configurations and the depen‐
dent modules.

Next, run npm install fastify@^4.28.1 to install the fastify package. You’ll need
an internet connection, as running this command will fetch the contents of the fas
tify package from the npm registry and add them to your node_modules folder at
the root level of your project. Unlike the fs and http modules that are prepackaged
with Node, the fastify module is not offered with your initial installation. Instead,
Fastify is bundled into a package called fastify that can be downloaded and installed
separately through Node’s package management registry tool, npm.

Both Node and Fastify are projects supported by the OpenJS Foun‐
dation. For more information about open source JavaScript
projects from OpenJS, visit the OpenJS Foundation website.

After installing fastify you notice that fastify is added to your package.json file
under a section called dependencies, as seen in Example 3-2.

There are a variety of ways to write npm commands, some shorter
and others more explicit in their phrasing. To learn more about
npm command-line shorthands and flags, refer to the npm docu‐
mentation.

Example 3-2. Package dependencies in package.json

"dependencies": {
 "fastify": "^4.28.1"
},

fastify v^4.28.1 is listed as the sole dependency.

40 | Chapter 3: Building a Node Web Server

https://www.npmjs.com
https://openjsf.org
https://oreil.ly/T34wJ
https://oreil.ly/T34wJ

The use of ^ in npm package versioning means your application
will ensure that this version, or any compatible versions of the
package with minor or patch updates, will be installed to your
application. The ~ before the version number means only patch
updates will be installed, but not minor version changes. For more
about package.json and how versioning works, see the npm
documentation.

With fastify installed, you create a file called index.js at the root level of your project
folder. Next you import fastify into your application on the first line by adding
import Fastify from 'fastify'.

As of Node v12, ES6 module imports are supported natively, but
they are not enabled by default. You need to add "type": "mod
ule" to your package.json file to use the import syntax. Alterna‐
tively, if you do not want to modify package.json, you can use
the .mjs file extension for individual files.

As shown in Example 3-3, you then type const app = Fastify() to instantiate a
new instance of a Fastify application and assign it to a variable called app. You also
assign another variable called port a development port number of 3000.

In development, you can use almost any port number to test your
code. Ports like 80, 443, and 22 are usually reserved for specific
purposes—80 for regular web traffic, 443 for secure (SSL) web traf‐
fic, and 22 for SSH connections. Port 3000, however, has become a
popular default choice among software engineers for development.

Your app object has functions to handle incoming web requests. You add app.get on
"/", which listens for HTTP GET requests to your web app’s home page. The app.get
callback function processes the request and directly returns a plain-text response
using "Welcome to What's Fare is Fair!". This response is sent back to the cus‐
tomer’s web browser when they visit your app’s home page. The code is streamlined
by using a return statement.

Fastify’s app.get is named according to the HTTP request type.
The most common requests are GET, POST, PUT, and DELETE. To
get more familiar with these request methods, refer to Mozilla’s
JavaScript reference pages.

After defining your routes, you call await app.listen({ port }) to start the server.
Once it’s running, a confirmation message is logged using console.log(...).

Building the Application Skeleton | 41

https://oreil.ly/bKCz7
https://oreil.ly/bKCz7
https://oreil.ly/bMdS9
https://oreil.ly/bMdS9

Example 3-3. Setting up your Fastify app in index.js

import Fastify from "fastify";
const app = Fastify();
const port = 3000;

app.get("/", async (request, reply) => {
 return "Welcome to What's Fare is Fair!";
});

await app.listen({ port });
console.log(`Web Server is listening at http://localhost:${port}`);

Import the Fastify module to create a server.

Create an instance of Fastify, which acts as your web server.

Define the port on which the application will run (defaults to 3000).

Register a route that listens for HTTP GET requests at the root URL ("/").

Respond with a plain-text message using the return statement.

Start the server and bind it to the defined port using await app.listen

({ port }).

Log a confirmation message to the console, including the server’s address, once it
is successfully running.

If you do not use process.exit(1) when an error occurs during
startup, your application might continue running in a broken state,
which could cause unpredictable behavior. Exiting the process
ensures the error is caught early and handled appropriately.

Once your application has started successfully, Fastify takes over handling incoming
requests and sending responses. Understanding how Fastify structures its request-
response cycle is key to building efficient and reliable routes.

In Fastify, you handle requests using request and send responses
using reply. The function is marked as async to work with Fasti‐
fy’s promise-based routing. Fastify automatically serializes the
returned value as the response body. With the reply object you can
set headers, status codes, and even stream responses.

42 | Chapter 3: Building a Node Web Server

Now, you can start your application by running node index in your project’s
command-line window. You should then see a logged statement that reads: Web
Server is listening at http://localhost:3000.

localhost is a special hostname that refers to your own computer,
used for testing and development without sending data over the
internet. It’s mapped to reserved IP addresses like 127.0.0.1 (IPv4)
and ::1 (IPv6) via the system’s hosts file, bypassing DNS lookups.
When you use localhost, your computer loops the request back to
itself through a virtual network adapter called the loopback.

This means you can open your favorite web browser and visit http://localhost:3000 to
see the text in Figure 3-4.

Figure 3-4. Viewing your web server’s response in your web browser

With your application’s foundation out of the way, it’s time to add some flair to the
What’s Fare is Fair site.

Adding Routes and Data
With your application running, you move on to add more routes and context to your
restaurant’s site. You already added one route: a GET request to the home page (/).
Now you can add two more routes for the menu page and operating hours page, as
depicted in Example 3-4. Each app.get provides a new route at which your web
pages are reachable.

Building the Application Skeleton | 43

http://localhost:3000

Example 3-4. Adding two more routes in index.js

app.get("/menu", async (request, reply) => {
 return "TODO: Menu Page";
});

app.get("/hours", async (request, reply) => {
 return "TODO: Hours Page";
});

A Fastify route for GET requests to the /menu path

A Fastify route for GET requests to the /hours path

You can stop your Node server by pressing Ctrl+C in the command line of your run‐
ning project. With your new changes in place, you can start your project again by
running node index. Now when you navigate to http://localhost:3000/menu and
http://localhost:3000/hours, you’ll see the text change to your TODO messages.

This is a good start, but you’ll need to fill in some meaningful data here. Your contact
at What’s Fare is Fair provides you with pictures of their menu (Figure 3-5). This
image provides insight into the structure of the data in the restaurant’s menu. For
example, each item has a title, price, and description.

Figure 3-5. Menu items

Similarly, the restaurant provides a visual of their operating hours, as shown in
Figure 3-6. Here, you notice that certain days share the same hours of operation,
while one day has different hours, and one day the restaurant is closed. Being able to
examine this information ahead of building your web pages can help you design your
project in an efficient way.

44 | Chapter 3: Building a Node Web Server

http://localhost:3000/menu
http://localhost:3000/hours

Figure 3-6. Operating hours

With these two references for data, you can convert the menu and hours list into
JavaScript-friendly data modules. First, you create a folder called data in your project
directory, where you’ll add a menuItem.js and an operatingHours.js file. From these
files you use the ES6 export default syntax to export all of the files’ contents for use
in other modules, as shown in Examples 3-5 and 3-6.

Example 3-5. Menu data in menuItems.js

export default [
 {
 name: "Broccoli Pie",
 description: "A green pie with an earthy crust",
 cost: 12.99,
 },
 {
 name: "Eggplant Smoothie",
 description: "A purple shake with an earthy quake",
 cost: 5.99,
 },
 {
 name: "Watermelon Sushi",
 description: "A red roll with atmospheric sweetness",
 cost: 8.99,
 },
];

Export an array of menu items for use in other parts of the project.

Transforming the data from a physical menu to this digital JSON-like structure will
make it easier for you to systematically display relevant menu items to the restaurant’s
customers. Because operating hours are the same every day except for Monday and
Sunday, the normal hours can be listed as defaultHours values in operatingHours.js.

Building the Application Skeleton | 45

Example 3-6. Hours data in operatingHours.js

export default {
 defaultHours: {
 open: 11,
 closed: 22,
 },
 monday: {
 open: null,
 closed: null,
 },
 sunday: {
 open: 12,
 closed: 20,
 },
};

Export an object with default operating hours and values for special cases.

To make use of this data, you import the two relative modules at the top of index.js
(Example 3-7).

Example 3-7. Importing data modules into index.js

import operatingHours from "./data/operatingHours.js";
import menuItems from "./data/menuItems.js";

Import custom modules from their relative data directory.

To test that these values are being loaded properly, you replace the return statements
in the /menu and /hours routes with reply.send(menuItems) and reply.send(opera
tingHours), respectively. Doing so should replace the static text you previously saw
when loading your web page with more meaningful data provided by the restaurant.
This step in the process helps you validate that the data you’re expecting is properly
flowing to the web pages you intend it to reach.

Restart your Node server and visit http://localhost:3000/menu and http://localhost:
3000/hours. Your result for the menu page on your web browser should look like
Figure 3-7.

Figure 3-7. Menu data

46 | Chapter 3: Building a Node Web Server

http://localhost:3000/menu
http://localhost:3000/hours
http://localhost:3000/hours

With this data displayed on the browser, the next step is to format it to be more visu‐
ally appealing.

Building Your UI
You could build a user interface using a frontend framework like React.js, Vue.js, or
Angular.js. However, to keep this app simple, you’ll set up server-side rendering (SSR)
using Embedded JavaScript (EJS) templates with Fastify.

There are a variety of templating engines, such as EJS and Pug, that
work well with Node and Fastify. Check out the EJS website and the
Pug website to learn more about these tools.

On the command line, navigate to your project folder and run
npm install @fastify/view@^9.1.0 ejs@3.1.6. This installs the ejs package,
which facilitates converting HTML content with dynamic data into static HTML
pages, and the @fastify/view Fastify plug-in, which allows you to use EJS as a tem‐
plating engine in your Fastify project.

The @fastify/view plug-in is a Fastify plug-in that allows you to
use a variety of templating engines with Fastify. This package is a
separate plug-in in Fastify to maintain the framework’s core philos‐
ophy of being lightweight, modular, and highly performant. For
more information on how to use this plug-in, visit the Fastify
website.

Next, you configure Fastify to use the ejs templating engine (Example 3-8). Once
configured, you can use Fastify’s reply.view method to render pages with HTML
and EJS templates.

Example 3-8. Updating Fastify routes to render EJS files in index.js

import ejs from 'ejs';
import fastifyView from '@fastify/view';
...
app.register(fastifyView, {
 engine: {
 ejs: ejs,
 },
});

app.get("/", (req, reply) => {
 reply.view("views/index.ejs", { name: "What's Fare is Fair" });

Building Your UI | 47

https://ejs.co
https://oreil.ly/EQ6xL
https://oreil.ly/3RRsh
https://oreil.ly/3RRsh

});

app.get("/menu", (req, reply) => {
 reply.view("views/menu.ejs", { menuItems });
});

app.get('/hours', (req, reply) => {
 const days = [
 "monday",
 "tuesday",
 "wednesday",
 "thursday",
 "friday",
 "saturday",
 "sunday",
];
 reply.view("views/hours.ejs", { operatingHours, days });
});

app.listen({ port: 3000 }, (err, address) => {
 if (err) throw err;
 console.log(`Server running at ${address}`);
});

Import the EJS templating engine and the Fastify view plug-in.

Set EJS as your templating engine.

Use reply.view to display the index.ejs page in your pages folder.

Use reply.view to display the menu.ejs page in your pages folder, passing menu
Items data.

Use reply.view to display the hours.ejs page in your pages folder, passing opera
tingHours and days data.

To properly render these pages, you need to create a folder called views at the root
level of your project and add three new files: index.ejs, menu.ejs, and hours.ejs. These
files will be located by the EJS templating engine in Fastify when a request is made to
the corresponding route. To complete the process, you can fill these files with a mix
of HTML and EJS. Example 3-9 shows an example of your landing page, index.ejs.

Example 3-9. Landing page content in index.ejs

<!DOCTYPE html>
<html lang="en">

<head>

48 | Chapter 3: Building a Node Web Server

 <meta charset="UTF-8">
 <title>Restaurant</title>
</head>

<body>
 <h1>Welcome to <%= name %></h1>
</body>

</html>

Basic HTML5 structure with your main content in the body tag

Text to display the dynamic name data from your index.js file

EJS uses <%= %> to display content within the HTML. In
Example 3-10 you use this syntax to display the business name. If
you want to run JavaScript on the page without printing anything,
leave out the =.

When you restart your project and visit http://localhost:3000, your browser should
look like Figure 3-8.

Figure 3-8. Browser rendering of index.ejs

You go on to add the same HTML structure to menu.ejs and hours.ejs. Modifying only
the body tags of each, your menu.ejs will contain a for loop iterating over each menu
item. From there you display the name, description, and cost of each item
(Example 3-10).

Example 3-10. Menu page content in menu.ejs

<h1>Our Menu</h1>

 <% for (let item of menuItems) { %>

 <%= item.name %>
 <%= item.description %>
 <%= item.cost %>

 <% }%>

Building Your UI | 49

http://localhost:3000

Loop through the menuItems values, assigning each object as item with each
iteration.

Display the menu item in bold.

Display the description and cost alongside the name.

With this code in place, restart your node server and navigate to http://localhost:3000/
menu in your web browser to see a page that looks like Figure 3-9.

Figure 3-9. Browser rendering of menu.ejs

Similarly, in hours.ejs, you iterate over each day in your days array. From there, you
determine whether you have data for that day to display, or simply use the default val‐
ues previously defined. You use an if-else condition here in EJS to separate the UI
for days that have hours to display and Monday, when the restaurant is closed
(Example 3-11).

Example 3-11. Hours page content in hours.ejs

<h1>Our Hours</h1>
<% for(let day of days) { %>
 <% const hoursObj = operatingHours[day] || operatingHours['defaultHours'] %>
 <section style="display: inline-flex; flex-direction: column; padding: 5px;">
 <h2><%= day.toUpperCase() %></h2>
 <div>
 <% if (hoursObj.open) {%>
 <p>Open: <%= hoursObj.open %></p>
 <p>Closed: <%= hoursObj.closed %></p>
 <% } else {%>
 <p>CLOSED</p>
 <% } %>
 </div>
 </section>
<% }%>

Display the page name.

Loop over days, assigning each value to day on each iteration.

50 | Chapter 3: Building a Node Web Server

http://localhost:3000/menu
http://localhost:3000/menu

Define an hoursObj variable to contain the opening and closing hours data.

Display the fully capitalized day name.

Check whether the day has opening hours data.

Display the opening and closing hours.

Display the message when closed.

With this last page complete, you restart your node server and navigate to http://local
host:3000/hours in your web browser to see a page that looks like Figure 3-10.

Figure 3-10. Browser rendering of hours.ejs

Admittedly, these pages aren’t visually appealing, even though they display the
required information for the restaurant. This is the stage where you might consider
enhancing the UI with HTML, CSS, and client-side JavaScript. While these additions
are out of scope for a server-side Fastify project, you can easily integrate them. To
learn more about serving static assets like stylesheets and images in Fastify, visit the
fastify-static GitHub repo. Next, you’ll explore how adding some basic styling can
improve the look and feel of your web application.

Building Your UI | 51

http://localhost:3000/hours
http://localhost:3000/hours
https://oreil.ly/6wZLF

Sprucing Up the UI
Building a full stack application typically involves work on both the frontend and
backend. As a Node engineer, your primary focus will often be on the backend. As
such, there’s no hard requirement to be fluent in HTML or CSS, or their relative libra‐
ries and frameworks. It’s best to commit time to building out the UI, or to allocate the
work for someone with frontend experience.

To quickly add a CSS library to Fastify, start by creating a public folder at the root
level of your project. Then, you need to install the @fastify/static by running npm
install @fastify/static@^7.0.4 at the root level of your project in the command
line.

Next, register the @fastify/static plug-in in your index.js file to serve static assets
from the public directory (Example 3-12). Once set up, you can add any .css files,
images, or other static content to your public folder and access those resources
directly in your EJS files. Then you’ll need to reference your CSS files in the <head>
tag of your EJS files. For example, <link rel="stylesheet" href="public/style
sheets/style.css" /> would link to a style.css in the public/stylesheets/ folder.

Example 3-12. Adding static assets to your Fastify app in index.js

...
import fastifyStatic from '@fastify/static';
import { join } from "path";
const publicPath = join(process.cwd(), "public");
...

app.register(fastifyStatic, {
 root: publicPath,
 prefix: '/public/',
});
...

Import the @fastify/static plug-in, used to serve static files such as CSS,
images, and other assets in Fastify.

Import join from path, used to construct a cross-platform compatible file path
to the public folder.

Create an absolute path to the public directory at the root of your project.

Register the fastifyStatic plug-in to enable serving static files.

52 | Chapter 3: Building a Node Web Server

Set the directory publicPath from which static files will be served.

Set the URL prefix for static files to /public/.

Look at Figures 3-11, 3-12, and 3-13 to see how the addition of stylesheets can
improve the aesthetics of the pages you built.

Figure 3-11. Browser rendering of styled index.ejs

The landing page can be designed with any layout you prefer. Fastify supports a wide
range of templating engines, allowing for flexible and customizable layouts. Popular
engines like EJS, Pug, and Handlebars can be easily integrated with Fastify using
plug-ins. For more information on using templating engines with Fastify, visit the
point-of-view GitHub repo.

Figure 3-12. Browser rendering of styled menu.ejs

Sprucing Up the UI | 53

https://oreil.ly/cruSV

The menu UI immediately feels more familiar with a visual that indicates the cus‐
tomer may place an online order. Online purchasing can be added to a Node app like
this. For now, it’s simply a visual that may encourage the restaurant to invest more
time to build a more robust application.

Figure 3-13. Browser rendering of styled hours.ejs

The hours of operation may be displayed in a variety of ways. In Figure 3-13, a flex-
box style is added to ensure all days and times are spaced out without overlap.

If you have the time to dedicate to improving the UI of a Node web app, or if you can
work alongside a frontend developer, you may find the end result more pleasing to
your customer.

Chapter Exercises
1. Add a new page to your site:

a. Create a new EJS template file called about.ejs inside your views folder.
b. Add a heading and a short paragraph describing the restaurant’s history or

mission.
c. In your index.js file, define a new GET route (/about) that renders the

about.ejs view.
d. Restart your Node server and navigate to http://localhost:3000/about to con‐

firm it works.

Reuse the HTML structure from your other .ejs files for consis‐
tency.

54 | Chapter 3: Building a Node Web Server

http://localhost:3000/about

2. Enhance the hours page with today’s status:
a. Update the /hours route handler to determine the current day using new

Date().getDay() and map it to your days array.
b. Pass an additional variable called today to your EJS template.
c. In hours.ejs, highlight the current day using an if statement and apply a spe‐

cial CSS class or style to make it stand out visually.

These exercises reinforce how to pass and render dynamic data from your server to
EJS templates—key skills in server-side web development.

Summary
In this chapter, you:

• Built a Fastify web server, learning how Node’s event loop handles asynchronous
requests and avoids blocking.

• Configured routes to serve dynamic content and organized your project using
separate data modules.

• Implemented server-side rendering with EJS and improved the visual design of
web pages using static assets.

• Integrated key Fastify plug-ins to enhance functionality and streamline your
application.

Summary | 55

CHAPTER 4

Build a Secure Local Password Manager

This chapter covers the following:

• Data hashing concepts
• Working with Bcrypt
• Saving data to a MongoDB collection

Building applications on the server provides immediate benefits over building on the
client. One of those benefits is enhanced control over data security.

The server engineer is typically responsible for protecting data in the database, deter‐
mining what data the client can view, and who can see it. For this reason, there are a
multitude of hashing packages on the npm registry to use with Node to hide sensitive
data from everyone other than the data’s original owner.

Although it is commonly expanded as “Node Package Manager,”
npm is not officially an acronym. The creators of npm have stated
that it originally stood for “npm is not an acronym.”

In this chapter, you will build a password manager using the bcrypt hashing package
and mongodb for persistent storage. You’ll start by understanding what happens under
the hood with hashing and how you can use this mechanism to build an effective pro‐
ductivity tool. Later, you’ll introduce document storage with MongoDB to keep your
hashed data for future access.

57

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Installation instructions for MongoDB are available in Appendix C.
Once completed, return here to continue. Building a project from scratch helps
deepen your understanding of each component, giving you greater control and flexi‐
bility as you progress.

Your Prompt
Your blockchain startup, Crypto Spies, is growing. With each new service your com‐
pany uses, you’re finding it harder to keep track of your passwords, and you don’t yet
trust external companies to manage them for you. You decide to set a few hours aside
and build your own password manager. This way, you can quickly access passwords
from your homemade manager running on your computer.

Get Planning
You’ve decided that you want this Node application to run on your own machine,
only allow access via a hashed password, and save your personal passwords in a data‐
base. To get this application working in only a short time, you choose an existing
hashing library to hash your passwords, and MongoDB to store those passwords.
Before you start programming, you diagram the requirements of the project and your
result.

Figure 4-1 shows the flow of information for your completed application. Your appli‐
cation will store both a hashed master password and plain-text passwords. The fol‐
lowing steps detail how the application should work:

1. To start, a master password is typed into your command line and sent to your
Node application.

2. Your application logic hashes that password and saves it to your database.
3. The next time you access your application, you type your master password,

which will be validated against your hashed password.
4. If the typed password matches your master password, you may choose to save

personal passwords or view a list of saved passwords.

58 | Chapter 4: Build a Secure Local Password Manager

Figure 4-1. Project blueprint for flow of data in password manager app

As you type new passwords to save to your database, the password text enters into
your Node app. From there, application logic hashes your password and saves it to
your database. To retrieve that list of passwords, you must retype a master password
that only you know.

Now, it’s time to start coding.

Building a Local Command-Line Manager
It’s best to build a simple version of your application and incrementally add capabili‐
ties. For your first version, you plan to build a Node application with the logic to hash
your main password and store your list of other passwords in memory (this means
the list gets deleted whenever you close your application process).

Before you incorporate a database to save your data long-term,
your computer has the ability to temporarily save the data in mem‐
ory. This means that the data in your application is only preserved
for as long as the application is running and the computer is turned
on.

Start by creating a new project folder called password_manager. This folder may be
created where you plan to save Node projects on your computer. Navigate to this
folder on your command line and run npm init to initialize the Node project. Your
initialization prompt should resemble Example 4-1.

Example 4-1. Prompt for npm init

package name: (password_manager)
version: (1.0.0)
description: A Node app for storing passwords

Building a Local Command-Line Manager | 59

entry point: (index.js)
test command:
git repository:
keywords:
author: Jon Wexler
license: (ISC)

This is the name of your project.

index.js is where your application will start.

Next, run npm install bcrypt@^5.0.1 to install the bcrypt package. The
bcrypt.hashSync function is one of many you can use to hash your password. The
process of hashing your password involves two steps: hashing your password and val‐
idating a plain-text password against your hashed password. Figure 4-2 shows how
the hashing function is a one-way procedure. In this way, it is very difficult to reverse
engineer the original password from the hashed value.

First, you type the main password that you’ll use to access your other passwords.
Bcrypt’s hash function uses a salt (randomly generated text) to jumble your password
text a number of times equal to your salt rounds value. The resulting hashed pass‐
word is then stored in your database. Later, when you type your password again to
access your manager, your input text is again hashed and compared to the stored
password hash. bcrypt’s compare function will evaluate your plain text against the
hashed password. If your password matches the hashed password in your database,
you are authorized. In this way, bcrypt does not reverse a hashed password, but
instead rehashes a retyped password and compares the result with the password hash
in the database.

Figure 4-2. Hashing process with bcrypt

60 | Chapter 4: Build a Secure Local Password Manager

Now, create your index.js file at the root level of your project directory. This is where
most of your application logic will live. You can test some of bcrypt’s functions by
adding the code in Example 4-2 to index.js.

Example 4-2. Testing bcrypt in index.js

import bcrypt from "bcrypt";
const password = "test1234";
const hash = bcrypt.hashSync(password, 10);
console.log(`My hashed password is: ${hash}`);

Import the bcrypt package.

Define a test password.

Use the hashSync function to hash your password, with 10 salt rounds (a cost
factor of 2^10 = 1024 iterations).

Output your hashed password to your console.

With this code in place you can run node index at the root level of your project in
your command-line window. Your resulting output should look like My hashed pass
word is: $2b$10$/mLO.3etH.eG1.tsFY (with a different hash value, of course).

If you don’t see a logged statement in your command-line window,
check to make sure your index.js file was saved in the same direc‐
tory from which you’re running the application.

With your test case working, you build out the functions needed to facilitate saving a
new hashed password. Figure 4-3 demonstrates the flow of logic according to the
function names you’ll use. To start, your application runs a prompt function to enable
user interaction on the command line. Then, you check whether there is already a
stored master password hash. If a master password hash exists, you run promptOld
Password to prompt the user to retype their password. Otherwise, you run prompt
NewPassword to prompt the user to type a new master password for the first time.
When the user types their new password, the saveNewPassword function will save the
resulting hash to the database.

If the user types their existing master password, you compare their input to the stored
password hash through compareHashedPassword. If their password is validated you
display a menu of items to choose from through the showMenu function. Within this
menu, the user may choose to view their list of passwords (viewPasswords), add a

Building a Local Command-Line Manager | 61

new password to your list (promptManageNewPassword), reverify your hashed pass‐
word, or exit the app.

Figure 4-3. Code logic-flow diagram

The code for this logic can be written one function at a time. First, install the prompt-
sync package by running npm install prompt-sync@^4.2.0 at the root level of your
project in your command line. Then, add the bcrypt and prompt-sync imports to
your index.js file. Also, add a JavaScript object with a passwords key mapped to an
empty object to represent your database. As you add new passwords to save, this
object will get populated (Example 4-3).

In other chapters the prompt package is used, which provides a dif‐
ferent syntax for prompting the user in async functions than
prompt-sync. Here, you are blocking further interactions with your
app until prompts are responded to, due to their synchronous
nature.

Example 4-3. Add module imports and mock db to the top of index.js

import bcrypt from "bcrypt";
import promptModule from "prompt-sync";
const prompt = promptModule();
const mockDB = { passwords: {} };
...

Import bcrypt and prompt-sync packages.

62 | Chapter 4: Build a Secure Local Password Manager

Instantiate prompt to use its async-await functionality.

Define an object to represent the local database.

With your imports in place you can create your first function, saveNewPassword,
which takes a plain-text password, password, as an argument and makes use of the
Bcrypt hashSync function to convert the text to a hashed value. That resulting value
is then set in the mock database, mockDB. You let the user know the password is saved
with a log message, and then call the showMenu function, which you’ll soon write
(Example 4-4).

Example 4-4. Add the saveNewPassword function in index.js

...
const saveNewPassword = (password) => {
 mockDB.hash = bcrypt.hashSync(password, 10);
 console.log("Password has been saved!");
 showMenu();
};
...

Hash the plain-text password and save the password hash to the hash key in your
local database.

Print a message to the console.

Call the showMenu function.

After the saveNewPassword is added, you’ll create a function called compareHashed
Password, as shown in Example 4-5. In this function, you accept a plain-text pass
word argument, which is compared to the stored password hash in mockDB. The
resulting value is either true or false.

Example 4-5. Add the compareHashedPassword function in index.js

...
const compareHashedPassword = async (password) =>
 await bcrypt.compare(password, mockDB.hash);
...

Define a custom function to compare a plain-text password to a hashed
password.

Compare the input password to the value in your local database.

Building a Local Command-Line Manager | 63

The next two functions will prompt the user to type a new password or retype an old
password (Example 4-6). promptNewPassword logs a message to the command-line
console for the user to type their main master password. The typed password is sub‐
sequently saved in your saveNewPassword function. Meanwhile, promptOldPassword
prompts the user to retype their old master password. The input text is validated,
determining whether the user can view the menu by running showMenu, or if the pass‐
word is incorrect, the user is prompted again until the correct password is entered.

Example 4-6. Prompting the user to type passwords in index.js

...
const promptNewPassword = () => {
 const response = prompt("Enter a main password: ");
 return saveNewPassword(response);
};

const promptOldPassword = async () => {
 let verified = false;
 while (!verified) {
 const response = prompt("Enter your password: ");
 const result = await compareHashedPassword(response);
 if (result) {
 console.log("Password verified.");
 verified = true;
 showMenu();
 } else {
 console.log("Password incorrect. Try again.");
 }
 }
};
...

Prompt the user to type in a new master password.

Save the user’s input using saveNewPassword.

Define a flag to track whether the password has been verified.

Prompt the user to retype their existing master password.

Compare the input against the stored hashed password.

Set verification flag to true once the password is validated.

Show the menu if the password is correct.

Display an error and retry if the password is incorrect.

64 | Chapter 4: Build a Secure Local Password Manager

So far, you’ve added functions to facilitate the user’s initial interactions and authenti‐
cation. Example 4-7 adds code to show a menu of options to choose from once
authenticated. showMenu logs four options for the user to select. The first option runs
viewPasswords to show them all their saved passwords. Option 2 runs promptManage
NewPassword to allow the user to save a new password to their database. The third
option reruns promptOldPassword, allowing the user to revalidate their master pass‐
word. Finally, the user may quit the application, exit, by selecting option 4. If none of
the four options are chosen, the user will be notified and prompted to select again.

Example 4-7. Building the showMenu function in index.js

...
const showMenu = async () => {
 console.log(`
 1. View passwords
 2. Manage new password
 3. Verify password
 4. Exit`);
 const response = prompt(">");

 if (response === "1") viewPasswords();
 else if (response === "2") promptManageNewPassword();
 else if (response === "3") promptOldPassword();
 else if (response === "4") process.exit();
 else {
 console.log(`That's an invalid response.`);
 showMenu();
 }
};
...

Prompt the user with four options to select.

After selecting a value from 1 to 4, the user may view their passwords, add a new
one, verify their main password, or exit the app.

If no valid option is selected, the user is prompted again.

With the menu ready to display, you only need to add the functions to view stored
passwords and add the functions to view and save passwords in memory. Add the
code in Example 4-8, where viewPasswords destructures your passwords from the
mockDB. With your passwords as a key/value pair, you log both to your console for
each stored password. Then you show the menu again, which prompts the user to
make another selection. promptManageNewPassword is the function that prompts the
user to type the source for their password—effectively an application or website name
for which they are storing their password. Then the user is prompted for a password

Building a Local Command-Line Manager | 65

they want to save. The source and password pair are saved to your mockDB and, again,
you run showMenu to prompt the menu items.

Example 4-8. Adding the viewPasswords and promptManageNewPassword functions
in index.js

...
const viewPasswords = () => {
 const { passwords } = mockDB;
 Object.entries(passwords).forEach(([key, value], index) => {
 console.log(`${index + 1}. ${key} => ${value}`);
 });
 showMenu();
};

const promptManageNewPassword = () => {
 const source = prompt("Enter name for password: ");
 const password = prompt("Enter password to save: ");

 mockDB.passwords[source] = password;
 console.log(`Password for ${source} has been saved!`);
 showMenu();
};
...

Destructure passwords from your mockDB.

Iterate through passwords in your local database and log them to your console.

Call showMenu to display the menu options.

Prompt the user to add a new password and source name to manage.

Save the source and password pair in mockDB.

Call showMenu to display the menu options.

Your application is ready to run. The last piece to add is the code in Example 4-9.
Here, mockDB is checked for an existing hash value. If one does not exist the user is
prompted to create one through promptNewPassword. Otherwise, the user is promp‐
ted to retype their master password through promptOldPassword.

66 | Chapter 4: Build a Secure Local Password Manager

Example 4-9. Determine the entry point for your application in index.js

...
if (!mockDB.hash) promptNewPassword();
else promptOldPassword();

Check whether you have a local password saved or if you need to type a new
main password.

With this code in place you have most of the logic you need to run the password
manager. The only downside is the local database temporarily stores your managed
passwords while the application is running. Because the local database is only an in-
memory object, it will get deleted each time you start your app.

To test this, go to the root level of your project folder in your command line and run
node index. You should be prompted to type a new password like in Figure 4-4. After
typing your password, it will be hashed by bcrypt and you’ll see a menu of items to
choose from.

Figure 4-4. Typing your main password to access your application menu

From here you can select 2 and press Enter to add a new password to manage. Try
typing a source like jonwexler.com and a password, as seen in Figure 4-5.

Figure 4-5. Saving a new password to manage

Building a Local Command-Line Manager | 67

After pressing Enter, this password is saved to your in-memory object. You should
then see the original menu items appear. Select 1 and press Enter to see the list of
passwords now containing your jonwexler.com password (Figure 4-6).

Figure 4-6. Selecting to view all managed passwords

You can also test your main password (the first password you typed when you started
the app) by selecting 3 and pressing Enter. If you type in the wrong original password,
you’ll see a log statement letting you know the password is incorrect. Otherwise,
you’ll be prompted that the password matches the hashed password and returned to
the menu.

Now you can safely exit the application by typing 4 and pressing Enter. This step
safely kills the Node process and exits your command-line app. The next step is to
add a persistent database so you don’t have your passwords deleted every time you
run your app.

Saving Passwords with MongoDB
After completing most of the logic of your Node app, the next step is to introduce a
way to save application data when the application is no longer running. MongoDB is
one database you can use to store this information. MongoDB is a document-
oriented database manager, meaning it manages NoSQL nonrelational databases.
Because your application is intended to store your own collection of passwords, using
MongoDB collections is appropriate for this project.

In Figure 4-7 you see a diagram with an example of how your data could be stored.
This structure is similar to JavaScript Object Notation (JSON), making it easier to
continue to work with JavaScript on the backend. Notice that in this figure you store
the password_hash as a hashed value for your main password. Then you have a list of
passwords that map a source name to a plain-text password. Additionally, MongoDB
will assign an ObjectId to new data items within a collection.

68 | Chapter 4: Build a Secure Local Password Manager

Figure 4-7. Diagram of saving passwords to MongoDB

For this section, you’ll need to ensure MongoDB is properly
installed. Visit Appendix C for installation steps.

Go to your project’s root level at the command prompt and run npm install

mongodb@^6.8.0.

Once installed, the mongodb package will provide your Node application the tools it
needs to connect to your database and start adding data. For this reason, you no
longer need your temporary in-memory storage, mockDB, from earlier in this chapter.
Instead, you use the MongoClient to set up a new connection to your local MongoDB
server. Your development server should be running at mongodb://localhost:27017
on your computer. Last, you set up a database name, passwordManager, to connect.

In index.js, add the code in Example 4-10.

Saving Passwords with MongoDB | 69

Example 4-10. Import mongodb and define database connection variables

...
import { MongoClient } from "mongodb";
const dbUrl = "mongodb://localhost:27017";
const client = new MongoClient(dbUrl);
let hasPasswords = false;
let passwordsCollection, authCollection;
const dbName = "passwordManager";
...

Import the MongoClient class from the mongodb package.

Define the dbUrl for connecting to your local MongoDB server.

Create a new MongoDB client instance using the connection URL.

Declare a hasPasswords flag to track whether a master password already exists.

Set the database name to passwordManager.

Next, create an async function to establish your app’s connection to the database. In
Example 4-11 you’ll find the code you need to add to connect to the database. The
client.connect function will attempt to initiate a connection with your local
MongoDB server. Then, client.db(dbName) will connect to a database by the name
assigned to dbName. In your case, you’ll have two MongoDB collections in the data‐
base: authCollection to handle storing your password hash, and passwordsCollec
tion to store the list of passwords. Declare these variables at the top of index.js. Once
connected, this function will search for an existing password hash by running auth
Collection.findOne({ "type": "auth"}). hasPasswords = !!hashedPassword

converts the result from your search into a boolean value. In the end, you set pass
wordsCollection and authCollection.

The reason you need an async function is that connecting to the
MongoDB database is an asynchronous I/O operation. When you
connect to a database and run a command, the time it takes to
complete can vary. Using async-await lets us write this code in a
way that looks synchronous, pausing execution at each await until
we receive a response from the database, without blocking the rest
of the application.

70 | Chapter 4: Build a Secure Local Password Manager

Example 4-11. main function to initialize the database

...
const main = async () => {
 try {
 await client.connect();
 console.log("Connected successfully to server");
 const db = client.db(dbName);
 authCollection = db.collection("auth");
 passwordsCollection = db.collection("passwords");
 const hashedPassword = await authCollection.findOne({ type: "auth" });
 hasPasswords = !!hashedPassword;
 } catch (error) {
 console.error("Error connecting to the database:", error);
 process.exit(1);
 }
};

Define a function main to initialize your database.

Call client.connect to establish a connection to your database server.

Create or connect to a database with the name passwordManager.

Find or create a database collection called authCollection and one called pass
wordsCollection.

Check if a hashed password with type of auth existed in your authCollection
collection.

Assign hasPasswords to the boolean value of your resulting search in the
database.

Catch any errors and exit the process if there is an issue connecting to the
database.

At the bottom of index.js add the code in Example 4-12 to call the main function and
begin processing your app. This code first runs the main function, which sets up the
database connection and checks if a main password already exists. Based on the
result, it either prompts the user to create a new main password if none exists (prompt
NewPassword), or asks for the existing password to verify access (promptOldPass
word).

Saving Passwords with MongoDB | 71

Example 4-12. Call main to set up MongoDB collections

...
await main();
if (!hasPasswords) promptNewPassword();
else promptOldPassword();

Call main, used to assign the passwordsCollection and authCollection

collections.

Prompt the user to either create or verify a master password based on whether
one exists in the database.

Now you can restart your Node application by exiting any running application and
typing node index. If your application successfully connected to the database, you
should see "Connected successfully to server" logged to your command line.

After saving passwords, if you want to delete the database of pass‐
words and start from scratch, you can always add await pass
wordsCollection.deleteMany({}) or await authCollection

.deleteMany({}) to delete your passwords or main hashed pass‐
word, respectively.

With your database connected, you need to modify some of your application logic to
handle reading and writing to your MongoDB collections. Change saveNewPassword
to become an async function. Within that function, assign a new variable hash to the
result of bcrypt.hashSync and then save it to the database with await auth Col
lection.insertOne({ "type": "auth", hash }). This will save the hashed pass‐
word hash to the authCollection in your database.

Next, change the compareHashedPassword to async, and so the first line is const
{ hash } = await authCollection.findOne({ "type": "auth"}). This line will
search your authCollection for a hashed password and send that to the bcrypt com‐
pare function.

You may want to check whether a password hash exists before run‐
ning the compare function. If no password hash exists, you can
return false to indicate that the password is not valid.

The last three functions to change are in Example 4-13. Here, viewPasswords is
modified to pull all passwords (by source and password value) from your passwords
Collection. showMenu will remain the same, but like the other functions will become

72 | Chapter 4: Build a Secure Local Password Manager

async and, for readability, uses a switch/case statement. In this function you add
await before each function call, as they are now performing I/O operations. Last,
promptManageNewPassword uses the findOneAndUpdate MongoDB function to add a
new password entry if it doesn’t exist, or override and update a password entry if an
old value exists. The options returnDocument and upsert tell the function to override
the changed value and return a copy of the modified value when the save operation is
complete.

Example 4-13. Adding database calls to functions in index.js

...
const viewPasswords = async () => {
 const passwords = await passwordsCollection.find({}).toArray();
 passwords.forEach(({ source, password }, index) => {
 console.log(`${index + 1}. ${source} => ${password}`);
 });
 showMenu();
};

const showMenu = async () => {
 console.log(`
 1. View passwords
 2. Manage new password
 3. Verify password
 4. Exit`);
 const response = prompt(">");

 switch (response) {
 case "1":
 await viewPasswords();
 break;
 case "2":
 await promptManageNewPassword();
 break;
 case "3":
 await promptOldPassword();
 break;
 case "4":
 process.exit();
 default:
 console.log("That's an invalid response.");
 await showMenu();
 }
};

const promptManageNewPassword = async () => {
 const source = prompt("Enter name for password: ");
 const password = prompt("Enter password to save: ");
 await passwordsCollection.findOneAndUpdate(
 { source },

Saving Passwords with MongoDB | 73

 { $set: { password } },
 {
 returnDocument: "after",
 upsert: true,
 }
);
 console.log(`Password for ${source} has been saved!`);
 showMenu();
};

Query all passwords from the passwordCollection.

Iterate through the passwords and log them to the console.

When the user input is “1”, run the viewPasswords function.

Use findOneAndUpdate to look for an existing password that matches your
source and then set the new password.

With this code in place, you have a fully functional database to support your pass‐
word manager application. Quit any previously running Node application and restart
the application by running node index. Nothing should change about the prompts
you see in the command line. Only this time, the values you type will persist even
when you quit the application.

With this application complete, you can always run the application locally and add or
retrieve passwords secured behind your hashed main password. Some next steps you
could take would be to add a client with a UI to help with visualizing your password
data or setting up your database in the cloud so that your passwords are persistent
from computer to computer.

Chapter Exercises
1. Make the hashing process configurable:

a. Update your saveNewPassword function to use a configurable number of salt
rounds instead of a hardcoded value (e.g., 10).

b. Prompt the user to enter the number of salt rounds when they create their
master password. This value controls how computationally expensive the
hash operation is.

c. Store the chosen salt rounds alongside the hashed password in your authCol
lection, for example: { type: "auth", hash, saltRounds }.

74 | Chapter 4: Build a Secure Local Password Manager

d. When verifying the password later, retrieve the stored salt rounds and reuse
them when comparing the typed password with the stored hash.

Increasing salt rounds improves security but slows perfor‐
mance. Try experimenting with different values (e.g., 8, 12, 15)
and observe the impact on runtime.

2. Allow password retrieval by source name:
a. Add a new CLI option to your main menu: 5. Find password by source.
b. When selected, prompt the user to enter a source name (e.g., gmail).
c. Query the passwords collection for that specific source and print its corre‐

sponding username and password.
d. If no match is found, display a helpful message like "No password saved for

that source."

These exercises strengthen your understanding of secure hashing configuration and
introduce real-world database querying patterns based on user input.

Summary
In this chapter, you:

• Built your own password manager application
• Implemented secure password hashing logic utilizing the bcrypt package
• Set up a MongoDB database collection for passwords
• Configured Node to use the mongodb package with user input

Summary | 75

CHAPTER 5

Content Aggregation Feed

This chapter covers the following:

• Parsing and displaying data from RSS feeds
• Fetching content from multiple sources using modern APIs
• Creating a real-time feed reader using Node
• Allowing user input to extend the aggregated results

Dashboards are the cornerstone of modern data visualization, enabling users to track
metrics, monitor trends, and stay informed in real time. While dashboards often rely
on APIs to fetch and display data, one of the original tools for content aggregation
was the Really Simple Syndication (RSS) feed. RSS organizes content—typically in
XML format—into structured feeds that present snippets of text, headlines, and the
latest updates from various sources. This allowed users to skip manually visiting mul‐
tiple websites and instead view curated updates in a single custom reader.

Though RSS feeds have waned in popularity, their underlying architecture remains
highly relevant. Combined with modern APIs, they provide a powerful framework
for creating versatile content aggregation platforms that can pull data from diverse
sources.

In this chapter, you’ll go beyond RSS to build a content aggregator that integrates
both RSS feeds and APIs. You’ll learn how to fetch and process data in XML and
JSON formats, normalize and combine it into a unified structure, and serve the
aggregated content through a command line or web client. By the end, you’ll have a
modern aggregator capable of delivering real-time, relevant data from multiple
sources—all in one place.

77

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

Your Prompt
Your coworkers at the office are passionate about food and love discussing the latest
trends, recipes, and innovations. However, with content scattered across websites,
blogs, and social media, it’s become a challenge to stay informed. While sharing links
in the group chat helps, you know there’s a better way to keep everyone in the loop.

You decide to build a unified content aggregator for your company, pulling in the lat‐
est food-related articles, social media posts, and industry updates from both RSS
feeds and APIs. Whether it’s the buzz about plant-based steak or the hottest new food
truck in town, your aggregator will ensure everyone gets fresh and relevant updates in
one place. With this project, you’ll create a centralized hub for all things food, com‐
bining the best of RSS and modern API integration into a “Feeding” feed.

Get Planning
The goal of this project is to build an app that aggregates new and relevant content
from multiple sources for a large group of people. While popular content aggregation
apps exist, you’ll design your own Node app to combine data from RSS feeds and
modern APIs. You’ll start by experimenting with existing RSS and API packages
available on npm. From there, you’ll follow the design requirements of the project, as
shown in Figure 5-1.

In this diagram, you can see the flow of logic and information. Starting from the cli‐
ent (any computer or device with a network connection), a request is made to your
Node app to fetch the latest aggregated content. Your app processes data from multi‐
ple sources, including RSS feeds and APIs, normalizing and parsing it into a unified
format. It then returns a summary list of results that can be displayed on your
command-line client or a web interface. This layout ensures a seamless flow of real-
time updates from diverse content sources.

78 | Chapter 5: Content Aggregation Feed

Figure 5-1. Project blueprint for an application RSS reader and aggregator

Before you start coding, it’s helpful to review how RSS works and understand the type
of data you’ll encounter. RSS operates by pulling content from various sources across
the web, often from news sites or blogs that want to provide their audience with quick
and easy access to top headlines or updates. For example, you could use the Bon
Appétit recipes RSS feed for your app, which is available at https://www.bonappe
tit.com/feed/recipes-rss-feed/rss. You can view the raw feed content by clicking the link
in your web browser, as shown in Figure 5-2.

RSS feeds typically use XML (Extensible Markup Language), a structured data format
with tags similar to HTML. The XML structure helps organize the feed’s data into
sections, making it easier to parse and use. An RSS feed’s XML file usually starts with
an rss tag to define the document type, followed by a channel tag containing meta‐
data about the feed, such as the name, link, and language of the source. Within the
channel tag, you’ll find the main content items, each wrapped in an item tag. Each
item contains details like a title, description, and publication date. Your task will be to
extract these items and reformat them for display in your app.

While XML is the traditional format for RSS feeds, it’s only one of
many data formats used in modern web applications. APIs often
provide data in JSON, which is more compact and widely used.
This project will focus on parsing XML for RSS while also explor‐
ing JSON-based APIs, allowing you to combine and present data
from multiple sources seamlessly.

Get Planning | 79

https://www.bonappetit.com/feed/recipes-rss-feed/rss
https://www.bonappetit.com/feed/recipes-rss-feed/rss

Figure 5-2. RSS feed results for Bon Appétit recipes in the browser

The first step in building an application that can use XML data is to call the RSS feed
URL directly from within your Node app. Get started by creating a
food_feeds_rss_app folder and navigating to the project folder in your command
line. From here, run npm init to initialize the Node app with the default configura‐
tions, as shown in Example 5-1.

Example 5-1. npm init configurations for your app

{
 "name": "food_feeds_rss_app",
 "version": "1.0.0",
 "description": "",
 "main": "index.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Jon Wexler",
 "license": "ISC"
}

80 | Chapter 5: Content Aggregation Feed

Add your project name to reflect the type of RSS feeds you’ll support.

With your app initialized, add "type": "module" to your package.json file. This will
allow you to use the import syntax for external packages. Next, create an index.js file
to act as an entry point for your application. Add the code in Example 5-2 to index.js.
This code uses the Fetch API to make a request to the Bon Appétit RSS feed URL and
access its XML data. Because you await for a response, you wrap the fetch call in an
async function called main. You assign the url variable to the Bon Appétit RSS feed
endpoint. Then, you assign the response from your fetch call to response. You may
now use the response.text() function call to extract the XML data for output to
your console.

As of Node v18.0.0, the fetch API is available natively and can be
used without installing any external packages. For earlier versions
of Node, you’ll need to install the node-fetch package by running
npm install node-fetch in your project directory.

More on the Fetch API
JavaScript offers multiple ways to access content over HTTP. The foundational
XMLHttpRequest interface powers most browser-based AJAX requests, while server-
side JavaScript includes the built-in http library, which comes prepackaged with
Node. Over time, many external packages have built upon the http module to pro‐
vide more robust and user-friendly solutions for handling HTTP requests.

The Fetch API was introduced to JavaScript to provide a modern, flexible interface
for fetching resources from the web. Its key advantage lies in its Request and
Response objects, which encapsulate common functionalities for making and pro‐
cessing HTTP requests asynchronously. Fetch also integrates seamlessly with Java‐
Script’s Promise and async/await syntax, making it more intuitive and efficient for
developers to handle asynchronous operations.

Due to its popularity and widespread use, Fetch was added to Node in 2022, starting
with version 18.0.0. This addition allows developers to use Fetch natively on the
server side without relying on external packages. Fetch’s versatility and modern
design make it an essential tool for building applications that require HTTP
communication.

Learn more about the Fetch API at the official documentation.

Get Planning | 81

https://oreil.ly/M2lPI

Example 5-2. Example of fetching an RSS feed using fetch in index.js

const main = async () => {
 const url = "https://www.bonappetit.com/feed/recipes-rss-feed/rss";
 const response = await fetch(url);
 console.log(await response.text());
}
main();

Define an async function to encapsulate the HTTP request logic.

Make a GET request for the provided URL.

Use the response text() to read the response body as a string and log it to the
console.

Call your main function.

Save your file, navigate to your project folder in your command line, and run node
index. You should see the same XML output as you saw by visiting the URL in a web
browser, but this time it’s printed to your command-line window. With this text out‐
put, you could parse each line and extract the information you need. Luckily, there
are external packages that help make that process easier for you. In the next section
you’ll implement the rss-parser package.

Reading and Parsing a Feed
Your “Feeding feed” app is designed to both collect data and output it to your users in
a meaningful way. Raw XML isn’t particularly easy or interesting to read. The tech
community recognizes that, and, sure enough, there are a multitude of external libra‐
ries to install that can help you. One of those libraries is in the rss-parser package.
This package encompasses both the fetching of a feed and the parsing of its XML
contents. You can install this package by going to your project’s root level on your
command line and running the command npm install rss-parser@^3.13.0.

Once the package is installed, you’ll notice that your package.json file added a new
dependency, and a folder called node_modules was created at your project’s root level.
Next, import the rss-parser package into your app by adding import Parser from
'rss-parser'; to the top of your index.js file. On the following line, you instantiate
the Parser class by adding const parser = new Parser();.

82 | Chapter 5: Content Aggregation Feed

Uppercase Parser represents the Parser class from the rss-parser
package, while lowercase parser is the instance of that class you
create to use in your app.

Now you have a parser object you can use in place of your Fetch API code. Replace
the contents of your main function with the code in Example 5-3. This code imple‐
ments the parser.parseURL function by fetching the contents of your RSS feed URL
and preparing them in a structured format. You’ll then have access to the feed title
and items. In the end, you only log what you want to show from that feed. In this
case, it’s the item title and link.

Example 5-3. Fetching and parsing an RSS feed using rss-parser in index.js

...
 const url = "https://www.bonappetit.com/feed/recipes-rss-feed/rss";
 const {title, items} = await parser.parseURL(url);
 console.log(title);
 const results = items.map(({title, link}) => ({title, link}));
 console.table(results);
...

Fetch and parse the RSS feed XML, and destructure the response to access the
title and items.

Print the feed’s title.

Extract only the title and link of each item and assign that new array to
results.

Print the feed contents to your console in a structured table format.

console.log is by far the most used logging and debugging func‐
tion. However, there are other logging types you may use like con
sole.table, which prints your content in a format that’s easier to
read than the former function. Learn more about console.table
in Mozilla’s web APIs reference pages.

After adding the rss-parser code, save your file, navigate to your project’s root level
on your command line, and run the command node index. Your output should look
similar to that in Figure 5-3.

Reading and Parsing a Feed | 83

https://oreil.ly/qH035

Figure 5-3. Console output for a table of RSS feed items

This output shows you recipe titles and their corresponding URLs. This is a great way
to summarize the contents of the Bon Appétit recipes RSS feed, though this list is
static and processes content only the moment you run your app. Because this feed
receives updates, it would be ideal for your Node app to reflect those updates in real
time. To fetch new updates every two seconds, change your call to main() at the end
of index.js to setInterval(main, 2000). setInterval will keep your Node process
running indefinitely, processing a new URL request, parsing, and logging every two
seconds (two thousand milliseconds). To make this more apparent in your console,
add console.clear(); in index.js right above the console.table line to clear your
console with each interval. Also, add console.log('Last updated ', (new

Date()).toUTCString()); right below the table log to print an updated timestamp.
Now, when you run your app, while you may not see the feed contents change imme‐
diately, you’ll notice the updated timestamp changes with each interval.

This command-line RSS reader is a great way to have the latest updates from your
favorite RSS feed endpoints running on your computer. In the next section, you’ll add
more external feeds and build your own aggregator to show only the most relevant
content.

Building an Aggregator
With your Node app successfully printing RSS feed content to your console, you may
be wondering how you can expand the tool to be more practical. After all, your goal
is to collect particular recipes that align with the dietary preferences of your cowork‐
ers. The good news is your app is designed to handle more content. With the logic in
place to fetch one RSS feed, you can add more feed URLs to call.

84 | Chapter 5: Content Aggregation Feed

RSS feeds can stop working if publishers change or discontinue
them. If a feed no longer updates, check for a new URL or an alter‐
nate source.

To test fetching from multiple URLs, you can use the Budget Bytes feed and the Red‐
dit /r/Recipes subreddit feed. Both of these feeds offer varying content at different
times, making it more of a challenge to parse. To incorporate these additional feeds,
you add https://www.budgetbytes.com/category/recipes/feed/ and https://www.reddit
.com/r/recipes/.rss to the list of URLs to explore at the top of index.js (Example 5-4).
The urls constant will later be used to cycle through each URL and collect its corre‐
sponding XML response.

Example 5-4. Defining the list of URLs to read from in index.js

const urls = [
 "https://www.bonappetit.com/feed/recipes-rss-feed/rss",
 "https://www.budgetbytes.com/category/recipes/feed/",
 "https://www.reddit.com/r/recipes/.rss"
];
...

Assign a list of URL strings to urls.

With this list in place, you may now modify the main function by iterating through
each URL to fetch feed content (Example 5-5). First, assign a constant feedItems to
an empty array: this is where your eventual feed items will be stored. Next, iterate
through the urls array using the map function, which will visit each URL and run the
parser.parseURL function to return a Promise in its place. In the following line, you
use Promise.all which waits for all the requests to external URLs to return with
responses before completing. Each response will be stored in a responses array. Last,
you use a custom aggregate and print function to sift through the responses and log
your desired output, respectively.

Example 5-5. Defining the list of URLs to read from in index.js

const main = async () => {
 const feedItems = [];
 const awaitableRequests = urls.map(url => parser.parseURL(url));
 const responses = await Promise.all(awaitableRequests);
 aggregate(responses, feedItems);
 print(feedItems);
}

Building an Aggregator | 85

https://www.budgetbytes.com/category/recipes/feed/
https://www.reddit.com/r/recipes/.rss
https://www.reddit.com/r/recipes/.rss

Define a feedItems array to store RSS feed items.

Run parser.parseURL on each URL, which returns a Promise object to eventu‐
ally return a response from the external RSS endpoint.

Collect responses by awaiting all Promises to complete their requests.

Pass the responses and feedItems array to a custom aggregate function to com‐
bine the RSS feed results.

Pass the resulting feedItems array to a custom print function to log to your
console.

Before rerunning your application, you need to define the aggregate and print
functions. Add the code in Example 5-6 below your main function. In the aggregate
function, you collect all the feed data from each external source and, for this project,
only retain the items that contain recipes with vegetables. First, loop through the
array of responses and examine only the items within each XML response. Then, an
inner loop visits each item and destructures the title and link only, because these
are the only pieces of data you care about in this project. With access to each item’s
title, you check if the title includes the string veg. If that condition passes, you add
an object with the title and link to your feedItems array.

In your print function, you accept feedItems as an argument. Next, you clear the
console of previous logs using console.clear. Print your feedItems to your console
using console.table, and then log your Last updated time by generating a new
Date object and converting it to a human-readable string.

Example 5-6. Defining the aggregate and print functions in index.js

...
const aggregate = (responses, feedItems) => {
 for (let {items} of responses) {
 for (let {title, link} of items) {
 if (title.toLowerCase().includes('veg')) {
 feedItems.push({title, link});
 }
 }
 }
 return feedItems;
}

const print = feedItems => {
 console.clear();
 console.table(feedItems);

86 | Chapter 5: Content Aggregation Feed

 console.log('Last updated ', (new Date()).toUTCString());
}

Pass your RSS responses and feedItems array to the aggregate function.

Loop through each feed response and access its items array.

Loop through each item, extracting only the title and link.

If the title contains the substring “veg” (case-insensitive), add the item to feed
Items.

Return the filtered feedItems array.

Clear previous logs from the console.

Print the filtered items as a table.

Display the time of the last update in UTC format.

Now, restart your application. You’ll notice this time there are fewer results logged to
your console (Figure 5-4), but the items shown are from varying sources—all with
titles indicating some vegetable or vegetarian recipe. You can modify the aggregate
condition to your liking by focusing on other key words, or even examining data
other than the title and link used in this example.

Figure 5-4. Console output for an aggregated table of RSS feed items

Ultimately, when you share this aggregator with your colleagues, they can add any
additional RSS source URLs to increase the quantity of meaningful results. Before
you wrap this project up, you decide to add one more feature: adding custom items to
the feed.

Building an Aggregator | 87

Adding Custom Items to Your Aggregator
Most RSS aggregators collect only the results from external feeds and aggregate the
results according to some defined rules. It’s not very often you have the opportunity
to modify the resulting aggregated list with content not found anywhere else. The cli‐
ent for this project has been your command-line console. However, it’s possible to
convert this app into a web-accessible tool with the help of a web framework. With a
web framework, you can publish the aggregator and allow anyone to read the result‐
ing feed items on their own browser. However, you do not need to rely on the web, or
a browser, to design a standalone Node app.

To collect user typed input, install the prompt-sync package by running npm install
prompt-sync@^4.2.0 at the root level of your project in your command line. Then, in
index.js add import promptModule from 'prompt-sync'; to the top of your file, fol‐
lowed by const prompt = promptModule({sigint: true}); to instantiate the
prompt function with a sigint config that allows you to exit your app. Last, add
const customItems = []; to define an array for your custom feed items. Next, you
modify the print function by adding the code in Example 5-7 to the top of that func‐
tion. The prompt function will show Add item: on your console and wait for a typed
response. When the Enter key is pressed, the input is saved to a res constant. User
input should be in the format: title + , + link. Then, the title and link are extrac‐
ted by splitting the resulting input string. The new custom item object is added to
your customItems global constant array.

Example 5-7. Modify the print function to accept user input in index.js

 const res = prompt('Add item: ');
 const [title, link] = res.split(',');
 if (![title, link].includes(undefined)) customItems.push({title, link});
 ...

Prompt the user to add a new feed item title and link.

Split the input string with a comma delimiter to destructure a title and link.

Add the resulting item object to customItems if neither the title or link is
missing.

Finally, modify your log statement to include your customItems array by replacing
that line with console.table(feedItems.concat(customItems));. Now, when you
restart your app, you should see a prompt for a custom feed item. If you have nothing
to add, simply press Enter. Otherwise, you may add a custom recipe like Jon's

88 | Chapter 5: Content Aggregation Feed

famous veggie dish,http://jonwexler.com/recipes and press Enter to add it to
your aggregated items feed. Your result should look like Figure 5-5.

Figure 5-5. Console output for an aggregated table with custom feed items

Now you have an app you can share with others in your office. You can use the aggre‐
gator to collect relevant recipes every two seconds (or at an interval of your choice).
You can also add custom links not found in your external sources. When users of
your app publicize their results, everyone can benefit from your new aggregated col‐
lection of quick-access recipe links. You may continue developing the application to
make it accessible across a shared network, or build a web framework with a database
into your app to allow web clients to access the feed data.

Chapter Exercises
1. Add a configurable keyword filter to your aggregator:

a. Modify the aggregator so users can specify a keyword at runtime (e.g.,
“vegan,” “chili,” “salad”) instead of hardcoding 'veg'.

b. Use prompt-sync to ask for a keyword before main() runs, and store that key‐
word in a global variable.

c. Update your aggregate() function to filter titles based on whether they
include the specified keyword (case-insensitive).

d. Run your app and test how the feed changes when using different keywords.

If you want to make it even more dynamic, consider letting
users change the keyword live during each update cycle.

Adding Custom Items to Your Aggregator | 89

2. Display how recently each feed item was published:
a. Update the aggregate() function to also include the pubDate field (if avail‐

able) from each item.
b. In the print() function, compute the age of each item in minutes or hours by

comparing pubDate to new Date().
c. Display the age of each item in your table under a new column like Age or

Published.
d. If an item is missing a pubDate, show Unknown or --.

These exercises give your aggregator more control and transparency: users can filter
results by their interest and see how fresh each item is—just like in a professional
news reader.

Summary
In this chapter, you:

• Built an RSS feed aggregator using Node and rss-parser
• Retrieved and parsed feed data from external sources using API calls
• Added support for custom user-submitted items via the command line
• Displayed aggregated content in a readable table format
• Enhanced your aggregator with features like keyword filtering and publish-time

tracking

90 | Chapter 5: Content Aggregation Feed

CHAPTER 6

Library API

This chapter covers the following:

• Constructing an API with Fastify.js
• Building REST endpoints
• Connecting to a relational database

Although most people are familiar with the internet by way of their web browser,
most activity and data transfer happens behind the scenes. Some data, like real-time
train schedules, is made available not as just a standalone web app, but as a resource
others can use and implement into their own apps. This resource is called an Applica‐
tion Programming Interface (API), and it allows its users to view all or some available
data belonging to a restricted environment (like the railroad authority). Some APIs
allow the addition, modification, and deletion of data, especially if it’s your own data
or if you are the authority over that resource itself.

In this chapter, you’ll build a RESTful API, meaning it will support access and modifi‐
cation of data through a standard protocol. You’ll also connect the API to a
database—to which you can add new information and from which you can access
older records. In the end, you’ll have the translatable skills needed to build an API for
just about any type of data.

91

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. For a deeper explanation of SQLite concepts, see Appendix C. Once
completed, return here to continue. Building a project from scratch helps deepen
your understanding of each component, giving you greater control and flexibility as
you progress.

Your Prompt
Your township is awarding grants to individuals who can modernize the public
library. At the top of their list is building a system allowing the public to request
books not yet provided or in low supply at the library. Grants have already been
handed out to groups designing the mobile and web clients, but there’s still a need for
someone to build the backend API. You are somewhat familiar with Node and Fastify
and decide to take on the challenge.

Get Planning
The goal of this project is to build an API that mobile and web apps can connect to in
order to view, add, update, or delete book records. Just like on a website’s URLs, you’ll
create an API that provides endpoints (URIs) accessible by other clients. To start,
you’ll create a Node app with the Fastify framework and gradually add pieces to sup‐
port interactions with the library data and persist that data in a database. You follow
the design requirements of the project, as shown in Figure 6-1.

Uniform Resource Identifiers (URIs) are a superset of endpoints
used to access resources or data. In this case, a URI is used to fetch
data from an API. Uniform Resource Locators (URLs) are a subset
of URIs, typically associated with accessing a web address.

This diagram shows four behaviors corresponding to HTTP actions (GET, PUT, POST,
and DELETE), which you’ll need to implement in the API. When a request is made to
the API, your app must distinguish among these four request types and perform the
relevant app logic on the requested data. In other words, if someone wants to submit
a book recommendation, don’t accidentally delete a different book from your data‐
base. At the end of development, you’ll be able to test your API on your web browser,
command line, or third-party application like Postman.

92 | Chapter 6: Library API

Figure 6-1. Project blueprint for a Node API using four HTTP methods

HTTP Methods
Hypertext Transfer Protocol (HTTP) is an internet protocol used by websites and
applications to transmit data across the web. HTTP offers an architecture and seman‐
tics for sending packets of data from one IP address to another. Part of this architec‐
ture includes defined methods for requesting data.

There are nearly 40 HTTP methods that can be used, though only a handful make up
the majority of requests made across the internet. The following HTTP methods are
ones that you’ll use in this book:

GET

This request method is used whenever someone visits a landing page or web page
with static content. It constitutes the majority of requests on the internet and is
the simplest one to implement in your API.

POST

This request method is used whenever data is sent to a server; for example, if a
user logs in to their account. These requests are necessary for most data to even‐
tually enter a database and allow for information to persist across web sessions.

PUT

This request method is similar to POST in that it sends data in the body of the
request. However, this method is used in practice to update or modify existing
data on the server. These requests are distinguished from POST data, typically, by
an ID that matches a record on the server’s database.

DELETE

This request method effectively sends a primary key to the server, indicating a
record that should be deleted. The nature of a DELETE request looks similar to a
GET, but unlike the latter, it expects to change the state of data on the server.

Get Planning | 93

While there are many other request methods used across HTTP, these four are
enough to get started with developing an API. For more information on HTTP meth‐
ods, visit Mozilla’s HTTP reference pages.

Because the library wants your API to bring visibility to popular and sought-after
books, the data served by your API should have enough information to identify those
books and the level of interest. By the time your database is set up, you’ll want to store
the title and author of the book, as well as a count of how many requests that book
received. In this way, mobile and web clients that use your API can notify the library
and its patrons of the most popular requests.

Figure 6-2 shows the flow of data during a POST request for a new book. That request
contains the title and author of the book. If the book already exists in the database, its
request count increases. Otherwise, that book’s record is added to the database for the
first time with its own serial ID.

Figure 6-2. Flow of data during a POST request

Once there is some persisted (stored) data, library clients are able to send a GET
request using that book’s persistent ID (Figure 6-3). The GET request needs to send
only an ID parameter, but in turn receives all of the book’s data.

94 | Chapter 6: Library API

https://oreil.ly/bMdS9

Figure 6-3. Flow of data during a GET request

If a library admin notices a mistake in the book’s data, they can modify the title or
author and submit a PUT request. In Figure 6-4, a PUT request is sent with updated
book information, such as correcting a title or author name. That new data is pro‐
cessed within your API and saved to the database under the same record ID.

Figure 6-4. Flow of data during a PUT request

Last, if the library obtains enough copies of a certain book to satisfy its patrons, they
can submit a DELETE request to remove that book from the database. Figure 6-5
shows that a DELETE request only needs the book’s ID as a parameter. From there, the
API can perform a delete query on the database.

Get Planning | 95

Figure 6-5. Flow of data during a DELETE request

With the architecture and data structures defined, you’re ready to start building your
API with Node and Fastify. In the next section, you lay out the building blocks for a
typical Node app.

Get Programming with an API Layout
To start developing your app, create a new folder named library_api. Navigate to
your project folder on your command line and run npm init. This command initial‐
izes your Node app. You can press Enter throughout the initialization steps. The
result of these steps is the creation of a file called package.json. This file instructs your
Node app of any configurations or scripts needed to operate.

Next, create a file called index.js within your project folder. This file acts as the entry
point for your app.

Additional Steps to Enhance Your App
This book encourages you to build each project from scratch. For that reason, instal‐
lation steps for Node.js, Git, and VS Code are provided in Chapter 1, while project
initialization details—like directory structure, package setup, and modern syntax—
are covered in Appendix A. To continue building your app, complete the steps in
those sections before proceeding.

To set up your app as an API, you install Fastify by navigating to your project folder
on your command line and running the command npm install fastify@^5.4.0.
This command installs Fastify and adds it as a package dependency in your pack‐
age.json file. With Fastify installed, you import its module and initialize a new Fastify
app instance (instantiate), called app, as shown in Example 6-1. While developing the

96 | Chapter 6: Library API

app, you define the API PORT as 3000 and use the app.listen function to set your
API to listen for requests on that port number.

Example 6-1. Instantiating your Fastify app and starting to listen for requests in index.js

import Fastify from 'fastify';
const app = Fastify();
const PORT = 3000;

try {
 await app.listen({ port: PORT });
 console.log(`Listening at http://localhost:${PORT}`);
} catch (err) {
 console.error(err);
 process.exit(1);
}

Import the Fastify module.

Instantiate Fastify to create your API app instance.

Assign the PORT constant to 3000.

Use top-level await to start the Fastify server without needing a wrapper
function.

Your app is now ready to accept any HTTP requests. For now, you can test this by
running npm start. You’ll notice the command-line console prints a statement,
Listening at http://localhost:3000, to indicate that your app is running.

With the nodemon package installed, you need to run npm start
only once while developing your app. Every change you make to
the project thereafter automatically restarts your Node process and
reflects the changes immediately. See Appendix B for more infor‐
mation on installing nodemon.

Your app is ready to process requests. However, to support an API, you need to
instruct Fastify on the type of data your app anticipates receiving. Fastify allows you
to register plugins or rely on built-in parsing, which processes incoming requests
before you get to see what’s inside.

Middleware functions, as the name implies, sit between the request being received by
your app, and the request being processed by custom app logic. Here, you rely on Fas‐
tify’s built-in JSON body parsing, which handles incoming requests with JSON data.

Get Programming with an API Layout | 97

Because this API expects to receive and serve JSON data, it’s necessary to ensure this
parsing capability is enabled.

Similarly, registering the @fastify/formbody plugin allows the Fastify API to parse
and understand URL-encoded requests. This helps with deciphering strings that were
modified and encoded for better efficiency over the web. Fastify automatically parses
standard nested data structures when this plugin is used.

Run the command npm install @fastify/formbody@^8.0.2 on your command line
and add the code in Example 6-2 below your PORT definition in index.js.

Example 6-2. Adding JSON and URL-encoded parsing support to your Fastify app in
index.js

...
import formbody from '@fastify/formbody';
await app.register(formbody);
...

Import the Fastify plugin that enables URL-encoded form parsing.

Register the plugin to add support for parsing application/x-www-form-
urlencoded requests.

To complete the first stage of building your API, add the code in Example 6-3 right
below your middleware functions. In this block, app.get defines a route which listens
for GET requests only. The "/" indicates that your app is listening for requests made to
the default URI endpoint: http://localhost:3000/. That means if the HTTP request uses
the GET method and targets the default URI, the provided callback function is exe‐
cuted. Fastify provides your callback function with a request (request) and response
(reply) object as parameters.(request objects The request object is used to examine
the contents of the request, while the reply object lets you assign values and package
data in the response to the client.

By some conventions, variables that are not used in a function, but
still defined, have an underscore applied to their name. This helps
the next engineer know not to expect that variable to have any
behavior in the function. For that reason, the request argument in
this example is called _request.

Once a request is processed, you use the reply.send function to reply to the client
with structured JSON containing a key called message and value of "ok". This
response indicates to the client that the API server is functioning correctly.

98 | Chapter 6: Library API

http://localhost:3000/

In Example 6-3, app.setNotFoundHandler sets up a function to handle all other
requests that are not handled by your GET route. This is called a catch-all error-
handling middleware. In this function, the error object, e, is the first argument passed
in. In this way, if an error occurs, your app won’t just crash, but it will return a status
code of 500 (internal server error) instead.

Example 6-3. Adding a GET route in index.js

...
app.get("/", async (_request, reply) => {
 reply.send({ message: "ok" });
});

app.setNotFoundHandler((request, reply) => {
 const { message, statusCode } = request.error || {};
 reply.status(statusCode || 500).send({ message });
});
...

Add a GET request for the main URI endpoint.

Respond with a JSON message.

Define error-handling middleware with an error argument.

Destructure the message, stacktrace, and statusCode from the error.

Respond with the error JSON message and relevant status code.

Save your changes and navigate to http://localhost:3000 in your web browser. You
should see { message: "ok" } printed on the screen.

If you don’t see a message appear in your browser, it’s possible that
the URL or port number was entered incorrectly. Also, make sure
that your server is running. In case of a server error, it’s possible
that the server will exit its process and wait for your fix before
restarting.

In the next section you’ll add the other necessary routes to support your library API.

Adding Routes and Actions to Your App
Your app is running, but lacks the ability to differentiate between request types.
Moreover, you’ll eventually need the ability to create, read, update, and delete

Adding Routes and Actions to Your App | 99

http://localhost:3000

(CRUD) your data. These four actions map to the four main HTTP methods you’ll
support with Fastify routes. From this point forward, you’ll refer to the callback func‐
tions within your Fastify routes as your CRUD actions.

Before you add more code to index.js, it’s important that your project structure is
maintained and organized. So far, you have one JavaScript file in your project. By the
end of this section, your project directory structure should look like Example 6-4.
Now you’ll introduce a new folder to separate your routing logic from the rest of your
app logic.

The node_modules folder is automatically generated and appears
within your project folder whenever you install a new external
package.

Example 6-4. Routing directory structure layout

library-api
 |
 - index.js
 - routes
 |
 - index.js
 - booksRouter.js
 - package.json
 - node_modules

The root level of your project directory tree contains four children.

The routes folder stores the routes for handling book-related transactions.

Navigate to your project folder in your command line and create a new folder called
routes. Within that folder create two new files, index.js and booksRouter.js. Within
the booksRouter.js file add the code from Example 6-5.

This code introduces a Fastify plugin function. The function contains Fastify’s frame‐
work logic for handling all types of internet requests. You’ve already used the Fastify
app instance to create a GET route in index.js. Now, you’re going to more explicitly
define your routes inside a reusable plugin you call booksRouter.

This custom router is named booksRouter because it is used only to define routes
that have to do with creating, reading, updating, or deleting book records. The first of
those routes is the GET route, which is registered using fastify.get(). Within this
function, "/:id" indicates that a value can be passed into the endpoint, and Fastify
should translate that parameter as a variable by the name id. This way, when a client

100 | Chapter 6: Library API

asks for the book record by ID 42, you can use the integer 42 to query your database
for a book with a matching primary key. Next, you destructure the id value from the
request’s params object.

Because there is no database set up yet, you return the ID to the client in a JSON
structure. You wrap the response in a try/catch block; in case anything goes wrong,
you’ll be able to log your errors to the API server. If something doesn’t work as
expected, you call reply.send(err) to return the error to the client using Fastify’s
built-in error handling.

Example 6-5. Adding a GET route for books in booksRouter.js

async function booksRouter(fastify, _opts) {
 fastify.get("/:id", async (request, reply) => {
 const { id } = request.params;
 try {
 const book = { id };
 reply.send(book);
 } catch (e) {
 console.error("Error occurred:", e.message);
 reply.send(e);
 }
 });
}

Define a Fastify plugin function that takes in the Fastify instance and optional
parameters.

Register a GET route with a dynamic :id parameter.

Destructure the id value from the request’s route parameters.

Create a book object with the given ID.

Send the book object as a JSON response to the client.

Log any caught errors to the server console.

Respond with the error using Fastify’s error handling mechanism.

To test this, add export default booksRouter to the bottom of your booksRouter.js
file to allow this module to be accessed elsewhere in your application. Next, open the
index.js file within your project’s routes folder and add the code in Example 6-6.
Similar to the code in booksRouter.js, this index.js registers the booksRouter plugin
with the Fastify instance. However, this file does not define new routes, but simply

Adding Routes and Actions to Your App | 101

organizes the existing routes under a namespace. fastify.register(booksRouter,
{ prefix: '/books' }) instructs the server to handle all requests with a /books URI
path using the booksRouter routes. After this change, you’d expect a GET request to be
sent to http://localhost:3000/books/42 for a book with ID 42.

Example 6-6. Registering your app routes in routes/index.js

import booksRouter from "./booksRouter.js";

async function routes(fastify, _opts) {
 fastify.register(booksRouter, { prefix: "/books" });
}

export default routes;

Import the booksRouter plugin from booksRouter.js.

Define a Fastify plugin function to group and register all your routes.

Register booksRouter under the /books namespace.

Export the plugin so it can be used in your main app file.

With the routes plugin set up, you import this plugin into index.js at your project’s
root level by adding import routes from './routes/index.js';. Then, you regis‐
ter this plugin with your Fastify instance by adding app.register(routes, { pre
fix: "/api" }); right above the error handling block in index.js. This new code
defines an additional namespace called /api. This will be the final namespace change
and will allow you to make GET requests to the /api/books/:id route path.

RESTful Routes
This project uses routing to navigate incoming requests through your app. A route is
simply a way to get from a specified URI endpoint to your app logic. You can create
any types of routes you choose, with whatever names you’d like, and as many dynamic
parameters. However, the way you design your routing structure has side effects and
consequences for those using your API.

For that reason, this project uses Representational State Transfer (REST) as a conven‐
tion for structuring your routes. REST provides a standard URI endpoint arrange‐
ment that lets its users know what type of resource they should expect to get in
return. For example, if you are looking for a particular book in the database, your
endpoint could be: /Frankenstein/database_books/return_a_book/. While this
route path includes most of the information needed to get the book’s details, it does

102 | Chapter 6: Library API

http://localhost:3000/books/42

not follow RESTful conventions and would likely differ in structure from other routes
in your API—making it harder to use consistently.

A RESTful API empowers its users to quickly and easily understand which part of the
route path refers to the resource name and which parts include the necessary data for
a database query. In this way, a route like /books can be used for both a GET and POST
request, with the server understanding that different logic handles each request for
the same resource: books. Furthermore, a route like /books/:id adds to the resource
name, but provides a dynamic parameter: id. This standard structure makes using
and designing an API straightforward and convenient for everyone involved. For
more information on RESTful routing, visit Mozilla’s REST glossary page.

Now, restart your app if it’s not already running and navigate to http://localhost:
3000/api/books/42 in your web browser. You should see { "id": "42" } printed in
your window. With your GET route working, it’s time to add the routes for POST, PUT,
and DELETE. Conveniently, your PUT and DELETE routes look identical to your GET
route. All three require an id param. Duplicate the GET route twice, but change one of
the duplicates’ route method to fastify.put and the other to fastify.delete. This
addition should be enough to test those routes.

For the POST route, add the code in Example 6-7 right above your export default
booksRouter line at the bottom of booksRouter.js.

In this route, fastify.post is used to have Fastify listen for POST requests specifically.
Within the action, you destructure the title and author from the request body and
return them to the client in JSON format. The body of a request is typically where
you’ll find request data when posting to create or change information on the server.

Example 6-7. Adding a POST route for books in booksRouter.js

...
fastify.post("/", async (request, reply) => {
 const { title, author } = request.body;
 try {
 const book = { title, author };
 reply.send(book);
 } catch (e) {
 console.error("Error occurred:", e.message);
 reply.send(e);
 }
});
...

Register the POST route for books.

Adding Routes and Actions to Your App | 103

https://oreil.ly/WQ8bJ
http://localhost:3000/api/books/42
http://localhost:3000/api/books/42

Destructure the title and author from the request body.

Assign the title and author to a const, book, and return the JSON value to the
client.

With these last changes, it’s time to test your other non-GET routes. To test these
routes, you open a new command-line window and run a cURL command against
your API server.

Client URL (cURL) is a command-line tool for transferring data
across the network. Because you are no longer only requesting to
see data, you can use this approach to send data to your server
directly from your command line.

1. Test the GET route again by running:
curl http://localhost:3000/api/books/42

The resulting text on your command-line console should read {"id":"42"}.

2. Submit a POST request by entering:
curl -X POST -d \
 'title=Frankenstein&author=Mary Shelley' http://localhost:3000/api/books/

This command uses -X to specify a POST method and -d to send request body
data. The result of this command should look like {"title":"Franken

stein","author":"Mary Shelley"}.

3. Next, try a PUT request by running:
curl -X PUT -d \
 'title=Frankenstein&author=Mary Shelley' http://localhost:3000/api/books/42

This request contains both an ID and data in the body. Your response should
show {"id":"42"}.

4. Last, run:
curl -X DELETE http://localhost:3000/api/books/42

to see the same {"id":"42"} response for a DELETE request.

Now that all four routes are accessible, it’s time for the final piece of the puzzle: per‐
sistent storage in a database.

104 | Chapter 6: Library API

Connecting a Database to Your App
Data storage can work simply or balloon into a complex problem, depending on how
you architect your app. Due to Node’s popularity, just about any type of data store and
database management system can be used with JavaScript. For this project, you can
choose whether to use a NoSQL database like MongoDB, or a SQL (relational)
database.

Despite not yet introducing other types of data other than book titles and authors,
you choose to save your data in relational database tables. You figure that eventually
this project might incorporate the massive amounts of information elsewhere in the
library system, and so a relational database may be appropriate.

There is no wrong choice when it comes to database selection. At
this stage in the project’s development, all popular database options
will work fine.

Although you’ve narrowed your decision to a SQL database, there are many different
database management systems to choose from. You decide to compare using a SQLite
DB and a PostgreSQL DB.

Comparing SQLite and PostgreSQL
SQLite and PostgreSQL are two of the most widely used Relational Database Manage‐
ment Systems (RDBMS). While SQLite is capable of handling data in most cases, as
its name implies, this RDBMS is lightweight and requires significantly less setup than
other systems. SQLite is considered an embedded database because it requires no
additional server to connect to the database. In this way, SQLite is the preferred
choice for quickly developing an app for demonstration, or even for long-term use in
an app with minimal traffic.

PostgreSQL, like SQLite, is open source and supports a relational structure between
data elements. PostgreSQL adds another layer by supporting object-relational map‐
ping, which supports persistent storage of more data types in application code. Post‐
greSQL runs on a separate server, which adds more overhead to the overall
development process.

To learn more, read the article “SQLite vs PostgreSQL: 8 Critical Differences”.

Overall, although both databases are sufficient for this project, you find that SQLite
will get your app up and running the fastest.

Connecting a Database to Your App | 105

https://oreil.ly/Hj9Mz

You start to incorporate SQLite by installing its most recent npm package and run‐
ning the command npm install sqlite3@^5.1.7. Now that you have an RDBMS
installed, you could just connect to the database and start running SQL queries to
search, save, modify, and destroy data. But what’s the fun in developing a Node API if
you couldn’t do it all purely in JavaScript?

Install another package called sequelize by running npm install sequel

ize@^6.37.7 in your command line. sequelize is an object relational mapper
(ORM) between JavaScript objects and SQL databases. With this package installed,
you can define JavaScript classes with sequelize and have them automatically map
functions to their corresponding SQL queries. So no SQL knowledge is needed for
this project (or, really, any in this book).

Before you continue, take a look at your project directory. In this last section you’ll
add two more subfolders, as shown in Example 6-8. Create the first folder, models,
and within it create a file called book.js. This file contains the code needed by Sequel‐
ize to map your book data to the database. Next, create the db folder. Within this
folder create a file called config.js, which will contain all the configurations needed to
set up your database. After adding all the required changes, your database will live
within the application folder in a file called database.sqlite.

Example 6-8. Project directory structure with a database

library-api
 |
 - index.js
 - routes
 |
 - index.js
 - booksRouter.js
 - models
 |
 - book.js
 -db
 |
 - config.js
 - database.sqlite
 - package.json
 - node_modules

The root of your project contains your main app file, folders for routes, models,
and database configuration, plus your package.json and dependencies.

The models folder stores all the data classes mapped between your app and the
database.

106 | Chapter 6: Library API

The db folder contains your database connection logic and the SQLite database
file.

Open your config.js file and add the code in Example 6-9. In this code, you import
Sequelize and instantiate a new database connection using SQLite, defining the stor‐
age location within the db folder of your project. You then authenticate the
connection to the database through db.authenticate(). If the connection is success‐
ful, you’ll get a logged statement indicating so. Otherwise, you’ll log the error that
occurred while trying to connect. Luckily, there is no additional server to run with
SQLite, so there should not be many issues to troubleshoot at this step. At the end of
the file you export both the Sequelize class and db instance.

Example 6-9. Setting up the database configuration in config.js

import { Sequelize } from "sequelize";

const db = new Sequelize({
 dialect: "sqlite",
 storage: "./db/database.sqlite",
});

try {
 await db.authenticate();
 console.log("Connection has been established successfully.");
} catch (error) {
 console.error("Unable to connect to the database:", error);
}

export default {
 Sequelize,
 db,
};

Import the Sequelize class from the sequelize package.

Instantiate a new Sequelize database connection, db, using SQLite.

Await a connection to the database with db.authenticate().

Log an error message if the database fails to connect.

Export both the Sequelize class and the database instance.

The database is almost ready to get fired up, but first it needs some data to map in
your app. Add the code from Example 6-10 to book.js. In this file you import the data‐
base configs and destructure the Sequelize and db values. Then you use the

Connecting a Database to Your App | 107

db.define function to create a Sequelize model called Book. This model name later
maps in the SQLite database to create a corresponding table of the same name. The
fields of this model reflect the data your library wants you to store:

• A title as a string (title)
• Author name as a string (author)
• Number of requests made for the book as an integer (count)

These fields are all that’s needed to save countless book records in your database
(though you will be counting). Book.sync will initiate a sync with the database and
set up a table called Books. At the end of the file, you export the model for use back in
your booksRouter.js file.

Passing the option {force: true} to Book.sync ensures that with
each startup of the app, the sync function attempts to create a fresh
table if any changes occurred since the last run. This is helpful in
development if you don’t want to fill your database with too many
test records.

Example 6-10. Defining a Book model in book.js

import config from '../db/config.js';
const {Sequelize, db} = config;

const Book = db.define('Book', {
 title: {
 type: Sequelize.STRING,
 unique: true
 },
 author: {
 type: Sequelize.STRING
 },
 count: {
 type: Sequelize.INTEGER,
 defaultValue: 0
 },
}, {});

Book.sync();

export default Book;

Import all configs from config.js.

Destructure Sequelize and db from your config module.

108 | Chapter 6: Library API

Define the Book model with Sequelize.

Define a title field as a string that may not have a duplicate value in the
database.

Define an author field as a string.

Define a count field as an integer that will increment with each POST request.

Sync the Book model with the SQLite database.

Export the Book model.

With your Sequelize model set up, you’ll need to revisit the CRUD actions you previ‐
ously built in booksRouter.js. These actions currently return the data they receive.
Now that you have access to a database, you can add the logic needed to support
actual data processing in your API.

First, import your Book model into booksRouter.js by adding import Book from
'../models/book.js'; to the top of the file. This gives access to the Book ORM
object and allows you to create, read, update, and delete Book data. Change the values
assigned to the book and books variables in each route to use the result of your data‐
base queries (Example 6-11).

The first change makes a call to Book.findByPk, where the id from your request par‐
ams is passed in as a primary key to search within the database for a matching book
record. You use the await keyword as you’re making an asynchronous call to the
database and need to wait for the result before continuing. The next change is to the
POST request, app.post, where you use the Book.create function and pass in the
title and author you retrieved earlier from the request body. You wait for the
create function to complete and return the resulting created record to the client.
Similarly, the Book.update also takes in the title and author as parameters, but this
time they reflect the changed title and author values. A second parameter in this
PUT request uses a where key to identify the record to update by its primary key: id.
Last, Book.destroy uses the where key to search for a record by the specified id in
the DELETE request and removes that matching record from the database.

For more information about model query types and the sequelize API, visit the
Sequelize API references.

Connecting a Database to Your App | 109

https://oreil.ly/VwOSc

Example 6-11. Updating routes with the Book model in booksRouter.js

...
// GET /books/:id
const book = await Book.findByPk(id);
...
// POST /books/
const book = await Book.create({title, author});
...
// PUT /books/:id
 const book = await Book.update({title, author}, {
 where: { id },
 });
...
// DELETE /books/:id
const book = await Book.destroy({
 where: { id }
});
...

Runs a query to find a Book by its primary key

Runs a query to create a new Book record with a title and author field

Runs a query to find a Book by its primary key and update the author and title
fields

Runs a query to find a Book by its primary key and delete it from the database

The response from the PUT and DELETE routes is not the updated or
deleted record, but rather the number of records affected by the
query. This is because these actions do not return the updated or
deleted record by default.

Now test your changes, only this time there are different outcomes because each com‐
mand results in a database action. Notice the id field that is returned in some of the
responses. Also notice the updatedAt and createdAt fields that Sequelize adds auto‐
matically to keep track of when data has entered the database or changed. Return to
your command line, open a new window, and run the following cURL commands:

1. Submit a POST request by entering curl -X POST -d 'title=Frankenstein&aut
hor=Mary Shelly' http://localhost:3000/api/books/. This command uses
-X to specify a POST method and -d to send request body data. The result of this
command should look like {"count":0,"id":1,"title":"Frankenstein",

110 | Chapter 6: Library API

"author":"Mary Shelly","updatedAt":"2025-07-13T21:37:53.372Z","creat

edAt":"2025-07-13T21:37:53.372Z"}.
2. Test the GET route again by running curl http://localhost:3000/api/books

/1. The resulting text on your command-line console should read {"id":1,"tit
le":"Frankenstein","author":"Mary Shelly","requests":null,"createdAt

":"2025-07-13T21:37:53.372Z","updatedAt":"2025-07-13T21:37:53.372Z"}.
This record was saved to the database in the last request. Now it is retrievable by
ID.

3. Next, try a PUT request by running curl -X PUT -d 'title=Frankenstein&aut
hor=Mary Shelley' http://localhost:3000/api/books/1. This request
contains both an ID and data in the body. Your response should show [1] to
indicate that 1 record was changed. You may run the GET request again to see the
updated value.

4. Last, run curl -X DELETE http://localhost:3000/api/books/1 to see 1 as
your response for a DELETE request to indicate that one record was deleted. Run‐
ning the GET request again should return null, as the record no longer exists.

If you run the POST request a second time with the same data, you
get a Validation error in your server’s console. This is expected
by design, because your Book model has a validation criteria that
new books should have unique titles.

Your API is now set up to handle new incoming requests to create, read, update, and
delete Book records. If you choose to expand your API, you can add new models or
modify the logic in your existing actions.

Chapter Exercises
1. Count requests for existing books before creating a new entry:

a. Update your POST /api/books route to check if a book with the same title
already exists in the database.

b. If the book exists, increment its count field by 1 and save the update instead
of creating a new record.

c. If the book does not exist, create a new book entry with count initialized to 1.
d. Test your changes using multiple POST requests for the same title and ensure

the count increases correctly.

Connecting a Database to Your App | 111

Use Book.findOne({ where: { title } }) to check for
duplicates, then call .save() after modifying the count.

2. Support listing all books in the database:
a. Add a new GET /api/books route that returns all books in the database.
b. Use Book.findAll() to fetch the complete list of records.
c. Respond to the client with a JSON array of all stored books.
d. Test your endpoint in a browser or with curl http://localhost:3000/api/

books.

This allows the library to view all requests in a single place, and optionally sort or fil‐
ter them on the client side.

Summary
In this chapter, you built a fully functional API with Node and Fastify. Moreover, you
added a SQL database and used the Sequelize library to persist data processed in your
API logic. With the skills you’ve learned from this chapter, you may now:

• Design and organize custom RESTful APIs
• Build an API that connects to any SQL database using Sequelize
• Extend your API with new endpoints and resource models

112 | Chapter 6: Library API

CHAPTER 7

Natural Language Processor
Sentiment Analysis

This chapter covers the following:

• Processing text using machine learning–powered libraries
• Wrapping a machine learning model in a Node service
• Building an interactive command-line app

In this chapter, you’ll build a sentiment analysis app using Node and natural language
processing (NLP) techniques to interpret emotional tone from everyday text and gain
practical experience working with machine learning (ML) in JavaScript.

Through these techniques you’ll learn the ways of an ML engineer and build your
own ML-driven Node app. ML has been growing in importance through its use in
technology in just about every industry. As a subset of artificial intelligence (AI), ML
teams from startups to enterprise companies are racing to deliver an experience that
most closely mimics what you’d expect from a human expert. If you’re new to ML,
then all you need to know is that a lot of math and statistics are performed on data
from the real world to provide you with a JavaScript function that can take an input
and offer a result, such as a sentiment score, based on patterns learned during train‐
ing on labeled datasets. If you are familiar with how ML works, then it’s likely you’ve
learned about the various models in use today. An ML model is what data scientists
will train in order to build a function that generalizes well to new, unseen inputs.

From helping predict your next purchase, to movie recommendations and facial rec‐
ognition, there is nearly no limit to what ML models could be used for. Historically,
technology has depended on manual conditions (pretty much if statements), or
rules, for drawing concluding results. Gradually, languages like Python, which now

113

dominates the ML space, began to offer new tooling and development support for
building new models. Fast-forward a couple decades, and now JavaScript engineers
can use Node to build comparable models. This means you can also build ML models
to recognize objects in an image, build dynamic pricing or stock market forecasting
apps, or use NLP to analyze a string of text in a number of ways.

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. For a deeper explanation of SQLite concepts, see Appendix C. Once
completed, return here to continue. Building a project from scratch helps deepen
your understanding of each component, giving you greater control and flexibility as
you progress.

Your Prompt
A local therapy clinic, Woes Disposed, has been encouraging its clients to write a sen‐
tence in their personal journals every hour. The therapists find that self-reflection
throughout the day can help enrich one’s perspective on life. They also believe that if
the client can get immediate feedback on whether their journal entry was positive or
negative, it would help track their mood throughout the day and further their devel‐
opment. Ultimately, this practice would like you to build an app to analyze journal
text and visualize its sentiment analysis.

Get Planning
The goal of this project is to build an app that can output whether a given input string
is a positive or negative statement. The app might ultimately be used through a web
client, but can exist with a CLI to start. As strings—say one to three sentences—are
typed into the command line, your app should break down the elements of the sen‐
tence, analyze the word arrangements, and return a numeric score representing the
sentiment of the text. You know that there are npm packages that can help you do just
that, and your experience with server-side JavaScript makes it easy to implement this
logic in a Node app. You draw up a diagram detailing how your app will handle the
flow of data from the client and back in Figure 7-1.

114 | Chapter 7: Natural Language Processor Sentiment Analysis

Figure 7-1. Project blueprint for a Node app analyzing text sentiment

Because traditional programming languages aren’t well-suited to interpreting natural
language text, you’ll need the help of ML models. You could train your own NLP ML
model, though that would entail getting hundreds of thousands, if not hundreds of
millions, of samples of text labeled by humans as either positive or negative, and con‐
tinuously adjusting various parameters until it properly analyzes new sentences. For‐
tunately, this work has already been done by the open source community, offering
you already trained and proven models you can use on ordinary English text.

NLP aims to improve a computer’s ability to understand human text. Sometimes that
can be useful for correcting syntax and grammar, identifying similar sentences, and in
your case, measuring the sentiment behind the text. However, human language is
complicated. English, in particular, has many irregularities, verb conjugations, and
multiple meanings for a given word—not to mention that punctuation and misspel‐
led words can impact the results of an NLP model. For that reason, NLP models offer
additional tooling to clean your text before analyzing it.

Cleaning Your Input Text for NLP Analysis
Written English can have multiple interpretations to the reader. For example, “I’ve not
been happy to date” could imply that you are not happy to go on a date, or that you’ve
never been happy in general. This is often confusing for human interpreters, and
therefore a challenge for computers to solve. Although confusing sentences may con‐
tinue to pose an obstacle for NLP models, there are some methods that help reduce a
complicated sentence to its linguistically fundamental structure. These preprocessing
steps are commonly applied before passing input into many traditional NLP pipe‐
lines, especially for tasks like sentiment analysis:

1. Spelling correction
As expected, spelling correction is used to ensure that any typos or misspelled
words are corrected ahead of analysis. After all, there’s no use in trying to analyze
the sentiment of text that even a human cannot comprehend. Correcting “I havve

Get Planning | 115

a qestion” to “I have a question” makes it a lot easier. For more information on
spelling correction, refer to the online edition of Introduction to Information
Retrieval (Manning et al., Cambridge University Press).

2. Stop word removal
Stop word removal is the process of stripping out words that don’t contribute to
the overall understanding of the text. Words like “not” or “never” may carry sig‐
nificant meaning and should not be removed blindly. For more information on
stop words, refer to the online edition of Introduction to Information Retrieval.

3. Stemming and lemmatization
Stemming reduces certain words to their roots. For example, “goes” and “going”
will be stemmed to “go.” Lemmatization takes that a step further by mapping
words in specific contexts to their lemma. For example, “am,” “are,” and “is”
would be mapped to their lemma, “be.” In this way, the input text is further
reduced to only the most important fragments needed for analysis. This step is
normally built into the model. For more information on stemming and lemmati‐
zation, refer to the online edition of Introduction to Information Retrieval.

Tokenization is one of the first preprocessing steps performed on input text. It
involves splitting a sentence into smaller parts, typically words or subwords, called
tokens. The choice of tokens can vary depending on the model—some use full words,
while others rely on word stems or subword units to better handle grammar and
vocabulary. Once tokenized, the text can be passed into a trained NLP model for fur‐
ther analysis. Figure 7-2 shows an example input, "I am feling grat!", which
undergoes three preprocessing steps—spelling correction, tokenization, and stop-
word removal—before sentiment analysis is performed.

First, the text’s spelling is corrected to “I am feeling great.” Next, the sentence is split
into tokens. A tokenizer could be as simple as calling .split(" ") on a string, but is
more effective with a tokenization library that takes punctuation into consideration.
Last, the tokens are run through stop-word removal to eliminate stop words. In the
end, you’re left with the words “feeling” and “great.” These two words can then be run
through an NLP sentiment analysis model to receive a score. In this example, “feel‐
ing” is fairly neutral, receiving a score of 1. Whereas “great” is a positive word and
gets a score of 3. Combined, the sentiment analysis for this string is 4.

116 | Chapter 7: Natural Language Processor Sentiment Analysis

https://oreil.ly/58Bue
https://oreil.ly/58Bue
https://oreil.ly/fHBvR
https://oreil.ly/p_wXy

Figure 7-2. NLP preprocessing steps on a string of text

Your app needs to follow the same general structure when handling journal entries.
To begin, you decide to test each preprocessing step in code to ensure your third-
party npm modules are working as expected.

Get Programming with String Processing Packages
To start developing your app, create a new folder named sentiment_journal. Navi‐
gate to your project folder on your command line and run npm init. This command
initializes your Node app. You can press Enter throughout the initialization steps. The
result of these steps is the creation of a file called package.json. This file will instruct
your Node app of any configurations or scripts needed to operate.

Next, create a file called index.js within your project folder. This file will act as the
entry point for your app.

Before you jump into sentiment analysis, you need to make sure the input text is spel‐
led correctly. To test this you use the sample text “I am feling grat!” Your goal is to
build a function that takes this text as a parameter and outputs the same sentence
with all words spelled correctly. For this, you’ll need an npm package to help with
identifying misspelled words and correcting them. Navigate to your project folder’s
root level in your command line and run npm install spellchecker@^3.7.1. spell
checker is a popular package that offers functions like isMisspelled, to check if a
word has any typos, and getCorrectionsForMisspelling, to offer correctly spelled
alternatives.

Add the code in Example 7-1 to index.js to start testing this package. In this code
snippet, you import the SpellChecker class from spellchecker and use its get
CorrectionsForMisspelling function on the sample text grat to get an array of pos‐
sible spelling corrections.

Get Programming with String Processing Packages | 117

Example 7-1. Testing spelling correction in index.js

import SpellChecker from 'spellchecker';
const options = SpellChecker.getCorrectionsForMisspelling('grat');
console.log(options);

Import spellchecker module.

Get a list of spelling correction options for the sample string using the get
CorrectionsForMisspelling function.

Output the list of suggested spellings.

You can navigate to the project folder in your command line and start your app to get
a log of all the alternative spellings for grat. Conveniently, SpellChecker returns the
corrected spellings in the order of highest probability. This is particularly helpful in
this example, because you’re looking to correct the string grat with the word great,
which is the first option in the corrected words array. Example 7-2 shows the output
after running your app.

Example 7-2. Command-line output for spelling correction options

[
 'great', 'grab', 'grant', 'goat',
 'gray', 'brat', 'grad', 'gran',
 'grate', 'frat', 'rat', 'grit',
 'gram', 'graft', 'ghat', 'gat',
 'drat', 'gnat', 'grata', 'prat',
 'groat', 'gras', 'grot', 'erat',
 'gmat'
]

Logged corrected words in your command-line window.

Because you can trust the results of this library, you can generally choose the first
result in the array. This is a good start for testing a single word.

Now, replace the last two lines in index.js with the code in Example 7-3. This code
effectively builds on the spelling correction logic you wrote previously. This time,
your code starts with your sample input string and wraps the spelling correction logic
in a function called correctSpelling. In this function, the input, inputString, is
split into separate words and an array is defined ahead of time to store all correctly
spelled words. A for loop iterates over each word and uses the isMisspelled func‐
tion to check whether the word is spelled correctly.

118 | Chapter 7: Natural Language Processor Sentiment Analysis

If the word is misspelled, it is passed to the getCorrectionsForMisspelling func‐
tion, which returns an array of correctly spelled alternatives for the input word.
Because you know that the first item in that array is your best replacement option,
you choose that word, the 0th index, and add it to the corrections array. If the word
was not misspelled, then it is added to the corrections array as is. At the end of the
loop, the corrections array combines the words back into a sentence and returns the
result. In this way, when the function, correctSpelling, is called with your input
String, the resulting text will immediately log to your command-line console.

Example 7-3. Add a spelling correction function to index.js

const inputString = 'I am feling grat!';

const correctSpelling = inputString => {
 const words = inputString.split(' ');
 const corrections = [];
 for (let word of words) {
 if (SpellChecker.isMisspelled(word)) {
 const options = SpellChecker.getCorrectionsForMisspelling(word);
 corrections.push(options[0]);
 } else {
 corrections.push(word);
 }
 }
 return corrections.join(' ');
}
console.log(correctSpelling(inputString));

Define your initial sample input string.

Define a correctSpelling function that takes an input string as a parameter.

Separate the words in your input string and assign them to a variable called
words.

Define a variable, corrections, to store all correctly spelled words.

Check whether each word is spelled correctly using SpellChecker.is Mis

spelled.

Find all spelling alternatives for the misspelled word using SpellChecker.get
CorrectionsForMisspelling.

Add the first option in the corrected words list to your corrections array. Alter‐
natively, add the original word if it is not misspelled.

Get Programming with String Processing Packages | 119

Combine the words in corrections to reform the correctly spelled input text.

Log the returned string from correctSpelling to your command-line console.

Test this by rerunning your app. Your console output should show I am feeling
great. This is a good start, ensuring any input text will be checked for spelling ahead
of reaching your analysis model. The next step is to tokenize your corrected string. To
handle this example and all other strings to follow, you use a library that supports
tokenization.

Install the natural package by running the command npm install natu

ral@^8.1.0. This package includes many supporting NLP functions, like tokeniza‐
tion, stemming, and even sentiment analysis. You can import natural by adding
import natural from "natural" to the top of your index.js file. Then you instanti‐
ate a new natural.WordTokenizer tokenizer by adding const tokenizer = new nat
ural.WordTokenizer() below the import line. You create a new function called
tokenizeInput to wrap your new tokenizer instance and split your input string into
tokens, as shown in Example 7-4, which passes your corrected input string to the
tokenizer. You start by applying natural’s tokenization to break the sentence into
individual words, making it easier for downstream sentiment analysis to process the
text accurately.

Example 7-4. Add a tokenization function to index.js

const tokenizeInput = inputString => {
 return tokenizer.tokenize(inputString);
}

Define a new tokenizeInput function that takes your input string as a parame‐
ter.

Return the tokens representing your input string, using the natural tokenize
function.

Update your log statement to separate each of the function calls, tokenizeInput and
correctSpelling, individually, logging only the final result (Example 7-5). Now the
returned value from correctSpelling will pass into the tokenizeInput function.
Rerun your app and you’ll see the output change to an array of tokens: ['I', 'am',
'feeling', 'great'].

120 | Chapter 7: Natural Language Processor Sentiment Analysis

Example 7-5. Separate the preprocessing step function calls in index.js

const correctedSpelling = correctSpelling(inputString);
const tokens = tokenizeInput(correctedSpelling);
console.log(tokens);

Assign the result of correctSpelling to the variable correctedSpelling.

Pass the correctedSpelling value to tokenizeInput and assign the returned
value to tokens.

Log the tokens array to your console.

With an array of tokens, you can now perform the last two preprocessing steps before
sentiment analysis: stemming and stop-word removal. The natural package comes
with a stemming function, so there’s no need to import an additional library for that.

The stemming function can be applied to one word at a time, so you’ll need to create
a new function, stemWords, that takes your tokens as a parameter and loops through
them to return their stems, as seen in Example 7-6. In this function, you define a new
empty array, stems, where you’ll add each new stemmed word you process. You loop
through your tokens and pass each token into the natural.PorterStemmer.stem
function, where the word is broken down to its stem using a special algorithm. With
each stem produced, they are pushed onto the stems array, and eventually returned to
the function caller.

Each NLP algorithm stems from a proven algorithm, researched
and developed by computer-linguistics engineers. The Porter stem‐
ming algorithm is one of the popular algorithms you can use to
stem your English words. Because there are many supported lan‐
guages, which each carry their unique grammar and syntax, you
may find a different algorithm is more suitable for your use case.
You can learn more about the Porter stemming algorithm online.

Get Programming with String Processing Packages | 121

https://oreil.ly/yXcHu

Example 7-6. Add a stemming function to index.js

const stemWords = tokens => {
 const stems = [];
 for (let token of tokens) {
 const stem = natural.PorterStemmer.stem(token);
 stems.push(stem);
 }
 return stems;
}

Define the stemWords function that takes tokens as an input parameter.

Define an empty stems array.

Loop through each token to be processed for its stem.

Process the stem of the word using the Porter stemming algorithm within the
natural package.

Add the stem to your stems array.

Return the stems array.

You can now update your log statement by first defining a new variable, stemmed
Words, which will equal the returned array after passing your tokens into stemWords:
const stems = stemWords(tokens). Then log stems. Your output should show
['I', 'am', 'feel', 'great'], indicating that feeling was stemmed to feel.

The last step is to remove stop words, like “I” or “am.” For this, you’ll install a new
package, stopword, by running the command npm install stopword@^3.1.5 at the
root level of your project folder in your command line. Next, add stopword to your
project by adding import { removeStopwords } from 'stopword' to the top of
index.js. This will specifically import the removeStopwords function you’ll need for
this project.

Now you can go to your log statement at the end of index.js and add a new variable,
const removedStopWords = removeStopwords(stems), which passes your stems
array to the removeStopwords function, returning only the words needed for analysis.
Rerun your app to see ['feel', 'great'] logged to your console.

That might seem like a lot of steps to build, only to reduce your sentence to two
words, but it’s a necessary process to get the most out of your sentiment analysis
model. In the next section, you’ll apply these results to your sentiment analyzer.

122 | Chapter 7: Natural Language Processor Sentiment Analysis

Analyzing Sentiment
In the previous section, you ensured that any input text will follow the proper
requirements for sentiment analysis. You’ve already installed the natural package,
which comes with a sentiment analysis class called SentimentAnalyzer. What’s more,
this can be instantiated with a stemming algorithm. That means you don’t need to
perform the stemming, or even stop-word removal, steps at all in this case. To test the
analyzer function, remove the code you had after defining your tokens variable, and
add the code in Example 7-7.

The addition of this code destructures the SentimentAnalyzer, your analyzer class,
and PorterStemmer, your stemming class, from the natural package. Then, you
instantiate a new SentimentAnalyzer object configured to do the following:

• Analyze English
• Stem words using the Porter stemming algorithm
• Use a specific vocabulary set identified as afinn

With this new analyzer set up, you call the provided getSentiment function by pass‐
ing in your array, tokens. The result is a sentiment analysis score you can log to your
console.

Example 7-7. Analyzing sentiment with tokens in index.js

...
const { SentimentAnalyzer, PorterStemmer } = natural;
const analyzer = new SentimentAnalyzer("English", PorterStemmer, "afinn");
const sentimentResults = analyzer.getSentiment(tokens);
console.log(sentimentResults);

Import the SentimentAnalyzer and PorterStemmer modules from natural.

Instantiate a new analyzer that includes a stemming configuration.

Analyze your input string’s sentiment by running getSentiment on your tokens.

Log the resulting sentiment score to your console.

Try rerunning your app to get an output score printed to your console. Your score
should read 1. This score indicates an overall positive sentiment.

You can test this some more by changing the string grat in your input to bad. Your
resulting score should be -0.5, indicating a negative sentiment. In this way, the

Analyzing Sentiment | 123

higher the positive number, the more positive the statement, and the more negative
the score, the more negative the statement.

Now that you have a working sentiment analyzer, it will be more helpful if you can
analyze more than just static sample text. To capture user input on the command line,
you install prompt, a package for prompting the user for text input and saving the
response. Run npm install prompt@^1.3.0 at the root level of your project directory
in your command line. Next, add the lines in Example 7-8 to the top of index.js. In
these lines of code, you import the prompt package and create a prompt instance. You
also configure the prompt by starting it with default settings and removing the default
message prefix, so the user sees a clean input prompt when entering their journal text.

When you start the app, you’ll get a prompt to type your input. To
exit the prompt and app altogether, press Command+C.

Example 7-8. Adding prompt to index.js

...
import prompt from 'prompt';
prompt.start({});
prompt.message = '';
...

Import prompt into your project.

Configure prompt to enable manually exiting your app during a prompt.

Clear the prompt message.

To test using a prompt, you’ll want to delete the line defining your sample input
String variable. Then, you add code to wait for a user’s input. Because there’s no way
to tell how long it takes for the user to respond, you’ll need to use await, which
returns a JavaScript Promise that eventually is filled with the user’s response data.

prompt.get takes an array argument containing the items for which you want to
prompt the user. In this example, you ask “How do you feel?” and assign the response
to inputString. The rest of the existing logic for sentiment analysis can remain the
same. The last change is to wrap your code in a try-catch block. This ensures that if
anything goes wrong while awaiting a prompt reply, you can catch the error and log it
to your console. Last, this whole block of code must be wrapped in an async function
to use the await logic. Here you use an immediately invoked anonymous function so

124 | Chapter 7: Natural Language Processor Sentiment Analysis

that your code runs as soon as your app starts. Example 7-9 contains all the code
needed in the wrapped async function in index.js.

Immediately invoked function expressions (IIFE) are functions that
are executed as soon as they are defined in your app. The expres‐
sion is effectively a function wrapped in parentheses, followed by
another set of parentheses to call the function. IIFEs are convenient
to use to start an app or run important configuration code as soon
as possible.

Example 7-9. Adding a function to prompt the user for input in index.js

...
(async () => {
 try {
 const {inputString} = await prompt.get([{
 name: 'inputString',
 description: 'How do you feel?',
 }]);
 const correctedSpelling = correctSpelling(inputString);
 const tokens = tokenizeInput(correctedSpelling);
 const { SentimentAnalyzer, PorterStemmer } = natural;
 const analyzer = new SentimentAnalyzer("English", PorterStemmer, "afinn");
 const sentimentResults = analyzer.getSentiment(tokens);
 console.log(sentimentResults);
 } catch (e) {
 console.log(`An error occurred: ${e.message}`);
 }
})();

Define an IIFE to wrap your app logic.

Wrap your code in a try/catch block to handle potential errors.

Wait for the user response to a prompt using a description and assigning the
response value to inputString.

Catch any errors that occur while executing your code and log them to your
console.

Now your code should function like before. Only this time, you’ll be prompted to
answer How do you feel? on your command-line before any sentiment analysis
code runs. Try to restart your app and reply to the prompt with “My day is terrific
and I feel amazing!” Your command line console should log a score of 1. Your more
positive statement got a slightly higher score than your previous sample input. In the

Analyzing Sentiment | 125

next section, you’ll put this all together by connecting the app to a database and a
command-line-friendly visualization of your data.

Connecting a Database and Visualization
By this point you’ve built an app that can compute a single journal entry’s sentiment
each time you run the app. Ideally, a user would receive not only a score for a single
entry, but be able to compare it to past entries to track the overall progression of their
mood.

Now that you have most of the logic needed to analyze text, you can focus on organ‐
izing your code and adding support for saving data and displaying results. Instead of
simply showing the sentiment score on the console, you’ll create a graph to display
the sentiment trends across a series of posts, as shown in Figure 7-3.

By the end of this section, your app will allow users to continually type journal
entries, save their sentiment scores to a database, and display the graph in green dur‐
ing a positive change in the score, or red during a negative change.

Figure 7-3. Console graph showing a series of sentiment scores

You can begin by setting up the database and database schema for saving sentiment
scores. At the root level of your project folder, run the command npm install
sqlite3@^5.1.7 sequelize@^6.37.7 to install the SQLite database management
package, along with the database object-relational mapper (ORM), Sequelize. These

126 | Chapter 7: Natural Language Processor Sentiment Analysis

two packages will allow you to define the structure you want to save and connect to
your database.

Although there are many database options to choose from, you’ll
implement a simple SQLite database management system. For
more information on choosing between database types, revisit
“Comparing SQLite and PostgreSQL” on page 105.

Create a new file called db.js and add the code in Example 7-10. This code will import
the Sequelize and DataTypes classes from your sequelize module. You use the
Sequelize class to instantiate a new database connection called db. This database is
configured to use SQLite and save persisted data in a file called journal.sqlite in your
project folder. Then you define a new Sequelize model called SentimentScore to per‐
sist the sentiment scores in a field called score. (The model is also exported for use in
other modules.) Last, you await for the database to establish a connection and regis‐
ter your model when the app starts.

Example 7-10. Setting up your model and database connection in db.js

import { Sequelize, DataTypes } from 'sequelize';

const db = new Sequelize({
 dialect: 'sqlite',
 storage: './journal.sqlite'
});
export const SentimentScore = db.define('SentimentScore', {
 score: DataTypes.DECIMAL,
});

await SentimentScore.sync();

Import the Sequelize and DataTypes classes from sequelize.

Instantiate a new database configuration with Sequelize, using a SQLite database
stored as journal.sqlite in your project folder.

Define a SentimentScore Sequelize model that saves a score field as a decimal
value.

Register your SentimentScore model with the SQLite database.

Connecting a Database and Visualization | 127

You won’t see the journal.sqlite file appear in your folder until you
make use of this db.js file in your main index.js app logic.

With this model set up, you can now save sentiment scores through the Sentiment
Score model. Before you create the index.js file, you create a new class for all of your
preprocessing and sentiment analysis logic. In your project folder, create a new file
called sentimentJournal.js. This file will act as a separate module from your index.js
file and contain most of the logic added in previous sections.

When Sequelize models are defined, they are built with special
functions to allow interactions with the database. For example, Sen
timentScore.create will allow you to add a new SentimentScore
record to the database, and SentimentScore.findAll queries the
database for all existing records. For more information on Sequel‐
ize model functions, refer to the Sequelize API references.

Earlier in this chapter you used the natural package to build out each step of NLP
preprocessing. Because you aren’t too concerned about customizing the preprocess‐
ing steps, you can use a library that performs all the steps for you. At the root level of
your project, install the sentiment package by running the command npm install
sentiment@^5.0.2. This package will provide all of the analysis tools and even return
the breakdown of tokens along with the resulting sentiment score. You will continue
to use the spellchecker package. Add the code from Example 7-11 to the top of
sentimentJournal.js. (For more information about the sentiment package, visit the
npm website.)

Example 7-11. Adding import to sentimentJournal.js

import Sentiment from 'sentiment';
import SpellChecker from 'spellchecker';
import { SentimentScore } from './db.js';

Import the sentiment and spellchecker packages to your project.

Import the SentimentScore model from db.js.

With these libraries ready to use in your project, you begin creating the Sentiment
Journal class by adding the code in Example 7-12. In this listing, the Sentiment
Journal class structure is defined. You add fields for the sentiment analysis engine, an
array of scores (to be loaded by the database), and a field to store the user’s journal

128 | Chapter 7: Natural Language Processor Sentiment Analysis

https://oreil.ly/XgqGq
https://oreil.ly/nwcs5

entry. Additionally, you add a class method called correctSpelling, which effectively
uses the same code from your previous correctSpelling function. Only, this time
the method can be called only in association with a SentimentJournal instance. Last,
you export the class so you’re able to use it in other parts of your project.

Example 7-12. Creating the SentimentJournal class in sentimentJournal.js

...
class SentimentJournal {
 constructor () {
 this.sentiment = new Sentiment();
 this.scores = [0];
 this.entry = '';
 }

 correctSpelling (inputString) {
 const words = inputString.split(' ');
 const corrections = [];
 for (let word of words) {
 if (SpellChecker.isMisspelled(word)) {
 const options = SpellChecker.getCorrectionsForMisspelling(word);
 corrections.push(options[0]);
 } else {
 corrections.push(word);
 }
 }
 return corrections.join(' ');
 }
}
export default SentimentJournal;

Define the SentimentJournal class.

Set up the class constructor to instantiate a new sentiment analysis object, initial‐
ize an array of scores to an initial score of 0, and define a field to store the user’s
entry.

Define a class method, correctSpelling, to take an inputString parameter.

Export the SentimentJournal class for use in other modules.

With this structure in place, you can start adding more methods to this class to sup‐
port persisted storage and the original functionality you’ve built.

Add the class methods in Example 7-13 to your SentimentJournal class. saveScore
is an async class method that uses the SentimentScore model and creates a new
record using the score parameter that’s passed into the method. The fetchEntries

Connecting a Database and Visualization | 129

async method waits for a database query of up to 100 recent records and assigns the
scores from those results to the SentimentJournals scores state. You use
results.map(({score}) => score because the initial results will contain more than
just the score data, including record IDs and timestamps. This logic strips the results
of the irrelevant data.

Example 7-13. Adding database queries to your class in sentimentJournal.js

...
async saveScore (score) {
 await SentimentScore.create({score});
}

async fetchEntries () {
 const results = await SentimentScore.findAll({limit: 100});
 if (results.length) {
 this.scores = results.map(({score}) => score);
 }
}
...

Define an async method, saveScore, to create a new SentimentScore record in
your database using the score parameter.

Define an async method, fetchEntries, to pull all persisted scores from the
database.

Query the 100 most recent saved SentimentScore records.

If SentimentScore records exist, take only the score values and assign them to
the scores array field.

These are the only two methods you’ll need to save and fetch from your database in
this project. Next, you need to add your analysis logic.

Now that you’re using a new sentiment analysis library, add the method in
Example 7-14 to your class. You define your analyzeSentiment method to check
whether you have an entry to analyze. If this.entry exists, you run this.senti
ment.analyze, which uses the sentiment package’s analyze function to generate a
score for the provided journal entry. You destructure the score from this result and
divide the score by 10, and force it within the range of –1 and 1.

130 | Chapter 7: Natural Language Processor Sentiment Analysis

To ensure a number always falls between a certain range, you can
get the Math.max of the variable number and the minimum of your
range. If your number is less than the minimum, it will return that
minimum value. Then wrap the result of that function in Math.min,
with the other value being your range’s maximum value. If your
number is larger than the minimum, you take the minimum
between it and your maximum allowed value. This way, your result
always stays between your set range.

With your normalizedScore set, you can save it to the database as a new record by
passing it to your saveScore method. You also add the score to your class instance’s
scores array to maintain state without having to query the database again.

Example 7-14. Adding database queries to your class in sentimentJournal.js

...
async analyzeSentiment () {
 if (!this.entry || this.entry === '') return;
 const { score } = this.sentiment.analyze(this.entry);
 const normalizedScore = Math.min(Math.max(score / 10, -1), 1);
 await this.saveScore(normalizedScore);
 this.scores.push(normalizedScore);
}
...

Define your analyzeSentiment method.

Check if the class instance entry field has an assigned value.

Use the sentiment package’s analyze function to process the entry and extract
the score.

Calculate a normalizedScore between –1 and 1.

Wait for the score to save to your database.

Add the new score to your class instance’s scores array field.

Connecting a Database and Visualization | 131

Your class is now ready to analyze the sentiment of any input text. To get that input,
you’ll add the prompt module by adding the code in Example 7-15 to the top of senti‐
mentJournal.js. Here, you import prompt, initialize the library with prompt.start(),
and clear the prompt message.

Example 7-15. Importing and initializing the prompt in sentimentJournal.js

...
import prompt from 'prompt';
prompt.start();
prompt.message = '';
...

Import the prompt package and initialize the library.

With the prompt library set up, add the function in Example 7-16 to your Sentiment
Journal class. This method waits for the user’s response to How do you feel? and
assigns the resulting value to response. The response variable is passed through the
class’s correctSpelling method, where the resulting text is assigned to the class
instance’s entry field. With this method in place, you should be able to collect user
responses, process an analysis score, save them to the database, and repeat.

Example 7-16. Adding a prompt method to your class in sentimentJournal.js

...
async promptEntry () {
 const {response} = await prompt.get([{
 name: 'response',
 description: 'How do you feel?',
 }]);
 this.entry = this.correctSpelling(response);
}
...

Define a promptEntry method for SentimentJournal.

Wait for prompt.get to return the user’s response to your prompt.

Assign the user’s spelling-corrected response to this.entry.

To get this code to work, you’ll need to create an index.js file and start using these
class methods. Add the code in Example 7-17 to index.js.

In this file, you import your SentimentJournal class and create a new instance called
journal. The journal variable allows you to access all methods defined in the class.

132 | Chapter 7: Natural Language Processor Sentiment Analysis

To begin, you call journal.fetchEntries to load any existing SentimentScore
records from your database. You then enter an infinite while (true) loop, where
each cycle prompts the user for a new journal entry using journal.promptEntry,
then analyzes the entry using journal.analyzeSentiment. This loop continues indef‐
initely, allowing users to submit and process multiple entries in a single session.

Example 7-17. Set up your SentimentJournal in index.js with a loop

import SentimentJournal from "./sentimentJournal.js";

const journal = new SentimentJournal();
await journal.fetchEntries();

while (true) {
 await journal.promptEntry();
 await journal.analyzeSentiment();
}

Import the SentimentJournal class from your local module.

Create a new instance of SentimentJournal.

Fetch any saved journal entries from your data source.

Begin an infinite loop to repeatedly prompt and analyze new entries.

Prompt the user for a journal entry.

Analyze the sentiment of the most recent journal entry.

Your index.js file is ready to start interactions on the command line. Before you test
this, you need to add one more element to the output: a graph visualization.

For this project you can use the asciichart package, which can output a graph struc‐
ture using ASCII characters. Run the command npm install asciichart@^1.5.25
at the command-line prompt to install asciichart and add import asciichart
from 'asciichart' to the top of your sentimentJournal.js file.

You can define custom configurations in asciichart, from color scheme to chart
dimensions. Because you want the chart to show data between –1 and 1, add the code
in Example 7-18 below your import lines in sentimentJournal.js. This chartConfig
object defines the minimum and maximum values of the chart, as well as a comforta‐
ble line height for displaying this project’s sentiment scores. You’ll use this set of con‐
fig values when you set up the chart logic.

Connecting a Database and Visualization | 133

https://oreil.ly/D_79r

Example 7-18. Adding a prompt method to your class in sentimentJournal.js

...
const chartConfig = {
 min: -1,
 max: 1,
 height: 10,
}
...

Define the configurations for your chart to display values between –1 and 1, with
a line height of 10.

To actually print the chart, add the two methods in Example 7-19 to your Sentiment
Journal class in sentimentJournal.js. The setChartColor method checks whether you
have any recent sentiment scores. It then views the most recent score and assigns it to
the recentScore variable.

If the recentScore is negative, you change the chart color to red in chartConfig.
Otherwise, you assign the chart color to green, indicating a positive trend in scores.
The printChart method performs three steps:

• Clears the command-line console of any previously printed charts
• Sets the chart color
• Prints the chart using asciichart.plot with your SentimentJournal instance

scores and the previously defined chartConfig settings

Example 7-19. Adding asciichart methods to your class in sentimentJournal.js

...
setChartColor () {
 if (!this.scores.length) return;
 const recentScore = this.scores[this.scores.length - 1];
 if (recentScore < 0) {
 chartConfig.colors = [asciichart.red]
 } else {
 chartConfig.colors = [asciichart.green]
 }
}

printChart () {
 console.clear();
 this.setChartColor();
 console.log(asciichart.plot([this.scores], chartConfig));
}
...

134 | Chapter 7: Natural Language Processor Sentiment Analysis

Declares the setChartColor method, responsible for setting the chart color
based on the most recent score.

Checks if there are any scores in this.scores. If the array is empty, the function
exits to prevent errors.

Retrieves the most recent score from this.scores by accessing the last item in
the array.

Checks if the recent score is negative, which will determine the color of the chart.

Declares the printChart method, which will handle displaying the chart in the
console.

Clears the console to provide a clean view, removing any previous output.

Calls setChartColor to update the chart’s color based on the latest score before
printing.

Plots and logs the chart to the console using asciichart.plot, displaying the
scores with the current color configuration.

With these final methods in place, your sentiment journal is ready to analyze text and
show the results in a visually appealing way. In index.js add await journal.printCh
art() as the first line in your while loop. This will ensure that a chart is printed as
soon as your app starts and previous sentiment score records are fetched.

When you start the app for the first time there will be no previous
scores; only the default score of 0 set in the constructor of your
class.

Now, restart your app and start adding journal entries. When you type This terri
ble day is the worst! you’ll notice the chart immediately updates to show a nega‐
tive score (Figure 7-4).

Connecting a Database and Visualization | 135

Figure 7-4. Console output showing a negative sentiment score and red chart drop after
inputting a negative journal entry

As soon as you add a new entry, the chart will update again. If the sentiment is still
negative, the chart will remain red. Otherwise, the chart will show a green line as
soon as a positive statement is made. Try this out by typing This amazing day is
excellent!. Notice the jump to 0.8 in the chart, as seen in Figure 7-5.

If you want to erase your database, it is as simple as deleting the
journal.sqlite file in your project’s folder.

With your app effectively complete, you can start demonstrating its use with the ther‐
apy practice. With the database set up, clients can choose to add journal entries when‐
ever they’d like without losing track of previous sentiment scores. Moreover, this app
can be extended as an API, a web app that patients can use on their browsers, or
rebuilt to work with any interface.

136 | Chapter 7: Natural Language Processor Sentiment Analysis

Figure 7-5. Console output showing a positive sentiment score and green chart rise after
inputting a positive journal entry

Chapter Exercises
1. Enhance the spelling correction with fallback logic:

a. Update your correctSpelling method to check whether the Spell

Checker.getCorrectionsForMisspelling function returns any suggestions.
b. If it returns an empty array (i.e., no correction was found), fallback to keeping

the original word unchanged.
c. Add logging inside the loop to verify which words were corrected and which

were left as is.
d. Try it out with an input like "i feeeeel fine but not grte" and confirm

your app still produces a usable output.

The spellchecker library doesn’t always have a fix for every
word, so fallback logic ensures your app won’t crash or drop
tokens unexpectedly.

Connecting a Database and Visualization | 137

2. Add sentiment labels to chart output:
a. Modify the printChart() method to print a labeled sentiment category (e.g.,

"Positive", "Neutral", "Negative") alongside each new sentiment score.
b. Use the final normalizedScore value to assign a label:

■ Score > 0.3: "Positive"
■ Score < –0.3: "Negative"
■ Otherwise: "Neutral"

c. Display this label clearly under the chart so the user can interpret their last
entry’s result at a glance.

d. Test with various journal entries to make sure each label corresponds appro‐
priately to the score.

These exercises improve your app’s resilience and clarity. Spelling fallback keeps the
analysis running smoothly, and labeled chart feedback offers a more human-readable
interpretation of the user’s mood progression.

Summary
In this chapter, you:

• Learned how to build a Node app around an ML model
• Created your own text preprocessing flow
• Persisted data in a SQL table via an ORM
• Built a command-line app for tracking sentiment scores

138 | Chapter 7: Natural Language Processor Sentiment Analysis

CHAPTER 8

Marketing Mailer

This chapter covers the following:

• Sending emails from a Node app
• Setting up a scheduler to run tasks
• Verifying accounts and tracking email engagement

In this chapter, you’ll build an app that sends emails and manages the logic for the
receiving users. You learned in Chapter 1 how HTTP is one protocol for communi‐
cating across the internet. Here, you’ll explore some of the protocols that are widely
used for email servers and clients to support communication in another way. Just as
Node can be used to deliver full-fledged APIs and web servers, it can be used for
micro tasks, such as sending emails.

Throughout the chapter, you’ll add incremental pieces to support some of the most
common functionalities used in an email marketing service. You’ll start by configur‐
ing a well-known package for sending mail externally. Then, you’ll build an API to
support collecting emails and verifying them. At the end, you’ll add logic to automati‐
cally schedule marketing emails to select groups of subscribers to your product.

139

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

Your Prompt
There’s been hype around a virtual gym, Inn Box, which will allow participants to
learn mixed martial arts and boxing techniques from their home. The startup has
already raised money for their innovative idea, but wants to start collecting emails of
prospective participants. They’ve hired you to put together a Node app equipped to
send membership information, gym updates, and promotions. This way, Inn Box can
start to engage with their growing audience.

Get Planning
You plan to deliver an app that can collect and verify email addresses, send emails,
and determine which promotional campaigns prove most effective. By the end of this
project, your app should be able to send outgoing emails with customizable content
and store all relevant marketing information to a database.

You begin by sketching out a diagram detailing the flow of information from each
subscriber through your app. In Figure 8-1 you establish that a user (the gym sub‐
scriber) will sign up with their email address. The email addresses will be collected by
an API endpoint using the Fastify framework in your Node app. The email address is
then registered in your database. You’ll build a service in your app to send outgoing
emails. As users receive the emails in their personal email clients, they’ll be able to
interact with linked content to verify their account or engage with promotions.

140 | Chapter 8: Marketing Mailer

Figure 8-1. Project blueprint for a marketing mailer Node app

Links in the outgoing emails will trace back to the Node app, allowing you to save
information about the user’s engagement. Last, you’ll build a service in your app to
periodically schedule and send out emails automatically.

Diving deeper into the app logic, you focus on three crucial parts:

Fastify
This is the core of how your app handles outgoing and incoming interactions
with your users across the web.

Scheduler
This is where you’ll define the specifics of automatically running tasks, such as
when to send out emails.

Mailer
This lies at the core of how emails can be successfully sent out from your app and
arrive in your users’ inboxes.

Get Planning | 141

As users register with your app, you’ll be able to store data like their email address,
verification status, and marketing campaigns they’ve engaged with (Figure 8-2). Col‐
lectively, this information provides Inn Box with a valuable dataset of prospective
leads, including verified email addresses and engagement behavior, to guide future
outreach and growth.

Figure 8-2. Diagram displaying how data is saved in your database

With this structure in place, you’re ready to start building an app.

Get Programming
To start developing your app, create a new folder named marketing_mailer. Navigate
to your project folder on your command line and run npm init. This command initi‐
alizes your Node app. You can press Enter throughout the initialization steps. The
result of these steps is the creation of a file called package.json. This file will instruct
your Node app of any configurations or scripts needed to operate.

Next, create a file called index.js within your project folder. This file will act as the
entry point for your app.

142 | Chapter 8: Marketing Mailer

With your Node app initialized, you begin by installing your app’s first npm package:
nodemailer. In your project’s root directory, run npm install nodemailer@^7.0.4
in your command line. The nodemailer package offers a comprehensive set of tool‐
ing to set up a mailing service for Node apps. For more information on how to use
nodemailer, visit the Nodemailer website.

Add the following import line to the top of index.js to import the createTransport
function from nodemailer:

import { createTransport } from "nodemailer";

This import line destructures the createTransport function from the nodemailer
package, allowing you to directly use the function to instantiate a mailer object.

Next, you need to add particular configurations to the createTransport function in
order to start using a nodemailer instance for sending mail.

If you’d like to explore building your own SMTP mail server, try
out the smtp-server and mailparser packages for setting up the
necessary configurations to send outgoing mail and read incoming
mail. A word of caution: setting up a custom mail server has many
obstacles around security and configurations. Alternatively, you
may build your own Haraka mail server, which offers everything
you need to send and receive emails in Node. See more at the
Haraka website.

Example 8-1 shows you what options are needed to configure your transporter
object. nodemailer itself is not a mail server, but instead depends on an existing
server to send your emails.

When configuring your mailer transporter, you’ll find fewer obsta‐
cles working with the configuration options of a known mail
server. As your mail will pass through a series of security protocols
across the internet, a trusted mail server is likely to guarantee suc‐
cessful delivery of your mail.

In this example, you can use the business’s email account or your personal Google
email account to test.

Get Programming | 143

https://oreil.ly/4o_R6
https://oreil.ly/-vZfQ

Setting Up Your Mailer with Google
Logging in to your email from just about anywhere is convenient, but has its trade‐
offs. For one, if you plan to sign in to your Gmail account across multiple devices,
you’re typing your password into each of those devices, risking your main password
leaking to the public or being misused. Your email client password is a sacred pass‐
word, and as such has become more protected under changes made by Google and
other email platforms alike.

There are two recommended strategies for logging in to your email account from a
potentially unsecure app:

Sign in with Google
This approach usually has you click a link to sign in directly with Google without
having to type your password directly into the risky app.

Using an app password
App passwords are dedicated passwords generated by Google for your use in
third-party apps. By using these passwords, you gain access to your email
through another service without exposing your sacred main password.

Because you’re building an app that hasn’t quite met all the security standards needed
for an email service, you may have to set up an app password for use in development.
To do this with your Gmail account, follow Google’s online instructions. From here
you’ll be guided to manage your app passwords and create a new one for the app
you’re building (Figure 8-3). You can give any app name here to help you identify its
association with the generated app password.

Figure 8-3. Register a Gmail API app

Once your app is registered, you are prompted with a specially generated password,
as seen in Figure 8-4. In this figure, the X’s represent where your app password will
show on your web browser.

144 | Chapter 8: Marketing Mailer

https://oreil.ly/osgw3

Figure 8-4. Retrieve a Gmail API token password

When this process is complete, you can use the generated app password along with
your Gmail email address to sign into your account from your project.

For the service key, enter a value that matches your personal email service. In this
case, you may use gmail. The auth key maps to an object containing your user (email
address), and pass (app password) in Example 8-1.

Example 8-1. Configure your mail transporter in index.js

...
const transporter = createTransport({
 service: "gmail",
 auth: {
 user: "jon@jonwexler.com",
 pass: "kdsnndsoonxxjsd",
 },
});

Assign the createTransport instance to transporter.

Add a mail service to your configuration.

Add an email and app password to your configuration.

Get Programming | 145

Next, you set up an object with options for email’s contents. Example 8-2 shows the
from, to, subject, and text keys to indicate that a welcome email will be sent from
the Inn Box business account to your personal email address. The email’s content will
be plain text for now.

Example 8-2. Adding the nodemailer package to index.js

...
const mailOptions = {
 from: "jon@innbox.jonwexler.com",
 to: "jon@jonwexler.com",
 subject: "Welcome to Inn Box!",
 text: "Confirm your email",
};

Assign mailOptions to contain the email’s content and criteria for a welcome
message.

The last step is to create an async function to actually send the email. Add the code in
Example 8-3 to the bottom of index.js. In this code, you create a sendMail function
that uses the transporter.sendMail function, along with your mailOptions, to send
an outgoing email. You wrap this function call in a try-catch to ensure the app does
not fail in case an exception is thrown during the email generation process. At the
end of the file, you call sendMail() to run the function and send an email as soon as
the app starts.

Example 8-3. Adding the nodemailer package to index.js

...
const sendMail = async () => {
 try {
 const info = await transporter.sendMail(mailOptions);
 console.log(`Email sent: ${info.response}`);
 } catch (e) {
 console.log(`An error occurred: ${e.message}`);
 }
};

sendMail();

Define a sendMail function to send out an email.

Use a try-catch block to gracefully handle any errors.

Send an email with transporter.sendMail and wait for sending to complete.

146 | Chapter 8: Marketing Mailer

Indicate a successfully sent email in a log to your console.

Catch any error and log the message to your screen.

Invoke the sendMail function.

Navigate to your project’s root level in your command line and run your app by
entering node index. After a moment, you’ll see Email sent: 250 2.0.0 OK

1662692125 m18-20006b929a2bsm475205qkn.3 - gsmtp, or a similar variation of
text. You may now confirm that an email was sent to the correct address by visitng
your email client directly. There you’ll find a new email from Inn Box in your inbox,
as shown in Figure 8-5.

Figure 8-5. Display the successfully sent email in your mail client

If you are not able to send the email correctly, try to troubleshoot
by reading the error message output to your console. If the email
was sent but never received, you may try sending to another email
address or check your spam folder.

Notice that the email contains only plain text: Confirm your email. Because there is
no link in this email, there’s also no way for the user to confirm or verify their
account with this example. However, you may spruce up the email by swapping out
plain text for richer HTML content. Add the code in Example 8-4 above your mail
Options definition in index.js. This block of HTML will display the same text, but in a
bigger and bolder way, utilizing the h1 HTML header tags.

Last, replace the text key and value in mailOptions with html. In this case, html is
both the new key and value represented by the html variable.

Get Programming | 147

Example 8-4. Define a block of HTML for your mailer in index.js

...
const html =
`<html>
 <body>
 <h1>
 Confirm your email
 </h1>
 </body>
</html>`;
...

Define HTML content and assign it to html.

When you change the mail options to use html, run your app again and notice the
change in your next received email. As shown in Figure 8-6 you will see the same text
as before, but displayed in an HTML tag. From here you may add more HTML struc‐
ture and styling to enhance the look and feel of the email.

In the next section you’ll introduce an API to collect email addresses and dynamically
send emails instead of using your hardcoded values.

Figure 8-6. Display the successfully sent HTML email in your mail client

Adding a Framework for Your Mailer Service
You’ve successfully sent emails from your Node app. Now you need those emails to go
to prospective customers. To accomplish that, you’ll need an API to collect emails
and feed them to your sendMail function. Before you get started with the API, you
make space in the index.js file by moving its current contents. Create a new folder
called services at your project’s root level. Within that folder create a file called
mailer.js and move all of the code from index.js into that file.

148 | Chapter 8: Marketing Mailer

Because you’ll be using the contents of mailer.js to send emails, you’ll want to export
the sendMail function. First, move the mailOptions variable definition into the send
Mail function and add html and to as function parameters. This will allow you to
dynamically call sendMail, passing in custom HTML and outgoing email addresses,
as you can see in Example 8-5.

You can add more parameters to make any part of the email con‐
tents dynamic. Or, if you choose, you may pick a more generic sub‐
ject line that works for all emails, like Email from Inn Box!

Example 8-5. Modifying and exporting sendMail in mailer.js

...
export const sendMail = async (to, html) => {
 const mailOptions = {
 from: "jon@innbox.jonwexler.com",
 to,
 subject: "Email from Inn Box!",
 html,
 };
 try {
 const info = await transporter.sendMail(mailOptions);
 console.log(`Email sent: ${info.response}`);
 } catch (e) {
 console.log(`An error occurred: ${e.message}`);
 }
};

Export the sendMail function to take html and to (email) arguments.

Attempt to send the email using the configured transporter and log the result or
error message.

Now your mailer.js service module is ready to be used in other files. As a next step,
you may create a module to contain your email HTML templates. Create a new file
called mailTemplates.js at the root level of your project. In this file you’ll define the
various email templates used for sending outgoing mail. Because all of your email will
use the standard HTML structure, you may remove the html block from mailer.js and
wrap it in a new function called htmlTemplate in mailTemplates.js. This function
takes an argument content and is used to generate an HTML template with any body
content you’d like.

Add the code in Example 8-6 to define the htmlTemplate and a welcomeMail func‐
tion, which passes text wrapped in HTML as content in your htmlTemplate function.

Adding a Framework for Your Mailer Service | 149

As you think of new emails to send, you can call htmlTemplate and pass in your cus‐
tom HTML body content to generate the full email contents.

Example 8-6. Adding a dynamic HTML template function in mailTemplates.js

const htmlTemplate = (content) => {
 return `<html>
 <body>
 ${content}
 </body>
</html>`;
};

export const welcomeMail = () => {
 const content = ` <h1>Welcome to Inn Box!</h1>`;
 return htmlTemplate(content);
};

Define htmlTemplate to take body content as an argument.

Fill HTML content in the middle of your standard structure.

Define and export welcomeMail to return a simple HTML welcome email.

With your mailer logic moved to its own service, it’s time to build the server you’ll
use to collect emails and invoke the mailer. For this project, you’ll use Fastify, a light‐
weight and high-performance server framework. Install Fastify by running npm
install fastify@^5.4.0 at the root level of your project in the command line.
Then, create an app instance of Fastify to represent your app and all its logic for
handling external requests, as seen in Example 8-7.

If you plan to handle application/x-www-form-urlencoded input—such as form
submissions or curl commands using the -d flag—you’ll also need to register the
@fastify/formbody plugin. Install it using npm install @fastify/form

body@^8.0.2 and register it on your app to allow Fastify to parse URL-encoded
bodies.

Example 8-7. Adding fastify in index.js

import Fastify from "fastify";
import formBody from "@fastify/formbody";

const app = Fastify();
await app.register(formBody);

Import Fastify.

150 | Chapter 8: Marketing Mailer

Import the @fastify/formbody plugin to handle URL-encoded form data.

Instantiate an app from Fastify as app.

Register the form body parser to allow POST requests with application/x-www-
form-urlencoded data.

Your app is now configured and ready to define API routes for external communica‐
tion. Add a single route called app.post("/subscribe"), which will handle incoming
HTTP POST requests to /subscribe with an email in the request’s body.

A route in Fastify is a way for your app to distinguish different
requests to your app. A POST request implies that content will be
submitted to the app, like a form. From here, you may look at the
request’s contents, or body, to collect any data needed in your app.

Add the route in Example 8-8 to receive a posted email address and log it back to the
screen. You use res.json to send JSON content back to the requestor to indicate the
end of the function. This simple experiment will help you determine whether your
app is reachable via HTTP POST.

Example 8-8. Adding a POST route in index.js

...
app.post("/subscribe", async (request, reply) => {
 const { email } = request.body;
 console.log(`Received ${email}`);
 reply.send({ message: "ok"});
});

Define a POST route for the /subscribe path.

Destructure email from the request’s body.

Log the posted email to your console.

Return a JSON message in the response.

Last, define a port on which your app will run locally on your computer and set up
your app to listen for incoming requests. Add Example 8-9 to the bottom of index.js
to either use a port number predefined on your computer’s environment variables
(process.env.PORT), or default to port 3000. app.listen will start your app and

Adding a Framework for Your Mailer Service | 151

listen for incoming requests at localhost:3000 or your defined port. This version
uses async/await at the top level, which is supported in ECMAScript modules.

Example 8-9. Adding listener function for your app in index.js

...
const port = process.env.PORT || 3000;

try {
 await app.listen({ port });
 console.log(`Server running at http://localhost:${port}`);
} catch (err) {
 console.error('Error starting server:', err);
 process.exit(1);
}

Assign a port number from your environment or default to 3000.

Start the server using await app.listen({ port }) at the top level.

Log a message when the server is running successfully.

Log any errors if the server fails to start.

With your server set up, start your app and notice the text Server running at local
host:3000 logged to your console. With your server running, you may now submit a
POST request to test your app route. Open a new command-line window and run
curl -X POST -d "email=jon@jonwexler.com" http://localhost:3000/

subscribe. This command will submit a POST request to the /subscribe route, con‐
taining an email address as a part of the request body. You will see {"message":"ok"}
as a response in your second command-line window. Your first command-line win‐
dow, with your server running, will display Received jon@jonwexler.com.

You may now connect your mailer to send an email out whenever a POST request is
received. Import your welcomeMail template function and sendMail function to
index.js, as shown in Example 8-10. These two functions may now be used within
your route callback function.

Example 8-10. Importing mailer modules in index.js

...
import { sendMail } from "./services/mailer.js";
import { welcomeMail } from "./mailTemplates.js";
...

152 | Chapter 8: Marketing Mailer

Import the sendMail function and welcomeMail HTML template function.

To use these functions, your route callback must be async to support awaiting mail to
send. Add the async keyword ahead of your callback function. Then add await send
Mail(email, welcomeMail()) right above the reply.send line. This new line will
invoke the sendMail function and pass in the email address received in the POST
request, as well as the welcomeMail HTML content. Rerun your app, and try to run
the curl command for a POST request in your command line again. Notice the email
you receive in your mail client with the subject Email from Inn Box! and content
Welcome to Inn Box!.

Your app can now receive email addresses through this API endpoint and dynami‐
cally send outgoing emails. In the next section, you’ll connect a database to start sav‐
ing these email addresses.

Connecting a Database
Setting up a database is a way to ensure that retrieved content can be used and revis‐
ited as the company, Inn Box, grows. For this project, you use SQLite3 and the
Sequelize object relational mapper (ORM) to structure and save your data. Install
these two packages by stopping your app in the command line and running the com‐
mand npm install sqlite3@^5.1.7 sequelize@^6.37.7.

With these two packages installed, create a new file called db.js at the root level of
your project directory. By the end of this section, your project directory structure
should look like Example 8-11.

Example 8-11. Project directory structure with a database

marketing_mailer
 |
 - index.js
 - services
 |
 - mailer.js
 - db.js
 - database.sqlite
 - package.json
 - node_modules

Add the database configuration file, db.js, at the root level.

The database.sqlite file will automatically generate once your database is set up
and connected.

Connecting a Database | 153

Within db.js, import the Sequelize module by adding import { Sequelize } from
"sequelize" to the top of the file. Then add the necessary configurations for Sequel
ize to connect to a sqlite database. Use new Sequelize to instantiate a new data‐
base connection. dialect will be sqlite, indicating the type of database you’ll be
connecting to. storage is database.sqlite, which will result in a file called data‐
base.sqlite generating at the root level of your project when the app starts. After, use
db.authenticate() to establish a connection with your database. Add the code in
Example 8-12 to db.js.

It’s important to wrap this logic in a try-catch to ensure that any
database connection issues are properly logged to the console.

Example 8-12. Set up the database in db.js

...
const db = new Sequelize({
 dialect: "sqlite",
 storage: "./database.sqlite",
});

try {
 await db.authenticate();
 console.log("Connection has been established successfully.");
} catch (error) {
 console.error("Unable to connect to the database:", error);
}

Instantiate a new Sequelize database using sqlite.

Try to connect to your database.

Catch and log any errors that occur.

With your database configured, you still need a table to store the contents of data
used by Inn Box. Create a new Sequelize model called Lead to represent the new
subscribers that may eventually become paying gym members. Add the code in
Example 8-13 to db.js to define that model with three fields. The email field is set to
be unique so no duplicate email addresses are found in the database. You also add a
validation rule, isEmail, that comes with Sequelize to ensure the structure of the
email matches the traditional structure. This will reduce the noise from text that
won’t even process during the email sending stage. The lastCampaign field is a string

154 | Chapter 8: Marketing Mailer

that will keep track of the campaign key used for that Lead. If Inn Box sends emails
offering a 30% discount, the campaign key might be 30promo (Example 8-13).

Example 8-13. Define and export the Lead model in db.js

...
const Lead = db.define(
 "Lead",
 {
 email: {
 type: Sequelize.STRING,
 unique: true,
 validate: {
 isEmail: true,
 },
 },
 verified: {
 type: Sequelize.BOOLEAN,
 defaultValue: false,
 },
 lastCampaign: {
 type: Sequelize.STRING,
 },
 },
 {}
);

Lead.sync();

export default Lead;

Define a new Sequelize model: Lead.

Add a unique and conformant email field.

Add a verified field to default as false.

Add a lastCampaign field.

Sync the model with your database upon connecting.

Export the Lead model as the default module export.

With your Lead model in place, you’re ready to start saving email addresses as they
arrive at your /subscribe POST route. In your index.js file, import the Lead model at
the top of your file by adding import Lead from "./db.js". Within the /subscribe
route, add the code in Example 8-14 to wrap your sendMail call in a try-catch

Connecting a Database | 155

block, and attempt to save a Lead record to your database with Lead

.create({ email }). Waiting for the database to save this record will hold off on
sending the email to that address until after it is saved.

Example 8-14. Save a new Lead in index.js

...
try {
 await Lead.create({ email });
 await sendMail(email, welcomeMail());
} catch (e) {
 console.log("Could not save the Lead", e.message);
}
...

Wrap your database call in a try/catch block.

Create a new Lead record with the request body’s email address.

Now, restart your app. You’ll notice your console displays more logs this time to indi‐
cate the connection of your database. In a separate command-line window, run your
curl POST command to see your record saved and a new email sent to your email
client. To test the email validation, try saving the same email address a second time or
submitting malformed text in place of a real email address. You will notice that the
record will not save in this case, but instead will log: Could not save the Lead Vali
dation error.

Clearing your SQLite database is as easy as deleting the data‐
base.sqlite file in your project folder.

With your database connected, add a new route to support verifying your email
address. Your new route should listen for GET requests containing the email address
looking to be verified. Within the route, logic will check to see if the email address
exists in your database. Then, if the Lead exists, you modify the verified field and
save the Lead record. You add two different res.json lines, depending on the success
of verifying the email (Example 8-15).

Example 8-15. Adding a verification route in index.js

...
app.get("/verify/:email", async (request, reply) => {
 const { email } = request.params;

156 | Chapter 8: Marketing Mailer

 try {
 const lead = await Lead.findOne({ where: { email } });
 if (lead) {
 lead.verified = true;
 await lead.save();
 console.log(`${email} is verified`);
 reply.send({ message: "Verified!" });
 }
 } catch (e) {
 console.log("Could not verify the Lead", e.message);
 }
 reply.send({ message: "Unable to verify." });
});
...

Add a new route to handle email addresses as a URL parameter.

Destructure the email from the request’s params.

Search for a Lead by the email address in the request.

Check whether a Lead was found.

If a Lead is found, modify its verified field.

Save the modified Lead instance.

Confirm to the user that their email was verified.

Notify the user if their email is not able to be verified.

One way to test this new route is by modifying the welcomeMail template to include a
link to this route. Add a new function, confirmationMail, in mailTemplates.js that
will dynamically wrap your email text in a link. When the user clicks that link, they
will be directed to your /verify:email route, whereupon their email address will be
verified (Example 8-16).

Example 8-16. Adding a new dynamic confirmation template in mailTemplates.js

...
export const confirmationMail = (url) => {
 const content = `<h1>Confirm your email</h1>`;
 return htmlTemplate(content);
};
...

Connecting a Database | 157

Add a new mail template function to take a url parameter.

Create a link to the url argument to confirm the user’s email.

In index.js, import the confirmationMail template function and use it in
your /subscribe route in place of the welcomeMail template function. The new func‐
tion will take in a URL. In this case, confirmationMail(http://localhost:3000/
verify/${email}) points to your local app and dynamically passes the email address.

To properly test this new route, you’ll need to deploy your app to
the internet. Once an email is received by your email client, like
Gmail, it doesn’t necessarily have a way to open a link to your
locally running web server at localhost:3000. Once the app is in
production, you may change the URL to reflect the public location,
and clicking on the confirmation link will lead to a verification on
your server and in your database.

Now that you have a way to dynamically create a link within your outgoing emails,
you can start to create marketing campaigns for Inn Box and track which leads are
interested.

Implementing a Marketing Pixel for Email Engagement
Email marketing is a huge business, generating billions of dollars a year across every
industry. Part of what makes it so successful is learning more about the readers of the
emails and whether they’re engaging with your product. With your email client being
a personalized and private space for your mail, this can be a challenging task.

Luckily, technology offers both the tools to reach your customers and the creativity to
understand their engagement with your emails. One way marketing services track
whether a lead opened their email is by adding a tracking pixel, also known as a mar‐
keting pixel. This pixel is a literal single pixel image pulled from the marketing serv‐
ice’s servers. The trick is that the image’s URL contains enough information so that
when the image is requested to load from the server, the server can also record which
lead opened the email and which campaign was promoted in that email.

In this way, companies can determine which emails are being opened, which drives
decisions about the marketing campaigns that are working, ultimately feeding the
company more paying customers. You already established a model that supports sav‐
ing campaign strings for each lead. Following a similar approach to the confirmation
Mail template’s dynamic URL, you’ll create a new route to serve loaded content in
your marketing campaign emails.

158 | Chapter 8: Marketing Mailer

Add the code in Example 8-17 to define a new GET route for /campaign/:campaign
Key/user/:email/image.png. This route path contains a campaignKey used to iden‐
tify which promotions are in the sent email. An email parameter is also used to map
this link to the targeted user’s email in the database. The route ends with image.png
to give the illusion that an image will be loaded by the server. Within the callback
function, you pull the email and campaignKey values from the request. Then you
search for a user by the given email address and update the respective record’s last
Campaign field to match the marketing email’s campaignKey. In this way you can
quickly track which users opened the most recent marketing emails and help the
business determine the success of their email promotions.

Example 8-17. Adding a campaign tracking route in index.js

...
app.get("/campaign/:campaignKey/user/:email/image.png", async (request, reply) => {
 const { email, campaignKey } = request.params;
 try {
 const lead = await Lead.findOne({ where: { email } });
 if (lead) {
 lead.lastCampaign = campaignKey;
 await lead.save();
 console.log(`${email} opened ${campaignKey}`);
 }
 } catch (e) {
 console.log("An error occurred", e.message);
 }
 reply.send({ message: "ok" });
});
...

Add a new campaign tracking route to take campaignKey and email params.

Destructure the email and campaignKey from the request’s params.

Check if a Lead with the provided email exists.

If the Lead exists, modify their lastCampaign to be the campaignKey and save the
record.

Log whether the email contents were viewed for the given campaign.

Respond with a simple JSON message.

In mailTemplates.js, create a new function called campaignMail to create a new tem‐
plate for an email promotion (Example 8-18).

Implementing a Marketing Pixel for Email Engagement | 159

Example 8-18. Adding a campaign mail template in mailTemplates.js

...
export const campaignMail = (campaignText, campaignKey, email) => {
 const content = `
 <h1>${campaignText}</h1>
 <img src="http://localhost:3000/campaign/${campaignKey}/user/${email}/image.png"
 style="display:none">
 `;
 return htmlTemplate(content);
};

Add a new mail template function with dynamic text, a campaignKey, and the
user’s email.

Add an image tag to fetch from your dynamic campaign tracking route.

To run this function, import campaignMail at the top of index.js and add send
Mail("jon@jonwexler.com", campaignMail("Special Promotion", "promo1",

"jon@jonwexler.com")) above the app.listen block in index.js. Just make sure to
test the code with your own email addresses. As soon as you restart the Node app, an
email will be sent with a hidden tracking image link. The email you receive in your
email client will read Special Promotion, though you won’t be able to immediately
see the campaignKey tracked. Similar to the issues with confirming an email address
in a development project, you’ll first need to deploy this app to see the email tracking
logic work and save to your database.

In the meantime, you can send a curl request to mimic the image URL call by open‐
ing a new command-line window and running curl http://localhost:3000/

campaign/promo1/user/jon@jonwexler.com/image.png. In that same window, you’ll
see a response of {"message":"ok"}. Your server will log jon@jonwexler.com
opened promo1 to its console window along with logs from a database query indicat‐
ing an updated record.

With your app ready to verify emails and track email campaigns, the last step is to
automate the emailing process. In the next section you’ll use a scheduling package to
help send emails out at specified times.

Integrating a Task Scheduler
Your app is set up to handle most of what a business needs to get started with email
marketing. The functionality is bare, but opens the door for creatively formatted
emails and a tracking system to help identify the business’s paying market. Automat‐
ing the sending of emails isn’t required, but will ultimately make the process

160 | Chapter 8: Marketing Mailer

smoother from a management perspective. Like everything else in Node, there’s a
package to help manage tasks on a specified time basis.

At the root level of your project folder in your command line, run npm install
node-schedule@^2.1.1 to install the node-schedule package. This package provides
functions with a variety of syntaxes for scheduling tasks to run. Instead of sending the
campaign email as soon as the app starts, you can move it to a scheduler to better
manage when the email is sent.

Create a file in your services folder called scheduler.js. This file will handle the
scheduling and execution of tasks. Import the scheduleJob function directly from
this package by adding import { scheduleJob } from "node-schedule" to the top
of scheduler.js. Below that, add the code in Example 8-19 to define a function, sched
ule, to initiate a scheduled task. For now, you may have that task be a logged state‐
ment that runs according to the timeOptions you provide.

Example 8-19. Adding a task scheduler function in scheduler.js

...
export const schedule = (timeOptions) => {
 scheduleJob(timeOptions, () => {
 console.log("Time to send an email.");
 });
};

Define and export a schedule function that accepts a timeOptions argument.

Run scheduleJob with the given time configurations.

Log a message to your console during the execution of your scheduled job.

Now import the schedule function from the scheduler module in index.js by adding
import { schedule } from "./services/scheduler.js" to the top of the file.
Below that, add schedule({ seconds: 30 }) to run your scheduled console log
every minute at the 30-second mark of that minute. Restart your app and notice how
Time to send an email. prints to your console once every minute.

Next, you copy the imports for campaignMail and sendMail to scheduler.js and send
your campaignMail template from the schedule function instead of index.js. Now,
your schedule callback function has become async as it handles sending campaign
emails. Every time you call the schedule function, the emails won’t be sent out imme‐
diately, but only at their scheduled time (Example 8-20).

Integrating a Task Scheduler | 161

Example 8-20. Running an email campaign from a scheduled job in scheduler.js

...
import { scheduleJob } from "node-schedule";
import { sendMail } from "./mailer.js";
import { campaignMail } from "../mailTemplates.js";

export const schedule = (timeOptions) => {
 scheduleJob(timeOptions, async () => {
 await sendMail(
 "jon@jonwexler.com",
 campaignMail("Special Promotion", "promo1", "jon@jonwexler.com")
);
 });
};

Adjust the module imports relative to the scheduler.js file location.

Change the scheduleJob callback function to be async.

Send an email at the scheduled time.

After saving this file and restarting your app, you’ll notice an email is sent out to your
specified recipient every minute. You can change the scheduled job time in index.js by
changing {second: 30}. For example, the email may be scheduled to send every
Monday at 1 PM, in which case the timeOptions would be {dayOfWeek: 1, hour:
13 }. To learn more about node-schedule and its scheduler configurations, visit the
npm website.

With your scheduler up and running, you’ve put together a comprehensive founda‐
tion for Inn Box’s marketing campaign app. From here you may make some of the
functions more dynamic or start decorating the HTML of your campaign emails.

Chapter Exercises
1. Add unsubscribe support to your email campaigns:

To add unsubscribe support to your email campaigns, start by creating a new
GET route /unsubscribe/:email in your server that updates the corresponding
Lead record by setting a new unsubscribed field to true. Modify your Lead
model to include this unsubscribed field with a default value of false. Then,
update your email templates to include a visible unsubscribe link pointing
to /unsubscribe/:email at the bottom of each message. Finally, ensure your
application checks this field before sending emails—preventing re-subscription
or scheduled emails from reaching users who have opted out.

162 | Chapter 8: Marketing Mailer

https://oreil.ly/rJjyT

Giving users an option to unsubscribe helps avoid spam com‐
plaints and keeps your mailing list healthy.

2. Track clicks on promotion links inside emails:
To track clicks on promotional links, add a new GET route such
as /click/:campaignKey/user/:email that logs when a user clicks a link in your
email. Update your Lead model to include a new lastClickedCampaign field to
store this information. Modify one of your campaign email templates to include a
visible button or hyperlink that points to the new tracking route. When the link
is visited, update the corresponding user’s lastClickedCampaign field and log a
confirmation message to the console.

While open rates are helpful, click-through rates often give a
clearer signal of user interest and intent.

Summary
In this chapter, you built a full-featured marketing mailer using Node. You learned
how to:

• Programmatically send emails with rich, dynamic HTML content
• Collect and validate email addresses through an API endpoint
• Verify user accounts using confirmation links in emails
• Track user engagement by logging email opens and campaign interactions
• Schedule and automate outgoing emails with a customizable task scheduler

Summary | 163

CHAPTER 9

Web Scraper

This chapter covers the following:

• Scraping contents from an HTML website
• Running a headless browser
• Collecting scraped data and offering it as an API

In this chapter, you’ll build a web scraper to collect contents of HTML websites and
process them in your Node server. Web scraping is the process of extracting data from
a website and has existed for nearly as long as the internet itself.

Before APIs were made public and accessible by businesses, the only way to get upda‐
ted product pricing, immediate news headlines, and static web content was by man‐
ually visiting a web URL and looking directly at the resulting web page; kind of like
how we still mostly use the internet today.

There are now more ways to process and use data than ever before, but still not
enough APIs to feed those processing systems. Even where APIs exist, restrictions in
the type of data an end user has access to may be limited. For example, a food deliv‐
ery service may provide an API for the top restaurants in a neighborhood, but not
allow for filtering by dietary restrictions. To get that data, you could, alternatively,
visit the URL for results filtered by dietary restriction and scrape the resulting con‐
tents. In this chapter, you’ll explore the options available within the Node ecosystem
to allow for scraping web pages and using that data in your own application.

165

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

Your Prompt
As an active participant in an online tech forum, Node Dojo, you are tasked with
helping to collect articles and tutorials related to Node. After scouring the internet,
it’s decided that you should collect the top Node articles available at https://
medium.com. Though Medium offers an API, you decide to develop a web-scraping
tool to get the article titles and links for the top Node articles.

Get Planning
You plan to deliver an app that effectively visits a web page automatically and returns
article titles and URLs. In this way, when new Node articles are published, you will be
able to scrape data from Medium’s site and provide your tech forum with the most
engaging articles and tutorials to read.

To start, you’ll target a specific URL and fetch its HTML contents. Initially, those con‐
tents could be parsed as plain text, where you’ll find the articles’ content you’re look‐
ing for. Later, you’ll incorporate powerful npm packages designed to fetch a web
page’s contents and help you parse the element of that page more efficiently. By the
end of the development process, your app will even allow users to search specific key‐
word terms and return matching articles from Medium’s site.

You begin by sketching out a diagram detailing the relationship between your app’s
logic and how external sites are scraped. In Figure 9-1 you establish that a user will
initiate your app, whereupon the target external site is fetched and scraped. The
returned HTML contents are then processed in your app so you may select only the
article titles and links. Last, you return those values back to the client that started the
application.

166 | Chapter 9: Web Scraper

https://medium.com
https://medium.com
https://oreil.ly/iqrgk

Figure 9-1. Project blueprint for a web-scraping Node app

This application has two parts:

Accessing and scraping
Because there isn’t necessarily another way to access the website’s data, it’s impor‐
tant that you are able to reach the site itself. If the site is blocked by an authenti‐
cation layer, or is otherwise inaccessible, scraping won’t work.

Filtering
After making contact with the site, you’ll receive the site’s contents as HTML
data. HTML offers a predictable structure that you may leverage to target only
the data you need. If your app is designed well, there shouldn’t be a need for
much maintenance down the road.

With this structure in place, you’re ready to start building an app.

Get Programming
To start developing your app, create a new folder named site_scraper. Navigate to
your project folder on your command line and run npm init. This command initial‐
izes your Node app. You may press Enter throughout the initialization steps to accept
the defaults. The result of these steps is the creation of a file called package.json. This
file will instruct your Node app of any configurations or scripts needed to run
correctly.

Next, create a file called index.js within your project folder. This file is the entry point
for your app.

Get Programming | 167

With your Node app initialized, you may navigate to the index.js file to start coding.
Without installing any additional packages, you’re already equipped to fetch a web‐
site’s HTML contents using the built-in fetch API. Add the code in Example 9-1 to
use fetch to make a GET request to https://medium.com/tag/nodejs. You’ll receive a
response object from the site, on which you can call the text() method to convert
the response HTML to plain text. Then, log the resulting text using console.log.

This example uses top-level await, a modern JavaScript feature supported in Node 18
and later when your project is configured as an ECMAScript module. If your envi‐
ronment does not support top-level await, you can wrap your logic in an async func‐
tion instead.

Example 9-1. Fetching HTML content from an external page in index.js

const URL = "https://medium.com/tag/nodejs";

try {
 const response = await fetch(URL);
 const text = await response.text();
 console.log(text);
} catch (e) {
 console.log("error", e.message);
}

Assign the URL variable to the top Node articles Medium link.

Wrap your code in a try/catch block to handle potential errors.

Make a GET request to the specified URL using fetch.

Convert the response to plain text.

Output the plain HTML to your console.

Catch and log any errors that occur during the request.

168 | Chapter 9: Web Scraper

https://medium.com/tag/nodejs

Navigate to your project in your command line and run node index to start your app.
Depending on your connectivity, the fetch call may take a few seconds. When com‐
plete, you’ll see hundreds of lines of HTML output to your screen similar to the con‐
tent that follows:

<!doctype html>
<html lang="en">
<head>
 <title data-rh="true">The most insightful stories about Nodejs...</title>
 <meta data-rh="true" charset="utf-8"/>
 <meta data-rh="true" name="viewport" content="width=device-width,..."/>
 <meta data-rh="true" name="theme-color" content="#000000"/>
 ...
</head>
</html>

If you aren’t seeing any output content, make sure your console log
statement is written correctly. If any errors occur, you’ll see the
error message logged to the screen and may debug from that
printed statement.

This output is typical HTML source code for a web page. Within the response you’ll
find HTML tags like <div> or <a> marking individual elements. These are the blocks
of HTML that define the structure of the web page on your browser.

A Brief Word on HTML
If you’re new to frontend development, or software development in general, you may
not be familiar with how web pages are constructed. Just as JavaScript code depends
on a certain syntax and structure, the visual construction of a website has its own
rules.

Hypertext Markup Language (HTML) is the makeup of nearly every web page or web
app you’ve visited on the internet. When you visit a URL on your web browser, you’ll
see a visual representation of data blocks known as HTML elements, in a formation
accessible by your client-side JavaScript, known as the Document Object Model
(DOM). Through this relationship, each element represents a part of the visual page
you see. Some of those elements contain paragraphs of text. Others may contain ads
or links. Figure 9-2 displays the home page for https://www.oreilly.com. In this exam‐
ple, you may notice how visual aspects of the page are actually self-contained HTML
elements under the hood.

Get Programming | 169

https://www.oreilly.com

Figure 9-2. Example HTML page breakdown for www.oreilly.com

Each HTML element has an opening and a closing HTML tag. The <div> tag is the
most used HTML tag (though it arguably is generally misused). You may find that
the title of an online article is found in a <div> tag. Some elements contain a class
name or id to help differentiate between other elements. For example, an article
title may appear in an element marked with a title class like this:
<div class="title"></div>. Other times you may get the title implicitly from the
type of tag used for that element. For example, an <h1> (or heading 1-level tag) is typ‐
ically used to wrap title text content. These tags make it easier to target when search‐
ing through HTML output to collect the specific information you seek.

Later in this section, you’ll explore the HTML response from an externally fetched
page to further dissect a web page while scraping for content.

To learn more about HTML, read the MDN documentation.

170 | Chapter 9: Web Scraper

https://oreil.ly/wuBXF

After confirming that you’re able to retrieve HTML content from the source URL, it’s
time to explore the web page and identify elements worth scraping. In Figure 9-3
you’ll find an example of what the browser page looks like for trending Node articles
on Medium. Visually, it’s easy to separate the title at the top of the page, Nodejs, from
the list of article sections below. These will be indicators you may use to target their
related HTML elements.

Figure 9-3. Example HTML page breakdown

To explore the HTML elements for one of these listed articles, you may right-click the
article section and select Inspect from the tooltip menu. Figure 9-4 demonstrates
what that menu looks like in the Chrome browser.

Get Programming | 171

Figure 9-4. Example HTML page breakdown

Last, you see a window at the bottom of the browser with viewable HTML, as seen in
Figure 9-5. Notice the article title appears within an <h2> tag. That tag also appears
within an anchor tag, <a>, which is used to link to the article. These are two indica‐
tors that you may use on the server side when scraping this page.

Only one problem remains: parsing the resulting HTML from your fetch call.
Despite the tree-like structure offered through HTML, you are left with only a plain-
text version in your call’s response. You may use a fancy regular expression to select
the <h2> and <a> tags. However, there’s a simpler solution using the npm packages,
explored in the next sections.

172 | Chapter 9: Web Scraper

Figure 9-5. Example HTML page breakdown

Parsing with HTML-Friendly Tools
You’ve used the fetch API to retrieve HTML content from a web page and log it as
plain text. You can use basic JavaScript string functions to inspect that text and make
sense of the underlying HTML. For example, adding text.split("><") to your code
in index.js will effectively separate the HTML elements of your page into an array.
This process is crude and inefficient, though, leaving you only with more obstacles in
your parsing journey.

Another option is to explore npm packages that work with HTML as plain text. A
popular package is cheerio, which may be installed by running npm install

cheerio@^1.1.2 at the root level of your project directory in your command line.
The cheerio package is a server-side implementation of the jQuery library. Whereas
the jQuery library has been used for years to simplify JavaScript interactions with the
HTML DOM, cheerio helps you parse HTML as plain text and target specific ele‐
ments in the same way. To learn more about the cheerio package and API, visit the
cheerio website.

Parsing with HTML-Friendly Tools | 173

https://oreil.ly/CVjmq

In your index.js file, add import { load } from "cheerio" to start using the pack‐
age. Then add the code shown in Example 9-2, which uses the load() function to
convert your plain-text HTML content in text to a cheerio object. This object is
assigned to $, a variable name as used in jQuery to refer to the whole HTML DOM.
You may now use the $ variable to locate specific elements within the page. As seen in
Example 9-2, article titles are found in <h2> tags. It also happens that those titles are
nested within <article> tags. Using these two together in $("article h2") allows
you to target all the article titles on the page. Then you loop over each of the resulting
elements to log the title text using $(element).text().

Example 9-2. Using cheerio to parse HTML content in index.js

...
const $ = load(text);
const elements = $("article h2");
elements.each((i, element) => {
 console.log($(element).text());
});
...

Convert your HTML plain text to a cheerio object.

Target all of the <h2> tags within an <article> tag.

Iterate over each found element using Cheerio’s .each() method.

Log the inner text of the <h2> tags to your console.

Run your app to see a list of the top 10 trending article titles appear on your console.
In this example, the same fetch call is executed. Only this time, you’re parsing the
result to only pull the titles. Try modifying your logic by targeting the <article> tag
alone, then using the find() function to further target the <h2> and <a> tags nested
within (Example 9-3). Notice, in addition to the title text, you’re also collecting the
href attribute belonging to the <a> tag. This is where the article URL lives.

Example 9-3. Targeting article titles and URLs in index.js

...
const elements = $("article");
elements.each((i, element) => {
 const title = $(element).find("h2").text();
 const url = $(element).find("a").attr("href");
 console.log(title, url);
});
...

174 | Chapter 9: Web Scraper

Target all of the <article> elements.

Iterate over each found element using Cheerio’s .each() method.

Find the article title and assign it to the title variable.

Find the article URL and assign it to the url variable.

Log the title and URL for each article to your console.

Now when you run your app, you’ll see both the article title and link logged for all top
10 trending articles. However, the URLs listed are not complete. Although you could
make sense of how to construct the URL from this output, you may not always
depend on the page’s source HTML to have a fully generated URL that you may use.
Moreover, modern web apps and single-page applications (SPAs) may not even gen‐
erate the majority of their HTML unless it is loaded in a browser. For that reason,
you’ll need an additional package, which you’ll learn about in the next section.

Scraping Web Pages with a Headless Browser
To this point, you’ve been able to fetch and parse a web page’s HTML. This process is
sufficient for the majority of websites on the internet, though most modern apps and
progressive websites are moving to a different style of content loading.

With the advent of web components and frontend libraries like React, Vue, and
Angular, it is not guaranteed that your first impression of a loaded web page contains
its fully loaded contents. That means a fetch call may result in a fairly empty response,
relative to what you’d see in a web browser. This is partly why headless browsers were
created.

A headless browser is a web browser without a visual component. A browser instance
is created and may load a web page, its cookies, and document positioning. It may
even maintain state and browser history. The best part is that it may run on the
server. Figure 9-6 demonstrates the difference between content fetched via a tradi‐
tional HTTP request and a headless browser. For web pages that lazily load their con‐
tent, or have some immediate restriction on showing visual content, a fetch call may
return only a shell of the HTML page, whereas a headless browser retrieves content
reflecting the real human experience without a real person’s manual verification.

Scraping Web Pages with a Headless Browser | 175

Figure 9-6. Fetching HTML page source code compared to using a headless browser

In your project, you’ll use the puppeteer Node library to create a browser instance
and retrieve article titles and URLs. Install the npm package by running npm install
puppeteer@^24.15.0 at your project’s root level in the command line.

Starting with version 22, Puppeteer no longer downloads the Chromium browser
automatically during installation. To install the correct browser version manually, add
the following script to your package.json file: "install-browser": "puppeteer

browsers install chrome"`. Once added, run the script by executing npm run
install-browser in your command line. This will download the correct version of
Chromium that Puppeteer uses to run your headless browser.

Working with Puppeteer
When a website is the only source for visualizing and accessing certain datasets, it
may be challenging to rely on that data for your own application. Although it’s
increasingly common to see dedicated APIs made available to software engineers, the
majority of content across the internet is still accessible only via your web browser.
This limitation is particularly challenging for building and testing your own web
applications. How may you test the visual output of your site without a tool that can
“see” the generated output?

Luckily, this problem is a shared concern across the tech community, and new solu‐
tions are being designed to assist. One of those tools is Puppeteer—a Node library
that creates a browser context using Chromium (derived from the Chrome web
browser). From within your Node server, the puppeteer npm package uses browser
dev tools to re-create the browser experience for a web page. The library loads a new
browser instance, virtually opens a new window, and visits the URL you choose. In
effect, there are four main steps:

176 | Chapter 9: Web Scraper

1. const browser = await puppeteer.launch()
Launches a browser instance and assigns its value to a variable

2. const page = await browser.newPage()
Creates a new page, from which to load a web page

3. await page.goto(url)
Visits that web page, as you would in a normal browser

4. browser.close()
Completes the task and shuts down the browser instance

Before closing the browser, you’re able to use the Puppeteer API to evaluate and navi‐
gate the visited page. For example, you may select elements based on their class names
or ID attributes, wait for them to load with page.waitForSelector, and click them
using page.click, as you would in a graphical representation. Puppeteer also lets you
take screenshots and save the resulting images to your filesystem.

This tool’s flexibility in automating frontend tasks is why it’s also one of the leading
libraries used in end-to-end testing for web apps. You can learn more about Puppet‐
eer on the Puppeteer website.

With puppeteer installed, you now have access to a whole web browser within your
Node server. Add import puppeteer from "puppeteer" to the top of your index.js
file. Then replace the code with the code in Example 9-4. In this code block, you initi‐
alize a puppeteer browser and create a new browser page.

These objects are used to fulfill a browser-initiated web request. The actual request
occurs in page.goto(URL), in which a request is made to see the fully loaded contents
of the requested URL. A user-agent string is added to ensure the response matches
what a typical browser would receive. A short delay gives time for JavaScript-
rendered content to appear. The page.$$ syntax is used to run document.querySelec
torAll, which collects all <article> elements from the DOM.

Each el containing the content of an <article> element is iterated over. The $eval
function is used on the selection to extract the <h2> element’s text content and the <a>
element’s href attribute. Because the browser has rendered the page fully, the href
contains a complete, usable link. After each iteration, the extracted title and url
values are logged to your console.

Example 9-4. Using puppeteer to scrape HTML content in index.js

const URL = "https://medium.com/tag/nodejs";

const browser = await puppeteer.launch();
const page = await browser.newPage();

Scraping Web Pages with a Headless Browser | 177

https://pptr.dev

await page.setUserAgent(
 "Mozilla/5.0 (Macintosh; Intel Mac OS X) AppleWebKit/537.36 " +
 "(KHTML, like Gecko) Chrome/118 Safari/537.36"
);

await page.goto(URL, { waitUntil: "networkidle2" });

(await page.waitForTimeout?.(3000)) ??
 (await new Promise((r) => setTimeout(r, 3000)));

const articles = await page.$$("article");

for (const el of articles) {
 const title = await el
 .$eval("h2", (el) => el.textContent.trim())
 .catch(() => null);

 const url = await el
 .$eval("a", (el) => el.href)
 .catch(() => null);

 if (title && url) {
 console.log(title, url);
 }
}

await browser.close();

Create a new Puppeteer browser instance.

Open a new page (tab) in the browser.

Set a realistic user-agent to avoid blocked or stripped responses.

Load the Medium tag URL and wait until the network is idle.

Wait briefly to allow JavaScript-rendered content to appear.

Select all <article> elements from the page.

Loop through each article element to extract title and URL.

Log the result to the console only if both values are found.

178 | Chapter 9: Web Scraper

puppeteer runs by default as a headless browser. This is useful for
running tests and bulk logic automatically. Because a full web
browser is still being loaded under the hood, you may opt to see
that browser run graphically. To do that, add { headless:

false } as an argument in your puppeteer.launch function.

When you run your app this time, you’ll notice it takes a bit longer than a standard
fetch command. That’s because a full Chromium browser is starting and loading
your desired web page. You’ll then see those same top 10 trending article titles and
links appear in your console. The links will be functional, complete with the
medium.com domain.

With this scraper in place, you’ve now taken your first steps toward extracting and
using structured data from complex, JavaScript-driven websites. Whether you’re
building tools for content aggregation, testing visual layouts, or simply exploring how
modern sites deliver content, Puppeteer gives you the flexibility of a full browser—
right inside your Node app. In the next chapter, you’ll expand on this foundation by
turning your scraper into a reusable API service that can power frontend interfaces or
downstream automations.

Chapter Exercises
1. Automate article keyword filtering:

Write a function that accepts a keyword (e.g., “performance”) as input and filters
out any article titles that don’t contain the keyword. After scraping the list of arti‐
cle titles and URLs, apply this function to display only the matching articles in
your console. This encourages users to tailor their results to specific learning
goals or topic preferences.

Use .includes() on the title string for basic keyword match‐
ing. Be sure to normalize to lowercase for case-insensitive
comparison.

2. Write scraped results to a JSON API:
Instead of logging your scraped article titles and URLs to the console, create a
new route such as /api/articles that returns the scraped results as a JSON
object. This will allow your scraper to serve as a backend service for other apps or
a frontend UI.

Scraping Web Pages with a Headless Browser | 179

Store the results in a local array and return that array as the
response body from your new route.

Summary
In this chapter, you learned how to:

• Access the contents of an HTML page from a Node server
• Target data elements of a website
• Collect and process data from a headless browser

180 | Chapter 9: Web Scraper

CHAPTER 10

App Authentication

This chapter covers the following:

• Designing login authentication logic
• Using the Passport.js library to authenticate users and manage session or token-

based strategies
• Using JSON web tokens to authenticate across APIs

In this chapter, you’ll build authentication logic for a Node application. No matter the
type of core application you decide to build, user authentication remains a vital com‐
ponent in securing your application data. With the expansion of the accessibility and
availability of the internet, so too have applications become more vulnerable to
attacks.

Applications have come a long way from verifying your identity via an email address
and plain-text password. Most have implemented basic encryption or a hashing func‐
tion to save only jumbled text versions of your passwords. Others have taken security
to a new level with multifactor authentication (MFA), ensuring that a user may only
log in with their password if they also verify their account with an additional code
sent to their phone or email.

Each year, the tech community faces new user security and authentication problems,
with many companies investing in dedicated teams to solve them. Luckily, most busi‐
nesses have a mutual interest in protecting their clients’ account data, resulting in
industry standards for creating new accounts and processing incoming requests.
These best practices are extended beyond the standard web page to mobile clients and
Application Programming Interfaces (APIs), which may not have a UI login form. In
the following sections, you’ll build an authentication system and iterate over

181

improved versions to put some of these common authentication strategies into
practice.

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Instructions for installing and using Postman can be found in Appen‐
dix B. For a deeper explanation of SQLite concepts, see Appendix C. Once completed,
return here to continue. Building a project from scratch helps deepen your under‐
standing of each component, giving you greater control and flexibility as you
progress.

Your Prompt
You’ve built a successful travel-planning app, Journey Doc, and the user base is stead‐
ily growing. The only problem is, while users may create new itineraries, they were
never required to create their account with a secure password. This is both a security
risk and an inconvenience because their saved itineraries are publicly accessible, leav‐
ing users unsure if they can trust your platform. As a remediation and development
project, you decide to iterate on a number of authentication measures, requiring users
to log in and authenticate their account before creating new travel plans or accessing
existing travel data.

Get Planning
While a large portion of your app is already built and running, you decide to tackle
your authentication challenge from scratch. By the end of this project, you’ll have a
dedicated app and API for creating user accounts complete with a username and
encrypted password. The goal of the project is to use available tools to design the
most efficient and secure logic to handle many new account requests and frequent
password verification requests. For that reason, you’ll use Node and Fastify to build
an app server to handle HTTP requests, and a SQLite database to save relevant
account information.

Figure 10-1 details the flow of information from user interaction on a web browser.
First, the user will sign up with their account information, effectively registering their
account and storing their username and associated password information in the data‐
base. Your registration logic handles the process of securing the account passwords,
so only necessary information is stored. Later, when users log in to your web page,

182 | Chapter 10: App Authentication

they’ll be prompted with a similar login screen. Upon submitting the login form, the
user’s request is handled by a Fastify route handler that invokes authentication logic.
This logic compares the incoming username and password combination to determine
whether an account may be accessed.

Figure 10-1. Project blueprint for a login authentication Node app

To start, you create a server with the minimum API endpoints needed to create and
verify new user accounts and a single login page as a visual reference for user login
activity. You connect a database to store username and password information and use
the passwords in that database to verify whether user login attempts should be
authenticated. You’ll work with the Passport.js library, which contains many of the
standard authentication protocols used across major web apps, packaged in a set of
easy-to-use classes and functions.

Once you have a working authentication process, you’ll address securing APIs that do
not necessarily have a web browser client. These APIs may be used by a wide array of
clients, from progressive web apps to mobile devices. A common strategy here is to
generate authentication tokens that get passed between the client and your server to
verify your users’ identities.

With your app design sketched out, you move on to building out the server frame‐
work logic and API endpoints in the next section.

Get Planning | 183

Get Programming
To start developing your app, create a new folder named app_authentication. Navi‐
gate to your project folder on your command line and run npm init. This command
initializes your Node app. You may press Enter throughout the initialization steps to
accept the defaults. The result of these steps is the creation of a file called
package.json. This file will instruct your Node app of any configurations or scripts
needed to run correctly.

Next, create a file called index.js within your project folder. This file is the entry point
for your app.

With your index.js file ready, you may install the main server framework, template
engine, and supporting plugins used in this project. Run npm install

fastify@^5.0.0 @fastify/formbody@^8.0.0 @fastify/view@^10.0.0 handlebars

@^4.7.8 to install Fastify, the Handlebars template engine, and the required Fastify
plugins for handling form data and server-side rendering. These packages allow your
app to parse incoming form submissions and dynamically render HTML templates
based on user-specific data.

Building Templates with Handlebars
In addition to routing and API structure, Fastify offers server-side rendering (SSR)
through the @fastify/view plugin. SSR is the process of building an HTML page
from dynamic data on the server and serving that file to a user over the internet. A
template language allows for variables to act as placeholders within an HTML tem‐
plate and later compile into a static HTML file. This process enables applications to
serve web pages with distinct information as it relates to unique users. For example,
every user should get the same “welcome page,” but with only their own username
inserted into the page: “Welcome, Jon!”.

Figure 10-2 demonstrates how Fastify passes request data into a route handler that
renders the Handlebars template. When Fastify is ready to return a webpage to the
user, it will pass data, such as the user’s name or email, into the Handlebars file, which
will compile the file into a static HTML page.

The resulting HTML file is served from the backend server. This means the user will
receive a response containing a full HTML page. However, each user can be assured
that their personal information appears only for them as their account information is
authenticated and processed into a Handlebars template.

184 | Chapter 10: App Authentication

Figure 10-2. Building an HTML file with Handlebars templates

Handlebars.js is a popular JavaScript library that provides a simple, flexible way to
generate HTML templates and build dynamic, interactive web applications. The
library is often used in combination with a web framework, such as Fastify.js, to build
server-rendered web applications.

The Handlebars library contains a few syntactical expressions to use in your tem‐
plates. To display a variable within an HTML div, you simply wrap the variable within
double braces: <div> {{nameVar}} </div>. Additionally, you may wrap a block of
HTML within a condition. That condition may be represented within double braces
and the addition of a hash symbol: {{#if boolStatement}}. In this way, Handlebars
enables your template file to make dynamic decisions about what information to dis‐
play before rendering the final HTML result.

To learn more about the Handlebars library, visit the Handlebars website. To learn
more about template languages supported by Fastify, visit the Fastify documentation.

You start building out your main app logic by importing fastify into your project
and configuring your app to receive incoming requests properly (Example 10-1).
After importing Fastify at the top of index.js, you instantiate your app object from
the fastify module. You define a constant named PORT and assign it the value 3000,
which will be used to start your server locally.

Get Programming | 185

https://handlebarsjs.com
https://oreil.ly/EouiP

This app object acts as your main running server. It is responsible
for starting your server, interpreting incoming requests, and han‐
dling all operations related to authentication.

In Fastify, routes are defined directly on the app instance using methods like
app.get(...) and app.post(...). To handle incoming form data, you register the
@fastify/formbody plugin, which parses application/x-www-form-urlencoded

data. Fastify also handles application/json body parsing automatically for JSON-
formatted requests.

Fastify handles request processing through its plugin architecture
and route lifecycle hooks. These hooks allow you to run code at
various stages such as before validation, before handler execution,
or after the response is sent, making it easy to extend functionality
and enforce consistent logic across routes.

To ensure Fastify can locate your Handlebars template files, configure the root option
when registering the @fastify/view plugin. This points to the folder containing
your .hbs files—typically named views.

Example 10-1. Configuring your app in index.js

import Fastify from "fastify";
import fastifyFormbody from "@fastify/formbody";
import fastifyView from "@fastify/view";
import handlebars from "handlebars";

const app = Fastify();
const PORT = 3000;

await app.register(fastifyFormbody);
await app.register(fastifyView, {
 engine: { handlebars },
 root: "views",
});

Import the fastify module to create your web server.

Import the @fastify/formbody plugin to support URL-encoded form data.

186 | Chapter 10: App Authentication

Import the @fastify/view plugin to support templating engines.

Import handlebars as your template engine implementation.

Instantiate the app from Fastify.

Define the port you’ll use to reach your web server as 3000.

Register the formbody plugin to parse application/x-www-form-urlencoded
payloads.

Register the view plugin and configure Handlebars as your rendering engine.

With your app configured to create routes and use SSR, you define your first route for
the home path, /. To test that your app is working, you simply respond with a
"Welcome!" message using reply.send. Last, you set up app.listen to watch for
incoming requests at port 3000. Add the code in Example 10-2 to the bottom of your
index.js file.

Example 10-2. Adding a route and starting the server in index.js

...
app.get("/", async (request, reply) => {
 reply.send("Welcome!");
});

try {
 const address = await app.listen({ port: PORT, host: "127.0.0.1" });
 console.log(`App listening on ${address}`);
} catch (err) {
 console.error(err);
 process.exit(1);
}

Define a route to receive GET requests to your default path using Fastify’s
app.get method.

Respond with a plain-text value using reply.send.

Start the server using await app.listen(...) and log the address when it’s
ready.

Get Programming | 187

Your app is ready to run and accept requests. Navigate to your project folder in your
command line and start your app. In your web browser, navigate to http://localhost:
3000, where you’ll see the Welcome! message appear.

If you do not see a message appear, first ensure that your server is
running correctly. Next, make sure you have added the necessary
route and that all files have been saved.

It’s great to see your app working, but plain-text messages don’t offer much to support
app authentication. In the next section, you create a UI page to serve back to your
users.

Building a Login Form
To create a UI for your app, you set up a folder called views at the root level of your
project and add a file called index.hbs. The .hbs file extension signifies it as a Handle‐
bars file containing both HTML and Handlebars syntax.

Fastify expects template files to live in a folder called views. In this
way, the framework helps you organize your files and makes it eas‐
ier to locate relevant files that require compiling into HTML.

Within the index.hbs file, add the boilerplate HTML content in Example 10-3. This
content imports the Bootstrap CSS library for immediate styling results, and creates
the standard HTML <head> tag as well as custom styles.

Example 10-3. Adding the foundational structure in index.hbs

<html lang="en">
 <head>
 <meta charset="UTF-8" />
 <title>Journey Doc Login</title>
 <link
 rel="stylesheet"
 href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.3/dist/css/bootstrap.min.css"
 crossorigin="anonymous"
 referrerpolicy="no-referrer"
 />
 <style>
 body { padding: 50px; display: flex; align-items: center; justify-content:
 center; height: 100vh; }
 form { width: 500px; margin: 0 auto; }

188 | Chapter 10: App Authentication

http://localhost:3000
http://localhost:3000

 </style>
 </head>
</html>

Add a title tag for the login page you are rendering.

Add a link tag to load Bootstrap CSS.

Define custom styles for your login page.

With this foundation set, you may now add the body of the page with dynamic vari‐
ables. Add the body defined in Example 10-4 after your closing </head> tag. The con‐
tents in this block of code create a form for submitting authentication information.
The method of most forms is POST, as information is submitted to the server in the
body of the request. The form’s action refers to the app route you are targeting. That
route may be the authentication or account creation route, depending on whether an
account has already been registered. For that reason, the action will be dynamically
linked to the value of the route variable. This variable is one of a few whose values
will be determined on the server.

You display the title of the form by displaying the title variable within braces. Next,
you generate two form inputs and their labels. One input is for the user’s username,
and the other is for their password.

HTML offers specific input types to meet the expectations of the
input content. For example, the email input type expects a value in
the format “abc@xyz.com,” and the password input type will replace
the password characters with bullets on the UI by default.

At the end of the form, there’s a section to display a message from the server, such as a
login error or confirmation, and a link the user can follow to switch pages. This link
adds a query parameter (?page=...) to the home page URL, allowing the server to
determine which content to render.

The value switchPage will help the server determine what the user wants to see. Last,
you add the title variable as the text for the submit button. That way, a title of “Log
in” will appear both at the top of the form and as the submit button too. All of these
variables effectively act as placeholders for values to be determined on the server.
Before rendering this page as HTML, the variables are replaced with their associated
values.

Building a Login Form | 189

mailto:abc@xyz.com

Example 10-4. Adding an authentication form in index.hbs

...
<body>
 <form method="post" action="{{route}}">
 <h2>
 {{title}}
 </h2>
 <div class="form-outline mb-4">
 <input
 type="text"
 name="username"
 id="usernameInput"
 class="form-control"
 />
 <label class="form-label" for="usernameInput">
 Username
 </label>
 </div>
 <div class="form-outline mb-4">
 <input
 type="password"
 name="password"
 id="passwordInput"
 class="form-control"
 />
 <label class="form-label" for="passwordInput">
 Password
 </label>
 </div>
 <div class="row mb-4">
 <div class="col">
 {{message}}
 Click here
 </div>
 </div>
 <button type="submit" class="btn btn-primary btn-block mb-4">
 {{title}}
 </button>
 </form>
</body>

Create a an HTML form with a dynamic action defined in the route variable.

Display the title variable within a header tag.

Create a form input for the user’s username.

Create a form input for the user’s password.

190 | Chapter 10: App Authentication

Display the message variable contents.

Add the switchPage variable as a query parameter in the anchor tag’s href value.

Display the title variable as the text on your submit button.

The output of this rendered HTML file results in a form containing username and
password inputs. Because this form is used for both account registration and login
authentication, you add an additional optional input for password confirmation. This
way, when the user is creating their account, they may type their password twice to
ensure both passwords match when initially creating and saving their account.

A lot of authentication steps may be run on the web client ahead of
reaching the server. HTML provides some useful tools for ensuring
text is formatted correctly. Client-side JavaScript is often used to
verify that password match and other form inputs are typed cor‐
rectly to save the server from having to process a malformed
request.

Add the code in Example 10-5 to add a conditional input field below the regular pass‐
word field. The {{#if showExtraFields}} statement uses the Handlebars condi‐
tional syntax to check whether the showExtraFields variable is true, and an extra
password field should display.

Example 10-5. Adding a conditional password input in index.hbs

...
{{#if showExtraFields}}
 <div class="form-outline mb-4">
 <input
 type="password"
 name="confirmPassword"
 id="confirmPasswordInput"
 class="form-control"
 />
 <label class="form-label" for="confirmPasswordInput">
 Confirm Password
 </label>
 </div>
{{/if}}
...

Add a field to conditionally show the “Confirm Password” field.

Building a Login Form | 191

You may now define the required variables before your first defined route in index.js,
as shown in Example 10-6. The variables live in the loginFormVars object and con‐
tain different values for the login and sign up pages. Notice the difference in titles and
messages shown to the user. Also notice the route for signup sends form submissions
to /account, whereas the login route value is /auth. These are two routes that need
to be created to handle the form requests.

Example 10-6. Defining the authentication page variables in index.js

...
const loginFormVars = {
 signup: {
 title: "Sign up",
 message: "Already have an account?",
 route: "/account",
 switchPage: "login",
 showExtraFields: true,
 },
 login: {
 title: "Log in",
 message: "Need to create an account?",
 route: "/auth",
 switchPage: "signup",
 showExtraFields: false,
 },
};
...

The signup key maps to all the page variables required to display on the sign-up
page.

The login key maps to all the page variables required to display on the login
page.

To render the index.hbs page with these variables, update the default / route with the
contents in Example 10-7. You start by checking whether a query parameter was
passed in the URL. You check the request’s query field and destructure to pull out the
page value. This value (switchPage) will only be passed to the server when switching
between the sign-up and login pages. Next, you define your formVars to match the
set of page variables for the page you’re displaying, or default to the signup variables.
Last, you use res.render to pass these variables to the index.hbs page and compile it
into an HTML file to send back to the user’s web browser.

192 | Chapter 10: App Authentication

Example 10-7. Render the index.hbs page from index.js

...
const { page } = request.query;
const formVars = loginFormVars[page] || loginFormVars.signup;
return reply.view("index", formVars);
...

Destructure the page key from your request’s query parameters.

Define your formVars as the values that match your query parameter for page, or
default to the signup page values.

Render the index.hbs page with your selected dynamic values.

With these changes in place, you may rerun your app and navigate to http://localhost:
3000 where you’ll see a page similar to Figure 10-3. This form displays the variable
values for the title, message, and submit button. When submitted, the form will also
post data to the /account route. That route has not yet been set up, so for now you’d
see an error on the screen instead.

Figure 10-3. Visualizing the sign-up form

The final step to make use of this form is to define the /account and /auth routes.
These routes will handle sign up and account creation, and login authentication,
respectively. Because you are going to be saving new users and their passwords, you’ll
need a place to store them. For now, you store them in an object in memory. That
means you will save new users while your app is running and clear the list of users

Building a Login Form | 193

http://localhost:3000
http://localhost:3000

each time you close your app. Add const users = {}; above your routes in index.js
as an in-memory store for saved users. Then add the code in Example 10-8 to define
the remaining routes.

Both new routes use app.post and are async because they accept posted information
and eventually will run I/O operations. For the /account route, you’ll collect the user
name and password fields from the request body and save the user account by adding
a key by that username in the users object, and mapping it to the password value.

Right away, this approach has many flaws as it stores a plain-text
password that can be overridden by the same username sign-up
action. However, this logic is an intermediary step toward saving
your passwords in a more practical way.

In the first route that you set the username and password in, the users object repre‐
sents the creation of a new account. After that, you use reply.send to send a message
of validation back to the user. The /auth route behaves similarly. Only, this route does
not save a new user account, but instead checks whether a username key is found in
the users object. If the username is found and the stored password matches the
request body password, then we consider the account authenticated and respond with
a message signifying a successful login attempt. Otherwise, we redirect the user to the
login page to try again.

Example 10-8. Define the /account and /auth routes in index.js

...
const users = {};

app.post("/account", async (request, reply) => {
 const { username, password } = request.body;
 users[username] = password;
 return reply.send({ message: "Account created." });
});

app.post("/auth", async (request, reply) => {
 const { username, password } = request.body;
 if (users[username] && users[username] === password) {
 return reply.send({ message: "Logged in." });
 }
 return reply.redirect("/?page=login");
});
...

194 | Chapter 10: App Authentication

Create a POST route handler for /account to accept new user data.

Extract username and password from the incoming request body.

Store the provided password in the users object using the username as the key.

Send a JSON response confirming account creation.

Create a POST route handler for /auth to authenticate existing users.

Verify that the username exists and the password matches the stored value.

Respond with a success message if login is valid.

Redirect the user to the login page if authentication fails.

Now your app is ready to both render the sign up and login forms, and accept their
form submissions. Start your app and enter a username and password into the sign
up form inputs. Then click “Sign up.” You’ll then be navigated to a page with a mes‐
sage indicating your successful account creation. Next try to log in.

You can navigate one back in your browser history and try clicking the “Click here”
link to switch to the login page. Clicking the link will add the page query parameter
to the route request, specifying the login page variables. Those variables are used to
repopulate the page on the server and render the form again, ready to post data to
the /auth route (Figure 10-4). Enter the same username and password and click
“Log in”.

Figure 10-4. Visualizing the login form

Building a Login Form | 195

If your login information is correct, you’ll receive a JSON response with a message
that says “Logged in.” Otherwise, you’ll be redirected to the login page to try again.

This app is a fun starting point, but requires a bit more work to secure your users’
privacy and login identities. In the next section you’ll incorporate the Passport.js
library to assist with that.

Saving and Securing User Accounts
You’ve built an authentication system from scratch. The bad news is that it’s not very
secure and clears all of your users’ information on app restart. This calls for a pass‐
word security strategy and a database to persist your user accounts. Luckily, these two
steps can be built together as a part of defining an Account model in your app. Your
Account model defines fields that are needed to register an account, authenticate it
with Passport.js, and save the user account values to a SQLite database through the
Sequelize library.

This book uses the @fastify/passport plugin to integrate into
your Fastify app. It provides a drop-in authentication system simi‐
lar to Express but adapted for Fastify’s lifecycle.

Figure 10-5 shows some of the functions the Account class will handle. In addition to
registering and authenticating, it will also incorporate to serialize and deserialize
account data. The class will extend a Sequelize Model class, enabling it to define per‐
sistent fields and run query functions on a SQL database.

Serialization is the process of taking a data object and converting it
into a format that’s compatible with a response object. This typi‐
cally means converting a complex object into a large string. Deseri‐
alization is the reverse, in which a large or encoded string is
rehabilitated into a JavaScript object.

To get started, you install the sequelize, sqlite3, passport, and passport-local
packages. Navigate to the root level of your project folder on your command line and
run npm i sequelize@^6.37.7 sqlite3@^5.1.7 passport@^0.7.0 passport-

local@^1.0.0. The passport-local package works with the passport package to
help you define a custom authentication strategy (as opposed to authenticating with a
third-party service like Facebook or Google).

196 | Chapter 10: App Authentication

Figure 10-5. Overview of the Account model class

To get started, you install the sequelize, sqlite3, passport, and passport-local
packages. Navigate to the root level of your project folder on your command line and
run npm install sequelize@^6.37.7 sqlite3@^5.1.7 passport@^0.7.0

passport-local@^1.0.0. The passport-local package works with the passport
package to help you define a custom authentication strategy (as opposed to authenti‐
cating with a third-party service like Facebook or Google).

After installing these packages, you create a new file, db.js, at the root level of your
project to hold your database configurations. Add the code in Example 10-9 to db.js.
This file imports the Sequelize library and instantiates a new database object, db, for
a SQLite database stored within a db folder at the root level of your project. You then
run db.authenticate to connect to the database. At the end of the file you export the
database instance and Sequelize module for use in other parts of the app.

Example 10-9. Setting up your SQLite configurations in db.js

import { Sequelize } from "sequelize";

const db = new Sequelize({
 dialect: "sqlite",
 storage: "./db/database.sqlite",
});

try {
 await db.authenticate();
 console.log("Connection has been established successfully.");
} catch (error) {
 console.error("Unable to connect to the database:", error);
}

Saving and Securing User Accounts | 197

export default {
 Sequelize,
 db,
};

Import Sequelize to create a new database instance.

Define db to connect to a SQLite database stored in a file called database.sqlite.

Connect to the database with db.authenticate.

Export the database and Sequelize module.

After configuring the database, you’re able to work on the model that will persist on
the database. Start by creating a folder called models and adding a file called
Account.js (Example 10-10). This file imports the database configurations where you
can access all of the functions and classes within Sequelize. Set up a JavaScript class
for Account that extends Sequelize.Model. You may also define any other functions
you’d like within this class. You add a class function to search for an account by its
username, findByUsername. This function modifies the function parameter to lower‐
case and uses the Sequelize findOne function to search for a return of a single
account by that username. The function’s static keyword signifies that it is a class-level
function (not an instance method). Later, it may be accessed by calling Account.find
ByUsername and passing a username string.

Example 10-10. Creating your Account class in Account.js

import dbConfig from "../db.js";
const { Sequelize, db } = dbConfig;

class Account extends Sequelize.Model {
 static async findByUsername(username) {
 const lowerCaseUsername = username.toLowerCase();
 return await this.findOne({ where: { username: lowerCaseUsername } });
 }
}

Import the database configurations from db.js.

Destructure dbConfig to access Sequelize and your db instance.

Define your Account, which extends Sequelize.Model, giving the class
Sequelize query functions.

198 | Chapter 10: App Authentication

Add a class function to search for accounts by username.

Run a Sequelize findOne query to find a single account record in the database.

This class is ready for full integration with Sequelize. To accomplish this, you’ll add
the code in Example 10-11 to the end of Account.js. In this code you run
Account.init to initialize the fields for the Account model and register the model in
your database. Here, you define the username field as a string that must have a valid
value and not have a duplicate in the database. Next, you add fields for a hash and
salt, both as strings that must not be null.

Hashing Passwords
Storing plain-text passwords is a sure way to have accounts hacked and sensitive
information stolen. For that reason, it is an industry standard to never store an actual
password on the database or server. Yes, a plain-text password must pass through the
server with the incoming request, but when persisting or verifying account informa‐
tion, you are better off with other techniques.

A modern approach to storing password information is to hash a password and store
the hash value and salt string. A hash is generated by running a hashing function on
the original plain-text password. Hashing functions use an algorithm to convert the
password into an unintelligible string. The key is to create a custom cryptographic
salt, or random assortment of bits for each generated hash. The combination of a
salt and hashing algorithm results in a string that cannot be converted back into the
original password. So why do we store the hash and salt?

Figure 10-6 demonstrates how an incoming plain-text password is passed into the
hashing function, along with the account’s custom salt. The end result is a password
hash. Account authentication verifies username and password information by check‐
ing that the request body’s password, when combined with the username’s account
salt, results in a hash that matches the account’s hash value. If the two hashes match,
the account is verified.

In this way, the app never truly knows its users’ passwords. In the event of a hacked
database, hackers would only get a series of hash and salt values, unable to retrieve
the original plain-text passwords.

Saving and Securing User Accounts | 199

Figure 10-6. Flow of information for hashing an account’s password

In this project you use the crypto.pbkdf2 hashing algorithm. This algorithm is con‐
sidered to be secure and fast. To learn more about the crypto API, refer to the Node
documentation.

In addition to crypto.pbkdf2, several other password hashing algorithms are widely
used in modern applications, each offering different trade-offs in terms of speed,
security, and resistance to various types of attacks:

Argon2

This is a key derivation function that was designed to be resistant to various types
of attacks, such as GPU cracking and dictionary attacks. It is considered to be
one of the most secure hashing functions currently available. Read more on the
npm website.

bcrypt

This is a password hashing function that uses a technique called adaptive hashing
to make it resistant to brute-force attacks. It is widely used in web applications
and is considered to be a very secure option. Read more on the npm website.

scrypt

This is designed to be a general-purpose key derivation function and is generally
slower than pbkdf2 due to its added resistance to hardware acceleration and dic‐
tionary attacks. Read more in the Node documentation.

200 | Chapter 10: App Authentication

https://oreil.ly/IdyVQ
https://oreil.ly/IdyVQ
https://oreil.ly/EZ7e0
https://oreil.ly/KqB4V
https://oreil.ly/zmMYC

At the end of the file, you make use of a Sequelize hook, beforeCreate, which is
executed before the account is saved to the database. This is a built-in Sequelize
function. In this case you reassign the username to be a lowercase value. Last, you run
Account.sync to sync the model with the database by creating the Accounts table if it
doesn’t already exist.

Example 10-11. Setting up your Account Sequelize model in Account.js

...
Account.init(
 {
 username: {
 type: Sequelize.STRING,
 allowNull: false,
 unique: true,
 },
 hash: {
 type: Sequelize.TEXT,
 allowNull: false,
 },
 salt: {
 type: Sequelize.STRING,
 allowNull: false,
 },
 },
 {
 sequelize: db,
 modelName: "Account",
 }
);

Account.beforeCreate((account) => {
 account["username"] = account["username"].toLowerCase();
});

Account.sync();
export default Account;

Initialize the Account class to work with Sequelize.

Define a username field of type STRING.

Define a hash field of type TEXT.

Define a salt field of type STRING.

Specify the database instance and model name.

Saving and Securing User Accounts | 201

Use the beforeCreate hook to make all username values lowercase.

Sync the Account model to the database.

With the data model set up, you move on to incorporate password setting and
authentication functions. First, import the passport-local module by adding import
{ Strategy as LocalStrategy } from "passport-local" to the top of Account.js.
This library will help you define your authentication strategy. LocalStrategy refers
to an authentication process using only username and password. In Example 10-12,
you add the register and setPassword functions, which are used to create new
accounts with hashed passwords.

The register function accepts username and password parameters and first checks if
an account exists by the username. If an account does not exist, then you may con‐
tinue to create an account. Unlike the in-memory users object from earlier in this
chapter, you may not create duplicate accounts or override existing ones. The
Account model’s this.build function creates a new instance of an Account with the
username field.

The build function does not make an I/O operation, and so it is
not a function in need of the async-await keywords.

With your Account instance, account, you set the account password by calling the
setPassword function on that new instance. This function will handle all of the hash‐
ing operations. Last, you call account.save to officially save the account to your
database.

Example 10-12. Defining your Account creation function in Account.js

...
static async register(username, password) {
 const existingAccount = await this.findByUsername(username);
 if (existingAccount) {
 throw new Error("Account already exists");
 }
 const account = this.build({ username });
 account.setPassword(password);
 return await account.save();
}
...

202 | Chapter 10: App Authentication

Define a register function that accepts a username and password.

Check your database for an existing Account record.

Throw an error if an account already exists.

Build a new virtual Account instance with the provided username.

Call the setPassword function to save a hashed version of your password.

Save and return the registered account object.

For the register function to work, you need to create the setPassword function
within your Account class. Add the code in Example 10-13 below the register func‐
tion in Account.js. This function accepts a password as the parameter. It first checks
that the password has a value before continuing to the hashing function.

With the advent of async-await, coding has gotten a lot more suc‐
cinct and easy to read. Under the hood, all awaitable functions are
only functions that return a Promise. A Promise returns an even‐
tual value, allowing your server logic to continue unblocked until
that value is ready. For functions that have synchronous operations
or have yet to support an awaitable return value, you may create
your own Promise. Wrapping logic in a Promise allows you to call
that function with the async-await keyword.

Within your try-catch block you begin your hashing logic. Recall that a hashing
algorithm may contain a few different components to ensure a resulting hash value
that cannot be reverse engineered to the original password. One of the criteria for
generating the hash is to create a custom (and randomized) salt value. Node comes
prepackaged with the crypto library to assist with operations like this. You first
import that library by adding import crypto from "crypto" to the top of
Account.js. Then, within your setPassword function you use crypto.randomBytes to
generate a random assortment of bytes.

Saving and Securing User Accounts | 203

You pass in 32 to reflect the number of characters you’d like the
salt to be. There is no correct answer here, though a length of 32
or more is a widely accepted value for a secure salt string. To learn
more, read the article “Password Salting”. After generating a ran‐
dom set of bytes, you convert them to a hexadecimal string using
the bufferBytes.toString("hex") function. Next, your official
hashing function is used. The crypto.pbkdf2Sync function syn‐
chronously generates a hash with the provided arguments. You
pass in your plain-text password, the generated salt, 12000 as the
number of hashing iterations, a byte length of 64, and the hashing
digest algorithm.
Note also that this example uses the sha512 digest, which is prefer‐
red over sha1 for stronger cryptographic guarantees. You may refer
to the Node documentation to learn more.

The resulting hashRaw value is then converted to a hexadecimal string and saved to
the account’s hash field. The generated salt is also saved to the account’s salt field.
Because the entire process is synchronous, there’s no need to wrap it in a Promise or
use await.

Example 10-13. Defining your password hashing function in Account.js

...
setPassword(password) {
 if (!password) {
 throw new Error("No password supplied.");
 }
 try {
 const bufferBytes = crypto.randomBytes(32);
 const salt = bufferBytes.toString("hex");
 const hashRaw = crypto.pbkdf2Sync(password, salt, 12000, 64, "sha512");
 this.set("hash", Buffer.from(hashRaw).toString("hex"));
 this.set("salt", salt);
 } catch (e) {
 throw new Error("Unable to hash password.");
 }
}
...

Define your setPassword function to take a plain-text password.

Generate a random assortment of bytes for your salt.

Assign the converted bytes string as your salt value.

Generate a hash value from your password, salt, and hashing parameters.

204 | Chapter 10: App Authentication

https://oreil.ly/kw7Mr
https://oreil.ly/dlYII

Save the string value of your hash to your account instance.

Save the string value of your salt to your account instance.

Throw an error if any issues occur in the hashing process.

With your account registration and hashing function out of the way, you add logic for
authenticating a user logging in. Add the function in Example 10-14 to your Account
class. The authenticate function is provided with the plain-text password that the
user has entered. The function returns true if the password is correct, or false if it’s
incorrect. The function begins by extracting the salt and hash values from the this
object, which is assumed to be an instance of a user account. If the salt value is not
present, the function throws an error.

Because you call authenticate on the Account instance, and not
the class itself, the this keyword refers to the instance. In this way,
you may access all the fields of that instance.

Next, the function uses the crypto.pbkdf2Sync function to generate a hash from the
provided password and salt values. It then compares the generated hash to the stored
hash for the user account. If the two hashes match, the function returns true, indicat‐
ing successful authentication. If the hashes do not match, it returns false. This
design separates the password check from any surrounding control flow, like the done
callback in Passport.js.

Example 10-14. Add an authenticate method to your Account class in Account.js

...
authenticate(password) {
 const { salt, hash } = this;
 if (!salt) {
 throw new Error("No salt found");
 }

 const hashRaw = crypto.pbkdf2Sync(
 password,
 salt,
 12000,
 64,
 "sha512"
);
 const currentHash = Buffer.from(hashRaw).toString("hex");

Saving and Securing User Accounts | 205

 return currentHash === hash;
}
...

Define the authenticate function that accepts a password as an argument.

Verify whether the account has a valid salt before continuing.

Generate the hashRaw value using the crypto.pbkdf2Sync hashing function.

Convert the hashRaw value to a string called currentHash.

Return true if the hashes match, otherwise return false.

With this authenticate method ready, you must make it accessible to the Passport.js
library. Add the class function in Example 10-15 to your Account class. This code
defines a static method called passportAuthenticate on the Account class. The pass
portAuthenticate method returns an async function that takes three arguments:
username, password, and done. It attempts to find an account with the specified user
name by calling the findByUsername method. If an account is found, it calls the
instance method authenticate with the provided password. If the password is valid,
the function calls done with the account object. Otherwise, it responds with a failure
message.

This design decouples password verification from callback invocation, making the
authenticate method easier to test independently.

Example 10-15. Add a passportAuthenticate class method to your Account class in
Account.js

...
static passportAuthenticate() {
 return async (username, password, done) => {
 try {
 const account = await this.findByUsername(username);
 if (!account) {
 return done(null, false, { message: "User not found" });
 }

 const isValid = account.authenticate(password);
 if (isValid) {
 return done(null, account);
 } else {
 return done(null, false, { message: "Password incorrect" });
 }
 } catch (err) {

206 | Chapter 10: App Authentication

 return done(err);
 }
 };
}
...

Define a static method that returns a strategy callback.

This async function will be used by Passport.js for login attempts.

Look up the user account by username.

If not found, respond with a “User not found” message.

Call the instance’s authenticate method to validate the password.

If valid, call done with the authenticated account.

If invalid, call done with a failure message.

Handle and return any unexpected errors.

This code concludes the authentication process. Though Passport.js comes with addi‐
tional support to help maintain state between user requests, instead of requiring users
to log in every time they request a new page, Passport.js sends data within each
request confirming the account’s authenticated state.

Example 10-16 adds two more methods to the Account class. The serializeUser and
deserializeUser functions are used to serialize and deserialize user accounts for
storing in a session. These functions are typically used in conjunction with a session
middleware, such as @fastify/session. The serializeUser function takes account,
the user account object that should be serialized, and done, a callback function that is
called when the serialization process completes, as arguments. The function extracts
the username property from the account object and passes it to the done callback as
the second argument.

The deserializeUser function takes username, serialized user data used to find the
user account, and done, the callback function that is called when the deserialization
process completes, as arguments. This function calls the findByUsername method to
find the account with the provided username, and then passes the found account to
the done callback as the second argument.

Saving and Securing User Accounts | 207

A Brief Session on Sessions
In a web application, a session is a way to store user data between requests. When a
user logs in, the server creates a new session and stores the user’s data in the session.
The server then sends a cookie to the client’s browser, containing a unique identifier
for the session.

A browser cookie is a small piece of data that is stored on a
user’s computer by a web browser. It is used to identify the
user’s browser and track their movements within a website.
Cookies are typically used to keep track of login sessions, store
user preferences, and to personalize the user’s experience on a
website.

On subsequent requests, the client sends the cookie back to the server, along with the
request. The server uses the session identifier in the cookie to look up the user’s data
in the session store and retrieve the user’s data for the request.

In Node with Fastify, sessions allow you to keep track of a user’s state as they navigate
your application. To use sessions in Fastify, you must install and configure the
@fastify/session and @fastify/cookie plugins. These work together to enable ses‐
sion creation and cookie handling.

Passport.js integrates with Fastify through the @fastify/passport plugin. When a
user logs in, Passport.js stores the user’s data in the session so that it can be accessed
on subsequent requests. This allows the user to remain logged in as they navigate the
application.

Example 10-16. Add serializeUser and deserializeUser class methods to your
Account class in Account.js

...
static serializeUser(account, done) {
 const { username } = account;
 done(null, username);
}

static async deserializeUser(username, done) {
 try {
 const foundAccount = await this.findByUsername(username);
 if (!foundAccount) {
 return done(new Error("User not found"));
 }
 done(null, foundAccount);
 } catch (err) {

208 | Chapter 10: App Authentication

 done(err);
 }
}
...

Return an error if no matching account is found.

Pass the found account to the Passport.js session deserializer.

If a database error occurs, pass it to the done callback.

The last step required to enable Passport.js is to create a new login strategy.
Example 10-17 defines the genStrategy function, which is used to create a new
instance of the LocalStrategy class from the Passport.js library. The genStrategy
function returns a new instance of the LocalStrategy class, with the passport
Authenticate function as the callback. When the strategy is used to authenticate an
account, the passportAuthenticate function will be called to handle the authentica‐
tion process using a username and password.

The LocalStrategy class takes an options object as an argument,
which can include a variety of options such as the fields used for
the username and password, as well as a callback function to handle
the authentication process.

Example 10-17. Add a genStrategy class method to your Account class in Account.js

...
static genStrategy() {
 return new LocalStrategy(this.passportAuthenticate());
}
...

Define the genStrategy class method to return a new LocalStrategy instance.

Return a new LocalStrategy using your passportAuthenticate class method.

With this strategy function set up, you may add the remaining configurations to
index.js. To use Passport.js with sessions in Fastify, ensure you have the required ses‐
sion and passport plugins installed:

npm install \
 @fastify/cookie@^10.0.0 @fastify/session@^11.0.0 @fastify/passport@^3.0.0

Saving and Securing User Accounts | 209

Then import the necessary modules at the top of index.js:
import fastifyCookie from "@fastify/cookie";
import fastifySession from "@fastify/session";
import fastifyPassport from "@fastify/passport";
import Account from "./models/Account.js";

Example 10-18 configures the Fastify-compatible session and passport plugins. It also
registers serialization and deserialization functions, which are used to store and
retrieve user data from the session. Fastify sessions require @fastify/cookie and
@fastify/session to be registered first.

The secret used for session configuration should be a strong, ran‐
dom string and is typically stored in an environment variable.

Example 10-18. Add session and Passport middleware functions to your Fastify app
in index.js

...
await app.register(fastifyCookie);
await app.register(fastifySession, {
 secret: "a_very_secret_value_1!2@3#4$5%6^7&8*9(0)",
 cookie: {
 secure: false,
 maxAge: 1000 * 60 * 60 * 24
 },
 saveUninitialized: false,
 resave: false
});

await app.register(fastifyPassport.initialize());
await app.register(fastifyPassport.secureSession());

fastifyPassport.registerUserSerializer(async (user, request) => user.username);
fastifyPassport.registerUserDeserializer(async (username, request) => {
 const account = await Account.findByUsername(username);
 if (!account) {
 throw new Error("User not found");
 }
 return account;
});

fastifyPassport.use("local", Account.genStrategy());

Register Fastify’s cookie plugin for parsing cookies.

210 | Chapter 10: App Authentication

Register Fastify’s session plugin with a secret and configuration including session
duration.

Register Passport’s initialization middleware.

Register Passport’s session middleware (via secureSession()).

Register an async serialization function that returns the username directly.

Register an async deserialization function that throws on error.

Register the custom local login strategy.

The key difference from Express is that Fastify’s serialization func‐
tions are async and return values directly rather than using call‐
backs. They also receive the request object as a parameter.

Your app is now fully configured to use the Account model and its methods to regis‐
ter and authenticate new accounts. The last step is to create entry points for new and
existing accounts to interact with your Fastify server.

Example 10-19 defines two new routes. The first route is a POST route that listens for
requests at the /account endpoint. When a request is received at this endpoint, the
server extracts the username and password fields from the request body and calls the
Account class’s register method. This method registers a new account with the
provided credentials. The server then responds with a JSON message indicating suc‐
cess or failure.

The second route is a POST route that listens for requests at the /auth endpoint. This
route handles authentication by calling Passport’s authenticate method within a try-
catch block. Unlike Express, Fastify’s Passport integration throws errors on authenti‐
cation failure, which must be caught and handled appropriately.

Example 10-19. Define new /account and /auth endpoints with error handling in
index.js

...
app.post("/account", async (request, reply) => {
 const { username, password } = request.body;
 try {
 await Account.register(username, password);
 return reply.send({ message: "Account created." });
 } catch (e) {

Saving and Securing User Accounts | 211

 return reply.code(400).send({
 message: "Account creation failed.",
 error: e.message
 });
 }
});

app.post("/auth", async (request, reply) => {
 try {
 await fastifyPassport
 .authenticate("local", { authInfo: false })(request, reply);
 if (request.user) {
 const { username } = request.user;
 return reply.send({ message: "Logged in.", username });
 }
 } catch (err) {
 return reply.code(401).send({
 message: "Authentication failed",
 error: "Invalid username or password"
 });
 }
});
...

Define the route for account registration using Fastify’s app.post.

Extract username and password from the request body.

Attempt to register a new account with the provided credentials.

Respond with a success message upon successful registration.

Respond with an error message and status code 400 if account creation fails.

Define the authentication route that handles login attempts.

Call Passport’s authenticate method, which returns a function that processes the
request.

Check if authentication succeeded by verifying the user object exists.

Respond with a success message and the logged-in username.

Handle authentication failures with a 401 Unauthorized status.

212 | Chapter 10: App Authentication

Unlike Express, Fastify’s Passport integration requires calling
authenticate as a function that returns another function. Authen‐
tication failures are handled through try-catch blocks rather than
redirect URLs.

Your code is now complete and ready to test with Passport.js in a Fastify application.
Restart your app and create a new account by visiting the sign-up form or using the
following cURL command:

curl -X POST http://127.0.0.1:3000/account \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "username=testuser&password=securepass123"

You should receive a response like:

{"message":"Account created."}

After your account is created, you can test authentication. First, try logging in with
incorrect credentials:

curl -X POST http://127.0.0.1:3000/auth \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "username=testuser&password=wrongpassword"

You’ll receive a 401 Unauthorized response:

{"message":"Authentication failed","error":"Invalid username or password"}

Now, try logging in with the correct password:

curl -X POST http://127.0.0.1:3000/auth \
 -H "Content-Type: application/x-www-form-urlencoded" \
 -d "username=testuser&password=securepass123"

A successful authentication will return:

{"message":"Logged in.","username":"testuser"}

Your application is now capable of accepting and persisting new user accounts and
securely authenticating them via session-based login. The authentication flow in Fas‐
tify provides HTTP status codes and JSON responses suitable for both browser-based
and programmatic clients.

The next section demonstrates how to add an additional authentication strategy to
support stateless authentication for non-browser clients—such as mobile apps and
third-party integrations—by issuing and verifying JSON Web Tokens (JWTs).

Using JWTs for API Authentication
Imagine your travel app becomes so successful that you start to support mobile apps
and third-party clients. These platforms need to authenticate users just like your web

Using JWTs for API Authentication | 213

application does. However, session-based authentication with cookies (used in your
Fastify + Passport setup) does not work well in environments that cannot store cook‐
ies or maintain sessions.

Instead, a stateless, token-based authentication system is better suited for APIs. This
is where JSON Web Tokens (JWTs) come into play.

JWTs are self-contained tokens that include all authentication details in the token
payload. These are commonly used in stateless systems like mobile clients, SPAs, and
microservices, where the server does not need to persist any session data. When a
user logs in, the server generates a signed token containing their identity. That token
is then sent by the client in the Authorization header for every subsequent request.

In contrast, session-based authentication stores the session state on the server and
expects the browser to store a cookie with the session ID. This approach works well
for traditional server-rendered web applications, but less so for distributed systems.

With Passport.js, you can support both authentication methods in parallel:

1. Install the required packages by running the following command in your
terminal:

npm install passport-jwt@^4.0.1 jsonwebtoken@^9.0.2

2. Import the necessary JWT modules at the top of Account.js:
import { Strategy as JWTStrategy, ExtractJwt } from "passport-jwt";
import jwt from "jsonwebtoken";

The ExtractJwt helper provides functions for extracting a token from an HTTP
request—commonly from the Authorization header using the Bearer scheme.

3. Add the JWT strategy and signing logic in your Account class. Example 10-20
shows the genJWTStrategy and signJWT methods. The strategy extracts the
username from the decoded token and attempts to locate a matching account in
your database. If successful, it authenticates the request.

In production, your JWT secret key should never be hardcoded.
Use process.env.JWT_SECRET and store secrets securely in your
environment or secrets manager.

Example 10-20. Define genJWTStrategy and signJWT methods in Account.js

static genJWTStrategy() {
 return new JWTStrategy(

214 | Chapter 10: App Authentication

 {
 jwtFromRequest: ExtractJwt.fromAuthHeaderAsBearerToken(),
 secretOrKey: process.env.JWT_SECRET || "SECRET_KEY",
 },
 async (jwtPayload, done) => {
 try {
 const account = await this.findByUsername(jwtPayload.username);
 if (account) {
 return done(null, account);
 }
 return done(null, false, { message: "User not found" });
 } catch (e) {
 return done(e);
 }
 }
);
}

signJWT() {
 const { username } = this;
 return jwt.sign({ username }, process.env.JWT_SECRET || "SECRET_KEY");
}

Define the genJWTStrategy method to return a new Passport JWT strategy.

Return a new JWTStrategy instance for authenticating bearer tokens.

Extract the JWT token from the request’s Authorization header.

Use a secure secret key to verify tokens.

Search the database for an account matching the username in the token payload.

If a match is found, authenticate the request.

If no match is found, deny authentication.

On error, call done with the error.

Define signJWT to generate a signed token.

Return a signed JWT that encodes the account’s username.

Once this logic is in place, update your Fastify server to register the new JWT strategy
alongside the local one. In your index.js file, add:

fastifyPassport.use("jwt", Account.genJWTStrategy());

Using JWTs for API Authentication | 215

This registers the "jwt" strategy with Passport.js. You can now create API routes that
use passport.authenticate("jwt", ...) to protect access via token-based authen‐
tication.

In the next section, you’ll define those API endpoints to issue and verify JWTs for
mobile or API-based clients. Last, define new endpoints for use by non–web clients.
Add the code in Example 10-21 after your existing routes in index.js. This code
defines two Fastify routes: one for authentication and one for testing access to pro‐
tected resources. Both use the Passport.js authentication middleware registered with
Fastify.

The first route, /api/auth, is a POST route that authenticates an account using the
local strategy. If successful, the route uses the signJWT method on the authenticated
account to return a signed JWT to the client.

The second route, /api/test, is a GET route protected by the JWT strategy. The client
must send a valid JWT token in the Authorization header. If the token is valid and
corresponds to a user in the system, the route returns a confirmation that the user is
authenticated. Otherwise, the request is rejected with a 401 Unauthorized response.

Example 10-21. Define additional API routes in index.js

app.post(
 "/api/auth",
 { preValidation: fastifyPassport.authenticate("local", { session: false }) },
 async (request, reply) => {
 const { user: account } = request;
 const token = account.signJWT();
 return reply.send({ token });
 }
);

app.get(
 "/api/test",
 { preValidation: fastifyPassport.authenticate("jwt", { session: false }) },
 async (request, reply) => {
 return reply.send({ status: "Authenticated." });
 }
);

Define the /api/auth API route for account login and JWT issuance.

Use the local strategy to authenticate the username/password from the request.

Use the account’s signJWT method to generate a JWT.

Send the token in a JSON response.

216 | Chapter 10: App Authentication

Define the /api/test route to test JWT-protected access.

Use the jwt strategy to validate the token sent in the request header.

Send a confirmation message if authentication is successful.

You can now test this directly from the command line. First, authenticate with an
existing user:

curl -X POST http://localhost:3000/api/auth \
 -H "Content-Type: application/json" \
 -d '{"username":"<username>","password":"<password>"}'

Replace <username> and <password> with your actual credentials.

If successful, the response will include a token:

{ "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..." }

Next, use that token to access the protected route:

curl http://localhost:3000/api/test \
 -H "Accept: application/json" \
 -H "Authorization: Bearer <your_token_here>"

If the token is valid, you’ll receive { "status": "Authenticated." }.

You’ve now successfully extended your app to support stateless API authentication
with JWTs.

Chapter Exercises
1. Add logout functionality for session-based login users:

a. Define a GET /logout route.
b. In the route handler, call req.logout() and reply.redirect("/").
c. Update your login success page (or view) to show a logout link when the user

is logged in.
d. Test it by logging in, clicking “Logout”, and ensuring you can no longer access

protected pages.

Using JWTs for API Authentication | 217

A good authentication flow always includes a way for users to
manually end their session.

2. Restrict page access to authenticated users:
a. Create a view called dashboard.hbs with a welcome message.
b. In index.js, define a GET /dashboard route.
c. In the route handler, use req.isAuthenticated() and conditionally

reply.redirect("/?page=login") or render the dashboard.
d. Update your login success logic to redirect users to /dashboard.
This adds view-based access control, essential for session-secured web applica‐
tions.

Summary
In this chapter, you:

• Explored common security vulnerabilities in Node apps and how implementing
proper authentication is a developer’s responsibility

• Used Node’s built-in crypto module to securely hash passwords using salts and
strong algorithms

• Integrated Passport.js with Fastify to manage authentication strategies in a mod‐
ular, plugin-based architecture

• Implemented session-based authentication using cookies and @fastify/session
to maintain login state for browser-based users

• Added stateless token-based authentication using JWTs to support mobile apps
and API clients that do not use cookies

218 | Chapter 10: App Authentication

CHAPTER 11

Coffee Order Manager

This chapter covers the following:

• Designing a queuing system
• Using Redis as an in-memory queue management system
• Using RabbitMQ for more advanced and scaled queues

In this chapter, you’ll create a couple of Node applications that use queues to manage
workloads and enhance scalability. While Node is widely adopted across industries
for its efficiency, it faces challenges when handling large-scale applications. Node’s
event loop allows it to process incoming requests asynchronously, delegating tasks to
other processes to ensure smooth operations. However, as the number of requests
increases, or if tasks are CPU intensive or synchronous, the event loop can become a
bottleneck, delaying subsequent requests. Queues address this challenge by offloading
tasks, organizing them for sequential or parallel processing, and ensuring that critical
processes are not overwhelmed. By using queues, you can balance workloads,
improve response times, and maintain the reliability of your Node applications, even
under heavy demand.

An architectural solution to this problem is to introduce a queuing system to handle
requests and task management. Just as the event loop utilizes primitive queues to add
new tasks and listen for completion events, more complex queues help organize the
flow of tasks through an application, ensuring that no single segment of the applica‐
tion process ever blocks data from reaching its ultimate target.

219

In this chapter, you’ll explore ways in which a primitive queue can be used to manage
tasks in a Node application. Then you’ll use Redis as a pub/sub messaging system to
offload your logic to its proven structure. Last, you’ll use a popular queuing system,
RabbitMQ, to support your application for an even greater scale. By the end of this
chapter, you’ll have a better sense of when to consider messaging queues and when
you’d find a queue cumbersome.

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Instructions for installing and using Postman can be found in Appen‐
dix B. For a deeper explanation of SQLite, as well as installation steps for Redis and
RabbitMQ, see Appendix C. Once completed, return here to continue. Building a
project from scratch helps deepen your understanding of each component, giving you
greater control and flexibility as you progress.

Your Prompt
An online coffee delivery company called JavaShipped has been growing in popular‐
ity, with a mass influx of online coffee orders overwhelming the core servers. The
JavaShipped team wants you to help implement a system to handle increased scale.
They suggest a messaging system to manage incoming order requests and have tasked
you to build that system using Node.

Get Planning
The JavaShipped team is happy with their coffee ordering platform and fulfillment
process. However, their existing Node application has a bottleneck preventing new
orders after a certain limit. They also want to improve their application to better han‐
dle inventory check to make sure there’s enough coffee to deliver before accepting
orders, as well as processing internal analytics for the product as a whole. You visual‐
ize the problem in Figure 11-1 by displaying incoming requests hitting a single appli‐
cation server endpoint. In this figure, the /order endpoint is the main entrypoint for
new coffee orders. While Node is traditionally fast at handling millions of web
requests a minute, the underlying application logic may run too slowly to process
enough incoming orders in a timely manner. Because of this, your application’s
response might timeout; or worse, it could crash entirely.

220 | Chapter 11: Coffee Order Manager

Figure 11-1. Existing JavaShipped application structure with a request bottleneck

To improve this design, you begin by diagramming a similar structure that depends
on an internal queue to handle processing drink orders. Figure 11-2 demonstrates
how a queue can be used to buffer incoming requests, giving the order processing
logic a place from which to pull new order requests. While Node has its own internal
queue that behaves in a similar manner, this explicit queue could help engineers
determine new logic to manage orders better, or even notify end users of when the
system is overwhelmed or when new orders are no longer being accepted.

Figure 11-2. Adding an internal queue to handle new order requests

Get Planning | 221

This approach is sufficient for smaller projects, but you’ll soon discover that it does
not scale well. Worse, your queue is still in the application’s internal memory. That
means if the application crashes before adding an order to persistent storage, all of
your most recent order requests will disappear. For that reason, you diagram an
improved system with your queue stored in a separate server. Figure 11-3 displays
your application alongside a Redis server. The role of Redis here is to handle tempo‐
rary storage of your order requests as they are processing. If your application crashes,
your orders remain intact in your Redis storage (more on this later in the chapter).

Figure 11-3. Utilizing a Redis server to manage order requests

You present your solution to JavaShipped and remind them that scalability is particu‐
larly important as their coffee delivery empire grows. You explain that the Redis solu‐
tion is great, but that there are more robust ways to handle order requests on a global
level. You introduce the RabbitMQ messaging queue architecture in Figure 11-4,
which separates some of the application logic into separate services. These services
depend on a RabbitMQ server to listen for relevant tasks and only issue them to the
service as they become available. In this way, your application can offload both the
queuing system and some of the application processing logic to separate services.
Because these services are Node applications too, they may be hosted in isolated envi‐
ronments and continue to run, even if the main Node server crashes.

With your demonstration complete, you get the green light from JavaShipped to
begin building out an improved Node application to handle the company’s scalability
problem.

222 | Chapter 11: Coffee Order Manager

Figure 11-4. Upgrading the application structure with a RabbitMQ messaging queue
server between services

Get Programming
To start developing your app, create a new project folder named coffee_queue. Navi‐
gate to your project folder on your command line and run npm init. This command
initializes your Node app. You may press Enter throughout the initialization steps to
accept the defaults. The result of these steps is the creation of a file called
package.json. This file will instruct your Node app of any configurations or scripts
needed to run correctly.

Next, create a file called index.js within your project folder. This file is the entry point
for your app.

With your index.js file ready, you may install the main server framework used in this
project. Navigate to the root of your project folder in your command line and run npm
install fastify@^5.4.0 @fastify/formbody@^8.0.2 to install Fastify as your web
application framework. Then add the code in Example 11-1 which sets up a simple
HTTP server using the Fastify framework. First, you import fastify and create an
instance of the Fastify server, assigning it to the app variable. You define a constant
variable PORT with the value of 3000. This is the port number that the server will listen
on for incoming requests.

Get Programming | 223

The app variable is used to configure the server and define the
routes.

You register a plugin that parses incoming requests with URL-encoded payloads. This
plugin is used to handle form data submitted in POST requests. Fastify handles JSON
requests natively, so no additional middleware is required. Last, you write code which
starts the server listening on port 3000 and logs a message to the console once the
server is running.

The listen() method takes a callback function that is executed
once the server starts listening for incoming requests. In this case,
it logs a message to the console indicating that the server is running
on the specified port.

Example 11-1. Configure your application in index.js

import Fastify from "fastify";
import formbody from "@fastify/formbody";

const app = Fastify();
const PORT = 3000;

await app.register(formbody);

app.post("/slow-order", async (request, reply) => {
 const { drinkOrder } = request.body;
 for (let i = 0; i < 10000000000; i++) {}
 console.log("ORDER PLACED");
 reply.send(`Drink order added to queue: ${drinkOrder}`);
});

await app.listen({ port: PORT });
console.log(`Server listening on http://localhost:${PORT}`);

Import Fastify into your application.

Import the plugin to handle form-encoded bodies.

Create a Fastify server instance.

Define a port value for incoming requests.

Register the formbody plugin for handling URL-encoded form submissions.

224 | Chapter 11: Coffee Order Manager

Add a POST route to handle incoming drink orders.

Destructure drinkOrder from the incoming request body.

Simulate a blocking operation with a long loop.

Log when an order is placed.

Send a response with the order confirmation.

Await the Fastify server to start listening (Node 18+ supports top-level await).

Log the server address to confirm it’s running.

Before you run this application, it would help to add an endpoint at which you could
submit requests to be processed. Because this project is dealing with scalability issues
due to long order processing times, you create a route to mimic the waiting time for a
placed order. This code defines a route handler for the POST HTTP method on the
path /slow-order. From the request you extract the drinkOrder property from the
request.body object, which contains the data that was sent in the request’s body.

The request.body object is populated by Fastify’s built-in support
for JSON and registered formbody plugin. Make sure this plugin is
registered before the route to ensure body content is available.

The next line creates a loop that iterates 10 billion times. This loop simulates a long-
running process that might slow down the server’s response time. In this case, the
loop simply wastes CPU cycles and blocks other requests from processing to mimic
an order being processed by JavaShipped. You log a message to the console indicating
that an order has been placed, after the loop has finished executing. Last, you respond
to the client with a message that their drink order was added to the internal queue.

You may run this application by navigating to your project’s root directory in your
command line and running node index. When your application starts, you’ll see a
log message indicating that the server is listening at http://localhost:3000. You may
now post content to your app. Without a web interface, you may post a drink order
by opening a new command-line window alongside your running server and running
the following cURL command:

curl -X POST -H "Content-Type: application/json" \
 -d '{"drinkOrder":"latte"}' http://localhost:3000/slow-order

Get Programming | 225

http://localhost:3000

Notice that running this command takes roughly 10 seconds before a response of
Drink order added to queue: latte is logged to your console. If a normally placed
drink order takes this long, it can be a problem for new incoming orders. You begin
to tackle this problem with a naive approach: building a simple queue to handle new
order requests.

Because JavaScript does not natively support the queue data structure, you can simu‐
late one using the built-in Array methods such as push() and shift() to add and
remove items in a first-in, first-out (FIFO) manner.(JavaScript, queues in This project
uses a simple array to manage the queue of drink orders. For more complex needs—
such as job timeouts, retries, or concurrency—you might consider a dedicated library
like the queue package on npm, which provides a more robust queue implementation.

Queues in JavaScript
While JavaScript does not have a built-in queue implementation, it is still possible to
implement a queue data structure in JavaScript using arrays or linked lists. JavaScript
was originally designed as a scripting language for the web, where queues may not be
needed as frequently as they are in other types of applications. JavaScript was also
designed to be lightweight and easy to use, and including a full suite of data structures
may have made the language more complex. Array methods such as push, shift, and
slice, can be used to implement a queue data structure using arrays. There has been
demand for more robust data structures like queues in JavaScript, leading to the
development of third-party libraries and packages.

The queue npm package is a simple implementation of a queue data structure for
JavaScript. A queue is a collection of items that can be added to the back and removed
from the front in a first-in, first-out (FIFO) order. You may use the queue package as
a simple API for creating and manipulating queues.

The following are some methods you may use with a Queue instance:

enqueue(item)

Adds an item to the back of the queue

dequeue()

Removes the item at the front of the queue and returns it

peek()

Returns the item at the front of the queue without removing it

isEmpty()

Returns true if the queue is empty, false otherwise

length()

Returns the number of items in the queue

226 | Chapter 11: Coffee Order Manager

toArray()

Returns an array containing the items in the queue, in the order they were added

For more information about the queue package, visit the npm website.

Next, you add two new routes from Example 11-2 after your /slow-order route in
index.js. These endpoints handle adding new drink orders and processing orders off
the coffeeQueue. The first route listens for HTTP POST requests to the /order URL
path. When a request is received, drinkOrder data is extracted from the request body
using destructuring assignment and then pushed onto a coffeeQueue queue. The
length of the queue is then logged to the console, and a response is sent back to the
client with the message "Drink order added to queue".

The second endpoint listens for HTTP GET requests to the /process-order URL
path. When a request is received, the next drink order is dequeued from coffeeQueue
using the shift method. If there is a drink order in the queue, it is returned to the
client as a JSON object using Fastify’s reply.send() method. If there are no drink
orders in the queue, a message "No drink orders in queue" is sent back to the
client.

You may add the for loop from the /slow-order route to
your /process-order route. This loop will continue to block new
requests to the /order route. The benefit of the queue, however, is
that processing logic may be extracted into a separate service, so
your main Node application does not need to spend time on both
incoming requests and processing orders.

Example 11-2. Adding routes to place order in your queue in index.js

app.post("/order", async (request, reply) => {
 const { drinkOrder } = request.body;
 coffeeQueue.push(drinkOrder);
 console.log(coffeeQueue.length);
 reply.send("Drink order added to queue");
});

app.get("/process-order", async (request, reply) => {
 const nextOrder = coffeeQueue.shift();
 if (nextOrder) {
 reply.send({ order: nextOrder });
 } else {
 reply.send("No drink orders in queue");
 }
});

Get Programming | 227

https://oreil.ly/uJlq0

Define a POST route for the /order path using Fastify.

Add the drinkOrder to your coffeeQueue queue object.

Log the number of items in the queue.

Respond with a message to the client that the order has been added.

Define a GET route for the /process-order path.

Pull an item from the queue and assign it to nextOrder.

If there is an item in the queue, return that value using reply.send().

If there is no item in the queue, return a message to the client.

You may run this application by rerunning node index in your command line. curl
-X POST -H "Content-Type: application/json" -d '{"drinkOrder":"latte"}'

http://localhost:3000/order adds a new latte drink order to your queue. Now,
when you run the cURL command curl http://localhost:3000/process-order,
you’ll see the earliest drink order returned from your queue logged to your console.
As orders come in, they are added to the queue, and as they are processed, they are
dequeued from the queue. This type of approach is useful for managing large vol‐
umes of requests in a systematic and efficient way, ensuring that orders are processed
in the order in which they were received.

You may build on this approach by adding new routes like the /order-count end‐
point in Example 11-3. This route simply checks the number of items in your queue
and logs that value in a message to your console.

Example 11-3. Adding a queue order count endpoint in index.js

app.get("/order-count", async (request, reply) => {
 reply.send(`${coffeeQueue.length} drink orders in queue`);
});

Define a GET route for the /order-count path using Fastify.

Return a message with the queue length to the client using reply.send().

Try running your application with this new route, adding two new drink orders and
running curl http://localhost:3000/order-count in another command-line win‐
dow. You’ll see 2 drink orders in queue. Run curl http://localhost:3000/

228 | Chapter 11: Coffee Order Manager

process-order and then check the order count again to see that it has changed. In
this way, your queue system already helps maintain the order state for your project.
However, despite the improvement, you must still manually process orders from your
queue via an endpoint. Moreover, if your application crashes, your queue, with all of
its orders, disappears. In the next section, you’ll solve this problem by adding a Redis
server to support your application.

Adding a Redis Server
Your application is beginning to take shape structurally to manage drink orders at a
pace that’s comfortable for your business. However, a queue on its own still requires a
function to manually process drink orders one at a time. For a business with an
increasing number of requests, your application would benefit from real-time mes‐
saging, a queue that handles scale, and logic that is decoupled from your main Node
server.

One solution is implementing Redis as a publish/subscribe (pub/sub) messaging pat‐
tern between your application and drink order data. Redis Pub/Sub allows for real-
time messaging between clients and servers. This means that any updates or changes
made to the server can be immediately pushed to clients subscribed to specific chan‐
nels, without the need for clients to constantly poll the server for updates. These
channels can be custom named. Figure 11-5 shows how one part of your application
may publish data to Redis, and in turn, Redis will broadcast data on that specified
channel to services that subscribed to that channel.

Figure 11-5. Redis broadcasting to its channel subscribers

Adding a Redis Server | 229

This solution is designed to handle large volumes of messages and can be easily
scaled to accommodate more clients and channels. This can help improve the perfor‐
mance and reliability of your application, especially as the number of clients and
channels grows. Last, the application logic allows different parts of the system to
communicate with each other through channels without requiring direct connections
or dependencies on your main Fastify application.

More on Redis
Redis is an in-memory data store that is commonly used for caching and real-time
data processing. As it runs on its own server, it supports storing a variety of data
structures such as strings, hashes, lists, and sets outside of your main application. In a
Node app, Redis is often used for caching previously requested data, user authentica‐
tion keys for recent account activity, and, really, any other data that is frequently
accessed. Its data management system is a popular choice across nearly every techni‐
cal platform today.

Using Redis as a datastore helps reduce the load on your database and improve the
performance and speed of your application. It can also be used to implement rate lim‐
iting in your application, helping to prevent abuse and improve the reliability of your
service. The Redis Pub/Sub messaging system supports real-time messaging and
event-driven architectures in your app. With pub/sub, you can publish messages to
channels, and subscribers can receive those messages in real time.

For your project, you’ll use the real-time messaging functionality through the follow‐
ing three methods:

publish(channelName, message)

Publishes a message to a Redis channel. The channelName argument is a string
that represents the name of the channel, and the message argument is the mes‐
sage to be published. When a message is published to a channel, Redis will dis‐
tribute the message to all clients that are subscribed to that channel.

subscribe(channelName)

Subscribes to a Redis channel. The channelName argument is a string that repre‐
sents the name of the channel. When a client subscribes to a channel, Redis will
add the client to a list of subscribers for that channel. The client will then receive
any messages that are published to that channel.

on(event, callback)

Registers an event listener for a Redis client. The event argument is a string that
represents the name of the event to listen for, and the callback argument is a
function that will be called when the event occurs. The message event is a com‐
monly used event for Redis clients, and it is triggered whenever a message is
received on a subscribed channel. When a message event occurs, the callback

230 | Chapter 11: Coffee Order Manager

function will be called with two arguments: the name of the channel where the
message was received, and the message itself.

After installing Redis, you may create a new Redis client and use these methods to
quickly send data to different parts of your application. In Node 18+ using ES mod‐
ules, you may import Redis like this:

import { createClient } from 'redis';

const pub = createClient();
const sub = createClient();

await pub.connect();
await sub.connect();

Then use:

await pub.publish('orders', 'latte');
await sub.subscribe('orders', (message) => {
 console.log(`Received order: ${message}`);
});

For more information about Redis Pub/Sub, refer to the Redis documentation.

To introduce Redis to your application, install the redis npm package by running npm
install redis@^5.6.1 at the root level of your project directory in your command
line. Then import that package by adding import { createClient } from "redis"
to the top of your index.js file. You then need to create two Redis clients—one for
subscribing and one for publishing—using the createClient method. After creating
your Redis clients in index.js, add the code in Example 11-4 to set up the subscriber
and publisher for your Redis Pub/Sub system.

Remember that Redis runs as an independent server and must be
running alongside your Fastify application. Follow the instructions
in Appendix C to start your Redis server.

This code sets up a Redis client for both subscribing and publishing, and then sub‐
scribes to the drink-order channel using the subscriber client. For both clients, you
use the connect() method to establish a connection with the Redis server.

await subscriber.subscribe("drink-order", (drinkOrder) => {...}) sub‐
scribes to the drink-order channel and sets up a listener for incoming messages on
that channel. The callback function is triggered whenever a message is received, and
the drinkOrder argument will contain the message payload. In this example, the call‐
back logs a message to the console.

Adding a Redis Server | 231

https://oreil.ly/keqA2

Because await is used before both the connect() and subscribe()
methods, the code must be written using async/await syntax (sup‐
ported in Node 18+ with top-level await).

Example 11-4. Adding a Redis Pub/Sub system in index.js

import { createClient } from "redis";

const subscriber = createClient();
await subscriber.connect();

const publisher = createClient();
await publisher.connect();

await subscriber.subscribe("drink-order", (drinkOrder) => {
 console.log(`Received a new ${drinkOrder} order.`);
});

Import the Redis client creation method.

Create a Redis client as a subscriber and connect it to your Redis server.

Create a Redis client as a publisher and connect it to your Redis server.

Subscribe to the drink-order channel and listen for messages.

Log the message payload when a new drink order is received.

Then, in your /order route, add the line await publisher.publish("drink-

order", drinkOrder) below the line where you destructure drinkOrder from the
request body. This publishes the drink order value to the drink-order channel and
immediately notifies all subscribers.

Open a new command-line window alongside your running Fastify server and run
this cURL command:

curl -X POST -H "Content-Type: application/json" \
 -d '{"drinkOrder":"latte"}' http://localhost:3000/order

Immediately you’ll see Received a new latte order. logged to your console.

Because your Redis server runs on its own port, you can create as many Node appli‐
cations as needed to communicate with it across channels. For example, within the
subscriber.subscribe block, you could add await publisher.publish("fulfill-
order", "latte") to trigger another action.

You can also publish structured data using stringified JSON:

232 | Chapter 11: Coffee Order Manager

await publisher.publish("drink-order", JSON.stringify({
 drink: "latte",
 cost: 450,
 customer: "Jon Wexler"
}));

The subscriber would then need to parse it:

await subscriber.subscribe("drink-order", (message) => {
 const parsed = JSON.parse(message);
 console.log(`Received ${parsed.drink} for ${parsed.customer}`);
});

With your changes in place, you’re able to create a distributed system of services that
communicate through Redis. However, Redis has some limitations. Messages are not
persisted by default—if a client is disconnected, it will miss messages. Redis also only
supports simple, string-based payloads, and Pub/Sub operates on a single thread,
which can limit throughput.

In the next section, you’ll adapt more robust messaging patterns to overcome these
limitations.

Integrating a Robust Messaging System
Your application can now handle a multitude of messages across a number of cus‐
tomized channels. Redis Pub/Sub is a powerful mechanism for building real-time
communication systems. In your case, more channels may be added to communicate
to other services about processing data along a chain of task dependencies. For exam‐
ple, an order may be placed, triggering a fulfillment service, which in turn publishes
to another channel triggering an analytics service. Because you’re trying to solve for
scalability and reliability for a business that cannot lose customer orders, you decide
to use a more advanced messaging system.

Similar to your simple queue and Redis Pub/Sub system, RabbitMQ offers a set of
messaging features that enable you to build more complex message-based structures
including message routing, acknowledgment, durability, and persistent queues. These
features allow messages to be delivered reliably, routed based on rules, and acknowl‐
edged or retried if they fail. With RabbitMQ, you can maintain isolated, focused serv‐
ices that communicate through an internal pipeline—without overloading any single
Fastify process or Node app.

To demonstrate this, you’ll begin integrating RabbitMQ into your project by organiz‐
ing your Node application into three services: the main entrypoint (which accepts
orders), a fulfillment service (which processes them), and an analytics service (which
tracks and logs them).

Integrating a Robust Messaging System | 233

Ensure RabbitMQ is installed and running before executing any
code. Like Redis, RabbitMQ runs as an independent server with its
own port. See Appendix C for setup instructions.

Why RabbitMQ?
Once you’ve decided to use a robust queuing system, it’s important to consider the
available options and choices used across the industry. Which system you choose
depends on the specific requirements and constraints of your app, such as scalability,
durability, message guarantees, and operational complexity. The following are com‐
mon options:

RabbitMQ
A popular open source message broker that supports multiple messaging proto‐
cols (like AMQP). It’s reliable, well-documented, and supports routing, queues,
persistence, and acknowledgments.

ZeroMQ
A lightweight messaging library geared toward extremely high-performance
applications. Unlike RabbitMQ, it doesn’t require a broker and focuses on raw
speed and simplicity in distributed applications.

Kafka
A distributed, high-throughput event streaming platform. Kafka is well-suited
for use cases involving real-time ingestion and analysis of large-scale data
streams.

Amazon SQS
A fully managed, scalable message queue by AWS. It’s durable and easy to scale,
but adds cloud vendor lock-in and potential latency tradeoffs.

RabbitMQ is used for your project because it is open source, easy to set up locally,
and ideal for scaling production systems. RabbitMQ allows you to decouple services,
offload processing from your Fastify server, and establish asynchronous communica‐
tion between services—all of which support fault tolerance and long-term scalability.

As you evaluate these tools, consider your goals, budget, and tolerance for complexity.
RabbitMQ strikes a solid balance for mid- to large-scale apps that need reliability
without heavy cloud dependencies. For more information, visit the RabbitMQ
website.

234 | Chapter 11: Coffee Order Manager

https://www.rabbitmq.com
https://www.rabbitmq.com

To get started with RabbitMQ, install the required package by running npm install
amqplib@^0.10.8 at your project’s root level in your command line. Because you are
building multiple services, you may begin by initializing the separate application fold‐
ers for those services. These project folders can live alongside your main project
folder. Initialize two new Node applications called fulfillment_service and analyt
ics_service, install the fastify and amqplib npm packages, and ensure that the
code in Example 11-5 exists at the top of each application’s index.js file.

In this listing, you import the Fastify framework and the amqplib library, which is
used to interact with the RabbitMQ message broker. After creating a new Fastify
instance, you register Fastify’s built-in body parsers to handle incoming JSON and
URL-encoded requests. You also define the port number the server will run on using
process.env.PORT || 3000. The last line declares two variables, channel and connec
tion, which will be used to interact with the RabbitMQ message broker. Finally, the
application uses top-level await to start listening on the designated port.

Example 11-5. Adding Fastify and RabbitMQ project configurations in index.js

import Fastify from "fastify";
import amqp from "amqplib";

const app = Fastify();
const PORT = process.env.PORT || 3000;
let channel, connection;

await app.listen({ port: PORT });
console.log("Server running at http://localhost:" + PORT);

Import the fastify and amqplib libraries into your project.

Create a Fastify application instance.

Define the PORT number on which your server will listen for requests.

Declare the channel and connection variables for RabbitMQ.

Start your Fastify server using top-level await.

As this code is applied to your main application and your additional services, you
need to change the PORT value to different values for each project so that they may
run alongside each other. Update the default PORT value for the fulfillment_service
to 3001, and 3002 for the analytics_service. At this point, you should have three
project folders, each with their own index.js file and separately defined PORT values.

Integrating a Robust Messaging System | 235

RabbitMQ does not require a web server framework like Fastify,
but using Fastify allows each service to expose its own routes and
endpoints, which may be useful for debugging, health checks, or
extending functionality. With your RabbitMQ server running, each
application must connect to it to communicate across your applica‐
tion network. Add the code in Example 11-6 to the index.js file in
each of your three Fastify-based Node applications. This code out‐
lines the steps to follow:

1. Create an asynchronous function named connect.

2. Use amqp.connect("amqp://localhost:5672") to establish a connection to a
RabbitMQ server running locally on the default port (5672). Assign the connec‐
tion to the connection variable. The amqp.connect() method returns a promise,
so use await to wait for the connection to be established.

3. Call connection.createChannel() to create a new channel on the RabbitMQ
server. Assign the channel to the channel variable. Use await to ensure the chan‐
nel is ready before proceeding.

Channels are used to send and receive messages between clients
and servers. Because connecting to an additional server is a process
that takes an unknown amount of time, each of these lines uses
await to ensure no further tasks are executed before a connection
to RabbitMQ is made.

4. Call channel.assertQueue("drink-order") to verify that a queue named
drink-order exists. If the queue doesn’t exist, RabbitMQ will automatically cre‐
ate it.

5. Wrap the connection and channel creation logic in a try-catch block. Log or
handle any errors that occur during the process.

6. Use the drink-order queue to register new drink orders from your main applica‐
tion entry point. In a separate fulfillment_service, read from the drink-order
queue, and also connect to and write to the analytics queue for tracking
purposes.

236 | Chapter 11: Coffee Order Manager

RabbitMQ runs on port 5672 by default. This port number was
selected for the AMQP (Advanced Message Queuing Protocol)
protocol, used by RabbitMQ for communicating across channels.

Example 11-6. Connecting to your RabbitMQ server in index.js

...
async function connect() {
 try {
 connection = await amqp.connect("amqp://localhost:5672");
 channel = await connection.createChannel();
 await channel.assertQueue("drink-order");
 } catch (err) {
 console.error(err);
 }
}
...

Define a function to set up a connection to RabbitMQ and your selected queue.

Connect to the RabbitMQ server and assign the connection to connection.

Create a new RabbitMQ channel and assign it to channel.

Ensure the drink-order queue exists (or create it if it doesn’t).

Catch and log any errors during connection or channel creation.

With each service connected to your RabbitMQ server, you may begin passing data
from one queue to another. To do this, add the function in Example 11-7 to index.js.
This function uses channel.sendToQueue to send a JavaScript object as binary data to
the drink-order queue. The Buffer.from method converts the object into a binary
buffer so that it can be transferred efficiently.

Messaging systems like RabbitMQ expect binary data. Serialization
via Buffer.from(JSON.stringify(...)) ensures that structured
data can be reliably reconstructed by the receiver.

This function is used in the main Fastify server and fulfillment_service only, since
these are the systems that produce data for queues. In fulfillment_service, change
the queue name from drink-order to analytics.

Integrating a Robust Messaging System | 237

Example 11-7. Adding a sendOrderData function in index.js

...
async function sendOrderData(data) {
 await channel.sendToQueue("drink-order", Buffer.from(JSON.stringify(data)));
}
...

Define a function to publish data to RabbitMQ.

Serialize the data and send it to the target queue.

You’ll also need to call connect() to initialize the connection when your service
starts. Add this line after the function definition.

To update your route to use RabbitMQ for sending drink orders, modify your Fastify
route handler as shown in Example 11-8:

Example 11-8. Updating your route to send order data to the drink-order channel in
index.js

...
app.post("/order", async (request, reply) => {
 const { drinkOrder: order, cost, customer } = request.body;
 const data = {
 order,
 customer,
 };
 await sendOrderData(data);
 console.log(`Drink: ${order} is being processed for ${customer}`);
 reply.send("Order Processing");
});
...

Create an object representing the incoming drink order.

Send the object into the messaging pipeline via RabbitMQ.

Log the transaction to the console.

Respond to the client with a confirmation.

238 | Chapter 11: Coffee Order Manager

In your fulfillment_service, be sure to update sendOrderData to
use channel.sendToQueue("analytics", ...) so that data con‐
tinues flowing through your system pipeline. Within your connect
Queue function in the fulfillment_service project folder, add the
code in Example 11-9 to process incoming data. First, you establish
connections to both the queue you’ll read from, drink-order, and
the queue you’ll write to, analytics, using channel.assertQueue.
Just as channel.sendToQueue sends data to a queue, you use chan
nel.consume to read data from a specified queue. This method sets
up a consumer that listens for messages on the drink-order queue.
As messages become available, this listener will consume the mes‐
sage data.

You then extract the content property—the message body—from the data object.
The content is converted from binary to a string and parsed as JSON, from which
you extract the order and customer values. A message is logged to the console to
indicate the order is being fulfilled. channel.ack(data) sends an acknowledgment to
RabbitMQ, letting it know the message was handled successfully and should be
removed from the queue. Finally, the order data is passed to sendOrderData for for‐
warding to the next queue.

In RabbitMQ, a consumer must acknowledge that it has success‐
fully processed a message. If not acknowledged, RabbitMQ
assumes the message has not been processed and leaves it in the
queue, which may lead to duplicate processing.

Example 11-9. Connecting your fulfillment_service consumer in index.js

...
await channel.assertQueue("analytics");
await channel.assertQueue("drink-order");

channel.consume("drink-order", async (data) => {
 const { content } = data;
 const { order, customer } = JSON.parse(content.toString());
 console.log(`${order} being fulfilled for ${customer}`);
 channel.ack(data);
 await sendOrderData({ order, customer });
});
...

Assert that the analytics and drink-order queues exist.

Set up a consumer to listen for incoming messages on the drink-order queue.

Integrating a Robust Messaging System | 239

Extract the binary content from the message.

Parse the message into a JavaScript object.

Log the incoming order being fulfilled.

Acknowledge the message so it is removed from the queue.

Forward the message to the next processing queue.

The final step is to consume messages from the analytics queue. To begin, define an
object in your analytics_service project that tracks the number of orders per drink:
const drinkMap = { latte: 0, coffee: 0, cappuccino: 0 }. This object can be
used to analyze how customers are ordering. Then, to read from the analytics queue
and process that data, add the code in Example 11-10 to the bottom of your connect
Queue function in index.js.

This setup mirrors the fulfillment_service logic: listen on a queue, extract the
message, parse it, and perform an action. In this case, you increment the count of a
drink in drinkMap, log the analysis step, and acknowledge the message.

Example 11-10. Connecting your analytics_service consumer in index.js

...
const drinkMap = { latte: 0, coffee: 0, cappuccino: 0 };

await channel.assertQueue("analytics");

channel.consume("analytics", (data) => {
 const { content } = data;
 const { order, customer } = JSON.parse(content.toString());
 if (drinkMap[order] !== undefined) {
 drinkMap[order]++;
 }
 console.log(`${order} being analyzed for ${customer}`);
 channel.ack(data);
});
...

Ensure the analytics queue exists.

Start a consumer for the analytics queue.

Extract binary message content.

240 | Chapter 11: Coffee Order Manager

Parse the stringified message into usable variables.

Check if the order type exists in the tracking map and increment it.

Log the analysis step to the console.

Acknowledge message receipt to RabbitMQ.

Your main server and both supporting services are now fully connected through Rab‐
bitMQ. To test them, open three terminal windows, one for each project folder: the
main server, fulfillment_service, and analytics_service. In each window, run:

node index

Then, in a fourth terminal, run the following curl command to simulate a new drink
order:

curl -X POST -H "Content-Type: application/json" \
 -d '{"drinkOrder":"latte", "cost":"4.50","customer":"Jon Wexler"}' \
 http://localhost:3000/order

Your output should look like this:

• Main server: Drink: latte is being processed for Jon Wexler
• Fulfillment service: latte being fulfilled for Jon Wexler
• Analytics service: latte being analyzed for Jon Wexler

This demonstrates an effective flow of asynchronous, distributed message handling
from one service to the next using RabbitMQ queues. With this structure in place,
you may now embellish the type of data processing you’d like to occur within each
service. For example, you may want to verify that you have inventory before accept‐
ing and fulfilling a drink request in the fulfillment_service. You may also wish to
enhance your analytics logic to display meaningful metrics in the analytics_service
console output. Add the code in Example 11-11 to your index.js file in analytics_ser
vice to introduce a function that summarizes drink order percentages in real time.

This code defines a function called processDrinkAnalytics that calculates the per‐
centage of each drink order out of the total number of drink orders received every 10
seconds. It uses setInterval to schedule repeated execution and iterates over the
keys in drinkMap, which tracks the count of each drink. It calculates the total order
count, computes percentages, formats the results, and logs them to the console. Addi‐
tionally, a setTimeout resets the drink counts to zero every 5 minutes to keep the
metrics fresh. Call processDrinkAnalytics() after defining it so the tracking starts
as soon as the service is run.

Integrating a Robust Messaging System | 241

Example 11-11. Introducing an analytics_service analytics function in index.js

...
function processDrinkAnalytics() {
 const FIVE_MINUTES_IN_MILLISECONDS = 5 * 60 * 1000;
 const TEN_SECONDS_IN_MILLISECONDS = 10000;

 setInterval(() => {
 const drinkNames = Object.keys(drinkMap);

 const totalDrinkCount = drinkNames.reduce((total, drinkName) => {
 return total + drinkMap[drinkName];
 }, 0);

 const drinkPercentages = drinkNames.map((drinkName) => {
 const percentage =
 Math.floor((drinkMap[drinkName] / totalDrinkCount) * 100) || 0;
 return ` ${drinkName}: ${percentage}%`;
 });

 console.log(`Drink orders: ${drinkPercentages}`);

 setTimeout(() => {
 drinkNames.forEach((drinkName) => {
 drinkMap[drinkName] = 0;
 });
 }, FIVE_MINUTES_IN_MILLISECONDS);
 }, TEN_SECONDS_IN_MILLISECONDS);
}

processDrinkAnalytics();
...

Define a function that handles drink order analytics.

Set two timing constants: one for resetting and one for logging.

Schedule drink percentage logs to print every 10 seconds.

Collect the list of drink names being tracked.

Calculate the total drink count.

Map drink counts to percentages.

Format the percentage string per drink.

Log the drink percentage breakdown.

242 | Chapter 11: Coffee Order Manager

Reset the drink counts every 5 minutes.

Start the analytics logging when the service runs.

Run your analytics_service again and send a variety of drink orders using the curl
command:

curl -X POST -H "Content-Type: application/json" \
 -d '{"drinkOrder":"latte", "cost":"4.50","customer":"Jon Wexler"}' \
 http://localhost:3000/order

Observe the live percentage breakdowns in the console. For example, after sending
only latte orders, you’ll see something like: Drink orders: latte: 100%, coffee:
0%, cappuccino: 0%.

From here, you can expand your system with additional services, endpoints, data‐
bases, or more detailed order handling logic. This chapter demonstrated how to
design a queue-based messaging system that can scale with demand and improve
reliability.

Chapter Exercises
1. Add an inventory tracking service using Redis:

a. Create a new Node app called inventory_service and install the redis
package.

b. In index.js, connect to Redis and subscribe to the drink-order channel.
c. Define an inventory object (e.g., { latte: 10, coffee: 10, cappuccino:

10 }) that tracks available stock for each drink.
d. On each incoming order, decrement the corresponding drink’s inventory.
e. Log a warning if stock drops below 3 (e.g., "Low stock for latte: 2

remaining").
f. Use setInterval to reset inventory back to 10 every 5 minutes.

Use JSON.parse(drinkOrder) to extract data from Redis
messages.

Integrating a Robust Messaging System | 243

2. Requeue failed messages in RabbitMQ:
a. In your fulfillment_service, modify the consumer for the drink-order

queue.
b. Simulate a failure for every third order (e.g., orderCount % 3 === 0).
c. Use channel.nack(data, false, true) instead of ack() to requeue failed

messages.
d. Log a retry message each time this happens.
e. Optionally, track retry counts with a retries field in the message payload.

Requeuing prevents lost orders, but be careful to avoid infinite
retry loops.

Summary
In this chapter, you:

• Explored how Node applications handle high demand and throughput using
asynchronous patterns and queues

• Built queue-based systems to manage incoming tasks and improve request
handling

• Used Redis as an in-memory queue to buffer and broadcast messages across
services

• Leveraged Redis Pub/Sub to enable real-time event communication between
decoupled parts of the application

• Integrated RabbitMQ to implement robust, scalable message queues with durable
service-oriented architecture

244 | Chapter 11: Coffee Order Manager

CHAPTER 12

Music Label Blockchain Market

This chapter covers the following:

• Building your own blockchain architecture
• Designing a marketplace with a tokenized ledger
• Integrating Web3 for scalable and secure transactions

In this chapter, you’ll build a Node application that explores the blockchain architec‐
ture and how it can be adapted with JavaScript. Through a bare-bones implementa‐
tion, you’ll learn how to conceptualize a blockchain and incorporate its fundamental
methods. You’ll build a prototype marketplace that supports blockchain transactions
and learn about how your Node application facilitates a decentralized network of
exchanges through a distributed ledger. By constructing the foundational elements of
a blockchain, such as the smart contract, cryptographic puzzle, consensus logic, and
general ledger, you will better understand how Node and JavaScript help make this
architecture possible.

In the latter half of the chapter, you’ll use industry-standard tools like Web3, the
Ethereum blockchain network, and Solidity to create smart contracts and integrate
your Node application to a wider audience. You’ll better grasp how blockchain is used
today and how its use in a marketplace is differentiated from its prominent use in
cryptocurrency exchange. If you’re already familiar with blockchain, this chapter will
reinforce your knowledge on the technical side. Otherwise, this short and sweet expo‐
sure will get you up and running with blockchain and eventually “mining your own
business.”

245

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Once completed, return here to continue. Building a project from
scratch helps deepen your understanding of each component, giving you greater con‐
trol and flexibility as you progress.

Your Prompt
A music studio, DeSoundTralized Studios, wants to partner with major artists to sell
previews of songs and albums before their official release. They want to develop a
marketplace where customers can purchase the rights to listen to high-quality audio
files from the limited and authenticated collection. They want to allow buyers to resell
the songs after listening and limit the number of resells before the rights expire when
the music is released to the public. Moreover, they do not want to manage the contin‐
uous series of sales—only the initial purchase, and then let the market decide the pri‐
ces thereafter. The delivery of the audio file and how it’s listened to by the buyer will
be handled by another platform and is out of scope for this project.

Get Planning
This problem requires a system that can securely and efficiently provide a real-time
market for audio file sales, where a sale depends on the authenticity of the song and
its sale history. That means that when a song is made available for one month and up
to five resells, your application must verify the transfer of ownership from one buyer
to the next, keep track of the number of transfers, and remove ownership from the
final buyer at the time of expiration. Additionally, the music studio does not want to
manage transactions and distribution beyond the initial sale. Together, these criteria
call for an application that securely and cryptographically signs transactions to ensure
authenticity, with a decentralized and distributed database. These conditions measure
up to a good recipe for blockchain. See Figure 12-1 to better visualize this
architecture.

246 | Chapter 12: Music Label Blockchain Market

Figure 12-1. Visualizing the blockchain marketplace for music distribution

Blockchain in a Nutshell
Blockchain is a digital and transparent record of transactions without a central
administration. To explain it further, consider a public library’s existing system for
lending books. As patrons borrow books, the library keeps an internal record and
attempts to notify the readers when their book is due for return. Certain criteria are
followed to ensure that a book may be borrowed, such as the borrowing period of the
book, its availability, the number of reservations made to borrow the book, and even
its current location. All of this information is typically managed by the library and is
prone to human error, system mistakes, and lost information. This, in turn, may lead
to books never being returned or perpetually being ineligible to borrow.

Blockchain solves this problem because it is both decentralized and has a transparent
record of every book’s history at the library. Imagine the standard library borrowing
system, but one that shares every book’s history of being borrowed (like a long list of
dates, names, and locations) to all patrons, and which automates the borrowing

Get Planning | 247

process by checking this public history and verifying whether a book is eligible to
borrow or whether it needs returning.

If someone wants to borrow (transaction) Node Projects, the system would check
the blockchain records (ledger). This process scans the chronological collection of
transactions (block) and verifies the borrowing criteria (smart contract) before cre‐
ating a new borrowing transaction. This transaction is then made publicly available
for others in the library network to approve. Library patrons rush to validate the
transaction by solving a riddle (cryptographic puzzle) and agreeing on the answer
(consensus), so that the transaction may be codified in a block and added to the
transparent ledger. This process depends on a collective network.

The cryptographic puzzle can range in complexity and often
requires exerting computational power to solve. One reason
for this requirement in validating transactions is to prevent
malicious attacks or false transactions from accessing the
ledger. In the library example, patrons who solve the riddle
may receive rewards in exchange for their effort. Likewise, a
digital blockchain system may reward solvers of the puzzle and
those that verify the solution. The solving and validation of the
puzzle is generally automated and performed by participants in
the network with dedicated computers tied to the network.

The following are a part of blockchain’s core terminology:

Blockchain
The blockchain in this system would be a distributed ledger technology that
allows for secure, transparent, and immutable recording of all book borrowing
transactions on the network.

Transaction
A transaction in this system would be the act of borrowing a book from the
library. This would involve the borrower initiating the transaction by sending a
request to the smart contract on the blockchain network, which would then vali‐
date and verify the request before recording the details on the ledger. The trans‐
action would also involve the borrower returning the book to the library, which
would trigger a new transaction to be recorded on the blockchain network.

Smart contract
A smart contract in this system would be a self-executing program that enforces
the rules and conditions of the book borrowing process. It would be written in
code and deployed on the blockchain network to automate the lending process.

Consensus
Consensus in this system refers to the process of verifying and validating the
book borrowing transactions on the blockchain network. This is typically done

248 | Chapter 12: Music Label Blockchain Market

through a consensus algorithm, such as proof of work or proof of stake, which
involves a network of nodes agreeing on the validity of the transactions.

Block
A block in this system would be a bundle of verified book borrowing transac‐
tions, which are added to the blockchain network in a chronological order.

Ledger
The ledger in this system would be a digital record of all book borrowing trans‐
actions on the blockchain network, including details such as the book title, bor‐
rower name, borrowing period, and return date. The ledger would be immutable
and transparent, meaning that all transactions recorded on it could not be altered
or deleted.

Because this system is decentralized, it depends on an active network of participants
making transactions and verifying them. For this reason, successful blockchain plat‐
forms offer valuable incentives to encourage participation in maintaining the smart
contract and consensus elements of approving and persisting a new transaction.

To better understand how the blockchain works, you build out the fundamental
pieces in code, including the Block, Blockchain, Transaction, and Node classes. The
Node class is used to register a new node, or participating server, on the blockchain
network…

Get Programming
To start developing your app, create a new project folder named blockchain_market
place. Navigate to your project folder on your command line and run npm init. This
command initializes your Node app. You may press Enter throughout the initializa‐
tion steps to accept the defaults. The result of these steps is the creation of a file called
package.json. This file will instruct your Node app of any configurations or scripts
needed to run correctly.

Next, create a file called index.js within your project folder. This file is the entry point
for your app.

First, you create the foundational classes for your app: MarketplaceNode, Block
chain, Block, and Transaction. Create a folder called src within your project direc‐
tory. This is where the code for your classes will live. Create the marketplaceNode.js,
blockchain.js, block.js, and transaction.js files within the src folder. Then you install
the fastify package by running npm install fastify@^5.4.0, and within your
index.js file, you initialize your web server, as shown in Example 12-1.

In this listing, you set up a fastify app and configure it to take a custom PORT value.
The PORT may be assigned by a command-line argument that is passed in after the

Get Programming | 249

node index.js line. process.argv.slice(2) returns the values after the executable
path only, and assigns that value to PORT. If no value is passed in, PORT defaults to 0.

Setting the PORT to 0 tells fastify.listen() to choose a port value
for you. This comes in handy when assigning mass values for vari‐
ous applications.

You configure the fastify instance to handle and parse JSON content using the
built-in body parser. Last, you start the server by having it listen on your specified
PORT value. If no PORT value exists, fastify assigns one for you. You reassign PORT to
that number using server.address().port and log out the server’s location on
startup.

Example 12-1. Configure your web server in index.js

import Fastify from "fastify";
const fastify = Fastify();
let [PORT] = process.argv.slice(2);
PORT = PORT || 0;

fastify.get("/", async (request, reply) => {
 reply.send({ message: "Marketplace running" });
});

await fastify.listen({ port: PORT });
PORT = fastify.server.address().port;
console.log(`Running on http://localhost:${PORT}`);

Import the fastify library to your project.

Create a Fastify instance.

Retrieve command-line arguments and destructure the array to assign the first
argument to the PORT variable.

Example route to verify the server is running correctly.

Start the server and listen on the assigned port.

Update the PORT variable to the actual assigned port number.

Log the server’s location to your console.

250 | Chapter 12: Music Label Blockchain Market

Test out this server by running node index.js in your command line at the project’s
root level. Notice that each time you start your application, a new port number is
assigned. Then run node index.js 3000 and notice that your application only runs
on port 3000. Moving forward, port 3000 will represent your main marketplace node
server location. This means that http://localhost:3000 will act as the starting point for
new nodes to participate in the blockchain marketplace. As new nodes enter the mar‐
ketplace, they will need to broadcast their server location to all other nodes so that
the community of nodes is known by all participants. To accomplish this, you start to
build the MarketplaceNode class and provide it API endpoints to interact with other
nodes.

Figure 12-2 demonstrates how new marketplace nodes enter the network. When a
new node wants to participate, it will register its URI with the network. From there,
the existing peer network will evaluate the incoming marketplace node and add it to
the peer list. This list is then synchronized across all peer nodes so that the list of par‐
ticipants is consistent across the network.

Figure 12-2. Adding a new marketplace node to the network

To accomplish this, you add the code in Example 12-2 to your MarketplaceNode.js file
in src. This file will contain all of the logic for the MarketplaceNode class. In this
code, you define the MarketplaceNode class with a constructor that takes three
parameters: url, peers, and blockchain. These parameters represent the URL of the
marketplace node (location of that network node), an array of peers (other nodes in
the marketplace network), and a reference to the blockchain object, respectively.

Get Programming | 251

http://localhost:3000

The constructor also initializes other properties such as setting the node’s balance to
50000 (this is $50 in cents). For now, you’ll let each node in the network start with an
initial fund to demonstrate the transactions within the network. this.songs = {}
initializes an empty hash assigned to the songs property, which is used to keep track
of songs purchased on the network. Last, this.broadcastSelf() invokes the broad
castSelf function to inform other nodes in the marketplace network about the exis‐
tence of this node.

Example 12-2. Defining the MarketplaceNode class in marketplaceNode.js

class MarketplaceNode {
 constructor(url, peers = [], blockchain) {
 this.url = url;
 this.peers = peers;
 this.blockchain = blockchain;
 this.balance = 50000;
 this.songs = {};
 this.broadcastSelf();
 }
}
export default MarketplaceNode;

Define the MarketplaceNode class to represent a single node in the marketplace
network.

Initialize the node’s properties, including its URL, peer list, blockchain reference,
account balance, and local song store. Immediately broadcast the node to its
peers.

Export the MarketplaceNode class as the default module export so it can be
imported elsewhere in the application.

At this time, you have a class with a reference to the broadcastSelf function. Broad‐
casting is an essential part of a functioning blockchain network as it informs all other
nodes in the network of changes in the marketplace. Transparency and consistent
delivery of changes in the distributed network is what separates blockchain from
other transactional systems. For that reason, you’ll first create a broadcast function
that may be used by other functions to broadcast information across the network.
Add the broadcast function shown in Example 12-3 to your MarketplaceNode class.
This function uses axios to make an HTTP request to each peer node’s URI and takes
a specific path and data as arguments. The path will specify to which endpoint you
are sending your data, and the data may represent any changes or updates to the net‐
work, such as new MarketplaceNode registration.

252 | Chapter 12: Music Label Blockchain Market

Within the function, you iterate over the MarketplaceNode peers, skipping your own
node’s URL and make a POST request to the specified path for that peer’s location.
Effectively, this makes an outgoing HTTP request to the same endpoint for each peer
in the network. To get this to work, you need to install the axios package by running
npm install axios@^1.11.0 at the root level of your project folder in your com‐
mand line, and importing the axios library (import axios from 'axios') to the top
of MarketplaceNode.js.

The map function is used to create an array of promises, and
Promise.all ensures that all the promises are resolved before mov‐
ing on.

Example 12-3. Adding a broadcast function in marketplaceNode.js

...
async broadcast(path, data) {
 await Promise.all(
 this.peers.map(async (peer) => {
 if (peer === this.url) return;
 try {
 await axios.post(`${peer}/${path}`, data);
 } catch (error) {
 console.error(error.message);
 }
 })
);
}
...

Define the broadcast async function to take a path and data argument.

Iterate over the MarketplaceNode’s list of peer URLs.

Skip the peer URL that matches the broadcasting node’s URL.

Make an axios POST request to the provided path, passing data in the request
body.

With the broadcast function in place, it may be reused to broadcast information to
all the other peer nodes in the network. Two such cases are broadcastSelf, to let
other peer nodes know when you’ve joined the network, and registerNode to add
other new participating nodes to your peers list. Add the functions in Example 12-4
to your MarketplaceNode class to make use of these functions. The broadcastSelf
function is an async function that calls other peer nodes’ register-node endpoints

Get Programming | 253

and passes its own marketplace node URI as data. The registerNode function
receives new marketplace node URI information and adds it to the node’s peers list.
Then that node calls broadcast for the sync-peers endpoint, passing all of its peers
as the data. The sync-peers endpoint will notify all other nodes in the network to
align on the peer node data, so that every participant is in sync with one another.

Example 12-4. Adding broadcastSelf and registerNode functions in
marketplaceNode.js

...
async broadcastSelf() {
 this.broadcast("register-node", { url: this.url });
}

async registerNode(newNodeUrl) {
 this.peers.push(newNodeUrl);
 await this.broadcast("sync-peers", { peers: this.peers });
}
...

Define the broadcastSelf function.

Call the broadcast function on the MarketplaceNode object using the register-
node path and the node’s URL as data.

Define the registerNode function that takes a newNodeUrl argument.

Add the newNodeUrl value to your node’s peers list.

Add the broadcast function on the MarketplaceNode object using the sync-
peers path and the node’s peers list as data.

With these functions in place, you may now initialize a new MarketplaceNode
instance. At the top of your index.js file, declare the marketplaceNode variable by
adding let marketplaceNode. Then add the initializeNode function from
Example 12-5 to index.js. This function is used to set the current node’s URI, initialize
the list of peer nodes (to start, your new nodes will always point to the same node
before syncing its list to include all participants in the network). Last, you assign
marketplaceNode to a new instance of MarketplaceNode using the node’s URL and
initialPeers array. You may then call initializeNode() immediately after Fastify
finishes listening and a port is assigned.

254 | Chapter 12: Music Label Blockchain Market

It’s important to call this function only after assigning the PORT
value, otherwise your initialized node will not have a set URI.

Example 12-5. Adding an initializeNode function in index.js

...
const initializeNode = () => {
 const URL = `http://localhost:${PORT}`;
 const initialPeers = ["http://localhost:3000"];
 marketplaceNode = new MarketplaceNode(URL, initialPeers);
};
...

Define the initializeNode function.

Assign URL to your development URL and dynamically assigned PORT number.

Set the initialPeers array to include the URI http://localhost:3000.

Assign marketplaceNode to a new MarketplaceNode instance using the defined
URL and initialPeers list.

With your MarketplaceNode initialized in index.js, the final step is to define
the /register-node and /sync-peers endpoints. Add the code in Example 12-6 to
the middle of index.js, after initializing the fastify variable.

Example 12-6. Adding register-node and sync-peers API endpoints in index.js with
Fastify

fastify.post("/register-node", async (request, reply) => {
 const { url: newNodeUrl } = request.body;
 await marketplaceNode.registerNode(newNodeUrl);
 reply.send({ message: "Node Registered" });
});

fastify.post("/sync-peers", async (request, reply) => {
 const { peers } = request.body;
 marketplaceNode.peers = peers;
 console.log(`${marketplaceNode.url} synced ${marketplaceNode.peers}`);
 reply.send({ message: "Synced Peers" });
});

Define the /register-node POST route using Fastify.

Get Programming | 255

http://localhost:3000

Extract the url from the request body.

Register the node in the current marketplaceNode.

Return a message confirming registration.

Define the /sync-peers POST route.

Extract the incoming list of peer URLs.

Replace the local peer list.

Log the peer sync for debugging purposes.

Confirm sync with a JSON message.

Your code is now ready to set up a marketplace network and take on new node par‐
ticipants. To test this, open a command-line window in your project’s root directory
and run node index 3000 to start your server. This will initiate the code in index.js,
which creates a new MarketplaceNode. The first node will be set to http://localhost:
3000. Your command line should indicate that this node is online (Figure 12-3). Now
open a second and third window from the same directory running node index and
start your app a second and third time while the first server is running. Those two
other servers will start up and immediately register into the network through the
node at http://localhost:3000.

Figure 12-3. Command-line output for starting three node servers

You may log the list of peers by adding console.log(`${marketplaceNode.url}
synced ${marketplaceNode.peers}`) in your /sync-peers route in index.js. This
will help you see the sync in action. The last server that starts up will add to the end
of the peers list for each participating node. The log message should look something
like http://localhost:53896 synced http://localhost:3000,http://local

host:53884,http://localhost:53896.

With the marketplace nodes connected, it’s time to build the core structure of the
marketplace itself, the blockchain.

256 | Chapter 12: Music Label Blockchain Market

http://localhost:3000
http://localhost:3000
http://localhost:3000

Coding the Blockchain
The marketplace is largely reliant on the participating nodes’ ability to exchange
money and information across the network. This is made possible through the block‐
chain structure. As participants engage in the marketplace, more transactions are
made, and the record of changes along the way are saved within the chain of blocks,
synchronized across all the nodes in the network.

Figure 12-4 demonstrates how the network exists without a central authority. Each of
the nodes in the network carry a copy of all changes and a list of all participating
nodes. In this way, any node is able to initiate a transaction, and all other nodes may
reference the same copy of the blockchain to verify its validity.

Figure 12-4. Visualizing the blockchain network of nodes

Further breaking down this structure, Figure 12-5 details the contents of the Block
chain, Block, and Transaction classes. The Blockchain class contains a collection of
blocks. An instance of the Block class represents a collection of transactions and

Get Programming | 257

contains properties that distinguish it from other blocks in the chain. Individual
transactions from the Transaction class make exchanges of songs for currency a
possibility.

Figure 12-5. Displaying the relationship between data models

Because the blockchain depends on blocks, you start by building out the Block class.
Add the code in Example 12-7 to block.js in your project’s src folder. This code defines
a class called Block that represents a block in a blockchain, preparing it to be linked
with other blocks to form a chain. A Block contains transactions and has properties
such as a timestamp, previousHash, hash (the current hash), and nextHash (a refer‐
ence to the next block).

Initializing a new Block object requires a transactions array and an optional pre
viousHash value. The timestamp is set to the current time using the Date.now()
method. The transactions are assigned to the transactions property of the Block
object. The previous hash is stored in the previousHash property. The current hash is
calculated by calling the calculateHash method, which will be added shortly. The
calculated hash is stored in the hash property, and the nextHash property is initially
set to null, indicating that there is no reference to the next block yet.

Example 12-7. Defining the Block class in block.js

class Block {
 constructor(transactions, previousHash) {
 this.timestamp = Date.now();

258 | Chapter 12: Music Label Blockchain Market

 this.transactions = transactions;
 this.previousHash = previousHash;
 this.hash = this.calculateHash();
 this.nextHash = null;
 }
}
export default Block;

Accept transactions and a previousHash value when instantiating a new Block.

Assign a timestamp property to the current datetime.

Assign a transactions property to the argument array of transactions.

Assign a previousHash property to the argument value pointing to the latest
block.

Assign a hash property to a new calculated hash value.

Assign a nextHash property to a null value to start.

Export the Block class for use in other parts of the application.

Next, you add the calculateHash function to your Block class by adding the code in
Example 12-8. This code defines a method to compute and return the hash value of
the block using the SHA-256 hashing algorithm. The method begins by calling the
createHash function, which is part of the crypto library that comes with Node. You
will need to add import { createHash } from "crypto" to the top of block.js to
make use of this function. createHash creates a hash object, using the SHA-256 algo‐
rithm that will be used to calculate the hash value.

SHA-256 is a widely adopted and standardized hashing algorithm,
known for being computationally efficient and nearly impossible to
reverse the hash value back to its original input. More importantly,
it is extremely unlikely for two different inputs to produce the same
hash value, making it a good candidate for generating a random
hash identifier for your blocks.

Next, the update method is called on the hash object, using the block’s previous hash,
timestamp, and a JSON representation of the block’s transactions as input data to be
hashed. The digest method is called on the hash object, passing hex to generate the
final hash value in hexadecimal format. In this way, you generate a unique hash value
for each block. This hash value is an important component of blockchain technology,
as it ensures the integrity and security of the data stored in each block.

Get Programming | 259

Example 12-8. Creating the calculateHash function in block.js

...
calculateHash() {
 return createHash("sha256")
 .update(
 this.previousHash +
 this.timestamp +
 JSON.stringify(this.transactions)
)
 .digest("hex");
}
...

Define the calculateHash function for generating an encrypted hash value.

Use the createHash method to create a hash object using the sha256 algorithm.

Generate a hash value based on the input’s previous hash value, timestamp, and
array of transactions.

Convert the value to a hexadecimal value.

With the Block class set up, you may start working on the Blockchain class. Create a
file called blockchain.js in src and add the code in Example 12-9. This code imports
the Block class from block.js. The Blockchain class initializes new Blockchain
objects with optional chain and pendingTransactions parameters. If a chain is pro‐
vided, it is assigned to the chain property. Otherwise, a new chain is created with a
genesis block using the createGenesisBlock method. Similarly, the pendingTransac
tions will default to an empty array, unless an array of values is passed in. The con‐
structor also initializes other properties such as the difficulty level, a list of pending
transactions, and the mining reward.

Mining a Block
Mining is the process of adding new blocks to the blockchain by solving a computa‐
tional puzzle. The goal of mining is to find a hash value that meets certain criteria so
that the network of nodes can safely add a block to the blockchain in a decentralized
manner. The Blockchain class works simultaneously as a storage of blocks and trans‐
actions, as well as a blueprint for how to codify new blocks into the chain. The follow‐
ing are key steps in the mining process as they relate to the Blockchain class:

Pending transactions
A miner node collects a set of pending transactions that have not yet been
included in any block.

260 | Chapter 12: Music Label Blockchain Market

Block formation
The miner assembles these pending transactions into a new block, along with
other information like the previous block’s hash and a timestamp.

Hash calculation
The miner calculates the hash of the block by applying the calculateHash to the
block’s data. The hash function takes into account all the block’s contents, includ‐
ing the transactions, previous block’s hash and timestamp.

Proof of work
The miner then adjusts a random numerical value repeatedly and recalculates the
block’s hash until they find a hash value that satisfies the computational puzzle.
The specific criteria depend on the network’s difficulty level, which is often rep‐
resented by the number of leading zeros required in the hash.

Validating the proof
Once the miner finds a suitable hash value, they broadcast the block to the net‐
work. Other participants in the network can verify the proof of work by rehash‐
ing the block’s data and confirming that the resulting hash meets the difficulty
criteria. For this project, you may skip this step to reduce code complexity.

Block addition
If the proof of work is valid, the block is added to the blockchain, and the miner
is rewarded with a predefined reward for their effort. The block is linked to the
previous block through its hash, forming a chain of blocks.

Updating the network
After a block is added, the miner starts the process again, collecting new pending
transactions and creating a new block to mine.

Through this process marketplace nodes in the network have an incentive to
exchange goods and currency, while also playing a role in supporting the blockchain’s
distributed records and data reliability. The Blockchain class defines the difficulty
level and miningReward for that reason.

The createGenesisBlock method creates a new genesis block, which is the first block
in the blockchain if no chain is provided. It takes an empty array as the transactions
parameter and sets the previous hash to null. The getLatestBlock method retrieves
the most recent block in the chain by accessing the last element of the chain array.
Last, the Blockchain class is exported for use in other files.

Example 12-9. Defining the Blockchain class in blockchain.js

import Block from "./block.js";
class Blockchain {
 constructor(chain, pendingTransactions = []) {

Get Programming | 261

 this.chain = chain || [this.createGenesisBlock()];
 this.difficulty = 4;
 this.pendingTransactions = pendingTransactions;
 this.miningReward = 100;
 }

 createGenesisBlock() {
 return new Block([], null);
 }

 getLatestBlock() {
 return this.chain[this.chain.length - 1];
 }
}
export default Blockchain;

Import the Block class, which is used to create new blocks in the chain.

Define the Blockchain class, representing a distributed ledger of blocks.

Create a new blockchain instance with an optional initial chain and list of pend‐
ing transactions.

If no chain is provided, initialize the chain with a genesis block.

Set the mining difficulty, which determines how hard it is to mine a new block.

Store any transactions waiting to be added to the next mined block.

Set the mining reward given to a node for successfully mining a block.

Define the createGenesisBlock method, which returns the initial block in the
blockchain.

Define the getLatestBlock method to retrieve the most recent block in the
chain.

The genesis block is manually created or generated by the block‐
chain network as a starting point when a blockchain network ini‐
tially gets up and running. When new nodes enter the network,
they also create a new blockchain with a genesis block until other
nodes in the network sync their most up-to-date blockchain.

Now that your Blockchain class is set up, you may access it in other files. Add import
Blockchain from "./src/blockchain.js" to the top of index.js to import the Block

262 | Chapter 12: Music Label Blockchain Market

chain class. Then add const blockchain = new Blockchain() right above where
you assign marketplaceNode in the initializeNode function, and add blockchain
as the third parameter in instantiating your MarketplaceNode object. This will initial‐
ize a new Blockchain object alongside your marketplaceNode when you connect to
the network.

The next steps for using these new classes are to set up the broadcasting functions
and routes to sync your blockchain with other nodes in the network. Add the code in
Example 12-10 to your MarketplaceNode class in marketplaceNode.js. This code
defines broadcastBlockchain, which uses the broadcast function to sync a given
node’s blockchain across all other nodes.

Example 12-10. Creating the broadcastBlockchain function in marketplaceNode.js

...
async broadcastBlockchain() {
 this.broadcast("sync-blockchain", { chain: this.blockchain.chain });
}
...

Define the broadcastBlockchain function.

Call the broadcast function with the sync-blockchain route path and chain as
data parameters.

Next, define the route to accept the API call made to sync-blockchain by adding the
code in Example 12-11 to index.js. This Fastify route handler receives a blockchain’s
chain of blocks via the request body. You pull that chain value and update your
marketplaceNode’s blockchain with this chain. In doing so, each node in the network
will have synced and up-to-date chains.

Example 12-11. Defining the /sync-blockchain route in index.js

...
fastify.post("/sync-blockchain", async (request, reply) => {
 const { chain } = request.body;
 marketplaceNode.blockchain = new Blockchain(
 chain,
 marketplaceNode.blockchain.pendingTransactions
);
 reply.send({ message: "Blockchain synced", blockCount: chain.length });
});
...

Define the /sync-blockchain POST route using Fastify.

Get Programming | 263

Destructure the chain value from the request body.

Update the marketplace node’s blockchain by passing the received chain and
existing pending transactions.

Send a JSON reply confirming that the blockchain was synced.

To test this, place this.broadcastBlockchain() in registerNode in your Market
placeNode class and log out console.log(`Syncing blocks ${JSON.stringify(ch
ain)}`) in your /sync-blockchain route in index.js to see the output of synced
chains. The output should resemble [{"timestamp":1686164334757,"transactions
":[],"previousHash":null,"hash":"fd4b...","nextHash":null}]. This confirms
the genesis block is being synced across all newly connected nodes.

With your blockchain set, it’s time to introduce transactions and enable nodes to use
them across the blockchain network. With the new transaction verified, the code
checks if the length of the this.blockchain.pendingTransactions array is greater
than 4. If so, it calls the node’s mine method (this method hasn’t been defined yet) and
logs the result to the console. Once complete, the broadcastBlockchain method is
called to broadcast the updated blockchain to other nodes, and the function returns
the string "Processed transaction" as the result of the processTransaction
function.

Example 12-12. Defining the processTransaction method in marketplaceNode.js

...
async processTransaction(transactionHash) {
 const transaction = new Transaction(transactionHash);
 const id = transactionHash.id || transaction.id;
 if (transaction.type === "BUY") {
 if (this.balance < transaction.price) return "Insufficient balance";
 this.balance -= transaction.price;
 try {
 await axios.post(`${transaction.sender}/payment`, {
 price: transaction.price,
 });
 } catch (e) {
 console.log(e.message);
 }
 console.log({ bal: this.balance });
 }
 this.songs[id] = transaction;
 this.blockchain.pendingTransactions.push(transaction);
 if (this.blockchain.pendingTransactions.length > 4) {
 console.log(await this.mine());
 }

264 | Chapter 12: Music Label Blockchain Market

 await this.broadcastBlockchain();
 return "Processed transaction";
}
...

Define the asynchronous processTransaction method to handle new
transactions.

Instantiate a new Transaction object from the provided hash.

Proceed only if the transaction type is "BUY".

Check if the balance is sufficient to complete the purchase.

Send a payment request to the seller node with the transaction amount.

Log the updated balance after deducting the price.

Store the transaction in the local songs registry using its ID.

Add the transaction to the list of pending blockchain transactions.

Mine a new block if there are more than 4 pending transactions.

Broadcast the updated blockchain to peer nodes.

Return a message indicating the result of the transaction.

In the blockchain marketplace application, transactions are handled within the rout‐
ing logic defined in the index.js file. The system supports both /sell and /buy routes.
When a user initiates a /sell transaction, they must specify the song title and its cost.
Conversely, when a /buy transaction is triggered, the user provides the song ID,
which also serves as the transaction ID. Both routes invoke the processTransaction
function in the Node application. This function adds the transaction to the pending
Transactions list within the Blockchain, where it awaits validation before being
committed to the chain. Example 12-13 shows this in more detail.

Example 12-13. Defining the /payment route in index.js using Fastify

...
fastify.post("/payment", async (request, reply) => {
 const { price } = request.body;
 marketplaceNode.balance += price;
 reply.send({ message: `New balance ${marketplaceNode.balance}` });

Get Programming | 265

});
...

Define the /payment POST route using Fastify.

Extract the price value from the request body.

Increase the node’s balance by the amount received.

Send a response indicating the updated balance.

While the implementation shown in Example 12-14 is intentionally streamlined and
lacks production-level safeguards, it clearly illustrates the core exchange mechanism
that powers the blockchain marketplace. The mineBlock method encapsulates the
mining process, turning a collection of pending transactions into a validated block
that gets permanently added to the chain. This not only simulates the proof-of-work
concept used in real-world blockchains but also reinforces the idea that every trans‐
action—whether a /sell, /buy, or /payment—must be formally mined and appended
to the ledger to complete the exchange cycle and ensure consistency across the dis‐
tributed network.

Example 12-14. Defining the mineBlock method in blockchain.js

...
async mineBlock() {
 const targetPrefix = "0".repeat(this.difficulty);
 let nonce = 0;
 let hash = "";

 while (hash.substring(0, this.difficulty) !== targetPrefix) {
 nonce++;
 hash = createHash("sha256")
 .update(JSON.stringify(this.chain) + nonce)
 .digest("hex");
 }

 const previousBlock = this.getLatestBlock();
 const newBlock = new Block(this.pendingTransactions, previousBlock.hash);
 previousBlock.nextHash = newBlock.hash;
 this.chain.push(newBlock);
 this.pendingTransactions = [];
}
...

Define the mineBlock method to convert pending transactions into a new block.

Set the target prefix based on the difficulty.

266 | Chapter 12: Music Label Blockchain Market

Loop until a hash starting with the correct prefix is found.

Retrieve the most recent block.

Create a new block from pending transactions and link it to the previous block.

Push the new block onto the blockchain.

Clear pending transactions after mining completes.

Example 12-15. Defining the mine method in marketplaceNode.js

...
async mine() {
 const price = this.blockchain.miningReward;
 const reward = new Transaction({
 sender: this.peers[0],
 recipient: this.url,
 price,
 transactionType: "MINE",
 });

 this.blockchain.pendingTransactions.push(reward);
 await this.blockchain.mineBlock();
 this.balance += price;
 return "Mining complete";
}
...

Define the mine method to reward a node.

Store the mining reward amount.

Create a mining reward transaction.

Trigger the mining process.

Add the reward to the miner’s balance.

Return a completion message.

Example 12-16. Defining the /sell route in index.js using Fastify

...
fastify.post("/sell", async (request, reply) => {
 const { price, songTitle } = request.body;

Get Programming | 267

 await marketplaceNode.processTransaction({
 price,
 songTitle,
 sender: marketplaceNode.url,
 transactionType: "SELL",
 });
 reply.send({ message: "Song being listed" });
});
...

Define the /sell POST route using Fastify.

Extract price and songTitle from the request.

Process the transaction as a "SELL" type.

Respond to the client confirming listing.

Now your application is prepared to handle requests on participating nodes to sell
songs on the blockchain network. When a node’s endpoint is hit, its URL is used as
the sender in the transaction.

Example 12-17. Defining the /buy route in index.js using Fastify

...
fastify.post("/buy", async (request, reply) => {
 const { id } = request.body;
 const transaction = marketplaceNode.songs[id];
 if (!transaction) {
 return reply.send({ message: "No song exists by that id" });
 }

 const result = await marketplaceNode.processTransaction({
 id: transaction.id,
 price: transaction.price,
 songTitle: transaction.songTitle,
 expiration: transaction.expiration,
 recipient: transaction.sender,
 sender: marketplaceNode.url,
 transactionType: "BUY",
 });

 reply.send({ message: result });
});
...

Define the /buy POST route for purchasing songs.

268 | Chapter 12: Music Label Blockchain Market

Extract the song ID from the request body.

Look up the song from local registry.

Respond with an error if the song doesn’t exist.

Process a "BUY" transaction with song and node details.

Send back the result of the transaction processing.

To test this, use a tool like cURL or Postman to issue a /sell followed by a /buy
request. Try submitting an invalid id on /buy to test error handling and observe that
new songs are added only after being mined into a block. The availableSongs
method in the MarketplaceNode class (Example 12-18) supports this functionality by
returning a filtered array of songs that are currently listed for sale. It scans the node’s
songs object and extracts only those transactions marked with the "SELL" type,
returning their ID, title, and price. This ensures that clients and interfaces can query
which items are actually on the marketplace, avoiding confusion or invalid
transactions.

Example 12-18. Defining the availableSongs method in marketplaceNode.js

...
availableSongs() {
 return Object.values(this.songs)
 .filter((transaction) => transaction.type === "SELL")
 .map(({ id, songTitle, price }) => [id, songTitle, price]);
}
...

Define the availableSongs method in your MarketplaceNode class.

Return an array of songs whose most recent transaction type is SELL.

To make the list of available songs accessible across the network, a /songs route is
introduced to expose this data as a simple API endpoint (Example 12-19). When a
GET request is made to this route, it invokes the availableSongs method from the
marketplaceNode instance and returns the result as a JSON array. This allows clients
or external interfaces to retrieve an up-to-date list of all songs currently listed for sale,
each represented by its ID, title, and price.

Get Programming | 269

Example 12-19. Defining the /songs route in index.js

...
fastify.get("/songs", async (request, reply) => {
 reply.send({ songs: marketplaceNode.availableSongs() });
});
...

Define the /songs GET route to return all songs for sale.

Return JSON with the list of available songs recorded in your marketplaceNode.

You can test the endpoint by first creating a song with the /sell route and then
querying /songs to confirm the listing appears. If no songs are available, the response
will be an empty array. This route is particularly well-suited for integration with a
user-facing UI, where song listings can be dynamically fetched and displayed,
enhancing discoverability and usability across the decentralized marketplace.

Running the Real-World Example
To run this example in a real-world distributed context, you’ll need to ensure partici‐
pating nodes remain in sync. This is partially handled by broadcasting blockchain
state and shared song listings across peers. For example, calling await

this.broadcast("sync-blockchain", { chain: this.blockchain.chain, songs:

this.songs }); shares the latest chain and song data across the network. Receiving
nodes can then merge new listings with their local store using logic like marketplace
Node.songs = { ...marketplaceNode.songs, ...songs };.

However, the current implementation is simplified and leaves room for meaningful
improvements. Future iterations should focus on securing the network by authenti‐
cating nodes before allowing them to join or contribute listings. Introducing support
for reversible transactions could also help in cases of dispute or fraud, offering roll‐
back mechanisms. More robust mining logic should mirror consensus algorithms
used in production blockchains (e.g., proof-of-work or proof-of-stake), instead of
instantly validating transactions with a local function call. Additionally, replacing
plain HTTP communication with encrypted protocols like HTTPS or WebSockets
can enhance privacy and reliability. Finally, handling listing expiration dates would
help enforce realistic time-bound offers, making the marketplace more dynamic and
practical.

270 | Chapter 12: Music Label Blockchain Market

Chapter Exercises
1. Add song expiration logic:

a. Inside the Transaction class, define a method isExpired() that compares
the current time to the expiration timestamp.

b. In the /songs route handler, filter out any songs whose associated transaction
has expired using isExpired().

c. Optional: Add a log to display expired songs that are being removed from the
active marketplace.

d. Test by creating a song with a short expiration and confirm it no longer
appears after the expiry time has passed.

Expiration logic is essential for managing time-sensitive assets
like early-access audio in digital marketplaces.

2. Broadcast song listings with the blockchain:
a. Update the broadcastBlockchain method in MarketplaceNode to also

include this.songs in the broadcast payload: await this.broadcast("sync-
blockchain", { chain: this.blockchain.chain, songs: this.songs }).

b. In your /sync-blockchain route, merge the incoming songs hash into the
local node’s songs object using: marketplaceNode.songs = { ...marketpla
ceNode.songs, ...songs };

c. Test by listing a song from one node and confirming that it appears in another
node’s /songs list after syncing.

This exercise enhances consistency across nodes by syncing shared song data along‐
side the chain state.

Get Programming | 271

Summary
In this chapter, you:

• Built a decentralized music marketplace using Node
• Defined core components like MarketplaceNode, Blockchain, Block, and
Transaction classes

• Managed transactions with cryptographic hashing and validation logic
• Implemented mining and consensus mechanics between distributed nodes
• Synced chain state and song listings across the network
• Explored enhancements like expiration, listing broadcasts, and smart contract

integration with Web3 tools

272 | Chapter 12: Music Label Blockchain Market

CHAPTER 13

Building an AI-Powered Learning Assistant
with Google’s Gemini API

This chapter covers the following:

• Setting up a Node application to interact with Google’s Gemini API
• Implementing AI-powered learning assistance for technical learning
• Integrating a user profile database to track learning progress

Large Language Models (LLMs) like Google’s Gemini or OpenAI’s ChatGPT are rap‐
idly transforming the way applications interact with users, enabling more context-
aware, intelligent, and adaptive experiences. AI-driven systems are no longer just
about answering questions; they can now analyze user behavior, track learning pro‐
gress, and provide personalized recommendations, making them invaluable for tech‐
nical education and skill building. By integrating LLMs into applications, developers
can create dynamic tools that enhance user engagement, educate more effectively, and
adapt to individual learning and communication styles.

In this chapter, you’ll create an AI agent application designed to assist users in inter‐
actively preparing for technical interviews and learning programming concepts. The
AI-powered assistant will guide users through their learning process, adjusting to
their strengths, weaknesses, and learning styles. You will learn about API integrations,
context-aware AI interactions, and using a database to store user learning profiles.

273

Tools and Applications Used in This Chapter
Before you get started, make sure to install and configure the tools and applications
required for this project. Installation instructions for Node.js, Fastify, and VS Code
are provided in Chapter 1, while project initialization steps, such as setting up your
directory structure, configuring package.json, and using modern syntax, are covered
in Appendix A. Instructions for installing and using Postman can be found in Appen‐
dix B. For a deeper explanation of SQLite, see Appendix C. For guidance on setting
up your Google Gemini account and obtaining an API key, refer to Appendix E. Once
completed, return here to continue. Building a project from scratch helps deepen
your understanding of each component, giving you greater control and flexibility as
you progress.

Your Prompt
An online service called Interview Atlas that helps engineers master technical pro‐
gramming skills and prepare for interviews would like to integrate a smart assistant.
They’ve hired you to design an AI tool with the help of existing AI APIs to help users
navigate technical interviews and learning programming concepts. As users progress,
the AI will guide them, offering explanations, practice questions, and insights into
their learning patterns. The AI should also adapt based on users’ needs, identifying
areas where they struggle and making recommendations on how to improve.

Get Planning
The Interview Atlas team would like you to design a system that uses an existing
external LLM. They suggest that you integrate a Node app with the Google Gemini
API to create this AI assistant. In doing so, your app will communicate with the Gem‐
ini API during each user query and display that AI response back to the user. To start,
you plan to create a simple Node app that connects to the Gemini API and returns a
response. The app will be built using the Fastify framework, which is a lightweight
and efficient web framework for Node (Figure 13-1).

Figure 13-1. System architecture for phase one of AI assistant

274 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

Once the first phase is complete, you plan to curate the AI’s responses to make them
more relevant to the learning process. This involves designing a prompt that instructs
the AI to act as a learning assistant, providing explanations, examples, and feedback
on user queries (Figure 13-2). Each prompt sent to the AI will be engineered to match
the context of a technical learning assistant.

Figure 13-2. System architecture for phase two of AI assistant

To complete the setup, you include a database to store user profiles and track their
learning progress over time. You also integrate a basic authentication measure so
users may register, log in, and save their interaction history. In this way, users will be
able to study engineering concepts, prepare for technical interviews, and receive per‐
sonalized feedback on their learning journey (Figure 13-3).

Figure 13-3. System architecture for phase three of AI assistant

With your project plan in place, you begin implementing the AI assistant as a Node
app.

Get Planning | 275

Get Programming
To start developing your app, create a new project folder named interview
_atlas_ai. Navigate to your project folder on your command line and run npm init.
This command initializes your Node app. You may press Enter throughout the initial‐
ization steps to accept the defaults. The result of these steps is the creation of a file
called package.json. This file will instruct your Node app of any configurations or
scripts needed to run correctly.

Next, create a file called index.js within your project folder. This file is the entry point
for your app. For your first iteration, you will test your API connection to Google’s
Gemini API. To do this, you’ll use the axios library to make HTTP requests. You will
also use the dotenv library to manage your environment variables, such as your API
key. Install the two libraries by running npm install axios@^1.11.0

dotenv@^17.2.1 in your project’s root directory on your command line.

In your text editor, add a file called .env. This file will store your environment vari‐
ables (passwords and API keys) that allow your project to run as a server without
revealing sensitive data within your code. Within this file add your API key for the
Google Gemini API. You can find this key in your Google Cloud Console. The .env
file should look like the following (for sample API key GISaSrW-fsM3TNYp2U kmuc
NuSnkPKmGUtlsaDF4):

GEMINI_API_KEY=GISaSrW-fsM3TNYp2UkmucNuSnkPKmGUtlsaDF4

This is the API key you’ll use during each external API request made from your
application.

This key is tied directly to your Google account and, just like other
AI services, may incur charges with excess usage. Be sure to check
your Google Cloud Console for any usage limits or billing
information.

Next, navigate to your project’s index.js file and add the code in Example 13-1. This
code defines a function that sends user prompts to Google’s Gemini AI model and
returns a generated response. The API_URL is stored as a constant, embedding the
API key securely from environment variables to prevent hardcoding sensitive creden‐
tials. The generateResponse function makes an asynchronous POST request using
axios, formatting the user’s prompt according to the API’s required structure. The
POST request body for the Gemini API is structured as an object containing a con
tents array, where each item represents a message exchange with the AI, specifying a
role (e.g., “user”) and a parts array containing the actual text input. This format is
crucial because it allows for multiturn conversations, maintains context, and ensures

276 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

that prompts are properly segmented for processing, enabling the model to generate
context-aware responses.

Each AI API has its own structure for sending requests. The POST
body format for the Gemini API is different from OpenAI’s GPT-4
API. Be sure to check the API documentation for the correct
format.

The response is then processed using optional chaining to extract the AI-generated
text while providing a fallback message if no output is returned. If the request fails,
the function handles errors gracefully by returning a detailed error message, prevent‐
ing crashes and aiding debugging.

In previous versions of Node, you may have used an async Imme‐
diately Invoked Function Expression (IIFE) to call generateRes
ponse(). In Node 18+ with ES module support, you can use top-
level await instead.

Example 13-1. Testing an AI API request in index.js

import axios from "axios";
import dotenv from "dotenv";

dotenv.config();

const BASE = "https://generativelanguage.googleapis.com/v1beta/models";
const MODEL = "gemini-2.0-flash:generateContent";
const API_URL = `${BASE}/${MODEL}?key=${process.env.GEMINI_API_KEY}`;

async function generateResponse(prompt) {
 try {
 const { data } = await axios.post(
 API_URL,
 { contents: [{ role: "user", parts: [{ text: prompt }] }] },
 { headers: { "Content-Type": "application/json" } }
);

 return data?.candidates?.[0]?.content?.parts?.[0]?.text || "No response.";
 } catch (error) {
 return `Error: ${error.response?.data || error.message}`;
 }
}

const prompt = "In one sentence, explain Node.";
const response = await generateResponse(prompt);
console.log("AI Response:", response);

Get Programming | 277

Imports axios for making HTTP requests and dotenv to load environment
variables

Stores the Gemini API URL, embedding the API key

Defines an asynchronous function to send the request

Sends a POST request with the user’s prompt as the request payload

Sets Content-Type to application/json to ensure proper request format

Extracts the AI-generated response from the returned data

Handles errors gracefully, returning a meaningful error message

Defines the user prompt to send to the AI.

Calls the generateResponse() function using top-level await.

Logs the AI response to the console

Gemini model names may change over time. You can find the cur‐
rent list in the Google Gemini model reference.

Now run node index.js in your project’s root directory in your command line to
execute this code. You should see a result that isolates the LLM response to your
prompt, with a text output like "AI Response: Node.js is a JavaScript runtime
environment that allows developers to execute JavaScript code server-

side, enabling the creation of scalable and efficient web applications."

Large Language Models and AI APIs
Large Language Models (LLMs) are advanced AI systems trained on vast amounts of
text data to understand and generate human-like language. They use deep learning
techniques, particularly neural networks, to predict the most likely next words in a
sequence based on given input. LLMs power AI APIs, which allow developers to
interact with these models through programmatic requests.

278 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

https://oreil.ly/MuTFt

A neural network is a machine learning model inspired by the
human brain, consisting of layers of interconnected nodes
(neurons) that process input data, learn patterns, and make
predictions through weighted connections and activation
functions.

Using an LLM is like asking a room full of billions of people for help instead of just
one person—rather than relying on a single opinion, the AI draws from countless
conversations, books, languages, and sources to give the most relevant response. It
doesn’t think like a human, but it predicts the best possible answer based on patterns
learned from vast amounts of text.

When you send a prompt to an AI API, the request is processed by the model, which
analyzes the text and generates a relevant response. AI APIs enable seamless integra‐
tion of AI capabilities into applications, providing functionalities such as text comple‐
tion, summarization, and question answering. The following are some of the key
concepts and components involved in using LLMs and AI APIs:

Tokenization
LLMs break down input text into smaller units called tokens (words, subwords,
or characters). The model processes these tokens and predicts the next token in
the sequence to generate coherent responses.

Transformer architecture
Most modern LLMs use a transformer-based neural network, which relies on
mechanisms like self-attention to understand the relationships between words,
even across long passages of text.

Inference
When an AI API receives a prompt, the model runs an inference process, using
its learned patterns to generate a probable response. This is different from train‐
ing, as the model is applying existing knowledge rather than learning new
information.

Temperature and max tokens
AI APIs often provide parameters to control response generation. temperature
affects randomness (higher values make responses more creative), while
max_tokens limits the response length.

AI APIs like OpenAI’s GPT-4, Google’s Gemini, and Anthropic’s Claude provide
structured interfaces for accessing LLM capabilities in real-time applications.

For more details on AI APIs, visit the OpenAI API documentation or the Google Ver‐
tex AI documentation.

Get Programming | 279

https://oreil.ly/k90Xs
https://oreil.ly/QA2_K
https://oreil.ly/QA2_K

With your AI API connection established, you can now customize the AI assistant to
provide more relevant responses for learning programming and preparing for techni‐
cal interviews. This involves modifying the request structure to include an instruc‐
tional prompt that guides the AI’s behavior.

Customizing the AI Assistant for Learning Assistance
Prompt engineering is the practice of designing precise and effective instructions to
guide AI models like Gemini in generating useful and accurate responses. Since LLMs
generate text based on input patterns, the way a prompt is structured significantly
impacts the quality and relevance of the output. By carefully crafting a prompt, devel‐
opers can control the AI’s behavior, provide necessary context, and refine its response
style.

Prompt Engineering: Crafting Effective AI Instructions
Using prompt engineering, developers can instruct the AI to take on a specific role,
such as a teacher, programmer, or historical figure. For example, a prompt like "You
are an experienced software engineer. Explain recursion to a beginner."

will lead to a more structured and knowledgeable response than simply asking, "What
is recursion?". Additionally, prompts can include constraints, formatting require‐
ments, or examples to fine-tune the output.

A well-engineered prompt is like curating a cooking recipe dif‐
ferently for children than how you’d instruct adults. The result‐
ing recipe should be suitable for the audience’s comprehension
and skill level.

The following are some common techniques used in prompt engineering:

Role prompting
Assigns the AI a persona, such as "You are a cybersecurity expert", which
helps shape responses based on expertise.

Context injection
Provides background information within the prompt to help the model generate
responses with relevant context.

Few-shot prompting
Includes examples within the prompt to guide the AI’s response style and
expected output.

280 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

Format prompting (or output structuring)
Directs how the response should be formatted, such as "Provide a bullet-
point summary" or "Explain using a simple analogy".

Effective prompt engineering enhances AI usability, enabling more accurate, creative,
and structured responses. It is a crucial skill for developers integrating AI into appli‐
cations, chatbots, and automation workflows.

For more on prompt engineering, refer to OpenAI’s prompt engineering guide or
Google’s Vertex AI documentation.

To make sure the AI assistant provides learning-focused responses, modify the
request structure to include an instructional prompt, as shown in Example 13-2.

In this code, you modify generateResponse, which sends a user prompt to Google’s
Gemini AI API and retrieves a generated response. You add an additional prompt
content object that instructs the AI to act as a knowledgeable assistant focused on
technical topics. This prompt is included in the request body, ensuring that the AI
understands its role and provides relevant answers. The AI’s response is then extrac‐
ted and returned to the user.

Example 13-2. Guiding AI to teach programming in index.js

...
async function generateResponse(prompt) {
 try {
 const { data } = await axios.post(
 API_URL,
 {
 contents: [
 {
 role: "user",
 parts: [{ text: "You are an AI assistant that helps users " +
 "learn programming and prepare for technical interviews. " +
 "Provide clear explanations with examples when needed." }]
 },
 { role: "user", parts: [{ text: prompt }] },
],
 },
 { headers: { "Content-Type": "application/json" } }
);

 return (
 data?.candidates?.[0]?.content?.parts?.[0]?.text ||
 "No response received from AI."
);
 } catch (error) {
 console.error("API Request Failed:", error.response?.data || error.message);

Customizing the AI Assistant for Learning Assistance | 281

https://oreil.ly/wVWyZ
https://oreil.ly/ItGBu

 return {
 error: "Failed to fetch AI response",
 details: error.response?.data || error.message,
 };
 }
}
...

Instruct the AI to act as a technical interview assistant, ensuring responses are
focused on programming concepts and clear explanations with examples.

Send the user’s actual prompt, which dynamically changes based on what the user
wants to ask the AI.

You may also change the prompt to "In one sentence, explain recursion." Now
run node index.js again. You should see a response from the AI that is more rele‐
vant to learning programming concepts. For example: "Recursion is a program
ming technique where a function calls itself within its own definition

to solve a smaller instance of the same problem until a base case is

reached."

Setting Up the Fastify Server
Now that you have a working AI assistant with customized prompts, you can set up a
Fastify server to handle user requests and responses. This way, you can create a web
application that allows users to interact with the AI assistant through a user-friendly
interface instead of the command line.

To start, install Fastify for setting up your server routes. Run the following command
in your project’s root directory:

npm install fastify@^5.4.0

Add the code in Example 13-3 to index.js to incorporate Fastify. This code initializes a
Fastify server with logging enabled, allowing you to track requests and errors easily.
The server listens on a port defined by the environment (process.env.PORT) or
defaults to 3000, ensuring flexibility for different deployment environments. By using
await inside an asynchronous startup function, the server can handle startup failures
gracefully and log the running address upon successful start.

You may add the PORT variable to your .env file to set a custom port
for your server. For example, you can add PORT=4000 to run the
server on port 4000 instead of the default 3000.

282 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

Example 13-3. Starting a Fastify server with environment variables

import Fastify from 'fastify';
import axios from 'axios';
import dotenv from 'dotenv';

dotenv.config();

const fastify = Fastify({ logger: true });
const PORT = process.env.PORT || 3000;

const start = async () => {
 try {
 const address = await fastify.listen({ port: PORT });
 console.log(`Server running at ${address}`);
 } catch (err) {
 console.error("Server failed to start:", err);
 process.exit(1);
 }
};

start();

Imports Fastify to create a web server

Initializes Fastify with logging enabled

Sets the server port from the environment or defaults to 3000

Uses await to start the Fastify server asynchronously

Logs the server address once it’s running

Handles server startup errors and exits if needed

Calls the asynchronous startup function

Next, add the code in Example 13-4 to index.js to handle user queries. This code
defines a POST route at /query, allowing users to send a prompt to the AI assistant.
The request body is checked for a prompt, and if missing, it returns a 400 code (Bad
Request) to ensure proper input validation. If a valid prompt is provided, the server
calls generateResponse(prompt), which processes the request through the Gemini
API. The AI-generated response is then sent back to the client, while any errors
encountered during the process are logged and returned with a 500 code (Internal
Server Error), ensuring clear debugging and reliable API behavior.

Setting Up the Fastify Server | 283

Example 13-4. Handling AI queries with Fastify

fastify.post("/query", async (request, reply) => {
 try {
 const { prompt } = request.body;
 if (!prompt) {
 return reply.status(400).send({ error: "Prompt is required" });
 }

 const response = await generateResponse(prompt);

 reply.send({ response });
 } catch (error) {
 console.error("Gemini API Error:", error);
 reply.status(500).send({
 error: "Error communicating with Gemini API",
 details: error.message,
 });
 }
});

Defines a Fastify POST route for handling AI queries

Extracts the prompt from the request body

Returns a 400 Bad Request if no prompt is provided

Calls generateResponse(prompt) to get AI output

Sends the AI response back to the client

Logs errors and returns a 500 Internal Server Error if the request fails

At this time, you may remove the IIFE from the previous code, as you no longer need
to run the function immediately. You can also remove the console.log statement
that logs the AI response, as it will now be sent back to the client through the Fastify
server.

With this code in place, running node index.js in your command line will start
your Fastify server, but will no longer execute any API query. You should see a mes‐
sage indicating that the server is running at http://localhost:3000.

With your server running, you may now send a POST request to the /query endpoint
with a JSON body containing a prompt from a new command-line window. For
example, try running:

284 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

http://localhost:3000

curl -X POST http://localhost:3000/query \
 -H "Content-Type: application/json" \
 -d '{ "prompt": "Explain recursion in a single sentence with an analogy." }'

You’ll get a response similar to the following:

{"response":"Recursion is like a set of Russian nesting dolls, where each
doll contains a smaller version of itself, until you reach the smallest doll
that you can finally hold: a function solves a problem by breaking it down
into smaller, self-similar subproblems until it reaches a base case that can
be solved directly.\n"}

Your app is now ready to handle user queries over the internet. However, there’s cur‐
rently no way to track user interactions or store their learning progress. To do this,
you will need to implement a database to manage user profiles and authentication.

Setting Up Your Database and User Authentication
To implement user authentication, you will need to create a database to store user
profiles and their learning progress. In this example, you will use SQLite3 as your
database solution. SQLite3 is a lightweight file-based database that is easy to set up
and ideal for prototyping applications. It allows you to store structured data, such as
user profile information and learning progress.

To begin, install both the sqlite3 and sqlite packages by running the following
command in your project’s root directory in your command line:

npm install sqlite3@^5.1.7 sqlite@^5.1.1"

Why Use SQLite3?
SQLite3 is an excellent choice for a prototype app in Node when storing and manag‐
ing user learning profiles. Unlike traditional relational databases that require a dedi‐
cated server, SQLite is a self-contained file-based database, making it lightweight, easy
to set up, and ideal for rapid prototyping.

SQLite operates with a single database file, removing the need
for complex configurations and making it a great option for
development and small-scale applications.

For a user learning profile, SQLite3 enables structured data storage with a simple
schema. It follows ACID (Atomicity, Consistency, Isolation, Durability) principles,
meaning data remains reliable even during crashes or power failures. Additionally,
SQLite3 requires no setup or separate database server, making it easy to integrate into
a Node app using the sqlite3 package:

Setting Up Your Database and User Authentication | 285

No setup required
Runs as a single file, eliminating database management overhead

Fast and lightweight
Ideal for local storage in a small prototype or proof-of-concept app

Simple integration
Easily used with the sqlite3 Node package for basic CRUD operations

Structured data storage
Supports SQL queries for managing user learning profiles efficiently

Portable and scalable
Can be upgraded to PostgreSQL or MySQL as the application grows

The sqlite package is used for async/await support, making it eas‐
ier to work with asynchronous database operations.

A database is required in this project because you will store users’ hashed passwords,
email addresses, and learning profiles. The learning profile will include information
about a user’s previous queries, strengths, and weaknesses. This information will help
the AI assistant provide personalized responses based on a user’s learning profile.

With sqlite3 installed, you can now create a database connection and define the
schema for your user profiles. The schema will include fields for a user’s email,
hashed password, and learning profile data. The learning profile will be stored as a
JSON object, allowing you to easily update and retrieve user-specific information.

You will also implement a basic authentication system to allow users to register and
log in. This will enable you to store user profiles and track their learning progress
over time, distinguishing user interactions from one another.

To define a database connection and create a users table, add the code in
Example 13-5 to a new file called db.js.

This code initializes an SQLite database to store user profiles, ensuring that learning
progress and authentication details are persistently saved. The database connection,
dbPromise, is set up to interact with a local file (users.db). The initializeDb function
ensures that the users table exists, creating it if necessary.

The table includes an auto-incrementing id field as a primary key, a unique userId to
prevent duplicate accounts. In this case, we’ll use email addresses as the ID. Last, a
password column is added for authentication. Additionally, the learning_profile

286 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

field now has a default value of "This user has no recorded learning profile
yet." This ensures that when a new user is created, their profile contains meaningful
default text rather than appearing empty. Once the database is set up, a confirmation
message is logged, confirming that the system is ready to store and retrieve user data.

Example 13-5. Initializing an SQLite database for user profiles

import sqlite3 from "sqlite3";
import { open } from "sqlite";
import path from "path";

const dbPromise = open({
 filename: path.resolve("./users.db"),
 driver: sqlite3.Database,
});

const initializeDb = async () => {
 const db = await dbPromise;

 await db.exec(`
 CREATE TABLE IF NOT EXISTS users (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 userId TEXT UNIQUE,
 password TEXT NOT NULL,
 learning_profile TEXT DEFAULT 'This user has no learning profile yet.'
)
 `);

 console.log("Users table initialized");
};

initializeDb();

export default dbPromise;

Imports sqlite3 and sqlite to enable database interaction

Opens a connection to the database file users.db

Executes a SQL query to create the users table if it doesn’t exist

Defines id as the primary key, which auto-increments for each user

Ensures userId is unique, preventing duplicate accounts

Stores hashed passwords securely (plain-text passwords should be avoided)

Saves the user’s learning profile as a text field

Setting Up Your Database and User Authentication | 287

Logs a success message once the database is initialized

To integrate this database connection into your Fastify server, add import dbPromise
from "./db.js"; to the top of your index.js file. This allows you to access the
database connection throughout your application. When needed, you can call await
dbPromise to interact with the database.

Before you can use the database, you need to create a user registration and login sys‐
tem. This will allow users to create accounts, log in, and store their learning profiles
securely.

Install jsonwebtoken and bcrypt for user authentication. Run the following com‐
mand in your project’s root directory in your command line:

npm install jsonwebtoken@^9.0.2" bcrypt@^6.0.0

The jsonwebtoken library will help you create and verify JSON
Web Tokens (JWTs) for secure user sessions, while bcrypt will be
used to hash user passwords before storing them in the database.

Then add the following code to the top of your index.js file to import the required
libraries and set up your JWT secret:

import jwt from "jsonwebtoken";
import bcrypt from "bcrypt";

...

const JWT_SECRET = process.env.JWT_SECRET || "dummyJWTsecret";

Similar to the API key, the JWT secret should be stored in your .env
file. This secret is used to sign and verify JWTs, ensuring that only
authorized users can access protected routes. For now, you may
also use a dummy secret for testing purposes.

In order to support user accounts, you’ll need a way for users to register their ID
(email) and password. Add the code in Example 13-6 to index.js to implement a user
registration endpoint.

This code implements user registration, allowing new users to create an account and
securely store their credentials. When a user submits their email and password, the
server checks if both fields are provided. The password is then hashed using bcrypt
before being stored in the SQLite database, ensuring that user credentials are not
stored in plain text.

288 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

Additionally, a learning profile is initialized as an empty object, allowing the AI to
track the user’s progress over time. Once the user is registered, the server generates a
JWT token, which is sent back in the response, enabling the user to authenticate
future requests. If any errors occur, they are logged, and a 500 error response is
returned.

The JWT token is a secure way to manage user sessions. It contains
encoded information about the user and is signed with a secret key,
allowing the server to verify its authenticity without needing to
store session data on the server. It is used by the client to authenti‐
cate requests to protected routes.

Example 13-6. User registration endpoint

...
fastify.post("/register", async (request, reply) => {
 const { email, password } = request.body;
 if (!email || !password) {
 return reply.status(400).send({ error: "Email and password required" });
 }

 try {
 const db = await dbPromise;
 const hashedPassword = await bcrypt.hash(password, 10);

 await db.run(
 "INSERT INTO users (userId, password, learning_profile) " +
 "VALUES (?, ?, ?)",
 [
 email,
 hashedPassword,
 JSON.stringify({ previousQueries: [], strengths: {}, weaknesses: {} }),
]);

 const token = jwt.sign({ userId: email }, JWT_SECRET, { expiresIn: "7d" });
 reply.send({ token });
 } catch (error) {
 console.error("Registration error:", error);
 reply.status(500).send({ error: "Failed to register user" });
 }
});...

Defines a POST route at /register to handle user sign-ups

Extracts email and password from the request body

Returns a 400 error if either field is missing

Setting Up Your Database and User Authentication | 289

Opens a connection to the SQLite database

Hashes the user’s password using bcrypt for secure storage

Inserts the new user into the users table with an empty learning profile

Generates a JWT token for authentication that expires in seven days

Sends the token as a response so the user can authenticate future requests

Handles errors and returns a 500 error if registration fails

Next, you’ll need an endpoint to support user login. Add the code in Example 13-7 to
index.js to implement a route for users to log in to the app with their registered
information.

This code implements a route allowing registered users to authenticate and receive a
JWT token for future requests. The email and password are extracted from the
request and validated. The database is queried for the user’s record, and the provided
password is compared with the hashed password using bcrypt. If authentication is
successful, a JWT token is generated and returned to the user, enabling secure access
to protected routes. If the credentials are incorrect, a 401 Unauthorized response is
sent, and any server errors trigger a 500 response.

Example 13-7. User login endpoint

...
fastify.post("/login", async (request, reply) => {
 const { email, password } = request.body;
 if (!email || !password) {
 return reply.status(400).send({ error: "Email and password required" });
 }

 try {
 const db = await dbPromise;
 const user = await db.get("SELECT * FROM users WHERE userId = ?", [email]);

 if (!user || !(await bcrypt.compare(password, user.password))) {
 return reply.status(401).send({ error: "Invalid email or password" });
 }

 const token = jwt.sign({ userId: email }, JWT_SECRET, { expiresIn: "7d" });
 reply.send({ token });
 } catch (error) {
 console.error("Login error:", error);
 reply.status(500).send({ error: "Failed to authenticate user" });
 }

290 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

});
...

Defines a POST route at /login to authenticate users

Extracts email and password from the request body

Returns a 400 error if either field is missing

Connects to the SQLite database

Queries the database for a user with the provided email

Verifies the password using bcrypt, returning a 401 error if invalid

Generates a JWT token for session authentication

Sends the token so the user can authenticate future requests

Handles errors and returns a 500 error if authentication fails

With your registration and login routes in place, you can now test the authentication
process. Run your app by executing node index.js and running the following cURL
command with a new email and password combination from a new command-line
window:

curl -X POST "http://localhost:3000/register" \
 -H "Content-Type: application/json" \
 -d '{
 "email": "jon@jonwexler.com",
 "password": "password123"
 }'

You should get back a JWT token like the following:

{"token":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VySWQiOiJ1c2VyQG..."}

You can then use this token to authenticate future requests. If lost, deleted, or expired,
you can generate a new command for registered users by using the login route. For
example, you can log in with the same credentials you used to register by running the
following cURL command:

curl -X POST "http://localhost:3000/login" \
 -H "Content-Type: application/json" \
 -d '{
 "email": "jon@jonwexler.com",
 "password": "password123"
 }'

Setting Up Your Database and User Authentication | 291

Now that you have a JWT token, you implement a verifyJWT function as middleware
to protect your API routes. This function will check if the token is valid before allow‐
ing access to certain endpoints. Add the code in Example 13-8 to index.js to imple‐
ment this middleware.

This code adds JWT authentication to protect API routes by verifying that users pro‐
vide a valid token before accessing secured endpoints. The function verifyJWT
extracts the authorization header from incoming requests and checks if a token is
provided. If missing, it returns a 401 error. The token is then extracted from the
Bearer <token> format and validated using jwt.verify() with your app’s secret key.

If successful, the decoded user data is stored in request.user, making it accessible
for further request handling. If the token is invalid or expired, the function returns a
401 error, ensuring that only authenticated users can proceed.

Example 13-8. JWT authentication middleware

const verifyJWT = async (request, reply) => {
 try {
 const authHeader = request.headers.authorization;
 if (!authHeader) {
 return reply.status(401).send({ error: "Missing authentication token" });
 }

 const token = authHeader.split(" ")[1];
 const decoded = jwt.verify(token, JWT_SECRET);
 request.user = decoded;
 } catch (error) {
 return reply.status(401).send({ error: "Invalid or expired token" });
 }
};

Defines an asynchronous function to verify JWT authentication in Fastify routes

Extracts the Authorization header from the incoming request

Returns a 401 Unauthorized response if no authentication token is provided

Extracts the actual token from the Bearer <token> format

Uses jwt.verify() to decode and validate the token using the secret key
JWT_SECRET

Stores the decoded user data in request.user, making it accessible in protected
routes

292 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

Handles authentication failures, returning 401 Unauthorized if the token is
invalid or expired

The last authentication step is to incorporate the verifyJWT middleware into
the /query route. This ensures that only authenticated users can access the AI assis‐
tant. Additionally, you update the /query route to find the user’s learning profile in
the database and use it to generate a personalized response. The learning profile will
be stored as plain text in the database. Replace the /query route in index.js with the
code in Example 13-9.

This code enhances the AI assistant by customizing responses based on each user’s
learning profile. The route is secured with JWT authentication to ensure only logged-
in users can query the AI. The user’s previous learning data is fetched from the data‐
base and used in the AI query to provide personalized responses. The learning profile
is then updated with new insights from the AI, allowing the assistant to refine its rec‐
ommendations over time. If any issues arise, a 500 error is returned.

The generateResponse function is replaced with generateResponseWithSummary.
This function is similar to the previous one but includes additional logic to handle
user learning profiles. The AI assistant is now capable of providing personalized
responses based on the user’s learning profile, strengths, and weaknesses.

Example 13-9. Querying the AI assistant with user learning profiles

fastify.post("/query", { preHandler: verifyJWT }, async (request, reply) => {
 try {
 const { prompt } = request.body;
 const userId = request.user.userId;
 const db = await dbPromise;

 const row = await db.get(
 "SELECT learning_profile FROM users WHERE userId = ?",
 [userId]
);
 const learningProfile =
 row?.learning_profile || "This user has no recorded learning profile yet.";

 const { answer, updatedProfileSummary } = await generateResponseWithSummary(
 prompt,
 learningProfile
);

 await db.run("UPDATE users SET learning_profile = ? WHERE userId = ?", [
 updatedProfileSummary,
 userId,
]);

Setting Up Your Database and User Authentication | 293

 reply.send({ answer, updatedProfileSummary });
 } catch (error) {
 console.error("Query error:", error);
 reply.status(500).send("Error processing query");
 }
});

Defines a POST route at /query and secures it with verifyJWT to ensure only
authenticated users can access it

Extracts the prompt from the request body

Retrieves the authenticated user’s ID from request.user

Connects to the SQLite database

Fetches the user’s learning profile from the database

Uses a default profile message if no learning data is available

Calls generateResponseWithSummary() to send the prompt and learning pro
file to the AI and get an updated response

Updates the user’s learning profile in the database with the AI’s new insights

Sends the AI-generated answer and the updated learning profile back to the
user

Handles errors and returns a 500 error if the request fails

To wrap up development, you implement the new generateResponseWithSummary
function in index.js to handle the AI’s response generation and learning profile
updates. This function is designed to send a structured request to the Gemini API,
including the user’s prompt and their learning profile. The AI is instructed to return
its response in a specific JSON format, which includes both the answer and an upda‐
ted profile summary.

For example, if a user asks about complex JavaScript concepts, and more basic Node
deployment queries, the AI will analyze the user’s learning profile and provide a tail‐
ored response that reflects their strengths in foundational JavaScript and weaknesses
in production-ready Node applications. With that context, the AI assistant can pro‐
vide more comprehensive responses to help the user learn and grow, or navigate them
to hands-on books about Node like Node.js Projects, by Jonathan Wexler.

294 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

You add the code in Example 13-10 to index.js to implement the generateResponse
WithSummary function.

This function enhances the AI assistant by making responses context-aware based on
the user’s learning profile. It ensures that each response considers the user’s past
interactions, allowing for personalized, evolving AI interactions over time. The func‐
tion constructs a structured prompt that provides the AI with both the user’s question
and their current learning profile. The AI is instructed to return its response in valid
JSON format, ensuring structured output that includes both the answer and an upda‐
ted profile summary. A POST request is sent to the Gemini API using axios, with the
request data containing user input and AI instructions. The response from the API is
extracted, cleaned, and parsed as JSON before being returned.

You can simplify this process by logging the AI’s raw response. In
doing so, you can identify the exact structure of the AI’s output,
making it easier to parse and extract the relevant information. This
is particularly useful when working with complex AI models that
may return data in various formats.

The requestData object is structured to provide the AI with contextual instructions,
explicitly including the user’s learning profile and directing it to update that profile
based on the latest query. The request is structured to ensure strict JSON output,
preventing inconsistencies in the AI’s response format. The function makes an asyn‐
chronous request to API_URL with the structured request data. The headers specify
that the request body is in application/json format, ensuring proper API
communication.

The line response?.data?.candidates?.[0]?.content?.parts?.[0]?.text ||

"{}" safely accesses the AI’s response while handling cases where expected data is
missing. The ?. optional chaining operator prevents errors if any property in the
response structure is undefined. The final || "{}" ensures that, in the absence of a
valid response, an empty JSON object is returned instead of undefined. The function
also includes a step to clean the response before parsing by removing unnecessary
formatting. The AI often returns JSON within Markdown code blocks (e.g., ````json
{...}````), and including the replace() and trim() statements ensures that only
raw JSON remains before parsing.

Once the response is cleaned, JSON.parse(cleanedJson) is used to convert the
response from a string into a JavaScript object for easy access. If parsing fails, an error
message is logged, and a structured error response is returned instead of crashing the
function. The function extracts the AI’s generated response and updated profile sum‐
mary, falling back to the original learning profile if the AI fails to provide a valid

Setting Up Your Database and User Authentication | 295

update. In case of an API error, the function logs the error and returns a structured
error message.

By structuring AI interactions this way, the assistant learns from past interactions and
provides increasingly relevant responses. The use of error handling, optional chain‐
ing, and response validation ensures that even if the API returns unexpected output,
the system remains robust and functional.

Example 13-10. Generating AI responses with personalized learning profiles

const generateResponseWithSummary = async (prompt, learningProfile) => {
 try {
 const requestData = {
 contents: [
 {
 role: "user",
 parts: [
 {
 text: `You are an AI assistant helping users learn programming.
 The user has the following learning profile: "${learningProfile}".
 Based on this, answer their query and update their profile with a
 one-sentence summary of strengths and weaknesses.

 Respond in **valid JSON format**:
 {
 "response": "Your AI-generated response",
 "updatedProfileSummary": "Updated profile summary."
 }`,
 },
 { text: `User query: ${prompt}` },
],
 },
],
 };

 const response = await axios.post(API_URL, requestData, {
 headers: { "Content-Type": "application/json" },
 });

 const rawText = response?.data?.candidates?.[0]?.content?.parts?.[0]?.text
 || "{}";
 const cleanedJson = rawText.replace(/```json|```/g, "").trim();

 try {
 const parsedResponse = JSON.parse(cleanedJson);
 return {
 answer: parsedResponse.response || "No valid response received.",
 updatedProfileSummary: parsedResponse.updatedProfileSummary
 || learningProfile,
 };
 } catch {

296 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

 console.error("Invalid JSON format from API:", cleanedJson);
 return { error: "Invalid JSON response", details: cleanedJson };
 }
 } catch (error) {
 console.error("API Error:", error.response?.data || error.message);
 return { error: "Failed to generate response", details: error.response?.data
 || error.message };
 }
};

Defines an asynchronous function to query the AI and update the user’s learning
profile

Constructs the prompt structure, including the user’s learning profile and
instructions for the AI to return a JSON response

Sends the request to the Gemini API with the prompt and headers

Extracts the AI-generated response from the API response object

Cleans the response by removing unnecessary formatting (e.g., Markdown code
blocks)

Parses the AI’s JSON response and returns the generated answer along with the
updated learning profile

Now you may create a new user with the registration route and log in with the login
route, or use the JWT token and user account from the previous step. You can then
use the JWT token to authenticate requests to the /query endpoint. For example, run
the following cURL command to query the AI assistant about recursion with a JWT
token:

curl -X POST "http://localhost:3000/query" \
 -H "Authorization: Bearer eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1..." \
 -H "Content-Type: application/json" \
 -d '{ "prompt": "What is the best way to learn recursion?" }'

When you send the request, the AI assistant responds with a structured JSON object
that includes both the generated answer and an updated summary of the user’s learn‐
ing profile:

{
"answer":"Recursion can be a tricky concept...",
"updatedProfileSummary":"The user is new to programming concepts and requires
a fundamental understanding of how to learn new topics, specifically recursion;
therefore, they are strong in asking the right question but weak in foundational
knowledge about recursion."
}

Setting Up Your Database and User Authentication | 297

Attempting to query the AI without a valid JWT token will return an error with the
message "Missing authentication token", ensuring that only authenticated users
can access the AI assistant.

Now that you have a working AI-powered learning assistant with authentication and
personalized responses, the next step is to build a client-side interface for user inter‐
actions. A web or mobile UI will allow users to engage with the AI assistant more
intuitively, making it easier to submit queries, review past responses, and visualize
their learning progress. You can achieve this by developing a frontend using React,
Vue, or Svelte, and integrating it with your Fastify backend via API requests.

Additionally, consider enhancing the user experience by implementing real-time con‐
versations with WebSockets, storing more detailed learning analytics, and refining
AI-generated explanations with more advanced prompt engineering techniques. You
may also consider the following improvements:

• Adding pagination or filtering for past AI responses
• Allowing users to edit their learning profile manually instead of AI-only updates
• Integrating a feedback mechanism where users can rate AI responses to refine

future outputs

Chapter Exercises
1. Track user progress with learning analytics.

In this exercise, you’ll implement a system to track user progress based on their
interactions with the AI. Each time a user interacts with the assistant, the AI
should log their query and categorize it under their strengths or weaknesses
based on their learning profile:
a. Update the generateResponseWithSummary function to include a learning

analytics component.
b. Add a mechanism to categorize responses (e.g., “Strong in Algorithms,”

“Weak in Recursion”). Store these categories in the user’s learning profile in
the database.

c. When the user submits a query, analyze their profile to suggest areas for
improvement and display feedback based on the AI’s previous responses.

d. After adding this functionality, create multiple interactions with the assistant
and check that the learning profile updates appropriately. The user’s profile
should reflect their progress, highlighting areas where they excel or need fur‐
ther study.

298 | Chapter 13: Building an AI-Powered Learning Assistant with Google’s Gemini API

2. Adapt AI responses based on query type:
In this simpler exercise, you will modify the assistant’s response based on the type
of query—whether the user is asking for an explanation, coding help, or a prac‐
tice question:
a. Update the generateResponseWithSummary function to check for simple key‐

words in the user’s prompt (e.g., “explain,” “code,” “practice”).
b. Modify the response slightly based on the keyword. For example:

■ If the query contains the word “explain,” the AI should provide a detailed
explanation.

■ If it contains the word “code,” the AI should return a code example.
c. Keep the changes minimal to ensure that the AI can still answer any question

appropriately.
d. Try submitting queries with the words “explain,” “code,” and “practice,” and

check that the responses change based on the query type.

Summary
In this chapter, you built an AI-powered learning assistant that integrates with Goo‐
gle’s Gemini API. The assistant is designed to support users in learning programming
concepts and preparing for technical interviews through adaptive responses. In the
process, you:

• Connected a Node app to the Gemini API using Fastify, enabling AI-driven
responses

• Designed AI responses to be context-aware, leveraging user learning profiles to
deliver personalized assistance

• Implemented a user profile database in SQLite3, allowing the assistant to track
user progress and adapt responses over time

• Secured the system with JWT authentication, ensuring only registered users can
access the AI assistant

• Optimized AI request handling by structuring prompts, cleaning AI output, and
managing JSON responses

By integrating these features, Interview Atlas provides a robust AI-driven learning
experience, dynamically guiding users based on their strengths and weaknesses. This
foundation can be expanded further with advanced prompt engineering, enhanced
feedback loops, and deeper AI customization.

Summary | 299

APPENDIX A

Node Cheat Sheet and Project Initialization

Node application development can be as simple as a single line of JavaScript, or as
complex as a distributed system hosted across the globe. Luckily, Node is a versatile
platform that can handle both extremes. This cheat sheet provides a quick reference
for setting up a Node project, understanding the package.json file, and writing
modern JavaScript code. It also highlights key areas for career growth as a Node
engineer.

In this appendix, we will cover the following topics:

• Initializing a Node project using npm
• Recommended directory structure for Node projects
• Understanding the package.json file and writing meaningful scripts
• Modern Node syntax patterns
• Growth areas for Node engineers

You may use this appendix as a quick reference or as a starting point for your Node
projects. It is designed to be concise and easy to follow, providing you with the essen‐
tial information you need to get started with Node development.

For Node installation steps, refer to Chapter 1.

301

Initializing a Node Project (Using npm)
Much of Node development involves the use of your CLI to install packages, run
scripts, and manage your project. The first step in any Node project is to initialize it
with npm, the Node Package Manager. This is done by running the following com‐
mand in your terminal:

mkdir node-app && cd node-app
npm init -y

node-app is just an example name. You can replace it with your
desired project name. Use lowercase, hyphen-separated names
(e.g., node-app-server) that are short, descriptive, and avoid spe‐
cial characters to ensure compatibility across npm, URLs, and
filesystems.

This command sets up a basic package.json file, which acts as the manifest for your
project—defining its name, version, dependencies, and scripts. The -y flag automati‐
cally fills in default values, allowing you to get started quickly without answering
prompts interactively. You can always edit the generated package.json later to fine-
tune settings or add metadata.

A project manifest is a file that defines essential metadata about
your project—like its name, version, dependencies, scripts, and
configuration—so that tools (like npm, build systems, or CI pipe‐
lines) can understand how to build, run, or manage it.

This foundational file is crucial for enabling other developers and tools to understand
and work with your project. Even if you start with the defaults, refining your manifest
early can help avoid future confusion or misconfiguration.

While npm is the default package manager included with Node and
works great for most projects, some developers use alternative tools
like Yarn for more advanced features.

npm is the default package manager for Node, designed to manage dependencies and
reusable JavaScript code modules. When a developer runs npm install, the tool
reads the package.json file in the project directory, which lists all required dependen‐
cies and their versions. It then downloads these packages from the npm registry—a
large public database of open source JavaScript libraries—into a local node_modules/
directory.

302 | Appendix A: Node Cheat Sheet and Project Initialization

To improve performance and reduce redundant downloads, npm also maintains a
global cache on the local machine. Dependency resolution is performed using a
directed graph to ensure all required packages (and their dependencies) are installed
in the correct version, avoiding conflicts. Lock files like package-lock.json are used to
record the exact versions installed, ensuring consistent environments across
machines and deployments.

Yarn Versus npm
Yarn is a modern JavaScript package manager, created by Facebook (Meta), that helps
developers install, update, and manage project dependencies—just like npm. It was
originally designed to address some of the shortcomings of npm at the time, offering
faster installs, better caching, and more reliable lockfile consistency across teams.

Today, Yarn v4+ introduces advanced features like:

Plug’n’play (PnP)
A way to speed up project startup by avoiding the traditional node_modules
folder.

Zero install
Lets you commit dependencies to your repository so you don’t need to run
install separately on every machine.

To use Yarn without manually installing it, Node comes with a built-in helper tool
called Corepack (since Node v16.10 and enabled by default in v20+). It lets you
quickly enable Yarn and other package managers. Just run:

corepack enable
yarn init -2

This initializes a new Yarn project using the latest version and prepares it with
modern defaults.

While Yarn is not as widely adopted as npm, it can be a great choice for teams that
value speed and reliability. It also has a strong community and ecosystem, with many
popular libraries and tools supporting it. For more information, check out the Yarn
documentation.

Recommended Directory Structure
A clean and scalable project structure supports clarity, maintainability, and team col‐
laboration—especially as complexity grows. The following are three recommended
layouts depending on the size and goals of your Node project.

Node Cheat Sheet and Project Initialization | 303

https://oreil.ly/7rYhJ
https://oreil.ly/7rYhJ

Assuming a project named node-app, a basic structure might look like this:

node-app/
├── index.js
└── package.json

index.js represents your source file.

This setup is ideal for small or solo projects that don’t need testing or configuration
layers yet. It minimizes overhead and lets you focus on writing code immediately. It’s
great for getting started quickly with a simple script or utility. The majority of your
projects throughout the book will follow this structure.

For small to mid-sized apps with basic testing and configuration needs, you may
compartmentalize your code and add a few more directories:

node-app/
├── src/
│ └── index.js
├── test/
├── .env
├── .gitignore
├── package.json
└── README.md

src holds your main application logic.

test holds your unit or integration tests.

.env holds your environment variables, which should be kept out of version
control.

This adds separation for tests and environment configuration, which helps when
working on APIs or services meant for production use. It also prepares you to inte‐
grate CI, logging, and deployment tools more cleanly. This is a common structure for
serious but non-enterprise-level projects.

Last, for full-stack or enterprise-scale applications with frontends, multiple environ‐
ments, and deployment automation, you may use a more complex layout like the
following:

node-app/
├── src/
│ ├── server/
│ └── client/
│ ├── components/
│ └── index.html
├── public/
├── config/
├── scripts/

304 | Appendix A: Node Cheat Sheet and Project Initialization

├── test/
├── .env
├── ."ignore
├── package.json
└── README.md

server is where your Node backend logic is found.

client is where your UI components (React, Vue, etc.) are found.

public is where your static assets (icons, fonts, etc.) are found.

config is where your environment-specific config files are found.

scripts is where your automation and DevOps scripts are found.

This structure supports applications with both backend and frontend code, and
cleanly separates concerns for larger teams. It accommodates automation scripts,
multiple deployment environments, and advanced testing strategies. It’s ideal for scal‐
able apps and is flexible enough to grow with new microservices or teams.

As your project evolves, you can adapt any of these structures to fit your needs. The
key is to keep things organized and modular so that you can easily find and manage
your code as it grows.

Understanding package.json and Scripts
Your package.json file is the manifest of your Node project. It defines metadata,
scripts, and dependency rules that other tools (like npm or Yarn) use to understand
how your app works.

At its core, this file should look like the following:

{
 "name": "node-app",
 "version": "1.0.0",
 "type": "module",
 "scripts": {
 "start": "node index.js",
 "dev": "node --watch src/index.js"
 },
 "dependencies": {},
 "devDependencies": {}
}

This file gives your project a name and version, and tells Node to treat your code as
modern ES modules using "type": "module". The scripts section lets you run
helpful commands like npm start or npm run dev without typing out the full

Node Cheat Sheet and Project Initialization | 305

command. Empty dependencies and devDependencies sections mean you haven’t
installed any external libraries yet, but they’ll automatically populate when you add
packages.

The "type": "module" setting enables support for native import/export syntax,
replacing the older CommonJS require pattern. The --watch flag for Node (20+)
reloads your app automatically on file changes, eliminating the need for tools like
nodemon. The scripts section acts as a unified CLI for common developer tasks—
automating linting, testing, and formatting, using tools you’ve installed as dev
dependencies.

This is all you need to get started with a small project or simple
API server. It’s lightweight, readable, and serves as the single source
of truth for your project configuration. Think of it as your project’s
instruction manual for tools and other developers.

As your project grows, package.json becomes a powerful configuration hub for build
tools, testing, formatting, and team workflows. You may add fields like engines to
specify Node versions, files to control what gets published, or workspaces for mon‐
orepos. The scripts section can also include commands for linting, testing, and for‐
matting code:

{
 "name": "node-app",
 "version": "1.0.0",
 "type": "module",
 "scripts": {
 "start": "node src/index.js",
 "dev": "node --watch src/index.js",
 "lint": "eslint .",
 "test": "vitest run",
 "format": "prettier --write ."
 },
 "dependencies": {},
 "devDependencies": {}
}

As dependencies are added, the file grows to track exact versions and scopes (produc‐
tion versus development). Complex projects may also use fields like engines,
exports, files, and workspaces to control deployment behavior, compatibility, and
monorepo organization. Understanding how to structure and automate with
package.json is key to managing scalable, maintainable Node apps.

306 | Appendix A: Node Cheat Sheet and Project Initialization

Document your scripts in README.md so contributors know how
to run and maintain the project. This helps avoid confusion and
ensures the team follows a consistent workflow. The package.json is
a productivity engine when used effectively.

Modern Node Syntax Patterns
As of Node 20+, many JavaScript features that were once optional or experimental are
now fully supported and considered best practice. Understanding these patterns will
make your code cleaner, more maintainable, and more aligned with modern stand‐
ards used across both backend and frontend development.

Specifically, this section covers:

• Native ESM support
• Top-level await
• Destructuring defaults
• Optional chaining
• Nullish coalescing
• Built-in fetch

As mentioned earlier in this appendix, modern Node uses ES Modules (ESM) by
default when "type": "module" is set in package.json. This import/export style is the
same used in modern browsers and tools like Deno and Vite, helping unify frontend
and backend development. It replaces the older require() syntax used in Com‐
monJS, making your code more future-proof and interoperable.

The following demonstrates importing modules with ESM:

import fs from 'node:fs/promises';
import express from 'express';

These lines of code are naturally found at the top of your files, just like in browser
JavaScript. This makes it easier to read and understand dependencies at a glance.

With ESM, Node now allows you to use await at the top level—no need to wrap
everything in an async function. This simplifies one-off scripts and configuration
loading, especially in entry files like index.js. It makes asynchronous code cleaner and
easier to follow, especially for beginners.

The following example demonstrates the use of top-level await:

const data = await fs.readFile('./config.json', 'utf-8');

Node Cheat Sheet and Project Initialization | 307

This line demonstrates how to read a file asynchronously using await with Node’s
built-in fs/promises module. It reads the contents of config.json (as text, using
UTF-8 encoding) and stores the result in the data variable. Because await is used at
the top level, this pattern is only possible in an ES Module (type: "module" in pack‐
age.json) and simplifies what used to require wrapping everything in an async
function.

Another useful modern JavaScript feature is object destructuring with default values.
In the example below, the PORT environment variable is extracted from process.env,
and if it’s not defined, a default value of 3000 is used. This pattern is especially helpful
in configuration files, ensuring your app runs smoothly even when certain environ‐
ment variables are missing. Destructuring also reduces boilerplate code and makes
your configuration logic cleaner and easier to understand:

const { PORT = 3000 } = process.env;

Optional chaining (?.) and nullish coalescing (??) are modern JavaScript features
introduced in ECMAScript 2020. They allow you to safely access deeply nested object
properties and assign fallback values without writing long chains of conditional
checks. These features have been supported in Node since version 14 (released in
April 2020) and are now widely adopted in both frontend and backend JavaScript
codebases.

The following example demonstrates how these operators let you safely access deeply
nested object properties without crashing your app if something is undefined or
null. The ?? operator ensures a fallback value is used when the left side is null or
undefined (but not falsy values like 0 or ""). This results in cleaner, more fault-
tolerant code with fewer manual checks:

const username = user?.profile?.name ?? 'GUEST_NAME';

Last, as of Node 18+, fetch() is available globally, just like in the browser—no need
to install external libraries like node-fetch. This allows you to make HTTP requests
in a familiar and concise way using native APIs. It’s especially helpful for full-stack
developers coming from the frontend, as it reduces the learning curve and keeps your
dependencies lean:

const res = await fetch('https://api.example.com/data');
const data = await res.json();
console.log(data);

Modern Node fully embraces features like ES Modules, top-level await, and native
fetch, enabling cleaner, more readable code that aligns closely with modern browser-
based JavaScript. These features simplify asynchronous operations, enhance configu‐
ration safety, and reduce dependency overhead. By mastering these patterns,
developers can write more robust, maintainable, and future-proof applications.

308 | Appendix A: Node Cheat Sheet and Project Initialization

Growth Areas for Node Engineers
As you become more comfortable with project setup and syntax, it’s important to
broaden your knowledge beyond the basics. Node is used in a wide variety of envi‐
ronments, from small backend services to globally distributed APIs and real-time sys‐
tems. The more tools and patterns you become familiar with, the more effective and
versatile you will be as a Node engineer.

Here are several areas worth exploring as you advance:

Backend architecture
Learn to structure APIs and services using REST, GraphQL, or event-driven
models. Understanding layered architecture (e.g., controllers, services, data
access) helps you build scalable, modular applications. Frameworks like Express
and Fastify can be good starting points, but knowing why certain patterns are
used is even more important than which ones.

Databases and persistence
Know how to interact with both SQL and NoSQL databases. Get comfortable
with tools like PostgreSQL, MongoDB, Prisma, and Sequelize. Understand data‐
base transactions, indexing, and query optimization—these skills are essential for
building high-performance applications.

Security best practices
Learn how to handle authentication and authorization using techniques like
JWTs, OAuth2, and cookie-based sessions. Understand how to protect your APIs
against threats like XSS, CSRF, injection attacks, and rate limiting. Security
becomes even more important as your code moves from local development to
production environments.

Testing and automation
Writing automated tests improves confidence in your code. Learn to write unit,
integration, and end-to-end tests using tools like Vitest, Jest, or Supertest. Pair
this with automated workflows using GitHub Actions or other CI/CD tools to
streamline deployment and reduce bugs.

DevOps and deployment
Explore how to containerize your app using Docker and manage it with tools like
PM2, systemd, or Kubernetes. Learn how to deploy to platforms like Vercel, Her‐
oku, or AWS. Understanding how your app runs in production will make you a
more effective developer and team member.

Monitoring and observability
Add error tracking and performance monitoring using tools like Sentry, Prome‐
theus, or OpenTelemetry. Logging and metrics help you understand real-world

Node Cheat Sheet and Project Initialization | 309

behavior and fix problems faster. This becomes critical as your app gains users
and complexity.

Type safety and tooling
Adopt TypeScript or JSDoc to improve type safety and developer experience.
Type-aware editors and tooling help prevent bugs and improve readability. Even
small projects benefit from typing once they scale.

Real-time and streaming systems
Learn how to work with WebSockets, Server-Sent Events (SSE), and streaming
APIs. This is essential for apps involving live dashboards, multiplayer features, or
collaborative editing. Libraries like Socket.IO or native EventSource support this
pattern.

By focusing on these areas over time, you’ll gain the skills needed to build and main‐
tain complex systems with confidence. As the ecosystem grows and evolves, continu‐
ous learning will ensure that your Node knowledge stays relevant and valuable.

Summary
In this appendix you:

• Initialized a new Node project using npm and explored how to configure the
package.json file

• Learned how to structure your project directory based on scale and complexity
• Compared npm with alternative tools like Yarn and explored how to use Corepack

to enable them
• Explored modern Node syntax patterns such as ES Modules, top-level await, and

optional chaining
• Identified key areas for career growth as a Node engineer, including testing,

DevOps, and security best practices

310 | Appendix A: Node Cheat Sheet and Project Initialization

APPENDIX B

Setting Up Your Development Tools

To write, debug, and maintain professional-quality Node applications, you need a
strong development environment. This appendix walks you through configuring VS
Code—the most popular IDE for JavaScript and Node—along with essential exten‐
sions that support formatting, linting, debugging, and version control. You’ll learn
how to set up Git for tracking changes, manage project-level settings, and test APIs
using tools like Postman to simulate requests and verify endpoint behavior. You’ll also
see when to use breakpoints instead of console.log, and how to distinguish between
style rules (handled by Prettier) and logic rules (handled by ESLint).

If you haven’t installed VS Code yet, you can get it from the official site or refer to the
installation guide in Chapter 1.

Using Git from the Command Line
While VS Code includes a built-in Git interface, many professional developers rely on
the Git CLI for speed, scripting, and control. Using Git from the terminal helps you
understand what’s happening under the hood and enables you to work in any
environment—even without a GUI.

To get started, install Git from https://git-scm.com. Once installed, verify it by run‐
ning: To verify that Git is installed on your system, run the following command:

git --version

Outputs the currently installed version of Git (e.g., git version 2.42.0)

If the version number displays successfully, you’re ready to use Git from the com‐
mand line.

311

https://oreil.ly/hw4mE
https://git-scm.com

To begin tracking your project, initialize a repository, stage your files, and make your
first commit:

git init
git add .
git commit -m "Initial commit"

Creates a new Git repository in the current folder

Stages all files in the current directory for commit

Commits the staged changes with a message describing the snapshot

Once your repository is set up, these are some essential Git commands you’ll use reg‐
ularly:

git status
git diff
git log
git restore
git reset

Shows the current status of your working directory and staged changes

Displays the differences between modified files and the last commit

Shows a list of previous commits, including IDs, dates, and messages

Reverts changes in a file back to the last committed state

Unstages a file or resets your commit history to a previous state

Use a .gitignore file to prevent sensitive or unnecessary files—
like .env, node_modules, or system logs—from being committed to
version control.

With your Git workflow in place, the next step is to enhance your development envi‐
ronment itself. VS Code supports a wide range of extensions that can help automate
tasks, enforce code quality, and accelerate your productivity.

Recommended VS Code Extensions
VS Code extensions are lightweight add-ons that enhance the functionality, produc‐
tivity, and customization of the VS Code editor. They allow developers to tailor their

312 | Appendix B: Setting Up Your Development Tools

environment with tools for debugging, linting, formatting, theming, language sup‐
port, and more. Extensions are managed through the built-in Extensions Market‐
place, making it easy to search, install, and update tools directly within the editor. By
integrating powerful features like Git integration, code suggestions, and
environment-specific utilities, extensions help streamline development workflows,
reduce context switching, and improve code quality.

The following are recommended for all Node developers:

ESLint
Enforces consistent coding style and catches syntax issues. Think of linting as
code analysis, whereas formatting focuses on code appearance, like spacing and
indentation. Using linting extensions helps to check your code for potential bugs,
style violations, or best practice issues.

Prettier
Automatically formats your code according to defined rules.

You can configure VS Code to automatically adjust spacing, indentation, and line
breaks. Tools like ESLint can be configured to do both, but it’s best to use ESLint
for logic rules and Prettier for style rules.

You can configure VS Code to auto-format on save by changing your editor set‐
tings to include "editor.formatOnSave": true.

Node Extension Pack
Adds snippets, REPL support, and more for Node development. Tools like this
improve your ability to analyze and debug your code.

While console.log() is quick and familiar, VS Code’s built-in debugger is far
more powerful for inspecting variables, stepping through code, and evaluating
expressions in real time.

To use the debugger:

1. Open any JavaScript file.
2. Click in the left gutter next to the line number to set a breakpoint.
3. Press F5 or open the Debug panel and run “Start Debugging.”

You can inspect variables, use a watch list, and step through code line by line.

GitLens
Enhances Git integration with history, blame annotations, and code lens. This
will be particularly helpful as you modify your code throughout each chapter.
Along the way you’ll be able to better visualize your changes.

To install these, open the Extensions sidebar (Cmd+Shift+X or Ctrl+Shift+X) and
search for each name above.

Setting Up Your Development Tools | 313

https://oreil.ly/Dpu2c
https://oreil.ly/8hwOW
https://oreil.ly/PoB4N
https://oreil.ly/bpitW

Once installed, most extensions will activate automatically based on project files
(like .eslintrc or .prettierrc).

As your applications grow more complex, you’ll often need to interact with backend
endpoints directly to verify that APIs respond correctly. While writing frontend inter‐
faces or test scripts is one way to do this, a faster and more flexible approach is to use
a dedicated API client.

Testing Your API with Postman
Modern applications often rely on APIs to handle requests, serve data, and connect
with frontend clients or third-party services. Testing these APIs manually using tools
like curl or writing custom test scripts can be time-consuming and error-prone.
Postman is a free, GUI-based application that simplifies this process—allowing you to
send HTTP requests, inspect responses, simulate edge cases, and debug faster without
writing extra code. It’s especially useful for testing REST endpoints, verifying authen‐
tication, and debugging payloads during development.

To get started:

1. Download Postman.
2. Open the app and create a new Request.
3. Choose a method (GET, POST, etc.) and enter your API URL (e.g., http://local

host:3000/users).
4. Add headers or body parameters as needed.
5. Click Send to make the request.

Postman streamlines the API development process by allowing you to test endpoints
interactively as you build them. Rather than relying on browser-based requests or ad
hoc curl commands, Postman provides a visual interface where you can craft
requests, inspect responses, and debug errors in real time. This immediate feedback
loop helps you confirm that routes behave as expected, response formats are correct,
and error handling is functioning properly.

Beyond basic requests, Postman allows you to organize your endpoints into collec‐
tions, which serve as living documentation and test suites for your backend. You can
simulate real-world authentication flows by attaching headers, tokens, or credentials,
and even chain requests together to model complete user journeys. This makes it eas‐
ier to share APIs with teammates or clients, automate regression testing, and main‐
tain consistent behavior across environments.

314 | Appendix B: Setting Up Your Development Tools

https://www.postman.com/downloads
http://localhost:3000/users
http://localhost:3000/users

Use Postman when you need more control than the browser
offers—like sending POST requests with JSON payloads or testing
protected routes with JWTs.

To complement your API development workflow, you’ll also want tools that stream‐
line how your server responds to changes during active development.

Watching for File Changes with nodemon
In a typical development workflow, you often need to restart your Node server man‐
ually after making changes to your code. This slows down iteration and introduces
unnecessary friction. nodemon helps by automatically watching your files and restart‐
ing the app whenever it detects a change—making development faster and more effi‐
cient, especially for backend services or APIs.

To install nodemon globally so it’s available in any project, run npm install -g node
mon. Once installed, you can run your Node app with automatic restarts within your
project folder, by running nodemon index.js. This starts index.js and restarts it
when file changes are detected

If your app uses ECMAScript modules (i.e., type: "module" in package.json), you
may need to include the file extension explicitly:

If your app uses interactive input (e.g., readline, inquirer, etc.),
nodemon may restart before the user finishes interacting. In those
cases, run the app using plain node index.js.

As your applications grow more complex, you’ll often need to interact with backend
endpoints directly to verify that APIs respond correctly. While writing frontend inter‐
faces or test scripts is one way to do this, a faster and more flexible approach is to use
a dedicated API client.

Summary
A well-configured development environment helps you write cleaner, more reliable
code and debug issues faster. In this appendix, you learned how to:

• Set up your development environment with Node.js, Git, and Visual Studio
Code, and learned essential commands for version control and project
management

Setting Up Your Development Tools | 315

• Installed key VS Code extensions and configured tools like Prettier, ESLint, and
the built-in debugger to improve code quality and developer efficiency

• Tested backend APIs using Postman, explored how to simulate auth flows, and
saw how to debug server behavior during active development

With your tools ready, you’re set up for faster, safer development throughout the rest
of the book.

316 | Appendix B: Setting Up Your Development Tools

APPENDIX C

Working with Databases in Node Projects

Most real-world applications rely on databases to store and retrieve data. This appen‐
dix introduces essential data tools used in Node projects—from full-featured data‐
bases like MongoDB, PostgreSQL, and SQLite, to supporting services like Redis and
RabbitMQ that handle caching and message queues.

You’ll learn how to install and connect to each database, work with ORMs like Mon‐
goose and Sequelize, and understand key data modeling concepts like schemas, col‐
lections, and documents. You’ll also compare local and cloud-hosted options and
explore when to use each tool based on your app’s needs—whether you’re building a
quick prototype, a scalable web API, or a background task processor.

Why Databases Matter
Databases allow applications to persist data between sessions, handle user input, and
retrieve information efficiently. Node supports a wide range of database types and
drivers. Choosing the right one depends on your project’s scale, complexity, and the
structure of your data.

Modern apps need to store lots of data, like user information, products, or transac‐
tions. Without a database, you’d have to use temporary storage (e.g., in-memory vari‐
ables), which loses data every time the server restarts. A database helps maintain data
consistency, supports complex queries, and scales as your app grows.

In this appendix, we’ll cover:

MongoDB
A NoSQL document-oriented database ideal for flexible, JSON-like data

PostgreSQL
A relational SQL database with powerful features and ACID compliance

317

SQLite
A lightweight file-based SQL database for local development or embedded use

Each section includes installation instructions, connection setup, and usage examples
using both native drivers and popular ORMs like Mongoose and Sequelize.

Core Concepts: Schemas, Tables, Collections,
and Documents
Before diving into the specific databases, here are some key terms and how they map
across database types:

Concept SQL databases NoSQL
Schema Database structure definition (tables, columns) Mongoose model definition for MongoDB

Table Rows of structured records N/A (use collections)

Collection N/A (tables instead) Groups of documents (similar to tables)

Document N/A (rows instead) Individual JSON-like objects

SQL databases use a fixed schema, while NoSQL databases allow
flexible document structures.

MongoDB: NoSQL for Flexible Schemas
MongoDB stores data in collections of JSON-like documents, making it ideal for
applications with unstructured or semi-structured data. The following attributes
make it particularly well-suited for Node applications:

Document-oriented
MongoDB stores data as “documents” instead of using traditional tables. These
documents are in a JSON-like format—simple key-value pairs like { "name":
"Jon", "age": 30 }. This is intuitive for JavaScript developers because it closely
resembles JavaScript objects.

NoSQL database
Unlike traditional SQL databases, MongoDB is flexible and doesn’t require a
fixed structure. This means you can adjust your data models without a lot of has‐
sle, which is ideal for rapidly evolving applications.

Scalability
MongoDB’s horizontal scaling supports growth as your app scales, while Node’s
nonblocking I/O ensures responsiveness.

318 | Appendix C: Working with Databases in Node Projects

Installation
Follow the instructions for your platform:

Platform Install instructions
macOS (Homebrew) brew tap mongodb/brew && brew install mongodb-community

Ubuntu/Debian https://oreil.ly/Lfbg4

Windows https://oreil.ly/PhrUo

About Homebrew for macOS
Homebrew is a popular package manager for macOS that simplifies the installation of
software by automating the process of downloading, unpacking, compiling, and set‐
ting up applications and libraries.

To install Homebrew, open a new terminal window and run:

/bin/bash -c "$(curl \
-fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

To install MongoDB with Homebrew, run the following commands:

brew tap mongodb/brew

brew install mongodb-community@5.0

Adds the official MongoDB Homebrew tap to your Homebrew sources. A tap is a
repository of Homebrew formulas that you can install.

Installs the MongoDB Community Edition version 5.0 using Homebrew.

Windows installation
On Windows, MongoDB is installed using an .msi installer that sets up the database
as a system service for ease of use:

1. Visit the MongoDB Windows Installation page and download the installer.
2. Run the installer by double-clicking the .msi file and following the installation

instructions.

Ensure the option “Install MongoDB as a Service” is selected, so
MongoDB starts automatically after installation.

Working with Databases in Node Projects | 319

https://oreil.ly/Lfbg4
https://oreil.ly/PhrUo

Once installation has completed, open Command Prompt as an administrator and
run the following command to start MongoDB:

net start MongoDB

To stop MongoDB, use:

net stop MongoDB

Linux installation
Follow the official installation instructions to ensure your environment is set up cor‐
rectly for MongoDB. Then, in a command-line window, run the following command
to start MongoDB:

sudo systemctl start mongod

Use the MongoDB service commands sudo service mongod

start to start and sudo service mongod stop to stop MongoDB.

Starting MongoDB Locally
After installing, you can run the MongoDB server using:

mongod --dbpath ~/data/db

Ensure the mongod process is running before connecting to your
database.

Connecting with Mongoose
To connect in your app, you can use the official MongoDB driver or Mongoose (a
higher-level ORM):

import mongoose from 'mongoose';

await mongoose.connect('mongodb://localhost:27017/myapp');

const User = mongoose.model('User', {
 name: String,
 email: String
});

await new User({ name: 'Alice', email: 'alice@example.com' }).save();

320 | Appendix C: Working with Databases in Node Projects

https://oreil.ly/_k-bl

Mongoose provides validation, middleware, and schema enforcement on top of
MongoDB.

PostgreSQL: SQL Power and Structure
PostgreSQL is a popular open source relational database known for reliability, com‐
plex queries, and support for schemas, joins, and transactions.

Installation
Follow the instructions for your platform:

Platform Install instructions
macOS (Homebrew) brew install postgresql

Ubuntu/Debian sudo apt install postgresql

Windows https://oreil.ly/OYrCy

To start the database locally:

pg_ctl -D /usr/local/var/postgres start

You can then use psql CLI or GUI tools like pgAdmin to manage databases.

Connecting with Sequelize
Sequelize is a popular ORM that maps SQL tables to JavaScript models:

import { Sequelize, DataTypes } from 'sequelize';

const sequelize = new Sequelize('postgres://user:pass@localhost:5432/mydb');

const User = sequelize.define('User', {
 name: DataTypes.STRING,
 email: DataTypes.STRING
});

await sequelize.sync();
await User.create({ name: 'Bob', email: 'bob@example.com' });

Sequelize works with PostgreSQL, MySQL, and SQLite using the
same interface.

Working with Databases in Node Projects | 321

https://oreil.ly/OYrCy

SQLite: Lightweight and Embedded
SQLite is a file-based SQL engine, great for prototyping or apps with low concurrency
needs. It doesn’t require a server—data is stored in a .sqlite file.

Installation
Follow the instructions for your platform:

Platform Install instructions
macOS brew install sqlite

Ubuntu/Debian sudo apt install sqlite3

Windows https://oreil.ly/Tcsec

You can create and inspect databases using the CLI:

sqlite3 dev.db
> CREATE TABLE users (name TEXT, email TEXT);
> .exit

Connecting with Sequelize
You can reuse Sequelize for SQLite:

const sequelize = new Sequelize({
 dialect: 'sqlite',
 storage: './dev.db'
});

const Task = sequelize.define('Task', {
 description: DataTypes.STRING,
 completed: DataTypes.BOOLEAN
});

await sequelize.sync();
await Task.create({ description: 'Write book chapter', completed: false });

Alternatively, better-sqlite3 offers a lightweight, synchronous driver without ORM
overhead.

322 | Appendix C: Working with Databases in Node Projects

https://oreil.ly/Tcsec

Local Versus Cloud-Hosted Databases
When to use local databases:

• Prototyping or development on your own machine
• No internet or need for offline persistence
• Embedded apps (e.g., desktop, mobile)

When to use cloud-hosted databases:

• Team collaboration and backups
• High availability, scalability, remote access
• Services like MongoDB Atlas, Amazon RDS (PostgreSQL), or Supabase

Cloud databases often provide easy dashboard access, authentication, scaling, and
backup tools that save setup time in production environments.

Cloud Services
To scale your application beyond local development, each of these databases can be
deployed to cloud-hosted services that offer managed infrastructure, backups, and
high availability.

For MongoDB, MongoDB Atlas provides a fully managed cloud solution with one-
click deployment on AWS, Azure, or GCP. PostgreSQL is widely supported through
services like Amazon RDS, Google Cloud SQL, and Supabase, allowing you to offload
patching, scaling, and security.

SQLite is typically not used in cloud production environments, but for lightweight,
edge-friendly use cases, you can explore Cloudflare D1 or Turso.

Connecting your Node app to these services usually involves updating your database
URL with a secure connection string and adjusting your ORM or driver configura‐
tion. Many cloud providers also offer built-in monitoring, query logging, and integra‐
tion with VPCs or secrets managers to keep your credentials secure.

Working with Databases in Node Projects | 323

https://www.mongodb.com/atlas
https://aws.amazon.com/rds
https://cloud.google.com/sql
https://supabase.com
https://oreil.ly/1jgEj
https://turso.tech

Database Comparison for Node Applications
Here’s a comparison of common databases that can be used with Node applications:

Database Type Strengths Weaknesses Suitable use cases
MongoDB NoSQL

(Document-
based)

Flexible schema, scalable,
JavaScript-friendly

Complex joins, learning
curve

Dynamic data, scalable apps,
JSON-heavy apps

PostgreSQL SQL (Relational) ACID compliance, powerful
queries, robust features

Complex schema changes,
steeper learning curve

Complex queries, structured
data, analytics

SQLite SQL (Embedded) Lightweight, no server
required, simple setup

Limited scalability, single
writer

Small projects, prototyping,
CLI tools

MySQL SQL (Relational) Easy setup, widely supported Limited advanced features Web apps, structured data

Redis NoSQL (Key-value) Extremely fast, excellent for
caching

Not persistent by default,
memory-limited

Caching, real-time data,
sessions

Choosing a persistence layer
Consider these features when making the choice for your project:

Feature MongoDB PostgreSQL SQLite
Schema flexibility High Medium (rigid) Medium (rigid)

Hosting Local + Cloud (Atlas) Local + Cloud (RDS, Supabase) Local only

Query power Medium (JSON) High (joins, indexes) Low to Medium

Use case JSON-heavy apps Relational logic, analytics Prototyping, CLI tools

Each database has strengths and trade-offs. This book provides working examples for
all three, and you’ll encounter them in different projects throughout the chapters.

While databases are essential for long-term data persistence and structured querying,
many modern Node applications also rely on high-speed supporting tools to improve
responsiveness and scalability. Two common additions are Redis and RabbitMQ—
used not for primary storage, but for temporary data, background processing, and
asynchronous communication. These tools complement your main database by ena‐
bling fast caching, efficient task queues, and real-time messaging.

Redis: In-Memory Speed for Caching and Queues
Redis is an in-memory data store often used for caching, session storage, and light‐
weight message queues. It excels at speed and simplicity, making it a great fit for
performance-critical parts of your Node app, such as storing temporary data or man‐
aging job queues.

324 | Appendix C: Working with Databases in Node Projects

Redis supports multiple data types including strings, lists, sets, and hashes. Many
Node frameworks integrate well with Redis for caching, Pub/Sub, and background
jobs.

Installation
Install Redis using your platform’s package manager:

Platform Install instructions
macOS (Homebrew) brew install redis

Ubuntu/Debian sudo apt install redis

Windows https://oreil.ly/ZdMWj

To verify Redis is working, start the Redis server and connect using the CLI:

redis-server

Then in another terminal:

redis-cli
> SET test "hello"
> GET test

macOS
Use Homebrew to install and run Redis:

brew install redis
brew services start redis

You can now connect via redis-cli.

Ubuntu/Debian
Install and start the Redis server:

sudo apt update
sudo apt install redis
sudo systemctl start redis

Test with:

redis-cli ping

It should respond with PONG.

Working with Databases in Node Projects | 325

https://oreil.ly/ZdMWj

Windows
Redis does not officially support Windows, but you can run it using Windows Sub‐
system for Linux (WSL) or Docker. For Docker:

docker run -p 6379:6379 redis

Then connect using a Redis client or redis-cli.

Connecting from Node
To connect from a Node app, use the ioredis or redis package.

npm install ioredis

Example usage:

import Redis from 'ioredis';

const redis = new Redis();

await redis.set('greeting', 'Hello, Redis!');
const value = await redis.get('greeting');
console.log(value);

Redis is ideal for:

• Caching API responses or DB queries
• Storing session data for logged-in users
• Implementing real-time features using Pub/Sub
• Managing lightweight task queues

Using Redis as a Queue
You can use Redis lists to implement a basic queue. To add a job:

await redis.lpush(
 'jobs',
 JSON.stringify({
 type: 'email',
 to: 'alice@example.com',
 })
);

To process jobs:

while (true) {
 const job = await redis.rpop('jobs');
 if (job) {
 const data = JSON.parse(job);
 console.log('Processing:', data);

326 | Appendix C: Working with Databases in Node Projects

 }
}

For production apps, consider using a library like Bull or Redis-
based job frameworks that add features like retries and rate limits.

Redis works well for simple queues and temporary job handling, but when your
application requires more robust messaging features—such as delivery guarantees,
routing, or workload distribution—a dedicated message broker is a better fit. Rab‐
bitMQ fills that role, offering a more structured approach to managing background
tasks and communication between services.

RabbitMQ: Queue-Based Messaging for Node Apps
RabbitMQ is a message broker that helps your application scale by offloading tasks to
background workers. In Chapter 11, you’ll learn how to integrate RabbitMQ into
your Node applications. Instead of performing time-consuming operations in the
main request cycle, you can publish messages to a queue and let other services pro‐
cess them. This improves performance and decouples different parts of your system.

Installation
RabbitMQ requires the Erlang runtime, which is included automatically on most
platforms when you install RabbitMQ.

Platform Install instructions
macOS (Homebrew) brew install rabbitmq

Ubuntu/Debian sudo apt install rabbitmq-server

Windows https://oreil.ly/NxhHh

To check if RabbitMQ is running, use:

rabbitmqctl status

macOS
Install RabbitMQ using Homebrew:

brew install rabbitmq
brew services start rabbitmq

To enable the web-based UI:

rabbitmq-plugins enable rabbitmq_management

Working with Databases in Node Projects | 327

https://oreil.ly/NxhHh

Visit http://localhost:15672 and log in with guest / guest.

Ubuntu/Debian
Install RabbitMQ with:

sudo apt update
sudo apt install rabbitmq-server
sudo systemctl start rabbitmq-server

Then enable the management plugin:

sudo rabbitmq-plugins enable rabbitmq_management

The dashboard will be available at http://localhost:15672.

Windows

1. Install the Erlang runtime.
2. Download the RabbitMQ installer.
3. After installation, open a terminal and run:

rabbitmq-plugins enable rabbitmq_management
rabbitmq-service.bat start

You can then access the management UI at http://localhost:15672.

Connecting from Node
Use the amqplib package to send and receive messages:

npm install amqplib

Example: sending an order to a queue

import amqp from 'amqplib';

const conn = await amqp.connect('amqp://localhost');
const channel = await conn.createChannel();
const queue = 'orders';

await channel.assertQueue(queue);
channel.sendToQueue(queue, Buffer.from('coffee'));

Example: consuming from a queue

import amqp from 'amqplib';

const conn = await amqp.connect('amqp://localhost');
const channel = await conn.createChannel();
const queue = 'orders';

await channel.assertQueue(queue);

328 | Appendix C: Working with Databases in Node Projects

http://localhost:15672
http://localhost:15672
https://oreil.ly/SlUZP
https://oreil.ly/84dTR
http://localhost:15672

channel.consume(queue, msg => {
 if (msg) {
 console.log('Received:', msg.content.toString());
 channel.ack(msg);
 }
});

Use RabbitMQ to pass messages between microservices, offload
work from your main server, or implement task queues.

Next Steps
Throughout this book, you’ll use each of these databases in real projects—from a task
manager with SQLite to a full REST API backed by MongoDB and an authentication
system with PostgreSQL. You’ll also build systems that take advantage of Redis for
caching and temporary data, as well as RabbitMQ for managing background jobs and
inter-service communication.

Make sure you’ve installed at least one database engine and driver before proceeding
to the next chapter. If you’re running projects in Docker, check the docker-
compose.yml files—we’ve included preconfigured services for each database and
queue to help you start quickly.

Some chapters in this book require a database or queueing system.
Setting up at least one now will help you follow along smoothly
later.

Summary
In this appendix, you learned:

• How to choose and set up databases like MongoDB, PostgreSQL, and SQLite in
Node projects

• When to use supporting tools like Redis and RabbitMQ for caching and back‐
ground processing

• The trade-offs between local and cloud-hosted services for development and
deployment

Working with Databases in Node Projects | 329

APPENDIX D

Working with the Code Examples and
Containerizing Projects

Every chapter in this book includes working Node code examples to reinforce the
concepts you’re learning. These are organized, tested, and maintained in a public Git‐
Hub repository. This appendix shows you how to access the code, run it locally, and
optionally use Docker to simplify setup—especially if you’re working in isolated envi‐
ronments or across multiple machines.

Accessing the GitHub Repository
The official GitHub repository for this book’s code examples is structured by chapter.
Inside each chapter folder, you’ll find subdirectories for each project or topic section,
such as:

oreilly-node-projects-code/
├── chapter_1/
│ ├── 1_1/
│ ├── 1_2/
│ └── ...
├── chapter_2/
│ └── ...

First section of Chapter 1

Second section of Chapter 1

This structure makes it easy to navigate and find the code relevant to each chapter.
Additionally, you’ll be able to work through the chapters in more digestible segments.
Each project folder contains its own package.json file, so you can install dependencies
and run scripts without affecting other projects.

331

https://oreil.ly/node-projects-code

To get started, you can either clone the repository or fork it to your own GitHub
account. This allows you to experiment with the code, make changes, and save your
progress.

To clone the repo (recommended for most users), navigate in your command line to a
directory where you want to store the code on your computer and run the following
command:

git clone https://github.com/JonathanWexler/oreilly-node-projects-code.git

Then navigate into any chapter or project subdirectory and follow the instructions in
the README file for that section. For example, to run the first project in Chapter 1,
enter the following commands in your command line:

cd oreilly-node-projects-code/chapter_1/1_1
npm install
npm start

You may instead want to fork the repository to your own GitHub account. This
allows you to save your changes and push your own modifications as you work
through chapter projects. To do this, navigate to GitHub and click Fork. Then click
the name of your own GitHub account.

This will create a copy of the repository in your account. You can then clone your
forked repository to your local machine using the following command:

git clone https://github.com/your-username/oreilly-node-projects-code.git

After cloning, navigate into any chapter or project subdirectory and follow the
instructions in the README file for that section.

Each folder is self-contained and includes its own package.json, so
you don’t have to install global dependencies or run any scripts
outside the project’s scope.

You may now follow along with the book, running each project as you go. If you
encounter any issues, feel free to open an issue on the GitHub repository. The next
section covers how to run the code examples using Docker, which can simplify setup
and ensure consistency across environments.

Running Projects with Docker
Node is lightweight to install—but managing multiple projects, environments, or OS-
level dependencies can still be a hassle, especially across teams or on new machines.

Docker solves this problem by allowing you to run each project inside an isolated
container, using a defined environment. This ensures that:

332 | Appendix D: Working with the Code Examples and Containerizing Projects

• Everyone runs the same Node version, regardless of local setup.
• You don’t pollute your global environment with different toolchains or config

files.
• Setup time is reduced—just clone the repo and run the Docker container.

You can run any project from this book using Docker. Each chapter folder includes a
docker-compose.yml file that launches all projects in isolated containers with minimal
setup.

To reduce repetition, some users may prefer one root-level docker-
compose.yml that references all chapters. However, this book pro‐
vides one per chapter for simplicity.

To get started, you’ll need to install Docker. Follow the instructions for your operat‐
ing system:

Platform Install instructions
macOS (Intel/Apple Silicon) https://oreil.ly/l1wXA

Windows 10/11 (Pro, Home, WSL2) https://oreil.ly/TSk16

Ubuntu/Debian Linux https://oreil.ly/1Rznz

After installation, verify that Docker works by running the following commands in
your command line:

docker --version
docker compose version

On Windows, Docker Desktop requires WSL2 (you’ll be prompted
during install).

With Docker installed, you can now run the code examples in this book using con‐
tainers through the repository you cloned in the previous section. Each chapter folder
contains its own docker-compose.yml file. For example, to run the first project in
Chapter 1, navigate to the chapter folder in your command line and run cd chap
ter_1 and then docker compose up.

This command will build and start the container for that project. You can also run
docker compose up -d to run it in detached mode (in the background). You’ll see
output indicating the container is running, along with any logs from the application.

Working with the Code Examples and Containerizing Projects | 333

https://oreil.ly/l1wXA
https://oreil.ly/TSk16
https://oreil.ly/1Rznz

If you encounter any issues, make sure Docker is running and that
you have the correct permissions to run Docker commands. If you
need to rebuild the container after making changes, you can run
docker compose build followed by docker compose up.

Each project will build and run in its own container. You can open the apps in your
browser using the port listed in docker-compose.yml—for example, http://localhost:
3001, http://localhost:3002, etc. When you’re done, you can stop the containers with
docker compose down. This will remove the containers but keep the images, so you
can start them again later without rebuilding.

The following is an example of a Dockerfile for a Node project. This Dockerfile
defines the steps for creating a Docker image for a Node application. It starts with an
official Node 20 base image, ensuring a consistent and up-to-date runtime. The WORK
DIR instruction sets the working directory inside the container to /usr/src/app,
where all subsequent commands will execute. The COPY . . command copies the
project files from your local machine into the container. Next, npm install installs
the dependencies defined in package.json. Finally, the container is configured to run
npm start by default when it launches, which starts your application based on the
script defined in your package.json. This setup provides a clean, isolated environment
for running any Node project.

FROM node:20
WORKDIR /usr/src/app
COPY . .
RUN npm install
CMD ["npm", "start"]

You may choose to add a .dockerignore file to exclude unnecessary
files from the image. This is similar to .gitignore but for Docker. For
example, you might want to ignore node_modules, npm-debug.log,
and other local files that aren’t needed in the container.

You may also use commands to build and run a Docker container for a specific
project. For example, the command docker build -t chapter_1-1 . creates a
Docker image from the current directory using the Dockerfile, and tags it with the
name chapter_1-1. The command docker run -p 3000:3000 chapter_1-1 starts a
container from that image and maps port 3000 inside the container to port 3000 on
your local machine, making the app accessible at http://localhost:3000. This approach
is useful for running one project at a time with full control over its network and run‐
time environment.

334 | Appendix D: Working with the Code Examples and Containerizing Projects

http://localhost:3001
http://localhost:3001
http://localhost:3002
http://localhost:3000

You’ll notice that the GitHub repository includes a docker-compose.yml file in each
chapter folder. This file defines how to run all projects in that chapter as separate con‐
tainers. You can use Docker Compose to manage multiple containers easily.

For example, the Chapter 1 docker-compose.yml looks like the following:

version: "3.9"
services:
 chapter1_1:
 build: ./chapter_1/1_1
 ports:
 - "3000:3000"
 chapter1_2:
 build: ./chapter_1/1_2
 ports:
 - "3001:3000"

In this way, each chapter will be available on its own local port, and Docker will han‐
dle environment isolation, dependency management, and consistent Node versions.

Benefits of Containerizing Node Projects
Using Docker has several advantages:

Consistency
Everyone runs the same code in the same environment.

Simplicity
No need to manually install Node, npm, or any global dependencies on your
computer directly.

Isolation
Each project runs independently with its own filesystem and dependencies.

Portability
Run the same container in CI/CD, development, or even cloud platforms like
AWS or Vercel.

Even if you’re new to Docker, the examples in this book are designed to make it easy
to get started. Once you set up one chapter using a Docker container, the rest follow
the same pattern.

Next Steps
As you follow along in this book, feel free to clone, fork, or containerize the examples
to match your preferred development workflow. Whether you’re coding locally or
running containers, the examples are designed to work in isolation and be easy to
start. You’ll find that having a consistent environment—especially when switching

Working with the Code Examples and Containerizing Projects | 335

between chapters—will save time and prevent many of the typical setup issues devel‐
opers run into.

For more advanced Docker usage, such as volume mounting, environment-specific
overrides, or production builds, check out the official Docker and Node
documentation.

Summary
In this appendix, you learned:

• How to clone or fork the official GitHub repository and run code examples
locally for each chapter

• How to containerize projects using Docker and docker-compose for consistent,
isolated environments

• The benefits of using containers to simplify setup, manage dependencies, and
ensure repeatable development workflows

336 | Appendix D: Working with the Code Examples and Containerizing Projects

https://oreil.ly/MciXA
https://oreil.ly/MciXA

APPENDIX E

Setting Up Developer Accounts
and API Credentials

Many of the projects in this book rely on external services like OpenAI, Google
Cloud, GitHub, and MongoDB Atlas. To use these services in your own development
environment, you’ll need to create accounts, generate API keys or tokens, and config‐
ure your applications to use them securely.

This appendix walks you through the full process—from signing up and locating cre‐
dentials to storing them safely in environment files and understanding rate limits.
Along the way, you’ll learn the difference between API keys and OAuth tokens, how
to avoid exposing sensitive data, and how service quotas might affect your apps.

These tools are essential in modern Node development, and setting them up early will
help avoid roadblocks as you follow along. The sections below are organized in the
order each service is used in the book, so you can reference them as needed during
the relevant chapters. But first, let’s cover the basics of working with API keys and
tokens.

Working with API Keys
Modern development frequently involves integrating with third-party services—such
as databases, payment providers, AI models, or mapping platforms—via APIs (Appli‐
cation Programming Interfaces). To securely interact with these services, you typi‐
cally need to create an account and authenticate your requests using API tokens.

An API token is a unique string of characters that acts like a password for program‐
matic access. When your application sends requests to an external service, it includes
the API token to verify its identity and ensure the request is authorized. Tokens are

337

usually tied to specific accounts or projects, and may include permissions to restrict
what actions can be performed.

API tokens are considered confidential and should be stored securely—commonly
in .env files that are not committed to version control. Each user or application gener‐
ally receives a unique token, which may be scoped to limit access (for example, read-
only versus write access). Many platforms allow you to regenerate or revoke tokens if
they become compromised or if access needs to change.

Creating accounts on external platforms (such as OpenAI, Google Cloud, GitHub, or
MongoDB Atlas) is necessary for several reasons. First, authentication is critical: APIs
must know which user or application is making a request to prevent abuse and ensure
accountability. Second, API tokens allow these services to track usage, enforce quotas,
and apply billing based on the volume of requests. Third, they enable precise access
management, such as restricting actions to specific users or resources. Finally, this
system enhances security by making it possible to isolate, monitor, and control access
to sensitive functionality or data.

API keys are long strings used like passwords to identify your app to a service. OAuth
tokens are more secure and user-specific—used when your app acts on behalf of a
user (like accessing their GitHub profile). Many APIs support both methods, but this
book defaults to API keys where possible for simplicity.

Never hardcode API keys into your code. Instead, use a .env file in
each project. Make sure to install dotenv for each project for which
you intend to store private keys.

Storing keys in a .env file not only keeps them out of your codebase but also makes it
easier to manage different environments, like development and production.

Always add .env to your .gitignore to avoid leaking secrets.

The following sections will walk you through account creation and API key genera‐
tion for services you may use in this book, starting with GitHub, which is essential for
version control and collaboration.

338 | Appendix E: Setting Up Developer Accounts and API Credentials

GitHub
GitHub enables developers to collaborate on code in real time, maintain a detailed
history of project changes, and manage contributions from multiple users. It also
integrates with automation tools like GitHub Actions for CI/CD, and allows you to
host documentation, static websites, and wikis directly from your repositories. For
individuals, GitHub serves as a portfolio of coding projects and a platform to contrib‐
ute to open source software.

Appendix D provides steps for you to clone this book’s code from its GitHub public
repository. You can do that without a GitHub account. However, if you’d like better
control over your own progress throughout the book and changes you make along
the way, you’ll benefit from having a GitHub account and GitHub command-line
tools.

To create an account, follow these steps:

1. Visit https://github.com.
2. Click the link labeled “Sign up” in the top-right corner.
3. Enter a valid email address and click Continue.
4. Create a username and a secure password. Alternatively, you may be asked to set

up a passcode with your browser.
5. Verify your email address using the code sent to your inbox.
6. Choose the free tier plan to get started.
7. Complete the onboarding preferences requested.

Once your account is created, you can properly fork and clone other repositories,
such as the code for this book. You may also star and watch projects you care about to
be notified of updates and changes. Most importantly, you may create your own repo‐
sitories to store code and personal projects.

To use GitHub from the command line, you’ll want to set up either SSH keys or
Personal Access Tokens (PATs). Go to GitHub’s SSH keys settings page and click
“New SSH key.” Generate a key on your local computer by running ssh-keygen -t
ed25519 -C "your_email@gmail.com". Then add the contents of ~/.ssh/
id_ed25519.pub to GitHub.

Alternatively, to access private repos or push to GitHub using HTTPS, visit GitHub’s
personal access tokens settings page and click “Generate new token (classic).” Select
scopes like repo, workflow, and read:user, depending on what features your project
needs, and save the token securely—you won’t be able to view it again.

Setting Up Developer Accounts and API Credentials | 339

https://github.com
https://oreil.ly/O-n7r
https://oreil.ly/PAZmC

MongoDB Atlas
Creating a MongoDB Atlas account gives you access to a fully managed, cloud-hosted
version of MongoDB—one of the most popular NoSQL databases. This is especially
helpful for developers building modern web applications, as it allows you to store
JSON-like documents without needing to install or manage database infrastructure.
Atlas provides features like automatic backups, global clusters, monitoring
dashboards, and built-in security. By using a free-tier cluster, you can develop and
test applications with real-world database functionality, and easily scale later if
needed.

You may also choose to install MongoDB locally on your machine,
but using Atlas is recommended for simplicity and ease of use.

Refer to the MongoDB documentation or follow these steps to create a free
MongoDB Atlas account:

1. Visit the Atlas Database web page and click “Start Free.”
2. Sign up using your email or a GitHub/Google account.
3. After verifying your email, log in to the dashboard.
4. Click “Build a Cluster,” choose the free M0 tier, select a region, and create it.
5. Once the cluster is created, go to the “Database Access” tab and click “Add New

Database User.”
6. Set a username and password, and choose “Read and write to any database.”
7. Go to the “Network Access” tab and click “Add IP Address.”
8. Choose “Allow Access from Anywhere” (0.0.0.0/0). You can restrict this later

for added security.
9. When ready, click “Connect” and “Connect your application.”

10. Copy the provided connection string (e.g., mongodb+srv://<user>:<pass

word>@cluster...).
11. Paste this string into your .env file for your application (e.g., MONGODB_URI=).

You can use the MongoDB Compass GUI to visualize and manage
your database. Download it from the MongoDB website.

340 | Appendix E: Setting Up Developer Accounts and API Credentials

https://oreil.ly/cxBTH
https://oreil.ly/bx3Qz
https://oreil.ly/wrs4P

With your connection string in place, you can now use MongoDB Atlas in your Node
applications without the need to install MongoDB locally.

OpenAI API
Creating an OpenAI API account gives you access to powerful language and code
generation models like GPT-4 and Codex. These tools can be used to build intelligent
applications, including chatbots, code assistants, content generators, and more. The
API allows you to send text prompts and receive dynamically generated responses,
making it ideal for enhancing user interfaces with AI capabilities. A free-tier account
provides limited usage credits so you can start experimenting immediately.

You may be asked to provide a credit card for verification, but you
won’t be charged unless you exceed the free-tier limits.

Visit the OpenAI website and follow these steps to create a free OpenAI API account:

1. On the OpenAI website, sign up using your email or a Google/Microsoft
account.

2. After verifying your email and phone number, you’ll be taken to the OpenAI
dashboard.

3. Navigate to the API keys page and click “Create new secret key.”
4. Copy the generated key and store it in a safe place. This key will not be shown

again.
5. Add the API key to your project’s .env file (e.g., OPENAI_API_KEY=).

You can monitor your usage, quotas, and billing on the Usage page.

With your API key configured, you can begin calling OpenAI’s models from your
application using HTTP requests or client libraries like the official openai Node
package.

Setting Up Developer Accounts and API Credentials | 341

https://oreil.ly/4uumR
https://oreil.ly/zw5oL
https://oreil.ly/pkNPt

OpenAI’s API is not open source and requires an internet connec‐
tion to function. You’ll need to manage your API key securely to
avoid unauthorized usage.

Google Gemini API
Creating a Google Gemini API account through the Google Cloud Console gives you
access to Google’s family of multimodal AI models (formerly Bard), capable of rea‐
soning across text, images, code, and more. These models can be used in advanced
applications such as intelligent assistants, image interpretation tools, and AI-
enhanced developer platforms. The Gemini API is part of Google AI Studio and inte‐
grates with the Vertex AI platform for enterprise-level workflows.

Accessing Gemini requires enabling billing on a Google Cloud
project, but you may also use a free-tier within limited usage.

Visit Google AI Studio’s API Keys page or follow these steps to create a Google
Gemini API account and get started:

1. Go to the Google Cloud Console and sign in with your Google account.
2. Click “Create Project” to make a new project or select an existing one.
3. Navigate to the API Library and search for “Gemini API.”
4. Click the API and enable it for your selected project.
5. Go to the Credentials page and click “Create Credentials.”
6. Choose either an API key (for basic usage) or OAuth 2.0 credentials (for user-

authenticated flows).
7. Copy the generated key and store it in your .env file (e.g., GEMINI_API_KEY=).
8. Optionally, visit the API Keys page to generate a key directly via AI Studio.

You can test prompts in the browser using the Gemini playground.

342 | Appendix E: Setting Up Developer Accounts and API Credentials

https://oreil.ly/76Rs7
https://oreil.ly/aiBGs
https://oreil.ly/-Gi7F
https://oreil.ly/5KvXs
https://oreil.ly/76Rs7
https://oreil.ly/CRFoB

Once your key is in place, you can begin calling the Gemini models in Node as
described in the book or in the Gemini API docs.

Rate Limits and Quotas
When working with APIs—especially third-party services like OpenAI, Google Gem‐
ini, or MongoDB Atlas—it’s crucial to understand how rate limits and quotas affect
your application’s stability and reliability. These limits are imposed by providers to
ensure fair use of shared infrastructure and to prevent abuse or system overloads.

Rate limits define how many requests you can make in a short time frame, typically
per second, minute, or hour. Exceeding the rate limit often results in an HTTP 429
Too Many Requests response. Some APIs also include a Retry-After header,
instructing how long to wait before retrying.

Quotas define your total usage capacity over a longer period—usually per day or per
billing cycle. This may include:

• Total number of API calls
• Number of tokens generated
• Bandwidth used
• Requests per model or endpoint

If you exceed your quota your requests may fail until the quota resets, you might be
automatically throttled (slowed down), or you could incur overage charges if on a
paid plan.

Always design your applications with retry logic, exponential
backoff, and graceful degradation in case of rate limiting. For
example, queue noncritical requests or reduce frequency under
heavy usage.

You can monitor rate limits and quotas in your provider’s dashboard:

• OpenAI
• Google Cloud (look under “IAM & Admin” > “Quotas”)

Setting Up Developer Accounts and API Credentials | 343

https://oreil.ly/GpBY7
https://oreil.ly/1unBl
https://oreil.ly/XBqEa

Summary
Modern Node.js development often involves connecting to third-party services using
API keys, tokens, and secure credentials. In this appendix, you learned how to set up
accounts with providers like GitHub, MongoDB Atlas, OpenAI, and Google Cloud, as
well as how to generate, store, and manage the credentials required to access their
APIs.

By following best practices—such as using .env files, avoiding hardcoded secrets, and
monitoring rate limits—you can safely integrate external services into your applica‐
tions. These setup steps will streamline your experience across the projects in this
book and prepare you for working with APIs in real-world environments.

344 | Appendix E: Setting Up Developer Accounts and API Credentials

Index

Symbols
$ (dollar sign) variable, 174
(Fetch API), 168
(HTML

fetching website’s HTML content, 168
(scraping web pages and using data in an app

fetching HTML content from external
page), 168

(text function, converting HTML content to
plain text), 168

@fastify/formbody plugin, 98
@fastify/session plugin, 208

A
Account class

adding authenticate method to, 205
adding genStrategy method to, 209
adding passportAuthenticate method to,

206
adding serializeUser and deserializeUser

methods to, 208
creating JavaScript class extending Sequel‐

ize.Account model, 198
setPassword function, 203

account information, 196
Account Sequelize model

Node app fully configuring to use for regis‐
tering and authenticating new accounts,
211

setting up in Account.js, 201
acknowledgements

message ack for reliable queue processing,
239

adaptive hashing, 200

Advanced Message Queuing Protocol (AMQP),
237

advanced Node concepts, 8
aggregate function, defining, 86
AI (artificial intelligence), 113

(see also machine learning)
AI APIs and LLMs, 278
AI-powered learning assistant, building,

273-299
customizing the assistant, 280-282

guiding AI to teach programming, 281
Google’s Gemini API, using for LLM, 274
preparation for technical interviews, 274
prompt engineering, crafting effective AI

instructions, 280
setting up database and user authentication,

285-298
context-aware responses, 295
querying AI assistant with user learning

profiles, 293
user registration and login system,

288-293
setting up Fastify server for, 282-285
system architecture for phase 1 and phase 2,

274
testing AI API request to Gemini, 276

AJV schema validator, 11
Amazon SQS, 234
AMQP (Advanced Message Queuing Protocol),

237
amqp.connect function, 236
amqplib package, installing, 235
API keys, working with, 337
APIs, 8, 165

345

about, 91
authentication to, 181
authentication, using JWTs for, 213-217
content aggregator integrating RSS feeds

and, 77
creating, using Fastify for rapid response

time, 10
library API project, 92-112

programming API layout, 96-99
routes and actions, adding to the app,

99-104
rate limits and quotas for, 343

API_URL, 276
app object (Fastify), 185
app variable, 223
app.get function, 41
app.listen function, 97, 152, 224
app.post method, 194
appendFileAsync function, 24
Argon2 key derivation function, 200
asciichart package, 133

methods, adding to sentiment analysis visu‐
alization, 134

async/await functions, 23, 124
adding to sentiment analysis app for journal

entries, 130
advantages for use in coding, 203
for Redis publish/subscribe system, 231
Redis publish/subscribe clients, 231

asynchronous functions
connecting to MongoDB with, 70
using promisify to wrap, 23
wrapping in promise, 22

asynchronous programming, 8
authentication

app authentication, 181
(see also login authentication Node app)

authenticating a user logging in, 205
defining authentication page variables in

index.js, 192
defining strategy for user accounts, 202
to SQLite database connection, 107
using JWTs for API authentication, 213-217

axios package, 253, 276

B
bcrypt hashing function, 200
bcrypt hashing package, 57, 288

installing and using, 60

testing functions in index.js, 61
block (blockchain), 249

mining a block, 260
Block class, 257

defining, 258
Blockchain class, 257, 260

key steps in mining process, 260
blockchain marketplace for music distribution,

245-272
about blockchain, 247
adding /register-node and /sync-peers end‐

points, 255
broadcast function, 252
broadcastSelf and registerNode functions in

marketplace node, 253
coding the blockchain, 257-264

creating broadcastBlockchain function,
263

creating calculateHash function, 259
defining Block class, 258
defining Blockchain class, 261

importing fastify package and configuring
web server, 250

initializing new MarketplaceNode instance,
254

integrating transactions
defining /buy route, 268
defining /payment route, 265
defining /songs route, 269
defining mineBlock method, 266

new marketplace node, 251
Node classes representing fundamental

components, 249
planning the application, 246
running real-world example, 270
starting node servers, command-line out‐

put, 256
blockchain, defined, 248
body-parsing middleware, 225
Book model, defining and synchronizing with

SQLite database in library API app, 108
Book ORM object, accessing, 109
Bootstrap CSS library, 188
broadcasting in blockchains, 252
Buffer.from method, 237
bufferBytes.toString function, 204
buffers, 9

346 | Index

C
callbacks, 9

callback hell, 23
Fastify providing for library API, 98
function called when event occurs, 230
processing by main thread of event loop, 38

campaign mail templates, 159
catch-all error-handling middleware, 99
channels

channel.assertQueue method, 236
creating on RabbitMQ server, 236

cheerio package, 173
cheerio, using to parse HTML content, 174
Chrome’s V8 JavaScript engine, 4
classes (Node) in blockchain, 249
clients (Redis), creating, 231
cloud-hosted databases

expanding to, 323
local databases versus, 323

clustering, using for Node scalability, 10
code examples, working with, 331

accessing GitHub repository, 331
coffee orders app

queueing system for
queues in JavaScript), 226

coffee orders app, queueing system for, 219-244
adding a Redis server, 229-233
adding internal queue to handle order

requests, 220
adding route to mimic delayed request, 225
adding routes to place order in the queue,

227
configuring the application, 224
installing Fastify, 223
integrating robust messaging system,

233-243
middleware parsing incoming requests,

adding, 224
queue order count endpoint, adding, 228
Redis server to manage order requests, 222
upgrading with RabbitMQ messging queue

server, 222
collections, 318
comma-separated values files (see CSV files)
command-line interface (CLI)

command-line prompts for user input, 27
creating for computer prompt translating

user input into CSV, 23

creating local command-line password
manager, 59-68

computer prompt to create tabular format, or
CSV, of data (example project), 16-21
working with external packages, 28-31

confirmationMail template function, 157
consensus (blockchain), 248
console.log function, 83
console.table function, 83
containerizing projects, 332-336

benefits of, 335
running projects with Docker, 332-335

content aggregator integrating RSS feeds and
APIs, 77-90
adding custom items to aggregator, 88-89
blueprint for application, 78
building the aggregator, 84-87
Fetch API making request to Bon Appétit

RSS feed URL, 81
initializing the app, 80
parsing and reading from RSS feed, 82-84

context injection (prompt engineering), 280
context-aware responses (AI assistant), 294
cookies, 208
createTransport function (nodemailer), 143
CRUD (create, read, update, delete) actions,

100
library API app connected to database, 109

crypto library, 203
crypto.pbkdf2 hashing algorithm, 200
crypto.pbkdf2Sync function, 204, 205
cryptographic puzzle (blockchain), 248
CSS

Bootstrap CSS library, 188
using to style restaurant web application UI,

52-54
CSV files, 16

saveToCSV method in Person class (exam‐
ple), 24

translating user input to CSV, 21-27
csv-writer package, installing and working

with, 29
cURL utility

commands testing routes in library API app
connected to database, 110

running against library API server, 104
using to post drink order, 225

Index | 347

D
data modules, converting restaurant data into,

45
databases, 8

connecting a database to library API app,
105-111
defining Book in books.js, 108
setting up SQLite database configura‐

tion, 107
updating routes with Book model, 109

connecting database to email marketing
app, 153-158

database queries for sentiment analysis app,
129

ORM to map JavaScript objects to SQL
databases, 106

Sequelize models allowing interaction with,
128

setting up database for AI learning assistant,
285-288

user authentication for AI learning assistant
database, 288-293

working with in Node projects, 317-329
advantages of using databases, 317
choosing database for a project, 324
comparison of databases, 324
expanding to cloud-hosted databases,

323
local versus cloud-hosted databases, 323
MongoDB, 318
PostgreSQL, 321
schemas, tables, collections, and docu‐

ments, 318
SQLite, 322

datastore, using Redis as, 230
DataTypes class (sequelize), 127
Debian/Ubuntu Linux

installing Node, 7
installing VS Code, 3

DELETE method (HTTP), 41, 93
flow of data in DELETE request, 95

deserialization, 196
deserializeUser function, 207
deserializeUser method (Account), 208
destructuring assignment, 21
developer accounts

API keys, working with, 337
Google Gemini API account, 342
MongoDB Atlas, 340

OpenAI API account, 341
rate limits and quotas for APIs, 343
setting up GitHub account, 339

developer, Node, becoming, 8
development

advanced Node concepts, 8
mastering for Node, 8

development tools, setting up, 311-316
VS Code, 311
VS Code extensions, 312

directories
email marketing service with database, 153
project directory structure, 18
recommended directory structure, 303
source code directory, 17

Docker, 329
running projects with, 332-335

Dockerfiles, 334
document-oriented database manager (Mon‐

goDB), 68
documents, 318
dotenv package, 276

E
email marketing service, 139-163

adding framework for, 148-153
connecting a database to the app, 153-158
crucial parts of the app, 141
marketing pixel for email engagement,

implementing, 158-160
planning the application, 140
programming your mailer, 142-148
setting up mailer using Google, 144
task scheduler, implementing, 160-162

Embedded JavaScript (EJS) templates, using
with Fastify to build web application UI,
47-51

endpoints (API), 92
.env file, storing API keys in, 338
environment variables

for AI-powered learning assistant, 276
starting Fastify server with, 282

error handling
for email generation process, 146
in library API router’s GET route, 101

errors
awaiting prompt reply, 124
catch-all error-handling middleware, 99

ES Modules (ESM), 305, 307

348 | Index

ES6 export default syntax, 45
ES6 module (import/export) syntax, 20
event listener for Redis client, 230
event loop, 9

blocking, 37
challenges to, addressed by queues, 219
Fastify leveraging, 37
handling multiple tasks concurrently, 11

event-driven architectures, support by Redis
pub/sub messaging system, 230

exports, ES6 export default syntax, 45
Express

comparison with Fastify, 12
ExtractJwt class, 214

F
Fastify, 10, 36, 96

adding JSON and URL-encoded parsing
support to app, 97

adding project configurations for coffee
orders app, 235

comparison with Express, Koa, and Hapi
frameworks, 12

in email marketing service, 141
expecting views folder for templates, 188
exploring starter template, 13
handling JSON requests, 97
installing as web application framework for

coffee orders app, 223
instantiating Fastify app and starting listen‐

ing for requests, 96
low-overhead architecture, 11
modular plug-in system, 11
parsing middleware functions, 97
setting up Fastify server for AI-powered

learning assistant
starting up server with environment

variables, 282
setting up Fastify server for AI=powered

learning assistant, 282-285
handling AI queries, 283

SSR, building HTML files with Handlebars,
184

using to create mail server, 150
working with, restaurant web server project,

39-43
building UI using EJS templates, 47-51

Fastify login authentication

successful implementation with Passport.js,
213

Fetch API, 81
few-shot prompting, 280
file, checking for existence of before appending

to it, 25
filesystems, fs module for interaction with, 20
force: true option for Book.sync, 108
format prompting (output structuring), 281
forms

login form, buildiing, 188-196
frameworks (Node)

comparison between Fastify, Express, Koa,
and Hapi, 12

Fastify and others, 36
fs (filesystem) module, 20

G
Gemini API, 273

connecting to, 276
developer account with, 342
sending user prompts to, 276

GEMINI_API_KEY, 276
genesis block in blockchain, 261
genStrategy function, 209
GET method (HTTP), 41, 93

flow of data in GET request, 94
GET campaign tracking route for email

marketer, 159
GET request route for books in custom

booksRouter, 100
GET route for /order-count path in coffee

orders app, 228
getting started with a Node app, 15-21

computer prompt to create tabular format,
or CSV, of data, 16

tools and applications used, prerequisites
for, 15, 35, 58, 78, 92, 114, 140, 166, 182,
220, 246, 274

GitHub repository for this book, 331
GitHub, setting up account with, 339
Gmail API app, 144
Google accounts and Google Cloud Console,

276
Google, signing in to email via, 144
Google’s Gemini (see Gemini API)
graphs

adding to sentiment analysis of journal
entries, 133

Index | 349

defining configurations for sentiment analy‐
sis chart, 134

growth areas for Node engineers, 309

H
Handlebars library

building templates with, 184
configuring login authentication app to use,

187
installing support for, 184
syntactical expressions to use in your tem‐

plates, 185
Hapi framework, comparison with Fastify,

Express, and Koa frameworks, 12
hashes

computing and returning hash value of
block, 259

generated from provided password and salt
compared to stored hash for user, 205

hashing algorithms for passwords, 200
hashing digests, 204
hashing packages, 57
hashing passwords, 199, 202, 203

defining function for in Account.js, 204
setting salt, 204

headless browser, scraping web pages with,
175-179

hexadecimal strings
converting set of bytes to, 204

Homebrew, 319
installing Node with, 7

HTML, 169
boilerplate content for login form, 188
creating module containing email HTML

templates, 149
EJS displaying content within, 49
input types to meet expectations of input

content, 189
landing page content for restaurant web

application, 48
parsing using HTML-friendly tools, 173-175
structure for other restaurant web applica‐

tion pages, 49
templates for, building with Handlebars, 184
using to spruce up email, 147

HTTP methods, 41, 93
http module, 36
HTTP server, setting up using Fastify, 223

HTTP, JavaScript methods of accessing content
over, 81

I
I/O operations, 9
immediately invoked function expressions

(IIFE), 124
import/export module syntax (ES6), 20
imports

ES6 module import syntax, 41
importing only modules and functions

needed instead of entire library, 21
index.js file, 20

collecting user input within startApp
(example), 25

defining Person class in (example), 24
final file for computer prompt translating

user input into CSV, 26
testing bcrypt functions in, 61

inference, 279
instances (Node), 10
interviews (technical), preparing for, 274
ioredis

connecting Redis to Node.js, 326

J
JavaScript

Node built on Chrome’s V8 JavaScript
engine, 4

open projects from OpenJS Foundation, 40
ORM to map JavaScript objects to SQL

databases, 106
JavaScript, queues in, 226
JavaShipped application with request bottle‐

neck (example), 220
jQuery library, 173
JSON

JSON-based APIs, 79
parsing with Fastify, 97

JSON Web Tokens (JWTs)
using for API authentication, 213-217
using for user registration and authentica‐

tion for AI assistant, 289-293
authentication middleware, 292
user login endpoint, 290
user registration endpoint, 289

jsonwebtoken package, 288
JWTs (see JSON Web Tokens)

350 | Index

K
Kafka, 234
Koa framework, comparison with Fastify,

Express, and Hapi frameworks, 12

L
large language models (see LLMs)
learning profiles, 289

using in querying AI assistant, 293
ledger (blockchain), 248
lemmatization, 116
libraries, importing only modules and files

needed instead of entire library, 21
library API project, 92-112

adding routes and actions to the app, 99-104
POST route, 103
RESTful routes, 102
routing directory structure layout, 100
testing other non-GET routes, 104

connecting a database to the app, 105-111
cURL commands testing routes in app

connected to database, 110
defining Book model in books.js, 108
project directory structure with data‐

base, 106
setting up SQLite database configura‐

tion, 107
updating routes with Book model, 109

planning the application, 92
programming API layout, 96-99

library API project, adding routes and actions
to the app, GET request route, 100

Libuv library, 5
Linux

installing MongoDB on, 320
installing Node, 7
installing VS Code, 3

listen function, 224
LLMs (large language models), 273

AI APIs and, 278
load balancers for Node instances, 10
local databases versus cloud-hosted databases,

323
localhost, 43
LocalStrategy class, 202

genStrategy method returning new instance
of, 209

options for, 209
logging

console.log and other logging types, 83
logging message when coffee order is placed

and processed, 225
Pino library included with Fastify, 12

login authentication Node app, 182-218
building HTML page templates with Han‐

dlebars, 184
building login form, 188-196
planning the application, 182
saving and securing user accounts, 196
starting and testing your app, 188
using JWTs for API authentication, 213

login strategy, 209
loops

for loop from /slow-order route, adding to /
process-order route, 227

long loop iteration to mimic blocking task,
225

M
machine learning (ML), 113-138

models, 113
natural language processor with sentiment

analysis, 114-138
analyzing sentiment, 123-126
cleaning input text for NLP analysis, 115
connecting a database and visualization,

126-136
NLP steps on input text in Node app,

117-122
planning the app, 114

macOS
Homebrew, 319
installing Node, 7
installing VS Code, 2

mail servers, 143
mailers, 141

nodemailer package, 143
setting up your mailer with Google, 144

manifests (project), 302
marketing mailer (see email marketing service)
marketing pixel for email engagement, 158
marketplace nodes (blockchain), 261

adding new node to network, 251
broadcast function for MarketplaceNode,

252
broadcastSelf and registerNode functions

for MarketplaceNode, 253
defining MarketplaceNode class, 251

Index | 351

initializing new MarketplaceNode instance,
254

master password, 58
mastery of Node development, 8
max tokens (AI APIs), 279
Medium, 166
memory, saving data in temporarily, 59
messaging

integrating robust messaging system with
coffee orders app, 233-243

Redis pub/sub messaging system, 230
messaging systems, options to consider, 234
MFA (multifactor authentication), 181
middleware

adding to coffee orders app, 224
body-parsing middleware for request.body,

225
middleware functions, 97
mining a block, 260, 266
model query types, information about, 109
models (ML), 113
modular plug-in system (Fastify), 11
modules

ES6 import/export syntax, 20, 41
modern ES modules, 305

MongoClient, use to set up connection to local
MongoDB server, 69

MongoDB
comparison with other databases for Node

apps, 324
connecting with Mongoose, 320
installing, 318
installing on Linux, 320
installing on Windows, 319
saving passwords to, 68-74

creating async function to connect to
MongoDB, 70

main function to initialize database, 70
strengths and trade-offs, 324

MongoDB Atlas accounts, 340
mongodb package, 69
Mongoose, 320
multifactor authentication (MFA), 181
MySQL

comparison with other databases for Node
apps, 324

Sequelize working with, 321

N
natural language processing (see NLP)
natural package, 120
natural.PorterStemmer class, 123
natural.PorterStemmer.stem function, 121
natural.SentimentAnalyzer class, 123
natural.WordTokenizer class, 120
network of nodes (blockchain), 257
neural networks, 279
NLP (natural language processing), 113

cleaning input text for NLP analysis, 115
spelling correction on string of text, 117-120
stemming function for Node app, 121
steps on a string of text, 116
stop word removal, performing for Node

app, 122
Node

advantages and unique features of, 5
becoming a developer, 8
growth areas for engineers, 309
how it works, 5
installing, 5
modern syntax patterns, 307-308
package.json and scripts, understanding,

305-307
understanding, 4
verifying setup, 13

node-fetch package, 81
node-schedule package, 161
nodemailer package, 143
nodemon package, 97
normalized sentiment scores, 131
NoSQL databases, 105, 318

MongoDB managing, 68
npm (Node Package Manager), 7

hashing packages on registry, 57
initializing projects with, 302
Yarn versus, 303

npm commands, CLI shorthands and flags, 40
npm init command, 39
npm install fastify command, 40

O
object relational mapper (ORM) between Java‐

Script objects and SQL databases, 106
OpenAI API accounts, 341
OpenAI’s ChatGPT, 273
OpenJS Foundation, 40

352 | Index

ORM (object relational mapper) between Java‐
Script objects and SQL databases, 106

P
package.json file, 18, 40

documentation for, 19
key parts of, 19
understanding package.json and scripts,

305-307
packages

npm external packages, working with in
computer prompt project, 28-31

npm package versioning, 41
Parser class, 82
parser objects, 82
parser.parseURL function, 83
passport package, 196, 197
passport-local package, 196, 197, 202
Passport.js, 196

functions to serialize and deserialize user
account information, 196

making Account class accessible to, 206
use of sessions in Fastify, 208
using with sessions in Fastify, 209

passportAuthenticate method, 206, 209
updated for authenticate return, 206

password manager (secure, local), building,
57-75
building local command-line manager,

59-68
adding module imports and mock db to

index.js, 62
adding viewPasswords and promptMa‐

nageNewPassword functions, 65
comparing hashed password to plain-

text password, 63
functions prompting user to type pass‐

word in, 64
saveNewPassword function, 63
showMenu function, 65

planning the application, 58
saving passwords to MongoDB, 68-74

main function to initialize database, 70
passwords

adding conditional password input in login
form, 191

defining password hashing function, 204
saving for account sign-up form, 193
setting for user accounts, 202

Pino (logging library), 12
plain text emails, sprucing up using HTML, 147
plug-ins (Fastify), 11
Porter stemming algorithm, 121
PorterStemmer class, 123
POST method (HTTP), 41, 93

adding POST route to library API router,
103

adding POST route to mail server, 151
creating /account and /auth POST routes,

194
flow of data in POST request, 94
method used for forms, 189
POST requests in coffee orders app, 224
POST routes listening for requests at /

account and /auth endpoints, 211
route handler for the path /slow-order, 225

PostgreSQL
comparison to SQLite, 105
comparison with other databases for Node

apps, 324
connecting with Sequelize, 321
installing, 321
strengths and trade-offs, 324

print function, defining, 86
projects

building first project from scratch, 15-33
computer prompt to create tabular for‐

mat, or CSV, of data, 16
planning the app, 16
programming the app, 17-21
translating user input to CSV, 21-27
working with external packages, 28-31

initializing using npm, 302-303
recommended directory structure, 303

Promises
asynchronous function wrapped in, 22
Fastify’s promise-based routing, 42
returned by await function, 124
wrapping logic in, enabling function call

using async-await, 203
promisify function, using to wrap asynchro‐

nous functions, 23
prompt engineering, crafting effective AI

instructions, 280
prompt module, 124
prompt package, installing and working with,

28
prompt-sync package, installing, 62

Index | 353

prompt.get function, 124
promptNewPassword function, 64
promptOldPassword function, 64
prompts

adding prompt for input to sentiment analy‐
sis app, 124

adding prompt method to sentiment analy‐
sis app, 132

proof of work (blockchain), 261
publish method, 230
publish/subscribe (pub/sub) messaging system,

230
creating clients for publishing and subscrib‐

ing, 231
puppeteer (headless browser), scraping web

pages with, 176-179
PUT method (HTTP), 41

flow of data in PUT request, 95
Python, use in machine learning, 114

Q
Queue instances, methods used with, 226
queue npm package, 226
queues, 219

(see also RabbitMQ)
internal queue to manage coffee order

requests, 221
in JavaScript, 226
RabbitMQ messaging queue architecture,

222
quotas, 343

R
RabbitMQ

installing for use in Node projects, 327
integrating with coffee orders app, 233-243

adding Fastify and RabbitMQ project
configurations, 235

advantages of RabbitMQ, 234
advantages of setting up services with

Fastify, 236
connecting to RabbitMQ server in

index.js, 236
features and capabilities of RabbitMQ,

233
port number for RabbitMQ, 237

messaging queue server between services,
222

rate limits, 343

Redis
comparison with other databases for Node

apps, 324
installing for use in Node projects, 324
limitations of, 233
more information on, 230

redis package, installing, 231
Redis server, adding to coffee orders app, 222,

229-233
implementing Redis as publish/subscribe

messaging pattern between app and
drink order data, 229

relational databases, 105
reply objects), 98
Request objects, 81
request objects, 98
request-response cycle

in Fastify app, 41
HTTP, Fastify implementing, 37

request.body object, 225
requests per second (RPS), large number han‐

dled by Fastify, 10
Response objects, 81
restaurant web server project, 36-55
RESTful APIs, routes, 102
role prompting, 280
routing

adding routes and actions to library API
app, 99-104
POST route, 103
RESTful routes, 102
routing directory structure layout, 100
testing other non-GET routes, 104

adding routes to restaurant web server, 43
blockchain marketplace

defining /buy route, 268
defining /payment route, 265
defining /register-node and /sync-peers

routes, 255
defining /songs route, 269

defining API routes for authentication, 216
defining API routes for mail server, 151
designing /account and /auth routes for

sign-up form, 193
GET campaign tracking route for email

marketer, 159
POST route listening for requests at /

account endpoint, 211

354 | Index

POST route listening for requests at /auth
endpoint, 211

route to mimic delayed request in coffee
orders app, 225

routes to place order in your queue, adding
to coffee orders app, 227

updating Fastify routes to render EJS files,
47

updating routes with Book model in library
API app, 109

verification route to verify email address in
marketing app, 156

routing, adding routes and actions to library
API app, GET route for books in custom
booksRouter, 100

RSS feeds, 77
Bon Appetit recipes in browser, 79
reading and parsing XML from, 82-84

rss-parser package, 82

S
salt, 60

custom cryptographic salt for each gener‐
ated hash, 199

scalability
Fastify’s asynchronous, nonblocking archi‐

tecture, 11
using clustering, 10

schedulers, 141
task scheduler for email marketing service,

160-162
schema-based validation and serialization,

using AJV, 11
schemas, 318
scraping web pages and using data in an app,

165-180
accessing and scraping data, 167
filtering scraped data, 167
HTML output from site, 169
HTML, overview, 169
identifying HTML elements worth scraping,

171
parsing with HTML-friendly tools, 173-175
planning the application, 166
scraping using headless browser, 175-179

scripts, 305-307
scrypt general-purpose key derivation function,

200
security

application authentication, 181
(see also login authentication Node app)

setting up your mailer with Google, 144
sendMail function, 146

parameters to pass custom HTML and
email addresses, 149

sentiment analysis app, 113, 123-126
adding prompt for input, 124
analyzing sentiment with tokens, 123
analyzing text input from a prompt, 124
connecting a database and visualization of

journal entries, 126-136
creating SentimentJournal class, 128
graph chart for sentiment scores, 133
prompting for input text, 132

SentimentAnalyzer class, 123
Sequelize

connecting with SQLite, 322
PostgreSQL connecting to, 321

sequelize API, information about, 109
Sequelize class, 107

Book model, 108
creating Lead model for email marketing

app, 154
findOne function, 198
model for database connection in sentiment

analysis app, 127
updatedAt and createdAt fields, 110

sequelize package, 106, 196, 197
Sequelize.Model, JavaScript Account class

extending, 198
serialization, 196

by Fastify, 11
serializeUser function, 207
serializeUser method (Account), 208
server-side rendering (SSR), 184

setting up using EJS templates with Fastify,
47

sessions, 208
incorporating token-based authentication

with, 214
using in Node, 208
using Passport.js with Fastify, 209

setup (Node and VS Code), verifying, 13
SHA-256 hashing algorithm, 259
sha512 hashing digest, 204
smart contracts (blockchain), 248
SMTP mail servers, building your own, 143
SpellChecker class, 117

Index | 355

command-line output for corrected spell‐
ings, 118

spelling correction, 115, 117-120, 129
adding spelling correction function to Node

project, 119
result of spelling correction function,

assigning to tokenizing function, 121
SQL databases, 105, 318

ORM between JavaScript objects and, 106
SQLite, 322

comparison to PostgreSQL, 105
comparison with other databases for Node

apps, 324
connecting a database to email marketing

app, 153-158
connecting with Sequelize, 322
installing locally, 322
installing most recent npm package, 106
setting up database and user authentication

for AI learning assistant, 285-293
setting up database configuration, 107
setting up database configurations for login

authentication app, 197
strengths and trade-offs, 324

sqlite3 package, 196, 197
SSR (server-side rendering), 184
startApp asynchronous function (example), 25
starter template (Fastify), exploring, 13
static plug-in (Fastify), 52
stemming and lemmatization, 116

adding stemming function to Node project,
121

stop word removal
performing for Node app, 122

stopword package, 122
streams, 9
string processing packages, 117-122
subscribe method, 230
synchronization of Book model with database,

108

T
tables, 318
task scheduler for email marketing service,

160-162
temperature (AI APIs), 279
templates, Handlebars, 185

(see also Handlebars library)

templating engines, use with Node and Fastify,
47
Fastify’s support for, 53

text
cleaning input text for NLP analysis, 115
deciphering meaning of using ML models,

115
this (keyword), 205
timers, 9
timestamps

including for each contact entry, 32
token-based authentication, 214

(see also JSON Web Tokens)
tokenizing text, 116, 120, 279

adding tokenization function to Node
project, 120

analyzing sentiment with tokens, 123
assigning result of correct spelling function

to tokenization function, 121
tokens (API), 337
tracking pixel (see marketing pixel for email

engagement)
Transaction class, 257
transactions (blockchain), 248
transformer-based neural network (LLMs), 279
transporter (mail), configuring in index.js, 145
transporter.sendMail function, 146

U
UIs (user interfaces)

building UI for restaurant web server appli‐
cation, 47-51

improving restaurant web application UI,
52-54

URIs (Uniform Resource Identifiers), 92
URL encoding

adding parsing plugin to Fastify app for, 98
incoming requests with URL-encoded pay‐

loads, 224
URLs

defining to read from for content aggrega‐
tor, 84

web page’s HTML source URLs, 175
user accounts

dedicated app and API for, 182
(see also login authentication Node app)

saving and securing, 196
user input, translating to CSV, 21-27
usernames

356 | Index

registering for user accounts, 202
saving from account sign-up form, 193

V
V8 JavaScript engine, 4
validation

input validation for email and phone num‐
bers, 32

isEmail Sequelize rule for email marketing
service, 154

schema-based validation with AJV, 11
variables

defining for authentication page in index.js,
192

defining formVars to match page variables,
192

names preceded by underscore (_), 98
versions, npm package versioning, 41
view plug-in (Fastify), 47
views folder, Handlebars templates in, 188
visualizations

defining configurations for sentiment analy‐
sis chart, 134

graph chart in sentiment analysis app, 133
VS Code (Visual Studio Code), 311

installing, 2
recommended extensions, 312
verifying setup, 13

W
web browsers

cookies sent to client’s browser for user ses‐
sion, 208

rendering of menu.ejs page in, 50
scraping page content with headless

browser, 175-179

viewing your web server’s response in, 43
web scraping, 165

(see also scraping web pages and using data
in an app)

web server, building, 35-55
about web servers, 36
adding routes and data, 43-47
blocking the event loop, 38
building web application skeleton, 39
creating restaurant web application UI,

47-51
improving restaurant web application UI,

52-54
planning the application, 36
using Fastify, 39-43
web requests, processing in Fastify-powered

web application, 38
Windows

installing MongoDB on, 319
installing Node, 7
installing VS Code, 3

WordTokenizer class, 120

X
XML

accessing for Bon Appétit RSS feed, 81
reading and parsing from RSS feed, 82-84
use by RSS feeds, 79

XMLHttpRequest interface, 81

Y
Yarn versus npm, 303

Z
ZeroMQ, 234

Index | 357

About the Author
Jonathan Wexler, author of the notable Get Programming with Node.js, brings his
rich background in software engineering and passion for teaching to his latest work,
Node.js Projects. His approach to writing, deeply rooted in practical experience and
an intuitive understanding of web technologies, particularly Node.js, subtly conveys
his depth of expertise. Wexler reflects elements from his experiences teaching at a
coding bootcamp and developing enterprise applications at big tech companies to
help break down complex technical concepts into engaging and manageable projects.
This has earned him recognition and positive reviews, making his guidance in this
new book an invaluable asset for developers looking to elevate their skills through
real-world applications.

Colophon
The animal on the cover of Node.js Projects is the Angolan giraffe, also known as the
Namibian giraffe or smokey giraffe, one of several species or subspecies of giraffe
native to Angola and Namibia.

The Angolan giraffe is easily identifiable by the large, irregular, and often sharply
angled blotches that cover its entire body, starkly contrasting with its coat’s lighter
background color. This distinctive pattern serves as excellent camouflage in the giraf‐
fe’s savanna habitat.

Like all giraffes, Angolan giraffes are browsers, using their long necks to reach leaves
high in the trees, a food source largely inaccessible to other herbivores. Due to their
impressive height, they require a specialized cardiovascular system—featuring nota‐
bly high blood pressure and a network of one-way valves—to pump blood to their
heads against the draw of gravity.

With around 13,000 animals estimated to remain in the wild, Angolan giraffes face
challenges in their natural environment but, with an increasing population trend, are
not currently threatened, according to the International Union for Conservation of
Nature. Many of the animals on O’Reilly covers are endangered; all of them are
important to the world.

The cover illustration is by Monica Kamsvaag, based on an antique line engraving.
The series design is by Edie Freedman, Ellie Volckhausen, and Karen Montgomery.
The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe Min‐
ion Pro; the heading font is Adobe Myriad Condensed; and the code font is Dalton
Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
60,000+ titles | Live events with experts | Role-based courses
Interactive learning | Certification preparation

Try the O’Reilly learning platform free for 10 days.

©2025 O’Reilly Media, Inc. O’Reilly is a registered trademark of O’Reilly Media, Inc. 718900_7x9.1875

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction and Setup
	Installing VS Code
	Mac Installation
	Windows Installation
	Linux Installation

	Understanding Node
	Why Node Stands Out
	What’s Happening Under the Hood?
	Installing Node
	Mac Installation
	Windows Installation
	Linux Installation

	Becoming a Node Developer
	Mastering the Craft
	Using Fastify in This Book
	Summary

	Chapter 2. Practical Application
	Your Prompt
	Get Planning
	Get Programming
	Translating User Input to CSV
	Working with External Packages
	Summary

	Chapter 3. Building a Node Web Server
	Your Prompt
	Get Planning
	Building the Application Skeleton
	Working with Fastify
	Adding Routes and Data

	Building Your UI
	Sprucing Up the UI
	Summary

	Chapter 4. Build a Secure Local Password Manager
	Your Prompt
	Get Planning
	Building a Local Command-Line Manager
	Saving Passwords with MongoDB
	Summary

	Chapter 5. Content Aggregation Feed
	Your Prompt
	Get Planning
	Reading and Parsing a Feed
	Building an Aggregator
	Adding Custom Items to Your Aggregator
	Summary

	Chapter 6. Library API
	Your Prompt
	Get Planning
	Get Programming with an API Layout
	Adding Routes and Actions to Your App
	Connecting a Database to Your App
	Summary

	Chapter 7. Natural Language Processor
Sentiment Analysis
	Your Prompt
	Get Planning
	Get Programming with String Processing Packages
	Analyzing Sentiment
	Connecting a Database and Visualization
	Summary

	Chapter 8. Marketing Mailer
	Your Prompt
	Get Planning
	Get Programming
	Adding a Framework for Your Mailer Service
	Connecting a Database
	Implementing a Marketing Pixel for Email Engagement
	Integrating a Task Scheduler
	Summary

	Chapter 9. Web Scraper
	Your Prompt
	Get Planning
	Get Programming
	Parsing with HTML-Friendly Tools
	Scraping Web Pages with a Headless Browser
	Summary

	Chapter 10. App Authentication
	Your Prompt
	Get Planning
	Get Programming
	Building a Login Form
	Saving and Securing User Accounts
	Using JWTs for API Authentication
	Summary

	Chapter 11. Coffee Order Manager
	Your Prompt
	Get Planning
	Get Programming
	Adding a Redis Server
	Integrating a Robust Messaging System
	Summary

	Chapter 12. Music Label Blockchain Market
	Your Prompt
	Get Planning
	Get Programming
	Coding the Blockchain
	Running the Real-World Example

	Summary

	Chapter 13. Building an AI-Powered Learning Assistant with Google’s Gemini API
	Your Prompt
	Get Planning
	Get Programming
	Customizing the AI Assistant for Learning Assistance
	Setting Up the Fastify Server
	Setting Up Your Database and User Authentication
	Summary

	Appendix A. Node Cheat Sheet and Project Initialization
	Initializing a Node Project (Using npm)
	Recommended Directory Structure
	Understanding package.json and Scripts
	Modern Node Syntax Patterns
	Growth Areas for Node Engineers
	Summary

	Appendix B. Setting Up Your Development Tools
	Using Git from the Command Line
	Recommended VS Code Extensions
	Testing Your API with Postman
	Watching for File Changes with nodemon
	Summary

	Appendix C. Working with Databases in Node Projects
	Why Databases Matter
	Core Concepts: Schemas, Tables, Collections,
and Documents
	MongoDB: NoSQL for Flexible Schemas
	Installation
	Starting MongoDB Locally
	Connecting with Mongoose

	PostgreSQL: SQL Power and Structure
	Installation
	Connecting with Sequelize

	SQLite: Lightweight and Embedded
	Installation
	Connecting with Sequelize

	Local Versus Cloud-Hosted Databases
	Cloud Services

	Database Comparison for Node Applications
	Choosing a persistence layer
	Redis: In-Memory Speed for Caching and Queues
	Installation
	Connecting from Node
	Using Redis as a Queue

	RabbitMQ: Queue-Based Messaging for Node Apps
	Installation
	Connecting from Node

	Next Steps
	Summary

	Appendix D. Working with the Code Examples and Containerizing Projects
	Accessing the GitHub Repository
	Running Projects with Docker
	Benefits of Containerizing Node Projects
	Next Steps
	Summary

	Appendix E. Setting Up Developer Accounts
and API Credentials
	Working with API Keys
	GitHub
	MongoDB Atlas
	OpenAI API
	Google Gemini API
	Summary

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

