

5avaScript for Kids: A Playful
Introduction to Programming

Nick Morgan

Published by No Starch Press

To Philly (and Pancake)

About the Author
Nick Morgan is a frontend engineer at Twitter. He loves all programming
languages but has a particular soft spot for JavaScript. Nick lives in San
Francisco (the foggy part) with his fiancée and their fluffy dog, Pancake.
He blogs at skilldrick.co.uk.

About the Illustrator
Miran Lipovaca is the author of Learn You a Haskell [or Great Good!. He
enjoys boxing, playing bass guitar, and, of course, drawing. He has a
fascination with dancing skeletons and the number 71, and when he walks
through automatic doors he pretends that he's actually opening them with his
mind.

About the Technical Reviewer
Angus Croll is the author of I[Hemingway Wrote Javascript, and he is
obsessed with JavaScript and literature in equal measure. He works on
Twitter's UI framework team, where he co-authored the Flight
framework. He writes the influential Javascript, Javascript blog and
speaks at conferences worldwide. He tweets at @angustweets.

Acknowledgments
So many thanks to my wonderful fiancée, Philly, for her encouragement
and support during the past 18 months. I truly couldn't have done it without
her. And thanks to Pancake, our dog, for graciously allowing me to use him
in my code examples.
Thanks to Angus, without whom I wouldn't be here, in San Francisco,
writing this book. Angus referred me to Twitter back in 2011, and then in
2013 suggested to Bill Pollock that I might be interested in writing this
book you're holding. And to top it all, he agreed to be the technical
reviewer, catching a great number of JavaScript faux pas.
Thanks to Bill Pollock, Seph Kramer, Riley Hoffman, Tyler Ortman, and
everyone else at No Starch Press, who patiently guided me through the
process of writing this book. Special thanks to Bill and Seph for
massaging my writing into its current form.
Thanks to the young reviewers River Bradley, Damien Champ, and Alex
Chu, who had some great feedback on the early PDFs.
Finally, thanks to Miran Lipovaca. I've been a fan of Miran for years —
his book Learn You a Maskell [or Great Good is one of my favorite
programming books, and his illustrations for it are amazing.
Finding out he'd be illustrating my book was like a dream come true. His
pictures for this book are better than I could have imagined, and I'm
humbled to have had the chance to work with him.

Introduction
Welcome to 7avaScript {or Kids! In this book, you'll learn to program
with JavaScript, the language of the Web. But more than that, you'll
become a programmer — someone who not only uses computers but also
controls them. Once you learn to program, you can bend computers to
your will and make them do whatever you want!
JavaScript is a great programming language to learn because it's used
everywhere. Web browsers like Chrome, Firefox, and Internet Explorer
all use JavaScript. With the power of JavaScript, web programmers can
transform web pages from simple documents into full-blown interactive
applications and games.
But you're not limited to building web pages. JavaScript can run on web
servers to create whole websites and can even be used to control robots
and other hardware!

Who Should Read This Book?
This book is for anyone who wants to learn JavaScript or to start
programming for the first time. The book is designed to be kid friendly, but
it can serve as a first programming book for beginners of all ages.
With this book, you'll build up your knowledge of JavaScript gradually,
starting with JavaScript's simple data types, before moving onto complex
types, control structures, and functions. After that you'll learn how to
write code that reacts when the user moves the mouse or presses a key on
the keyboard.
Finally, you'll learn about the canvas element, which lets you use
JavaScript to draw and animate anything you can imagine!
Along the way, you'll create a few games to stretch your programming
skills and put what you've learned to good use.

How to Read This Book
First off, read it in order! That might sound like a silly thing to say, but lots
of people want to jump straight into the fun stuff, like making games.
But each chapter is meant to build on what was covered in earlier
chapters, so if you begin at the beginning, you'll have an easier time when
you get to the games.
Programming languages are like spoken languages: you have to learn the
grammar and the vocabulary, and this takes time. The only way to improve
is by writing (and reading) a lot of code. As you write more and more
JavaScript, you'll find certain parts of the language become second nature,
and eventually you'll become a fluent writer of JavaScript.
As you read, I encourage you to type out and test the code examples
throughout the book. If you don't fully understand what's going on, try
making small changes to see what effect they have. If the changes don't
have the effect you expected, see if you can find out why.
Above all, work through the “Try It Out” and Programming Challenges
sections. Typing out the code that appears in the book is a good first step,
but you'll understand programming at a deeper level when you start
writing your own code. If you find a challenge interesting, then keep at it!
Come up with your own challenges to build even more onto the programs
you've written.
You'll find sample solutions to the programming challenges (as well as
the code files for the games and other examples) at
http://nostarch.coMjavascript[orkids7. Try looking at the solutions after
you've solved a challenge, so you can compare your approach to mine. Or,
if you're stuck, you can check the solution for hints. But remember that
these are just sample solutions. There are many, many different ways to
accomplish the same goal in JavaScript, so don't worry if you end up with a
completely different solution from mine!
If you come across a word and you don't know what it means, check the
glossary at the back of the book. The glossary contains definitions for
many of the programming terms you'll encounter in this book.

http://nostarch.comjavascript/

What's in this Book?
Chapter 1 gives you a quick introduction to JavaScript and gets you
started writing JavaScript in Google Chrome.
Chapter 2 introduces variables and the basic data types used by
JavaScript: numbers, strings, and Booleans.
Chapter 3 is all about arrays, which are used to hold lists of other pieces of
data.
ChapteF 4 is about objects, which contain pairs of keys and values.
Chapter 5 is an introduction to HTML, the language used to create web
pages.
ChapteF 6 shows you how to gain more control over your code using if
statements, to r loops, and other control structures.
Chapter 7 puts together everything you've learned so far to create a
simple Hangman word-guessing game.
ChapteF 8 shows you how to write your own functions so you can group
together and reuse blocks of code.
Chapter 9 introduces jQuery, a tool that makes it easy to control web
pages using JavaScript.
ChapteF 10 shows you how to use timeouts, intervals, and event handlers
to make your code more interactive.
Chapter 11 uses functions, jQuery, and event handlers to create a game
called Chapter 11
Chapter 12 teaches a style of programming called object-oriented
programming.
ChapteF 13 introduces the canvas element, which allows you to draw
graphics on a web page with JavaScript.
Chapter 14 builds on the animation techniques you learned in Chapter 10
so you can create animations with canvas, and Chapter 15 shows you how
to control those canvas animations with the keyboard.
In ChapteF 16 and Chapter 17, you'll program a complete Snake
game, using everything you learned in the previous 15 chapters!

The Afterword gives you some ideas for how to learn even
more about programming. The GlossaFy contains definitions
for many of the new words you'll encounter.

Have Fun!
One last thing to remember: Have fun! Programming can be a playful and
creative activity, just like drawing or playing a game (in fact, you'll be
drawing and playing games with JavaScript a lot in this book). Once you get
the hang of how to write code, the only limit is your imagination. Welcome
to the amazing world of computer programming — I hope you have a blast!

Part I. Fundamentals

Chapter 1. What Is 5avaScript?
Computers are incredibly powerful machines, capable of performing
amazing feats like playing competitive chess, serving thousands of web
pages, or making millions of complex calculations in less than a few
seconds. But deep down, computers are actually pretty dumb. Computers
can only do exactly what we humans tell them to do. We tell computers
how to behave using computer programs, which are just sets of
instructions for the computers to follow. Without programs, computers
can't do anything at all!

Meet JavaScript
Even worse, computers can't understand English or any other spoken
language. Computer programs are written in a proarammina lanauaae
like JavaScript. You might not have heard of JavaScript before, but
you've certainly used it. The JavaScript programming language is used to
write programs that run in web pages. JavaScript can control how a web
page looks or make the page respond when a viewer clicks a button or
moves the mouse.
Sites like Gmail, Facebook, and Twitter use JavaScript to make it easier
to send email, post comments, or browse websites. For example, when
you're on Twitter reading tweets from @nostarch and you see more
tweets at the bottom of the page as you scroll down, that's JavaScript in
action.
You only have to visit a couple of websites to see why JavaScript is so
exciting.
• JavaScript lets you play music and create amazing visual effects. For

example, you can fly through an interactive music video created by
HelloEnjoy for Ellie Goulding's song “Lights”
(http://liphts.heIloenjoy.com, as shown in Figure 1-1.

• JavaScript lets you build tools for others to make their own art. Patatap
(http://www.patatap.com is a kind of virtual “drum machine” that
creates all kinds of cool noises — and cool animations to go along with
them — as shown in Figure 1-2.

http://liphts.heiloenjoy.com/
http://www.patatap.com/

Figure 1-1. You control the flashing cursor in HelloEnjoy's “Lights” music video.

Figure 1-2. When you visit Patatap, try pressing a bunch o[keys to make di(erent noises!

• JavaScript lets you play fun games. CubeSlam
phttps://www.cubeslam.com is a 3D re-creation of the classic game
Pong, which looks a little like air hockey. You can play against one of
your friends or a computer-generated bear, as shown in Figure 1-3.

http://www.cubeslam.com/

Figure 1-3. The CubeSlam game is programmed entirely in JavaScript!

Why Learn JavaScript?
JavaScript isn't the only programming language out there — in fact, there
are literally hundreds of programming languages. But there are many
reasons to learn JavaScript. For one, it's a lot easier (and more fun) to
learn than many other programming languages. But perhaps best of all, in
order to write and run JavaScript programs, all you need is a web browser
like Internet Explorer, Mozilla Firefox, or Google Chrome. Every web
browser comes with a JavaScript interpreter that understands how to read
JavaScript programs.
Once you've written a JavaScript program, you can send people a link to it,
and they can run it in a web browser on their computer, too! (See Sharing
Your Code Using JSFiddle.)

Writing Some JavaScript
Let's write a bit of simple JavaScript in Google Chrome
(http://www.poople.coWchrome . Install Chrome on your computer (if
it's not already installed), and then open it and type about: blank in the
address bar. Now press ENTER and you'll see a blank page, like the one
in Figure 1-4.
We'll begin by coding in Chrome's JavaScript console, which is a secret
way programmers can test out short JavaScript programs. On Microsoft
Windows or Linux, hold down the cTRL and sHirT keys and press J. On
Mac OS, hold down the coMMAND and o TIoN keys and press J.
If you've done everything correctly, you should see a blank web page
and, beneath that, a blinking cursor (|) next to a right angle bracket (>),
as shown in Figure 1-4. That's where you'll write JavaScript!

NOTE

The Chrome console will color your code text; for example, the text you input will be blue, and
output will be colored based on its type.
fn this book, we'll use similar colors for our code text wherever we're using the console.

http://www.poople.cowchrome/

fipure 1-4. Google Chrome’s JavaScript console

When you enter code at the cursor and press ENTER, JavaScript should
run, or execute, your code and display the result (if any) on the next line. For
example, type this into the console:

3 + 4;

Now press ENTER. JavaScript should output the answer (7) tO this simple
bit of addition on the following line:

3 + 4;

7

Well, that's easy enough. But isn't JavaScript more than a glorified
calculator? Let's try something else.

The Structure of a JavaScript Program
Let's create something a bit sillier — a JavaScript program to print a
series of cat faces that look like this:

Unlike our addition program, this JavaScript program will take up
multiple lines. To type the program into the console, you'll have to add
new lines by pressing sHIFT-ENTER at the end of each line. (If you just
press ENTER, Chrome will try to execute what you've written, and the
program won't work as expected. I warned you that computers were
dumb!)

Type this into your browser console:
// Draw as many cats as you want!
var drawCats = function (howManyTimes)(

for (var i = 0; i < howManyTimes; i++){

console.log(i + "=^.^=");

drawCats(10); // You can put any number here instead of 10.

At the very end, press ENTER instead of SHIFT-ENTER. When you do
that, you should see the following output:

I3 =^ . ̂ =
1 - .

2 =^ . ̂ =

3 =^ . ̂ =

4 =^ . ̂ =

5

6 =^ . ̂ =

7 =^ . ̂ =

If you made any typos, your output might look very different or you might
get an error. That's what I mean when I say computers are dumb — even a
simple piece of code must be perfect for a computer to understand what
you want it to do!

I won't go through exactly how this code works for now (we'll return to this
program in Chapter 8), but let's look at some of the features of this program
and of JavaScript programs in general.

Syntax
Our program includes lots of symbols, including parentheses (), semicolons
; , curly brackets (}, plus signs +, and a few words that might seem
mysterious at first (like var and console . log). These are all part of
JavaScript's svntax — that is, JavaScript's rules for how to combine
symbols and words to create working programs.
When you're learning a new programming language, one of the trickiest
parts is getting used to the rules for how to write different kinds of
instructions to the computer. When you're first starting out, it's easy to
forget when to include parentheses, or to mix up the order in which you
need to include certain values. But as you practice, you'll start to get the
hang of it.
In this book, we'll go slow and steady, introducing new syntax little by
little so that you can build increasingly powerful programs.

Comments
The first line in our cats program is this:

// Draw as many cats as you want!

This is called a comment. Programmers use comments to make it easier for
other programmers to read and understand their code. The computer
ignores comments completely. Comments in JavaScript start with two
forward slashes (//). Everything following the slashes (on the same line) is
ignored by the JavaScript interpreter, so the comments don't have any
effect on how a program is executed — they are just there to provide a
description.
In the code in this book, you'll see comments that describe what's
happening in the code. As you write your own code, add your own
comments. Then when you look at your code later, your comments will
remind you how the code works and what's happening in each step.
There's another code comment on the last line of our program.
Remember, everything after that // isn't run by the computer!

drawCats(10); // You can put any number here instead of 10.

Code comments can be on their own line, or they can come after your code.
If you put the // at the front, like this:

// drawCats(10);

. nothing will happen! Chrome sees the whole line as a comment, even if
it's JavaScript.

Once you start reading JavaScript code out in the wild world, you'll also
see comments that look like this:

/*
Draw as many
cats as you want !

*/

This is a different style of commenting, which is typically used for
comments that are longer than one line. But it does the same thing:
everything between the /* and the */ is a comment that the computer won't
run.

What You Learned
In this chapter, you learned a bit about what JavaScript is and what it can
be used for. You also learned how to run JavaScript using the Google
Chrome browser and tried out a sample program. All of the code examples
in this book, unless I say otherwise, can (and should!) be used in Chrome's
JavaScript console. Don't just read the code —try typing things out! It's
the only way to learn to program.
In the next chapter, you'll start learning the fundamentals of JavaScript,
beginning with the three basic types of information you can work with:
numbers, strings, and Booleans.

Chapter 2. Data Types and
Variables
Programming is all about manipulating data, but what is data? Data is
information that we store in our computer programs. For example, your
name is a piece of data, and so is your age. The color of your hair, how many
siblings you have, where you live, whether you're male or female — these
things are all data.
In JavaScript, there are three basic types of data: numbers, strings, and
Booleans. Numbers are used for representing, well, numbers! For example,
your age can be represented as a number, and so can your height. Numbers in
JavaScript look like this:

s,
Strings are used to represent text. Your name can be represented as a
string in JavaScript, as can your email address. Strings look like this:

"Hi, I ' m a st ring" ;

Booleans are values that can be true or false. For example, a Boolean value
about you would be whether you wear glasses. Another could be whether
you like broccoli. A Boolean looks like this:

t rue;

There are different ways to work with each data type. For example, you
can multiply two numbers, but you can't multiply two strings. With a
string, you can ask for the first five characters. With Booleans, you can
check to see whether two values are both true. The following code
example illustrates each of these possible operations.

99 ’ 123;

12177
"This is a long string".slice(0, 4); "This"

true && false;

false

All data in JavaScript is just a combination of these types of data. In this
chapter, we'll look at each type in turn and learn different ways to work
with each type.

NOTE
¥ou may have noticed that all o[these commands end with a semicolon (;). Semicolons mark the
end o{a particular JavaScript command or instruction (also called a statement), sort o[like the
period at the end o[a sentence.

Numbers and Operators
JavaScript lets you perform basic mathematical operations like addition,
subtraction, multiplication, and division. To make these calculations, we
use the symbols +, -, *, and /, which are called operators.
You can use the JavaScript console just like a calculator. We've already
seen one example, adding together 3 and 4. Let's try something harder.
What's 12,345 plus 56,789?

12345 + 56789;

69134

That's not so easy to work out in your head, but JavaScript
calculated it in no time. You can add multiple numbers with
multiple plus signs:

22 + 33 + 44 ;

99

JavaScript can also do subtraction ...
1000 - 17 ;

983

and multiplication, using an asterisk ...
123 * 456 ;

56088

and division, using a forward slash . .
12345 / 250;

49 . 38

You can also combine these simple operations to make something more
complex, like this:

1234 + 57 * 3 - 31 / 4;

1397.25

Here it gets a bit tricky, because the result of this calculation (the answer)
will depend on the order that JavaScript does each operation. In math, the
rule is that multiplication and division always take place before addition
and subtraction, and JavaScript follows this rule as well.

1234 + 171 - 31 / 4

Figure 2-1. The order o[operations: multiplication, division, addition, subtraction

Figure 2-1 shows the order JavaScript would follow. First, JavaScript
multiplies s7 * 3 and gets 171 (shown in red). Then it divides 31 Z 4
to get 7 . 75 (Shown in blue). Next it adds 1234 + 171 to get 1405
(Shown in green). Finally it subtracts 1405 7 . 75 to get 1397 .
25, which is the final result.
What if you wanted to do the addition and the subtraction first, before
doing the multiplication and division? For example, say you have 1 brother
and 3 sisters and 8 candies, and you want to split the

candies equally among your 4 siblings? (You've already taken your share!)
You would have to divide 8 by your number of siblings.
Here's an attempt:

8 / 1 + 3 ;

11

That can't be right! You can't give each sibling 11 candies when you've only
got 8! The problem is that JavaScript does division before addition, so it
divides 8 by 1 (which equals 8) and then adds 3 to that, giving you 11. To fix
this and make JavaScript do the addition first, we can use parentheses:

8 / (1 + 3);
2

That's more like it! Two candies to each of your siblings. The parentheses
force JavaScript to add 1 and 3 be[ore dividing 8 by 4.

Variables
JavaScript lets you give names to values using variables. You can think of
a variable as a box that you can fit one thing in. If you put something else
in it, the first thing goes away.
To create a new variable, use the keyword var, followed by the name of
the variable. A kevword is a word that has special meaning in JavaScript.
In this case, when we type var, JavaScript knows that we are about to
enter the name of a new variable. For example, here's how you'd make a
new variable called nic k:

var n1ck;
undefined

We've created a new variable called nic k. The console spits out
undefined in response. But this isn't an error! That's just what JavaScript
does whenever a command doesn't return a value. What's a return value?
Well, for example, when you typed 12345 + 56789 ; , the console
returned the value 69134.
Creating a variable in JavaScript doesn't return a value, so the interpreter
prints undefined.
To give the variable a value, use the equal sign:

var age = 12;
undefined

Setting a value is called assignment (we are assigning the value 12 to the
variable age). Again, undefined is printed, because we're creating another
new variable. (In the rest of my examples, I won't show the output when
it's undefined.)
The variable age is now in our interpreter and set to the value 12. That
means that if you type age on its own, the interpreter will show you its
value:

Cool! The value of the variable isn't set in stone, though (they're called
variables because they can
vary), and if you want to update it, just use = again:

age 13;

13

This time I didn't use the var keyword, because the variable age already
exists. You need to use var only when you want to create a variable, not
when you want to change the value of a variable. Notice also, because
we're not creating a new variable, the value 13 is returned from the
assignment and printed on the next line.
This slightly more complex example solves the candies problem from
earlier, without parentheses:

var numberofsiblings =
1 + 3; var
numberofCandies = 8;
number0fCandies /
numberofsiblings; 2

First we create a variable called n umbe rodSiblings and assign it the value
of 1 + 3 (which JavaScript works out to be 4). Then we create the variable
n umbe rodCand ies and assign 8 to it. Finally, we write number0fCandies /
number0fSiblings. Because number0fCandies is 8 and number0fSiblings is
4, JavaScript works out 8 / 4 and gives us 2.

Naming Variables
Be careful with your variable names, because it's easy to misspell
them. Even if you just get the capitalization wrong, the JavaScript
interpreter won't know what you mean! For example, if you
accidentally used a lowercase c in number of Candies, you'd get an
error:

number0fcandies / numberofsiblings;
ReferenceError: numberofcandies is not defined

Unfortunately, JavaScript will only do exactly what you ask it to do. If
you misspell a variable name, JavaScript has no idea what you mean, and
it will display an error message.
Another tricky thing about variable names in JavaScript is that they can't
contain spaces, which means they can be difficult to read. I could have
named my variable number of candies with no capital letters, which makes
it even harder to read because it's not clear where the words end. Is this
variable “numb erof can dies” or “numberofcan dies”? Without the capital
letters, it's hard to tell.
One common way to get around this is to start each word with a capital letter
as in Number Of Candies. (This convention is called camel case because it
supposedly looks like the humps on a camel.)

The standard practice is to have variables start with a lowercase letter, so it's
common to capitalize each word except for the first one, like this: number
of Candies. (I'll follow this version of the camel case convention
throughout this book, but you're free to do whatever you want!)

Creating New Variables Using Math
You can create new variables by doing some math on older ones. For
example, you can use variables to find out how many seconds there are in a
year — and how many seconds old you are! Let's start by finding the
number of seconds in an hour.

Seconds in an Hour
First we create two new variables called second sI nAMin u te and min u
tes I nAn Hou r and make them both 60 (because, as we know, there are
60 seconds in a minute and 60 minutes in an hour). Then we create a
variable called second sI nAn Hour and set its value to the result of
multiplying
second s I nAMin u te and min u tes I nAn Ho u r. At O, we enter second s I nAn Ho u r, which is
like saying,
“Tell me the value of second sI nAn Hou r right now!” JavaScript then
gives you the answer: it’s 3600.

var secondsInAMinute = 60;
var minutesInAnHour = 60;

var secondsInAnHour = secondsInAMinute ’ minutesInAnHour;
0

secondsInAnHou
r;

3600

Seconds in a Day
Now we create a variable called ho urs I nADay and set it tO 24. Next we
create the variable
seconds I nADay and set it equal to seco nds I nAnHou r multiplied by ho u
rsI nADay. When we ask for the value seconds I nADay at O, we get
86400, which is the number of seconds in a day.

var hour sI nADay = 24 ;

var secondsInADay = seconds I nAnHour hour sI nADay;

0 secondsI

nADay;

86400

Seconds in a Year
Finally, we create the variables days I nAYear and seconds I nAYear.
The days I nAYear variable is assigned the value 36s, and the variable
seconds I nAYear is assigned the value of second sI nADay multiplied
by days I nAYear. Finally, we ask for the value of second sI nAYe ar,
which iS 31536000 (more than 31 million)!

var daysInAYear = 365;
var secondsInAYear :
secondsInADay daysInAYear; secondsInAYear;

31536000

Age in Seconds
Now that you know the number of seconds in a year, you can easily figure
out how old you are in

seconds (to the nearest year). For example, as I'm writing this, I'm 29:
var age = 29 ;

age * secondsInAYear ;

914544000

To figure out your age in seconds, enter the same code, but change the
value in age to your age. Or just leave out the age variable altogether and
use a number for your age, like this:

29 * secondsI nAYear ;
914544000

I'm more than 900 million seconds old! How many seconds old are you?

Incrementing and Decrementing
As a programmer, you'll often need to increase or decrease the value of a
variable containing a number by 1. For example, you might have a
variable that counts the number of high-fives you received today. Each
time someone high-fives you, you'd want to increase that variable by 1.
Increasing by 1 is called incrementina, and decreasing by 1 is called
decrementina. You increment and decrement using the operators ++ and

var highFives 0;
++highFives
;
1
++highFive
s ; 2
- -
highF1ves;
1

When we use the ++ operator, the value of high F ives goes up by 1, and
when we use the - - operator, it goes down by 1. You can also put these
operators a[ter the variable. This does the same thing, but the value that
gets returned is the value be[ore the increment or decrement.

highFives = 0 ;
highF1ves++;

0

highFives++;

1
highFives
; 2

In this example, we set hig h F ives to o again. When we call
highFives++, the variable is incremented, but the value that gets printed is
the value be[ore the increment happened. You can see at the end (after two
increments) that if we ask for the value of high F ives, we get 2.

+= (plus-equals) and –= (minus-equals)
To increase the value of a variable by a certain amount, you could use this
code:

var x = 10; x
= x + 5; x;

15

Here, we start out with a variable called x , set to 10. Then, we assign x + 5
to x . Because x was 10, x + 5 will be 15. What we’re doing here is using
the old value of x to work out a new value for x . Therefore, x = x + 5 really
means “add 5 to x .”
JavaScript gives you an easier way of increasing or decreasing a variable
by a certain amount, with the
+= and -= operators. For example, if we have a variable x , then x += 5 is the
same as saying x = x +
5 . The -= operator works in the same way, so x -= 9 would be the same as
x = x - 9 (“subtract 9 from x ”). Here’s an example using both of these
operators to keep track of a score in a video game:

var score = 10;
score += 7;

17

score -= 3;

14

In this example, we start with a score of 10 by assigning the value 10 to
the variable score . Then we beat a monster, which increases score by 7
using the += operator. (score += 7 is the same as score = score + 7 .) Before we
beat the monster, score was 10 , and 10 + 7 is 17, so this operation sets score
to 17 .
After our victory over the monster, we crash into a meteor and score is
reduced by 3. Again, score -= 3 is the same as score = score - 3 . Because score is
17 at this point, score - 3 is 14 , and that alue gets reassigned to score .

Strings
So far, we've just been working with numbers. Now let's look at another
type of data: strinas. Strings in JavaScript (as in most programming
languages) are just sequences of characters, which can include letters,
numbers, punctuation, and spaces. We put strings between quotes so
JavaScript knows where they start and end. For example, here's a classic:

"Hello world!“;
"Hello world!"

To enter a string, just type a double quotation mark () followed by the
text you want in the string, and then close the string with another double
quote. You can also use single quotes ('), but to keep things simple, we'll
just be using double quotes in this book.
You can save strings into variables, just like numbers:

var myAwesomeString = "Something REALLY awesome! ! ! ";

There's also nothing stopping you from assigning a string to a variable
that previously contained a number:

var myThing = 5;
myThing = "this is a
string"; "this is a string"

What if you put a number between quotes? Is that a string or a number? In
JavaScript, a string is a string (even if it happens to have some characters
that are numbers). For example:

var numberNine 9;

var stringNine "9";

n umbe r Nine is a number, and st ring Nine is a string. To see how these
are different, let's try adding them together:

numberNine + numberNine;

18

stringNine + stringNine;

.gg..

When we add the number values 9 and 9, we get 18. But when we use the +
operator on "9" and "9", the strings are simply joined together to form
"99".

Joining Strings
As you just saw, you can use the + operator with strings, but the result is
very different from using the + operator with numbers. When you use + to
join two strings, you make a new string with the second string attached to
the end of the first string, like this:

var greeting -
"Hello"; var
myName = "Nick";
greeting + myName;
"HelloNick"

Here, we create two variables (g reet in g and my Name) and assign each a
string value ("Hello" and "Nic k", respectively). When we add these two
variables together, the strings are combined to make a new string,
"He11oN ic k".
That doesn't look right, though — there should be a space between Hello
and Nic k. But JavaScript won't put a space there unless we specifically
tell it to by adding a space in one of the original strings:

var greeting = "Hello
var myName - "Nick";
greeting + myName;
"Hello Nick"

The extra space inside the quotes at O puts a space in the final string as
well.
You can do a lot more with strings other than just adding them together.
Here are some examples.

Finding the Length of a String
To get the length of a string, just add . len g t h to the end of it.

"Supercalifragilisticexpialidocious".length;
34

You can add . len g t h to the end of the actual string or to a variable that
contains a string:

var j ava = "Java" ;

java.length;

4

var script = "Script";
script.length;
6
var javascript = java + script;
javascript.length;

10

Here we assign the string "Java " to the variable j ava and the string "Sc
rip t " to the variable sc r ipt. Then we add . leng t h to the end of each
variable to determine the length of each string, as well as the length of the
combined strings.
Notice that I said you can add . lengt h to “the actual string or to a
variable that contains a string.” This illustrates something very important
about variables: anywhere you can use a number or a string, you can also
use a variable containing a number or a string.

Getting a Single Character from a String
Sometimes you want to get a single character from a string. For example,
you might have a secret code where the message is made up of the second
character of each word in a list of words. You'd need to be able to get just
the second characters and join them all together to create a new word.
To get a character from a particular position in a string, use square
brackets, []. Just take the string, or the variable containing the string, and
put the number of the character you want in a pair of square brackets at the
end. For example, to get the first character of my Name, use oyNaoe [0],
like this:

var myName ”Nick";

myNarre [0] ;

"N"

myName [1] ;

"i"

Notice that to get the first character of the string, we use o rather than i.
That's because JavaScript (like many other programming languages) starts
counting at zero. That means when you want the first character of a string,
you use o; when you want the second one, you use i; and so on.
Let's try out our secret code, where we hide a message in some words' second
characters. Here's how to find the secret message in a sequence of words:

var codeWordl "are";
var
codeWord2 "tubas";
var
codeWord3 "uns
afe"; var
codeWord4 "?!";
codeWord1[1] + codeWord2[1] + codeWord3[1] +
codeWord4[1]; "run!"

Again, notice that to get the second character of each string, we use i.

Cutting Up Strings
To “cut off” a piece of a big string, you can use slice. For example, you
might want to grab the first bit of a long movie review to show as a teaser
on your website. To use slice, put a period after a string (or a variable
containing a string), followed by the word slice and opening and closing
parentheses. Inside the parentheses, enter the start and end positions of the
slice of the string you want, separated by a comma. Figure 2-2 shows how
to use slice.

These two numbers
set the st‹a rt and end of the slice.

"a string". - (1, 5)
Figure 2-2. How to use st:ice to get characters [rom a string

For example:

var longstring = "My long string is long";
longstring.slice(3, 14);

"long string"

The first number in parentheses is the number of the character that
begins the slice, and the second number is the number of the character
a[ter the last character in the slice. Figure 2-3 shows which characters
this retrieves, with the start value (3) and stop value (14) highlighted in
blue.

M y 1 a n g s I T 1 n g . 1 s 1 a n g
0 1 2 3 4 5 6 7 8 9 10 11 12 13 1.4 1§ 16 17 18 19 20 21

Figure 2-3. In the example above, st:ice grabs the characters shown in the gray box.

Here we basically tell JavaScript, “Pull a slice out of this longer string
starting at the character at place 3 and keep going until you hit place 14.”
If you include only one number in the parentheses after slice, the string that
it slices will start from that number and continue all the way to the end of
the string, like this:

var longstring = "My long string is long";
longstring.slice(3);

"long string is long"

Changing Strings to All Capital or All Lowercase
Letters
If you have some text that you just want to shout, try using toUpper Case
to turn it all into capital letters.

"Hello there, how are you doing?".toUpperCase();

"HELLO THERE, HOW ARE YOU DOING?"

When you use . toupper Case () on a string, it makes a new string where all
the letters are turned into uppercase.
You can go the other way around, too:

"hELlo THERE, h0W ARE y0u
doINg?".toLowerCase(); "hello there, how are you
doing?"

As the name suggests, . to Lower Case() makes all of the characters
lowercase. But shouldn't sentences always start with a capital letter? How
can we take a string and make the first letter uppercase but turn the rest into
lowercase?

NOTE

See Upon can figure out how to turn "hELJ o THERE, hOlf ARE yOu doINg?" into
”Hebto there, how are you do:ing? using the tools you just learned. I[you get stuck, review
the sections on getting a single character tqnd using st:ice. Once you're done, come back and
have a look at how I did it.

Here's one approach:
4# var sillystring - "hELlo THERE, hOW ARE y0u
doINg?”; 4# var lowerstring = sillyString.toLowerCase();

Q var firstCharacter = lowerString[0];
ID var firstCharacterUpper = firstCharacter.toUpperCase(); #
var rest0fString : lowerstring.slice(1);
% firstCharacterUpper + rest0fString;

"Hello there, how are you doing?"

Let's go through this line by line. At O, we create a new variable called
sillyst r in g and save the string we want to modify to that variable. At O,
we get the lowercase version of sillyst r ing ("hello t here how
are you doing?) with . to Lowe rCase () and save that in a new
variable called
loWe rst r ing.

At O, we useo] to get the first character of love rst r ing (" h ") and save
it in I i rst Cha r ac ter (0 is

used to grab the first character). Then, at O, we create an uppercase
version of fi r st Char ac ter ("H")
and call that I i rs t Cha r ac te rUp pe r.

At O, we use slice to get all the characters in loWe rst ring, starting from the
second character ("ello
t here how areyou doing?") and save that in r es tof S t ring. Finally, at O,
we add
f i r st Cha r ac ter U ppe r (" H ") to res t0 I St r in g to get "Hello t here, hoW are you
doing?".

Because values and variables can be substituted for each other, we could
turn lines O through O• into just one line, like this:

var sillystring - "hELlo THERE, hOW ARE you doINg?";
sillystring[0].toUpperCase() + sillystring.slice(1).toLowerCase(); "Hello
there, how are you doing?"

It can be confusing to follow along with code written this way, though, so it's
a good idea to use variables for each step of a complicated task like this —
at least until you get more comfortable reading this kind of complex code.

Booleans
Now for Booleans. A Boolean value is simply a value that's either t rue or I
alse. For example, here's a simple Boolean expression.

var javascriptIsCool true;
javascriptIsCool;
true

In this example, we created a new variable called j avasc ript I sCool and
assigned the Boolean value t r ue to it. On the second line, we get the
value of j avasc rip t I sCoo1, which, of course, is t r ue!

Logical Operators
Just as you can combine numbers with mathematical operators (+, -, °, /,
and so on), you can combine Boolean values with Boolean operators. When
you combine Boolean values with Boolean operators, the result will always
be another Boolean value (either t rue or I alse).
The three main Boolean operators in JavaScript are sa, | | , and ! . They
may look a bit weird, but with a little practice, they're not hard to use. Let's
try them out.

&&(and)
ss means “and.” When reading aloud, people call it “and,” “andand,”
or “ampersand-ampersand.” pAmpersand is the name of the character
&.) Use the sa operator with two Boolean values to see if they're both
t r ue.
For example, before you go to school, you want to make sure that you've
had a shower and you have your backpack. If both are t rue, you can go to
school, but if one or both are false, you can't leave yet.

var hadshower = t rue;
var hasBackpack =
false ;

hadshower && hasBackpack;

false

Here we set the variable had Shore r to t r ue and the variable hasBac
kpac k to I al se. When we enter had Shore r && hasBac k pac k, we are
basically asking JavaScript, “Are both of these values true?” Since they
aren't both t r ue (you don't have your backpack), JavaScript returns false
(you're not ready for school).

Let's try this again, with both values set to t r ue:
var hadshowe r = t

rue ; var

hasBackpack = t rue ;

hadshowe r && hasBackpack ;

t r ue

Now JavaScript tells us that hadsh one r && hasBac kpac k is t r ue.
You're ready for school!

|| (or)
The Boolean operator | | means “or.” It can be pronounced “or,” or even
“or-or,” but some people call it “pipes,” because programmers call the |
character a pipe. You can use this operator with two Boolean values to find
out whether either one is t rue.
For example, say you're still getting ready to go to school and you need to
take a piece of fruit for lunch, but it doesn't matter whether you take an
apple or an orange or both. You can use JavaScript to see whether you
have at least one, like this:

var hasApple = true;
var hasor ange =
fa1se; hasApp1e | |
has0r ange; t r ue

hasApple || hasorange will be true if either has Apple or hasorange is t rue, or if both are t rue.
But if both are false, the result will be fa1se (you don't have any fruit).

! (not)
just means “not.” You can call it “not,” but lots of people call it “bang.”

(An exclamation point is sometimes called a bang.) Use it to turn f alse
into t r ue or t rue into false. This is useful for working with values that are
opposites. For example:

var isWeekend = true;

var needToShowe rToday ! i sWeekend ;

needToShowe rToday;

false

In this example, we set the variable i shee kend to t r ue. Then we set the
variable need ToShore r Today to ! i sWee ke nd. The bang converts the
value to its opposite — so if i sWee ke nd is t r ue, then
! i sWee kend is not t r ue (it's I al se). So when we ask for the value of
need ToShore r Today, we get
f alse (you don't need to shower today, because it's the weekend).
Because need ToShore r Today is I al s e, ! ne ed ToShoWe r Today will be t r ue:

needToShowerTod
ay; false
!needToShowerToda
y; true

In other words, it's true that you do not need to shower today.

Combining logical operators
Operators get interesting when you start combining them. For example,
say you should go to school if it's not the weekend and you've showered
and you have an apple or you have an orange. We could check whether
all of this is t rue with JavaScript, like this:

var isWeekend :
false; var
hadshower = true;
var hasApple -
false; var hasorange
= true;
var shouldGoToSchool = !isWeekend && hadshower && (hasApple ||
has0range); shouldGoToSchool;

true

In this case, it's not the weekend, you have showered, and you don't have an
apple but you do have an orange — so you should go to school.
hasApple | | has0 range is in parentheses because we
want to make sure JavaScript works out that bit first. Just as JavaScript
calculates before + with numbers, it also calculates && before | |
in logical

statements.

Comparing Numbers with Booleans
Boolean values can be used to answer questions about numbers that have a
simple yes or no answer. For example, imagine you're running a theme park
and one of the rides has a height restriction: riders must be at least 60 inches
tall, or they might fall out! When someone wants to go on the ride and tells
you their height, you need to know if it's greater than this height restriction.

Greater Than
We can use the greater-than operator (>) to see if one number is greater
than another. For example, to see if the rider's height (65 inches) is
greater than the height restriction (60 inches), we could set the variable
heig h t equal to 6s and the variable heig h t Rest r ict io n equal tO 60,
and then use > to compare the two:

var height = 65;

var heightRestriction = 60;
height > heightRestriction; t
r ue

With heig h t > heig h t Rest r ict ion, we're asking JavaScript to tell us
whether the first value is
greater than the second. In this case, the rider is tall enough!
What if a rider were exactly 60 inches tall, though?

var height = 60;
var heightRestriction = 60;
height > heightRestriction;
false

Oh no! The rider isn't tall enough! But if the height restriction is 60, then
shouldn't people who are exactly 60 inches be allowed in? We need to fix
that. Luckily, JavaScript has another operator, >=, which means “greater
than or equal to”:

var height = 60;

var heightRestriction = 60;
height >= heightRestriction; t
r ue

Good, that's better — 60 is greater than or equal to 60.

Less Than
The opposite of the greater-than operator (>) is the less-than operator (<).
This operator might come in handy if a ride were designed only for small
children. For example, say the rider's height is 60 inches, but riders must
be no more than 48 inches tall:

var height - 60;

var heightRestriction = 48;
height < heightRestriction;
false

We want to know if the rider's height is less than the restriction, so we use
<. Because 60 is not less than 48, we get false (someone whose height is 60
inches is too tall for this ride).
And, as you may have guessed, we can also use the operator <=, which
means “less than or equal to”:

var height = 48;

var heightRes t r ic t ion =
48; height <=
heightRestriction; t r ue

Someone who is 48 inches tall is still allowed to go on the ride.

Equal To
To find out if two numbers are exactly the same, use the triple equal sign
(===), which means Equal To. But be careful not to confuse === with a
single equal sign (=), because === means “are these two numbers equal?”
and = means “save the value on the right in the variable on the left.” In
other words,
=== asks a question, while = assigns a value to a variable.

When you use =, a variable name has to be on the left and the value you want
to save to that variable must be on the right. On the other hand, === is just

used for comparing two values to see if they're the same, so it doesn't
matter which value is on which side.
For example, say you're running a competition with your friends Chico,
Harpo, and Groucho to see who can guess your secret number, which is 5.
You make it easy on your friends by saying that the number is between 1
and 9, and they start to guess. First you set mysec ret Number equal tO 5.
Your first friend, Chico, guesses that it's 3 (chicoGues s). Let's see what
happens next:

var mysec r e tNumbe r =
5; var chicoGues s = 3;

mysec re t Number === chicoGues s ;

false

var harpoGuess = 7;

mysecret Number === harpoGuess ;

false
var grouchoGues s = 5 ;

mysec re t Number === grouchoGues s ;

t r ue

The variable oysec ret N umbe r stores your secret number. The variables
ch icoGues s, har poGues s, and g rouc hoGues s represent your friends'
guesses, and we use === to see whether each guess is the same as your
secret number. Your third friend, Groucho, wins by guessing s.
When you compare two numbers with ===, you get t rue only when both
numbers are the same. Because grouchoGuess is 5 andmySecretNumber is
5,mySecretNumber grouchoGuess returns t r ue. The other guesses didn't
match mysec ret N umbe r, so they returned f al se.
You can also use === to compare two strings or two Booleans. If you use
=== to compare two different types — for example, a string and a number
— it will always return false.

Double Equals
Now to confuse things a bit: there's another JavaScript operator (double
equals, or ==) that means “equal-ish.” Use this to see whether two
values are the same, even if one is a string and the other is a number. All
values have some kind of type. So the number s is different from the
string "s", even though they basically look like the same thing. If you use
=== to compare the number s and the string "5", JavaScript will tell you
they're not equal. But if you use == to compare them, it will tell you
they're the same:

var st r ingNumber =
"5" ; var actualNumber
= 5;

st r ingNumber === ac tualNumber ;

false
stringNumber == actualNumber;

t r ue

At this point, you might be thinking to yourself, “Hmm, it seems much
easier to use double equals than triple equals!” You have to be very
careful, though, because double equals can be very confusing. For
example, do you think 0 is equal to I alse? What about the string ”I alse”?
When you use double equals, 0 is equal to I alse, but the string "I alse"
is not:

0 == false;
t r ue

"false" ==
false; false

This is because when JavaScript tries to compare two values with
double equals, it first tries to make them the same type. In this case, it
converts the Boolean into a number. If you convert Booleans to
numbers, I alse becomes o, and t rue becomes 1. So when you type
o I alse, you get t rue!
Because of this weirdness, it's probably safest to just stick with === for now.

TRY IT OUT!
You've been asked by the local movie theater managers to implement some JavaScript for a new
automated system they're building. They want to be able to work out whether someone is allowed
into a PG-13 movie or not.

The rules are, if someone is 13 or over, they're allowed in. If they're not over 13, but they are
accompanied by an adult, they're also allowed in. Otherwise, they can't see the movie.

var age = 12;
var accompanied = t rue;

Finish this example using the age and accompanied variables to work out whether this 12-year-
old is allowed to see the movie. Try changing the values (for example, set age to 13 and
accompanied to false) and see if your code still works out the right answer.

undefined and null
Finally, we have two values that don't fit any particular mold. They're
called undefined and n ull. They're both used to mean “nothing,” but in
slightly different ways.
undefined is the value JavaScript uses when it doesn't have a value for
something. For example, when you create a new variable, if you don't set
its value to anything using the = operator, its value will be set to undef1ned:

var
myVariab1e;
myVariab1e;
undefined

The n ull value is usually used when you want to deliberately say “This
is empty.”

var
myNullVariable nul
l; myNullVariable;
null

At this point, you won't be using u ndef in ed or n ull very often. You'll
see undefined if you create a variable and don't set its value, because
undef in ed is what JavaScript will always give you when it doesn't have
a value. It's not very common to set something to undefined; if you feel
the need to set a variable to “nothing,” you should use n u11 instead.
n ull is used only when you actually want to say something's not
there, which is very occasionally helpful. For example, say you're using a
variable to track what your favorite vegetable is. If you hate all vegetables
and don't have a favorite, you might set the favorite vegetable variable to
null.
Setting the variable to null would make it obvious to anyone reading the
code that you don't have a favorite vegetable. If it were undefined,
however, someone might just think you hadn't gotten around to setting a
value yet.

What You Learned
Now you know all the basic data types in JavaScript — numbers, strings,
and Booleans — as well as the special values n ull and undefined.
Numbers are used for math-type things, strings are used for text, and
Booleans are used for yes or no questions. The values n ull and
undefined are there to give us a way to talk about things that don't exist.
In the next two chapters, we'll look at arrays and objects, which are both
ways of joining basic types to create more complex collections of values.

Chapter 3. Arrays
So far we've learned about numbers and strings, which are types of data
that you can store and use in your programs. But numbers and strings are
kind of boring. There's not a lot that you can do with a string on its own.
JavaScript lets you create and group together data in more interesting ways
with arravs. An array is just a list of other JavaScript data values.
For example, if your friend asked you what your three favorite dinosaurs
were, you could create an array with the names of those dinosaurs, in
order:

var myTopThreeDinosaurs: ["T-Rex", "Velociraptor", "Stegosaurus"];

So instead of giving your friend three separate strings, you can just use the
single array
myTopThreeDinosaurs.

Why Should You Care About Arrays?
Let's look at dinosaurs again. Say you want to use a program to keep
track of the many kinds of dinosaurs you know about. You could create a
variable for each dinosaur, like this:

var dinosaur1 "T - Rex" ;

var dinosaur 2 "Velocir
aptor" ; var dinosaur 3 "St
egosaur us" ; var dinosaur4 "Tr
ice rat ops" ; var dinosaur 5
"Br achiosaur us"; var
dinosaur6 "Pteranodon";
var dinosaur7
"Apatosaurus"; var
dinosaur8
"Diplodocus"; var
dinosaur9
"Compsognathus";

This list is pretty awkward to use, though, because you have nine different
variables when you could have just one. Imagine if you were keeping track
of 1000 dinosaurs! You'd need to create 1000 separate variables, which
would be almost impossible to work with.

It's like if you had a shopping list, but every item was on a different piece
of paper. You'd have one piece of paper that said “eggs,” another piece
that said “bread,” and another piece that said “oranges.” Most people
would write the full list of things they want to buy on a single piece of
paper. Wouldn't it be much easier if you could group all nine dinosaurs
together in just one place?
You can, and that's where arrays come in.

Creating an Array
To create an array, you just use square brackets, [] . In fact, an empty
array is simply a pair of square brackets, like this:

But who cares about an empty array? Let's fill it with our dinosaurs!
To create an array with values in it, enter the values, separated by
commas, between the square brackets. We can call the individual values
in an array items or elements. In this example, our elements will be strings
(the names of our favorite dinosaurs), so we'll write them with quote
marks. We'll store the array in a variable called dinosaurs:

var dînosaurs = ["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops",
"Brachiosaurus", "Pteranodon", "Apatosaurus",

"Diplodocus", "Compsognathus"];

NOTE
Because this is a book and the page is only so wide, we can't actually [it the whole array on one
line. The M is to show where we've put the code onto an extra line because the page is too
narrow. When you type this into your computer, you can type it all on one line.

Long lists can be hard to read on one line, but luckily that's not the only
way to format (or lay out) an array. You can also format an array with an
opening square bracket on one line, the list of items in the array each on
a new line, and a closing square bracket, like this:

var dinosaurs =

"T - Rex",

"Velociraptor",
"Stegosaurus",
"Tr
iceratops",
"Br ach iosaur
us", "Pte r
anodon",
"Apat osaur
us",
"Diplodocus",
"Compsognathu
s"

If you want to type this into your browser console, you'll need to hold
down the sHIFT key when you press the ENTER key for each new line.
Otherwise the JavaScript interpreter will think you're trying to execute
the current, incomplete, line. While we're working in the interpreter, it's
easier to write arrays on one line.
Whether you choose to format the items in an array on one line or on
separate lines, it's all the same to JavaScript. However many line breaks you
use, JavaScript just sees an array — in this example, an array containing
nine strings.

Accessing an Array's Elements
When it's time to access elements in an array, you use square brackets with
the index of the element you want, as you can see in the following example:

dinosaurs[0];

"T — Rex"

dinosaur s 3] ;

"Trice ratops"

An index is the number that corresponds to (or matches) the spot in the
array where a value is stored. Just as with strings, the first element in an
array is at index 0, the second is at index 1, the third at index 2, and so on.
That's why asking for index 0 from the dinosaurs array returns "T - Rex"
(which is first in the list), and index 3 returns ”Tr iceratops (which
is fourth in the list).
It's useful to be able to access individual elements from an array. For
example, if you just wanted to show someone your absolute favorite
dinosaur, you wouldn't need the whole dinosaurs array. Instead you would
just want the first element:

dinosaurs

0]; "T - Rex"

Setting or Changing Elements in an
Array
You can use indexes in square brackets to set, change, or even add
elements to an array. For example, to replace the first element in the d ino
sau r s array ("T - Rex") with Ty ran nosau r us Rex ", you could
do this:

dinosaurs[0] - "Tyrannosaurus Rex";

After you've done that, the dinosau r s array would look like this:
["Tyrannosaurus Rex", "Velociraptor", "Stegosaurus", "Triceratops",
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus",
"Compsognathus"]

You can also use square brackets with indexes to add new elements to an
array. For example, here's how you could create the dinosaurs array by
setting each element individually with square brackets:

var dinosaurs = [] ;
dinosaurs [0] = "T- Rex"
;
dinosaurs[1] = "Velociraptor";
dinosaurs 2] = "St egosaur us" ;
dinosaurs 3] = "Tricer atops" ;
dinosaurs 4] = "Brachiosaur
us" ; dinosaurs [5] = "P t er
anodon" ; dinosaurs [6] = "Apa t
osaur us" ; dinosaurs 7] =
"Diplodocus" ; dinosaurs 8] =
"Compsognathus" ;

dinosaurs;
["T - Rex", "Ve1oc ir apt or", "St egosaur us", "Tr icer atops",
"Brachiosaurus", "Pteranodon", "Apatosaurus", "Diplodocus",
"Compsognathus"]

First we create an empty array with var dinosaurs []. Then, with
each following line we add a value to the list with a series of dinosaurs []
entries, from index 0 to index 8. Once we finish the list, we can view the
array (by typing dinosaur s ;). We see that JavaScript has stored all the
names ordered according to the indexes.
You can actually add an element at any index you want. For example, to
add a new (made-up) dinosaur at index 33, you could write the following:

dinosaurs[33] = "Philosoraptor";

dinosaurs;

["T-Rex", "Velociraptor", "Stegosaurus", "Triceratops", "Brachiosaurus",
"Pteranodon", "Apatosaurus", "Diplodocus", "Compsognathus",
undefined x 24 "Philosoraptor"]

The elements between indexes 8 and 33 will be undefined. When you
output the array, Chrome helpfully tells you how many elements were
undefined, rather than listing them all individually.

Mixing Data Types in an Array
Array elements don't all have to be the same type. For example, the next
array contains a number (3), a string (” d ino sau rs "), an array ([”t r ice
r at ops ”, "s t egosau r u s" , 3627 . 5]), and another number
():

var dinosaursAndNumbers = [3, "dinosaurs", ["triceratops",
"stegosaurus", 3627.5], 10];

To access an individual element in this array's inner array, you would just
use a second set of square brackets. For example, while dinosau r sAnd
Number s[2] ; returns the entire inner array,
d ino sau r sAnd N umbe rs[2] [0] ; returns only the first element of that
inner array, which is
" t r ice r at ops ".

dinosaursAndNumbers[2]; ["triceratops",
"stegosaurus", 3627.5]
dinosaursAndNumbers[2][0];

"t rice rat ops"

When we type dinosaur sAnd N umbe r s[2] [0] ; , we tell JavaScript to
look at index 2 of the array
d ino sau r sAnd N umbe r s, which contains the array [t r ice r at op s ”, " stegosau r u
s" , 3627 . 5] , and to return the value at index 0 of that second array. Index 0
is the first value of the second array, which is "t r ice rat ops ". Figure 3-1
shows the index positions for this array.

[3, "dinosaurs", ["tiicezatops", "stegosau[us", 3627.51, io];

t t t

Figure 3-1. The index positions of the main array are labeled in red, and the indexes o[the inner
array are labeled in blue.

Working with Arrays
Prooerties and methods help you work with arrays. Properties generally
tell you something about the array, and methods usually do something to
change the array or return a new array. Let's have a look.

Finding the Length of an Array
Sometimes it's useful to know how many elements there are in an
array. For example, if you kept adding dinosaurs to your dinosaurs
array, you might forget how many dinosaurs you have.
The lengt h property of an array tells you how many elements there are in
the array. To find the length of an array, just add . leng t h to the end of its
name. Let's try it out. First we'll make a new array with three elements:

var maniacs ["Yakko", "Wakko", "Dot"] ;
maniacs [0]
; "Yakko"
maniacs[1];
"Wakko"
maniacs[2];
"Dot"

To find the length of the array, add . leng t h to man iac s:
maniacs.length;

JavaScript tells us that there are 3 elements in the array, and we already
know they have the index positions 0, 1, and 2. This gives us a useful piece
of information: the last index in an array is always the same number as the
length of the array minus 1. This means that there is an easy way to access
the last element in an array, however long that array is:

maniacs [maniacs . 1ength1] ;
"Dot"

Here, we're asking JavaScript for an element from our array. But instead of
entering an index number in the square brackets, we use a little bit of math:
the length of the array minus 1. JavaScript finds
maniacs . lengt h, gets 3, and then subtracts 1 to get 2. Then it returns the
element from index 2 — the last maniac in the array, "Dot ".

Adding Elements to an Array
To add an element to the end of an array, you can use the push method.
Add . pus h to the array name, followed by the element you want to add
inside parentheses, like this:

var animals = [];
animals.push("Cat");

animals.push("Dog");

2
animals.push("Llama");

animals;
["Cat", "Dog", "Llama"]
animals.length;

Here we create an empty array with var animal s [] ; , and then use the
pus h method to add "cat" to the array. Then, we use pu sh again to add on
"Dog " and then ” Llama . When we display animals ; , we see that "cat ",
"Dog ", and " Llama" were added to the array, in the same order we
entered them.

The act of running a method in computer-speak is known as calling the
method. When you call the pus h method, two things happen. First, the
element in parentheses is added to the array. Second, the new length of the
array is returned. That's why you see those numbers printed out every time
you call push.
To add an element to the beginning of an array, you can use . un shif
t(element), like this:

animals;
["Cat", "Dog", "Llama"]

€# animals[0];
"Cat "

animals. unshift("Monkey");

4

animals;
["Monkey", "Cat", "Dog", "Llama"]
animals. unshift("Polar Bear");

5

animals ;
["Polar Bear", "Monkey", "Cat", "Dog", "L1ama"]

animals[0
]; "Polar
Bear"

€# animals[2];
"Cat "

Here we started with the array that we've been using, ["cat ","Dog
", "Llama"]. Then, as we add the elements "No n key" and "Polar Bear
" to the beginning of the array with uns hif t, the old values get pushed
along by one index each time. So "cat ”, which was originally at index 0 O,
is now at index 2
o.

Again, unshift returns the new length of the array each time it is called, just
like push.

Removing Elements from an Array
To remove the last element from an array, you can pop it off by adding .
pop () to the end of the array name. The pop method can be particularly
handy because it does two things: it removes the last element, and it
returns that last element as a value. For example, let's start with our
animals array,
["Polar Bear ","Mon key", "Cat ”, "Dog ”, " Llama"]. Then
we'll create a new variable called
las tAnimal and save the last animal into it by calling animals . pop ().

animals;
["Polar Bear", "Monkey", "Cat", "Dog", "Llama"]

€# var lastAnimal = animals.pop();
lastAnimal; "Llama"
animals;
["Polar Bear", "Monkey", "Cat ", "Dog"]

O animals . pop() ;
"Dog"

animals;
["Polar Bear", "Monkey", "Cat"]

Q animals.unshift(lastAnimal);

4

animals;

["Llama", "Polar Bear", "Monkey", "Cat"]

When we call animals . pop () at O, the last item in the animal s array,
"Llama", is returned and saved in the variable las tAn imal. " Llama” is
also removed from the array, which leaves us with four animals. When we
call animals . pop () again at O, "Dog " is removed from the array and
returned, leaving only three animals in the array.
When we used an imal . pop () on "Dog ", we didn't save it into a variable,
so that value isn't saved anywhere anymore. The "Llama", on the other
hand, was saved to the variable las tAnimal, so we can use it again
whenever we need it. At O, we use un shif t (las tAn imal) to add "
Llama back onto the front of the array. This gives us a final array
of [" Llama", "Polar Bear ", "No n key", "Cat "]
.

Pushing and popping are a useful pair because sometimes you care about
only the end of an array. You can push a new item onto the array and then
pop it off when you're ready to use it. We'll look at some ways to use
pushing and popping later in this chapter.

To remove and return the first element of an array, use . shif t ():
animals;
["Llama", "Polar Bear", "Monkey", "Cat"]
var firstAnimal = animals.shift(); firstAnimal;
"Llama"
animals;

["Polar Bear", "Monkey", "Cat"]

an imals . shif t () does the same thing as animals . pop (), but the
element comes off the beginning instead. At the start of this example,
animals is [" Llama", "Polar Bear ", "No n
key", "Cat "] .

When we call .shift() on the array, the first element, "Llama" , is returned and
saved in firstAnimal . Because .shift() removes the first element as well as
returning it, at the end animals is just ["Polar Bear", "Monkey", "Cat"] .
You can use unshift and shift to add and remove items from the beginning of
an array just as you’d use push and pop to add and remove items from the
end of an array.

Adding Arrays
To add two arrays together to make a new, single array, you can use
LI rs tAr rap . concat (o therArray) . The term concat is short for
concatenate, a fancy computer science word for joining two values
together. The concat method will combine both arrays into a new array,
with the values from fJ rs tArray added in front of those from o t he rAr
ray.
For example, say we have a list of some furry animals and another list of
some scaly animals, and we want to combine them. If we put all of our
furry animals in an array called I u r ryAn imals and all of our scaly
animals in an array called scalyAn imal s, entering I u r r yAnimal s .
concat (s calyAn imals) will create a new array that has the values from
the first array at the beginning and the values from the second array at the
end.

var furryAnimals : ["Alpaca", "Ring-tailed Lemur", "Yeti"]; var
scalyAnimals = ["Boa Constrictor", "Godzilla"] ;
var furryAndScalyAnimals = furryAnimals.concat(scalyAnimals);
furryAndScalyAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor", "Godzilla"]
furryAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti"]
scalyAnimals;

["Boa Constrictor", "Godzilla"]

Even though fJ re tAr ra y . concat (o the rAr ra) returns an array
containing all the elements from
I:i rs tAr ra and secondAr ray, neither of the original arrays
is changed. When we look at f u r ryAn icals and scalyAnioals,
they're the same as when we created them.

Joining Multiple Arrays

You can use concat to join more than two arrays together. Just put the
extra arrays inside the parentheses, separated by commas:

var furryAnimals: ["Alpaca", "Ring-tailed
Lemur", "Yeti"]; var scalyAnimals = ["Boa
Constrictor", "Godzilla"];
var featheredAnimals = ["Macaw", "Dodo"];
var allAnimals: furryAnimals.concat(scalyAnimals,
featheredAnimals); allAnimals;
["Alpaca", "Ring-tailed Lemur", "Yeti", "Boa Constrictor",
"Godzilla", "Macaw", "Dodo"]

Here the values from feat he r edAnimal s get added to the very end of the
new array, since they are
listed last in the parentheses after the concat method.
concat is useful when you have multiple arrays that you want to combine
into one. For example, say you have a list of your favorite books, and
your friend also has a list of favorite books, and you want to go see if the
books are available to buy all at once at the bookstore. It would be easier
if you had only

one list of books. All you'd have to do is concat your list with your
friend's, and voilà! One list of books.

Finding the Index of an Element in an Array
To find the index of an element in an array, use . index0f (eleven t). Here
we define the array colo rs and then ask for the index positions of "blue"
and "g reen" with colo r s . index0f ("blue") and
colo rs . index0f("g reen "). Because the index of "blue” in the array is
2, colo r s . index0f ("blue”) returns 2. The index of g
reen in the array is 1, so colo r s . index0f ("g reen ") returns 1.

var colors - ["red", "green", "blue"];

colors.indexOf("bl
ue"); 2
colors.îndexof(”green”); 1

index of is like the reverse of using square brackets to get a value at a
particular index; colo r s[2] is
"blue”, so colo r s . index0f (" blue ") is 2:

colors[2];
"blue"
colors.îndexOf("bl
ue"); 2

Even though blue” appears third in the array, its index
position is 2 because we always start counting from 0. And the same goes
for g reen , of course, at index 1.
If the element whose position you ask for is not in the array, JavaScript
returns - i.

colors.indexOf("purple”);

-1

This is JavaScript's way of saying “That doesn't exist here,” while still
returning a number.
If the element appears more than once in the array, the index of method will
return the first index of that element in the array.

var insects = ["Bee", "Ant", "Bee", "Bee",
"Ant"] ; insects . index0f("Bee") ;

0

Turning an Array into a String
You can use . join () to join all the elements in an array together into one
big string.

var boringAnimals =["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join();

"Monkey,Cat,Fish,Lizard"

When you call the join method on an array, it returns a string containing all
the elements, separated by commas. But what if you don't want to use
commas as the separator?

You can use . j oin (sepa ra tor) to do the same thing, but with your own
chosen separator between each value. The separator is whatever string
you put inside the parentheses. For example, we can use three different
separators: a hyphen with spaces on either side, an asterisk, and the word
sees with spaces on either side. Notice that you need quote marks around
the separator, because the separator is a string.

var boringAnimals - ["Monkey", "Cat", "Fish", "Lizard"];
boringAnimals.join(" - ");
"Monkey -
Cat Fish Lizard"
boringAnimals.join("’")
"Monkey*Cat*Fish*Lizard"
boringAnimals.join(" sees ")

"Monkey sees Cat sees Fish sees Lizard"

This is useful if you have an array that you want to turn into a string. Say
you have lots of middle names and you've got them stored in an array, along
with your first and last name. You might be asked to give your full name as a
string. Using join, with a single space as the separator, will join all your
names together into a single string:

var myNames = ["Nicholas", "Andrew", "Maxwell", "Morgan"];

myNarres . j oin(" ") ;

"Nicho1as Andrew MaxweI1 Morgan"

If you didn't have join, you'd have to do something like this, which would be
really annoying to type out:

myNames[0] + " ” + myNames[1] + ” + myNames[2] + +
myNames[3]; "Nicholas Andrew Maxwell Morgan"

Also, this code would work only if you had exactly two middle names. If you
had one or three middle names, you'd have to change the code. With join,
you don't have to change anything — it prints out a string with all of the
elements of the array, no matter how long the array is.
If the values in the array aren't strings, JavaScript will convert them to
strings before joining them together:

var ages = [11, 14, 79}
; ages . j oin(" ") ;

"11 14 79"

Useful Things to Do with Arrays
Now you know lots of different ways to create arrays and play around with
them. But what can you actually do with all these properties and methods?
In this section, we'll write a few short programs that show off some useful
things to do with arrays.

Finding Your Way Home
Picture this: your friend has come over to your house. Now she wants to
show you her house. The only problem is that you've never been to her
house before, and later you'll have to find your way back home on your
own.
Luckily, you have a clever idea to help you with your problem: on the way
to your friend's house, you'll keep a list of all the landmarks you see. On the
way back, you'll go through the list in reverse and check items off the end of
the list every time you pass a landmark so you know where to go next.

Building the Array with Push
Let's write some code that would do exactly that. We start off by creating an
empty array. The array starts off empty because you don't know what
landmarks you'll see until you actually start walking to your friend's house.
Then, for each landmark on the way to your friend's house, we'll push a
description of that landmark onto the end of the array. Then, when it's time
to go home, we'll pop each landmark off the array.

var 1andmarks = [] ;
landmarks . push ("My
house") ;
landmarks.push("Front path");
landmarks.push("Flickering streetlamp");
landmar ks . push("Leaky fire
hydrant") ; landmar ks . push(
"Fire station") ;
landmar ks . push("cat
rescue center") ; landmar ks
. push("My o1d schoo1") ;
landmar ks . push("My
fr1end ' s house") ;

Here we create an empty array named landmar ks and then use push to
store all the landmarks you pass on the way to your friend's house.

Going in Reverse with pop
Once you arrive at your friend's house, you can inspect your array of
landmarks. Sure enough, the first item is "My house , followed by "F ron t
pat h ", and so on through the end of the array, with the final item "Ny I r
iend ' s house . When it's time to go home, all you need to do is pop off the
items one by one, and you'll know where to go next.

landmar k s . pop () ;

"My friend ’ s house"
landmar k s . pop (
) ; "My old school"
landmarks.pop();
"Cat rescue center"
landmarks.pop();
"Fire station"
landmarks.pop();

"Leaky fire hyd rant "
landmar k s . pop () ;
"Flickering streetlamp"
landmarks.pop(); "Front
path" landmarks.pop();

"My house"

Phew, you made it home!
Did you notice how the first landmark you put in the array was also the
last one you got out of it? And the last landmark you put in the array was
the first one that came out? You might have thought that you'd always want
the first item you put in to be the first item you get out, but you can see that
it's sometimes helpful to go back through an array in reverse.

It's actually very common to use a process like this in larger programs,
which is why JavaScript makes pushing and popping so easy.

NOTE
This technique is known as a stack in computer-speak. Think o[it like a stack o[pancakes.
Every time you cook a new pancake, it goes on top (like push), and every time you eat one, it
comes o(the top (like pop). Popping a stack is like going back in time: the last item you pop is
the [irst one you pushed. It S the same with pancakes: the last pancake you eat is the first one
that was cooked. In programming jargon, this is also called Last In, First Out (LIFO). The
alternative to LIFO is First In, First Out (FIFO). This is also known as a queue, because it acts
like a queue (or line) of people. The [irst person to join the queue is the first person to be served.

Decision Maker
We can use arrays in JavaScript to build a program to make decisions for us
(like a Magic 8-Ball). First, though, we need to find out how to get random
numbers.

Using Math.random()
We can produce random numbers using a special method called Mat h .
random(), which returns a random number between 0 and 1 each time it's
called. Here's an example:

Math.random();

0 . 8945409457664937

Math.random();

0 . 3697543195448816

Math.random();

0.48314980138093233

It's important to note that Mat h . r and or() always returns a number less
than 1 and will never return 1
itself.
If you want a bigger number, just multiply the result of calling Mat h .
random (). For example, if you
wanted numbers between 0 and 10, you would multiply Mat h . random()
by 10:

Math.random() 10;

7 . 648027329705656

Math . random() * 10;

9. 7565904534421861

Path . random() * 10;

I? . 21483442978933454

Rounding Down with Math.Hoor()
We can't use these numbers as array indexes, though, because indexes have
to be whole numbers with nothing after the decimal point. To fix that, we
need another method called Nat h . floor (). This takes a number and rounds

it down to the whole number below it (basically getting rid of everything
after the decimal point).

Math.floor(3.7463463);

Math.floor(9.9999);
9
Math.floor(0.79342345196342
6); 0

We can combine these two techniques to create a random index. All we need
to do is multiply
Mat h . random() by the length of the array and then call Mat h . floor ()
on that value. For example, if the length of the array were 4, we would do
this:

Math . f1oor (Math . random ()
* 4) ; 2 // could be 0, 1,
2, or 3

Every time you call the code above, it returns a random number from 0 to
3 (including 0 and 3). Because Mat h . random () always returns a value
less than 1, Mat h . random () * 4 will never return 4 or anything higher
than 4.
Now, if we use that random number as an index, we can select a random
element from an array:

var randomWords = ["Explosion", "Cave", "Princess", "Pen"];
var randomIndex = Math.floor(Math.random() ’ 4);
randomWords[randomIndex];

"Cave"

Here we use Mat h . I loo r (Mat h . r and or () * 4) ; to piCk a random
number from 0 to 3. Once that

random number is saved to the variable r andom I ndex, we use it as an
index to ask for a string from the
array r andomWo rds.
In fact, we could shorten this by doing away with the r andom Index
variable altogether and just say:

randomWords[Math.floor(Math.random()
4)]; "Princess"

The Complete Decision Maker
Now let's create our array of phrases, and we can use this code to pick a
random one. This is our decision maker! I'm using comments here to
show some questions you might want to ask your computer.

var ph rases = [
"That sounds good",
"Yes, you should definitely do that", "I'm
not sure that's a great idea", "Maybe not
today?",

"Computer says no."

// Should I have another milkshake?
phrases[Math.floor(Math.random() * 5)];
"I'm not sure that's a great idea"
// Should I do my homework?
phrases[Math.floor(Math.random() * 5)];
"Maybe not today?"

Here we created an array called ph r ases that stores different pieces of
advice. Now, every time we have a question, we can ask for a random
value from the ph rases array, and it will help us make a decision!
Notice that because our array of decisions has five items, we multiply Mat h
. random() by 5. This will always return one of five index positions: 0, 1, 2,
3, or 4.

Creating a Random Insult Generator
We can extend the decision maker example to create a program that
generates a random insult every time you run it!

var r andomBodyPar t s = ["Face", "Nose", "Hair"] ;

var r andomAdj ec t ives = ["Smelly", "Boring", "Stupid"] ;

var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Pick a random body part from the randomBodyParts array:
 var randomBodyPart = randomBodyParts[Math.floor(Math.random() ’ 3)];

// Pick a random adjective from the randomAdjectives array:
 var randomAdjective = randomAdjectives[Math.floor(Math.random() ’ 3)];

// Pick a random word from the randomWords array:
 var randomWord = randomWords[Math.floor(Math.random() * 5)];

// Join all the random strings into a sentence:
var r andomlnsult = "Your " + r andomBodyPar t + " is
like a " + W r andomAd j ect1ve + " " + r andomWord +
" " ;

r andomlnsult ;

"Your Nose is like a Stupid Marmot ! ! ! "

Here we have three arrays, and in lines O, O, and O, we use three indexes
to pull a random word from each array. Then, we combine them all in the
variable r andom I nsu lt to create a complete insult. At O and O we're
multiplying by 3 because r andooAd j ect ives and r andooBodyPar t s both
contain three elements. Likewise, we're multiplying by 5 at O because r
and onto rds is five elements long. Notice that we add a string with a
single space between r andomAd j ect ive and r andooWo rd. Try running
this code a few times — you should get a different random insult each
time!

Here's another way to build up our random insult:
var randomInsult = ["Your", randomBodyPart, "is", "like", "a",
randomAdj ec t1ve, randomWor d + " ! ! ! "] . j
oin(" ") ; "Your Hair is like a Smelly F1y! ! !
"

In this example, each word of the sentence is a separate string in an array,
which we join with the space character. There's only one place where we
don’t want a space, which is in between randomWo rd and
" ! '. In this case, we use the + operator to join those two strings without
the space.

What You Learned
As you've seen, JavaScript arrays are a way to store a list of values. Now
you know how to create and work with arrays, and you have many ways of
accessing their elements.
Arrays are one of the ways JavaScript gives you to bring multiple values
together into one place. In the next chapter, we'll look at objects, which are
another way of storing multiple values as a single unit.
Objects use string keys to access the elements, rather than number indexes.

Programming Challenges
Try out these challenges to practice the skills you learned in this chapter.
#1: NEW INSULTS
Make your own random insult generator with your own set of words.
#2: MORE SOPHISTICATED INSULTS
Extend the random insult generator so it generates insults like “Your [body
part] is more [adjective] than a [animal]’s [animal body part].” (Hint:
You'll need to create another array.)
#3: USE + OR JOIN?
Make two versions of your random insult generator: one that uses the +
operator to create the string, and one that creates an array and joins it
with . Which do you prefer, and why?
#4: JOINING NUMBERS
How could you turn the array
[3, 2, 1] into the string "3
is bigge r t han 2 is bigge r t han 1" using the j oin
method?

Chapter 4. Objects
Objects in JavaScript are very similar to arrays, but objects use strings
instead of numbers to access the different elements. The strings are called
keys or properties, and the elements they point to are called values. Together
these pieces of information are called kev-value oairs. While arrays are
mostly used to represent lists of multiple things, objects are often used to
represent single things with multiple characteristics, or attributes. For
example, in Chapter 3 we made several arrays that listed different animal
names. But what if we wanted to store different pieces of information about
one animal?

Creating Objects
We could store lots of information about a single animal by creating a
JavaScript object. Here's an object that stores information about a three-
legged cat named Harmony.

var cat =
("legs " :
3,

"name": ”Harmony",
"color": "Tortoiseshell"

Here we create a variable called cat and assign an object to it with three
key-value pairs. To create an object, we use curly brackets, (}, instead of
the straight brackets we used to make arrays. In between the curly brackets,
we enter key-value pairs. The curly brackets and everything in between
them are called an object literal. An object literal is a way of creating an
object by writing out the entire object at once.

NOTE

We've also seen array literals ([or example, [a , b , c]), number literals [or example,
sr), strinp literals [or example, noose), and Boolean literals (t rue and false). Literal just means
that the whole vufue is written out at once, not built up in multiple steps.
For example, if you wanted to make an array with the numbers 1 through 3 in it, you could use
the array literal {1, 2, 3J. Or you could create an empty array and then use the push method to
add 1, 2, and 3 to the array. You don't always know at [irst what's goins to be in your array or
object, which is why you can't always use liberals to build arrays and objects.

Figure 4-1 shows the basic syntax for creating an object.
("keyl": 99 I

The key, The

vnlue, which is
always which can be

a string of any type
Figure 4-1. The general syntax [or creating an object

When you create an object, the key goes before the colon (:), and the
value goes after. The colon acts a bit like an equal sign — the values on the
right get assigned to the names on the left, just like when you create
variables. In between each key-value pair, you have to put a comma. In
our example, the commas are at the ends of the lines —but notice that you
don't need a comma after the last key-value pair
(colo r : "To r toises hell”). Because it's the last key-value pair, the closing
curly bracket comes next, instead of a comma.

Keys Without Quotes
In our first object, we put each key in quotation marks, but you don't
necessarily need quotes around the keys —this is a valid cat object literal
as well:

var cat = (

legs: 3,

name: "Harmony",
color:
"Tortoiseshell"

JavaScript knows that the keys will always be strings, which is why you
can leave out the quotes. If you don't put quotes around the keys, the
unquoted keys have to follow the same rules as variable names: spaces aren't
allowed in an unquoted key, for example. If you put the key in quotes, then
spaces are allowed:

var cat
= (legs:

3,
"full name": "Harmony Philomena Snuggly-
Pants Morgan", color: "Tortoiseshell"

Note that, while a key is always a string (with or without quotes), the
value for that key can be any kind of value, or even a variable containing
a value.

You can also put the whole object on one line, but it can be harder to read
like that:

var cat = (legs: 3, name: "Harmony", color: "Tortoiseshell" };

Accessing Values in Objects
You can access values in objects using square brackets, just like with
arrays. The only difference is that instead of the index (a number), you use
the key (a string).

cat ["name" j ;
"Harmony"

Just as the quotes around keys are optional when you create an object
literal, the quotes are also optional when you are accessing keys in objects.
If you're not going to use quotes, however, the code looks a bit different:

cat.name;
"Harmony"

This style is called dot notation. Instead of typing the key name in quotes
inside square brackets after the object name, we just use a period,
followed by the key, without any quotes. As with unquoted keys in object
literals, this will work only if the key doesn't contain any special
characters, such as spaces.
Instead of looking up a value by typing its key, say you wanted to get a list
of all the keys in an object. JavaScript gives you an easy way to do that,
using obj ect . keys ():

var dog = (name: "Pancake", age: 6, color: "white", bark: "Yip yap

var cat = (name: "Harmony", age: 8, color: "tortoiseshell" };

Obj ect . keys(dog) ;

["name", "age", "color ", "bar k"]

Obj ect . keys(cat) ;

["name", "age", "color"]

object . keys (anyobJ ec t) returns an array containing all the keys of
anyoby ec t.

Adding Values to Objects
An empty object is just like an empty array, but it uses curly brackets, (),
instead of square brackets:

var object = {};

You can add items to an object just as you'd add items to an array, but you
use strings instead of numbers:

var cat = (};

cat["legs"] = 3;
cat["name"] =
"Harmony"; cat["color”] =
"Tortoiseshell"; cat;
{ color: "Tortoiseshell", legs: 3, name: "Harmony" }

Here, we started with an empty object named cat. Then we added three
key-value pairs, one by one. Then, we type cat ; , and the browser shows
the contents of the object. Different browsers may output objects
differently, though. For example, Chrome (at the time I'm writing this)
outputs the cat object like this:

Object {Legs: 3, name: ”Harmony", Color: "TortoisesheLL"}

While Chrome prints out the keys in that order (legs, name, colo r), other
browsers may print them out differently. This is because JavaScript doesn't
store objects with their keys in any particular order.
Arrays obviously have a certain order: index 0 is before index 1, and
index 3 is after index 2. But with objects, there's no obvious way to order
each item. Should colo r go before legs or after? There's no “correct”
answer to this question, so objects simply store keys without assigning
them any particular order, and as a result different browsers will print the
keys in different orders. For this reason, you should never write a
program that relies on object keys being in a precise order.

Adding Keys with Dot Notation
You can also use dot notation when adding new keys. Let's try the previous
example, where we started with an empty object and added keys to it, but
this time we'll use dot notation:

var cat = (} ;

cat . 1egs = 3;
cat . name = "Harmony" ;
cat . co1or = "Tor toiseshell" ;

If you ask for a property that JavaScript doesn't know about, it returns the
special value undef ined. undefined just means “There's nothing here!” For
example:

var dog = (

name : ”

Pancake” , legs :

4, isAwesome :

t rue

dog.isBrown;
undefined

Here we define three properties for dog: name, legs, and isAWesome.
We didn't define is B rown, so dog . is B roWn returns undefined.

Combining Arrays and Objects
So far, we've looked only at arrays and objects that contain simple types
like numbers and strings. But there's nothing stopping you from using
another array or object as a value in an array or object.
For example, an array of dinosaur objects might look like this:

var dinosaurs = [

{ name: "Tyrannosaurus Rex", period: "Late Cretaceous" },

{ name: "Stegosaurus", period: "Late Jurassic" },

{ name: "Plateosaurus", period: "Triassic" }

To get all the information about the first dinosaur, you can use the same
technique we used before, entering the index in square brackets:

dinosaurs[0];

{ name: "Tyrannosaurus Rex", period: "Late Cretaceous" }

If you want to get only the name of the first dinosaur, you can just add the
object key in square brackets after the array index:

dinosaurs [0] ["name"]

; "Ty r annosaur us

Rex"

Or, you can use dot notation, like this:
dinosaurs[1].period;
"Late Jurassic"

NOTE

You can use dot notation only with objects, not with arrays.

An Array of Friends
Let's look at a more complex example now. We'll create an array of friend
objects, where each object also contains an array. First, we'll make the
objects, and then we can put them all into an array.

var anna { name: "Anna", age: 11, luckyNumbers: [2, 4, 8, 16] };

var dave { name: "Dave", age: 5, luckyNumbers: [3, 9, 40] };

var kate { name: "Kate", age: 9, luckyNumbers: [1, 2, 3] };

First, we make three objects and save them into variables called an na,
dave, and kate. Each object has three keys: name, age, and luc kyN umbe r
s. Each name key has a string value assigned to it, each age key has a
single number value assigned to it, and each luc kyN umbe r s key has an
array assigned to it, containing a few different numbers.
Next we'll make an array of our friends:

var friends = [anna, dave, kate];

Now we have an array saved to the variable I r iends with three elements:
an na, dave, and kate (which each refer to objects). You can retrieve one of
these objects using its index in the array:

friends[1];
{ name: "Dave", age: 5, luckyNumbers: Array[3] }

This retrieves the second object in the array, dave (at index 1). Chrome
prints out Ar ray [3] for the luc kyNumber s array, which is just its way
of saying, “This is a three-element array.” (You can use
Chrome to see what's in that array; see Exploring Objects in the Console.)
We can also retrieve a value within an object by entering the index of the
object in square brackets followed by the key we want:

friends[2].name

"Kate"

This code asks for the element at index 2, which is the variable named
kate, and then asks for the property in that object under the key
name , which iS "Kate". We could even retrieve a value from an array
that's inside one of the objects inside the I r iends array, like so:

friends[0].luckyNumbers[1];

4

Figure 4-2 shows each index. I r iend s[0] is the element at index 0 in the I
rie nd s array, which is the
object an na. I r iend s [0] . luc kyN umbe r s is the array [
2, 4, 8, 16] from the object called an na. Finally, I rie nd s[0]
. luc kyN umbe rs [1] is index 1 in that array, which is the number
value 4.

Tr1ends[oJ

van Intends = [anna, dave, kate];

Figure 4-2. Accessing nested values

Exploring Objects in the Console
Chrome will let you dig into objects that you print out in the console. For
example, if you type ...

friends [1] ;

Chrome will display the output shown in Figure 4-3.

Figure 4-3. How an object is displayed in the Chrome interpreter

The triangle on the left means that this object can be expanded. Click the
object to expand it, and you'll see what's shown in Figure 4-4.

Figure 4-4. Expanding the object

You can expand luc kyN umbe r s, too, by clicking it (see Figure 4-5).

Figure 4-5. Expanding tqn nrroJ within the object

Don't worry about those pro to properties — they have to do
with the object's orototvoe. We'll

ky‘S

oh s p e

le O I t

nChapterl2. Also, you'll notice that the interpreter shows the value of the

You can also view the entire I r iend s array and expand each element in the
array, as shown in Figure 4- 6.

Figure 4-6. All three objects [rom the Mr:tends array, as shown in the Chrome interpreter

Useful Things to Do with Objects
Now that you know a few different ways to create objects and add
properties to them, let's put what we've learned to use by trying out some
simple programs.

Keeping Track of Owed Money
Let's say you've decided to start a bank. You lend your friends money, and
you want to have a way to keep track of how much money each of them
owes you.
You can use an object as a way of linking a string and a value together. In
this case, the string would be your friend's name, and the value would be
the amount of money he or she owes you. Let's have a look.

0 var owedMoney = {} ;
@ owedMoney[" 3immy"
] = 5; @ owedMoney[
"Anna"] = 7; fi$
owedMoney ["3immy"] ;

5
Q owedMoney["Jinen"];

undefined

At O, we create a new empty object called owed Money. At O, we assign
the value s to the key 0 immy . We do the same thing at O,
assigning the value 7 to the key "An na". At O, we ask for the value
associated with the key " 0 immy", which is s. Then at O, we ask for the
value associated with the key
"0 in en ", which is undeI in ed because we didn't set it.

Now let's imagine that Jimmy borrows some more money (say, $3). We can
update our object and add 3 to the amount Jimmy owes with the plus-
equals operator (+=) that you saw in Chapter 2.

owedMoney["Jimmy"] +- 3;
owedMoney["Jimmy"];
8

This is like saying owed Money [" 0 immy"] = owed Money ["0 immy"]
+ 3. We can also look at the entire
object to see how much money each friend owes us:

owedMoney;

{ Jimmy: 8, Anna: 7 }

Storing Information About Your Movies
Let's say you have a large collection of movies on DVD and Blu-ray.
Wouldn't it be great to have the information about those movies on your
computer so you can find out about each movie easily?
You can create an object to store information about your movies, where
every key is a movie title, and every value is another object containing
information about the movie. Values in objects can be objects
themselves!

var movies =
("Finding
Nemo" : (
releaseDate: 2003,
duration: l0é,

actors: ["Albert Brooks", "Ellen DeGeneres", "Alexander Gould"],

fo mat : "DVD"

"Star Wars: Episode VI Return of the Jedi": {

releaseDate: 1983,
duration: 134,

actors: ["Mark Hamill", "Harrison Ford", "Carrie Fisher"],

fo mat : "DVD"

"Harry Potter and the Goblet of Fire": (
releaseDate: 2005,
duration: 157,
actors: ["Daniel Radcliffe", "Emma Watson", "Rupert Grint"],
format: "Blu-ray"

You might have noticed that I used quotes for the movie titles (the keys in
the outer object) but not for the keys in the inner objects. That's because
the movie titles need to have spaces — otherwise, I'd have to type each
title like St ar War sEp i sodeVIRet u r noI The J edi, and that's just silly! I
didn't need quotes for the keys in the inner objects, so I left them off. It can
make code look a bit cleaner when there aren't unnecessary punctuation
marks in it.

Now, when you want information about a movie, it's easy to find:
var findingNemo = movies["Finding Nemo"];
findingNemo.duration;

100

findingNemo.format;

"DVD"

Here we save the movie information about Finding Nemo into a variable
called find ing Nemo. We can
then look at the properties of this object (like du rat ion and to rmat) to
find out about the movie.
You can also easily add new movies to your collection:

var cars = (

releaseDate: 2006,

duration: 117,

actors: ["Owen Wilson", "Bonnie Hunt", "Paul Newman"],
format: ”Blu-ray"

movies["Cars"] = cars;

Here we create a new object of movie information about Cars. We then
insert this into the movies object, under the key "Cars".
Now that you're building up your collection, you might want to find an
easy way to list the names of all your movies. That's where obj ect . keys
comes in:

Obj ect . keys (movies) ;
["Finding Nemo", "Star Wars: Episode VI Return of the uedi", "Harry
Potter and the Goblet of Fire", "Cars"]

What You Learned
Now you've seen how objects work in JavaScript. They're a lot like arrays,
because you can use them to hold lots of pieces of information together in
one unit. One major difference is that you use strings to access elements
in an object and you use numbers to access elements in an array. For this
reason, arrays are ordered, while objects are not.
We'll be doing a lot more with objects in later chapters, once we've learned
about more of JavaScript's features. In the next chapter, we'll look at
conditionals and looas, which are both ways of adding structure to our
programs to make them more powerful.

Programming Challenges
Try out these challenges to practice working with objects.
#1: SCOREKEEPER
Imagine you're playing a game with some friends and you want to keep
track of the score. Create an object called sco res. The keys will be the
names of your friends, and the values will be the scores (which will all
start at 0). As the players earn points, you must increase their scores. How
would you increase a player's score in the sco res object?
#2: DIGGING INTO OBJECTS AND ARRAYS
Say you had the following object:

var myCrazy0bject = (

"name" : "A r 1d1cuIous obj ect ",
"some array": [7, 9, { purpose: "confusion", number: 123 }, 3.3],
"random animal": "Banana Shark"

How would you get the number 123 out of this object using one line of
JavaScript? Try it out in the console to see if you're right.

Chapter S. The Basics of HTML
The browser-based JavaScript console that we've been using so far is
great for trying out small snippets of code, but in order to create actual
programs, we'll need something a bit more flexible, like a web page with
some JavaScript in it. In this chapter, we'll learn how to create a basic
HTML web page.
HTML {HyperText Markup Language) is the language used to make
web pages. The word HyperText refers to text that is connected by
hyperlinks, the links on a web page. A markup language is used to
annotate documents so that they're not just plaintext. The markup tells
software (like a web browser) how to display the text and what to do
with it.
In this chapter, I'll show you how to write HTML documents in a text
editor, a simple program designed for writing plaintext files without the
formatting you find in word processors like Microsoft Word.
Word-processed documents contain [ormatted text (with different fonts,
type colors, font sizes, etc.), and word processors are designed to make it
easy to change the formatting of the text. Word processors usually allow
you to insert images and graphics as well.
Plaintext files contain just text, without any information about the font,
color, size, and so on. You can't put an image in a text file unless you make
it out of text — like this cat, for example.

=(°w°)=

Text Editors
We'll write our HTML in the cross-plat[orm (compatible with Windows,
Mac OS, and Linux) Sublime Text editor. You can download and use
Sublime Text for free, but after a while you'll be asked to pay for a license.
If you don't like that idea, I've listed some completely free alternatives
below. My instructions in this chapter are geared toward Sublime Text,
but since text editors are relatively simple, the instructions should work
pretty much the same for any editor.
• Gedit is a cross-platform text editor from the GNOME project

(https://wiki.gnome.org/Apps/Gedi .
• For Microsoft Windows, Notepad++ (http://notepad-plus-plus.orgy is

another good alternative.
• On Mac OS, TextWrangler

(http://www.barebones.corn/products/textwrangler is a good
option.

To install Sublime Text, visit http://www.sublimetext.comb. Installation
instructions differ for each operating system, but you should find them
pretty clear. If you run into any problems, try the Support section at the
Sublime Text home page.

http://notepad-plus-plus.orgy/
http://www.barebones.corn/products/textwrangler
http://www.sublimetext.comb/

Our First HTML Document
Once you've installed Sublime Text, start the program and create a new file
with FiIe>New File. Next, choose File>Save to save your new, blank file;
name it pape.html and save it to your desktop.
Now it's time to write some HTML. Enter the following text into your
page.html file:

<h1>Hello world!</h1>

<p>My first web page . </p>

Save your updated version of p6ipe.html with File>Save. Now let's see
what that page would look like in a web browser. Open Chrome, choose
Fi1e>Open File, and select page.html from your desktop. You should see
something like Figure 5-1.

Figure 5-1. Your [irst HTML page in Chrome

You've just created your first HTML document! Although you're viewing it
in your web browser, it's not actually on the Internet. Chrome is opening
your page locally and just reading your markup tags to figure out what to
do with its text.

Tags and Elements
HTML documents are made up of elements. An element starts with a start
tag and ends with an end tag. For example, in our document so far we have
two elements: hi and p. The hx element starts with the start tag <hi> and
ends with the end tag </ h x>. The p element starts with the start tag <p>
and ends with the end tag </p>. Anything between the opening and closing
tags is the content of the element.
Start tags consist of the element name surrounded by angle brackets: < and
>. End tags are the same, but they have a forward slash (/) before the
element name.

Heading Elements
Each element has a special meaning and use. For example, the h1 element
means “This is a top-level heading.” The content you put in between the
opening and closing <hi> tags is displayed by the browser on its own line,
in a large, bold font.
There are six levels of heading elements in HTML: h1, h 2, h3, h4, hs, and
h 6. They look like this:

<h1>First-level heading</h1>

<h2>Second-level heading</h2>

<h3>Third-level heading</h3>

<h4>Fourth-level heading</h4>

<h5>Fifth-level heading</h5>

<h6>Sixth-level heading</h6>

Figure 5-2 shows how the headings look on a web page.

Figure 5-2. The different heading elements

The p Element
The p element is used to define separate paragraphs of text. Any text you
put between <p> tags will display in a separate paragraph, with some space
above and below the paragraph. Let's try creating multiple p elements. Add
this new line to your page.html document (the old lines are shown in
gray):

<h1>Hello world !</h1>

<p>My first web page.</p>

<p>Let's add another paragraph.</p>

Figure 5-3 shows the web page with the new paragraph.

Figure 5-3. The same page but with an extra paragraph

Notice that the paragraphs appear on different lines and are separated by
a bit of space. This is all because of the <p> tags.

Whitespace in HTML and Block-Level Elements
What would our page look like without the tags? Let's take a look:

Hello world!

My first web page.

Let's add another paragraph.

Figure 5-4 shows our page without any tags.

Figure 5-4. The same page but with no HTML tags

Oh no! Not only have we lost the formatting, but everything's on one long
line! The reason is that in HTML, all whitesrace is collapsed into a single
space. Whitespace means any character that results in blank space on the
page — for example, the space character, the tab character, and the newline
character (the character that is inserted when you press ENTER Of
RETURN). Any blank lines you insert between two pieces of text in an
HTML document will get collapsed into a single space.

The p and hi elements are called block-level elements because they display
their content in a separate block, starting on a new line, and with any
following content on a new line.

Inline Elements
Let's add two more elements to our document, em and st ron g:

<h1>Hello world!</h1>

<p>My first web page.</p>

<p>Let's add another paragraph.</p>

Figure 5-5 shows what the page looks like with the new tags.

Figure 5-5. The en and strong elements

The em element makes its content italic. The st rong element makes its
content bold. The em and
st rong elements are both inline elements, which means that they don't put
their content onto a new line, as block-level elements do.
To make content bold and italic, put it inside both tags. Notice in the
previous example that the bold italic text has the tags in this order: <st
ron g>par ag raph</st r ong>. It's important to properly nest
elements. Nesting means that if an element is inside another element, its
opening and closing tags should both be inside the parent element. For
example, this is not allowed:

<st rong>par agraph</st rong>

In this case, the closing </st rong> tag comes before the closing
tag. Browsers generally won't tell you when you've made a mistake like
this, but getting nesting wrong can cause your pages to break in strange
ways.

A Full HTML Document
What we've looked at so far is really just a snippet of HTML. A full
HTML document requires some extra elements. Let's take a look at an
example of a complete HTML document and what each part means.
Update your page.html file with these new elements:

<!D0CTYPE html>

<html>

<head>

<title>My first proper HTML page</title>

</head>

<body>
<h1>Hello world!</h1>

<p>My first web page.</p>

<p>Let's add another paragraph.</p>

</body>

</html>

NOTE
Sublime Text should automatically indent certain lines [or you, as shown in this example. It's
actually identifying lines based on their tags (like <htrip >, <h1>, and so on) and indenting
them according to their nesting. Sublime Text doesn't indent the <head> and <body> tags,
though some editors do.

Figure 5-6 shows the complete HTML document.

Figure 5-6. The complete HTML document

Let's take a walk through the elements in our pape.html file. The < !
DOCTYPE h tml> tag is just a declaration. It simply says, “This is an
HTML document.” Next comes the opening <h tml> tag (the closing </ h
tml> tag is at the very end). All HTML documents must have an h t ml
element as their outermost element.
There are two elements inside the h tml element: head and body. The
head element contains certain information about your HTML document,
such as the title element, which contains the document's title. For
example, notice that in Figure 5-6, the title in the browser tab — “My
first proper HTML page” — matches what we entered in the title
element. The t itle element is contained inside the head element, which
is contained inside the html element.
The body element contains the content that will be displayed in the browser.
Here, we've just copied the HTML from earlier in the chapter.

HTML Hierarchy
HTML elements have a clear hierarchy, or order, and can be thought of as
a kind of upside-down tree. You can see how our document would look as
a tree in Figure 5-7.

Figure 5-7. The elements [rom Figure 5-6, shown as a tree

The top element is the html element. It contains the head and body
elements. The head contains the t itle element, and the body contains
the h1 and p elements. The browser interprets your HTML according to
this hierarchy. We'll look at how to change the document structure later,
in Chapter 9.
Figure 5-8 shows another way of visualizing the HTML hierarchy, as a set
of nested boxes.

Figure 5-8. The HTML hierarchy, shown as nested boxes

Adding Links to Your HTML
Earlier in this chapter, we learned that the HT in HTML stands for HyperText,
or linked text. HTML documents can contain hyperlinks blinks for short)
that take you to other web pages. The a element (for anchor) creates a link
element.
Modify your HTML document to match the following example: delete the
second p element and the
 and <st rong> tags, and then add the new colored code to create a
link to http://xkcd.coin/:

<!D0CTYPE html>

<html>

<head>

<title>My first proper HTML page</title>

</head>

<body>

<h1>Hello world!</h1>

<p>My first web page.</p>

<p><a href-"http://xkcd.com">Click here</a» to read some excellent

comics . </p»

</body>

</htm1>

Now save and open your page in your browser, and it should look like
Figure 5-9.

Figure 5-9. A web page containing a link to http://xkcd. cot

If you click that link, your browser should go to the xkcd website,
http://xkcd.cot. Once you've had your fill of geeky comics, click the back
button to return to your page.

http://xkcd.coin/
http://xkcd.com/
http://xkcd/
http://xkcd.cot/

Link Attributes
Let's take a closer look at how we created that HTML link. To tell the
browser where to go when you click the a element, we added something
called an attribute to the anchor element. Attributes in HTML elements are
similar to key-value pairs in JavaScript objects. Every attribute has a name
and a value.
Here's the xkcd link we created again:

Click here

In this case, the attribute name is h ref and the attribute value is "ht t p:
//xkcd . com". The name h ref stands for hypertext re[erence, which is a
fancy way of saying “web address.”
Figure 5-10 shows all the parts of the link.

This text
The web address will

appear in quotes as the
link.

Click heze

The openi rig an chor ta g The closing anchor tag

Figure 5-10. The basic syntax [or creating a hyperlink

The link will take you to whatever web address is entered as the value of the
h ref attribute.

http://xkcd.com/
http://xkcd.com/

Title Attributes
Another attribute we can add to links is the title attribute. This attribute
sets the text you see when you hover your mouse over a link. For
example, change the opening <a> tag so it looks like this:

Click here

Now reload the page. When you hover your cursor over the link, you
should see the text “xkcd: Land of geeky comics!” floating above the page,
as shown in Figure 5-11.

fisure 5-11. A web page containing a link to http://xkcd.coau' with a title attribute

http://xkcd.com/

What You Learned
In this chapter, you learned the basics of HTML, the language used to
create web pages. We created a simple page containing a link to another
page.
In the next chapter, we'll look at how to embed JavaScript in our web
page. This will make it much easier to create larger programs as we
explore more features of JavaScript in the next few chapters.
This is a book on JavaScript, not HTML, so I've introduced only the very
basics of creating HTML documents. Here are some resources where you
can learn more about HTML:
• The Mozilla Developer Network's Introduction to HTML:

https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/Introductionl

• Codecademy's HTML and CSS course:
http://www.codecademy.com/tracks/web/

• Mozilla Webmaker: https://webmaker.org/

http://www.codecademy.com/tracks/web/

Chapter 6. Conditionals and Loops
Conditionals and loops are two of the most important concepts in
JavaScript. A conditional says, “If something is t r ue, do this. Otherwise,
do that.” For example, if you do your homework, you can have ice cream,
but if you don't do your homework, you don't get the ice cream. A loop
says, “As long as something is t r ue, keep doing this.” For example, as long
as you are thirsty, keep drinking water.
Conditionals and loops are powerful concepts that are key to any
sophisticated program. They are called control structures because they
allow you to control which parts of your code are executed when and how
often they're executed, based on certain conditions you define.
We first need to go over how to embed JavaScript in our HTML file so we
can start creating longer programs than we've looked at so far.

Embedding JavaScript in HTML
Here is the HTML file we created in Chapter 5, with additions in color and
the existing text in gray. (To make this example a little simpler, I've also
deleted the link to xkcd.)

<!D0CTYPE html>

<html>

<head>

<title>My first proper HTML page</title>

</head>

<body>
<h1>Hello world!</h1>

<p>My first web page.</p>

<script>
var message = "Hello world!";
console.log(message);

</scripts

</body>

</htmI>

Here we've added a new element, called sc r i pt. This is a special element
in HTML. With most HTML elements, the content between the opening
and closing tags is displayed on the page. With sc r ipt, on the other hand,
everything between the tags is treated as JavaScript and run by the
JavaScript interpreter.
Now let's look at the code inside the sc r ipt element:

var message = "Hello world!";
console.log(message);

Running JavaScript in an HTML file is quite different from running it in
the console. When you're using the JavaScript console, each line you type
is run as soon as you press ENTER, and the value of that line is printed out
to the console. In a web page, the JavaScript is all run from top to bottom
at one time, and nothing is automatically printed to the console, unless we
tell the browser otherwise. We can use console . log to print things out,
which will make it easier to see what's going on as we run our programs.
The console . log method takes any value and prints out, or logs, that
value to the console.

For example, if you load the HTML file from the beginning of this section
with the JavaScript console open, you'll see this:

Hello world!

Calling con sole . log (mes sage) at O caused the string "Hello Wo
rld ! " to be printed to the console.
Now that you know how to write longer programs with JavaScript, you can
start learning about conditionals.

Conditionals
There are two forms of conditional statements in JavaScript: if
statements and if ... else statements. An if statement is used to
execute a piece of code if something is t rue. For example, i{you've been
good, you get a treat. An if . . else statement executes one piece
of code if something is t rue and another if not. For example, i/ you've
been good, you get a treat; else, you get grounded.

if Statements
The if statement is the simplest of JavaScript's control structures. It's
used to run code only if a condition is t rue. Return to your HTML file
and replace the two lines inside the sc ript element with this:

€# var name = "Nicholas”;
D console.log(”Hello ” +
name); 4$ if (name.length
> 7) (
â console.log(”Wow, you have a REALLY long name!”);

First, at O we create a variable called name and set its value to the string
"Nic holas". Then we use
console . log to log the string "Hello Nic holas " at O.
At O we use an if statement to check whether the length of name is greater
than 7. If it is, the console
will displayWow, you have a REAL LY long name ! ”, using
console . log at O.
As Figure 6-1 shows, an if statement has two main parts: the condition and
the body. The condition should be a Boolean value. The body is one or
more lines of JavaScript code, which are executed if the condition is t rue.

The iT
statement checks

whether this
conditio n is true.

(condition)

console. log("Do sorreth ng") ;

Som e cocle to run
if the can cl ition is true,

called the body

Figure 6-1. The gener‹qf structure o/ tqn ‹r statement

When you load your HTML page with this JavaScript in it, you should see
the following in the console:

Hello Nicholas

Wow, you have a REALLY long name!

Because the name Nicholas has eight characters, name . leng t h
returns 8. Therefore, the condition name . len g t h > 7 iS t r ue,
which causes the body of the if statement to be run, resulting
in this somewhat startling message being logged. To avoid triggering
the if condition, change the name Nicholas to Nick (leaving the rest of
the code as is):

var name = "N1ck" ;

Now save the file and reload the page. This time, the condition name . len g
t h > 7 is not t r ue, because name . len g t h is 4. That means that the body
of the if statement is not run and all that gets printed to the
console is this:

Hello Nick

The body of an if statement is executed only if the condition is t r ue.
When the condition is I alse, the interpreter simply skips over the
if statement and moves on to the next line.

if...else Statements
As I said before, an if statement will execute its body only if the
condition is t r ue. If you want something else to happen when the
condition is false, you need to use an if . . else statement.
Let's extend the example from earlier:

var name = "Nicholas";
console.log("Hello " + name); if
(name.length > 7) {

console.log("Wow, you have a REALLY long name!"); }
else {

console.log(”Your name isn't very long.");

This does the same thing as before, except that if the name isn’t longer
than seven characters, it prints out an alternative message.

As Figure 6-2 shows, if . . else statements look like if statements, but
with two bodies. The keyword else is placed between the two bodies. In
an if . . else statement, the first body is run if the condition is t r ue;
otherwise, the second body is run.

Somethin g that iS
either t rur or false

'’ (condition) (console.log("Do something”);

Some cpde to run if the

console.log(”Do something clsc'");

Some code to run
if the condition is la fee

Figure 6-2. The general structure of an i t...else statement

Chaining if...else Statements
Often we need to check a sequence of conditions and do something when
one of them is t rue. For example, say you're ordering Chinese food and
you're choosing what to eat. Your favorite Chinese dish is lemon chicken,
so you'll have that if it's on the menu. If it's not, you'll have beef with black
bean sauce. If that’s not on the menu, you'll have sweet and sour pork. In
the rare case that none of those options is available, you'll have egg fried
rice, because you know all the Chinese restaurants you go to will have that.

var lemonChicken = false;
var beefWithBlackBean
= true; var
sweetAndSourPork =
true;

if (lemonChicken) {

console.log(”Great! I'm having lemon chicken!”);
} else if (beefWithBlackBean) {

console.log("I'm having the beef.”);
} else if (sweetAndSourPork) {

console.log("OK, I'll have the pork.”);

} else {

console.log(”Well, I guess I'll have rice then.”);

To create a chain of if
. . else
statements, start with a normal if statement and, after the closing brace of
its body, enter the keywords else if, followed by another condition and
another body. You can keep doing this until you run out of conditions;
there's no limit to the number of conditions. The final else section will run
if none of the conditions is t rue. Figure 6-3 shows a generic chain of if
. . else statements.

Each condition has code to run
if the conClition is t rue.

(conditions) {
console,log(”Do tnis ii condition 1 is true”);
 (condition2){
console,log(”Do tnis if condition 2 is true");
 (condition3){

console.log(”Do this if condition 3 is truc”);

ronsole.log(”Do this otncraiso”);

borne code tO run
if all the conditions are haJ se

Figure 6-3. Chaining multiple :i t...e4 se statements

You can read this as follows:
1. If the first condition is t rue, execute the first body.
2. Otherwise, if the second condition is t rue, execute the second body.
3. Otherwise, if the third condition is t rue, execute the third body.
4. Otherwise, execute the else body.
When you have a chain of if ... else statements like this with a final else
section, you can be sure that one (and only one) of the bodies will be run. As
soon as a t r ue condition is found, its associated body is run, and none of the
other conditions is checked. If we run the code in the previous example, I m'

having t he beef will be printed to the console, because bee fWit h Blac k
Bean is the first condition that's found to be t r ue in the if ... else
chain. If none of the conditions is t r ue, the else body is run.

There's one other thing to note: you don't necessarily have to include the
final else. If you don't, though, and none of the conditions is t r ue, then
nothing inside the if . . else chain will be executed.

var 1emonchicken = false;
var beefWithBlackBean
= false; var
sweetAndSourPork =
fa1se;

if (lemonChicken) {

console.log(”Great I'm having lemon chicken ”);

} else if (beefWithBlackBean) {
console.log("I'm having the
beef.”);

} else if (sweetAndSourPork) {
console.log(”OK, I'll have the
pork.”);

In this example, we've left out the final else section. Because none of your
favorite foods is available, nothing gets printed out (and it looks like you're
not going to have anything to eat!).

Loops
As we've seen, conditionals allow you to run a piece of code once if a
condition is t r ue. Loops, on the other hand, allow you to run a piece of
code multiple times, depending on whether a condition remains t r ue.
For example, while there's food on your plate, you should keep eating; or,
while you still have dirt on your face, you should keep washing.

while Loops
The simplest kind of loop is a While loop. A While loop repeatedly
executes its body until a particular condition stops being t rue. By writing a
While loop, you are saying, “Keep doing this while this condition is t rue.
Stop when the condition becomes I alse.”
As Figure 6-4 shows, While loops start with the while keyword, followed
by a condition in parentheses and then a body in braces.

Th is condition is
checked each time the
loop repeats.

(condition) (
console.log(”Do
something”);

 Some code to run and repeat
as long as the condition is true

(something in here should change
things so the condition is

eventually 'false)

Figure 6-4. The general structure of a ah:i1e loop

Like an ifstatement, the body of a While loop is executed if the condition
is t rue. Unlike an if statement, after the body is executed, the condition is
checked again, and if it's still t r ue, the body runs again. This cycle goes
on until the condition is I alse.

Counting Sheep with a while loop
Say you're having trouble sleeping and you want to count sheep. But you're
a programmer, so why not write a program to count sheep for you?

var sheepCount ed = 0;

$$ while (sheepCount ed < 10) (
b console.log(”I have counted + sheepCounted

+ sheep!”); sheepCounted++;

console.log(”Zzzzzzzzzzz”);

We create a variable called sheepCo un ted and set its value to 0. When we
reach the While loop O, we check to see whether s heepCo u n ted is less
than 10. Because 0 is less than 10, the code inside the braces (the body of
the loop) O runs, and “I have coun ted " + s heepCo un ted + "
sheep ! " is logged as “I have counted 0 sheep!” Next, shee pCoun t
ed++ adds 1 to the value of shee pCoun ted, and we go back to the start
of the loop, over and over:

I have counted 0
sheep ! I have
counted 1 sheep ! I
have counted 2 sheep !
I have counted 3
sheep ! I have
counted 4 sheep !

I have counted 5 sheep! I
have counted 6 sheep! I
have counted 7 sheep! I
have counted 8 sheep! I
have counted 9 sheep !
Zz zzz zz zzzz

This repeats until sheepCoun ted becomes 10, at which point the condition
becomes I alse (10 is not less than 10), and the program moves on to
whatever comes after the loop. In this case, it prints Zzzzzz zzzzz.

Preventing Infinite Loops
Keep this in mind when you're using loops: if the condition you set never
becomes false, your loop
will loop forever (or at least until you quit your browser). For example, if
you left out the line
s heepCo u n t ed++ ; , then shee pCoun ted would remain 0, and the output
would look like this:

I have counted 0 sheep! I
have counted 0 sheep! I
have counted 0 sheep !
I have counted 0
sheep !

Because there's nothing to stop it, the program would keep doing this
forever! This is called an infinite

for Loops
fo r loops make it easier to write loops that create a variable, loop until a
condition is t rue, and update the variable at the end of each turn around
the loop. When setting up a for loop, you create a variable, specify the
condition, and say how the variable should change after each cycle — all
before you reach the body of the loop. For example, here's how we could
use a to r loop to count sheep:

for (var sheepCounted = 0; sheepCounted < 10; sheepCounted++) {
console.log("I have counted ” + sheepCounted + ” sheep!”);

console .1og ("Zz z z zz zz z zz") ;

As Figure 6-5 shows, there are three parts to this for loop, separated by
semicolons: the setup, condition, and increment.

This code runs Something that is
before the loop starts. either true or false

Something to run aker each repetition of the loop body

” (setup; condition; increment) (
console. log("Po soircthlng") ;

Some code to
run as long as
the condition

is true

Figure 6-5. The general structure o[a for loop

The setup (var s heepCou n ted = 0) is run before the loop starts. It's
generally used to create a variable to track the number of times the loop has
run. Here we create the variable sheepCoun ted with an initial value of o.
The condition (shee pCoun ted < 10) is checked before each run of the
loop body. If the condition is t r ue, the body is executed; if it's I al se,

the loop stops. In this case, the loop will stop once
s heepCo u n ted is no longer less than 10.
The increment (sheepCo un t ed++) is run after every execution of the loop
body. It's generally used to update the looping variable. Here, we use it to
add 1 to sheepCoun ted each time the loop runs.
to r loops are often used to do something a set number of times. For
example, this program will say
Hello ! three times.

var timesToSayHello = 3;
for (var i = 0; i < timesToSayHello; i++)

{ console.log(”Hello!”);

Here is the output:

Hell
o!
Hell
o!
Hell
o!

If we were the JavaScript interpreter running this code, we would first
create a variable called
t imesToSayHello and set it to 3. When we reach the to r loop, we run the
setup, which creates a variable i and sets it to 0. Next, we check the
condition. Because i is equal to 0 and t ioesToSayHello is 3, the condition
is t r ue, so we enter the loop body, which simply outputs the string "Hello
! ". We then run the increment, which increases i to 1.

Now we check the condition again. It's still t rue, so we run the body and
increment again. This happens repeatedly until i is equal to 3. At this point,
the condition is false (3 is not less than 3), so we exit the loop.

Using for Loops with Arrays and Strings
One very common use of fo r loops is to do something with every
element in an array or every character in a string. For example, here is a to
r loop that prints out the animals in a zoo:

var animals = ["Lion", "Flamingo", "Polar Bear", ”Boa Constrictor"];

for (var i = 0; i < animals.length; i++) (console.log(”This zoo

contains a ” + animals[i] + ".");

In this loop, i starts at 0 and goes up to one less than animals . lengt h, which
in this case is 3. The numbers 0, 1, 2, and 3 are the indexes of the animals in
the animals array. This means that every time around the loop, i is a
different index, and animals [i] is another animal from the animals array.
When i is 0, animals[i] iS "Lion . then i is 1, animals[i] is "Flamingo", and so on.

Running this would output:
This zoo contains a Lion.
This zoo contains a Flamingo.
This zoo contains a Polar Bear. This zoo
contains a Boa Constrictor.

As you saw in Chapter 2, you can access individual characters in a string in
the same way you can access individual elements in an array, using square
brackets. This next example uses a for loop to print out the characters in
a name:

var name = "Nic k";

for (var i = 0; i < name.length; i++) {

console.log(”My name contains the letter + name[i] + ".");

This would output:
My name contains the letter N.
My name contains the letter i.
My name contains the letter c.
My name contains the letter k.

Other Ways to use for Loops
As you might imagine, you don't always have to start the looping
variable at 0 and increment it by 1. For example, here's a way to print all
the powers of 2 below the number 10,000:

fo r (var x = 2 ; x < 10000 ; x x 2) {

console.loQ(x);

We set x to 2 and increment the value of x using x = x * 2;, which will
double the value of x each time the loop runs. The result gets big very
quickly, as you can see:

2
4

8

16

32

64

128

256

512

1024

2Ô48

4Ô96

8192

And voilà! This short fo r loop prints out all the powers of 2 below 10,000.

What You Learned
In this chapter, you learned about conditionals and loops. Conditionals
are used to run code only when a certain condition is t rue. Loops are used
to run code multiple times and to keep running that code as long as a
certain condition is t rue. You can use conditionals to make sure that the
right code is run at the right time, and you can use loops to keep your
program running as long as necessary. Having the ability to do these two
things opens up a whole new world of programming possibilities.
In the next chapter, we'll use the power of conditionals and loops to make
our first real game!

Programming Challenges
Try out these challenges to practice working with conditionals and loops.
#1: AWESOME ANIMALS
Write a to r loop that modifies an array of animals, making them
awesome! For example, if your starting array is ...

var animals = ["Cat", "F1sh", W

"Lemur", "Komodo Dragon"] ;

then after you run your loop, it should look like this:
["AwesomeCat", "Awesome Fish", "Awesome Lemur",
"AwesomeW Komodo Dragon"]

Hint: You'll need to reassign values to the array at each index. This just
means assigning a new value at an existing position in the array. For
example, to make the first animal awesome, you could say:

animals[0] = ”Awesome " + animals[0];

#2: RANDOM STRING GENERATOR
Make a random string generator. You'll need to start with a string
containing all the letters in the alphabet:

var alphabet = "abcdefghijklmnopqrstuvwxyz”;

To pick a random letter from this string, you can update the code we used
for the random insult generator in Chapter 3: Mat h . I loo r (Mat h .
random () * alphabet . len g t h) . This will create a random index into
the string. You can then use square brackets to get the character at that
index.
To create the random string, start with an empty string (var r andoos t
ring = " ”). Then, create a while loop that will continually add new
random letters to this string, as long as the string length is less than 6 (or
any length you choose). You could use the += operator to add a new letter

to the end of the string. After the loop has finished, log it to the console to
see your creation!
#3: H4CK3R SP34K
Turn text into h4c k3 r sp34 k! A lot of people on the Internet like to
replace certain letters with numbers that look like those letters. Some
numbers that look like letters are 4 for A, 3 for E, 1 fOr I, and 0 for o.
Even though the numbers look more like capital letters, we'll be replacing
the lowercase versions of those letters. To change normal text to h4c k3 r
s p34k, we'll need an input string and a new empty string:

var input = "javascript is awesome";

var output = ;

You'll then need to use a tor loop to go through all the letters of the input
string. If the letter is a , add a "4" to the output string. If it's "e",
add a "3". If it's "i", add a "1", and if it's "o", add a "o".
Otherwise, just add the original letter to the new string. As before, you can
use += to add each new letter to the output string.
After the loop, log the output string to the console. If it works correctly, you
should see it log
"j4v4scrlpt 1s 4w3s0m3".

Chapter 7. Creating a Hangman
Game
In this chapter we'll build a Hangman game! We'll learn how to use
dialogs to make the game interactive and take input from someone
playing the game.
Hangman is a word-guessing game. One player picks a secret word, and
the other player tries to guess it.
For example, if the word were TEACHER, the first player would write:

The guessing player tries to guess the letters in the word. Each time they
guess a letter correctly, the first player fills in the blanks for each
occurrence of that letter. For example, if the guessing player guessed the
letter E, the first player would fill in the Es in the word TEACHER like so:

When the guessing player guesses a letter that isn't in the word, they lose
a point and the first player draws part of a stick-man for each wrong
guess. If the first player completes the stickman before the guessing
player guesses the word, the guessing player loses.
In our version of Hangman, the JavaScript program will choose the word
and the human player will guess letters. We won't be drawing the
stickman, because we haven't yet learned how to draw in JavaScript (we'll
learn how to do that in Chapter 13).

Interacting with a Player
To create this game, we have to have some way for the guessing player
(human) to enter their choices. One way is to open a pop-up window
(which JavaScript calls a prompt) that the player can type into.

Creating a Prompt
First, let's create a new HTML document. Using FiIe>Save As, save your
page.html file from Chapter 5 as prompt.html. To create a prompt, enter this
code between the <sc r ipt > tags of prompt.html and refresh the browser:

var name = prompt ("that ' s your name?") ;

console.log("Hello " + name);

Here we create a new variable, called name, and assign to it the value
returned from calling
p r oopt ("What ' s you r name?) . When p romp t is called, a small
window (or dia l go) is opened, which
should look like Figure 7-1.

F'igure 7-1. A prompt dialog

Calling prompt ("What ' s your name?") pops up a window with the text
“What's your name?” along with a text box for input. At the bottom of
the dialog are two buttons, Cancel and OK. In Chrome, the dialog has the
heading Javascript, to inform you that JavaScript opened the prompt.
When you enter text in the box and click OK, that text becomes the value
that is returned by prompt. For example, if I were to enter my name into
the text box and click OK, JavaScript would print this in the console:

Hello Nick

Because I entered Nick in the text box and clicked OK, the string ”Nic k" is
saved in the variable name
and con sole . log prints "Hello " + "Nic k", which gives us "Hello Nic
k".

NOTE

The second time you open any kind o[dialog in Chrome, it adds an extra line to the dialog with a
checkbox saying, “Prevent this page [rom creating additional dialogs.” This is Chrome's way
o[protecting users [rom web pages with lots o[annoying pop-ups. Just leave the box unchecked
[or the exercises in this chapter

Using confirm to Ask a Yes or No Question
The conI i rm function is a way to take user input without a text box by
asking for a yes or no (Boolean) answer. For example, here we use conI i rm
to ask the user if they like cats (see Figure 7-2). If so, the variable li kesCat
s is set to t r ue, and we respond with “You're a cool cat!” If they don't like
cats,
li kesCat s is set to I alse, so we respond with “Yeah, that's fine. You're
still cool!”

var likesCats = confirm("Do you like cats?”); if
(likesCats) (

console.log("You're a cool ”);

} else {

console.log("Yeah, that's fine. You're still cool!”);

fipure 7-2. A confirm diafop

The answer to the con f i re prompt is returned as a Boolean value. If the
user clicks OK in the confirm dialog shown in Figure 7-2, t r ue is returned.
If they click Cancel, I alse is returned.

Using Alerts to Give a Player Information
If you want to just give the player some information, you can use an alert
dialog to display a message with an OK button. For example, if you think
that JavaScript is awesome, you might use this aler t function:

alert(”JavaScript is awesome!");

Figure 7-3 shows what this simple alert dialog would look like.

Figure 7-3. An alert dialog

Alert dialogs just display a message and wait until the user clicks OK.

Why Use alert Instead of console.log?
Why use an alert dialog in a game instead of using console . log? First,
because if all you want to do is tell the player something, using alert
means the player doesn't have to interrupt game play to open the console
to see a status message. Second, calling aler t (as well as prompt and con
f i re) pauses the JavaScript interpreter until the user clicks OK (or
Cancel, in the case of prompt and confirm). That means the player has
time to read the alert. On the other hand, when you use console . log, the
text is displayed immediately and the interpreter moves on to the next line
in your program.

Designing Your Game
Before we start writing the Hangman game, let's think about its structure.
There are a few things we need our program to do:
1. Pick a random word.
2. Take the player's guess.
3. Quit the game if the player wants to.
4. Check that the player's guess is a valid letter.
5. Keep track of letters the player has guessed.
6. Show the player their progress.
7. Finish when the player has guessed the word.
Apart from the first and last tasks (picking a word for the player to guess
and finishing the game), these steps all need to happen multiple times, and
we don't know how many times (it depends on how well the player
guesses). When you need to do the same thing multiple times, you know
you'll need a loop.
But this simple list of tasks doesn't really give us any idea of what needs
to happen when. To get a better idea of the structure of the code, we can
use pseudocode.

Using Pseudocode to Design the Game
Pseudocode is a handy tool that programmers often use to design
programs. It means “fake code,” and it's a way of describing how a
program will work that looks like a cross between written English and
code. Pseudocode has loops and conditionals, but other than that,
everything is just plain English. Let's look at a pseudocode version of our
game to get an idea:

Pick a random word

While the word has not been guessed {

Show the player their current progress
Get a guess from the player

If the player wants to quit the game (Quit

the game

Else If the guess is not a single
letter { Tell the player to pick a
single letter

Else {

If the guess is in the word (

Update the player's progress with the guess

Congratulate the player on guessing the word

As you can see, none of this is real code, and no computer could
understand it. But it gives us an idea of how our program will be structured,
before we get to actually writing the code and having to deal with the messy
details, like how we're going to pick a random word.

Tracking the State of the Word
In the previous pseudocode, one of the first lines says, “Show the player
their current progress.” For the Hangman game, this means filling in the
letters that the player has guessed correctly and showing which letters in
the secret word are still blank. How are we going to do this? We can actually
keep track of the player's progress in a similar way to how traditional
Hangman works: by keeping a collection of blank spaces and filling them in
as the player guesses correct letters.
In our game, we'll do this using an array of blanks for each letter in the
word. We'll call this the answer array, and we'll fill it with the player's
correct guesses as they're made. We'll represent each blank with the string'
The answer array will start out as a group of these empty entries equal
in number to the letters in the secret word. For example, if the secret
word is [ish, the array would look like this:

If the player correctly guessed the letter i, we'd change the second blank to
an i:

Once the player guesses all the correct letters, the completed array would
look like this:

We'll also use a variable to keep track of the number of remaining letters
the player has to guess. For every occurrence of a correctly guessed letter,
this variable will decrease by 1. Once it hits 0, we know the player has
won.

Designing the Game Loop
The main game takes place inside a While loop (in our pseudocode, this loop
begins with the line “While the word has not been guessed”). In this loop we
display the current state of the word being guessed (beginning with all
blanks); ask the player for a guess (and make sure it's a valid, single-letter
guess); and update the answer array with the chosen letter, if that letter
appears in the word.
Almost all computer games are built around a loop of some kind, often
with the same basic structure as the loop in our Hangman game. A game
loop generally does the following:
1. Takes input from the player
2. Updates the game state
3. Displays the current state of the game to the player
Even games that are constantly changing follow this same kind of loop
— they just do it really fast. In the case of our Hangman game, the
program takes a guess from the player, updates the answer array if the
guess is correct, and displays the new state of the answer array.
Once the player guesses all letters in the word, we show the
completed word and a congratulatory message telling them that they
won.

Coding the Game
Now that we know the general structure of our game, we can start to go
over how the code will look. The following sections will walk you
through all the code in the game. After that, you'll see the whole game
code in one listing so you can type it up and play it yourself.

Choosing a Random Word
The first thing we have to do is to choose a random word. Here's how that
will look:

O var nords
= [
"javascript",
"monkey",
"amazing",
"pancake"

Q var word - words[Math.floor(Math.random() * words.length)];

We begin our game at O by creating an array of words Javascript,
monkey, amazing, and pancake) to be used as the source of our secret
word, and we save the array in the Wo rds variable. The words should be
all lowercase. At O we use Mat h . random and Nat h . floor to pick a
random word from the array, as we did with the random insult generator
in Chapter 3.

Creating the Answer Array
Next we create an empty array called ansWerAr ray and fill it with
underscores (_) to match the number of letters in the word.

var answerAr ray = [] ;
0 for (var i = 0; i < word . lengt h ;

i++) (answerAr ray[i] = _" ;

var remainingLetters = word.length;

The for loop at O creates a looping variable i that starts at 0 and goes up to
(but does not include)
wo rd . le n g t h. Each time around the loop, we add a new element to an
see rAr ray, at an see rAr ray [i] .
When the loop finishes, an see rAr ray will be the same length as Wo
rd. For example, if Wo rd is "mon key" (which has six letters), an see
rAr ray will be [_ , , , ,
,] (six underscores).
Finally, we create the variable remaining Let ters and set it to the length
of the secret word. We'll use this variable to keep track of how many
letters are left to be guessed. Every time the player guesses a correct
letter, this value will be decremented (reduced) by 1 for each instance of
that letter in the word.

Coding the Game Loop
The skeleton of the game loop looks like this:

while (remainingLetters > 0) {

// Game code goes here

// Show the p1ayer their prog ress

// Take input from the player

// Update answerArray and remainingLetters for every correct guess

We use a While loop, which will keep looping as long as r eoain ing Let ter
s > 0 remains t r ue. The body of the loop will have to update remaining
Let te r s for every correct guess the player makes. Once the player has
guessed all the letters, remainin g Let te r s will be 0 and the loop will end.

The following sections explain the code that will make up the body of the
game loop.

Showing the Player's Progress
The first thing we need to do inside the game loop is to show the player
their current progress:

a1ert(answerAr ray . j oin (" ")) ;

We do that by joining the elements of answe rAr ray into a string, using
the space character as the
separator, and then using ale r t to show that string to the player. For
example, let's say the word is
monkey and the player has guessed m, o, and e so far. The answer array
would look like tmh i s [,

"o" , ” " , " ", "e", " "], and an sWe rAr ray . j oin (” ") wouldmbe

dialog would then look like Figure 7-4.

o _ _ e _". The alert

Figure 7-4. Showing the player's progress using at ert

Handling the Player's Input
Now we have to get a guess from the player and ensure that it's a single
character.

var guess = prompt(”Guess a letter, or click Cancel to stop playing.”); Q if
(guess =:= null) {

break;
Q } else if (guess.length !:= 1) (alert("Please

enter a single letter. ”);

} else {

â // Update the game state with the guess

At O, prompt takes a guess from the player and saves it to the variable g
uess. One of four things will happen at this point.
First, if the player clicks the Cancel button, then g uess will be n ull. We
check for this condition at O
with if (g ue ss n ull). If this condition is t r ue, we use b reak to exit
the loop.

NOTE
You ctqn use the break keyword in any loop to immediately stop looping, no matter where the
program is in the loop or whether the while condition is currently true.

The second and third possibilities are that the player enters either nothing or
too many letters. If they enter nothing but click OK, guess will be the
empty string " ". In this case, g uess . lengt h will be 0. If they enter
anything more than one letter, guess . leng t h will be greater than 1.
At O, we use else if (g ues s . le ng t h ! == 1) to check for these
conditions, ensuring that g ues s is
exactly one letter. If it's not, we display an alert saying, “Please enter a
single letter.”
The fourth possibility is that the player enters a valid guess of one letter.
Then we have to update the game state with their guess using the else
statement at O, which we'll do in the next section.

Updating the Game State
Once the player has entered a valid guess, we must update the game's
ansWerAr ray according to the guess. To do that, we add the following code
to the else statement:

0 for (var j = 0; j < word . lengt h ;
j ++) (
@ if (wor
d j] === guess) {

answerArray[j] = guess;
Q remainingLetters--;

At O, we create a tor loop with a new looping variable called j , which
runs from 0 up to Word . lengt h. (We're using j as the variable in this loop
because we already used i in the previous tor loop.) We use this loop to
step through each letter of Wo rd. For example, let's say Wo rd is pancake.
The first time around this loop, when j is 0, Wo rd [j] will be p”.
The next time, Wo rd [j] will be a , then n , c ,
"a", ”k", and finally e .
At O, we use if (nor d [j] guess) to check whether
the current letter we're looking at matches the player's guess. If it does,
we use ansuerAr ray [j] = g uess to update the answer array with the
current guess. For each letter in the word that matches guess, we update
the answer array at the corresponding point. This works because the
looping variable j can be used as an index for
ansWerAr ray just as it can be used as an index for Wo rd, as you can see
in Figure 7-5.

Figure 7-5. The same index can be used for both word and answerArray.

For example, imagine we’ve just started playing the game and we reach the
for loop at ➊ . Let’s say
ord is "pancake" , guess is "a" , and answerArray currently looks like this:

["_", "_", "_", "_", "_", "_", "_"]

The first time around the for loop at ➊ , j is 0, so word[j] is "p" . Our guess
is "a" , so we skip the if statement at➋ (because "p" === "a" is
false). The second time around, j is 1, so word[j] is "a" . This is equal to
guess , so we enter the if part of the statement. The line answerArray[j] = guess;

sets the element at index 1 (the second element) of answerArray to guess , so
answerArray now looks like this:

["_", "a", "_", "_", "_", "_", "_"]

The next two times around the loop, word[j] is "n" and then "c" , which don’t
match guess . However, when j reaches 4, word[j] is "a" again. We update
answerArray again, this time setting the element at index 4 (the fifth element)
to guess . Now answerArray looks like this:

["_", "a", "_", "_", "a", "_", "_"]

The remaining letters don’t match "a" , so nothing happens the last two
times around the loop. At the end of this loop, answerArray will be updated
with all the occurrences of guess in word .
For every correct guess, in addition to updating answerArray , we also need
to decrement remainingLetters by 1. We do this at ➌ using remainingLetters--; .
Every time guess matches a letter in word , remainingLetters decreases by 1.
Once the player has guessed all the letters correctly,
remainingLetters will be 0.

Ending the Game
As we've already seen, the main game loop condition is remaining Let te
r s > 0, so as long as there are still letters to guess, the loop will keep
looping. Once remaining Let te r s reaches 0, we leave the loop. We end
with the following code:

a1ert(answerAr ray . j oin (" ")) ;

a1ert("Good j ob ! The answer was " + word) ;

The first line uses aler t to show the answer array one last time. The
second line uses aler t again to congratulate the winning player.

The Game Code
Now we've seen all the code for the game, and we just need to put it
together. What follows is the full listing for our Hangman game. I've
added comments throughout to make it easier for you to see what's
happening at each point. It's quite a bit longer than any of the code we've
written so far, but typing it out will help you to become more familiar with
writing JavaScript. Create a new HTML file called hangman.html and type
the following into it:

<!D0CTYPE html>

<html>

<head>

<I i t1e>Hangman ! </tit1e>

</head>

<body>

<h1>Hangman ! </h1>

<script>
// Create an array of words var
words = [

"javascript",
"monkey"
, ”
amazing ”
, ”
pancake ”

// Pick a random word

var word = words[Math.floor(Math.random()’ words.length)];

// Set up the answer
array var answerAr ray
= [] ;

for (var i = 0; i < word.length; i++) {

answerArray[i] = ;

var remainingLetters = word.length;

// The game loop

while (remainingLetters > 0) {

// Show the player their progress

alert(answerArray.join(" "));

// Get a guess from the player

var guess = prompt(”Guess a letter, or click Cancel
to stop playing. ”);

if (guess === null) {
// Exit the game
loop break;

} else if (guess.length !:= 1) {
alert("Please enter a single letter.");

} else (
// Update t he game state w1t h the
guess for (var j = 0; j < word .
length ; j ++) (

if (word [j] ===
guess) (answerAr
ray[j] = guess ;
remainingLetters--;

// The end of the game loop

// Show the answer and congratulate the player
alert(answerArray.join(” "));

alert("Good job! The answer was " + word);

</scripts

</body>

</html>

If the game doesn't run, make sure that you typed in everything correctly. If
you make a mistake, the JavaScript console can help you find it. For
example, if you misspell a variable name, you'll see something like Figure 7-
6 with a pointer to where you made your mistake.

Figure 7-6. A JavaScript error in the Chrome console

If you click hangman . h t ml: 3o, you'll see the exact line where the error
is. In this case, it's showing us
that we misspelled r eoaining Let te rs as r emainin g Let te r at the start of
the While loop.
Try playing the game a few times. Does it work the way you expected it to
work? Can you imagine the code you wrote running in the background as
you play it?

What You Learned
In just a few pages, you've created your first JavaScript game! As you
can see, loops and conditionals are essential for creating games or any
other interactive computer program. Without these control structures, a
program just begins and ends.
In Chapter 8, we'll use functions to package up code so you can run it from
different parts of your programs.

Programming Challenges
Here are some challenges to build on and improve the Hangman game
you created in this chapter.
si: xonc wonos
Add your own words to the Wo rd s array. Remember to
enter words in all lowercase. #2: CAPITAL LETTERS
If a player guesses a capital letter, it won't match a lowercase letter in the
secret word. To address this potential problem, convert the player's guess
to lowercase. (Hint: You can use the toLower Case method to convert a
string to lowercase.)
#3: LIMITING GUESSES
Our Hangman game gives a player unlimited guesses. Add a variable to
track the number of guesses and end the game if the player runs out of
guesses. (Hint: Check this variable in the same While loop that checks
whether remaining Let ters > 0. As we did in Chapter 2, you can use &&
to check whether two Boolean conditions are t rue.)
#4: FIXING A BUG
There's a bug in the game: if you keep guessing the same correct letter,
remaining Let ters will keep decrementing. Can you fix it? (Hint: You
could add another condition to check whether a value in answer Ar ray is
still an underscore. If it's not an underscore, then that letter must have been
guessed already.)

Chapter 8. Functions
A function is a way to bundle code so that it can be reused. Functions
allow us to run the same piece of code from multiple places in a program
without having to copy and paste the code repeatedly. Also, by hiding
long bits of code in a function and giving it an easy-to-understand name,
you'll be better able to plan out your code because you can focus on
organizing your functions rather than all of the little code details that
make them up. Splitting up your code into smaller, more manageable
pieces allows you to see the bigger picture and think about how your
programs are structured at a higher level.
You'll find functions really useful when you need to repeatedly
perform a calculation or action throughout a program. Earlier in the
book, you used various functions such aS Mat h . random, Mat h . I
loor, ale r t, p romp t, and con I i rm. In this chapter, you'll learn how
to create your own functions.

The Basic Anatomy of a Function
Figure 8-1 shows how a function is built. The code between the curly
brackets is called the [unction body, just as the code between the curly
brackets in a loop is called the loop body.

console.log("Do something”);

The function
body goes between
curly brackets.

Figure 8-1. The syntax [or creating a function

Creating a Simple Function
Let's create a simple function that prints Hello Wo rld ! . Enter the
following code in the browser console. Use sHIFT-ENTER tO start
each new line without executing the code.

var ourFirstFunction: function () {
console.log("Hello world!”);

This code creates a new function and saves it in the variable our Fi r st F
unc t ion.

Calling a Function
To run the code inside a function (the function body), we need to call the
function. To call a function, you enter its name followed by a pair of
opening and closing parentheses, as shown here.

ourFirstFunction(); Hello
world!

Calling our Fi r st F unc t ion executes the body of the function,
which is console . log ("Hello Wo r ld ! ") ; , and the text we asked to
be printed is displayed on the next line: Hello Wo r ld ! .
But if you call this function in your browser, you'll notice that there's a
third line, with a little left- facing arrow, as shown in Figure 8-2. This is
the return value of the function.

Figure 8-2. Calling a function with an undefined return value

A return value is the value that a function outputs, which can then be used
elsewhere in your code. In this case, the return value is undef in ed
because we didn't tell the function to return any particular value in the
body of the function. All we did was ask it to print a message to the
console, which is not the same as returning a value. A function always
returns undef in ed unless there is something in the function body that
tells it to return a different value. (We'll look at how to specify a return
value in Returning Values from Functions.)

NOTE
In the Chrome console tqnd in the code listings throughout this book, return values are always
color-coded based on data type, while text printed with console . 1og is always plain black.

Passing Arguments into Functions
our First F unct ion just prints the same line of text every time you call it,
but you'll probably want your functions to be more flexible than that.
Function arauments allow us to pass values into a function in order to
change the function's behavior when it's called. Arguments always go
between the function parentheses, both when you create the function and
when you call it.
The following say He lloTo function uses an argument (name) to say hello
to someone you specify.

var sayHelloTo = function (name){
console.log("Hello " + name + "!");

We create the function in the first line and assign it to the variable
sayHelloTo. When the function is called, it logs the string "Hello " +
name + " ! ", replacing name with whatever value you pass to the function
as an argument.
Figure 8-3 shows the syntax for a function with one argument.

An argu ment n ame

(argument) (
console.log{ ly aigument was: argument);

This function body

can use tne
argument.

Figure 8-3. The syntax for creating a [suction with one tqrgumenr

To call a function that takes an argument, place the value you'd like to use
for the argument between the parentheses following the function name. For
example, to say hello to Nick, you would write:

sayHelloTo("Nick")
; Hello Nick!

Or, to say hello to Lyra, write:
sayHel1oTo ("Lyra") ;
Hello Lyra!

Each time we call the function, the argument we pass in for name is
included in the string printed by the function. So when we pass in "Nic k ,
the console prints "Hello Nic k ! ", and when we pass in ” Lyra”, it prints
"Hello Ly ra ! "

Printing Cat Faces!
One reason to pass an argument into a function might be to tell it how many
times to do something. For example, the function d raWCat s prints cat
faces (like this: =• . •=) to the console. We tell the function how many cats
to print using the argument howNanyTioes:

var drawCats = function (howManyTimes) (
for (var i = 0; i < howManyTimes; i++) {

console .1og (i + " =^ . ̂ =") ;

The' body of the function is a tor loop that loops as many times as the
hoWNanyTimes argument tells it to (since the variable i starts at 0 and
repeats until it increments to hoWManyTimes minus 1). Each time
through the loop, the function logs the string i + —^ . ̂ = .
Here's what happens when we call this function with the argument s for
hoWManyTioes:

drauCats (5) ;
0 =^ . ̂ =

1

2 =^ . ̂ =

3 =^ . ̂ =

4 =^ . ̂ =

Try it out with hoWManyTimes equal to loo to print 100 cat faces!

Passing Multiple Arguments to a Function
You can pass more than one value into a function using multiple arguments.
To add another argument, enter the arguments between the parentheses
after the I unc tion keyword, separating them by commas. Figure 8-4
shows the syntax for a function with two arguments.

Each argument name is
separated by a comma

(arguments, a£gumentZ) (

The function body

can use bolh
arguments.

Figure 8-4. The syntax [or creating a {traction with two arguments

The following function, p r in t M ult i pleTimes, is like d r aWCat s
except that it has a second argument
called What ToD raw.

var printMultipleTimes = function (howManyTimes, whatToDraw) (
for (var i = 0; i < howManyTimes

; i++) (console . log (i + " " +
whatToDr aw) ;

The p rin t M u lt i pleTimes function prints the string you enter for What
ToD raw as many times as you specify with the argument howNanyTimes.
The second argument tells the function what to print, and the first argument
tells the function how many times to print it.

When calling a function with multiple arguments, insert the values you
wish to use between the parentheses following the function name, separated
by commas.
For example, to print out cat faces using this new p rin t M
ult ipleTimes function, you'd call it like this:

printMultipleTimes(5, "=^.^=");
0 -^.^-

1 ==

2 =^ . ̂ =

3 =^ . ̂ =

4 =^ . ̂ =

To have p r in t M ult i pleTimes print a happy face four times, you
could do this:

printMultipleTimes(4, ”^ ̂ ");

3 ^_^

When we call printMultipleTimes , we pass in the arguments 4 for
howManyTimes and "^_^" for whatToDraw . As a result, the for loop loops four
times (with i incrementing from 0 to 3), printing i + " " + "^_^" each time.
To draw the character (>_<) two times, you could write:

printMultipleTimes(2, "(>_<)"); 0
(>_<)

1 (>_<)

In this case, we pass in 2 for howManyTimes and "(>_<)" for whatToDraw.

Returning Values from Functions
The functions we've looked at so far have all printed text to the console
using console . log. That's an easy and useful way to make JavaScript
display values, but when we log a value to the console, we aren't able to
use that value later in the program. What if you want your function to
output that value so that you can keep using it in other parts of your code?
As mentioned earlier in this chapter, the output of a function is called the
return value. When you call a function that returns a value, you can use that
value in the rest of your code (you could save a return value in a variable,
pass it to another function, or simply combine it with other code). For
example, the following line of code adds 5 to the return value of the call tO
Mat h . I loor (1 . 2345):

5 + Math.floor(1.2345);
6

Mat h . floor is a function that returns the number you pass to it, rounded
down to the nearest whole number. When you see a function call like Mat
h . floor (1. 2345) , imagine replacing it with the return value of that
function call, which is the number 1.
Let's create a function that returns a value. The function dou ble takes the
argument number and returns the result of n umber * 2. In other words,
the value returned by this function is twice the number supplied as its
argument.

var double: function (number) (

0 return number * 2 ;

To return a value from a function, use the keyword ret urn, followed by
the value you want to return. At O, we use the ret ur n keyword to return
the value n uober * 2 from the double function.
Now we can call our dou ble function to double numbers:

double (3) ;

6

Here, the return value (6) is shown on the second line. Even though
functions can take multiple arguments, they can return only one value. If
you don't tell the function to return anything, it will return un def i ned.

Using Function Calls as Values
When you call a function from within a larger piece of code, the
function's return value is used wherever that function call was placed. For
example, let's use our double function to determine the result of doubling
two numbers and then adding the results:

double(5) +
double(6); 22

In this example, we call the dou ble function twice and add the two return
values together. You can think of the call double (5) as the value 10 and
the call double (6) as the value 12.
You can also pass a function call into another function as an argument, and
the function call will be substituted with its return value. In this next
example we call dou ble, passing the result of calling
do u ble with 3 as an argument. We replace dou ble (3) wÎth 6 SO that
do u ble (dou ble (3)) simplifies to do u ble (6), which then simplifies
to 12.

double(double(3));
12

Here's how JavaScript calculates this:
double(Joub1c{\)) ;

0 double(J * 2)

The body of the dou ble function returns n umbe r * 2, So at O we replace
dou ble (3) with 3 * 2. At O we replace 3 * 2 with 6. Then at O, we do
the same thing and replace dou ble (6) with 6 * 2. Finally, at O, we can
replace 6 * 2 with 12.

Using Functions to Simplify Code
In Chapter 3, we used the methods Mat h . random and Mat h . floor to
pick random words from arrays and generate random insults. In this
section, we'll re-create our insult generator and simplify it by creating
functions.

A Function to Pick a Random Word
Here is the code we used in Chapter 3 to choose a random word from an
array:

randomWords[Math.floor(Math. random() ’

randomWords.length)];

If we turn this code into a function, we can reuse it to pick a random word
from an array without having to enter the same code each time. For
example, here's how we could define a pic kRandooHo rd function.

var pickRandomWord: function (words) {

return words[Math.floor(Math.random() words.length)];

All we're doing here is wrapping the previous code in a function. Now, we
can create this r andomwor ds array . .

var randomWords - ["Planet", "Worm", "Flower", "Computer"];

and pick a random word from this array using the pic kRandomWo rd
function, like this:

pickRandomWord(rando
mWords); "Flower"

We can use this same function on any array. For example, here's how we
would pick a random name from an array of names:

pickRandomWord([”Charlie", "Raj", "Nicole", "Kate", ”Sandy"]);

"Raj "

A Random Insult Generator
Now let's try re-creating our random insult generator, using our function
that picks random words. First, here's a reminder of what the code from
Chapter 3 looked like:

var r andomBodyPar t s = ["Face", "Nose", "Hair"] ;

var randomAd j ec I ives = "Smelly", "Boring", "Stupid"] ;

var randomWor ds = ["F1y", "Marmot", "Stick", "Mon key", "Rat"] ;

// Pick a random body part from the randomBodyParts array:

var randomBodyPart: randomBodyParts[Math.floor(Math.random() * 3)];

// Pick a random adjective from the randomAdjectives array:

var randomAdjective = randomAdjectives[Math.floor(Math.random() * 3)];

// Pick a random word from the randomWords array:

var randomWord = randomWords[Math.floor(Math. random() * 5)];

// Join all the random strings into a sentence:
var randomstring = "Your " + randomBodyPart + " is like a " +
randomAdjective + " " + randomWord + ""'";

randomstring;

"Your Nose is like a Stupid Marmot!!!"

Notice that we end up repeating nords [Mat h . floor (Mat h . random() *
length)] quite a few times in this code. Using our pic kRandomWo rd
function, we could rewrite the program like this:

var r andomBodyPar t s = ["Face", "Nose", "Hair "] ;

var randomAdjectives = ["Smelly", "Boring", "Stupid"];

var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:
var randomstring - "Your " +
pickRandomWord(randomBodyParts) + " is like a " +
pickRandomWord(randomAdjectives) +

" " + pickRandomWord(randomWords) + "! !!";

randomstring;

"Your Nose is like a Smelly Marmot!!!"

There are two changes here. First, we use the pic kRandoowo rd function
when we need a random word from an array, instead of using wo rds
[Nat h . f loo r (Nat h . r andom () * length)] each time. Also, instead of
saving each random word in a variable before adding it to the final string,
we're adding the return values from the function calls directly together to
form the string. A call to a function can be treated as the value that the
function returns. So really, all we're doing here is adding together strings.
As you can see, this version of the program is a lot easier to read, and it
was easier to write too, since we reused some code by using a function.

Making the Random Insult Generator into a Function
We can take our random insult generator one step further by creating a
larger function that produces random insults. Let's take a look:

generateRandomInsult = function () {

var randomBodyParts = ["Face", "Nose", "Hair"];

var randomAdjectives = ["Smelly", "Boring", "Stupid"];

var randomWords = ["Fly", "Marmot", "Stick", "Monkey", "Rat"];

// Join all the random strings into a sentence:
var randomstring = "Your " +
pickRandomWord(randomBodyParts) + " is like a " +
pickRandomWord(randomAdjectives) +

' " + pickRandomWord(randomWords) + "'''";

return randomstring;

generateRandomInsult();
"Your Face is like a Smelly Stick!!! "
generateRandomInsult();
"Your Hair is like a Boring Stick!!! "
generateRandomInsult();

"Your Face is like a Stupid Fly!! ! "

Our new generat eRandomI nsult function is just the code from before
placed inside a function with no arguments. The only addition is at O,
where we have the function return randoos t ring at the end. You can see a
few sample runs of the preceding function, and it returns a new insult
string each time.
Having the code in one function means we can keep calling that function
to get a random insult, instead of having to copy and paste the same code
every time we want a new insult.

Leaving a Function Early with return
As soon as the JavaScript interpreter reaches ret ur n in a function, it leaves
the function, even if more code remains in the function body.
One common way to use ret ur n is to leave a function early if any of the
arguments to the function are invnlid; that is, if they're not the kind of
arguments the function needs in order to run properly. For example, the
following function returns a string telling you the fifth character of your
name. If the name passed to the function has fewer than five characters,
the function uses ret urn to leave the function immediately. This means
the ret ur n statement at the end, which tells you the fifth letter of your
name, is never executed.

var fifthLetter = function (name) {
if (name.length < 5) {

b return;

return "The fifth letter of your name is + name[4] +

At O we check to see whether the length of the input name is less than
five. If it is, we use ret urn at O to exit the function early.
Let's try calling this function.

fifthLetter("Nicholas");

"The fifth letter of your name is o."

The name Nicholas is longer than five characters, so fift h Let ter
completes and returns the fifth letter in the name Nicholas, which is the

letter o. Let's try calling it again on a shorter name:
fifthLetter ("N1ck") ;

undefined

When we call fif t h Let te r with the name Nick, the function knows that
the name isn't long enough, so it exits early with the first ret u r n statement
at O. Because there is no value specified after the ret ur n at O, the
function returns undefined.

Using return Multiple Times Instead of
if...else Statements
We can use multiple ret ur n keywords inside different if statements in a
function body to have a function return a different value depending on the
input. For example, say you're writing a game that awards players medals
based on their score. A score of 3 or below is a bronze medal, scores
between 3 and 7 are silver, and anything above 7 is gold. You could use a
function like medalFo rsco re to evaluate a score and return the right kind
of medal, as shown here:

var medalForScore = function
(score) (if (score < 3) {

€# return "Bronze";

@ if (score < 7) (

return "S11ver" ;

b return "Gold";

At O we return "Bronze" and exit the function if the score is less than 3. If
we reach O we know that score must be at least 3, because if it was less than
3, we would have returned already (that is, we would have exited the
function when we reached the ret urn keyword in the first test). Finally, if we
reach O, we know that sco re must be at least 7, so there's nothing left to
check, and we can just return
"Gold".

Although we're checking multiple conditions, we don't need to use
chained if . . else statements. We use if . . else statements
to ensure that only one of the options is executed. When each of the options
has its own ret urn statement, this also ensures that only one of the options
will be executed (because functions can return only once).

What You Learned
Functions allow us to reuse blocks of code. They can do different things
depending on the arguments passed to them, and they can return values to
the location in the code where the function was called. Functions also
make it possible to give a piece of code a meaningful name. For example,
the name of the function pic kRandooHo rd makes clear that the function
has something to do with picking a random word.
In the next chapter, we'll learn how to write JavaScript that can manipulate
HTML documents.

Programming Challenges
Here are some challenges for you to practice working with functions.
#1: DOING ARITHMETIC WITH FUNCTIONS
Create two functions, add and multiply. Each should take two arguments.
The add function should sum its arguments and return the result, and
multiply should multiply its arguments.
Using only these two functions, solve this simple mathematical problem:

36325 * 9824 + 777

#2: ARE THESE ARRAYS THE SAME?
Write a function called ar eAr r ayssaoe that takes two arrays of numbers as
arguments. It should return t r ue if the two arrays are the same (that is, they
have the same numbers in the same order) and false if they're different. Try
running the following code to make sure your functions are working
correctly:

areAr rayssame ([1, 2, 3] , [4, 5, 6]) ;

false

areAr rayssame ([1,

t r ue
2, 3] , [1, 2, 3]) ;

areAr rayssame([1, 2, 3] , [1, 2, 3, 4j) ;

false

Hint 1: you'll need to use a tor loop to go through each of the values in the
first array to see whether they're the same in the second array. You can
return false in the for loop if you find a value that's not equal.
Hint 2: you can leave the function early and skip the to r loop altogether
if the arrays are different lengths.
#3: HANGMAN, USING FUNCTIONS
Go back to your Hangman game from Chapter 7. We're going to rewrite it
using functions.
I've rewritten the final Hangman code here, but with certain parts of the
code replaced by function calls. All you need to do is write the functions!

// Write your functions here

var word = pickWord() ;
var answerAr ray =
setupAnswerAr ray(word) ; var
remain1ngLet ter s = word .
length ;

while (remainingLetters > 0) (

showPlaye rProgr ess (answerAr
ray) ; var guess = ge t Gues s () ;
if (guess === null) (

break;
} else if (guess.length !== 1) {

alert("Please enter a single
letter.”);

} else {
var correctGuesses = updateGameState(guess, word,
answerArray); remainingLetters -= correctGuesses;

showAnswerAndCongratulatePlayer(answerArray);

This version of the code using functions is almost as simple as the
pseudocode version from Chapter 7. This should give you some idea of how
useful functions can be for making code easier to understand.
Here are the functions you need to fill in:

var pickWord = function () (

// Return a random word

var setupAnswerArray = function (word) (

// Return the answer array

var showPlayerProgress - function (answerArray) {

// Use alert to show the player their progress

var getGuess = function () (

// Use prompt to get a guess

var updateGameState: function (guess, word, answerArray) (

// Update answerArray and return a number showing how many

// times the guess appears in the word so remainingLetters

// can be updated

var showAnswerAndCongratulatePlayer: function (answerArray) {

// Use alert to show the answer and congratulate the player

Part II. Advanced JavaScript

Chapter 9. The DOM and jQuery
So far, we've been using JavaScript to do relatively simple things like
print text to the browser console or display an alert or prompt dialog. But
you can also use JavaScript to manipulate (control or modify) and
interact with the HTML you write in web pages. In this chapter, we'll
discuss two tools that will allow you to write much more powerful
JavaScript: the DOM and jQuery.
The DOE, or document obiect model, is what allows JavaScript to access the
content of a web page. Web browsers use the DOM to keep track of the
elements on a page (such as paragraphs, headings, and other HTML
elements), and JavaScript can manipulate DOM elements in various ways.
For example, you'll soon see how you can use JavaScript to replace the main
heading of the HTML document with input from a prompt dialog.

We'll also look at a useful tool called jQuery, which makes it much easier to
work with the DOM. jQuery gives us a set of functions that we can use to
choose which elements to work with and to make changes to those
elements.
In this chapter, we'll learn how to use the DOM and jQuery to edit
existing DOM elements and create new DOM elements, giving us full
control over the content of our web pages from JavaScript. We'll also learn
how to use jQuery to animate DOM elements — for example, fading
elements in and out.

Selecting DOM Elements
When you load an HTML document into a browser, the browser converts
the elements into a tree-like structure. This tree is known as the DOM tree.
Figure 9-1 shows a simple DOM tree —the same tree we used in Chapter
5 to illustrate the hierarchy of HTML. The browser gives JavaScript
programmers a way to access and modify this tree structure using a
collection of methods called the DOM.

<head›

Figure 9-1. The DOM tree [or a simple HTML document, like the one we made in Chapter 5

Using id to Identify Elements
The HTML id attribute lets you assign a unique name, or identi[ter, to an
HTML element. For example, this h1 element has an id attribute:

<hl id="main-heading”>Hello world!</hl>

In this example, the id of "main - heading" will let us identify, and
eventually change, this particular heading without affecting other elements
or even other h1 headings.

Selecting an Element Using getElementById
Having uniquely identified an element with id (each id must have a unique
value), we can use the
DOMmethod doc umen t . get Elemen t Byld to return the "main - head in
g " element:

var headingElement = document.getElementById(”main-heading");

By calling doc umen t . get Elemen t ById (”main - head ing”), we tell the
browser to look for the element with the id of "main - head in g ". This call
returns a DOM object that corresponds to the id, and we save this DOM
object to the variable head ing Elemen t.
Once we've selected an element, we can manipulate it with JavaScript.
For example, we can use the in ner HTM L property to retrieve and
replace the text inside the selected element:

headingElement.innerHTML;

This code returns the HTML contents of heading Elemen t — the element
we selected using
get Eleme n t Byld. In this case, the content of this element is the text
Hello Wo rld! that we entered between the <h1> tags.

Replacing the Heading Text Using the DOM
Here's an example of how to replace heading text using the DOM. First,
we create a new HTML document called dom.html containing this code:

<!DOCTYPE html>

<html>

<head>

<title>Playing with the DOM</title>

</head>

<body>

Chi id=”main-heading">Hello world!</h1>

<sc ript>

var headingElement = document.getElementById("main-heading");
console.log(headingElement.innerHTML);
var newHeadingText = prompt("Please provide a new
heading: "); headingElement.innerHTML = newHeadingText;

</script>
</body>
</html>

At O we use doc umen t . get Elemen t ById to get the h1 element (with the
id of main - head ing ”) and
save it into the variable head ing Elemen t. At O we print the string
returned by
heading Elemen t . in ne r HTN L, which prints Hello Wo rld ! to the
console. At O we use a prompt dialog
to ask the user for a new heading and save the text the user enters in the
variable neWHead ingText.
Finally, at O we set the in ne r HTM L property of head ing Elemen t to
the text saved in neWHeadin g Text.

When you load this page, you should see a prompt dialog like the one
shown in Figure 9-2.

Figure 9-2. Our page with the dialos
open

Enter the text oAvASCRZPT ZS AWESONE into the dialog and click
OK. The heading should update instantly with the new text, as shown in
Figure 9-3.

Figure 9-3. Our page after the heading change

Using the in ne rHTM L property, we can change the content of any DOM
element using JavaScript.

Using jQuery to Work with the DOM Tree
The built-in DOM methods are great, but they're not very easy to use.
Because of this, many developers use a set of tools called jQuery to access
and manipulate the DOM tree. jQuery is a JavaScript ibrlyar
— a collection of related tools (mostly functions) that gives us, in this
case, a simpler way to work with DOM elements. Once we load a library
onto our page, we can use its functions and methods in addition to those
built into JavaScript and those provided by the browser.

Loading jQuery on Your HTML Page
To use the jQuery library, we first tell the browser to load it with this line of
HTML:

<script src="https://code.jquery.com/jquery-2.1.0.js”></scripts

Notice that the <sc r i pt > tag here has no contents, and it has a s rc attribute.
The s rc attribute lets us insert a JavaScript file into our page by including
its URL (web address). In this case, https://code.jquery.coWjquery-2.1.0.js
is the URL for a specific version of jQuery (version 2.1.0) on the jQuery
website.
To see the jQuery library, visit that URL; you'll see the JavaScript that will
be loaded when this
<sc r ipt > tag is added. The entire library is over 9,000 lines of
complicated JavaScript, though, so don't expect to understand it all right
now!

Replacing the Heading Text Using jQuery
In Replacing the Heading Text Using the DOM, you learned how to replace
text using the built-in DOM methods. In this section, we'll update that code
to use jQuery to replace the heading text instead. Open dom.html and make
the changes shown.

<!DOCTYPE html>

<html>

<head>

<title>Playing with the DOM</title>

</head>

<body>

<h1 id="main-heading">Hello world!</h1>

€# <script src="https://code.jquery.com/jquery-2.1.0.js”></scripts

<sc rip t >
var newHeadingText = prompt ("Please provide a new

heading : ") ; @ $("#main - heading") . text (newHeadingText)
;

</script>

</body>

</html>

At O we add a new <sc r i pt > tag to the page to load jQuery. With jQuery
loaded, we use the jQuery function $ to select an HTML element.
The $ function takes one argument, called a oe selc t i isyt r j r , which tells jQuery
which element or elements to select from the DOM tree. In this
case, we entered "#oain - head in g" as the argument. The o character in a
selector string means “ID,” so our selector string ”omain - head ing "
means “the element with an id of main - head ing.”

The $ function returns a jQuery object that represents the elements you
selected. For example,
$("#main - head ing") returns a jQuery object for the h1 element (which
has an id of "main -
head1ng ").

We now have a jQuery object representing the h1 element. We can modify
its text by calling the text method on the jQuery object at O, passing in the

new text for that element, and replacing the text of the heading with the
user input saved to the variable neWHeadingText. As before, when you
load this page, a dialog should prompt you to enter replacement text for
the old text in the h1 element.

Creating New Elements with jQuery
In addition to manipulating elements with jQuery, we can also use jQuery
to create new elements and add them to the DOM tree. To do so, we call
append on a jQuery object with a string containing HTML. The append
method converts the string to a DOM element (using the HTML tags in
the string) and adds the new element to the end of the original one.
For example, to add a p element to the end of the page, we could add this to
our JavaScript:

%(”body").append("<p>This is a new paragraph</p>");

The first part of this statement uses the $ function with the selector string
"body" to select the body of our HTML document. The selector string
doesn't have to be an id. The code $("body") selects the body element.
Likewise, we could use the code $("p") to select all the p elements.
Next, we call the append method on the object returned by $("body"). The
string passed to append is turned into a DOM element, and it is added
inside the body element, just before the closing tag.
Figure 9-4 shows what our revised page would look like.

Figure 9-4. Our document with a new element

We could also use ap pend to add multiple elements in a to r loop like this:

for (var i = 0; i < 3; i++) {

var hobby: prompt(”Tell me one of your hobbies!”);

$("body") . append ("<p>" + hobby + "</p>") ;

This loops three times. Each time through a loop, a prompt appears, asking
users to enter one of their hobbies. Each hobby is then put inside a set of
<p> tags and passed to the append method, which adds the hobby to the

end of the body element. Try adding this code to your dom.html
document, and then load it in a browser to test it. It should look like Figure
9-5.

Figure 9-5. Extra elements added in a loop

Animating Elements with jQuery
Lots of websites use animations to show and hide content. For example, if
you were adding a new paragraph of text to your page, you might want to
fade it in slowly so it doesn't appear all of a sudden.
jQuery makes it easy to animate elements. For example, to fade an element
out, we can use the I ade0u t method. To test this method, replace the
contents of the second sc r ipt element in dom.html with this:

$("h:I") . fade0ut (3000) ;

We use the s function to select all h1 elements. Because dom.html has only
one h1 element (the heading containing the text Hello Wo rld !), that
heading is selected as a jQuery object. By calling
. I ade0u t (30oo) on this jQuery object, we make the heading fade away
until it disappears, over the course of 3 seconds. (The argument to fade0ut
is in milliseconds, or thousandths of a second, so entering 3oo0 makes the
animation last 3 seconds.)
As soon as you load the page with this code, the h1 element should start
to fade away.

Chaining jQuery Animations
When you call a method on a jQuery object, the method usually returns the
original object that it was called on. For example, $(”h1") returns a jQuery
object representing all hx elements, and
$("h1”) . f ade0u t (3000) returns the same jQuery object representing all
h1 elements. To change the text of the h1 element and fade it out, you
could enter:

$(”h1").text(”This will fade out”).fade0ut(3000);

Calling multiple methods in a row like this is known as cht2ininp.
We can chain multiple animations on the same element. For example,
here's how we could chain a call to the fade0ut and I adeI n methods to
fade an element out and then immediately fade it in again:

$("h1").fadeOut(3000).fadeIn(2000);

The f adeI n animation makes an invisible element fade back in. jQuery is
smart enough to know that when you chain two animations in a row like
this, you probably want them to happen one after the other. Therefore, this
code fades the h1 element out over the course of 3 seconds and then fades
it back in over 2 seconds.
jQuery provides two additional animation methods similar to I adeou t and
I adeI n, called slideUp and s1i deDoWn. The s1i deUp method makes
elements dis appear by sliding them up, and s1i deDoWn makes them
reappear by sliding them down. Replace the second sc rip t element in the
dom.html document with the following, and reload the page to try it out:

$("h1").slideUp(1000).slideDown(1000);

Here we select the h1 element, slide it up over 1 second, and then slide it
down over 1 second until it reappears.

What You Learned
In this chapter, you learned how to update HTML pages using JavaScript
by manipulating DOM elements. As you've seen, jQuery gives us even
more powerful ways to select elements and change or even animate them.
You also learned a new HTML attribute, id, which allows you to give an
element a unique identifier.
In the next chapter, you'll learn how to control when your JavaScript is run
— for example, once a timer has run out or when you click a button. We'll
also look at how to run the same piece of code multiple times with a time
delay in between — for example, updating a clock once every second.

Programming Challenges
Try these challenges to practice more things you can do with jQuery and
DOM elements.
#1: LISTING YOUR FRIENDS WITH JQUERY (AND MAKING
THEM SMELL!)
Create an array containing the names of a few friends. Using a tor loop,
create a p element for each of your friends and add it to the end of the
body element using the jQuery append method. Use jQuery to change the
h1 element so it says My I r iend s instead of Hello Wo rld ! . Use the
hide method followed by the fadeI n method to fade in each name as it's
provided.
Now, modify the p elements you created to add the text smell s ! after
each friend. Hint: If you select the p elements using $("p"), the append
method will apply to all the p elements.
#2: MAKING A HEADING FLASH
How could you use I adeout and fadeI n to cause the heading to flash five
times, once a second? How could you do this using a tor loop? Try
modifying your loop so it fades out and fades in over 1 second the first
time, over 2 seconds the second time, over 3 seconds the third time, and
so on.
#3: DELAYING ANIMATIONS
The delay method can be used to delay animations. Using delay, I adeou
t, and fadeI n, make an element on your page fade out and then fade back
in again after 5 seconds.
#4: USING FADETO
Try using the fadeTo method. Its first argument is a number of
milliseconds, as in all the other animation methods. Its second argument
is a number between 0 and 1. What happens when you run the following
code?

$("hi") . fadeTo(2000, 0 . 5) ;

What do you think the second argument means? Try using different values
between 0 and 1 to figure out what the second argument is used for.

Chapter 10. Interactive Programming
Until now, the JavaScript code on our web pages has run as soon as the
page is loaded, pausing only if we include a call to a function like aler t or
confirm. But we don't always necessarily want all of our code to run as
soon as the page loads — what if we want some code to run after a delay
or in response to something the user does?
In this chapter, we'll look at different ways of modifying when our code is
run. Programming in this way is called interactive programming. This
will let us create interactive web pages that change over time and respond
to actions by the user.

Delaying Code with setTimeout
Instead of having JavaScript execute a function immediately, you can tell it
to execute a function after a certain period of time. Delaying a function like
this is called setting a timeout. To set a timeout in JavaScript, we use the
function set Timeou t. This function takes two arguments (as shown in
Figure 10- 1): the function to call after the time has elapsed and the amount
of time to wait (in milliseconds).

The function to call after
t imeout milliseconds have passed

setTimeouT(func, timeout)

The number of milliseconds to wait
before calling the function

Figure 10-1. The arguments [or set T:ineou t

The following listing shows how we could use set Timeou t to display an
alert dialog.

€# var timeUp = function () {

alert(”Time's up!");

Q setTimeout(timeUp, 3000);

At O we create the function t imeUp, which opens an alert dialog that
displays the text ”Time ' s u p ! ”. At O we call set Timeou t with two
arguments: the function we want to call (t imeUp) and the number of
milliseconds (sooo) to wait before calling that function. We're essentially
saying, “Wait 3 seconds and then call t imeU p.” When set Timeou t (t
imeU p , 30o0) is first called, nothing happens, but after 3
seconds t ioeUp is called and the alert dialog pops up.
Notice that calling set Timeout returns 1. This return value is called the
timeout ID. The timeout ID is a number that's used to identify this

particular timeout (that is, this particular delayed function call). The actual
number returned could be any number, since it's just an identifier. Call set
Timeou t again, and it should return a different timeout ID, as shown here:

se tTimeout (t imeUp, 5000) ;

2

You can use this timeout ID with the c learTiceout function to cancel that
specific timeout. We'll look at that next.

Canceling a Timeout
Once you've called set Timeou t to set up a delayed function call, you may
find that you don't actually want to call that function after all. For example,
if you set an alarm to remind you to do your homework, but you end up
doing your homework early, you'd want to cancel that alarm. To cancel a
timeout, use the function c learTimeout on the timeout ID returned by set
Timeou t. For example, say we create a “do your homework” alarm like
this:

var doHomeworkAlarm = function () {

alert("Hey! You need to do your homework!”);

4# var timeoutId = setTimeout(doHomeworkAlarm, 60000);

The function doHomeWo r kAlarm pops up an alert dialog telling you to
do your homework. When we call setTimeo u t (doHomeWo r kAlarm,
60000) we're telling JavaScript to execute that function after 60,000
milliseconds (or 60 seconds) has passed. At O we make this call to set
Timeou t and save the timeout
ID in a new variable called t imeo u t I d.
To cancel the timeout, pass the timeout ID to the clear Timeou t function
like this:

clearTimeout(timeoutId);

Now set Timeo u t won't call the doHomeWo r kAlarm function after all.

Calling Code Multiple Times with
setInterval
The set I n ter val function is like set Timeout, except that it repeatedly calls
the supplied function after regular pauses, or intervals. For example, if you
wanted to update a clock display using JavaScript, you could use set I n t er
val to call an update function every second. You call set I n t er val with two
arguments: the function you want to call and the length of the interval (in
milliseconds), as shown in Figure 10-2.

The function to
call every interval
milliseconds

setInteival(func, interval)

The number of milliseconds to

wait between each call

Figure 10-2. The arguments [or set Interval

Here's how we could write a message to the console every second:

€# var counter = 1;

Q var printMessage = function () (

console.log(”You have been staring at your console for + counter
+ ” seconds”);

b counter++;

ID var intervalId = setInterval(printMessage, 1000); You

have been staring at your console for 1 seconds You
have been staring at your console for 2 seconds You
have been staring at your console for 3 seconds You
have been staring at your console for 4 seconds You
have been staring at your console for 5 seconds You
have been staring at your console for 6 seconds

€# clearInterval(intervalId);

At O we create a new variable called counter and set it to 1. We'll be
using this variable to keep track of the number of seconds you've been
looking at your console.

At O we create a function called prin t Message. This function does two
things. First, it prints out a message telling you how long you have been
staring at your console. Then, at O, it increments the counter variable.
Next, at O, we call set I n te r val, passing the p rin t Mes sage function
and the number 1000. Calling set I n te rval like this means “call prin t
Yessage every 1,000 milliseconds.” Just as set Timeou t returns a timeout
ID, set I n t er val returns an interval iD, which we save in the variable in
te rvalId. We can use this interval ID to tell JavaScript to stop executing
the prin tNes sage function. This is what we do at O, using the clear I n te
rval function.

Animating Elements with setInterval
As it turns out, we can use set I nt er val to animate elements in a browser.
Basically, we need to create a function that moves an element by a small
amount, and then pass that function to set I nt er val with a short interval
time. If we make the movements small enough and the interval short
enough, the animation will look very smooth.
Let's animate the position of some text in an HTML document by moving
the text horizontally in the browser window. Create a document called
interactive.html, and fill it with this HTML:

<!D0CTYPE html>

<html>

<head>

<title>Interactive programming</title>

</head>

<body>

<h1 id=”heading">Hello world!</h1>

<script src=”https://code.jquery.com/jquery-2.1.0.js"></scripts

<script>

// We'll fill this in next

</scripts

</body>

</html>

Now let's look at the JavaScript. As always, put your code inside the <sc r
ipt > tags of the HTML document.

4# var left0ffset = 0;

Q var moveHeading = function () {
Q $("#heading”).offset({ left: leftoffset });

â leftOffset++;

Q if (left0ffset >
200) (leftoffset

= 0;

O setInterval(moveHeading, 30);

When you open this page, you should see the heading element gradually
move across the screen until it travels 200 pixels; at that point, it will jump
back to the beginning and start again. Let's see how this works.
At O we create the variable let t0ff set, which we'll use later to position
our Hello world ! heading. It starts with a value of 0, which means the
heading will start on the far left side of the page.

Next, at O, we create the function moveHead ing, which we'll call later
with set I n te r val. Inside the ooveHead ing function, at O, we use $(
”#heading ") to select the element with the id of head ing” (our
h1 element) and use the offset method to set the left offset of the heading
— that is, how far it is from the left side of the screen.
The oIf set method takes an object that can contain a left property, which
sets the left offset of the

element, or a top property, which sets the top offset of the element. In this
example we use the let t property and set it to our let tof I set variable. If
we wanted a static offset (that is, an offset that doesn't change), we could
set the property to a numeric value. For example, calling $("#heading")
. offset ((lef t : 100 }) would place the heading element 100
pixels from the left side of the page.
At O we increment the let t0f f set variable by 1. To make sure the
heading doesn't move too far, at O we check to see if let t off set is
greater than 200, and if it is, we reset it to 0. Finally, at O• we call
set I n te r val, and for its arguments we pass in the function ooveHead in g
and the number 3o (for 30
milliseconds).
This code calls the moveHeading function every 30 milliseconds, or about
33 times every second. Each time moveHeading is called, the let tof I set
variable is incremented, and the value of this variable is used to set the
position of the heading element. Because the function is constantly being
called and
lef toff set is incremented by 1 each time, the heading gradually moves
across the screen by 1 pixel every 30 milliseconds.

Responding to User Actions
As you've seen, one way to control when code is run is with the functions
set Timeou t and
set I nt er val, which run a function once a fixed amount of time has
passed. Another way is to run code only when a user performs certain
actions, such as clicking, typing, or even just moving the mouse. This will
let users interact with your web page so that your page responds according
to what they do.
In a browser, every time you perform an action such as clicking, typing, or
moving your mouse, something called an event is triggered. An event is the
browser's way of saying, “This thing happened!” You can listen to these
events by adding an event handler to the element where the event
happened.
Adding an event handler is your way of telling JavaScript, “If this event
happens on this element, call this function.” For example, if you want a
function to be called when the user clicks a heading element, you could
add a click event handler to the heading element. We'll look at how to do
that next.

Responding to Clicks
When a user clicks an element in the browser, this triggers a click event.
jQuery makes it easy to add a handler for a click event. Open the
interactive.html document you created earlier, use FiIe>Save As to save
it as clicks.html, and replace its second sc ript element with this code:

€# var clickHandler : function (event) {

D console.log("Click! ” + event.pageX + + event.pageY);

@ $("h1") . click(cIickHand1er) ;

At O we create the function clic kHandler with the single argument even
t. When this function is called, the event argument will be an object
holding information about the click event, such as the location of the
click. At O, inside the handler function, we use console . log to output the
properties pageX and pageY from the even t object. These properties tell
us the event's x- and y-coordinates — in other words, they say where on
the page the click occurred.
Finally, at O we activate the click handler. The code $(”h1") selects the
h1 element, and calling
$("h1”) . clic k(clic kHand le r) means “When there is a click on
the h1 element, call the clic kHand le r function and pass it the even
t object.” In this case, the click handler retrieves information from
the even t object to output the x- and y-coordinates of the click
location.

Reload your modified page in your browser and click the heading element.
Each time you click the heading, a new line should be output to the console,
as shown in the following listing. Each line shows two numbers: the x- and
y-coordinates of the clicked location.

Click! 88 43

Click! 63 53

Click! 24 53

Click! 121 46

Click! 93 55

Click! 103 48

The mousemove Event
The mousemove event is triggered every time the mouse moves. To try it
out, create a file called
mousemove.html and enter this code:

<!DOCTYPE html>

<html>

<head>

<title>Mousemove</title>

</head>

<body>

<h1 id="heading">He11o world ! </h1>

<script src=”https://code.jquery.com/jquery-2.1.0.js"></scripts

<script>

$(”html”).mousemove(function (event) (

$(”#heading”).offset({
left: event.pageX, top:
event.pageY

</scripts

</body>

</html>

At O we add a handler for the mo u semove event using $("h tml") . you
semove (handle r). In this case, the handle r is the entire function that
appears after mousemove and before </sc r ipt >. We use
$("h tml") to select the h tml element so that the handler is triggered by
mouse movements that occur anywhere on the page. The function that we
pass into the parentheses after mousemove will be called every time the
user moves the mouse.
In this example, instead of creating the event handler separately and
passing the function name to the mousemove method (as we did with our
clic kHandler function earlier), we're passing the handler function directly
to the mousemove method. This is a very common way of writing event
handlers, so it's good to be familiar with this type of syntax.

At O, inside the event handler function, we select the heading element
and call the off set method on it. As I mentioned before, the object
passed to off set can have let t and t op properties. In this case, we set
the lef t property to even t . pageX and the t op property to even t . page
Y. Now, every time the mouse moves, the heading will move to that
location. In other words, wherever you move the mouse, the heading
follows it!

What You Learned
In this chapter, you learned how to write JavaScript that runs only when
you want it to. The
set Timeout and set I nt er val functions are great for timing code to run
after a delay or at certain intervals. If you want to run code when the user
does something in the browser, you can use events like clic k and
oousemove, but there are many others.
In the next chapter, we'll put what you've just learned to good use to make a
game!

Programming Challenges
Here are a few challenges to explore more ways to use interactive
programming.
#1: FOLLOW THE CLICKS
Modify the previous mousemove program so that instead of following your
mouse, the heading will follow just your clicks. Whenever you click the
page, the heading should move to the click location.
#2: CREATE YOUR OWN ANIMATION
Use set I n te rval to animate an hi heading element around the page, in a
square. It should move 200 pixels to the right, 200 pixels down, 200 pixels
to the left, 200 pixels up, and then start again. Hint: You'll need to keep
track of your current direction (right, down, left, or up) so that you know
whether to increase or decrease the left or top offset of the heading. You'll
also need to change the direction when you reach a corner of the square.
#3: Cancel an Animation with a Click
Building upon Challenge #2, add a click handler to the moving h1
element that cancels the animation. Hint: You can cancel intervals with
the clear I n t er val function.
#4: MAKE A “CLICK THE HEADER” GAME!
Modify Challenge #3 so that every time a player clicks the heading,
instead of stopping, the heading speeds up, making it harder and harder to
click. Keep track of the number of times the heading has been clicked and
update the heading text so it shows this number. When the player has
reached 10 clicks, stop the animation and change the text of the heading
to “You Win.” Hint: To speed up, you'll have to cancel the current interval
and then start a new one with a shorter interval time.

Chapter 11. Find the Buried
Treasure!
Let's put what we've learned so far to good use and make a game! The aim
of this game is to find the hidden treasure. In this game, the web page will
display a treasure map. Inside that map, the program will pick a single pixel
location, which represents where the hidden treasure is buried. Every time
the player clicks the map, the web page will tell them how close to the
treasure they are. When they click the location of the treasure (or very
close to it), the game congratulates them on finding the treasure and says
how many clicks it took to find it. Figure 11-1 shows what the game will
look like after a player clicks the map.

Figure 11—1. The buried treasure game

Designing the Game
Before we start writing the code, let's break down the overall structure of
this game. Here is a list of steps we need to take to set up the game so it
can respond accordingly when a player clicks the treasure map.
1. Create a web page with an image (the treasure map) and a place to

display messages to the player.
2. Pick a random spot on the map picture to hide the treasure.
3. Create a click handler. Each time the player clicks the map, the click

handler will do the following:
a. Add 1 to a click counter.
b. Calculate how far the click location is from the treasure location.
c. Display a message on the web page to tell the player whether

they're hot or cold.
d. Congratulate the player if they click on the treasure or very close

to it, and say how many clicks it took to find the treasure.
I'll show you how to implement each of these features in the game, and then
we'll go through the full code.

Creating the Web Page with HTML
Let's look at the HTML for the game. We'll use a new element called img
for the treasure map and add a p element where we can display messages
to the player. Enter the following code into a new file called treasure.html.

<!DOCTYPE html>

<html>

<head>

<title>Find the buried treasure!</title>

</head>

<body>

<h1 id="heading">Find the buried t r easur e ! </h1>

!Q <img id=”map" width=400 height=400

Q src=”http://nostarch.com/images/treasuremap.png”>

Q <p id=”distance”></p>

<script src=”https://code.jquery.com/jquery-2.1.0.js"></scripts

<sc ript>

// Game code goes here

</script>

</body>

</html>

The img element is used to include images in HTML documents. Unlike
the other HTML elements we've looked at, img doesn't use a closing tag.
All you need is an opening tag, which, like other HTML tags, can contain
various attributes. At O we've added an img element with an id of "map".
We set the width and height of this element using the Widt h and heig ht
attributes, which are both set to 400. This means our image will be 400
pixels tall and 400 pixels wide.
To tell the document which image we want to display, we use the s rc
attribute to include the web address of the image at O. In this case, we're
linking to an image called treasuremap.prig on the No Starch Press
website.

http://nostarch.com/images/treasuremap.png

Following the img element is an empty p element at O, which we give an
id of "distance ". We'll add text to this element by using JavaScript to tell
the player how close they are to the treasure.

Picking a Random Treasure Location
Now let's build the JavaScript for our game. First we need to pick a random
location for the hidden treasure inside the treasure map image. Since the
dimensions of the map are 400 by 400 pixels, the coordinates of the top-
left pixel will be (x: 0, y: 0 }, and the bottom-right pixel will
be (x: 399, y : 399 }.

Picking Random Numbers
To set a random coordinate point within the treasure map, we pick a
random number between 0 and 399 for the x value and a random number
between 0 and 399 for the y value. To generate these random values, we'll
write a function that takes a size argument as input and picks a random
number from 0 up to (but not including) size:

var ge tRandomNumber = function (size)
{ return Mat h . floor (Math . random() *
size) ;

This code is similar to the code we've used to pick random words in
earlier chapters. We generate a random number between 0 and 1 using
Mat h . random, multiply that by the size argument, and then use Mat h .
floor to round that number down to a whole number. Then we output the
result as the return value of the function. Calling get RandooNumber (
400) will return a random number from 0 to 399, which is just what we
need!

Setting the Treasure Coordinates
Now let's use the get RandomN umbe r function to set the treasure
coordinates:

0 var width =
400; var height
= 400;

Q var target : {
x:
getRandomNumber(width),
y:
getRandomNumber(height)

The section of code at O sets the Wid t h and height variables, which
represent the width and height of the iog element that we're using as a
treasure map. At O we create an object called target, which has two
properties, x and y, that represent the coordinates of the buried treasure.
The x and y properties are both set by get RandooNumber. Each time we
run this code, we get a new random location on the map, and the chosen
coordinates will be saved in the x and y properties of the target variable.

The Click Handler
The click handler is the function that will be called when the player clicks
the treasure map. Start building this function with this code:

$("#map").click(function (event) {

// Click handler code goes here

First we use $("#map") to select the treasure map area (because the img
element has an id of "map"), and then we go into the click handler
function. Each time the player clicks the map, the function body between
the curly brackets will be executed. Information about the click is passed
into that function body as an object through the event argument.
This click handler function needs to do quite a bit of work: it has to
increment the click counter, calculate how far each click is from the
treasure, and display messages. Before we fill in the code for the click
handler function, we'll define some variables and create some other
functions that will help execute all these steps.

Counting Clicks
The first thing our click handler needs to do is track the total number of
clicks. To set this up, we create a variable called clic ks at the beginning of
the program (outside the click handler) and initialize it to zero:

var clicks = 0;

Inside the click handler, we'll include clic ks++ so that we increment clic
ks by 1 each time the player clicks the map.

Calculating the Distance Between the Click and the
Treasure
To figure out whether the player is hot or cold (close to the treasure or far
away), we need to measure the distance between where the player clicked
and the location of the hidden treasure. To do this, we'll write a function
called get Distance, like so:

var getDistance = function (event, target) {

var diffX = event . offsetX -
target . x; var d1ffY = event .
offsetY - target . y;
return Math.sqrt((diffX * diffX) + (diffY * diffY));

The get Distance function takes two objects as arguments: even t and t ar
get. The even t object is the object passed to the click handler, and it
comes with lots of built-in information about the player's click. In
particular, it contains two properties called of f setX and of I setY, which
tell us the x- and y- coordinates of the click, and that's exactly the
information we need.
Inside the function, the variable dif f X stores the horizontal distance
between the clicked location and
the target, which we calculate by subtracting t ar get . x (the x-coordinate
of the treasure) from
even t . of I setX (the x-coordinate of the click). We calculate the vertical
distance between the points in the same way, and store the result as dif I Y.
Figure 11-2 shows how we would calculate d if lx and
d if fY fOr two points.

Figure 11-2. Calculating the horizontal and vertical distances between event and target

Using the Pythagorean Theorem
Next, the get Distance function uses the Pythagorean theorem to calculate
the distance between two points. The Pythagorean theorem says that for a
right triangle, where a and b represent the lengths of the two sides
bordering the right angle and c represents the length of the diagonal side
(the hypotenuse), a2

+ b2 = c2. Given the lengths of a
and b, we can calculate the length of the hypotenuse by calculating the
square root of a2 + b2.
To calculate the distance between the event and the target, we treat the two
points as if they're part of a right triangle, as shown in Figure 11-3. In the get
Distance function, dif f X is the length of the horizontal edge of the triangle,
and dif fY is the length of the vertical edge.
To calculate the distance between the click and the treasure, we need to
calculate the length of the hypotenuse, based on the lengths dif lx
and diffY. A sample calculation is shown in Figure 11-3.

Figure 11-3. Calculating the hypotenuse to {ind out the distance between event and target

To get the length of the hypotenuse, we first have to square dif f x
and dif fY. We then add these squared values together, and get the
square root using the JavaScript function Mat h . sq rt. So our
complete formula for calculating the distance between the click and
the target looks like this:

Math.sqrt((diffX diffX) + (diffY * diffY))

The get Distance function calculates this and returns the result.

Telling the Player How Close They Are
Once we know the distance between the player's click and the treasure, we
want to display a hint telling the player how close they are to the treasure,
without telling them exactly how far away the treasure is. For this, we use
the get Dis t anceHin t function shown here:

var getDistanceHint = function (distance) { if
(distance < 10) {

return "Boiling hot!";
} else if (distance < 20) {

return "Really hot";
} else if (distance < 40) {

return "Hot";
} else if (distance < 80) {

return "Warm";
} else if (distance < 160) {

return "Cold";
} else if (distance < 320) (

return "Really cold";

} else {

return "Freezing!";

This function returns different strings depending on the calculated distance
from the treasure. If the distance is less than 10, the function returns the
string "Boiling hot ! ". If the distance is between 10 and 20, the function
returns "Really hot ". The strings get colder as the distance increases, up
to the point where we return "F r eezing ! " if the distance is greater than
320 pixels.
We display the message to the player by adding it as text in the p element
of the web page. The following code will go inside our click handler to

calculate the distance, pick the appropriate string, and display that string to
the player:

var distance = getDistance(event, target); var
distanceHint : getDistanceHint(distance);

$("#distance").text(distanceHint);

As you can see, we first call get Distance and then save the result as the
variable d ist ance. Next we
pass that distance to the get Dis t anceHin t function to pick the
appropriate string and save it as
d i st an ce H i n t.

The code $("#dis tance") . text (d is t anceH in t) ; selects the element
with the id of distance" (in this case the p element) and sets its
text to d is t anceH in t so that each time the player clicks the map,

our web page tells them how close they are to the target.

Checking If the Player Won
Finally, our click handler needs to check whether the player has won.
Because pixels are so small, instead of making the player click the exact
location of the treasure, we'll let them win if they click within 8 pixels.
This code checks the distance to the treasure and displays a message telling
the player that they've won:

if (distance < 8) {

alert(”Found the treasure in + clicks + clicks!");

If the distance is less than 8 pixels, this code uses alert to tell the player
they found the treasure and how many clicks it took them to do so.

Putting It All Together
Now that we have all the pieces, let's combine them to make one script.

// Get a r andom number from 0 to
size var ge tRandomNumber =
function (size) {

return Mat h . floor (Math . random() * size) ;

// Calculate distance between click event and target var
getDistance = function (event, target) {

var diffX: event.offsetX - target.x; var
diffY = event.offsetY - target.y;

return Math.sqrt((diffX * diffX) + (diffY ’ diffY));

// Get a string representing the distance var
getDistanceHint = function (distance) {

if (distance < 10) { return
”Boiling hot!";

} else if (distance <
20) (return "Really
hot " ;

} else if (distance <
40) (return "Hot" ;

} else 1f (d1stance <
80) (return "harm" ;

} else if (distance < 160) {
return "Cold" ;

} else if (distance < 320) {
return "Really cold" ;

} else (

return "Freez1ng ! " ;

// Set up our var iables
0 var width = 400;

var height = 400;

var clicks = 0;

// Create a random target location O

var target = {
x:
getRandomNumber(width),
y:
getRandomNumber(height)

// Add a click handler to the img element Q

$("#map”).click(function (event) (

clicks++;

// Get distance between click event and target

% var distance = getDistance(event, target);

// Convert distance to a hint

Q var distanceHint = getDistanceHint(distance);

// Update the #distance element with the new hint

â $("#distance").text(distanceHint);

// If the click was close enough, tell them they won

@ if (distance < 8) (

alert("Found the treasure in ” + clicks + " clicks!”);

›)

First, we have the three functions get RandomNumbe r, get D1s t ance, and get D1s tanceH1nt,
which we've already looked at. Then, at O, we set up the variables we'll
need: aid t h, heig h t, and clic ks. After that, at O, we create the random
location for the treasure.
At O we create a click handler on the map element. The first thing this
does is increment the clicks variable by 1. Then, at O, it works out the
distance between even t (the click location) and target (the treasure
location). At O we use the function get Dis t anceHint to convert this
distance into a string representing the distance ("Cold ", ”harm”, and so
on). We update the display at O• so the user can see how far they are.
Finally, at O, we check to see whether the distance is under 8, and if so, we
tell the player they've won and in how many clicks.
This is the entire JavaScript for our game. If you add this to the second <sc r
ipt > tag in treasure.html,
you should be able to play it in your browser! How many clicks does it take
you to find the treasure?

What You Learned
In this chapter, you used your new event-handling skills to create a game.
You also learned about the img element, which can be used to add images
to a web page. Finally, you learned how to measure the distance between
two points using JavaScript.
In the next chapter, we'll learn about object-oriented programming, which
will give us more tools for organizing our code.

Programming Challenges
Here are a few ways you could change the game and
add more features. #1: INCREASING THE
PLAYING AREA
You could make the game harder by increasing the size of the playing area.
How would you make it 800 pixels wide by 800 pixels tall?
#2: ADDING MORE MESSAGES
Try adding some extra messages to display to the player (like "Really
really cold ! "), and modify the distances to make the game your own.
#3: ADDING A CLICK LIMIT
Add a limit to the number of clicks and show the message "cAME OVER"
if the player exceeds this limit. #4: DISPLAYING THE NUMBER OF
REMAINING CLICKS
Show the number of remaining clicks as an extra piece of text after the
distance display so the player knows if they're about to lose.

Chapter 12. Object-Oriented
Programming
Chapter 4 discussed JavaScript objects — collections of keys paired with
values. In this chapter, we'll look at ways to create and use objects as we
explore obiect-oriented oroarammina. Object-oriented programming is a
way to design and write programs so that all of the program's important
parts are represented by objects. For example, when building a racing
game, you could use object-oriented programming techniques to represent
each car as an object and then create multiple car objects that share the
same properties and functionality.

A Simple Object
In Chapter 4, you learned that objects are made up of properties, which
are simply pairs of keys and values. For example, in the following code
the object dog represents a dog with the properties name, legs, and is Awe s
one:

var dog = (
name :
"Pancake ", legs
: 4, isAwesome
: t rue

Once we create an object, we can access its properties using dot notation
(discussed in Accessing Values in Objects). For example, here's how we
could access the name property of our dog object:

dog.name;

"Pancake”

We can also use dot notation to add properties to a JavaScript object, like
this:

dog . age = 6 ;

This adds a new key-value pair (age: 6) to the object, as you can see below:
dog ;

Object {name: "Pancake”, legs: 4, isAwesome: true, age: 6}

Adding Methods to Objects
In the preceding example, we created several properties with different
kinds of values saved to them: a string (”Pancake), numbers (4 and 6),
and a Boolean (t rue). In addition to strings, numbers, and Booleans, you
can save a [unction as a property inside an object. When you save a
function as a property in an object, that property is called a method. In
fact, we've already used several built-in JavaScript methods, like the j oin
method on arrays and the toUpper Case method on strings.
Now let's see how to create our own methods. One way to add a method
to an object is with dot notation. For example, we could add a method
called bar k to the dog object like this:

€# dog.bark = function () {

Q console.log(”Woof woof! My name is + this.name + "!”);

b dog.bark();

Woof woof! My name is Pancake!

At O we add a property to the dog object called bar k and assign a
function to it. At O, inside this new function, we use con sole . log to log
Wool Woof ! My name is Pancake ! . Notice that the function
uses t his . name, which retrieves the value saved in the object's name
property. Let's take a closer look at how the t his keyword works.

Using the this Keyword
You can use the t his keyword inside a method to refer to the object on
which the method is currently being called. For example, when you call the
bar k method on the dog object, t his refers to the dog object, so t his .
name refers to dog . name. The t his keyword makes methods more
versatile, allowing you to add the same method to multiple objects and have
it access the properties of whatever object it's currently being called on.

Sharing a Method Between Multiple Objects
Let's create a new function called speak that we can use as a method in
multiple objects that represent different animals. When speak is called on
an object, it will use the object's name (t his . name) and the sound the
animal makes (t his . sou nd) to log a message.

var speak : function () {

console.log(this.sound + My name is + this.name + "!");

Now let's create another object so we can add speak to it as a method:

var cat = (

sound : "Miaow",

name: "Mittens",

0 speak : speak

Here we create a new object called cat, with sound, name, and speak
properties. We set the speak property at O and assign it the s peak
function we created earlier. Now cat . speak is a method that we can call
by entering cat . speak(). Since we used the t his keyword in the method,
when we call it on cat, it will access the cat object's properties. Let's see
that now:

cat.speak();

Miaow! My name is Mittens!

When we call the cat . speak method, it retrieves two properties from the
cat object: t his . sound
(which is "Miaow") and t his . name (which is ”Mit ten s").

We can use the same speak function as a method in other objects too:

var pig = (
sound :
"Oink",

name:
"Char1ie", speak
: speak

var ho rse = {
sound :
"Neigh",
name:
"Marie",
speak: speak

pig.speak();

Oink! My name is Charlie!

horse.speak();
Neigh! My name is Marie!

Again, each time t his appears inside a method, it refers to the object on
which the method is called. In

other words, when you call ho r se . speak (), t his will refer to ho rse, and
when you call pig . speak(), t his refers to pig.
To share methods between multiple objects, you can simply add them to
each object, as we just did with speak. But if you have lots of methods or
objects, adding the same methods to each object individually can become
annoying, and it can make your code messier, too. Just imagine if you needed
a whole zoo full of 100 animal objects and you wanted each to share a set of
10 methods and properties.
JavaScript object constructors offer a better way to share methods and
properties between objects, as we'll see next.

Creating Objects Using Constructors
A JavaScript constructor is a function that creates objects and gives them a
set of built-in properties and methods. Think of it as a specialized machine
for creating objects, kind of like a factory that can churn out tons of copies
of the same item. Once you've set up a constructor, you can use it to make
as many of the same object as you want. To try it out, we'll build the
beginnings of a racing game, using a car constructor to create a fleet of cars
with similar basic properties and methods for steering and acceleration.

Anatomy of the Constructor
Each time you call a constructor, it creates an object and gives the new
object built-in properties. To call a normal function, you enter the
function name followed by a pair of parentheses. To call a constructor,
you enter the keyword new (which tells JavaScript that you want to use
your function as a constructor), followed by the constructor name and
parentheses. Figure 12-1 shows the syntax for calling a constructor.

The new object is saved into this variable

car

Arguments passed to the constructor

Car(10o, 200)

The name
of the

constructor

Figure 12-1. The syntax [or calling a constructor named Car with two arguments

NOTE
Most JavaScript programmers start constructor names with a capital letter so it S easy to see at
a glance that they're di[[erent [rom other junctions.

Creating a Car Constructor
Now let's create a car constructor that will add an x and y property to each
new object it creates. These properties will be used to set each car's
onscreen position when we draw it.

Creating the HTML Document
Before we can build our constructor, we need to create a new HTML
document. Make a new file called
cars.html and enter this HTML into it:

<!D0CTYPE html>

<html>

<head>

<title>Cars</title>

</head>

<body>

<script src=”https://code.jquery.com/jquery-2.1.0.js"></scripts

<sc ript>

// Code goes here

</scripts

</body>

</html>

The Car Constructor function
Now add this code to the empty <sc r ipt > tags in cars.html (replacing
the comment // Code goes here) to create the car constructor
that gives each car a set of coordinates.

<script>

var Car = function (x, y) {
this .x =
x; this .y
= y;

</scripts

Our new constructor car takes the arguments x and y. We've added the
properties t his . x and t his . y to store the x and y values passed to car in
our new object. This way, each time we call car as a constructor, a new
object is created with its x and y properties set to the arguments we
specify.

Calling the Car Constructor
As I mentioned earlier, the keyword neW tells JavaScript that we're calling
a constructor to create a new object. For example, to create a car object
named t es la, open cars.html in a web browser and then enter this code in
the Chrome JavaScript console:

var tesla new Car (10,
20) ; tes1a;

Ca r (x : 10, y: 20}

The code new Car (10, 2o) tells JavaScript to create an object using car
as a constructor, pass in the arguments to and 2o for its x and y properties,
and return that object. We assign the returned object to the t es la variable
with var t es la.
Then when we enter tes la, the Chrome console returns the name of the
constructor and its x and y
values: car (x : 10, y: 20}.

Drawing the Cars
To show the objects created by the car constructor, we'll create a function
called d r aWCar to place an image of a car at each car object's (x, y)
position in a browser window. Once we've seen how this function works,
we'll rewrite it in a more object-oriented way in Adding a draw Method to
the Car Prototype. Add this code between the <sc r ipt > tags in
cars.html:

<script>

var Car: function (x, y) {

this.x = x;

this.y y;

var drawCar = function (car) (

4# var carHtml = '';

Q var carElement - %(carHtml);

Q carElement.css({
position: "absolute",
left: car.x,

top : car . y

$(”body”).append(carElement);

</sc ript >

At O we create a string containing HTML that points to an image of a car.
(Using single quotes to create this string lets us use double quotes in the
HTML.) At O we pass car HTML to the $ function, which converts it from
a string to a jQuery element. That means the car Element variable now
holds a jQuery element with the information for our tag, and we can
tweak this element before adding it to the page.
At O we use the css method on car Element to set the position of the car
image. This code sets the left position of the image to the car object's x
value and its top position to the y value. In other words, the left edge of
the image will be x pixels from the left edge of the browser window, and
the top edge of the image will be y pixels down from the top edge of the
window.

http://nostarch.com/images/car.png

NOTE

In this example, the css method works like the offset method we used in Chapter 10 to move
elements around the page. Un[ortunately, o(set doesn't work as well with multiple elements, and
since we want to draw multiple cars, we're usinq css here instead.

Finally, at O we use jQuery to append the car Elemen t to the body element
of the web page. This final step makes the car Elemen t appear on the page.
(For a reminder on how append works, see Creating New Elements with
jQuery.)

Testing the drawCar Function
Let's test the d raWCar function to make sure it works. Add this code to
your cars.html file (after the other JavaScript code) to create two cars.

$("body").append(carElement);

var tesla - new Car(20, 20);
var nissan = new Car(100, 200);

drawCar(tesla);
d rauCar (nissan) ;

</sc ript >

Here, we use the car constructor to create two car objects, one at the
coordinates (20, 20) and the other at (100, 200), and then we use d r
awCar to draw each of them in the browser. Now when you open
cars.html, you should see two car images in your browser window, as
shown in Figure 12-2.

Figure 12-2. Drawing cars using drawCar

Customizing Objects with Prototypes
A more object-oriented way to draw our cars would be to give each car
object a d raw method. Then, instead of writing d rawCar (t esla) , you'd
write t esla . d raw(). In object-oriented programming, we want objects to
have their own functionality built in as methods. In this case, the d raWCar
function is always meant to be used on car objects, so instead of saving d r
aWCar as a separate function, we should include it as part of each car
object.
JavaScript prototypes make it easy to share functionality (as methods)
between different objects. All constructors have a prototype property,
and we can add methods to it. Any method that we add to a constructor's
prototype property will be available as a method to all objects created by
that constructor.
Figure 12-3 shows the syntax for adding a method to a p ro to t ype
property.

The The
constutor m

ethod
name na
me

t t

Figure 12-3. The syntax [or adding a method to a prototype property

Adding a draw Method to the Car Prototype
Let's add a d raw method to Car . p ro to t ype so that all objects we create
using car will have the d raw method. Using File > Save As, save your
cars.html file as cars2.html. Then replace all of the JavaScript in your
second set of <sc r ip t> tags in cars2.html with this code:

b var Car: function (x, y) (
this . x = x
; this .
y y ;

Q Car.prototype.draw - function () (

var carHtml: '';

4$ this.carElement - %(carHtml);

this.carElement.css({

position: ”absolute”,
€D left:

this.x, top:
this.y

$(”body”).append(this.carElement);

var tesla = new Car (20,
20) ; var n1ssan = new Car (
100, 200) ;

tesla.draw() '

nissan.draw(

After creating our car constructor at O, we add a new method called d
raw to car . prototype at 0. This makes the d raw method part of all of the
objects created by the car constructor.
The contents of the d raw method are a modified version of our d r aWCar
function. First, we create an
HTML string and save it as carHTM0L. At we create a jQuery
element representing this HTML, but
this time we save it as a property of the object by assigning it to t his .
carElemen t. Then at O, we use t his . x and t his . y to set the coordinates

http://nostarch.com/images/car.png

of the top-left corner of the current car image. (Inside a constructor, t his
refers to the new object currently being created.)
When you run this code, the result should look like Figure 12-2. We
haven't changed the code's functionality, only its organization. The
advantage to this approach is that the code for drawing the car is part of
the car, instead of a separate function.

Adding a moveRight Method
Now let's add some methods to move the cars around, beginning with a
moveRig h t method to move the car 5 pixels to the right of its current
position. Add the following code after your definition of
Car . p ro tot ype . d raw:

this.carElement.css((
position: "absolute",
left: this.x,

top: this.y

%(”body").append(this.carElement);

Car.prototype.moveRight function () {

this.x += 5;

this.carElement.css((

left: this.x,

top: this.y

We save the ooveRig h t method in car . p r ot o t ype to share it with all
objects created by the car constructor. With t his . x += 5 we add 5 to the
car's x value, which moves the car 5 pixels to the right. Then we use the cs s
method on t his . car Elemen t to update the car's position in the browser.
Try the moveRigh t method in the browser console. First, refresh cars2.html,
and then open the console and enter these lines:

tesla.moveRight();
tesla.moveRight();
tesla.moveRight();

Each time you enter t esla . moveRigh t, the top car should move 5 pixels to
the right. You could use this method in a racing game to show the car
moving down the racetrack.

Adding the Left, Up, and Down move Methods
Now we'll add the remaining directions to our code so that we can move
our cars around the screen in any direction. These methods are basically
the same as moveRig ht, so we'll write them all at once.
Add the following methods to ct2rs2.html just after the code for moveRig h
t:

Car.prototype.moveRight function () {
this.x += 5;

this.carElement.css((

left: this.x,

top: t his . y

Car.prototype.moveLeft function () {

this.x -- 5;

this.carElement.css((

left: this.x,

top: t his . y

Car.prototype.moveUp function () {

this.y -= 5;

this.carElement.css((

left: this.x,

top: this.y

Car . prototype .moveDownfunction (

) (this .y += 5;

this.carElement.css((

left: this.x,

top: t his . y

Each of these methods moves the car by 5 pixels in the specified direction
by adding or subtracting 5 from each car's x or y value.

What You Learned
In this chapter, you learned the basics of object-oriented programming in
JavaScript, including how to create constructors to build new objects and
how to modify the prototype property of those constructors to share
methods between objects.
In object-oriented programs, most functions are written as methods. For
example, to draw the car, we call the d raw method on the car, and to
move the car to the right, we call the moveRigh t method.
Constructors and prototypes are JavaScript's built-in way of letting you
create objects that share the same set of methods, but there are many
ways to write object-oriented JavaScript. (For more on object- oriented
JavaScript, see Nicholas C. Zakas's The Principles o[Object-Oriented
Javascript [No Starch Press, 2014].)
Writing JavaScript in an object-oriented way can help you structure your
code. Having well-structured code means that when you come back to it
later to make changes, it should be easier to figure out how your program
works if you don't remember (this is particularly important with bigger
programs or when you start to work with other programmers who may
need to access your code). For example, in the final project in this book,
we'll build a Snake game that requires quite a bit of code, and we'll use
objects and methods to organize our game and handle a lot of the important
functionality.
In the next chapter, we'll go over how to draw and animate lines and shapes
on a web page using the canvas element.

Programming Challenges
Try these challenges to practice working with objects and prototypes.
#1: DRAWING IN THE CAR CONSTRUCTOR
Add a call to the d raw method from inside the car constructor so that car
objects automatically appear in the browser as soon as you create them.
#2: ADDING A SPEED PROPERTY
Modify the car constructor to add a new speed property with a value of 5
to the constructed objects. Then use this propeny instead of the value 5
inside the movement methods.
Now try out different values for speed to make the cars move faster or
slower.
#3: RACING CARS
Modify the move Let t, moveRig h t, moveu p, and moveDoWn
methods so they take a single d i st anc e argument, the number of pixels
to move, instead of always moving 5 pixels. For example, to move the n i
ssan car 10 pixels to the right, you would call nissan . moveRi g h t (10).
Now, use set I nt er val to move the two cars (nissan and t es la) to the
right every 30 milliseconds by a different random distance between 0 and
5. You should see the two cars animate across the screen, jumping along
at varying speeds. Can you guess which car will make it to the edge of the
window first?

Part III. Canvas

Chapter 13. The Canvas Element
JavaScript isn't all about playing with text and numbers. You can also use
JavaScript to draw pictures with the HTML canvas element, which you
can think of as a blank canvas or sheet of paper. You can draw almost
anything that you want on this canvas, such as lines, shapes, and text. The
only limit is your imagination!
In this chapter, you'11learn the basics of drawing on the canvas. In the
following chapters, we'll build on our knowledge to create a canvas-based
JavaScript game.

Creating a Basic Canvas
As our first step in using the canvas, create a new HTML document for the
canvas element, as shown in the following listing. Save this document as
canvas.html:

<!DOCTYPE html>

<html>

<head>

<tit1e>Canvas</tit1e>

</head>

<body>

€# <canvas id=”canvas” width="200” height=”200"></canvass

<script>
// We'll fill this in next
</scripts

</body>
</html>

As you can see at O, we create a canvas element and give it an id
property of canvas , which we'll use to select the element in our code.
The wid t h and heig h t properties set the dimensions of the canvas
element in pixels. Here we set both dimensions to 2oo.

Drawing on the Canvas
Now that we've built a page with a canvas element, let's draw some
rectangles with JavaScript. Enter this JavaScript between the <sc r ipt >
tags in canvas.html.

var canvas = document.getElementById(”canvas”);

var ctx = canvas.getContext(”2d");

ctx . f111Rec t (0, 0, 10, 10) ;

We'll go over this code line by line in the following sections.

Selecting and Saving the canvas Element
First, we select the canvas element using documen t . get Elemen t Byld (
"canvas ") . As we saw in Chapter 9, the get Elemen t ById method
returns a DOM object representing the element with the supplied id.
This object is assigned to the canvas variable with the code var canvas
doc umen t . get Elemen t ById ("canvas ") .

Getting the Drawing Context
Next, we get the drawing context from the canvas element. A drawing
context is a JavaScript object that includes all the methods and properties
for drawing on a canvas. To get this object, we call
get Con text on canvas and pass it the string 2d " as an argument. This
argument says that we want to draw a two-dimensional image on our
canvas. We save this drawing context object in the variable ct x using the
code var ctx = canvas . get Con text ("2d ") .

Drawing a Square
Finally, on the third line, we draw a rectangle on the canvas by calling the
method I illRec t on the drawing context. The I illRect method takes four
arguments. In order, these are the x- and y- coordinates of the top-left
corner of the rectangle (0, 0) and the width and height of the rectangle (10,
10). In this case, we're saying, “Draw a 10-pixel-by-10-pixel rectangle at
coordinates (0, 0),” which are at the top-left corner of the canvas.
When you run this code, you should see a small black square on your screen,
as shown in Figure 13-1.

Figure 13-1. Our [irst canvas drawing

Drawing Multiple Squares
How about trying something a bit more interesting? Rather than drawing
just one square, let's use a loop to draw multiple squares running
diagonally down the screen. Replace the code in the <sc r ipt > tags with
the following. When you run this code, you should see a set of eight black
squares, as shown in Figure 13-2:

var canvas - document.getElementById(”canvas”);

var ctx = canvas.getContext(”2d");
for (var i = 0; i < 8; i++) { ctx.fillRect(i * 10, i ’

10, 10, 10);

The first two lines are the same as in the earlier listing. In the third line, we
create a to r loop that runs from 0 to 8. Next, inside this loop, we call I
illRec t on the drawing context.

Nipure 13-2. Drawing multiple squares using a [or loop

The x and y positions for the top-left corner of each square are
based on the loop variable, i. The first time around the loop, when i is 0,
the coordinates are (0, 0) because 0 • 10 is equal to 0. This means that
when we run the code ctx . f i 11Rec t (i * 10,
i * 10, 10, to), we will draw a square at the
coordinates (0, 0), with a width and height of 10 pixels by 10 pixels.
This is the top-left square in Figure 13-2.
The second time around the loop, when i is 1, the coordinates are (10, 10)
because 1 x 10 is equal to 10. This time, the code ct x . I ill Rec t (
i * 10, i * 10, 10, 10) draws a square at the
coordinates (10, 10), but the square's size is still 10 pixels by 10 pixels
(because we're not changing the aid t h and

heig h t arguments). This is the second square down in Figure 13-2.

Since i increments by 1 each time through the loop, the x- and y-
coordinates keep increasing by 10 pixels each time through the loop, but
the width and height of the square stay fixed at 10. The remaining

six squares are drawn over the remaining six times around the loop.

Changing the Drawing Color
By default, when you call I illRec t, JavaScript draws a black rectangle.
To use a different color, you can change the f illst yleproperty of the
drawing context. When you set f illst yleto a new color, everything you
draw will be drawn in that color until you change f illst yleagain.
The easiest way to set a color for I illst yle is to give it the name of a color
as a string. For example:

var canvas =
document.getElementById(”canvas"); var ctx =
canvas.getContext(”2d”);

4# ctx.fillStyle - "Red”;
ctx.fillRect(0, 0, 100, 100);

At O we tell the drawing context that everything we draw from now on
should be colored red. Running this code should draw a bright red square
on the screen, as shown in Figure 13-3.

Figure 13-3. A red square

NOTE
JavaScript understands more than 100 color names, including Green, Blue, Orange, Red, Yellow,
Purple, White, Black, Pink, Turquoise, Violet, SkyBlue, PaleGreen, Lime, Fuchsia, DeepPink,
Cyan, and Chocolate. You'll {ind a full list on the CSS-Tricks website: http://css-
tricks.com/snippets/css/named-colors-and-hex-equivalents/.

http://css-/

Drawing Rectangle Outlines
As we've seen, the f illRec t method draws a filled-in rectangle. That's
fine if that's what you want, but sometimes you might want to draw just
the outline, as if you were using a pen or pencil. To draw just the outline
of a rectangle, we use the st ro keRec t method. (The word stroke is
another word for outline.) For example, running this code should draw the
outline of small rectangle, as shown in
Figure 13-4:

var canvas - document.getElementById("canvas");
var ctx - canvas.getContext("2d");
ctx.strokeRect(10, 10, 100, 20);

E

Figure 13-4. Using st rokeRec t tO draw the outline o[a rectangle

The st rokeRec t method takes the same arguments as f illRec t: first the
x- and y-coordinates of the top-left corner, followed by the width and
height of the rectangle. In this example, we see that a rectangle is drawn
starting at 10 pixels from the top left of the canvas, and it is 100 pixels
wide by 20 pixels tall.
Use the st ro kes t yle property to change the color of the rectangle's outline.
To change the thickness of
the line, use the lineWid t h property. For example:

var canvas = document . get Element Byld(
"canvas") ; var ctx = canvas . get Cont ext(
"2d") ;

0 ctx . st rokestyle =
"DeepP1n k" ; @ ctx .
IineUidth = 4;

ctx . st rokeRec t (10, 10, 100, 2I?) ;

Here, we set the color of the line to DeepPin k at O and the
width of the line to 4 pixels at O. Figure 13- 5 shows the resulting

rectangle.

Figure 13-5. A deep pink rectangle with a 4-pixel-wide outline

Drawing Lines or Paths
Lines on the canvas are called paths. To draw a path with the canvas, you
use x- and y-coordinates to set where each line should begin and end. By
using a careful combination of starting and stopping coordinates, you can
draw specific shapes on the canvas. For example, here's how you might draw
the turquoise A shown in Figure 13-6:

var canvas - document.getElementById(”canvas");

var ctx = canvas . getCont ext("2d") ;
0 ctx . st rokestyle =
"Turquoise" ; @ ctx . M neU1dth
= 4;

@ ctx . beginPath() ;
§ ctx . moveTo(10,

10) ; @ ctx .
IineTo(60, 60); O• ctx
. moveTo(60, 10) ; 0
ctx . lineTo(10, 60); O
ctx . st roke () ;

Figure 13-6. A turquoise X, drawn with noveTo and 1:ineTo

At O and O we set the color and width of the line. At O we call the
beginPat h method on the drawing context (saved as ctx) to tell the canvas
that we want to start drawing a new path. At O we call the move To
method with two arguments: x- and y-coordinates. Calling move To picks
up our virtual JavaScript pen off the canvas paper and moves it to those
coordinates without drawing a line.
To start drawing a line, we call the lineTo method at O with x- and y-
coordinates, which places the virtual pen back on the canvas and traces a
path to these new coordinates. Here, we draw a line from the point (10, 10)
to the point (60, 60) — a diagonal line from the top left of the canvas to
the bottom right, forming the first line of the X.

At O• we call move To again, which sets a new location to draw from. At O
we call lineTo again, to

draw a line from (60, 10) to (10, 60) — a diagonal line from the top right
of the canvas to the bottom left, completing the N shape.
But we're not done yet! So far we've only told the canvas what we'd like to
draw; we haven't actually drawn anything. So at O, we call the st ro ke
method, which finally makes the lines appear on the screen.

Filling Paths
So far we've looked at st ro keRect for drawing rectangle outlines, f
illRec t for filling rectangles with color, and st ro ke for outlining a path.
The equivalent of I illRec t for paths is called f ill. To fill a closed path
with color instead of just drawing an outline, you can use the f ill
method instead of
st r oke. For example, you could use this code to draw the simple sky blue
house shown in Figure 13-7.

var canvas = document.getElementById(”canvas");

var ctx = canvas.getContext(”2d”);

ctx.fillStyle = ”SkyBlue";
ctx.beginPath();
ctx.moveTo(100, 100);

ctx.lineTo(100, 60);

ctx.lineTo(130, 30);

ctx.lineTo(160, 60);

ctx.lineTo(160, 100);
ctx.lineTo(100, 100);

4# ctx.fill();

Figure 13-7. A sky blue house, drawn with a path and [illed with the €:ill method

Here's how this code works. After setting our drawing color to SkyBl ue, we
begin our path with

begin Pat h and then move to our starting point of (100, 100) using move
To. Next we call lineTo five times for each corner of the house, using five
sets of coordinates. The final call to lineTo completes the path by going
back to the starting point of (100, 100).
Figure 13-8 shows the same house, but with each coordinate labeled.

Figure 13-8. The house [rom Figure 13-7 with coordinates labeled

Finally, at O we call the fill method, which fills our path with the chosen fill
color, Sky Blue.

Drawing Arcs and Circles
In addition to drawing straight lines on the canvas, you can use the arc
method to draw arcs and circles. To draw a circle, you set the circle's center
coordinates and radius (the distance between the circle's center and outer
edge) and tell JavaScript how much of the circle to draw by providing a
starting angle and ending angle as arguments. You can draw a full circle, or
just a portion of a circle to create an arc.
The starting and ending angles are measured in radians. When measured
in radians, a full circle starts at 0 (at the right side of the circle) and goes
up to n 2 radians. So to draw a full circle, you tell arc to draw
from 0 radians to n 2 radians. Figure 13-9 shows a circle labeled
with radians and their equivalent in degrees. The values 360° andq
x 2 radians both mean a full circle.

n 3 + 2 radians (270°)

n ra dians (180°)

n • 2 radian s (360°)

0 radians (0°)

n + 2 radians (90°)

Figure 13-9. Degrees and radians, starting [rom the right side o[the circle and moving
clockwise

For example, the following code will create a quarter circle, a half circle,

and a full circle, as shown in
Figure 13—10.

ctx.lineWidth = 2;
ctx.strokeStyle - ”Green”;

ctx.beginPath();
b ctx.arc(50, 50, 20, 0, Math.PI / 2, false); ctx.stroke();

ctx.beginPath();
@ ctx . arc(100, 50, 2I?, 0, Mat h .

PI, false) ; ctx . st roke() ;

ctx . beginPath () ;

@ ctx . arc (:I50, 50, 20, 0, Mat h . PI 2, false) ;

ctx.stroke();

Figure 13-10. Drawing a quarter circle, a hal[circle, and a [ull circle

We'll go over all three shapes in the following sections.

Drawing a Quarter Circle or an Arc
The first block of code draws a quarter circle. At O, after calling beg in
Pat h, we call the arc method. We set the center of the circle at the point
(50, 50) and the radius to 20 pixels. The starting angle is 0 (which draws
the arc starting from the right of the circle), and the ending angle is Nat h .
PI / 2.
Mat h . PI is how JavaScript refers to the number n (pi). Because a full
circle is n x 2 radians, n radians means a half circle, and n + 2 radians
(which we're using for this first arc) gives us a quarter circle.
Figure 13-11 shows the start and end angles.

0 radians (0°)

n + 2 fddians (90°)

Figure 13-11. The start angle {0 radiant, or 0°) and end angle {n 2 radians, or 90°) o[the quarter-
circle

We pass I alse for the final argument, which tells arc to draw in a clockwise
direction. If you want to draw in a counterclockwise direction, pass t rue
for this final argument.

Drawing a Half Circle
Next we draw a half circle. The arc at O has a center at (100, 50), which
places it 50 pixels to the right of the first arc, which was at (50, 50). The
radius is again 20 pixels. We also start at 0 radians again, but this time we
end at Nat h . PI, drawing a half circle. Figure 13-12 shows the start and
end angles.

n raclians (180°) 0 radians (0°)

Figure 13-12. The start angle (0 radians, or 0°) and end angle (u radians, or 180°) o[the
hal[circle

Drawing a Full Circle
At O we draw a full circle. The center is at (150, 50), and the radius is 20
pixels. For this circle, we start the arc at 0 radians and end it at Mat h . PI *
2 radians, drawing a full circle. Figure 13-13 shows the start and end angles.

n x g radians (360°)

0 r6dians (0°)

Figure 13-13. The start onpfe (0 radians, or 0°) and end onpfe (n ^ 2 radians, or 360°) of the
full circle

Drawing Lots of Circles with a Function
If you just want to draw circles, the arc method is a bit complicated. For
circles, you're always going to want to start the arc at 0 and end at n • 2,
and the direction (clockwise or counterclockwise) doesn't matter. Also, to
actually draw the circle you always need to call ctx . beg in Pat h and ctx .
st ro ke before and after calling the arc method. We can make a function to
draw circles that lets us ignore those details so that we have to supply only
the x, y, and radius arguments. Let's do that now.

var circle = function (x, y, radius) (
ctx.beginPath();
ctx . arc(x, y, radius, 0, Math . PI * 2,
fa1se) ; ctx . st roke() ;

As with the arc method, inside this function the first thing we have to do is
call ctx . beg in Pat h to tell the canvas we want to draw a path. Then, we
call ctx . arc, passing the x, y, and r adiu s variables from the function
arguments. As before, we use 0 for the start angle, Mat h . PI * 2 for the
end angle, and
f alse to draw the circle clockwise.
Now that we have this function, we can draw lots of circles simply by
filling in the center coordinates and radius as arguments. For example,
this code would draw some colorful concentric circles:

ctx.lineWidth = 4;

ctx.strokeStyle = "Red";
circle(U0, U0, 10);

ctx . st rokest y1e = "or ange" ;
circle(100, 100, 20) ;

ctx.strokeStyle = "Yellow";
circle(100, 100, 30);
ctx . st rokestyle = "Green" ;
circle(100, 100, 40) ;

ctx . st rokeSty1e = "B1ue" ;
circ1e(100, 100, 50) ;

ctx . st rokestyle = "Purple" ;

circle (100, 100, 60) ;

You can see what this should look like in Figure 13-14.
First, we set the line width to a thick 4 pixels. Then we set the st rokes t yle
to "Red " and use the circle function to draw a circle at the coordinates
(100, 100), with a radius of 10 pixels. This is the red center ring.

Figure 13-14. Color[ul concentric circles, drawn using our c:i rc1e [unction

We then use the same technique to draw an orange circle at the same location
but with a radius of 20 pixels; we follow that with a yellow circle, again in
the same location but with a radius of 30 pixels. The last three circles are
also in the same location, but with increasingly larger radii and in green,
blue, and purple.

What You Learned
In this chapter, you learned about a new HTML element called canvas.
Using the canvas's drawing context, we can easily draw rectangles, lines,
and circles, with full control over their location, line width, color, and so
on.
In the next chapter, we'll learn how to animate our drawings, using some of
the techniques we learned in Chapter 9.

Programming Challenges
Try these challenges to practice drawing to the canvas.
#1: A SNOWMAN-DRAWING FUNCTION
Building on your code for drawing a snowman (Figure 13-14), write a
function that draws a snowman at a specified location, so that calling this .

dr awsnowman(50, 50) ;

would draw a snowman at the point (50, 50).
#2: DRAWING AN ARRAY OF POINTS
Write a function that will take an array of points like this:

var points = [[50, 50], [50, 100], [100, 100], [100, 50],

[50, 50j ;

d r awPo int s (points) ;

and draw a line connecting the points. In this example, the function would
draw a line from (50, 50) to (50, 100) to (100, 100) to (100, 50) and back
to (50, 50).
Now use this function to draw the following points:

var mysteryPoints = [[50, 50], [50, 100], [25, 120],

[100, 50a , 70, 90] , 100, 90a , [70, 120] j ;

drawPoints(mysteryPoints);

Hint: You can use poin t s [0] [o] to get the first x-coordinate and poin t s
[0] [1] to get the first y- coordinate.
#3: PAINTING WITH YOUR MOUSE
Using jQuery and the mousemove event, draw a filled circle with a radius
of 3 pixels at the mouse position whenever you move your mouse over the
canvas. Because this event is triggered by every tiny movement of the
mouse, these circles will join into a line as you move the mouse over the
canvas.
Hint: Refer to Chapter 10 for a reminder of how to respond to oouseoove
events.
#4: DRAWING THE MAN IN HANGMAN
In Chapter 7 we created our own version of the game Hangman. Now you
can make it closer to the real game by drawing part of a stick man every
time the player gets a letter wrong.

Hint: Keep track of the number of times the player has guessed
incorrectly. Write a function that takes this number as an argument and
draws a different part of the body depending on the number passed in.

Chapter 14. Making Things Move on
the Canvas
Creating canvas animations in JavaScript is a lot like creating a stop-
motion animation. You draw a shape, pause, erase the shape, and then
redraw it in a new position. This may sound like a lot of steps, but
JavaScript can update the position of the shape very quickly in order to
create a smooth animation. In Chapter 10, we learned how to animate
DOM elements. In this chapter, we'll animate our canvas drawings.

Moving Across the Page
Let's use canvas and set I n te rval to draw a square and move it slowly
across a page. Create a new
file called canvasanimation.html and add the following HTML:

<!D0CTYPE html>

<html>

<head>
<title>Canvas Animation</title>

</head>

<body>

<canvas id:"canvas" width:”200" height="200”></canvass

<script>
// We'll fill this in next
</scripts

</body>

</html>

Now add the following JavaScript to the sc rip t element:
var canvas = document.getElementById(”canvas");

var ctx = canvas.petContext(”2d”);

var position = 0;

setInterval(function () {

ctx.clearRect(0, 0, 200, 200);
ctx.fillRect(position, 0, 20, 20);

position++;
if (position > 200) {

position = 0;

}, 30);

The first two lines in this code create the canvas and the context. Next, we
create the variable position and set it to o, with the code var position = 0.
We'll use this variable to control the left-to-right movement of the square.

Now we call set I n te rval to start our animation. The first argument to set I
n te rval is a function,
which draws a new square each time it's called.

Clearing the Canvas
Inside the function we passed to set I n t er val, we call clearRec t at O,
which clears a rectangular area on the canvas. The clear Rec t method
takes four arguments, which set the position and size of the rectangle to be
cleared. As with I illRec t, the first two arguments represent the x- and y-
coordinates of the top-left corner of the rectangle, and the last two
represent the width and height. Calling
ctx . c lear Rect (0, 0, 200, 200) erases a 200-by-200-pixel rectangle,
starting at the very top-left corner of the canvas. Because our canvas is
exactly 200 by 200 pixels, this will clear the entire canvas.

Drawing the Rectangle
Once we've cleared the canvas, at O we use ctx . I illRect (posit ion,
0, 20, 20) tO draw a 20- pixel square at the point (posit ion, 0).
When our program starts, the square will be drawn at (0, 0) because
posit io n starts off set to o.

Changing the Position
Next, we increase position by 1, using position++ at➌ . Then at➍ we ensure
that position doesn’t get larger than 200 with the check if (position > 200) . If it
is, we reset it to 0 .

Viewing the Animation in the Browser
When you load this page in your browser, set I n t er val will call the
supplied function once every 30 milliseconds, or about 33 times a second
(this time interval is set by the second argument to
set I nt er val, at O). Each time the supplied function is called, it clears
the canvas, draws a square at (position, 0), and increments the variable
position. As a result, the square gradually moves across the canvas. When
the square reaches the end of the canvas (200 pixels to the right), its
position is reset to 0.
Figure 14-1 shows the first four steps of the animation, zoomed in to the
top-left corner of the canvas.

Figure 14-1. A close-up of the top-left corner o[the canvas [or the [irst [our steps o[the
animtqtion. At etqch step, pos:i tion is incremented by 1 and the
square moves 1 pixel to the right.

Animating the Size of a Square
By making only three changes to the code in the previous section, we can
create a square that grows larger instead of moving. Here's what that code
would look like:

var canvas = document.getElementById("canvas");
var ctx = canvas.getContext("2d");

var size = 0;

setInterval(function () (
ctx.clearRect(0, 0, 200, 200);
ctx.fillRect(0, 0, size, size);

size++;
if (size > 200)

(size = 0;

}, 30);

As you can see, we've done two things. First, instead of a posit ion
variable, we now have a variable named size, which will control the
dimensions of the square. Second, instead of using this variable to set the
square's horizontal position, we're using it to set the square's width and
height with the code
ctx . I illRec t (0, 0, size, size) . This will draw a square at
the top-left corner of the canvas, with the width and height both set to
match size. Because size starts at o, the square will start out invisible. The
next time the function is called, size will be 1, so the square will be 1
pixel wide and tall. Each time the square is drawn, it grows a pixel wider
and a pixel taller. When you run this code, you should see a square appear
at the top-left corner of the canvas and grow until it fills the entire canvas.
Once it fills the entire canvas — that is, if (size > 200) — the
square will disappear and start growing again from the top-left corner.

Figure 14-2 shows a close-up of the top-left corner of the canvas for the
first four steps of this animation.

Figure 14-2. In each step of this animation, s:ize is incremented by 1 and the width and heisht
o/ the square grow by 1 pixel.

A Random Bee
Now that we know how to move and grow objects on our screen, let's try
something a bit more fun. Let's make a bee that flies randomly around the
canvas! We'll draw our bee using a number of circles, like this:

The animation will work very similarly to the moving square animation:
we'll set a position, and then for every step of the animation, we'll clear
the canvas, draw the bee at that position, and modify the position. The
difference is that to make the bee move randomly, we'll need to use more
complex logic for updating the bee's position than we used for the square
animation. We'll build up the code for this animation in a few sections.

A New circle Function
We'll draw our bee using a few circles, so first we'll make a circle function
to fill or outline circles:

var circle = function (x, y, radius, fillCircle) (

ctx . beg1nPath () ;
ctx.arc(x, y, radius, 0, Math.PI ’ 2, false); Q if

(fillCircle) {

Q ctx.fill();
} else {

O ctx.stroke();

The function takes four arguments: x, y, rad ius, and I illCircle. We used
a similar ci rcle function in Chapter 13, but here we've added I illCircle as
an extra argument. When we call this function, this argument should be set
to t r ue or I alse, which determines whether the function draws a filled
circle or just an outline.
Inside the function, we use the ar c method at O to create the circle with its
center at the position (x, y) and a radius of r adi u s. After this, we check to
see if the I illCircle argument is t r ue at O. If it is
t r ue, we fill the circle using ct x . fill at O. Otherwise, we outline the circle
using ctx . st ro ke at fi.

Drawing the Bee
Next, we create the d r aWBee function to draw the bee. The d r aWBee
function uses the ci rcle function
to draw a bee at the coordinates specified by its x and y arguments. It
looks like this:

var drawBee = function (x, y) (

0 ctx .lineW1dth = 2;

ctx . st rokest y1e = "Black" ;

ctx.fillStyle = "Gold”;

circle(x, y, 8, true);

circle(x, y, 8, false);
circle(x - 5, y - 11, 5, false);
circle(x + 5, y - 11, 5, false);
circle(x - 2, y - 1, 2, false);
circle(x + 2, y - 1, 2, false);

In the first section of this code at O, we set the lineWid t h, st ro kestyle,
and I illst yle properties for our drawing. We set the lineHid t h to 2 pixels
and the st ro kestyle to Blac k. This means that our outlined circles, which
we'll use for the bee's body, wings, and eyes, will have thick black borders.
The f illst yleis set to Gold, which will fill the circle for our bee body with
a nice yellow color.
In the second section of the code at O, we draw a series of circles to create
our bee. Let's go through those one at a time.
The first circle draws the bee's body using a filled circle with a center at
the point (x, y) and a radius of 8 pixels:

circle(x, y, 8, true);

Because we set the I illstyle to Gold, this circle will be filled in with
yellow like so:

This second circle draws a black outline around the bee's body that's the
same size and in the same place as the first circle:

circle(x, y, 8, false);

Added to the first circle, it looks like this:

Next, we use circles to draw the bee's wings. The first wing is an outlined
circle with its center 5 pixels to the left and 11 pixels above the center of
the body, with a radius of 5 pixels. The second wing is the same, except
it's 5 pixels to the ripht of the body's center.

circ1e(x - 5, y - 11, 5, false) ;

circle(x + 5, y - 11, 5, false);

With those circles added, our bee looks like this:

Finally, we draw the eyes. The first one is 2 pixels to the left of the center
of the body and 1 pixel above, with a radius of 2 pixels. The second one is
the same, except it's 2 pixels right of center.

circle(x 2, y 1, 2, false);

circle(x + 2, y 1, 2, false);

Together, these circles create a bee, with its body centered around the (x, y)
coordinate passed into the
d r aWBee function.

Updating the Bee's Location
We'll create an update function to randomly change the bee's x-and y-
coordinates in order to make it appear to buzz around the canvas. The u
pdat e function takes a single coo rdinat e; we update the x- and y-
coordinates one at a time so that the bee will move randomly left and right
and up and down. The update function looks like this:

var update - function (coordinate) (
var offset = Math.random() ’ 4

- 2; 4# coordinate += offset;
@ if (coordinat

e > 200) (
coordinate = 200;

% if(coordinate<0) {

coordinate = 0;

Q return coordinate;

Changing the Coordinate with an Offset Value
At O, we create a variable called off set, which will determine how much
to change the current coordinate. We generate the offset value by
calculating Mat h . random() * 4 - 2. This will give us a random
number between —2 and 2. Here's how: calling Mat h . random() on its
own gives us a random number between 0 and 1, SO Mat h . random() *
4 produces a random number between 0 and 4. Then we subtract 2 to get a
random number between —2 and 2.

At O we use coo rdinat e += off set to modify our coordinate with this off
set number. If off set is a positive number, coo rdinat e will increase, and
if it's a negative number, coo rdinat e will decrease.
For example, if coo rd in at e is set to too and offset is 1, then after we run
the line at O, coo rd in at e will be 101. However, if coo rd in at e is 100
and offset is -1, this would change coo rd in at e to 99.

Checking if the Bee Reaches the Edge
At O and O we prevent the bee from leaving the canvas by making sure
coordinate never increases above 200 or shrinks below 0. If coordinate
gets bigger than 200, we set it back to 200, and if it goes below 0, we reset
it to o.

Returning the Updated Coordinate
Finally, at O we return coo rdinat e. Returning the new value of coo rdinat e
lets us use that value in

the rest of our code. Later we’ll use this return value from the update method
to modify the x and y
values like this:

x = update(x); y
= update(y);

Animating Our Buzzing Bee
Now that we have the ci rc le, d r aWBee, and u pdat e functions, we can
write the animation code for our buzzing bee.

var canvas = document.getElementById(”canvas");

var ctx: canvas.getContext(”2d”);

var x =
100 ; var
y = 100
;

setInterval (function () {

0 ctx . clearRec t (0, 0, 200, 200) ;

@ d rawBee (x, y) ;

A x=
update(x);

y = update(y);

€$ ctx . st rokeRec t(0, 0, 200, 200) ;

) **) /

As usual, we start with the var canvas and var ctx lines to get the
drawing context. Next, we create the variables x and y and set both to ioo.
This sets the bee's starting position at the point (100, 100), which puts it
in the middle of the canvas, as shown in Figure 14-3.
Next we call set I n t er va1, passing a function to call every 30 milliseconds.
Inside this function, the first thing we do is call c lear Rec t at O to clear
the canvas. Next, at O we draw the bee at the point (x, y). The first time
the function is called, the bee is drawn at the point (100, 100), as you can
see in Figure 14-3, and each time the function is called after that, it will
draw the bee at a new, updated (x, y) position.
Next we update the x and y values starting at O. The update function
takes a number, adds a random number between —2 and 2 to it, and
returns that updated number. So the code x update (x) basically
means “change x by a small, random amount.”

Figure 14-3. The bee drawn at the point {100, 100)

Finally, we call st r okeRec t at O to draw a line around the edge of the
canvas. This makes it easier for us to see when the bee is getting close to
it. Without the border, the edge of the canvas is invisible.
When you run this code, you should see the yellow bee randomly buzz
around the canvas. Figure 14-4 shows a few frames from our animation.

Figure 14-4. The random bee animation

Bouncing a Ball!
Now let's make a ball that bounces around the canvas. Whenever the
ball hits one of the walls, it will bounce off at an angle, as a rubber ball
would.
First, we'll create a JavaScript object to represent our ball with a Ball
constructor. This object will store the ball's speed and direction using two
properties, xspeed and yspeed. The ball's horizontal speed will be
controlled by xspeed, and the vertical speed will be controlled by yspeed.
We'll make this animation in a new file. Create a new HTML file
called ball.html, and add the following HTML:

<!D0CTYPE html>

<html>

<head>
<title>A Bouncing Ball</title>

</head>

<body>
<canvas id:"canvas" width:”200" height="200”></canvass

<sc ript>

// We'll fill this in next

</scripts

</body>

</htm1>

The Ball Constructor
First we'll create the Ball constructor, which we'll use to create our
bouncing ball. Type the following code into the <sc r i pt > tags in
ball.html:

var Ball function ()
{ this.x 100;

this.y = 100;

this.xSpeed = -2;

this.ySpeed = 3;

Our constructor is very straightforward: it simply sets the starting position
of the ball (t his . x and
t his . y), the ball's horizontal speed (t his . xspeed), and its vertical speed
(t his . yspeed). We set the
starting position to the point (100, 100), which is the center of our 200-
by-200-pixel canvas.
t his . xspeed is set to - 2. This will make the ball move 2 pixels to the left
for every step of the animation. t his . yspeed is set to 3. This will make the
ball move 3 pixels down for every step of the animation. Therefore, the ball
will move diagonally down (3 pixels) and to the left (2 pixels) between
every frame.
Figure 14-5 shows the starting position of the ball and its direction of
movement.

Figure 14-5. The starting position o[the ball, with an arrow indicating its direction

Drawing the Ball
Next we'll add a d raw method to draw the ball. We'll add this method to
the Ball prototype so that any objects created by the Ball constructor can
use it:

var circle = function (x, y, radius, fillCircle) (
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI ’ 2,
false); if (fillCircle) {

ctx.fill();
} else {

ctx.stroke
();

Ball.prototype.draw = function () (
circle(this.x, this.y, 3, true);

First we include our ci rcle function, the same one we used earlier in A
New circle Function. We then
add the d raw method tO Ball . p r ot ot ype. This method simply calls ci
rcle(t his . x, t his . y, 3,
t r ue) to draw a circle. The circle's center will be at (t his . x, t his . y):
the location of the ball. It will have a radius of 3 pixels. We pass t r ue as
the final argument to tell the ci rcle function to fill the circle.

Moving the Ball
To move the ball, we just have to update the x and y properties based on the
current speed. We'll do that using the following move method:

Ball.prototype.move = function () (
this.x += this.xSpeed;
this.y += this.ySpeed;

We use t his . x += t his . xspeed to add the horizontal speed of the
ball to t his . x. Then t his . y += t his . yspeed adds the vertical speed to
t his . y. For example, at the beginning of the animation, the ball will be
at the point (100, 100), with t his . xspeed set to - 2 and t his . yspeed set
to 3. When we call the move method, it subtracts 2 from the x value and
adds 3 to the y value, which places the ball at
the point (98, 103). This moves the ball's location to the left 2 pixels and
down 3 pixels, as illustrated in

Figure 14-6.

Step 1 (100, 100)

 -2 +3

Step 2 (98, 1O3)

 -2 +}

Step 3 (96, 106)

Figure 14-6. The [irst three steps o[the animation, showing how the x and y properties change

Bouncing the Ball
At every step of the animation, we check to see if the ball has hit one of
the walls. If it has, we update the xspeed or yspeed property by negating
it (multiplying it by —1). For example, if the ball hits the bottom wall, we
negate t his . yspeed. So if t his . yspeed is 3, negating it will make it - 3.
If
t his . yspeed is -3, negating it will set it back to 3.

We'll call this method chec kCollision, because it checks to see if the ball
has collided with (hit) the wall.

Ball.prototype.checkCollision = function () (
0 if (this . x < 0 I I this .x >

200) (this . xspeed = - this
.xspeed ;

Q if (this.y < 0 l I this.y >

200) { this.ySpeed = -
this.ySpeed;

At O, we determine whether the ball has hit the left wall or the right wall
by checking to see if its x property is either less than 0 (meaning it hit the
left edge) or greater than 200 (meaning it hit the right edge). If either of
these is true, the ball has staned to move off the edge of the canvas, so we
have to reverse its horizontal direction. We do this by setting t his .

xspeed equal to - t his . xspeed. For example, if t his . xspeed was - 2
and the ball hit the left wall, t his . xspeed would become 2.
At O, we do the same thing for the top and bottom walls. If t his . y is
less than 0 or greater than 200, we know the ball has hit the top wall or the
bottom wall, respectively. In that case, we set t his . yspeed to be equal to
- t his . yspeed.
Figure 14-7 shows what happens when the ball hits the left wall. t his .
xspeed starts as -2, but after the collision it is changed to 2. However, t his
. yspeed remains unchanged at 3.

Step 1 Step Z Step 3

Step 4

Step 5

(i, 53)

(-1, 56)

(i, 59)

(3, 62)

Figure 14-7. How th:is . xspeed changes after a collision with the le[t wall

As you can see in Figure 14-7, in this case the center of the ball goes off the
edge of the canvas at step 3 when it collides with a wall. During that step,
part of the ball will disappear, but this happens so quickly that it's barely
noticeable when the animation is running.

Animating the Ball
Now we can write the code that gets the animation running. This code sets
up the object that represents the ball, and it uses set Inter val to call the
methods that draw and update the ball for each animation step.

var canvas = document.getElementById("canvas");

var ctx = canvas.getContext("2d");

var ball = new Ball();

Q setInterval(function () (

0 ctx . clearRec t (0, 0, 201?, 200) ;

€$ ball. d

raw() ;
ball. move(
) ;

ball.checkCollision();

0 ctx . st rokeRec t (0, 0, 200,

200) ; f'$• } , 30) ;

We get the canvas and drawing context as usual on the first two lines. Then
we create a ball object using new Ball() and save it in the variable ball at
O. Next, we call set I nt er val at O, passing a function and the number 30
at O•. As you've seen before, this means “call this function every 30
milliseconds.”

The function we pass to set I n te rval does several things. First, it clears the
canvas, using
ctx . clearRec t (
0, 0, 200, 200)
at 0. After this, it calls the d raW, move, and c hec kColli s i on
methods at O on the ball object. The d raw method draws the ball at its

current x- and y-coordinates. The move method updates the position of
the ball based on its xspeed and yspeed properties. Finally, the chec
kCollision method updates the direction of the ball, if it hits a wall.
The last thing we do in the function passed to set I n te rval is call ctx . st
ro keRec t (0, 0, 200, 200)
at O to draw a line around the edge of the canvas, so we can see the walls
the ball is hitting.
When you run this code, the ball should immediately start moving down
and to the left. It should hit the bottom wall first, and bounce up and to the
left. It will continue to bounce around the canvas as long as you leave the
browser window open.

What You Learned
In this chapter, we combined our knowledge of animation from Chapter 11
with our knowledge of the canvas element to create various canvas-based
animations. We began simply by moving and growing squares on the
canvas. Next, we made a bee buzz randomly around the screen, and we
ended with an animation of a bouncing ball.
All of these animations work in basically the same way: we draw a shape
of a particular size in a particular position, then we update that size or
position, and then we clear the canvas and draw the shape again. For
elements moving around a 2D canvas, we generally have to keep track of
the x- and y- coordinates of the element. For the bee animation, we added
or subtracted a random number from the x- and y-coordinates. For the
bouncing ball, we added the current xspeed and yspeed to the x- and y-
coordinates. In the next chapter, we'll add interactivity to our canvas,
which will let us control what's drawn to the canvas using the keyboard.

Programming Challenges
Here are some ways you can build on the bouncing ball animation from this
chapter.
#1: BOUNCING THE BALL AROUND A LARGER CANVAS
Our 200-by-200-pixel canvas is a bit small. What if you wanted to
increase the canvas size to 400 by 400 pixels or some other arbitrary size?
Instead of entering the width and height of the canvas manually
throughout your program, you can create aid t h and height variables
and set the variables using the canvas object. Use the following code:

var width = canvas.width;

var height = canvas . height ;

Now if you use these variables throughout your program, you only have
to change the properties on the canvas element in the HTML if you want
to try out a new size. Try changing the size of the canvas to 500 pixels by
300 pixels. Does your program still work?
#2: RANDOMIZING THIS.XSPEED AND THIS.YSPEED
To make the animation more interesting, set t his . xspeed and t his .
yspeed to different random numbers (between —5 and 5) in the Ball
constructor.
#3: ANIMATING MORE BALLS
Instead of creating just one ball, create an empty array of balls, and use a
tor loop to add 10 balls to the array. Now, in the set I nt er val function, use
a tor loop to draw, move, and check collisions on each of the balls.
#4: MAKING THE BALLS COLORFUL
How about making some colored bouncing balls? Set a new property in
the Ball constructor called colo r and use it in the d raw method. Use the
pic kRandomHo rd function from Chapter 8 to give each ball a random
color from this array:

var colors ["Red", "Orange", "Yellow",
"Green", "Blue", "Purple"];

Chapter 15. Controlling Animations
with the Keyboard
Now that you know how to work with the canvas; draw and color objects;
and make objects move, bounce, and grow in size, let's liven things up by
adding some interactivity!
In this chapter, you'll learn how to make your canvas animations respond
when a user presses a key on the keyboard. This way, a player can control
an animation by pressing an arrow key or one of a few assigned letters on
their keyboard (like the classic W, A, S, D game controls). For example,
instead of just having a ball bounce across a screen, we can have a player
control the movement of the ball using the arrow keys.

Keyboard Events
JavaScript can monitor the keyboard through keyboard events. Each time a
user presses a key on the keyboard, they generate a keyboard event, which
is a lot like the mouse events we saw in Chapter 10. With mouse events, we
used jQuery to determine where the cursor was when the event took place.
With keyboard events, you can use jQuery to determine which key was
pressed and then use that information in your code. For example, in this
chapter we'll make a ball move left, right, up, or down when the user presses
the left, right, up, or down arrow key.
We'll use the key down event, which is triggered whenever a user presses a
key, and we'll use jQuery to add an event handler to the keydown event.
That way, every time a keydown event occurs, our event handler function
can find out which key was pressed and respond accordingly.

Setting Up the HTML File
To begin, create a clean HTML file containing the following code and save
it as keyboard.html.

<!D0CTYPE html>

<html>

<head>

<title>Keyboard input</title>

</head>

<body>

<canvas id-”canvas" width-”400" height-"400”></canvass

<script src=”https://code.jquery.com/jquery-2.1.0.js"></scripts

<script>

// We'll fill this in next

</scr1pt>

</body>

</html>

Adding the keydown Event Handler
Now let's add some JavaScript to respond to key down events. Enter this
code inside the empty
<sc ript > tags in your keyboard.html file.

$(" body") . keydown (function
(event) (console . log (event .
keyCode) ;

In the first line, we use the jQuery $ function to select the body element in
our HTML and then call the keydown method. The argument to the
keydown method is a function that will be called whenever a key is
pressed. Information about the key down event is passed in to the
function through the even t object. For this program, we want to know
which key was pressed, and that information is stored in the even t object
as even t . key Code.
Inside the function, we use console . log to output the event object's
keyCode property: a number representing the pressed key. Each key on
your keyboard has a unique keycode. For example, the keycode for the
spacebar is 32, and the left arrow is 37.
Once you've edited your keyboard.html file, save it and then open it in a
browser. Now open the console so you can see the output, and click in the
main browser window to have JavaScript register your keypresses. Now, if
you start pressing keys, the corresponding keycodes should be printed to
the console.

For example, if you type hi t here, you should see the following output in
the console:

72

73

32

84

72

69

82

69

Every key you press has a different keycode. The H key is 72, the I key is
73, and so on.

Using an Object to Convert Keycodes into Names
To make it easier to work with keys, we'll use an object to convert the
keycodes into names so that the keypresses will be easier to recognize. In
this next example, we create an object called keyNames, where the object
keys are keycodes and the values are the names of those keys. Delete the
JavaScript in keyboard.html and replace it with this:

var keyNames
= (32 :
"space",

37 : "left",

38 : "up",

39 : "righ t ",

40: "down "

$(”body”).keydown(function (event) (

4# console.log(keyNames[event.keyCode]);

First, we create the key Names object and fill it with the keycodes 32, 37,
38, 39, and 40. The key Names object uses key-value pairs to match
keycodes (such as 32, 37, and so on) with corresponding labels (such as
"space for the spacebar and "lef t " for the left arrow).
We can then use this object to find out the name of a key based on its
keycode. For example, to look up
the keycode 32, enter key Names [32] . That returns the string space .
At O, we use the key Names object in the keydown event handler to get
the name of the key that was just pressed. If the event keycode referenced
by even t . keyCode matches one of the keys in the keyNames object, this
function will log the name of that key. If no key matches, this code will log
undef in ed.
Load keyboard.html in your browser. Open the console, click in the main
browser window, and try pressing a few keys. If you press one of the five
keys in the keyNaoe object (the arrow keys or spacebar), the program
should print the name of the key. Otherwise, it will print undef ined.

Moving a Ball with the Keyboard
Now that we can determine which key is being pressed, we can write a
program to use the keyboard to control the movement of a ball. Our
program will draw a ball and move it to the right. Pressing the arrow keys
will change the ball's direction, and pressing the spacebar will stop it. If
the ball goes off the edge of the canvas, it will wrap around to the opposite
side. For example, if the ball goes off the right edge of the canvas, it will
show up again on the left edge while continuing to move in the same
direction, as shown in Figure 15-1.

Figure 15-1. I[the ball moves o(the right side o[the canvas, it will reappear on the left.

We'll use an object called keyAc tions to find out which key was pressed
and then use that information to set the direction of the ball's movement.
We'll use set I nt er val to continually update the ball's position and redraw
it at its new position.

Setting Up the Canvas
First we need to set up the canvas and the context object. Open
keyboard.html and replace the JavaScript between the second set
of <sc r ipt > tags with this code:

var canvas = document.getElementById(”canvas”);

var ctx = canvas.getContext(”2d");
var width = canvas.width; var
height = canvas.height;

On the first line, we use doc umen t . get Elemen t ById to select the
canvas element. On the second line, we call get Co n text on the canvas to
get the context object. Then, in the var aid t h and var heig h t lines, we
store the width and height of the canvas element in the variables aid t h
and heig h t. This way, when we need the canvas dimensions, we can use
these variables instead of having to enter the numbers manually. Now, if
we choose to change the size of the canvas, we can simply edit the
HTML, and the JavaScript code should still work.

Defining the circle Function
Next, we define the same circle function for the ball that we used in
Chapter 14. Add this function after the code from the previous section:

var circle = function (x, y, radius, fillCircle) (
ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI ’ 2,
false); if (fillCircle) {

ctx.fill();
} else {

ctx.stroke
();

Creating the Ball Constructor
Now we'll create a Ball constructor. We'll use this constructor to create
the moving ball object. We'll be using the same technique for moving this
ball as we did in Chapter 14 — using the xspeed and yspeed properties to
control the horizontal and vertical speed of the ball. Add this code after
the circle function:

var Ball function
() {
this.x widt
h / 2; this.y =
height / 2;
this.xSpeed = 5;
this.ySpeed = 0;

We set the x and y values (the ball's position) to aid t h / 2 and heig h t / 2
sO that the ball will start at the center of the canvas. We also set t his .
xspeed to s and t his . yspeed to o. This means that the ball will start the
animation by moving to the right (that is, with each animation step, its x
position will increase by 5 pixels and its y position will stay the same).

Defining the move Method
In this section, we'll define the move method. We'll add this method to
Ball . p ro tot ype to move the ball to a new location based on its current
location, xspeed and yspeed. Add this method after the Ball constructor:

Ball.prototype.move = function () { this.x
+- this.xSpeed;

this.y += this.ySpeed;

if (this.x < 0) {

t his . x = w1dt h ;
} else if (this.x > width){ this.x = 0;
} else if (this.y < 0) (this.y -

height

} else if (this.y > height) (

this.y - 0;

First we update t his . x and t his . y using t his . xspeed and t his .
yspeed, just as we did in Chapter 14
(see Moving the Ball). After that is the code for when the ball reaches the
edge of the canvas.
The if . . else statement at O checks the ball's position to see if it has
moved off the edge of the canvas. If it has, this code makes the ball wrap
around to the other side of the canvas. For example, if the ball goes off the
left edge of the canvas, it should reappear from the right side of the
canvas. In other words, if t his . x is less than 0, we set t his . x to wid t h,
which places it at the very right edge of the canvas. The rest of the if
. . else statement deals with the other three edges of the canvas in
a similar way.

Defining the draw Method
We'll use the d raw method to draw the ball. Add this after the definition of
the move method:

Ball.prototype.draw - function () (
circle(this.x, this.y, 10, true);

This method calls the circle function.
It uses the ball's x and y values to set the center of the ball, sets the radius to
10, and sets I illCircle to t r ue. Figure 15-2 shows the resulting
ball.

Figure 15-2. The ball is a [illed circle with a radius of 10.

Creating a setDirection Method
Now we have to create a way to set the direction of the ball. We'll do that
with a method called
set Direct ion. This method will be called by our keydown event handler,
which you'll see in the next section. The keydown handler will tell set
Direct ion which key was pressed by passing it a string
(" let t ", "u p ", " rig h t ", ”down ", or "st op "). Based on that string,
set Direct ion will change the xspeed and yspeed properties of the ball to
make it move in the direction that matches the keypress. For example, if
the string "down " is passed, we set t his . xspeed to o and t his . yspeed
to 5. Add this code after the d raw method:

Ball.prototype.setDirection = function
(direction) (if (direction =:= "up") {

this.xSpeed = 0;
this.ySpeed = -5;

} else if (direction --- "down") {
this.xSpeed = 0;

this.ySpeed = 5;
} else if (direction =:: "left") {

this . xspeed =
—5; this .
yspeed = 0;

} else 1f (d1rec t1on === "right") {

this.xSpeed = 5;

this.ySpeed = 0;
} else if (direction === "stop") {

this.xSpeed = 0;
this.ySpeed = 0;

The entire body of this method is one long if ... else statement. The
new direction is passed into the method as the di rect ion argument. If di
rect ion is equal to "u p", we set the ball's xspeed property to o and its
yspeed property to -5. The other directions are handled in the same way.
Finally, if the direction is set to the string "stop", we set both t his . xspeed
and t his . yspeed to o, which means that the ball will stop moving.

Reacting to the Keyboard
This next snippet of code creates a ball object using the Ball constructor,
and it listens for keydown
events in order to set the ball's direction. Add this code after the set Direct
ion method:

D var ball = new Ball();

Q var keyActions {

32: "st op",

37 : "left",

38 : "up",

39 : "righI " ,

40: "down "

Q $("body”).keydown(function (event) (
% var direction : keyActions[event.keyCode];
D ball.setDirection(direction);

1):

At O, we create a ball object by calling new Ball(). At O we create a
keyAc t ion s object, which we'll use to convert keycodes to their
corresponding direction. This object is the same as the key Names object
we created in Using an Object to Convert Keycodes into Names, except
that for 32 (the keycode for the spacebar) we replace the label
space with st op since we want the spacebar to
stop the ball from moving.
At O we use the jQuery $ function to select the body element and then
call the keydown method to listen for keydown events. The function
passed to the keydown method is called every time a key is pressed.
Inside this function, we use keyAc t ion s [even t . keyCode] at O to look
up the label for the key that was pressed and assign that label to the di rect
ion variable. This sets the di rect ion variable to a direction: "let t ” if the
left arrow is pressed, " r ig h t ” if the right arrow is pressed, u
p for the up arrow, "down " for the down arrow, and
stop for the spacebar. If any other key is pressed, di rect ion is set
to undefined, and the animation won't be affected.

Finally, at O we call the set Direct io n method on the ball object, passing
the direction string. As you saw before, set Direct io n updates the ball's
xspeed and yspeed properties based on the new direction.

Animating the Ball
All we have left to do now is animate the ball. The following code should
look familiar, since it's quite similar to what we used in Chapter 14. It
uses the set I nt er val function that we've seen in the animation code in
previous chapters to update the ball's position at regular intervals. Add this
code after the code from the previous section:

setInterval(function () {

ctx.clearRect(0, 0, width, height);

ball. d raw() ;
ball . move() ;

ctx.strokeRect(0, 0, width, height);

}, 30);

We use set I n ter val to call our animation function every 30 milliseconds.
The function first clears the entire canvas with clear Rec t and then calls
the d raw and cove methods on the ball. As we've seen, the d raw method
simply draws a circle at the ball's current location, and the move method
updates the ball's position based on its xspeed and yspeed properties.
Finally, it draws a border with st ro keRec t so we can see the edge of the
canvas.

Putting It All Together
Now that we've gone through all the code, here's the full listing for your
convenience.

var canvas = document.getElementById(”canvas”);

var ctx = canvas.getContext(”2d");
var width = canvas.width; var
height = canvas.height;

var circle = function (x, y, radius, fillCircle) (ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false); if
(fillCircle) {

ctx.fill();
} else {

ctx.stroke();

// The Ball constructor var
Ball function () {

this.x width / 2;
this.y = heiQht / 2; this
.xspeed = 5 ;

this .yspeed = 0 ;

// Update the ball's position based on its speed
Ball.prototype.move = function () (

this.x +- this.xSpeed;
this.y += this.ySpeed;

if (this.x < 0) { this.x :

width;
} else if (this.x > width) {

this.x - 0;
} else if (this.y < 0) { this.y =

height;
} else if (this.y > height) {

this.y = 0;

// Draw the ball at its current position
Ball.prototype.draw = function () (

circle(this.x, this.y, 10, true);

// Set the ball's direction based on a string
Ball.prototype.setDirection = function (direction) (

if (direction === "up") {
this . xspeed = 0;
this . yspeed = - 5;

} else if (direction === "down") {
this.xSpeed = 0;

this.ySpeed = 5;

} else if (direction ::: "left") {
this . xspeed = —5;
this . yspeed = 0;

} e1se if (direction === "right") {
this. xspeed = 5
; t his . yspeed
= 0 ;

) else if (direction === ”
stop ”) (this . xspeed = 0 ;

this . yspeed = 0 ;

// Create the ball object

var ball = new Ball();

// An object to convert keycodes into action names

var keyAc tions = (

32 : " st op" ,

37 : "left",

38 : "up",

39 : "righ t ",

40 : "down"

// The keydown handler that will be called for every keypress

$(”body").keydown(function (event) {

var direction = keyActions[event.keyCode];

ball.setDirection(direction);

1):
// The animation function, called every 30 ms
setInterval(function () {

ctx.clearRect(0, 0, width, height);

ball. draw() ;

ball.move() ;

ctx.strokeRect(0, 0, width, height);

}, 30);

Running the Code
Now our program is complete. When you run the program, you should
see a black ball moving across the canvas to the right, as shown in
Figure 15-3. When it reaches the right side of the canvas, it should wrap
around to the left side and keep moving to the right. When you press the
arrow keys, the ball should change direction, and pressing the spacebar
should make the ball stop.

Figure 15-3. A screenshot from the moving ball animation

NOTE

I[the animation doesn't respond to keys as expected, click the page to make sure the program can
access your keypresses.

What You Learned
In this chapter, you learned how to make programs that react to keyboard
events. We used this knowledge to create a moving ball, where the ball's
direction is set by the keyboard.
Now that we can draw to the canvas, create animations, and update those
animations based on user input, we can create a simple canvas-based
game! In the next chapter, we'll re-create the classic Snake game,
combining everything we've learned up until now.

Programming Challenges
Here are a few ways you can build on the final animation to make it more
sophisticated.
#1: BOUNCING OFF THE WALLS
Modify the code so the ball bounces off the side and top walls instead of
wrapping around to the other side. Hint: Just reverse the direction when
the ball hits the wall.
#2: CONTROLLING THE SPEED
The ball currently moves 5 pixels for every step of the animation. This is
because set Di rect ion always sets xspeed or yspeed to - 5 or 5. Create a
new property in the Ball constructor called s peed and set it tO 5. Then use
this instead of the number s in set Di rect ion.
Now, change your code so that you can use the number keys to set the
speed from x to 9. Hint: Create an object called speeds, and use it to
determine the new speed, if any, based on the keydown event.
#3: FLEXIBLE CONTROLS
Modify your code so that when you press the Z key, the ball slows down,
and when you press the X key, it speeds up. Once that's working, use C to
make the ball smaller and V to make it larger.
What happens if the speed goes below 0? What about the size? Add a
check in the code to make sure the speed and size never go below 0.

Chapter 16. Making a Snake
Game: Part 1
In this chapter and the next, we'll build our own version of the classic
arcade game Snake. In Snake, the player uses the keyboard to control a
snake by directing its movement up, down, left, or right. As the snake moves
around the playing area, apples appear. When the snake reaches an apple, it
eats the apple and grows longer. But if the snake hits a wall or runs into part
of its own body, the game is over.
As you create this game, you'll combine many of the tools and techniques
you've learned so far, including jQuery and the canvas as well as
animation and interactivity. In this chapter, we'll look at the general
structure of the game and go through the code for drawing the border and
the score and ending the game. In Chapter 17, we'll write the code for the
snake and the apple and then put everything together to complete the
game.

The Game Play

Figure 16-1 shows what
our finished game will look like. We'll need to keep track of and draw four
items on the screen as the game runs: the border (in gray), the score (in
black), the snake (in blue), and the apple (in lime green).

Figure 16-1. Our Snake game

The Structure of the Game
Before we start writing code, let's take a look at the overall structure of the
game. This pseudocode describes what our program needs to do:

Set up the canvas
Set score to zero
C r eate snake

C r eate apple

Every 100 milliseconds {

Clear the canvas
Draw current score on the screen
Move snake in current direction
If snake collides with wall or itself { End

the game
} Else If snake eats an apple (

Add one to score
Move apple to new location
Make snake longer

For each segment of the snake (
Draw the segment

Draw apple

Draw border

When the user presses a key {

If the key is an arrow (

Update the direction of the snake

Over the course of this chapter and the next, we'll write the code to execute
each of these steps. But first, let's talk through some of the major parts of
this program and plan out some of the JavaScript tools we'll use for them.

Using setInterval to Animate the Game
As you can see in the pseudocode, every 100 milliseconds we need to call
a series of functions and methods that update and draw everything to the
game board. Just as we've done in Chapter 14 and Chapter 15, we'll use set I
n t er val to animate the game by calling those functions at regular intervals.
This is what our call to set I n t er val will lOOk like in the final program:

var intervalId = setInterval(function () (
ctx.clearRect(0, 0, width, height);

d rawscor e(
)’ snake.move(
snake . d raw(
) ;

apple.draw();

drawBor der () ;

}, 100) ;

In the function that we pass to set I n t er val, the first line clears the canvas
with c lear Rec t sO that we can draw the next step in the animation. Next
we see several function and method calls. Notice that these all roughly
match up with the steps in the pseudocode listing on the previous page.
Also notice that we save the interval ID in the variable int er val I d. We'll
need that interval ID when the game is over and we want to stop the
animation (see Ending the Game).

Creating the Game Objects
For this program, we'll use the object-oriented programming style we
learned about in Chapter 12 to represent the two main objects in the game:
the snake and the apple. We'll create a constructor for each of these objects
(called Snake and Apple), and we'll add methods (like cove and d raw) to
the prototypes of these constructors.
We'll also divide the game board into a grid and then create a constructor
called Bloc k, which we'll use to create objects that represent squares in
the grid. We'll use these block objects to represent the location of segments
of the snake, and we'll use a single block object to store the apple's current
location. These blocks will also have methods to let us draw the segments
of the snake and the apple.

Setting Up Keyboard Control
In the earlier pseudocode, there's a section devoted to responding to
keypresses by the user. To allow the player to control the snake using the
arrow keys on the keyboard, we'll use jQuery to respond to keypresses, as
we did in Chapter 15. We'll identify the key that was pressed by looking
up the keycode, and then we'll set the snake's direction accordingly.

Game Setup
Now that we've gone through an overview of how the program will work,
let's start writing some code! In this chapter, we'll start by setting up the
HTML, the canvas, and some variables we'll need throughout the program.
Then we'll tackle a few of the more straightforward functions we need for
this game: one to draw the border around the board, one to draw the score
on the screen, and one to end the game. In the next chapter, we'll create the
constructors and methods for the snake and apple, create an event handler
for arrow keypresses, and put it all together to complete the game.

Creating the HTML
To begin coding our game, enter the following into your text editor and save
it as snake.html.

<!DOCTYPE html>

<html>

<head>

<title>Snake!</title>

</head>

<body>

4# <canvas id-”canvas” width-"400” height-”400"></canvass

Q <script src="https://code.jquery.com/jquery-2.1.0.js”></scripts

Q <script›
// We'll fill this in next
</scripts

</body>

</html>

At O we create a canvas element that is 400 X 400 pixels. This is where
we'll draw everything for our game. We include the jQuery library at O,
followed by another pair of <sc r ipt > tags at O, where we'll add our
JavaScript code to control the game. Let's start writing that JavaScript now.

Defining the canvas, ctx, width, and height
Variables
First we'll define the variables canvas and ct x, which will let us draw on the
canvas, and the variables aid t h and heig h t, to get the width and height of
the canvas element.

var canvas = document.getElementById(”canvas”);

var ctx = canvas.getContext(”2d");

var width = canvas.width; var
height - canvas.height;

The code in the HTML sets the width and height to 400 pixels; if you
change those dimensions in the HTML, Widt h and heig h t will match the
new dimensions.

Dividing the Canvas into Blocks
Next, we'll create variables to help us think about our canvas as a grid of 10-
by-10-pixel blocks, as shown in Figure 16-2. Although the grid will be
invisible (that is, the game won't actually display it), everything in the
game will be drawn to line up with it.

400 pixels

Nipure 16-2. A 10-pixel grid showing the block layout o[the game

The snake and apple will both be one block wide so that they fit within this
grid. For every step of the animation, the snake will move exactly one block
in its current direction.
We'll use these variables to create the blocks on our canvas:

4# var blocksize = 10;

Q var widthInBlocks: width / blocksize;

var heightInBlocks = height / blockSize;

At ➊ we create a variable called blockSize and set it to 10 , since we want
our blocks to be 10 pixels tall and wide. At ➋ we create the variables
widthInBlocks and heightInBlocks . We set widthInBlocks equal to the width of the
canvas divided by the block size, which tells us how many
blocks wide the canvas is. Similarly, heightInBlocks tells us how many
blocks tall the canvas is. At the moment the canvas is 400 pixels wide
and tall, so widthInBlocks and heightInBlocks will both be 40 . If you count the
number of squares in Figure 16-2 (including the border), you’ll see that
it’s 40 blocks wide and tall.

Defining the score Variable
Finally, we define the sco re variable.

var score = 0;

We'll use the sco re variable to keep track of the player's score. Because this is
the beginning of the program, we set sco re equal to o. We'll increment it by
1 every time the snake eats an apple.

Drawing the Border
Next, we'll create a d r aWBo rder function to draw a border around the
canvas. We'll make this border one block (10 pixels) thick.
Our function will draw four long, thin rectangles, one for each edge of
the border. Each rectangle will be bloc ksize (10 pixels) thick and the
full width or height of the canvas.

var d r awBorde r = function () {
ctx.fillStyle = ”Gray”;
ctx.fillRect(0, 0, width,
blocksize);
ctx.fillRect(0, height - blocksize, width,
blocksize); ctx.fillRect(0, 0, blocksize, height);
ctx.fillRect(width - blocksize, 0, blocksize,
height);

First we set the I illstyle to gray, because we want the border to be gray.
Then, at O, we draw the top edge of the border. Here we're drawing a
rectangle starting at (0, 0) — the top-left corner of the canvas
— with a width of Widt h (400 pixels) and a height of bloc ksize (10
pixels).
Next, at O, we draw the bottom edge of the border. This will be a
rectangle at the coordinates (0, height - bloc ksize), or (0, 390).
This is 10 pixels up from the bottom of the canvas, on the left. Like the
top border, this rectangle has a width of Widt h and a height of bloc
ksize.
Figure 16-3 shows what the top and bottom borders look like.

Figure 16-3. The top and bottom borders

At O we draw the left border, and at O we draw the right one. Figure 16-4
shows the addition of these two edges.

Figure 16-4. The le[t tqnd right borders (with the top and bottom borders shown in a lighter
gray)

Displaying the Score
Now let's write a d raWSco re function to display the score at the top left
of the canvas, as shown in Figure 16-1. This function will use the f illText
context method to add text to the canvas. The
f illText method takes a text string and the x- and y-coordinates where
you want to display that text. For example,

ctx.fillText(”Hello world!”, 50, 50);

would write the string Hello wo rld ! at the coordinates (50, 50) on
your canvas. Figure 16-5 shows how that would look.

Figure 16-5. The string Hebto more d! drawn at the point (50, 50)

Hey look, we've printed text to the canvas! But what if we want to have
more control over how the text looks by tweaking the size and font or
changing the alignment? For the score in our Snake game, we might want
to use a different font, make the text bigger, and make sure the text appears
precisely in the top-left corner, just below the border. So before we write
our d r aWSco re function, let's learn a little more about the fillText
method and look at some ways to customize how text appears on the
canvas.

Setting the Text Baseline
The coordinate location that determines where the text appears is called
the baseline. By default, the bottom-left corner of the text is lined up with
the baseline point so that the text appears above and to the right of that
point.
To change where the text appears in relation to the baseline, we can
change the text Baseline property.
The default value for this property is "bo t t om , but you can also set the text
Baseline property to
"t op" or "mid d le". Figure 16-6 shows how the text is aligned for each of
these options, in relation to
the baseline point (shown as a red dot) that you pass to I illText.

Figure 16-6. The e(ect o[changing textBaseline

For example, to run your text below the baseline, enter:

ctx.textBaseline = "top'
ctx.fillText(”Hello world!”, 50, 50);

Now, when you call fillText, the text will be below the point (50, 50), as
you can see in Figure 16-7.

Figure 16-7. The string Hell o sort d! with t ex tBase11ne set to "top"

Similarly, to change the horizontal position of the text relative to the
baseline point, you can set the
t extAlig n property to "let t ", "cen te r ", or " r ig h t ". Figure 16-8 shows
the results.

Figure 16-8. The e(ect o[changing textAfipn

Setting the Size and Font
We can change the size and font of the text we draw by setting the font
property of the drawing context. This listing shows some examples of
different fonts we could use:

0 ctx.font = "20px Courier”;

ctx.fillText("Courier”, 50, 50);

ctx.font = ”24px Comic Sans MS”;
ctx.fillText(”Comic Sans”, 50, 100);

ctx.font = ”18px Arial";
ctx.fillText("Arial”, 50, 150);

The font property takes a string that includes the size and the name of the
font you want to use. For example, at O we set the font property to ”20px
Courier , which means the text will be drawn at a size of 20 pixels in the
font Courier. Figure 16-9 shows how these different fonts look when
drawn on the canvas.

Figure 16-9. 20px Courier, 24px Comic Sane, and 18px Arial

Writing the drawscore Function
Now we can go ahead and write the d r aWSco re function, which draws a
string showing the current score on the canvas.

var drawscore = function () {
ctx.font = "20px Courier";
ctx.fillStyle = "Black";
ctx.textAlîgn = "left";
ctx.textBaseline: "top";

ctx.fillText("Score: ” + score, blocksize, blocksize);

This function sets the font to 20-pixel Courier (20px Cou rie r), sets its
color to black using I illst yle, left-aligns the text with the t extAlig n
property, and then sets the text Baseline property to "t op".
Next, we call I il lText with the string "Sco re : " + sco re.
The sco re variable holds the player's current score as a number. We set
the starting score to o at the beginning of the game (in Defining the
score Variable), so at first this will display ”Scor e: 0".
When we call f i llText, we set the x- and y-coordinates to bloc ksize.
Since we set bloc kSi ze to io, this sets the score's baseline point to (10,
10), which is just inside the top-left corner of the border. And since we set
text Baseline to "top", the text will appear just below that baseline point,
as shown in Figure 16-10.

Figure 16-10. The position o{the score text

Ending the Game
We'll call the game0ve r function to end the game when the snake hits the
wall or runs into itself. The game0ve r function uses clear In te rval to stop
the game and writes the text "Game Over" on the canvas. Here's what the
gaoe0ver function looks like:

var game0ver = function () (
clearInterval(intervalId
); ctx.font = "60px
Courier"; ctx.fillStyle
= "Black";
ctx.textAlign =
"center";
ctx.textBaseline:
"middle";
ctx.fillText("Game Over", width / 2, height / 2);

First we stop the game by calling clear I n te rval and passing in the
variable in t er val I d. This cancels the set I n te rval animation function
that we created in Using setInterval to Animate the Game).

Next, we set our font to 60-pixel Courier in black, center the text, and set
the text Baseline property to "middle". We then call f illText and tell it to
draw the string "Game ove r" with aid t h / 2 for the x- position and

heig h t / 2 fOr the y-position. The resulting "Game Over" text will be
centered in the canvas, as shown in Figure 16-11.

E

Figure 16-11. The "Game Over" screen, after the snake has hit the left wall

What You Learned
In this chapter, we looked at the general outline of our Snake game and
some of the functions we'll need to make the game. You learned how to
draw text onto a canvas and how to customize its size, font, and position.
In the next chapter, we'll finish off our game by writing the code for the
snake and the apple and to handle keyboard events.

Programming Challenges
Here are a few exercises you can try before you go on to finish programming
the game.
#1: PUTTING IT TOGETHER
Although I haven't shown all the code for the game yet, you can run the
code for drawing the border and the score. Take your HTML file (from
Creating the HTML) and add the code for setting up the canvas, creating
the score, drawing the border, and drawing the score. Now you just need
to call
d r aWBo rder and d r aWSco re to see the border and score. It should
look just like Figure 16-10. You can try out the gaoe0ve r function, too,
but before you call that function, you'll need to delete the
clear In ter val (in ter val I d) ; line. You haven't created the in ter val I
d variable yet, so for now, if you call the function without removing that
line, it will produce an error.
#2: ANIMATING THE SCORE
Write your own call to set I nt er val with a function that increases the
score by 1 and then draws the updated score using the d rawsco re
function every 100 milliseconds. Remember that you'll need to clear the
canvas each time, using the clear Rec t method on the canvas context.
#3: ADDING TEXT TO HANGMAN
Programming challenge #4 in Chapter 13 was to draw the man in our
Hangman game using canvas. Try extending your Hangman game by
using the f illText method to draw the current word underneath the
hangman, as shown.

Hint: To underline each letter, I've used 30-pixel-long stroked lines, with
10 pixels between each one. For even more of a challenge, draw the
incorrect guesses crossed out, as shown to the right.

Chapter 17. Making a Snake
Game: Part 2
In this chapter, we'll finish building our Snake game. In Chapter 16, we
set up the playing area and covered how the game would work in general.
Now we'll create the objects that represent the snake and apple in the
game, and we'll program a keyboard event handler so that the player can
control the snake with the arrow keys. Finally, we'll look at the complete
code listing for the program.
As we create the snake and apple objects for this game, we'll use the object-
oriented programming techniques we learned in Chapter 12 to create
constructors and methods for each object. Both our snake and apple objects
will rely on a more basic block object, which we'll use to represent one block
on the game board grid. Let's start by building a constructor for that simple
block object.

Building the Block Constructor

In this section, we'll
define a Bloc k constructor that will create objects that represent individual
blocks on our invisible game grid. Each block will have the properties col
(short for column) and roW, which will store the location of that particular
block on the grid. Figure 17-1 shows this grid with some of the columns
and rows numbered. Although this grid won't actually appear on the
screen, our game is designed so that the apple and the snake segments
will always line up with it.

0 10 20 39

1 0

O 20

30

Figure 17-1. The column and row numbers used by the BI ock constructor

In Figure 17-1, the block containing the green apple is at column 10, row
10. The head of the snake (to the left of the apple) is at column 8, row 10.
Here's the code for the Bloc k constructor:

var Block = function
(col, row) (this .co1 =
col;

this.row = row;

Column and row values are passed into the Bloc k constructor as
arguments and saved in the col and row properties of the new object.
Now we can use this constructor to create an object representing a
particular block on the game grid. For example, here's how we'd create an
object that represents the block in column 5, row 5:

var sampleBlock - new Block(5, 5);

Adding the drawsquare Method
So far this block object lets us represent a location on the grid, but to
actually make something appear at that location, we'll need to draw it on
the canvas. Next, we'll add two methods, d r aWSquar e and
d r aWCi rcle, that will let us draw a square or a circle, respectively, in a
particular block on the grid. First, here's the d rawsquar e method:

Block.prototype.drawsquare = function (color) (

var x = this.col ’
blocksize; Q var y:
this.row ’ blocksize;

ctx.fillStyle = color;
ctx.fillRect(x, y, blocksize, blocksize);

In Chapter 12 we learned that if you attach methods to the prototype
property of a constructor, those methods will be available to any objects
created with that constructor. So by adding the d r aWSquar e method to
Bloc k . p rotoype, we make it available to any block objects.

This method draws a square at the location given by the block's col and
row properties. It takes a single argument, colo r, which determines the
color of the square. To draw a square with canvas, we need to provide the
x- and y-positions of the top-left corner of the square. At O and O we
calculate these x- and y-values for the current block by multiplying the col
and row properties by bloc ksize. We then set the f illst yleproperty of the
drawing context to the method's colo r argument.
Finally, we call ctx . I illRec t, passing our computed x- and y-values and
bloc ksize for both the
width and height of the square.
Here's how we would create a block in column 3, row 4, and draw it:

var sampleBlock : new Block(3, 4);

sampleBlock.drawSquare("LightBlue");

Figure 17-2 shows this square drawn on the canvas and how the
measurements for the square are calculated.

Column
0 1 2 3 4 5 6

1

this . rowblocksi ze
4 > 1 0 - 40 pixels

(30, 40]

4

10 pixels{blockslzel

10 pixels

this.col blocksize
3 10 = 30 pixels

Figure 17-2. Calculating the values for drawing a square

Adding the drawCircle Method
Now for the d r auCi rcle method. It is very similar to the d r aWSquar e
method, but it draws a filled circle instead of a square.

Block.prototype.drawCircle = function (color) (
var centerX = this.col ’ blocksize +
blocksize / 2; var centerY = this.row ’
blocksize + blocksize / 2; ctx.fillStyle =
color;
circle(centerX, centerY, blocksize / 2, true);

First we calculate the location of the circle's center by creating two new
variables, cen terx and
cen te rY. As before, we multiply the col and r oW properties by bloc
ksize, but this time we also have to add bloc ksize / 2, because we need
the pixel coordinates for the circle's center, which is in the middle of a
block (as shown in Figure 17-3).
We set the context f i lls t yle to the color argument as in d r awsq uare
and then call our trusty ci r cle function, passing cen te rx and cen terY for
the x- and y-coordinates, bloc ksize Z 2 for the radius, and t r ue to tell
the function to fill the circle. This is the same ci rcle function we defined
in Chapter 14, so we'll have to include the definition for that function once
again in this program (as you can see in the final code listing).

Here's how we could draw a circle in column 4, row 3:
var sampleCircle - new Block(4, 3);
sampleCircle.drawCircle("LightGreen");

Figure 17-3 shows the circle, with the calculations for the center point and
radius.

Figure 17-3. Calculating the values for drawing a circle

Adding the equal Method
In our game, we'll need to know whether two blocks are in the same
location. For example, if the apple and the snake's head are in the same
location, that means the snake has eaten the apple. On the other hand, if
the snake's head and tail are in the same location, then the snake has
collided with itself.
To make it easier to compare block locations, we'll add a method,
equal, to the Bloc k constructor prototype. When we call equal on one
block object and pass another object as an argument, it will return t r
ue if they are in the same location (and false if not). Here's the code:

Block.prototype.equal = function (otherBlock) (

return this.col === otherBlock.col && this.row === otherBlock.row;

This method is pretty straightforward: if the two blocks (t his and ot he r Bloc
k) have the same col and row properties (that is, if t his . col is equal to ot
he r Bloc k . col and t his . r oW is equal to
o t he r Bloc k . roW), then they are in the same place, and the method
returns t r ue.
For example, let's create two new blocks called apple and head and see if
they're in the same location:

var apple = new Block(2, 5);
var head = new B1ock(3,
5) ; head . equal(apple) ;

false

Although apple and head have the same row property (5), their col
properties are different. If we set the head to a new block object one
column to the left, now the method will tell us that the two objects are in
the same location:

head = new Block(2, 5)
; head . equal(apple) ;

t r ue

Note that it doesn't make any difference whether we write
head . eq ual (apple) or ap ple . eq ual (head) ; in both
cases we're making the same comparison.
We'll use the equal method later to check whether the snake has eaten the
apple or collided with itself.

Creating the Snake
Now we'll create the snake. We'll store the snake's position as an array
called segment s, which will contain a series of block objects. To move
the snake, we'll add a new block to the beginning of the segment s array
and remove the block at the end of the array. The first element of the
segments array will represent the head of the snake.

Writing the Snake Constructor
First we need a constructor to create our snake object:

var Snake = function () {
0 th1s .

segments
= [new
B1ock(7,
5) , new
Block(6,
5), new
B1ock(5,
5)

fif this . direction = ” right ” ;
@ th1s . nextDirection = "right ” ;

Defining the Snake Segments
The segmen t s property at O is an array of block objects that each
represent a segment of the snake's body. When we start the game, this
array will contain three blocks at (7, 5), (6, 5), and (5, 5). Figure 17- 4
shows these initial three segments of the snake.

0 2 3 4 5 6 7 8

2

new Block(6, S)

new 8lock(5, 5) new Block(7, 5)
4

Tail Head

Figure 17-4. The initial blocks that make up the snake

Setting the Direction of Movement
The di rec tion property at O stores the current direction of the snake. Our
constructor also adds the next Direction property at O, which stores the
direction in which the snake will move for the next animation step. This
property will be updated by our keydown event handler when the player
presses an arrow key (see Adding the keydown Event Handler). For now,
the constructor sets both of these properties to "rig ht ", so at the
beginning of the game our snake will move to the right.

Drawing the Snake
To draw the snake, we simply have to loop through each of the blocks in
its segment s array, calling the d r aWSquar e method we created earlier on
each block. This will draw a square for each segment of the snake.

Snake.prototype.draw: function () {

for (var i = 0; i < this.segments.length; i++) {

this.segments[i].drawSquare(”Blue”);

The d raw method uses a to r loop to operate on each block object in the
segmen t s array. Each time around the loop, this code takes the current
segment (t his . segmen t s [i]) and calls
d r aWSquar e("Blue") on it, which draws a blue square in the
corresponding block.
If you want to test out the d raw method, you can run the following code,
which creates a new object using the Snake constructor and calls its d raW
method:

var snake = new
Snake() ; snake . d raw()
;

Moving the Snake
We'll create a move method to move the snake one block in its current
direction. To move the snake, we add a new head segment (by adding a
new block object to the beginning of the segmen ts array) and then
remove the tail segment from the end of the segments array.
The move method will also call a method, chec kCollision, to see whether
the new head has collided with the rest of the snake or with the wall, and
whether the new head has eaten the apple. If the new head has collided
with the body or the wall, we end the game by calling the gameove r
function we created in Chapter 16. If the snake has eaten the apple, we
increase the score and move the apple to a new location.

Adding the move Method
The move method looks like this:

Snake . pro t oI ype . move = function () (

0 var head = th1s . segment s [0] ;

@ var newHead ;

Q this.direction = this.nextDirection;

% if (this.direction === "right”) {

newHead - new Block(head.col + 1, head.row);
} else if (this.direction === "down”) { newHead

= new Block(head.col, head.row + 1);
} else if (this.direction =:: "left”) { newHead :

new Block(head.col - 1, head.row);

} else if (this.direction =:= "up”) {

newHead - new Block(head.col, head.row - 1);

Q if

(this.checkCollision(newHead)) (
gameover();

return;

â this.segments. unshift(newHead);

Q if (newHead.equal(apple.position))

{ score++;

apple.move();
} else {

this.segments.pop();

Let's walk through this method piece by piece.

Creating a New Head
At O we save the first element of the t his . segmen ts array in the variable
head. We'll refer to this first segment of the snake many times in this
method, so using this variable will save us some typing and make the code
a bit easier to read. Now, instead of repeating t his . segment s[0] over and
over again, we can just type head.

At O we create the variable newHead, which we'll use to store the block
representing the new head of the snake (which we're about to add).
At O we set t his . di rect io n equal to t his . next Di rect ion, which
updates the direction of the snake's movement to match the most recently
pressed arrow key. (We'll see how this works in more detail when we look
at the keydown event handler.)

Beginning at O, we use a chain of if ... else statements to determine
the snake's direction. In each case, we create a new head for the snake and
save it in the variable neWHead. Depending on the direction of movement,
we add or subtract one from the row or column of the existing head to
place this new head directly next to the old one (either right, left, up, or
down depending on the snake's direction of movement). For example,
Figure 17-5 shows how the new head is added to the snake when
t his . next Di rect ion is set to "down ".

0 1 ¡j 3 4 5 6 T B

0

1

2

4

5

7

(7, 6)
8 newHead = new B1ock(head . cot, head . row + 1);

Figure 17-5. Creating newHeadwhen th1s . nex tD1rec t1 on is “down”

Checking for Collisions and Adding the Head
At O we call the checkCo llision method to find out whether the snake has
collided with a wall or with itself. We'll see the code for this method in a
moment, but as you might guess, this method will return t r ue if the snake
has collided with something. If that happens, the body of the if

statement calls the game0ver function to end the game and print “Game
Over” on the canvas.
The ret u r n keyword that follows the call to gameove r exits the move
method early, skipping any code that comes after it. We reach the ret u r n
keyword only if c hec kCollision returns t r ue, so if the snake hasn't
collided with anything, we execute the rest of the method.
As long as the snake hasn't collided with something, we add the new head to
the front of the snake at O• by using unshif t to add newHead to the
beginning of the segment s array. For more about how the unshif t method
works on arrays, see Adding Elements to an Array.

Eating the Apple
At O, we use the equal method to compare newHead and apple . posit io n.
If the two blocks are in the same location, the equal method will return t r
ue, which means that the snake has eaten the apple.
If the snake has eaten the apple, we increase the score and then call move
on the apple to move it to a new location. If the snake has not eaten the
apple, we call pop on t his . segment s. This removes the snake's tail
while keeping the snake the same size (since move already added a
segment to the snake's head). When the snake eats an apple, it grows by
one segment because we add a segment to its head without removing the
tail.

We haven't defined apple yet, so this method won't fully work in its current
form. If you want to test it out, you can delete the whole if ... else
statement at O and replace it with this line:

this.segments.pop();

Then all you need to do is define the c hec kCollis ion method, which we'll
do next.

Adding the checkCollision Method
Each time we set a new location for the snake's head, we have to check
for collisions. Collision detection, a very common step in game
mechanics, is often one of the more complex aspects of game
programming. Fortunately, it's relatively straightforward in our Snake
game.
We care about two types of collisions in our Snake game: collisions with
the wall and collisions with the snake itself. A wall collision happens if the
snake hits a wall. The snake can collide with itself if you turn the head so
that it runs into the body. At the start of the game, the snake is too short to
collide with itself, but after eating a few apples, it can.
Here is the c hec k Co11is io n method:

Snake.prototype.checkCollision: function (head) (

$$ var leftcollision = (head .
cot === 0) ; var t
opCollision = (head . row
=== 0) ;

var rightCollision = (head.col ===
widthInBlocks - 1); var bottomCollision =
(head.row === heightInBlocks - 1);

Q var wallCollision = leftCollision ||

topCollision || rightCollision ||
bottomCollision;

Q var selfCollision = false;

% for (var i: 0; i < this.segments.length; i++) { if

(head.equal(this.segments[i])) {

 selfCollision - true;

O return wallCollision || selfCollision;

Checking for Wall Collisions
At O we create the variable let t Collis ion and set it to the value of
head . col 0. This variable will be t r ue if the snake collides with the left
wall; that is, when it is in column 0. Similarly, the variable t opCollis ion

in the next line checks the row of the snake's head to see if it has run into
the top wall.
After that, we check for a collision with the right wall by checking
whether the column value of the head is equal to aid t h I n Bloc
ks 1. Since aid t h I n Bloc ks is set to 4o, this checks whether the
head is in column 39, which corresponds to the right wall, as you can see
back in Figure 17-1. Then we do the same thing for bot t omCollis ion,
checking whether the head's row property is equal to
he ig h t I n Bloc k s - 1.

AtO,wedeterminewhetherthesnakehacollidedwithawallbycheckingtoseei1left
Collisionor topCollision or rightCollisionorbottomCollisionistrue,usingthe ||
(or)operator.Mesave theBooleanresulinthevaiablewallcollision.

Checking for Self-Collisions
To determine whether the snake has collided with itself, we create a
variable at O called
self Collision and initially set it to false. Then at O we use a to r loop to
loop through all the segments of the snake to determine whether the new
head is in the same place as any segment, using head . eq ual (t his .
segmen t s[i]) . The head and all of the other segments are blocks, so we
can use the eq ual method that we defined for block objects to see whether
they are in the same place. If we find that any of the snake's segments are
in the same place as the new head, we know that the snake has collided
with itself, and we set self Collision to t r ue (at O).
Finally, at O•, we return WallCo11i sion | | self Co11i sio n, which will
be t r ue if the snake has
collided with either the wall or itself.

Setting the Snake's Direction with the
Keyboard
Next we'll write the code that lets the player set the snake's direction using
the keyboard. We'll add a keydown event handler to detect when an arrow
key has been pressed, and we'll set the snake's direction to match that key.

Adding the keydown Event Handler
This code handles keyboard events:

0 var
directions
(37 : ”left",

38 : ”up",

39 : "righ t ",

40: "down "

b %(”body”).keydown(function (event) {
var newDirection = directions[event.keyCode];

Q if (newDirection !== undefined) {

snake.setDirection(newDirection);

At O we create an object to convert the arrow keycodes into strings
indicating the direction they represent (this object is quite similar to the
keyAc tions object we used in Reacting to the Keyboard). At O we attach
an event handler to the keydown event on the body element. This handler
will be called when the user presses a key (as long as they've clicked
inside the web page first).
This handler first converts the event's keycode into a direction string, and
then it saves the string in the variable neWDi rect io n. If the keycode is not
37, 38, 39, or 40 (the keycodes for the arrow keys we care about), d i rect ions
[even t . keyCode] will be unde I in ed.

At O we check to see if newDi rect io n is not equal to undef in ed. If it's
not undef in ed, we call the set Direct ion method on the snake, passing
the neWDi rect ion string. (Because there is no else case in this if
statement, if neWDi rect io n is undefined, then we just ignore the
keypress.)
This code won't work yet because we haven't defined the set Direct ion
method on the snake. Let's do
that now.

Adding the setDirection Method
The set Direction method takes the new direction from the keyboard
handler we just looked at and uses it to update the snake's direction. This
method also prevents the player from making turns that would have the
snake immediately run into itself. For example, if the snake is moving
right, and then it suddenly turns left without moving up or down to get out
of its own way, it will collide with itself. We'll call these illegal turns
because we do not want to allow the player to make them. For example,

Figure 17-6 shows the valid
directions and the one illegal direction when the snake is moving right.

Figure 17-6. Valid new directions based on the current direction

The set Direct ion method checks
whether the player is trying to make an illegal turn. If they are, the method
uses ret u r n to end early; otherwise, it updates the next Direct ion
property on the snake object.
Here's the code for the set Direct ion method.

Snake.prototype.setDirection = function (newDirection) {
0 if (this . direction === "up" && newDir ecI ion ===

"down") (return;

} else if (this.direction === "right" && newDirection === "left") (

return ;
} else if (this.direction ::= "down" && newDirection ::= "up") {

return ;
} else if (this.direction --- "left" && newDirection --- "right") (

return ;

Q this.nextDirection newDirection;

The if . . else statement at O has four parts to deal with the four illegal
turns we want to prevent. The first part says that if the snake is moving up
(t his . direction is up) and the player presses the down arrow
(neWDi rec tion is "down"), we should exit the method early with ret urn.
The other parts of the statement deal with the other illegal turns in the
same way.
The set Direct ion method will reach the final line only if neWDi rect ion is
a valid new direction; otherwise, one of the ret u r n statements will stop the
method.
If neWD i rect io n is allowed, we set it as the snake's next Direct io n
property, at O.

Creating the Apple
In this game, we'll represent the apple as an object with three components: a
position property, which holds the apple's position as a block object; a d raw
method, which we'll use to draw the apple; and a cove method, which we'll
use to give the apple a new position once it's been eaten by the snake.

Writing the Apple Constructor
The constructor simply sets the apple's posit io n property to a new block
object.

var Apple = function () { this.position -
new Block(10, 10);

This creates a new block object in column 10, row 10, and assigns it to the
apple's position property. We'll use this constructor to create an apple
object at the beginning of the game.

Drawing the Apple
We'll use this d raw method to draw the apple:

Apple . prototype . draw = function (
) (th1s . pos1t1on . drawC1rc be(
"LimeGr een") ;

The apple's d raw method is very simple, as all the hard work is done by the
d r aWCi rcle method (created in Adding the drawCircle Method). To draw
the apple, we simply call the d r aWCi rcle method on the apple's posit ion
property, passing the color " LimeG reen" to tell it to draw a green circle in
the given block.
To test out drawing the apple, run the following code:

var apple = new Apple();

apple.draw();

Moving the Apple
The move method moves the apple to a random new position within the
game area (that is, any block on the canvas other than the border). We'll call
this method whenever the snake eats the apple so that the apple reappears in
a new location.

Apple.prototype.move = function () {
var randomCol: Math.floor(Math.random() ’ (widthInBlocks 2)) +

1; var randomRow - Math.floor(Math.random() * (heightInBlocks
2)) + 1;

€# this.position = new Block(randomCol, randomRow);

At O we create the variables r andomCol and r andomRoW. These
variables will be set to a random column and row value within the
playable area. As you saw in Figure 17-1, the columns and rows for the
playable area range from 1 to 38, so we need to pick two random
numbers in that range.
To generate these random numbers, we can call Nat h . floor (Nat h . r
andom() * 38), which gives us a random number from 0 to 37, and then
add 1 to the result to get a number between 1 and 38 (for more about how
Nat h . floor and Nat h . r andom work, see Decision Maker).
This is exactly what we do at O to create our random column value, but
instead of writing 38, we write (Wid t h I n Bloc ks - 2). This means that if
we later change the size of the game, we won't also have to change this
code. We do the same thing to get a random row value, using Mat h .
floor (Mat h . random ()
* (helgh t I nB1oc ks - 2)) + 1.

Finally, at O we create a new block object with our random column and
row values and save this block in t his . position. This means that the
position of the apple will be updated to a new random location
somewhere within the playing area.
You can test out the move method like this:

var apple = new Apple();
apple.move();

apple.draw();

Putting It All Together
Our full code for the game contains almost 200 lines of JavaScript! After
we assemble the whole thing, it looks like this.

// Set up canvas

 var canvas = document.getElementById("canvas”);

var ctx - canvas.getContext(”2d”);

// Get the width and height from the canvas element var
width : canvas.width;

var height = canvas.height;

// Work out the width and height in blocks var
blocksize = 10;
var widthInBlocks = width / blocksize; var
heightInBlocks - height / blocksize;

// Set score to
0 var score =
0;

// Draw the border

 var drawBorder = function () {
ctx.fillStyle = ”Gray”; ctx.fillRect(0, 0,
width, blocksize);

ctx.fillRect(0, height - blocksize, width, blocksize);
ctx.fillRect(0, 0, blocksize, height); ctx.fillRect(width -
blocksize, 0, blocksize, height);

// Draw the score in the top-left corner var
drawscore = function () {

ctx.font = ”20px Courier”;
ctx.fillStyle = ”Black”;
ctx.textAlign : ”left”;
ctx.textBaseline = ”top";

ctx.fillText("Score: ” + score, blocksize, blocksize);

// Clear the interval and display Game Over text var
gameover - function () (

clearInterval(intervalId); ctx.font =
"60px Courier”; ctx.fillStyle -
”Black”; ctx.textAlign = ”center”;
ctx.textBaseline = ”middle”;

ctx.fillText("Game Over", width / 2, height / 2);

// Draw a circle (using the function from Chapter 14) var circle
= function (x, y, radius, fillCircle) (

ctx.beginPath();
ctx.arc(x, y, radius, 0, Math.PI * 2, false); if
(fillCircle) (

ctx.fill();
} else {

ctx.stroke();

// The Block constructor

 var Block - function (col, row) { this.col =
col;

this.row = row; };

// Draw a square at the block's location
Block.prototype.drawsquare: function (color) { var

x this.col blocksize; var y = this.row * blocksize;

ctx.fillStyle = color;

ctx.fillRect(x, y, blocksize, blocksize);

// Draw a circle at the block's location
Block.prototype.drawCircle = function (color) {

var centerX = this.col ’ blocksize + blocksize / 2; var
centerY - this.row ’ blocksize + blocksize / 2;
ctx.fillStyle = color;

circle(centerX, centerY, blocksize / 2, true); };

// Check if this block is in the same location as another block
Block.prototype.equal = function (otherBlock) (

return this.col === otherBlock.col && this.row === otherBlock.row;

// The Snake const
ructor var Snake =
function () (

this . segment s =
[new B1ock (
7, 5) ,

new B1ock (6, 5) ,

new B1ock (5, 5)

this.direction = "right";
this.nextDirection - "right";

// Draw a square for each segment of the snake's body

Snake . p rot otype . draw = function () (

for (var i = 0; i < this . segments . length ; i++) (

this.segments[i].drawSquare("Blue”);

// Create a new head and add it to the beginning of
// the snake to move the snake in its current direction
Snake.prototype.move = function () {

var head = this.segments[0];

var newHead ;

this . direction = this .next Direction ;

if (this.direction =:: "right") (

newHead : new Block(head.col + 1, head.row);
} else if (this.direction === "down") { newHead -

new Block(head.col, head.row + 1);
} else if (this.direction === "left") { newHead =

new Block(head.col - 1, head.row);

} else if (this.direction =:= "up") {

newHead = new Block(head.col, head.row 1);

if (this.checkCollision(newHead)) {

gameover();

return;

this.segments. unshift(newHead);

if (newHead.equal(apple.position)) (

score++;

apple.move();
} else {

this.segments.pop();

// Check if the snake's new head has collided with the wall or itself Snake.prototype.checkCollision:
function (head) (

var leftCollision = (head.col === 0); var
topCollision = (head.row === 0);
var rightCollision = (head.col === widthInBlocks - 1); var
bottomCollision: (head.row ::: heightInBlocks - 1);

var wallCollision = leftCollision || topCollision ||

rightCollision || bottomCollision;

var selfCollision = false;

for (var i - 0; i < this.segments.length; i++) (if

(head.equal(this.segments[i])) {

selfCollision = true;

return wallCollision || selfCollision;

// Set the snake's next direction based on the keyboard
Snake.prototype.setDirection: function (newDirection) {

if (this.direction === "up" && newDirection :=: "down") (
return;

} else if (this.direction "right" &&
newDirection "left") (return;

} else if (this.direction "down" && newDirection "up") {

return;

} else if (this.direction ::: "left" && newDirection ::: "right") (

return;

this.nextDirection newDirection;

// The Apple constructor

 var Apple = function () (
this . position = new B1ock(10, 10) ;

// Draw a circle at the apple's location
Apple.prototype.draw: function () {

this.position.drawCircle("LimeGreen");

// Move the apple to a new random location
Apple.prototype.move - function () {

var randomCol: Math.floor(Math.random() ’ (widthInBlocks - 2)) + 1; var
randomRow = Math.floor(Math.random() * (heightInBlocks - 2)) + 1;
this.position - new Block(randomCol, randomRow);

// Create the snake and apple objects

 var snake = new Snake();

var apple = new Apple();

// Pass an animation function to setInterval var
intervalId = setInterval(function () {

ctx.clearRect(0, 0, width, height);
drawscor e() ;
snake .move()
;

snake . draw() ;

apple.draw();

drawBorder () ;

} , 100) ;

// Convert keycodes to
directions var directions = (

37 : "left",

38 : "up",

39 : "right ",

40: "down"

// The keydown handler for handling direction key presses

$(”body”).keydown(function (event) (
var newDirection = directions[event.keyCode]; if
(newDirection !== undefined) {

snake.setDirection(newDirection);

This code is made up of a number of sections. The first section, at O, is
where all the variables for the game are set up, including the canvas,
context, width, and height (we looked at these in Chapter 16). Next, at O,
come all the individual functions: d r awBo rde r, d r aWSco re, game0ve r,
and ci rcle.
At O comes the code for the Bloc k constructor, followed by its d r
awsquar e, d r awCi rc le, and equal methods. Then, at O, we have the
Snake constructor and all of its methods. After that, at O, is the
Ap ple constructor and its d raw and move methods.

Finally, at O•, you can see the code that starts the game and keeps it
running. First we create the snake and ap ple objects. Then we use set I n
te rval to get the game animation going. Notice that when we call set I n
te rval, we save the interval ID in the variable in te r val I d so we can
cancel it later in the game0ve r function.
The function passed to set I n ter val is called for every step of the
game. It is responsible for drawing everything on the canvas and for
updating the state of the game. It clears the canvas and then draws the
score, the snake, the apple, and the border. It also calls the move method
on the snake, which, as you saw earlier, moves the snake one step in its
current direction. After the call to set I nt er val, at O, we end with the
code for listening to keyboard events and setting the snake's direction.

As always, you'll need to type all this code inside the sc ript element in your
HTML document. To play the game, just load snake.html in your browser
and use the arrows to control the snake's direction. If the arrow keys don't
work, you might need to click inside the browser window to make sure it
can pick up the key events.
If the game doesn't work, there might be an error in your JavaScript. Any
error will be output in the console, so look there for any helpful messages.
If you can't determine why things aren't working, check each line
carefully against the preceding listing.
Now that you have the game running, what do you think? How high a score
can you get?

What You Learned
In this chapter, we made a full game using the canvas element. This game
combines many of the data types, concepts, and techniques you learned
throughout this book: numbers, strings, Booleans, arrays, objects, control
structures, functions, object-oriented programming, event handlers, set I
nt er val, and drawing with canvas.
Now that you've programmed this Snake game, there are lots of other
simple two-dimensional games that you could write using JavaScript. You
could make your own version of classic games like Breakout, Asteroids,
Space Invaders, or Tetris. Or you could make up your own game!
Of course, you can use JavaScript for programs besides games. Now that
you've used JavaScript to do some complicated math, you could use it to
help with your math homework. Or maybe you want to create a website to
show off your programming skills to the world. The possibilities are endless!

Programming Challenges
Here are a few ways you could improve and add features to the game.
#1: MAKING THE GAME BIGGER
Change the size of the game to 500 pixels square. Where do you need to
modify the code to make it work at 500 pixels?
#2: COLORING THE SNAKE
Our snake is a bit boring: every segment of the body is blue. It might look
a bit more like a real snake if you alternated the colors to create stripes.
For example, make the head green and then alternate between blue and
yellow for the rest of the body, or choose your own colors.
#3: MAKING THE GAME SPEED UP AS YOU PLAY
Modify the game so that every time the snake eats an apple, the game
speeds up. To do this, you'll have to change the code to use set Timeou t
instead of set I n te rval, because set I n te rval keeps calling a function at
a regular interval that cannot be changed. Instead, you can repeatedly call
a function with setTimeo u t and change the timeout delay each time you
call it:

var animationTime = 100;

var gameLoop - function () (
// The code that draws and updates the game should go here
setTimeout(gameLoop, animationTime);

gameLoop();

Instead of using set I n te rval to call a function repeatedly, the gave Loop
function calls
set Tioeo u t (game Loop, an icat i onTime), which means “call gave
Loop again after animat i onTime milliseconds.” Like set I n te r val, this is
a way to call a function over and over again, with a short pause between
each function call. The difference is that you can easily modify the
animation time from anywhere in your code by changing animat ionTime,
and the program will use that value for subsequent calls to set Timeou t.
(One other thing to bear in mind here is that you need to find a new way
to stop the game from looping when the game is over. How would you do
that?)

#4: FIXING THE APPLE.MOVE METHOD
Every time you move the apple, it moves to a new random location, but as
written there's nothing to stop the apple from moving to a block that part
of the snake is already occupying. To prevent this, modify the move
method to take into account the current locations of the snake's segments.
(Hint: Use a While loop to keep calling move until it picks a location
that's not occupied by the snake.)

Afterword: Where To Go From Here
Now that you've learned the basics of JavaScript, you're ready to venture
out into a whole, wide world of programming. You could learn another
programming language, or you could choose to build on your knowledge
of JavaScript, taking your skills to the next level. Where you go next is
entirely up to you, but here are some ideas.

More JavaScript
We've looked at a lot of JavaScript in this book, but there's much more
you can learn about the language. Here are some books and websites that
will help you learn more of the details of JavaScript:
• Javascript: The Good Parts by Douglas Crockford (O'Reilly Media,

2008)
• Eloquent Javascript, 2nd Edition, by Marijn Haverbeke (No Starch

Press, 2014)
• Javascript: The Definitive Guide, 4th Edition, by David Flanagan

(O'Reilly Media, 2001)
• The Mozilla Developer Network's JavaScript resources:

https://developer.mozilla.org/en-
VS/docs/WebMavaScript/

• Codecademy JavaScript courses:
http://www.codecademy.coin/eri/tracks/javascript/

http://www.codecademy.coin/eri/tracks/javascript/

Web Programming
To create websites, you need to use some HTML and CSS, along with
JavaScript.

HTML
HTML is the markup language used for creating web pages. We learned
some basic HTML in Chapter 5, but there's much more to learn. Here are
some places you can learn more about HTML:
• The Mozilla Developer Network's Introduction to HTML:

https://developer.mozilla.org/en-
US/docs/Web/Guide/HTML/Introduction/

• Codecademy HTML & CSS course:
http://www.codecademy.coWtracks/web/

• Mozilla Webmaker: https://webmaker.orgy

http://www.codecademy.cowtracks/web/

CSS (short for Cascading Style Sheets) is the language used to control the
appearance of web pages. Learn more about CSS here:
• The Mozilla Developer Network's Getting Started with CSS:

https://developer.mozilla.org/en-
US/docs/Web/Guide/CSS/Getting_started/

• Codecademy HTML & CSS course:
http://www.codecademy.coWtracks/web/

http://www.codecademy.cowtracks/web/

Server-Side Code with Node.js
Web pages live on web servers. A server stores all the HTML, CSS, and
JavaScript for a web page, and it allows people to access the page from
the Internet. You can also write programs for the server (called server-
side code) to make the server generate new HTML files each time a web
page is loaded. For example, when you visit http://twitter.corns, a program
runs on a server that finds the latest tweets for your feed, generates an
HTML file containing those tweets, and sends that file to your browser.
Node.js lets you write server-side code in JavaScript. Find out more about
Node.js with these links:
• Node.js documentation: http://nodejs.orgy
• The Node Beginner Book: http://www.nodebeginner.orgy

http://twitter.corns/
http://nodejs.orgy/
http://www.nodebeginner.orgy/

Graphical Programming
If you want to make interactive graphics in JavaScript, you have two
main options: the canvas element and SVG.

Canvas
We learned the basics of the canvas element in this book, but there's much
more you can do with it. Here are some tutorials and games you can use to
learn more:
• The Mozilla Developer Network's Canvas Tutorial:

https://developer.mozilla.org/en-
US/docs/Web/API7Canvas AT'I/Tutorial/

• Code Monster from Crunchzilla: http://www.crunchzilla.coWcode-
monster/

http://www.crunchzilla.cowcode-monster/

SVG Using Raphaël
SVG is an image format that lets you draw shapes and animate them
without redrawing from scratch for each animation step. SVG programming
can be difficult to get the hang of, but it's much easier if you use the
JavaScript library called Raphaël. Here are some resources for learning
Raphaël:
• Raphaiil website: http://raphaeljs.corn/
• An Introduction to the Raphaiil JS Library:

http://code.tutsplus.coWtutorials/an-introduction-to-
the-raphael-js-library--net-71B6/

http://raphaeljs.corn/
http://code.tutsplus.cowtutorials/an-introduction-to-

3D Programming
Remember how in Chapter 13 we told canvas we wanted to make a 2D
drawing context by calling canvas . get Con text (”2d ") ? It's also
possible to do 3D graphics using canvas. This is another one of those
areas where it's easier to use a library, so I'd recommend using the library
three.js. Here are some resources for learning three.js:
• three.js Manual: http://threejs.org/docs/index.html#Manual
• The Beginner's Guide to three.js: http://blop.teamtreehouse.coin/the-

beginners-puide-to-three-jsp

http://threejs.org/docs/index.html#Manual
http://blop.teamtreehouse.coin/the-beginners-puide-to-three-jsp

Programming Robots
You can even control robots using JavaScript! For example, the Parrot
AR.Drone is a small flying helicopter that you can control using Node.js.
Or you can check out Johnny-Five, a JavaScript library that lets you use
Node.js to control devices such as the Arduino (a popular microcontroller
that's used in lots of homemade electronics and robotics projects). Here
are some resources for learning how to control robots and other devices
with JavaScript:
• node-ar-drone: https://github.coin/[elixge/node-ar-droned
• NodeCopter: http://nodecopter.coins
• NodeBots: http://nodebotS.IO/
• Johnny-Five: https://github.com/rwaldrori/johnny-[ive/

http://nodecopter.coins/
http://nodebots.io/

Audio Programming
JavaScript also allows you to do advanced audio programming in web
browsers using the Web Audio API (short for application programming
inter[ace). You can use the Web Audio API to make sound effects or
even create your own music! Here are some resources for learning more
about the Web Audio API:
• The Mozilla Developer Network's Web Audio API:

https://developermozilla.org/en- VS/docs/Web/API/Web
Audio API/

• HTMLS Rocks: Getting Started with Web Audio API:
http://www.htmlSrocks.coin/eri/tutorials/webaudio/intro/

http://www.htmlsrocks.coin/eri/tutorials/webaudio/intro/

Game Programming
If you want to do more game programming in JavaScript, you might want
to try using a game engine. A game engine is a collection of code that
handles a lot of the lower-level concerns of the game (like keyboard and
mouse input), allowing you to concentrate on the parts that make your
game different.
Here are some resources you can check out to learn more about game
programming and game engines:
• Crafty game engine: http://crajs.cot
• Pixi Renderer: https://github.coin/GoodBoyDigital/pixi.js
• HTMLS Game Engines: http://html5gameengine.com/
• Udacity HTMLS Game Development:

https://www.udacity.coin/course/cs2S5
• SD Game Programming [or Kids by Chris Strom (Pragmatic

Programmers, 2013)

http://cra/
http://html5gameengine.com/
http://www.udacity.coin/course/cs2S5

Sharing Your Code Using JSFiddle
What if you want to share all the great JavaScript you've written with the
world? There are many ways to do that. One of the easier ones is JSFiddle
http://js[iddle.new. Just type your JavaScript in the JavaScript box, add
any HTML you want in the HTML box, and then click Run to run your
program. To share it, click Save, which gives you a URL that you can then
share with anyone.

http://js/

Glossary
The world of computer programming has all kinds of special terms and
definitions that can take some time to get the hang of. In this glossary,
you'll find definitions for many of the programming terms used in this
book. As you're reading this book, if you come across a term that you don't
quite understand, you can look here for a brief explanation.
argument

A value that can be passed into a function.
array

A list of JavaScript values. In an array, each value has an index, which
is the numbered position of that value in the array. The first value is at
index 0, the next value is at index 1, and so on.

anribute
A key-value pair in an HTML element. You can use HTML attributes to
control certain aspects of an element, like where the element links to or
the size of the element.

Boolean
A value that can be either t r ue or I alse.

call
To execute or run a function. To call functions in JavaScript, you enter
the function name followed by a pair of parentheses (with any arguments
inside the parentheses).

camel case
A common way to name variables in which you capitalize the first
letter of each word (except the first word) and then join all the words to
make one long word, like so: myCamelCaseVar iable.

comment
Text in a program that is not executed by the JavaScript interpreter —
comments are just there to describe the program for the person reading the
code.

conditional statement

A statement that executes code after checking a condition. If the
condition is t r ue, the statement will execute one bit of code; if the
condition is I al se, it will execute a different bit of code or stop
altogether. Examples include if statements and if . . else
statements.

constructor
A kind of function that's used to create multiple objects so that they share
built-in properties.

control structure
A way to control when a piece of code is run and how often it's run.
Examples include conditional statements (which control when code is
run by checking a condition) and loops (which repeat a piece of code a
certain number of times).

data
The information we store and manipulate in computer programs.

decrement

To decrease the value of a variable (usually by 1).
dialog

A small pop-up window. You can use JavaScript to open different kinds
of dialogs in a browser, such as an alert (to display a message) or a
prompt (to ask a question and receive input).

document object model {DOM)
The way that web browsers organize and keep track of HTML elements on
a web page. These elements are organized in a treelike structure called the
DOM tree. JavaScript and jQuery provide methods that work with the
DOM to create and modify elements.

element
Part of an HTML page, such as a header, a paragraph, or the body. An
element is marked by start and end tags (which determine what type of
element it is) and includes everything in between. The DOM tree is
made up of these elements.

event
An action that happens in the browser, such as a mouse click or a
keyboard press by the user. We can detect and respond to these events
with event handlers.

event handler
A function that is called whenever a certain event happens in a certain
HTML element. For example, in Chapter 11 game, we create an event
handler function that is called whenever the user clicks on a map
image.

execute
To run a piece of code, such as a program or function.

A piece of code that bundles multiple statements so that they are all
executed together. A function makes it easy to repeat a certain action in
different parts of a program. A function can take arguments as input,
and it will output a return value.

increment
To increase the value of a variable (usually by 1).

index
A number that indicates the position of a value inside an array. The index
can be used to access a specific value in an array.

infinite loop
A loop that never stops repeating (often causing the interpreter to crash).
This error can occur if the conditions of a loop are set up incorrectly.

interpreter
A piece of software that reads and runs code. Web browsers contain a
JavaScript interpreter, which we use to run our JavaScript throughout
this book.

iftiieiy
A JavaScript library that provides many useful methods for modifying
and working with DOM elements on a web page.

key-value S£fir
A pair made up of a string (called a key) that is matched up with a
particular value (which can be any type of value). Key-value pairs go
inside JavaScript objects, and they are used to define an object's
properties and methods.

keyword
A word with a special meaning in JavaScript (for example, tor, ret u r n,
or I u n ct ion). Keywords can't be used as variable names.

library
A collection of JavaScript code that we can load into our web pages to
provide additional functions and methods. In this book we use the
jQuery library, which gives us functions and methods for working with
the DOM more easily.

DOOR
A way to execute a piece of code multiple times.

method
A function that is a property of an object.

A special value that can be used to indicate that a variable is purposely
left empty.

object
A set of key-value pairs. Each key is a string that can be paired with any
JavaScript value. You can then use the key to retrieve whatever value
it's paired with in the object.

object-oriented Programming
A style of programming that takes advantage of objects and methods to
organize the code and represent the most important features of the
program.

programming language
A language that programmers can use to tell computers what to do.
JavaScript is one programming language, but there are many others.

property

A name for a key-value pair in an object.
protovpe

A property of a constructor. Any methods added to a constructor's
prototype will be available to all objects created by that constructor.

return
The act of leaving a function and returning to the code that called the
function. A function returns when it reaches the end of its body or when
it reaches a ret urn keyword (which can be used to leave a function
early). When a function returns, it outputs a return value (if no particular
return value is specified, it simply returns the empty value undefined).

selector string

A string that represents one or more HTML elements. We can pass this
string to jQuery's $ function to select those elements.

A list of characters surrounded by quotes, used to represent text in
computer programs.

syntax
How keywords, punctuation, and other characters are combined to
make working JavaScript programs.

tag
A marker used to create HTML elements. All elements begin with a
start tag, and most end with an end tag. These tags determine what type
of element is created, and the start tag can include attributes for the
element.

text editor
A computer program used to write and edit plaintext, without any special
formatting like font style or color. A good text editor is helpful for writing
programs, which are written in plaintext.

undefined
A value that JavaScript uses when something like a property or variable
doesn't have any particular value assigned to it.

variable
A way of giving a JavaScript value a name. After you assign a value to a
variable, you can use the variable name later to retrieve the value.

whitespace
Invisible characters like spaces, newlines, and tabs.

Updates
Visit http://www.nostarch.coin/javascript[orkids for updates, errata, and
other information.

http://www.nostarch.coin/javascript

More Smart Books for Curious Kids!

PYTHON FOR KIDS
A Playful Introduction to Programming
by JAsON R. BRIGGS

DEC 2012, 344 PP., $34.95
ISBN 978-1-59327-407-8
[ml color

RUBY WIZARDRY
An Introduction to Programming for Kids
by ERIC WEINSTEIN

DEC 2014, 360 PP., $29.95
ISBN 978-1-59327-566-2
two color

LAUREN IPSUM
A Story About Computer Science and Other Improbable Things
by cARLOS BUENO

DEC 2014, 192 PP., $16.95
ISBN 978-1-59327-574-7
[ull color

SURVIVE! INSIDE THE HUMAN BODY, VOL. 1
The Digestive
System by

GoMDORI Co. and

HYUN-DONG

HAN

OCT 2013, 184 PP., $17.95
ISBN 978-1-59327-471-9
[ull color

ELOQUENT JAVASCRIPT, 2ND EDITION
A Modern Introduction to Programming
by MARIJN HAVERBEKE

DEC 2014, 400 PP., $39.95
ISBN 978-1-59327-584-6

THE MANGA GUIDE TO DATABASES
by MANA TAKAHASHI, SHOKO

AZUMA, and TREND-PRO CO., LTD.

JAN 2009, 224 PP., $19.95
ISBN 978—1—59327—190—9
800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

mailto:sales@nostarch.com
http://www.nostarch.com/

Index
A NOTE ON THE DI GITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some
sections have multiple index markers, it is not unusual for an entry to have several links to the
same section. Clicking on any link will take you directly to the place in the text in which the
marker appears.

Symbols
! {not), What Is JavaScript?

“ {double quotation mark), +—
{id in selector strings), Realacina the Headina Text Usina iouew
$ (JQueiy junction), Realacina the Headina Text Usina iouerv

{see also jQuery)
&& {and), Chanaina Strinas to All Caaital or All Lowercase Leners,
Combinina loaical oaerators
{single quotation mark), Strings

IN lRarentheses),Numbers and Operators, Gettina a Sinale Character
(rom a Strina, Callina a
Function

(multiyliCation), Numbers and Oaerators

’—— (multiI}ly and assign), +——
+ (addition), Numbers and Operators, Joinina Strings, Proarammina
Challenges, Creating a Promat

with strings, doinina Strinas, Proarammina Challenaes, Creatina a
Prompt

++ {increment), Aae in Seconds
+= {add and assign), Incrementina and Decrementina, Keeaina Track of
Owed Monev
{comma), Passina Multiale Arauments to a Function

- {subtraction), Numbers and Oaerators

-- {decrement), Aae in Seconds
-- {subtract and assign), Incrementina and
Decrementina tReriod), Kevs IVithout
Ouotes {see dot notation)

7 {division), Numbers and Oaerators
/— {divide and assign), +— (plus-eauals) and —— (minus-eaualsl
: {colon), Creatina Objects
, {semicolon), Data Tvaes and Variables Preventina In(inite Looas
< {less than), Greater Than

—— (assignment), Variables
———— (double equals), Eaual To
—————— (exactly equals), £aual To, Chainina if...else Statements
> (greater than), Combinina loaical operators
[] {square brackets), Findina the Lenath of a Strina, Whv Should You Care
About Arravs?, C earh;gt aAgra, Accessina an Arrav's Elements, Mixina
Data Tvaes in an Arrav, Kevs Without Ouotes

accessing a character from a string with, Eindina the £enatLi o(a Strina
accessing elements from an array witLi, Creatina an Arrav, Mixina
Data Tyaes in an Arran accessing values in objects with, less Without
Ouotes
adding elements to an array with, Accessing
an Arrav's Elements creating an array with,
Wfiv Should You Care About Arravs?

() (curly brackets), Ob ec , Accessina Values in Objects
|| (or), && fand), Combinina loaical oaerators

A
add and assign (+——) operator, incrementina and Decrementina,
Xeeaina Track of Owed Monev addition, Plumbers and
Operators, oi i S n s, Proarammina
Challenaes, Creating a Prompt

with strings, Joinina Strinas, Proarammina Challenaes,
Creatina a Promat alert method, Usina confirm to Ask a
Yes or No Ouestion
and (&&) oRerator, Chanaina Strinas to All Capital or All Lowercase
Letters Combinina loaical operators
animation, Callina Code Multiple Times with settnterval, Movina Across
the Paae Animatina the
Size of a Sauare, Animatina tLie Size of a Sauare, Bouncina a J3all!

with canvas, Movina Across the Paae, Animatina the Size of a Sauare,
Animatina the Size of a S‹juare, J3ouncina a Ball!

bouncing ball, Bouncina a Ball!
changing size, Animatina the Size
of a Sauare moving horizontally,
Movina Across the Paae random
bee, Animating the Size o(a
Sauare

with setlnterval, Callina Code Multiale Times with setlntewal
attend jQuery method, Creatina New Elements with
iouerv, Drawina the Cars arc context method, Filling
Paths
arguments, for functions, Passina Arauments into Functions Glossaw
arrays, Ads Whv Should You Care About Arravs?, Creatina an Arrav,
Accessina an Arrav's

Elements Mixina Data Tvaes in an Arrav, Workina with Arravs Findina
the Lenath o(an Arrav,
Addina Elements to an Arrav, Removina Elements (rom an Arrav,
Removina Elements (rom an
rAna Joinina Multiale Arravs, Findina the Index of an Element in an
Arrav Turnina an Arrav into a Stryr , Accessina Values in
Obiects, Combinina Arravs and Obiects, for Looas,G ossa

accessing, Creatina an Arrav
adding elements to, Findina the Lenath of an Arrav, Removina
Elements from an Arrav and data vies, Mixina Data Tvaes in an
Arrav
combining multiple, Removina Elements (rom an Arrav
combining with objects, Combinina Arravs and Obiects
converting to a string, Findina the Index of an
Element in an Arrav creating, Whv Should You Care
About Arravs?
{indinp index of element in, Joining
Multiple Arravs [inding length of,
Workinp with Arravs
!O R••g through elements o[, for
Looos modifying, Accessina an
Arrav's Elements
removing elements from, Addina
Elements to an Arrav vs. objects,
Accessina Values in Obiects

assigning values, Variables
attributes, HTML, Addina Links to Your HTML, Glosrysa

B
beginPath context method, Drawina
Lines or Paths block-level HTML
elements, The p Element

body, i(Statements, while Looas Preventing In(inite Loops Functions

of a control structure, i(Statements, while Loops,
Preventina In(inite Looas of a [unction, Functions

body element, A Full HTML Document
Booleans, Data Tvaes and Variables, Chanaina Strinas to All Capital or
All Lowercase Letters, Chanaina Strinas to All Caaital or All Lowercase
Leners Combinina loaical oaerators, beEwdinyd JavaScript in HTML,
Creatina a Prompt, Glosrsa

cO•I}aring numbers witLi, Combinina
loaical oaerators (or yes-or-no answers,
Creating a Promot
in conditional statements, Embeddina JavaScript in HTML
logical operators, Chanaina Strinas to All Caaital or All Lowercase
Leners

brackets, Findina the Lenath of a Strina, Obiects Accessina
Values in Obiects curly, Obiects, Accessina Values in
Objects
square, Findina the Lenath of a Strina {see square brackets)

break keyword, ta dhi eter s atit

calling, Findina the Lenath of an Arrav, Callina a Function, Passina
Arauments into Functions,
Glosrysa

functions, Callina a Function, Passina Arauments into
Functions, Glosrysa methods, Findina the Lenath o(an
Army

camel case, Namina Variables Glossaw
canvas element, The Canvas Element, The Canvas Element, Selectina
and Savina the canvas Element Drawina Multiple Sauares Drawina
Rectanale Outlines Drawina Lines or Paths, Darvv ny Lines or Paths
 Fillina Paths, Makina Thinas Move on the Canvas, Movina Across the
Paae,

Clearina the Canvas Animatina the Size of a Sauare,
Animatina the Size of a Sauare, Bouncina a

animating, Makina Thinas Move on tLie Canvas, Movina Across tLie
Paae, Animatina the Size of a
Sauare, Animatina the Size of a Sauare, J3ouncina a Ball!

bouncing ball, Bouncina a Ball!
changing size, Animatina the Size
of a Sauare moving horizontally,
Movina Across the Paae random
bee, Animating the Size o(a
Sauare

circles and arcs, Eillina
Paths clearing, Clearina

ifie Canvas colors,
Drawing Multiple
Sauares creating, The
Canvas Element
lines and yf ths, Drawina lines or PatLis, Drawina

lines or Maths drawing, Drawing lines or Paths
filling, Drawina lines or Paths

rectangles and squares, Selectina and Savina the canvas Element,
Drawina Rectanale Outlines drawing, Selectina and Savina tLie
canvas Element
outlining, Drawina Rectanale Outlines

resources, CSS
Cascading Style Sheets {CSS), CSS

chaining i(...else statements, Cfiainina
i(...else Statements chaining jQuery
animations, CLiainina iouerv Animations
Chrome, web browser and console, Writing
Some JavaScript
clearLnterval (unction, Callina Code Multiple Times
with settnterval clearRect context method, Movina
Across tLie Paae
clearTimeout junction, Delavina Code wiifi setTimeout
click events, Resoondina to Llser Actions
coercion, Creating a Prompt
collision detection, Movina tLie Ball, Cfieckina for Collisions and Addina
tLie Stead
colon (:), Creafina Obiects
comma (,), Passing Multiple Arauments
to a function comments, Svntax,
Lladatina the fiiame State, Glo sa
concat method, Removina Elements
(rom on Array
condition (of a contro/ structure), i(5iatements, CLiainina i(...else
Siatements, while hooas,
Prevenfina in(ini(e Looas

i"n for loopS•Preventina Tn(inite Looas
in if statements, i(Statements
in i{...else statements, Chaining i(...else Statements
in while looys, While loops

conditionals, Conditionals and Looas Embeddina JavaScriat in HTML,
Fmbeddina JavaScript in HTML i(Statements, Leavina a Function Earlv
with return, Glo sar

if statements, Embeddina JavaScriat in HTML

if...else statements, Embeddina Java5criat in HTML, i(Statements
 heavina a function Earlv with
return

confirm junction, Creatina a Prompt
console, Writing Some JavaScript, Creating an Arrav, Exalorina Objects
in the Console, Embedding JavaScriat in HTML, The Game Code, The Car
Constructor function, Addina the kevdown Event Handler

calling constructors in, The Car
Constructor (unction exploring objects
in, Exalorina Objects in the Console
finding errors with, The Game Code
logging values to, Embedding
JavaScriat in HTML typi'ng in,
Creating an Arrav
viewing output [rom keyboard events with, Addina the kevdown Event
Handler

console.log method, £mbeddina JavaScriat in HTML, Usina con(irm to
Ask a Yes or No Ouestion,
Callina a Function

vs. alert, Usina con(irm to Ask a Yes or No
Ouestion constructors, Sharina a Method
Between Multiale Objects,G ossa

control structures, acos

ditio

and Loo s, Glosrsa

(see also conditionals,’
looI}s) coordinates, browser,
Resoondina to Clicks CSS
(Cascading Sky/e Sheets), CSS
css jQuemethod, Drawina tLie Cars
curly brackets, Ob ec , Accessina Values in Obiects

D

data, Data Tvaes and
Variables,Gossa decrementing,
Aae in Seconds, Glosrsa
dialogs, Creatina a Hanaman
Game, Glo sa divide and assign
{fl oRerator,+—
division, Numbers and Oaerators
document object model {DOM), The DOM and iouew,G osfrysa
document.getElementById DOM method, Vsina id to Identify Elements
 The Canvas Element
DO3f (document object model), The DOE and iouew, G osfiysa
DO3f tree, The DOE and iouew

dot notation, Bevs Without Ouotes, Addina Values to Obiects, Combinina
Arrans and Objects, Obiect-
Oriented Proarammina, Obiect-Oriented

Proarammina accessing object keys with,
Combinina Arravs and Obiects adding
keys to objects with, Addina Values to
Obiects
adding methods to objects with, Obiect-Oriented Proarammina

addin RroRerties to objects with, Obiect-
Oriented Proarammina double equals {——)
oRerator,Canal To
double quotation mark {“), +—
drawing context {for canvas), Selectina and Savina the canvas Efement

E
elements, HTML, Taas and Elements Glo sa
else keyword, if Statements, Chainina if...else Statements

em elemen Whitesaace in HTML and
Block-Level Elements end tags, HTML, Taas
and Elements, Glos a
equal to {———) Rerator,Canal TO Chaining i(...else Statements
errors, The Game Code
event handlers, Resaondina to User Actions Desianina the Game, Pickina
Random Numbers,
Glo sa
event objec Resaondina to User Actions, The Click Handler
exactly equals {———) Rerator,Eaual To Chainina i(...else Statements
execute, Writinp Some JavaScript, Glo sar

F
[adeln jQuery method, Chainina iouerv Animations
fadeOut jQuery method, Creatina New
Elements with iouew fadeTo jQuery method,
Proarammina Challenaes
false {Boolean value), Data Twes and Variables, Chanaina Strings to All
Capital or All Lowercase Letters

{see also Booleans)
fill context method, Drawing Lines or Paths, A New circle Function
[illRect context method, The Canvas Elemen$ Drawina Lines or Paths,
Clearina the Canvas De(inina the score Variable, Buildina the Block
Constructor
fillstyle context R• Rerty,Drawina Multiale Sauares, D a i the Bee,
Definina the score Variable,
Writina the drawscore Function, Buildina the Block Constructor
fillText context method, Disalavina the Score, Senina the Text Baseline
find the Buried Treasure! game, Find the Buried Treasure! Find the
Buried Treasure!, Desianina the Game, Creati the Web a
e th TML Pickina Random Numbers, The Click Handler

Tellina the Plaver How Close Thev Are, Tellina the Plaver How Close
Thev Are, Tellina the Plaver How Close Thev Are

calculating distances, The
Click Handler click handler,
Pickina Random Numbers
code for, Tellina the Plaver How
Close Thev Are creating web page,
Desianina the Game
design, Find the Buried Treasure!
diSRlaying hints, Tellina the Plaver How Close
Thev Are randomizing treasure location, Creatina
the Web Paae with HTML win condition, Tellina
the Plaver How Close Thev Are

Jloor method, Usina Math.randomly, Proarammina Challenaes
{Ont

COntext RroRerty, Settina the Text
Baseline IO* !*ORS. *reVentina
Infinite Looas
function keyword, Passina Multiale Arauments to a Function

{see also functions)
functions, Functions, Callina a Function Callina a Function, Passina
Arauments into Functions Passim Arauments into functions, Passina
3fuftipfe Arauments to a Function, Passina 3fuitinfe Arauments to a
function, Usina functions to Simplifv Code, Leavi a
cti a h et Leavina a Function £arlv with return, Usina
return Multiale Times Instead o(i(...else Statements,
GI ssar ,G ossa , G ssa

arguments, Passina Arauments into Functions, Passing Multiale
Arauments to a Function calling, Callina a function, Passina
Arauments into Functions, G ssa
leaving early, Leavina a Function Earlv with return

returning values from, Callina a Function Passina Multitile Arauments to
a Function, Glossaw shorthand, Usin
Slfnpli“hn“ng code with, Usina Functions to Simplify Code
vs. if...else statements, Leavina a Function Farlv with return

G
games, I}rogramming, M et v Scr t, Audio Proarammina

(see also find the Buried treasure! game; hangman game; Snake game)
getContext canvas method, The Canvas Element
get£lementByTd, Llsina id to Tdentifv Elements,
The Canvas Element Coogle Chrome, web browser

and console, Writino Some JavaScriat graphiCal
prOgramming, Meet JavaScriat
greater than (>j operator, Combinina loaical oaerators

H
h1 element, Taas and Elements
Hangman game, Creatina a Hanaman Game, Whv Use alert Instead of

console.loa?, Desianina the G eatnoy,Lo Codina the Game Looe
Codina the Game Looe, a d i he a er s n ut,
Uadatina the Game State, Uadatina the Game State Proarammina
Challenaes, Proarammina Challenaes Proarammina Challenaes

choosing a random word, Desianina the
Name Looa code for, Uadatina the
Name State
crentinq with functions, Proarammina
Challenges design, Whv Use alert
Instead o(console.loa? diSRlaying
player’s Progress, Codina the Game
Looa
drawing, Proarammina Challenaes, Proarammina Challenaes

guesses, Proarammina
Challenaes hangman,
Proarammina Challenaes

respondi'ng to player i'npu5 COdina
the Game Loop updating game state,
Handling the Plaver’s Inaut win
condition, Uadatina the Name State

head elemen5 A Full HTML Document
height attribute, Creatina the Web Paae with HTML,
The Canvas Ffement hide jQuery method, Chainina
iouerv Animations
hre[anribute, Link Anributes
HTML, The Basics of HTML Taas and Elements, A Full HTML
Document A Full HTML Document Addina Links to Your HTML,
The DOM and iouerv, M e avascr
5G osfrysa ,
Glo sa

attributes, Addina Links to Your
HTML Glo sar elements, Taas and
Elements, Glos a

hierarchy, A Full HTML
Document nesting, A Full
HTML Document

html elemen5 A Full HTML Document, The
mousemove Event hyRerlinks, The Basics of
HTML, M erarch

I
id anribute, Usina id to Identifv Elements, Realacina the
Headina Text Usina iOuerv if statements, Fmbeddina
JavaScript in HTML
if...else statements, Embeddina JavaScriat in HTML, i(Statements Leavina
a Function £arlv with return
img element, Desianina the Game, Pickina Random
Numbers Drawina the Cars incrementing, Aae in
Seconds,G osfrysa
indexes, in arrays, Creatina an Arrav, Accessina an Arrav's
Elements, Mixina Data Tvaes in an Ara Joinina Multiale
Arravs Usina Math.random() Glo sa

and data types, Mixina Data Tvaes in an
Arrav changing elements with,
Accessina an Arrav's Elements
{indinq, Joinina 3fuftipfe
Arravs with strings, Usina
Math.random()

indexof method, Joinina Multiple Arravs
infinite loops, Countina Sheea with a while looa,G oslrysa
infine HTML elements, Whitesaace in HTML and Block-
Level Elements innerHTML R• Rerty, Vsina id to Identify
Elements
interactive Programming, Interactive Proarammina
intewal JD, Callina Code Multiple Times with setlntewal, Usina
seUntewal to Animate the Game Endina the Game, Ptittinii It All Toaether

ioin method, Findina the Index of an Element in an Arrav, Proarammina
Challenaes
iQue , The DOE and iouerv, Usino /ouery to Work with the DO3f Tree,
Llsina iOuerv to Work with the DOM Tree, Step/ocino the £Leadina text
Llsina iouery, Creatina New Elements with iOuerv, Creatina filew
Elements with iOuerv Controlling Animations with the Xevboard,
Reacting to the Xevboard, Clo sa

$ function, Reolacina the £Leadina Text
Llsina iOuerv animating elements with,
Creritino New Elements with iOuerv
creating new elements with, Creatina New Elements with iOuerv
keyboard events, resR nding with, Controllina Animations with the
Kevboard, Reactina to the Kevboard
loading On R•ge, Usina iOuerv to Work with the
DOM Tree replacing page text with, Usina iouerv

to Work with the DOM Tree

K
key-value Rairs {in objects), Obiects, Creatina Obiects Obiect-Oriented
Proorammino, Glosiysa
keyCode event proRe•v, Addina the kevdown Event Handler Senina the
Snake's Direction with the Kevboard
keydown even5 Controllina Animations with the Kevboard, Reactina to

the Kevboard Settina the ake s ire tio h he e
board

keys {in objects), Obiects, Creatina Obiects, Creatina Obiects, Addina
Values to Obiects, Obiect-
Oriented Proarammina

adding, Addina Values to Obiects
and quotation marks, Creating Objects

keywords, Numbers and Oaerators, Glo sa

L
length RroRerty, JoiniRa Strinas, Workina with Arravs, Creatina a
Random insult Generator Fxalorina Obiects in the Console

on arrays, Workina with Arravs, Creatina a Random Jnsuh Generator
Exalorina Objects in the Console
on strings, Joinina Strinas

less than {<) Rerator, Greater Than
libraries, Usinp iOuerv to Work with the DOM Tree Glosiysa
lineTo context method, Drawina Lines or Paths
lineWidthContext property,**r Iwina Rectanale Outlines Drawina the Bee
links, The Basics
o(HTML, TML e a ch
literals, Obiects
logs, Embeddina JavaScriai in HTML
lOOps, Conditionals and Looas, while Looas, Preventina Infinite Looas,
Glosrysa

fOr looRS. Preventina
In(inite Looos while loops,
While Looos

M
Math.floor, Usina Math.randomt), Proarammina Challenaes
Math.PI, Drawina Arcs and
Circles Math.random,
Usina Math.random()
Math.sqrt, Usina the Pvthaaorean
Theorem mathematical oRerators,
Numbers and Oaerators

methods, Creatina an Arrav, Findina the Lenath of an Arrav, Obiect-
Oriented Proarammina, Addlny
tMweotho s Ob e Addina Methods to Obiects, Glosrsa

adding to objects, Obiect-Oriented Proarammina
and this, Addina Methods to Objects
calling, Eindina the henath o(an Array
sharing between objects, Addina Methods to Objects

mousemove event The mousemove Evenf,
Proarammina Cfiallenaes moveTo context
method, Drawing lines or Paths
multi"yli“cation, Numbers and Operators

•••ltiply £I•d £fSsign {*—) operator, +—
music Programming, M e avascr Audio Proarammina

N
new keyword, Sharina a Method Between Multiple Obiects,
Drawina the Cars Node.js, CSS
•o• {-') oPeTatOTf,fp_fT
null value, Double Canals, Creatina a Promrt, Glo sar
numbers, Data Tvaes and Variables Creatina an Arrav, Kevs IVithout
Ouotes

object-oriented programming, Obiect-Oriented Proarammina, Clio sar
Object.keys method, Accessina Values in Objects, Storina Information
About Your Movies objects, Obiects Obiects, Kevs Without Ouotes,
Accessina Values in Obiects Addina Values to
Obiects, Combining Arravs and Obiects, Fxplorina Obiects in the
Console, Fxplorina Obiects in the
Console Obieci-Oriented Proarammina, Obieci-Oriented Proarammina,
Sharina a Method Between Multiple Obiects, Customizina Obiects with
Prototvaes, G ossa

accessing values in, leys
Without Ouotes adding yeys
to, Addina Values to Obiects
adding methods to, Obiect-Oriented
Proarammina adding values to,
Accessina Values in Objects combining
with arrays, Combinina Arrays and
Objects creating, Objects Obiect-
Oriented Proarammina

customizing with protowpes, Customizina
Obiects witLi Prototvaes exI}lo••"ng with the
console, £xalorina Obiects in the Console with
constructors, Sharing a Method Between
Multiple Obiects

offset jQuery method, Animatina Elements with setlntewal, The
mousemove Event Drawina the Cars
ofisetX and ofisetY event RroRerties, The
Click Handler operators, Numbers and
Oaerators
• I ñ Rerator, && (and), Combinina loaical operators

p element, Taas and Elements
pageX and pageY event properties, Resaondina to User Actions, The
mousemove Event

parentheses, l), Numbers and Oaerators, Gettina a Sinale Character
(rom a Strina, Callina a function
period {.), Kevs iVithout Ouotes
{see dot notation) pt {u), Drawina
Arcs and Circles
plaintex5 The Basics of HTML
pot method, Addina Elements to an Arrav, Findina Your Wav Home
i••*R* method, Creatina a Hanaman Game, Realacina the Headina Text
Usina the DO3f
i•••Rerties, WOTkina with Arravs Exalorina Objects in the Console,
Obiect-Oriented Proarammina,
Glosiysa
gfiOtOvpe RroRerty, Customizino Objects with Prototvres, The Ball
Constructor

protovReS. *xalorina Objects in the
Console, Customizina Obiects with Prototvaes, The Ball
Constructor
pseudocode, Why Use alert Instead of console.loa?, The
Structure of the Game push method, Finding the Lenath o(an
Arrav, Finding Your Wav Home Pythagorean theorem,
Calculatina the Distance Between the Click and the Treasure

queue {data structure), Goina in Reverse with ror

R
radians, Fillina Paths
random number generation, with Math.random, Usina Math.randomly
renirn keyword, Returnina Values from Functions, Usina Functions to
Simalifv Code,G ossar
returning values from junctions, Callina a Function, Passina Multiple
Arauments to a Function,

GI ssa

S
scr•‘R•elemen5 Conditionals and Looos, Usina iOuerv to
Work with the DOM Tree selector strings, Realacina the
Headina Text Usina iouew,G osfrysa
semicolons, Data Tvaes and Variables Preventina Infinite Looms
settnterval function, Callina Code Multiale times with seftnterval, Callina
Code Multiole Times with seftnterval Movina Across the Paae, Chanaina
the Coordinate with an Offset Value, Bouncing the Ball, Reactina to the
Xevboard Llsina settnterval to Animate the Came, Movina the Aoole

and Snake game, Usina setlntewal to Animate the Game,
Movina the Aaole bouncing ball, Bouncina the Ball
moving text, Callina Code Multiple Times with
setlnterval random bee, Chanaina the
Coordinate with an Onset Value with canvas,
Movina Across the Paae
with keyboard ••R•s Reactina to

the Kevboard set' imeout junction,
Interactive Proarammina shift
method, Jtemovinp Elements (rom
an Arrav
show jQuery method, Chainina iouew
Animations single quotation mark,
Strinas
slice method, Gettinp a Sinale Character
from a Strina slideDown jQuery method,
Chainina iouerv Animations slideUp jQuery
method, Chainina iouew Animations
Snake game, Makina a Snake Game: Part 1, The Structure of the Game
 Settina Ua Kevboard Control, Creatina the HTML Defininp the score
Variable Disalavina the Score Fndina the Game, Makina a Snake Game:
Part 2 Buildina the Block Constructor, Addina the drawsauare Method,
Addina the eaual Method, Addina the eaual Method, Creatina the Snake,
Drawina the Snake, am the Anale, Senina the Snake's Direction with the
Kevboard, Addina the setDirection Method, Drnwinp the Apple, Movina
the Aaale

aRple, Addina the setDirection Method,

Drawina the Aaale creating, Addina the
setDirection Method
moving, Drawina the Anale

code for, Movina the Aaale
collision detection, Addina the eaual Method,
Fntino the Apple design, The Structure o(the
Game
diSRlaying tex$ Disalavina the Score

drawing, Buildina the Block Constructor, Addina the
drawsauare Method circle, Addina the drawsauare
Method
square, Buildina the Block Constructor

ending the game, Endina the Game, Addina the eaual Method
game grid, Creatina tire HTML, Defininp the score Variable, Makina a

Snake Game: Part 2 adding border, De(inina the score Variable
creating Block, Makina a Snake Game: Part 2
Sening•R. Creatina the HTML

game Play, Makina a Snake
Game: Part 1 HTML code,
Senina Vp Kevboard Control
snake, Creatina the Snake Drawina the Snake, SeRina the Snake's

Direction with the Kevboard creating, Creatina the Snake
moving, Drawina the Snake
sening direction of, Settina the Snake's Direction with the Kevboard

square brackets, [), Eindina the henath of a Strina, Whv Should You Care
About Arrans?, C ear/ngt
aAgra, Accessina an Array’s Elements, Mixina Data Tvoes in an Array, Bevs
Without Ouotes

accessing a character from a string with, Findina the Lenath of a Strina
accessing elements from an array with, Crentinp an Arrav, Mixina Dnta
Tvpes in an Arrav accessing values in objects with, Kevs Without
Ouotes
adding elements to an array with, Accessina an Arrav's Elements
creating an array with, Why Should You Care

About Arravs? square roo$ Usina the
Pvthaaorean Theorem
src anribute, Usina iOuerv to Work with the DO3f Tree, Creatina the
Web Paae with HTML stack {data structure), Goina in Reverse with
aoa
start tag, Taas and Elements, Glo sa

statements, Data Tvaes and Variables

strings, Data T es and Variables, +—— lus-eand
——— minus-e
rS ids, Eindina tLie 6enatLi of a Strina, Cettina a Sinale Character from a
Strina, Cuttina Lla iStts,Eindina tLie Index o(an Element in an Arrav,
Obiects, Creatina Objects, Bevs Without Auteos , Llsina (or hooos with
Arrays and Strings, Eandlina the Plaver's input, Glossa

accessing single character from, Eindina the
Lenatfi of a Strina as object keys, Objects,
Creatina Objects, leys Without Ouotes
changing case o{, Cuttina Lla Strinas
(inding length of, Joinina
Strinas joining, Joinina
Strinas
Ioopi"•g through each character o{, Llsina (or 6ooos with Arrays and
Strings, Eandlina the Player’s input
slicing, Gettinp a Sinale Character (rom a Strina
turning arrays into, Findina the Index of an Element in an Arrav

stroke context method, Drawina Lines or Paths, A New circle Function
strokeRect context method, Dr€iwino Rectanale Outlines, Chanaina the
Coordinate with an Offset
Value, Bouncing the Ball
strokestyle context RroRerty, Drawina Rectanale Outlines,
Drawina the Bee strong element, Whitesoace in HTML and
Block-Level Elements
Sublime Text, The Basics of HTML
subtract and assign {-—) operator, Incrementina
and Decrementina subtraction, Numbers and
Operators
SVG, SVG Usina
Rachael syntax,

S_ xta,
Glosrysa
syntax highlighting, Text Editors

T
tags, HTML, Taas and
Elements, Glos ysar text
editors, The Basics
o(HTML,G osf
text jQuery method, Tellina the Plaver How Close Thev Are
t£"xtAlign Context p•op£r/, Settina tLie Text Baseline
textBaseline context I}•oper/, Setting the Text Baseline, Writina the
drawscore function
this keyword, Addina Methods to Obiects The Car Constructor (unction,
Addina a draw Method to the Car Prototype
timeout JD, Delavina Code with setTimeout

titfe anribute, Link Anributes
toLowerCase method, Cuttina
Up Strinas tot-lpperCase
method, Cunina Ua Strinas
true {Boolean value), Data Tvaes and Variables, Chanaina Strinas to All
Capital or All Lowercase Letters

(see also Booleans)

undefined value, Numbers and Oaerators Double Canals, Senina or
Chanaina Elements in an Arr y,a Callina a Function, G
ossa
unshift method, Addina Elements to an Arrav

values {in objecte), Obiects, Creativa Obiects, Creativa Obiects, Kevs

Without Ouotes A ceciiiyss es i Ob ec , Obiect-
Oriented Proarammina

accessing, Bevs Without
Ouotes adding, Accessina
Values in Objects data vpe
o(, Creatina Objects

var keyword, Numbers and Operators, Variables, lamina Variables
variables, Numbers and Oaerators, Namina Variables Namina Variables
Aae in Seconds, Double Canals Arravs, Glo sar

creating with math, Namina Variables
increasing and decreasing values of, Aae
in Seconds naming, Namina Variables
undefined and null for,
Double Canals vs. arrays,
Arravs

web browsers, Meet
JavaScriat while loops,
while Looas
whitesRace, The Efe e t, Whitesaace in HTML and Block-
Level Elements, Glosrysa width attribute, Creating the Web
Paae with HTML The Canvas Element

JavaScript for Kids: A Playful Introduction
to Programming Nick Morgan
Copyright fi 2014
JavaScript for Kids.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.

18 17 16 15 141 2 3 4 5 6 7 8 9

ISBN—10: 1—59327—408—4

ISBN—13: 978—1—59327—408—5
Publisher: William
Pollock Production
Editor: Riley Hoffman
Cover Illustration: Tina
Salameh Illustrator:
Miran Lipovaca
Developmental Editors: William Pollock
and Seph Kramer Technical Reviewer:
Angus Croll
Copyeditor: Rachel
Monaghan Compositor:
Riley Hoffman
Proofreader: Paula L.
Fleming
For information on distribution, translations, or bulk sales, please contact
No Starch Press, Inc. directly: No Starch Press, Inc.
245 8th Street, San Francisco,
CA 94103 phone:
415.863.9900;
info@nostarch.com
www.nostarch.com
Library of Congress Control Number: 2014953113
No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press,

mailto:info@nostarch.com
http://www.nostarch.com/

Inc. shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in it.

No Starch Press

2014—12—

02T10:57:26—

08:00

	Chapter
	Chapter 2. Data Types and Variables
	Chapter
	Chapter
	Chapter
	Chapter 7. Creating a Hangman Game
	Chapter
	Chapter
	Chapter
	Chapter 11. Find the Buried Treasure!
	Chapter
	Chapter
	Chapter
	Chapter 15. Controlling Animations with the Keyboard
	Chapter
	Chapter 17. Making a Snake Game: Part 2

